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Preface

This book aims at introducing a wide audience ranging from number theorists
with a basic course in algebraic geometry under the belt to complex geometers
to some of the exciting developments around the theme of hyperbolicity and
the fundamental conjectures of Bombieri, Lang, Vojta, and others, beyond
the well-known case of curves. Recall that Faltings’s theorem (née Mordell
conjecture) states that the number of rational points of a curve of genus
greater or equal than two over any number field is finite. Analogues of the
abovementioned conjectures exist with suitable modifications over function
fields, and we have tried emphasizing this point in the book especially
for function fields of characteristic zero. Therefore, some readers might be
stimulated to investigate the more subtle, yet still tractable analogues of
the works mentioned therein over function fields of positive characteristic in
higher dimensions. As of 2020, the original conjectures are still very wide
open over number fields. Classes of examples for which they are known are
documented in chapters “The Lang—Vojta Conjectures on Projective Pseudo-
Hyperbolic Varieties” and “Hyperbolicity of Varieties of Log General Type”.
In some special cases, much stronger and presumably much harder to prove
statements are expected to be true. For example, the generalized Fermat
equation

xm_"_yn:’zr’

where x,y,z,m,n,r are positive integers with m,n,r > 2 and xz,y,z are
pairwise coprime, is known by a theorem of Darmon—Granville of 1995 to
have at most finitely many solutions for fixed m,n,r, and its proof relies on
orbifold curves and a dévissage to Faltings’s theorem, see chapter “Arithmetic
Aspects of Orbifold Pairs” for a sketch of the proof. On the other hand, Beal’s
much harder conjecture states that the generalized Fermat equation should
have no such solutions with coprime factors whatsoever.



vi Preface

To capture the original atmosphere of the delightful lectures in Montréal
in 2018 and 2019, we give a very brief description of the chapters’ contents
in French in the following lines; for more details (in English), the reader is
referred to the introductory section of the corresponding chapter.

X K ok

Cet ouvrage comporte quatre chapitres.

Le premier chapitre intitulé Lectures on the Az—Schanuel Conjecture par
Benjamin Bakker et Jacob Tsimerman, explique les grandes lignes de la
preuve de la conjecture d’Ax—Schanuel pour les variations des structures de
Hodge reposant sur les techniques de géométrie o-minimale. Les résultats
originaux expliqués ici ont paru en 2019 sous forme d’article de recherche.

Le second chapitre intitulé Arithmetic Aspects of Orbifolds Pairs par
Frédéric Campana, est un exposé des conjectures de Campana visant un
auditoire varié (comportant des théoriciens des nombres, des géometres
arithméticiens et des géometres complexes), y compris sa notion éponyme
de paires orbifoldes placée littéralement au ‘cceur’ de ses conjectures.

Le troisieme chapitre intitulé The Lang—Vojta Conjectures on Projective
Pseudo-Hyperbolic Varieties par Ariyan Javanpeykar, est une introduction
au theme de I'hyperbolicité et des conjectures de Lang—Vojta dans le cas
projectif, ainsi qu’a une bonne dose de résultats dus a I’auteur.

Le quatrieme chapitre intitulé Hyperbolicity of Varieties of Log General
Type par Kenneth Ascher et Amos Turchet, continue d’explorer le theme de
I’hyperbolicité et des conjectures de Lang—Vojta dans le cadre plus général
des variétés quasi-projectives. Il fournit en particulier une présentation de
résultats par les deux auteurs et leur collaboratrice DeVleming.

Remerciements : chacun des chapitres de cet ouvrage est basé sur
un mini-cours donné & 1'Université du Québec & Montréal (UQAM) lors
des conférences et ateliers suivants : Variétés de Shimura et hyperbolicité
des espaces de modules, 28 mai - 1 juin 2018; Géométrie arithmétique des
orbifoldes, 11-13 décembre 2018; Approximation diophantienne et théorie de
distribution des valeurs, 13—17 mai 2019.

Je me dois de remercier chaleureusement mes co-organisateurs sans qui
toute cette florissante activité internationale (en particulier la coopération
Québec-France) n’aurait pas pu prendre place : Erwan Rousseau et Steven
Lu pour les deux premiers événements; et Carlo Gasbarri, Nathan Grieve,
Aaron Levin, Steven Lu, Erwan Rousseau et Min Ru pour le troisieme
événement. Le premier événement fut crucialement financé par le fonds
québécois CRM-UMI-FQRNT, par des fonds francais (fonds propres de
I'UMI, ANR Foliage (projet ANR-16-CE40-0008) et IUF) et une modeste
participation du CICMA. Merci & Emmanuel Giroux alors a la gouverne
de 'UMI du CRM de m’avoir bien conseillé et outillé pour la recherche de
financement & Montréal. Le deuxieme événement fut financé par le CIRGET
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(UQAM) ainsi que les fonds frangais UMI, ANR Foliage, IUF. Le troisieme
événement fut financé par le CIRGET, les fonds frangais UMI, ANR Foliage,
IUF ainsi que la NSF pour les participants états-uniens.

Marseille, France M.-H. Nicole
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Lectures on the Ax—Schanuel
conjecture

Benjamin Bakker and Jacob Tsimerman

MSC codes 14D07, 32G20, 03C64, 11J81

1 Introduction to Transcendence

1.1 Preliminaries

We begin with some very basic definitions. For details on transcendence
theory we refer to [28, Chap. §].

Definition 1.1.1. Let L/K be a field extension.
(1) For a finite subset {a1,...,a,} C L, an algebraic relation over K
satisfied by {aq,...,ay} is a polynomial p € K|[z1,..., z,] such that
plag,...,a,) =0.
(2) a € L is said to be algebraic over K if {a} satisfies a nonzero algebraic
relation over K.

We will often use “{aq,...,a,} satisfies an algebraic relation over K”
interchangeably with “aq, ..., «a, satisfy an algebraic relation over K”.

Lemma 1.1.2. Let L/K be a field extension.
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(1) a € L is algebraic over K if and only if there is a finite-dimensional
K -vector subspace V.C L with oV C V.

(2) If B1,...,0n € L are algebraic over K and o € L such that
{a, B1,...,Bn} satisfies an algebraic relation over K that is nonconstant
m «, then « s algebraic over K.

(8) The set F C L of elements which are algebraic over K is a subfield.

Definition 1.1.3. Let L/K be a field extension.

(1) A finite subset {ai,...,a,} C L is algebraically independent over K
if it satisfies no nonzero algebraic relation over K. A subset ¥ C L is
algebraically independent over K if every finite subset is algebraically
independent.

(2) « € L is transcendental over K if {a} is algebraically independent over
K.

(3) A transcendence basis for L over K is a maximal subset of L which is
algebraically independent over K.

We will often use “{ai,...,a,} is algebraically independent over K”
interchangeably with “aq, ..., «, are algebraically independent over K.”

Ezample 1.1.4. e € R is transcendental over Q, as is m € R.

Ezample 1.1.5. Tt is conjectured but not known that {e,7} C R is alge-
braically independent over Q.

Lemma 1.1.6. Any two transcendence bases of L/K have the same cardi-
nality.

Definition 1.1.7. The transcendence degree of L over K, denoted
trdegy L, is the cardinality of a transcendence basis of L over K.

Example 1.1.8. For any field K, it is easy to see that any nonconstant f €
K(t) is transcendental over K and moreover that {f} is a transcendence basis
of K(t) over K. Thus, trdeg, K(t) = 1.

Example 1.1.9. The transcendence degree of C over Q is equal to the
cardinality of C.

1.2 Classical Transcendence of the Exponential
Function

Arithmetic Transcendence Naively we think of the exponential function e?
as highly transcendental. By this we mean that given aq,...,a, € C, we
expect algebraic relations among the arguments «; to rarely translate into
algebraic relations among the values e®, and vice versa. There is one notable
exception: since the exponential function is a group homomorphism C — C*,
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where C* := C\{0}, any Q-linear relation
0=rio1 4+ +rpa, for r; €Q
leads to a “trivial” algebraic relation
L= ()t (e

where 7; = a;/b; in lowest terms and b = lem(by, ..., by,).

If we assume ay,...,a, € C satisfy no Q-linear relations, we have the
following longstanding conjecture:

Conjecture 1.2.1 (Schanuel Conjecture). Let aq,...,a, € C be Q-
linearly independent. Then
trdegy Q(ai, ..., an, e, ..., e") > n. (1)

Note that the conjecture is only interesting when the «; are algebraically
dependent—it is a statement about how algebraic relations among the «;
interact with algebraic relations with the exponentials.

The Schanuel conjecture remains wide open; to give a sense of how strong
it is, we have the following example.

Ezample 1.2.2. Take oy = 1 and ay = mwi. Then the conjecture implies
trdegg Q(1, i, e, —1) = trdegg Q(m,e) > 2

that is, that e and 7 are algebraically independent over Q.

By taking o; € Q, we see that the statement of Schanuel’s conjecture is
optimal, since

n > trdegg Q(e™, ..., e"") = trdegg Q(au, . .., o, ™, ... ).

Moreover, in this case the conjecture says that e, ... e% are algebraically
independent over QQ, and this has in fact been verified:
Theorem 1.2.3 (Lindemann—Weierstrass). Let ai,...,a, € Q be Q-
linearly independent. Then

trdegg Q(e™, ..., e%") = n.

Formal Functional Transcendence The exponential function is also defined
on formal power series f € C|[t1,...,tn]], and we may try to obtain functional
analogs of the above arithmetic statements by simply replacing the extension
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C/Q by C((t1,-..,tm))/C. Given f1,..., fn € C[[t1,...,tm]], both sides of
(1) have a clear analog, and we might guess that the correct statement is

trdege C(f1, ..., fn,e/t, ..., el") >n.

There are however several new phenomena we must take into account. First,
any relation of the form

C=rifi+ - +rpfn for m;€Qand (€C

leads to a “trivial” algebraic relation among the exponentials e/, ..., ef* so
we should assume the f; are Q-linearly independent modulo constant terms.

Second, the f; may now satisfy a formal relation p € C[[z1,..., 2],
meaning that

02p(f177fn)

Ezxample 1.2.4. Not surprisingly, the f; may be algebraically independent
over C and still satisfy a formal relation. Indeed, f; = t and f; = e’ satisfy
a formal relation, namely

p(z1, 20) = ™

— Z29.

Formal relations are in fact much easier to detect. By the formal implicit
function theorem, the number of independent formal relations is encoded
by the dimension of the kernel of the Jacobian matrix J(fi,...,fn) =

(gfj) over C((t1,...,tm)), and the formal transcendence degree can be

reasonably defined to be the rank of J(fi,..., fn). The correct analog of
Conjecture 1.2.1—which is a theorem due to Ax [2]—says roughly that the
algebraic transcendence degree of C(f1,. .., fa,eft,... efr) over C is at least
n more than the formal transcendence degree of the f;:

Theorem 1.2.5 (Ax—Schanuel, Theorem 3 of [2]). Let fi,...,fn €
Cl[t1, .- tm]] be Q-linearly independent modulo C. Then

trdege C(f1, ..., fu, ety ef™) >+ 1k J(f1,. .., fa). (2)
Of course, we always have
trdege C(f1,---, fn) +trdegC(C(efl,...,ef“) > trdegCC(f1,...,fn,efl,...,ef'”)

from which we deduce the following weaker version, which is often what’s
used in applications.

Corollary 1.2.6 (Weak Ax—Schanuel). In the setup of Theorem 1.2.5,
we have



Lectures on the Ax—Schanuel Conjecture 5

trdege C(f1,. .-, fn) + trdege C(e”,...,ef")y > n4+ 1k J(f1,.... fn).  (3)

As a further corollary, we can deduce an analog of the Linde-
mann-Weierstrass theorem:

Corollary 1.2.7 (Ax—Lindemann—Weierstrass). In the setup of Theo-
rem 1.2.5, further assume

trdege C(f1,. -y fn) =tk J(f1,- - fn)- (4)

Then
trdege C(ef1, ... efn) = n.

Condition (4) has a clear geometric interpretation: if the f; converge in
some ball centered at the origin, it means the image of the germ (f1,..., fn) :
C™ — C™ is (the germ of) an algebraic variety. This observation naturally
leads us to the geometric approach of the next section.

Geometric Functional Transcendence Often a more geometric interpretation
of the results of the previous section admits clearer generalizations to other
settings. The key point is that if we replace the field C((t1,. .., %)) from the
previous section with the subfield C({(t1,...,tm)) C C((t1,...,tm)) of power
series that converge in some ball around the origin, it does not affect the
transcendence statements (see [46]).

Now, transcendence statements about the field of convergent power series
can be phrased in terms of the analytic varieties they parametrize. For
example, consider the flat uniformization

7:C" = (C)" i (21,...,2n) = (e(21), ..., e(zn))

where! e(z) = e?™*. Both C" and (C*)" can be endowed with obvious
structures as complex algebraic varieties, and it is then natural to ask what
algebraic subvarieties L C C" also have algebraic “image.” To formulate this
precisely, for a complex algebraic variety X and a subset Y C X, we denote
by Y% the Zariski closure of Y in X. We make the following definition:

Definition 1.2.8. We say an algebraic subvariety L C C" is bialgebraic if
dim L = dim 7 (L)%,

In this case we will sometimes abusively refer to (L) as being bialgebraic as
well.

1We could formulate everything with e(z) = e* and the statements would be identical.
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Ezxample 1.2.9. Building on the “trivial” algebraic relations from the previ-
ous subsection, any L C C" which is a C-translate of a linear subspace of C"
defined over Q is bialgebraic. Said differently, every coset M C (C*)™ of an
algebraic subgroup of (C*)™ is bialgebraic.

In fact, cosets of subtori are the only bialgebraic subvarieties, as we shall
show in Corollary 4.1.2:

Proposition 1.2.10 (See Corollary 4.1.2). Every closed bialgebraic M C
(C*)™ is a finite union of cosets of subtori.

Now consider the following situation. Let W C C™ x (C*)™ be the graph
of m, and let pr; : C" x (C*)™ — C" be the first projection. Suppose we have
an algebraic subvariety V' C C™ x (C*)™, as well as an analytic component
U of the intersection VN W. Let A C C be the unit disk. Taking a local
holomorphic parametrization f = (f1,..., fn) : A™ — pr;(U) C C", we see
that on the one hand

rk‘](fla'”afn) == dlmprl(U) =dimU

while on the other hand, if we consider the formal power series expansions at
the origin f; € Cl[[t1,...,tm]],

trdege C(f1, ..+, fure(f1), .- e(fn)) = dim U™ < dim V.

Given Example 1.2.9, for f1,..., f, to be Q-linearly independent modulo
constant terms, we equivalently must have that pry(U) is not contained in
any proper bialgebraic subvariety L C C™, in which case Theorem 1.2.5 says
that we must have

dimV >n+dimU. (5)

Conversely, suppose that for any algebraic V. C C™ x (C*)" and any
analytic component U of V N W that is not contained in the graph of a
proper bialgebraic subvariety we have (5). Then given a holomorphic function
f=, -, fn) : A™ — C™ whose image is not contained in any bialgebraic
subvariety, define

F=fx(mof):A™ = C"x (C)"
and take V = F(A™)%% g0 that

trdege C(f1,. .., fn e(f1),...,e(fn)) =dimV.
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Some analytic component U of the intersection V' N W must contain
F(A™), and U cannot be contained in the graph of a proper bialgebraic
subvariety by the assumption on f(A™), so (5) would imply

dimV >n+dimU > n+dim F(A™) =n+1k J(f1,..., fn)-
Rephrasing, we have therefore proven the following statement is equivalent

to Theorem 1.2.5:

Theorem 1.2.11 (Ax—Schanuel). Let W C C" x (C*)™ be the graph of m,
and suppose there is an algebraic subvariety V-.C C™ x (C*)™ such that there
s an analytic component U of VNW of unexpected codimension:

COdian x (C*)m (U) < COdian x (C*)m (V) —+ COdian x(C*)m (W) .

Then U is contained in the graph of a proper bialgebraic L C C™.

The moral is that “atypical” intersections between algebraic subvarieties
of C™ x (C*)™ and the graph of 7 are controlled by bialgebraic subvarieties.
We of course also have geometric versions of Corollaries 1.2.6 and 1.2.7:

Corollary 1.2.12 (Weak Ax—Schanuel). Suppose there are algebraic sub-
varieties Vi C C™ and Vo C (C*)™ such that there is an analytic component U
of Vi Na=Y(Va) of unexpected codimension. Then U is contained in a proper
bialgebraic L C C™.

Proof. Take V =1V, x V. a

Corollary 1.2.13 (Ax—Lindemann—Weierstrass). Suppose there are
algebraic subvarieties Vi C C™ and Vo C (C*)™.

(1) If 1(V1) C Vi, then there is a bialgebraic M C (C*)™ with

T(Vl) CMcC VQ;
(2) If 1(V1) D Vs, then there is a bialgebraic M C (C*)™ with

7T(V1) DM DOV,
Proof. For the first part, we have a containment V; C 7~!(V3) which is an
intersection of unexpected codimension unless V5 = (C*)™. Thus, provided V3
is a proper subvariety, by the previous corollary we obtain L C C™ bialgebraic
containing V;. Replacing C™ by L and V3 by m(L)N V5, we may continue until

(L) N Vo = m(L)—that is, until 7(L) C Vs.
We leave the second part as an exercise.

Corollary 1.2.13 can be equivalently formulated as the following:
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Corollary 1.2.14.

(1) For V.C C" algebraic, 7(V)?* C (C*)" is a finite union of cosets of
subtori.

(2) ForV C (C*)" algebraic and any component Vo of m=1(V'), we have that
VZar C C" is a finite union of C-translates of linear subspaces defined
over Q.

Note that it is really the first part of Corollary 1.2.14 that is the analog
of Corollary 1.2.7. It can also be stated as:

Corollary 1.2.15. For any closed algebraic V- C (C*)", a maximal irre-
ducible algebraic subvariety of m=*(V) is a coset of a subtorus.

We leave it to the reader to show that Corollary 1.2.6 (resp.1.2.7) is
equivalent to Corollary 1.2.12 (resp. 1.2.13).

1.2.16 Semiabelian Varieties

Let Y = A be a semiabelian variety with identity 0 € Y. Let X = V be its
universal cover with its natural structure as a complex vector space, 7: V —
A the covering map, and A = 7~*(0), which is a discrete subgroup of V. The
universal covering map  is then identified with the quotient map V. — V/A.
Note that if we had started with V and A C V a discrete subgroup, V/A is
not guaranteed to have the structure of an algebraic variety, and if it does it
may not be unique.

The bialgebraic M C A are then cosets of algebraic subgroups of A, and
the Ax—Schanuel conjecture was proven by Ax [3].

In fact, more generally still, it makes sense to allow X, Y to be (euclidean)
open subsets of algebraic subvarieties X, Y, in which case we proceed as above
defining the “algebraic subvarieties” of X to be intersections VN X for V' an
algebraic subvariety of X, and likewise for Y.

1.2.17 Shimura Varieties

A Shimura variety is a quotient of a bounded symmetric domain by an
arithmetic lattice in a semisimple algebraic group G. We will discuss this
case more precisely in Lecture 4; for now we just give an example:

Ezample 1.2.18. The (coarse) moduli space of principally polarized abelian
varieties A, is a Shimura variety. In this case A, admits a uniformization
m: Hy — A, realizing A, as the quotient of Siegel space

H, := {Z € Mat,+,(C) | Z' = Z and Im Z > 0}
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by the action of Sp, (Z) via
(AB):Zw (AZ + B)(CZ+ D)™\

H, is naturally a semialgebraic subset of its compact dual ]I:]Ig7 which is the
projective variety parametrizing Lagrangian planes in C29.

The classification of bialgebraic subvarieties in Shimura varieties is known
by [49]. These are the so-called weakly special subvarieties. The Ax—
Lindemann—Weierstrass conjecture was proven by Pila for powers of the
modular curve [35], by Pila-Tsimerman for A, [38], and then by Klingler—
Ulmo—Yafaev for general Shimura varieties [27]. The Ax—Schanuel conjecture
was proven by Pila-Tsimerman [39] for powers of the modular curve and by
Mok-Pila-Tsimerman for general Shimura varieties [33].

Importantly, Shimura varieties are moduli spaces of polarized pure integral
Hodge structures which admit an algebraic structure, see Lecture 5.

1.2.19 Mixed Shimura Varieties

We will give fewer details in this case, but mixed Shimura varieties arise by
allowing G to have a nontrivial unipotent radical. Mixed Shimura varieties
are moduli spaces of graded polarized mixed integral Hodge structures which
admit an algebraic structure.

Ezample 1.2.20. The (coarse) universal family of principally polarized
abelian varieties X, over A, is a mixed Shimura variety. In this case X
admits a uniformization 7 : Hy x C9 — X realizing X, as the quotient by a
group I' which is an extension of Sp,,(Z) by Z*9.

The classification of bialgebraic subvarieties in mixed Shimura varieties
is known by [18], and both the Ax-Lindemann—Weierstrass conjecture for
mixed Shimura varieties and the Ax—Schanuel conjecture for the universal
abelian variety have been proven by Gao [18, 19].

1.2.21 Period Spaces

Generalizing the case of Shimura varieties in a different direction, period
spaces I'\D parametrize pure polarized integral Hodge structures. Impor-
tantly, in this case I'\D does not in general admit an algebraic structure, so
the setup must be slightly modified (see Lecture 6). The proof of the Ax—
Schanuel theorem (see Theorem 6.1.1 below) will be the main focus of these
notes.
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1.3 Arithmetic Applications
1.3.1 Special Point Problems

Suppose given a uniformization 7 : X — Y as in the previous section. Often
there is a “special” set of points Yy, C Y which have an interesting arithmetic
interpretation in Y and whose preimages in X also have a simple arithmetic
description.

Ezample 1.3.2. As in Example 1.2.16, take Y = V/A a semiabelian variety,
X =V,and 7: X — Y the quotient map. Then we take Y, to be the set of
torsion points, and 7! (Ysp) = Ag.

Ezample 1.3.3. As in Example 1.2.17, take Y = A, the coarse moduli space
of principally polarized abelian varieties, X = H,, the Siegel upper halfplane,
and 7 :  — Y the quotient. We take Y5, to be the set of points corresponding
to abelian varieties with CM. In this case, 7~1(Ys,) are points of Hg valued
in number fields of bounded degree, with certain Galois properties.

Question 1.3.4. For an algebraic subvariety V' C Y, denote Vi, := VNY,,.
For what V' do we have

(VSP)Zar =V

In the above contexts we expect that answer to be: only when V is
bialgebraic. The property in Question 1.3.4 is in fact usually more restrictive,
only holding for what are called special subvarieties, while bialgebraic
subvarieties often turn out to be weakly special. For example, for Y = (C*)™
and Yy, the torsion points, the irreducible weakly special subvarieties are
cosets of subtori, whereas the irreducible special subvarieties are torsion
cosets of subtori.

Ezample 1.3.5. In the case of the exponential 7 : C" — (C*)™ with torsion
points as the special points the above expectation is known as Lang’s
conjecture. Precisely: if V' C (C*)™ is an algebraic variety and Vi, is the
set of torsion points on V, then Lang conjectures (V;o;)%*" is a finite union
of torsion cosets of subtori. For n = 2 this was proven by Lang [28].

Example 1.3.6. For m : C™ — Y the uniformization of an abelian variety with
torsion points as the special points, this is known as the Manin-Mumford
conjecture. Precisely: if V C Y is an algebraic variety and Vi, is the set of
torsion points on V, they conjectured that (V,,)%® is a finite union of torsion
cosets of abelian subvarieties. Both the general form of Lang’s conjecture and
the Manin-Mumford conjecture were proven by Raynaud [42, 43].

Ezample 1.3.7. For w: Q) — Y the uniformization of a Shimura variety, this
is known as the André—Oort conjecture. Precisely, if V' C Y is an algebraic
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variety and Vg, is the set of special points on V, then they conjectured
that (Vip)%" is a finite union of special subvarieties. The conjecture was
conditionally? proven in [26] and unconditionally for Y = A, by [48].

The proof of Raynaud proceeds by singling out a prime p and using
different ingredients to deal with the “prime-to-p-parts” and “p-parts.” For
the former, Raynaud crucially uses the Frobenius at p in the Galois group. He
observes that the Frobenius operator on prime-to-p roots of unity is closely
related to the multiplication by p map (they are identical in the multiplicative
case). This allows him to reduce from a variety X to X N(p-X), and conclude
by induction. This argument is heavily relied upon in the conditional proof
of André-Oort assuming the generalized Riemann hypothesis in [26]. For
the “p-part” Raynaud proceeds using a p-adic deformation theory argument,
which is generalized to the Shimura case by Moonen [32], allowing him to
establish certain cases of André—Oort unconditionally.

The general hyperbolic case requires new ideas, and the proof of Tsimer-
man [48] builds on a strategy developed by Pila—Zannier which critically uses
the Ax-Lindemann—Weierstrass theorem [35].

The Zilber—Pink Conjecture There is a wider set of conjectures, due to
Bombier-Masser—Zannier in the multiplicative setting and Zilber—Pink more
generally. Instead of only considering special points, one considers points
of various “degrees” of specialness, and studies algebraic relations between
such points. It is easiest to present in the multiplicative setting: for a point
r = (21,...,%,) € (C*)" define its rank rk(z) to be the rank as an abelian
group of the span (x1,...,2,) in C*. Observe that the rank is 0 precisely for
torsion points. One consequence of the conjecture is the following:

Conjecture 1.3.8 (Consequence of Zilber—Pink [41, 53]). Let V C
(C*)"™ be an irreducible algebraic subvariety of codimension d. Let V,,, be the
points of V(C) of rank at most m and assume V;_; is Zariski-dense in V.
Then V is contained in a proper special subvariety. In other words, there is
a nonconstant monomial which is identically 1 on V.

There is some progress on the conjecture above in the multiplicative case
due to Habegger [22], Maurin [30], Bombieri-Masser—Zannier [10, 11], and
others. We refer the interested reader to [37] for a more complete survey.

The Shafarevich Conjecture After Lawrence—Venkatesh Lawrence and
Venkatesh [29] have outlined a strategy for proving instances of the
Shafarevich conjecture which uses the functional transcendence of period
maps. Briefly, let O = Og s be the ring of integers Og in a number field
K away from a finite set S of primes and 7 : Y — X a smooth projective
family defined over 0. Then assuming certain geometric properties of 7 one

2Conditional on the generalized Riemann hypothesis.
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expects the number of integral points X (O) to be finite, for example, when
the family 7 has an immersive period map. The Shafarevich conjecture for
moduli spaces of polarized abelian varieties was proven by Faltings in the
landmark paper [17].

The strategy of Lawrence—Venkatesh uses the p-adic period map in the
context of p-adic Hodge theory. Their argument requires a p-adic transcen-
dence result which formally follows from the corresponding transcendence
result for the complex analytic period map. Using this technique, they are able
to show that when X is taken to be certain moduli spaces of hypersurfaces
in P, the integral points X (O) are not Zariski dense in X.

2 o-Minimal Geometry

For background on o-minimal structures and o-minimal geometry, we refer
to [50].

2.1 o-Minimal Structures

An o-minimal structure specifies “tame” subsets of euclidean space which
can be used as local models for “tame” geometry. On the one hand, the
tameness will rule out pathologies such as Cantor sets and space-filling curves;
on the other hand, as we will see, the tameness hypothesis locally imposes
remarkably few conditions on analytic functions.

Definition 2.1.1. A structure S is a collection (S, ),en where each S, is a
set of subsets of R™ satisfying the following conditions:

(1) Each S, is closed under finite intersections, unions, and complements;

(2) The collection (S,) is closed under finite Cartesian products and
coordinate projection;

(3) For every polynomial P € R[zy,...,xy,], the zero set

(P=0):={z €R" | P(z) =0} C R"

is an element? of S,,.

We refer to the elements U € S,, as S-definable subsets of R". For U € S,,,
and V € S,,, we say a map f : U — V of S-definable sets is S-definable if

30ne can work in greater generality by allowing structures without this assumption,
but we will only require ones satisfying it.



Lectures on the Ax—Schanuel Conjecture 13

the graph is. When the structure S is clear from context, we will often just
refer to “definable” sets and functions.

The definable sets should be thought of as the sets that are “constructible”
within the theory. From the axioms, it is easy to prove the following:

Proposition 2.1.2. Let S be a structure.

(1) The image and preimage of a definable set under a definable map are
definable;
(2) The composition of two definable maps is definable.

Thus, for example, whereas we only required coordinate projections to be
definable in Definition 2.1.1, it follows that all linear projections are definable.
By definition, any structure S contains all real algebraic sets, but this is not
enough:

Ezample 2.1.3. The collection S of real algebraic sets—that is, S,, = the
Boolean algebra generated by sets of the form (P = 0) for P € Rlxy,...,2,]—
is not a structure. Indeed, for any P € R[zy,...,z,], the image of the
projection of (z% = P) forgetting zg is (P > 0).

Ezample 2.1.4. Let R, be the collection of real semialgebraic subsets of
R™—that is, (Raig)n is the Boolean algebra generated by sets of the form
(P > 0) for P € Rlz1,...,2,]. Then Ry, is a structure. By the Tarski-
Seidenberg theorem (see for example [50, Chapter 2]), coordinate projections
of real semialgebraic sets are real semialgebraic, and the other axioms are easy
to verify. R, is therefore a structure, in fact the structure generated by real
algebraic sets given Example 2.1.3.

Remark 2.1.5. Tarski-Seidenberg is usually phrased as quantifier elimination
for the real ordered field, and structures as defined above are important
in model theory. Indeed, the axioms say definable sets are closed under
first order formulas, as intersections, unions, and complements correspond
to the logical operators “and,” “or,” and “not,” while the projection axiom
corresponds to universal and existential quantifiers. Moreover, we can make
the same definition for any real closed field, and base-change to these fields
plays a similar role to base-changing to generic points of schemes in algebraic
geometry. We won’t say much about it, but it is a useful perspective to keep
in mind.

While infinite unions or intersections of definable subsets are not definable,
it is nonetheless the case that many topological constructions with respect
to the euclidean topology are definable:

Proposition 2.1.6. Let S be a structure, and endow R™ with the euclidean
topology. Closures, interiors, and boundaries of definable sets are definable.
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Proof. We just show that the closure of a definable set U C R is defined by
a first order formula and leave the rest as an exercise:

Uz{xER”

Ve > 0,3y € U s.t. 2:(316Z —y)? < e}

Remark 2.1.7. We have the following formal operations on structures.

(1) Given two structures S and S’, we say S is contained in S’, denoted
S c 8 it S, € 8], for all n. Note that any structure S contains Ryg.

(2) Given structures {S®};c; indexed by a set I, the intersection
(NSD),, :=N(S®), is evidently a structure. Thus, given a collection
(Th)nen of sets of subsets of R™, we may speak of the structure S
generated by the (T},)nen as the smallest structure S with S,, D T,.

(3) Given an increasing chain

S(O)Cs(l)c...cs(i)c...

the union (| S™),, := J(S™), is a structure.

Thus far we have only specified the rules by which we can construct
definable subsets from other definable subsets; we have not yet controlled
how complicated definable sets are allowed to be. The crucial “tameness”
property is o-minimality:

Definition 2.1.8. A structure S is said to be o-minimal if S; =
(Raig)1—that is, if the S-definable subsets of the real line are exactly finite
unions of intervals.

The intervals in the definition are allowed to be closed or open on either
end, may extend to infinity, and may be zero length (i.e. points).

Ezample 2.1.9. R, is o-minimal, clearly.

Example 2.1.10. Let Ry, be the structure generated by the graph of sin :
R — R. Ry, is not o-minimal as 77 = sinfl(O) is definable and infinite.

Ezample 2.1.11. Let Rexp, be the structure generated by the graph of the
real exponential exp : R — R. Rexp is o-minimal by a result of Wilkie [52].
Quantifier elimination does not hold for Reyp.

Example 2.1.12. Let R,, be the structure generated by the graphs of all
restrictions f|p(g) of real analytic functions f : B(R’) — R on a finite radius
R’ < oo open euclidean ball (centered at the origin) to a strictly smaller
radius R < R’ ball. Via the embedding R™ C RP™, this is equivalent to the
structure of subsets of R™ that are subanalytic in RP™. R,,, is o-minimal by
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van-den-Dries [50], using Gabrielov’s theorem of the complement. Note that
while sin(z) is not R,,-definable, its restriction to any finite interval is.

Example 2.1.13. Let Ry exp be the structure generated by R,, and Reyp.
Ran,exp is o-minimal by a result of van-den-Dries—Miller [51]. Most of the
applications to algebraic geometry currently use the structure Rap exp-

Remark 2.1.14. By Remark 2.1.7, there are maximal o-minimal structures,
but not a unique one, as the structure generated by two o-minimal structures
can fail to be o-minimal [44].

For the rest of this lecture, we fix an o-minimal structure S,
and by “definable” we mean S-definable, unless explicitly otherwise
stated.

2.2 Cwylindrical Cell Decomposition

Sets that are definable in an o-minimal structure can be decomposed into
graphs of definable functions in a systematic way. It would take us too far
afield to prove the main existence result (Theorem 2.2.5 below), but it is
important to keep in mind as it gives a clear picture of some of the finiteness
properties that such definable sets possess.

We follow the treatment in [50] closely.

Definition 2.2.1. A definable cylindrical cell decomposition of R™ is a
partition R™ = | | D; into finitely many pairwise disjoint definable subsets
D;, called cells. The cells have the following inductive description.

n=0. There is exactly one definable cylindrical cell decomposition of R°.
Its unique cell is all of RO.

n>0. Write R® = R"! x R. There is a definable cylindrical cell
decomposition {E} of R"~! and for each E we have: an integer
mpg € N and continuous definable functions fg; : £ — R for each
0 < k < mpg such that

fEo=—00< fE1< < fEmp-1 < fEmp = +00

The cells are:

e graphs: {(z, fpr(x)) | x € E} for each F and 0 < k < mpg;

e bands: (fg .k, fEk+1) = {(z,y) | v€E and y € (frk(2), fEk+1(2))}
for each E and 0 < k < mg.

Note that because of the inductive nature of the definition, we have
implicitly chosen an ordering of the coordinates.
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Ezxample 2.2.2. The cylindrical cell decompositions of R are easy to under-
stand. In this case, there is m € N and a; € R for each 0 < k£ < m such
that

ag = —00 < a1 < -1 < A = +00

and the cells are:

o {ax} for 0 < k < m;
o (ag,apy1) for 0 <k <m.

Such a cell decomposition is shown in Figure 1.
Example 2.2.3. Figure 2 shows a cylindrical cell decomposition of R? that
projects to the cell decomposition of Figure 1.

Remark 2.2.4. FEach cell D in a definable cylindrical cell decomposition has a
well-defined dimension dimg D, and it is definably homeomorphic to Rdim= D
as follows. For n = 0 it is trivial, as it is inductively for the graph cells for

al as as

Fig. 2 A cell decomposition of R? projecting to that of Figure 1.
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n > 0. For band cells, given two definable f,g: F — R with f < g, we have
a definable homeomorphism (f,g) — F x R via

(:c,y)w(:c,f(m)l_yjtyjt ! >

The main result is the following:

Theorem 2.2.5. For any finite collection U; C R"™ of definable sets, there is
a definable cylindrical cell decomposition of R™ such that each U; is a union
of cells.

Every cell has a well-defined (real) dimension, so we have as a consequence:

Corollary /Definition 2.2.6. For any definable set U C R"™ we define
dimg U to be the largest dimension of its cells with respect to a definable
cylindrical cell decomposition.

We won'’t give a proof of Theorem 2.2.5, but an essential ingredient is the
following stronger version in a special case:

Lemma 2.2.7. For every definable function f : (a,b) — R, there is a finite
subdivision

aw=a<a<--<anp=>

such that each f‘(ak,aﬂl) is either constant or strictly monotonic.
Proof. The proof is taken directly from [50]. We begin with the following:

Claim. There is a subinterval J C (a,b) on which f is constant or f is strictly
monotonic and continuous.

Proof. We may assume f is not constant on any subinterval of (a, b).
Step 1. f is injective on a subinterval J.

It follows from the above assumption that all fibers are finite. The function
g(y) = min f~1(y) is a definable section of f, for we may write its graph as

{(f(z),2) €R? |z € (a,b) s.t. z < 2 for all 2’ € (a,b) with f(z) = f(x)}.

The image of g is definable and not finite by assumption, so by the o-
minimality property it contains an interval J, and on this interval go f = id,
so f is injective.

Step 2. f is strictly monotonic on a subinterval J.

Assuming now that f is injective, for each = € (a,b) the sets

{ye(a,b) | fly) < fx)}
{y € (a,0) | fly) > f(x)}
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are a definable partition of (a,b)\{z}. It follows that the sets

A={r € (@6) 3> 05t floam < F0) < flinaso)
B={zc(a,b)|3e>0st. fla—ca) > f(@) > flwaote}
C={z € (a,b)|3e>0st. flo—ecw) > (@) < fl@ato}
D ={z € (a,b) [ Fe>0s.t. fla—ca) < [(2) > fl@are}

are a definable partition of (a,b).

We now claim that the last two sets are finite; it’s enough to show D is,
as the proof for C is similar. If the claim was false, then there would be a
subinterval J for which every point is a local maximum. For n € N, consider
the sets

Jp :={z € J |z is a maximum on (z — 1/n,x + 1/n)}

which are clearly definable and J = U, J,. The J, can’t all be finite, so one
J,, contains an interval by o-minimality, and this is clearly nonsense.

Thus, one of A and B (say A) contains an interval J = (¢, d). But then
for each x € J,

{yeJ|y>xand flu,y) > flz)}

must be all of (x,d).
Step 3. f is strictly monotonic and continuous on a subinterval J.

Restrict f to an interval whose image is an interval. Then it is strictly
monotonic and bijective, hence continuous. a

To finish, the set of points x for which either f is constant on a neighbor-
hood of x or f is strictly monotonic and continuous in a neighborhood of z
is definable, and hence is a finite set of points by the claim. This finishes the
proof, since if for all x in some interval either f is constant on a neighborhood
of x or f is strictly monotonic and continuous in a neighborhood of z, then
the same is true on the entire interval. ad

By reasoning along the lines of Lemma 2.2.7 one can show that definable
functions have limits away from definable sets of smaller dimension. This can
be upgraded to the fact that definable functions are C* off of a definable set
of smaller dimension:

Corollary 2.2.8. Let U C R™ be a definable set. Then for each k, U has a
stratification by definable C*-submanifolds.

Corollary 2.2.9. Let f : U — V be a definable map. Then for each n € N,
the subset
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Vii={veV |dimftv)=n}CV

is definable.

Proof. Consider the graph, and order the coordinates backwards. As is clear
from the inductive definition, each cell has constant dimension over its
projection. a

Corollary 2.2.10. Let f : U — V be a definable map with finite fibers. Then
for each n € N, the subset

Vi={veV |#f ' v)=n}CcV

1s definable. Moreover, the size of the fibers is uniformly bounded.

Proof. As above, consider the graph and order the coordinates backwards.
All of the cells are graphs over cells of V. O

2.3 Definable Topological Spaces

Let M be a topological space. We can endow M with a geometry locally
modeled on definable sets in the usual way using atlases.

Definition 2.3.1. A (S-)definable topological space M is a topological space
M, a finite open covering V; of M, and homeomorphisms ¢; : V; — U; C R"
such that

1) The U; and the pairwise intersections U;; := ;(V; N V;) are definable
J ¥ J
sets;
2) The transition functions ¢;; := ¢; 0 ;' : U;; — U,; are definable.
Pij Pj P J J

We call the data (V;, ;) a definable atlas. A morphism of definable spaces
f: M — M’ is a continuous map f such that for all ¢ and ¢/, the composition

—1 7
(Fopr )M (Vi) 2 vy Ly 25 0

is S-definable. Note that this is a condition both on the map and the source.
M is said to be a (S-)definable manifold if the definable atlas additionally
gives M the structure of a manifold.

We denote the category of S-definable topological spaces by (S-Top).

