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Preface

This book aims at introducing a wide audience ranging from number theorists
with a basic course in algebraic geometry under the belt to complex geometers
to some of the exciting developments around the theme of hyperbolicity and
the fundamental conjectures of Bombieri, Lang, Vojta, and others, beyond
the well-known case of curves. Recall that Faltings’s theorem (née Mordell
conjecture) states that the number of rational points of a curve of genus
greater or equal than two over any number field is finite. Analogues of the
abovementioned conjectures exist with suitable modifications over function
fields, and we have tried emphasizing this point in the book especially
for function fields of characteristic zero. Therefore, some readers might be
stimulated to investigate the more subtle, yet still tractable analogues of
the works mentioned therein over function fields of positive characteristic in
higher dimensions. As of 2020, the original conjectures are still very wide
open over number fields. Classes of examples for which they are known are
documented in chapters “The Lang–Vojta Conjectures on Projective Pseudo-
Hyperbolic Varieties” and “Hyperbolicity of Varieties of Log General Type”.
In some special cases, much stronger and presumably much harder to prove
statements are expected to be true. For example, the generalized Fermat
equation

xm + yn = zr,

where x, y, z,m, n, r are positive integers with m,n, r > 2 and x, y, z are
pairwise coprime, is known by a theorem of Darmon–Granville of 1995 to
have at most finitely many solutions for fixed m,n, r, and its proof relies on
orbifold curves and a dévissage to Faltings’s theorem, see chapter “Arithmetic
Aspects of Orbifold Pairs” for a sketch of the proof. On the other hand, Beal’s
much harder conjecture states that the generalized Fermat equation should
have no such solutions with coprime factors whatsoever.

v



vi Preface

To capture the original atmosphere of the delightful lectures in Montréal
in 2018 and 2019, we give a very brief description of the chapters’ contents
in French in the following lines; for more details (in English), the reader is
referred to the introductory section of the corresponding chapter.

∗ ∗ ∗

Cet ouvrage comporte quatre chapitres.
Le premier chapitre intitulé Lectures on the Ax–Schanuel Conjecture par

Benjamin Bakker et Jacob Tsimerman, explique les grandes lignes de la
preuve de la conjecture d’Ax–Schanuel pour les variations des structures de
Hodge reposant sur les techniques de géométrie o-minimale. Les résultats
originaux expliqués ici ont paru en 2019 sous forme d’article de recherche.

Le second chapitre intitulé Arithmetic Aspects of Orbifolds Pairs par
Frédéric Campana, est un exposé des conjectures de Campana visant un
auditoire varié (comportant des théoriciens des nombres, des géomètres
arithméticiens et des géomètres complexes), y compris sa notion éponyme
de paires orbifoldes placée littéralement au ‘cœur’ de ses conjectures.

Le troisième chapitre intitulé The Lang–Vojta Conjectures on Projective
Pseudo-Hyperbolic Varieties par Ariyan Javanpeykar, est une introduction
au thème de l’hyperbolicité et des conjectures de Lang–Vojta dans le cas
projectif, ainsi qu’à une bonne dose de résultats dus à l’auteur.

Le quatrième chapitre intitulé Hyperbolicity of Varieties of Log General
Type par Kenneth Ascher et Amos Turchet, continue d’explorer le thème de
l’hyperbolicité et des conjectures de Lang–Vojta dans le cadre plus général
des variétés quasi-projectives. Il fournit en particulier une présentation de
résultats par les deux auteurs et leur collaboratrice DeVleming.

Remerciements : chacun des chapitres de cet ouvrage est basé sur
un mini-cours donné à l’Université du Québec à Montréal (UQÀM) lors
des conférences et ateliers suivants : Variétés de Shimura et hyperbolicité
des espaces de modules, 28 mai - 1 juin 2018; Géométrie arithmétique des
orbifoldes, 11–13 décembre 2018; Approximation diophantienne et théorie de
distribution des valeurs, 13–17 mai 2019.

Je me dois de remercier chaleureusement mes co-organisateurs sans qui
toute cette florissante activité internationale (en particulier la coopération
Québec-France) n’aurait pas pu prendre place : Erwan Rousseau et Steven
Lu pour les deux premiers événements; et Carlo Gasbarri, Nathan Grieve,
Aaron Levin, Steven Lu, Erwan Rousseau et Min Ru pour le troisième
événement. Le premier événement fut crucialement financé par le fonds
québécois CRM-UMI-FQRNT, par des fonds français (fonds propres de
l’UMI, ANR Foliage (projet ANR-16-CE40-0008) et IUF) et une modeste
participation du CICMA. Merci à Emmanuel Giroux alors à la gouverne
de l’UMI du CRM de m’avoir bien conseillé et outillé pour la recherche de
financement à Montréal. Le deuxième événement fut financé par le CIRGET
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(UQÀM) ainsi que les fonds français UMI, ANR Foliage, IUF. Le troisième
événement fut financé par le CIRGET, les fonds français UMI, ANR Foliage,
IUF ainsi que la NSF pour les participants états-uniens.

Marseille, France M.-H. Nicole
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Lectures on the Ax–Schanuel
conjecture

Benjamin Bakker and Jacob Tsimerman

MSC codes 14D07, 32G20, 03C64, 11J81

1 Introduction to Transcendence

1.1 Preliminaries

We begin with some very basic definitions. For details on transcendence
theory we refer to [28, Chap. 8].

Definition 1.1.1. Let L/K be a field extension.

(1) For a finite subset {α1, . . . , αn} ⊂ L, an algebraic relation over K
satisfied by {α1, . . . , αn} is a polynomial p ∈ K[z1, . . . , zn] such that

p(α1, . . . , αn) = 0.

(2) α ∈ L is said to be algebraic over K if {α} satisfies a nonzero algebraic
relation over K.

We will often use “{α1, . . . , αn} satisfies an algebraic relation over K”
interchangeably with “α1, . . . , αn satisfy an algebraic relation over K”.

Lemma 1.1.2. Let L/K be a field extension.
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2 B. Bakker and J. Tsimerman

(1) α ∈ L is algebraic over K if and only if there is a finite-dimensional
K-vector subspace V ⊂ L with αV ⊂ V .

(2) If β1, . . . , βn ∈ L are algebraic over K and α ∈ L such that
{α, β1, . . . , βn} satisfies an algebraic relation over K that is nonconstant
in α, then α is algebraic over K.

(3) The set F ⊂ L of elements which are algebraic over K is a subfield.

Definition 1.1.3. Let L/K be a field extension.

(1) A finite subset {α1, . . . , αn} ⊂ L is algebraically independent over K
if it satisfies no nonzero algebraic relation over K. A subset Σ ⊂ L is
algebraically independent over K if every finite subset is algebraically
independent.

(2) α ∈ L is transcendental over K if {α} is algebraically independent over
K.

(3) A transcendence basis for L over K is a maximal subset of L which is
algebraically independent over K.

We will often use “{α1, . . . , αn} is algebraically independent over K”
interchangeably with “α1, . . . , αn are algebraically independent over K.”

Example 1.1.4. e ∈ R is transcendental over Q, as is π ∈ R.

Example 1.1.5. It is conjectured but not known that {e, π} ⊂ R is alge-
braically independent over Q.

Lemma 1.1.6. Any two transcendence bases of L/K have the same cardi-
nality.

Definition 1.1.7. The transcendence degree of L over K, denoted
trdegK L, is the cardinality of a transcendence basis of L over K.

Example 1.1.8. For any field K, it is easy to see that any nonconstant f ∈
K(t) is transcendental over K and moreover that {f} is a transcendence basis
of K(t) over K. Thus, trdegK K(t) = 1.

Example 1.1.9. The transcendence degree of C over Q is equal to the
cardinality of C.

1.2 Classical Transcendence of the Exponential
Function

Arithmetic Transcendence Naively we think of the exponential function ez

as highly transcendental. By this we mean that given α1, . . . , αn ∈ C, we
expect algebraic relations among the arguments αi to rarely translate into
algebraic relations among the values eαi , and vice versa. There is one notable
exception: since the exponential function is a group homomorphism C → C

∗,
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where C
∗ := C\{0}, any Q-linear relation

0 = r1α1 + · · ·+ rnαn for ri ∈ Q

leads to a “trivial” algebraic relation

1 = (eα1)
r1b · · · (eαn)

rnb

where ri = ai/bi in lowest terms and b = lcm(b1, . . . , bn).

If we assume α1, . . . , αn ∈ C satisfy no Q-linear relations, we have the
following longstanding conjecture:

Conjecture 1.2.1 (Schanuel Conjecture). Let α1, . . . , αn ∈ C be Q-
linearly independent. Then

trdegQ Q(α1, . . . , αn, e
α1 , . . . , eαn) ≥ n. (1)

Note that the conjecture is only interesting when the αi are algebraically
dependent—it is a statement about how algebraic relations among the αi

interact with algebraic relations with the exponentials.
The Schanuel conjecture remains wide open; to give a sense of how strong

it is, we have the following example.

Example 1.2.2. Take α1 = 1 and α2 = πi. Then the conjecture implies

trdegQ Q(1, πi, e,−1) = trdegQ Q(π, e) ≥ 2

that is, that e and π are algebraically independent over Q.

By taking αi ∈ Q, we see that the statement of Schanuel’s conjecture is
optimal, since

n ≥ trdegQ Q(eα1 , . . . , eαn) = trdegQ Q(α1, . . . , αn, e
α1 , . . . , eαn).

Moreover, in this case the conjecture says that eα1 , . . . , eαn are algebraically
independent over Q, and this has in fact been verified:

Theorem 1.2.3 (Lindemann–Weierstrass). Let α1, . . . , αn ∈ Q be Q-
linearly independent. Then

trdegQ Q(eα1 , . . . , eαn) = n.

Formal Functional Transcendence The exponential function is also defined
on formal power series f ∈ C[[t1, . . . , tm]], and we may try to obtain functional
analogs of the above arithmetic statements by simply replacing the extension
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C/Q by C((t1, . . . , tm))/C. Given f1, . . . , fn ∈ C[[t1, . . . , tm]], both sides of
(1) have a clear analog, and we might guess that the correct statement is

trdegC C(f1, . . . , fn, e
f1 , . . . , efn) ≥ n.

There are however several new phenomena we must take into account. First,
any relation of the form

ζ = r1f1 + · · ·+ rnfn for ri ∈ Q and ζ ∈ C

leads to a “trivial” algebraic relation among the exponentials ef1 , . . . , efn , so
we should assume the fi are Q-linearly independent modulo constant terms.

Second, the fi may now satisfy a formal relation p ∈ C[[z1, . . . , zn]],
meaning that

0 = p(f1, . . . , fn).

Example 1.2.4. Not surprisingly, the fi may be algebraically independent
over C and still satisfy a formal relation. Indeed, f1 = t and f2 = et satisfy
a formal relation, namely

p(z1, z2) = ez1 − z2.

Formal relations are in fact much easier to detect. By the formal implicit
function theorem, the number of independent formal relations is encoded
by the dimension of the kernel of the Jacobian matrix J(f1, . . . , fn) :=(

∂fi
∂tj

)
over C((t1, . . . , tm)), and the formal transcendence degree can be

reasonably defined to be the rank of J(f1, . . . , fn). The correct analog of
Conjecture 1.2.1—which is a theorem due to Ax [2]—says roughly that the
algebraic transcendence degree of C(f1, . . . , fn, e

f1 , . . . , efn) over C is at least
n more than the formal transcendence degree of the fi:

Theorem 1.2.5 (Ax–Schanuel, Theorem 3 of [2]). Let f1, . . . , fn ∈
C[[t1, . . . , tm]] be Q-linearly independent modulo C. Then

trdegC C(f1, . . . , fn, e
f1 , . . . , efn) ≥ n+ rk J(f1, . . . , fn). (2)

Of course, we always have

trdeg
C
C(f1, . . . , fn) + trdeg

C
C(ef1 , . . . , efn) ≥ trdeg

C
C(f1, . . . , fn, e

f1 , . . . , efn)

from which we deduce the following weaker version, which is often what’s
used in applications.

Corollary 1.2.6 (Weak Ax–Schanuel). In the setup of Theorem 1.2.5,
we have



Lectures on the Ax–Schanuel Conjecture 5

trdegC C(f1, . . . , fn) + trdegC C(ef1 , . . . , efn) ≥ n+ rk J(f1, . . . , fn). (3)

As a further corollary, we can deduce an analog of the Linde-
mann–Weierstrass theorem:

Corollary 1.2.7 (Ax–Lindemann–Weierstrass). In the setup of Theo-
rem 1.2.5, further assume

trdegC C(f1, . . . , fn) = rk J(f1, . . . , fn). (4)

Then

trdegC C(ef1 , . . . , efn) = n.

Condition (4) has a clear geometric interpretation: if the fi converge in
some ball centered at the origin, it means the image of the germ (f1, . . . , fn) :
C

m → C
n is (the germ of) an algebraic variety. This observation naturally

leads us to the geometric approach of the next section.

Geometric Functional Transcendence Often a more geometric interpretation
of the results of the previous section admits clearer generalizations to other
settings. The key point is that if we replace the field C((t1, . . . , tm)) from the
previous section with the subfield C〈〈t1, . . . , tm〉〉 ⊂ C((t1, . . . , tm)) of power
series that converge in some ball around the origin, it does not affect the
transcendence statements (see [46]).

Now, transcendence statements about the field of convergent power series
can be phrased in terms of the analytic varieties they parametrize. For
example, consider the flat uniformization

π : Cn → (C∗)n : (z1, . . . , zn) 	→ (e(z1), . . . , e(zn))

where1 e(z) = e2πiz. Both C
n and (C∗)n can be endowed with obvious

structures as complex algebraic varieties, and it is then natural to ask what
algebraic subvarieties L ⊂ C

n also have algebraic “image.” To formulate this
precisely, for a complex algebraic variety X and a subset Y ⊂ X, we denote
by Y Zar the Zariski closure of Y in X. We make the following definition:

Definition 1.2.8. We say an algebraic subvariety L ⊂ C
n is bialgebraic if

dimL = dimπ(L)Zar.

In this case we will sometimes abusively refer to π(L) as being bialgebraic as
well.

1We could formulate everything with e(z) = ez and the statements would be identical.



6 B. Bakker and J. Tsimerman

Example 1.2.9. Building on the “trivial” algebraic relations from the previ-
ous subsection, any L ⊂ C

n which is a C-translate of a linear subspace of Cn

defined over Q is bialgebraic. Said differently, every coset M ⊂ (C∗)n of an
algebraic subgroup of (C∗)n is bialgebraic.

In fact, cosets of subtori are the only bialgebraic subvarieties, as we shall
show in Corollary 4.1.2:

Proposition 1.2.10 (See Corollary 4.1.2). Every closed bialgebraic M ⊂
(C∗)n is a finite union of cosets of subtori.

Now consider the following situation. Let W ⊂ C
n × (C∗)n be the graph

of π, and let pr1 : Cn × (C∗)n → C
n be the first projection. Suppose we have

an algebraic subvariety V ⊂ C
n × (C∗)n, as well as an analytic component

U of the intersection V ∩ W . Let Δ ⊂ C be the unit disk. Taking a local
holomorphic parametrization f = (f1, . . . , fn) : Δ

m → pr1(U) ⊂ C
n, we see

that on the one hand

rk J(f1, . . . , fn) = dimpr1(U) = dimU

while on the other hand, if we consider the formal power series expansions at
the origin fi ∈ C[[t1, . . . , tm]],

trdegC C(f1, . . . , fn, e(f1), . . . , e(fn)) = dimUZar ≤ dimV.

Given Example 1.2.9, for f1, . . . , fn to be Q-linearly independent modulo
constant terms, we equivalently must have that pr1(U) is not contained in
any proper bialgebraic subvariety L ⊂ C

n, in which case Theorem 1.2.5 says
that we must have

dimV ≥ n+ dimU. (5)

Conversely, suppose that for any algebraic V ⊂ C
n × (C∗)n and any

analytic component U of V ∩ W that is not contained in the graph of a
proper bialgebraic subvariety we have (5). Then given a holomorphic function
f = (f1, . . . , fn) : Δ

m → C
n whose image is not contained in any bialgebraic

subvariety, define

F = f × (π ◦ f) : Δm → C
n × (C∗)n

and take V = F (Δm)Zar, so that

trdegC C(f1, . . . , fn, e(f1), . . . , e(fn)) = dimV.
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Some analytic component U of the intersection V ∩ W must contain
F (Δm), and U cannot be contained in the graph of a proper bialgebraic
subvariety by the assumption on f(Δm), so (5) would imply

dimV ≥ n+ dimU ≥ n+ dimF (Δm) = n+ rk J(f1, . . . , fn).

Rephrasing, we have therefore proven the following statement is equivalent
to Theorem 1.2.5:

Theorem 1.2.11 (Ax–Schanuel). Let W ⊂ C
n × (C∗)n be the graph of π,

and suppose there is an algebraic subvariety V ⊂ C
n × (C∗)n such that there

is an analytic component U of V ∩W of unexpected codimension:

codimCn×(C∗)n(U) < codimCn×(C∗)n(V ) + codimCn×(C∗)n(W ).

Then U is contained in the graph of a proper bialgebraic L ⊂ C
n.

The moral is that “atypical” intersections between algebraic subvarieties
of Cn × (C∗)n and the graph of π are controlled by bialgebraic subvarieties.

We of course also have geometric versions of Corollaries 1.2.6 and 1.2.7:

Corollary 1.2.12 (Weak Ax–Schanuel). Suppose there are algebraic sub-
varieties V1 ⊂ C

n and V2 ⊂ (C∗)n such that there is an analytic component U
of V1 ∩ π−1(V2) of unexpected codimension. Then U is contained in a proper
bialgebraic L ⊂ C

n.

Proof. Take V = V1 × V2. �
Corollary 1.2.13 (Ax–Lindemann–Weierstrass). Suppose there are
algebraic subvarieties V1 ⊂ C

n and V2 ⊂ (C∗)n.

(1) If π(V1) ⊂ V2, then there is a bialgebraic M ⊂ (C∗)n with

π(V1) ⊂ M ⊂ V2;

(2) If π(V1) ⊃ V2, then there is a bialgebraic M ⊂ (C∗)n with

π(V1) ⊃ M ⊃ V2.

Proof. For the first part, we have a containment V1 ⊂ π−1(V2) which is an
intersection of unexpected codimension unless V2 = (C∗)n. Thus, provided V2

is a proper subvariety, by the previous corollary we obtain L ⊂ C
n bialgebraic

containing V1. Replacing C
n by L and V2 by π(L)∩V2, we may continue until

π(L) ∩ V2 = π(L)—that is, until π(L) ⊂ V2.
We leave the second part as an exercise.

�
Corollary 1.2.13 can be equivalently formulated as the following:
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Corollary 1.2.14.

(1) For V ⊂ C
n algebraic, π(V )Zar ⊂ (C∗)n is a finite union of cosets of

subtori.
(2) For V ⊂ (C∗)n algebraic and any component V0 of π−1(V ), we have that

V Zar
0 ⊂ C

n is a finite union of C-translates of linear subspaces defined
over Q.

Note that it is really the first part of Corollary 1.2.14 that is the analog
of Corollary 1.2.7. It can also be stated as:

Corollary 1.2.15. For any closed algebraic V ⊂ (C∗)n, a maximal irre-
ducible algebraic subvariety of π−1(V ) is a coset of a subtorus.

We leave it to the reader to show that Corollary 1.2.6 (resp. 1.2.7) is
equivalent to Corollary 1.2.12 (resp. 1.2.13).

1.2.16 Semiabelian Varieties

Let Y = A be a semiabelian variety with identity 0 ∈ Y . Let X = V be its
universal cover with its natural structure as a complex vector space, π : V →
A the covering map, and Λ = π−1(0), which is a discrete subgroup of V . The
universal covering map π is then identified with the quotient map V → V/Λ.
Note that if we had started with V and Λ ⊂ V a discrete subgroup, V/Λ is
not guaranteed to have the structure of an algebraic variety, and if it does it
may not be unique.

The bialgebraic M ⊂ A are then cosets of algebraic subgroups of A, and
the Ax–Schanuel conjecture was proven by Ax [3].

In fact, more generally still, it makes sense to allow X,Y to be (euclidean)
open subsets of algebraic subvarieties X̌, Y̌ , in which case we proceed as above
defining the “algebraic subvarieties” of X to be intersections V ∩X for V an
algebraic subvariety of X̌, and likewise for Y .

1.2.17 Shimura Varieties

A Shimura variety is a quotient of a bounded symmetric domain by an
arithmetic lattice in a semisimple algebraic group G. We will discuss this
case more precisely in Lecture 4; for now we just give an example:

Example 1.2.18. The (coarse) moduli space of principally polarized abelian
varieties Ag is a Shimura variety. In this case Ag admits a uniformization
π : Hg → Ag realizing Ag as the quotient of Siegel space

Hg := {Z ∈ Matg×g(C) | Zt = Z and ImZ > 0}
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by the action of Sp2g(Z) via

(A B
C D ) : Z 	→ (AZ +B)(CZ +D)−1.

Hg is naturally a semialgebraic subset of its compact dual Ȟg, which is the
projective variety parametrizing Lagrangian planes in C

2g.

The classification of bialgebraic subvarieties in Shimura varieties is known
by [49]. These are the so-called weakly special subvarieties. The Ax–
Lindemann–Weierstrass conjecture was proven by Pila for powers of the
modular curve [35], by Pila–Tsimerman for Ag [38], and then by Klingler–
Ulmo–Yafaev for general Shimura varieties [27]. The Ax–Schanuel conjecture
was proven by Pila–Tsimerman [39] for powers of the modular curve and by
Mok–Pila–Tsimerman for general Shimura varieties [33].

Importantly, Shimura varieties are moduli spaces of polarized pure integral
Hodge structures which admit an algebraic structure, see Lecture 5.

1.2.19 Mixed Shimura Varieties

We will give fewer details in this case, but mixed Shimura varieties arise by
allowing G to have a nontrivial unipotent radical. Mixed Shimura varieties
are moduli spaces of graded polarized mixed integral Hodge structures which
admit an algebraic structure.

Example 1.2.20. The (coarse) universal family of principally polarized
abelian varieties Xg over Ag is a mixed Shimura variety. In this case Xg

admits a uniformization π : Hg ×C
g → Xg realizing Xg as the quotient by a

group Γ which is an extension of Sp2g(Z) by Z
2g.

The classification of bialgebraic subvarieties in mixed Shimura varieties
is known by [18], and both the Ax–Lindemann–Weierstrass conjecture for
mixed Shimura varieties and the Ax–Schanuel conjecture for the universal
abelian variety have been proven by Gao [18, 19].

1.2.21 Period Spaces

Generalizing the case of Shimura varieties in a different direction, period
spaces Γ\D parametrize pure polarized integral Hodge structures. Impor-
tantly, in this case Γ\D does not in general admit an algebraic structure, so
the setup must be slightly modified (see Lecture 6). The proof of the Ax–
Schanuel theorem (see Theorem 6.1.1 below) will be the main focus of these
notes.
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1.3 Arithmetic Applications

1.3.1 Special Point Problems

Suppose given a uniformization π : X → Y as in the previous section. Often
there is a “special” set of points Ysp ⊂ Y which have an interesting arithmetic
interpretation in Y and whose preimages in X also have a simple arithmetic
description.

Example 1.3.2. As in Example 1.2.16, take Y = V/Λ a semiabelian variety,
X = V , and π : X → Y the quotient map. Then we take Ysp to be the set of
torsion points, and π−1(Ysp) = ΛQ.

Example 1.3.3. As in Example 1.2.17, take Y = Ag the coarse moduli space
of principally polarized abelian varieties, X = Hg the Siegel upper halfplane,
and π : Ω → Y the quotient. We take Ysp to be the set of points corresponding
to abelian varieties with CM. In this case, π−1(Ysp) are points of Ȟg valued
in number fields of bounded degree, with certain Galois properties.

Question 1.3.4. For an algebraic subvariety V ⊂ Y , denote Vsp := V ∩Ysp.
For what V do we have

(Vsp)
Zar = V ?

In the above contexts we expect that answer to be: only when V is
bialgebraic. The property in Question 1.3.4 is in fact usually more restrictive,
only holding for what are called special subvarieties, while bialgebraic
subvarieties often turn out to be weakly special. For example, for Y = (C∗)n

and Ysp the torsion points, the irreducible weakly special subvarieties are
cosets of subtori, whereas the irreducible special subvarieties are torsion
cosets of subtori.

Example 1.3.5. In the case of the exponential π : Cn → (C∗)n with torsion
points as the special points the above expectation is known as Lang’s
conjecture. Precisely: if V ⊂ (C∗)n is an algebraic variety and Vtor is the
set of torsion points on V , then Lang conjectures (Vtor)

Zar is a finite union
of torsion cosets of subtori. For n = 2 this was proven by Lang [28].

Example 1.3.6. For π : Cn → Y the uniformization of an abelian variety with
torsion points as the special points, this is known as the Manin–Mumford
conjecture. Precisely: if V ⊂ Y is an algebraic variety and Vtor is the set of
torsion points on V , they conjectured that (Vtor)

Zar is a finite union of torsion
cosets of abelian subvarieties. Both the general form of Lang’s conjecture and
the Manin–Mumford conjecture were proven by Raynaud [42, 43].

Example 1.3.7. For π : Ω → Y the uniformization of a Shimura variety, this
is known as the André–Oort conjecture. Precisely, if V ⊂ Y is an algebraic
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variety and Vsp is the set of special points on V , then they conjectured
that (Vsp)

Zar is a finite union of special subvarieties. The conjecture was
conditionally2 proven in [26] and unconditionally for Y = Ag by [48].

The proof of Raynaud proceeds by singling out a prime p and using
different ingredients to deal with the “prime-to-p-parts” and “p-parts.” For
the former, Raynaud crucially uses the Frobenius at p in the Galois group. He
observes that the Frobenius operator on prime-to-p roots of unity is closely
related to the multiplication by pmap (they are identical in the multiplicative
case). This allows him to reduce from a variety X to X∩(p ·X), and conclude
by induction. This argument is heavily relied upon in the conditional proof
of André–Oort assuming the generalized Riemann hypothesis in [26]. For
the “p-part” Raynaud proceeds using a p-adic deformation theory argument,
which is generalized to the Shimura case by Moonen [32], allowing him to
establish certain cases of André–Oort unconditionally.

The general hyperbolic case requires new ideas, and the proof of Tsimer-
man [48] builds on a strategy developed by Pila–Zannier which critically uses
the Ax–Lindemann–Weierstrass theorem [35].

The Zilber–Pink Conjecture There is a wider set of conjectures, due to
Bombier–Masser–Zannier in the multiplicative setting and Zilber–Pink more
generally. Instead of only considering special points, one considers points
of various “degrees” of specialness, and studies algebraic relations between
such points. It is easiest to present in the multiplicative setting: for a point
x = (x1, . . . , xn) ∈ (C∗)n define its rank rk(x) to be the rank as an abelian
group of the span 〈x1, . . . , xn〉 in C

∗. Observe that the rank is 0 precisely for
torsion points. One consequence of the conjecture is the following:

Conjecture 1.3.8 (Consequence of Zilber–Pink [41, 53]). Let V ⊂
(C∗)n be an irreducible algebraic subvariety of codimension d. Let Vm be the
points of V (C) of rank at most m and assume Vd−1 is Zariski-dense in V .
Then V is contained in a proper special subvariety. In other words, there is
a nonconstant monomial which is identically 1 on V .

There is some progress on the conjecture above in the multiplicative case
due to Habegger [22], Maurin [30], Bombieri–Masser–Zannier [10, 11], and
others. We refer the interested reader to [37] for a more complete survey.

The Shafarevich Conjecture After Lawrence–Venkatesh Lawrence and
Venkatesh [29] have outlined a strategy for proving instances of the
Shafarevich conjecture which uses the functional transcendence of period
maps. Briefly, let O = OK,S be the ring of integers OK in a number field
K away from a finite set S of primes and π : Y → X a smooth projective
family defined over O. Then assuming certain geometric properties of π one

2Conditional on the generalized Riemann hypothesis.
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expects the number of integral points X(O) to be finite, for example, when
the family π has an immersive period map. The Shafarevich conjecture for
moduli spaces of polarized abelian varieties was proven by Faltings in the
landmark paper [17].

The strategy of Lawrence–Venkatesh uses the p-adic period map in the
context of p-adic Hodge theory. Their argument requires a p-adic transcen-
dence result which formally follows from the corresponding transcendence
result for the complex analytic period map. Using this technique, they are able
to show that when X is taken to be certain moduli spaces of hypersurfaces
in P

n, the integral points X(O) are not Zariski dense in X.

2 o-Minimal Geometry

For background on o-minimal structures and o-minimal geometry, we refer
to [50].

2.1 o-Minimal Structures

An o-minimal structure specifies “tame” subsets of euclidean space which
can be used as local models for “tame” geometry. On the one hand, the
tameness will rule out pathologies such as Cantor sets and space-filling curves;
on the other hand, as we will see, the tameness hypothesis locally imposes
remarkably few conditions on analytic functions.

Definition 2.1.1. A structure S is a collection (Sn)n∈N where each Sn is a
set of subsets of Rn satisfying the following conditions:

(1) Each Sn is closed under finite intersections, unions, and complements;
(2) The collection (Sn) is closed under finite Cartesian products and

coordinate projection;
(3) For every polynomial P ∈ R[x1, . . . , xn], the zero set

(P = 0) := {x ∈ R
n | P (x) = 0} ⊂ R

n

is an element3 of Sn.

We refer to the elements U ∈ Sn as S-definable subsets of Rn. For U ∈ Sn,
and V ∈ Sm, we say a map f : U → V of S-definable sets is S-definable if

3One can work in greater generality by allowing structures without this assumption,
but we will only require ones satisfying it.
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the graph is. When the structure S is clear from context, we will often just
refer to “definable” sets and functions.

The definable sets should be thought of as the sets that are “constructible”
within the theory. From the axioms, it is easy to prove the following:

Proposition 2.1.2. Let S be a structure.

(1) The image and preimage of a definable set under a definable map are
definable;

(2) The composition of two definable maps is definable.

Thus, for example, whereas we only required coordinate projections to be
definable in Definition 2.1.1, it follows that all linear projections are definable.
By definition, any structure S contains all real algebraic sets, but this is not
enough:

Example 2.1.3. The collection S of real algebraic sets—that is, Sn = the
Boolean algebra generated by sets of the form (P = 0) for P ∈ R[x1, . . . , xn]—
is not a structure. Indeed, for any P ∈ R[x1, . . . , xn], the image of the
projection of (x2

0 = P ) forgetting x0 is (P ≥ 0).

Example 2.1.4. Let Ralg be the collection of real semialgebraic subsets of
R

n—that is, (Ralg)n is the Boolean algebra generated by sets of the form
(P ≥ 0) for P ∈ R[x1, . . . , xn]. Then Ralg is a structure. By the Tarski–
Seidenberg theorem (see for example [50, Chapter 2]), coordinate projections
of real semialgebraic sets are real semialgebraic, and the other axioms are easy
to verify. Ralg is therefore a structure, in fact the structure generated by real
algebraic sets given Example 2.1.3.

Remark 2.1.5. Tarski–Seidenberg is usually phrased as quantifier elimination
for the real ordered field, and structures as defined above are important
in model theory. Indeed, the axioms say definable sets are closed under
first order formulas, as intersections, unions, and complements correspond
to the logical operators “and,” “or,” and “not,” while the projection axiom
corresponds to universal and existential quantifiers. Moreover, we can make
the same definition for any real closed field, and base-change to these fields
plays a similar role to base-changing to generic points of schemes in algebraic
geometry. We won’t say much about it, but it is a useful perspective to keep
in mind.

While infinite unions or intersections of definable subsets are not definable,
it is nonetheless the case that many topological constructions with respect
to the euclidean topology are definable:

Proposition 2.1.6. Let S be a structure, and endow R
n with the euclidean

topology. Closures, interiors, and boundaries of definable sets are definable.
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Proof. We just show that the closure of a definable set U ⊂ R
n is defined by

a first order formula and leave the rest as an exercise:

U =

{
x ∈ R

n

∣∣∣∣∣ ∀ε > 0, ∃y ∈ U s.t.
∑
i

(xi − yi)
2 < ε

}

�
Remark 2.1.7. We have the following formal operations on structures.

(1) Given two structures S and S′, we say S is contained in S′, denoted
S ⊂ S′, if Sn ⊂ S′

n for all n. Note that any structure S contains Ralg.
(2) Given structures {S(i)}i∈I indexed by a set I, the intersection

(
⋂
S(i))n :=

⋂
(S(i))n is evidently a structure. Thus, given a collection

(Tn)n∈N of sets of subsets of R
n, we may speak of the structure S

generated by the (Tn)n∈N as the smallest structure S with Sn ⊃ Tn.
(3) Given an increasing chain

S(0) ⊂ S(1) ⊂ · · · ⊂ S(i) ⊂ · · ·

the union (
⋃
S(i))n :=

⋃
(S(i))n is a structure.

Thus far we have only specified the rules by which we can construct
definable subsets from other definable subsets; we have not yet controlled
how complicated definable sets are allowed to be. The crucial “tameness”
property is o-minimality:

Definition 2.1.8. A structure S is said to be o-minimal if S1 =
(Ralg)1—that is, if the S-definable subsets of the real line are exactly finite
unions of intervals.

The intervals in the definition are allowed to be closed or open on either
end, may extend to infinity, and may be zero length (i.e. points).

Example 2.1.9. Ralg is o-minimal, clearly.

Example 2.1.10. Let Rsin be the structure generated by the graph of sin :
R → R. Rsin is not o-minimal as πZ = sin−1(0) is definable and infinite.

Example 2.1.11. Let Rexp be the structure generated by the graph of the
real exponential exp : R → R. Rexp is o-minimal by a result of Wilkie [52].
Quantifier elimination does not hold for Rexp.

Example 2.1.12. Let Ran be the structure generated by the graphs of all
restrictions f |B(R) of real analytic functions f : B(R′) → R on a finite radius
R′ < ∞ open euclidean ball (centered at the origin) to a strictly smaller
radius R < R′ ball. Via the embedding R

n ⊂ RPn, this is equivalent to the
structure of subsets of Rn that are subanalytic in RPn. Ran is o-minimal by
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van-den-Dries [50], using Gabrielov’s theorem of the complement. Note that
while sin(x) is not Ran-definable, its restriction to any finite interval is.

Example 2.1.13. Let Ran,exp be the structure generated by Ran and Rexp.
Ran,exp is o-minimal by a result of van-den-Dries–Miller [51]. Most of the
applications to algebraic geometry currently use the structure Ran,exp.

Remark 2.1.14. By Remark 2.1.7, there are maximal o-minimal structures,
but not a unique one, as the structure generated by two o-minimal structures
can fail to be o-minimal [44].

For the rest of this lecture, we fix an o-minimal structure S,
and by “definable” we mean S-definable, unless explicitly otherwise
stated.

2.2 Cylindrical Cell Decomposition

Sets that are definable in an o-minimal structure can be decomposed into
graphs of definable functions in a systematic way. It would take us too far
afield to prove the main existence result (Theorem 2.2.5 below), but it is
important to keep in mind as it gives a clear picture of some of the finiteness
properties that such definable sets possess.

We follow the treatment in [50] closely.

Definition 2.2.1. A definable cylindrical cell decomposition of R
n is a

partition R
n =

⊔
Di into finitely many pairwise disjoint definable subsets

Di, called cells. The cells have the following inductive description.

n = 0. There is exactly one definable cylindrical cell decomposition of R0.
Its unique cell is all of R0.

n > 0. Write R
n = R

n−1 × R. There is a definable cylindrical cell
decomposition {E} of R

n−1 and for each E we have: an integer
mE ∈ N and continuous definable functions fE,k : E → R for each
0 < k < mE such that

fE,0 := −∞ < fE,1 < · · · < fE,mE−1 < fE,mE
:= +∞

The cells are:

• graphs: {(x, fE,k(x)) | x ∈ E} for each E and 0 < k < mE ;
• bands: (fE,k, fE,k+1) := {(x, y) | x∈E and y ∈ (fE,k(x), fE,k+1(x))}
for each E and 0 ≤ k < mE .

Note that because of the inductive nature of the definition, we have
implicitly chosen an ordering of the coordinates.
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Example 2.2.2. The cylindrical cell decompositions of R are easy to under-
stand. In this case, there is m ∈ N and ak ∈ R for each 0 < k < m such
that

a0 := −∞ < a1 < · · · am−1 < am := +∞

and the cells are:

• {ak} for 0 < k < m;
• (ak, ak+1) for 0 ≤ k < m.

Such a cell decomposition is shown in Figure 1.

Example 2.2.3. Figure 2 shows a cylindrical cell decomposition of R2 that
projects to the cell decomposition of Figure 1.

Remark 2.2.4. Each cell D in a definable cylindrical cell decomposition has a
well-defined dimension dimR D, and it is definably homeomorphic to R

dimR D

as follows. For n = 0 it is trivial, as it is inductively for the graph cells for

0

a1 a2 a3

Fig. 1 A cell decomposition of R.

Fig. 2 A cell decomposition of R2 projecting to that of Figure 1.
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n > 0. For band cells, given two definable f, g : E → R with f < g, we have
a definable homeomorphism (f, g) → E × R via

(x, y) 	→
(
x,

1

f(x)− y
+ y +

1

g(x)− y

)
.

The main result is the following:

Theorem 2.2.5. For any finite collection Uj ⊂ R
n of definable sets, there is

a definable cylindrical cell decomposition of Rn such that each Uj is a union
of cells.

Every cell has a well-defined (real) dimension, so we have as a consequence:

Corollary/Definition 2.2.6. For any definable set U ⊂ R
n we define

dimR U to be the largest dimension of its cells with respect to a definable
cylindrical cell decomposition.

We won’t give a proof of Theorem 2.2.5, but an essential ingredient is the
following stronger version in a special case:

Lemma 2.2.7. For every definable function f : (a, b) → R, there is a finite
subdivision

a0 = a < a1 < · · · < am = b

such that each f |(ak,ak+1) is either constant or strictly monotonic.

Proof. The proof is taken directly from [50]. We begin with the following:

Claim. There is a subinterval J ⊂ (a, b) on which f is constant or f is strictly
monotonic and continuous.

Proof. We may assume f is not constant on any subinterval of (a, b).

Step 1. f is injective on a subinterval J .

It follows from the above assumption that all fibers are finite. The function
g(y) = min f−1(y) is a definable section of f , for we may write its graph as

{(f(x), x) ∈ R
2 | x ∈ (a, b) s.t. x ≤ x′ for all x′ ∈ (a, b) with f(x′) = f(x)}.

The image of g is definable and not finite by assumption, so by the o-
minimality property it contains an interval J , and on this interval g ◦ f = id,
so f is injective.

Step 2. f is strictly monotonic on a subinterval J .

Assuming now that f is injective, for each x ∈ (a, b) the sets

{y ∈ (a, b) | f(y) < f(x)}
{y ∈ (a, b) | f(y) > f(x)}
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are a definable partition of (a, b)\{x}. It follows that the sets

A ={x ∈ (a, b) | ∃ε > 0 s.t. f |(x−ε,x) < f(x) < f |(x,x+ε)}
B ={x ∈ (a, b) | ∃ε > 0 s.t. f |(x−ε,x) > f(x) > f |(x,x+ε)}
C ={x ∈ (a, b) | ∃ε > 0 s.t. f |(x−ε,x) > f(x) < f |(x,x+ε)}
D ={x ∈ (a, b) | ∃ε > 0 s.t. f |(x−ε,x) < f(x) > f |(x,x+ε)}

are a definable partition of (a, b).
We now claim that the last two sets are finite; it’s enough to show D is,

as the proof for C is similar. If the claim was false, then there would be a
subinterval J for which every point is a local maximum. For n ∈ N, consider
the sets

Jn := {x ∈ J | x is a maximum on (x− 1/n, x+ 1/n)}

which are clearly definable and J = ∪nJn. The Jn can’t all be finite, so one
Jn contains an interval by o-minimality, and this is clearly nonsense.

Thus, one of A and B (say A) contains an interval J = (c, d). But then
for each x ∈ J ,

{y ∈ J | y > x and f |(x,y) > f(x)}

must be all of (x, d).

Step 3. f is strictly monotonic and continuous on a subinterval J .

Restrict f to an interval whose image is an interval. Then it is strictly
monotonic and bijective, hence continuous. �

To finish, the set of points x for which either f is constant on a neighbor-
hood of x or f is strictly monotonic and continuous in a neighborhood of x
is definable, and hence is a finite set of points by the claim. This finishes the
proof, since if for all x in some interval either f is constant on a neighborhood
of x or f is strictly monotonic and continuous in a neighborhood of x, then
the same is true on the entire interval. �

By reasoning along the lines of Lemma 2.2.7 one can show that definable
functions have limits away from definable sets of smaller dimension. This can
be upgraded to the fact that definable functions are Ck off of a definable set
of smaller dimension:

Corollary 2.2.8. Let U ⊂ R
n be a definable set. Then for each k, U has a

stratification by definable Ck-submanifolds.

Corollary 2.2.9. Let f : U → V be a definable map. Then for each n ∈ N,
the subset
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Vn := {v ∈ V | dim f−1(v) = n} ⊂ V

is definable.

Proof. Consider the graph, and order the coordinates backwards. As is clear
from the inductive definition, each cell has constant dimension over its
projection. �
Corollary 2.2.10. Let f : U → V be a definable map with finite fibers. Then
for each n ∈ N, the subset

Vn := {v ∈ V | #f−1(v) = n} ⊂ V

is definable. Moreover, the size of the fibers is uniformly bounded.

Proof. As above, consider the graph and order the coordinates backwards.
All of the cells are graphs over cells of V . �

2.3 Definable Topological Spaces

Let M be a topological space. We can endow M with a geometry locally
modeled on definable sets in the usual way using atlases.

Definition 2.3.1. A (S-)definable topological spaceM is a topological space
M , a finite open covering Vi of M , and homeomorphisms ϕi : Vi → Ui ⊂ R

n

such that

(1) The Ui and the pairwise intersections Uij := ϕi(Vi ∩ Vj) are definable
sets;

(2) The transition functions ϕij := ϕj ◦ ϕ−1
i : Uij → Uji are definable.

We call the data (Vi, ϕi) a definable atlas. A morphism of definable spaces
f : M → M ′ is a continuous map f such that for all i and i′, the composition

(f ◦ ϕ−1
i )−1(V ′

i′)
ϕ−1

i−−→ f−1(V ′
i′)

f−→ V ′
i′

ϕ′
i′−−→ U ′

i′

is S-definable. Note that this is a condition both on the map and the source.
M is said to be a (S-)definable manifold if the definable atlas additionally
gives M the structure of a manifold.

We denote the category of S-definable topological spaces by (S-Top).

We will often use the term “(S-)definable structure” as a shorthand
for “structure as a (S-)definable topological space” when no confusion is
likely to arise, and likewise we will say a continuous map f : M → M ′ is
“(S-)definable” as shorthand for “a morphism of (S-)definable topological
spaces.”
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Fig. 3 The “slanted strip” definable structures considered in Examples 2.3.2
and 2.3.3.

We will ultimately be interested in definable structures on the topological
spaces underlying complex analytic varieties, and all of the examples below
are of this sort. Throughout we use the identification C ∼= R

2 to speak about
definable subsets of Cn.

Example 2.3.2. (See Figure 3.) Let C
∗ ⊂ C be the punctured plane and

e : C → C
∗ the usual covering map e(z) = e2πiz. We can endow C

∗ with a
number of Ralg-definable structures:

(1) C
∗ is a (real) algebraic subset of C, and we call this Ralg-definable

topological space G
def
m .

(2) For a ∈ R, define the following slope a “slanted strip” fundamental set
for the covering action on C:

Fa = {z ∈ C | a · Im z < Re z < (1 + ε) + a · Im z}.

Fa is evidently semialgebraic, and thus has a natural Ralg-definable
structure. A slightly thinner open strip will inject into C

∗, and taking
translates of such a strip will then give a Ralg-definable atlas of C∗. We
call the resulting Ralg-definable topological space C

∗
a. By definition the

map e : Fa → C
∗
a is a morphism of Ralg-definable topological spaces.

Evidently if S, S′ are two structures with S ⊂ S′ and M is an S-definable
topological space, then we have an induced structure as an S′-definable space.
In particular, an Ralg-definable structure on M will induce an S-definable
structure on M for any S.

Example 2.3.3. (See Figure 3.) Consider again the previous example.
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(1) The spaces C
∗
a are all isomorphic as Ralg-definable topological spaces,

as, for instance, the map x + iy 	→ (x + ay) + iy yields an isomorphism

C
∗
0

∼=−→ C
∗
a.

(2) The identity map C
∗
a → G

def
m is not definable for any a �= 0 in any o-

minimal structure. Indeed, any ray is definable in G
def
m , but the preimage

in Fa has infinitely many components for a �= 0.
(3) The identity map C

∗
0 → G

def
m is not Ralg-definable. This is equivalent

to e : F0 → G
def
m being definable, which would imply that the real and

imaginary parts e−2πy cos(2πx) and e−2πy sin(2πx) are Ralg-definable as
functions [0, 1]×R≥0 → R, which is clearly false. In fact, they are not even
Ran-definable, as otherwise e

2πy would be Ran-definable, whereas one can
show that any Ran-definable function has sub-exponential growth. It is
however clearly Ran,exp-definable (and in fact an isomorphism of Ran,exp-
definable spaces).

Thus, of the “slanted strip” fundamental domains considered in Exam-
ples 2.3.2 and 2.3.3, the vertical strip is the unique one for which the covering
map e : F0 → G

def
m is definable in an o-minimal structure.

Remark 2.3.4. While the C
∗
a of Example 2.3.2 are all isomorphic as Ralg-

definable spaces, C∗
a and C

∗
b do not admit a holomorphic isomorphism as

S-definable spaces for a �= b and any o-minimal structure S. Indeed, the only
holomorphic automorphisms of C∗ are q and q−1 up to scaling, and one can
manually check that these do not give definable isomorphisms C

∗
a → C

∗
b for

a �= b. However, the identity C
∗
0 → G

def
m does give a holomorphic Ran,exp-

definable isomorphism.

Example 2.3.5. Let X be a real algebraic variety. Then the set of real points
X(R) equipped with the euclidean topology carries a canonical isomorphism
class of Ralg-definable topological space structures, by covering by (finitely
many) affine varieties. It is an easy exercise to see that any two (finite) affine
coverings specify isomorphic Ralg-definable structures.

Likewise, as the complex points of an affine complex algebraic variety
are naturally the real points of an affine real algebraic variety (by Weil
restriction), for X a complex algebraic variety the same construction yields
a canonical (unique up to isomorphism) Ralg-definable topological space
structure on the set of complex points X(C) with the euclidean topology.

Given a complex algebraic variety X, we define Xeucl to be X(C) endowed
with its euclidean topology.

Definition 2.3.6. Let X a complex algebraic variety. We define Xdef to
be the (S-)definable topological space with underlying topological space
Xeucl and the definable structure induced from the Ralg-definable structure
constructed in Example 2.3.5. We refer to Xdef as the (S-)definabilization
of X.
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Note that the notation does not reflect the dependence of Xdef on the
structure S.

Let (AlgVar/C) be the category of complex algebraic varieties. It is not
hard to see that we in fact have a “definabilization” functor

(AlgVar/C) → (S-Top) : X 	→ Xdef .

Likewise for real algebraic varieties.
Let (Top) be the category of topological spaces. Every definable space has

an underlying topological space, and we denote the resulting forgetful functor

(S-Top) → (Top) : X 	→ Xtop.

We then clearly have a diagram:

(AlgVar/C)

(−)eucl

(−)def
(S-Top)

(−)top

(Top)

There is likewise a similar picture over R, but for us complex algebraic
varieties will play a particularly important role.