We will often use the term “(S-)definable structure” as a shorthand
for “structure as a (S-)definable topological space” when no confusion is
likely to arise, and likewise we will say a continuous map f : M — M’ is
“(S-)definable” as shorthand for “a morphism of (S-)definable topological
spaces.”
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Fig. 3 The “slanted strip” definable structures considered in Examples 2.3.2
and 2.3.3.

We will ultimately be interested in definable structures on the topological
spaces underlying complex analytic varieties, and all of the examples below
are of this sort. Throughout we use the identification C = R? to speak about
definable subsets of C".

Ezample 2.3.2. (See Figure 3.) Let C* C C be the punctured plane and
e : C — C* the usual covering map e(z) = €*™*. We can endow C* with a
number of R,j,-definable structures:

(1) C* is a (real) algebraic subset of C, and we call this Rajs-definable
topological space Ga¢f.

(2) For a € R, define the following slope a “slanted strip” fundamental set
for the covering action on C:

F,={2€Cla-Imz<Rez< (14+¢€)+a-Imz}.

F, is evidently semialgebraic, and thus has a natural R,j-definable
structure. A slightly thinner open strip will inject into C*, and taking
translates of such a strip will then give a R, -definable atlas of C*. We
call the resulting R,j,-definable topological space Cj;. By definition the
map e : F,, — C} is a morphism of R,j,-definable topological spaces.

Evidently if S, S” are two structures with S C S’ and M is an S-definable
topological space, then we have an induced structure as an S’-definable space.
In particular, an R,,-definable structure on M will induce an S-definable
structure on M for any S.

Ezample 2.3.3. (See Figure 3.) Consider again the previous example.
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(1) The spaces C} are all isomorphic as Raig-definable topological spaces,
as, for instance, the map = + iy — (= + ay) + iy yields an isomorphism
Cy = Cz.

(2) The identity map C: — G is not definable for any a # 0 in any o-
minimal structure. Indeed, any ray is definable in GI¢f, but the preimage
in F,, has infinitely many components for a # 0.

(3) The identity map C} — G is not R,je-definable. This is equivalent
to e : Fy — G being definable, which would imply that the real and
imaginary parts e 2™ cos(2mz) and e~?™¥ sin(27x) are R,o-definable as
functions [0, 1] xR>o — R, which is clearly false. In fact, they are not even
R..-definable, as otherwise e2™¥ would be R,,-definable, whereas one can
show that any R,,-definable function has sub-exponential growth. It is
however clearly Ran exp-definable (and in fact an isomorphism of Ry, exp-
definable spaces).

Thus, of the “slanted strip” fundamental domains considered in Exam-
ples 2.3.2 and 2.3.3, the vertical strip is the unique one for which the covering
map e : Fy — G3 is definable in an o-minimal structure.

Remark 2.5.4. While the C; of Example 2.3.2 are all isomorphic as Raig-
definable spaces, C; and C; do not admit a holomorphic isomorphism as
S-definable spaces for a # b and any o-minimal structure S. Indeed, the only
holomorphic automorphisms of C* are ¢ and ¢~! up to scaling, and one can
manually check that these do not give definable isomorphisms C; — Cj for
a # b. However, the identity C§ — Ggff does give a holomorphic Rup exp-
definable isomorphism.

Example 2.3.5. Let X be a real algebraic variety. Then the set of real points
X (R) equipped with the euclidean topology carries a canonical isomorphism
class of Ruig-definable topological space structures, by covering by (finitely
many) affine varieties. It is an easy exercise to see that any two (finite) affine
coverings specify isomorphic R,j-definable structures.

Likewise, as the complex points of an affine complex algebraic variety
are naturally the real points of an affine real algebraic variety (by Weil
restriction), for X a complex algebraic variety the same construction yields
a canonical (unique up to isomorphism) Rais-definable topological space
structure on the set of complex points X (C) with the euclidean topology.

Given a complex algebraic variety X, we define X! to be X (C) endowed
with its euclidean topology.

Definition 2.3.6. Let X a complex algebraic variety. We define X9¢f to
be the (S-)definable topological space with underlying topological space
Xeuel and the definable structure induced from the R.g-definable structure
constructed in Example 2.3.5. We refer to X9°f as the (S-)definabilization
of X.
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Note that the notation does not reflect the dependence of X9¢f on the
structure S.

Let (AlgVar/C) be the category of complex algebraic varieties. It is not
hard to see that we in fact have a “definabilization” functor

(AlgVar/C) — (S-Top) : X ~ X9,
Likewise for real algebraic varieties.
Let (Top) be the category of topological spaces. Every definable space has
an underlying topological space, and we denote the resulting forgetful functor
(S-Top) — (Top) : X ~— X P,

We then clearly have a diagram:

(_)def

(AlgVar/C) (S-Top)

(_)cucl (7)top

(Top)

There is likewise a similar picture over R, but for us complex algebraic
varieties will play a particularly important role.

Ezxample 2.3.7. We have the following hyperbolic analog of Examples 2.3.2
and 2.3.3. Let Y(2) be the full-level two modular curve, with analytic
uniformization Y (2)*" := I'(2)\H where

r(2) = {A € PSL,(Z) ‘ A= <(1) ‘1)> mod?} .

A fundamental domain F' for the action of I'(2) on H is shown in Figure 4,
corresponding to a choice of section of the quotient PSLy(Z) — PSLy(Fs).
Let

1
F;:{zeC‘|Rez|<2+eand z|2>1—e}

be a slight enlargement of the usual fundamental domain for the action of
PSL3(Z) on H. Clearly F' is real semialgebraic and injects into Y (2)**. The
translates of F' under the choosen lifts provide a cover of Y (2)*", and as
the action of PSLy(R) on H is algebraic, this is a (finite) cover by real
semialgebraic sets with real semialgebraic transition functions. Thus, we have
a Raig-definable structure on Y (2)*" which we call Y(2).
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Cococococccooooo oo o= S

¢-d-o---Lo-- —---d-s

Fig. 4 The definable fundamental set for Y (2) considered in Example 2.3.7.

The R,ie-definable spaces Y(2) and Y (2)4°f are not isomorphic via a
holomorphic map, and in fact, the induced R,y,- and Rcx,-definable structures
are not even the same, just as in Remark 2.3.4. Indeed, the image of the
horoball

{zeH |Imz > 1}

gives a neighborhood of the cusp at co holomorphically isomorphic to A*. On
the one hand, in Y (2)9¢f there’s an algebraic coordinate at the cusp which
is Raig-definable, and which moreover extends holomorphically to the cusp.
Thus, after shrinking A*, the R,,-definable structure induced by Y (2)4f is
that of A* C Ggff. On the other hand, the R,,-definable structure induced
by Y(2) is clearly A* C C§.

The two structures on Y (2)*" are isomorphic over Ray cxp. Indeed, by the
previous example they are isomorphic in the cuspidal neighborhoods, whereas
on the complement of the union of (slightly shrunken) cuspidal neighborhoods
the two structures are clearly isomorphic over R,;,.

Remark 2.3.8. We can alternatively think of Example 2.3.7 (or indeed any
of the above examples) in the following way. Let F’ be an open semialgebraic
fundamental set for the action of I'(2). The action of I'(2) on H induces
a closed étale equivalence relation R C H x H. Each component of this
equivalence relation is evidently algebraic, and only finitely many components
intersect F' x F'. Thus, the restriction of the equivalence relation to F” is Rajg-
definable. One can show that quotients by closed étale definable equivalence
relations exist in the category of definable topological spaces [6].
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FEzample 2.3.9. Let X be a smooth proper complex algebraic variety. Then
we may cover X! by finitely many polydisks A™. Endow each A" with the
R.n-definable structure coming from that of A in (A!)d¢f. After shrinking
the disks slightly the transition functions are evidently restricted analytic
and therefore R,,-definable. This atlas gives a R,,-definable structure to
Xeuel which is evidently X9 (over R,y,).

Likewise, if X is a smooth complex algebraic variety (not necessarily
proper), then let X be a log smooth algebraic compactification. Yeud can
be covered by finitely many polydisks A" whose intersection with X! is
of the form (A*)" x A®. This atlas then gives a R,,-definable structure to
Xeuel which is once again isomorphic to X def.

Remark 2.8.10. The cylindrical cells of Section 2.2 depend on an embedding
into R™, but there is a notion of cell decomposition for definable topological
spaces for which the analogs of Corollaries 2.2.9 and 2.2.10 hold. See [6] for
details.

3 Algebraization Theorems in o-Minimal Geometry

O-minimal geometry has found a number of applications to the functional
transcendence theory of uniformizations of algebraic varieties because it
allows one to ascend and descend algebraic structures along the uniformizing
map by way of two important algebraization theorems.

3.1 The Counting Theorem of Pila—W:ilkie

Definition 3.1.1. The (archimedean) height H(r) of a rational number r €
Q is defined to be max(|al, |b|), where r = a/b for coprime integers a,b.
Likewise, for & € Q™ we define the height to be H(a) = max H (o).

Note that there are finitely many points of Q™ of bounded height. Let
U C R" be a subset. We define the counting function as

N(U,t) = #{a e UNQ" | H(a) < t}.

Furthermore, we define the algebraic and transcendental parts

Ul .= U Z
z connected semi-algebraic

dim Z>0
ZCU

U™ :=U~\ U™
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Note that U*® may well not be definable in any o-minimal structure even if
U is.

The counting theorem says that rational points can only accumulate along
the algebraic part in a precise sense:

Theorem 3.1.2 (Counting theorem, Theorem 1.8 of [40]). Let U C
R™ be definable in an o-minimal structure. Then for any € > 0,

N(U™ t) = O(t°).

Remark 3.1.3.

(1) The o-minimal hypothesis is essential: the graph U C R? of sin(7x)
contains polynomially many integer points.

(2) The general form of 3.1.2 builds on an earlier result of Bombieri-Pila
[9], which asserts the conclusion of the theorem for U = C' a compact
real analytic curve C' C R? containing no semialgebraic curves, which is
obviously R,,-definable.

(3) There is a stronger form of 3.1.2 which is useful for applications.
Informally, it states that for any € > 0 you can cover all the points
of height at most ¢ by at most O(t¢) semialgebraic sets. In fact, it
is this version which most naturally comes up in the proof of the
Ax-Lindemann—Weierstrass and Ax—Schanuel theorems, as it is more
naturally fits into inductive arguments.

Formally speaking, it says that for any € > 0 there is a finite number
J = J(U,¢) of definable sets W) C R™xR™ such that each fiber W;Si) C
R™ is semialgebraic and contained inside U, and a constant ¢(U, €), such
that all the rational points in U of height at most ¢ are contained inside
ct® many sets of the form Wéz). See [40] for more details, refinements,
and generalizations.

The counting theorem is often used to deduce from the presence of many
rational points on U the existence of a semialgebraic subset Z C U with many
rational points, and this is why Theorem 3.1.2 is so powerful a tool in proving
transcendence results. We will specifically need the following corollary of the
strong form of Theorem 3.1.2 alluded to in the above remark:

Corollary 3.1.4. If N(U,t) # O(t%) for some € > 0, then for any N € N
there is a semialgebraic subset Zn C U containing N rational points.

We refer to [37] for a nice survey of the counting theorem and it’s
applications, but we say a few words about its role in the Pila—Zannier
strategy to prove André-QOort type problems. Theorem 3.1.2 is used in two
fundamentally different ways:

Let 7 : Hy — A4 be the uniformizing map, 7 : ' — A, its restriction to
a definable fundamental set, V' C A, an algebraic subvariety, and Vi, C V
the set of special points on V. As any subvariety with a Zariski dense set of
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special points is defined over a number field K, we may assume this is true
for V, and thus V4, is closed under the action of the Galois group Gal(K /K).
One has to show using arithmetic arguments that special points have Galois
orbits which are “large,” so that W;l (Vep) C wgl (V) has many rational points
in the sense of Theorem 3.1.2.* Applying Theorem 3.1.2 shows that 7=*(V) D
V' for some semialgebraic subvariety V' C Hj. Next, by Corollary 1.2.13—
whose proof also uses Theorem 3.1.2 as we’ll see—it then follows there is a
bialgebraic L C Hy such that 7~'(V) > L D V’. In particular, there are
special subvarieties of V' containing “most” points of V. To finish, one has
to apply an induction argument wherein special varieties are parametrized
by special points on a lower-dimensional Shimura variety.

3.2 The Definable Chow Theorem
of Peterzil-Starchenko

For X a complex algebraic variety, denote by X" the complex points X (C)
with its natural structure of a complex analytic variety. Recall that Chow’s
theorem states that if X is a proper complex variety and Y C X" is a closed
complex analytic subvariety, then Y is algebraic. If the properness hypothesis
on X is dropped, then the theorem is false: consider, for example, the graph
of the complex exponential in C x C*.

The “definable Chow” theorem of Peterzil-Starchenko essentially states
that the conclusion of Chow’s theorem in the non-proper case holds if Y is
additionally required to be definable with respect to an o-minimal structure.

Theorem 3.2.1 (Definable Chow, Theorem 5.1 of [34]). Fiz an o-
minimal structure and let X be a complex algebraic variety. Then any closed
complex analytic subvariety Y C X" whose underlying set is definable in
Xdef s algebraic.

Note that it is enough to assume Y is (analytically) irreducible of
dimension d. Furthermore, we may replace X with a (nonempty) affine Zariski
open subset U and algebraize U*"NY, for then Y is the closure of U**NY . We
can thus assume X = A" and in the sequel we’ll simply write C* = (A™)?",

We'll give two proofs, the first of which minimizes the explicit use of o-
minimality, and the second that of complex analysis. The first proof relies on
an important analyticity criterion of Bishop:

Theorem 3.2.2 (Theorem 3 of [8]). Let U C C™ be an open subset and
Z C U a closed analytic subset. If Y C U\Z is a pure dimension d closed

4This is classical in the case of the modular curve, much harder for Ag, and still open
in general. See [48].
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analytic subset of finite 2d-dimensional volume, then the closure Y of Y in
U is an analytic subset.

Proof (First Proof of Theorem 3.2.1). Consider C* C P" with complement
P~ the plane at infinity. By the lemma below, Y has finite volume locally
around P"~!, so by Bishop’s theorem the closure Y of Y in P” is an analytic
subvariety, hence algebraic by the usual Chow theorem. a

Lemma 3.2.3. Any bounded k-dimensional definable V.C R™ has finite k-
volume.

Proof. A bounded k-dimensional definable subset of R* certainly has finite
volume. The volume of V' C R™ is bounded up to a constant by the
maximum volume of its coordinate projections to R¥—which is finite—times
the maximum degree of these projections, which is also finite. a

The second proof relies on the following fact using only elementary complex
analysis.

Lemma 3.2.4. Any definable holomorphic function f : C™* — C is algebraic.
Proof.

Step 1. An entire definable function f : C — C is algebraic.
f cannot have an essential singularity at infinity or else it would have
infinite fibers, by Casorati—Weierstrass.

Step 2. Any definable holomorphic function f : C" — C is algebraic.

Write C* = C x C"~ L. For any w € C"~!, f(z,w) is a polynomial in z by
Step 1. By Corollary 2.2.10, the degree of f(z,w) in z is uniformly bounded,?
so for some N,

°”\
~
7?‘

By induction (using the previous step as the base case) the definable
holomorphic functions g’%{(o, w) : C"~! — C are algebraic.
O

Second Proof of Theorem 3.2.1. We prove the claim by induction on the
dimension d of Y, the base case being obvious.

Step 1. The boundary 9Y :=Y\Y C P*~! of Y in P" is a definable subset
of (real) dimension at most 2d — 1.
From cell decomposition, the boundary of a definable set always has
smaller dimension.

5We might have to consider f(z,w) — ¢ to avoid multiplicity.



28 B. Bakker and J. T'simerman

Step 2. There is a linear projection 7 : C* — C¢ for which the restriction
7y : Y — C? is proper.
Linear projections C* — C"~! are obtained by projecting from a point p €
P"~1 at infinity; the fibers of this projection are the lines through p (minus
the point p itself). As d < n, by the previous step dimg 0Y < dimg P"~! =
2n—2, so there is a projection C"* — C"~! for which each fiber has bounded
intersection with Y. The projection Y — C"~! is therefore proper, and
the image is clearly definable and closed analytic by Remmert’s proper
mapping theorem. Now iterate.

Step 3. The locus Yy C Y where my : Y — C? is not étale is a closed
algebraic subvariety Yy of C”.
Y} is analytic of strictly smaller dimension than Y and evidently definable
(as, for instance, it is the locus where the fiber size is nongeneric). By the
inductive hypothesis we therefore have that Y; is algebraic.

Step 4. Y is algebraic.

Write C* = C* % x C%, so 7 is projection to the second factor. Let Z2" =
7(Yp), which is a closed algebraic subvariety of C?. Let N be the degree of
the map 7y : Y — C% and consider the function

F:CHhZ™ = Sym™N C" 4 : 2 77 1(2).

Note that Sym” C"~4 is an affine algebraic variety. F is evidently definable
and holomorphic, as well as locally bounded around Z*" (as 7y is proper).
Thus, the pullbacks of the coordinate functions of Sym” C"~? extend to
definable holomorphic functions f : C* — C, which are therefore algebraic
by Lemma 3.2.4. It follows that Y\ Z*" is algebraic, and therefore that Y is.

O

Remark 3.2.5. Neither of these proofs is the one given by Peterzil-
Starchenko—as they prove it for arbitrary real closed fields—but the second
proof is close to that of [34]: we’ve only really cheated by using Casorati—
Weierstrass. Step 1 of the proof of Lemma 3.2.4 can be proven in general
using a version of Liouville’s theorem proven by Peterzil-Starchenko.

4 The Ax—Lindemann—Weierstrass Theorem

In this section, as a warm up for the proof of Theorem 6.1.1, we show how
to use the Pila—Wilkie theorem to prove the Ax-Lindemann—Weierstrass
theorem for the exponential map. Many of the same arguments will be used in
the proof of Theorem 6.1.1. The notable exception is that the definable Chow
theorem does not play a role in the proof of the Ax—Lindemann—Weierstrass
theorem but is essential to the proof of the Ax—Schanuel theorem.
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4.1 The Exponential Function

Let

7:C" = (C)" i (21, .., 2n) = (e(21), ..., e(zn))
where e(z) = e?™*. Let’s first give a proof of the classification of the
bialgebraic subvarieties of C™ which only mildly uses some of the o-minimal
machinery—and in particular will not use either of the algebraization
theorems discussed in the previous lecture.

Consider an algebraic subvariety M C (C*)™ and the induced map on
fundamental groups

w1 (M) — m ((CH)™) = Z™.

The important observation is that we can directly relate the size of the
monodromy (that is, the image of 71 (M)) to the invariance of M.

Proposition 4.1.1. If the image of m1 (M) is not finite index in m ((C*)™),
then M is contained in a coset of a proper algebraic subtorus.

Proof. Without loss of generality we may assume
m(M) = 0ezZ" ! cz™
Let
F={(z1,...,2n) €C"| —e < Re(z;) < 1+ ¢} (6)

which is a fundamental set for 7 : C* — (C*)". Now, on the one hand,
the function z; descends to a holomorphic function f : M — C by the
assumption on the monodromy. On the other hand, we may take a definable
cell decomposition® of M. Each cell D is simply connected and therefore lifts
to I, so z1 has bounded real part on D. It then follows that z; has bounded
real part on all of M, so f must be constant. a

Corollary 4.1.2. The closed irreducible bialgebraic subvarieties of (C*)™ are
precisely cosets of algebraic subtori.

Proof. Equivalently, we must show that the closed irreducible bialgebraic
subvarieties of C™ are translates of C-subspaces defined over Q. Suppose L C
C™ is a closed irreducible bialgebraic subvariety, which we may assume is not
contained in any translate of a C-subspace defined over Q. By the proposition

SWe're not really using o-minimality here—just a statement about the topology of
algebraic varieties.
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(applied to M = (L)), L is invariant under a finite index subgroup of Z". As
L is algebraic, its stabilizer under translation by vectors in C™ is an algebraic
subgroup, which is therefore all of C". O

We are now ready to prove the Ax-Lindemann—Weierstrass theorem,
whose statement we recall.

Theorem 4.1.3 (Ax—Lindemann—Weierstrass). Suppose there are alge-
braic subvarieties Vi C C™ and Vo C (C*)".

(1) If 1(V1) C Vi, then there is a bialgebraic M C (C*)™ with
(V1) C M C Vo

(2) If 1(V1) D Vo, then there is a bialgebraic M C (C*)™ with
w(V1) D M D Va.

Before the proof we make a crucial observation: both the fundamental set
F C C™ and the restriction mp : F' — (C*)™ of the covering map are definable
in the o-minimal structure Rap exp (c.f Example 2.3.3).

Proof of Theorem 4.1.3. We start with the proof of (1). We can assume by
taking closures and components that Vi (resp. V3) is a closed irreducible
algebraic subvariety of C™ (resp. (C*)™). We can further assume that V5
is not contained in any proper subtorus, and that V; is a maximal closed
irreducible algebraic subvariety of 7=1(V5). It remains to show that Vi is
bialgebraic.

Consider the set

I:={veR"|dim((Vi +v)Naz'(V2)) = dimV;}.

As Vj is irreducible, we see that v € I if and only if the translate Vi +v meets
Fand Vi +v C 7 1(V3).

Step 1. I is Ry cxp-definable.

Indeed, the universal translate
Vi i={(v,2) | z€e V1 +v} CR" xC"
is (real) algebraic so definable, as therefore is the universal intersection
U:=vn[R"x w;l(Vg)) .

Applying Corollary 2.2.10 to the projection & — R yields the claim.



Lectures on the Ax—Schanuel Conjecture 31

|
|
I
]
|
|
|
|
+

Fig. 5 Vi1 must pass through at least one fundamental domain F' — v of each height.

Step 2. Stabgzn (V1) is infinite.

We may assume V; meets F, as 7~!(V3) is covered by integral translates’
of F. Note that for any v € Z™, V; meets F — v if and only if v € I, so
the integral points of I correspond to fundamental domains that V; passes
through. Observe that V7 cannot be contained in any “height ball”

U F-v

veZ"
H(v)<r

as then each coordinate z; would have bounded real part and therefore be
constant. For each t € Z¢, the complement of the “height sphere”

U (F —wv)

vEL™
H(v)=t

has two connected components, so Vi must pass through it (see Figure 5).
Thus, we have

N(I,t) >t+1.

7Strictly speaking we should take € = 0 and make F a fundamental domain for this
argument.
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By the strong form of the counting theorem, we have a (real) semialgebraic
curve C' C I that contains at least two integral points.

If translation by ¢ € C does not stabilize Vi, then |J.(Vi + ¢) is a
real semialgebraic subset of m7=1(V3), and its C-Zariski closure is a complex
algebraic subvariety of m=!(V3) of larger dimension than Vi, contradicting
the maximality of Vi. Thus, V3 = Vj +c¢ for all ¢ € C, and V; is stabilized by
a nonzero integer point.

Step 8. Induction step.

Since Stabgn (V1) is an algebraic subgroup, it follows from the previous
step that V7 is stabilized by a complex line C C C" defined over Q. Thus,
there is a splitting C* = C"~! @ C defined over Q such that V; = V{ x C.
Let Vy = Vo N (C*)"~L. Since the proposition is trivially true for n = 1, we
may inductively assume there is a bialgebraic L' ¢ C*~! with

vic L' cn Y(V)).

By the assumption on Va, we must have L’ # C"~! (or else V5 = (C*)"), so
we can apply the induction hypothesis again to V3’ = n(L' & C) NV, and
V" = V1. We conclude there is a bialgebraic L” C L' & C with

VicL ca ' (vy) cn (V)

and so V3 = L” is bialgebraic, by the maximality of V.

The proof of part (2) is very similar, so we just sketch the argument. We
may now assume V; is the C-Zariski closure of a component of 7=1(V3) and
apply the Pila-Wilkie theorem to

I:={veR"|dim ((Vi +v) Nrg' (Vo)) = dim V>}.

We can then conclude that there is a real semialgebraic C C I, and if
translation by ¢ € C doesn’t stabilize V;, then [.(Vi + ¢) would contain
7~ 1(V3), implying that the C-Zariski closure of 7=1(V3) is smaller than V7,
a contradiction. We conclude that V] is invariant under a C-line defined over
Q, and a similar induction yields the claim. a

4.2 Hyperbolic Uniformizations

We give a sketch of how the above proof is adapted to the setting of Shimura
varieties, but we first recall the basic structures associated with Shimura
varieties (see [31] for details). These are:

¢ A connected semisimple algebraic Q-group G.
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¢ A bounded symmetric domain
Q=G(R)/K

where K is a maximal compact subgroup of G(R). € is a complex manifold
and its biholomorphism group is G(R). It also carries a natural left-
invariant Hermitian metric A which has negative sectional curvature. Note
that the requirement that 2 have a holomorphic structure is a strong
requirement on the group G.

« The compact dual ©, which is

where B is a maximal Borel subgroup. It is a homogeneous projective
variety. The Harish—-Chandra embedding theorem shows that for any choice
of B containing K, Q is realized as a semialgebraic subset of 2. Moreover,
this embedding is unique up to the action of G(C).

¢ An arithmetic lattice I' C G(Q), that is, a subgroup which is commen-
surable to the subgroup preserving an integral structure Hy in a faithful
representation G(Q) — GL(Hg). I' is discrete and finite co-volume in
G(R) (with respect to a left-invariant metric).

¢ The analytic quotient

Y=o =NGR)/K.
Y uniquely has the structure of an algebraic variety [4], and it is called a

Shimura variety.

Ezample 4.2.1. For G = Sp,, and I = Sp,,(Z) we have

Hy, =the unimodular symplectic lattice of rank 2g

2 = Siegel upper half-space H,

) = the Lagrangian Grassmannian of H¢
Y =T'\H, = the (coarse) moduli space of principally polarized

g — dimensional abelian varieties A,

We can now consider the uniformization 7 :  — Y. Recall that we say
a complex analytic subvariety V' C () is algebraic if there is an algebraic
subvariety V C © with V = V N Q. We say an algebraic subvariety V C Q
is bialgebraic if dim V' = dim 7(V)%", as in Definition 1.2.8. The bialgebraic
subvarieties are the so-called weakly special subvarieties:
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Definition 4.2.2. A weakly special subvariety of Y is a Shimura variety Y’
given as

Y =T'\G/(R)/K’

where G’ is an algebraic Q-subgroup of G, I' =T' N G/(Q) is an arithmetic
lattice, and K’ = K N G/(R). Evidently Y” is then an analytic subvariety of
Y, and in fact it is (uniquely) an algebraic subvariety.

Proposition 4.2.3 (Theorem 1.2 of [49]). Let Y be a Shimura variety.
The closed irreducible bialgebraic subvarieties of Y are precisely the weakly
special subvarieties.

As in Proposition 4.1.1, the proof of Proposition 4.2.3 uses monodromy
arguments and relies heavily on the work of André-Deligne [1, 16]. The
Ax-Lindemann—Weierstrass theorem in this context was proven by Pila for
powers of the modular curve [35], by Pila-Tsimerman for A, [38], and then
by Klingler-Ulmo—Yafaev for general Shimura varieties [27]:

Theorem 4.2.4 (Ax—Lindemann—Weierstrass, Theorem 1.6 of [27]).
Let Y be a Shimura variety uniformized by ). Suppose there are algebraic
subvarieties Vi C Q and Vo C Y.

(1) If 1(V1) C Vi, then there is a bialgebraic M C Q with
7(Vi) C M C Vs

(2) If m(V1) D Va, then there is a bialgebraic M C Q with
(V1) D M D V.

Sketch of Proof. We will only sketch the proof of (1), as (2) is similar. We can
make the same assumptions on V; and V5 as in the proof of Theorem 4.1.3—
that is, that both are closed irreducible subvarieties. We can further assume
V5 is not contained in any bialgebraic subvariety, and that 1 is a maximal
algebraic subvariety of 7=1(V5).

We follow the same three steps as the proof of Theorem 4.1.3

Step 1.

We first need a definable fundamental set F' C 2 for which the restriction
g : F— Y is a definable quotient map. In [27], this is done using finitely
many Siegel sets, which yield a semialgebraic fundamental set F C G(R) for
the action of any arithmetic lattice I' C G(Q). We can then take F' as the
image of F in Q = G(R)/K. It is then shown that 7p : F — Y is Rap exp-
definable using the theory of toroidal compactifications. In Lecture 5 we will
instead use the local theory of degenerations of Hodge structures to produce
a definable fundamental set.
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It then follows in the same way that
I:={g € G(R)|dim (gVi N7y (V2)) = dim V3 }.

is Ran exp-definable.
Step 2. Stabgz)(V1) is infinite.

We would like to apply the Pila-Wilkie theorem to I as in Step 2 of the
proof of Theorem 4.1.3, so we need

Claim. N(I,t) > t¢ for some € > 0.

We postpone until Lecture 7 the precise definition of the height of an
element of G(Q) and the counting function. The above argument using
“height balls” to produce polynomially many Z-points of I (in the height)
breaks down, essentially because the uniformizing group I' and its action on
Q) are now very complicated.

The problem is remedied in [27, 38] by instead using metric balls. Let T'y
be the image of the monodromy representation 71 (V2) — G(Q). Recall that
since 7r*1(V2) is stable under I'y/, it will be sufficient to show that V; passes
through polynomially many (in the height of ) integral translates v~ F for
v € T'y. We may assume V; meets F' and take a basepoint =g € F N V.
Consider the metric balls By, (R) centered at z. By a result of Hwang—To,
the volume achieved by V; in By, (R) is large:

Theorem 4.2.5 (Corollary 3 of [23]). There is a constant § > 0
only depending on  such that for any closed positive-dimensional analytic
subvariety Z C By, (R) we have

vol(Z) > sinh(BR)4 ™ Z mult,, Z.

We will need a version of Theorem 4.2.5 for period domains, whose proof we
sketch in Lecture 8.
To establish the claim, it now remains to show that:

(a) The only integral translates v~'F meeting By, (R) have H(y) < ¢?(%);
(b) Vi has bounded volume intersection with all of the translates v~ F.

Indeed, the volume of V4 N B,,(R) is exponential in the radius by Theo-
rem 4.2.5, so by (b) and the fact that the y~1F cover 7= (V%) with bounded
overlaps we conclude that V; passes through exponentially many (in the
radius) integral translates y~'F in B, (R). It then follows from (a) that
the number of these integral translates is polynomial in the height.

For (a), we need to compare the metric dilation of 7 to its height, which
is standard (see, for example, Lecture 7). For (b), it suffices to show that all
translates gV for ¢ € G(C) meet F with bounded volume, and since these
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translates form an algebraic family, we can use definability to get a uniform
bound (see, for example, Proposition 5.5.1).

To finish, just as in the proof of Theorem 4.1.3, we obtain an algebraic
family {g.}cec € G(C) with g.V4 € 7= *(V2) by applying the Pila-Wilkie
theorem. If V; is a marimal irreducible algebraic subvariety of 7=1(V4), then
we have Vi = (J,co 9.V1 and Vi then is therefore invariant under {g.}ccc
(which in particular contains a nontrivial integral point).

Step 8. Induction step.

As the stabilizer of V7 is an algebraic subgroup of G and we know from
the previous step that Stabgz) (V1) is infinite, it follows that Vi is stabilized
by a positive-dimensional connected Q-subgroup H of G, namely the identity
component of the Q-Zariski closure of Stabg(z)(V1). However, to make the
induction work, one needs V; to be stabilized by a normal Q-subgroup of G,
as this will imply G is isogeneous to a product. This problem is solved using
Hecke correspondences in [27, 38]. In [33], the same problem is solved in
a different way to prove the Ax—Schanuel theorem, essentially by using the
definable Chow theorem to algebraize the family of algebraic deformations
V/ of V; that are contained in 7=!(V3), and then using the fact that algebraic
families of varieties have large monodromy. We will use the same strategy in
Lecture 6.

O

5 Recollections from Hodge Theory

Shimura varieties are moduli spaces of very special polarized Hodge struc-
tures, and it is very natural to formulate the Ax—Schanuel conjecture (as well
as the other transcendence statements) for general moduli spaces of polarized
Hodge structures. We spend this lecture recalling the relevant notions from
Hodge theory. We will be necessarily brief, and refer the interested reader to
[13] and [20] for details.

5.1 Preliminaries

Definition 5.1.1. Fix an integer n. Let Hz be a finite rank free Z-module.
A pure Hodge structure on Hz of weight n is a decomposition into complex
vector spaces

He :=Hz;C = @ HP1 (7)
pt+g=n
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satisfying HP-4 = H%P. The dimensions h?? = dimc HP9 are called the
Hodge numbers. We say the Hodge structure is effective if HP¢ = 0 for
p>n.

Note that the Hodge structure is determined by the Hodge filtration

FP:=H""

r2p

as H?4 = FPNF4. Conversely, a descending filtration F'® determines a Hodge
structure of weight n if it satisfies

FPAFr—pHT =0 (8)

for all p.

Ezample 5.1.2. A pure weight 1 (or —1) Hodge structure is equivalent to a
complex torus 7. We canonically have an embedding

Hy(T,Z) — H(T, Q%)Y & H(T, Q7)Y 1 v — /
,

which yields a decomposition

H(T,C)=H "¢ H*!
with H=10 = HO(T, QL)Y and H%~! = H-19. Projecting H (T, Z) to H=19
we can recover 1" canonically by the albanese

~ P
T = H(T,Q%)Y /H(T,Z) :p0—>/ .
0

The weight —1 Hodge structure on H;(T,7Z) naturally induces a weight 1
Hodge structure on H' (T, Z).

Definition 5.1.3. Suppose Hz carries a weight n Hodge structure, and let
gz, be a (—1)"-symmetric bilinear form—that is, gz is symmetric if n is even
and skew-symmetric if n is odd.

(1) The Weil operator C' € End(Hp) is the real endomorphism satisfying
Cec = @ip—q -idgp.a .
P

(2) The Hodge form is the Hermitian form h on H¢ defined by

h(u,v) = qc(Cu, ).
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(3) We say the Hodge structure is polarized by gz if the Hodge form is
positive-definite and the decomposition (7) is h-orthogonal.

If the Hodge structure is polarized by ¢z, then the Hodge filtration F*® is
qc-isotropic: we have (F*)+ = F"*t!1=* Conversely, a qc-isotropic Hodge
filtration satisfying (8) determines a gz-polarized Hodge structure if the
Hodge form is positive-definite.

Ezample 5.1.4. A polarized weight 1 (or —1) Hodge structure is equivalent to
a polarized abelian variety A. A skew-symmetric integral form gz on Hy (A, Z)
can be thought of as an element h € H?(A,Z). By the Lefschetz (1,1)
theorem, the gc-isotropicity condition on the Hodge decomposition implies
h = c¢1(L) for a line bundle L on A, and the positivity condition implies L is
ample.

Ezxample 5.1.5. We have the following broad generalization of the previous
example, which was the original motivation for their introduction. Let Y be a
proper Kéahler manifold (for example, a smooth complex projective variety).
After choosing a Kéhler form w, we obtain a weight n Hodge structure on
degree n singular cohomology

H"(Y,C)= @ HP(Y) 9)

ptg=n

by decomposing harmonic representatives of de Rham cohomology classes
into (p,q) parts. Furthermore, suppose Y is a smooth complex projective
variety with ample bundle L and set h = ¢1(L). The singular cohomology
H*(Y,Q) decomposes into polarized Hodge structures as follows. For n <
d=dim X, let

HY (Y, Z) = ker (W10 HY™MY, L)y — H (Y, L)) .
Where (—)¢ denotes the torsion-free quotient. We have
H'(Y,Q) = P #uHiy.Q).

0<k<n/2

H’n

prim (Y3 Z) carries a natural integral form

Gn(a,b) = / pAMY =20 g .
v

The decomposition (9) (associated to the Kéahler class h) then induces a
weight n Hodge structure on Hpim (Y, Z) polarized by gs,.
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Remark 5.1.6. Note that if Hy, carries a pure Hodge structure, then so too
will any tensor power, symmetric power, wedge power, etc. of Hy. The same
is true of pure polarized Hodge structures.

5.2 Period Domains and Period Maps

Define the algebraic Q-group G(Q) = Aut(Hg,qg); we will often denote
G(Z) = Aut(Hz,qz). It is then not hard to see that the space D of
qz-polarized pure weight n Hodge structures on Hyz with specified Hodge
numbers hP9 is a homogeneous space for G(R). Indeed, choosing a reference
Hodge structure, we have

D =G(R)/V

where V' is a subgroup of the compact unitary subgroup K = G(R) N U(h)
of G(R) with respect to the hodge form of the reference Hodge structure.
Moreover, D is canonically an open subset (in the euclidean topology) of
D = G(C)/P, the flag variety parametrizing gc-isotropic Hodge filtrations
F* on H¢ with h?"~P = dim FP/FPT1.

Definition 5.2.1. Such a D is called a polarized period domain.

Ezample 5.2.2. Given a smooth projective morphism f : Y — X, consider
the local system RF f,Q for some k. In the notation of Example 5.1.5, R" f,Z
can be decomposed into primitive pieces, and each fiber of B[ ;. f+Z carries a
pure weight n Hodge structure. By a theorem of Griffiths, the resulting map

p: X* - G(Z)\D : y— [H,

prim

(Xy, Z)]

is holomorphic and locally liftable to D.

The fundamental observation of Griffiths is that we cannot get arbitrary
maps to G(Z)\D from geometry as in Example 5.2.2. Indeed, only certain
tangent directions of D are accessible to algebraic families. To make this
precise, fix a point x € D and note that a deformation of the Hodge filtration
at z in particular yields a deformation of each F?, so we have a natural map

T,D — P Hom(F?, He/F?). (10)
P

Definition 5.2.3. The Griffiths transverse subspace TSTD C T, D is the
inverse image of (P, Hom(F7, FP~1/FP) under the map in (10).
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In other words, to first order each FP is only deformed inside FP~!.

The Griffiths transverse subspaces assemble into a holomorphic subbundle
T¢TD C TD.

Remark 5.2.4. Each pure polarized Hodge structure x € D on Hy naturally
induces a pure polarized Hodge structure on the Lie algebra gr C End(Hg)
of weight 0, which we call g,. Denote its Hodge filtration by Fygc. The Lie
algebra of the stabilizer P, € G(C) of z € D is then naturally FOgc. Thus,
the tangent space T, D is naturally (and holomorphically) identified with
gc/F2gc. The Griffiths transverse subspace is F, tgc/Fogc.

Definition 5.2.5. By a period map we mean a holomorphic locally liftable
Griffiths transverse map

p: X" > T\D

for a smooth complex algebraic variety X and a finite index I' C G(Z).

Remark 5.2.6. A period map ¢ : X* — G(Z)\D is equivalent to the
data of a pure polarized integral variation of Hodge structures on X. This
consists of:

¢ A local system .77 with a flat quadratic form Q7.
¢ A holomorphic locally split filtration F'® of 57, ®7 Oxan such that the flat
connection V satisfies Griffiths transversality:

V(FP) c FP~! for all p.

e We moreover require that (J#,Qz, F®) is fiberwise a pure polarized
integral Hodge structure.

The period map lifts to T\D if T' contains the image of the monodromy
representation of .777,.

Definition 5.2.7. Let X be a log smooth compactification of X. For any
irreducible boundary divisor E C X, the local monodromy operator v € G(Z)
of E is the monodromy of the local system 77 along a small loop around F,
which is defined up to conjugation (in G(Z)).

The following result on the monodromy of variations of Hodge structures

is of pervasive importance:

Theorem 5.2.8. Any period map ¢ : X** — I'\D has quasiunipotent local
momnodromy.

Corollary 5.2.9. For any period map ¢ : X*® — T'\D, there is a finite
étale cover f : X' — X such that the period map ¢’ = po f: X' — T\D has
unipotent local monodromy.
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Proof. Note that any quasiunipotent v € G(Z) has eigenvalues which are
roots of unity of bounded order. Let I'(n) C G(Z) be the full-level n subgroup

T(n) = {7 € G(Z) ’ v = ((1) (1)) modn} .

Since the roots of unity of bounded order inject mod p for sufficiently large p,
it follows that every quasiunipotent element of T'(p) is in fact unipotent for
sufficiently large p. Now take X’ to be the pullback of the finite étale cover
T'(p)\D — G(Z)\D (technically as stacks). O

5.3 The Mumford—Tate Group and Weakly Special
Subvarieties

Definition 5.3.1. Suppose Hy carries a pure weight 2k Hodge structure.
An integral (resp. rational) class v € Hyz (resp. v € Hg) is Hodge if v € H*F.

Note that an integral class v € Hz has pure Hodge type if and only if it is
a Hodge class. Moreover, v is Hodge if and only if v € FF¥.

Ezxample 5.3.2. The motivation for considering Hodge classes again comes
from geometry. Given a smooth projective complex algebraic variety Y
and a closed algebraic subvariety Z C Y, the fundamental class [Z] €
H?2codimZ(y 7) is a Hodge class. The Hodge conjecture says that moreover
all rational Hodge classes arise from cycles (up to rational scaling).

The Hodge classes of a particular Hodge structure are described by the
Mumford—Tate group:

Definition 5.3.3. Suppose Hg carries a pure Hodge structure H. The
(special) Mumford-Tate group MTpy of H is the algebraic Q-subgroup of
End(Hg) with the following property: for any tensor power H' = H®* ®
(HV)®¢ the rational Hodge classes of H' are precisely the rational vectors
fixed by MTy.

For simplicity we suppress the proof that such a group exists, as well as
the relation to the Deligne torus, and we instead refer to [13] for details. Note
that if the Hodge structure H is polarized by gg, then MTy C Aut(Hg, qg)-

Definition 5.3.4. Let D be a polarized period domain.

(1) A weak Mumford-Tate subdomain D’ of D is an orbit M(R)z where
x € D and M is a normal algebraic Q-subgroup of MT,. In fact, D’ is
a smooth complex submanifold of D, and it is an irreducible component
of the locus of Hodge structures H such that MTy D M.
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(2) If moreover M = MT,, then D’ = M(R)z is called a Mumford-Tate
subdomain.

(3) Let m: D — I'\D be the quotient map. For D’ C D a (weak) Mumford—
Tate subdomain, w(D’) C I'\D is a complex analytic subvariety which
we call a (weak) Mumford—Tate subvariety. Likewise, given a period map
@ : X = T\D, we call o~ !7(D’) a (weak) Mumford-Tate subvariety
of X.

Given Definition 5.3.3, we see that we can also think of a Mumford-Tate
subdomain as a component of the locus of Hodge structures for which some
number of rational tensors are Hodge.

Theorem 5.3.5 (Theorem 1.6 of [15]). Let ¢ : X** — I'\D be a period
map. Then any weak Mumford-Tate subvariety of X is algebraic.

Remark 5.8.6. In the special case of f:Y — X a smooth projective family,
and the period map corresponding to the variation of Hodge structures on
Rf)’r"im f+Z, the Hodge conjecture implies Theorem 5.3.5. Indeed, the locus
Hdg, (X) C X where Hgfim(YgE7 Q) acquires Hodge classes is the image of the
codimension k relative Hilbert scheme Hilb(Y/X), hence a countable union

of algebraic subvarieties.

Definition 5.3.7. Suppose ¢ : X2 — I'\ D is a period map. The Q-Zariski
closure of the image of the monodromy representation ¢, : 71 (X, z) = G(Q)
is called the algebraic monodromy group.

The following theorem is a consequence of the theorem of the fixed part
[13, Theorem 13.1.10], which asserts that the trivial sub-local system of a
variation of Hodge structures naturally supports a Hodge sub-variation.

Theorem 5.3.8. The identity component of the algebraic monodromy group
of a period map is a Q-factor of the very general Mumford—Tate group.®

5.4 Definable Fundamental Sets of Period Maps

We will need a slightly different definition of what a definable fundamental
set of a period map is.

Definition 5.4.1. Let ¢ : X*® — T'\D a period map. A definable funda-
mental set for ¢ is a definable space F' whose underlying space is a complex
analytic variety together with a commutative diagram of holomorphic maps
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FL

||

X ——T\D

such that p realizes X9°f as a quotient by a closed étale definable equivalence
relation and ¢ is definable.

A crucial observation for the proof of the Ax—Schanuel conjecture is the
following:

Proposition 5.4.2. Any period map with unipotent monodromy admits a
Ran,exp-definable fundamental set.

The proof of Proposition 5.4.2 is not hard—it follows easily from the local
description of degenerations of Hodge structures, as we will see below. For
Proposition 5.4.2 the assumption on the monodromy is not necessary, but
given Corollary 5.2.9 it is sufficient for our purposes to restrict to this case.

By a local period map we mean a holomorphic locally liftable Griffiths
transverse map

o (A x A* - T\D.

Given such a map, let p: H" x A® — (A*)" x A® be the standard covering
map, and consider a lift of the period map The covering group of u is Z",

0 x AS—2 4D

(A)" % A* —T\D

generated by the real translations
i H = H" (21,5205 20) = (21,0 2ze + 1,000 20)

on the ith H factor, for 1 < i < r. Let v; € G(Z) be the corresponding
unipotent monodromy operator, so that

po(t; xidas) = 1@

8That is, the Mumford-Tate group at a very general point.
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Let

1 — )k
Ni5:10g'7i:*27( k;’” € gr
k

be the nilpotent logarithms of T;, which makes sense since each T; is
unipotent. It follows that the map 1 : H" x A®* — D defined by “untwisting”

the monodromy
= exp ( Z 2z l)

descends to a map ¢ : (A*)" x A®* — D.

Theorem 5.4.3 (Corollary 8.35 of [45]). For any local period map, v as
defined above extends to a holomorphic map ¢ : A™ — D.

Remark 5.4.4. Given a variation (J4,Qgz,F*®) of pure polarized integral
Hodge structures over a smooth algebraic base X with unipotent local
monodromy, the Deligne extension is a canonical extension of the associated
flat bundle O xan ®7z 5%, to a log smooth compactification X as a holomorphic
vector bundle. For v; a (multivalued) flat frame for % in a polydisk
(A*)" x A®, the extension is defined using the frame

_exp< ¥ )

One then shows that these extensions patch to form a global extension of
Oxan @ 7 to X (see [12]). Theorem 5.4.3 then implies that the Hodge
filtration F'® extends holomorphically to the Deligne extension.

Let ¥ C H be the bounded vertical strip
Yi={zeH|—-e<Rez<1+¢}

with its Raie-definable structure as a semialgebraic subset of C. For § > 0
define

As ={g€Allql <1-0}
Hs :={z €e H|Imz > §}
s =X N Hs.

Corollary 5.4.5. For all sufficiently small 6 > 0,
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F:S5x A D

s Ran,cxp-definable.

Proof. We have ¢ = exp(z-N)z/NJ. By Theorem 5.4.3, ¢ : A} — D is restricted
analytic, hence R,,-definable. It follows that 1ﬂ : 35 X A = D is Rap exp-
definable since  is Rap exp-definable. Now, G(C) (with its canonical definable
structure) acts algebraically on D, and exp(z - N) is in fact an algebraic map
Y" — G(C), hence Ryj-definable. Thus, ¢ is Rap exp-definable. O

Proof of Proposition 5.4.2. Take an algebraic log smooth compactification X
of X, and a finite cover of X by polydisks of the form f; : (A*)" x A% — X,
For each such polydisk, take F; = 3§ x A}, and let p; = f; o p. Finally, take
F =], F;, withp =], p; : FF = X. For sufficiently small § > 0 the map

p: F— X3

realizes X9°f as a Ran,exp-definable quotient of F. By Corollary 5.4.5, the
lifted period map ¢ : F' = D is Ray exp-definable. a
5.5 Intersections with Definable Fundamental Sets

Given a definable fundamental set for a period map as in the last subsection,
we evidently have a natural diagram where Xp := X Xp\p D. Fix a left-

\ ¢

Xp D

|

X ——T\D

F

invariant metric hp and let & = @(F). For the proof in the next section,
it will be important that a given algebraic subvariety Z C D has bounded
volume intersection with all translates of ¢ under the action by G(Z). We in
fact have the stronger statement:

Proposition 5.5.1 (Proposition 3.2 of [5]). Let Z C D be a closed
algebraic subvariety. For all v € G(C), vol(Z N~®) = O(1).

Proof. Evidently it is enough to show vol(Z'N®) = O(1) for all Z’ in the same
connected component of the Hilbert scheme of D as Z. Further, it suffices
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to show vol(¢~1(Z")) = O(1) for each local period map ¢ : Hj x A§ — D
considered above, where the volume is computed with respect to @*hp.

For any holomorphic Griffiths transverse map f : M — T\D we have
f*hp < kpr where Ky is the Kobayashi metric of M. In particular, for
M = H" x A® the metric ks is the maximum over the coordinate-wise
Poincaré metrics. The factors in X x As have finite volume with respect to
the Kobayashi metric of H" x A®, and thus it is enough to uniformly bound
the degree of the projection of ¢~1(Z’) to any subset of coordinates. This
in turn follows by applying Corollary 2.2.10 to the pullback of the universal
family. O

6 The Ax—Schanuel Theorem for Period Maps

In this section we give the proof of the Ax—Schanuel conjecture for period
maps from [5]. The proof follows the same strategy as the proof of Mok—
Pila-Tsimerman [33] for Shimura varieties.

6.1 Statement of the Main Theorem

Let X be a smooth complex algebraic variety over C supporting a pure
polarized integral variation of Hodge structures 747. Let MT s be the
generic Mumford-Tate group—that is, the Mumford—Tate group at a very
general point—and let ' € MT,, (Q) be the image of the monodromy
representation w1 (X) — MT s (Q) after possibly passing to a finite cover.
Let G be the identity component of the Q-Zariski closure of I". Let D = D(G)
be the associated weak Mumford—Tate domain and ¢ : X — I'\D the period
map of .7%. The compact dual D of D is a projective variety containing D
as an open set in the archimedean topology.
Consider the fiber product

XxD>Xp:=——=XxppD-——5D

|l

X ———T\D.

Theorem 6.1.1 (Ax—Schanuel, Theorem 1.1 of [5]). In the above
setup, let V.C X x D be an algebraic subvariety, and let U be an irreducible
analytic component of V N Xp such that
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codimy « p(U) < codimy, (V) + codimx x p(Xp).

Then the projection of U to X is contained in a proper weak Mumford—Tate
subvariety.

The theorem, for example, implies that the (analytic) locus in X where
the periods satisfy a given set of algebraic relations must be of the expected
codimension unless there is a reduction in the generic Mumford—Tate group.
See [25] for some related discussions.

Corollary 6.1.2 (Ax-Lindemann—Weierstrass). Assume the above
setup.

(1) For any algebraic V. C D, the Zariski closure of ¢~ m(V) is a weak
Mumford—Tate subvariety.

(2) For any algebraic V. C X, the Zariski closure of any component Vo of
7 to(V) is a weak Mumford—Tate subdomain.

6.2 Setup for the Proof

Given a period map ¢ : X** — I'\D and a subvariety V C X x D, we define
its type as the tuple

(dim X, dimV — dim(V N Xp), — dim(V N Xp))

ordered lexicographically. We say a closed algebraic V' C X x D is bad at
peVnXpif

codim,(V N Xp) < codim(V') 4+ codim(Xp)

in which case we also say that both p and V are bad.

We proceed by induction and assume the theorem for all smaller types.
Suppose Vp is bad with Ny = dim(Vy N Xp). Let M C Hilb(X x D) be the
connected component of the Hilbert scheme containing Vg, let V C (X X
D) x M be the universal subscheme, and let Vxxp C (X x D) x M be the
restriction of the universal family to X x D C X x D. We will refer to points
of Vxxp as pairs (p,V), with V€ M and p e VN (X x D).

Let Vx, be the universal intersection of Vxxp with Xp. The set of
“equally” bad points

B:= {(p7 V) S VXD | dimp(VﬁXD) = N()} C VxxD

is naturally a complex analytic subvariety which is moreover closed because
of the inductive hypothesis (as dim,(V N Xp) is semicontinuous). If B — M
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is the projection (p, V') — V, the base-change Vi — B of the universal family
Vxxp along B — M is naturally the family of “equally” bad varieties V.

6.3 Ingredients for the Proof

Recall that we have a definable fundamental set in the sense of Defini-
tion 5.4.1:

F
\ @
p Xf lf
X ——T\D.

Given a bad V', we would like to apply the Pila—Wilkie theorem to the set
I'={g€ G(R)|dim(gVNF)= Ny} (11)

of translates of V' that meet F' badly, just as in the proof of Theorem 4.1.3.
Let T'x be the image of the monodromy representation 71 (X) — G(Z). Once
again, Xp is covered by fundamental sets v~ 1 F with v € G(Z), and if U is
a Ny-dimensional component of V N Xp then for each y~'F that U meets
we certainly have v € I (see Figure 6). We would like to argue that U passes
through many fundamental sets, and therefore I has many integral points.

Like in the Shimura variety case, however, the monodromy is now very
complicated and we cannot make the “height balls” argument work, so we
instead use metric balls. We may assume U meets F' and take a basepoint
zo € FNU. Let yo be the image in D, and consider the radius r ball B, (r)
centered at yo with respect to the natural left-invariant metric on D. In the
following we always measure volumes of subsets of X x D with respect to a
left-invariant volume form on the second factor.

For v € T'x we have VN Yy 'F = U N~ 'F, as the component of
Xp containing U is fixed by I'x. Now, by Proposition 5.5.1, U meets each
~~1F with bounded volume, while the v~'F meet each other with bounded
multiplicity, and it follows that the number of v~ ! F that U passes through in
X X By, (1) is at least as much (up to a constant) as its volume in X x By, (7).
Given the following theorem, this volume grows exponentially in r:
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Fig. 6 Every fundamental domain v~ 1F that U passes through yields an integral
translate vV that meets F' badly

Theorem 6.3.1 (Theorem 1.2 of [5]). There are constants S,R > 0
such that for any closed positive-dimensional Griffiths transverse analytic
subvariety Z C By, (r) for r > R we have

vol(Z) > " mult,, Z.

On the other hand, the fundamental sets y~' F' which intersect X x By, ()
have height which is at most exponential in the radius:

Theorem 6.3.2 (Theorem 4.2 of [5]). For any v € G(Z) with
YIF (X X Byy (1) # 2

we have H(y) = 9.
Putting Theorems 6.3.1 and 6.3.2 together we therefore obtain:
Proposition 6.3.3. For some € > 0,

N(I,t) > t°.

We postpone a precise definition of the height function on G(Q) and
N(I,t) until the next lecture. In the remainder of this section, we prove
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Theorem 6.1.1 assuming Proposition 6.3.3, and discuss the proofs of Theo-
rems 6.3.2 and 6.3.1 in Lectures 7 and 8, respectively.

6.4 The Counting Step

We can now adapt the argument of Lecture 4 to first show:
Proposition 6.4.1. Stabgz) (V) is infinite for any fiber V' of V5.

Proof. G is an algebraic group, so G(R) has a natural definable structure.
Exactly as in the proof of Theorem 4.1.3, the set I from (11) is Rap exp-
definable, and therefore by Proposition 6.3.3 and the Pila—Wilkie theorem we
conclude that I contains a semialgebraic curve C' C I containing arbitrarily
many integer points, in particular at least 2 integer points.

If ¢V is constant in ¢ € C, then it follows that V is stabilized by a non-
identity integer point and we are done (since I' is torsion free). So we assume
that ¢V varies with ¢ € C. Note that since C' contains an integer point that
#(cVNXp) is not contained in a weak Mumford-Tate subdomain for at least
one ¢ € C, and thus for all but a countable subset of C' (since there are only
countably many families of weak Mumford—Tate subdomains).

We now have two cases to consider (see Figure 7). On the one hand,
assume there is no fixed Ny-dimensional component U of ¢V N Xp asce C
varies. Then we may replace V' by |J .. cV and increase both dim V' and
dim(V N Xp) by one, thus lowering the type and contradicting the inductive
hypothesis. On the other hand, if there is such a component, then replacing
V' with (,cocV we lower dimV without changing dim(V' N Xp), again
contradicting the inductive assumption. This completes the proof.

O

Fig. 7 If V is not stabilized by ¢ € C, then we get a counterexample with smaller
type by replacing V with either (a) . cV or (b) M, cV.
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6.5 The Definable Chow Step

Now we would like to control how many bad points of X there are. Obviously
such points are Zariski dense, for replacing X by the Zariski closure we
contradict the inductive assumption on dim X. However, the bad points may
a priori be quite sparse.

Proposition 6.5.1. The projection B — X is surjective.

Proof. The universal intersection Vx , is proper over Xp, and the restriction

Vr C F'x M has a canonical definable structure as a restriction of an algebraic

subvariety of (X x D) x M to F x M. The quotient Vy := I'x\Vx, is

a complex analytic space, proper over X, which thereby inherits a unique

definable structure for which the quotient map Vg — Vx is definable.
Likewise, the subset

Br :={(p,V) € Vp | dim,(VNF) = Ny}

is a definable closed complex analytic subset of Vg, and the quotient is a
definable closed complex analytic subset Bx C Vx which is proper over X.
To finish, the projection Bx — X is a proper definable complex analytic
map, and by Remmert—Stein and Proposition 2.1.2 the image Z C X is a
definable closed complex analytic subvariety of X, and therefore algebraic by
Theorem 3.2.1. We must then have Z = X, by the induction hypothesis. O

Corollary 6.5.2. The image of m(Bx) — m1(X) is finite index.

Proof. Bx — X is a proper surjective map of complex analytic varieties. O

6.6 The Induction Step

In the final step we produce a contradiction to Proposition 6.4.1.
Proposition 6.6.1. Stabgz) (V) is finite for a very general fiber V of V.

The crucial point is that Hodge theory relates the monodromy of a
variation of Hodge structures to the Mumford—-Tate group of a very general
fiber. Theorem 5.3.8 will therefore imply a reduction in the Mumford-Tate
group which cannot occur by the inductive hypothesis.

Proof. By the construction in the previous step we have Bx = I'x\B, and
the fundamental group 71 (Bx) naturally acts on B. Explicitly, if p is the
composition 7 (Bx) — m(X) — G(Z), then for v € 7 (Bx) this action
is (p, V) = (p(v)p,p(7)V). Let 'z be the image of p, and note that by
Corollary 6.5.2 that I'z is Q-Zariski dense in G.
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As G(R) acts on X x D by algebraic automorphisms, given g € G(R) the
locus in M of varieties V stabilized by ¢ is an algebraic subvariety of M.
It follows that for the fibers of the family Vg — B outside of a countable
collection of proper subvarieties of B—that is, for the very general fiber V—
the stabilizer under G(Z) is a fixed group I'y,. Furthermore, for a very general
fiber V, vV is also very general for any v € I' 4, and it follows that T’y is
normalized by I'g. Letting @ be the identity component of the Q-Zariski
closure of I'y), we conclude that @ is a normal Q-subgroup of G.

It suffices to show that the QQ-Zariski closure of I'y, is finite, or that: O

Claim. @O is the identity subgroup.

Proof. Since ® is a normal Q-subgroup by construction, G is isogenous to
O, x Oy with ®; = ©. We have a splitting of weak Mumford-Tate domains
D = D; x Dy with D; = D(0,). Replacing X by a finite cover we also have
a splitting of the period map [20, Theorem IIT.A.1]

© =1 X Py : X — Fl\Dl X FQ\DQ.

Moreover, @1, o satisfy Griffiths transversality (see the proof of [20, Theorem
ITT.A.1]). Note that V' C X x D by assumption, and as V is invariant under
©, it is of the form V] x Dy where V; C X x Dq.

Consider the period map X — T';\Dj, the resulting Xp, C X x Dy,
and the subvariety Vi C X x D;. Let U be a Ny-dimensional component of
V N Xp and let Uy be the component of V3 N Xp, onto which U projects.
By assumption the theorem applies in this situation, and as U; cannot be
contained in a proper weak Mumford-Tate subdomain (for then U would as
well), we must have

codimx x p, (U1) = codimy, 5 (V1) + codimx xp, (Xp, ).
Note that the projection Xp — Xp, has discrete fibers, so dim X = dim Xp,

and dim U = dim Uy, whereas codim V; = codim V', which is a contradiction
if 9 is nonconstant. d

7 Heights and Distances

In this section we establish the comparison between heights and metric
dilation needed in Theorem 6.3.2. Recall that we have a period map ¢ :
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X* — T\D and definable fundamental set p : F' — X in the sense of
Definition 5.4.1 consisting of a union of unwrapped polydisks® 7 x A®:

p )117 T

Letting @ = ¢(F) and fixing a basepoint zyp € & C D, we identify D
G(R)/V for a compact subgroup V' C G(R). Thinking of D as a space of
Hodge structures on the fixed integral lattice (Hz,qz), as before we denote
by h, the induced Hodge metric on H¢ corresponding to = € D.

Definition 7.0.1. For v € G(Z) let H(vy) be the height of v with respect
to the representation pz : G(Z) — GL(Hz). For ¢ € G(R), we denote by
[lpr(9)|] the maximum archimedean size of the entries of pr(g), so that if
7 € G(Z) we have H(7) = ||pr(v)ll-

Remark 7.0.2. We can now precisely define the counting function used in the
previous lecture. For U C G(R) a definable subset (where G(R) is given the
canonical definable structure coming from the algebraic group structure), we
define

N(U.1) = #{y € UNG(Q) | H(3) < t}.

By fixing a V-invariant Hermitian metric at zo, we obtain a left-invariant
Hermitian metric on G(R)/V. This metric is explicitly described as follows.
For any point z € D we have seen in Remark 5.2.4 that the Lie algebra gg
inherits a polarized Hodge structure g., and that the tangent space T,.D is
identified with T, D = gc/F gc. The space g<* := @D, "7 C gc provides
areal analytic lift of T, D, and we endow T,, D with the restriction of the hodge
metric h, on g,. One can easily check that this metric is left-invariant.

For any R > 0 let B, (R) C D be the ball of radius R centered at x¢. The
main goal of this section is to establish the following:

9Recall from the discussion following Theorem 5.4.3 that ¥ C H is a bounded vertical
strip

Y:={z€H|—-e<Rez<1+e¢€}.
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Theorem 7.0.3 (Theorem 4.2 of [5]). Any v € G(Z) with
Y PN By, (r) # @

has H(v) = e°(").

Define dy(z) = d(z, o). We write f < g if |f| < |g|°™ +0(1), and f =< g
if fXgandg=f.

Lemma 7.0.4. Let \(x,z’) be the maximal eigenvalue of h, with respect to
hy . Then

(1) For all g € G(R) we have ||pr(g)|| = edol9%0) ;
(2) Nz, 2') =< ed®),

Proof. Let K = U(hy,)NG(R) be the subgroup of G(R) acting unitarily with
respect to hg,. Then K is a maximal compact subgroup of G(R) containing
V, and the above left-invariant metric on G(R)/V descends to the symmetric
space G(R)/K. Note that the diameters of the fibers of G(R)/V — G(R)/K
are bounded. Choosing a K-orthogonal split maximal torus A C G(R) and
a basis A; of the Lie algebra a of A, the induced metric on A is up to
scaling the unique left-invariant metric, which is identified with the euclidean
metric on the Lie algebra a. We therefore have for any g € G(R) with KAK
decomposition g = kyaks

\ /Zt? L do(gwo) = do(azo) + O(1) < /th +0(1)

where a = exp(}_, t; A;). As

maxexp(|t) < pe(g) < maxexp(|t:)

part (1) follows.

For part (2), note that by G(R)-invariance we may restrict to the case
x’ = x. Setting p = pr for convenience, note that tr(p(g)*p(g)) is a sum of
the eigenvalues of hg,, with respect to hy,, where p(g)* is the adjoint of p(g)
with respect to h,,. Thus tr(p(g)*p(9)) =< Mgz, zo). As tr(p(g)*p(g)) is the
sum of the squares of the entries of p(g), part (2) follows from part (1).

O

We define a function g : D — R measuring proximity to the boundary by
the minimal period length:

= min  h,(v).
() i (v)
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For any v € H¢ we have log };120(:)) < do(z)+0(1) by part (2) of Lemma 7.0.4,

and so we deduce the following:

Corollary 7.0.5. —logpu < dy + O(1).
Proof. There is some v € Hz\{0} with log u(x) = log h,(v) and thus
hay (v)

2(v)

where we have used that h,, is comparable to a standard Hermitian metric
on Hg, so that hy,(v) > 1 for any v € Hz\{0}. O

—logpu = —log h,(v) < log +O(1) < do(z) + O(1)

We in fact have a comparison in the other direction once we restrict to &:
Lemma 7.0.6. For x € ¢ we have do(x) < —log u(x) + O(1).

The proof uses the asymptotics of hodge norms, which we now recall. Given
a local period map ¢ : (A*)" x A% — I'\ D with unipotent local monodromy
let ¢ : X" x A® — D be a lift and Np,..., N, the nilpotent monodromy
logarithms. The monodromy logarithms (with the implicit chosen ordering of
the coordinates of (A*)") define r weight filtrations W) = W(Ny,..., N;).
For a given v € Hz, let w9 be its weight with respect to W) —that is, for
each j, we take w?) to be the unique w such that v € WTE,J) and ng,V(j) (v) #0.
By [14], on the region

Imz; > ---Imz.>1
the hodge norm hy,;)(v) of v at ¢(z) is then given asymptotically by
(1) w1

Imz \“ Im 2, _ w®
meo~ (2] () )

Im 25 Im z,

where “~” means “within a bounded function of.”

Proof of Lemma 7.0.6. 1t is enough to prove the statement for the image of
a single X" x A®. Moreover, we may cover F' with finitely many regions S,
of the form Im 2,1y > -+ -Im 2,4y > 1 where 7 ranges over all permutations
of {1,...,r}. Thus, we may assume @ is the image of Siq.

Take v; to be a basis of Hz descending to a basis of the multi-graded
module associated to the r weight filtrations W) as above, where we take
each grading centered at 0. Let wl(]) for j =1,...,r be the weights of v; with
respect to W (m)\9). As above, on Siq we therefore have

(1)

r—1
Imz; \ ™ Imz._1\" o)
h¢(z) (Ui) ~ ( > . < ) . (Imzr)wl )

Im 25 Im z,
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As the set of weights is preserved under negation, it follows that
max; h(»)(v;) ~ (min; hp(s)(v;)) !, and so by Lemma 7.0.4,

do((2)) < maxlog hg(z)(v:) < —log u(p(2)) + O(1)

uniformly on every such region. a

Proof of Theorem 6.3.2. Suppose ¥ € Bo(R) Ny~ 1® for v € G(Z). Putting
together Lemma 7.0.6 and Corollary 7.0.5 we have

do(vz) < —log u(yz) + O(1) = —log u(x) + O(1) < do(z) + O(1)
and since
do(yro) < d(vz,vx0) + d(y7, 20) < do(2) + do(V2)

we are finished by part (1) of Lemma 7.0.4. O

8 Volume Bounds

In this lecture we outline the proof of the volume bound in Theorem 6.3.1.
To warm up for the proof, we first give a simple proof in the euclidean case.

8.1 Fuclidean Space

Endow C™ with the standard Hermitian metric

heucl - Z de ® dzi-

The real part

Rehenet = Y _ daf + dy}

K2

is the usual euclidean metric on C"* = R?", and the associated Kéhler form is

1
Weuel := — Im Aoyl = 3 Z idz; Ndz; = Z dx; A dy;.
j i

(3
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Given a locally closed analytic subvariety Z C C", its euclidean volume can
be computed as

1

VOleucl(Z) = m /Z(weucl)dimz.

Finally, for zy € C™ denote by
ucl L n 2
B3Y(R) :={z € C" | |z — 20|" < R}

the radius R ball around zy with respect to heycl-
Theorem 8.1.1. For any z9 € C" and any closed analytic subvariety Z C
Bg*Y(R) C C", we have

vol(Z) > (nR?)4™Z . mult,, Z.

The theorem is originally due to Federer (see, for example, [47]). Note
moreover that the bound is sharp, as a union of NV affine linear spaces through
zo will realize the bound. Hwang-To [23] have generalized the theorem to
bounded symmetric domains, and it is their approach that we follow—and
in fact that will generalize to the period domain setting.

The proof hinges on two observations: on the one hand, the “distance to
20” function v,,(2) := |z — 2|? provides a potential for weyel,

7 —
Weuel = iaayzo

while on the other hand, the log-distance logv,, is the potential for a form
(strictly speaking, a current) that computes the multiplicity, by the Poincaré—
Lelong formula.

Proof of Theorem 8.1.1. We may as well assume zp = 0 and set v := v,,. Set
Z(r) := Z N B§"(r). By Stokes’ theorem we have

vl Z(r) = [ (30002
Z(r)
— [ sdvagomyime
82 (r)
=r?. / 1d°logv A (L00v)Hm 21
0Z(r)

=r?. / 19dlogv A (%35u)dimz_1.
Z(r)
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Note that in going from the second to the third line, we used that v is constant
on 0Z(r), so for any function f : R — R we have

d°f(W)|ozey = (f'(W)dV)ozay = f/(r) - dV]gz(r)-

Carrying out the same manipulation for each %851/ term we arrive at
vol®'N(Z(r)) = p2dimZ . / (£0dlogv)im 2. (12)
Z(r)

Without getting into the details (see, for example, [23]), we briefly remark
that some care must be taken in the above wedge product as 90 log v must
be interpreted as a current in order for Stoke’s theorem to apply.

For the remaining part of the argument, let’s for simplicity assume Z
is a curve, so that we have a normalization of the form g : A — Z(e) (with
g(0) = 0), for some sufficiently small ¢ > 0. Now, as log v is plurisubharmonic
we have

/ gaélogyz/ 90 log
Z(r) Z(€)
:/ %(’ﬁlogg*l/
A

/ %8510g |t|2 multy Z
A

:1/ d—,t-multOZ
2 o 1

=7 - multy Z.

O

From the proof, we can conclude the following statement about the growth
of the volume:

Proposition 8.1.2. In the situation of Theorem 8.1.1,

vol™(Z N B (r))
y2dim Z

is a nondecreasing function of r for 0 <r < R.

Proof. Immediate from (12), as log v is plurisubharmonic and thus
/ (£001og v)timZ
Z(r)

is a nondecreasing function of 7. a
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Remark 8.1.8. Let’s say a few words about the last step of the above proof for
those who are unfamiliar with multiplicity in the analytic category. Suppose
z; are the standard coordinates of C", and suppose g : A — Z(e) is the
normalization considered in the proof. Let O¢n ¢ be the local ring of germs
of analytic functions at 0, mcn,0 C Ogn o the ideal of the origin, and Iz C
Ocn o the ideal of Z. We have

multy Z :=max{k € N | mf. o D Izo}

=minordg g% ;.
K3

8.2 Peritod Domains

Let D be a polarized period domain equipped with its natural left-invariant
Hermitian metric and associated positive (1,1) form w. We would now like
to adapt the ideas from the previous subsection to prove:

Theorem 8.2.1. There are constants 8,p > 0 (only depending on D) such
that for any R > p, any xo € D, and any positive-dimensional Griffiths
transverse closed analytic subvariety Z C By, (R) C D, we have

vol(Z) > e’Bmult,, Z

where By, (R) is the radius R ball centered at xy and vol(Z) the volume with
respect to the natural left-invariant metric on D.

The crux of the proof is to find an exhaustion function g : D — R which
on the one hand defines balls

B#(R) : {X € D[ po(x) < R}

that are comparable to the metric balls B,,(R) and on the other hand is a
potential for a (1,1) form that is comparable to w in the Griffiths transverse
directions. The difficulty is that unlike in the euclidean case (or indeed
even the bounded symmetric domain case) Theorem 8.2.1 fails without the
Griffiths transverse assumption, as D contains compact subvarieties in the
vertical directions. Thus, the function ¢y must necessarily treat the Griffiths
transverse directions in a special way.

We state the precise properties of the function ¢y in the following
proposition, but first introduce some notation.

Definition 8.2.2.

(1) Given areal (1,1) form o on D, we say & >ipans 0 if at point 2 € D and
any Griffiths transverse X € 7D, we have

—iag (X, X) > 0.
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(2) Given two real (1,1) forms a, 8 on D, we say that o = Oyrans(8) if for
some positive constant C' > 0, we have

CB -« Ztrans 0.

Now fix g € D and denote by dy : D — R the distance function to xg.

Proposition 8.2.3. There is a smooth function g : D — R with the
following properties:

(1) do(z) < po(x) + O(1) and po(z) < do(x) + O(1);

(2) 10090 Ztrans 0 and i00¢pg >trans 0 at xo;
(3) 100pg = Otrans(w) and |0po|* = Otrans(10000).

Proof. See [5]. O

Assuming Proposition 8.2.3, we can now complete the proof of Theo-
rem 6.3.1. For any closed Griffiths transverse analytic subvariety Z C B(R) C
D of dimension d, define

1 _
vol¥°(Z) := E/(i@&po)d.
Yz

We begin with the following:
Proposition 8.2.4. There is a constant B > 0 such that for any R > 0

and any positive-dimensional Griffiths transverse closed analytic subvariety
Z C B¥(R),
e P vol? (Z N B¥(r))

is a nondecreasing function in r € [0, R].

Proof. Let d = dim Z. Let )9 = —e~#%0 for 8 > 0 the constant such that
1000 — B1Opol* Ztrans 0
which is guaranteed by Proposition 8.2.3(3). We then have
00y = Be 7?0 (i00po — B|0¢ol*) >trans 0-

By Stokes’ theorem we have

vol?(Z N B¥°(r)) = / (i00¢0)*

ZNB%¥o(r)

/ d®po A (100¢pg)? !
ZNOB¥O(r)
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— gl / a0 A (i0000)"!
ZNOB¥O(r)
=g Ler / 1Dy A (10Dpy)?1
ZNB¥o(r)
=gt [ (iodg)!
ZNB%¥o(r)

which implies the claim, as 1|z is plurisubharmonic. O

Proof (Proof of Theorem 8.2.1). Choose a fixed euclidean ball B centered
around xy with respect to some coordinate system. By Theorem 8.1.1 we
have an inequality of the form

vol®(Z N B) > mult,, Z

Choose a fixed radius p such that B C B¥9(p). After possibly shrinking
B, i00ypy is comparable to the euclidean Kihler form on B in Griffiths
transverse directions by Proposition 8.2.3(2), and combining this with the
previous proposition we have

vol?*(Z N B¥°(r)) > " vol®°(Z N B¥(p)) > " mult,, Z

for all r > p.
Now, by Proposition 8.2.3(1), after possibly increasing p, there is a
constant C' > 0 such that

B, (r) D B¥°(Cr)
for all 7 > p, so
vol?°(Z N By, (1)) > " mult,, Z
for all » > p. Finally, by Proposition 8.2.3(3) we have
vol(Z N By, (1)) > vol?°(Z N By, (1))

and the claim follows. a

Remark 8.2.5. Theorem 8.2.1 has a number of interesting applications in its
own right. They lie outside the scope of these notes, but we briefly describe
one to give a flavor. We say a point € T'\D has injectivity radius R if
the ball B,(R) C D injects into I'\D. For a period map ¢ : X — T\D,
Theorem 8.2.1 then says that the Seshadri constant of the Hodge bundle at a
point € X can be bounded by the injectivity radius of ¢(x). In particular,
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these Seshadri constants can be made to grow in the level covers of X. See
[24] for some related applications in the context of Shimura varieties using
the volume bounds of Hwang—To.

9 Further Directions

9.1 Derivatives

One can generalize the transcendence statements by considering not only
automorphic functions, but also their derivatives. For example, in the case of
the modular curve one has the parametrization j : H — Y (1),and j satisfies
a 3rd degree differential equation. In this context, building on work of Pila
[36], the paper [33] proves the following generalization of the modular Ax—
Schanuel statement:

Theorem 9.1.1. Let 21, ..., 2z, be meromorphic germs in auxiliary variables
t; at some point of H"™, and assume that none of the z; is constant, nor are
SL2(Q) translates of each other. Then

trdege € (5,420 3 (), (1)) (o) e) 21k (52

Note that the above is much stronger than the usual Ax—Schanuel as it
includes the algebraic independence of the derivatives of j as well. One may
also generalize (as [33] does) to arbitrary Shimura varieties, but in that
generality one cannot easily pick out distinguished variables. Therefore the
paper adopts the language of jet spaces to formulate the above statement.
The proofs are much the same, except one has to keep track of jet spaces in
all the geometric constructions.

9.2 Definability of Period Maps

In Lecture 4 we showed that weakly special subvarieties of Shimura varieties
were algebraic in two steps: first by using the existence of a definable
fundamental set to argue that weakly special subvarieties are definable
complex analytic subvarieties and second by appealing to the definable Chow
theorem.

To use the same argument to reprove Theorem 5.3.5, we must have two
ingredients:
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(1) G(Z)\D must be given a S-definable structure for some o-minimal S,
and (weak) Mumford-Tate subvarieties must be shown to be definable
with respect to this structure.

(2) Period maps ¢ : X*" — G(Z)\D from a complex algebraic variety X
must be shown to be definable with respect to this definable structure.

Accomplishing (1) and (2) is the content of [7]. For (1), we define an
arithmetic quotient (of a homogeneous space) to be

NG(R)/V

for G a connected semisimple algebraic Q-group, I' C G(Q) an arithmetic
lattice, V' C G(R) a connected compact subgroup. We moreover define a
morphism

MNG(R)/V - T"\G'(R)/V’

of arithmetic quotients to be a map arising from a morphism f: G — G’ of
algebraic Q-groups sending I' to IV and V to V.

Theorem 9.2.1 (Theorem 1.1 of [7]). Ewvery arithmetic quotient has
a natural Rag-definable structure with respect to which every morphism of
arithmetic quotients is Raig-definable.

Briefly, the definable structure is built by using a Siegel set to construct a
definable fundamental set. Theorem 9.2.1 is easily seen to imply the required
statement about weak Mumford—Tate subvarieties of arithmetic quotients of
period domains.

Theorem 9.2.2 (Theorem 1.3 of [7]). Let X be a smooth complex
algebraic variety. Any period map

v : X* = G(Z)\D

s Ran,exp-definable with respect to the Ran exp-definable structure’®  on
G(Z)\D induced from Theorem 9.2.1.

The crux of the proof of Theorem 9.2.2 is to show that lifts of local period
maps (as in 5.4) land in finitely many Siegel sets. In addition to the norm
asymptotics discussed in Lecture 7, the primary ingredient is the SLo-orbit
theorem of Schmid [45].

Corollary 9.2.3 (Theorem 1.6 of [7]). FEvery weak Mumford—-Tate sub-
variety of X s algebraic.

10 And the canonical Ran,exp-definable structure on X.
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9.3 Definable GAGA

Let S be an o-minimal structure. There is a natural notion of S-definable
complex analytic varieties—loosely speaking, they are complex analytic
varieties with a finite holomorphic atlas by S-definable complex analytic
subvarieties of C™ with S-definable holomorphic transition functions. As first
examples we have G3¢f and C? for each a € R from Example 2.3.2. Some
care is needed to define the sheaf of S-definable holomorphic functions, as it
will only satisfy the sheaf axiom with respect to S-definable—in particular
finite—covers. Thus, it is naturally a sheaf on the S-definable site of the
underlying S-definable space. The category of definable complex analytic
varieties is introduced in [6].

Let (AlgSp/C) be the category of separated algebraic spaces'! that
are finite type over C, (An/C) the category of complex analytic spaces,
and (S-An/C) the category of S-definable complex analytic spaces. The
definabilization functor of Lecture 2 can be upgraded to a functor

(AlgSp/C) — (S-An/C) : X s X9
which fits into a diagram

(_)def

(AlgSp/C) (S-An/C)

() ()
(An/C)

where (AlgSp/C) — (An/C) : X — X°" is now the usual analytification
functor. Moreover, there is a natural definabilization functor on coherent
sheaves

()4 : Coh(X) — Coh(Xdh).