Example 2.3.7. We have the following hyperbolic analog of Examples 2.3.2
and 2.3.3. Let Y (2) be the full-level two modular curve, with analytic
uniformization Y (2)an := Γ(2)\H where

Γ(2) =

{
A ∈ PSL2(Z)

∣∣∣∣ A ≡
(
1 0

0 1

)
mod 2

}
.

A fundamental domain F for the action of Γ(2) on H is shown in Figure 4,
corresponding to a choice of section of the quotient PSL2(Z) → PSL2(F2).
Let

F :=

{
z ∈ C

∣∣∣∣ |Re z| <
1

2
+ ε and |z|2 > 1− ε

}

be a slight enlargement of the usual fundamental domain for the action of
PSL2(Z) on H. Clearly F is real semialgebraic and injects into Y (2)an. The
translates of F under the choosen lifts provide a cover of Y (2)an, and as
the action of PSL2(R) on H is algebraic, this is a (finite) cover by real
semialgebraic sets with real semialgebraic transition functions. Thus, we have
a Ralg-definable structure on Y (2)an which we call Y(2).
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Fig. 4 The definable fundamental set for Y (2) considered in Example 2.3.7.

The Ralg-definable spaces Y(2) and Y (2)def are not isomorphic via a
holomorphic map, and in fact, the induced Ran- and Rexp-definable structures
are not even the same, just as in Remark 2.3.4. Indeed, the image of the
horoball

{z ∈ H | Im z > 1}

gives a neighborhood of the cusp at ∞ holomorphically isomorphic to Δ∗. On
the one hand, in Y (2)def there’s an algebraic coordinate at the cusp which
is Ralg-definable, and which moreover extends holomorphically to the cusp.
Thus, after shrinking Δ∗, the Ran-definable structure induced by Y (2)def is
that of Δ∗ ⊂ G

def
m . On the other hand, the Ran-definable structure induced

by Y(2) is clearly Δ∗ ⊂ C
∗
0.

The two structures on Y (2)an are isomorphic over Ran,exp. Indeed, by the
previous example they are isomorphic in the cuspidal neighborhoods, whereas
on the complement of the union of (slightly shrunken) cuspidal neighborhoods
the two structures are clearly isomorphic over Ran.

Remark 2.3.8. We can alternatively think of Example 2.3.7 (or indeed any
of the above examples) in the following way. Let F ′ be an open semialgebraic
fundamental set for the action of Γ(2). The action of Γ(2) on H induces
a closed étale equivalence relation R ⊂ H × H. Each component of this
equivalence relation is evidently algebraic, and only finitely many components
intersect F ′×F ′. Thus, the restriction of the equivalence relation to F ′ is Ralg-
definable. One can show that quotients by closed étale definable equivalence
relations exist in the category of definable topological spaces [6].
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Example 2.3.9. Let X be a smooth proper complex algebraic variety. Then
we may cover Xeucl by finitely many polydisks Δn. Endow each Δn with the
Ran-definable structure coming from that of Δ in (A1)def . After shrinking
the disks slightly the transition functions are evidently restricted analytic
and therefore Ran-definable. This atlas gives a Ran-definable structure to
Xeucl which is evidently Xdef (over Ran).

Likewise, if X is a smooth complex algebraic variety (not necessarily

proper), then let X be a log smooth algebraic compactification. X
eucl

can
be covered by finitely many polydisks Δn whose intersection with Xeucl is
of the form (Δ∗)r × Δs. This atlas then gives a Ran-definable structure to
Xeucl, which is once again isomorphic to Xdef .

Remark 2.3.10. The cylindrical cells of Section 2.2 depend on an embedding
into R

n, but there is a notion of cell decomposition for definable topological
spaces for which the analogs of Corollaries 2.2.9 and 2.2.10 hold. See [6] for
details.

3 Algebraization Theorems in o-Minimal Geometry

O-minimal geometry has found a number of applications to the functional
transcendence theory of uniformizations of algebraic varieties because it
allows one to ascend and descend algebraic structures along the uniformizing
map by way of two important algebraization theorems.

3.1 The Counting Theorem of Pila–Wilkie

Definition 3.1.1. The (archimedean) height H(r) of a rational number r ∈
Q is defined to be max(|a|, |b|), where r = a/b for coprime integers a, b.
Likewise, for α ∈ Q

n we define the height to be H(α) = maxH(αi).

Note that there are finitely many points of Q
n of bounded height. Let

U ⊂ R
n be a subset. We define the counting function as

N(U, t) := # {α ∈ U ∩Q
n | H(α) ≤ t} .

Furthermore, we define the algebraic and transcendental parts

Ualg :=
⋃

Z connected semi-algebraic
dimZ>0
Z⊂U

Z

U tr := U � Ualg.
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Note that Ualg may well not be definable in any o-minimal structure even if
U is.

The counting theorem says that rational points can only accumulate along
the algebraic part in a precise sense:

Theorem 3.1.2 (Counting theorem, Theorem 1.8 of [40]). Let U ⊂
R

n be definable in an o-minimal structure. Then for any ε > 0,

N(U tr, t) = O(tε).

Remark 3.1.3.

(1) The o-minimal hypothesis is essential: the graph U ⊂ R
2 of sin(πx)

contains polynomially many integer points.
(2) The general form of 3.1.2 builds on an earlier result of Bombieri–Pila

[9], which asserts the conclusion of the theorem for U = C a compact
real analytic curve C ⊂ R

2 containing no semialgebraic curves, which is
obviously Ran-definable.

(3) There is a stronger form of 3.1.2 which is useful for applications.
Informally, it states that for any ε > 0 you can cover all the points
of height at most t by at most O(tε) semialgebraic sets. In fact, it
is this version which most naturally comes up in the proof of the
Ax–Lindemann–Weierstrass and Ax–Schanuel theorems, as it is more
naturally fits into inductive arguments.

Formally speaking, it says that for any ε > 0 there is a finite number

J = J(U, ε) of definable setsW (i) ⊂ R
n×R

mi such that each fiberW
(i)
y ⊂

R
n is semialgebraic and contained inside U , and a constant c(U, ε), such

that all the rational points in U of height at most t are contained inside

ctε many sets of the form W
(i)
y . See [40] for more details, refinements,

and generalizations.

The counting theorem is often used to deduce from the presence of many
rational points on U the existence of a semialgebraic subset Z ⊂ U with many
rational points, and this is why Theorem 3.1.2 is so powerful a tool in proving
transcendence results. We will specifically need the following corollary of the
strong form of Theorem 3.1.2 alluded to in the above remark:

Corollary 3.1.4. If N(U, t) �= O(tε) for some ε > 0, then for any N ∈ N

there is a semialgebraic subset ZN ⊂ U containing N rational points.

We refer to [37] for a nice survey of the counting theorem and it’s
applications, but we say a few words about its role in the Pila–Zannier
strategy to prove André–Oort type problems. Theorem 3.1.2 is used in two
fundamentally different ways:

Let π : Hg → Ag be the uniformizing map, πF : F → Ag its restriction to
a definable fundamental set, V ⊂ Ag an algebraic subvariety, and Vsp ⊂ V
the set of special points on V . As any subvariety with a Zariski dense set of
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special points is defined over a number field K, we may assume this is true
for V , and thus Vsp is closed under the action of the Galois group Gal(K̄/K).
One has to show using arithmetic arguments that special points have Galois
orbits which are “large,” so that π−1

F (Vsp) ⊂ π−1
F (V ) has many rational points

in the sense of Theorem 3.1.2.4 Applying Theorem 3.1.2 shows that π−1(V ) ⊃
V ′ for some semialgebraic subvariety V ′ ⊂ Hg. Next, by Corollary 1.2.13—
whose proof also uses Theorem 3.1.2 as we’ll see—it then follows there is a
bialgebraic L ⊂ Hg such that π−1(V ) ⊃ L ⊃ V ′. In particular, there are
special subvarieties of V containing “most” points of Vsp. To finish, one has
to apply an induction argument wherein special varieties are parametrized
by special points on a lower-dimensional Shimura variety.

3.2 The Definable Chow Theorem
of Peterzil–Starchenko

For X a complex algebraic variety, denote by Xan the complex points X(C)
with its natural structure of a complex analytic variety. Recall that Chow’s
theorem states that if X is a proper complex variety and Y ⊂ Xan is a closed
complex analytic subvariety, then Y is algebraic. If the properness hypothesis
on X is dropped, then the theorem is false: consider, for example, the graph
of the complex exponential in C× C

∗.
The “definable Chow” theorem of Peterzil–Starchenko essentially states

that the conclusion of Chow’s theorem in the non-proper case holds if Y is
additionally required to be definable with respect to an o-minimal structure.

Theorem 3.2.1 (Definable Chow, Theorem 5.1 of [34]). Fix an o-
minimal structure and let X be a complex algebraic variety. Then any closed
complex analytic subvariety Y ⊂ Xan whose underlying set is definable in
Xdef is algebraic.

Note that it is enough to assume Y is (analytically) irreducible of
dimension d. Furthermore, we may replaceX with a (nonempty) affine Zariski
open subset U and algebraize Uan∩Y , for then Y is the closure of Uan∩Y . We
can thus assume X = A

n, and in the sequel we’ll simply write C
n = (An)an.

We’ll give two proofs, the first of which minimizes the explicit use of o-
minimality, and the second that of complex analysis. The first proof relies on
an important analyticity criterion of Bishop:

Theorem 3.2.2 (Theorem 3 of [8]). Let U ⊂ C
n be an open subset and

Z ⊂ U a closed analytic subset. If Y ⊂ U\Z is a pure dimension d closed

4This is classical in the case of the modular curve, much harder for Ag, and still open
in general. See [48].
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analytic subset of finite 2d-dimensional volume, then the closure Y of Y in
U is an analytic subset.

Proof (First Proof of Theorem 3.2.1). Consider C
n ⊂ P

n with complement
P
n−1 the plane at infinity. By the lemma below, Y has finite volume locally

around P
n−1, so by Bishop’s theorem the closure Y of Y in P

n is an analytic
subvariety, hence algebraic by the usual Chow theorem. �
Lemma 3.2.3. Any bounded k-dimensional definable V ⊂ R

m has finite k-
volume.

Proof. A bounded k-dimensional definable subset of Rk certainly has finite
volume. The volume of V ⊂ R

m is bounded up to a constant by the
maximum volume of its coordinate projections to R

k—which is finite—times
the maximum degree of these projections, which is also finite. �

The second proof relies on the following fact using only elementary complex
analysis.

Lemma 3.2.4. Any definable holomorphic function f : Cn → C is algebraic.

Proof.

Step 1. An entire definable function f : C → C is algebraic.
f cannot have an essential singularity at infinity or else it would have
infinite fibers, by Casorati–Weierstrass.

Step 2. Any definable holomorphic function f : Cn → C is algebraic.

Write C
n = C×C

n−1. For any w ∈ C
n−1, f(z, w) is a polynomial in z by

Step 1. By Corollary 2.2.10, the degree of f(z, w) in z is uniformly bounded,5

so for some N ,

f(z, w) =
N∑

k=0

∂kf

∂zk
(0, w)

zk

k!
.

By induction (using the previous step as the base case) the definable

holomorphic functions ∂kf
∂zk (0, w) : C

n−1 → C are algebraic.
�

Second Proof of Theorem 3.2.1. We prove the claim by induction on the
dimension d of Y , the base case being obvious.

Step 1. The boundary ∂Y := Y \Y ⊂ P
n−1 of Y in P

n is a definable subset
of (real) dimension at most 2d− 1.
From cell decomposition, the boundary of a definable set always has
smaller dimension.

5We might have to consider f(z, w)− c to avoid multiplicity.
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Step 2. There is a linear projection π : Cn → C
d for which the restriction

πY : Y → C
d is proper.

Linear projections Cn → C
n−1 are obtained by projecting from a point p ∈

P
n−1 at infinity; the fibers of this projection are the lines through p (minus

the point p itself). As d < n, by the previous step dimR ∂Y < dimR P
n−1 =

2n−2, so there is a projection C
n → C

n−1 for which each fiber has bounded
intersection with Y . The projection Y → C

n−1 is therefore proper, and
the image is clearly definable and closed analytic by Remmert’s proper
mapping theorem. Now iterate.

Step 3. The locus Y0 ⊂ Y where πY : Y → C
d is not étale is a closed

algebraic subvariety Y0 of Cn.
Y0 is analytic of strictly smaller dimension than Y and evidently definable
(as, for instance, it is the locus where the fiber size is nongeneric). By the
inductive hypothesis we therefore have that Y0 is algebraic.

Step 4. Y is algebraic.

Write C
n = C

n−d ×C
d, so π is projection to the second factor. Let Zan =

π(Y0), which is a closed algebraic subvariety of Cd. Let N be the degree of
the map πY : Y → C

d and consider the function

F : Cd\Zan → SymN
C

n−d : z 	→ π−1(z).

Note that SymN
C

n−d is an affine algebraic variety. F is evidently definable
and holomorphic, as well as locally bounded around Zan (as πY is proper).
Thus, the pullbacks of the coordinate functions of SymN

C
n−d extend to

definable holomorphic functions f : Cd → C, which are therefore algebraic
by Lemma 3.2.4. It follows that Y \Zan is algebraic, and therefore that Y is.

�
Remark 3.2.5. Neither of these proofs is the one given by Peterzil–
Starchenko—as they prove it for arbitrary real closed fields—but the second
proof is close to that of [34]: we’ve only really cheated by using Casorati–
Weierstrass. Step 1 of the proof of Lemma 3.2.4 can be proven in general
using a version of Liouville’s theorem proven by Peterzil–Starchenko.

4 The Ax–Lindemann–Weierstrass Theorem

In this section, as a warm up for the proof of Theorem 6.1.1, we show how
to use the Pila–Wilkie theorem to prove the Ax–Lindemann–Weierstrass
theorem for the exponential map. Many of the same arguments will be used in
the proof of Theorem 6.1.1. The notable exception is that the definable Chow
theorem does not play a role in the proof of the Ax–Lindemann–Weierstrass
theorem but is essential to the proof of the Ax–Schanuel theorem.
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4.1 The Exponential Function

Let

π : Cn → (C∗)n : (z1, . . . , zn) 	→ (e(z1), . . . , e(zn))

where e(z) = e2πiz. Let’s first give a proof of the classification of the
bialgebraic subvarieties of Cn which only mildly uses some of the o-minimal
machinery—and in particular will not use either of the algebraization
theorems discussed in the previous lecture.

Consider an algebraic subvariety M ⊂ (C∗)n and the induced map on
fundamental groups

π1(M) → π1((C
∗)n) ∼= Z

n.

The important observation is that we can directly relate the size of the
monodromy (that is, the image of π1(M)) to the invariance of M .

Proposition 4.1.1. If the image of π1(M) is not finite index in π1((C
∗)n),

then M is contained in a coset of a proper algebraic subtorus.

Proof. Without loss of generality we may assume

π1(M) → 0⊕ Z
n−1 ⊂ Z

n.

Let

F = {(z1, . . . , zn) ∈ C
n | −ε < Re(zi) < 1 + ε} (6)

which is a fundamental set for π : C
n → (C∗)n. Now, on the one hand,

the function z1 descends to a holomorphic function f : M → C by the
assumption on the monodromy. On the other hand, we may take a definable
cell decomposition6 of M . Each cell D is simply connected and therefore lifts
to F , so z1 has bounded real part on D. It then follows that z1 has bounded
real part on all of M , so f must be constant. �
Corollary 4.1.2. The closed irreducible bialgebraic subvarieties of (C∗)n are
precisely cosets of algebraic subtori.

Proof. Equivalently, we must show that the closed irreducible bialgebraic
subvarieties of Cn are translates of C-subspaces defined over Q. Suppose L ⊂
C

n is a closed irreducible bialgebraic subvariety, which we may assume is not
contained in any translate of a C-subspace defined over Q. By the proposition

6We’re not really using o-minimality here—just a statement about the topology of
algebraic varieties.
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(applied to M = π(L)), L is invariant under a finite index subgroup of Zn. As
L is algebraic, its stabilizer under translation by vectors in C

n is an algebraic
subgroup, which is therefore all of Cn. �

We are now ready to prove the Ax–Lindemann–Weierstrass theorem,
whose statement we recall.

Theorem 4.1.3 (Ax–Lindemann–Weierstrass). Suppose there are alge-
braic subvarieties V1 ⊂ C

n and V2 ⊂ (C∗)n.

(1) If π(V1) ⊂ V2, then there is a bialgebraic M ⊂ (C∗)n with

π(V1) ⊂ M ⊂ V2;

(2) If π(V1) ⊃ V2, then there is a bialgebraic M ⊂ (C∗)n with

π(V1) ⊃ M ⊃ V2.

Before the proof we make a crucial observation: both the fundamental set
F ⊂ C

n and the restriction πF : F → (C∗)n of the covering map are definable
in the o-minimal structure Ran,exp (c.f. Example 2.3.3).

Proof of Theorem 4.1.3. We start with the proof of (1). We can assume by
taking closures and components that V1 (resp. V2) is a closed irreducible
algebraic subvariety of C

n (resp. (C∗)n). We can further assume that V2

is not contained in any proper subtorus, and that V1 is a maximal closed
irreducible algebraic subvariety of π−1(V2). It remains to show that V1 is
bialgebraic.

Consider the set

I := {v ∈ R
n | dim

(
(V1 + v) ∩ π−1

F (V2)
)
= dimV1}.

As V1 is irreducible, we see that v ∈ I if and only if the translate V1+v meets
F and V1 + v ⊂ π−1(V2).

Step 1. I is Ran,exp-definable.

Indeed, the universal translate

V1 := {(v, z) | z ∈ V1 + v} ⊂ R
n × C

n

is (real) algebraic so definable, as therefore is the universal intersection

U := V1 ∩
(
R

n × π−1
F (V2)

)
.

Applying Corollary 2.2.10 to the projection U → R
n yields the claim.
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Fig. 5 V1 must pass through at least one fundamental domain F − v of each height.

Step 2. StabZn(V1) is infinite.

We may assume V1 meets F , as π−1(V2) is covered by integral translates7

of F . Note that for any v ∈ Z
n, V1 meets F − v if and only if v ∈ I, so

the integral points of I correspond to fundamental domains that V1 passes
through. Observe that V1 cannot be contained in any “height ball”

⋃
v∈Zn

H(v)≤r

(F − v)

as then each coordinate zi would have bounded real part and therefore be
constant. For each t ∈ Z>0, the complement of the “height sphere”

⋃
v∈Zn

H(v)=t

(F − v)

has two connected components, so V1 must pass through it (see Figure 5).
Thus, we have

N(I, t) ≥ t+ 1.

7Strictly speaking we should take ε = 0 and make F a fundamental domain for this
argument.



32 B. Bakker and J. Tsimerman

By the strong form of the counting theorem, we have a (real) semialgebraic
curve C ⊂ I that contains at least two integral points.

If translation by c ∈ C does not stabilize V1, then
⋃

c(V1 + c) is a
real semialgebraic subset of π−1(V2), and its C-Zariski closure is a complex
algebraic subvariety of π−1(V2) of larger dimension than V1, contradicting
the maximality of V1. Thus, V1 = V1 + c for all c ∈ C, and V1 is stabilized by
a nonzero integer point.

Step 3. Induction step.

Since StabCn(V1) is an algebraic subgroup, it follows from the previous
step that V1 is stabilized by a complex line C ⊂ C

n defined over Q. Thus,
there is a splitting C

n = C
n−1 ⊕ C defined over Q such that V1 = V ′

1 × C.
Let V ′

2 = V2 ∩ (C∗)n−1. Since the proposition is trivially true for n = 1, we
may inductively assume there is a bialgebraic L′ ⊂ C

n−1 with

V ′
1 ⊂ L′ ⊂ π−1(V ′

2).

By the assumption on V2, we must have L′ �= C
n−1 (or else V2 = (C∗)n), so

we can apply the induction hypothesis again to V ′′
2 = π(L′ ⊕ C) ∩ V2 and

V ′′
1 = V1. We conclude there is a bialgebraic L′′ ⊂ L′ ⊕ C with

V1 ⊂ L′′ ⊂ π−1(V ′′
2 ) ⊂ π−1(V2)

and so V1 = L′′ is bialgebraic, by the maximality of V1.
The proof of part (2) is very similar, so we just sketch the argument. We

may now assume V1 is the C-Zariski closure of a component of π−1(V2) and
apply the Pila–Wilkie theorem to

I := {v ∈ R
n | dim

(
(V1 + v) ∩ π−1

F (V2)
)
= dimV2}.

We can then conclude that there is a real semialgebraic C ⊂ I, and if
translation by c ∈ C doesn’t stabilize V1, then

⋂
c(V1 + c) would contain

π−1(V2), implying that the C-Zariski closure of π−1(V2) is smaller than V1,
a contradiction. We conclude that V1 is invariant under a C-line defined over
Q, and a similar induction yields the claim. �

4.2 Hyperbolic Uniformizations

We give a sketch of how the above proof is adapted to the setting of Shimura
varieties, but we first recall the basic structures associated with Shimura
varieties (see [31] for details). These are:

• A connected semisimple algebraic Q-group G.
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• A bounded symmetric domain

Ω = G(R)/K

where K is a maximal compact subgroup of G(R). Ω is a complex manifold
and its biholomorphism group is G(R). It also carries a natural left-
invariant Hermitian metric h which has negative sectional curvature. Note
that the requirement that Ω have a holomorphic structure is a strong
requirement on the group G.

• The compact dual Ω̌, which is

Ω̌ = G(C)/B

where B is a maximal Borel subgroup. It is a homogeneous projective
variety. The Harish–Chandra embedding theorem shows that for any choice
of B containing K, Ω is realized as a semialgebraic subset of Ω̌. Moreover,
this embedding is unique up to the action of G(C).

• An arithmetic lattice Γ ⊂ G(Q), that is, a subgroup which is commen-
surable to the subgroup preserving an integral structure HZ in a faithful
representation G(Q) → GL(HQ). Γ is discrete and finite co-volume in
G(R) (with respect to a left-invariant metric).

• The analytic quotient

Y = Γ\Ω = Γ\G(R)/K.

Y uniquely has the structure of an algebraic variety [4], and it is called a
Shimura variety.

Example 4.2.1. For G = Sp2g and Γ = Sp2g(Z) we have

HZ =the unimodular symplectic lattice of rank 2g

Ω = Siegel upper half-space Hg

Ω̌ = the Lagrangian Grassmannian of HC

Y = Γ\Hg = the (coarse) moduli space of principally polarized

g − dimensional abelian varieties Ag

We can now consider the uniformization π : Ω → Y . Recall that we say
a complex analytic subvariety V ⊂ Ω is algebraic if there is an algebraic
subvariety V̌ ⊂ Ω̌ with V = V̌ ∩ Ω. We say an algebraic subvariety V ⊂ Ω
is bialgebraic if dimV = dimπ(V )Zar, as in Definition 1.2.8. The bialgebraic
subvarieties are the so-called weakly special subvarieties:
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Definition 4.2.2. A weakly special subvariety of Y is a Shimura variety Y ′

given as

Y ′ = Γ′\G′(R)/K ′

where G′ is an algebraic Q-subgroup of G, Γ′ = Γ ∩G′(Q) is an arithmetic
lattice, and K ′ = K ∩G′(R). Evidently Y ′ is then an analytic subvariety of
Y , and in fact it is (uniquely) an algebraic subvariety.

Proposition 4.2.3 (Theorem 1.2 of [49]). Let Y be a Shimura variety.
The closed irreducible bialgebraic subvarieties of Y are precisely the weakly
special subvarieties.

As in Proposition 4.1.1, the proof of Proposition 4.2.3 uses monodromy
arguments and relies heavily on the work of André–Deligne [1, 16]. The
Ax–Lindemann–Weierstrass theorem in this context was proven by Pila for
powers of the modular curve [35], by Pila–Tsimerman for Ag [38], and then
by Klingler–Ulmo–Yafaev for general Shimura varieties [27]:

Theorem 4.2.4 (Ax–Lindemann–Weierstrass, Theorem 1.6 of [27]).
Let Y be a Shimura variety uniformized by Ω. Suppose there are algebraic
subvarieties V1 ⊂ Ω and V2 ⊂ Y .

(1) If π(V1) ⊂ V2, then there is a bialgebraic M ⊂ Ω with

π(V1) ⊂ M ⊂ V2;

(2) If π(V1) ⊃ V2, then there is a bialgebraic M ⊂ Ω with

π(V1) ⊃ M ⊃ V2.

Sketch of Proof. We will only sketch the proof of (1), as (2) is similar. We can
make the same assumptions on V1 and V2 as in the proof of Theorem 4.1.3—
that is, that both are closed irreducible subvarieties. We can further assume
V2 is not contained in any bialgebraic subvariety, and that V1 is a maximal
algebraic subvariety of π−1(V2).

We follow the same three steps as the proof of Theorem 4.1.3

Step 1.

We first need a definable fundamental set F ⊂ Ω for which the restriction
πF : F → Y is a definable quotient map. In [27], this is done using finitely
many Siegel sets, which yield a semialgebraic fundamental set F̃ ⊂ G(R) for
the action of any arithmetic lattice Γ ⊂ G(Q). We can then take F as the
image of F̃ in Ω = G(R)/K. It is then shown that πF : F → Y is Ran,exp-
definable using the theory of toroidal compactifications. In Lecture 5 we will
instead use the local theory of degenerations of Hodge structures to produce
a definable fundamental set.
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It then follows in the same way that

I := {g ∈ G(R) | dim
(
gV1 ∩ π−1

F (V2)
)
= dimV1}.

is Ran,exp-definable.

Step 2. StabG(Z)(V1) is infinite.

We would like to apply the Pila–Wilkie theorem to I as in Step 2 of the
proof of Theorem 4.1.3, so we need

Claim. N(I, t) � tε for some ε > 0.

We postpone until Lecture 7 the precise definition of the height of an
element of G(Q) and the counting function. The above argument using
“height balls” to produce polynomially many Z-points of I (in the height)
breaks down, essentially because the uniformizing group Γ and its action on
Ω are now very complicated.

The problem is remedied in [27, 38] by instead using metric balls. Let ΓV

be the image of the monodromy representation π1(V2) → G(Q). Recall that
since π−1(V2) is stable under ΓV , it will be sufficient to show that V1 passes
through polynomially many (in the height of γ) integral translates γ−1F for
γ ∈ ΓV . We may assume V1 meets F and take a basepoint x0 ∈ F ∩ V1.
Consider the metric balls Bx0

(R) centered at x0. By a result of Hwang–To,
the volume achieved by V1 in Bx0

(R) is large:

Theorem 4.2.5 (Corollary 3 of [23]). There is a constant β > 0
only depending on Ω such that for any closed positive-dimensional analytic
subvariety Z ⊂ Bx0

(R) we have

vol(Z) � sinh(βR)dimZ multx0
Z.

We will need a version of Theorem 4.2.5 for period domains, whose proof we
sketch in Lecture 8.

To establish the claim, it now remains to show that:

(a) The only integral translates γ−1F meeting Bx0
(R) have H(γ) � eO(R);

(b) V1 has bounded volume intersection with all of the translates γ−1F .

Indeed, the volume of V1 ∩ Bx0
(R) is exponential in the radius by Theo-

rem 4.2.5, so by (b) and the fact that the γ−1F cover π−1(V2) with bounded
overlaps we conclude that V1 passes through exponentially many (in the
radius) integral translates γ−1F in Bx0

(R). It then follows from (a) that
the number of these integral translates is polynomial in the height.

For (a), we need to compare the metric dilation of γ to its height, which
is standard (see, for example, Lecture 7). For (b), it suffices to show that all
translates gV1 for g ∈ G(C) meet F with bounded volume, and since these
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translates form an algebraic family, we can use definability to get a uniform
bound (see, for example, Proposition 5.5.1).

To finish, just as in the proof of Theorem 4.1.3, we obtain an algebraic
family {gc}c∈C ⊂ G(C) with gcV1 ⊂ π−1(V2) by applying the Pila–Wilkie
theorem. If V1 is a maximal irreducible algebraic subvariety of π−1(V2), then
we have V1 =

⋃
c∈C gcV1 and V1 then is therefore invariant under {gc}c∈C

(which in particular contains a nontrivial integral point).

Step 3. Induction step.

As the stabilizer of V1 is an algebraic subgroup of G and we know from
the previous step that StabG(Z)(V1) is infinite, it follows that V1 is stabilized
by a positive-dimensional connected Q-subgroup H of G, namely the identity
component of the Q-Zariski closure of StabG(Z)(V1). However, to make the
induction work, one needs V1 to be stabilized by a normal Q-subgroup of G,
as this will imply G is isogeneous to a product. This problem is solved using
Hecke correspondences in [27, 38]. In [33], the same problem is solved in
a different way to prove the Ax–Schanuel theorem, essentially by using the
definable Chow theorem to algebraize the family of algebraic deformations
V ′
1 of V1 that are contained in π−1(V2), and then using the fact that algebraic

families of varieties have large monodromy. We will use the same strategy in
Lecture 6.

�

5 Recollections from Hodge Theory

Shimura varieties are moduli spaces of very special polarized Hodge struc-
tures, and it is very natural to formulate the Ax–Schanuel conjecture (as well
as the other transcendence statements) for general moduli spaces of polarized
Hodge structures. We spend this lecture recalling the relevant notions from
Hodge theory. We will be necessarily brief, and refer the interested reader to
[13] and [20] for details.

5.1 Preliminaries

Definition 5.1.1. Fix an integer n. Let HZ be a finite rank free Z-module.
A pure Hodge structure on HZ of weight n is a decomposition into complex
vector spaces

HC := HZ ⊗ C =
⊕

p+q=n

Hp,q (7)
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satisfying Hp,q = Hq,p. The dimensions hp,q = dimC Hp,q are called the
Hodge numbers. We say the Hodge structure is effective if Hp,q = 0 for
p > n.

Note that the Hodge structure is determined by the Hodge filtration

F p :=
⊕
r≥p

Hr,s

as Hp,q = F p∩F q. Conversely, a descending filtration F • determines a Hodge
structure of weight n if it satisfies

F p ∩ Fn−p+1 = 0 (8)

for all p.

Example 5.1.2. A pure weight 1 (or −1) Hodge structure is equivalent to a
complex torus T . We canonically have an embedding

H1(T,Z) → H0(T,Ω1
T )

∨ ⊕H0(T,Ω
1

T )
∨ : γ 	→

∫

γ

which yields a decomposition

H1(T,C) = H−1,0 ⊕H0,−1

with H−1,0 = H0(T,Ω1
T )

∨ and H0,−1 = H−1,0. Projecting H1(T,Z) to H−1,0

we can recover T canonically by the albanese

T
∼=−→ H0(T,Ω1

T )
∨/H1(T,Z) : p 	→

∫ p

0

.

The weight −1 Hodge structure on H1(T,Z) naturally induces a weight 1
Hodge structure on H1(T,Z).

Definition 5.1.3. Suppose HZ carries a weight n Hodge structure, and let
qZ be a (−1)n-symmetric bilinear form—that is, qZ is symmetric if n is even
and skew-symmetric if n is odd.

(1) The Weil operator C ∈ End(HR) is the real endomorphism satisfying

CC =
⊕
p,q

ip−q · idHp,q .

(2) The Hodge form is the Hermitian form h on HC defined by

h(u, v) = qC(Cu, v).
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(3) We say the Hodge structure is polarized by qZ if the Hodge form is
positive-definite and the decomposition (7) is h-orthogonal.

If the Hodge structure is polarized by qZ, then the Hodge filtration F • is
qC-isotropic: we have (F •)⊥ = Fn+1−•. Conversely, a qC-isotropic Hodge
filtration satisfying (8) determines a qZ-polarized Hodge structure if the
Hodge form is positive-definite.

Example 5.1.4. A polarized weight 1 (or −1) Hodge structure is equivalent to
a polarized abelian variety A. A skew-symmetric integral form qZ onH1(A,Z)
can be thought of as an element h ∈ H2(A,Z). By the Lefschetz (1, 1)
theorem, the qC-isotropicity condition on the Hodge decomposition implies
h = c1(L) for a line bundle L on A, and the positivity condition implies L is
ample.

Example 5.1.5. We have the following broad generalization of the previous
example, which was the original motivation for their introduction. Let Y be a
proper Kähler manifold (for example, a smooth complex projective variety).
After choosing a Kähler form ω, we obtain a weight n Hodge structure on
degree n singular cohomology

Hn(Y,C) =
⊕

p+q=n

Hp,q(Y ) (9)

by decomposing harmonic representatives of de Rham cohomology classes
into (p, q) parts. Furthermore, suppose Y is a smooth complex projective
variety with ample bundle L and set h = c1(L). The singular cohomology
H∗(Y,Q) decomposes into polarized Hodge structures as follows. For n ≤
d = dimX, let

Hd−n
prim(Y,Z) := ker

(
hn+1∪ : Hd−n(Y,Z)tf → Hd+n+2(Y,Z)tf

)
.

Where (−)tf denotes the torsion-free quotient. We have

Hn(Y,Q) =
⊕

0≤k≤n/2

hk ∪Hn−2k
prim (Y,Q).

Hn
prim(Y,Z) carries a natural integral form

qn(a, b) :=

∫

Y

hdimY−2n ∪ a ∪ b.

The decomposition (9) (associated to the Kähler class h) then induces a
weight n Hodge structure on Hprim(Y,Z) polarized by qn.
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Remark 5.1.6. Note that if HZ carries a pure Hodge structure, then so too
will any tensor power, symmetric power, wedge power, etc. of HZ. The same
is true of pure polarized Hodge structures.

5.2 Period Domains and Period Maps

Define the algebraic Q-group G(Q) = Aut(HQ, qQ); we will often denote
G(Z) = Aut(HZ, qZ). It is then not hard to see that the space D of
qZ-polarized pure weight n Hodge structures on HZ with specified Hodge
numbers hp,q is a homogeneous space for G(R). Indeed, choosing a reference
Hodge structure, we have

D = G(R)/V

where V is a subgroup of the compact unitary subgroup K = G(R) ∩ U(h)
of G(R) with respect to the hodge form of the reference Hodge structure.
Moreover, D is canonically an open subset (in the euclidean topology) of
Ď = G(C)/P , the flag variety parametrizing qC-isotropic Hodge filtrations
F • on HC with hp,n−p = dimF p/F p+1.

Definition 5.2.1. Such a D is called a polarized period domain.

Example 5.2.2. Given a smooth projective morphism f : Y → X, consider
the local system Rkf∗Q for some k. In the notation of Example 5.1.5, Rnf∗Z
can be decomposed into primitive pieces, and each fiber of Rn

primf∗Z carries a
pure weight n Hodge structure. By a theorem of Griffiths, the resulting map

ϕ : Xan → G(Z)\D : y 	→ [Hn
prim(Xy,Z)]

is holomorphic and locally liftable to D.

The fundamental observation of Griffiths is that we cannot get arbitrary
maps to G(Z)\D from geometry as in Example 5.2.2. Indeed, only certain
tangent directions of D are accessible to algebraic families. To make this
precise, fix a point x ∈ D and note that a deformation of the Hodge filtration
at x in particular yields a deformation of each F p

x , so we have a natural map

TxD →
⊕
p

Hom(F p
x , HC/F

p
x ). (10)

Definition 5.2.3. The Griffiths transverse subspace TGT
x D ⊂ TxD is the

inverse image of
⊕

p Hom(F p
x , F

p−1/F p
x ) under the map in (10).
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In other words, to first order each F p is only deformed inside F p−1.
The Griffiths transverse subspaces assemble into a holomorphic subbundle
TGTD ⊂ TD.

Remark 5.2.4. Each pure polarized Hodge structure x ∈ D on HZ naturally
induces a pure polarized Hodge structure on the Lie algebra gR ⊂ End(HR)
of weight 0, which we call gx. Denote its Hodge filtration by F •

xgC. The Lie
algebra of the stabilizer Px ⊂ G(C) of x ∈ Ď is then naturally F 0

xgC. Thus,
the tangent space TxD is naturally (and holomorphically) identified with
gC/F

0
xgC. The Griffiths transverse subspace is F−1

x gC/F
0
xgC.

Definition 5.2.5. By a period map we mean a holomorphic locally liftable
Griffiths transverse map

ϕ : Xan → Γ\D

for a smooth complex algebraic variety X and a finite index Γ ⊂ G(Z).

Remark 5.2.6. A period map ϕ : Xan → G(Z)\D is equivalent to the
data of a pure polarized integral variation of Hodge structures on X. This
consists of:

• A local system HZ with a flat quadratic form QZ.
• A holomorphic locally split filtration F • of HZ ⊗Z OXan such that the flat

connection ∇ satisfies Griffiths transversality:

∇(F p) ⊂ F p−1 for all p.

• We moreover require that (HZ, QZ, F
•) is fiberwise a pure polarized

integral Hodge structure.

The period map lifts to Γ\D if Γ contains the image of the monodromy
representation of HZ.

Definition 5.2.7. Let X be a log smooth compactification of X. For any
irreducible boundary divisor E ⊂ X, the local monodromy operator γ ∈ G(Z)
of E is the monodromy of the local system HZ along a small loop around E,
which is defined up to conjugation (in G(Z)).

The following result on the monodromy of variations of Hodge structures
is of pervasive importance:

Theorem 5.2.8. Any period map ϕ : Xan → Γ\D has quasiunipotent local
monodromy.

Corollary 5.2.9. For any period map ϕ : Xan → Γ\D, there is a finite
étale cover f : X ′ → X such that the period map ϕ′ = ϕ ◦ f : X ′ → Γ\D has
unipotent local monodromy.
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Proof. Note that any quasiunipotent γ ∈ G(Z) has eigenvalues which are
roots of unity of bounded order. Let Γ(n) ⊂ G(Z) be the full-level n subgroup

Γ(n) :=

{
γ ∈ G(Z)

∣∣∣∣ γ ≡
(
1 0

0 1

)
modn

}
.

Since the roots of unity of bounded order inject mod p for sufficiently large p,
it follows that every quasiunipotent element of Γ(p) is in fact unipotent for
sufficiently large p. Now take X ′ to be the pullback of the finite étale cover
Γ(p)\D → G(Z)\D (technically as stacks). �

5.3 The Mumford–Tate Group and Weakly Special
Subvarieties

Definition 5.3.1. Suppose HZ carries a pure weight 2k Hodge structure.
An integral (resp. rational) class v ∈ HZ (resp. v ∈ HQ) is Hodge if v ∈ Hk,k.

Note that an integral class v ∈ HZ has pure Hodge type if and only if it is
a Hodge class. Moreover, v is Hodge if and only if v ∈ F k.

Example 5.3.2. The motivation for considering Hodge classes again comes
from geometry. Given a smooth projective complex algebraic variety Y
and a closed algebraic subvariety Z ⊂ Y , the fundamental class [Z] ∈
H2 codimZ(Y,Z) is a Hodge class. The Hodge conjecture says that moreover
all rational Hodge classes arise from cycles (up to rational scaling).

The Hodge classes of a particular Hodge structure are described by the
Mumford–Tate group:

Definition 5.3.3. Suppose HQ carries a pure Hodge structure H. The
(special) Mumford–Tate group MTH of H is the algebraic Q-subgroup of
End(HQ) with the following property: for any tensor power H ′ = H⊗k ⊗
(H∨)⊗�, the rational Hodge classes of H ′ are precisely the rational vectors
fixed by MTH .

For simplicity we suppress the proof that such a group exists, as well as
the relation to the Deligne torus, and we instead refer to [13] for details. Note
that if the Hodge structure H is polarized by qQ, then MTH ⊂ Aut(HQ, qQ).

Definition 5.3.4. Let D be a polarized period domain.

(1) A weak Mumford–Tate subdomain D′ of D is an orbit M(R)x where
x ∈ D and M is a normal algebraic Q-subgroup of MTx. In fact, D′ is
a smooth complex submanifold of D, and it is an irreducible component
of the locus of Hodge structures H such that MTH ⊃ M.
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(2) If moreover M = MTx, then D′ = M(R)x is called a Mumford–Tate
subdomain.

(3) Let π : D → Γ\D be the quotient map. For D′ ⊂ D a (weak) Mumford–
Tate subdomain, π(D′) ⊂ Γ\D is a complex analytic subvariety which
we call a (weak) Mumford–Tate subvariety. Likewise, given a period map
ϕ : Xan → Γ\D, we call ϕ−1π(D′) a (weak) Mumford–Tate subvariety
of X.

Given Definition 5.3.3, we see that we can also think of a Mumford–Tate
subdomain as a component of the locus of Hodge structures for which some
number of rational tensors are Hodge.

Theorem 5.3.5 (Theorem 1.6 of [15]). Let ϕ : Xan → Γ\D be a period
map. Then any weak Mumford–Tate subvariety of X is algebraic.

Remark 5.3.6. In the special case of f : Y → X a smooth projective family,
and the period map corresponding to the variation of Hodge structures on
R2k

primf∗Z, the Hodge conjecture implies Theorem 5.3.5. Indeed, the locus

Hdgk(X) ⊂ X where H2k
prim(Yx,Q) acquires Hodge classes is the image of the

codimension k relative Hilbert scheme Hilb(Y/X), hence a countable union
of algebraic subvarieties.

Definition 5.3.7. Suppose ϕ : Xan → Γ\D is a period map. The Q-Zariski
closure of the image of the monodromy representation ϕ∗ : π1(X,x) → G(Q)
is called the algebraic monodromy group.

The following theorem is a consequence of the theorem of the fixed part
[13, Theorem 13.1.10], which asserts that the trivial sub-local system of a
variation of Hodge structures naturally supports a Hodge sub-variation.

Theorem 5.3.8. The identity component of the algebraic monodromy group
of a period map is a Q-factor of the very general Mumford–Tate group.8

5.4 Definable Fundamental Sets of Period Maps

We will need a slightly different definition of what a definable fundamental
set of a period map is.

Definition 5.4.1. Let ϕ : Xan → Γ\D a period map. A definable funda-
mental set for ϕ is a definable space F whose underlying space is a complex
analytic variety together with a commutative diagram of holomorphic maps
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such that p realizes Xdef as a quotient by a closed étale definable equivalence
relation and ϕ̃ is definable.

A crucial observation for the proof of the Ax–Schanuel conjecture is the
following:

Proposition 5.4.2. Any period map with unipotent monodromy admits a
Ran,exp-definable fundamental set.

The proof of Proposition 5.4.2 is not hard—it follows easily from the local
description of degenerations of Hodge structures, as we will see below. For
Proposition 5.4.2 the assumption on the monodromy is not necessary, but
given Corollary 5.2.9 it is sufficient for our purposes to restrict to this case.

By a local period map we mean a holomorphic locally liftable Griffiths
transverse map

ϕ : (Δ∗)r ×Δs → Γ\D.

Given such a map, let μ : Hr × Δs → (Δ∗)r × Δs be the standard covering
map, and consider a lift of the period map The covering group of μ is Z

r,

generated by the real translations

ti : H
r → H

r : (z1, . . . , zi, . . . , zr) 	→ (z1, . . . , zi + 1, . . . , zr)

on the ith H factor, for 1 ≤ i ≤ r. Let γi ∈ G(Z) be the corresponding
unipotent monodromy operator, so that

ϕ̃ ◦ (ti × idΔs) = γiϕ̃

8That is, the Mumford–Tate group at a very general point.
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Let

Ni := log γi = −
∑
k

(1− γi)
k

k
∈ gR

be the nilpotent logarithms of Ti, which makes sense since each Ti is
unipotent. It follows that the map ψ̃ : Hr ×Δs → D defined by “untwisting”
the monodromy

ψ̃ := exp

(
−
∑
i

ziNi

)
ϕ̃

descends to a map ψ : (Δ∗)r ×Δs → D.

Theorem 5.4.3 (Corollary 8.35 of [45]). For any local period map, ψ as
defined above extends to a holomorphic map ψ : Δn → Ď.

Remark 5.4.4. Given a variation (HZ, QZ, F
•) of pure polarized integral

Hodge structures over a smooth algebraic base X with unipotent local
monodromy, the Deligne extension is a canonical extension of the associated
flat bundle OXan ⊗ZHZ to a log smooth compactification X as a holomorphic
vector bundle. For vi a (multivalued) flat frame for HZ in a polydisk
(Δ∗)r ×Δs, the extension is defined using the frame

ṽi := exp

(
−
∑
i

ziNi

)
vi.

One then shows that these extensions patch to form a global extension of
OXan ⊗ HZ to X (see [12]). Theorem 5.4.3 then implies that the Hodge
filtration F • extends holomorphically to the Deligne extension.

Let Σ ⊂ H be the bounded vertical strip

Σ := {z ∈ H | −ε < Re z < 1 + ε}

with its Ralg-definable structure as a semialgebraic subset of C. For δ > 0
define

Δδ :={q ∈ Δ | |q| < 1− δ}
Hδ :={z ∈ H | Im z > δ}
Σδ :=Σ ∩Hδ.

Corollary 5.4.5. For all sufficiently small δ > 0,
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ϕ̃ : Σr
δ ×Δs

δ → D

is Ran,exp-definable.

Proof. We have ϕ = exp(z ·N)ψ̃. By Theorem 5.4.3, ψ : Δn
δ → D is restricted

analytic, hence Ran-definable. It follows that ψ̃ : Σr
δ × Δs

δ → D is Ran,exp-
definable since μ is Ran,exp-definable. Now, G(C) (with its canonical definable
structure) acts algebraically on Ď, and exp(z ·N) is in fact an algebraic map
Σr → G(C), hence Ralg-definable. Thus, ϕ̃ is Ran,exp-definable. �
Proof of Proposition 5.4.2. Take an algebraic log smooth compactification X̄
of X, and a finite cover of X by polydisks of the form fi : (Δ

∗)ri ×Δsi → X.
For each such polydisk, take Fi = Σri

δ ×Δsi
δ , and let pi = fi ◦μ. Finally, take

F =
⊔

i Fi, with p =
⊔

i pi : F → X. For sufficiently small δ > 0 the map

p : F → Xan

realizes Xdef as a Ran,exp-definable quotient of F . By Corollary 5.4.5, the
lifted period map ϕ̃ : F → D is Ran,exp-definable. �

5.5 Intersections with Definable Fundamental Sets

Given a definable fundamental set for a period map as in the last subsection,
we evidently have a natural diagram where XD := X ×Γ\D D. Fix a left-

invariant metric hD and let Φ = ϕ̃(F ). For the proof in the next section,
it will be important that a given algebraic subvariety Z ⊂ Ď has bounded
volume intersection with all translates of Φ under the action by G(Z). We in
fact have the stronger statement:

Proposition 5.5.1 (Proposition 3.2 of [5]). Let Z ⊂ Ď be a closed
algebraic subvariety. For all γ ∈ G(C), vol(Z ∩ γΦ) = O(1).

Proof. Evidently it is enough to show vol(Z ′∩Φ) = O(1) for all Z ′ in the same
connected component of the Hilbert scheme of Ď as Z. Further, it suffices
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to show vol(ϕ̃−1(Z ′)) = O(1) for each local period map ϕ̃ : Hr
δ × Δs

δ → D
considered above, where the volume is computed with respect to ϕ̃∗hD.

For any holomorphic Griffiths transverse map f : M → Γ\D we have
f∗hD � κM where κM is the Kobayashi metric of M . In particular, for
M = H

r × Δs the metric κM is the maximum over the coordinate-wise
Poincaré metrics. The factors in Σr

δ ×Δδ have finite volume with respect to
the Kobayashi metric of Hr ×Δs, and thus it is enough to uniformly bound
the degree of the projection of ϕ̃−1(Z ′) to any subset of coordinates. This
in turn follows by applying Corollary 2.2.10 to the pullback of the universal
family. �

6 The Ax–Schanuel Theorem for Period Maps

In this section we give the proof of the Ax–Schanuel conjecture for period
maps from [5]. The proof follows the same strategy as the proof of Mok–
Pila–Tsimerman [33] for Shimura varieties.