Recall that GAGA says that for X a proper separated algebraic space of
finite type over C, the analytification functor on coherent sheaves

(=)™ : Coh(X) — Coh(X™)

is an equivalence of categories. As a companion to the definable Chow theorem
in Lecture 3, we have the following definable GAGA:

110ne could consider the category of schemes that are of finite type over C for
simplicity.
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Theorem 9.3.1 (Theorem 1.3 of [6]). Let S be an o-minimal structure.
Let X be a separated algebraic space of finite type over C and X9 the
associated definable analytic space. The definabilization functor (—)def
Coh(X) — Coh(X9t) is fully faithful, evact, and its essential image is
closed under subobjects and quotients.

Thus in particular definable coherent subsheaves of algebraic coherent
sheaves are algebraic.

Note that (—)%f is not essentially surjective in general. The reason for
this is as follows. By definable cell decomposition, it is not hard to see that
there is a definable cover of X°"! by simply connected (definable) subspaces.
It follows that any C-local system L is definable, and therefore that the
coherent sheaf F' := L ®c, Oxaer is definable, but analytic sections with the
prescribed monodromy may easily fail to be definable. See [6, Example 3.2]
for details.

9.4 Definable Images

By combining the definable GAGA theorem with algebraization theorems of
Artin, it is proven in [6] that proper definable images of algebraic varieties
are algebraic:

Theorem 9.4.1 (Theorem 1.4 of [6]). Let S be an o-minimal structure.
Let X be a separated algebraic space of finite type over C, S a definable
analytic space, and ¢ : X — S a proper definable analytic map. Then
@+ Xt (X9t s (uniquely) the definabilization of a map of algebraic
spaces.

This can be used to resolve a conjecture of Griffiths [21, pg.259] on the
quasiprojectivity of images of period maps. For a pure polarized integral
variation of Hodge structures (47, F'®, qz), we define the Griffiths bundle to
be L := ®" det F'.

Theorem 9.4.2 (Theorem 1.1 of [6]). Let X be a reduced separated
algebraic space of finite type over C and ¢ : X** — T\Q a period map
as above. Then

(1) ¢ factors (uniquely) as ¢ = o f2 where f: X =Y is a dominant map
of (reduced) finite-type algebraic spaces and v : Y** — T'\Q is a closed
immersion of analytic spaces;

(2) the Griffiths Q-bundle L restricted to'Y is the analytification of an ample
algebraic Q-bundle, and in particular Y is a quasi-projective variety.

Theorem 9.4.2 in turn has a number of applications; we refer to [6] for
related discussions.
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1 Introduction

Let X be a smooth connected projective manifold of dimension n defined over
a number field k, let &' D k be a larger number field. We denote by X (k)
the set of k’-rational points of X. Diophantine geometry aims at describing,
in terms of the ‘geometry’ of X (C), the qualitative structure of X (k') when
k' is sufficiently large, depending on X. When k is too small, the paucity of
X (k) may indeed be related not only to the geometry of X (C), but also to
the coefficients of the equations' defining X, as seen on the rational curve

22+ y?+1=0for k=Q, and k' = Q(~/-1).

Definition 1.1. We say that X/k is ‘potentially dense’ if X (k') is Zariski
dense? in X for some k' D k, k' depending on X.

However, even when solving in Q the Fermat equations ™ +y™ = 2™, the arithmetic
and analytic methods used during 3 centuries only gave partial answers. Its solution
by Wiles rests on the parametrisation of elliptic curves over Q by modular curves, a
geometric approach suggested only 23 years earlier in 1972 by Hellegouarch’s curve
y? = x(z — aP)(x — bP), where (£)P + (%)p = 1 is a putative solution for p > 3 prime.
The reason why this curve is usually called the ‘Frey-curve’ (appeared only 14 years
later for the same purpose) is a mystery for me.

20ne can also ask for density in the analytic topology, and expect that this will then
hold after a further finite enlargement of k.
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The opposite property is X being ‘Mordellic’,®> which means the existence
of a nonempty Zariski open subset U C X such that (X (K')NU) is finite for
any k' D k.

A curve is thus either Mordellic or potentially dense, according to whether
X (k) is finite for any k'/k, or infinite for some k’/k. A curve X/k of genus
g is potentially dense if and only if ¢ = 0,1, curves of genus g > 2 being
‘Mordellic’, by Faltings’ theorem (=Mordell’s conjecture).

In higher dimension, X may be neither potentially dense nor ‘Mordellic’,
as seen from the (exceedingly simple) product X := F x C of two curves, if
g(F) <1,9(C) > 2, equipped with the projection ¢ : X — C onto C: X (k') is
concentrated on the finitely many fibres lying over C'(k"), while the points in
these fibres coincide with those of F(k'), which are thus Zariski dense there
for k' /k large enough.

The aim of the present notes is to present, following [11], a conjectural
description ‘in geometric terms’ (the meaning will be made precise below),
for any X/k, of the qualitative structure of X (%), similar to the previous
product of curves, by means of its ‘Core Map’ ¢ : X — C, defined over k
and conjectured to split X into its ‘Potentially Dense’ part (the fibres), and
its ‘Mordellic’ part (the ‘Orbifold’ Base (C,A.) of the Core Map ¢, which
encodes its multiple fibres). The expectation is that X (k') is concentrated
on finitely many fibres of ¢ outside of ¢=1(W) for some fixed Zariski closed
W C C, and that X (k') is Zariski dense in the fibres contained in ¢~ (W)
for k' O k sufficiently large. In the previous example, the core map is simply
the projection c¢: F' x C — C.

The core map indeed splits any X(C) geometrically, according to the
positivity /negativity of its cotangent bundle 2%. The ‘Mordellicity’ of X
is conjecturally equivalent to the maximal positivity, called ‘Bigness’; of
its canonical bundle Kx. The ‘Potential density’ of X/k is conjectured to
be equivalent to the ‘Specialness’ of X, a suitable notion of non-maximal
positivity of its cotangent bundle 2% .

e Preservation by birational and étale equivalences.

Let us notice that the qualitative structure of X (k') (and in particu-
lar being ‘potentially dense’ or ‘Mordellic’) is preserved under birational
equivalence and unramified covers (due to the Chevalley-Weil theorem).
The geometric properties conjectured to describe potential density and
Mordellicity must be birational and preserved by unramified covers. This
is indeed the case for their conjectural geometric counterparts: specialness,
general type and the core map.

e Positivity /negativity of the canonical bundle (§4, §5).

3The term is due to S. Lang.
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The fundamental principle of birational geometry, based on increasingly
convincing evidence, is that the qualitative geometry of a projective® manifold
X, can be deduced from the positivity /negativity of its canonical bundle K x.
The birational and étale evaluation of this positivity is made by means of the
‘Kodaira’ dimension #(X,) € {—00,0,...,n} which measures the rate of
growth of the number of sections of K}%m when m — +4o00. For curves, we
have k = —oo (resp. kK =0, resp. Kk = 1) if g =0 (resp. g = 1, resp. g > 2). In
higher dimension n, curves of genus at least 2 generalise to manifolds with
Kk = n, said to be of ‘general type’. The higher dimensional generalisations of
curves of genus 0,1 are the ‘special’ manifolds, defined by a suitable notion
of non-positivity of their cotangent bundles.

The ‘core map’ then decomposes (see §8) any X into these two fundamental
‘building blocks’: special vs general type.

e General type and Mordellicity (§8.6).

Mordell’s conjecture claiming that curves of genus at least 2 are not
potentially dense has been generalised in arbitrary dimension by S. Lang,
who conjectured in [36] that X/k is ‘Mordellic’ if and only if it is of ‘general
type’. Lang’s conjecture is still widely open, even for surfaces. It has been
subsequently extended to the quasi-projective case by Vojta, replacing the
canonical bundle by the Log-canonical bundle. Vojta also gave quantitative
versions of this conjecture, relating it in a precise manner to its Nevanlinna
analogues (see [47]). We propose in §8.6 an orbifold version of Lang’s
conjecture, Vojta’s conjecture being the particular case when the boundary
divisor is reduced.

e Specialness and Potential Density (§7).

We conjecture here (following [11]) that X/k is ‘potentially dense’ if and
only if it is ‘special’. This (new) ‘specialness’ property is defined by the
absence of ‘big’ line subbundles of the exterior powers of the cotangent bundle
of X. The two main classes of special manifolds are those which are either
rationally connected or with x = 0, generalising, respectively, rational and
elliptic curves. Special manifolds are exactly the manifolds not dominating
any ‘orbifold’ of general type. They may have, however, any « strictly smaller
than their dimension.

We conjecture that special manifolds have a virtually abelian® fundamental
group, which leads to the following conjectural topological obstruction to
potential density: ‘the (topological) fundamental group of a potentially dense
manifold X/k is virtually abelian’.

4Everything proved or conjectured here either extends, or should extend, to compact
Kéahler manifolds, except of course for the arithmetic versions.

5Recall that ‘virtually abelian’ means that some finite index subgroup is Abelian.
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e The Core map (88).

We show that any X admits a unique canonical and functorial fibration
(its ‘core map’) with ‘special’ fibres, and ‘general type’ ‘orbifold’ base.

The ‘orbifold base’ (Z, Ay) of a fibration f : X — Z is simply its base
Z equipped with a suitable ‘orbifold divisor’ Ay of Z (A effective with
Q-coefficients), encoding the multiple fibres of f. This orbifold base can be
thought of as a ‘virtual’ ramified cover of Z eliminating the multiple fibres
of f by the base-change (Z,Ay) — Z.

e ‘Building Blocks’ of projective manifolds (§8.4, §8.6).

It turns out that the ‘building blocks’ for constructing arbitrary X are
not only manifolds but, more generally, ‘orbifold pairs’ with a negative,
zero or positive canonical bundle Kz + A¢. In the birational category, this
translates, respectively, to: k™ = —o0,k = 0k(X) = dim(X). The study of
geometric, arithmetic and hyperbolicity properties of any projective X thus
essentially reduces, but also requires, to extend the definition and study of
the corresponding invariants to orbifold pairs.

For this reason, we not only need to extend Lang’s conjectures to orbifold
pairs of general type but also to conjecture the potential density of orbifold
pairs having either k¥ = —oo or k = 0. Since such orbifolds are the building
blocks for all special manifolds, this justifies the expectation that all special
manifolds should be potentially dense.

e Orbifold pairs: geometry and integral points (§2, §3).

A (smooth) orbifold pair (X, A) consists of a smooth projective X together
with an effective Q-divisor A := >~ (1 — m%)DJ for distinct prime divisors
D; of X whose union D is of simple normal crossings, and ‘multiplicities’
m; € (Z* U {+oc}). They interpolate between A = 0 and A = D,
corresponding, respectively, to the projective and quasi-projective cases.
The usual invariants of quasi-projective manifolds can be attached to them,
including the fundamental group and integral points if defined over Q. These
integral points are modelled after the notion of ‘orbifold morphisms’ h : C' —
(X,A) from a smooth connected curve C to (X, A), obtained by imposing
conditions on the orders of contact between h(C) and the Djs. These
conditions appear in two different versions (ged or inf), according to whether
one compares positive integers according to divisibility or Archimedean order.
The first notion is the one used classically in stack and moduli theories, but
is not appropriate in birational geometry, and we thus consider the second
one, here. This ‘inf’ version of integral points leads, even for orbifold pairs
over X = P! to an orbifold version of Mordell’s conjecture which is presently
open, implied by the abc-conjecture, but possibly much more accessible. This
orbifold Mordell conjecture is in fact merely the one-dimensional case of the
orbifold version of Lang’s conjecture that we formulate in §8.6.
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e Link with hyperbolicity and entire curves (§9, §10, §11).

The Lang and Vojta conjectures establish an equivalence between geom-
etry, arithmetic and hyperbolicity of (quasi)-projective manifolds of general
type. We formulate an analogous equivalence for special manifolds first, and
then for all X’s via the Core map, in the last two sections. Since entire
curves are much easier to construct than infinite sets of k’-rational points,
we can show more cases of these conjectures for entire curves, especially for
rationally connected manifolds, for which analytic analogues of the Weak
Approximation Property and of the Hilbert Property can be obtained.

e The material in these notes mainly comes from [11]. Unpublished obser-
vations are: Proposition 9.1 proving the conditional equivalence between
entire curves and countable sequences of k’-rational points, and the last
section (qualitative description of the Kobayashi pseudodistance on any
X, using the ‘core map’).

These notes can be complemented by many texts, including: [1], the books
[31] and [41] for arithmetic notions and proofs, [42], [46] on the geometric
side and the references in [13] for more recent developments in birational
complex geometry. The reference [9], which contains everything needed on the
arithmetic side, including proofs and much more, deserves a special mention.

e These notes are an extended version of a mini-course given at UQAM
in December 2018, and part of the workshop ‘Géométrie et arithmétique
des orbifoldes’ organised by M.H. Nicole, E. Rousseau and S. Lu. I thank
them for the invitation, and also K. Ascher, H. Darmon, L. Darondeau,
A. Turchet, J. Winkelmann for interesting discussions (and collaboration
in the case of L.D, E.R and J.W) on this topic. Many thanks also to P.
Corvaja for several exchanges and explanations he gave me on arithmetic
aspects of birational geometry. In particular, §10 originates from his joint
text with U. Zannier [23], the connection made there with the Weak
Approximation Property is due to him. Many thanks also to Lionel
Darondeau also for making my original drawings computer compatible.
Thanks to the referee who read carefully the text, suggesting improvements
and complementing references.

Conventions In the whole text, X will be a connected n-dimensional
projective (smooth) manifold defined either over C or over a number field
k, of which a finite extension will be denoted k’. A fibration f: X — Z is a
regular surjective map with connected fibres over another projective manifold
Z (of dimension usually denoted p > 0). A dominant rational map will be
denoted f : X --+ Z. We denote here always by Kx the canonical line bundle
of X, which is the major invariant of the birational classification.
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2 Orbifold Pairs and Their Integral Points

This section is aimed at the definition of integral points on orbifolds for
potential readers with a complex geometric background. We thus try to avoid
the conceptual notions of schemes, and models. The readers familiar with
them can skip this section or alternatively consult either [1] or [2], where all
definitions are given in this language.

2.1 Integral Points Viewed as Maps from a Curve

We shall describe a standard geometric way of seeing rational points on an
n-dimensional manifold defined over a number field k£ as sections from an
‘arithmetic curve’ Spec(Oy) to the ‘arithmetic (n + 1)-dimensional manifold’
X (Oy,s) fibred over Spec(Oy). This description is modelled after the cases,
which we describe first, of holomorphic maps from a curve, and then of
function fields, in which rational points are seen as sections of a suitable
fibration.

e Morphisms from a curve.

Let C be a smooth connected complex curve (the important cases here are
when C' = C,P!,D (the complex unit disk), or a complex projective curve.
Let M be a smooth connected complex manifold. Let Hol(C, M) be the set
of holomorphic maps from C to M. When h € Hol(C, M) is non-constant we
say that h is a (parametrized) rational (resp. entire) curve on M if C = P!
(resp. C =C).

We may identify any h € Hol(C, M) with its graph in X := C x M, and
thus with a section of the projection f : X — C onto the first factor. More
generally, we can replace the product C' x M with any proper holomorphic
map with connected fibres f : X — C from a complex manifold X. Manifolds
over a function field provide such examples.

e Function field version of integral points.

When X and C are projective, the preceding construction makes sense
over any field, not only C and leads to the ‘function field’ version.

Let f: X — C be a holomorphic fibration (i.e.: surjective with connected
fibres) from X onto C, where X is now a smooth complex projective manifold
of dimension (n+1). This is a ‘model’ of an n-dimensional manifold over the
field K := C(C), the field of rational (or meromorphic) functions on C, with
‘generic fibre’ X, if ¢ is a generic point of C.

More precisely, X can be embedded in ny : Py x C = Py(K) — C,
the first projection, for some N > n. The rational points of Py (K) are thus
the N + 1-tuples [fo, f1,- .., fn] of elements of K, up to K*-homothety, or
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equivalently, sections of mx. The elements of X (K) are then those of Py (K)
which are contained in X, hence those which satisfy the equations defining
X in Py (K) over K. Said differently: X (K') are the sections of f.

The set of points of C coincide with the set of inequivalent valuations (or
‘places’) of the field K with field of constants C. If S C C is any (nonempty)
finite set, C'\ S also coincide with the set of maximal ideals of the ring Ok s
of rational functions on C regular outside S.

e Integral points: the arithmetic version.

If X is defined over the number field k, the role of the curve C will be
played by Spec(Oy), the set of (non-archimedean) places of k.

Let k be a number field, Oy be its ring of integers and S a finite set of
non-archimedean ‘places’ (i.e.: prime ideals p of the ring of integers). Let
C := Spec(Ok,s) = Spec(Ok) \ S be the set of prime (=maximal) ideals p of
the ring Oy, localised at S.

Let X be defined over k. Assume (in order to avoid the use of a ‘model’)
that X C Py is defined by homogeneous equations with coefficients in k.

An element = of Py (k) = Py(Ok,s) is an (N + 1)-tuple [z, ..., zn] of
elements of either k, or equivalently O s, not all zero, up to O}, g-homothety
equivalence. The elements of X (k) are those satisfying the equations defining
X.

The ‘arithmetic projective N-space over Spec(Oy,s)’ is the map 7y :
Pn(Ok,s) — Spec(Oy,s), where for each prime ideal p of O g, the fibre
of mn over p is Py (Fy,), where F, = Oy/p, the residue field of Oy, by its
prime (i.e.: maximal) ideal p.

The above point & = [zg : - - : ] of Px(k) is identified with the section
of mnx which sends, for each p € Spec(Oy), x to its reduction x, modulo p,
which is the image of « by the map: Py (Ox) — Py (F}). This map is well-
defined, since [zg : --- : 2] may be chosen in such a way that no p divides
all z; simultaneously.

Then X (O, s) is the subset of Pn(Ok,s) consisting of the sections of mn
which satisfy the equations defining X, or equivalently, which take, for each
p, their values in X (F}), the reduction of X modulo p.

When X = X\ D is quasi-projective, complement of a Zariski closed subset
D in the projective X, everything being defined over k, the set of S-integral
points of X is simply the subset of X (O g) which do not take their values
in D(Fy), for each p € O g (Figure 1).

2.2 Orbifold Pairs

The birational classification requires the consideration of more general
objects: ‘orbifold pairs’, which interpolate between the projective and quasi-
projective cases.
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Fig. 1 The arithmetic section %

Definition 2.1. An orbifold pair (X,A) consists of an irreducible normal

projective variety together with an effective Q-divisor A := Zj cj.

Dj in which

the D;s are irreducible pairwise distinct (Weil) divisors on X, and the ¢; €

10,1] are rational numbers of the form c¢; =1 — mi] for integers

mj = +oo if ¢; = 1).
The support of A (denoted Supp(A), or [A]) is U;D;.

m; > 1 (or

The orbifold pair (X, A) is smooth if X is smooth and if Supp(A) is SNC

(i.e.: of simple normal crossings)
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The canonical bundle of (X, A) is Kx + A (if Kx + A is Q-Cartier, which
is the case if (X, A) is smooth). The Kodaira dimension of (X, A) is defined
as k(X, Kx + A)% if Kx + A is Q-Cartier.

When A = 0, the orbifold pair (X,0) is identified with X. When A =
Supp(A) (i.e.: mj = 400,Vj, or equivalently, ¢; = 1,Vj)), (X, A) is identified
with the quasi-projective variety (X \ A).

The general case interpolates between the projective and quasi-projective
cases, and plays the role of a virtual ramified cover of X ramifying at order
m; over each D;. These orbifold pairs appear naturally in order to encode
multiple fibres of fibrations (see Subsection 2.3).

The usual geometric invariants of manifolds (such as cotangent bundles,
jet differentials, fundamental group in particular) can be defined for orbifold
pairs as well. We shall define S-integral points on them when they are defined
over a number field & (i.e. when X and A are both defined over k, and thus
invariant under Gal(Q/k)).

Before defining S-integral points of an orbifold pair, we give our motiva-
tion” for the notion of orbifold pairs.

2.3 The Orbifold Base of a Fibration

Let f: X — Z be a fibration, with X, Z smooth projective. Let £ C Z be
an irreducible divisor, and let f*(E) := >, tn.Fj + R be its scheme-theoretic
inverse image in X, with codimz(f(R)) > 2. For each E, we define ms(E) :=
infp{ty}. This is the multiplicity of the generic fibre of f over E. We next
define the ‘orbifold base’ of f as being (Z, Af) with Ay :==> o (1— W)E

o Notice that the sum is finite, since my(E) = 1 if E is not contained in
the discriminant locus of f.

The pair (Z,Ay) should be thought of as a virtual ramified cover u :
Z' — Z ramifying at order my(E) over each of the components of Ay, so
as to eliminate in codimension 1 the multiple fibres of f by the base-change
u:2 —Z.

We have, of course: dim(Z) > k(Z, Kz + Ay) > k(2)

e ‘Classical multiplicities’: denoted by m}(E), they are defined by
replacing inf by ged in the definition of my(E) above, which leads to
the ‘classical orbifold base’ (Z, A}) of f, A} =3 p(1 - m)E

The difference between the two notions is quite essential in the sequel.

6See Definition 4.1 below (or any text, such as [46]).

"The Log Minimal Model Program introduced these very same objects for apparently
different reasons: adjunction formula and induction on the dimension.
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Remark 2.2. A birational base-change Z' — Z gives a new ‘orbifold base’
(Z'Aypr), with K(Z', Kz + Ap) < k(Z,Kz + Ay). The inequality is strict
in general. By flattening® and desingularisation, one gets ‘neat birational
models’ of f for which the orbifold base has minimal k. See [11] for details.

2.4 Orbifold Morphisms from Curves

We shall next define the two versions of orbifold morphisms from a smooth
connected curve C' to an orbifold pair (Z,A). The main examples over C
are C = C,P!,D (the unit disk in C). The following example indicates a
necessary condition for the functoriality of the definition.

Let (Z,Ay) (resp. (Z,A%})) be the orbifold base of a fibration f: X — Z
as above, with Z smooth. Let h : C' — X be any holomorphic map. Consider
the composite map: foh : X — Z. One immediately checks the following

property:

Lemma 2.3. Let a € C be such that f o h(a) € D;. Let t > 0 be the order
of contact (or intersection multiplicity, see also [1], or [2]) of f o h(C) with
Dj (i.e.: (foh)*(D;) =t{a}+ R, where R is a divisor on C supported away
from a).

Then t > m; (resp. m; divides t).

The following simple example shows that any m > m; may occur:

Example 2.4. Let f : Ay — Ay be the fibration given by: f(z,y) = 2%.y> =
0. For anym > 2, the map h : t — (x,y) := (¢t*,t) is such that foh(t) =t™,
if 2a + 3b = m, since (f o h)*(z) = t**T3°. We may choose a := Z,b =0 if
m is even, a = [§] —1,b:= 1 if m is odd.

If the multiplicities 2 < 3 are replaced by p < q, then any t > to(p,q) may
occur, but in general to(p,q) > p.

The preceding Lemma 2.3 shows that the functoriality of morphisms from
curves to orbifold pairs requires to define them as follows:

Definition 2.5. A non-constant reqular map h : C — (X, A) is an orbifold
morphism (i.e.: a A-morphism) (resp. a ‘classical orbifold morphism’) if:

1. h(C) is not contained in the support of A.

2. For any a € C, and any j such that h(a) € Dj, we have: t,; > m;
(resp. tq ; is divisible by m;). Here to j is the order of contact at a € C' of
h(C) with Dj, as defined in Lemma 2.3, namely by the equality: h*(D;) =
ta,j.{a} + ...

8This replaces f by a birational model with equidimensional fibres. We shall always
implicitly consider these models in order to avoid birational technicalities.
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We denote by Hol(C, (X, A)) (resp. Hol*(C,(X,A)) the set of orbifold
morphisms (resp. of classical orbifold morphisms) from C to (X, A).

When C = C (resp. C = P1), we say that h is a A-entire curve (resp. a A-
rational curve). When C = C, we allow & to be holomorphic transcendental
in the definitions.

The A-morphisms are thus the usual ones when A = 0, and are the
morphisms from C to (X\D) when A = D := Supp(A), with all multiplicities
equal to 4o0.

In the general case, we have:

Hol(C,(X \ D)) C Hol*(C,(X,A)) C Hol(C,(X,A)) C Hol(C, X).

We now describe this notion in the case of function fields, and next in the
definition of A-integral points.

2.5 The Function Field Version

Let f: X — C be a regular map with connected fibres (a ‘fibration’) from
the connected projective manifold X onto the projective curve C. We present
here a geometric version of the notion of orbifold integral points. A more
conceptual approach based on the notion of schemes and models can be found
in [1] and [2], §2.3.

Let A =3 7,(1— mij){Dj} be an orbifold divisor on X, with f(D;) =
C,Vj (i.e.: with horizontal support). The orbifold pair (X, A) has as generic
‘orbifold fibre’ the smooth orbifold pair (X, A,) over s € C generic,” if A,
is simply the restriction of A to X;. Notice that (X, Ay) is indeed smooth
for s € C' generic.

Let S C C be a finite subset containing the points of ‘bad reduction’ of
(X, A) over C (i.e.: the finitely many points over which either (X, A;) is not
smooth). In this situation, the integral points of X/(C \ S) are simply the
sections 0 : C'\ S — X of f (i.e.: such that f oo =idc\g)).

We define the S-integral (resp. the ‘classical’ S-integral) points of
(X,A)/C to be the sections of f which are orbifold (resp. ‘classical’
orbifold) morphisms from (C'\ S) to (X, A) over (C'\ S). We denote this set

9Let us stress that we do not use here the language of schemes, so our points are
always ‘closed’ points, the generic point of a projective irreducible variety Z is any
(closed) point outside some Zariski closed strict subset of Z. A ‘general’ point lies in
a countable intersection of such open subsets if the base field is uncountable. We thus
use ‘general’ in the sense we already introduced in 1980, instead of the terminology
‘very general’ introduced much later with the same meaning.
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Pl

Fig. 2 A function field ‘orbifold’ section (see below)

with (X, A)(Ok,s) (resp. (X,A)*(Ok,s)), where K is the field of rational
functions on C' (Figure 2).

When A =0 and S = @, we thus recover the rational points of X over K,
and when A = Supp(A), we recover the sections of f avoiding Supp(A). In
the general case, we have:

(X\A)(Ok,s) C(X,A)"(Ok,s) C (X,A)(Ok,s) C X(Ok,s).

2.6 Integral Points on Arithmetic Orbifolds

We will now model the definition of the S-integral points of the orbifold
(X,A) on their function field definition, replacing K by a number field k,
and the curve C' | which is the set of ‘places’ (i.e., non-equivalent valuations
of K) by Spec(Oy), the ring of integers of k. The role of order of contact will
be played by arithmetic intersection numbers.

Let k£ be a number field, Oy be its ring of integers and S a finite set of
‘places’ (i.e.: prime ideals p of the ring of integers). Let B := Spec(Ok,s) =
Spec(Ok) \ S be the set of prime (=maximal) ideals of the ring Oy localised
at S.

Let f : X, — Spec(Ok) be the arithmetic manifold (of dimension (n + 1)
if dim(X) = n) whose fibre over each prime ideal p is the reduction in the
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quotient field O /p of X. The orbifold pair (X, A) being given, we define
similarly the fibres of the arithmetic orbifold (X, D) over Spec(Oy)) to be
the reductions (X,,A,) of (X,A) mod p. Then (X, A) has good reduction
at p if the fibre of (X, D) over p is a smooth orbifold pair.

e Arithmetic intersection numbers: Let fs : Xps — Spec(Oks) be
the ‘arithmetic manifold’ associated with X, as above, assuming S C
Spec(Oy), finite and sufficiently large, so as to fulfil the conditions below.
Any = € X (k) defines a section of f mapping any p ¢ S to the image
of z, in X,. Assume that « ¢ D;,Vj. Let S be any finite set of ‘places’
of k containing those where (X, A) has ‘bad reduction’. For each j, there
thus exists on X a function g; generically defining D; reduced, g; regular
and non-vanishing at z. The reduction of g; modulo p thus does not vanish
identically at x,. The arithmetic intersection number (z, D;), is the largest
integer ¢ such that p* divides g;(x). This integer does not depend on the
choice of gj, which is well-defined up to a unit in the ring of rational
functions on X regular at x.

Notice that (z, D;), > 1 if and only if z, € (D;),, this happening only for
the finitely many p’s which divide g;(x). See [2], §2.3 for a more conceptual
definition.

Definition 2.6. Let (X,A) be a smooth orbifold pair defined over k, with
S a finite set of places of k containing those over which (X,A) has bad
reduction.

o A point x € X(k) is (S, A)-integral if, for any j, x ¢ D;, and if (x,D;), >
m; for each p & S such that (x,D;), > 1.

o A point x € X (k) is a ‘classical (S, A)-integral’ if x ¢ D;,Vj, and if m;
divides (x,Dj), for each p ¢ S such that (x,Dj), > 1.

We shall denote by (X,A)(k,S) (resp. (X,A)*(k,S) the set of (S,A)-
integral points (resp. of ‘classical (S, A) integral’ points) of X.
Let D be the support of A, we have obvious inclusions and equalities:

(X,D)(k,S) C (X,A)"(k,S) C (X,A)(k,S) C X(k,S).

Remark 2.7. See §5.3, §2.3 for some of the compelling reasons to introduce
non-classical versions of orbifold morphisms and integral points.

2.7 Ezamples of Orbifolds on P!

We shall illustrate these definitions with two examples of integral points over
two orbifold structures on P!, supported on 2 (resp. 3) points, with infinite
(resp. finite) multiplicities.
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In both cases, we shall choose k = Q, S = p1,...,ps for distinct primes

pj, so that Og,s = Z[p%w..,pis}.

e P! minus two or three points: Assume now that A = {0, 00} reduced
(i.e.: with infinite multiplicities. An element of P!(Q) is of the form +7,
with a,b nonnegative coprime integers, not both zero. The ‘arithmetic
surface’ 7 : PL — Spec(Z) has fibre P%p (the projective line over the finite
field IF,) over each p € Spec(Z) . We associate to ¢ the section of this
projection which sends each p to the mod p-reduction of §. The 2 points
of A give similarly two sections {0} and {oco} of this projection. The section
£ meets the section {0} exactly at the p’s dividing a, and meets the section
{oo} at the p’s dividing b.

The section § will thus be contained in the arithmetic surface (X \ A)z

(that is: avoid the two sections {0} and {oo}) if and only if a and b are
invertible in Z, that is: if and only if £¢ = +1, i.e., a unit of Z.

If instead of the ring Z, we use the larger ring Z[p%, cee p%] = Oq,s, where
S = {p1,...,ps} C Spec(Z), the set of sections ¢ meeting the sections {0}
and {oo} only over S are again exactly the units of Og g, that is, quotients
£ of two coprime integers, both coprime with p ¢ S.

If we remove now the 3 points 0,1, 00, the integral points for Og s are
the solutions of the ‘S-unit equation’ @ — b = ¢, in which all three terms are
S-units. Indeed, not only a and b should be S-units, but also a — b, since §
should not reduce to 1 modulo any p outside S. The ‘classical’ integral points
are then the same as their ‘non-classical’ version. The situation is different

for finite multiplicities, as we shall now see.

e P! with 3 orbifold points: We consider (P!, A), where A consists of the 3
points 0, 1, 0o, respectively, equipped with the integral finite multiplicities
p, 1, q, each at least 2.

In other words: A = (1 — %){0} +(1- %){1} +(1- %){oo}

We take here the simplest situation: k = Q, S = ().

Let us first describe the ‘classical’ integral points z = +% of (PL, A),
with a, ¢ positive coprime integers, seen as a section of the arithmetic surface
7 : PL — Spec(Z). The section x meets the section 0 at the primes p which
divide a, with an intersection multiplicity equal to the exponent of p in the
prime decomposition of a. Similarly: the section x meets the section co at the
p’s dividing ¢, with intersection multiplicity equal to the exponent of p in the
prime decomposition of ¢. The section z meets the section 1 at the primes
dividing # — 1 = “=<, that is, those appearing in the prime decomposition of
(c—a), with exponents equal to the corresponding intersection multiplicities.

There are now 2 different sets of orbifold integral points: the classical ones
and the ‘non-classical’ ones.

e Description of the ‘classical’ integral points of (P!, A): for such an z = ¢

c’

each of the exponents of a must be divisible by p. Thus: a = o for some
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positive integer «. Similarly: ¢ = 47 (resp. £(c¢ — a) := b = "), for some
integers v > 0,8 > 0. In other words, the ‘classical’ integral points of
(P, A) over Q,S = ) are (up to signs) the integral coprime solutions
(a, B,7) of the equation: aP + 57 = 4".

This is the construction used by Darmon-Granville in [25] to show the
finiteness of solutions in coprime integers of the generalised Fermat equation
AzP + By? = Cz" (A, B, C become indeed S-units if we add to S the finite
set consisting of the primes dividing ABC).

e Description of the integral points of (P!, A) (over k = Q, S = 0): a similar
analysis shows that these are (up to signs, i.e.: units of Z) solutions of the
equation a 4+ b = ¢ with: a a p-powerful integer, b a r-powerful integer and
c a g-powerful integer, according to the:

Definition 2.8. Let k > 1 be an integer. A positive integer m is said to be
k-powerful if the k-th power of each prime dividing m still divides m, that
is: if the k-th power of rad(m) divides m, where rad(m) (the ‘radical of m’)
is the product (without multiplicities) of the primes dividing m. Exact k-th
powers are k-powerful, but not conversely: 72 = 23.32 is 2-powerful, but not
a square.

Nevertheless, by a result of Erdés—Szekeres, [27],§2, p. 101, the number
of k-th powerful numbers less than a certain bound B is asymptotically, as
B — 400, of the form C(k).B% for a certain constant C(k) > 1, and so
comparable to the number B% of exact k-th powers in the same range.

3 The Arithmetic of Orbifold Curves

3.1 Projective Curves

Let thus C = X be a connected smooth projective curve defined over k.
Its fundamental invariant is its genus g > 0, also equal to h°(C, K¢), the
number of its (linearly independent) regular differentials, and also equal to
g=1+ %KC). The genus is also a topological invariant (the number of
‘handles’) of the set of complex points of C' (and so purely ‘geometric’).
There are only 3 cases, according to the value of g, or equivalently to the

sign of deg(K¢):

e g = 0:if C(k) is not empty, C is isomorphic to P! over k, and so C(k) =
P! (k) is infinite. There always exists a quadratic extension k’/k such that
C(k') #0.

e g = 1: after a finite extension &’/k (its degree depending on C), C(k’) # 0,
and C(K') is thus an elliptic curve with a group structure. A suitable
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quadratic!® extension k”/k’ gives a point ‘of infinite order’ in the group
C(k"), and so C(k") is infinite.

e g > 2. Faltings’ theorem (solving Mordell’s conjecture) says that C(k’) is
finite, however big k' is.

e Conclusion: C is potentially dense if and only if deg(K¢) < 0. Notice
indeed that deg(K¢) < 0 if and only if g < 1.

3.2 Quasi-Projective Curves

These are just projective curves C' with a non-empty finite set D removed.
Here C' and D are thus assumed to be defined over k (which means that D
is preserved by the action of Gal(Q/k).

The fundamental geometric invariant of the situation is now the sign of
the log-canonical bundle K¢ + D (which replaces K¢ when D = 0). The
conclusion is exactly the same as in the proper case (by a theorem essentially
due to C.L. Siegel).

e deg(Kc 4+ D) < 0: the set of S’-integral points relative to D is Zariski
dense for some k', S’ sufficiently large. This case occurs only with C' = P!,
with 1 point deleted.

e deg(Kc+ D) = 0: again, the set of S-integral points relative to D is Zariski
dense for some k', S’. This case occurs only with C' = P!, with 2 geometric
points deleted.

e deg(Kc+ D) > 0: the set of S-integral points relative to D is finite for any
k', S'. This case occurs only with C = P!, with 3 or more points deleted,
or if C'is a curve of positive genus with at least 1 point deleted.

3.3 The Orbifold Mordell Conjecture

This is the one-dimensional special case of a more general conjecture to be
formulated later. It relates the arithmetic of a curve orbifold pair (C,A) to
the sign of its ‘orbifold canonical bundle’ K¢ + A, just as when A = 0 or
when A = D, the (reduced) support of A.

Conjecture 3.1. Let (C,A) be an orbifold pair defined over a number field
k. Let k' [k be a finite extension, and S" a finite set of places of k'.

10This is easily seen from a Weierstrass equation and the finiteness of torsion points
of the group C(k).
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Then (C,A)(S', k') is finite for each (K',S") if and only if deg(Kc + A) >
0. FEquivalently: (C,A)(S’, k") is infinite for some (k',S’) if and only if
deg(Kc + A) <0.

We have seen above that this conjecture is true when A = 0 and when
A = D, its reduced support.

We shall see next that it is solved also when one considers the ‘classical’
(S’,A) integral points (C, A)(S’,k')*, but that it is open for (C, A)(S', k).
By the former inclusion (C, A)(S’, k¥")* C (C, A)(S’, k'), this shows that only
the ‘Mordell’ case deg(K¢ + A) > 0 remains open. Notice that if A < A’
in the sense that (A’ — A) is an effective Q-divisor, we have an inclusion
(C, AN (S K C (C,A) (S, k). Tt is thus sufficient to deal with the ‘minimal’
orbifold pairs (C, A) with deg(Kc + A) > 0 listed below in order to solve the
preceding conjecture.

Remark 3.2. The ‘minimal’ cases with deg(Kc + A) > 0 not solved by the
preceding results are thus the following ones:

o C is elliptic, and A = (1 — 3).{a},a € C(k).

o C =P and s > 3, where s is the cardinality of the support D of A. Let
(m1 <mg < ... < my) be the corresponding multiplicities. We have thus:
>, (1= mi]) > 2, or equivalently > m% < 8 — 2. This gives the following
possibilities, with s = 3,4,5 only:

o s=3, and (my,ma, ms3) € {(2,3,7),(2,4,5),(3,3,4)}.

e s=4, and (my,...,my) ={2,2,2,3}.

e s=5and (my,...,ms) ={2,2,2,2,2}.

The ‘orbifold Mordell Conjecture’ thus reduces to showing finiteness of
(S, A)-integral points for (S, A) in the above short list. Notice that its solution
would imply in particular the finiteness of the infinite union of classical
integral points for the orbifolds ‘divisible’ by A, which are the ones deduced
from A by multiplying each of its multiplicities by an arbitrary positive
integer (without changing the support). The orbifold conjecture thus looks
much stronger than its ‘classical’ version.

Remark 3.3. The complex function field version of the orbifold Mordell
conjecture is solved in [13]. For function fields over finite fields, the solution
is much more involved and more recent: see [32]. The hyperbolic version of
the orbifold Mordell conjecture is also known (see §3.8).

3.4 Solution of the Classical Version

This classical version is solved by Darmon-Granville in [25], the idea being to
remove the orbifold divisor A by means of suitable ramified covers 7 : C' — C
which are étale in the orbifold sense. We briefly sketch their arguments.
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Definition 3.4. Let m: C' — C be a surjective (hence finite) reqular map
defined over k between two smooth projective curves. Let A := Zj(l_%)'Dj
be an orbifold divisor defined over k on C. We shall say that 7 is a ‘classical’
orbifold morphism if, for any j, and any ¥’ € 7=1(D;), the ramification order
ey of ™ at x' is a multiple of m;.

We shall say that 7w is ‘classically’ orbifold-étale over A if we have the
equality e,y = my for any such x',j. This is easily seen to be equivalent to:
F*(KC + A) = K¢,

The use of such covers is based on the following:

Proposition 3.5. Let 7 :C' — C, k, A be as in the previous definition, and
let S be a finite set of places of k. Assume that w is classically orbifold-étale
over A. We then have the following two properties:

1. w(C'(k)\ R) C (C,A)(S,k')*, R being the ramification of 7.
2. There is a finite extension k' /k such that w(C'(k')) D (C,A)(S, k).