6.1 Statement of the Main Theorem

Let X be a smooth complex algebraic variety over C supporting a pure
polarized integral variation of Hodge structures HZ. Let MTHZ

be the
generic Mumford–Tate group—that is, the Mumford–Tate group at a very
general point—and let Γ ⊂ MTHZ

(Q) be the image of the monodromy
representation π1(X) → MTHZ

(Q) after possibly passing to a finite cover.
LetG be the identity component of the Q-Zariski closure of Γ. LetD = D(G)
be the associated weak Mumford–Tate domain and ϕ : X → Γ\D the period
map of HZ. The compact dual Ď of D is a projective variety containing D
as an open set in the archimedean topology.

Consider the fiber product

Theorem 6.1.1 (Ax–Schanuel, Theorem 1.1 of [5]). In the above
setup, let V ⊂ X × Ď be an algebraic subvariety, and let U be an irreducible
analytic component of V ∩XD such that
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codimX×D(U) < codimX×Ď(V ) + codimX×D(XD).

Then the projection of U to X is contained in a proper weak Mumford–Tate
subvariety.

The theorem, for example, implies that the (analytic) locus in X where
the periods satisfy a given set of algebraic relations must be of the expected
codimension unless there is a reduction in the generic Mumford–Tate group.
See [25] for some related discussions.

Corollary 6.1.2 (Ax–Lindemann–Weierstrass). Assume the above
setup.

(1) For any algebraic V ⊂ D, the Zariski closure of ϕ−1π(V ) is a weak
Mumford–Tate subvariety.

(2) For any algebraic V ⊂ X, the Zariski closure of any component V0 of
π−1ϕ(V ) is a weak Mumford–Tate subdomain.

6.2 Setup for the Proof

Given a period map ϕ : Xan → Γ\D and a subvariety V ⊂ X ×D, we define
its type as the tuple

(dimX, dimV − dim(V ∩XD),− dim(V ∩XD))

ordered lexicographically. We say a closed algebraic V ⊂ X × D is bad at
p ∈ V ∩XD if

codimp(V ∩XD) < codim(V ) + codim(XD)

in which case we also say that both p and V are bad.
We proceed by induction and assume the theorem for all smaller types.

Suppose V0 is bad with N0 = dim(V0 ∩ XD). Let M ⊂ Hilb(X × Ď) be the
connected component of the Hilbert scheme containing V0, let V ⊂ (X ×
Ď) × M be the universal subscheme, and let VX×D ⊂ (X × D) × M be the
restriction of the universal family to X ×D ⊂ X × Ď. We will refer to points
of VX×D as pairs (p, V ), with V ∈ M and p ∈ V ∩ (X ×D).

Let VXD
be the universal intersection of VX×D with XD. The set of

“equally” bad points

B := {(p, V ) ∈ VXD
| dimp(V ∩XD) = N0} ⊂ VX×D

is naturally a complex analytic subvariety which is moreover closed because
of the inductive hypothesis (as dimp(V ∩XD) is semicontinuous). If B → M
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is the projection (p, V ) 	→ V , the base-change VB → B of the universal family
VX×D along B → M is naturally the family of “equally” bad varieties V .

6.3 Ingredients for the Proof

Recall that we have a definable fundamental set in the sense of Defini-
tion 5.4.1:

Given a bad V , we would like to apply the Pila–Wilkie theorem to the set

I := {g ∈ G(R) | dim(gV ∩ F ) = N0} (11)

of translates of V that meet F badly, just as in the proof of Theorem 4.1.3.
Let ΓX be the image of the monodromy representation π1(X) → G(Z). Once
again, XD is covered by fundamental sets γ−1F with γ ∈ G(Z), and if U is
a N0-dimensional component of V ∩ XD then for each γ−1F that U meets
we certainly have γ ∈ I (see Figure 6). We would like to argue that U passes
through many fundamental sets, and therefore I has many integral points.

Like in the Shimura variety case, however, the monodromy is now very
complicated and we cannot make the “height balls” argument work, so we
instead use metric balls. We may assume U meets F and take a basepoint
x0 ∈ F ∩ U . Let y0 be the image in Ď, and consider the radius r ball Bp0

(r)
centered at y0 with respect to the natural left-invariant metric on D. In the
following we always measure volumes of subsets of X ×D with respect to a
left-invariant volume form on the second factor.

For γ ∈ ΓX we have V ∩ γ−1F = U ∩ γ−1F , as the component of
XD containing U is fixed by ΓX . Now, by Proposition 5.5.1, U meets each
γ−1F with bounded volume, while the γ−1F meet each other with bounded
multiplicity, and it follows that the number of γ−1F that U passes through in
X×Bp0

(r) is at least as much (up to a constant) as its volume in X×By0
(r).

Given the following theorem, this volume grows exponentially in r:
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XD

V

U F

γ−1F

γ−1

Fig. 6 Every fundamental domain γ−1F that U passes through yields an integral
translate γV that meets F badly

Theorem 6.3.1 (Theorem 1.2 of [5]). There are constants β,R > 0
such that for any closed positive-dimensional Griffiths transverse analytic
subvariety Z ⊂ By0

(r) for r > R we have

vol(Z) � eβr multy0
Z.

On the other hand, the fundamental sets γ−1F which intersect X×By0
(r)

have height which is at most exponential in the radius:

Theorem 6.3.2 (Theorem 4.2 of [5]). For any γ ∈ G(Z) with

γ−1F ∩ (X ×By0
(r)) �= ∅

we have H(γ) = eO(r).

Putting Theorems 6.3.1 and 6.3.2 together we therefore obtain:

Proposition 6.3.3. For some ε > 0,

N(I, t) � tε.

We postpone a precise definition of the height function on G(Q) and
N(I, t) until the next lecture. In the remainder of this section, we prove
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Theorem 6.1.1 assuming Proposition 6.3.3, and discuss the proofs of Theo-
rems 6.3.2 and 6.3.1 in Lectures 7 and 8, respectively.

6.4 The Counting Step

We can now adapt the argument of Lecture 4 to first show:

Proposition 6.4.1. StabG(Z)(V ) is infinite for any fiber V of VB.

Proof. G is an algebraic group, so G(R) has a natural definable structure.
Exactly as in the proof of Theorem 4.1.3, the set I from (11) is Ran,exp-
definable, and therefore by Proposition 6.3.3 and the Pila–Wilkie theorem we
conclude that I contains a semialgebraic curve C ⊂ I containing arbitrarily
many integer points, in particular at least 2 integer points.

If cV is constant in c ∈ C, then it follows that V is stabilized by a non-
identity integer point and we are done (since Γ is torsion free). So we assume
that cV varies with c ∈ C. Note that since C contains an integer point that
ϕ̃(cV ∩XD) is not contained in a weak Mumford–Tate subdomain for at least
one c ∈ C, and thus for all but a countable subset of C (since there are only
countably many families of weak Mumford–Tate subdomains).

We now have two cases to consider (see Figure 7). On the one hand,
assume there is no fixed N0-dimensional component U of cV ∩XD as c ∈ C
varies. Then we may replace V by

⋃
c∈C cV and increase both dimV and

dim(V ∩XD) by one, thus lowering the type and contradicting the inductive
hypothesis. On the other hand, if there is such a component, then replacing
V with

⋂
c∈C cV we lower dimV without changing dim(V ∩ XD), again

contradicting the inductive assumption. This completes the proof.
�

(a) (b)

XD XD

Vc Vc

Fig. 7 If V is not stabilized by c ∈ C, then we get a counterexample with smaller
type by replacing V with either (a)

⋃
c cV or (b)

⋂
c cV .
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6.5 The Definable Chow Step

Now we would like to control how many bad points of X there are. Obviously
such points are Zariski dense, for replacing X by the Zariski closure we
contradict the inductive assumption on dimX. However, the bad points may
a priori be quite sparse.

Proposition 6.5.1. The projection B → X is surjective.

Proof. The universal intersection VXD
is proper over XD, and the restriction

VF ⊂ F×M has a canonical definable structure as a restriction of an algebraic
subvariety of (X × Ď) × M to F × M . The quotient VX := ΓX\VXD

is
a complex analytic space, proper over X, which thereby inherits a unique
definable structure for which the quotient map VF → VX is definable.

Likewise, the subset

BF := {(p, V ) ∈ VF | dimp(V ∩ F ) = N0}

is a definable closed complex analytic subset of VF , and the quotient is a
definable closed complex analytic subset BX ⊂ VX which is proper over X.

To finish, the projection BX → X is a proper definable complex analytic
map, and by Remmert–Stein and Proposition 2.1.2 the image Z ⊂ X is a
definable closed complex analytic subvariety of X, and therefore algebraic by
Theorem 3.2.1. We must then have Z = X, by the induction hypothesis. �
Corollary 6.5.2. The image of π1(BX) → π1(X) is finite index.

Proof. BX → X is a proper surjective map of complex analytic varieties. �

6.6 The Induction Step

In the final step we produce a contradiction to Proposition 6.4.1.

Proposition 6.6.1. StabG(Z)(V ) is finite for a very general fiber V of VB.

The crucial point is that Hodge theory relates the monodromy of a
variation of Hodge structures to the Mumford–Tate group of a very general
fiber. Theorem 5.3.8 will therefore imply a reduction in the Mumford–Tate
group which cannot occur by the inductive hypothesis.

Proof. By the construction in the previous step we have BX = ΓX\B, and
the fundamental group π1(BX) naturally acts on B. Explicitly, if ρ is the
composition π1(BX) → π1(X) → G(Z), then for γ ∈ π1(BX) this action
is (p, V ) 	→ (ρ(γ)p, ρ(γ)V ). Let ΓB be the image of ρ, and note that by
Corollary 6.5.2 that ΓB is Q-Zariski dense in G.
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As G(R) acts on X × Ď by algebraic automorphisms, given g ∈ G(R) the
locus in M of varieties V stabilized by g is an algebraic subvariety of M .
It follows that for the fibers of the family VB → B outside of a countable
collection of proper subvarieties of B—that is, for the very general fiber V—
the stabilizer under G(Z) is a fixed group ΓV . Furthermore, for a very general
fiber V , γV is also very general for any γ ∈ ΓA, and it follows that ΓV is
normalized by ΓB. Letting Θ be the identity component of the Q-Zariski
closure of ΓV , we conclude that Θ is a normal Q-subgroup of G.

It suffices to show that the Q-Zariski closure of ΓV is finite, or that: �
Claim. Θ is the identity subgroup.

Proof. Since Θ is a normal Q-subgroup by construction, G is isogenous to
Θ1 ×Θ2 with Θ2 = Θ. We have a splitting of weak Mumford–Tate domains
D = D1 ×D2 with Di = D(Θi). Replacing X by a finite cover we also have
a splitting of the period map [20, Theorem III.A.1]

ϕ = ϕ1 × ϕ2 : X → Γ1\D1 × Γ2\D2.

Moreover, ϕ1, ϕ2 satisfy Griffiths transversality (see the proof of [20, Theorem
III.A.1]). Note that V ⊂ X ×D by assumption, and as V is invariant under
Θ2 it is of the form V1 ×D2 where V1 ⊂ X ×D1.

Consider the period map X → Γ1\D1, the resulting XD1
⊂ X × D1,

and the subvariety V1 ⊂ X × D1. Let U be a N0-dimensional component of
V ∩ XD and let U1 be the component of V1 ∩ XD1

onto which U projects.
By assumption the theorem applies in this situation, and as U1 cannot be
contained in a proper weak Mumford–Tate subdomain (for then U would as
well), we must have

codimX×D1
(U1) = codimX×Ď1

(V1) + codimX×D1
(XD1

).

Note that the projection XD → XD1
has discrete fibers, so dimX = dimXD1

and dimU = dimU1, whereas codimV1 = codimV , which is a contradiction
if ϕ2 is nonconstant. �

7 Heights and Distances

In this section we establish the comparison between heights and metric
dilation needed in Theorem 6.3.2. Recall that we have a period map ϕ :
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Xan → Γ\D and definable fundamental set p : F → X in the sense of
Definition 5.4.1 consisting of a union of unwrapped polydisks9 Σr ×Δs:

Letting Φ = ϕ̃(F ) and fixing a basepoint x0 ∈ Φ ⊂ D, we identify D ∼=
G(R)/V for a compact subgroup V ⊂ G(R). Thinking of D as a space of
Hodge structures on the fixed integral lattice (HZ, qZ), as before we denote
by hx the induced Hodge metric on HC corresponding to x ∈ D.

Definition 7.0.1. For γ ∈ G(Z) let H(γ) be the height of γ with respect
to the representation ρZ : G(Z) → GL(HZ). For g ∈ G(R), we denote by
||ρR(g)|| the maximum archimedean size of the entries of ρR(g), so that if
γ ∈ G(Z) we have H(γ) = ||ρR(γ)||.
Remark 7.0.2. We can now precisely define the counting function used in the
previous lecture. For U ⊂ G(R) a definable subset (where G(R) is given the
canonical definable structure coming from the algebraic group structure), we
define

N(U, t) := #{γ ∈ U ∩G(Q) | H(γ) ≤ t}.

By fixing a V -invariant Hermitian metric at x0, we obtain a left-invariant
Hermitian metric on G(R)/V . This metric is explicitly described as follows.
For any point x ∈ D we have seen in Remark 5.2.4 that the Lie algebra gR

inherits a polarized Hodge structure gx, and that the tangent space TxD is
identified with TxD = gC/F

0gC. The space g
<0 :=

⊕
p<0 g

p,−p ⊂ gC provides
a real analytic lift of TxD, and we endow TxD with the restriction of the hodge
metric hx on gx. One can easily check that this metric is left-invariant.

For any R > 0 let Bx0
(R) ⊂ D be the ball of radius R centered at x0. The

main goal of this section is to establish the following:

9Recall from the discussion following Theorem 5.4.3 that Σ ⊂ H is a bounded vertical
strip

Σ := {z ∈ H | −ε < Re z < 1 + ε}.



54 B. Bakker and J. Tsimerman

Theorem 7.0.3 (Theorem 4.2 of [5]). Any γ ∈ G(Z) with

γ−1Φ ∩Bx0
(r) �= ∅

has H(γ) = eO(r).

Define d0(x) = d(x, x0). We write f � g if |f | � |g|O(1) +O(1), and f � g
if f � g and g � f .

Lemma 7.0.4. Let λ(x, x′) be the maximal eigenvalue of hx with respect to
hx′ . Then

(1) For all g ∈ G(R) we have ||ρR(g)|| � ed0(gx0);
(2) λ(x, x′) � ed(x,x

′).

Proof. LetK = U(hx0
)∩G(R) be the subgroup ofG(R) acting unitarily with

respect to hx0
. Then K is a maximal compact subgroup of G(R) containing

V , and the above left-invariant metric on G(R)/V descends to the symmetric
space G(R)/K. Note that the diameters of the fibers of G(R)/V → G(R)/K
are bounded. Choosing a K-orthogonal split maximal torus A ⊂ G(R) and
a basis Ai of the Lie algebra a of A, the induced metric on A is up to
scaling the unique left-invariant metric, which is identified with the euclidean
metric on the Lie algebra a. We therefore have for any g ∈ G(R) with KAK
decomposition g = k1ak2

√∑
i

t2i � d0(gx0) = d0(ax0) +O(1) �
√∑

i

t2i +O(1)

where a = exp(
∑

i tiAi). As

max
i

exp(|ti|) � ρR(g) � max
i

exp(|ti|)

part (1) follows.
For part (2), note that by G(R)-invariance we may restrict to the case

x′ = x0. Setting ρ = ρR for convenience, note that tr(ρ(g)∗ρ(g)) is a sum of
the eigenvalues of hgx0

with respect to hx0
, where ρ(g)∗ is the adjoint of ρ(g)

with respect to hx0
. Thus tr(ρ(g)∗ρ(g)) � λ(gx0, x0). As tr(ρ(g)∗ρ(g)) is the

sum of the squares of the entries of ρ(g), part (2) follows from part (1).
�

We define a function μ : D → R measuring proximity to the boundary by
the minimal period length:

μ(x) = min
v∈HZ\{0}

hx(v).



Lectures on the Ax–Schanuel Conjecture 55

For any v ∈ HC we have log
hx0

(v)

hx(v)
� d0(x)+O(1) by part (2) of Lemma 7.0.4,

and so we deduce the following:

Corollary 7.0.5. − log μ � d0 +O(1).

Proof. There is some v ∈ HZ\{0} with log μ(x) = log hx(v) and thus

− log μ = − log hx(v) � log
hx0

(v)

hx(v)
+O(1) � d0(x) +O(1)

where we have used that hx0
is comparable to a standard Hermitian metric

on HC, so that hx0
(v) � 1 for any v ∈ HZ\{0}. �

We in fact have a comparison in the other direction once we restrict to Φ:

Lemma 7.0.6. For x ∈ Φ we have d0(x) � − log μ(x) +O(1).

The proof uses the asymptotics of hodge norms, which we now recall. Given
a local period map ϕ : (Δ∗)r ×Δs → Γ\D with unipotent local monodromy
let ϕ̃ : Σr × Δs → D be a lift and N1, . . . , Nr the nilpotent monodromy
logarithms. The monodromy logarithms (with the implicit chosen ordering of
the coordinates of (Δ∗)r) define r weight filtrations W (j) = W (N1, . . . , Nj).
For a given v ∈ HZ, let w

(j) be its weight with respect to W (j)—that is, for

each j, we take w(j) to be the unique w such that v ∈ W
(j)
w and grW

(j)

w (v) �= 0.
By [14], on the region

Im z1 � · · · Im zr � 1

the hodge norm hϕ(z)(v) of v at ϕ(z) is then given asymptotically by

hϕ̃(z)(v) ∼
(
Im z1
Im z2

)w(1)

· · ·
(
Im zr−1

Im zr

)w(r−1)

· (Im zr)
w(r)

where “∼” means “within a bounded function of.”

Proof of Lemma 7.0.6. It is enough to prove the statement for the image of
a single Σr × Δs. Moreover, we may cover F with finitely many regions Sπ

of the form Im zπ(1) � · · · Im zπ(�) � 1 where π ranges over all permutations
of {1, . . . , r}. Thus, we may assume Φ is the image of Sid.

Take vi to be a basis of HZ descending to a basis of the multi-graded
module associated to the r weight filtrations W (j) as above, where we take

each grading centered at 0. Let w
(j)
i for j = 1, . . . , r be the weights of vi with

respect to W (π)(j). As above, on Sid we therefore have

hϕ̃(z)(vi) ∼
(
Im z1
Im z2

)w
(1)
i

· · ·
(
Im zr−1

Im zr

)wr−1
i

· (Im zr)
w

(r)
i .
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As the set of weights is preserved under negation, it follows that
maxi hϕ̃(z)(vi) ∼ (mini hϕ̃(z)(vi))

−1, and so by Lemma 7.0.4,

d0(ϕ̃(z)) � max
i

log hϕ̃(z)(vi) � − log μ(ϕ̃(z)) +O(1)

uniformly on every such region. �
Proof of Theorem 6.3.2. Suppose x ∈ B0(R) ∩ γ−1Φ for γ ∈ G(Z). Putting
together Lemma 7.0.6 and Corollary 7.0.5 we have

d0(γx) � − log μ(γx) +O(1) = − log μ(x) +O(1) � d0(x) +O(1)

and since

d0(γx0) ≤ d(γx, γx0) + d(γx, x0) ≤ d0(x) + d0(γx)

we are finished by part (1) of Lemma 7.0.4. �

8 Volume Bounds

In this lecture we outline the proof of the volume bound in Theorem 6.3.1.
To warm up for the proof, we first give a simple proof in the euclidean case.

8.1 Euclidean Space

Endow C
n with the standard Hermitian metric

heucl =
∑
i

dzi ⊗ dz̄i.

The real part

Reheucl =
∑
i

dx2
i + dy2i

is the usual euclidean metric on C
n = R

2n, and the associated Kähler form is

ωeucl := − Imheucl =
1

2

∑
i

idzi ∧ dz̄i =
∑
i

dxi ∧ dyi.
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Given a locally closed analytic subvariety Z ⊂ C
n, its euclidean volume can

be computed as

voleucl(Z) :=
1

(dimZ)!

∫

Z

(ωeucl)
dimZ .

Finally, for z0 ∈ C
n denote by

Beucl
z0 (R) := {z ∈ C

n | |z − z0|2 < R}

the radius R ball around z0 with respect to heucl.

Theorem 8.1.1. For any z0 ∈ C
n and any closed analytic subvariety Z ⊂

Beucl
z0 (R) ⊂ C

n, we have

vol(Z) ≥ (πR2)dimZ ·multz0 Z.

The theorem is originally due to Federer (see, for example, [47]). Note
moreover that the bound is sharp, as a union of N affine linear spaces through
z0 will realize the bound. Hwang–To [23] have generalized the theorem to
bounded symmetric domains, and it is their approach that we follow—and
in fact that will generalize to the period domain setting.

The proof hinges on two observations: on the one hand, the “distance to
z0” function νz0(z) := |z − z0|2 provides a potential for ωeucl,

ωeucl =
i

2
∂∂νz0

while on the other hand, the log-distance log νz0 is the potential for a form
(strictly speaking, a current) that computes the multiplicity, by the Poincaré–
Lelong formula.

Proof of Theorem 8.1.1. We may as well assume z0 = 0 and set ν := νz0 . Set
Z(r) := Z ∩Beucl

0 (r). By Stokes’ theorem we have

voleucl(Z(r)) =

∫

Z(r)

( i
2∂∂ν)

dimZ

=

∫

∂Z(r)

1
2d

cν ∧ ( i
2∂∂ν)

dimZ−1

= r2 ·
∫

∂Z(r)

1
2d

c log ν ∧ ( i
2∂∂ν)

dimZ−1

= r2 ·
∫

Z(r)

i
2∂∂̄ log ν ∧ ( i

2∂∂̄ν)
dimZ−1.
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Note that in going from the second to the third line, we used that ν is constant
on ∂Z(r), so for any function f : R → R we have

dcf(ν)|∂Z(r) = (f ′(ν)dcν)|∂Z(r) = f ′(r) · dcν|∂Z(r).

Carrying out the same manipulation for each i
2∂∂ν term we arrive at

voleucl(Z(r)) = r2 dimZ ·
∫

Z(r)

( i
2∂∂ log ν)dimZ . (12)

Without getting into the details (see, for example, [23]), we briefly remark
that some care must be taken in the above wedge product as ∂∂ log ν must
be interpreted as a current in order for Stoke’s theorem to apply.

For the remaining part of the argument, let’s for simplicity assume Z
is a curve, so that we have a normalization of the form g : Δ → Z(ε) (with
g(0) = 0), for some sufficiently small ε > 0. Now, as log ν is plurisubharmonic
we have

∫

Z(r)

i
2∂∂̄ log ν ≥

∫

Z(ε)

i
2∂∂̄ log ν

=

∫

Δ

i
2∂∂̄ log g∗ν

=

∫

Δ

i
2∂∂ log |t|2mult0 Z

=
i

2

∫

S1

dt̄

t̄
·mult0 Z

= π ·mult0 Z.

�
From the proof, we can conclude the following statement about the growth

of the volume:

Proposition 8.1.2. In the situation of Theorem 8.1.1,

voleucl(Z ∩Beucl
z0 (r))

r2 dimZ

is a nondecreasing function of r for 0 < r < R.

Proof. Immediate from (12), as log ν is plurisubharmonic and thus
∫

Z(r)

( i
2∂∂ log ν)dimZ

is a nondecreasing function of r. �
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Remark 8.1.3. Let’s say a few words about the last step of the above proof for
those who are unfamiliar with multiplicity in the analytic category. Suppose
zi are the standard coordinates of C

n, and suppose g : Δ → Z(ε) is the
normalization considered in the proof. Let OCn,0 be the local ring of germs
of analytic functions at 0, mCn,0 ⊂ OCn,0 the ideal of the origin, and IZ,0 ⊂
OCn,0 the ideal of Z. We have

mult0 Z :=max{k ∈ N | mk
Cn,0 ⊃ IZ,0}

=min
i

ord0 g
∗zi.

8.2 Period Domains

Let D be a polarized period domain equipped with its natural left-invariant
Hermitian metric and associated positive (1, 1) form ω. We would now like
to adapt the ideas from the previous subsection to prove:

Theorem 8.2.1. There are constants β, ρ > 0 (only depending on D) such
that for any R > ρ, any x0 ∈ D, and any positive-dimensional Griffiths
transverse closed analytic subvariety Z ⊂ Bx0

(R) ⊂ D, we have

vol(Z) ≥ eβR multx0
Z

where Bx0
(R) is the radius R ball centered at x0 and vol(Z) the volume with

respect to the natural left-invariant metric on D.

The crux of the proof is to find an exhaustion function ϕ0 : D → R which
on the one hand defines balls

Bϕ0(R) : {X ∈ D | ϕ0(x) < R}

that are comparable to the metric balls Bx0
(R) and on the other hand is a

potential for a (1, 1) form that is comparable to ω in the Griffiths transverse
directions. The difficulty is that unlike in the euclidean case (or indeed
even the bounded symmetric domain case) Theorem 8.2.1 fails without the
Griffiths transverse assumption, as D contains compact subvarieties in the
vertical directions. Thus, the function ϕ0 must necessarily treat the Griffiths
transverse directions in a special way.

We state the precise properties of the function ϕ0 in the following
proposition, but first introduce some notation.

Definition 8.2.2.

(1) Given a real (1, 1) form α on D, we say α ≥trans 0 if at point x ∈ D and
any Griffiths transverse X ∈ T 1,0

x D, we have

−iαx(X, X̄) ≥ 0.
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(2) Given two real (1, 1) forms α, β on D, we say that α = Otrans(β) if for
some positive constant C > 0, we have

Cβ − α ≥trans 0.

Now fix x0 ∈ D and denote by d0 : D → R the distance function to x0.

Proposition 8.2.3. There is a smooth function ϕ0 : D → R with the
following properties:

(1) d0(x) � ϕ0(x) +O(1) and ϕ0(x) � d0(x) +O(1);
(2) i∂∂ϕ0 ≥trans 0 and i∂∂ϕ0 >trans 0 at x0;
(3) i∂∂ϕ0 = Otrans(ω) and |∂ϕ0|2 = Otrans(i∂∂ϕ0).

Proof. See [5]. �
Assuming Proposition 8.2.3, we can now complete the proof of Theo-

rem 6.3.1. For any closed Griffiths transverse analytic subvariety Z ⊂ B(R) ⊂
D of dimension d, define

volϕ0(Z) :=
1

d!

∫

Z

(i∂∂̄ϕ0)
d.

We begin with the following:

Proposition 8.2.4. There is a constant β > 0 such that for any R > 0
and any positive-dimensional Griffiths transverse closed analytic subvariety
Z ⊂ Bϕ0(R),

e−βr volϕ0(Z ∩Bϕ0(r))

is a nondecreasing function in r ∈ [0, R].

Proof. Let d = dimZ. Let ψ0 = −e−βϕ0 for β > 0 the constant such that

i∂∂ϕ0 − β|∂ϕ0|2 ≥trans 0

which is guaranteed by Proposition 8.2.3(3). We then have

i∂∂ψ0 = βe−βϕ0
(
i∂∂ϕ0 − β|∂ϕ0|2

)
≥trans 0.

By Stokes’ theorem we have

volϕ(Z ∩Bϕ0(r)) =

∫

Z∩Bϕ0 (r)

(i∂∂ϕ0)
d

=

∫

Z∩∂Bϕ0 (r)

dcϕ0 ∧ (i∂∂ϕ0)
d−1
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= β−1eβr
∫

Z∩∂Bϕ0 (r)

dcψ0 ∧ (i∂∂ϕ0)
d−1

= β−1eβr
∫

Z∩Bϕ0 (r)

i∂∂̄ψ0 ∧ (i∂∂̄ϕ0)
d−1

= β−deβdr
∫

Z∩Bϕ0 (r)

(i∂∂ψ0)
d

which implies the claim, as ψ0|Z is plurisubharmonic. �
Proof (Proof of Theorem 8.2.1). Choose a fixed euclidean ball B centered
around x0 with respect to some coordinate system. By Theorem 8.1.1 we
have an inequality of the form

voleucl(Z ∩B) � multx0
Z

Choose a fixed radius ρ such that B ⊂ Bϕ0(ρ). After possibly shrinking
B, i∂∂ϕ0 is comparable to the euclidean Kähler form on B in Griffiths
transverse directions by Proposition 8.2.3(2), and combining this with the
previous proposition we have

volϕ0(Z ∩Bϕ0(r)) � eβr volϕ0(Z ∩Bϕ0(ρ)) � eβr multx0
Z

for all r > ρ.
Now, by Proposition 8.2.3(1), after possibly increasing ρ, there is a

constant C > 0 such that

Bx0
(r) ⊃ Bϕ0(Cr)

for all r > ρ, so

volϕ0(Z ∩Bx0
(r)) � eβr multx0

Z

for all r > ρ. Finally, by Proposition 8.2.3(3) we have

vol(Z ∩Bx0
(r)) � volϕ0(Z ∩Bx0

(r))

and the claim follows. �
Remark 8.2.5. Theorem 8.2.1 has a number of interesting applications in its
own right. They lie outside the scope of these notes, but we briefly describe
one to give a flavor. We say a point x ∈ Γ\D has injectivity radius R if
the ball Bx(R) ⊂ D injects into Γ\D. For a period map ϕ : X → Γ\D,
Theorem 8.2.1 then says that the Seshadri constant of the Hodge bundle at a
point x ∈ X can be bounded by the injectivity radius of ϕ(x). In particular,
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these Seshadri constants can be made to grow in the level covers of X. See
[24] for some related applications in the context of Shimura varieties using
the volume bounds of Hwang–To.

9 Further Directions

9.1 Derivatives

One can generalize the transcendence statements by considering not only
automorphic functions, but also their derivatives. For example, in the case of
the modular curve one has the parametrization j : H → Y (1),and j satisfies
a 3rd degree differential equation. In this context, building on work of Pila
[36], the paper [33] proves the following generalization of the modular Ax–
Schanuel statement:

Theorem 9.1.1. Let z1, . . . , zn be meromorphic germs in auxiliary variables
ti at some point of Hn, and assume that none of the zi is constant, nor are
SL2(Q) translates of each other. Then

trdegC C
(
z1, j(z1), j

′(z1), j
′′(z1), . . . , zn, j(zn), j

′(zn), j
′′(zn)

)
≥3n+rk

(
∂zj
∂ti

)
.

Note that the above is much stronger than the usual Ax–Schanuel as it
includes the algebraic independence of the derivatives of j as well. One may
also generalize (as [33] does) to arbitrary Shimura varieties, but in that
generality one cannot easily pick out distinguished variables. Therefore the
paper adopts the language of jet spaces to formulate the above statement.
The proofs are much the same, except one has to keep track of jet spaces in
all the geometric constructions.

9.2 Definability of Period Maps

In Lecture 4 we showed that weakly special subvarieties of Shimura varieties
were algebraic in two steps: first by using the existence of a definable
fundamental set to argue that weakly special subvarieties are definable
complex analytic subvarieties and second by appealing to the definable Chow
theorem.

To use the same argument to reprove Theorem 5.3.5, we must have two
ingredients:
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(1) G(Z)\D must be given a S-definable structure for some o-minimal S,
and (weak) Mumford–Tate subvarieties must be shown to be definable
with respect to this structure.

(2) Period maps ϕ : Xan → G(Z)\D from a complex algebraic variety X
must be shown to be definable with respect to this definable structure.

Accomplishing (1) and (2) is the content of [7]. For (1), we define an
arithmetic quotient (of a homogeneous space) to be

Γ\G(R)/V

for G a connected semisimple algebraic Q-group, Γ ⊂ G(Q) an arithmetic
lattice, V ⊂ G(R) a connected compact subgroup. We moreover define a
morphism

Γ\G(R)/V → Γ′\G′(R)/V ′

of arithmetic quotients to be a map arising from a morphism f : G → G′ of
algebraic Q-groups sending Γ to Γ′ and V to V ′.

Theorem 9.2.1 (Theorem 1.1 of [7]). Every arithmetic quotient has
a natural Ralg-definable structure with respect to which every morphism of
arithmetic quotients is Ralg-definable.

Briefly, the definable structure is built by using a Siegel set to construct a
definable fundamental set. Theorem 9.2.1 is easily seen to imply the required
statement about weak Mumford–Tate subvarieties of arithmetic quotients of
period domains.

Theorem 9.2.2 (Theorem 1.3 of [7]). Let X be a smooth complex
algebraic variety. Any period map

ϕ : Xan → G(Z)\D

is Ran,exp-definable with respect to the Ran,exp-definable structure10 on
G(Z)\D induced from Theorem 9.2.1.

The crux of the proof of Theorem 9.2.2 is to show that lifts of local period
maps (as in 5.4) land in finitely many Siegel sets. In addition to the norm
asymptotics discussed in Lecture 7, the primary ingredient is the SL2-orbit
theorem of Schmid [45].

Corollary 9.2.3 (Theorem 1.6 of [7]). Every weak Mumford–Tate sub-
variety of X is algebraic.

10And the canonical Ran,exp-definable structure on X.
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9.3 Definable GAGA

Let S be an o-minimal structure. There is a natural notion of S-definable
complex analytic varieties—loosely speaking, they are complex analytic
varieties with a finite holomorphic atlas by S-definable complex analytic
subvarieties of Cn with S-definable holomorphic transition functions. As first
examples we have G

def
m and C

∗
a for each a ∈ R from Example 2.3.2. Some

care is needed to define the sheaf of S-definable holomorphic functions, as it
will only satisfy the sheaf axiom with respect to S-definable—in particular
finite—covers. Thus, it is naturally a sheaf on the S-definable site of the
underlying S-definable space. The category of definable complex analytic
varieties is introduced in [6].

Let (AlgSp/C) be the category of separated algebraic spaces11 that
are finite type over C, (An/C) the category of complex analytic spaces,
and (S-An/C) the category of S-definable complex analytic spaces. The
definabilization functor of Lecture 2 can be upgraded to a functor

(AlgSp/C) → (S-An/C) : X 	→ Xdef

which fits into a diagram

where (AlgSp/C) → (An/C) : X 	→ Xan is now the usual analytification
functor. Moreover, there is a natural definabilization functor on coherent
sheaves

(−)def : Coh(X) → Coh(Xdef).

Recall that GAGA says that for X a proper separated algebraic space of
finite type over C, the analytification functor on coherent sheaves

(−)an : Coh(X) → Coh(Xan)

is an equivalence of categories. As a companion to the definable Chow theorem
in Lecture 3, we have the following definable GAGA:

11One could consider the category of schemes that are of finite type over C for
simplicity.
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Theorem 9.3.1 (Theorem 1.3 of [6]). Let S be an o-minimal structure.
Let X be a separated algebraic space of finite type over C and Xdef the
associated definable analytic space. The definabilization functor (−)def :
Coh(X) → Coh(Xdef) is fully faithful, exact, and its essential image is
closed under subobjects and quotients.

Thus in particular definable coherent subsheaves of algebraic coherent
sheaves are algebraic.

Note that (−)def is not essentially surjective in general. The reason for
this is as follows. By definable cell decomposition, it is not hard to see that
there is a definable cover of Xeucl by simply connected (definable) subspaces.
It follows that any C-local system L is definable, and therefore that the
coherent sheaf F := L⊗CX

OXdef is definable, but analytic sections with the
prescribed monodromy may easily fail to be definable. See [6, Example 3.2]
for details.

9.4 Definable Images

By combining the definable GAGA theorem with algebraization theorems of
Artin, it is proven in [6] that proper definable images of algebraic varieties
are algebraic:

Theorem 9.4.1 (Theorem 1.4 of [6]). Let S be an o-minimal structure.
Let X be a separated algebraic space of finite type over C, S a definable
analytic space, and ϕ : Xdef → S a proper definable analytic map. Then
ϕ : Xdef → ϕ(Xdef) is (uniquely) the definabilization of a map of algebraic
spaces.

This can be used to resolve a conjecture of Griffiths [21, pg.259] on the
quasiprojectivity of images of period maps. For a pure polarized integral
variation of Hodge structures (HZ, F

•, qZ), we define the Griffiths bundle to

be L :=
⊗i

detF i.

Theorem 9.4.2 (Theorem 1.1 of [6]). Let X be a reduced separated
algebraic space of finite type over C and ϕ : Xan → Γ\Ω a period map
as above. Then

(1) ϕ factors (uniquely) as ϕ = ι ◦ fan where f : X → Y is a dominant map
of (reduced) finite-type algebraic spaces and ι : Y an → Γ\Ω is a closed
immersion of analytic spaces;

(2) the Griffiths Q-bundle L restricted to Y is the analytification of an ample
algebraic Q-bundle, and in particular Y is a quasi-projective variety.

Theorem 9.4.2 in turn has a number of applications; we refer to [6] for
related discussions.
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Mumford, and Mordell-Lang. Preprint, available from the authors website, 2005.

42. M. Raynaud. Courbes sur une variété abélienne et points de torsion. Invent.
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1 Introduction

Let X be a smooth connected projective manifold of dimension n defined over
a number field k, let k′ ⊃ k be a larger number field. We denote by X(k′)
the set of k′-rational points of X. Diophantine geometry aims at describing,
in terms of the ‘geometry’ of X(C), the qualitative structure of X(k′) when
k′ is sufficiently large, depending on X. When k is too small, the paucity of
X(k) may indeed be related not only to the geometry of X(C), but also to
the coefficients of the equations1 defining X, as seen on the rational curve
x2 + y2 + 1 = 0 for k = Q, and k′ = Q(

√
−1).

Definition 1.1. We say that X/k is ‘potentially dense’ if X(k′) is Zariski
dense2 in X for some k′ ⊃ k, k′ depending on X.

1However, even when solving in Q the Fermat equations xn+yn = zn, the arithmetic
and analytic methods used during 3 centuries only gave partial answers. Its solution
by Wiles rests on the parametrisation of elliptic curves over Q by modular curves, a
geometric approach suggested only 23 years earlier in 1972 by Hellegouarch’s curve
y2 = x(x−ap)(x− bp), where (a

b
)p +( b

c
)p = 1 is a putative solution for p > 3 prime.

The reason why this curve is usually called the ‘Frey-curve’ (appeared only 14 years
later for the same purpose) is a mystery for me.
2One can also ask for density in the analytic topology, and expect that this will then
hold after a further finite enlargement of k.
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The opposite property is X being ‘Mordellic’,3 which means the existence
of a nonempty Zariski open subset U ⊂ X such that (X(k′)∩U) is finite for
any k′ ⊃ k.

A curve is thus either Mordellic or potentially dense, according to whether
X(k′) is finite for any k′/k, or infinite for some k′/k. A curve X/k of genus
g is potentially dense if and only if g = 0, 1, curves of genus g ≥ 2 being
‘Mordellic’, by Faltings’ theorem (=Mordell’s conjecture).

In higher dimension, X may be neither potentially dense nor ‘Mordellic’,
as seen from the (exceedingly simple) product X := F × C of two curves, if
g(F ) ≤ 1, g(C) ≥ 2, equipped with the projection c : X → C onto C: X(k′) is
concentrated on the finitely many fibres lying over C(k′), while the points in
these fibres coincide with those of F (k′), which are thus Zariski dense there
for k′/k large enough.

The aim of the present notes is to present, following [11], a conjectural
description ‘in geometric terms’ (the meaning will be made precise below),
for any X/k, of the qualitative structure of X(k′), similar to the previous
product of curves, by means of its ‘Core Map’ c : X → C, defined over k
and conjectured to split X into its ‘Potentially Dense’ part (the fibres), and
its ‘Mordellic’ part (the ‘Orbifold’ Base (C,Δc) of the Core Map c, which
encodes its multiple fibres). The expectation is that X(k′) is concentrated
on finitely many fibres of c outside of c−1(W ) for some fixed Zariski closed
W � C, and that X(k′) is Zariski dense in the fibres contained in c−1(W )
for k′ ⊃ k sufficiently large. In the previous example, the core map is simply
the projection c : F × C → C.

The core map indeed splits any X(C) geometrically, according to the
positivity/negativity of its cotangent bundle Ω1

X . The ‘Mordellicity’ of X
is conjecturally equivalent to the maximal positivity, called ‘Bigness’, of
its canonical bundle KX . The ‘Potential density’ of X/k is conjectured to
be equivalent to the ‘Specialness’ of X, a suitable notion of non-maximal
positivity of its cotangent bundle Ω1

X .

• Preservation by birational and étale equivalences.

Let us notice that the qualitative structure of X(k′) (and in particu-
lar being ‘potentially dense’ or ‘Mordellic’) is preserved under birational
equivalence and unramified covers (due to the Chevalley–Weil theorem).
The geometric properties conjectured to describe potential density and
Mordellicity must be birational and preserved by unramified covers. This
is indeed the case for their conjectural geometric counterparts: specialness,
general type and the core map.

• Positivity/negativity of the canonical bundle (§4, §5).

3The term is due to S. Lang.
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The fundamental principle of birational geometry, based on increasingly
convincing evidence, is that the qualitative geometry of a projective4 manifold
Xn can be deduced from the positivity/negativity of its canonical bundleKX .
The birational and étale evaluation of this positivity is made by means of the
‘Kodaira’ dimension κ(Xn) ∈ {−∞, 0, . . . , n} which measures the rate of
growth of the number of sections of K⊗m

X when m → +∞. For curves, we
have κ = −∞ (resp. κ = 0, resp. κ = 1) if g = 0 (resp. g = 1, resp. g ≥ 2). In
higher dimension n, curves of genus at least 2 generalise to manifolds with
κ = n, said to be of ‘general type’. The higher dimensional generalisations of
curves of genus 0, 1 are the ‘special’ manifolds, defined by a suitable notion
of non-positivity of their cotangent bundles.

The ‘core map’ then decomposes (see §8) anyX into these two fundamental
‘building blocks’: special vs general type.

• General type and Mordellicity (§8.6).

Mordell’s conjecture claiming that curves of genus at least 2 are not
potentially dense has been generalised in arbitrary dimension by S. Lang,
who conjectured in [36] that X/k is ‘Mordellic’ if and only if it is of ‘general
type’. Lang’s conjecture is still widely open, even for surfaces. It has been
subsequently extended to the quasi-projective case by Vojta, replacing the
canonical bundle by the Log-canonical bundle. Vojta also gave quantitative
versions of this conjecture, relating it in a precise manner to its Nevanlinna
analogues (see [47]). We propose in §8.6 an orbifold version of Lang’s
conjecture, Vojta’s conjecture being the particular case when the boundary
divisor is reduced.

• Specialness and Potential Density (§7).

We conjecture here (following [11]) that X/k is ‘potentially dense’ if and
only if it is ‘special’. This (new) ‘specialness’ property is defined by the
absence of ‘big’ line subbundles of the exterior powers of the cotangent bundle
of X. The two main classes of special manifolds are those which are either
rationally connected or with κ = 0, generalising, respectively, rational and
elliptic curves. Special manifolds are exactly the manifolds not dominating
any ‘orbifold’ of general type. They may have, however, any κ strictly smaller
than their dimension.

We conjecture that special manifolds have a virtually abelian5 fundamental
group, which leads to the following conjectural topological obstruction to
potential density: ‘the (topological) fundamental group of a potentially dense
manifold X/k is virtually abelian’.

4Everything proved or conjectured here either extends, or should extend, to compact
Kähler manifolds, except of course for the arithmetic versions.
5Recall that ‘virtually abelian’ means that some finite index subgroup is Abelian.
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• The Core map (§8).

We show that any X admits a unique canonical and functorial fibration
(its ‘core map’) with ‘special’ fibres, and ‘general type’ ‘orbifold’ base.

The ‘orbifold base’ (Z,Δf ) of a fibration f : X → Z is simply its base
Z equipped with a suitable ‘orbifold divisor’ Δf of Z (Δf effective with
Q-coefficients), encoding the multiple fibres of f . This orbifold base can be
thought of as a ‘virtual’ ramified cover of Z eliminating the multiple fibres
of f by the base-change (Z,Δf ) → Z.

• ‘Building Blocks’ of projective manifolds (§8.4, §8.6).

It turns out that the ‘building blocks’ for constructing arbitrary X are
not only manifolds but, more generally, ‘orbifold pairs’ with a negative,
zero or positive canonical bundle KZ + Δf . In the birational category, this
translates, respectively, to: κ+ = −∞, κ = 0κ(X) = dim(X). The study of
geometric, arithmetic and hyperbolicity properties of any projective X thus
essentially reduces, but also requires, to extend the definition and study of
the corresponding invariants to orbifold pairs.

For this reason, we not only need to extend Lang’s conjectures to orbifold
pairs of general type but also to conjecture the potential density of orbifold
pairs having either κ+ = −∞ or κ = 0. Since such orbifolds are the building
blocks for all special manifolds, this justifies the expectation that all special
manifolds should be potentially dense.

• Orbifold pairs: geometry and integral points (§2, §3).

A (smooth) orbifold pair (X,Δ) consists of a smooth projectiveX together
with an effective Q-divisor Δ :=

∑
j(1 − 1

mj
).Dj for distinct prime divisors

Dj of X whose union D is of simple normal crossings, and ‘multiplicities’
mj ∈ (Z+ ∪ {+∞}). They interpolate between Δ = 0 and Δ = D,
corresponding, respectively, to the projective and quasi-projective cases.
The usual invariants of quasi-projective manifolds can be attached to them,
including the fundamental group and integral points if defined over Q. These
integral points are modelled after the notion of ‘orbifold morphisms’ h : C →
(X,Δ) from a smooth connected curve C to (X,Δ), obtained by imposing
conditions on the orders of contact between h(C) and the D′

js. These
conditions appear in two different versions (gcd or inf), according to whether
one compares positive integers according to divisibility or Archimedean order.
The first notion is the one used classically in stack and moduli theories, but
is not appropriate in birational geometry, and we thus consider the second
one, here. This ‘inf’ version of integral points leads, even for orbifold pairs
over X = P

1 to an orbifold version of Mordell’s conjecture which is presently
open, implied by the abc-conjecture, but possibly much more accessible. This
orbifold Mordell conjecture is in fact merely the one-dimensional case of the
orbifold version of Lang’s conjecture that we formulate in §8.6.
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• Link with hyperbolicity and entire curves (§9, §10, §11).

The Lang and Vojta conjectures establish an equivalence between geom-
etry, arithmetic and hyperbolicity of (quasi)-projective manifolds of general
type. We formulate an analogous equivalence for special manifolds first, and
then for all X’s via the Core map, in the last two sections. Since entire
curves are much easier to construct than infinite sets of k′-rational points,
we can show more cases of these conjectures for entire curves, especially for
rationally connected manifolds, for which analytic analogues of the Weak
Approximation Property and of the Hilbert Property can be obtained.

• The material in these notes mainly comes from [11]. Unpublished obser-
vations are: Proposition 9.1 proving the conditional equivalence between
entire curves and countable sequences of k′-rational points, and the last
section (qualitative description of the Kobayashi pseudodistance on any
X, using the ‘core map’).

These notes can be complemented by many texts, including: [1], the books
[31] and [41] for arithmetic notions and proofs, [42], [46] on the geometric
side and the references in [13] for more recent developments in birational
complex geometry. The reference [9], which contains everything needed on the
arithmetic side, including proofs and much more, deserves a special mention.

• These notes are an extended version of a mini-course given at UQÀM
in December 2018, and part of the workshop ‘Géométrie et arithmétique
des orbifoldes’ organised by M.H. Nicole, E. Rousseau and S. Lu. I thank
them for the invitation, and also K. Ascher, H. Darmon, L. Darondeau,
A. Turchet, J. Winkelmann for interesting discussions (and collaboration
in the case of L.D, E.R and J.W) on this topic. Many thanks also to P.
Corvaja for several exchanges and explanations he gave me on arithmetic
aspects of birational geometry. In particular, §10 originates from his joint
text with U. Zannier [23], the connection made there with the Weak
Approximation Property is due to him. Many thanks also to Lionel
Darondeau also for making my original drawings computer compatible.
Thanks to the referee who read carefully the text, suggesting improvements
and complementing references.