Proof. The proof of Claim 1 is easy just by going through the definitions.
By contrast, Claim 2 is an orbifold version of the theorem of Chevalley—Weil,
which deals with the case A = 0 in any dimension. Claim 2 is established, by
reduction to this classical result, in [25], Proposition 3.2. a

The rest of the argument is purely geometric, by constructing suitable
orbifold-étale covers.

o We first deal with the ‘easy’ case in which deg(K¢ + A) < 0. In this
case C' = P!, The proof just consists in producing a suitable orbifold-étale
cover m: O’ — P! over A and defined over Q, with C’ either elliptic (if
deg(Kc + A) = 0), or ' = P! (if deg(Kc + A) < 0). This is classical
(and easy, except in the case where C = P!, and A is supported on 3
points of multiplicities (2,3,5), where the Klein icosahedral cover solves
the problem). See [25], §6,7 and [3] for many more details. Only Claim 1
is needed here, together with the ‘potential density’ of rational and elliptic
curves.

e The second case deg(K¢ + A) > 0 requires much more. First one needs
an orbifold étale cover m : C" — C of (C,A). If C is elliptic, with A =
(1—13).a,a € C(k), this is given by a cover C’ of C' which ramifies at order
2 only over a, by first taking a double étale cover (still elliptic) 7 : ¢! — C
of C, and then a double cover of C’ ramifying at order 2 over the two
points of the inverse image of a in C’. Otherwise C' = P!, and the only
non-obvious cases are when s = 3 with 3 points 0, 1, co of multiplicities
p,q,r with % + % + % < 1. The existence of such a cover C’ follows from
the existence of finite quotients @, 4., of m1 (P*(C) — {0,1, 00}), which is
a free group on two generators, and with ) a finite permutation group
containing 3 elements A, B, C of respective orders p, ¢, r, with C~! = AB
(see [37], 1.2.13, 1.2.15). Applying claim 2 of Proposition 3.5, we see that
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w(C' (k")) D (S,A)(C). Since, by Faltings’ theorem, C'(k) is finite, so is
(5, 8)(C).

Remark 3.6. The reason why the Orbifold Mordell Conjecture cannot be
proved by the same argument for ‘non-classical’ integral points is that
(above orbifold version of) the Chevalley—Weil theorem does not apply to
them: the lifting of integral A-points requires that the ramification orders
divide (and not only be smaller than) the corresponding multiplicities. More
precisely: contrary to what happens with the ‘classical’ integral points, the
arithmetic ramification can occur anywhere geometrically for non-classical
integral points. This is illustrated by the following simplest possible example.
Let (PY,A) where A is supported on {0,00}, each of these two points being
equipped with the multiplicity 2. The classical integral points over Q,S = 0,
are thus simply the squares of mon-zero integers up to sign, while the non-
classical integral points are the mon-zero 2-powerful numbers, which admit
odd arithmetic ramification at any prime, and are not the squares of a ring
of integer of the form Oy g for any finitely generated extension of Q.

3.5 The abc-Congecture

We state here its simplest form, for k£ = Q (a version for number fields has
been given by Elkies):

Conjecture 3.7. For each real € > 0, there exists a constant C: > 0 such
that for each triple (a,b,c) of positive coprime integers such that a +b = c,
one has: ¢ < Ce.rad(abc) €. Recall that rad(abc) is the product of the primes
dividing abc.

The rough meaning is that the exponents in the prime decompositions of
a,b,c cannot be ‘too’ large.

e The abc conjecture can be interpreted geometrically in terms of the number
of intersections counted without multiplicities of the section x = % with
the sections 0, 1,00 on the arithmetic surface 7 : P} — Spec(Z). It simply
says that the ‘height’, taken to exponent (1 — ¢), of x is bounded by the
total number of intersection points (counted without multiplicities) of
this section with the 3 sections 0,1, co.

e Let us visualise the abe-conjecture, using the sections z,0,1,00 of the
arithmetic surface 7 : PL — Spec(Z). The section z only gives the
intersection points of the section z with the 3 other sections, that is:
rad(a), rad(b), rad(c). To recover z, one needs additionally the arithmetic
intersection numbers. The abc-conjecture claims they are ‘small’ (with a
quantitative measure). The following exercise at least shows that they are
finite in numbers, that is: the radicals of a, b, ¢ determine a,b,c = a+b ‘up
to a finite ambiguity’ (Figure 3).
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The two arithmetic sections x = g—? and 2’ = —g—i meet the sections
(0), (1) and (c0) at the same points.

Intersections with: (0)® (1) (c0) ®

P (c0)

1
Pr,

1
Py,

| | | |
i i i i SpecZ
2 3 5 7

Fig. 3 Arithmetic sections are determined by their radicals at 0,1,00 up to finite
ambiguity

Remark 3.8. The abc-conjecture implies that there exists only a finite
number of triples of coprime integers (a,b,c) such that a + b = ¢, and
rad(abc) < N. This is a special case of the finiteness of solutions of the S-unit
equation. It follows, for example, from the weak form of the abc-conjecture
proved in [{4]. This finiteness is due to K. Mahler, originally. See [28] and
the references therein for more general statements. We illustrate below the
case where rad(abc) = 2.3.5 = 30.

Some of the solutions of the equation 2* £ 3Y = 5% are (z,y,2) =
(1,1,1),(2,2,1),(1,3,2),(4,2,2),(7,1,3). It is probably not easy to get a
complete list of all solutions, even over Z.
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3.6 abc Implies Orbifold Mordell

Since this is shown in [26] when A = 0, we only need to show this for the
remaining ‘minimal’ cases listed in Remark 3.2. We start with P! with 3
marked points.

e Let us show that abc implies the Mordell orbifold conjecture over Q for
(P, A) with A as in Example 2.7 above. Indeed: if a (resp. b, resp. c) is

p-powerful (resp. g-powerful, resp. r-powerful), we have: rad(a) < av <
cv, and similarly rad(b) < ci, rad(c) < ¢r. We thus get: rad(abc) <
rad(a).rad(b).rad(c) < cpTatr < =45, since L + % +1<1— 4 for
each of the minimal orbifolds listed in Example 2.7, the minimum being
reached for the multiplicitieb (2,3,7). The conjecture abc implies that:
clmw > rad(abc) > — for any € > 0. Choosing € < 45 gives: ctz7¢ <
C., and so the claimed ﬁmteness 1
e The Orbifold Mordell conjecture can be deduced from the abc-conjecture
also in the three remaining cases when either C' = P!, and A is supported
by 4 or 5 points on P! with multiplicities (2,2,2,3) and (2,2,2,2,2),
respectively, or when C' is elliptic and A is supported on a single point
with multiplicity 2. The derivation is, however, less direct less: one needs
to apply a variant of the method used by N. Elkies in [26] to derive
Faltings’ theorem from the abc-conjecture. One can proceed as follows:'?

e First step (the same thus as in [41]):

Let f: C :=P! — B :=P! be a rational function f = g of degree d > 0,
quotient of polynomials F, G, defined over k, a number field. We shall use
the notations of [26]. Let P € C(k), such that f(P) ¢ {0,1,00}. Let H(P)
(resp. Hp) be the height of P (resp. of f(P)). We denote by No(f(P)) the
radical of F'(P). We have: Log(H(f(P))) =d.Log(H(P))+ O(1).

Elkies shows that Log(No(f(P))) < (%).Log(H(P)) + O(1), where ko is
the cardinality (without multiplicities) of f~1(0). (The proof just consists in
removing the ramifications on this fibre). One has then similar inequalities
over the fibres of f over 1 and oo replacing f by (f — 1) and % From
which he concludes (using the Riemann-Hurwitz formula) that (ko + k1 +
koo)-Log(H(f(P))) > d.Log(N(f(P))) + O(1), with N := Ny + N; + N,
where N7, N, are defined as Ny, but considering the fibres over 1, co instead
of 0.

11 This observation has been communicated to me by Colliot-Théléne, who attributed
it to P. Colmez.

12The referee informed me that this approach was already sketched in [1],84.4, and
treated completely in [43]. Abramovich’s approach is based on Belyi maps and deals
with all cases simultaneously. The proof given below is the same, but constructs Belyi
maps explicitly in the three remaining cases mentioned above.
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His argument easily extends to the case where C is equipped with an
orbifold divisor A supported on the union of the fibres of f over 0, 1, co. Let,
for each point a; in this union, m; be its multiplicity in A, and t; be the order
of ramification of f at a;. Define the number do := 3", ¢ —1(9)(m; — 1).1;.
Define similarly dy, ds for the fibres of f over 1 and co. Elkies argument then
shows that: ko.Log(H(f(P))) > (d + do).Log(No(f(P)) + O(1). Adding the
two other inequalities on the fibres of f over 1,00, we get:

(ko + k1 + koo)-Log(H(f(P))) = (d-Log(N(f(P)) + 6 + O(1),

where: § = do.Log(No(f(P))) + d1.Log(N1(f(P))) + deo-Log(Noo (f(P)))
Assume now that f is unramified outside of the three fibres over 0, 1, co.
We then have: (ko + k1 +koo) = d+2. Assume also that min{dy,d1,d=} > 3.
We obtain: (d + 2).Log(H(f(P))) > (d+ 3).Log(N(f(P))), an inequality
satisfied only for finitely many P’s € k, by the abc-conjecture. This implies
Mordell orbifold for (C, A).

e Second step (construction of Belyi maps):

In order to show that this applies to C = P!, with A either of the
form (2,2,2,3) or (2,2,2,2,2), we consider f : P! — P! defined by
flx) = W The fibre of f over 0 consists thus of 3 points,
one double (0), two simple (1,w). The fibre of f over oo consists of two
points: the triple point oo and the single point Z. We now fix 2 further
points (distinct from the preceding ones): b, ¢, and notice that the equation:
2?(x —1)(z —w) = (uz +v) + (v — b)*(z — ¢)(x — t) with unknowns u, v, w,t
has a unique solution. This means that the fibre of f over 1 has 3 points: one
double (b) and two simple ones: (c,t).

In order to deal with A = (2,2,2,3), we attribute to the points 0,1, b, oo,
respectively, the multiplicities 2,2,3,2 . An easy check shows that d; =
4,dy = ds = 3.

In order to deal with A = (2,2,2,2,2), we attribute to all of the 5 points
0,1,b, ¢, 0o the multiplicity 2. One again easily checks that dy = d; = doo = 3.

The last remaining case is when C'is elliptic, and A = (1 — ).{a},a €
C(k). It can be reduced similarly to abe by composing the above map f(z) :=

W with the double cover g : C — P! so that its 4 ramification
points are sent by f to 0,1, b, ¢, and a to co, equipping again each of these 5
points with the multiplicity 2.

This concludes the proof that abc implies orbifold Mordell.
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3.7 Ramafication of Belyi Maps

The question we would like to address here is whether the (non-classical)

orbifold Mordell conjecture for one single orbifold pair (P!, A) of general type:

P! with the 3 marked points 0, 1,00 of multiplicities (3,3,4) (for example,

one could choose (2,3,7) or (2,4,5) instead) implies Mordell Conjecture=

Faltings’ Theorem, for every curve defined over Q. One may of course raise

this question for the other minimal orbifolds over P! listed in Remark 3.2.
A positive answer to the following question implies this statement:

Question 3.9. Let C be a curve defined over Q. Does there exist:

1. An unramified cover v : C — C.

2. A Belyi map 8 : C — P! (unramified over the complement of {0,1,00})
such that each of its ramification orders over 0 (resp. 1, resp. oo) are at
least 3, (resp. 3, resp. 4)7

The usual construction of Belyi maps cannot produce Belyi maps such as
in the preceding question. Assume indeed that g is already a Belyi map for
C, but has some unramified point over each of 0,1, co. In order that fog be
a Belyi map satisfying the condition 2 of 3.9, the map f itself should already
be a Belyi map satisfying this very same condition. The Riemann—Hurwitz
equality contradicts the existence of such an f.

Faltings’ Theorem would follow from a positive answer to Question 3.9 and
Orbifold Mordell. Indeed: fix k, a number field of definition of a given C', and
let u, 8 answering positively the Question 3.9. Let k'/k be a finite extension
such that u(C(k')) D C(k) (using the Chevalley-Weil Theorem). Since £ is
an orbifold morphism to (P!, A), we get a map with uniformly finite fibres
from C(k') to (P!, A)(Oy), the last set being finite by the Orbifold Mordell

conjecture for any k’. We thus get the finiteness of C'(k).

Remark 3.10. The Question 3.9 bears a certain similarity with the notion
of universal curves introduced in [7] (although the étale covers there are over
the universal curve). I thank A. Javanpeykar for bringing this reference to
my knowledge.

3.8 Link with Complex Hyperbolicity

Let C' be a connected smooth projective curve C. By the Poincaré—Koebe
uniformisation, there is a non-constant holomorphic map h : C — C if and
only if C' is not uniformized by the unit disk D C C, that is: if ¢(C) < 1.
Similarly, if C' is defined over a number field k, the potential density of C(k)
holds if and only if there exists such a map h. It is very easy to check that
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this equivalence still holds for quasi-projective curves (C' — D), again by their
uniformisation for the hyperbolic version.

We show in [18], using Nevanlinna’s Second Main Theorem with trun-
cation at order one, that the same thing is true for ‘orbifold curves’ (the
notion of morphism h : C — (C,A) being defined as in Definition 2.5 in
the two possible ways (‘classical’ and ‘non-classical’). The orbifold Mordell
Conjecture thus remains open only in its arithmetic version.

This link, initiated by S. Lang, will be studied in higher dimensions as
well.

4 The Kodaira Dimension

4.1 The Iitaka Dimension of a Line Bundle

Since, for projective curves, the invariant h°(C, Kg) = g determines the
qualitative arithmetic, it is natural to consider it also in higher dimensions.
The invariant h°(X, Kx) is birational, but no longer preserved by étale
covers in dimension 2 already, and one needs more information: the values
RO (X, m.Kx) := pm(X), m > 0, the ‘plurigenera’ of Enriques. We shall even
abstract more (in order to get a birational invariant preserved by étale covers),
and only consider the asymptotic behaviour of the plurigenera as m goes to
400, for a given X. The notion actually makes sense, and is extremely useful,
more generally, for arbitrary line bundles L, not only for L = Kx.

e Let X be a connected projective manifold of dimension n defined over a
field k of characteristic 0. Let L be a line bundle on X. Let h°(X,L) € N
be the k-dimension of its space H(X, L) of sections. If h%(X, L) > 0, let
&, = X --» P(HY(X,L)*) be the rational map which sends a generic
x € X to the hyperplane of H(X, L) consisting of sections vanishing at z.
We thus have: 0 < dim(@r(X)) < n. We denote either with m.L or with
L®™ m € Z the m-th power of L.

Definition 4.1. We define k(X,L) € {—00,0,...,n} as being —oco if

RO(X,mL) = 0,Ym > 0. Otherwise, k(X, L) := maz,~o{dim(®m,1(X))}.
An alternative definition, not immediately, equivalent is:

— Logh®(X,m.L
k(X,L) = lzmm%ﬁm{ngm)},
roughly meaning that h°(X, m.L) grows like the k(X, L)-th power of m as m

goes to 400.
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Example 4.2.

e x(X,L) = —0 if L = Ox(—D) for some effective divisor D. And also
when X is an elliptic curve, if c1(L) =0, but L is not torsion in Pic(X).

o k(X,L)=0iff h°(X,mL) < 1,YVm > 0, with equality for some m > 0, for
example, if L is torsion in Pic(X).

e x(X,L)=nif mL=A+E, for some m >0, A ample and E effective.
Then L is said to be ‘big’.

e x(X,L)=de{l,....,n} ifp: X = Z be regular onto, with d := dim(Z),
and L = p*(A), A € Pic(Z), ample. Indeed, one has:

o w(X,p*(M))=r(Z,M), for any line bundle M on Z.

The following theorem gives a weak analogue in general:

Theorem 4.3. If k(X,L) = d > 0, for any sufficiently large and divisible
integer m > 0, the rational map ®,,.1, has connected fibres, its image Z,, = Z
has dimension d and its generic fibre X, has k(X., L|x,) = 0. Moreover, Z,
is birationally independent of m > 0 sufficiently large and divisible.

Ifd =n, &, (X) is birational to X for m large enough.

Observe however that, in general, L will not be torsion on the general fibre
of ®,,,1,. Many more details and numerous examples can be found in [46].
The following Proposition gives an upper bound on (X, L):

Proposition 4.4 (‘Easy Additivity’). Let p: X — Z be a fibration, and
L € Pic(X). Let X, be the general fibre of p. Then:

K(X,L) < k(X.,Lix,) + dim(Z).

4.2 The Kodaira Dimension Kk

The fundamental case is when L = Kx := det(£2% ), the canonical line bundle
on X. One writes then: k(X)) := x(X, Kx).
The invariant x(X) enjoys several properties:

It is birational, and preserved by finite étale covers.
Additive for products: K(X :=Y x Z) = k(Y) + k(Z), since:

RO(X,mKx) = h°(Y,mKy) x h°(Z,mK z),Vm.

In particular: k(X) = —00,VZ, if K(Y) = —00 (e.g.: Y = P1).
Also: kK(X) =k(2) it k(Y) = 0.
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4.3 First Examples: Curves and Hypersurfaces

For curves, k(X) tells (almost) everything, qualitatively, it indeed describes
X, its topology, fundamental group, as well as hyperbolicity and arithmetic
properties.

K g X X (k)
—c0 | g=0 | P! Potentially dense
0 g=1/| C/A Potentially dense
1 g>2 | D/T | Not potentially dense

The preceding trichotomy (according to the ‘sign’ of Kx: positive, zero or
negative) still appears in the special case of smooth hypersurfaces in P,,;.

e Hypersurfaces in P, ;. Let H; C P,41 be a smooth hypersurface of
degree d (defining by a homogeneous polynomial in (n 4 2) variables of
degree d). The adjunction formula shows that Ky, = O(d —n + 2)x,.
Thus Ky, is ample if d > (n + 3), trivial if d = (n + 2) and anti-ample if
d < (n+1). We thus have, in particular: k(Hg) = n (resp. 0, resp.—oo) if
d>n+2 (resp. d=n+2, resp. d < n+2).

e Hypersurfaces in P, ;_; X Py. Let now H := Hyq be a smooth
hypersurface of bidegree (d,d’) in this product (this means that H N F
is a hypersurface of degree d’ (resp. d) when intersected with a generic
Ppi1-k x {a'} (resp. {a} x Py). The adjunction formula now shows that
K =0(d—(n+2—k),d —(k+1))5. One thus obtains that x(H) = —oc
ifd<n+1—k,orifd <k, that k(H)=0ifd=n+2—-kandd =k+1,
that k(H) = kif d = n+2—k,d > k+ 2, that x(H) = n+ 1 — k if
d>n+2—kd =k+1,and that k(H) =nifd>n+2—-k,d > k+1.

e The smooth hypersurfaces in products of projective spaces show that
arbitrary x may occur, which are not determined simply by those of base
and fibres.

4.4 The Intaka—Moishezon Fibration

There are 3 fundamental cases (as for curves with g = 0,1, > 2):

1. k(X) = —c0.
2. k(X)) =0.
3. k(X) = n. In this third case, X is said to be ‘of general type’.

Let us briefly comment on these 3 classes:
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e k =nis a large class (as for curves), it contains the smooth hypersurfaces
of degree at least (n+ 3) in P,4;. This is the reason for the term ‘general
type’ introduced by B. Moishezon. They are conjectured to be Mordellic by
S. Lang. Examples of manifolds of general type are quotients of bounded
domains in C" by discrete torsion-free groups of automorphisms, which are
higher dimensional analogues of curves of genus greater than 1. But many
manifolds of general type (such as hypersurfaces of dimension greater than
1) are simply connected.

e x = 0 contains manifolds with trivial (or torsion) canonical bundle, the
structure of which is partially understood by means of the Beauville—
Bogomolov—Yau decomposition theorem. They are however classified only
in dimension 2. Even in dimension 3, it is unknown whether or not there
are finitely many deformation families.

We conjecture that the manifolds with K = 0 are Potentially Dense. It is
expected that on suitable mildly singular birational models their canonical
bundle becomes torsion.

e x = —oo: this class contains products P! x Z,VZ. It is discussed below.

This class thus does not consist only of Potentially dense manifolds. We
define below the more restricted class of ‘rationally connected’ manifolds,
conjectured to be potentially dense, which permits to ‘split’ any manifold
with kK = —oo by means of a single fibration into a rationally connected part
(the fibres), and a part (conjecturally) with k£ > 0 (the base).

e The structure of the intermediate cases when 1 < k(X) =d < (n — 1)
‘reduces’ (to some extent) to the case of x = 0 and lower dimension, by
means of the following ‘litaka—Moishezon fibration’ J.

Proposition 4.5. The map J := Py + X --» Z := Py g, (X) = J(X),
for m > 0 suitably large and divisible is birationally well-defined, and
may thus be assumed to be regqular. Its gemeric fibres X, are then smooth
with k(X.) = 0, because k(X.,Kx|x,) = 0, and Kx|x, = Kx, (by the
‘Adjunction formula’).

J is defined over k, if so is X

Example 4.6. The fibration J is the projection onto the second (resp. first)
factor when Hg g C Ppi1_k X Py is a smooth hypersurface of bidegree (n +
2—k,d) (resp. (d,k+1)ifd >k+1 (resp. (d>n+1-k)).

When «(X) = 0, Z is a point, and J does not give any information.
In the other extreme case, where x(X) = n, J embeds birationally X in
the projective space P((H°(X,m.Kx)*), for appropriate m > 0. One thus
‘reconstructs’ X from its pluricanonical sections.

Caution In general, however, kx(Z) < d := dim(Z) = k(X) (and strict
inequality may occur, as shown by Example 4.6, since the base of J is then a
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projective space). The fibration J thus does not in general decompose X in
parts with x(X,) =0 and k(Z) = dim(Z).

e Notice also that J is not defined when x(X) = —oo. This case k(X ) = —c0
requires a completely different treatment, which we briefly describe below.

4.5 Rational Curves and Kk = —oo

In order not to overload the text with quotations, we have deleted them for
this section. The results in this section are mainly due to Mori, Miyaoka—
Mori, Campana, Kollar—-Miyaoka—Mori, Graber—Harris—Starr.

Definition 4.7. A ‘rational curve’ on X 1is the image of a regqular non-
constant map: P* — X. We say that X is uniruled if it is covered by
rational curves, or equivalently, if there exists a dominant rational map
P! x T,,_1 -+ X for some (n — 1) dimensional variety Ty,_;.

If X is uniruled : k(X) < k(P! x T) = —oo. Thus k(X) = —oo. The
converse is a central conjecture of birational geometry, known up to dimension
3:

Conjecture 4.8 (‘Uniruledness Conjecture’). If x(X) = —oo, X is
uniruled.

The decomposition of arbitrary X into parts with a ‘birationally signed’
canonical bundle depends on some or other form of this central conjecture.

4.6 Rational Connectedness and kT = —oo

Definition 4.9. X is ‘rationally connected’ (RC for short) if any two
generic points of X are joined by a rational curve.

Example 4.10.

1. Let X = P! x C, for C a projective curve of genus g: X is uniruled, but
it is rationally connected if and only if g = 0.

Unirational manifolds (those dominated by P™) are RC.

Fano manifolds (those with —Kx ample) are rationally connected.
Smooth hypersurfaces of degree at most (n+ 1) in P"*1 are Fano.
Rationally connected manifolds are simply connected.

Although no rationally connected manifold is presently proved to be non-
unirational, it is expected that this is the case for most rationally connected
manifolds of dimension 3 or more. In particular, the (non) unirationality

S G Lo b
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of the double cover of P3 ramified along a smooth sextic surface Sg is an
open problem.

Remark 4.11. If X is defined over a field k C C and is uniruled (resp.
rational, unirational, rationally connected over C) it is not difficult to see
that it has this property also over some finite extension of k.

Theorem 4.12. For any X, there is a unique fibration rx : X — Rx such
that:

1. its fibres are rationally connected, and:
2. Rx is not uniruled.

It is called the ‘rational quotient’, or the ‘MRC'® of X.
If X is defined over k, so is rx.

The fibration rx thus decomposes X into its antithetic parts: rationally
connected (the fibres) and non-uniruled (the base Rx). The extreme cases
are when X = Rx (i.e.: X is not uniruled), and when Ry is a point (i.e.: X
is rationally connected).

Remark that the uniruledness conjecture implies that x(Rx) > 0. This
leads to the following definition:

Definition 4.13. Define, for any projective X :
kT(X) = maz{k(Y)|3 dominant f: X --» Y}

From Theorem 4.12, one gets:

Proposition 4.14. Assume the Uniruledness Conjecture 4.8. The following
are then equivalent:

1. X 1is rationally connected.
2. kT(X) = —cc.

Moreover, the ‘rational quotient’ is also the unique fibration g : X — Z on
any X such that:

1. kT (X.) = —oo for the general fibre X, of g, and:
2. k(Z)>0.

Note that these conjectural characterisations of rational connectedness and
of r do not rely on rational curves, but only on x and its refinement x*. The
rational quotient will also be constructed without mentioning rational curves,
conditionally on conjecture C), ,,, in §6.5.

Remark 4.15. We conjecture that manifolds with k™ = —oo are potentially
dense. Thus so should be the rationally connected manifolds. Much more

13Stands for ‘maximally rationally connected’.
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generally, we conjecture that ‘special manifolds’ (defined later) are exactly
the potentially dense manifolds.

5 Surfaces

5.1 Classification of Surfaces

If S is a smooth projective surface, we have: k := k(S) € {—00,0,1,2}. The
maps r and J permit to elucidate the structure of S when £(S) # 2.

When k = —o0, the uniruledness conjecture is a classical result of
Castelnuovo, and we thus get a non-trivial rational quotient r : S — R,
where R is either a curve C, of genus ¢ = h?(S, 2%) > 0, or a point (in which
case S is rationally connected, and even rational).

When k = 1, one has the litaka—Moishezon fibration J : S — B, with
smooth fibres elliptic, and B a curve. One says that S is an elliptic surface
over B.

When « = 0, a precise classification is known: S is covered by a blow-up of
either an abelian surface or of a K3 surface, where K3-surfaces are defined
by: ¢ = 0, Kg = Og. They form a single deformation family containing the
smooth quartics in Ps.

One thus gets the ‘Enriques—Kodaira—Shafarevich’ classification, displayed
in the table below (up to birational equivalence and finite étale covers), where
C, denotes a curve of genus g, ¢ := h°(S,2%) = b1(X). We indicate the
status of potential density for S defined over some large number field k. More
details below.

K q S(up to bir, étale =) S(k) potentially dense
—oco | ¢g2>0 Pl x C, Yesiff g <1

0 0 K3 Yes in many examples

0 2 (C2/A) Yes, always

1 >0 Elliptic over Cy Yes in many examples if ¢ < 1

2 >0 No classification scheme No, in all known examples

5.2 Remarks on Potential Density

Our guiding principle here consists of the following 3 facts, for X a smooth
connected projective manifold defined over a number field k:

0. Potential density is a birational property.
1. Chevalley-Weil theorem: if X’ — X is an étale covering, X'(k) is
potentially dense if X (k) is (the converse is obvious).
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2. Lang’s conjecture:'* if X is ‘of general type’, then X (k) is not potentially
dense.

By Faltings’ theorem this holds for curves, but is open for surfaces.

Definition 5.1. We say that X (defined over C) is ‘weakly special’ if, for
any finite étale cover u : X' — X, there exists no dominant rational map
f: X' -=s Z, with Z of ‘general type’ and dim(Z) > 0.

Remark 5.2. The 3 facts above imply that if X is not weakly special, X (k)
is not potentially dense. The following claims the converse also:

Conjecture 5.3 ( [30, Conjecture 1.2]). A projective manifold X/k is
potentially dense if and only if X is ‘weakly special’.

Remark 5.4. This conjecture conflicts with other conjectures stated below"d
when dim(X) > 3, but both conjectures agree for surfaces (because specialness
and weak specialness coincide for them).

Let us check the known cases of this conjecture for surfaces, according to
k(S) = K, for S a surface defined over a number field k. Let 7 : § — S be
any finite étale cover of S, and ¢(.5) the supremum (possibly infinite) of q(S' )
when S ranges over all finite étale covers of S. For example, 4(S) = +o0 if
some S fibres over a curve of genus ¢ > 2. Recall that a Theorem of Y.T. Siu
shows that this happens if and only if some finite index subgroup of m(.5)
admits a quotient which is a ‘surface group’ (i.e.: of the form m(C) with
g(C) > 2). Notice that §(S) > 2 and k(S) # 0,2 imply that some S fibres
over a curve of genus at least 2, and so that: §(S) = +oo.

o x = 2. If G(S) > 2, then S is Mordellic, by Faltings’ Theorem (and
Kawamata Theorem on the structure of ramified covers of Abelian
varieties) showing that a subvariety of general type of an Abelian variety is
Mordellic. If ¢(S) = 0,1, S is Mordellic conditionally on Lang’s conjecture.

e 1= —00. Then S =P! x C,. Thus S(k) is potentially dense if and only if
so is Cy: The conjecture is true.

e % =0.Some S is either an Abelian surface, or a K3 surface. Both are easily
seen to be weakly special. If S is an Abelian surface, S(k) is potentially
dense, and the conjecture then holds.

The conjecture then claims that K3 surfaces are potentially dense. This
is unknown in general, but known for K3 surfaces which are Kummer, or
admit either an elliptic fibration, or an automorphism group of infinite order
[6], the main idea of which is: if f : § — C is an elliptic fibration onto the

14 Also attributed to E. Bombieri in the case of surfaces, although not in written form,
even in [9].
15Where ‘weak specialness’ is replaced by ‘specialness’.
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curve C, and if S contains a rational or elliptic ‘non-torsion multisection’,
then S(k) is potentially dense.

A ‘non-torsion multisection’ is an irreducible curve D C C such that
f(D) = C, and moreover such that, over the generic point of C, the fibre
of D has two points the difference of which is not torsion in the group of
translations of this (elliptic) fibre.

It is shown in [6] (this is the hardest geometric part) that elliptic K3
surfaces always contain some rational or elliptic ‘non-torsion’ D.

e x =1 Let f : S — C be the (elliptic) Moishezon-Titaka fibration. A
major role is played by the ‘multiple fibres’ of f. Let indeed, for s € C|
f*(s) == (32, th-Fh) be the scheme-theoretic fibre of f over s. Define:
my = gedp{ty}. This is the ‘classical’ multiplicity'® of the fibre of f over
s, and it is equal to 1, except for finitely many (possibly none) s € C. We
define now the ‘orbifold base of f’ to be the orbifold curve (C,Ay), with
Ap =3 co(1—=-2){s}, a finite sum since (1 — n%) =0iff ms =1.

ms

In this situation, we now have the following (geometric):

Lemma 5.5. An elliptic projective smooth surface S is weakly special if and
only if deg(Kc + Ay) <O0.

Proof. The proof has two steps. First step: show that there exists'” an
‘orbifold-étale’ cover u : C" — C over Ay. Then K¢v = u* (K¢ + Ay), so
that deg(K¢cr) <0 iff deg(Ke + Ay) <O0.

Second step: the (normalised) base-change f/ : S’ := S?C\C’ — C' has
the property that u : S” — S is étale.

If deg(Kc + Ay) >0, g(C’) > 2, and S is not weakly special in this case.
Notice that Faltings’ and Chevalley—Weil theorems imply that S(k) is not
potentially dense, and the conjecture is true unconditionally.

If deg(Kc + Ay) <0, C' is rational or elliptic, and since f’: S” — C” has
no multiple fibre, there is an exact sequence of groups:

7T1<FS/> — 7T1(S/) — 71'1(0/) — {1}

which implies that no étale cover of S’ has a fibration onto a curve C”" with
g(C") > 2 (since 71 (C") has the free group on 2 generators as a quotient,
and is not solvable). O

The Conjecture 5.3 is thus equivalent to the fact that S(k’) is dense when
deg(Kc + Ay) <0, which is open, but verified on many examples.

16We shall introduce its ‘non-classical’ version in §5.3 below.

17Except in two quite simple cases of P! with A supported on one or 2 points, which
can be dealt with directly. We shall ignore these simple cases here.
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5.3 Fibred Simply Connected Surfaces of General
Type

We shall give here examples of smooth projective simply connected surfaces S
of general type (defined over Q) which are not potentially dense, conditionally
on the Orbifold Mordell Conjecture.'® Presently (July 2019) no such example
is known unconditionally.'®

Let f : S — C be a fibration (with connected fibres) from the smooth
connected projective surface S onto the smooth projective curve C. We do
not assume that the smooth fibres are elliptic.

Let s € C, and f*(s) := ), tn.F) be the scheme-theoretic fibre of f over
s. We define two notions of multiplicity for this fibre:

e The ‘classical’ (or ‘ged’) multiplicity m¥(f) := gedp{tn}.
e The ‘inf’ multiplicity ms(f) := infr{tn}.

Of course, m*(f) divides ms(f), both are 1 except possibly on the finite set
of singular fibres.
We now define two ‘orbifold bases’ of f:

e The ‘classical’ orbifold base (C,A%), with A% :==3" (1 - ﬁm){s}
e The orbifold base (C,Ay), with Ay =3 (1 — ﬁm){s}

Remark 5.6.

1. If f is an elliptic fibration, Ay = A}. As we shall see, they may differ,
but only if the smooth fibres of f have g > 2.

2. If (C,A?) is of general type, there is always a base-change v : C' — C,
orbifold-étale over A%, with g(C") > 2, such that the resulting normalised
base-change v : S — S is étale. Thus m1(S’), which is a finite index
subgroup of w1 (S), maps onto mw (C"), showing that w1 (S) is a ‘big’
hyperbolic non-abelian group.

3. The map f induces natural group-morphisms fy : w1(S) — w1 (C, A}) and
m(C,Ay) = m(C, A}), but f. does not lift to a natural group-morphism
m1(S) = mi(C, Ay). Here mi(C, A}) is the quotient of m1(S \ A}) by the
normal subgroup generated by the m;-th powers of a small loop winding
once around Dj, this for any j if A% =3 ",(1 - mi]){aj}

We shall now construct fibrations f : S — C with (non-classical) orbifold
base (C,Ay) of general type with S simply connected.

18The particular case of P! with m > 5 points of multiplicity 2 is sufficient.
19Unconditionally, quasi-projective examples are given in [24], and projective
examples over F,(t), inspired by the ones given here, are proposed in [32]. The
Orbifold Mordell Conjecture over C(t) was previously established in [12].
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Proposition 5.7 ( [13]). Let f : S — C be a fibration from the smooth
projective connected surface S onto the projective curve C. Assume that
deg(Kc + Ay) >0, and that S is simply connected. Then:

1. k(S) = 2, the smooth fibres of f have g > 2.

2. There exist such fibrations defined over Q. In this case:

3. If the orbifold Mordell conjecture is true, then S(k) is contained in a finite
number of fibres of f, for any number field k, and S(Q) is not potentially
dense.

Proof. Claim 1 follows from an ‘orbifold’ version of the C, ,, conjecture (see
below). We shall give examples of claim 2 below. For Claim 3, it suffices to
see that f(S(k)) is contained in (S, Af)(C) (finite by the orbifold Mordell
conjecture) for any k and a sufficiently large finite subset S of the places of
k, determined by a ‘model’ of (C, Ay) over Og, such that (C,Ay) has good
reduction outside of S. Let thus z € S(k), and t be a k-rational function
which gives a local coordinate on C at f(x). Let p be a place of k outside
S. Assume that = ¢ f~'(s), if s is in the support of Ay. If the p reduction
of z belongs to the p reduction (F,)yof some component Fy, of f~1(s), let ¢,
be the multiplicity of Fj, in f*(s). Then ¢, > ms(f), by definition of m(f).
On the other hand, the arithmetic intersection number of f(z), with (s), is
the product of ¢, with the arithmetic intersection number of (), with (F},),,
and is thus a multiple of ¢, and thus at least ms(f). O

Remark 5.8. In the quasi-projective case, Corvaja—Zannier have given the
first example of simply connected quasi-projective smooth surfaces with a
non-Zariski dense set of integral points over any number field (see [24]).
Their proof uses Schmidts’ subspace theorem. Their examples (blow-ups
of Py on wunion of 4 lines, removing the strict transforms, not the total
transform, of these lines, which permit to realise the simple-connectedness
of the complement) are similar to the ones given in §8.7 below, using infinite
multiplicities, instead of finite ones.

Example 5.9. We now give some examples of fibrations f : S — P with
orbifold base of general type, and S simply connected. Different examples
where initially constructed in [13]. They are quite complicated, with fibres
of high genus g = 13 (but relatively simple multiple fibres consisting of 5
rational curves meeting transversally in a single point, their multiplicities
being (2,2,2,3,3)). In [45], L. Stoppino used former work of Namikawa—
Ueno [38] to give much simpler explicit examples with fibres of (minimal
possible) genus 2. In these examples, as in the examples produced in [13],
the ‘non-classical’ multiple fibres have ‘inf’-multiplicity 2. We describe here
the simplest example of [41], to which we refer for more details, and in
particular the (quite involved) description of the multiple fibres, which are
trees of rational curves (and so are simply connected) (Figure /).
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Fig. 4 A non-classical double fibre of genus 2

e Take the ramified 2-cover my : So — P xP! of equation y? = t(x®+t.x3+12)
(with affine coordinates (t,z) on P! x P!). Resolve by v : S — Sy the
singularities of Sy to get an isotrivial fibration f = qomgor : S — P!,
where q : P! x P! — P! is the first projection which sends (t,z) to t.
The fibration has then smooth fibres of genus 2 and two simply connected
fibres of ‘inf’-multiplicity 2, over t = 0,00. More precisely, each of these
fibres consists of 6 rational curves building a tree, their multiplicities being
(2,6,3,3,4,2).

o The surface S so constructed is defined over Q, and is rational. It is thus
potentially dense. In order to get a fibration of general type, it is sufficient
to make a generic cyclic base-change u : P! — P! of degree d > 3 over the
base of q, and to normalise. The resulting surface S’ is then of general type,
simply connected, defined over Q, and the resulting fibration f': S’ — P!
has 2d > 6 ‘non-classical’ double fibres, and no ‘classical’” multiple fibre.
The ‘orbifold Mordell Conjecture’ then implies that it is not potentially
dense. This would provide the first non-potentially dense simply connected
smooth surface defined over a number field.

5.4 Link with Hyperbolicity

A. In [18], Corollary 4, p. 208, based on Nevanlinna’s second main theorem
with truncation at level 1, it is shown that any entire curve h : C — S has
its image contained in a rational or elliptic component of some singular
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fibre of f, if S has a fibration on a curve such that its orbifold base is
of general type. This is the exact hyperbolicity analog of the conjectural
arithmetic statement of non-potential density.

B. It is shown in [10] that a complex projective surface S not of general
type admits a holomorphic map h : C> — S with dense image, if and
only if S is weakly special (with the possible exception of non-elliptic and
non-Kummer K3 surfaces). This leads to conjecture the equivalence of the
following three properties:

1. S is weakly special
2. S admit a dense entire curve
3. S(k) is potentially dense (if S is defined over a number field k).

20

e Insufficiencies of the ‘weak specialness’: We shall see in §8.7 that from
dimension 3 on, the property of ‘weak specialness’ is too weak to imply
property 2 (and conjecturally also property 3) above. We shall replace it
by the ‘specialness’ property, defined below.

6 Decomposition of Arbitrary X'’s

We have previously defined 3 classes of ‘primitive’ manifolds: those with k™ =
—00, k = 0, or with kK = dim (i.e.: of general type), respective generalisations
of rational, elliptic, and hyperbolic curves. We now decompose any higher
dimensional X into ‘twisted products’ of manifolds of these 3 primitive types
by a suitable sequence of canonical and (birationally) functorial fibrations. We
first describe a decomposition by a canonically defined sequence of fibrations,
which is however conditional in the uniruledness Conjecture 4.8. We next
define a second decomposition by one single fibration which is unconditional
and also birationally functorial (while the steps of the first are not). The
abutments of both decompositions however agree (the first one existing only
conditionally).

6.1 The (J or)™ Decomposition

Let X be arbitrarily be given, and let » : X — Rx be its ‘rational quotient’.
Assuming the ‘uniruledness Conjecture’ 4.8, one gets that x(Rx) > 0, so
that the Iitaka—Moishezon fibration J : Rx — J(Rx) is always birationally

20We do not conjecture the existence of a Zariski dense map h : C2 — S for any
non-elliptic and non-Kummer K3 surface S.
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defined.?! The composite map: Jor : X — J(Ry) is thus defined for every
X, and can be iterated. The following properties are easy:

1. X = J(Rx) if and only if X is of general type. Thus:

2. Defining inductively the k-th iterate (J or)* : X — Xy = (J(Rx,_,)),
with Xg := X, we see that dy := dim(Xy) is decreasing. Next (by 1.),
di+1 = dj, if and only if X}, is of general type.