Conventions In the whole text, X will be a connected n-dimensional
projective (smooth) manifold defined either over C or over a number field
k, of which a finite extension will be denoted k′. A fibration f : X → Z is a
regular surjective map with connected fibres over another projective manifold
Z (of dimension usually denoted p > 0). A dominant rational map will be
denoted f : X ��� Z. We denote here always by KX the canonical line bundle
of X, which is the major invariant of the birational classification.
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2 Orbifold Pairs and Their Integral Points

This section is aimed at the definition of integral points on orbifolds for
potential readers with a complex geometric background. We thus try to avoid
the conceptual notions of schemes, and models. The readers familiar with
them can skip this section or alternatively consult either [1] or [2], where all
definitions are given in this language.

2.1 Integral Points Viewed as Maps from a Curve

We shall describe a standard geometric way of seeing rational points on an
n-dimensional manifold defined over a number field k as sections from an
‘arithmetic curve’ Spec(Ok) to the ‘arithmetic (n+1)-dimensional manifold’
X(Ok,S) fibred over Spec(Ok). This description is modelled after the cases,
which we describe first, of holomorphic maps from a curve, and then of
function fields, in which rational points are seen as sections of a suitable
fibration.

• Morphisms from a curve.

Let C be a smooth connected complex curve (the important cases here are
when C = C,P1,D (the complex unit disk), or a complex projective curve.
Let M be a smooth connected complex manifold. Let Hol(C,M) be the set
of holomorphic maps from C to M . When h ∈ Hol(C,M) is non-constant we
say that h is a (parametrized) rational (resp. entire) curve on M if C = P

1

(resp. C = C).
We may identify any h ∈ Hol(C,M) with its graph in X := C ×M , and

thus with a section of the projection f : X → C onto the first factor. More
generally, we can replace the product C × M with any proper holomorphic
map with connected fibres f : X → C from a complex manifold X. Manifolds
over a function field provide such examples.

• Function field version of integral points.

When X and C are projective, the preceding construction makes sense
over any field, not only C and leads to the ‘function field’ version.

Let f : X → C be a holomorphic fibration (i.e.: surjective with connected
fibres) from X onto C, where X is now a smooth complex projective manifold
of dimension (n+1). This is a ‘model’ of an n-dimensional manifold over the
field K := C(C), the field of rational (or meromorphic) functions on C, with
‘generic fibre’ Xc, if c is a generic point of C.

More precisely, X can be embedded in πN : PN × C = PN (K) → C,
the first projection, for some N ≥ n. The rational points of PN (K) are thus
the N + 1-tuples [f0, f1, . . . , fn] of elements of K, up to K∗-homothety, or
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equivalently, sections of πN . The elements of X(K) are then those of PN (K)
which are contained in X, hence those which satisfy the equations defining
X in PN (K) over K. Said differently: X(K) are the sections of f .

The set of points of C coincide with the set of inequivalent valuations (or
‘places’) of the field K with field of constants C. If S ⊂ C is any (nonempty)
finite set, C \S also coincide with the set of maximal ideals of the ring OK,S

of rational functions on C regular outside S.

• Integral points: the arithmetic version.

If X is defined over the number field k, the role of the curve C will be
played by Spec(Ok), the set of (non-archimedean) places of k.

Let k be a number field, Ok be its ring of integers and S a finite set of
non-archimedean ‘places’ (i.e.: prime ideals p of the ring of integers). Let
C := Spec(Ok,S) = Spec(Ok) \ S be the set of prime (=maximal) ideals p of
the ring Ok localised at S.

Let X be defined over k. Assume (in order to avoid the use of a ‘model’)
that X ⊂ PN is defined by homogeneous equations with coefficients in k.

An element x of PN (k) = PN (Ok,S) is an (N + 1)-tuple [x0, . . . , xN ] of
elements of either k, or equivalently Ok,S , not all zero, up to O∗

k,S-homothety
equivalence. The elements of X(k) are those satisfying the equations defining
X.

The ‘arithmetic projective N -space over Spec(Ok,S)’ is the map πN :
PN (Ok,S) → Spec(Ok,S), where for each prime ideal p of Ok,S , the fibre
of πN over p is PN (Fp), where Fp = Ok/p, the residue field of Ok by its
prime (i.e.: maximal) ideal p.

The above point x = [x0 : · · · : xN ] of PN (k) is identified with the section
of πN which sends, for each p ∈ Spec(Ok), x to its reduction xp modulo p,
which is the image of x by the map: PN (Ok) → PN (Fp). This map is well-
defined, since [x0 : · · · : xN ] may be chosen in such a way that no p divides
all xj simultaneously.

Then X(Ok,S) is the subset of PN (Ok,S) consisting of the sections of πN

which satisfy the equations defining X, or equivalently, which take, for each
p, their values in X(Fp), the reduction of X modulo p.

WhenX = X\D is quasi-projective, complement of a Zariski closed subset
D in the projective X, everything being defined over k, the set of S-integral
points of X is simply the subset of X(Ok,S) which do not take their values
in D(Fp), for each p ∈ Ok,S (Figure 1).

2.2 Orbifold Pairs

The birational classification requires the consideration of more general
objects: ‘orbifold pairs’, which interpolate between the projective and quasi-
projective cases.
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Section x = 10
21 of the arithmetic surface P

1
Z:

Intersections with: (0) (1) (∞)

SpecZ
2 3 5 7 11 . . .

(∞)

(1)

(0)

P
1
F2

P
1
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P
1
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P
1
F7

P
1
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Fig. 1 The arithmetic section 10
21

Definition 2.1. An orbifold pair (X,Δ) consists of an irreducible normal
projective variety together with an effective Q-divisor Δ :=

∑
j cj .Dj in which

the D′
js are irreducible pairwise distinct (Weil) divisors on X, and the cj ∈

]0, 1] are rational numbers of the form cj = 1 − 1
mj

for integers mj > 1 (or

mj = +∞ if cj = 1).
The support of Δ (denoted Supp(Δ), or  Δ!) is ∪jDj.

The orbifold pair (X,Δ) is smooth if X is smooth and if Supp(Δ) is SNC
(i.e.: of simple normal crossings)
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The canonical bundle of (X,Δ) is KX +Δ (if KX +Δ is Q-Cartier, which
is the case if (X,Δ) is smooth). The Kodaira dimension of (X,Δ) is defined
as κ(X,KX +Δ)6 if KX +Δ is Q-Cartier.

When Δ = 0, the orbifold pair (X, 0) is identified with X. When Δ =
Supp(Δ) (i.e.: mj = +∞, ∀j, or equivalently, cj = 1, ∀j)), (X,Δ) is identified
with the quasi-projective variety (X \Δ).

The general case interpolates between the projective and quasi-projective
cases, and plays the rôle of a virtual ramified cover of X ramifying at order
mj over each Dj . These orbifold pairs appear naturally in order to encode
multiple fibres of fibrations (see Subsection 2.3).

The usual geometric invariants of manifolds (such as cotangent bundles,
jet differentials, fundamental group in particular) can be defined for orbifold
pairs as well. We shall define S-integral points on them when they are defined
over a number field k (i.e. when X and Δ are both defined over k, and thus
invariant under Gal(Q/k)).

Before defining S-integral points of an orbifold pair, we give our motiva-
tion7 for the notion of orbifold pairs.

2.3 The Orbifold Base of a Fibration

Let f : X → Z be a fibration, with X,Z smooth projective. Let E ⊂ Z be
an irreducible divisor, and let f∗(E) :=

∑
h th.Fh+R be its scheme-theoretic

inverse image in X, with codimZ(f(R)) ≥ 2. For each E, we define mf (E) :=
infh{th}. This is the multiplicity of the generic fibre of f over E. We next
define the ‘orbifold base’ of f as being (Z,Δf ) with Δf :=

∑
E(1− 1

mf (E) ).E.

• Notice that the sum is finite, since mf (E) = 1 if E is not contained in
the discriminant locus of f .

The pair (Z,Δf ) should be thought of as a virtual ramified cover u :
Z ′ → Z ramifying at order mf (E) over each of the components of Δf , so
as to eliminate in codimension 1 the multiple fibres of f by the base-change
u : Z ′ → Z.

We have, of course: dim(Z) ≥ κ(Z,KZ +Δf ) ≥ κ(Z)

• ‘Classical multiplicities’: denoted by m∗
f (E), they are defined by

replacing inf by gcd in the definition of mf (E) above, which leads to
the ‘classical orbifold base’ (Z,Δ∗

f ) of f , Δ
∗
f :=

∑
E(1− 1

m∗
f (E) ).E.

The difference between the two notions is quite essential in the sequel.

6See Definition 4.1 below (or any text, such as [46]).
7The Log Minimal Model Program introduced these very same objects for apparently
different reasons: adjunction formula and induction on the dimension.
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Remark 2.2. A birational base-change Z ′ → Z gives a new ‘orbifold base’
(Z ′Δf ′), with κ(Z ′,KZ′ + Δf ′) ≤ κ(Z,KZ + Δf ). The inequality is strict
in general. By flattening8 and desingularisation, one gets ‘neat birational
models’ of f for which the orbifold base has minimal κ. See [11] for details.

2.4 Orbifold Morphisms from Curves

We shall next define the two versions of orbifold morphisms from a smooth
connected curve C to an orbifold pair (Z,Δ). The main examples over C

are C = C,P1,D (the unit disk in C). The following example indicates a
necessary condition for the functoriality of the definition.

Let (Z,Δf ) (resp. (Z,Δ
∗
f )) be the orbifold base of a fibration f : X → Z

as above, with Z smooth. Let h : C → X be any holomorphic map. Consider
the composite map: f ◦ h : X → Z. One immediately checks the following
property:

Lemma 2.3. Let a ∈ C be such that f ◦ h(a) ∈ Dj. Let t > 0 be the order
of contact (or intersection multiplicity, see also [1], or [2]) of f ◦ h(C) with
Dj (i.e.: (f ◦h)∗(Dj) = t.{a}+R, where R is a divisor on C supported away
from a).

Then t ≥ mj (resp. mj divides t).

The following simple example shows that any m ≥ mj may occur:

Example 2.4. Let f : A2 → A1 be the fibration given by: f(x, y) = x2.y3 =
0. For any m ≥ 2, the map h : t → (x, y) := (ta, tb) is such that f ◦h(t) = tm,
if 2a + 3b = m, since (f ◦ h)∗(z) = t2a+3b. We may choose a := m

2 , b = 0 if
m is even, a := [m2 ]− 1, b := 1 if m is odd.

If the multiplicities 2 < 3 are replaced by p < q, then any t ≥ t0(p, q) may
occur, but in general t0(p, q) > p.

The preceding Lemma 2.3 shows that the functoriality of morphisms from
curves to orbifold pairs requires to define them as follows:

Definition 2.5. A non-constant regular map h : C → (X,Δ) is an orbifold
morphism (i.e.: a Δ-morphism) (resp. a ‘classical orbifold morphism’) if:

1. h(C) is not contained in the support of Δ.
2. For any a ∈ C, and any j such that h(a) ∈ Dj, we have: ta,j ≥ mj

(resp. ta,j is divisible by mj). Here ta,j is the order of contact at a ∈ C of
h(C) with Dj, as defined in Lemma 2.3, namely by the equality: h∗(Dj) =
ta,j .{a}+ . . . .

8This replaces f by a birational model with equidimensional fibres. We shall always
implicitly consider these models in order to avoid birational technicalities.
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We denote by Hol(C, (X,Δ)) (resp. Hol∗(C, (X,Δ)) the set of orbifold
morphisms (resp. of classical orbifold morphisms) from C to (X,Δ).

When C = C (resp. C = P
1), we say that h is a Δ-entire curve (resp. a Δ-

rational curve). When C = C, we allow h to be holomorphic transcendental
in the definitions.

The Δ-morphisms are thus the usual ones when Δ = 0, and are the
morphisms from C to (X\D) when Δ = D := Supp(Δ), with all multiplicities
equal to +∞.

In the general case, we have:

Hol(C, (X \D)) ⊂ Hol∗(C, (X,Δ)) ⊂ Hol(C, (X,Δ)) ⊂ Hol(C,X).

We now describe this notion in the case of function fields, and next in the
definition of Δ-integral points.

2.5 The Function Field Version

Let f : X → C be a regular map with connected fibres (a ‘fibration’) from
the connected projective manifold X onto the projective curve C. We present
here a geometric version of the notion of orbifold integral points. A more
conceptual approach based on the notion of schemes and models can be found
in [1] and [2], §2.3.

Let Δ =
∑

j(1 − 1
mj

).{Dj} be an orbifold divisor on X, with f(Dj) =

C, ∀j (i.e.: with horizontal support). The orbifold pair (X,Δ) has as generic
‘orbifold fibre’ the smooth orbifold pair (Xs,Δs) over s ∈ C generic,9 if Δs

is simply the restriction of Δ to Xs. Notice that (Xs,Δs) is indeed smooth
for s ∈ C generic.

Let S ⊂ C be a finite subset containing the points of ‘bad reduction’ of
(X,Δ) over C (i.e.: the finitely many points over which either (Xs,Δs) is not
smooth). In this situation, the integral points of X/(C \ S) are simply the
sections σ : C \ S → X of f (i.e.: such that f ◦ σ = id(C\S)).

We define the S-integral (resp. the ‘classical’ S-integral) points of
(X,Δ)/C to be the sections of f which are orbifold (resp. ‘classical’
orbifold) morphisms from (C \ S) to (X,Δ) over (C \ S). We denote this set

9Let us stress that we do not use here the language of schemes, so our points are
always ‘closed’ points, the generic point of a projective irreducible variety Z is any
(closed) point outside some Zariski closed strict subset of Z. A ‘general’ point lies in
a countable intersection of such open subsets if the base field is uncountable. We thus
use ‘general’ in the sense we already introduced in 1980, instead of the terminology
‘very general’ introduced much later with the same meaning.
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P
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Fig. 2 A function field ‘orbifold’ section (see below)

with (X,Δ)(OK,S) (resp. (X,Δ)∗(OK,S)), where K is the field of rational
functions on C (Figure 2).

When Δ = 0 and S = ∅, we thus recover the rational points of X over K,
and when Δ = Supp(Δ), we recover the sections of f avoiding Supp(Δ). In
the general case, we have:

(X \Δ)(OK,S) ⊂ (X,Δ)∗(OK,S) ⊂ (X,Δ)(OK,S) ⊂ X(OK,S).

2.6 Integral Points on Arithmetic Orbifolds

We will now model the definition of the S-integral points of the orbifold
(X,Δ) on their function field definition, replacing K by a number field k,
and the curve C , which is the set of ‘places’ (i.e., non-equivalent valuations
of K) by Spec(Ok), the ring of integers of k. The rôle of order of contact will
be played by arithmetic intersection numbers.

Let k be a number field, Ok be its ring of integers and S a finite set of
‘places’ (i.e.: prime ideals p of the ring of integers). Let B := Spec(Ok,S) =
Spec(Ok) \ S be the set of prime (=maximal) ideals of the ring Ok localised
at S.

Let f : Xk → Spec(Ok) be the arithmetic manifold (of dimension (n+ 1)
if dim(X) = n) whose fibre over each prime ideal p is the reduction in the
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quotient field Ok/p of X. The orbifold pair (X,Δ) being given, we define
similarly the fibres of the arithmetic orbifold (X ,D) over Spec(Ok)) to be
the reductions (Xp,Δp) of (X,Δ) mod p. Then (X,Δ) has good reduction
at p if the fibre of (X ,D) over p is a smooth orbifold pair.

• Arithmetic intersection numbers: Let fS : Xk,S → Spec(Ok,S) be
the ‘arithmetic manifold’ associated with X, as above, assuming S ⊂
Spec(Ok), finite and sufficiently large, so as to fulfil the conditions below.
Any x ∈ X(k) defines a section of f mapping any p /∈ S to the image
of xp in Xp. Assume that x /∈ Dj , ∀j. Let S be any finite set of ‘places’
of k containing those where (X,Δ) has ‘bad reduction’. For each j, there
thus exists on X a function gj generically defining Dj reduced, gj regular
and non-vanishing at x. The reduction of gj modulo p thus does not vanish
identically at xp. The arithmetic intersection number (x,Dj)p is the largest
integer t such that pt divides gj(x). This integer does not depend on the
choice of gj , which is well-defined up to a unit in the ring of rational
functions on X regular at x.

Notice that (x,Dj)p ≥ 1 if and only if xp ∈ (Dj)p, this happening only for
the finitely many p′s which divide gj(x). See [2], §2.3 for a more conceptual
definition.

Definition 2.6. Let (X,Δ) be a smooth orbifold pair defined over k, with
S a finite set of places of k containing those over which (X,Δ) has bad
reduction.

• A point x ∈ X(k) is (S,Δ)-integral if, for any j, x /∈ Dj, and if (x,Dj)p ≥
mj for each p /∈ S such that (x,Dj)p ≥ 1.

• A point x ∈ X(k) is a ‘classical (S,Δ)-integral’ if x /∈ Dj , ∀j, and if mj

divides (x,Dj)p for each p /∈ S such that (x,Dj)p ≥ 1.

We shall denote by (X,Δ)(k, S) (resp. (X,Δ)∗(k, S) the set of (S,Δ)-
integral points (resp. of ‘classical (S,Δ) integral’ points) of X.

Let D be the support of Δ, we have obvious inclusions and equalities:

(X,D)(k, S) ⊂ (X,Δ)∗(k, S) ⊂ (X,Δ)(k, S) ⊂ X(k, S).

Remark 2.7. See §5.3, §2.3 for some of the compelling reasons to introduce
non-classical versions of orbifold morphisms and integral points.

2.7 Examples of Orbifolds on P
1

We shall illustrate these definitions with two examples of integral points over
two orbifold structures on P

1, supported on 2 (resp. 3) points, with infinite
(resp. finite) multiplicities.
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In both cases, we shall choose k = Q, S = p1, . . . , ps for distinct primes
pj , so that OQ,S = Z[ 1

p1
, . . . , 1

ps
].

• P
1 minus two or three points: Assume now that Δ = {0,∞} reduced

(i.e.: with infinite multiplicities. An element of P1(Q) is of the form ±a
b ,

with a, b nonnegative coprime integers, not both zero. The ‘arithmetic
surface’ π : P1

Z → Spec(Z) has fibre P
1
Fp

(the projective line over the finite

field Fp) over each p ∈ Spec(Z) . We associate to a
b the section of this

projection which sends each p to the mod p-reduction of a
b . The 2 points

of Δ give similarly two sections {0} and {∞} of this projection. The section
a
b meets the section {0} exactly at the p’s dividing a, and meets the section
{∞} at the p’s dividing b.

The section a
b will thus be contained in the arithmetic surface (X \ Δ)Z

(that is: avoid the two sections {0} and {∞}) if and only if a and b are
invertible in Z, that is: if and only if ±a

b = ±1, i.e., a unit of Z.
If instead of the ring Z, we use the larger ring Z[ 1

p1
, . . . , 1

ps
] = OQ,S , where

S = {p1, . . . , ps} ⊂ Spec(Z), the set of sections a
b meeting the sections {0}

and {∞} only over S are again exactly the units of OQ,S , that is, quotients
a
b of two coprime integers, both coprime with p /∈ S.

If we remove now the 3 points 0, 1,∞, the integral points for OQ,S are
the solutions of the ‘S-unit equation’ a− b = c, in which all three terms are
S-units. Indeed, not only a and b should be S-units, but also a − b, since a

b
should not reduce to 1 modulo any p outside S. The ‘classical’ integral points
are then the same as their ‘non-classical’ version. The situation is different
for finite multiplicities, as we shall now see.

• P
1 with 3 orbifold points:We consider (P1,Δ), where Δ consists of the 3

points 0, 1,∞, respectively, equipped with the integral finite multiplicities
p, r, q, each at least 2.

In other words: Δ = (1− 1
p ).{0}+ (1− 1

r ).{1}+ (1− 1
q ).{∞}.

We take here the simplest situation: k = Q, S = ∅.
Let us first describe the ‘classical’ integral points x = ±a

c of (P1,Δ),
with a, c positive coprime integers, seen as a section of the arithmetic surface
π : P1

Z → Spec(Z). The section x meets the section 0 at the primes p which
divide a, with an intersection multiplicity equal to the exponent of p in the
prime decomposition of a. Similarly: the section x meets the section ∞ at the
p′s dividing c, with intersection multiplicity equal to the exponent of p in the
prime decomposition of c. The section x meets the section 1 at the primes
dividing x− 1 = a−c

c , that is, those appearing in the prime decomposition of
(c−a), with exponents equal to the corresponding intersection multiplicities.

There are now 2 different sets of orbifold integral points: the classical ones
and the ‘non-classical’ ones.

• Description of the ‘classical’ integral points of (P1,Δ): for such an x = a
c ,

each of the exponents of a must be divisible by p. Thus: a = αp for some
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positive integer α. Similarly: c = γq (resp. ±(c − a) := b = βr), for some
integers γ > 0, β > 0. In other words, the ‘classical’ integral points of
(P1,Δ) over Q, S = ∅ are (up to signs) the integral coprime solutions
(α, β, γ) of the equation: αp + βq = γr.

This is the construction used by Darmon-Granville in [25] to show the
finiteness of solutions in coprime integers of the generalised Fermat equation
Axp + Byq = Czr (A,B,C become indeed S-units if we add to S the finite
set consisting of the primes dividing ABC).

• Description of the integral points of (P1,Δ) (over k = Q, S = ∅): a similar
analysis shows that these are (up to signs, i.e.: units of Z) solutions of the
equation a+ b = c with: a a p-powerful integer, b a r-powerful integer and
c a q-powerful integer, according to the:

Definition 2.8. Let k > 1 be an integer. A positive integer m is said to be
k-powerful if the k-th power of each prime dividing m still divides m, that
is: if the k-th power of rad(m) divides m, where rad(m) (the ‘radical of m’)
is the product (without multiplicities) of the primes dividing m. Exact k-th
powers are k-powerful, but not conversely: 72 = 23.32 is 2-powerful, but not
a square.

Nevertheless, by a result of Erdös–Szekeres, [27],§2, p. 101, the number
of k-th powerful numbers less than a certain bound B is asymptotically, as
B → +∞, of the form C(k).B

1
k for a certain constant C(k) > 1, and so

comparable to the number B
1
k of exact k-th powers in the same range.

3 The Arithmetic of Orbifold Curves

3.1 Projective Curves

Let thus C = X be a connected smooth projective curve defined over k.
Its fundamental invariant is its genus g ≥ 0, also equal to h0(C,KC), the
number of its (linearly independent) regular differentials, and also equal to

g = 1 + deg(KC)
2 . The genus is also a topological invariant (the number of

‘handles’) of the set of complex points of C (and so purely ‘geometric’).
There are only 3 cases, according to the value of g, or equivalently to the

sign of deg(KC):

• g = 0: if C(k) is not empty, C is isomorphic to P
1 over k, and so C(k) ∼=

P
1(k) is infinite. There always exists a quadratic extension k′/k such that

C(k′) �= ∅.
• g = 1: after a finite extension k′/k (its degree depending on C), C(k′) �= ∅,

and C(k′) is thus an elliptic curve with a group structure. A suitable
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quadratic10 extension k′′/k′ gives a point ‘of infinite order’ in the group
C(k′′), and so C(k′′) is infinite.

• g ≥ 2. Faltings’ theorem (solving Mordell’s conjecture) says that C(k′) is
finite, however big k′ is.

• Conclusion: C is potentially dense if and only if deg(KC) ≤ 0. Notice
indeed that deg(KC) ≤ 0 if and only if g ≤ 1.

3.2 Quasi-Projective Curves

These are just projective curves C with a non-empty finite set D removed.
Here C and D are thus assumed to be defined over k (which means that D
is preserved by the action of Gal(Q̄/k).

The fundamental geometric invariant of the situation is now the sign of
the log-canonical bundle KC + D (which replaces KC when D = 0). The
conclusion is exactly the same as in the proper case (by a theorem essentially
due to C.L. Siegel).

• deg(KC + D) < 0: the set of S′-integral points relative to D is Zariski
dense for some k′, S′ sufficiently large. This case occurs only with C = P

1,
with 1 point deleted.

• deg(KC+D) = 0: again, the set of S-integral points relative to D is Zariski
dense for some k′, S′. This case occurs only with C = P

1, with 2 geometric
points deleted.

• deg(KC+D) > 0: the set of S-integral points relative to D is finite for any
k′, S′. This case occurs only with C = P

1, with 3 or more points deleted,
or if C is a curve of positive genus with at least 1 point deleted.

3.3 The Orbifold Mordell Conjecture

This is the one-dimensional special case of a more general conjecture to be
formulated later. It relates the arithmetic of a curve orbifold pair (C,Δ) to
the sign of its ‘orbifold canonical bundle’ KC + Δ, just as when Δ = 0 or
when Δ = D, the (reduced) support of Δ.

Conjecture 3.1. Let (C,Δ) be an orbifold pair defined over a number field
k. Let k′/k be a finite extension, and S′ a finite set of places of k′.

10This is easily seen from a Weierstrass equation and the finiteness of torsion points
of the group C(k).
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Then (C,Δ)(S′, k′) is finite for each (k′, S′) if and only if deg(KC +Δ) >
0. Equivalently: (C,Δ)(S′, k′) is infinite for some (k′, S′) if and only if
deg(KC +Δ) ≤ 0.

We have seen above that this conjecture is true when Δ = 0 and when
Δ = D, its reduced support.

We shall see next that it is solved also when one considers the ‘classical’
(S′,Δ) integral points (C,Δ)(S′, k′)∗, but that it is open for (C,Δ)(S′, k′).
By the former inclusion (C,Δ)(S′, k′)∗ ⊂ (C,Δ)(S′, k′), this shows that only
the ‘Mordell’ case deg(KC + Δ) > 0 remains open. Notice that if Δ < Δ′

in the sense that (Δ′ − Δ) is an effective Q-divisor, we have an inclusion
(C,Δ′)(S′, k′) ⊂ (C,Δ)(S′, k′). It is thus sufficient to deal with the ‘minimal’
orbifold pairs (C,Δ) with deg(KC +Δ) > 0 listed below in order to solve the
preceding conjecture.

Remark 3.2. The ‘minimal’ cases with deg(KC +Δ) > 0 not solved by the
preceding results are thus the following ones:

• C is elliptic, and Δ = (1− 1
2 ).{a}, a ∈ C(k).

• C = P
1 and s ≥ 3, where s is the cardinality of the support D of Δ. Let

(m1 ≤ m2 ≤ . . . ≤ ms) be the corresponding multiplicities. We have thus:∑
j(1− 1

mj
) > 2, or equivalently

∑
j

1
mj

< s− 2. This gives the following

possibilities, with s = 3, 4, 5 only:
• s = 3, and (m1,m2,m3) ∈ {(2, 3, 7), (2, 4, 5), (3, 3, 4)}.
• s = 4, and (m1, . . . ,m4) = {2, 2, 2, 3}.
• s = 5 and (m1, . . . ,m5) = {2, 2, 2, 2, 2}.

The ‘orbifold Mordell Conjecture’ thus reduces to showing finiteness of
(S,Δ)-integral points for (S,Δ) in the above short list. Notice that its solution
would imply in particular the finiteness of the infinite union of classical
integral points for the orbifolds ‘divisible’ by Δ, which are the ones deduced
from Δ by multiplying each of its multiplicities by an arbitrary positive
integer (without changing the support). The orbifold conjecture thus looks
much stronger than its ‘classical’ version.

Remark 3.3. The complex function field version of the orbifold Mordell
conjecture is solved in [13]. For function fields over finite fields, the solution
is much more involved and more recent: see [32]. The hyperbolic version of
the orbifold Mordell conjecture is also known (see §3.8).

3.4 Solution of the Classical Version

This classical version is solved by Darmon-Granville in [25], the idea being to
remove the orbifold divisor Δ by means of suitable ramified covers π : C ′ → C
which are étale in the orbifold sense. We briefly sketch their arguments.
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Definition 3.4. Let π : C ′ → C be a surjective (hence finite) regular map
defined over k between two smooth projective curves. Let Δ :=

∑
j(1− 1

mj
).Dj

be an orbifold divisor defined over k on C. We shall say that π is a ‘classical’
orbifold morphism if, for any j, and any x′ ∈ π−1(Dj), the ramification order
ex′ of π at x′ is a multiple of mj.

We shall say that π is ‘classically’ orbifold-étale over Δ if we have the
equality ex′ = mj for any such x′, j. This is easily seen to be equivalent to:
π∗(KC +Δ) = KC′ .

The use of such covers is based on the following:

Proposition 3.5. Let π : C ′ → C, k,Δ be as in the previous definition, and
let S be a finite set of places of k. Assume that π is classically orbifold-étale
over Δ. We then have the following two properties:

1. π(C ′(k) \R) ⊂ (C,Δ)(S, k′)∗, R being the ramification of π.
2. There is a finite extension k′/k such that π(C ′(k′)) ⊃ (C,Δ)(S, k).

Proof. The proof of Claim 1 is easy just by going through the definitions.
By contrast, Claim 2 is an orbifold version of the theorem of Chevalley–Weil,
which deals with the case Δ = 0 in any dimension. Claim 2 is established, by
reduction to this classical result, in [25], Proposition 3.2. �

The rest of the argument is purely geometric, by constructing suitable
orbifold-étale covers.

• We first deal with the ‘easy’ case in which deg(KC + Δ) ≤ 0. In this
case C = P

1. The proof just consists in producing a suitable orbifold-étale
cover π : C ′ → P

1 over Δ and defined over Q̄, with C ′ either elliptic (if
deg(KC + Δ) = 0), or C ′ = P

1 (if deg(KC + Δ) < 0). This is classical
(and easy, except in the case where C = P

1, and Δ is supported on 3
points of multiplicities (2, 3, 5), where the Klein icosahedral cover solves
the problem). See [25], §6,7 and [3] for many more details. Only Claim 1
is needed here, together with the ‘potential density’ of rational and elliptic
curves.

• The second case deg(KC + Δ) > 0 requires much more. First one needs
an orbifold étale cover π : C ′ → C of (C,Δ). If C is elliptic, with Δ =
(1− 1

2 ).a, a ∈ C(k), this is given by a cover C ′ of C which ramifies at order
2 only over a, by first taking a double étale cover (still elliptic) π : C ′ → C
of C, and then a double cover of C ′ ramifying at order 2 over the two
points of the inverse image of a in C ′. Otherwise C = P

1, and the only
non-obvious cases are when s = 3 with 3 points 0, 1,∞ of multiplicities
p, q, r with 1

p + 1
q + 1

r < 1. The existence of such a cover C ′ follows from

the existence of finite quotients Qp,q,r of π1(P
1(C) − {0, 1,∞}), which is

a free group on two generators, and with Q a finite permutation group
containing 3 elements A,B,C of respective orders p, q, r, with C−1 = AB
(see [37], 1.2.13, 1.2.15). Applying claim 2 of Proposition 3.5, we see that
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π(C ′(k′)) ⊃ (S,Δ)(C). Since, by Faltings’ theorem, C(k′) is finite, so is
(S,Δ)(C).

Remark 3.6. The reason why the Orbifold Mordell Conjecture cannot be
proved by the same argument for ‘non-classical’ integral points is that
(above orbifold version of) the Chevalley–Weil theorem does not apply to
them: the lifting of integral Δ-points requires that the ramification orders
divide (and not only be smaller than) the corresponding multiplicities. More
precisely: contrary to what happens with the ‘classical’ integral points, the
arithmetic ramification can occur anywhere geometrically for non-classical
integral points. This is illustrated by the following simplest possible example.
Let (P1,Δ) where Δ is supported on {0,∞}, each of these two points being
equipped with the multiplicity 2. The classical integral points over Q, S = ∅,
are thus simply the squares of non-zero integers up to sign, while the non-
classical integral points are the non-zero 2-powerful numbers, which admit
odd arithmetic ramification at any prime, and are not the squares of a ring
of integer of the form Ok,S for any finitely generated extension of Q.

3.5 The abc-Conjecture

We state here its simplest form, for k = Q (a version for number fields has
been given by Elkies):

Conjecture 3.7. For each real ε > 0, there exists a constant Cε > 0 such
that for each triple (a, b, c) of positive coprime integers such that a + b = c,
one has: c ≤ Cε.rad(abc)

1+ε. Recall that rad(abc) is the product of the primes
dividing abc.

The rough meaning is that the exponents in the prime decompositions of
a, b, c cannot be ‘too’ large.

• The abc conjecture can be interpreted geometrically in terms of the number
of intersections counted without multiplicities of the section x = a

c with
the sections 0, 1,∞ on the arithmetic surface π : P1

Z → Spec(Z). It simply
says that the ‘height’, taken to exponent (1 − ε), of x is bounded by the
total number of intersection points (counted without multiplicities) of
this section with the 3 sections 0, 1,∞.

• Let us visualise the abc-conjecture, using the sections x, 0, 1,∞ of the
arithmetic surface π : P

1
Z → Spec(Z). The section x only gives the

intersection points of the section x with the 3 other sections, that is:
rad(a), rad(b), rad(c). To recover x, one needs additionally the arithmetic
intersection numbers. The abc-conjecture claims they are ‘small’ (with a
quantitative measure). The following exercise at least shows that they are
finite in numbers, that is: the radicals of a, b, c determine a, b, c = a+ b ‘up
to a finite ambiguity’ (Figure 3).
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The two arithmetic sections x = 23
31 and x′ = − 22

32 meet the sections
(0), (1) and (∞) at the same points.

Intersections with: (0) (1) (∞)

SpecZ
2 3 5 7 . . .

(∞)

(1)

(0)

P
1
F2

P
1
F3

P
1
F5

P
1
F7

Fig. 3 Arithmetic sections are determined by their radicals at 0, 1,∞ up to finite
ambiguity

Remark 3.8. The abc-conjecture implies that there exists only a finite
number of triples of coprime integers (a, b, c) such that a + b = c, and
rad(abc) ≤ N . This is a special case of the finiteness of solutions of the S-unit
equation. It follows, for example, from the weak form of the abc-conjecture
proved in [44]. This finiteness is due to K. Mahler, originally. See [28] and
the references therein for more general statements. We illustrate below the
case where rad(abc) = 2.3.5 = 30.

Some of the solutions of the equation 2x ± 3y = ±5z are (x, y, z) =
(1, 1, 1), (2, 2, 1), (1, 3, 2), (4, 2, 2), (7, 1, 3). It is probably not easy to get a
complete list of all solutions, even over Z.
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3.6 abc Implies Orbifold Mordell

Since this is shown in [26] when Δ = 0, we only need to show this for the
remaining ‘minimal’ cases listed in Remark 3.2. We start with P

1 with 3
marked points.

• Let us show that abc implies the Mordell orbifold conjecture over Q for
(P1,Δ) with Δ as in Example 2.7 above. Indeed: if a (resp. b, resp. c) is

p-powerful (resp. q-powerful, resp. r-powerful), we have: rad(a) ≤ a
1
p ≤

c
1
p , and similarly rad(b) ≤ c

1
q , rad(c) ≤ c

1
r . We thus get: rad(abc) ≤

rad(a).rad(b).rad(c) ≤ c
1
p+

1
q+

1
r ≤ c1−

1
42 , since 1

p + 1
q + 1

r ≤ 1 − 1
42 for

each of the minimal orbifolds listed in Example 2.7, the minimum being
reached for the multiplicities (2, 3, 7). The conjecture abc implies that:

c1−
1
42 ≥ rad(abc) ≥ c1−ε

Cε
, for any ε > 0. Choosing ε < 1

42 gives: c
1
42−ε ≤

Cε, and so the claimed finiteness.11

• The Orbifold Mordell conjecture can be deduced from the abc-conjecture
also in the three remaining cases when either C = P

1, and Δ is supported
by 4 or 5 points on P

1 with multiplicities (2, 2, 2, 3) and (2, 2, 2, 2, 2),
respectively, or when C is elliptic and Δ is supported on a single point
with multiplicity 2. The derivation is, however, less direct less: one needs
to apply a variant of the method used by N. Elkies in [26] to derive
Faltings’ theorem from the abc-conjecture. One can proceed as follows:12

• First step (the same thus as in [41]):

Let f : C := P
1 → B := P

1 be a rational function f = F
G of degree d > 0,

quotient of polynomials F,G, defined over k, a number field. We shall use
the notations of [26]. Let P ∈ C(k), such that f(P ) /∈ {0, 1,∞}. Let H(P )
(resp. HP ) be the height of P (resp. of f(P )). We denote by N0(f(P )) the
radical of F (P ). We have: Log(H(f(P ))) = d.Log(H(P )) +O(1).

Elkies shows that Log(N0(f(P ))) ≤ (k0

d ).Log(H(P )) + O(1), where k0 is
the cardinality (without multiplicities) of f−1(0). (The proof just consists in
removing the ramifications on this fibre). One has then similar inequalities
over the fibres of f over 1 and ∞ replacing f by (f − 1) and 1

f . From

which he concludes (using the Riemann–Hurwitz formula) that (k0 + k1 +
k∞).Log(H(f(P ))) ≥ d.Log(N(f(P ))) + O(1), with N := N0 + N1 + N∞,
where N1, N∞ are defined as N0, but considering the fibres over 1,∞ instead
of 0.

11This observation has been communicated to me by Colliot-Thélène, who attributed
it to P. Colmez.
12The referee informed me that this approach was already sketched in [1],§4.4, and
treated completely in [43]. Abramovich’s approach is based on Belyi maps and deals
with all cases simultaneously. The proof given below is the same, but constructs Belyi
maps explicitly in the three remaining cases mentioned above.
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His argument easily extends to the case where C is equipped with an
orbifold divisor Δ supported on the union of the fibres of f over 0, 1,∞. Let,
for each point aj in this union, mj be its multiplicity in Δ, and tj be the order
of ramification of f at aj . Define the number d0 :=

∑
aj∈f−1(0)(mj − 1).tj .

Define similarly d1, d∞ for the fibres of f over 1 and ∞. Elkies argument then
shows that: k0.Log(H(f(P ))) ≥ (d + d0).Log(N0(f(P )) + O(1). Adding the
two other inequalities on the fibres of f over 1,∞, we get:

(k0 + k1 + k∞).Log(H(f(P ))) ≥ (d.Log(N(f(P )) + δ +O(1),

where: δ = d0.Log(N0(f(P ))) + d1.Log(N1(f(P ))) + d∞.Log(N∞(f(P )))
Assume now that f is unramified outside of the three fibres over 0, 1,∞.

We then have: (k0+k1+k∞) = d+2. Assume also that min{d0, d1, d∞} ≥ 3.
We obtain: (d+ 2).Log(H(f(P ))) ≥ (d+ 3).Log(N(f(P ))), an inequality

satisfied only for finitely many P ′s ∈ k, by the abc-conjecture. This implies
Mordell orbifold for (C,Δ).

• Second step (construction of Belyi maps):

In order to show that this applies to C = P
1, with Δ either of the

form (2, 2, 2, 3) or (2, 2, 2, 2, 2), we consider f : P
1 → P

1 defined by

f(x) := x2(x−1)(x−w)
ux−v . The fibre of f over 0 consists thus of 3 points,

one double (0), two simple (1, w). The fibre of f over ∞ consists of two
points: the triple point ∞ and the single point v

u . We now fix 2 further
points (distinct from the preceding ones): b, c, and notice that the equation:
x2(x− 1)(x−w) = (ux+ v) + (x− b)2(x− c)(x− t) with unknowns u, v, w, t
has a unique solution. This means that the fibre of f over 1 has 3 points: one
double (b) and two simple ones: (c, t).

In order to deal with Δ = (2, 2, 2, 3), we attribute to the points 0, 1, b,∞,
respectively, the multiplicities 2, 2, 3, 2 . An easy check shows that d1 =
4, d0 = d∞ = 3.

In order to deal with Δ = (2, 2, 2, 2, 2), we attribute to all of the 5 points
0, 1, b, c,∞ the multiplicity 2. One again easily checks that d0 = d1 = d∞ = 3.

The last remaining case is when C is elliptic, and Δ = (1 − 1
2 ).{a}, a ∈

C(k). It can be reduced similarly to abc by composing the above map f(x) :=
x2(x−1)(x−w)

ux−v with the double cover g : C → P
1 so that its 4 ramification

points are sent by f to 0, 1, b, c, and a to ∞, equipping again each of these 5
points with the multiplicity 2.

This concludes the proof that abc implies orbifold Mordell.
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3.7 Ramification of Belyi Maps

The question we would like to address here is whether the (non-classical)
orbifold Mordell conjecture for one single orbifold pair (P1,Δ) of general type:
P
1 with the 3 marked points 0, 1,∞ of multiplicities (3, 3, 4) (for example,

one could choose (2, 3, 7) or (2, 4, 5) instead) implies Mordell Conjecture=
Faltings’ Theorem, for every curve defined over Q. One may of course raise
this question for the other minimal orbifolds over P1 listed in Remark 3.2.

A positive answer to the following question implies this statement:

Question 3.9. Let C be a curve defined over Q. Does there exist:

1. An unramified cover u : C̃ → C.
2. A Belyi map β : C̃ → P

1 (unramified over the complement of {0, 1,∞})
such that each of its ramification orders over 0 (resp. 1, resp. ∞) are at
least 3, (resp. 3, resp. 4)?

The usual construction of Belyi maps cannot produce Belyi maps such as
in the preceding question. Assume indeed that g is already a Belyi map for
C, but has some unramified point over each of 0, 1,∞. In order that f ◦ g be
a Belyi map satisfying the condition 2 of 3.9, the map f itself should already
be a Belyi map satisfying this very same condition. The Riemann–Hurwitz
equality contradicts the existence of such an f .

Faltings’ Theorem would follow from a positive answer to Question 3.9 and
Orbifold Mordell. Indeed: fix k, a number field of definition of a given C, and
let u, β answering positively the Question 3.9. Let k′/k be a finite extension
such that u(C̃(k′)) ⊃ C(k) (using the Chevalley–Weil Theorem). Since β is
an orbifold morphism to (P1,Δ), we get a map with uniformly finite fibres
from C̃(k′) to (P1,Δ)(Ok′), the last set being finite by the Orbifold Mordell
conjecture for any k′. We thus get the finiteness of C(k).

Remark 3.10. The Question 3.9 bears a certain similarity with the notion
of universal curves introduced in [7] (although the étale covers there are over
the universal curve). I thank A. Javanpeykar for bringing this reference to
my knowledge.

3.8 Link with Complex Hyperbolicity

Let C be a connected smooth projective curve C. By the Poincaré–Koebe
uniformisation, there is a non-constant holomorphic map h : C → C if and
only if C is not uniformized by the unit disk D ⊂ C, that is: if g(C) ≤ 1.
Similarly, if C is defined over a number field k, the potential density of C(k)
holds if and only if there exists such a map h. It is very easy to check that
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this equivalence still holds for quasi-projective curves (C−D), again by their
uniformisation for the hyperbolic version.

We show in [18], using Nevanlinna’s Second Main Theorem with trun-
cation at order one, that the same thing is true for ‘orbifold curves’ (the
notion of morphism h : C → (C,Δ) being defined as in Definition 2.5 in
the two possible ways (‘classical’ and ‘non-classical’). The orbifold Mordell
Conjecture thus remains open only in its arithmetic version.

This link, initiated by S. Lang, will be studied in higher dimensions as
well.

4 The Kodaira Dimension

4.1 The Iitaka Dimension of a Line Bundle

Since, for projective curves, the invariant h0(C,KC) = g determines the
qualitative arithmetic, it is natural to consider it also in higher dimensions.
The invariant h0(X,KX) is birational, but no longer preserved by étale
covers in dimension 2 already, and one needs more information: the values
h0(X,m.KX) := pm(X),m > 0, the ‘plurigenera’ of Enriques. We shall even
abstract more (in order to get a birational invariant preserved by étale covers),
and only consider the asymptotic behaviour of the plurigenera as m goes to
+∞, for a given X. The notion actually makes sense, and is extremely useful,
more generally, for arbitrary line bundles L, not only for L = KX .

• Let X be a connected projective manifold of dimension n defined over a
field k of characteristic 0. Let L be a line bundle on X. Let h0(X,L) ∈ N

be the k-dimension of its space H0(X,L) of sections. If h0(X,L) > 0, let
ΦL = X ��� P(H0(X,L)∗) be the rational map which sends a generic
x ∈ X to the hyperplane of H0(X,L) consisting of sections vanishing at x.
We thus have: 0 ≤ dim(ΦL(X)) ≤ n. We denote either with m.L or with
L⊗m,m ∈ Z the m-th power of L.

Definition 4.1. We define κ(X,L) ∈ {−∞, 0, . . . , n} as being −∞ if
h0(X,mL) = 0, ∀m > 0. Otherwise, κ(X,L) := maxm>0{dim(ΦmL(X))}.

An alternative definition, not immediately, equivalent is:

κ(X,L) := limm→+∞
{Logh0(X,m.L)

Logm

}
,

roughly meaning that h0(X,m.L) grows like the κ(X,L)-th power of m as m
goes to +∞.
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Example 4.2.

• κ(X,L) = −∞ if L = OX(−D) for some effective divisor D. And also
when X is an elliptic curve, if c1(L) = 0, but L is not torsion in Pic(X).

• κ(X,L) = 0 iff h0(X,mL) ≤ 1, ∀m > 0, with equality for some m > 0, for
example, if L is torsion in Pic(X).

• κ(X,L) = n iff mL = A + E, for some m > 0, A ample and E effective.
Then L is said to be ‘big’.

• κ(X,L) = d ∈ {1, . . . ., n} if p : X → Z be regular onto, with d := dim(Z),
and L = p∗(A), A ∈ Pic(Z), ample. Indeed, one has:

• κ(X, p∗(M)) = κ(Z,M), for any line bundle M on Z.

The following theorem gives a weak analogue in general:

Theorem 4.3. If κ(X,L) = d ≥ 0, for any sufficiently large and divisible
integer m > 0, the rational map Φm.L has connected fibres, its image Zm = Z
has dimension d and its generic fibre Xz has κ(Xz, L|Xz

) = 0. Moreover, Zm

is birationally independent of m > 0 sufficiently large and divisible.
If d = n, ΦmL(X) is birational to X for m large enough.

Observe however that, in general, L will not be torsion on the general fibre
of ΦmL. Many more details and numerous examples can be found in [46].

The following Proposition gives an upper bound on κ(X,L):

Proposition 4.4 (‘Easy Additivity’). Let p : X → Z be a fibration, and
L ∈ Pic(X). Let Xz be the general fibre of p. Then:

κ(X,L) ≤ κ(Xz, L|Xz
) + dim(Z).

4.2 The Kodaira Dimension κ

The fundamental case is when L = KX := det(Ω1
X), the canonical line bundle

on X. One writes then: κ(X) := κ(X,KX).
The invariant κ(X) enjoys several properties:

• It is birational, and preserved by finite étale covers.
• Additive for products: κ(X := Y × Z) = κ(Y ) + κ(Z), since:

h0(X,mKX) = h0(Y,mKY )× h0(Z,mKZ), ∀m.

• In particular: κ(X) = −∞, ∀Z, if κ(Y ) = −∞ (e.g.: Y = P
1).

• Also: κ(X) = κ(Z) if κ(Y ) = 0.
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4.3 First Examples: Curves and Hypersurfaces

For curves, κ(X) tells (almost) everything, qualitatively, it indeed describes
X, its topology, fundamental group, as well as hyperbolicity and arithmetic
properties.

κ g X X(k)

−∞ g = 0 P1 Potentially dense

0 g = 1 C/Λ Potentially dense

1 g ≥ 2 D/Γ Not potentially dense

The preceding trichotomy (according to the ‘sign’ of KX : positive, zero or
negative) still appears in the special case of smooth hypersurfaces in Pn+1.

• Hypersurfaces in Pn+1. Let Hd ⊂ Pn+1 be a smooth hypersurface of
degree d (defining by a homogeneous polynomial in (n + 2) variables of
degree d). The adjunction formula shows that KHd

= O(d − n + 2)|Hd
.