3. In particular, (Jor)” : X — X, is a fibration over a manifold X,, of
general type (possibly a point), with fibres towers of fibrations with fibres
alternatively either rationally connected, or with x = 0.

We call this map ¢: (Jor)": X — X, the ‘weak core map’ of X. It has
been constructed conditionally on Conjecture 4.8. We shall now give a (more
general) unconditional construction.

The ‘weak core map’ however fails to be preserved even by finite étale
covers (see Example 6.15). This is due to neglecting the multiple fibres of the
fibrations J. This will be corrected later (see §8.1) by introducing ‘orbifold
bases’ of fibrations.

The relevance to potential density will be explained in §8.4.

6.2 The Cy,,,m Conjecture

Let f: X — Z be a fibration between complex projective manifolds, denote
by X, its generic (smooth) fibre.

Proposition 6.1 (‘Easy Addition’). x(X) < k(X,) + dim(Z).??
The following is a central conjecture of classification:
Conjecture 6.2 (‘C), ,,-conjecture’). x(X) > k(X,) + k(Z).

Theorem 6.3 (E. Viehweg). x(X) = r(X,)+dim(Z) when Z is of general
type. In particular, if X, is of general type, so is X.

We shall formulate an ‘orbifold’ version of this conjecture in §7.4. This
orbifold version is known also when the ‘orbifold base’ of f is of general type.

Corollary 6.4. If k(X) = 0, there is no rational fibration f : X — Z, with
Z of general type and dim(Z) > 0.

Indeed: 0 = k(X) > w(X,) + dim(Z) > k(X,) > 0 (the last inequality is
easy).

21 Note however that these maps are all almost holomorphic, that is: their indetermi-
nacy loci do not dominate their images.

22This inequality is true for any line bundle, not only Kx.
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6.3 A Decomposition Criterion

Let C be a class of complex (connected) projective manifolds, stable by
birational equivalence. We denote by C* the class of all (complex projective)
manifolds X which do not admit any dominant rational fibration onto any
Z € C. We call C* the ‘Kernel’ of C.

Definition 6.5. We say that the class C is ‘stable’ if the following two
properties 1 and E2 hold true.

(E1) If f : X — Z is a surjective reqular fibration with general (smooth)
fibre X, €C, and Z € C. Then X € C.

(E2) If a connected projective manifold Y is equipped with two (surjective)
fibrations h 1Y — Z,g: Y — T such that h : Yy — h(Y;) C Z is birational
fort €T generic, and if Z € C, then Yy € C fort € T generic. We abbreviate
this property by saying that the general member of a Z-covering family of
varieties is in C if Z € C.

Theorem 6.6. Assume that C is stable. Then, for any complex projective
X, there exists a unique fibration vx : X — Cx such that:

1. its general fibre X, € C*.
2. Cx eC.

If X is defined over k, so is yx.

We call vx the C-splitting of X .

The C-splitting is functorial: any rational dominant fibration f : X — Z
induces a unique rational fibration v¢ : Cx — Cgz such that yzo f = yfoyx.

Proof. We proceed by induction on n := dim(X), the assertion being true for
n = 0 (in which case X € CNC*, by convention). Let g : X — Z be a rational
fibration with Z € C, d := dim(Z) being maximal with this property. If d = 0,
we are finished since then X € C*, by definition. Otherwise: (n —d) > 0, and
so the proposition holds for X,. By uniqueness of the map v for X,, Chow
space theory shows the existence of fibration yx,7 : X - Y and h:Y — Z
such that h ovyx,z = g, and such that the restriction v, : X, — Y, is yx,
(already inductively existing) for X,, z € Z general. By property (E1), since
we have: Y, € C, and Z € C, we have Y € C. The maximality of dim(Z)
implies that ¥ = Z, the fibres X, of g thus coincide with those of vx/,z,
which are in C*. The map g thus enjoys the two claimed properties.

The uniqueness follows from (E2). Let indeed k£ : X — Y be a second
fibration enjoying properties 1 and 2, with dim(Y") maximal, thus dim(Y") =
dim(Z) = d. Let y € Y be general, X, := k~(y), and Z, := g(X,) C Z.
By property E2, Z, € C. Since X, € C*, Z, is a point. There thus exists
amap h : Y — Z such that g = h o k. Since dim(Y) = dim(Z), we have
Z =Y, g = k (birationally).

The functoriality follows from a similar argument: the fibres of vx, which
are in C, are mapped by vz o f to a covering family of subvarieties of C; € C;
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they are thus points, by E2. This implies the claimed factorisation of vz o f
through ~vx. a

Remark 6.7. The existence of yx follows from E1, the uniqueness from E2.
The proof shows that the fibres of yx are the largest subvarieties of X in C*,
and that Z = Cx dominates any member of C dominated by X .

Denoting with P the class of all (complex, connected) projective manifolds,
it is tempting to write the content of the C-splitting in the form of a short
ezxact sequence [Ct] — P — C, to mean that any X € P is in a unique way
an ‘extension’ of an element of C by a (deformation class) of C*, a fibration
being seen as an ‘extension’ of its base by its general fibre.

We shall now apply this criterion in two situations.

6.4, The Weak Core Map

Proposition 6.8. Let C := K™ be the class of manifolds of general type.
It is stable, i.e. enjoys the properties E1,E2 of Theorem 6.6.

Proof. Property E1 follows directly from Theorem 6.3. Property E2 follows
from the ‘easy addition’ property (6.1). O

Let now S“ be the smallest class of complex projective manifolds
containing those with k = 0,k = —oo, and stable by ‘extensions’ (i.e.:
such that X € &Y whenever there is a fibration f : X — Z with Z € §* and
X, e8Y).

Lemma 6.9. S¥ C (K™%*)L the class of manifolds not dominating any
positive-dimensional manifold of general type.

Proof. (K™®)L is clearly stable by extensions, and contains the manifolds
with kT = —oo, by definition. It also contains those with x = 0, by
Corollary 6.4. O

Corollary 6.10. Let cx : X,, — Cx be the ‘weak core map’ of an arbitrary
n-dimensional X = X,,. Assume Conjecture 4.8, so that the map (Jor)" is
defined. Then cx = (Jor)", and S¥ = (Kma*)+,

The weak core map is functorial: any fibration f : X — Z induces a
(rational, dominant) map c; : Cx — Cyz.

Proof. Both maps have a base in K™ and general fibres in (™)L,
they thus coincide by uniqueness of the weak core. Applying this to any
X € (Kma*)L shows that X € S™. The functoriality is a special case of
Theorem 6.6. a
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Remark 6.11. Let us stress that the weak core map is defined uncondition-
ally, contrary to (J o r)™. Also, the map J is not functorial, and so the
functoriality of (J or)™ does not follow directly from its construction.

6.5 The k-Rational Quotient

We show here how to construct the rational quotient map rx : X — Rx
without mentioning rational curves (but assuming C,, ,, and 4.8).

Let K> be the class of projective manifolds X with «(X) > 0. The class
(K>0)* thus consists, by definition, of all manifolds with kT = —o0.

Lemma 6.12. Assume Conjecture C, . The class K> then enjoys prop-
erties E1, E2 of Theorem 6.6.

Proof. Property E1 follows directly from C,, ,,, property E2 is shown as for
the class K™% (by ‘easy addition’). O

Applying Theorem 6.6 and the same argument as in Corollary 6.10, we
get:

Proposition 6.13. Assume conjecture C, ,. For any X, there is a unique
fibration px : X — R(X) such that:

1. KT(X,) = —oo for its general fibre X, and:
2. k(R(X)) > 0.

We call px the ‘k-rational quotient’ of X.

Remark 6.14. We cannot however here show that px coincides with the
‘true’ rational quotient rx : X — Rx, because we do not know whether
all manifolds with k* = —oo are rationally connected. We can only show
(assuming Ch, ) that we have a factorisation ¢ : Rx — R(X) such that
px = porx. The fibres of px are indeed not uniruled with k™ = —oco. The
Conjecture 4.8 thus implies that px = rx.

6.6 The Weak Core Is Not Preserved by étale
Covers

This is shown by the following (simplest possible) example. This implies
(among other things) that it is inappropriate for the description of X (k').
We shall replace it later with the ‘true’ core map, which takes into account
the multiple fibres of fibrations, and is preserved by finite étale covers.
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Example 6.15. Let C' be a hyperelliptic curve of genus g > 2, h : C —
P! := C/ < 7 > be the double cover induced by the hyperelliptic involution
T of C. Let E be an elliptic curve, and t a translation of order 2 on E. Let
S":= ExC, and 1 := t X1 the fized-point free involution on S’. Letu : S’ — S
be the quotient by .

The projections J : S — P! :=C/ < 1> (resp. J' : 8" — C) are the litaka
fibrations of S,S’, and J ou = ho J'. The weak core map cs = (Jor)? :
S — Cg of S maps S to a point, but cgr = (Jor)?: 8" — Cg = C is simply
the fibration J' : S" — C, since g(C") > 2. The natural map ¢, : Cs» — Cg
thus does not preserve the dimension.

The surface S has an ‘orbifold quotient’ of general type, revealed on its
double cover S’, but may be seen directly on S if one considers the ‘orbifold
base’ of J, which is indeed of general type.

The ‘orbifold base’ of J consists of the base B =Pl :=C/ <1 > of J, in
which the points p; over which the fibre is multiple (here double) are equipped
with the multiplicity (2, here) of the corresponding fibre. The points p; are
here obviously the 2g + 2 points images of the hyperelliptic points of C'. We
obtain thus the ‘orbifold base’ (B, A) with A = Z;jgﬁ(l - 1){4}, in such
a way that h*(Kp + A) = K¢, by the ramification formula. Which indeed
shows that the orbifold curve (B, A) is of general type.

A second way to see this quotient of general type is to consider not only
the line bundle J*(Kp1), but its saturation Ly in 2%, which has k =1 (See
Ezample 7.8). As we shall see in Theorem 7.6, the two aspects (orbifold base,
saturation of f*(Kg)) actually coincide.

e The failure of the weak core map will be corrected by the introduction of
‘orbifold base’ of fibrations, as in the preceding example. One has then,
however, to work in the larger category of ‘orbifold pairs’. Even if one only
wants to decompose projective manifolds without orbifold structures, these
will appear, as in the preceding example, in general when considering the
Moishezon—Titaka fibration. For surfaces, this can be dealt with by suitable
étale covers, but no longer in dimension 3 or more (see Example in §8.7
below).

7 Special Manifolds

7.1 Definition, First Examples and Properties

From now on, X, is a smooth and connected complex projective manifold?
of dimension n. Our exposition here is very sketchy. Details can be found in
[11] and [13].

230r compact Kihler, more generally.
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Definition 7.1. X is special’* if (X, L) < p for any line bundle L C 2%,
and for any p > 0.

Example 7.2.

1.

2.

SRS

If X is a curve, the unique p > 0 to consider isp=1, and so L = Kx =
2% . A curve is thus special if either rational or elliptic.

If X is rationally connected, it is special (since it satisfies the much
stronger vanishing: h®(X, @™ 2%) = 0,Ym > 0). This generalises rational
curves.

If K(X) = 0, X is special. (See 7.11 below). This generalises elliptic
curves. Much more is expected to be true: K(X,L) < 0 for any L C
QM (2%),Ym >0, L of rank 1, if k(X) = 0.

If X is of general type, it is not special, using L = Kx = (2%.

. More generally: if there is a fibration f : X --+ Z,,, with p = dim(Z) > 0,

and if Z is of general type, then X is not special (take L = f*(Kz) =
*(2%) < 2%), then k(X,L) = k(Z,Kz) = p, contradicting the
specialness of X).

Being special is preserved by birational equivalence and finite étale covers.
Thus ‘special’ implies ‘weakly special’. The converse holds for curves and
surfaces, but no longer for threefolds (see §8.7 below). See Theorem 7.4
for a characterisation of specialness in this direction.

The Kodaira dimension does not characterise (non-)specialness (except
fork=0,n):ifn>1k€ {—00,1,...,(n— 1)}, there exist both special
and non-special manifolds with dim =n, k = k.

Non-special examples are given by obvious products.

‘Special’ examples are given, if k > 0, by smooth divisors X in P F+1x
P* of bidegree (n — k + 2,k + 2).

If h :+ C* --» X is a meromorphic (possibly transcendental) non-
degenerate map, X is special. ‘Non-degenerate’ means that it has non-
vanishing Jacobian generically. This is an orbifold version of a result of
Kobayashi—Ochias.

If S is a smooth projective weakly special surface, it is special. When
K(S) = —00,0, it is easy from the classification and 7.11. When (S) =1,
this follows from Lemma 5.5.

Special surfaces thus have a very simple characterisation: x(S) <
1, and G(S) < 2. Specialness is preserved by deformation (and even
diffeomorphism) for surfaces.

We conjecture that specialness is preserved by deformations and spe-
cialisation of smooth (compact Kdhler) manifolds.

24The name is inspired from Moishezon’s definition of ‘general type’, and supposed
to convey the idea that these manifolds are in a precise sense ‘antithetic’ to those of
general type, as will be amply illustrated below.
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Remark 7.3. One could replace the condition k(X,L) < p by the stronger
condition v(X,L) < p for any rank-one L C 2%, where v(X,L) > k(X,L)
18 the numerical dimension of L. It is an open question whether one obtains
the same class of manifolds. It has been shown by C. Mourougane and S.
Boucksom that v(X,L) < p,Vp,L, X, strengthening Bogomolov’s theorem.
Notice however that it may happen that k(X,L) = —oco if v(X,L) = p for
L c 2%, as observed by Brunella on surfaces covered by the bidisk. The
situation is similar to the one considered in the next §7.2.

7.2 The Birational Stability of the Cotangent
Bundle

Let X be a complex connected projective manifold.

The canonical algebra K(X) := @,,>0H%(X,m.Kx), and so also x(X)
are not (birationally) functorial in the sense that a dominant rational map
f+ X — Z does not induce any natural (injective) morphism of algebras
f*: K(Z) —» K(X), or inequality x(X) > k(Z) when dim(X) > dim(Z).

The ‘cotangent algebra’ 2(X) := P,,>0H(X,®™2Y%) is, by contrast,
obviously functorial, as well as £ (X) := maz{s(X,L)|L C (@™02%)
coherent of rank 1, Vm > 0}. We obviously have: k™™ > k™ > k, where
kT is defined in 4.13, and also obviously functorial.

One can show?® that x*+(X) = k™7 (Rx), where rx : X — Rx is
the rational quotient of X (the same holds easily for x*). This permits to
reduce the study of k™ to the case when Kx is pseudo-effective (i.e.: X not
uniruled). Assuming Conjecture 4.8, one even reduces the study of k™ to
the case when x(X) > 0.

A stronger version is obtained by replacing (X, L) by its ‘numerical’
version v(X, L) € {—00,0,1,...,dim(X)} (as defined by N. Nakayama):

hO(X,mL + A)

V(X, L) = inf{k € Zllim-s o0 ERECS NS

m
where A is a sufficiently ample line bundle on X, for example: Kx + (2n +
2).H, H any ample line bundle on X. We have: v(X,L) > x(X, L) for any
line bundle L on X.

We defined (in [17]) v (X) just as kT (X), just replacing there x by
v, and showed that v (X) = v(X, Kx) when Kx is pseudo-effective. This
is the ‘birational stability’ of the cotangent bundle: the positivity of its line
subsheaves is controlled by the canonical bundle (and similarly for its tensor
powers) when X is not uniruled.

25Using arguments in [14].
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If we now assume the conjecture that v(X,Kx) = x(X) for any X
such that Kx is pseudo-effective, we obtain in this case: v (X) = v(X) =
kTT(X) = k(X), and v (X) = kT (X) = k(Rx) for any X. A particularly
important case is when x(X) = 0, in which case the conjecture is that
v(X) = 0, implying that v(X) = xT(X) = 0, a statement considerably
stronger than the proved specialness.

Another consequence of the conjecture v(X) = k(X) for X non-uniruled
were that x(X) > k(Z) for any dominant rational map f : X — Z between
non-uniruled manifolds: apply the equality v™+ = v of [17] to X and Z
together with the equalities v+ = x* implied by the conjecture, and the
obvious inequality kT (X) > xT(2).

Similar results and conjectures hold for smooth orbifold pairs (X, A) as
well (see [17], [14]). When A is reduced, one just has to consider £2% (Log(A))
in place of 2%.

Let us finally observe that the rate of growth of the spaces of sections of
the symmetric powers of the cotangent bundle is in general unrelated to the
‘Kodaira’ dimension, as shown by the smooth hypersurfaces of the projective
spaces (since their cotangent bundles are known to be non-pseudo-effective).

7.3 Specialness as Opposed to Base Orbifolds of
General Type

The following is due to F. Bogomolov:

Theorem 7.4 ([4]). Let X be projective smooth, and L C 2% a line bundle.
Then:

1. k(X,L) <p.
2. If k(X, L) = p, there exists a fibration f : X --» Z, such that L = f*(Kz)
generically?® on X.

Line bundles as in 2) are called ‘Bogomolov sheaves’.
Remark 7.5.

1. Bogomolov sheaves are thus ‘mazimally big’ line subsheaves of £2%. And
X is special if 2% does not contain such mazimally big line subsheaves.

2. There are many examples of Bogomolov sheaves L = f*(Kz) C (2%,
generically over Z, and such that K(Z) = —oo. This is due to the multiple
fibres of f, encoded in the ‘orbifold base of f’. Hence the geometric
characterisation of ‘specialness’ is given in 7.7.

261.e.: on a nonempty Zariski open subset.
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Theorem 7.6. Let f: X — Z, = Z be a fibration.*" Let L := f*(Kz)** C
2% be the saturation®® of f*(Kyz) in £2%.
Then: k(X,L) = k(Z,Kz + Af).?

Thus Ay encodes the difference between f*(Kz) and its saturation:
(X, f*(Kz)%) —k(X, f*(Kz)) = k(Z, Kz+ Af)—K(Z, Kz). This fails for
the ‘classical’ orbifold base of f, and is the main reason for the introduction
of this ‘non-classical’ notion.

We thus get a geometric characterisation of ‘specialness’:

Corollary 7.7. X is special if and only if, for any fibration f : X --+ Z,
the orbifold base of any of its ‘neat models’ is not of general type.

Of course, this implies that (but turns out to be much stronger than) the
non-existence of fibrations f : X --» Z with Z of general type.

Example 7.8. Let us give the concrete meaning of the saturation in a simple
example: let f : S — C be a fibration of the surface S onto the curve C, with
an irreducible smooth fibre F' = f~Y(s) of multiplicity t > 1, thus given
in local analytic coordinates (x,y)on S by: f(z,y) = u := z*. Then Ay =
(1-H{s}+... near s in C.

Thus f*(Kc) = f*(du) = ta'~ldz near s, while: f*(Kz + Ay) =

f*( du ) = t.dx, which is indeed the saturation of f*(du) in £2}.

W=

7.4 The Orbifold Version of the C,, ,, Conjecture

Conjecture 7.9 (Conjecture C,‘;Tﬁl) Let f: X — Z be a fibration, with
generic fibre X,. Then k(X) > k(X.) + k(Z, Ay).

Without Ay, this conjecture is due to S. litaka. More general versions®"

exist. The special case where (Z, Ay) is of general type is known:

Theorem 7.10 (Viehweg). In the situation of 7.9, if k(Z,Ay) = dim(Z),
we have: k(X) = k(X,) + dim(2).

2TRecall that we sometimes indicate with a subscript the dimension of a complex
manifold, writing thus X, Z,. Here Z is thus p-dimensional.

28This is the largest subsheaf of £2% containing f*(Kz), generically equal to it.
29(Z, Ay) is here the (non-classical) orbifold base of f on any suitable birational ‘neat
model’ of f.

300ne can, for example, consider an orbifold pair (X, A) instead of X, and increase
accordingly the orbifold base divisor.
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This result is due to Viehweg when Ay = 0. The proof extends with some
adaptations to cover this more general case. The range of applicability is
considerably extended by the adjunction of the orbifold term.

Corollary 7.11. X is special if K(X) = 0.
Proof. 0 = k(X) = k(X,)+ dim(Z) > dim(Z) since k(X,) > 0. O

This is one of the basic examples of special manifolds, generalising elliptic
curves.

8 The Core Map

8.1 A Splitting Criterion

We briefly explain that one can extend Theorem 6.6 to the orbifold category
(Figure 5).

Let C be a class of (smooth projective) orbifold pairs.>’ We define the
class Ct of smooth orbifolds admitting no dominant fibration such that a
neat model of its orbifold base belongs to C.

multiple
fibers

— § .
Ac
orbifold base (C(X),Ac) of general type

Fig. 5 The core map

31 Also stable by birational equivalence (in a suitable sense, not defined here).
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If we assume that the class C possesses the properties E1, E2, then we
have a C-splitting theorem entirely similar to 6.6 with the same proof.

We shall apply this to the following 2 cases, already considered when
A = 0. For them, property E2 is elementary, proved as when A = 0.

1. C is the class of orbifold pairs of general type. Property E1 follows from
the orbifold version 6.3 of Viehweg’s Theorem 6.3. This leads to the ‘core
map’ described in Theorem 8.1 below.

2. C is the class of orbifold pairs with £ > 0. Property E1 is conditional in
C,Tf’n This gives the ‘k-rational quotient’ of Proposition 8.7.

8.2 The Core Map

Theorem 8.1. For any X, there is a unique fibration cx : X — Cx, called
the ‘core of X', such that:

1. Iits general fibres are special.
2. Its ‘orbifold base’ (Cx,Acy) is of general type.

Functoriality: any dominant g : Y --» X induces ¢y : Cy — Cx withcxog =
Cg O Cy.
If X is defined over k, so is cx by its uniqueness.

The proof works by induction on dim(X), using Theorem 7.10, in a way
entirely similar to the proof of Theorem 6.6.

e We use the same notation cx : X — Cx for both the core map and the
weak core map. From now on we shall only consider the ‘true’ core map
(of Theorem 8.1), this should thus not lead to any confusion.

Let us first note that the ‘true’ core map corrects the failure of its weak
version:

Corollary 8.2. Ifu: X' — X is étale finite, ¢, : Cx: — Cx is generically
finite, (ramified, but orbifold-étale).
In particular: if X 1is special, so is X'.

Indeed: we can assume that X’ is Galois over X, by uniqueness of the core
map of X', it is defined by a Bogomolov subsheaf which is preserved by the
Galois group, and thus descends to X as a Bogomolov subsheaf, since X' is
étale over X.

Corollary 8.3. If X is special, it is weakly special.

Indeed: any finite étale cover X’ of X is still special, and thus does not
fibre over any positive-dimensional manifold of general type.

Example 7.2.9 shows that for surfaces, these two properties are equivalent,
this is however no longer true in dimensions 3 or more (see §8.7).
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8.3 The Conjectures for Arbitrary Projective
Manzfolds

We formulate here our main conjecture without using orbifold notions. Its
solution (if any) will however require the orbifold version in §8.6 below.

Conjecture 8.4.

1. If X is special, 71(X) is almost abelian.

2. Being special is preserved by deformations and specialisations of smooth
manifolds.

8. X is special if and only if it contains a dense entire curve.

4. Let ¢x : X — C(X) its core map. There exists a complex projective

subvariety W C Cx such that any entire curve h : C — X has image

either contained in c}l(W), or in some fibre of cx.
If X is defined over a number field k:

X (k) is potentially dense if and only if X is special.

6. Let cx : X — C(X) its core map. There exists a complex projective
subvariety W C Cx such that, for any finite extension k' [k, cx (X (k') N
U, is finite, U := (Cx \W). The smallest such W C Cx has to be defined
over k. Let U := X \ W.

&

Moreover, there exists k' such that for any k” D k', X(k”) is Zariski dense
in each fibre of cx lying over cx (X (k")) NU.

8.4 The ¢ = (j or)™ Decomposition of the Core

The ‘orbifold version’ of the ‘decomposition’ (J o 7)™ of the ‘weak core map’
mentioned in Remark 6.1 coincides with the core. We give a very succinct
description, here.

Theorem 8.5. Let cx : X — Cx be the core map of a smooth connected
projective manifold of dimension n. Assume the orbifold version®? szﬁl of
conjecture C, ., given in 7.9. Then cx = (jor)™, wherer, j are the fibrations
defined below.

Let (X, A) be a smooth orbifold pair.

e The orbifold Titaka fibration j: This is just the Iitaka fibration of the
Q-line bundle (Kx + A) on X if k(X, Kx +A) > 0. It induces a fibration
g (X,A) = (J,Aja) with dim(J) = (X, A) and s(X.,Ax,) = 0, if
X is the generic smooth fibre of j.

320ne needs the version for an orbifold pair (X, A), not just for X.
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e The ‘k-rational quotient’ r :

Definition 8.6. We say that kT (X,A) = —oco if some/any neat orbifold
base (Z, Ay a) of any fibration f: (X,A) --» Z has k(Z, Aja) = —00.

When A = 0, this is equivalent (under the ‘uniruledness conjecture’) to
X being rationally connected. We conjecture (see next subsection) that this
is still true for orbifolds (with the usual definition of rational connectedness,
replacing rational curves by ‘orbifold (or A)-rational curves’, as defined in
Definition 2.5). Similarly to 4.12, we have:

Proposition 8.7. Assume C°"° as stated in 7.9. Any smooth (X, A) admits

n,m

a unique fibration v : (X, A) — (R, A, ) such that:

1. kT(X,,Ax,) = —o0 for the generic fibre X, of .
2. H(R, A,-,A) > 0.
r is called the ‘k-rational quotient’ of (X, A).

Corollary 8.8. X is special if and only if it has a birational model which
is a tower of neat fibrations with orbifold fibres having either k™ = —oo0, or

k=0.

Notice that ‘orbifold divisors’ will in general appear when encoding
multiple fibres, as shown by Example 6.15.

Remark 8.9. [t is sometimes said that the ‘building blocks’ for the con-
struction of arbitrary manifolds are (terminal or canonical) varieties with
canonical bundles either anti-ample (i.e.: Fano), or numerically trivial, or
ample. The birational version being: rationally connected, k = 0, or of general
type, respectively. We show here that these ‘building blocks’ need to be chosen
in the larger category of orbifold pairs.

8.5 Rationally Connected Orbifolds and kT = —oco

Definition 8.10. Let (X,A) be a smooth orbifold pair, with X complex
projective. We say that (X,A) is rationally connected if any two generic
points of X are contained in an orbifold rational curve®> h: P! — (X, A).

Remark 8.11. One may expect that, just as when A = 0, the above
properties are equivalent to the ‘chain-connected’ version, and also to the fact
that any finite subset of X \ A is contained in a single irreducible orbifold
rational curve.

33 As defined in 2.5.
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Conjecture 8.12. Let (X, A) be a smooth orbifold pair with X projective.
The following are equivalent:

1. (X, A) is rationally connected.
2. kT(X,A) = —o0.
3. hO(X, [Sym™(AP)](21(X,A))) = 0,Vm > 0,p > 0.

We refer to [14], §2.7, for the definition of the integral parts of orbifold
tensors [Sym™(AP)](£21(X, A)) appearing in 8.12.3, and more details on this
notion. This conjecture is solved (see [33]) in dimension 2 when A is reduced
(i.e.: with multiplicities infinite).

8.6 The Orbifold Version of the Conjectures

Conjecture 8.13. Let (X, A) be a smooth projective orbifold pair.

1. Assume first that (X,A) is of general type, then, there exists a Zariski
closed subset W C X such that:

1. H. Any orbifold entire curve®* h : C — (X, A) has image contained in W .

1. A. If (X, A) is defined over k, for any model over k', S’ C Spec(Oy), the
set of (S', k') integral points of (X, A) contained in X \ W is finite.

2. Assume that either k(X,A) =0 or that k7 (X, A) = —cc. Then:

2. H. There exists an orbifold entire curve h : C — (X, A) with dense image
n X.

2. A. There exists k', S" such that the (S’, k') integral points of (X,A) are
Zariski dense in X

The decomposition ¢ = (jor)™ of the core and conjectures 8.13 (essentially)
imply the main conjectures 8.4. Here ‘essentially’ means that two further
properties are still needed: the (orbifold) birational invariance of Mordellicity
and potential density, together with the fact that if the generic orbifold fibres
and the orbifold base of a fibration f : (X,A) — (Z, Aja) are potentially
dense, then so is (X, A), when everything is defined over Q.

8.7 FExamples of Weakly Special, But Non-special
Threefolds

From dimension 3 on, the two notions differ, due to the existence of smooth
and simply connected ‘orbifold surfaces’ of general type.

34See Definition 2.5 and subsequent lines.
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Lemma 8.14. Let F' : X3 — Sy be an elliptic fibration from a simply
connected smooth projective threefold X onto a smooth surface S with k(S) <
1.

Assume that all fibres of F have dimension 1, and that the orbifold base
(S,AR) of f is smooth of general type (i.e.: k(S, Ks + Ap) =2). Then:

1. X is weakly special, but not special: its ‘core map’ is F.
2. There exists such fibrations defined over Q.

Proof. Let us prove the first claim: since (S, Ks+Ay) = 2, X is not special,
and F is the core map of X. In order to show that X is weakly special, it
is sufficient (because X is simply connected) to see that there is no fibration
g : X --» Z with Z of general type, and p := dim(Z) > 0. Indeed since g
had then to factorise through F, we had either p =2 and Z =S, or p =1,
and Z simply connected hence Z = P!. Contradiction since both S and P!
are not of general type.

We now prove the existence of such X’s as in 8.14. The following
construction follows and extends slightly the one given in [8]. The recipe
to construct X needs two ‘ingredients’:

1. A projective elliptic surface f : T — P! with one simply connected fibre
Ty := f~%(1), and a multiple smooth fibre Ty = f~1(0) of multiplicity
m > 1. One can obtain such a surface from a Halphen pencil,?® which
allows to get examples defined over Q (Special cases of Halphen pencils of
index m > 0 are obtained by blowing up 9 points of a smooth cubic C' in
Weierstrass form in P2, whose sum is m-torsion on C; see [20] for details).

2. A surface g : S — P! with x(S) < 1 and smooth fibre Sy = g=1(0) such
that 71 (S —Sp) = {1}. This can be constructed from any simply connected
surface S’ with k(S") < 1, by choosing on S’ a base-point free ample linear
system defined by a smooth ample divisor D’ C S/, and a second generic
member D" of this linear system which meets transversally D’ at d :=
(D')? distinct points, and such that, moreover, x(S’, K§+(1— %).D’) =2.

For example, S’ = Py, and D’, D" two generic quartic curves satisfy these
conditions.

One then blows up all points of D’ N D" to obtain S, and g : S — P! is
the map defined by the pencil generated by D’, D”. One takes for D = Sy
the strict transform of D’ in S. The simple-connectedness of (S — D) is a
consequence of a version of Lefschetz theorem.

We now choose X3 := S xp1 T, and F : X — S the first projection.

We show that the orbifold base (S, Dg) of F': X — S is of general type.
Indeed: F*(D) = m.F~(D), since D = g=*(0), and f~1(0) = m.Tp.

35The use of Halphen pencils has been suggested to me by 1. Dolgachev. It permits
to avoid the transcendental Logarithmic Transformations of Kodaira.
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Thus Dr > (1 — 1).D, and an easy computation shows that (S, (1
L).D) =k(S',(1—L).D') = 2, since Kg = b*(Kg/)+ E, while D = b*(D’)
E,ifb:S — S is the blow-up and E its exceptional divisor.

Andso: Ks+ (1- 1) D=b"(Ks+(1—L).D)+ L.E 0

Remark 8.15. The Conjecture 5.3 of [30], conjecture 1.2, claims that any
X such as in 8.14 is potentially dense, while the Conjecture 8.4.(4) above
claims it is not. Vojta’s conjectural ‘arithmetic second main theorem’ implies
also that such an X is not potentially dense (using the core map). The
hyperbolic analogue claims that there are no Zariski dense entire curves on
such an X, and this is proved for some examples in [16].

9 Entire Curves on Special Manifolds

Recall that an entire curve in a complex manifold M is just a non-constant
holomorphic map h : C — M. Algebraic entire curves are simply rational
curves, and entire curves are thus seen as transcendental analogues of rational
curves. The following observations indicate that they can serve as testing
ground for arithmetic geometry.

9.1 Entire Curves and Sequences of k-Rational
Points

Let X be complex projective smooth, defined over a number field k.

In [49], an analogy and dictionary between entire curves and infinite
sequences in X (k) are described. Assuming the Conjecture 8.4, this becomes
an equivalence.

Proposition 9.1. Assume Conjecture 8.4. The following properties are then
equivalent:

1. There is an entire curve h : C — X.
2. X (K') is infinite for some finite extension k'/k.
8. X contains a positive-dimensional special subvariety.

Proof. Assume that X (k) is infinite. Let Z be the Zariski closure of X (k').
Since Z (k') is Zariski dense in Z (or in any of its resolutions), Z is special,
and thus admits a Zariski dense entire curve, and X has thus also an entire
curve.

Assume conversely that there is an entire curve h : C — X. Let Z be
the Zariski closure of h(C), and Z' — Z a resolution of singularities. Then
h lifts to a Zariski dense entire curve in Z’. If Z, and so Z’ is defined over
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k, Z' is thus special, and Z’(k’) is Zariski dense in Z’, and so infinite (since
dim(Z) > 0). Thus so is X (k'). In the general case, let Y be a resolution of
singularities of the smallest closed irreducible projective subset of X defined
over k and containing Z. Assume Y is not special, and let ¢ : Y — C be its
core map (defined over k). Then c o h(C) is contained in a strict algebraic
subset W C C defined over k. Contradiction. Thus Y is special, and Y (k') is
Zariski dense in Y, hence infinite.

The equivalence with 3 has been shown in the course of the proof. a

This motivates the study of the relationship between the distribution of
entire curves on projective (and more generally compact Kéhler) manifolds
X and their core map.

9.2 Specialness and Entire Curves

Some variants of Conjecture 8.4 are:

Conjecture 9.2. The following are equivalent, for X compact Kdihler
smooth:

1. X is special.

2. The Kobayashi pseudodistance’® dx of X wanishes identically.
2’. The infinitesimal Kobayashi pseudometric d% vanishes on TX.
3. Any 2 points of X are joined by an entire curve.

3’. Any 2 points of X are joined by a chain of entire curves.

4. Any countable subset of X is contained in some entire curve.
5. There exists a Zariski dense entire curve on X.

5°. There exists a metrically dense entire curve on X.

Remark 9.3.

1. Special manifolds are seen as generalisations of rationally connected
manifolds, rational curves replaced by entire curves.

2. Special manifold are not conjectured to be all C"-dominable (i.e.: to admit
a non-degenerate meromorphic map H : C™ --» X). See §9.6.

We shall mention some partial results, extracted from [19]. Although much
efforts have been devoted to the Green—Griffiths-Lang conjecture (asserting
that there are no Zariski dense entire curves if X is of general type), the
results below seem to be the first ones in the opposite direction: produce

36Defined as the largest pseudodistance § on X such that h*(§) < dp, for any
holomorphic map h : D — X, where dp is the Poincaré distance on the unit disk. See
[34] for this notion and its infinitesimal version.
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dense entire curves on X if it is special, beyond the obvious cases where X
is either (uni)rational or Abelian/Kummer.

9.3 Special Surfaces

From surface classification, approximability of K3 surfaces by Kummer ones,
a classical result by Mori—-Mikai, and [10], one gets:

Proposition 9.4 ( [19]). Let S be a special compact Kdihler surface.
Then:

1. dg vanishes on S.

2. S is C?-dominable unless possibly when S is a K3-surface which is non-
elliptic and non-Kummer.

3. If S is projective, any 2 points are connected by a chain of 2 elliptic curves.

4. If S is not projective, it contains a Zariski dense entire curve.

The interesting remaining cases are thus K3-surfaces either of algebraic
dimension zero or projective ‘general’. It is far from clear whether the later
ones should be expected to be C?-dominable.

9.4 Rationally Connected Manifolds

Theorem 9.5 ([19]). Let X be projective, smooth, rationally connected. Let
A C X be algebraic of codimension at least 2, and let N C X be a countable
subset of X\ A. There exists h : C — X\ A holomorphic such that N C h(C).

A simplified version of the main step of the proof is the following:

Lemma 9.6. Let f : P! — X be a very free rational curve going through
T1yeeeyTm, let B > 0 and € > 0. If x,,41 is given, there exists a very
free rational curve g : P! — X going through x1,...,%,1 and such that
d(f(2),9(2)) <eif |z| <R, if d is any Hermitian metric on X.

The proof rests on the ‘comb-smoothing’ technique of [35]. The lemma
consists in joining z,41 := h(1) and f(c0) := h(0) by a very free rational
curve h : P! — X and approximating sufficiently closely the ‘comb’ f(P!) U
h(P!) by a family of rational curves g. which go through x1,...,Z, 1.

The rest of the proof consists in constructing inductively on m a sequence
of very free rational curves f,, going through the m-first points x1,...,x, of
the set IV, in such a way that they converge uniformly on the disks of radii
m.
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Stronger versions are proved in [19], to which we refer. For example, the
following analog of the ‘Weak Approximation Property’7on rationally con-
nected manifolds can be immediately derived from the proof of Theorem 9.5,
the fact that blown up rationally connected manifolds are still rationally
connected, and the Weierstrass products of entire functions:

Corollary 9.7. Let X be rationally connected smooth. Let M C X be a
countable set, and for each m € M, let a jet j,, of finite order k,, of
holomorphic function from C to X at m. There then exists an entire function
h:C — X going through each m € M, and whose kp,-jet at m is jp,.

The following ‘orbifold version’ follows from Theorem 9.5:

Example 9.8. Let S C P3 be a smooth sextic surface. There exists a dense
entire curve h : C — P3 which is tangent to S at each intersection point
of h(C) with S. Indeed: the double cover m : X — P3 ramified along S is
smooth Fano, hence rationally connected. Any (dense) entire curve h : C — X
projects to P3 tangentially along S.

We do not show the preceding statement directly on P3 without applying
Theorem 9.5 on the double cover, by lack of an orbifold comb-smoothing
technique on the Fano Orbifold Pair (Ps3,Sg). Notice that it is unknown
whether X is unirational or not.

The following singular version can be obtained, using the MMP for
surfaces, [50], and applies to prove Proposition 9.11 below.

Theorem 9.9 ( [19]). Let S be a normal projective surface with only
quotient singularities. Assume there exists on S a non-zero Q-effective divisor
A such that (S, A) is Log-terminal and —Kg = A. If F C S is a finite set
containing the singular locus of S, then S\ F contains a dense entire curve.

9.5 Manazfolds with c; =0

The second fundamental class of special manifolds are those with k = 0, in
particular those with ¢; = 0. They decompose after an étale cover as products
with factors belonging to three subclasses: tori, hyperkahler and Calabi—Yau.

e Complex tori are easy to deal with: they admit dense affine entire curves,
for Abelian varieties, one can do more: construct entire curves (no longer
affine) going through any given countable set.

37This analogy was pointed to us by P. Corvaja, who also noticed that in arithmetic
geometry, the WAP implies the Hilbert Property, an implication also implicit in the
proof of Theorem 10.3.
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By S.T. Yau’s solution of Calabi’s conjecture, a compact Kéhler manifold
with ¢; = ¢o = 0 is covered by a complex compact torus, and thus satisfies
all statements of Conjecture 9.2.

e Hyperkihler manifolds. If X is compact Kéahler and has no complex
analytic compact subvariety (except points and itself), then any entire
curve on X is obviously Zariski dense. Since such manifolds have algebraic
dimension zero, they are special, and the existence of a Zariski dense entire
curve should follow from Conjecture 9.2.

e Examples of such manifolds are:

1. General deformations of Hilb™(K3), for any m > 0 (by [47], [48]).
These contain at least an entire curve (by [47]), which is thus Zariski
dense.