Thus KHd
is ample if d ≥ (n+ 3), trivial if d = (n+ 2) and anti-ample if

d ≤ (n+ 1). We thus have, in particular: κ(Hd) = n (resp. 0, resp.−∞) if
d > n+ 2 (resp. d = n+ 2, resp. d < n+ 2).

• Hypersurfaces in Pn+1−k × Pk. Let now H := Hd,d′ be a smooth
hypersurface of bidegree (d, d′) in this product (this means that H ∩ F
is a hypersurface of degree d′ (resp. d) when intersected with a generic
Pn+1−k × {a′} (resp. {a} × Pk). The adjunction formula now shows that
KH = O(d−(n+2−k), d′−(k+1))|H . One thus obtains that κ(H) = −∞
if d ≤ n+1−k, or if d′ ≤ k, that κ(H) = 0 if d = n+2−k and d′ = k+1,
that κ(H) = k if d = n + 2 − k, d′ ≥ k + 2, that κ(H) = n + 1 − k if
d > n+ 2− k, d′ = k + 1, and that κ(H) = n if d > n+ 2− k, d′ > k + 1.

• The smooth hypersurfaces in products of projective spaces show that
arbitrary κ may occur, which are not determined simply by those of base
and fibres.

4.4 The Iitaka–Moishezon Fibration

There are 3 fundamental cases (as for curves with g = 0, 1,≥ 2):

1. κ(X) = −∞.
2. κ(X) = 0.
3. κ(X) = n. In this third case, X is said to be ‘of general type’.

Let us briefly comment on these 3 classes:
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• κ = n is a large class (as for curves), it contains the smooth hypersurfaces
of degree at least (n+ 3) in Pn+1. This is the reason for the term ‘general
type’ introduced by B. Moishezon. They are conjectured to be Mordellic by
S. Lang. Examples of manifolds of general type are quotients of bounded
domains in C

n by discrete torsion-free groups of automorphisms, which are
higher dimensional analogues of curves of genus greater than 1. But many
manifolds of general type (such as hypersurfaces of dimension greater than
1) are simply connected.

• κ = 0 contains manifolds with trivial (or torsion) canonical bundle, the
structure of which is partially understood by means of the Beauville–
Bogomolov–Yau decomposition theorem. They are however classified only
in dimension 2. Even in dimension 3, it is unknown whether or not there
are finitely many deformation families.

We conjecture that the manifolds with κ = 0 are Potentially Dense. It is
expected that on suitable mildly singular birational models their canonical
bundle becomes torsion.

• κ = −∞: this class contains products P1 × Z, ∀Z. It is discussed below.

This class thus does not consist only of Potentially dense manifolds. We
define below the more restricted class of ‘rationally connected’ manifolds,
conjectured to be potentially dense, which permits to ‘split’ any manifold
with κ = −∞ by means of a single fibration into a rationally connected part
(the fibres), and a part (conjecturally) with κ ≥ 0 (the base).

• The structure of the intermediate cases when 1 ≤ κ(X) = d ≤ (n − 1)
‘reduces’ (to some extent) to the case of κ = 0 and lower dimension, by
means of the following ‘Iitaka–Moishezon fibration’ J .

Proposition 4.5. The map J := ΦmKX
: X ��� Z := Φm.KX

(X) = J(X),
for m > 0 suitably large and divisible is birationally well-defined, and
may thus be assumed to be regular. Its generic fibres Xz are then smooth
with κ(Xz) = 0, because κ(Xz,KX|Xz

) = 0, and KX|Xz
= KXz

(by the
‘Adjunction formula’).

J is defined over k, if so is X

Example 4.6. The fibration J is the projection onto the second (resp. first)
factor when Hd,d′ ⊂ Pn+1−k × Pk is a smooth hypersurface of bidegree (n +
2− k, d′) (resp. (d, k + 1) if d′ > k + 1 (resp. (d > n+ 1− k)).

When κ(X) = 0, Z is a point, and J does not give any information.
In the other extreme case, where κ(X) = n, J embeds birationally X in
the projective space P((H0(X,m.KX)∗), for appropriate m > 0. One thus
‘reconstructs’ X from its pluricanonical sections.

Caution In general, however, κ(Z) ≤ d := dim(Z) = κ(X) (and strict
inequality may occur, as shown by Example 4.6, since the base of J is then a
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projective space). The fibration J thus does not in general decompose X in
parts with κ(Xz) = 0 and κ(Z) = dim(Z).

• Notice also that J is not defined when κ(X) = −∞. This case κ(X) = −∞
requires a completely different treatment, which we briefly describe below.

4.5 Rational Curves and κ = −∞

In order not to overload the text with quotations, we have deleted them for
this section. The results in this section are mainly due to Mori, Miyaoka–
Mori, Campana, Kollár–Miyaoka–Mori, Graber–Harris–Starr.

Definition 4.7. A ‘rational curve’ on X is the image of a regular non-
constant map: P

1 → X. We say that X is uniruled if it is covered by
rational curves, or equivalently, if there exists a dominant rational map
P
1 × Tn−1 ��� X for some (n− 1) dimensional variety Tn−1.

If X is uniruled : κ(X) ≤ κ(P1 × T ) = −∞. Thus κ(X) = −∞. The
converse is a central conjecture of birational geometry, known up to dimension
3:

Conjecture 4.8 (‘Uniruledness Conjecture’). If κ(X) = −∞, X is
uniruled.

The decomposition of arbitrary X into parts with a ‘birationally signed’
canonical bundle depends on some or other form of this central conjecture.

4.6 Rational Connectedness and κ+ = −∞

Definition 4.9. X is ‘rationally connected’ (RC for short) if any two
generic points of X are joined by a rational curve.

Example 4.10.

1. Let X = P
1 × C, for C a projective curve of genus g: X is uniruled, but

it is rationally connected if and only if g = 0.
2. Unirational manifolds (those dominated by P

n) are RC.
3. Fano manifolds (those with −KX ample) are rationally connected.
4. Smooth hypersurfaces of degree at most (n+ 1) in P

n+1 are Fano.
5. Rationally connected manifolds are simply connected.
6. Although no rationally connected manifold is presently proved to be non-

unirational, it is expected that this is the case for most rationally connected
manifolds of dimension 3 or more. In particular, the (non) unirationality
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of the double cover of P3 ramified along a smooth sextic surface S6 is an
open problem.

Remark 4.11. If X is defined over a field k ⊂ C and is uniruled (resp.
rational, unirational, rationally connected over C) it is not difficult to see
that it has this property also over some finite extension of k.

Theorem 4.12. For any X, there is a unique fibration rX : X → RX such
that:

1. its fibres are rationally connected, and:
2. RX is not uniruled.

It is called the ‘rational quotient’, or the ‘MRC13 of X.
If X is defined over k, so is rX .

The fibration rX thus decomposes X into its antithetic parts: rationally
connected (the fibres) and non-uniruled (the base RX). The extreme cases
are when X = RX (i.e.: X is not uniruled), and when RX is a point (i.e.: X
is rationally connected).

Remark that the uniruledness conjecture implies that κ(RX) ≥ 0. This
leads to the following definition:

Definition 4.13. Define, for any projective X:

κ+(X) := max{κ(Y )|∃ dominant f : X ��� Y }

From Theorem 4.12, one gets:

Proposition 4.14. Assume the Uniruledness Conjecture 4.8. The following
are then equivalent:

1. X is rationally connected.
2. κ+(X) = −∞.

Moreover, the ‘rational quotient’ is also the unique fibration g : X → Z on
any X such that:

1. κ+(Xz) = −∞ for the general fibre Xz of g, and:
2. κ(Z) ≥ 0.

Note that these conjectural characterisations of rational connectedness and
of r do not rely on rational curves, but only on κ and its refinement κ+. The
rational quotient will also be constructed without mentioning rational curves,
conditionally on conjecture Cn,m, in §6.5.

Remark 4.15. We conjecture that manifolds with κ+ = −∞ are potentially
dense. Thus so should be the rationally connected manifolds. Much more

13Stands for ‘maximally rationally connected’.
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generally, we conjecture that ‘special manifolds’ (defined later) are exactly
the potentially dense manifolds.

5 Surfaces

5.1 Classification of Surfaces

If S is a smooth projective surface, we have: κ := κ(S) ∈ {−∞, 0, 1, 2}. The
maps r and J permit to elucidate the structure of S when κ(S) �= 2.

When κ = −∞, the uniruledness conjecture is a classical result of
Castelnuovo, and we thus get a non-trivial rational quotient r : S → R,
where R is either a curve Cq of genus q = h0(S,Ω1

S) > 0, or a point (in which
case S is rationally connected, and even rational).

When κ = 1, one has the Iitaka–Moishezon fibration J : S → B, with
smooth fibres elliptic, and B a curve. One says that S is an elliptic surface
over B.

When κ = 0, a precise classification is known: S is covered by a blow-up of
either an abelian surface or of a K3 surface, where K3-surfaces are defined
by: q = 0,KS

∼= OS . They form a single deformation family containing the
smooth quartics in P3.

One thus gets the ‘Enriques–Kodaira–Shafarevich’ classification, displayed
in the table below (up to birational equivalence and finite étale covers), where
Cq denotes a curve of genus q, q := h0(S,Ω1

S) = 1
2b1(X). We indicate the

status of potential density for S defined over some large number field k. More
details below.

κ q S(up to bir, étale ∼=) S(k) potentially dense

−∞ q ≥ 0 P1 × Cq Yes iff q ≤ 1

0 0 K3 Yes in many examples

0 2 (C2/Λ) Yes, always

1 ≥ 0 Elliptic over Cq Yes in many examples if q ≤ 1

2 ≥ 0 No classification scheme No, in all known examples

5.2 Remarks on Potential Density

Our guiding principle here consists of the following 3 facts, for X a smooth
connected projective manifold defined over a number field k:

0. Potential density is a birational property.
1. Chevalley–Weil theorem: if X ′ → X is an étale covering, X ′(k) is

potentially dense if X(k) is (the converse is obvious).
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2. Lang’s conjecture:14 if X is ‘of general type’, then X(k) is not potentially
dense.

By Faltings’ theorem this holds for curves, but is open for surfaces.

Definition 5.1. We say that X (defined over C) is ‘weakly special’ if, for
any finite étale cover u : X ′ → X, there exists no dominant rational map
f : X ′ ��� Z, with Z of ‘general type’ and dim(Z) > 0.

Remark 5.2. The 3 facts above imply that if X is not weakly special, X(k)
is not potentially dense. The following claims the converse also:

Conjecture 5.3 ( [30, Conjecture 1.2]). A projective manifold X/k is
potentially dense if and only if X is ‘weakly special’.

Remark 5.4. This conjecture conflicts with other conjectures stated below15

when dim(X) ≥ 3, but both conjectures agree for surfaces (because specialness
and weak specialness coincide for them).

Let us check the known cases of this conjecture for surfaces, according to
κ(S) = κ, for S a surface defined over a number field k. Let r : S̃ → S be
any finite étale cover of S, and q̃(S) the supremum (possibly infinite) of q(S̃)
when S̃ ranges over all finite étale covers of S. For example, q̃(S) = +∞ if
some S̃ fibres over a curve of genus g ≥ 2. Recall that a Theorem of Y.T. Siu
shows that this happens if and only if some finite index subgroup of π1(S)
admits a quotient which is a ‘surface group’ (i.e.: of the form π1(C) with
g(C) ≥ 2). Notice that q̃(S) ≥ 2 and κ(S) �= 0, 2 imply that some S̃ fibres
over a curve of genus at least 2, and so that: q̃(S) = +∞.

• κ = 2. If q̃(S) ≥ 2, then S is Mordellic, by Faltings’ Theorem (and
Kawamata Theorem on the structure of ramified covers of Abelian
varieties) showing that a subvariety of general type of an Abelian variety is
Mordellic. If q̃(S) = 0, 1, S is Mordellic conditionally on Lang’s conjecture.

• κ = −∞. Then S = P
1 ×Cq. Thus S(k) is potentially dense if and only if

so is Cq: The conjecture is true.

• κ = 0. Some S̃ is either an Abelian surface, or aK3 surface. Both are easily
seen to be weakly special. If S is an Abelian surface, S(k) is potentially
dense, and the conjecture then holds.

The conjecture then claims that K3 surfaces are potentially dense. This
is unknown in general, but known for K3 surfaces which are Kummer, or
admit either an elliptic fibration, or an automorphism group of infinite order
[6], the main idea of which is: if f : S → C is an elliptic fibration onto the

14Also attributed to E. Bombieri in the case of surfaces, although not in written form,
even in [9].
15Where ‘weak specialness’ is replaced by ‘specialness’.
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curve C, and if S contains a rational or elliptic ‘non-torsion multisection’,
then S(k) is potentially dense.

A ‘non-torsion multisection’ is an irreducible curve D ⊂ C such that
f(D) = C, and moreover such that, over the generic point of C, the fibre
of D has two points the difference of which is not torsion in the group of
translations of this (elliptic) fibre.

It is shown in [6] (this is the hardest geometric part) that elliptic K3
surfaces always contain some rational or elliptic ‘non-torsion’ D.

• κ = 1. Let f : S → C be the (elliptic) Moishezon–Iitaka fibration. A
major rôle is played by the ‘multiple fibres’ of f . Let indeed, for s ∈ C,
f∗(s) := (

∑
h th.Fh) be the scheme-theoretic fibre of f over s. Define:

ms := gcdh{th}. This is the ‘classical’ multiplicity16 of the fibre of f over
s, and it is equal to 1, except for finitely many (possibly none) s ∈ C. We
define now the ‘orbifold base of f’ to be the orbifold curve (C,Δf ), with
Δf :=

∑
s∈C(1− 1

ms
).{s}, a finite sum since (1− 1

ms
) = 0 iff ms = 1.

In this situation, we now have the following (geometric):

Lemma 5.5. An elliptic projective smooth surface S is weakly special if and
only if deg(KC +Δf ) ≤ 0.

Proof. The proof has two steps. First step: show that there exists17 an
‘orbifold-étale’ cover u : C ′ → C over Δf . Then KC′ = u∗(KC + Δf ), so
that deg(KC′) ≤ 0 iff deg(KC +Δf ) ≤ 0.

Second step: the (normalised) base-change f ′ : S′ := ̂S ×C C ′ → C ′ has
the property that u : S′ → S is étale.

If deg(KC +Δf ) > 0, g(C ′) ≥ 2, and S is not weakly special in this case.
Notice that Faltings’ and Chevalley–Weil theorems imply that S(k) is not
potentially dense, and the conjecture is true unconditionally.

If deg(KC +Δf ) ≤ 0, C ′ is rational or elliptic, and since f ′ : S′ → C ′ has
no multiple fibre, there is an exact sequence of groups:

π1(F
′
s) → π1(S

′) → π1(C
′) → {1}

which implies that no étale cover of S′ has a fibration onto a curve C ′′ with
g(C ′′) ≥ 2 (since π1(C

′′) has the free group on 2 generators as a quotient,
and is not solvable). �

The Conjecture 5.3 is thus equivalent to the fact that S(k′) is dense when
deg(KC +Δf ) ≤ 0, which is open, but verified on many examples.

16We shall introduce its ‘non-classical’ version in §5.3 below.
17Except in two quite simple cases of P1 with Δ supported on one or 2 points, which
can be dealt with directly. We shall ignore these simple cases here.
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5.3 Fibred Simply Connected Surfaces of General
Type

We shall give here examples of smooth projective simply connected surfaces S
of general type (defined over Q) which are not potentially dense, conditionally
on the Orbifold Mordell Conjecture.18 Presently (July 2019) no such example
is known unconditionally.19

Let f : S → C be a fibration (with connected fibres) from the smooth
connected projective surface S onto the smooth projective curve C. We do
not assume that the smooth fibres are elliptic.

Let s ∈ C, and f∗(s) :=
∑

h th.Fh be the scheme-theoretic fibre of f over
s. We define two notions of multiplicity for this fibre:

• The ‘classical’ (or ‘gcd’) multiplicity m∗
s(f) := gcdh{th}.

• The ‘inf’ multiplicity ms(f) := infh{th}.
Of course, m∗

s(f) divides ms(f), both are 1 except possibly on the finite set
of singular fibres.

We now define two ‘orbifold bases’ of f :

• The ‘classical’ orbifold base (C,Δ∗
f ), with Δ∗

f :=
∑

s∈C(1− 1
m∗

s(f)
).{s}

• The orbifold base (C,Δf ), with Δf :=
∑

s∈C(1− 1
ms(f)

).{s}

Remark 5.6.

1. If f is an elliptic fibration, Δf = Δ∗
f . As we shall see, they may differ,

but only if the smooth fibres of f have g ≥ 2.
2. If (C,Δ∗

f ) is of general type, there is always a base-change v : C ′ → C,
orbifold-étale over Δ∗

f , with g(C ′) ≥ 2, such that the resulting normalised
base-change u : S′ → S is étale. Thus π1(S

′), which is a finite index
subgroup of π1(S), maps onto π1(C

′), showing that π1(S) is a ‘big’
hyperbolic non-abelian group.

3. The map f induces natural group-morphisms f∗ : π1(S) → π1(C,Δ
∗
f ) and

π1(C,Δf ) → π1(C,Δ
∗
f ), but f∗ does not lift to a natural group-morphism

π1(S) → π1(C,Δf ). Here π1(C,Δ
∗
f ) is the quotient of π1(S \ Δ∗

f ) by the
normal subgroup generated by the mj-th powers of a small loop winding
once around Dj, this for any j if Δ∗

f :=
∑

j(1− 1
mj

).{aj}.

We shall now construct fibrations f : S → C with (non-classical) orbifold
base (C,Δf ) of general type with S simply connected.

18The particular case of P1 with m ≥ 5 points of multiplicity 2 is sufficient.
19Unconditionally, quasi-projective examples are given in [24], and projective
examples over Fq(t), inspired by the ones given here, are proposed in [32]. The
Orbifold Mordell Conjecture over C(t) was previously established in [12].
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Proposition 5.7 ( [13]). Let f : S → C be a fibration from the smooth
projective connected surface S onto the projective curve C. Assume that
deg(KC +Δf ) > 0, and that S is simply connected. Then:

1. κ(S) = 2, the smooth fibres of f have g ≥ 2.
2. There exist such fibrations defined over Q. In this case:
3. If the orbifold Mordell conjecture is true, then S(k) is contained in a finite

number of fibres of f , for any number field k, and S(Q) is not potentially
dense.

Proof. Claim 1 follows from an ‘orbifold’ version of the Cn,m conjecture (see
below). We shall give examples of claim 2 below. For Claim 3, it suffices to
see that f(S(k)) is contained in (S,Δf )(C) (finite by the orbifold Mordell
conjecture) for any k and a sufficiently large finite subset S of the places of
k, determined by a ‘model’ of (C,Δf ) over OS,k, such that (C,Δf ) has good
reduction outside of S. Let thus x ∈ S(k), and t be a k-rational function
which gives a local coordinate on C at f(x). Let p be a place of k outside
S. Assume that x /∈ f−1(s), if s is in the support of Δf . If the p reduction
of x belongs to the p reduction (Fh)pof some component Fh of f−1(s), let th
be the multiplicity of Fh in f∗(s). Then th ≥ ms(f), by definition of ms(f).
On the other hand, the arithmetic intersection number of f(x)p with (s)p is
the product of th with the arithmetic intersection number of (x)p with (Fh)p,
and is thus a multiple of th, and thus at least ms(f). �
Remark 5.8. In the quasi-projective case, Corvaja–Zannier have given the
first example of simply connected quasi-projective smooth surfaces with a
non-Zariski dense set of integral points over any number field (see [24]).
Their proof uses Schmidts’ subspace theorem. Their examples (blow-ups
of P2 on union of 4 lines, removing the strict transforms, not the total
transform, of these lines, which permit to realise the simple-connectedness
of the complement) are similar to the ones given in §8.7 below, using infinite
multiplicities, instead of finite ones.

Example 5.9. We now give some examples of fibrations f : S → P
1 with

orbifold base of general type, and S simply connected. Different examples
where initially constructed in [13]. They are quite complicated, with fibres
of high genus g = 13 (but relatively simple multiple fibres consisting of 5
rational curves meeting transversally in a single point, their multiplicities
being (2, 2, 2, 3, 3)). In [45], L. Stoppino used former work of Namikawa–
Ueno [38] to give much simpler explicit examples with fibres of (minimal
possible) genus 2. In these examples, as in the examples produced in [13],
the ‘non-classical’ multiple fibres have ‘inf ’-multiplicity 2. We describe here
the simplest example of [41], to which we refer for more details, and in
particular the (quite involved) description of the multiple fibres, which are
trees of rational curves (and so are simply connected) (Figure 4).
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m = 2
m∗= 1

S

P
1

g = 2

2

6

3
3

42

Fig. 4 A non-classical double fibre of genus 2

• Take the ramified 2-cover π0 : S0 → P
1×P

1 of equation y2 = t(x6+t.x3+t2)
(with affine coordinates (t, x) on P

1 × P
1). Resolve by r : S → S0 the

singularities of S0 to get an isotrivial fibration f = q ◦ π0 ◦ r : S → P
1,

where q : P
1 × P

1 → P
1 is the first projection which sends (t, x) to t.

The fibration has then smooth fibres of genus 2 and two simply connected
fibres of ‘inf ’-multiplicity 2, over t = 0,∞. More precisely, each of these
fibres consists of 6 rational curves building a tree, their multiplicities being
(2, 6, 3, 3, 4, 2).

• The surface S so constructed is defined over Q, and is rational. It is thus
potentially dense. In order to get a fibration of general type, it is sufficient
to make a generic cyclic base-change u : P1 → P

1 of degree d ≥ 3 over the
base of q, and to normalise. The resulting surface S′ is then of general type,
simply connected, defined over Q, and the resulting fibration f ′ : S′ → P

1

has 2d ≥ 6 ‘non-classical’ double fibres, and no ‘classical’ multiple fibre.
The ‘orbifold Mordell Conjecture’ then implies that it is not potentially
dense. This would provide the first non-potentially dense simply connected
smooth surface defined over a number field.

5.4 Link with Hyperbolicity

A. In [18], Corollary 4, p. 208, based on Nevanlinna’s second main theorem
with truncation at level 1, it is shown that any entire curve h : C → S has
its image contained in a rational or elliptic component of some singular
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fibre of f , if S has a fibration on a curve such that its orbifold base is
of general type. This is the exact hyperbolicity analog of the conjectural
arithmetic statement of non-potential density.

B. It is shown in [10] that a complex projective surface S not of general
type admits a holomorphic map h : C

2 → S with dense image, if and
only if S is weakly special (with the possible exception of non-elliptic and
non-Kummer K3 surfaces). This leads to conjecture the equivalence of the
following three properties:

1. S is weakly special
2. S admit a dense entire curve20

3. S(k) is potentially dense (if S is defined over a number field k).

• Insufficiencies of the ‘weak specialness’:We shall see in §8.7 that from
dimension 3 on, the property of ‘weak specialness’ is too weak to imply
property 2 (and conjecturally also property 3) above. We shall replace it
by the ‘specialness’ property, defined below.

6 Decomposition of Arbitrary X’s

We have previously defined 3 classes of ‘primitive’ manifolds: those with κ+ =
−∞, κ = 0, or with κ = dim (i.e.: of general type), respective generalisations
of rational, elliptic, and hyperbolic curves. We now decompose any higher
dimensional X into ‘twisted products’ of manifolds of these 3 primitive types
by a suitable sequence of canonical and (birationally) functorial fibrations. We
first describe a decomposition by a canonically defined sequence of fibrations,
which is however conditional in the uniruledness Conjecture 4.8. We next
define a second decomposition by one single fibration which is unconditional
and also birationally functorial (while the steps of the first are not). The
abutments of both decompositions however agree (the first one existing only
conditionally).

6.1 The (J ◦ r)n Decomposition

Let X be arbitrarily be given, and let r : X → RX be its ‘rational quotient’.
Assuming the ‘uniruledness Conjecture’ 4.8, one gets that κ(RX) ≥ 0, so
that the Iitaka–Moishezon fibration J : RX → J(RX) is always birationally

20We do not conjecture the existence of a Zariski dense map h : C2 → S for any
non-elliptic and non-Kummer K3 surface S.



Arithmetic Aspects of Orbifold Pairs 105

defined.21 The composite map: J ◦ r : X → J(RX) is thus defined for every
X, and can be iterated. The following properties are easy:

1. X = J(RX) if and only if X is of general type. Thus:
2. Defining inductively the k-th iterate (J ◦ r)k : X → Xk = (J(RXk−1

)),
with X0 := X, we see that dk := dim(Xk) is decreasing. Next (by 1.),
dk+1 = dk if and only if Xk is of general type.

3. In particular, (J ◦ r)n : X → Xn is a fibration over a manifold Xn of
general type (possibly a point), with fibres towers of fibrations with fibres
alternatively either rationally connected, or with κ = 0.

We call this map c : (J ◦ r)n : X → Xn the ‘weak core map’ of X. It has
been constructed conditionally on Conjecture 4.8. We shall now give a (more
general) unconditional construction.

The ‘weak core map’ however fails to be preserved even by finite étale
covers (see Example 6.15). This is due to neglecting the multiple fibres of the
fibrations J . This will be corrected later (see §8.1) by introducing ‘orbifold
bases’ of fibrations.

The relevance to potential density will be explained in §8.4.

6.2 The Cn,m Conjecture

Let f : X → Z be a fibration between complex projective manifolds, denote
by Xz its generic (smooth) fibre.

Proposition 6.1 (‘Easy Addition’). κ(X) ≤ κ(Xz) + dim(Z).22

The following is a central conjecture of classification:

Conjecture 6.2 (‘Cn,m-conjecture’). κ(X) ≥ κ(Xz) + κ(Z).

Theorem 6.3 (E. Viehweg). κ(X) = κ(Xz)+dim(Z) when Z is of general
type. In particular, if Xz is of general type, so is X.

We shall formulate an ‘orbifold’ version of this conjecture in §7.4. This
orbifold version is known also when the ‘orbifold base’ of f is of general type.

Corollary 6.4. If κ(X) = 0, there is no rational fibration f : X → Z, with
Z of general type and dim(Z) > 0.

Indeed: 0 = κ(X) ≥ κ(Xz) + dim(Z) > κ(Xz) ≥ 0 (the last inequality is
easy).

21Note however that these maps are all almost holomorphic, that is: their indetermi-
nacy loci do not dominate their images.
22This inequality is true for any line bundle, not only KX .
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6.3 A Decomposition Criterion

Let C be a class of complex (connected) projective manifolds, stable by
birational equivalence. We denote by C⊥ the class of all (complex projective)
manifolds X which do not admit any dominant rational fibration onto any
Z ∈ C. We call C⊥ the ‘Kernel’ of C.
Definition 6.5. We say that the class C is ‘stable’ if the following two
properties E1 and E2 hold true.

(E1) If f : X → Z is a surjective regular fibration with general (smooth)
fibre Xz ∈ C, and Z ∈ C. Then X ∈ C.

(E2) If a connected projective manifold Y is equipped with two (surjective)
fibrations h : Y → Z, g : Y → T such that h : Yt → h(Yt) ⊂ Z is birational
for t ∈ T generic, and if Z ∈ C, then Yt ∈ C for t ∈ T generic. We abbreviate
this property by saying that the general member of a Z-covering family of
varieties is in C if Z ∈ C.
Theorem 6.6. Assume that C is stable. Then, for any complex projective
X, there exists a unique fibration γX : X → CX such that:

1. its general fibre Xz ∈ C⊥.
2. CX ∈ C.
If X is defined over k, so is γX .

We call γX the C-splitting of X.
The C-splitting is functorial: any rational dominant fibration f : X → Z

induces a unique rational fibration γf : CX → CZ such that γZ ◦f = γf ◦γX .

Proof. We proceed by induction on n := dim(X), the assertion being true for
n = 0 (in which case X ∈ C∩C⊥, by convention). Let g : X → Z be a rational
fibration with Z ∈ C, d := dim(Z) being maximal with this property. If d = 0,
we are finished since then X ∈ C⊥, by definition. Otherwise: (n−d) > 0, and
so the proposition holds for Xz. By uniqueness of the map γ for Xz, Chow
space theory shows the existence of fibration γX/Z : X → Y and h : Y → Z
such that h ◦ γX/Z = g, and such that the restriction γz : Xz → Yz is γXz

(already inductively existing) for Xz, z ∈ Z general. By property (E1), since
we have: Yz ∈ C, and Z ∈ C, we have Y ∈ C. The maximality of dim(Z)
implies that Y = Z, the fibres Xz of g thus coincide with those of γX/Z ,

which are in C⊥. The map g thus enjoys the two claimed properties.
The uniqueness follows from (E2). Let indeed k : X → Y be a second

fibration enjoying properties 1 and 2, with dim(Y ) maximal, thus dim(Y ) =
dim(Z) = d. Let y ∈ Y be general, Xy := k−1(y), and Zy := g(Xy) ⊂ Z.
By property E2, Zy ∈ C. Since Xy ∈ C⊥, Zy is a point. There thus exists
a map h : Y → Z such that g = h ◦ k. Since dim(Y ) = dim(Z), we have
Z = Y, g = k (birationally).

The functoriality follows from a similar argument: the fibres of γX , which
are in C⊥, are mapped by γZ ◦f to a covering family of subvarieties of CZ ∈ C;
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they are thus points, by E2. This implies the claimed factorisation of γZ ◦ f
through γX . �
Remark 6.7. The existence of γX follows from E1, the uniqueness from E2.
The proof shows that the fibres of γX are the largest subvarieties of X in C⊥,
and that Z = CX dominates any member of C dominated by X.

Denoting with P the class of all (complex, connected) projective manifolds,
it is tempting to write the content of the C-splitting in the form of a short
exact sequence [C⊥] → P → C, to mean that any X ∈ P is in a unique way
an ‘extension’ of an element of C by a (deformation class) of C⊥, a fibration
being seen as an ‘extension’ of its base by its general fibre.

We shall now apply this criterion in two situations.

6.4 The Weak Core Map

Proposition 6.8. Let C := Kmax be the class of manifolds of general type.
It is stable, i.e. enjoys the properties E1,E2 of Theorem 6.6.

Proof. Property E1 follows directly from Theorem 6.3. Property E2 follows
from the ‘easy addition’ property (6.1). �

Let now Sw be the smallest class of complex projective manifolds
containing those with κ = 0, κ+ = −∞, and stable by ‘extensions’ (i.e.:
such that X ∈ Sw whenever there is a fibration f : X → Z with Z ∈ Sw and
Xz ∈ Sw).

Lemma 6.9. Sw ⊂ (Kmax)⊥, the class of manifolds not dominating any
positive-dimensional manifold of general type.

Proof. (Kmax)⊥ is clearly stable by extensions, and contains the manifolds
with κ+ = −∞, by definition. It also contains those with κ = 0, by
Corollary 6.4. �
Corollary 6.10. Let cX : Xn → CX be the ‘weak core map’ of an arbitrary
n-dimensional X = Xn. Assume Conjecture 4.8, so that the map (J ◦ r)n is
defined. Then cX = (J ◦ r)n, and Sw = (Kmax)⊥.

The weak core map is functorial: any fibration f : X → Z induces a
(rational, dominant) map cf : CX → CZ .

Proof. Both maps have a base in Kmax and general fibres in (Kmax)⊥,
they thus coincide by uniqueness of the weak core. Applying this to any
X ∈ (Kmax)⊥ shows that X ∈ Sw. The functoriality is a special case of
Theorem 6.6. �
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Remark 6.11. Let us stress that the weak core map is defined uncondition-
ally, contrary to (J ◦ r)n. Also, the map J is not functorial, and so the
functoriality of (J ◦ r)n does not follow directly from its construction.

6.5 The κ-Rational Quotient

We show here how to construct the rational quotient map rX : X → RX

without mentioning rational curves (but assuming Cn,m and 4.8).
Let K≥0 be the class of projective manifolds X with κ(X) ≥ 0. The class

(K≥0)
⊥ thus consists, by definition, of all manifolds with κ+ = −∞.

Lemma 6.12. Assume Conjecture Cn,m. The class K≥0 then enjoys prop-
erties E1, E2 of Theorem 6.6.

Proof. Property E1 follows directly from Cn,m, property E2 is shown as for
the class Kmax (by ‘easy addition’). �

Applying Theorem 6.6 and the same argument as in Corollary 6.10, we
get:

Proposition 6.13. Assume conjecture Cn,m. For any X, there is a unique
fibration ρX : X → R(X) such that:

1. κ+(Xz) = −∞ for its general fibre Xz, and:
2. κ(R(X)) ≥ 0.

We call ρX the ‘κ-rational quotient’ of X.

Remark 6.14. We cannot however here show that ρX coincides with the
‘true’ rational quotient rX : X → RX , because we do not know whether
all manifolds with κ+ = −∞ are rationally connected. We can only show
(assuming Cn,m) that we have a factorisation ϕ : RX → R(X) such that
ρX = ϕ ◦ rX . The fibres of ρX are indeed not uniruled with κ+ = −∞. The
Conjecture 4.8 thus implies that ρX = rX .

6.6 The Weak Core Is Not Preserved by étale
Covers

This is shown by the following (simplest possible) example. This implies
(among other things) that it is inappropriate for the description of X(k′).
We shall replace it later with the ‘true’ core map, which takes into account
the multiple fibres of fibrations, and is preserved by finite étale covers.
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Example 6.15. Let C be a hyperelliptic curve of genus g ≥ 2, h : C →
P
1 := C/ < τ > be the double cover induced by the hyperelliptic involution

τ of C. Let E be an elliptic curve, and t a translation of order 2 on E. Let
S′ := E×C, and ι := t×τ the fixed-point free involution on S′. Let u : S′ → S
be the quotient by ι.

The projections J : S → P
1 := C/ < τ > (resp. J ′ : S′ → C) are the Iitaka

fibrations of S, S′, and J ◦ u = h ◦ J ′. The weak core map cS := (J ◦ r)2 :
S → CS of S maps S to a point, but cS′ = (J ◦ r)2 : S′ → CS′ = C is simply
the fibration J ′ : S′ → C, since g(C ′) ≥ 2. The natural map cu : CS′ → CS

thus does not preserve the dimension.
The surface S has an ‘orbifold quotient’ of general type, revealed on its

double cover S′, but may be seen directly on S if one considers the ‘orbifold
base’ of J , which is indeed of general type.

The ‘orbifold base’ of J consists of the base B = P
1 := C/ < τ > of J , in

which the points pj over which the fibre is multiple (here double) are equipped
with the multiplicity (2, here) of the corresponding fibre. The points pj are
here obviously the 2g + 2 points images of the hyperelliptic points of C. We
obtain thus the ‘orbifold base’ (B,Δ) with Δ =

∑j=2g+2
j=1 (1− 1

2 ).{j}, in such
a way that h∗(KB + Δ) = KC , by the ramification formula. Which indeed
shows that the orbifold curve (B,Δ) is of general type.

A second way to see this quotient of general type is to consider not only
the line bundle J∗(KP1), but its saturation LJ in Ω1

S, which has κ = 1 (See
Example 7.8). As we shall see in Theorem 7.6, the two aspects (orbifold base,
saturation of f∗(KS)) actually coincide.

• The failure of the weak core map will be corrected by the introduction of
‘orbifold base’ of fibrations, as in the preceding example. One has then,
however, to work in the larger category of ‘orbifold pairs’. Even if one only
wants to decompose projective manifolds without orbifold structures, these
will appear, as in the preceding example, in general when considering the
Moishezon–Iitaka fibration. For surfaces, this can be dealt with by suitable
étale covers, but no longer in dimension 3 or more (see Example in §8.7
below).

7 Special Manifolds

7.1 Definition, First Examples and Properties

From now on, Xn is a smooth and connected complex projective manifold23

of dimension n. Our exposition here is very sketchy. Details can be found in
[11] and [13].

23Or compact Kähler, more generally.
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Definition 7.1. X is special24 if κ(X,L) < p for any line bundle L ⊂ Ωp
X ,

and for any p > 0.

Example 7.2.

1. If X is a curve, the unique p > 0 to consider is p = 1, and so L = KX =
Ω1

X . A curve is thus special if either rational or elliptic.
2. If X is rationally connected, it is special (since it satisfies the much

stronger vanishing: h0(X,⊗mΩ1
X) = 0, ∀m > 0). This generalises rational

curves.
3. If κ(X) = 0, X is special. (See 7.11 below). This generalises elliptic

curves. Much more is expected to be true: κ(X,L) ≤ 0 for any L ⊂
⊗m(Ω1

X), ∀m > 0, L of rank 1, if κ(X) = 0.
4. If X is of general type, it is not special, using L = KX = Ωn

X .
5. More generally: if there is a fibration f : X ��� Zp, with p = dim(Z) > 0,

and if Z is of general type, then X is not special (take L = f∗(KZ) =
f∗(Ωp

Z) ⊂ Ωp
X), then κ(X,L) = κ(Z,KZ) = p, contradicting the

specialness of X).
6. Being special is preserved by birational equivalence and finite étale covers.

Thus ‘special’ implies ‘weakly special’. The converse holds for curves and
surfaces, but no longer for threefolds (see §8.7 below). See Theorem 7.4
for a characterisation of specialness in this direction.

7. The Kodaira dimension does not characterise (non-)specialness (except
for k = 0, n): if n ≥ 1, k ∈ {−∞, 1, . . . , (n − 1)}, there exist both special
and non-special manifolds with dim = n, κ = k.

Non-special examples are given by obvious products.
‘Special’ examples are given, if k ≥ 0, by smooth divisors X in P

n−k+1×
P
k of bidegree (n− k + 2, k + 2).

8. If h : C
n ��� X is a meromorphic (possibly transcendental) non-

degenerate map, X is special. ‘Non-degenerate’ means that it has non-
vanishing Jacobian generically. This is an orbifold version of a result of
Kobayashi–Ochiai.

9. If S is a smooth projective weakly special surface, it is special. When
κ(S) = −∞, 0, it is easy from the classification and 7.11. When κ(S) = 1,
this follows from Lemma 5.5.

Special surfaces thus have a very simple characterisation: κ(S) ≤
1, and q̃(S) ≤ 2. Specialness is preserved by deformation (and even
diffeomorphism) for surfaces.

We conjecture that specialness is preserved by deformations and spe-
cialisation of smooth (compact Kähler) manifolds.

24The name is inspired from Moishezon’s definition of ‘general type’, and supposed
to convey the idea that these manifolds are in a precise sense ‘antithetic’ to those of
general type, as will be amply illustrated below.
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Remark 7.3. One could replace the condition κ(X,L) < p by the stronger
condition ν(X,L) < p for any rank-one L ⊂ Ωp

X , where ν(X,L) ≥ κ(X,L)
is the numerical dimension of L. It is an open question whether one obtains
the same class of manifolds. It has been shown by C. Mourougane and S.
Boucksom that ν(X,L) ≤ p,∀p, L,X, strengthening Bogomolov’s theorem.
Notice however that it may happen that κ(X,L) = −∞ if ν(X,L) = p for
L ⊂ Ωp

X , as observed by Brunella on surfaces covered by the bidisk. The
situation is similar to the one considered in the next §7.2.

7.2 The Birational Stability of the Cotangent
Bundle

Let X be a complex connected projective manifold.
The canonical algebra K(X) := ⊕m≥0H

0(X,m.KX), and so also κ(X)
are not (birationally) functorial in the sense that a dominant rational map
f : X → Z does not induce any natural (injective) morphism of algebras
f∗ : K(Z) → K(X), or inequality κ(X) ≥ κ(Z) when dim(X) > dim(Z).

The ‘cotangent algebra’ Ω(X) := ⊕m≥0H
0(X,⊗mΩ1

X) is, by contrast,
obviously functorial, as well as κ++(X) := max{κ(X,L)|L ⊂ (⊗mΩ1

X)
coherent of rank 1, ∀m > 0}. We obviously have: κ++ ≥ κ+ ≥ κ, where
κ+ is defined in 4.13, and also obviously functorial.

One can show25 that κ++(X) = κ++(RX), where rX : X → RX is
the rational quotient of X (the same holds easily for κ+). This permits to
reduce the study of κ++ to the case when KX is pseudo-effective (i.e.: X not
uniruled). Assuming Conjecture 4.8, one even reduces the study of κ++ to
the case when κ(X) ≥ 0.

A stronger version is obtained by replacing κ(X,L) by its ‘numerical’
version ν(X,L) ∈ {−∞, 0, 1, . . . , dim(X)} (as defined by N. Nakayama):

ν(X,L) := inf{k ∈ Z|limm→+∞
(h0(X,mL+A)

mk

)
> 0},

where A is a sufficiently ample line bundle on X, for example: KX + (2n +
2).H,H any ample line bundle on X. We have: ν(X,L) ≥ κ(X,L) for any
line bundle L on X.

We defined (in [17]) ν+(X) just as κ++(X), just replacing there κ by
ν, and showed that ν+(X) = ν(X,KX) when KX is pseudo-effective. This
is the ‘birational stability’ of the cotangent bundle: the positivity of its line
subsheaves is controlled by the canonical bundle (and similarly for its tensor
powers) when X is not uniruled.

25Using arguments in [14].
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If we now assume the conjecture that ν(X,KX) = κ(X) for any X
such that KX is pseudo-effective, we obtain in this case: ν+(X) = ν(X) =
κ++(X) = κ(X), and ν+(X) = κ++(X) = κ(RX) for any X. A particularly
important case is when κ(X) = 0, in which case the conjecture is that
ν(X) = 0, implying that ν+(X) = κ++(X) = 0, a statement considerably
stronger than the proved specialness.

Another consequence of the conjecture ν(X) = κ(X) for X non-uniruled
were that κ(X) ≥ κ(Z) for any dominant rational map f : X → Z between
non-uniruled manifolds: apply the equality ν++ = ν of [17] to X and Z
together with the equalities ν++ = κ+ implied by the conjecture, and the
obvious inequality κ+(X) ≥ κ+(Z).

Similar results and conjectures hold for smooth orbifold pairs (X,Δ) as
well (see [17], [14]). When Δ is reduced, one just has to consider Ω1

X(Log(Δ))
in place of Ω1

X .
Let us finally observe that the rate of growth of the spaces of sections of

the symmetric powers of the cotangent bundle is in general unrelated to the
‘Kodaira’ dimension, as shown by the smooth hypersurfaces of the projective
spaces (since their cotangent bundles are known to be non-pseudo-effective).

7.3 Specialness as Opposed to Base Orbifolds of
General Type

The following is due to F. Bogomolov:

Theorem 7.4 ( [4]). Let X be projective smooth, and L ⊂ Ωp
X a line bundle.

Then:

1. κ(X,L) ≤ p.
2. If κ(X,L) = p, there exists a fibration f : X ��� Zp such that L = f∗(KZ)

generically26 on X.

Line bundles as in 2) are called ‘Bogomolov sheaves’.

Remark 7.5.

1. Bogomolov sheaves are thus ‘maximally big’ line subsheaves of Ω•
X . And

X is special if Ω•
X does not contain such maximally big line subsheaves.

2. There are many examples of Bogomolov sheaves L = f∗(KZ) ⊂ Ωp
X ,

generically over Z, and such that κ(Z) = −∞. This is due to the multiple
fibres of f , encoded in the ‘orbifold base of f ’. Hence the geometric
characterisation of ‘specialness’ is given in 7.7.

26I.e.: on a nonempty Zariski open subset.
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Theorem 7.6. Let f : X → Zp = Z be a fibration.27Let L := f∗(KZ)
sat ⊂

Ωp
X be the saturation28 of f∗(KZ) in Ωp

X .
Then: κ(X,L) = κ(Z,KZ +Δf ).

29

Thus Δf encodes the difference between f∗(KZ) and its saturation:
κ(X, f∗(KZ)

sat)−κ(X, f∗(KZ)) = κ(Z,KZ+Δf )−κ(Z,KZ). This fails for
the ‘classical’ orbifold base of f , and is the main reason for the introduction
of this ‘non-classical’ notion.

We thus get a geometric characterisation of ‘specialness’:

Corollary 7.7. X is special if and only if, for any fibration f : X ��� Z,
the orbifold base of any of its ‘neat models’ is not of general type.

Of course, this implies that (but turns out to be much stronger than) the
non-existence of fibrations f : X ��� Z with Z of general type.

Example 7.8. Let us give the concrete meaning of the saturation in a simple
example: let f : S → C be a fibration of the surface S onto the curve C, with
an irreducible smooth fibre F = f−1(s) of multiplicity t > 1, thus given
in local analytic coordinates (x, y)on S by: f(x, y) = u := xt. Then Δf =
(1− 1

t ).{s}+ . . . near s in C.
Thus f∗(KC) = f∗(du) = t.xt−1.dx near s, while: f∗(KZ + Δf ) =

f∗
(

du

u(1− 1
t
)

)
= t.dx, which is indeed the saturation of f∗(du) in Ω1

S.

7.4 The Orbifold Version of the Cn,m Conjecture

Conjecture 7.9 (Conjecture Corb
n,m). Let f : X → Z be a fibration, with

generic fibre Xz. Then κ(X) ≥ κ(Xz) + κ(Z,Δf ).

Without Δf , this conjecture is due to S. Iitaka. More general versions30

exist. The special case where (Z,Δf ) is of general type is known:

Theorem 7.10 (Viehweg). In the situation of 7.9, if κ(Z,Δf ) = dim(Z),
we have: κ(X) = κ(Xz) + dim(Z).

27Recall that we sometimes indicate with a subscript the dimension of a complex
manifold, writing thus Xn, Zp. Here Z is thus p-dimensional.
28This is the largest subsheaf of Ωp

X containing f∗(KZ), generically equal to it.
29(Z,Δf ) is here the (non-classical) orbifold base of f on any suitable birational ‘neat
model’ of f .
30One can, for example, consider an orbifold pair (X,Δ) instead of X, and increase
accordingly the orbifold base divisor.
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This result is due to Viehweg when Δf = 0. The proof extends with some
adaptations to cover this more general case. The range of applicability is
considerably extended by the adjunction of the orbifold term.

Corollary 7.11. X is special if κ(X) = 0.

Proof. 0 = κ(X) = κ(Xz) + dim(Z) ≥ dim(Z) since κ(Xz) ≥ 0. �
This is one of the basic examples of special manifolds, generalising elliptic

curves.

8 The Core Map

8.1 A Splitting Criterion

We briefly explain that one can extend Theorem 6.6 to the orbifold category
(Figure 5).

Let C be a class of (smooth projective) orbifold pairs.31 We define the
class C⊥ of smooth orbifolds admitting no dominant fibration such that a
neat model of its orbifold base belongs to C.

ΔC

orbifold base C(X),ΔC of general type

X

C(X)

cX

special fibers

multiple
fibers

Fig. 5 The core map

31Also stable by birational equivalence (in a suitable sense, not defined here).
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If we assume that the class C possesses the properties E1, E2, then we
have a C-splitting theorem entirely similar to 6.6 with the same proof.

We shall apply this to the following 2 cases, already considered when
Δ = 0. For them, property E2 is elementary, proved as when Δ = 0.

1. C is the class of orbifold pairs of general type. Property E1 follows from
the orbifold version 6.3 of Viehweg’s Theorem 6.3. This leads to the ‘core
map’ described in Theorem 8.1 below.

2. C is the class of orbifold pairs with κ ≥ 0. Property E1 is conditional in
Corb

n,m. This gives the ‘κ-rational quotient’ of Proposition 8.7.

8.2 The Core Map

Theorem 8.1. For any X, there is a unique fibration cX : X → CX , called
the ‘core of X ′, such that:

1. Its general fibres are special.
2. Its ‘orbifold base’ (CX ,ΔcX ) is of general type.

Functoriality: any dominant g : Y ��� X induces cg : CY → CX with cX ◦g =
cg ◦ cY .

If X is defined over k, so is cX by its uniqueness.

The proof works by induction on dim(X), using Theorem 7.10, in a way
entirely similar to the proof of Theorem 6.6.