2. All compact Kéhler threefolds without subvariety (because they are
simple compact tori, by [15]), and thus contain dense entire curves.

Remark 9.10.

1. Conversely, we conjecture that any compact Kdhler manifold without
subvariety is either Hyperkdhler or simple tori.

2. It was interesting to get some information about the ‘size’ of the entire
curves constructed in the general deformations of Hilb™(K3)'s (as mea-
sured, for example, by the Hausdorff dimension of their topological
closures).

8. A much more difficult case is the one of compact Kihler manifolds without
subvariety through their general point. These have in particular algebraic
dimension zero. And we conjecture that they are either covered by a torus,
or have a holomorphic 2-form which is symplectic generically. The solution
of this conjecture in dimension 3 implies that any compact Kahler 3-fold
with algebraic dimension zero contains a Zariski dense entire curve. See

[19].
e Calabi—Yau manifolds are much harder to deal with.

A class for which Conjecture 9.2 can be solved is:

Proposition 9.11. Any elliptic Calabi—Yau Threefold contains dense entire
curves.

The proof combines Theorem 9.9, [29], [39] and [10] when ¢y # 0, and
follows from Yau'’s solution of Calabi’s conjecture when ¢y = 0.
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9.6 Remarks on C"-dominability and Uniform
Rationality

We do not expect the C”-dominability of special n-dimensional manifolds for
the following reasons:

1. The algebraic version of C"-dominability is unirationality. And it is
expected that most rationally connected manifolds should be non-
unirational from dimension 3 on, starting with the double covers of
P3 branched over a smooth sextic, or standard conic bundles over Py with
smooth discriminant of large degree.

2. Non-elliptic and non-Kummer K3 surfaces are covered by countably many
different families of elliptic curves. However, these families might be (and
are presumably) parametrised by hyperbolic curves.

The following questions concern the relations between unirationality and
C"-dominability for rationally connected manifolds:

Question 9.12.

1. Are there C™-dominable rationally connected manifolds which are not
unirational?

2. Special case: X is a smooth model of Xg = A/G, where A is an abelian
variety, and G a finite group acting holomorphically on A. If X is
rationally connected, is it unirational?

The answer is positive in the few cases where it is known. Note also
that these examples provide an interesting testing ground for the problem
of ‘uniform rationality’. Recall (see [5])

Definition 9.13. A smooth rational n-fold X is said to be ‘uniformly
rational’ if any point of X has a Zariski open neighbourhood algebraically
isomorphic to a Zariski open set of C™.

When rational, the smooth models of quotients A/G, obtained by blowing
up A at the points of non-trivial isotropy, may fail to be uniformly rational
at the points of some of the exceptional divisors. For example:

Question 9.14. Let X be the Ueno threefold, smooth model of E3/Z,4
obtained by blowing up each point of E® of non-trivial isotropy, where
E :=C/Z[i],i a primitive 4-th root of unity, is the Gauss elliptic curve, and
Z4 acts by multiplication by i* simultaneously on each factor. This manifold
is unirational [21], and even rational [22]. Is it uniformly rational? Note that
no explicit rational parametrisation of X is known. A similar question can be
raised for the similar example F3/Zg, where F := C/Z[j],j a primitive 6-th
root of unity, for which an explicit parametrisation is known.
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10 The Nevanlinna Version of the Hilbert Property

10.1 The Hilbert Property and Its Nevanlinna
Version

Definition 10.1 ( [23, §2.2]). Let X/k be a (smooth) projective variety
defined over a number field k. Then X is said to have the ‘Weak Hilbert
Property’ over k (WHP for short)*® if (X(k)\ U;Y;(k)) is Zariski dense in
X, for any finite set of covers m; : Y; — X defined over k, each ramified over
a non-empty divisor D; of X.

Note that X (k) being Zariski dense, X has to be special, and its
fundamental group almost abelian, by Conjecture 8.4.

In [23], Corvaja—Zannier propose an analytic version of the WHP in the
following form [23, §2.4]:

Question-Conjecture 10.1 Let X be a special compact Kihler®® manifold.
For any finite cover 7 : ¥ — X ramified over a non-empty divisor, with Y
irreducible, there exists a dense entire curve h : C — X which does not lift to
an entire curve A’ : C = Y (i.e.: such that mo h' = h). We write NHP(X) if
X possesses this property, and say that X has NH P (for Nevanlinna—Hilbert
Property).

Notice that these N H P properties are preserved by finite étale covers and
smooth blow-ups.
A simple tool in checking the non-liftability is the following:

Proposition 10.2 ( [19]). Let h : C — X be an entire curve and H an
hypersurface of X such that there exists a regular point a € H in which h(C)
and H intersect with order of contact t.

Let m: X1 — X be a finite Galois covering with branch locus containing
H, such that © ramifies at order s > 2 over H at a. Then h cannot be lifted
to an entire curve h : C — X, if t does not divide s.

Thus, if h(C) meets H transversally at a, h does not lift to Y.

Proof. If 7 is Galois, it ramifies at order s at any point of Y over a € H.
Since h(C) intersect at order s at a, if it lifted to Y, its order of contact with
H were a multiple of s. O

38The classical Hilbert property does not require the covers Y; — X to be ramified.
By the Chevalley—Weil Theorem X is then algebraically simply connected.

39Tn [23], X is supposed to be complex projective and to contain a Zariski dense
entire curve. We extend their expectation to the compact Kahler case, and replace
the dense entire curve by the specialness of X.
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10.2 Rationally Connected and Abelian Manifolds

We have the following stronger form for rationally connected manifolds, in
which a fired entire curve h does not lift to any Galois?® ramified cover
Y — X:

Theorem 10.3 ( [19]). Let X be a rationally connected complex projective
manifold or a complex compact torus.
Then there exists an entire curve f : C — X such that:

1. The image f(C) is dense.
2. f cannot be lifted to any ramified Galois covering 7 : X' — X.

Proof. Combine (stronger forms proved in [19] of) Theorem 9.5 with
Proposition 10.2. The Abelian case is obtained similarly. O

10.3 Special Surfaces

Theorem 10.4 ( [19]). Let f : S — B an elliptic surface with m1(S) is
almost abelian (or equivalently: S is special). For any irreducible cover m :
Y — X ramifying over a non-empty divisor R C S, there exists a dense
entire curve h : C — S which does not lift to Y.

Proof. Assume that R C S meets a regular point of some reduced component
of some fibre of f. From [10], one gets a submersive map H : C?> — S whose
image contains all smooth fibres of f, and the regular part of the component
of the fibre of f which meets R. This produces an entire curve h : C — C?
which meets transversally H*(R). We refer to [19] for the reduction to this
particular case. a

Remark 10.5. The above result together with the simpler case of special
surfaces S with k(S) = —oo solves the Conjecture 10.1 for special surfaces
except for K3 surfaces which are neither Kummer nor elliptic.

11 The Kobayashi Pseudodistance

We explain here how to get from the core map a conjectural (qualitative)
description of the Kobayashi pseudodistance of any complex projective
(or compact Kahler) manifold X, using the notion of orbifold Kobayashi
pseudodistance.

40The Galois assumption can be removed using more delicate arguments.
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e Recall first that if M is a complex manifold, its Kobayashi pseudodistance
dps is the largest pseudodistance 6 on M such that h*(d) < pp, for any
holomorphic map h : D — M, where pp is the Poincaré metric on the unit
disc D C C. It enjoys the following properties:

dp = pp.

It is distance decreasing: f*(dn) < das,Vf : M — N holomorphic.

It is preserved by Aut(M).

dc =0.

It is continuous wrt the metric topology on any M.

dprpgy = 0 for bt € — M holomorphic, E the metric closure.

dy =0if M =P", or M = a complex torus.

If M is compact, dy; is a distance iff M does not contain any entire
curve (Brody Theorem).

P NG WD

We thus see that there is a close relationship between dj; and the distribution
of entire curves on M. In particular, dy; = 0 if there exists a dense entire
curve on M, or if any two points in a dense subset of M can be joined by a
connected chain of entire curves. The reverse implications are however widely
open, even for K3 surfaces M, for which dj; is known to vanish identically.

Entirely similarly to the case when A = 0, we define the Kobayashi
pseudodistance in the orbifold setting. Let thus (X, A) be a smooth orbifold
pair with X compact Kéhler and A := (1 — mij).Dj an orbifold divisor
with SNC support D := (U, D).

Recall that Hol(D,(X,A)) (resp. Hol*(D,(X,A)) denotes the set of
orbifold (resp. classical orbifold) morphisms from the unit disk D to (X, A)
as defined in 2.5.

Definition 11.1. The Kobayashi (resp. The Classical Kobayashi) Pseu-
dodistance dix ny (resp. dE‘X,A)) of the orbifold (X,A) is the largest pseu-
dodistance 6 on X such that 6 < h*(dp),Vh € Hol(D, (X,A) (resp. Yh €
Hol*(D, (X,A)). We thus have: d(x Ay < d’(kXA), but have equality if A =0
or if A = Supp(A) (projective and quasi-projective cases, in which cases we
recover dx and dx\ p, respectively). For orbifold curves, these pseudodistances

agree, but no longer for orbifold surfaces in general (see [18], Theorem 2, and
[40], Theorem 3.17).

We shall not use the ‘classical’ version here (except in the proof of 11.8,
for X = D. The example given in [40] however suggests the following:

Question 11.2.

1. Is there a continuous function ¢ : X x X — [0,1], positive outside of
A x A, for some Zariski closed subset A C X, such that d(x ay(z,y) =
c(m,y).dz‘X’A)(:my),V(ac?y) cXxX?

2. Assume that (X, A) is smooth. If A C X is Zariski closed of codimension
at least 2 in X, is dx ayx+ = d(x= A=), where X* := X \ A, and A* :=
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ANX*? When A = 0 and when A = Supp(A), this is true by [34],
Theorem 2.3.19.

Recall the general notion of orbifold morphism between orbifold pairs:

Definition 11.3. Let (X,A) and (Y,Ay) be orbifold pairs, Y smooth (or
Q-factorial) and h : X — Y be a holomorphic map such that h(X) is not
contained in Supp(Ay). Then h: (X,A) = (Y, Ay) is an orbifold morphism
if, for each irreducible divisor F C Y, and each irreducible divisor E C X
such that h(E) C F, one has: ma(E) > tg p.ma, (F), where: mpepq(E)
is the multiplicity of E in A (and similarly for ma, (F'), while tg p is the
scheme-theoretic multiplicity of E in h*(F') (i.e.: h*(F) = tg r.E+ R, where
r does not contain E in its support).

Clearly, orbifold morphisms can be composed. We have the following
obvious functoriality property: h.(Hol(D, (X,A)) C Hol(D, (Y,Ay)) if h is
an orbifold morphism, and so also the usual distance decreasing property:
h*(dy,ayy) < dix,n)-

We shall need the following birational invariance property also:

Proposition 11.4. Let X be smooth, and A C X a Zariski closed subset
of codimension at least 2. Let X* := (X \ A), and let p : X' — X be a
bimeromorphic holomorphic map which is isomorphic over X*. Let E be the
exceptional divisor of u, and let A" be an orbifold divisor on X' supported
on E. Then dix/ any = p*(dx) (whatever large and possibly infinite are the
multiplicities on the components of A').

Proof. From [34], Theorem 2.3.19, we know that dx- = dx|x~. We identify
X* with its inverse image in X'/, and extend by continuity dx+ to X’ and X,
with the same (abusive) notation. On the other hand, we also have: dx: <
dixr,ary < dx- on X'. This implies the claim, since p*(dx~) = dx~ (where
the LHS is on X, and the RHS on X'). O

Theorem 11.5. Let f: X — Z be a fibration, with X a connected complex
compact manifold. Let f' : X' — Z' be a bimeromorphic ‘neat model’ of f,
where p @ X' — X is bimeromorphic. Let (Z',A") be the (smooth) orbifold
base of f'. Then:

1 f*(dzr,an) < dx = p*(dx).
2. f*(d(z/,an) = dx if dx, =0, for a dense set of fibres X, of f.

Corollary 11.6. Let c¢: X — Cx be the core map of some compact Kahler
manifold X. Then: dx = c*(d(cy a.))-

Assume Conjecture 8.4, and Conjecture 11.7 below. Then: dicy a.) s a
metric on a non-empty Zariski open subset Cx \ W of Cx.

The following is simply an orbifold version of the strong Lang’s generic
hyperbolicity conjecture for manifolds of general type.
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Conjecture 11.7. Let (Z,A) be a smooth orbifold pair of general type.
There exists a strict Zariski closed subset W C Z such that d(z a) is a metric
on Z \ W. Moreover, the smallest such W is defined over k if so is Z.

Proof (of Theorem 11.5). Since f' : X' — (Z’,A’) is a neat model of f, we
have the following properties: there exist two Zariski closed subsets B C Z’
and A C X, A contained in the indeterminacy locus of p~!, such that:
w((f)~YB)) € A, and f' : X* = X'\ (f)"YB) — (Z',A’) has equidi-
mensional fibres and is an orbifold morphism. If we equip the components
of the exceptional divisor E of u with sufficiently large multiplicities, we get
an orbifold divisor Ay, on X’ such that all of f' : (X',Ax/) — (Z',A)
becomes an orbifold morphism. We thus get, from the definition of orbifold
Kobayashi pseudometrics, the inequality: (f')*(d(z+ a+)) < dx~. We can thus
conclude from the continuity of these pseudometrics, and Proposition 11.4
that (f/)*(dZ’,A’)) < dx* = dX’~ O

Let us now prove the reverse inequality when the fibres all have a vanishing
Kobayashi pseudometric (which is the case if a dense subset of them have
this property, by the continuity of the Kobayashi pseudometric). We may, and
shall, assume here that X’ = X and f’ = f, we then write (Z',A") = (Z,A)
to simplify notations. Notice that, due to Proposition 11.4 and the preceding
argument, it will be sufficient to show that (f)*(d(z+ a+)) < dx-.

Proposition 11.8. Let g : M — D be a proper fibration from a complex
manifold to the unit disk. Assume that dyr, = 0 for all fibres of g, and that
Ay is supported on a finite set of D. Then dy = g*(dp,a,)-

Let us first show that the inequality 2 of Theorem 11.5 follows from
Proposition 11.8.

Let h;,i =0,...,N,a;,b; be a Kobayashi chain in X* joining two points
a,b € X, that is: a sequence of holomorphic disks h; : D — X, together with
points ai,bi € D such that ho(ao) = a,hN(bN) = b, and hz(bl) = hi+1(ai+1)
for i = 0,...,(N — 1). From the choice of A, B,X*, Z*, we deduce that
gi = fx(h;) := foh; € Hol(D,(Z*, A*). From Proposition 11.8 we deduce
that the Kobayashi lengths of the chains {h;,a;,b;} and {g;,a;,b;}, given
by >, dx (hi(a;), hi(b;)) and ), d(z« a=y(gi(as), gi(b;)) coincide. Taking the
infimum (on either side) for given a,b € X (or o’,b’" € Z*) gives the claimed
equality.

We now prove Proposition 11.8. It will be the consequence of the following
three lemmas:

Lemma 11.9. Let g : M — N be a surjective holomorphic map with
connected fibres between two connected complex manifolds. Assume that g
has everywhere local sections and that the fibres of g all have zero Kobayashi
pseudometric. Then dyr = g*(dn).
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Proof (of Theorem 11.5). The Kobayashi lengths on M of any arc joining
a,b in M and of its image by g on N coincide, using local sections and the
vanishing of d along the fibres of g. O

Lemma 11.10. If A := ) (1 — mii).{ai} is a finitely supported orbifold
divisor on D, there is a finite unfolding v : C — D from a complex smooth
curve C which ramifies at order m; over each point lying over a;, this for any
i, and unramified over the complement of the a}s.

Proof (of Theorem 11.5). The fundamental group of the complement D* of
the ais is a free group Fy on N generators generated by small loops ~;
winding once around a;, for each ¢ = 1,..., N, if N is the cardinality of
the ajs. There is thus a natural surjective group morphism of Fy onto
@i Zy,, which induces a finite Galois cover C* — D* which can be partially
compactified over the a’s so as to give the claimed unfolding. O

The Kobayashi pseudodistance dp a,) is obtained by integrating the
Kobayashi-Royden infinitesimal pseudometric dg)’ Ay’ and similarly for
dip A, and dE‘H’fAu), which are computed explicitly in [40] . By [40], Theorems
3.9, 3.13, we have: dZHS)]?Au) = dﬁ[»,Auy and dg} = u*(dZ]]S)I?Au))'

Let go : Mc — C be the (desingularised) base change of g : M — D. Tt
has everywhere local sections (by the definition of the (non-classical) orbifold
base). We thus have: d; . = g&(df).

Let v : Mc — M be the natural projection; we thus have:

vi(dpy) < djfy. = 9" (dE) = g" (w (d{p ) = v (F*(d(EA,))-

Thus: dff, = f*(alg))Au))7 and also the claim: dy = f*(dp,a,))-
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1 Introduction

These notes grew out of a mini-course given from May 13th to May 17th at
UQAM in Montréal during a workshop on Diophantine Approximation and
Value Distribution Theory.

1.1 What Is in These Notes?

We start with an overview of Lang—Vojta’s conjectures on pseudo-hyperbolic
projective varieties. These conjectures relate various different notions of
hyperbolicity. We start with Brody hyperbolicity and discuss conjecturally
related notions of hyperbolicity in arithmetic geometry and algebraic geom-
etry in subsequent sections. We slowly work our way towards the most
general version of Lang—Vojta’s conjectures and provide a summary of all
the conjectures in Section 12.

After having explained the main conjectures with the case of curves and
closed subvarieties of abelian varieties as our guiding principle, we collect
recent advances on Lang—Vojta’s conjectures and present these in a unified
manner. These results are concerned with endomorphisms of hyperbolic
varieties, moduli spaces of maps into a hyperbolic variety, and also the
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behaviour of hyperbolicity in families of varieties. The results presented in
these sections are proven in [15, 49, 50, 55, 56].

We also present results on the Shafarevich conjecture for smooth hyper-
surfaces obtained in joint work with Daniel Litt [52]. These are motivated
by Lawrence—Venkatesh’s recent breakthrough on the non-density of integral
points on the moduli space of hypersurfaces [63], and are in accordance with
Lang—Vojta’s conjecture for affine varieties. Our results in this section are
proven using methods from Hodge theory, and are loosely related to Bakker—
Tsimerman’s chapter in this book [12].

In the final section we sketch a proof of the fact that being groupless
is a Zariski-countable open condition, and thus in particular stable under
generization. To prove this, we follow [55] and introduce a non-archimedean
notion of hyperbolicity. We then state a non-archimedean analogue of the
Lang-Vojta conjectures which we prove under suitable assumptions. These
results suffice to prove that grouplessness is stable under generization.

1.2 Anything New in These Notes?

The main contribution of these notes is the systematic presentation and
comparison between different notions of hyperbolicity, and their “pseud-
ofications”. As it is intended to be a broad-audience introduction to the
Lang—Vojta conjectures, it contains all definitions and well-known relations
between these. Also, Lang—Vojta’s original conjectures are often only stated
for varieties over Q, and we propose natural extensions of their conjectures
to varieties over arbitrary algebraically closed fields of characteristic zero.
We also define for each notion appearing in the conjecture the relevant
“exceptional locus” (which Lang only does for some notions of hyperbolicity
in [62]).

The final version of Lang—Vojta’s conjecture as stated in Section 12 does
not appear anywhere in the literature explicitly. Furthermore, the section
on groupless varieties (Section 4) contains simple proofs that do not appear
explicitly elsewhere. Also, we have included a thorough discussion of the a
priori difference between being arithmetically hyperbolic and Mordellic for a
projective variety in Section 7. This difference is not addressed anywhere else
in the literature.

1.3 Rational Points over Function Fields

We have not included any discussion of rational points on projective
varieties over function fields of smooth connected curves over a field k,
and unfortunately ignore the relation to Lang—Vojta’s conjecture throughout
these notes.
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1.4 Other Relevant Literature

Lang stated his conjectures in [62]; see also [23, Conjecture XV.4.3] and [1,
§0.3]. In [85, Conj. 4.3] Vojta extended this conjecture to quasi-projective
varieties. In [62] Lang “pseudofied” the notion of Brody hyperbolicity. Here
he was inspired by Kiernan—Kobayashi’s extension of the notion of Kobayashi
hyperbolicity introduced in [58].

There are several beautiful surveys of the Green—Griffiths and Lang—Vojta
conjectures. We mention [24-26, 31, 38, 86].

The first striking consequence of Lang—Vojta’s conjecture was obtained
by Caporaso—Harris-Mazur [19]. Their results were further investigated by
Abramovich, Ascher—Turchet, Hassett, and Voloch; see [1-4, 9, 42].

Campana’s conjectures provide a complement to Lang—Vojta’s conjectures,
and first appeared in [17, 18]; see also Campana’s chapter in this book [16].
In a nutshell, the “opposite” of being pseudo-hyperbolic (in any sense of
the word “hyperbolic”) is conjecturally captured by Campana’s notion of a
“special” variety.

Conventions. Throughout these notes, we will let £ be an algebraically
closed field of characteristic zero. If X is a locally finite type scheme over C,
we let X" be the associated complex-analytic space [39, Expose XII]. If K
is a field, then a variety over K is a finite type separated K-scheme.

If X is a variety over a field K and L/K is a field extension, then X, :=
X Xgpec k Spec L will denote the base-change of X — Spec K along Spec L —
Spec K. More generally, if R — R’ is an extension of rings and X is a scheme
over R, we let X/ denote X Xgpec g Spec R.

If K is a number field and S is a finite set of finite places of K, then Ok g
will denote the ring of S-integers of K.

2 Brody Hyperbolicity

We start with the classical notion of Brody hyperbolicity for complex
varieties.

Definition 2.1. A complex-analytic space X is Brody hyperbolic if every
holomorphic map C — X is constant. A locally finite type scheme X over C
is Brody hyperbolic if X®" is Brody hyperbolic.

If X is a complex-analytic space, then a non-constant holomorphic map
C — X is commonly referred to as an entire curve in X. Thus, to say that
X is Brody hyperbolic is to say that X has no entire curves.

We recall that a complex-analytic space X is Kobayashi hyperbolic if
Kobayashi’s pseudo-metric on X is a metric [59]. It is a fundamental result
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of Brody that a compact complex-analytic space X is Brody hyperbolic if
and only if it is Kobayashi hyperbolic; see [59, Theorem 3.6.3].

Remark 2.2 (Descending Brody Hyperbolicity). Let X — Y be a
proper étale (hence finite) morphism of varieties over C. It is not hard to
show that X is Brody hyperbolic if and only if Y is Brody hyperbolic. (It is
crucial that X — Y is finite and étale.)

Fundamental results in complex analysis lead to the following classification
of Brody hyperbolic projective curves.

Theorem 2.3 (Liouville, Riemann, Schwarz, Picard). Let X be a
smooth projective connected curve over C. Then X is Brody hyperbolic if
and only if genus(X) > 2.

More generally, a smooth quasi-projective connected curve X over C is
Brody hyperbolic if and only if X is not isomorphic to P%, A{, AL\ {0}, nor
a smooth proper connected genus one curve over C.

Remark 2.4. It is implicit in Theorem 2.3 that elliptic curves are not Brody
hyperbolic. More generally, a non-trivial abelian variety A of dimension g
over C is not Brody hyperbolic, as its associated complex-analytic space is
uniformized by CY. Since A even has a dense entire curve, one can consider
A to be as far as possible from being Brody hyperbolic. We mention that
Campana conjectured that a projective variety has a dense entire curve if
and only if it is “special”. We refer the reader to Campana’s article in this
book for a further discussion of Campana’s conjecture [16].

By Remark 2.4, an obvious obstruction to a projective variety X over C
being Brody hyperbolic is that it contains an abelian variety. The theorem of
Bloch—Ochiai-Kawamata says that this is the only obstruction if X can be
embedded into an abelian variety (see [57]).

Theorem 2.5 (Bloch—Ochiai-Kawamata). Let X be a closed subvariety
of an abelian variety A over C. Then X is Brody hyperbolic if and only if
IT does not contain the translate of a positive-dimensional abelian subvariety

of A.

Throughout these notes, we mostly focus on closed subvarieties of abelian
varieties, as in this case the results concerning Lang—Vojta’s conjectures are
complete; see Section 13 for details.

The theorem of Bloch—Ochiai-Kawamata has been pushed further by
work of Noguchi-Winkelmann—Yamanoi; see [76-78, 87, 88]. Other examples
of Brody hyperbolic varieties can be constructed as quotients of bounded
domains, as we explain now.

Remark 2.6 (Bounded Domains). Let D be a bounded domain in the
affine space CV, and let X be a reduced connected locally finite type
scheme over C. Then, any holomorphic map X®* — D is constant; see [55,
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Remark 2.9] for a detailed proof. In particular, the complex-analytic space
D is Brody hyperbolic (take X = Al).

It follows from Remark 2.6 that a (good) quotient of a bounded domain
is Brody hyperbolic. This observation applies to locally symmetric varieties,
Shimura varieties, and thus moduli spaces of abelian varieties. We conclude
this section by recording the fact that the moduli space of abelian varieties
(defined appropriately) is a Brody hyperbolic variety.

Example 2.7. Let ¢ > 1 and let N > 3 be integers. Then, the (fine)
moduli space of g-dimensional principally polarized abelian varieties with
level N structure is a smooth quasi-projective variety over C which is Brody
hyperbolic. Indeed, its universal cover is biholomorphic to a bounded domain
in C9(9t1)/2 50 that we can apply Remark 2.6. (As the coarse moduli space of
elliptic curves is given by the j-line A}, we see that it is not Brody hyperbolic.
This is the reason for which we consider the moduli space of abelian varieties
with level structure.)

3 Mordellic Varieties

What should correspond to being Brody hyperbolic in arithmetic geometry?
Lang was the first to propose that a “Mordellic” projective variety over Q
should be Brody hyperbolic (over the complex numbers). Roughly speaking,
a projective variety over Q is Mordellic if it has only finitely many rational
points in any fixed number field. To make this more precise, one has to
choose models (see Definition 3.1 below). Conversely, a projective variety
over a number field which is Brody hyperbolic (over the complex numbers)
should be Mordellic. In this section we will present this conjecture of Lang.
Throughout this section, we let k& be an algebraically closed field of
characteristic zero. We first clarify what is meant with a model.

Definition 3.1. Let X be a finite type separated scheme over k and let
A C k be a subring. A model for X over A is a pair (X, ¢) with X — Spec A
a finite type separated scheme and ¢ : X, — X an isomorphism of schemes
over k. We will often omit ¢ from our notation.

Remark 3.2. What constitutes the data of a model for X over A? To
explain this, let X be an affine variety over C, say X = Spec R. Note that the
coordinate ring R of X is a finite type C-algebra. Suppose that X is given by
the zero locus of polynomials fi,..., f with coefficients in a subring A, so
that R = Clzy,...,x4)/(f1,..-, fr). Then R := Alzy,...,z5]/(f1,.--, fr) C
R is a finitely generated A-algebra and R ® 4 C = R. That is, if X = SpecR,
then X is a model for X over A. We will be interested in studying A-
valued points on X. We follow common notation and let X(A) denote the
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set Hom4(Spec A, X). Note that X' (A) is the set of solutions in A of the
polynomial system of equations f; =... = f,. =0.

With the notion of model now clarified, we are ready to define what
it means for a proper variety to be Mordellic. We leave the more general
definition for non-proper varieties to the end of this section.

Definition 3.3. A proper scheme X over k is Mordellic over k (or: has-
only-finitely-many-rational-points over k) if, for every finitely generated
subfield K C k and every (proper) model X over K, the set X(K) :=
Hom g (Spec K, X) is finite.

Remark 3.4 (Independence of Models). We point out that the finite-
ness property required for a projective variety to be Mordellic can also be
tested on a fixed model. That is, a proper scheme X over k is Mordellic over
k if and only if there is a finitely generated subfield K C k and a proper
model X for X over K such that for all finitely generated subfields L C k
containing K, the set X(L) := Homg (Spec L, X) is finite.

We note that Mordellicity (just like Brody hyperbolicity) descends along
finite étale morphisms (Remark 2.2).

Remark 3.5 (Descending Mordellicity). Let X — Y be a finite étale
morphism of projective varieties over k. Then it follows from the Chevalley—
WEeil theorem that X is Mordellic over k if and only if Y is Mordellic over k;
see Theorem 7.9 for a proof (of a more general result).

It is clear that P}, is not Mordellic, as P*(Q) is dense. A deep theorem of
Faltings leads to the following classification of projective Mordellic curves. If
k = Q, then this theorem is proven in [32]. The statement below is proven
in [33] (see also [82]).

Theorem 3.6 (Faltings). Let X be a smooth projective connected curve
over k. Then X is Mordellic over k if and only if genus(X) > 2.

Recall that abelian varieties are very far from being Brody hyperbolic
(Remark 2.4). The following remark says that abelian varieties are also very
far from being Mordellic.

Remark 3.7. It is not at all obvious that a smooth projective connected
curve of genus one over Q is not Mordellic. Indeed, it is not an obvious fact
that an elliptic curve over a number field K has positive rank over some finite
field extension of K, although this is certainly true and can be proven in many
different ways. In fact, by a theorem of Frey—Jarden [36] (see also [49, §3.1]
or [41, §3]), if A is an abelian variety over k, then there is a finitely generated
subfield K C k and an abelian variety A over K with Ay = A such that A(K)
is dense in A. This theorem is not hard to prove when k is uncountable but
requires non-trivial arguments otherwise. Thus, if dim A # 0, then one can
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consider the abelian variety A to be as far as possible from being Mordellic.
This statement is to be compared with the conclusion of Remark 2.4.

By Remark 3.7, an obvious obstruction to a projective variety X over k
being Mordellic is that it contains an abelian variety. The following theorem
of Faltings says that this is the only obstruction if X can be embedded into
an abelian variety; see [34].

Theorem 3.8 (Faltings). Let X be a closed subvariety of an abelian variety
A over k. Then X is Mordellic over k if and only if X does not contain the
translate of a positive-dimensional abelian subvariety of A.

There are strong similarities between the statements in the previous section
and the current section. These similarities (and a healthy dose of optimism)
lead to the first version of the Lang—Vojta conjecture. To state this conjecture,
let us say that a variety X over k is strongly-Brody hyperbolic over k if, for
every subfield ky C k, every model X for X over kg, and every embedding
ko — C, the variety X¢ is Brody hyperbolic.

Conjecture 3.9 (Weak Lang—Vojta, I). Let X be an integral projective
variety over k. Then X is Mordellic over k if and only if X is strongly-Brody
hyperbolic over k.

As stated, this conjecture does not predict that, if X is a projective Brody
hyperbolic variety over C, then every conjugate of X is Brody hyperbolic.
We state this conjecture separately.

Conjecture 3.10 (Conjugates of Brody Hyperbolic Varieties). If X
is an integral variety over k. Then X is strongly-Brody hyperbolic over k if
and only if there is a subfield ky C k, a model X for X over kg, and an
embedding ko — C such that the variety Xc is Brody hyperbolic.

Concretely, Conjecture 3.10 says that, if X is a Brody hyperbolic variety
over C and o is a field automorphism of C, then the o-conjugate X7 of X is
again Brody hyperbolic.

We briefly discuss the notion of Mordellicity for quasi-projective (not
necessarily proper) schemes. We will also comment on this more general
notion in Section 7. This notion appears in this generality (to our knowledge)
for the first time in Vojta’s paper [86], and it is also studied in [56]. It is
intimately related to the notion of “arithmetic hyperbolicity” [49, 53]; see
Section 7 for a discussion.

In the non-proper case, it is natural to study integral points rather than
rational points. Vojta noticed in [86] that, in fact, it is more natural to study
“near-integral points”. Below we make this more precise.

Definition 3.11. Let X — S be a morphism of schemes with S integral. We
define X (S)™M) to be the set of P in X (K (S)) such that, for every point s in
S of codimension one, the point P lies in the image of X (Og s) — X(K(95)).
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Vojta refers to the points in X(S)(l) as “near-integral” S-points. We point
out that on an affine variety, there is no difference between the finiteness of
integral points and “near-integral” points; see Section 7.

Definition 3.12 (Quasi-Projective Mordellic Varieties). A variety X
over k is Mordellic over k if, for every Z-finitely generated subring A C k
and every model X for X over A, the set X'(A)™) of near-integral A-points
is finite.

The study of near-integral points might seem unnatural at first. To
convince the reader that this notion is slightly more natural than the notion
of integral point, we include the following remark.

Remark 3.13 (Why “Near-Integral” Points?). Consider a proper
scheme X over Z with generic fibre X := Xg. Let K be a finitely generated
field of characteristic zero and let A C K be a regular Z-finitely generated
subring. Then, the set of K-rational points X (K) equals the set of near-
integral A-points of X'. On the other hand, if K has transcendence degree at
least one over QQ, then it is not necessarily true that every K-point of X is
an A-point of X. Thus, studying K-rational points on the proper variety X
over QQ is equivalent to studying near-integral points of the proper scheme X
over 7.

With this definition at hand, we are able to state Faltings’s finiteness
theorem for abelian varieties over number rings as a statement about the
Mordellicity of the appropriate moduli space. The analogous statement on
its Brody hyperbolicity is Example 2.7.

Theorem 3.14 (Faltings, Shafarevich’s Conjecture for Principally
Polarized Abelian Varieties). Let k be an algebraically closed field of
characteristic zero. Let g > 1 and let N > 3 be integers. Then, the (fine)

moduli space A[g{\g of g-dimensional principally polarized abelian varieties with
level N structure is a smooth quasi-projective Mordellic variety over k.

Example 2.7 and Theorem 3.14 suggest that there might also be an
analogue of Lang—Vojta’s conjecture for quasi-projective schemes. It seems
reasonable to suspect that an affine variety over k is Mordellic over k if
and only if it is strongly-Brody hyperbolic over k; see for example [46]
for a discussion of Lang’s conjectures in the affine case. However, stating
a reasonable conjecture for quasi-projective varieties requires some care, and
would take us astray from our current objective. We refer the interested
reader to articles of Ascher—Turchet and Campana in this book [8, 16] for a
related discussion, and the book by Vojta [85].

Remark 3.15 (From Shafarevich to Mordell). Let us briefly explain
how Faltings shows that Theorem 3.14 implies Faltings’s finiteness theorem
for curves (Theorem 3.6). Let X be a smooth projective connected curve of
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genus at least two over k. By a construction of Kodaira [69], there is a finite
étale morphism Y —> X, an integer g > 1, and a non-constant morphism
Y — .A[3] Since A ' is Mordellic over k and Y — A[3] has finite fibres, it
follows that Y is Mordelhc over k. As Mordellicity debcends along finite étale
morphisms (Remark 3.5), we conclude that X is Mordellic, as required.

4 Groupless Varieties

To study Lang—Vojta’s conjectures, it is natural to study varieties which
do not “contain” any algebraic groups. Indeed, as we have explained in
Remark 2.4 (resp. Remark 3.7), a Brody hyperbolic variety (resp. a Mordellic
variety) does not admit any non-trivial morphisms from an abelian variety.
For projective varieties, it turns out that this is equivalent to not admitting
a non-constant map from any connected algebraic group (see Lemma 4.4
below).

As before, we let k be an algebraically closed field of characteristic zero.
We start with the following definition.

Definition 4.1. A variety X over k is groupless if every morphism G, , —
X (of varieties over k) is constant, and for every abelian variety A over k,
every morphism A — X is constant.

Remark 4.2. We claim that, for proper varieties, the notion of group-
lessness can be tested on morphisms (or even rational maps) from abelian
varieties. That is, a proper variety X over k is groupless if and only if, for
every abelian variety A over k, every rational map A --» X is constant. To
show this, first note that a morphism G,,; — X extends to a morphism
P, — X and that P} is surjected upon by an elliptic curve. Therefore, if
every morphism from an abelian variety is constant, then X is groupless and
has no rational curves. Now, if X is proper over k and has no rational curves,
every rational map A --+ X with A an abelian variety extends to a morphism
(see [50, Lemma 3.5]). Thus, if every morphism A — X is constant with A
an abelian variety, we conclude that every rational map A --+ X is constant.
This proves the claim. We also conclude that a proper variety is groupless if
and only if it is “algebraically hyperbolic” in Lang’s sense [62, p. 176].

Remark 4.3 (Lang’s Algebraic Exceptional Set). For X a proper
variety over k, Lang defines the algebraic exceptional set Excqiq(X) of X
to be the union of all non-constant rational images of abelian varieties in X.
With Lang’s terminology at hand, as is explained in Remark 4.2, a proper
variety X over k is groupless over k if and only if Excge(X) is empty.

Let us clear up why we refer to this property as groupless.
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Lemma 4.4 (Why Call This Groupless?). A wvariety X over k is
groupless if and only if for all finite type connected group schemes G over
k, every morphism G — X is constant.

Proof. This follows from Chevalley’s structure theorem for algebraic groups
over the algebraically closed field k of characteristic zero. A detailed proof is
given in [50, Lemma 2.5]. O

The notion of grouplessness is well-studied, and sometimes referred to as
“algebraic hyperbolicity” or “algebraic Lang hyperbolicity”; see [43], [62,
page 176], [59, Remark 3.2.24], or [60, Definition 3.4]. We will only use
the term “algebraically hyperbolic” for the notion introduced by Demailly
in [29] (see also [15, 50, 56]). The term “groupless” was first used in [50,
Definition 2.1] and [55, Definition 3.1].

Example 4.5. A zero-dimensional variety is groupless. Note that Pi, A},
A} \ {0} and smooth proper genus one curves over k are not groupless.

Much like Brody hyperbolicity and Mordellicity, grouplessness descends
along finite étale morphisms. We include a sketch of the proof of this simple
fact.

Lemma 4.6 (Descending Grouplessness). Let X — Y be a finite étale
morphism of varieties over k. Then X is groupless over k if and only if Y is
groupless over k.

Proof. If Y is groupless, then X is obviously groupless. Therefore, to prove
the lemma, we may assume that X is groupless. Let G be G, ; or an abelian
variety over k. Let G — Y be a morphism. Consider the pull-back G’ :=
G xy X of G = Y along X — Y. Then, as k is algebraically closed and of
characteristic zero, each connected component of G’ is (or: can be endowed
with the structure of) an algebraic group isomorphic to G, or an abelian
variety over k. Therefore, the morphism G’ — X is constant. This implies
that G — Y is constant. ad

We include an elementary proof of the fact that the classification of one-
dimensional groupless varieties is the same as that of one-dimensional Brody
hyperbolic curves.

Lemma 4.7. A smooth quasi-projective connected curve X over k is grou-
pless over k if and only if X is not isomorphic to Pk, AL, AL\ {0}, nor a
smooth proper connected curve of genus one over k.

Proof. If X is groupless, then X is not isomorphic to PL, A}, Al \ {0}, nor a
smooth proper connected curve of genus one over k; see Example 4.5. Thus
to prove the lemma, we may (and do) assume that X is not isomorphic to
either of these curves. Let Y — X be a finite étale cover of X such that the
smooth projective model Y of Y is of genus at least two. (It is clear that
such a cover exists when X = G, \ {1} or X = E'\ {0} with E an elliptic
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curve over k. This is enough to conclude that such a cover always exists.) By
Lemma 4.6, the variety X is groupless if and only if Y is groupless. Thus,
it suffices to show that Y is groupless. To do so, assume that we have a
morphism G,,  — Y. By Riemann-Hurwitz, this morphism is constant, as
Y has genus at least two. Now, let A be an abelian variety over k and let
A — 'Y be a morphism. To show that this morphism is constant, we compose
A — Y with the Jacobian map Y — Jac(Y) (after choosing some point on
Y). If the morphism A — Y is non-constant, then it is surjective. Since a
morphism of abelian varieties is a homomorphism (up to translation of the
origin), this induces a group structure on the genus > 1 curve Y. However, as
the automorphism group of (the positive-dimensional variety) Y is finite, the
curve Y cannot be endowed with the structure of an algebraic group. This
shows that A — Y is constant, and concludes the proof. O

Bloch—Ochiai-Kawatama’s theorem (Theorem 2.5) and Faltings’s analo-
gous theorem for rational points on closed subvarieties of abelian varieties
(Theorem 3.8) characterize “hyperbolic” subvarieties of abelian varieties. It
turns out that this characterization also holds for groupless varieties, as we
explain now.

If X is a closed subvariety of an abelian variety A over k, we define
the special locus Sp(X) of X to be the union of the translates of positive-
dimensional abelian subvarieties of A contained in X.

Lemma 4.8. Let X be a closed integral subvariety of an abelian variety A
over k. Then X is groupless over k if and only if Sp(X) is empty.

Proof. Clearly, if X is groupless over k, then X does not contain the translate
of a positive-dimensional abelian subvariety of A, so that Sp(X) is empty.
Conversely, assume that X does not contain the translate of a non-zero
abelian subvariety of A. Let us show that X is groupless. Since the Albanese
variety of P} is trivial, any map G, — X is constant. Thus, to conclude
the proof, we have to show that all morphisms A’ — X are constant, where
A’ is an abelian variety over k. To do so, note that the image of A’ — X
in A is the translate of an abelian subvariety of A, as morphisms of abelian
varieties are homomorphisms up to translation. This means that the image
of A/ — X is the translate of an abelian subvariety, hence a point (by our
assumption). O

Remark 4.9. Let A be a simple abelian surface. Let X = A\ {0}. Then
X is groupless. This remark might seem misplaced, but it shows that
“grouplessness” as defined above does not capture the non-hyperbolicity of a
quasi-projective variety. The “correct” definition in the quasi-projective case
is discussed in Section 6 (and is also discussed in [56, 86]).

Although grouplessness does not capture the non-hyperbolicity of quasi-
projective varieties (Remark 4.9), Lang conjectured that grouplessness is
equivalent to being Mordellic and to being Brody hyperbolic (up to choosing
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a model over C) for projective varieties. This brings us to the second form of
Lang-Vojta’s conjecture.

Conjecture 4.10 (Weak Lang—Vojta, IT). Let X be an integral projective
variety over k. Then the following are equivalent.

(1) The projective variety X is Mordellic over k.
(2) The variety X is strongly-Brody hyperbolic over k.
(3) The variety X is groupless over k.

5 Varieties of General Type

In this section we discuss the role of varieties of general type in Lang—Vojta’s
conjecture. Recall that a line bundle L on a smooth projective variety S over
k is big if there is an ample line bundle A and an effective divisor D such that
L =2 A®Og(D); see [64,65]. We follow standard terminology and say that an
integral proper variety X over k is of general type if it has a desingularization
X’ — X with X’ a smooth projective integral variety over k& such that the
canonical bundle wx/;, is a big line bundle. For example, if wx:/;, is ample,
then it is big. Moreover, we will say that a proper variety X over a field k
is of general type if, for every irreducible component Y of X, the reduced
closed subscheme Y;qq is of general type.

Varieties of general type are well-studied; see [64, 65]. For the sake of
clarity, we briefly collect some statements. Our aim is to emphasize the
similarities with the properties presented in the earlier sections.

For example, much like Brody hyperbolicity, Mordellicity, and group-
lessness, the property of being of general type descends along finite étale
morphisms. That is, if X — Y is a finite étale morphism of proper schemes
over k, then X is of general type if and only if Y is of general type. Moreover,
a simple computation of the degree of the canonical bundle of a curve implies
that, if X is a smooth projective connected curve over k, then X is of general
type if and only if genus(X) > 2.

Kawamata and Ueno classified which closed subvarieties of an abelian
variety are of general type. To state their result, for A an abelian variety
over k and X a closed subvariety of A, recall that the special locus Sp(X) of
X is the union of translates of positive-dimensional abelian subvarieties of A
contained in X . Note that Bloch-Ochiai-Kawamata’s theorem (Theorem 2.5)
can be stated as saying that a closed subvariety X of an abelian variety A
over C is Brody hyperbolic if and only if Sp(X) is empty. Similarly, Faltings’s
theorem (Theorem 3.8) can be stated as saying that a closed subvariety of
an abelian variety A over k is Mordellic if and only if Sp(X) is empty. The
latter is also equivalent to saying that X is groupless over k by Lemma 4.8.
The theorem of Kawamata—Ueno now reads as follows.
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Theorem 5.1 (Kawamata—Ueno). Let A be an abelian variety and let X
be a closed integral subvariety of A. Then Sp(X) is a closed subset of X, and
X is of general type if and only if Sp(X) # X.

Note that being of general type and being groupless are not equivalent.
This is not a surprise, as the notion of general type is a birational invariant,
whereas the blow-up of a smooth groupless surface along a point is no
longer groupless. The conjectural relation between varieties of general type
and the three notions (Brody hyperbolicity, Mordellicity, and grouplessness)
introduced above is as follows.

Conjecture 5.2 (Weak Lang—Vojta, IIT). Let X be an integral projective
variety over k. Then the following are equivalent.

(1) The projective variety X is Mordellic over k.

(2) The variety X is strongly-Brody hyperbolic over k.
(8) Every integral subvariety of X is of general type.
(4) The variety X is groupless over k.

Note that the notion of general type is a birational invariant, but hyper-
bolicity is not. What should (conjecturally) correspond to being of general
type? The highly optimistic conjectural answer is that being of general type
should correspond to being “pseudo”-Brody hyperbolic, “pseudo”-Mordellic,
and “pseudo”-groupless. The definitions of these notions are essentially the
same as given above, the only difference being that one has to allow for an
“exceptional locus”. In the following sections we will make this more precise.

6 Pseudo-Grouplessness

Let k be an algebraically closed field of characteristic zero. Roughly speaking,
a projective variety X over k is groupless if it admits no non-trivial morphisms
from a connected algebraic group. Conjecturally, a projective variety X over
k is groupless if and only if every subvariety of X is of general type. To see
what should correspond to being of general type, we will require the more
general notion of pseudo-grouplessness.

Definition 6.1. Let X be a variety over k and let A C X be a closed
subset. We say that X is groupless modulo A (over k) if, for every finite type
connected group scheme G over k and every dense open subscheme U C G
with codim(G\U) > 2, every non-constant morphism U — X factors over A.

Hyperbolicity modulo a subset was first introduced by Kiernan—Kobayashi
[58], and is thoroughly studied in Kobayashi’s book [59]. As we will see below,
it is quite natural to extend the study of hyperbolic varieties to the study of
varieties which are hyperbolic modulo a subset.
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For proper schemes, the notion of “groupless modulo the empty set”
coincides with the notion of grouplessness introduced before (and studied
in [49, 50, 55]). For the reader’s convenience, we include a detailed proof of
this.

Lemma 6.2. Let X be a proper scheme over k. Then the following are
equivalent.

(1) The scheme X is groupless modulo the empty subscheme 0 over k.

(2) The scheme X is groupless.

(8) For every finite type connected group scheme G over k and every dense
open subscheme V' C G, every morphism V — X is constant.

Proof. Tt is clear that (1) implies (2). To show that (2) implies (3), let G
be a finite type connected group scheme over k, let V' C G be a dense open
subscheme, and let f : V — X be a morphism of schemes over k. Then,
as X is proper over k, there is an open subscheme U C G containing V
with codim(G \ U) > 2 such that the morphism f : V — X extends to a
morphism f': U — X. Since X is groupless and proper, it does not contain
any rational curves. Therefore, as the variety underlying G is smooth over k
[81, Tag 047N], it follows from [50, Lemma 3.5] (see also [27, Corollary 1.44])
that the morphism f’: U — X extends (uniquely) to a morphism f”: G —
X. Since X is groupless, the morphism f” is constant. This implies that f is
constant. Finally, it is clear (from the definitions) that (3) implies (1). O

Definition 6.3. A variety X is pseudo-groupless (over k) if there is a proper
closed subset A C X such that X is groupless modulo A.

The word “pseudo” in this definition refers to the fact that the non-
hyperbolicity of the variety is concentrated in a proper closed subset. Note
that a variety X is pseudo-groupless if and only if every irreducible component
of X is pseudo-groupless.

Example 6.4. Let C be smooth projective connected curve of genus at least
two and let X be the blow-up of C' x C' in a point. Then X is not groupless.
However, its “non-grouplessness” is contained in the exceptional locus A of
the blow-up X — C x C. Thus, as X is groupless modulo A, it follows that
X is pseudo-groupless.

Let us briefly say that an open subset U of an integral variety V is big
if codim(V \ U) is at least two. Now, the reader might wonder why we test
pseudo-grouplessness on maps whose domain is a big open subset of some
algebraic group. The example to keep in mind here is the blow-up of a simple
abelian surface in its origin. In fact, as we test pseudo-grouplessness on big
open subsets of abelian varieties (and not merely maps from abelian varieties),
such blow-ups are not pseudo-groupless. Also, roughly speaking, one should
consider big open subsets of abelian varieties as far as possible from being
hyperbolic, in any sense of the word “hyperbolic”. For example, much like
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how abelian varieties admit a dense entire curve (Remark 2.4), a big open
subset of an abelian variety admits a dense entire curve. This is proven using
Sard’s theorem in [86]. Thus, big open subsets of abelian varieties are also
as far as possible from being Brody hyperbolic.

We now show that the statement of Lemma 4.6 also holds in the “pseudo”
setting, i.e., we show that pseudo-grouplessness descends along finite étale
morphisms. As we have mentioned before, this descent property also holds
for general type varieties.

Lemma 6.5. Let f : X — Y be a finite étale morphism of varieties over
k. Then X is pseudo-groupless over k if and only if Y is pseudo-groupless
over k.

Proof. We adapt the arguments in the proof of [55, Proposition 2.13]. First,
if Y is groupless modulo a proper closed subset Ay C Y, then clearly X
is groupless modulo the proper closed subset f~!(Ay). Now, assume that
X is groupless modulo a proper closed subset Ax C X. Let G be a finite
type connected (smooth quasi-projective) group scheme over k, let U C G
be a dense open subscheme with codim(G\ U) > 2 and let ¢ : U — Y be
a morphism which does not factor over f(Ax). The pull-back of G — Y
along the finite étale morphism f : X — Y induces a finite étale morphism
V:=U xy X — U. Since U is smooth over k, by purity of the branch locus
[39, Théoreéme X.3.1], the finite étale morphism V' — U extends (uniquely) to
a finite étale morphism G’ — G. Note that every connected component G” of
G’ has the structure of a finite type connected group scheme over k (and with
this structure the morphism G — G is a homomorphism). Now, since smooth
morphisms are codimension-preserving, we see that codim(G” \ V) > 2. As
the morphism V' — X does not factor over f~1(f(Ax)), it does not factor
over Ax, and is thus constant (as X is groupless modulo Ax). This implies
that the morphism U — Y is constant, as required. a

Remark 6.6 (Birational Invariance). Let X and Y be proper schemes
over k. Assume that X is birational to Y. Then X is pseudo-groupless over k
if and only if Y is pseudo-groupless over k. This is proven in [56]. Thus,
as pseudo-grouplessness is a birational invariant among proper varieties,
this notion is more natural to study from a birational perspective than
grouplessness.

Remark 6.7. Contrary to a hyperbolic proper variety, a proper pseudo-
groupless variety could have rational curves. For example, the blow-up of the
product of two smooth curves of genus two in a point (as in Example 6.4)
contains precisely one rational curve. However, a pseudo-groupless proper
variety is not covered by rational curves, i.e., it is non-uniruled, as all rational
curves are contained in a proper closed subset (by definition).

Remark 6.8. Let X be a proper scheme over k and let A C X be a closed
subset. It follows from the valuative criterion of properness that X is groupless
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modulo A if and only if, for every finite type connected group scheme G over k
and every dense open subscheme U C G, any non-constant morphism U — X
factors over A.

Recall that Lemma 4.4 says that the grouplessness of a proper variety
entails that there are no non-constant morphisms from any connected
algebraic group. One of the main results of [56] is the analogue of Lemma 4.4
for pseudo-groupless varieties. The proof of this result (see Theorem 6.9
below) relies on the structure theory of algebraic groups.

Theorem 6.9. If X is a proper scheme X over k and A is a closed subset
of X, then X 1is groupless modulo A over k if and only if, for every abelian
variety A over k and every open subscheme U C A with codim(A\ U) > 2,
every non-constant morphism of varieties U — X factors over A.

Theorem 6.9 says that the pseudo-grouplessness of a proper variety can be
tested on morphisms from big open subsets of abelian varieties (or on rational
maps from abelian varieties). A similar, but different, statement holds for
affine varieties. Indeed, if X is an affine variety over k, then X is groupless
modulo A C X if and only if every non-constant morphism G, , — X factors
over A.

Lang conjectured that a projective variety is pseudo-groupless if and only
if it is of general type. Note that, by the birational invariance of these two
notions, this conjecture can be reduced to the case of smooth projective
varieties by Hironaka’s resolution of singularities.

Conjecture 6.10 (Strong Lang—Vojta, I). Let X be an integral projec-
tive variety over k. Then X is pseudo-groupless over k if and only if X is of
general type over k.

Note that this conjecture predicts more than the equivalence of (3) and (4)
in Conjecture 5.2. Also, even though it is stated for projective varieties, one
could as well formulate the conjecture for proper varieties (or even proper
algebraic spaces). The resulting “more general” conjecture actually follows
from the above conjecture.

Example 6.11. By Kawamata—Ueno’s theorem (Theorem 5.1) and
Lemma 4.8, the Strong Lang—Vojta conjecture holds for closed subvarieties
of abelian varieties.

Remark 6.12. If X is a proper pseudo-groupless surface, then X is
of general type (see [56] for a proof). For higher-dimensional varieties,
Conjecture 6.10 predicts a similar statement, but this is not even known
for threefolds. However, assuming the Abundance Conjecture and certain
conjectures on Calabi—Yau varieties, one can show that every proper pseudo-
groupless variety is of general type (i.e.,, (1) = (2) in Conjecture 6.10).
Regarding the implication (2) = (1), not much is known beyond the one-
dimensional case. For example, if X is a proper surface of general type, then
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Conjecture 6.10 implies that there should be a proper closed subset A C X
such that every rational curve C' C X is contained in A. Such statements are
known to hold for certain surfaces of general type by the work of Bogomolov
and McQuillan; see [30, 71].

7 Pseudo-Mordellicity and Pseudo-Arithmetic
Hyperbolicity

In the previous section, we introduced pseudo-grouplessness and stated Lang—
Vojta’s conjecture that a projective variety is of general type if and only if it
is pseudo-groupless. In this section, we explain what the “pseudo” analogue
is of the notion of Mordellicity, and explain Lang—Vojta’s conjecture that a
projective variety is of general type if and only if it is pseudo-Mordellic.

7.1 Pseudo-Arithmetic Hyperbolicity

As we have said before, Lang coined the term “Mordellic”. We will now
introduce the related (and a priori different) notion of arithmetic hyperbolic-
ity (as defined in [49, 52, 53]); see also [83, §2], and [10, 11]. In Section 3 we
ignored that the extension of the notion of Mordellicity over Q to arbitrary
algebraically closed fields can actually be done in two a priori different ways.
We discuss both notions now and give them different names. We refer the
reader to Section 3 for our conventions regarding models of varieties, and we
continue to let k£ denote an algebraically closed field of characteristic zero.

Definition 7.1. Let X be a variety over k and let A be a closed subset of
X. We say that X is arithmetically hyperbolic modulo A over k if, for every
Z-finitely generated subring A and every model X for X over A, we have
that every positive-dimensional irreducible component of the Zariski closure
of X(A) in X is contained in A.

Definition 7.2. A variety X over k is pseudo-arithmetically hyperbolic over
k if there is a proper closed subset A C X such that X is arithmetically
hyperbolic modulo A over k.

Remark 7.3. A variety X over k is arithmetically hyperbolic over k
(as defined in [49] and [53, §4]) if and only if X is arithmetically hyperbolic
over k modulo the empty subscheme.

Lemma 7.4 (Independence of Model). Let X be a variety over k and
let A be a closed subset of k. Then the following are equivalent.

(1) The finite type scheme X over k is arithmetically hyperbolic modulo A.
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(2) There is a Z-finitely generated subring A C k, there is a model X for X
over A, and there is a model D C X for A C X over A such that, for
every Z-finitely generated subring B C k containing A, the set

X(B)\D(B)

s finite.

Proof. This follows from standard spreading out arguments. These type of
arguments are used in [53] to prove more general statements in which the
objects are algebraic stacks. O

Remark 7.5. We unravel what the notion of arithmetic hyperbolicity
modulo A entails for affine varieties. To do so, let X be an affine variety over
k, and let A be a proper closed subset of X. Choose the following data.

e integers n,d,m > 1;

e polynomials f1,..., fn € k[x1,...,2m];

e polynomials dy,...,ds € k[z1,...,Zn];

¢ an isomorphism

X = SpeC(k[(El,...,xm]/(flwuvfn));

* an isomorphism
A = Spec(k[z1,...,2m]/(d1,. .., ds)).

Let Ag be the Z-finitely generated subring of k generated by the (finitely
many) coefficients of the polynomials f1, ..., fn,d1, ..., ds. Now, the following
statements are equivalent.

(1) The variety X is arithmetically hyperbolic modulo A over k.
(2) For every Z-finitely generated subring A C k containing Ay, the set

{a€A™ | fi(a) =...= fula) = 0}\{a € A™ | dy(a) = ... = ds(a) = 0}

is finite.

Thus, roughly speaking, one could say that an algebraic variety over k is
arithmetically hyperbolic modulo A over k if “X minus A” has only finitely
many A-valued points, for any choice of finitely generated subring A C k.

7.2 Pseudo-Mordellicity

The reader might have noticed a possibly confusing change in terminology.
Why do we not refer to the above notion as being “Mordellic modulo A”?
The precise reason brings us to a subtle point in the study of integral points
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valued in higher-dimensional rings (contrary to those valued in Ok g with S
a finite set of finite places of a number field K'). To explain this subtle point,
let us first define what it means to be pseudo-Mordellic. For this definition,
we will require the notion of “near-integral” point (Definition 3.11).

Definition 7.6. Let X be a variety over k and let A be a closed subset
of X. We say that X is Mordellic modulo A over k if, for every Z-finitely
generated subring A and every model X for X over A, we have that every
positive-dimensional irreducible component of the Zariski closure of X'(A)™M)
in X is contained in A, where X' (A)™") is defined in Definition 3.11.

Remark 7.7. Let X be a proper scheme over k and let A be a closed subset
of X. Then, by the valuative criterion of properness, the proper scheme X is
Mordellic modulo A if, for every finitely generated subfield K C k and every
proper model X over K, the set X'(K)\ A is finite.

Definition 7.8. A variety X over k is pseudo-Mordellic over k if there is a
proper closed subset A C X such that X is Mordellic modulo A over k.

Note that X is Mordellic over k (as defined in Section 3) if and only if X is
Mordellic modulo the empty subset. It is also clear from the definitions that, if
X is Mordellic modulo A over k, then X is arithmetically hyperbolic modulo
A over k. In particular, a pseudo-Mordellic variety is pseudo-arithmetically
hyperbolic and a Mordellic variety is arithmetically hyperbolic. Indeed,
roughly speaking, to say that a variety is arithmetically hyperbolic is to
say that any set of integral points on it is finite, and to say that a variety is
Mordellic is to say that any set of “near-integral” points on it is finite. The
latter sets are a priori bigger. However, there is no difference between these
two sets when k = Q. That is, a variety X over Q is arithmetically hyperbolic
modulo A if and only if it is Mordellic modulo A over Q.

Following the exposition in the previous sections, let us prove the fact that
pseudo-arithmetic hyperbolicity (resp. pseudo-Mordellicity) descends along
finite étale morphisms of varieties.

Theorem 7.9 (Chevalley—Weil). Let f : X — Y be a finite étale
surjective morphism of varieties over k. Let A C X be a closed subset. If X
is Mordellic modulo A over k (resp. arithmetically hyperbolic modulo A over
k), then'Y is Mordellic modulo f(A) over k (resp. arithmetically hyperbolic
modulo f(A) over k).

Proof. We assume that X is Mordellic modulo A, and show that Y is
Mordellic modulo f(A). (The statement concerning arithmetic hyperbolicity
is proven similarly.)

Let A C k be a regular Z-finitely generated subring, let X be a model for
X over A, let ) be a model for Y over A, and let F': X — ) be a finite étale
surjective morphism such that Fj, = f. Assume for a contradiction that Y is
not Mordellic modulo f(A). Then, replacing A by a larger regular Z-finitely
generated subring of k if necessary, for i = 1,2,..., we may choose pairwise
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distinct elements a; of Y(A)) whose closure in Y is an irreducible positive-
dimensional subvariety R C Y such that R ¢ f(A). For every ¢ = 1,2,...,
choose a dense open subscheme U; of Spec A whose complement in Spec A has
codimension at least two and such that a; defines a morphism a; : U; — X.
Consider V; := U; xy p X — X, and note that V; — U, is finite étale.
By Zariski-Nagata purity of the branch locus [39, Théoreme X.3.1], the
morphism V; — U, extends to a finite étale morphism Spec B, — A. By
Hermite’s finiteness theorem, as the degree of B; over A is bounded by deg(f),
replacing a; by an infinite subset if necessary, we may and do assume that
B:= B; = By = B3 = .... Now, the b; : V; — X define elements in X'(B)™).
Let S be their closure in X. Note that R C S. In particular, S ¢ A. This
contradicts the fact that X is Mordellic modulo A. Thus, we conclude that
Y is Mordellic modulo f(A). O

Corollary 7.10 (Pseudo-Chevalley—Weil). Let f : X — Y be a finite
étale surjective morphism of finite type separated schemes over k. Then X is
pseudo-Mordellic over k if and only if Y is pseudo-Mordellic over k.

Proof. Since f : X — Y has finite fibres, the fibres of f are Mordellic over k.
Therefore, if Y is pseudo-Mordellic over k, it easily follows that X is pseudo-
Mordellic over k. Conversely, if X is pseudo-Mordellic over k, then it follows
from Theorem 7.9 that Y is pseudo-Mordellic over k. a

Corollary 7.11 (Pseudo-Chevalley—Weil, II). Let f : X — Y be a
finite étale surjective morphism of finite type separated schemes over k. Then
X is pseudo-arithmetically hyperbolic over k if and only if Y is pseudo-
arithmetically hyperbolic over k.

Proof. Similar to the proof of Corollary 7.10. a

Remark 7.12 (Birational Invariance). The birational invariance of the
notion of pseudo-Mordellicity is essentially built into the definition. Indeed,
the infinitude of the set of near-integral points is preserved under proper
birational modifications. More precisely, let X and Y be proper integral
varieties over k which are birational. Then X is pseudo-Mordellic over k
if and only if Y is pseudo-Mordellic over k.

It is not clear to us whether the notion of pseudo-arithmetic hyperbolicity
over k is a birational invariant for proper varieties over k, unless k = Q.
Similarly, it is not so clear to us whether pseudo-arithmetically hyperbolic
proper varieties are pseudo-groupless. On the other hand, this is not so hard
to prove for pseudo-Mordellic varieties.

Theorem 7.13. If X is a pseudo-Mordellic proper variety over k, then X
18 pseudo-groupless over k.

Proof. The fact that an arithmetically hyperbolic variety is groupless is
proven in [49, §3] using the potential density of rational points on an abelian
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variety over a field K of characteristic zero (Remark 3.7). The statement of
the theorem is proven in [56] using similar arguments. a

Remark 7.14. Let X be a proper surface over k. If X is pseudo-Mordellic
over k, then X is of general type. To prove this, note that X is pseudo-
groupless (Theorem 7.13), so that the claim follows from the fact that pseudo-
groupless proper surfaces are of general type; see Remark 6.12.

Recall that a closed subvariety X of an abelian variety A is groupless
modulo its special locus Sp(X), where Sp(X) is the union of translates of
non-zero abelian subvarieties of A contained in X. (We are freely using here
Kawamata—Ueno’s theorem that Sp(X) is a closed subset of X.) This was
proven in Lemma 4.8. In [34] Faltings proved the arithmetic analogue of this
statement.

Theorem 7.15 (Faltings). Let A be an abelian variety over k, and let X C
A be a closed subvariety. Then X is Mordellic modulo Sp(X).

Lang and Vojta conjectured that a projective variety over Q is pseudo-
Mordellic if and only if it is of general type. We propose extending this to
arbitrary algebraically closed fields of characteristic zero. As we also expect
the notions of pseudo-arithmetic hyperbolicity and pseudo-Mordellicity to
coincide, we include this in our version of the Lang—Vojta conjecture.

Conjecture 7.16 (Strong Lang—Vojta, II). Let X be an integral projec-
tive variety over k. Then the following statements are equivalent.

(1) The variety X is pseudo-Mordellic over k.

(2) The variety X is pseudo-arithmetically hyperbolic over k.
(3) The variety X is pseudo-groupless over k.

(4) The projective variety X is of general type over k.

This is a good time to collect examples of arithmetically hyperbolic
varieties.

Example 7.17. It follows from Faltings’s theorem [34] that a normal
projective connected pseudo-groupless surface X over k with h'(X,0x) > 2
is pseudo-Mordellic. Let us prove this claim. To do so, let A C X be a
proper closed subset such that X is groupless modulo A. Moreover, let A
be the Albanese variety of X, let p : X — A be the canonical map (after
choosing some basepoint in X (k)), and let Y be the image of X in A. Note
that dimY > 1. If dimY = 1, then the condition on the dimension of A
implies that Y is not an elliptic curve. In this case, since dim X = 2 and
dimY = 1, the claim follows from Faltings’s (earlier) finiteness theorem for
hyperbolic curves. However, if dimY = 2, we have to appeal to Faltings’s
Big Theorem. Indeed, in this case, the morphism X — Y is generically finite.
Let X — X’ — Y be the Stein factorization of the morphism X — Y,
where X’ — Y is a finite morphism with X’ normal. Since X and X’ are
birational, it suffices to show that X’ is pseudo-Mordellic (by the birational
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invariance of pseudo-Mordellicity and pseudo-grouplessness). Thus, we may
and do assume that X = X’, so that X — A is finite. If the rational points on
X are dense, then they are also dense in Y, so that Y is an abelian subvariety
of A, contradicting our assumption that h!(X,Ox) = dim A > 2. Thus, the
rational points on X are not dense. In particular, every irreducible component
of the closure of a set of rational points on X is a curve of genus 1 (as X
does not admit any curves of genus zero). Since X is pseudo-groupless, these
components are contained in A.

Example 7.18. Let X be a smooth projective connected curve over k, let
n > 1 be an integer, and let A be a proper closed subset of Sym'y. It follows
from Faltings’s theorem that Sym’ is groupless modulo A over k if and only
if Sym'y is arithmetically hyperbolic modulo A over k.

Example 7.19 (Moriwaki). Let X be a smooth projective variety over k
such that QY is ample and globally generated. Then X is Mordellic by a
theorem of Moriwaki [73]; see [7] for the analogous finiteness result in the
logarithmic case.

Example 7.20. For every Z-finitely generated normal integral domain A of
characteristic zero, the set of A-isomorphism classes of smooth sextic surfaces
in P3 is finite; see [54]. This finiteness statement can be reformulated as
saying that the moduli stack of smooth sextic surfaces is Mordellic.

Example 7.21. Let X be a smooth proper hyperkaehler variety over k with
Picard number at least three. Then X is not arithmetically hyperbolic; see
[49].

7.3 Intermezzo: Arithmetic Hyperbolicity
and Mordellicity

Let k be an algebraically closed field of characteristic zero. In this section, we
show that the (a priori) difference between arithmetic hyperbolicity (modulo
some subset) and Mordellicity is quite subtle, as this difference disappears in
many well-studied cases.

The following notion of purity for models over Z-finitely generated rings
was first considered in [15] precisely to study the a priori difference between
arithmetic hyperbolicity and Mordellicity.

Definition 7.22 (Pure Model). Let X be a variety over k and let A C k be
a subring. A model X for X over A is pure over A (or: satisfies the extension
property over A) if, for every smooth finite type separated integral scheme T'
over A, every dense open subscheme U C T with T\ U of codimension at least
two in T, and every A-morphism f : U — X, there is a (unique) morphism
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f: T — X extending the morphism f. (The uniqueness of the extension f
follows from our convention that a model for X over A is separated.)

Remark 7.23. Let X be a variety over k, and let A C k be a subring. Let
X be a pure model for X over A, and let B C k be a subring containing A
such that Spec B — Spec A is smooth (hence finite type). Then Xp is pure
over B.

Definition 7.24. A variety X over k has an arithmetically pure model if
there is a Z-finitely generated subring A C k and a pure model X for X
over A.

Remark 7.25. Let X be a proper variety over k£ which has an arithmetically
pure model. Then X has no rational curves. To prove this, assume that
P} — X is a non-constant (hence finite) morphism, i.e., the proper variety X
has a rational curve over k. Then, if we let 0 denote the point (0:0: 1) in P2,
the composed morphism PZ \ {0} — P} — X does not extend to a morphism
from PZ to X. Now, choose a Z-finitely generated subring A C k and a model
X over A such that the morphism P} — X descends to a morphism P}y — X
of A-schemes. Define U = P2 \ {0} and T = P%, where we let {0} denote the
image of the section of P4 — Spec A induced by 0 in PZ. Since the morphism
Ui — X does not extend to a morphism T}, — Xj, we see that the morphism
U — X does not extend to a morphism 7" — X, so that X’ is not pure. This
shows that a proper variety over k with a rational curve has no arithmetically
pure model.

Remark 7.26. Let X be a proper variety over k. A pure model for X
over a Z-finitely generated subring A of k& might have rational curves in
every special fibre (of positive characteristic). Examples of such varieties can
be constructed as complete subvarieties of the moduli space of principally
polarized abelian varieties.

Remark 7.27. Let X be a smooth projective variety over k. If Qk/k is
ample, then X has an arithmetically pure model. Indeed, choose a Z-finitely
generated subring A C k with A smooth over Z and a smooth projective
model X" for X over A such that Qx4 is ample. Then, the geometric fibres of
X — Spec A do not contain any rational curves, so that [37, Proposition 6.2]
implies that X is a pure model for X over A.

Remark 7.28. Let £ C L be an extension of algebraically closed fields
of characteristic zero, and let X be a variety over k. Then X has an
arithmetically pure model if and only if X has an arithmetically pure model.

Theorem 7.29. Let X be a variety over k which has an arithmetically pure
model. Let A C X be a closed subset. Then X is Mordellic modulo A over k
if and only if X is arithmetically hyperbolic modulo A over k.
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Proof. We follow the proof of [15, Theorem 8.10]. Suppose that X is
arithmetically hyperbolic modulo A over k. Let A C k be a Z-finitely
generated subring and let X be a pure model for X over A. It suffices to
show that, for every Z-finitely generated subring B C k containing A, the set
X(B)MW\ A is finite. To do so, we may and do assume that Spec B — Spec A
is smooth in which case it follows from the definition of a pure model that
X(B)M) = X(B). We conclude that

XB)W\A=X(B)\A

is finite. This shows that X is Mordellic modulo A over k. O

Lemma 7.30 (Affine Varieties). Let X be an affine variety over k. Then
X has an arithmetically pure model.

Proof. Affine varieties have an arithmetically pure model by Hartog’s Lemma.
O

Lemma 7.31. Let X be a variety over k which admits a finite morphism to
some semi-abelian variety over k. Then X has an arithmetically pure model.

Proof. Let G be a semi-abelian variety and let X — G be a finite morphism.
It follows from Hartog’s Lemma that X has an arithmetically pure model if
and only if G has an arithmetically pure model. Choose a Z-finitely generated
subring and a model G for G over A such that G — SpecA is a semi-
abelian scheme. Then, this model G has the desired extension property by
[72, Lemma A.2], so that G (hence X) has an arithmetically pure model. O

Remark 7.32. Let X be a projective integral groupless surface over k
which admits a non-constant map to some abelian variety. Then X has an
arithmetically pure model by [15, Lemma 8.11].

Corollary 7.33. Let X be an integral variety over k, and let A C X be a
closed subset. Assume that one of the following statements holds.

(1) The variety X is affine over k.

(2) There is a finite morphism X — G with G a semi-abelian variety over k.

(8) We have that X is a groupless surface which admits a non-constant
morphism X — A with A an abelian variety over k.

Then X is arithmetically hyperbolic modulo A over k if and only if X is
Mordellic modulo A over k.

Proof. Assume (1). Then the statement follows from Lemma 7.30 and
Theorem 7.29. Similarly, if (2) holds, then the statement follows from
Lemma 7.31 and Theorem 7.29. Finally, assuming (3), the statement follows
from Remark 7.32 and Theorem 7.29. O

Remark 7.34. Let g > 1 and N > 3 be integers. Now, if X is the fine moduli
space of g-dimensional principally polarized abelian schemes over k with level
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Q structure, then X has an arithmetically pure model. As is explained in
[68], this is a consequence of Grothendieck’s theorem on homomorphisms
of abelian schemes [40]. The existence of such a model is used by Martin-
Deschamps to deduce the Mordellicity of X} over k from the Mordellicity of

X over Q (cf. Theorem 3.14).

8 Pseudo-Brody Hyperbolicity

The notion of pseudo-hyperbolicity appeared first in the work of Kiernan and
Kobayashi [58] and afterwards in Lang [62]; see also [59]. We recall some of
the definitions.

Definition 8.1. Let X be a variety over C and let A be a closed subset
of X. We say that X is Brody hyperbolic modulo A if every holomorphic
non-constant map C — X" factors over A.

Definition 8.2. A variety X over C is pseudo-Brody hyperbolic if there is a
proper closed subset A C X such that X is Brody hyperbolic modulo A.

Green—Griffiths and Lang conjectured that a projective integral variety of
general type is pseudo-Brody hyperbolic. The conjecture that a projective
integral variety is of general type if and only if it is pseudo-Brody hyperbolic
is commonly referred to as the Green—Griffiths—Lang conjecture.

Note that the notion of pseudo-Brody hyperbolicity is a birational invari-
ant. More precisely, if X and Y are proper integral varieties over C which
are birational, then X is pseudo-Brody hyperbolic if and only if Y is pseudo-
Brody hyperbolic. Furthermore, just like the notions of pseudo-Mordellicity
and pseudo-grouplessness, the notion of pseudo-Brody hyperbolicity descends
along finite étale morphisms. That is, if X — Y is finite étale, then X is
pseudo-Brody hyperbolic if and only if Y is pseudo-Brody hyperbolic. Also,
it is not hard to show that, if a variety X is Brody hyperbolic modulo A,
then X is groupless modulo A.

Note that a variety X is Brody hyperbolic (as defined in Section 2) if
and only if X is Brody hyperbolic modulo the empty set. Bloch—Ochiai—
Kawamata’s theorem classifies Brody hyperbolic closed subvarieties of abelian
varieties. In fact, their result is a consequence of the following more general
statement (also proven in [57]).

Theorem 8.3 (Bloch—Ochiai-Kawamata). Let X be a closed subvariety
of an abelian variety A. Let Sp(X) be the special locus of X. Then Sp(X) is
a closed subset of X and X is Brody hyperbolic modulo Sp(X).

We now introduce the pseudo-analogue of Kobayashi hyperbolicity for
algebraic varieties. Of course, these definitions make sense for complex-
analytic spaces.
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Definition 8.4. Let X be a variety over C and let A be a closed subset of
X. We say that X is Kobayashi hyperbolic modulo A if, for every x and y in
Xon\ A with 2 # y, the Kobayashi pseudo-distance dxan(p, q) is positive.

Definition 8.5. A variety X over C is pseudo-Kobayashi hyperbolic if there
is a proper closed subset A C X such that X is Kobayashi hyperbolic
modulo A.

It is clear from the definitions and the fact that the Kobayashi pseudo-
metric vanishes everywhere on C, that a variety X which is Kobayashi
hyperbolic modulo a closed subset A C X is Brody hyperbolic modulo
A. Nonetheless, the notion of pseudo-Kobayashi hyperbolicity remains quite
mysterious at the moment. Indeed, we do not know whether a pseudo-Brody
hyperbolic projective variety X over C is pseudo-Kobayashi hyperbolic.

One can show that the notion of pseudo-Kobayashi hyperbolicity is a
birational invariant. That is, if X and Y are proper integral varieties over
C which are birational, then X is pseudo-Kobayashi hyperbolic if and
only if YV is pseudo-Kobayashi hyperbolic; see [59]. Moreover, just like the
notions of pseudo-Mordellicity and pseudo-grouplessness, pseudo-Kobayashi
hyperbolicity descends along finite étale morphisms.

Yamanoi proved the pseudo-Kobayashi analogue of Bloch—Ochiai—
Kawamata’s theorem for closed subvarieties of abelian varieties; see [88,
Theorem 1.2].

Theorem 8.6 (Yamanoi). Let X be a closed subvariety of an abelian
variety A. Let Sp(X) be the special locus of X. Then Sp(X) is a closed subset
of X and X is Kobayashi hyperbolic modulo Sp(X).

The Lang—Vojta conjecture and the Green—Griffiths conjecture predict
that the above notions of hyperbolicity are equivalent. To state this conjec-
ture, we will need one more definition. (Recall that & denotes an algebraically
closed field of characteristic zero.)

Definition 8.7. A variety X over k is strongly-pseudo-Brody hyperbolic
(resp. strongly-pseudo-Kobayashi hyperbolic) if, for every subfield ky C k,
every model X for X over kg, and every embedding kg — C, the variety X ¢
is pseudo-Brody hyperbolic (resp. pseudo-Kobayashi hyperbolic).

Conjecture 8.8 (Strong Lang—Vojta, III). Let X be an integral projec-
tive variety over k. Then the following statements are equivalent.

(1) The variety X is strongly-pseudo-Brody hyperbolic over k.

(2) The variety X is strongly-pseudo-Kobayashi hyperbolic over k.

(8) The projective variety X is pseudo-Mordellic over k.

(4) The projective variety X is pseudo-arithmetically hyperbolic over k.
(5) The projective variety X is pseudo-groupless over k.

(6) The projective variety X is of general type over k.
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As stated this conjecture does not predict that every conjugate of a pseudo-
Brody hyperbolic variety is again pseudo-Brody hyperbolic. We state this as
a separate conjecture, as we did in Conjecture 3.10 for Brody hyperbolic
varieties.

Conjecture 8.9 (Conjugates of Pseudo-Brody Hyperbolic Vari-
eties). If X is an integral variety over k and o is a field automorphism of
k, then the following statements hold.

(1) The variety X is pseudo-Brody hyperbolic if and only if X is pseudo-
Brody hyperbolic.

(2) The variety X is pseudo-Kobayashi hyperbolic if and only if X7 is
pseudo-Kobayashi hyperbolic.

We conclude this section with a brief discussion of a theorem of Kwack on
the algebraicity of holomorphic maps to a hyperbolic variety, and a possible
extension of his result to the pseudo-setting.

Remark 8.10 (Borel Hyperbolicity). Let X be a variety over C and let
A C X be a closed subset. We extend the notion of Borel hyperbolicity
introduced in [51] to the pseudo-setting and say that X is Borel hyperbolic
modulo A if, for every reduced variety S over C, every holomorphic map f :
San — X with f(S%") ¢ A®® is the analytification of a morphism ¢ : S —
X. The proof of [51, Lemma 3.2] shows that, if X is Borel hyperbolic modulo
A, then it is Brody hyperbolic modulo A. In [61] Kwack showed that, if X is
a proper Kobayashi hyperbolic variety, then X is Borel hyperbolic (modulo
the empty set). It seems reasonable to suspect that Kwack’s theorem also
holds in the pseudo-setting. Thus, we may ask: if X is Kobayashi hyperbolic
modulo A, does it follow that X is Borel hyperbolic modulo A?

The reader interested in investigating further complex-analytic notions
of hyperbolicity is also encouraged to have a look at the notion of taut-
hyperbolicity modulo a subset introduced by Kiernan—Kobayashi [58]; see
also [59, Chapter 5].

9 Algebraic Hyperbolicity

In the following three sections we investigate (a priori) different function field
analogues of Mordellicity. Conjecturally, they are all equivalent notions. At
this point it is also clear that h