• We use the same notation cX : X → CX for both the core map and the
weak core map. From now on we shall only consider the ‘true’ core map
(of Theorem 8.1), this should thus not lead to any confusion.

Let us first note that the ‘true’ core map corrects the failure of its weak
version:

Corollary 8.2. If u : X ′ → X is étale finite, cu : CX′ → CX is generically
finite, (ramified, but orbifold-étale).

In particular: if X is special, so is X ′.

Indeed: we can assume that X ′ is Galois over X, by uniqueness of the core
map of X ′, it is defined by a Bogomolov subsheaf which is preserved by the
Galois group, and thus descends to X as a Bogomolov subsheaf, since X ′ is
étale over X.

Corollary 8.3. If X is special, it is weakly special.

Indeed: any finite étale cover X ′ of X is still special, and thus does not
fibre over any positive-dimensional manifold of general type.

Example 7.2.9 shows that for surfaces, these two properties are equivalent,
this is however no longer true in dimensions 3 or more (see §8.7).
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8.3 The Conjectures for Arbitrary Projective
Manifolds

We formulate here our main conjecture without using orbifold notions. Its
solution (if any) will however require the orbifold version in §8.6 below.

Conjecture 8.4.

1. If X is special, π1(X) is almost abelian.
2. Being special is preserved by deformations and specialisations of smooth

manifolds.
3. X is special if and only if it contains a dense entire curve.
4. Let cX : X → C(X) its core map. There exists a complex projective

subvariety W � CX such that any entire curve h : C → X has image
either contained in c−1

X (W ), or in some fibre of cX .
If X is defined over a number field k:

5. X(k) is potentially dense if and only if X is special.
6. Let cX : X → C(X) its core map. There exists a complex projective

subvariety W � CX such that, for any finite extension k′/k, cX(X(k′))∩
U , is finite, U := (CX \W ). The smallest such W ⊂ CX has to be defined
over k. Let U := X \W .

Moreover, there exists k′ such that for any k” ⊃ k′, X(k”) is Zariski dense
in each fibre of cX lying over cX(X(k”)) ∩ U .

8.4 The c = (j ◦ r)n Decomposition of the Core

The ‘orbifold version’ of the ‘decomposition’ (J ◦ r)n of the ‘weak core map’
mentioned in Remark 6.1 coincides with the core. We give a very succinct
description, here.

Theorem 8.5. Let cX : X → CX be the core map of a smooth connected
projective manifold of dimension n. Assume the orbifold version32 Corb

n,m of
conjecture Cn,m given in 7.9. Then cX = (j ◦r)n, where r, j are the fibrations
defined below.

Let (X,Δ) be a smooth orbifold pair.

• The orbifold Iitaka fibration j: This is just the Iitaka fibration of the
Q-line bundle (KX +Δ) on X if κ(X,KX +Δ) ≥ 0. It induces a fibration
j : (X,Δ) → (J,Δj,Δ) with dim(J) = κ(X,Δ) and κ(Xz,Δ|Xz

) = 0, if
Xz is the generic smooth fibre of j.

32One needs the version for an orbifold pair (X,Δ), not just for X.
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• The ‘κ-rational quotient’ r :

Definition 8.6. We say that κ+(X,Δ) = −∞ if some/any neat orbifold
base (Z,Δf,Δ) of any fibration f : (X,Δ) ��� Z has κ(Z,Δf,Δ) = −∞.

When Δ = 0, this is equivalent (under the ‘uniruledness conjecture’) to
X being rationally connected. We conjecture (see next subsection) that this
is still true for orbifolds (with the usual definition of rational connectedness,
replacing rational curves by ‘orbifold (or Δ)-rational curves’, as defined in
Definition 2.5). Similarly to 4.12, we have:

Proposition 8.7. Assume Corb
n,m as stated in 7.9. Any smooth (X,Δ) admits

a unique fibration r : (X,Δ) → (R,Δr,Δ) such that:

1. κ+(Xz,Δ|Xz
) = −∞ for the generic fibre Xz of r.

2. κ(R,Δr,Δ) ≥ 0.
r is called the ‘κ-rational quotient’ of (X,Δ).

Corollary 8.8. X is special if and only if it has a birational model which
is a tower of neat fibrations with orbifold fibres having either κ+ = −∞, or
κ = 0.

Notice that ‘orbifold divisors’ will in general appear when encoding
multiple fibres, as shown by Example 6.15.

Remark 8.9. It is sometimes said that the ‘building blocks’ for the con-
struction of arbitrary manifolds are (terminal or canonical) varieties with
canonical bundles either anti-ample (i.e.: Fano), or numerically trivial, or
ample. The birational version being: rationally connected, κ = 0, or of general
type, respectively. We show here that these ‘building blocks’ need to be chosen
in the larger category of orbifold pairs.

8.5 Rationally Connected Orbifolds and κ+ = −∞

Definition 8.10. Let (X,Δ) be a smooth orbifold pair, with X complex
projective. We say that (X,Δ) is rationally connected if any two generic
points of X are contained in an orbifold rational curve33 h : P1 → (X,Δ).

Remark 8.11. One may expect that, just as when Δ = 0, the above
properties are equivalent to the ‘chain-connected’ version, and also to the fact
that any finite subset of X \ Δ is contained in a single irreducible orbifold
rational curve.

33As defined in 2.5.
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Conjecture 8.12. Let (X,Δ) be a smooth orbifold pair with X projective.
The following are equivalent:

1. (X,Δ) is rationally connected.
2. κ+(X,Δ) = −∞.
3. h0(X, [Symm(∧p)](Ω1(X,Δ))) = 0, ∀m > 0, p > 0.

We refer to [14], §2.7, for the definition of the integral parts of orbifold
tensors [Symm(∧p)](Ω1(X,Δ)) appearing in 8.12.3, and more details on this
notion. This conjecture is solved (see [33]) in dimension 2 when Δ is reduced
(i.e.: with multiplicities infinite).

8.6 The Orbifold Version of the Conjectures

Conjecture 8.13. Let (X,Δ) be a smooth projective orbifold pair.

1. Assume first that (X,Δ) is of general type, then, there exists a Zariski
closed subset W � X such that:

1. H. Any orbifold entire curve34 h : C → (X,Δ) has image contained in W .
1. A. If (X,Δ) is defined over k, for any model over k′, S′ ⊂ Spec(Ok′), the

set of (S′, k′) integral points of (X,Δ) contained in X \W is finite.
2. Assume that either κ(X,Δ) = 0 or that κ+(X,Δ) = −∞. Then:
2. H. There exists an orbifold entire curve h : C → (X,Δ) with dense image

in X.
2. A. There exists k′, S′ such that the (S′, k′) integral points of (X,Δ) are

Zariski dense in X

The decomposition c = (j◦r)n of the core and conjectures 8.13 (essentially)
imply the main conjectures 8.4. Here ‘essentially’ means that two further
properties are still needed: the (orbifold) birational invariance of Mordellicity
and potential density, together with the fact that if the generic orbifold fibres
and the orbifold base of a fibration f : (X,Δ) → (Z,Δf,Δ) are potentially
dense, then so is (X,Δ), when everything is defined over Q.

8.7 Examples of Weakly Special, But Non-special
Threefolds

From dimension 3 on, the two notions differ, due to the existence of smooth
and simply connected ‘orbifold surfaces’ of general type.

34See Definition 2.5 and subsequent lines.
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Lemma 8.14. Let F : X3 → S2 be an elliptic fibration from a simply
connected smooth projective threefold X onto a smooth surface S with κ(S) ≤
1.

Assume that all fibres of F have dimension 1, and that the orbifold base
(S,ΔF ) of f is smooth of general type (i.e.: κ(S,KS +ΔF ) = 2). Then:

1. X is weakly special, but not special: its ‘core map’ is F .
2. There exists such fibrations defined over Q.

Proof. Let us prove the first claim: since κ(S,KS+Δf ) = 2, X is not special,
and F is the core map of X. In order to show that X is weakly special, it
is sufficient (because X is simply connected) to see that there is no fibration
g : X ��� Z with Z of general type, and p := dim(Z) > 0. Indeed since g
had then to factorise through F , we had either p = 2 and Z = S, or p = 1,
and Z simply connected hence Z = P

1. Contradiction since both S and P
1

are not of general type.
We now prove the existence of such X ′s as in 8.14. The following

construction follows and extends slightly the one given in [8]. The recipe
to construct X needs two ‘ingredients’:

1. A projective elliptic surface f : T → P
1 with one simply connected fibre

T1 := f−1(1), and a multiple smooth fibre T0 = f−1(0) of multiplicity
m > 1. One can obtain such a surface from a Halphen pencil,35 which
allows to get examples defined over Q (Special cases of Halphen pencils of
index m > 0 are obtained by blowing up 9 points of a smooth cubic C in
Weierstrass form in P

2, whose sum is m-torsion on C; see [20] for details).
2. A surface g : S → P

1 with κ(S) ≤ 1 and smooth fibre S0 = g−1(0) such
that π1(S−S0) = {1}. This can be constructed from any simply connected
surface S′ with κ(S′) ≤ 1, by choosing on S′ a base-point free ample linear
system defined by a smooth ample divisor D′ ⊂ S′, and a second generic
member D′′ of this linear system which meets transversally D′ at d :=
(D′)2 distinct points, and such that, moreover, κ(S′,K ′

S+(1− 1
m ).D′) = 2.

For example, S′ = P2, and D′, D′′ two generic quartic curves satisfy these
conditions.

One then blows up all points of D′ ∩ D′′ to obtain S, and g : S → P
1 is

the map defined by the pencil generated by D′, D′′. One takes for D = S0

the strict transform of D′ in S. The simple-connectedness of (S − D) is a
consequence of a version of Lefschetz theorem.

We now choose X3 := S ×P1 T , and F : X → S the first projection.
We show that the orbifold base (S,DF ) of F : X → S is of general type.

Indeed: F ∗(D) = m.F−1(D), since D = g−1(0), and f−1(0) = m.T0.

35The use of Halphen pencils has been suggested to me by I. Dolgachev. It permits
to avoid the transcendental Logarithmic Transformations of Kodaira.
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Thus DF ≥ (1 − 1
m ).D, and an easy computation shows that κ(S, (1 −

1
m ).D) = κ(S′, (1− 1

m ).D′) = 2, since KS = b∗(KS′)+E, while D = b∗(D′)−
E, if b : S → S′ is the blow-up and E its exceptional divisor.

And so: KS + (1− 1
m ).D = b∗(KS′ + (1− 1

m ).D′) + 1
m .E �

Remark 8.15. The Conjecture 5.3 of [30], conjecture 1.2, claims that any
X such as in 8.14 is potentially dense, while the Conjecture 8.4.(4) above
claims it is not. Vojta’s conjectural ‘arithmetic second main theorem’ implies
also that such an X is not potentially dense (using the core map). The
hyperbolic analogue claims that there are no Zariski dense entire curves on
such an X, and this is proved for some examples in [16].

9 Entire Curves on Special Manifolds

Recall that an entire curve in a complex manifold M is just a non-constant
holomorphic map h : C → M . Algebraic entire curves are simply rational
curves, and entire curves are thus seen as transcendental analogues of rational
curves. The following observations indicate that they can serve as testing
ground for arithmetic geometry.

9.1 Entire Curves and Sequences of k-Rational
Points

Let X be complex projective smooth, defined over a number field k.
In [49], an analogy and dictionary between entire curves and infinite

sequences in X(k) are described. Assuming the Conjecture 8.4, this becomes
an equivalence.

Proposition 9.1. Assume Conjecture 8.4. The following properties are then
equivalent:

1. There is an entire curve h : C → X.
2. X(k′) is infinite for some finite extension k′/k.
3. X contains a positive-dimensional special subvariety.

Proof. Assume that X(k′) is infinite. Let Z be the Zariski closure of X(k′).
Since Z(k′) is Zariski dense in Z (or in any of its resolutions), Z is special,
and thus admits a Zariski dense entire curve, and X has thus also an entire
curve.

Assume conversely that there is an entire curve h : C → X. Let Z be
the Zariski closure of h(C), and Z ′ → Z a resolution of singularities. Then
h lifts to a Zariski dense entire curve in Z ′. If Z, and so Z ′ is defined over
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k, Z ′ is thus special, and Z ′(k′) is Zariski dense in Z ′, and so infinite (since
dim(Z) > 0). Thus so is X(k′). In the general case, let Y be a resolution of
singularities of the smallest closed irreducible projective subset of X defined
over k and containing Z. Assume Y is not special, and let c : Y → C be its
core map (defined over k). Then c ◦ h(C) is contained in a strict algebraic
subset W ⊂ C defined over k. Contradiction. Thus Y is special, and Y (k′) is
Zariski dense in Y , hence infinite.

The equivalence with 3 has been shown in the course of the proof. �
This motivates the study of the relationship between the distribution of

entire curves on projective (and more generally compact Kähler) manifolds
X and their core map.

9.2 Specialness and Entire Curves

Some variants of Conjecture 8.4 are:

Conjecture 9.2. The following are equivalent, for X compact Kähler
smooth:

1. X is special.
2. The Kobayashi pseudodistance36 dX of X vanishes identically.
2’. The infinitesimal Kobayashi pseudometric d∗X vanishes on TX.
3. Any 2 points of X are joined by an entire curve.
3’. Any 2 points of X are joined by a chain of entire curves.
4. Any countable subset of X is contained in some entire curve.
5. There exists a Zariski dense entire curve on X.
5’. There exists a metrically dense entire curve on X.

Remark 9.3.

1. Special manifolds are seen as generalisations of rationally connected
manifolds, rational curves replaced by entire curves.

2. Special manifold are not conjectured to be all Cn-dominable (i.e.: to admit
a non-degenerate meromorphic map H : Cn ��� X). See §9.6.

We shall mention some partial results, extracted from [19]. Although much
efforts have been devoted to the Green–Griffiths–Lang conjecture (asserting
that there are no Zariski dense entire curves if X is of general type), the
results below seem to be the first ones in the opposite direction: produce

36Defined as the largest pseudodistance δ on X such that h∗(δ) ≤ dD, for any
holomorphic map h : D → X, where dD is the Poincaré distance on the unit disk. See
[34] for this notion and its infinitesimal version.
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dense entire curves on X if it is special, beyond the obvious cases where X
is either (uni)rational or Abelian/Kummer.

9.3 Special Surfaces

From surface classification, approximability of K3 surfaces by Kummer ones,
a classical result by Mori–Mikai, and [10], one gets:

Proposition 9.4 ( [19]). Let S be a special compact Kähler surface.
Then:

1. dS vanishes on S.
2. S is C

2-dominable unless possibly when S is a K3-surface which is non-
elliptic and non-Kummer.

3. If S is projective, any 2 points are connected by a chain of 2 elliptic curves.
4. If S is not projective, it contains a Zariski dense entire curve.

The interesting remaining cases are thus K3-surfaces either of algebraic
dimension zero or projective ‘general’. It is far from clear whether the later
ones should be expected to be C

2-dominable.

9.4 Rationally Connected Manifolds

Theorem 9.5 ( [19]). Let X be projective, smooth, rationally connected. Let
A ⊂ X be algebraic of codimension at least 2, and let N ⊂ X be a countable
subset of X \A. There exists h : C → X \A holomorphic such that N ⊂ h(C).

A simplified version of the main step of the proof is the following:

Lemma 9.6. Let f : P1 → X be a very free rational curve going through
x1, . . . , xm, let R > 0 and ε > 0. If xm+1 is given, there exists a very
free rational curve g : P1 → X going through x1, . . . , xm+1 and such that
d(f(z), g(z)) ≤ ε if |z| ≤ R, if d is any Hermitian metric on X.

The proof rests on the ‘comb-smoothing’ technique of [35]. The lemma
consists in joining xn+1 := h(1) and f(∞) := h(0) by a very free rational
curve h : P1 → X, and approximating sufficiently closely the ‘comb’ f(P1) ∪
h(P1) by a family of rational curves gε which go through x1, . . . , xn+1.

The rest of the proof consists in constructing inductively on m a sequence
of very free rational curves fn going through the m-first points x1, . . . , xn of
the set N , in such a way that they converge uniformly on the disks of radii
m.
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Stronger versions are proved in [19], to which we refer. For example, the
following analog of the ‘Weak Approximation Property’37on rationally con-
nected manifolds can be immediately derived from the proof of Theorem 9.5,
the fact that blown up rationally connected manifolds are still rationally
connected, and the Weierstrass products of entire functions:

Corollary 9.7. Let X be rationally connected smooth. Let M ⊂ X be a
countable set, and for each m ∈ M , let a jet jm of finite order km of
holomorphic function from C to X at m. There then exists an entire function
h : C → X going through each m ∈ M , and whose km-jet at m is jm.

The following ‘orbifold version’ follows from Theorem 9.5:

Example 9.8. Let S ⊂ P3 be a smooth sextic surface. There exists a dense
entire curve h : C → P3 which is tangent to S at each intersection point
of h(C) with S. Indeed: the double cover π : X → P3 ramified along S is
smooth Fano, hence rationally connected. Any (dense) entire curve h : C → X
projects to P3 tangentially along S.

We do not show the preceding statement directly on P3 without applying
Theorem 9.5 on the double cover, by lack of an orbifold comb-smoothing
technique on the Fano Orbifold Pair (P3, S6). Notice that it is unknown
whether X is unirational or not.

The following singular version can be obtained, using the MMP for
surfaces, [50], and applies to prove Proposition 9.11 below.

Theorem 9.9 ( [19]). Let S be a normal projective surface with only
quotient singularities. Assume there exists on S a non-zero Q-effective divisor
Δ such that (S,Δ) is Log-terminal and −KS = Δ. If F ⊂ S is a finite set
containing the singular locus of S, then S \ F contains a dense entire curve.

9.5 Manifolds with c1 = 0

The second fundamental class of special manifolds are those with κ = 0, in
particular those with c1 = 0. They decompose after an étale cover as products
with factors belonging to three subclasses: tori, hyperkähler and Calabi–Yau.

• Complex tori are easy to deal with: they admit dense affine entire curves,
for Abelian varieties, one can do more: construct entire curves (no longer
affine) going through any given countable set.

37This analogy was pointed to us by P. Corvaja, who also noticed that in arithmetic
geometry, the WAP implies the Hilbert Property, an implication also implicit in the
proof of Theorem 10.3.
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By S.T. Yau’s solution of Calabi’s conjecture, a compact Kähler manifold
with c1 = c2 = 0 is covered by a complex compact torus, and thus satisfies
all statements of Conjecture 9.2.

• Hyperkähler manifolds. If X is compact Kähler and has no complex
analytic compact subvariety (except points and itself), then any entire
curve on X is obviously Zariski dense. Since such manifolds have algebraic
dimension zero, they are special, and the existence of a Zariski dense entire
curve should follow from Conjecture 9.2.

• Examples of such manifolds are:

1. General deformations of Hilbm(K3), for any m > 0 (by [47], [48]).
These contain at least an entire curve (by [47]), which is thus Zariski
dense.

2. All compact Kähler threefolds without subvariety (because they are
simple compact tori, by [15]), and thus contain dense entire curves.

Remark 9.10.

1. Conversely, we conjecture that any compact Kähler manifold without
subvariety is either Hyperkähler or simple tori.

2. It was interesting to get some information about the ‘size’ of the entire
curves constructed in the general deformations of Hilbm(K3)′s (as mea-
sured, for example, by the Hausdorff dimension of their topological
closures).

3. A much more difficult case is the one of compact Kähler manifolds without
subvariety through their general point. These have in particular algebraic
dimension zero. And we conjecture that they are either covered by a torus,
or have a holomorphic 2-form which is symplectic generically. The solution
of this conjecture in dimension 3 implies that any compact Kähler 3-fold
with algebraic dimension zero contains a Zariski dense entire curve. See
[19].

• Calabi–Yau manifolds are much harder to deal with.

A class for which Conjecture 9.2 can be solved is:

Proposition 9.11. Any elliptic Calabi–Yau Threefold contains dense entire
curves.

The proof combines Theorem 9.9, [29], [39] and [10] when c2 �= 0, and
follows from Yau’s solution of Calabi’s conjecture when c2 = 0.
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9.6 Remarks on C
n-dominability and Uniform

Rationality

We do not expect the Cn-dominability of special n-dimensional manifolds for
the following reasons:

1. The algebraic version of C
n-dominability is unirationality. And it is

expected that most rationally connected manifolds should be non-
unirational from dimension 3 on, starting with the double covers of
P3 branched over a smooth sextic, or standard conic bundles over P2 with
smooth discriminant of large degree.

2. Non-elliptic and non-Kummer K3 surfaces are covered by countably many
different families of elliptic curves. However, these families might be (and
are presumably) parametrised by hyperbolic curves.

The following questions concern the relations between unirationality and
C

n-dominability for rationally connected manifolds:

Question 9.12.

1. Are there C
n-dominable rationally connected manifolds which are not

unirational?
2. Special case: X is a smooth model of X0 = A/G, where A is an abelian

variety, and G a finite group acting holomorphically on A. If X is
rationally connected, is it unirational?

The answer is positive in the few cases where it is known. Note also
that these examples provide an interesting testing ground for the problem
of ‘uniform rationality’. Recall (see [5])

Definition 9.13. A smooth rational n-fold X is said to be ‘uniformly
rational’ if any point of X has a Zariski open neighbourhood algebraically
isomorphic to a Zariski open set of Cn.

When rational, the smooth models of quotients A/G, obtained by blowing
up A at the points of non-trivial isotropy, may fail to be uniformly rational
at the points of some of the exceptional divisors. For example:

Question 9.14. Let X be the Ueno threefold, smooth model of E3/Z4

obtained by blowing up each point of E3 of non-trivial isotropy, where
E := C/Z[i], i a primitive 4-th root of unity, is the Gauss elliptic curve, and
Z4 acts by multiplication by ik simultaneously on each factor. This manifold
is unirational [21], and even rational [22]. Is it uniformly rational? Note that
no explicit rational parametrisation of X is known. A similar question can be
raised for the similar example F 3/Z6, where F := C/Z[j], j a primitive 6-th
root of unity, for which an explicit parametrisation is known.
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10 The Nevanlinna Version of the Hilbert Property

10.1 The Hilbert Property and Its Nevanlinna
Version

Definition 10.1 ( [23, §2.2]). Let X/k be a (smooth) projective variety
defined over a number field k. Then X is said to have the ‘Weak Hilbert
Property’ over k (WHP for short)38 if (X(k) \ ∪jYj(k)) is Zariski dense in
X, for any finite set of covers πj : Yj → X defined over k, each ramified over
a non-empty divisor Dj of X.

Note that X(k) being Zariski dense, X has to be special, and its
fundamental group almost abelian, by Conjecture 8.4.

In [23], Corvaja–Zannier propose an analytic version of the WHP in the
following form [23, §2.4]:

Question-Conjecture 10.1 LetX be a special compact Kähler39 manifold.
For any finite cover π : Y → X ramified over a non-empty divisor, with Y
irreducible, there exists a dense entire curve h : C → X which does not lift to
an entire curve h′ : C → Y (i.e.: such that π ◦ h′ = h). We write NHP (X) if
X possesses this property, and say that X has NHP (for Nevanlinna–Hilbert
Property).

Notice that these NHP properties are preserved by finite étale covers and
smooth blow-ups.

A simple tool in checking the non-liftability is the following:

Proposition 10.2 ( [19]). Let h : C → X be an entire curve and H an
hypersurface of X such that there exists a regular point a ∈ H in which h(C)
and H intersect with order of contact t.

Let π : X1 → X be a finite Galois covering with branch locus containing
H, such that π ramifies at order s ≥ 2 over H at a. Then h cannot be lifted
to an entire curve h̃ : C → X1 if t does not divide s.

Thus, if h(C) meets H transversally at a, h does not lift to Y .

Proof. If π is Galois, it ramifies at order s at any point of Y over a ∈ H.
Since h(C) intersect at order s at a, if it lifted to Y , its order of contact with
H were a multiple of s. �

38The classical Hilbert property does not require the covers Yj → X to be ramified.
By the Chevalley–Weil Theorem X is then algebraically simply connected.
39In [23], X is supposed to be complex projective and to contain a Zariski dense
entire curve. We extend their expectation to the compact Kähler case, and replace
the dense entire curve by the specialness of X.
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10.2 Rationally Connected and Abelian Manifolds

We have the following stronger form for rationally connected manifolds, in
which a fixed entire curve h does not lift to any Galois40 ramified cover
π : Y → X:

Theorem 10.3 ( [19]). Let X be a rationally connected complex projective
manifold or a complex compact torus.

Then there exists an entire curve f : C → X such that:

1. The image f(C) is dense.
2. f cannot be lifted to any ramified Galois covering τ : X ′ → X.

Proof. Combine (stronger forms proved in [19] of) Theorem 9.5 with
Proposition 10.2. The Abelian case is obtained similarly. �

10.3 Special Surfaces

Theorem 10.4 ( [19]). Let f : S → B an elliptic surface with π1(S) is
almost abelian (or equivalently: S is special). For any irreducible cover π :
Y → X ramifying over a non-empty divisor R ⊂ S, there exists a dense
entire curve h : C → S which does not lift to Y .

Proof. Assume that R ⊂ S meets a regular point of some reduced component
of some fibre of f . From [10], one gets a submersive map H : C2 → S whose
image contains all smooth fibres of f , and the regular part of the component
of the fibre of f which meets R. This produces an entire curve h : C → C

2

which meets transversally H∗(R). We refer to [19] for the reduction to this
particular case. �
Remark 10.5. The above result together with the simpler case of special
surfaces S with κ(S) = −∞ solves the Conjecture 10.1 for special surfaces
except for K3 surfaces which are neither Kummer nor elliptic.

11 The Kobayashi Pseudodistance

We explain here how to get from the core map a conjectural (qualitative)
description of the Kobayashi pseudodistance of any complex projective
(or compact Kähler) manifold X, using the notion of orbifold Kobayashi
pseudodistance.

40The Galois assumption can be removed using more delicate arguments.
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• Recall first that if M is a complex manifold, its Kobayashi pseudodistance
dM is the largest pseudodistance δ on M such that h∗(δ) ≤ pD, for any
holomorphic map h : D → M , where pD is the Poincaré metric on the unit
disc D ⊂ C. It enjoys the following properties:

1. dD = pD.
2. It is distance decreasing: f∗(dN ) ≤ dM , ∀f : M → N holomorphic.
3. It is preserved by Aut(M).
4. dC ≡ 0.
5. It is continuous wrt the metric topology on any M .
6. dM |h(C) ≡ 0 for h : C → M holomorphic, E the metric closure.
7. dM ≡ 0 if M = P

n, or M = a complex torus.
8. If M is compact, dM is a distance iff M does not contain any entire

curve (Brody Theorem).

We thus see that there is a close relationship between dM and the distribution
of entire curves on M . In particular, dM ≡ 0 if there exists a dense entire
curve on M , or if any two points in a dense subset of M can be joined by a
connected chain of entire curves. The reverse implications are however widely
open, even for K3 surfaces M , for which dM is known to vanish identically.

Entirely similarly to the case when Δ = 0, we define the Kobayashi
pseudodistance in the orbifold setting. Let thus (X,Δ) be a smooth orbifold
pair with X compact Kähler and Δ :=

∑
j(1 − 1

mj
).Dj an orbifold divisor

with SNC support D := (∪jDj).
Recall that Hol(D, (X,Δ)) (resp. Hol∗(D, (X,Δ)) denotes the set of

orbifold (resp. classical orbifold) morphisms from the unit disk D to (X,Δ)
as defined in 2.5.

Definition 11.1. The Kobayashi (resp. The Classical Kobayashi) Pseu-
dodistance d(X,Δ) (resp. d∗(X,Δ)) of the orbifold (X,Δ) is the largest pseu-

dodistance δ on X such that δ ≤ h∗(dD), ∀h ∈ Hol(D, (X,Δ) (resp. ∀h ∈
Hol∗(D, (X,Δ)). We thus have: d(X,Δ) ≤ d∗(X,Δ), but have equality if Δ = 0

or if Δ = Supp(Δ) (projective and quasi-projective cases, in which cases we
recover dX and dX\D, respectively). For orbifold curves, these pseudodistances
agree, but no longer for orbifold surfaces in general (see [18], Theorem 2, and
[40], Theorem 3.17).

We shall not use the ‘classical’ version here (except in the proof of 11.8,
for X = D. The example given in [40] however suggests the following:

Question 11.2.

1. Is there a continuous function c : X × X → [0, 1], positive outside of
A × A, for some Zariski closed subset A � X, such that d(X,Δ)(x, y) =
c(x, y).d∗(X,Δ)(x, y), ∀(x, y) ∈ X ×X?

2. Assume that (X,Δ) is smooth. If A ⊂ X is Zariski closed of codimension
at least 2 in X, is d(X,Δ)|X∗ = d(X∗,Δ∗), where X∗ := X \ A, and Δ∗ :=
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Δ ∩ X∗? When Δ = 0 and when Δ = Supp(Δ), this is true by [34],
Theorem 2.3.19.

Recall the general notion of orbifold morphism between orbifold pairs:

Definition 11.3. Let (X,Δ) and (Y,ΔY ) be orbifold pairs, Y smooth (or
Q-factorial) and h : X → Y be a holomorphic map such that h(X) is not
contained in Supp(ΔY ). Then h : (X,Δ) → (Y,ΔY ) is an orbifold morphism
if, for each irreducible divisor F ⊂ Y , and each irreducible divisor E ⊂ X
such that h(E) ⊂ F , one has: mΔ(E) ≥ tE,F .mΔY

(F ), where: mDelta(E)
is the multiplicity of E in Δ (and similarly for mΔY

(F ), while tE,F is the
scheme-theoretic multiplicity of E in h∗(F ) (i.e.: h∗(F ) = tE,F .E+R, where
r does not contain E in its support).

Clearly, orbifold morphisms can be composed. We have the following
obvious functoriality property: h∗(Hol(D, (X,Δ)) ⊂ Hol(D, (Y,ΔY )) if h is
an orbifold morphism, and so also the usual distance decreasing property:
h∗(d(Y,ΔY )) ≤ d(X,Δ).

We shall need the following birational invariance property also:

Proposition 11.4. Let X be smooth, and A ⊂ X a Zariski closed subset
of codimension at least 2. Let X∗ := (X \ A), and let μ : X ′ → X be a
bimeromorphic holomorphic map which is isomorphic over X∗. Let E be the
exceptional divisor of μ, and let Δ′ be an orbifold divisor on X ′ supported
on E. Then d(X′,Δ′) = μ∗(dX) (whatever large and possibly infinite are the
multiplicities on the components of Δ′).

Proof. From [34], Theorem 2.3.19, we know that dX∗ = dX|X∗ . We identify
X∗ with its inverse image in X ′, and extend by continuity dX∗ to X ′ and X,
with the same (abusive) notation. On the other hand, we also have: dX′ ≤
d(X′,Δ′) ≤ dX∗ on X ′. This implies the claim, since μ∗(dX∗) = dX∗ (where
the LHS is on X, and the RHS on X ′). �
Theorem 11.5. Let f : X → Z be a fibration, with X a connected complex
compact manifold. Let f ′ : X ′ → Z ′ be a bimeromorphic ‘neat model’ of f ,
where μ : X ′ → X is bimeromorphic. Let (Z ′,Δ′) be the (smooth) orbifold
base of f ′. Then:

1. f∗(d(Z′,Δ′)) ≤ dX′ = μ∗(dX).
2. f∗(d(Z′,Δ′)) = dX′ if dXz

≡ 0, for a dense set of fibres Xz of f .

Corollary 11.6. Let c : X → CX be the core map of some compact Kähler
manifold X. Then: dX = c∗(d(CX ,Δc)).

Assume Conjecture 8.4, and Conjecture 11.7 below. Then: d(CX ,Δc) is a
metric on a non-empty Zariski open subset CX \W of CX .

The following is simply an orbifold version of the strong Lang’s generic
hyperbolicity conjecture for manifolds of general type.
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Conjecture 11.7. Let (Z,Δ) be a smooth orbifold pair of general type.
There exists a strict Zariski closed subset W � Z such that d(Z,Δ) is a metric
on Z \W . Moreover, the smallest such W is defined over k if so is Z.

Proof (of Theorem 11.5). Since f ′ : X ′ → (Z ′,Δ′) is a neat model of f , we
have the following properties: there exist two Zariski closed subsets B ⊂ Z ′

and A ⊂ X, A contained in the indeterminacy locus of μ−1, such that:
μ((f ′)−1(B)) ⊂ A, and f ′ : X∗ := X ′ \ (f ′)−1(B) → (Z ′,Δ′) has equidi-
mensional fibres and is an orbifold morphism. If we equip the components
of the exceptional divisor E of μ with sufficiently large multiplicities, we get
an orbifold divisor ΔX′ on X ′ such that all of f ′ : (X ′,ΔX′) → (Z ′,Δ′)
becomes an orbifold morphism. We thus get, from the definition of orbifold
Kobayashi pseudometrics, the inequality: (f ′)∗(d(Z∗,Δ∗)) ≤ dX∗ . We can thus
conclude from the continuity of these pseudometrics, and Proposition 11.4
that (f ′)∗(dZ′,Δ′)) ≤ dX∗ = dX′ . �

Let us now prove the reverse inequality when the fibres all have a vanishing
Kobayashi pseudometric (which is the case if a dense subset of them have
this property, by the continuity of the Kobayashi pseudometric). We may, and
shall, assume here that X ′ = X and f ′ = f , we then write (Z ′,Δ′) = (Z,Δ)
to simplify notations. Notice that, due to Proposition 11.4 and the preceding
argument, it will be sufficient to show that (f ′)∗(d(Z∗,Δ∗)) ≤ dX∗ .

Proposition 11.8. Let g : M → D be a proper fibration from a complex
manifold to the unit disk. Assume that dMz

≡ 0 for all fibres of g, and that
Δg is supported on a finite set of D. Then dM = g∗(dD,Δg

).

Let us first show that the inequality 2 of Theorem 11.5 follows from
Proposition 11.8.

Let hi, i = 0, . . . , N, ai, bi be a Kobayashi chain in X∗ joining two points
a, b ∈ X, that is: a sequence of holomorphic disks hi : D → X, together with
points ai, bi ∈ D such that h0(a0) = a, hN (bN ) = b, and hi(bi) = hi+1(ai+1)
for i = 0, . . . , (N − 1). From the choice of A,B,X∗, Z∗, we deduce that
gi := f∗(hi) := f ◦ hi ∈ Hol(D, (Z∗,Δ∗). From Proposition 11.8 we deduce
that the Kobayashi lengths of the chains {hi, ai, bi} and {gi, ai, bi}, given
by
∑

i dX(hi(ai), hi(bi)) and
∑

i d(Z∗,Δ∗)(gi(ai), gi(bi)) coincide. Taking the
infimum (on either side) for given a, b ∈ X (or a′, b′ ∈ Z∗) gives the claimed
equality.

We now prove Proposition 11.8. It will be the consequence of the following
three lemmas:

Lemma 11.9. Let g : M → N be a surjective holomorphic map with
connected fibres between two connected complex manifolds. Assume that g
has everywhere local sections and that the fibres of g all have zero Kobayashi
pseudometric. Then dM = g∗(dN ).
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Proof (of Theorem 11.5). The Kobayashi lengths on M of any arc joining
a, b in M and of its image by g on N coincide, using local sections and the
vanishing of d along the fibres of g. �
Lemma 11.10. If Δ :=

∑
i(1 − 1

mi
).{ai} is a finitely supported orbifold

divisor on D, there is a finite unfolding u : C → D from a complex smooth
curve C which ramifies at order mi over each point lying over ai, this for any
i, and unramified over the complement of the a′is.

Proof (of Theorem 11.5). The fundamental group of the complement D
∗ of

the a′is is a free group FN on N generators generated by small loops γi
winding once around ai, for each i = 1, . . . , N , if N is the cardinality of
the a′is. There is thus a natural surjective group morphism of FN onto
⊕iZmi

which induces a finite Galois cover C∗ → D
∗ which can be partially

compactified over the a′is so as to give the claimed unfolding. �
The Kobayashi pseudodistance d(D,Δu) is obtained by integrating the

Kobayashi–Royden infinitesimal pseudometric dR(D,Δu)
, and similarly for

d∗(D,Δu)
and d∗,R(D,Δu)

, which are computed explicitly in [40] . By [40], Theorems

3.9, 3.13, we have: d∗,R(D,Δu)
= dR(D,Δu)

, and dRC = u∗(d∗,R(D,Δu)
).

Let gC : MC → C be the (desingularised) base change of g : M → D. It
has everywhere local sections (by the definition of the (non-classical) orbifold
base). We thus have: dRMC

= g∗C(d
R
C).

Let v : MC → M be the natural projection; we thus have:

v∗(dRM ) ≤ dRMC
= g∗(dRC) = g∗(u∗(dR(D,Δu

)) = v∗(f∗(dR(D,Δu
)).

Thus: dRM = f∗(dR(D,Δu)
), and also the claim: dM = f∗(d(D,Δu)).
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The Lang–Vojta Conjectures on
Projective Pseudo-Hyperbolic
Varieties

Ariyan Javanpeykar

2010 Mathematics Subject Classification 14G99 (11G35, 14G05,
32Q45)

1 Introduction

These notes grew out of a mini-course given from May 13th to May 17th at
UQÀM in Montréal during a workshop on Diophantine Approximation and
Value Distribution Theory.

1.1 What Is in These Notes?

We start with an overview of Lang–Vojta’s conjectures on pseudo-hyperbolic
projective varieties. These conjectures relate various different notions of
hyperbolicity. We start with Brody hyperbolicity and discuss conjecturally
related notions of hyperbolicity in arithmetic geometry and algebraic geom-
etry in subsequent sections. We slowly work our way towards the most
general version of Lang–Vojta’s conjectures and provide a summary of all
the conjectures in Section 12.

After having explained the main conjectures with the case of curves and
closed subvarieties of abelian varieties as our guiding principle, we collect
recent advances on Lang–Vojta’s conjectures and present these in a unified
manner. These results are concerned with endomorphisms of hyperbolic
varieties, moduli spaces of maps into a hyperbolic variety, and also the
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behaviour of hyperbolicity in families of varieties. The results presented in
these sections are proven in [15, 49, 50, 55, 56].

We also present results on the Shafarevich conjecture for smooth hyper-
surfaces obtained in joint work with Daniel Litt [52]. These are motivated
by Lawrence–Venkatesh’s recent breakthrough on the non-density of integral
points on the moduli space of hypersurfaces [63], and are in accordance with
Lang–Vojta’s conjecture for affine varieties. Our results in this section are
proven using methods from Hodge theory, and are loosely related to Bakker–
Tsimerman’s chapter in this book [12].

In the final section we sketch a proof of the fact that being groupless
is a Zariski-countable open condition, and thus in particular stable under
generization. To prove this, we follow [55] and introduce a non-archimedean
notion of hyperbolicity. We then state a non-archimedean analogue of the
Lang–Vojta conjectures which we prove under suitable assumptions. These
results suffice to prove that grouplessness is stable under generization.

1.2 Anything New in These Notes?

The main contribution of these notes is the systematic presentation and
comparison between different notions of hyperbolicity, and their “pseud-
ofications”. As it is intended to be a broad-audience introduction to the
Lang–Vojta conjectures, it contains all definitions and well-known relations
between these. Also, Lang–Vojta’s original conjectures are often only stated
for varieties over Q, and we propose natural extensions of their conjectures
to varieties over arbitrary algebraically closed fields of characteristic zero.
We also define for each notion appearing in the conjecture the relevant
“exceptional locus” (which Lang only does for some notions of hyperbolicity
in [62]).

The final version of Lang–Vojta’s conjecture as stated in Section 12 does
not appear anywhere in the literature explicitly. Furthermore, the section
on groupless varieties (Section 4) contains simple proofs that do not appear
explicitly elsewhere. Also, we have included a thorough discussion of the a
priori difference between being arithmetically hyperbolic and Mordellic for a
projective variety in Section 7. This difference is not addressed anywhere else
in the literature.

1.3 Rational Points over Function Fields

We have not included any discussion of rational points on projective
varieties over function fields of smooth connected curves over a field k,
and unfortunately ignore the relation to Lang–Vojta’s conjecture throughout
these notes.
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1.4 Other Relevant Literature

Lang stated his conjectures in [62]; see also [23, Conjecture XV.4.3] and [1,
§0.3]. In [85, Conj. 4.3] Vojta extended this conjecture to quasi-projective
varieties. In [62] Lang “pseudofied” the notion of Brody hyperbolicity. Here
he was inspired by Kiernan–Kobayashi’s extension of the notion of Kobayashi
hyperbolicity introduced in [58].

There are several beautiful surveys of the Green–Griffiths and Lang–Vojta
conjectures. We mention [24–26, 31, 38, 86].

The first striking consequence of Lang–Vojta’s conjecture was obtained
by Caporaso–Harris–Mazur [19]. Their results were further investigated by
Abramovich, Ascher–Turchet, Hassett, and Voloch; see [1–4, 9, 42].

Campana’s conjectures provide a complement to Lang–Vojta’s conjectures,
and first appeared in [17, 18]; see also Campana’s chapter in this book [16].
In a nutshell, the “opposite” of being pseudo-hyperbolic (in any sense of
the word “hyperbolic”) is conjecturally captured by Campana’s notion of a
“special” variety.

Conventions. Throughout these notes, we will let k be an algebraically
closed field of characteristic zero. If X is a locally finite type scheme over C,
we let Xan be the associated complex-analytic space [39, Expose XII]. If K
is a field, then a variety over K is a finite type separated K-scheme.

If X is a variety over a field K and L/K is a field extension, then XL :=
X×SpecK SpecL will denote the base-change of X → SpecK along SpecL →
SpecK. More generally, if R → R′ is an extension of rings and X is a scheme
over R, we let XR′ denote X ×SpecR SpecR′.

If K is a number field and S is a finite set of finite places of K, then OK,S

will denote the ring of S-integers of K.

2 Brody Hyperbolicity

We start with the classical notion of Brody hyperbolicity for complex
varieties.

Definition 2.1. A complex-analytic space X is Brody hyperbolic if every
holomorphic map C → X is constant. A locally finite type scheme X over C
is Brody hyperbolic if Xan is Brody hyperbolic.

If X is a complex-analytic space, then a non-constant holomorphic map
C → X is commonly referred to as an entire curve in X. Thus, to say that
X is Brody hyperbolic is to say that X has no entire curves.

We recall that a complex-analytic space X is Kobayashi hyperbolic if
Kobayashi’s pseudo-metric on X is a metric [59]. It is a fundamental result
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of Brody that a compact complex-analytic space X is Brody hyperbolic if
and only if it is Kobayashi hyperbolic; see [59, Theorem 3.6.3].

Remark 2.2 (Descending Brody Hyperbolicity). Let X → Y be a
proper étale (hence finite) morphism of varieties over C. It is not hard to
show that X is Brody hyperbolic if and only if Y is Brody hyperbolic. (It is
crucial that X → Y is finite and étale.)

Fundamental results in complex analysis lead to the following classification
of Brody hyperbolic projective curves.

Theorem 2.3 (Liouville, Riemann, Schwarz, Picard). Let X be a
smooth projective connected curve over C. Then X is Brody hyperbolic if
and only if genus(X) ≥ 2.

More generally, a smooth quasi-projective connected curve X over C is
Brody hyperbolic if and only if X is not isomorphic to P

1
C, A

1
C, A

1
C \ {0}, nor

a smooth proper connected genus one curve over C.

Remark 2.4. It is implicit in Theorem 2.3 that elliptic curves are not Brody
hyperbolic. More generally, a non-trivial abelian variety A of dimension g
over C is not Brody hyperbolic, as its associated complex-analytic space is
uniformized by C

g. Since A even has a dense entire curve, one can consider
A to be as far as possible from being Brody hyperbolic. We mention that
Campana conjectured that a projective variety has a dense entire curve if
and only if it is “special”. We refer the reader to Campana’s article in this
book for a further discussion of Campana’s conjecture [16].

By Remark 2.4, an obvious obstruction to a projective variety X over C

being Brody hyperbolic is that it contains an abelian variety. The theorem of
Bloch–Ochiai–Kawamata says that this is the only obstruction if X can be
embedded into an abelian variety (see [57]).

Theorem 2.5 (Bloch–Ochiai–Kawamata). Let X be a closed subvariety
of an abelian variety A over C. Then X is Brody hyperbolic if and only if
IT does not contain the translate of a positive-dimensional abelian subvariety
of A.

Throughout these notes, we mostly focus on closed subvarieties of abelian
varieties, as in this case the results concerning Lang–Vojta’s conjectures are
complete; see Section 13 for details.

The theorem of Bloch–Ochiai–Kawamata has been pushed further by
work of Noguchi–Winkelmann–Yamanoi; see [76–78, 87, 88]. Other examples
of Brody hyperbolic varieties can be constructed as quotients of bounded
domains, as we explain now.

Remark 2.6 (Bounded Domains). Let D be a bounded domain in the
affine space C

N , and let X be a reduced connected locally finite type
scheme over C. Then, any holomorphic map Xan → D is constant; see [55,
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Remark 2.9] for a detailed proof. In particular, the complex-analytic space
D is Brody hyperbolic (take X = A

1
C).

It follows from Remark 2.6 that a (good) quotient of a bounded domain
is Brody hyperbolic. This observation applies to locally symmetric varieties,
Shimura varieties, and thus moduli spaces of abelian varieties. We conclude
this section by recording the fact that the moduli space of abelian varieties
(defined appropriately) is a Brody hyperbolic variety.

Example 2.7. Let g ≥ 1 and let N ≥ 3 be integers. Then, the (fine)
moduli space of g-dimensional principally polarized abelian varieties with
level N structure is a smooth quasi-projective variety over C which is Brody
hyperbolic. Indeed, its universal cover is biholomorphic to a bounded domain
in C

g(g+1)/2, so that we can apply Remark 2.6. (As the coarse moduli space of
elliptic curves is given by the j-line A1

C, we see that it is not Brody hyperbolic.
This is the reason for which we consider the moduli space of abelian varieties
with level structure.)

3 Mordellic Varieties

What should correspond to being Brody hyperbolic in arithmetic geometry?
Lang was the first to propose that a “Mordellic” projective variety over Q

should be Brody hyperbolic (over the complex numbers). Roughly speaking,
a projective variety over Q is Mordellic if it has only finitely many rational
points in any fixed number field. To make this more precise, one has to
choose models (see Definition 3.1 below). Conversely, a projective variety
over a number field which is Brody hyperbolic (over the complex numbers)
should be Mordellic. In this section we will present this conjecture of Lang.

Throughout this section, we let k be an algebraically closed field of
characteristic zero. We first clarify what is meant with a model.

Definition 3.1. Let X be a finite type separated scheme over k and let
A ⊂ k be a subring. A model for X over A is a pair (X , φ) with X → SpecA
a finite type separated scheme and φ : Xk

∼−→ X an isomorphism of schemes
over k. We will often omit φ from our notation.

Remark 3.2. What constitutes the data of a model for X over A? To
explain this, let X be an affine variety over C, say X = SpecR. Note that the
coordinate ring R of X is a finite type C-algebra. Suppose that X is given by
the zero locus of polynomials f1, . . . , fr with coefficients in a subring A, so
that R ∼= C[x1, . . . , xn]/(f1, . . . , fr). Then R := A[x1, . . . , xn]/(f1, . . . , fr) ⊂
R is a finitely generated A-algebra and R⊗AC = R. That is, if X = SpecR,
then X is a model for X over A. We will be interested in studying A-
valued points on X . We follow common notation and let X (A) denote the
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set HomA(SpecA,X ). Note that X (A) is the set of solutions in A of the
polynomial system of equations f1 = . . . = fr = 0.

With the notion of model now clarified, we are ready to define what
it means for a proper variety to be Mordellic. We leave the more general
definition for non-proper varieties to the end of this section.

Definition 3.3. A proper scheme X over k is Mordellic over k (or: has-
only-finitely-many-rational-points over k) if, for every finitely generated
subfield K ⊂ k and every (proper) model X over K, the set X (K) :=
HomK(SpecK,X ) is finite.

Remark 3.4 (Independence of Models). We point out that the finite-
ness property required for a projective variety to be Mordellic can also be
tested on a fixed model. That is, a proper scheme X over k is Mordellic over
k if and only if there is a finitely generated subfield K ⊂ k and a proper
model X for X over K such that for all finitely generated subfields L ⊂ k
containing K, the set X (L) := HomK(SpecL,X ) is finite.

We note that Mordellicity (just like Brody hyperbolicity) descends along
finite étale morphisms (Remark 2.2).

Remark 3.5 (Descending Mordellicity). Let X → Y be a finite étale
morphism of projective varieties over k. Then it follows from the Chevalley–
Weil theorem that X is Mordellic over k if and only if Y is Mordellic over k;
see Theorem 7.9 for a proof (of a more general result).

It is clear that P1
k is not Mordellic, as P1(Q) is dense. A deep theorem of

Faltings leads to the following classification of projective Mordellic curves. If
k = Q, then this theorem is proven in [32]. The statement below is proven
in [33] (see also [82]).

Theorem 3.6 (Faltings). Let X be a smooth projective connected curve
over k. Then X is Mordellic over k if and only if genus(X) ≥ 2.

Recall that abelian varieties are very far from being Brody hyperbolic
(Remark 2.4). The following remark says that abelian varieties are also very
far from being Mordellic.

Remark 3.7. It is not at all obvious that a smooth projective connected
curve of genus one over Q is not Mordellic. Indeed, it is not an obvious fact
that an elliptic curve over a number field K has positive rank over some finite
field extension ofK, although this is certainly true and can be proven in many
different ways. In fact, by a theorem of Frey–Jarden [36] (see also [49, §3.1]
or [41, §3]), if A is an abelian variety over k, then there is a finitely generated
subfield K ⊂ k and an abelian variety A over K with Ak

∼= A such that A(K)
is dense in A. This theorem is not hard to prove when k is uncountable but
requires non-trivial arguments otherwise. Thus, if dimA �= 0, then one can
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consider the abelian variety A to be as far as possible from being Mordellic.
This statement is to be compared with the conclusion of Remark 2.4.

By Remark 3.7, an obvious obstruction to a projective variety X over k
being Mordellic is that it contains an abelian variety. The following theorem
of Faltings says that this is the only obstruction if X can be embedded into
an abelian variety; see [34].

Theorem 3.8 (Faltings). Let X be a closed subvariety of an abelian variety
A over k. Then X is Mordellic over k if and only if X does not contain the
translate of a positive-dimensional abelian subvariety of A.

There are strong similarities between the statements in the previous section
and the current section. These similarities (and a healthy dose of optimism)
lead to the first version of the Lang–Vojta conjecture. To state this conjecture,
let us say that a variety X over k is strongly-Brody hyperbolic over k if, for
every subfield k0 ⊂ k, every model X for X over k0, and every embedding
k0 → C, the variety XC is Brody hyperbolic.

Conjecture 3.9 (Weak Lang–Vojta, I). Let X be an integral projective
variety over k. Then X is Mordellic over k if and only if X is strongly-Brody
hyperbolic over k.

As stated, this conjecture does not predict that, if X is a projective Brody
hyperbolic variety over C, then every conjugate of X is Brody hyperbolic.
We state this conjecture separately.

Conjecture 3.10 (Conjugates of Brody Hyperbolic Varieties). If X
is an integral variety over k. Then X is strongly-Brody hyperbolic over k if
and only if there is a subfield k0 ⊂ k, a model X for X over k0, and an
embedding k0 → C such that the variety XC is Brody hyperbolic.

Concretely, Conjecture 3.10 says that, if X is a Brody hyperbolic variety
over C and σ is a field automorphism of C, then the σ-conjugate Xσ of X is
again Brody hyperbolic.

We briefly discuss the notion of Mordellicity for quasi-projective (not
necessarily proper) schemes. We will also comment on this more general
notion in Section 7. This notion appears in this generality (to our knowledge)
for the first time in Vojta’s paper [86], and it is also studied in [56]. It is
intimately related to the notion of “arithmetic hyperbolicity” [49, 53]; see
Section 7 for a discussion.

In the non-proper case, it is natural to study integral points rather than
rational points. Vojta noticed in [86] that, in fact, it is more natural to study
“near-integral points”. Below we make this more precise.

Definition 3.11. Let X → S be a morphism of schemes with S integral. We
define X(S)(1) to be the set of P in X(K(S)) such that, for every point s in
S of codimension one, the point P lies in the image of X(OS,s) → X(K(S)).
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Vojta refers to the points in X(S)(1) as “near-integral” S-points. We point
out that on an affine variety, there is no difference between the finiteness of
integral points and “near-integral” points; see Section 7.

Definition 3.12 (Quasi-Projective Mordellic Varieties). A variety X
over k is Mordellic over k if, for every Z-finitely generated subring A ⊂ k
and every model X for X over A, the set X (A)(1) of near-integral A-points
is finite.

The study of near-integral points might seem unnatural at first. To
convince the reader that this notion is slightly more natural than the notion
of integral point, we include the following remark.

Remark 3.13 (Why “Near-Integral” Points?). Consider a proper
scheme X over Z with generic fibre X := XQ. Let K be a finitely generated
field of characteristic zero and let A ⊂ K be a regular Z-finitely generated
subring. Then, the set of K-rational points X(K) equals the set of near-
integral A-points of X . On the other hand, if K has transcendence degree at
least one over Q, then it is not necessarily true that every K-point of X is
an A-point of X . Thus, studying K-rational points on the proper variety X
over Q is equivalent to studying near-integral points of the proper scheme X
over Z.

With this definition at hand, we are able to state Faltings’s finiteness
theorem for abelian varieties over number rings as a statement about the
Mordellicity of the appropriate moduli space. The analogous statement on
its Brody hyperbolicity is Example 2.7.

Theorem 3.14 (Faltings, Shafarevich’s Conjecture for Principally
Polarized Abelian Varieties). Let k be an algebraically closed field of
characteristic zero. Let g ≥ 1 and let N ≥ 3 be integers. Then, the (fine)

moduli space A[N ]
g,k of g-dimensional principally polarized abelian varieties with

level N structure is a smooth quasi-projective Mordellic variety over k.

Example 2.7 and Theorem 3.14 suggest that there might also be an
analogue of Lang–Vojta’s conjecture for quasi-projective schemes. It seems
reasonable to suspect that an affine variety over k is Mordellic over k if
and only if it is strongly-Brody hyperbolic over k; see for example [46]
for a discussion of Lang’s conjectures in the affine case. However, stating
a reasonable conjecture for quasi-projective varieties requires some care, and
would take us astray from our current objective. We refer the interested
reader to articles of Ascher–Turchet and Campana in this book [8, 16] for a
related discussion, and the book by Vojta [85].

Remark 3.15 (From Shafarevich to Mordell). Let us briefly explain
how Faltings shows that Theorem 3.14 implies Faltings’s finiteness theorem
for curves (Theorem 3.6). Let X be a smooth projective connected curve of
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genus at least two over k. By a construction of Kodaira [69], there is a finite
étale morphism Y → X, an integer g ≥ 1, and a non-constant morphism

Y → A[3]
g,k. Since A[3]

g,k is Mordellic over k and Y → A[3]
g,k has finite fibres, it

follows that Y is Mordellic over k. As Mordellicity descends along finite étale
morphisms (Remark 3.5), we conclude that X is Mordellic, as required.

4 Groupless Varieties

To study Lang–Vojta’s conjectures, it is natural to study varieties which
do not “contain” any algebraic groups. Indeed, as we have explained in
Remark 2.4 (resp. Remark 3.7), a Brody hyperbolic variety (resp. a Mordellic
variety) does not admit any non-trivial morphisms from an abelian variety.
For projective varieties, it turns out that this is equivalent to not admitting
a non-constant map from any connected algebraic group (see Lemma 4.4
below).

As before, we let k be an algebraically closed field of characteristic zero.
We start with the following definition.

Definition 4.1. A variety X over k is groupless if every morphism Gm,k →
X (of varieties over k) is constant, and for every abelian variety A over k,
every morphism A → X is constant.

Remark 4.2. We claim that, for proper varieties, the notion of group-
lessness can be tested on morphisms (or even rational maps) from abelian
varieties. That is, a proper variety X over k is groupless if and only if, for
every abelian variety A over k, every rational map A ��� X is constant. To
show this, first note that a morphism Gm,k → X extends to a morphism
P
1
k → X and that P

1
k is surjected upon by an elliptic curve. Therefore, if

every morphism from an abelian variety is constant, then X is groupless and
has no rational curves. Now, if X is proper over k and has no rational curves,
every rational map A ��� X with A an abelian variety extends to a morphism
(see [50, Lemma 3.5]). Thus, if every morphism A → X is constant with A
an abelian variety, we conclude that every rational map A ��� X is constant.
This proves the claim. We also conclude that a proper variety is groupless if
and only if it is “algebraically hyperbolic” in Lang’s sense [62, p. 176].

Remark 4.3 (Lang’s Algebraic Exceptional Set). For X a proper
variety over k, Lang defines the algebraic exceptional set Excalg(X) of X
to be the union of all non-constant rational images of abelian varieties in X.
With Lang’s terminology at hand, as is explained in Remark 4.2, a proper
variety X over k is groupless over k if and only if Excalg(X) is empty.

Let us clear up why we refer to this property as groupless.
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Lemma 4.4 (Why Call This Groupless?). A variety X over k is
groupless if and only if for all finite type connected group schemes G over
k, every morphism G → X is constant.

Proof. This follows from Chevalley’s structure theorem for algebraic groups
over the algebraically closed field k of characteristic zero. A detailed proof is
given in [50, Lemma 2.5]. �

The notion of grouplessness is well-studied, and sometimes referred to as
“algebraic hyperbolicity” or “algebraic Lang hyperbolicity”; see [43], [62,
page 176], [59, Remark 3.2.24], or [60, Definition 3.4]. We will only use
the term “algebraically hyperbolic” for the notion introduced by Demailly
in [29] (see also [15, 50, 56]). The term “groupless” was first used in [50,
Definition 2.1] and [55, Definition 3.1].

Example 4.5. A zero-dimensional variety is groupless. Note that P
1
k, A

1
k,

A
1
k \ {0} and smooth proper genus one curves over k are not groupless.

Much like Brody hyperbolicity and Mordellicity, grouplessness descends
along finite étale morphisms. We include a sketch of the proof of this simple
fact.

Lemma 4.6 (Descending Grouplessness). Let X → Y be a finite étale
morphism of varieties over k. Then X is groupless over k if and only if Y is
groupless over k.

Proof. If Y is groupless, then X is obviously groupless. Therefore, to prove
the lemma, we may assume that X is groupless. Let G be Gm,k or an abelian
variety over k. Let G → Y be a morphism. Consider the pull-back G′ :=
G ×Y X of G → Y along X → Y . Then, as k is algebraically closed and of
characteristic zero, each connected component of G′ is (or: can be endowed
with the structure of) an algebraic group isomorphic to Gm,k or an abelian
variety over k. Therefore, the morphism G′ → X is constant. This implies
that G → Y is constant. �

We include an elementary proof of the fact that the classification of one-
dimensional groupless varieties is the same as that of one-dimensional Brody
hyperbolic curves.

Lemma 4.7. A smooth quasi-projective connected curve X over k is grou-
pless over k if and only if X is not isomorphic to P

1
k, A

1
k, A

1
k \ {0}, nor a

smooth proper connected curve of genus one over k.

Proof. If X is groupless, then X is not isomorphic to P
1
k, A

1
k, A

1
k \ {0}, nor a

smooth proper connected curve of genus one over k; see Example 4.5. Thus
to prove the lemma, we may (and do) assume that X is not isomorphic to
either of these curves. Let Y → X be a finite étale cover of X such that the
smooth projective model Y of Y is of genus at least two. (It is clear that
such a cover exists when X = Gm,k \ {1} or X = E \ {0} with E an elliptic
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curve over k. This is enough to conclude that such a cover always exists.) By
Lemma 4.6, the variety X is groupless if and only if Y is groupless. Thus,
it suffices to show that Y is groupless. To do so, assume that we have a
morphism Gm,k → Y . By Riemann–Hurwitz, this morphism is constant, as
Y has genus at least two. Now, let A be an abelian variety over k and let
A → Y be a morphism. To show that this morphism is constant, we compose
A → Y with the Jacobian map Y → Jac(Y ) (after choosing some point on
Y ). If the morphism A → Y is non-constant, then it is surjective. Since a
morphism of abelian varieties is a homomorphism (up to translation of the
origin), this induces a group structure on the genus > 1 curve Y . However, as
the automorphism group of (the positive-dimensional variety) Y is finite, the
curve Y cannot be endowed with the structure of an algebraic group. This
shows that A → Y is constant, and concludes the proof. �

Bloch–Ochiai–Kawatama’s theorem (Theorem 2.5) and Faltings’s analo-
gous theorem for rational points on closed subvarieties of abelian varieties
(Theorem 3.8) characterize “hyperbolic” subvarieties of abelian varieties. It
turns out that this characterization also holds for groupless varieties, as we
explain now.

If X is a closed subvariety of an abelian variety A over k, we define
the special locus Sp(X) of X to be the union of the translates of positive-
dimensional abelian subvarieties of A contained in X.

Lemma 4.8. Let X be a closed integral subvariety of an abelian variety A
over k. Then X is groupless over k if and only if Sp(X) is empty.

Proof. Clearly, if X is groupless over k, then X does not contain the translate
of a positive-dimensional abelian subvariety of A, so that Sp(X) is empty.
Conversely, assume that X does not contain the translate of a non-zero
abelian subvariety of A. Let us show that X is groupless. Since the Albanese
variety of P1

k is trivial, any map Gm,k → X is constant. Thus, to conclude
the proof, we have to show that all morphisms A′ → X are constant, where
A′ is an abelian variety over k. To do so, note that the image of A′ → X
in A is the translate of an abelian subvariety of A, as morphisms of abelian
varieties are homomorphisms up to translation. This means that the image
of A′ → X is the translate of an abelian subvariety, hence a point (by our
assumption). �
Remark 4.9. Let A be a simple abelian surface. Let X = A \ {0}. Then
X is groupless. This remark might seem misplaced, but it shows that
“grouplessness” as defined above does not capture the non-hyperbolicity of a
quasi-projective variety. The “correct” definition in the quasi-projective case
is discussed in Section 6 (and is also discussed in [56, 86]).

Although grouplessness does not capture the non-hyperbolicity of quasi-
projective varieties (Remark 4.9), Lang conjectured that grouplessness is
equivalent to being Mordellic and to being Brody hyperbolic (up to choosing
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a model over C) for projective varieties. This brings us to the second form of
Lang–Vojta’s conjecture.

Conjecture 4.10 (Weak Lang–Vojta, II). Let X be an integral projective
variety over k. Then the following are equivalent.

(1) The projective variety X is Mordellic over k.
(2) The variety X is strongly-Brody hyperbolic over k.
(3) The variety X is groupless over k.

5 Varieties of General Type

In this section we discuss the role of varieties of general type in Lang–Vojta’s
conjecture. Recall that a line bundle L on a smooth projective variety S over
k is big if there is an ample line bundle A and an effective divisor D such that
L ∼= A⊗OS(D); see [64, 65]. We follow standard terminology and say that an
integral proper variety X over k is of general type if it has a desingularization
X ′ → X with X ′ a smooth projective integral variety over k such that the
canonical bundle ωX′/k is a big line bundle. For example, if ωX′/k is ample,
then it is big. Moreover, we will say that a proper variety X over a field k
is of general type if, for every irreducible component Y of X, the reduced
closed subscheme Yred is of general type.

Varieties of general type are well-studied; see [64, 65]. For the sake of
clarity, we briefly collect some statements. Our aim is to emphasize the
similarities with the properties presented in the earlier sections.

For example, much like Brody hyperbolicity, Mordellicity, and group-
lessness, the property of being of general type descends along finite étale
morphisms. That is, if X → Y is a finite étale morphism of proper schemes
over k, then X is of general type if and only if Y is of general type. Moreover,
a simple computation of the degree of the canonical bundle of a curve implies
that, if X is a smooth projective connected curve over k, then X is of general
type if and only if genus(X) ≥ 2.

Kawamata and Ueno classified which closed subvarieties of an abelian
variety are of general type. To state their result, for A an abelian variety
over k and X a closed subvariety of A, recall that the special locus Sp(X) of
X is the union of translates of positive-dimensional abelian subvarieties of A
contained in X. Note that Bloch–Ochiai–Kawamata’s theorem (Theorem 2.5)
can be stated as saying that a closed subvariety X of an abelian variety A
over C is Brody hyperbolic if and only if Sp(X) is empty. Similarly, Faltings’s
theorem (Theorem 3.8) can be stated as saying that a closed subvariety of
an abelian variety A over k is Mordellic if and only if Sp(X) is empty. The
latter is also equivalent to saying that X is groupless over k by Lemma 4.8.
The theorem of Kawamata–Ueno now reads as follows.
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Theorem 5.1 (Kawamata–Ueno). Let A be an abelian variety and let X
be a closed integral subvariety of A. Then Sp(X) is a closed subset of X, and
X is of general type if and only if Sp(X) �= X.

Note that being of general type and being groupless are not equivalent.
This is not a surprise, as the notion of general type is a birational invariant,
whereas the blow-up of a smooth groupless surface along a point is no
longer groupless. The conjectural relation between varieties of general type
and the three notions (Brody hyperbolicity, Mordellicity, and grouplessness)
introduced above is as follows.

Conjecture 5.2 (Weak Lang–Vojta, III). Let X be an integral projective
variety over k. Then the following are equivalent.

(1) The projective variety X is Mordellic over k.
(2) The variety X is strongly-Brody hyperbolic over k.
(3) Every integral subvariety of X is of general type.
(4) The variety X is groupless over k.

Note that the notion of general type is a birational invariant, but hyper-
bolicity is not. What should (conjecturally) correspond to being of general
type? The highly optimistic conjectural answer is that being of general type
should correspond to being “pseudo”-Brody hyperbolic, “pseudo”-Mordellic,
and “pseudo”-groupless. The definitions of these notions are essentially the
same as given above, the only difference being that one has to allow for an
“exceptional locus”. In the following sections we will make this more precise.

6 Pseudo-Grouplessness

Let k be an algebraically closed field of characteristic zero. Roughly speaking,
a projective varietyX over k is groupless if it admits no non-trivial morphisms
from a connected algebraic group. Conjecturally, a projective variety X over
k is groupless if and only if every subvariety of X is of general type. To see
what should correspond to being of general type, we will require the more
general notion of pseudo-grouplessness.

Definition 6.1. Let X be a variety over k and let Δ ⊂ X be a closed
subset. We say that X is groupless modulo Δ (over k) if, for every finite type
connected group scheme G over k and every dense open subscheme U ⊂ G
with codim(G\U) ≥ 2, every non-constant morphism U → X factors over Δ.

Hyperbolicity modulo a subset was first introduced by Kiernan–Kobayashi
[58], and is thoroughly studied in Kobayashi’s book [59]. As we will see below,
it is quite natural to extend the study of hyperbolic varieties to the study of
varieties which are hyperbolic modulo a subset.
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For proper schemes, the notion of “groupless modulo the empty set”
coincides with the notion of grouplessness introduced before (and studied
in [49, 50, 55]). For the reader’s convenience, we include a detailed proof of
this.

Lemma 6.2. Let X be a proper scheme over k. Then the following are
equivalent.

(1) The scheme X is groupless modulo the empty subscheme ∅ over k.
(2) The scheme X is groupless.
(3) For every finite type connected group scheme G over k and every dense

open subscheme V ⊂ G, every morphism V → X is constant.

Proof. It is clear that (1) implies (2). To show that (2) implies (3), let G
be a finite type connected group scheme over k, let V ⊂ G be a dense open
subscheme, and let f : V → X be a morphism of schemes over k. Then,
as X is proper over k, there is an open subscheme U ⊂ G containing V
with codim(G \ U) ≥ 2 such that the morphism f : V → X extends to a
morphism f ′ : U → X. Since X is groupless and proper, it does not contain
any rational curves. Therefore, as the variety underlying G is smooth over k
[81, Tag 047N], it follows from [50, Lemma 3.5] (see also [27, Corollary 1.44])
that the morphism f ′ : U → X extends (uniquely) to a morphism f ′′ : G →
X. Since X is groupless, the morphism f ′′ is constant. This implies that f is
constant. Finally, it is clear (from the definitions) that (3) implies (1). �
Definition 6.3. A variety X is pseudo-groupless (over k) if there is a proper
closed subset Δ � X such that X is groupless modulo Δ.

The word “pseudo” in this definition refers to the fact that the non-
hyperbolicity of the variety is concentrated in a proper closed subset. Note
that a varietyX is pseudo-groupless if and only if every irreducible component
of X is pseudo-groupless.

Example 6.4. Let C be smooth projective connected curve of genus at least
two and let X be the blow-up of C ×C in a point. Then X is not groupless.
However, its “non-grouplessness” is contained in the exceptional locus Δ of
the blow-up X → C × C. Thus, as X is groupless modulo Δ, it follows that
X is pseudo-groupless.

Let us briefly say that an open subset U of an integral variety V is big
if codim(V \ U) is at least two. Now, the reader might wonder why we test
pseudo-grouplessness on maps whose domain is a big open subset of some
algebraic group. The example to keep in mind here is the blow-up of a simple
abelian surface in its origin. In fact, as we test pseudo-grouplessness on big
open subsets of abelian varieties (and not merely maps from abelian varieties),
such blow-ups are not pseudo-groupless. Also, roughly speaking, one should
consider big open subsets of abelian varieties as far as possible from being
hyperbolic, in any sense of the word “hyperbolic”. For example, much like
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how abelian varieties admit a dense entire curve (Remark 2.4), a big open
subset of an abelian variety admits a dense entire curve. This is proven using
Sard’s theorem in [86]. Thus, big open subsets of abelian varieties are also
as far as possible from being Brody hyperbolic.

We now show that the statement of Lemma 4.6 also holds in the “pseudo”
setting, i.e., we show that pseudo-grouplessness descends along finite étale
morphisms. As we have mentioned before, this descent property also holds
for general type varieties.

Lemma 6.5. Let f : X → Y be a finite étale morphism of varieties over
k. Then X is pseudo-groupless over k if and only if Y is pseudo-groupless
over k.

Proof. We adapt the arguments in the proof of [55, Proposition 2.13]. First,
if Y is groupless modulo a proper closed subset ΔY ⊂ Y , then clearly X
is groupless modulo the proper closed subset f−1(ΔY ). Now, assume that
X is groupless modulo a proper closed subset ΔX � X. Let G be a finite
type connected (smooth quasi-projective) group scheme over k, let U ⊂ G
be a dense open subscheme with codim(G \ U) ≥ 2 and let φ : U → Y be
a morphism which does not factor over f(ΔX). The pull-back of G → Y
along the finite étale morphism f : X → Y induces a finite étale morphism
V := U ×Y X → U . Since U is smooth over k, by purity of the branch locus
[39, Théorème X.3.1], the finite étale morphism V → U extends (uniquely) to
a finite étale morphism G′ → G. Note that every connected component G′′ of
G′ has the structure of a finite type connected group scheme over k (and with
this structure the morphismG′′ → G is a homomorphism). Now, since smooth
morphisms are codimension-preserving, we see that codim(G′′ \ V ) ≥ 2. As
the morphism V → X does not factor over f−1(f(ΔX)), it does not factor
over ΔX , and is thus constant (as X is groupless modulo ΔX). This implies
that the morphism U → Y is constant, as required. �
Remark 6.6 (Birational Invariance). Let X and Y be proper schemes
over k. Assume that X is birational to Y . Then X is pseudo-groupless over k
if and only if Y is pseudo-groupless over k. This is proven in [56]. Thus,
as pseudo-grouplessness is a birational invariant among proper varieties,
this notion is more natural to study from a birational perspective than
grouplessness.

Remark 6.7. Contrary to a hyperbolic proper variety, a proper pseudo-
groupless variety could have rational curves. For example, the blow-up of the
product of two smooth curves of genus two in a point (as in Example 6.4)
contains precisely one rational curve. However, a pseudo-groupless proper
variety is not covered by rational curves, i.e., it is non-uniruled, as all rational
curves are contained in a proper closed subset (by definition).

Remark 6.8. Let X be a proper scheme over k and let Δ ⊂ X be a closed
subset. It follows from the valuative criterion of properness thatX is groupless
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modulo Δ if and only if, for every finite type connected group scheme G over k
and every dense open subscheme U ⊂ G, any non-constant morphism U → X
factors over Δ.

Recall that Lemma 4.4 says that the grouplessness of a proper variety
entails that there are no non-constant morphisms from any connected
algebraic group. One of the main results of [56] is the analogue of Lemma 4.4
for pseudo-groupless varieties. The proof of this result (see Theorem 6.9
below) relies on the structure theory of algebraic groups.

Theorem 6.9. If X is a proper scheme X over k and Δ is a closed subset
of X, then X is groupless modulo Δ over k if and only if, for every abelian
variety A over k and every open subscheme U ⊂ A with codim(A \ U) ≥ 2,
every non-constant morphism of varieties U → X factors over Δ.

Theorem 6.9 says that the pseudo-grouplessness of a proper variety can be
tested on morphisms from big open subsets of abelian varieties (or on rational
maps from abelian varieties). A similar, but different, statement holds for
affine varieties. Indeed, if X is an affine variety over k, then X is groupless
modulo Δ ⊂ X if and only if every non-constant morphism Gm,k → X factors
over Δ.

Lang conjectured that a projective variety is pseudo-groupless if and only
if it is of general type. Note that, by the birational invariance of these two
notions, this conjecture can be reduced to the case of smooth projective
varieties by Hironaka’s resolution of singularities.

Conjecture 6.10 (Strong Lang–Vojta, I). Let X be an integral projec-
tive variety over k. Then X is pseudo-groupless over k if and only if X is of
general type over k.

Note that this conjecture predicts more than the equivalence of (3) and (4)
in Conjecture 5.2. Also, even though it is stated for projective varieties, one
could as well formulate the conjecture for proper varieties (or even proper
algebraic spaces). The resulting “more general” conjecture actually follows
from the above conjecture.

Example 6.11. By Kawamata–Ueno’s theorem (Theorem 5.1) and
Lemma 4.8, the Strong Lang–Vojta conjecture holds for closed subvarieties
of abelian varieties.

Remark 6.12. If X is a proper pseudo-groupless surface, then X is
of general type (see [56] for a proof). For higher-dimensional varieties,
Conjecture 6.10 predicts a similar statement, but this is not even known
for threefolds. However, assuming the Abundance Conjecture and certain
conjectures on Calabi–Yau varieties, one can show that every proper pseudo-
groupless variety is of general type (i.e., (1) =⇒ (2) in Conjecture 6.10).
Regarding the implication (2) =⇒ (1), not much is known beyond the one-
dimensional case. For example, if X is a proper surface of general type, then
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Conjecture 6.10 implies that there should be a proper closed subset Δ ⊂ X
such that every rational curve C ⊂ X is contained in Δ. Such statements are
known to hold for certain surfaces of general type by the work of Bogomolov
and McQuillan; see [30, 71].

7 Pseudo-Mordellicity and Pseudo-Arithmetic
Hyperbolicity

In the previous section, we introduced pseudo-grouplessness and stated Lang–
Vojta’s conjecture that a projective variety is of general type if and only if it
is pseudo-groupless. In this section, we explain what the “pseudo” analogue
is of the notion of Mordellicity, and explain Lang–Vojta’s conjecture that a
projective variety is of general type if and only if it is pseudo-Mordellic.

7.1 Pseudo-Arithmetic Hyperbolicity

As we have said before, Lang coined the term “Mordellic”. We will now
introduce the related (and a priori different) notion of arithmetic hyperbolic-
ity (as defined in [49, 52, 53]); see also [83, §2], and [10, 11]. In Section 3 we
ignored that the extension of the notion of Mordellicity over Q to arbitrary
algebraically closed fields can actually be done in two a priori different ways.
We discuss both notions now and give them different names. We refer the
reader to Section 3 for our conventions regarding models of varieties, and we
continue to let k denote an algebraically closed field of characteristic zero.

Definition 7.1. Let X be a variety over k and let Δ be a closed subset of
X. We say that X is arithmetically hyperbolic modulo Δ over k if, for every
Z-finitely generated subring A and every model X for X over A, we have
that every positive-dimensional irreducible component of the Zariski closure
of X (A) in X is contained in Δ.

Definition 7.2. A variety X over k is pseudo-arithmetically hyperbolic over
k if there is a proper closed subset Δ ⊂ X such that X is arithmetically
hyperbolic modulo Δ over k.

Remark 7.3. A variety X over k is arithmetically hyperbolic over k
(as defined in [49] and [53, §4]) if and only if X is arithmetically hyperbolic
over k modulo the empty subscheme.

Lemma 7.4 (Independence of Model). Let X be a variety over k and
let Δ be a closed subset of k. Then the following are equivalent.

(1) The finite type scheme X over k is arithmetically hyperbolic modulo Δ.
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(2) There is a Z-finitely generated subring A ⊂ k, there is a model X for X
over A, and there is a model D ⊂ X for Δ ⊂ X over A such that, for
every Z-finitely generated subring B ⊂ k containing A, the set

X (B) \ D(B)

is finite.

Proof. This follows from standard spreading out arguments. These type of
arguments are used in [53] to prove more general statements in which the
objects are algebraic stacks. �
Remark 7.5. We unravel what the notion of arithmetic hyperbolicity
modulo Δ entails for affine varieties. To do so, let X be an affine variety over
k, and let Δ be a proper closed subset of X. Choose the following data.

• integers n, δ,m ≥ 1;
• polynomials f1, . . . , fn ∈ k[x1, . . . , xm];
• polynomials d1, . . . , dδ ∈ k[x1, . . . , xm];
• an isomorphism

X ∼= Spec(k[x1, . . . , xm]/(f1, . . . , fn));

• an isomorphism

Δ ∼= Spec(k[x1, . . . , xm]/(d1, . . . , dδ)).

Let A0 be the Z-finitely generated subring of k generated by the (finitely
many) coefficients of the polynomials f1, . . . , fn, d1, . . . , dδ. Now, the following
statements are equivalent.

(1) The variety X is arithmetically hyperbolic modulo Δ over k.
(2) For every Z-finitely generated subring A ⊂ k containing A0, the set

{a ∈ Am | f1(a) = . . . = fn(a) = 0}\{a ∈ Am | d1(a) = . . . = dδ(a) = 0}

is finite.

Thus, roughly speaking, one could say that an algebraic variety over k is
arithmetically hyperbolic modulo Δ over k if “X minus Δ” has only finitely
many A-valued points, for any choice of finitely generated subring A ⊂ k.

7.2 Pseudo-Mordellicity

The reader might have noticed a possibly confusing change in terminology.
Why do we not refer to the above notion as being “Mordellic modulo Δ”?
The precise reason brings us to a subtle point in the study of integral points
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valued in higher-dimensional rings (contrary to those valued in OK,S with S
a finite set of finite places of a number field K). To explain this subtle point,
let us first define what it means to be pseudo-Mordellic. For this definition,
we will require the notion of “near-integral” point (Definition 3.11).

Definition 7.6. Let X be a variety over k and let Δ be a closed subset
of X. We say that X is Mordellic modulo Δ over k if, for every Z-finitely
generated subring A and every model X for X over A, we have that every
positive-dimensional irreducible component of the Zariski closure of X (A)(1)

in X is contained in Δ, where X (A)(1) is defined in Definition 3.11.

Remark 7.7. Let X be a proper scheme over k and let Δ be a closed subset
of X. Then, by the valuative criterion of properness, the proper scheme X is
Mordellic modulo Δ if, for every finitely generated subfield K ⊂ k and every
proper model X over K, the set X (K) \Δ is finite.

Definition 7.8. A variety X over k is pseudo-Mordellic over k if there is a
proper closed subset Δ ⊂ X such that X is Mordellic modulo Δ over k.

Note that X is Mordellic over k (as defined in Section 3) if and only if X is
Mordellic modulo the empty subset. It is also clear from the definitions that, if
X is Mordellic modulo Δ over k, then X is arithmetically hyperbolic modulo
Δ over k. In particular, a pseudo-Mordellic variety is pseudo-arithmetically
hyperbolic and a Mordellic variety is arithmetically hyperbolic. Indeed,
roughly speaking, to say that a variety is arithmetically hyperbolic is to
say that any set of integral points on it is finite, and to say that a variety is
Mordellic is to say that any set of “near-integral” points on it is finite. The
latter sets are a priori bigger. However, there is no difference between these
two sets when k = Q. That is, a variety X over Q is arithmetically hyperbolic
modulo Δ if and only if it is Mordellic modulo Δ over Q.

Following the exposition in the previous sections, let us prove the fact that
pseudo-arithmetic hyperbolicity (resp. pseudo-Mordellicity) descends along
finite étale morphisms of varieties.

Theorem 7.9 (Chevalley–Weil). Let f : X → Y be a finite étale
surjective morphism of varieties over k. Let Δ ⊂ X be a closed subset. If X
is Mordellic modulo Δ over k (resp. arithmetically hyperbolic modulo Δ over
k), then Y is Mordellic modulo f(Δ) over k (resp. arithmetically hyperbolic
modulo f(Δ) over k).

Proof. We assume that X is Mordellic modulo Δ, and show that Y is
Mordellic modulo f(Δ). (The statement concerning arithmetic hyperbolicity
is proven similarly.)

Let A ⊂ k be a regular Z-finitely generated subring, let X be a model for
X over A, let Y be a model for Y over A, and let F : X → Y be a finite étale
surjective morphism such that Fk = f . Assume for a contradiction that Y is
not Mordellic modulo f(Δ). Then, replacing A by a larger regular Z-finitely
generated subring of k if necessary, for i = 1, 2, . . ., we may choose pairwise
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distinct elements ai of Y(A)(1) whose closure in Y is an irreducible positive-
dimensional subvariety R ⊂ Y such that R �⊂ f(Δ). For every i = 1, 2, . . .,
choose a dense open subscheme Ui of SpecA whose complement in SpecA has
codimension at least two and such that ai defines a morphism ai : Ui → X .
Consider Vi := Ui ×Y,F X → X , and note that Vi → Ui is finite étale.
By Zariski–Nagata purity of the branch locus [39, Théorème X.3.1], the
morphism Vi → Ui extends to a finite étale morphism SpecBi → A. By
Hermite’s finiteness theorem, as the degree of Bi over A is bounded by deg(f),
replacing ai by an infinite subset if necessary, we may and do assume that
B := B1

∼= B2
∼= B3

∼= . . .. Now, the bi : Vi → X define elements in X (B)(1).
Let S be their closure in X. Note that R ⊂ S. In particular, S �⊂ Δ. This
contradicts the fact that X is Mordellic modulo Δ. Thus, we conclude that
Y is Mordellic modulo f(Δ). �
Corollary 7.10 (Pseudo-Chevalley–Weil). Let f : X → Y be a finite
étale surjective morphism of finite type separated schemes over k. Then X is
pseudo-Mordellic over k if and only if Y is pseudo-Mordellic over k.

Proof. Since f : X → Y has finite fibres, the fibres of f are Mordellic over k.
Therefore, if Y is pseudo-Mordellic over k, it easily follows that X is pseudo-
Mordellic over k. Conversely, if X is pseudo-Mordellic over k, then it follows
from Theorem 7.9 that Y is pseudo-Mordellic over k. �
Corollary 7.11 (Pseudo-Chevalley–Weil, II). Let f : X → Y be a
finite étale surjective morphism of finite type separated schemes over k. Then
X is pseudo-arithmetically hyperbolic over k if and only if Y is pseudo-
arithmetically hyperbolic over k.

Proof. Similar to the proof of Corollary 7.10. �
Remark 7.12 (Birational Invariance). The birational invariance of the
notion of pseudo-Mordellicity is essentially built into the definition. Indeed,
the infinitude of the set of near-integral points is preserved under proper
birational modifications. More precisely, let X and Y be proper integral
varieties over k which are birational. Then X is pseudo-Mordellic over k
if and only if Y is pseudo-Mordellic over k.

It is not clear to us whether the notion of pseudo-arithmetic hyperbolicity
over k is a birational invariant for proper varieties over k, unless k = Q.
Similarly, it is not so clear to us whether pseudo-arithmetically hyperbolic
proper varieties are pseudo-groupless. On the other hand, this is not so hard
to prove for pseudo-Mordellic varieties.

Theorem 7.13. If X is a pseudo-Mordellic proper variety over k, then X
is pseudo-groupless over k.

Proof. The fact that an arithmetically hyperbolic variety is groupless is
proven in [49, §3] using the potential density of rational points on an abelian
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variety over a field K of characteristic zero (Remark 3.7). The statement of
the theorem is proven in [56] using similar arguments. �
Remark 7.14. Let X be a proper surface over k. If X is pseudo-Mordellic
over k, then X is of general type. To prove this, note that X is pseudo-
groupless (Theorem 7.13), so that the claim follows from the fact that pseudo-
groupless proper surfaces are of general type; see Remark 6.12.

Recall that a closed subvariety X of an abelian variety A is groupless
modulo its special locus Sp(X), where Sp(X) is the union of translates of
non-zero abelian subvarieties of A contained in X. (We are freely using here
Kawamata–Ueno’s theorem that Sp(X) is a closed subset of X.) This was
proven in Lemma 4.8. In [34] Faltings proved the arithmetic analogue of this
statement.

Theorem 7.15 (Faltings). Let A be an abelian variety over k, and let X ⊂
A be a closed subvariety. Then X is Mordellic modulo Sp(X).

Lang and Vojta conjectured that a projective variety over Q is pseudo-
Mordellic if and only if it is of general type. We propose extending this to
arbitrary algebraically closed fields of characteristic zero. As we also expect
the notions of pseudo-arithmetic hyperbolicity and pseudo-Mordellicity to
coincide, we include this in our version of the Lang–Vojta conjecture.

Conjecture 7.16 (Strong Lang–Vojta, II). Let X be an integral projec-
tive variety over k. Then the following statements are equivalent.

(1) The variety X is pseudo-Mordellic over k.
(2) The variety X is pseudo-arithmetically hyperbolic over k.
(3) The variety X is pseudo-groupless over k.
(4) The projective variety X is of general type over k.

This is a good time to collect examples of arithmetically hyperbolic
varieties.

Example 7.17. It follows from Faltings’s theorem [34] that a normal
projective connected pseudo-groupless surface X over k with h1(X,OX) > 2
is pseudo-Mordellic. Let us prove this claim. To do so, let Δ ⊂ X be a
proper closed subset such that X is groupless modulo Δ. Moreover, let A
be the Albanese variety of X, let p : X → A be the canonical map (after
choosing some basepoint in X(k)), and let Y be the image of X in A. Note
that dimY ≥ 1. If dimY = 1, then the condition on the dimension of A
implies that Y is not an elliptic curve. In this case, since dimX = 2 and
dimY = 1, the claim follows from Faltings’s (earlier) finiteness theorem for
hyperbolic curves. However, if dimY = 2, we have to appeal to Faltings’s
Big Theorem. Indeed, in this case, the morphism X → Y is generically finite.
Let X → X ′ → Y be the Stein factorization of the morphism X → Y ,
where X ′ → Y is a finite morphism with X ′ normal. Since X and X ′ are
birational, it suffices to show that X ′ is pseudo-Mordellic (by the birational
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invariance of pseudo-Mordellicity and pseudo-grouplessness). Thus, we may
and do assume that X = X ′, so that X → A is finite. If the rational points on
X are dense, then they are also dense in Y , so that Y is an abelian subvariety
of A, contradicting our assumption that h1(X,OX) = dimA > 2. Thus, the
rational points onX are not dense. In particular, every irreducible component
of the closure of a set of rational points on X is a curve of genus 1 (as X
does not admit any curves of genus zero). Since X is pseudo-groupless, these
components are contained in Δ.

Example 7.18. Let X be a smooth projective connected curve over k, let
n ≥ 1 be an integer, and let Δ be a proper closed subset of Symn

X . It follows
from Faltings’s theorem that Symn

X is groupless modulo Δ over k if and only
if Symn

X is arithmetically hyperbolic modulo Δ over k.

Example 7.19 (Moriwaki). Let X be a smooth projective variety over k
such that Ω1

X is ample and globally generated. Then X is Mordellic by a
theorem of Moriwaki [73]; see [7] for the analogous finiteness result in the
logarithmic case.

Example 7.20. For every Z-finitely generated normal integral domain A of
characteristic zero, the set of A-isomorphism classes of smooth sextic surfaces
in P

3
A is finite; see [54]. This finiteness statement can be reformulated as

saying that the moduli stack of smooth sextic surfaces is Mordellic.

Example 7.21. Let X be a smooth proper hyperkaehler variety over k with
Picard number at least three. Then X is not arithmetically hyperbolic; see
[49].

7.3 Intermezzo: Arithmetic Hyperbolicity
and Mordellicity

Let k be an algebraically closed field of characteristic zero. In this section, we
show that the (a priori) difference between arithmetic hyperbolicity (modulo
some subset) and Mordellicity is quite subtle, as this difference disappears in
many well-studied cases.

The following notion of purity for models over Z-finitely generated rings
was first considered in [15] precisely to study the a priori difference between
arithmetic hyperbolicity and Mordellicity.

Definition 7.22 (Pure Model). LetX be a variety over k and let A ⊂ k be
a subring. A model X for X over A is pure over A (or: satisfies the extension
property over A) if, for every smooth finite type separated integral scheme T
over A, every dense open subscheme U ⊂ T with T \U of codimension at least
two in T , and every A-morphism f : U → X , there is a (unique) morphism
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f : T → X extending the morphism f . (The uniqueness of the extension f
follows from our convention that a model for X over A is separated.)

Remark 7.23. Let X be a variety over k, and let A ⊂ k be a subring. Let
X be a pure model for X over A, and let B ⊂ k be a subring containing A
such that SpecB → SpecA is smooth (hence finite type). Then XB is pure
over B.

Definition 7.24. A variety X over k has an arithmetically pure model if
there is a Z-finitely generated subring A ⊂ k and a pure model X for X
over A.

Remark 7.25. Let X be a proper variety over k which has an arithmetically
pure model. Then X has no rational curves. To prove this, assume that
P
1
k → X is a non-constant (hence finite) morphism, i.e., the proper variety X

has a rational curve over k. Then, if we let 0 denote the point (0 : 0 : 1) in P
2
k,

the composed morphism P
2
k \ {0} → P

1
k → X does not extend to a morphism

from P
2
k to X. Now, choose a Z-finitely generated subring A ⊂ k and a model

X over A such that the morphism P
1
k → X descends to a morphism P

1
A → X

of A-schemes. Define U = P
2
A \ {0} and T = P

2
A, where we let {0} denote the

image of the section of P2
A → SpecA induced by 0 in P

2
k. Since the morphism

Uk → Xk does not extend to a morphism Tk → Xk, we see that the morphism
U → X does not extend to a morphism T → X , so that X is not pure. This
shows that a proper variety over k with a rational curve has no arithmetically
pure model.

Remark 7.26. Let X be a proper variety over k. A pure model for X
over a Z-finitely generated subring A of k might have rational curves in
every special fibre (of positive characteristic). Examples of such varieties can
be constructed as complete subvarieties of the moduli space of principally
polarized abelian varieties.

Remark 7.27. Let X be a smooth projective variety over k. If Ω1
X/k is

ample, then X has an arithmetically pure model. Indeed, choose a Z-finitely
generated subring A ⊂ k with A smooth over Z and a smooth projective
model X for X over A such that ΩX/A is ample. Then, the geometric fibres of
X → SpecA do not contain any rational curves, so that [37, Proposition 6.2]
implies that X is a pure model for X over A.

Remark 7.28. Let k ⊂ L be an extension of algebraically closed fields
of characteristic zero, and let X be a variety over k. Then X has an
arithmetically pure model if and only if XL has an arithmetically pure model.

Theorem 7.29. Let X be a variety over k which has an arithmetically pure
model. Let Δ ⊂ X be a closed subset. Then X is Mordellic modulo Δ over k
if and only if X is arithmetically hyperbolic modulo Δ over k.
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Proof. We follow the proof of [15, Theorem 8.10]. Suppose that X is
arithmetically hyperbolic modulo Δ over k. Let A ⊂ k be a Z-finitely
generated subring and let X be a pure model for X over A. It suffices to
show that, for every Z-finitely generated subring B ⊂ k containing A, the set
X (B)(1) \Δ is finite. To do so, we may and do assume that SpecB → SpecA
is smooth in which case it follows from the definition of a pure model that
X (B)(1) = X (B). We conclude that

X (B)(1) \Δ = X (B) \Δ

is finite. This shows that X is Mordellic modulo Δ over k. �
Lemma 7.30 (Affine Varieties). Let X be an affine variety over k. Then
X has an arithmetically pure model.

Proof. Affine varieties have an arithmetically pure model by Hartog’s Lemma.
�

Lemma 7.31. Let X be a variety over k which admits a finite morphism to
some semi-abelian variety over k. Then X has an arithmetically pure model.

Proof. Let G be a semi-abelian variety and let X → G be a finite morphism.
It follows from Hartog’s Lemma that X has an arithmetically pure model if
and only if G has an arithmetically pure model. Choose a Z-finitely generated
subring and a model G for G over A such that G → SpecA is a semi-
abelian scheme. Then, this model G has the desired extension property by
[72, Lemma A.2], so that G (hence X) has an arithmetically pure model. �
Remark 7.32. Let X be a projective integral groupless surface over k
which admits a non-constant map to some abelian variety. Then X has an
arithmetically pure model by [15, Lemma 8.11].

Corollary 7.33. Let X be an integral variety over k, and let Δ ⊂ X be a
closed subset. Assume that one of the following statements holds.

(1) The variety X is affine over k.
(2) There is a finite morphism X → G with G a semi-abelian variety over k.
(3) We have that X is a groupless surface which admits a non-constant

morphism X → A with A an abelian variety over k.

Then X is arithmetically hyperbolic modulo Δ over k if and only if X is
Mordellic modulo Δ over k.

Proof. Assume (1). Then the statement follows from Lemma 7.30 and
Theorem 7.29. Similarly, if (2) holds, then the statement follows from
Lemma 7.31 and Theorem 7.29. Finally, assuming (3), the statement follows
from Remark 7.32 and Theorem 7.29. �
Remark 7.34. Let g ≥ 1 andN ≥ 3 be integers. Now, ifX is the fine moduli
space of g-dimensional principally polarized abelian schemes over k with level
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Q structure, then X has an arithmetically pure model. As is explained in
[68], this is a consequence of Grothendieck’s theorem on homomorphisms
of abelian schemes [40]. The existence of such a model is used by Martin-
Deschamps to deduce the Mordellicity of Xk over k from the Mordellicity of
X over Q (cf. Theorem 3.14).

8 Pseudo-Brody Hyperbolicity

The notion of pseudo-hyperbolicity appeared first in the work of Kiernan and
Kobayashi [58] and afterwards in Lang [62]; see also [59]. We recall some of
the definitions.

Definition 8.1. Let X be a variety over C and let Δ be a closed subset
of X. We say that X is Brody hyperbolic modulo Δ if every holomorphic
non-constant map C → Xan factors over Δ.

Definition 8.2. A variety X over C is pseudo-Brody hyperbolic if there is a
proper closed subset Δ � X such that X is Brody hyperbolic modulo Δ.

Green–Griffiths and Lang conjectured that a projective integral variety of
general type is pseudo-Brody hyperbolic. The conjecture that a projective
integral variety is of general type if and only if it is pseudo-Brody hyperbolic
is commonly referred to as the Green–Griffiths–Lang conjecture.

Note that the notion of pseudo-Brody hyperbolicity is a birational invari-
ant. More precisely, if X and Y are proper integral varieties over C which
are birational, then X is pseudo-Brody hyperbolic if and only if Y is pseudo-
Brody hyperbolic. Furthermore, just like the notions of pseudo-Mordellicity
and pseudo-grouplessness, the notion of pseudo-Brody hyperbolicity descends
along finite étale morphisms. That is, if X → Y is finite étale, then X is
pseudo-Brody hyperbolic if and only if Y is pseudo-Brody hyperbolic. Also,
it is not hard to show that, if a variety X is Brody hyperbolic modulo Δ,
then X is groupless modulo Δ.

Note that a variety X is Brody hyperbolic (as defined in Section 2) if
and only if X is Brody hyperbolic modulo the empty set. Bloch–Ochiai–
Kawamata’s theorem classifies Brody hyperbolic closed subvarieties of abelian
varieties. In fact, their result is a consequence of the following more general
statement (also proven in [57]).

Theorem 8.3 (Bloch–Ochiai–Kawamata). Let X be a closed subvariety
of an abelian variety A. Let Sp(X) be the special locus of X. Then Sp(X) is
a closed subset of X and X is Brody hyperbolic modulo Sp(X).

We now introduce the pseudo-analogue of Kobayashi hyperbolicity for
algebraic varieties. Of course, these definitions make sense for complex-
analytic spaces.
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Definition 8.4. Let X be a variety over C and let Δ be a closed subset of
X. We say that X is Kobayashi hyperbolic modulo Δ if, for every x and y in
Xan \Δan with x �= y, the Kobayashi pseudo-distance dXan(p, q) is positive.

Definition 8.5. A variety X over C is pseudo-Kobayashi hyperbolic if there
is a proper closed subset Δ � X such that X is Kobayashi hyperbolic
modulo Δ.

It is clear from the definitions and the fact that the Kobayashi pseudo-
metric vanishes everywhere on C, that a variety X which is Kobayashi
hyperbolic modulo a closed subset Δ ⊂ X is Brody hyperbolic modulo
Δ. Nonetheless, the notion of pseudo-Kobayashi hyperbolicity remains quite
mysterious at the moment. Indeed, we do not know whether a pseudo-Brody
hyperbolic projective variety X over C is pseudo-Kobayashi hyperbolic.

One can show that the notion of pseudo-Kobayashi hyperbolicity is a
birational invariant. That is, if X and Y are proper integral varieties over
C which are birational, then X is pseudo-Kobayashi hyperbolic if and
only if Y is pseudo-Kobayashi hyperbolic; see [59]. Moreover, just like the
notions of pseudo-Mordellicity and pseudo-grouplessness, pseudo-Kobayashi
hyperbolicity descends along finite étale morphisms.

Yamanoi proved the pseudo-Kobayashi analogue of Bloch–Ochiai–
Kawamata’s theorem for closed subvarieties of abelian varieties; see [88,
Theorem 1.2].

Theorem 8.6 (Yamanoi). Let X be a closed subvariety of an abelian
variety A. Let Sp(X) be the special locus of X. Then Sp(X) is a closed subset
of X and X is Kobayashi hyperbolic modulo Sp(X).

The Lang–Vojta conjecture and the Green–Griffiths conjecture predict
that the above notions of hyperbolicity are equivalent. To state this conjec-
ture, we will need one more definition. (Recall that k denotes an algebraically
closed field of characteristic zero.)

Definition 8.7. A variety X over k is strongly-pseudo-Brody hyperbolic
(resp. strongly-pseudo-Kobayashi hyperbolic) if, for every subfield k0 ⊂ k,
every model X for X over k0, and every embedding k0 → C, the variety X0,C

is pseudo-Brody hyperbolic (resp. pseudo-Kobayashi hyperbolic).

Conjecture 8.8 (Strong Lang–Vojta, III). Let X be an integral projec-
tive variety over k. Then the following statements are equivalent.

(1) The variety X is strongly-pseudo-Brody hyperbolic over k.
(2) The variety X is strongly-pseudo-Kobayashi hyperbolic over k.
(3) The projective variety X is pseudo-Mordellic over k.
(4) The projective variety X is pseudo-arithmetically hyperbolic over k.
(5) The projective variety X is pseudo-groupless over k.
(6) The projective variety X is of general type over k.
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As stated this conjecture does not predict that every conjugate of a pseudo-
Brody hyperbolic variety is again pseudo-Brody hyperbolic. We state this as
a separate conjecture, as we did in Conjecture 3.10 for Brody hyperbolic
varieties.

Conjecture 8.9 (Conjugates of Pseudo-Brody Hyperbolic Vari-
eties). If X is an integral variety over k and σ is a field automorphism of
k, then the following statements hold.

(1) The variety X is pseudo-Brody hyperbolic if and only if Xσ is pseudo-
Brody hyperbolic.

(2) The variety X is pseudo-Kobayashi hyperbolic if and only if Xσ is
pseudo-Kobayashi hyperbolic.

We conclude this section with a brief discussion of a theorem of Kwack on
the algebraicity of holomorphic maps to a hyperbolic variety, and a possible
extension of his result to the pseudo-setting.

Remark 8.10 (Borel Hyperbolicity). Let X be a variety over C and let
Δ ⊂ X be a closed subset. We extend the notion of Borel hyperbolicity
introduced in [51] to the pseudo-setting and say that X is Borel hyperbolic
modulo Δ if, for every reduced variety S over C, every holomorphic map f :
San → Xan with f(San) �⊂ Δan is the analytification of a morphism ϕ : S →
X. The proof of [51, Lemma 3.2] shows that, if X is Borel hyperbolic modulo
Δ, then it is Brody hyperbolic modulo Δ. In [61] Kwack showed that, if X is
a proper Kobayashi hyperbolic variety, then X is Borel hyperbolic (modulo
the empty set). It seems reasonable to suspect that Kwack’s theorem also
holds in the pseudo-setting. Thus, we may ask: if X is Kobayashi hyperbolic
modulo Δ, does it follow that X is Borel hyperbolic modulo Δ?

The reader interested in investigating further complex-analytic notions
of hyperbolicity is also encouraged to have a look at the notion of taut-
hyperbolicity modulo a subset introduced by Kiernan–Kobayashi [58]; see
also [59, Chapter 5].

9 Algebraic Hyperbolicity

In the following three sections we investigate (a priori) different function field
analogues of Mordellicity. Conjecturally, they are all equivalent notions. At
this point it is also clear that hyperbolicity modulo a subset is more natural
to study (especially from a birational perspective) which is why we will give
the definitions in this more general context.

The notion we introduce in this section extends Demailly’s notion of
algebraic hyperbolicity [29, 50] to the pseudo-setting.
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Definition 9.1 (Algebraic Hyperbolicity Modulo a Subset). Let X
be a projective scheme over k and let Δ be a closed subset of X. We say
that X is algebraically hyperbolic over k modulo Δ if, for every ample line
bundle L on X, there is a real number αX,Δ,L depending only on X, Δ, and
L such that, for every smooth projective connected curve C over k and every
morphism f : C → X with f(C) �⊂ Δ, the inequality

degC f∗L ≤ αX,Δ,L · genus(C)

holds.

Definition 9.2. A projective scheme X is pseudo-algebraically hyperbolic
(over k) if there is a proper closed subset Δ such that X is algebraically
hyperbolic modulo Δ.

We will say that a projective scheme X is algebraically hyperbolic over k
if it is algebraically modulo the empty subset. This terminology is consistent
with that of [50].

The motivation for introducing and studying algebraically hyperbolic
projective schemes are the results of Demailly stated below. They say that
algebraic hyperbolicity lies between Brody hyperbolicity and grouplessness.
In particular, the Lang–Vojta conjectures as stated in the previous sections
imply that groupless projective varieties should be algebraically hyperbolic,
and that algebraically hyperbolic projective varieties should be Brody
hyperbolic. This observation is due to Demailly and allows one to split the
conjecture that groupless projective varieties are Brody hyperbolic into two
a priori different parts.

Before stating Demailly’s theorems, we note that it is not hard to see that
pseudo-algebraic hyperbolicity descends along finite étale maps, and that
pseudo-algebraic hyperbolicity for projective schemes is a birational invariant;
see [56, §4] for details. These two properties should be compared with their
counterparts for pseudo-grouplessness, pseudo-Mordellicity, pseudo-Brody
hyperbolicity, and pseudo-Kobayashi hyperbolicity.

Demailly’s theorem for projective schemes reads as follows.

Theorem 9.3 (Demailly). Let X be a projective scheme over C. If X is
Brody hyperbolic, then X is algebraically hyperbolic over C.

A proof of this is given in [29, Theorem 2.1] when X is smooth.
The smoothness of X is, however, not used in its proof. We stress that
it is not known whether a pseudo-Brody hyperbolic projective scheme is
pseudo-algebraically hyperbolic. On the other hand, Demailly proved that
algebraically hyperbolic projective schemes are groupless, and his proof can
be adapted to show the following more general statement.
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Theorem 9.4 (Demailly + ε). Let X be a projective scheme over k and
let Δ ⊂ X be a closed subset. If X is algebraically hyperbolic modulo Δ, then
X is groupless modulo Δ.

Proof. See [50] when Δ = ∅. The more general statement is proven in [56].
The argument involves the multiplication maps on an abelian variety. �

Combining Demailly’s theorems with Bloch–Ochiai–Kawamata’s theorem,
we obtain that a closed subvariety of an abelian variety over k is algebraically
hyperbolic over k if and only if it is groupless. The pseudo-version of this
theorem is due to Yamanoi (see Section 13 for a precise statement).

10 Boundedness

To say that a projective variety X is algebraically hyperbolic (Definition 9.1)
is to say that the degree of any curve C is bounded uniformly and linearly in
the genus of that curve. The reader interested in understanding how far we are
from proving that groupless projective schemes are algebraically hyperbolic
is naturally led to studying variants of algebraic hyperbolicity in which one
asks (in Definition 9.1 above) for “weaker” bounds on the degree of a map.
This led the authors of [50] to introducing the notion of boundedness. To
state their definition, we first recall some basic properties of moduli spaces
of morphisms between projective schemes.

Let S be a scheme, and letX → S and Y → S be projective flat morphisms
of schemes. By Grothendieck’s theory of Hilbert schemes and Quot schemes
[75], the functor

Sch/Sop → Sets, T → S 	→ HomT (YT , XT )

is representable by an S-scheme which we denote by HomS(X,Y ). Moreover,
for h ∈ Q[t] a polynomial, the subfunctor parametrizing morphisms whose
graph has Hilbert polynomial h is representable by a quasi-projective
subscheme Homh

S(Y,X) of HomS(Y,X). Similarly, the subfunctor of
HomS(X,X) parametrizing automorphisms of X over S is representable
by a locally finite type group scheme AutX/S over S. It is imperative to note
that this group scheme need not be quasi-compact. In fact, for a K3 surface X
over C, the scheme AutX/C is zero-dimensional. Nonetheless, there are K3
surfaces with infinitely many automorphisms. Thus, the automorphism group
scheme of a projective scheme over k is not necessarily of finite type (even
when it is zero-dimensional).

If S = Spec k, d ≥ 1 is an integer, and X = Y = P
1
k, let Homd

k(P
1
k,P

1
k)

be the subscheme of Homk(P
1
k,P

1
k) parametrizing morphisms of degree d. In

particular, we have that Hom1
k(P

1
k,P

1
k) = AutP1

k/k
= PGL2,k. For every d ≥ 1,
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the quasi-projective scheme Homd
k(P

1
k,P

1
k) is non-empty (and even positive-

dimensional). If we identity the subscheme of Homk(P
1
k,P

1
k) parametrizing

constant morphisms with P
1
k, then

Homk(P
1,P1

k) = P
1
k � PGL2,k �

∞⊔
d=2

Homd
k(P

1
k,P

1
k).

It follows that the scheme Homk(P
1,P1

k) has infinitely many connected
components. It is in particular not of finite type.

It turns out that studying projective varieties X over k for which every
Hom-scheme Homk(Y,X) is of finite type is closely related to studying
algebraically hyperbolic varieties. The aim of this section is to explain the
connection in a systematic manner as is done in [15, 50, 56]. We start with
the following definitions.

Definition 10.1 (Boundedness Modulo a Subset). Let n ≥ 1 be an
integer, letX be a projective scheme over k, and let Δ be a closed subset ofX.
We say that X is n-bounded over k modulo Δ if, for every normal projective
variety Y of dimension at most n, the scheme Homk(Y,X) \ Homk(Y,Δ) is
of finite type over k. We say that X is bounded over k modulo Δ if, for every
n ≥ 1, the scheme X is n-bounded modulo Δ.

Definition 10.2. Let n ≥ 1 be an integer. A projective scheme X over k is
pseudo-n-bounded over k if there is a proper closed subset Δ such that X is
n-bounded modulo Δ.

Definition 10.3. A projective scheme X over k is pseudo-bounded over k if
it is pseudo-n-bounded over k for every n ≥ 1.

Remark 10.4. At the beginning of this section we discussed the structure
of the scheme Homk(P

1
k,P

1
k). From that discussion it follows that P

1
k is not

1-bounded over k. In particular, if X is a 1-bounded projective variety over
k, then it has no rational curves. It is also not hard to show that P

1
k is not

pseudo-1-bounded by showing that, for every x in P
1(k), there is a y in P

1(k)
such that the set of morphisms f : P1

k → P
1
k with f(y) = x is infinite. We

refer the interested reader to Section 11 for a related discussion.

We say that X is bounded if it is bounded modulo the empty subset. We
employ similar terminology for n-bounded. This terminology is consistent
with that of [15, 50]. Let us start with looking at some implications and
relations between these a priori different notions of boundedness.

Boundedness is a condition on moduli spaces of maps from higher-
dimensional varieties. Although it might seem a priori stronger than 1-
boundedness, Lang–Vojta’s conjecture predicts their equivalence. In fact, we
have the following result from [50] which shows the equivalence of three a
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priori different notions. In this theorem, the implications (2) =⇒ (1) and
(3) =⇒ (1) are straightforward consequences of the definitions.

Theorem 10.5. Let X be a projective scheme over k. Then the following
are equivalent.

(1) The projective scheme X is 1-bounded over k.
(2) The projective scheme X is bounded over k.
(3) For every ample line bundle L and every integer g ≥ 0, there is an integer

α(X,L, g) such that, for every smooth projective connected curve C of
genus g over k and every morphism f : C → X, the inequality

degC f∗L ≤ α(X,L, g)

holds.

Proof. The fact that a 1-bounded scheme is n-bounded for every n ≥ 1 is
proven by induction on n in [50, §9]. The idea is that, if fi : Y → X is
a sequence of morphisms from an n-dimensional smooth projective variety
Y with pairwise distinct Hilbert polynomial, then one can find a smooth
hyperplane section H ⊂ Y such that the restrictions fi|H of these morphisms
fi to H still have pairwise distinct Hilbert polynomial.

The fact that a bounded scheme satisfies the “uniform” boundedness
property in (3) follows from reformulating this statement in terms of the
quasi-compactness of the universal Hom-stack of morphisms of curves of
genus g to X; see the proof of [50, Theorem 1.14] for details. �

Studying boundedness is “easier” than studying boundedness modulo
a subset Δ. Indeed, part of the analogue of this theorem for pseudo-
boundedness (unfortunately) requires an assumption on the base field k.

Theorem 10.6. Let X be a projective scheme over k, and let Δ be a closed
subset of X. Assume that k is uncountable. Then X is 1-bounded modulo
Δ if and only if X is bounded modulo Δ.

Proof. This is proven in [15], and the argument is similar to the proof of
Theorem 10.5. We briefly indicate how the uncountability of k is used.

Assume that X is 1-bounded modulo Δ. We show by induction on n that
X is n-bounded modulo Δ over k. If n = 1, then this holds by assumption.
Thus, let n > 1 be an integer and assume that X is (n− 1)-bounded modulo
Δ. Let Y be an n-dimensional projective reduced scheme and let fm : Y → X
be a sequence of morphisms with pairwise distinct Hilbert polynomial such
that, for every m = 1, 2, . . ., we have fm(Y ) �⊂ Δ. Since k is uncountable,
there is an ample divisor D in Y which is not contained in f−1

m (Δ) for all
m ∈ {1, 2, . . .}. Now, the restrictions fm|D : D → X have pairwise distinct
Hilbert polynomial and, for infinitely many m, we have that fm(D) �⊂ Δ.
This contradicts the induction hypothesis. We conclude that X is bounded
modulo Δ over k, as required. �
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The “pseudo” analogue of the equivalence between (2) and (3) in
Theorem 10.5 holds without any additional assumption on k; see [15].

Theorem 10.7. Let X be a projective scheme over k. Then X is bounded
modulo Δ over k if and only if, for every ample line bundle L and every
integer g ≥ 0, there is an integer α(X,L, g) such that, for every smooth
projective connected curve C of genus g over k and every morphism f : C →
X with f(C) �⊂ Δ, the inequality

degC f∗L ≤ α(X,L, g)

holds.

It is not hard to see that being pseudo-n-bounded descends along finite
étale maps. Also, if X and Y are projective schemes over k which are
birational, then X is pseudo-1-bounded if and only if Y is pseudo-1-bounded;
see [56, §4]. However, in general, it is not clear that pseudo-n-boundedness
is a birational invariant (unless n = 1 or k is uncountable).

It is shown in [15, 50] that pseudo-algebraically hyperbolic varieties are
pseudo-bounded. More precisely, one can prove the following statement.

Theorem 10.8. If X is algebraically hyperbolic modulo Δ over k, then X
is bounded modulo Δ.

Proof. This is proven in three steps in [15, §9]. First, one chooses an
uncountable algebraically closed field L containing k and shows that XL

is algebraically hyperbolic modulo ΔL. Then, one makes the “obvious”
observation that XL is 1-bounded modulo ΔL. Finally, as L is uncountable
and XL is 1-bounded modulo ΔL, it follows from Theorem 10.6 that XL is
bounded modulo ΔL. �

Demailly proved that algebraically hyperbolic projective varieties are
groupless (Theorem 9.4). His proof can be adapted to show the following
more general statement.

Proposition 10.9 (Demailly + ε). If X is 1-bounded modulo Δ over k,
then X is groupless modulo Δ.

11 Geometric Hyperbolicity

In the definition of Mordellicity over Q one considers the “finiteness of
arithmetic curves” on some model. On the other hand, the notions of
algebraic hyperbolicity and boundedness require one to test “boundedness
of curves”. In this section we introduce a new notion in which one considers
the “finiteness of pointed curves”.
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Definition 11.1 (Geometric Hyperbolicity Modulo a Subset). Let X
be a variety over k and let Δ be a closed subset of X. We say that X is
geometrically hyperbolic over k modulo Δ if, for every x in X(k) \ Δ, every
smooth connected curve C over k and every c in C(k), we have that the set
Homk((C, c), (X,x)) of morphisms f : C → X with f(c) = x is finite.

Definition 11.2. A variety X over k is pseudo-geometrically hyperbolic over
k if there is a proper closed subset Δ such that X is geometrically hyperbolic
modulo Δ.

We say that a variety X over k is geometrically hyperbolic over k if it is
geometrically hyperbolic modulo the empty subset. At this point we should
note that a projective scheme X over k is geometrically hyperbolic over k
if and only if it is “(1, 1)-bounded”. The latter notion is defined in [50,
§4], and the equivalence of these two notions is [50, Lemma 4.6] (see also
Proposition 11.4 below). The terminology “(1,1)-bounded modulo Δ” is used
in [15], and also coincides with being geometrically hyperbolic modulo Δ for
projective schemes by the results in [15, §9].

Remark 11.3 (Geometric Hyperbolicity Versus Arithmetic Hyper-
bolicity). Let us say that a scheme T is an arithmetic curve if there
is a number field K and a finite set of finite places S of K such that
T = SpecOK,S . Let X be a variety over Q. It is not hard to show that
the following two statements are equivalent.

(1) The variety X is arithmetically hyperbolic (or Mordellic) over Q.
(2) For every arithmetic curve C, every closed point c in C, every model X

for X over C, and every closed point x of X , the subset

HomC((C, c), (X , x)) ⊂ X (C)

of morphisms f : C → X with f(c) = x is finite.

Indeed, if (1) holds, then HomC(C,X ) is finite by definition, so that clearly
the set

HomC((C, c), (X , x))

is finite. Conversely, assume that (2) holds. Now, let C be an arithmetic curve
and let X be a model for X over C. To show that X (C) is finite, let c be a
closed point of C and let κ be its residue field. Then κ is finite and c lies in
C(κ). In particular, the image of c along any morphism C → X is a κ-point
of X . This shows that

X (C) ⊂
⋃

x∈X (κ)

HomC((C, c), (X , x)).
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Since X (κ) is finite and every set HomC((C, c), (X , x)) is finite, we conclude
that X (C) is finite, as required.

The second statement allows one to see the similarity between geometric
hyperbolicity and arithmetic hyperbolicity. Indeed, the variety X is geomet-
rically hyperbolic over Q if, for every integral algebraic curve C over Q, every
closed point c in C, and every closed point x of X, the set

Homk((C, c), (X,x)) = HomC((C, c), (X × C, (x, c)))

is finite.

Just like pseudo-grouplessness and pseudo-Mordellicity, it is not hard to see
that pseudo-geometric hyperbolicity descends along finite étale morphisms.
Also, if X and Y are projective varieties which are birational, then X is
pseudo-geometrically hyperbolic if and only if Y is pseudo-geometrically
hyperbolic.

The following proposition says that a projective scheme is geometrically
hyperbolic if and only if the moduli space of pointed maps is of finite type.
In other words, asking for boundedness of all pointed maps is equivalent to
asking for the finiteness of all sets of pointed maps.

Proposition 11.4. Let X be a projective scheme over k and let Δ be a
closed subset of X. Then the following are equivalent.

(1) For every smooth projective connected curve C over k, every c in C(k)
and every x in X(k)\Δ, the scheme Homk((C, c), (X,x)) is of finite type
over k.

(2) The variety X is geometrically hyperbolic modulo Δ.

Proof. This is proven in [15, §9]. The proof is a standard application of the
bend-and-break principle. Indeed, the implication (2) =⇒ (1) being obvious,
let us show that (1) =⇒ (2). Thus, let us assume that X is not geometrically
hyperbolic modulo Δ, so that there is a sequence f1, f2, . . . of pairwise distinct
elements of Homk((C, c), (X,x)), where C is a smooth projective connected
curve over k, c ∈ C(k) and x ∈ X(k) \ Δ. Since Homk((C, c), (X,x)) is
of finite type, the degree of all the fi is bounded by some real number
(depending only on X,Δ, c, x and C). In particular, it follows that some
connected component of Homk((C, c), (X,x)) has infinitely many elements.
As each connected component of Homk((C, c), (X,x)) is a finite type scheme
over k, it follows from bend-and-break [27, Proposition 3.5] that there is a
rational curve in X containing x. This contradicts the fact that every rational
curve in X is contained in Δ (by Proposition 11.7). �

This proposition has the following consequence.

Corollary 11.5. Let X be a projective scheme over k and let Δ be a proper
closed subset of X. If X is 1-bounded modulo Δ, then X is geometrically
hyperbolic modulo Δ.
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Proof. If X is 1-bounded, then it is clear that, for every smooth projective
connected curve C, every c in C(k) and every x in X(k) \ Δ, the scheme
Homk((C, c), (X,x)) is of finite type over k. Indeed, the latter scheme is
closed in the scheme Homk(C,X), and contained in the quasi-projective
subscheme Homk(C,X) \ Homk(C,Δ). Therefore, the result follows from
Proposition 11.4. �
Remark 11.6. Urata showed that a Brody hyperbolic projective variety
over C is geometrically hyperbolic over C; see [59, Theorem 5.3.10] (or the
original [84]). Note that Corollary 11.5 generalizes Urata’s theorem (in the
sense that the assumption in Corollary 11.5 is a priori weaker than being
Brody hyperbolic, and we also allow for an “exceptional set” Δ). Indeed,
as a Brody hyperbolic projective variety is 1-bounded (even algebraically
hyperbolic), Urata’s theorem follows directly from Corollary 11.5.

Demailly’s argument to show that algebraically hyperbolic projective vari-
eties are groupless (Theorem 9.4) can be adapted to show that geometrically
hyperbolic projective varieties are groupless; see [56] for a detailed proof.

Proposition 11.7. Let X be a projective variety over k and let Δ be a
closed subset of X. If X is geometrically hyperbolic modulo Δ over k, then
X is groupless modulo Δ over k.

12 The Conjectures Summarized

After a lengthy preparation, we are finally ready to state the complete version
of Lang–Vojta’s conjecture.

Conjecture 12.1 (Strong Lang–Vojta, IV). Let X be an integral projec-
tive variety over k. Then the following statements are equivalent.

(1) The variety X is strongly-pseudo-Brody hyperbolic over k.
(2) The variety X is strongly-pseudo-Kobayashi hyperbolic.
(3) The projective variety X is pseudo-Mordellic over k.
(4) The projective variety X is pseudo-arithmetically hyperbolic over k.
(5) The projective variety X is pseudo-groupless over k.
(6) The projective variety X is pseudo-algebraically hyperbolic over k.
(7) The projective variety X is pseudo-bounded over k.
(8) The projective variety X is pseudo-1-bounded over k.
(9) The projective variety X is pseudo-geometrically hyperbolic over k.

(10) The projective variety X is of general type over k.

Conjecture 12.1 is the final version of the Lang–Vojta conjecture for
pseudo-hyperbolic varieties, and also encompasses Green–Griffiths’s conjec-
ture for projective varieties of general type. We note that one aspect of the
Lang–Vojta conjecture and the Green–Griffiths conjecture that is ignored
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in this conjecture is whether the conjugate of a Brody hyperbolic variety is
Brody hyperbolic (see Conjectures 3.10 and 8.9).

The following implications are known. First, (6) =⇒ (7), (7) =⇒ (8),
(8) =⇒ (9), and (9) =⇒ (5). Also, (3) =⇒ (4), (3) =⇒ (5). Finally,
(2) =⇒ (1) and (1) =⇒ (5). The following diagram summarizes these
known implications. The content of the Strong Lang–Vojta conjecture is that
all the notions appearing in this diagram are equivalent.

pseudo-
algebraically
hyperbolic

=⇒ pseudo-bounded =⇒ pseudo-1-bounded =⇒ pseudo-
geometrically
hyperbolic

=⇒

pseudo-Mordellic =⇒ pseudo-
arithmetically
hyperbolic

=⇒ pseudo-groupless

=
⇒

strongly-pseudo-
Kobayashi
hyperbolic

=⇒ stongly-pseudo-
Brody hyperbolic

We stress that the Strong Lang–Vojta conjecture is concerned with
classifying projective varieties of general type via their complex-analytic or
arithmetic properties. Recall that Campana’s special varieties can be consid-
ered as being opposite to varieties of general type. As Campana’s conjectures
are concerned with characterizing special varieties via their complex-analytic
or arithmetic properties, his conjectures should be considered as providing
another part of the conjectural picture. We refer the reader to [16] for a
discussion of Campana’s conjectures.

The following conjecture is only concerned with hyperbolic varieties and
is, therefore, a priori weaker than the Strong Lang-Vojta conjecture. It is
not clear to us whether the Strong Lang–Vojta conjecture can be deduced
from the following weaker version, as there are pseudo-hyperbolic projective
varieties which are not birational to a hyperbolic projective variety.

Conjecture 12.2 (Weak Lang–Vojta, IV). Let X be an integral projec-
tive variety over k. Then the following statements are equivalent.

(1) The variety X is strongly-Brody hyperbolic over k.
(2) The variety X is strongly-Kobayashi hyperbolic over k.
(3) The projective variety X is Mordellic over k.
(4) The projective variety X is arithmetically hyperbolic over k.
(5) The projective variety X is groupless over k.
(6) The projective variety X is algebraically hyperbolic over k.
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(7) The projective variety X is bounded over k.
(8) The projective variety X is 1-bounded over k.
(9) The projective variety X is geometrically hyperbolic over k.

(10) Every integral subvariety of X is of general type.

Remark 12.3 (Strong Implies Weak). Let us illustrate why the strong
Lang–Vojta conjecture implies the Weak Lang–Vojta conjecture. To do so,
let X be a projective variety. Assume that X is groupless. Then X is pseudo-
groupless. Thus, by the Strong Lang–Vojta conjecture, we have that X is
Mordellic modulo some proper closed subset Δ ⊂ X. Now, since X is
groupless, it follows that Δ is groupless. Repeating the above argument shows
that Δ is Mordellic, so that X is Mordellic.

We know more about the Weak Lang–Vojta conjecture than we do about
the Strong Lang–Vojta conjecture. Indeed, it is known that (1) ⇐⇒ (2) by
Brody’s Lemma. Also, it is not hard to show that (2) =⇒ (5). Moreover,
we know that (3) =⇒ (4) and (4) =⇒ (5). Of course, we also have that
(6) =⇒ (7), (7) =⇒ (8), and (8) ⇐⇒ (9). In addition, we also have
that (1) =⇒ (6) and that (10) =⇒ (5). Figure 1 summarizes these known
implications.

Figure 2 below illustrates a projective variety which satisfies the Weak
Lang–Vojta conjecture. The picture shows that this variety has infinitely
many points valued in a number field (in orange), admits an entire curve
(in blue), admits algebraic maps of increasing degree from some fixed curve
(in red), and admits a non-constant map from an abelian variety (in green). It
is therefore a non-Mordellic, non-Brody hyperbolic, non-bounded, and non-
groupless projective variety.

12.1 The Conjecture on Exceptional Loci

We now define the exceptional loci for every notion that we have seen so far.
As usual, we let k be an algebraically closed field of characteristic zero.

Definition 12.4. Let X be a variety over k.

• We define Δgr
X to be the intersection of all proper closed subset Δ such that

X is groupless modulo Δ. Note that Δgr
X is a closed subset of X and that

X is groupless modulo Δgr
X . We refer to Δgr

X as the groupless-exceptional
locus of X.

• We define Δar−hyp
X to be the intersection of all proper closed subsets

Δ such that X is arithmetically hyperbolic modulo Δ. Note that X is
arithmetically hyperbolic modulo Δar−hyp

X . We refer to Δar−hyp
X as the

arithmetic-exceptional locus of X.
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fixed curve

complex plane abelian variety

maps of increasing degree

infinitely many points
over a number field

holomorphic map

Fig. 1 A projective variety satisfying the Weak Lang-Vojta conjecture

Kobayashi
hyperbolic ⇐⇒ Brody

hyperbolic=⇒

algebraically
hyperbolic =⇒ bounded ⇐⇒ 1-bounded =⇒ geometrically

hyperbolic=⇒

Mordellic =⇒ arithmetically
hyperbolic =⇒ groupless

Fig. 2 Known implications between notions of hyperbolicity



The Lang–Vojta Conjectures on Projective Pseudo-Hyperbolic Varieties 173

• We define ΔMor
X to be the intersection of all proper closed subsets Δ such

that X is Mordellic modulo Δ. Note that X is Mordellic modulo ΔMor
X .

We refer to ΔMor
X as the Mordellic-exceptional locus of X.

Assuming X is a proper variety over k for a moment, it seems worthwhile
stressing that Δgr

X equals the (Zariski) closure of Lang’s algebraic exceptional
set Excalg(X) as defined in [62, p. 160].

Definition 12.5. Let X be a variety over C.

• We let ΔBr
X be the intersection of all closed subsets Δ such that X is Brody

hyperbolic modulo Δ. Note that ΔBr
X is a closed subset of X and that X is

Brody hyperbolic modulo ΔBr
X . We refer to ΔBr

X as the Brody-exceptional
locus of X.

• We let ΔKob
X be the intersection of all closed subsets Δ such that X is

Kobayashi hyperbolic modulo Δ. Note that ΔKob
X is a closed subset of X

and that X is Kobayashi hyperbolic modulo ΔKob
X . We refer to ΔKob

X as
the Kobayashi-exceptional locus of X.

We note that ΔBr
X coincides with Lang’s analytic exceptional set Exc(X)

(defined in [62, p. 160]). Indeed, Exc(X) is defined to be the Zariski closure
of the union of all images of non-constant entire curves C → Xan.

Definition 12.6. Let X be a projective scheme over k.

• We define Δalg−hyp
X to be the intersection of all proper closed subsets Δ

such that X is algebraically hyperbolic modulo Δ. Note that Δalg−hyp
X is a

proper closed subset of X and that X is algebraically hyperbolic modulo
Δalg−hyp

X . We refer to Δalg−hyp
X as the algebraic exceptional locus of X.

• For n ≥ 1, we define Δn−bounded
X to be the intersection of all proper closed

subsets Δ such that X is n-bounded modulo Δ. Note that Δn−bounded
X is

a proper closed subset of X and that X is n-bounded modulo Δn−bounded
X .

We refer to Δn−bounded
X as the n-bounded-exceptional locus of X.

• We define Δbounded
X to be the intersection of all proper closed subsets Δ

such that X is bounded modulo Δ. Note that Δbounded
X is a proper closed

subset of X and that X is bounded modulo Δbounded
X . We refer to Δbounded

X

as the bounded-exceptional locus of X.
• We define Δgeom−hyp

X to be the intersection of all proper closed subsets Δ

such that X is geometrically hyperbolic modulo Δ. Note that Δgeom−hyp
X

is a proper closed subset of X and that X is geometrically hyperbolic
modulo Δgeom−hyp

X . We refer to Δgeom−hyp
X as the geometric-exceptional

locus of X.

The strongest version of Lang–Vojta’s conjecture stated in these notes
claims the equality of all exceptional loci. Note that these loci are all, by
definition, closed subsets. This is to be contrasted with Lang’s definition of
his “algebraic exceptional set” (see [62, p. 160]).
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Conjecture 12.7 (Strongest Lang–Vojta Conjecture). Let k be an
algebraically closed field of characteristic zero. Let X be an integral projective
variety over k. Then the following three statements hold.

(1) We have that

Δgr
X = ΔMor

X = Δgeom−hyp
X = Δ1−bounded

X = Δbounded
X = Δalg−hyp

X .

(2) The projective variety X is of general type if and only if Δgr
X �= X.

(3) If k = C, then Δgr
X = ΔBr

X = ΔKob
X .

Remark 12.8 (Which Inclusions Do We Know?). Let X be a projec-
tive scheme over k. We have that

Δgr
X ⊂ Δar−hyp

X ⊂ ΔMor
X ,

and

Δgr
X ⊂ Δgeom−hyp

X ⊂ Δ1−bounded
X ⊂ Δbounded

X ⊂ Δalg−hyp
X .

If k is uncountable, then

Δ1−bounded
X = Δbounded

X .

If k = C, then

Δgr
X ⊂ ΔBr

X ⊂ ΔKob
X .

Remark 12.9 (Reformulating Brody’s Lemma). It is not known
whether ΔKob

X ⊂ ΔBr
X . Brody’s lemma can be stated as saying that, if

ΔBr
X is empty, then ΔKob

X is empty.

Remark 12.10 (Reformulating Demailly’s Theorem). It is not known

whether Δalg−hyp
X ⊂ ΔKob

X . Demailly’s theorem (Theorem 9.4) can be stated
as saying that, if ΔKob is empty, then Δalg−hyp is empty.

13 Closed Subvarieties of Abelian Varieties

We have gradually worked our way towards the following theorem which says
that the Strongest Lang–Vojta conjecture holds for closed subvarieties of
abelian varieties. Recall that, for X a closed subvariety of an abelian variety
A, the subset Sp(X) is defined to be the union of translates of positive-
dimensional abelian subvarieties of A contained in A. It is a fundamental
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fact that Sp(X) is a closed subset of X. It turns out that Sp(X) is the
“exceptional locus” of X in any sense of the word “exceptional locus”.

Theorem 13.1 (Bloch–Ochiai–Kawamata, Faltings, Yamanoi,
Kawamata–Ueno). Let A be an abelian variety over k, and let X ⊂ A be
a closed subvariety. Then the following statements hold.

(1) We have that Sp(X) �= X of X equals if and only if X is of general type.
(2) We have that

Sp(X) = Δgr
X = ΔMor

X = Δar−hyp
X = Δgeom−hyp

X = Δ1−bounded
X

= Δbounded
X = Δalg−hyp

X .

(3) If k = C, then Δgr
X = ΔBr

X = ΔKob
X .

Proof. The fact that Sp(X) �= X if and only if X is of general type is due to
Kawamata–Ueno (see also Theorem 5.1). Moreover, an elementary argument
(see Example 6.11) shows that X is groupless modulo Sp(X), so that Δgr

X ⊂
Sp(X). On the other hand, it is clear from the definition that Sp(X) ⊂ Δgr

X .
This shows that Sp(X) = Δgr

X .
By Faltings’s theorem (Theorem 7.15), we have thatX is Mordellic modulo

Sp(X). This shows that ΔMor
X = Δar−hyp

X = Δgr
X = Sp(X). (One can also

show that Δar−hyp
X = ΔMor

X without appealing to Faltings’s theorem. Indeed,
as X is a closed subvariety of an abelian variety, it follows from Corollary 7.33
that X is arithmetically hyperbolic modulo Δ if and only if X is Mordellic
modulo Δ.)

It follows from Bloch–Ochiai–Kawamata’s theorem that ΔBr
X = Sp(X).

Yamanoi improved this result and showed that ΔKob
X = Sp(X); see The-

orem 8.6 (or the original [88, Theorem 1.2]). In his earlier work [87,

Corollary 1.(3)], Yamanoi proved that Δalg−hyp
X = Sp(X). Since

Δgeom−hyp
X ⊂ Δ1−bounded

X ⊂ Δbounded
X ⊂ Δalg−hyp

X ,

this concludes the proof. �

14 Evidence for Lang–Vojta’s Conjecture

In the previous sections, we defined every notion appearing in Lang–Vojta’s
conjecture, and we stated the “Strongest”, “Stronger”, and “Weakest” ver-
sions of Lang–Vojta’s conjectures. We also indicated the known implications
between these notions, and that the Strongest Lang–Vojta conjecture is
known to hold for closed subvarieties of abelian varieties by work of Bloch–
Ochiai–Kawamata, Faltings, Kawamata–Ueno, and Yamanoi.
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In the following four sections, we will present some evidence for Lang–
Vojta’s conjectures. The results in the following sections are all in accordance
with the Lang–Vojta conjectures.

15 Dominant Rational Self-maps of
Pseudo-Hyperbolic Varieties

Let us start with a classical finiteness result of Matsumura [45, §11].

Theorem 15.1 (Matsumura). If X is a proper integral variety of general
type over k, then the set of dominant rational self-maps X ��� X is finite.

Note that Matsumura’s theorem is a vast generalization of the statement
that a smooth curve of genus at least two has only finitely many automor-
phisms. Motivated by Lang–Vojta’s conjecture, the arithmetic analogue of
Matsumura’s theorem is proven in [56] (building on the results in [49]) and
can be stated as follows.

Theorem 15.2. If X is a proper pseudo-Mordellic integral variety over k,
then the set of rational dominant self-maps X ��� X is finite.

Idea of Proof. We briefly indicate three ingredients of the proof of Theo-
rem 15.2.

(1) First, one can use Amerik’s theorem on dynamical systems [5] to show
that every dominant rational self-map is a birational self-map of finite
order whenever X is a pseudo-Mordellic projective variety.

(2) One can show that, if X is a projective integral variety over k such that
Autk(X) is infinite, then Autk(X) has an element of infinite order. (It is
crucial here that k is of characteristic zero.) This result is proven in [49].

(3) IfX is a projective non-uniruled integral variety over k such that Birk(X)
is infinite, then Birk(X) has a point of infinite order. To prove this, one
can use Prokhorov–Shramov’s notion of quasi-minimal models (see [79])
to reduce to the analogous finiteness result for automorphisms stated in
(2). The details are in [56].

Combining (1) and (3), one obtains the desired result for pseudo-Mordellic
projective varieties (Theorem 15.2). �

There is a similar finiteness statement for pseudo-algebraically hyperbolic
varieties. This finiteness result is proven in [50] for algebraically hyperbolic
varieties, and in [56] for pseudo-algebraically hyperbolic varieties.

Theorem 15.3. If X is a projective pseudo-algebraically hyperbolic integral
variety over k, then the set of dominant rational self-maps X ��� X is finite.

In fact, more generally, we have the following a priori stronger result.
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Theorem 15.4. If X is a projective pseudo-1-bounded integral variety over
k, then the set of dominant rational self-maps X ��� X is finite.

Proof. For 1-bounded varieties this is proven in [50]. The more general
statement for pseudo-1-bounded varieties is proven in [56] by combining
Amerik’s theorem [5] and Prokhorov–Shramov’s theory of quasi-minimal
models [79] with Weil’s Regularization Theorem and properties of dynamical
degrees of rational dominant self-maps. �

As the reader may have noticed, for pseudo-Mordellic, pseudo-algebraically
hyperbolic, and pseudo-1-bounded projective varieties we have satisfying
results.

What do we know in the complex-analytic setting? We have the following
result of Noguchi [59, Theorem 5.4.4] for Brody hyperbolic varieties.

Theorem 15.5 (Noguchi). If X is a Brody hyperbolic projective integral
variety over C, then BirC(X) is finite.

First Proof of Theorem 15.5. Since a Brody hyperbolic projective integral
variety over C is bounded by, for instance, Demailly’s theorem (Theorem 9.4),
this follows from Theorem 15.4. �
Second Proof of Theorem 15.5. Let Y → X be a resolution of singularities
of X. Note that, every birational morphism X ��� X induces a dominant
rational map Y ��� X. Since X has no rational curves (as X is Brody
hyperbolic) and Y is smooth, by [50, Lemma 3.5], the rational map Y ��� X
extends uniquely to a surjective morphism Y → X.

Therefore, we have that

BirC(X) ⊂ SurC(Y,X)

Noguchi proved that the latter set is finite (see Theorem 16.1 below). He does
so by showing that it is the set of C-points on a finite type zero-dimensional
scheme over C. We discuss this result of Noguchi in more detail in the next
section. �

It is important to note that, in light of Green–Griffiths’ and Lang–Vojta’s
conjectures, one expects an analogous finiteness result for pseudo-Brody
hyperbolic varieties (as pseudo-Brody hyperbolic varieties should be of
general type). This is, however, not known, and we state it as a separate
conjecture.

Conjecture 15.6 (Pseudo-Noguchi, I). If X is a pseudo-Brody hyper-
bolic projective integral variety over C, then BirC(X) is finite.

Remark 15.7 (What Do We Not Know Yet?). First, it is not known
whether the automorphism group of a groupless projective variety is finite.
Also, it is not known whether a pseudo-Kobayashi hyperbolic projective
variety has a finite automorphism group. Moreover, it is not known whether
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a geometric hyperbolic projective variety has only finitely many automor-
phisms. As these problems are unresolved, the finiteness of the set of
birational self-maps is also still open.

16 Finiteness of Moduli Spaces of Surjective
Morphisms

Our starting point in this section is the following finiteness theorem of
Noguchi for dominant rational maps from a fixed variety to a hyperbolic
variety (formerly a conjecture of Lang); see [59, §6.6] for a discussion of the
history of this result.

Theorem 16.1 (Noguchi). If X is a Brody hyperbolic proper variety over
C and Y is a projective integral variety over C, then the set of dominant
rational maps f : Y ��� X is finite.

In light of Lang–Vojta’s conjecture, any “hyperbolic” variety should satisfy
a similar finiteness property. In particular, one should expect similar (hence
more general) results for bounded varieties, and such results are obtained in
[50] over arbitrary algebraically closed fields k of characteristic zero.

Theorem 16.2. If X is a 1-bounded projective variety over k and Y is a
projective integral variety over k, then the set of dominant rational maps
f : Y ��� X is finite.

In particular, the same finiteness statement holds for bounded varieties
and algebraically hyperbolic varieties. Indeed, such varieties are (obviously)
1-bounded.

Corollary 16.3. If X is a bounded projective variety over k (e.g., alge-
braically hyperbolic variety over k) and Y is a projective integral variety over
k, then the set of dominant rational maps f : Y ��� X is finite.

We now make a “pseudo”-turn. In fact, the finiteness result of Noguchi
should actually hold under the weaker assumption that X is only pseudo-
Brody hyperbolic. To explain this, recall that Kobayashi–Ochiai proved a
finiteness theorem for dominant rational maps from a given variety Y to
a fixed variety of general type X which generalizes Matsumura’s finiteness
theorem for the group Birk(X) (Theorem 15.1).

Theorem 16.4 (Kobayashi–Ochiai). Let X be a projective variety over
k of general type. Then, for every projective integral variety Y , the set of
dominant rational maps f : Y ��� X is finite.

In light of Lang–Vojta’s conjectures and Kobayashi–Ochiai’s theorem, any
“pseudo-hyperbolic” variety should satisfy a similar finiteness property. For
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example, Lang–Vojta’s conjecture predicts a similar finiteness statement for
pseudo-Brody hyperbolic projective varieties. We state this as a conjecture.
Note that this conjecture is the “pseudo”-version of Noguchi’s theorem
(Theorem 16.1), and clearly implies Conjecture 15.6.

Conjecture 16.5 (Pseudo-Noguchi, II). If X is a pseudo-Brody hyper-
bolic proper variety over C and Y is a projective integral variety over C, then
the set of dominant rational maps f : Y ��� X is finite.

Now, as any “pseudo-hyperbolic” variety is pseudo-groupless, it is natural
to first try and see what one can say about pseudo-groupless varieties. For
simplicity, we will focus on surjective morphisms (as opposed to dominant
rational maps) in the rest of this section.

There is a standard approach to establishing the finiteness of the set of
surjective morphisms from one projective scheme to another. To explain
this, let us recall some notation from Section 10. Namely, if X and Y are
projective schemes over k, we let Homk(Y,X) be the scheme parametrizing
morphisms X → Y . Note that Homk(Y,X) is a countable disjoint union of
quasi-projective schemes over k. Moreover, we let Surk(Y,X) be the scheme
parametrizing surjective morphisms Y → X, and note that Surk(Y,X) is a
closed subscheme of Homk(Y,X).

The standard approach to establishing the finiteness of the set Surk(Y,X)
is to interpret it as the set of k-points on the scheme Surk(Y,X). This
makes it tangible to techniques from deformation theory. Indeed, to show that
Surk(Y,X) is finite, it suffices to establish the following two statements:

(1) The tangent space to each point of Surk(Y,X) is trivial;
(2) The scheme Surk(Y,X) has only finitely many connected components.

It is common to refer to the first statement as a rigidity statement, as
it boils down to showing that the objects parametrized by Surk(Y,X) are
infinitesimally rigid. Also, it is standard to refer to the second statement as
being a boundedness property. For example, if Y and X are curves and X is
of genus at least two, the finiteness of Surk(Y,X) is proven precisely in this
manner; see [70, §II.8]. We refer the reader to [60] for a further discussion
of the rigidity/boundedness approach to proving finiteness results for other
moduli spaces.

We now focus on the rigidity of surjective morphisms Y → X. The
following rigidity theorem for pseudo-groupless varieties will prove to be
extremely useful. This result is a consequence of a much more general
statement about the deformation space of a surjective morphism due to
Hwang–Kebekus–Peternell [44].

Theorem 16.6 (Hwang–Kebekus–Peternell + ε). If Y is a projective
normal variety over k and X is a pseudo-groupless projective variety over k,
then the scheme Surk(Y,X) is a countable disjoint union of zero-dimensional
smooth projective schemes over k.
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Proof. As is shown in [56], this is a consequence of Hwang–Kebekus–
Peternell’s result on the infinitesimal deformations of a surjective morphism
Y → X. Indeed, since X is non-uniruled (Remark 6.7), for every such
surjective morphism f : Y → X, there is a finite morphism Z → X and a
morphism Y → Z such that f is the composed map Y → Z → X. Moreover,
the identity component Aut0Z/k of the automorphism group scheme surjects
onto the connected component of f in Homk(Y,X). Since X is pseudo-
groupless, the same holds for Z. It is then not hard to verify that Aut0Z/k is
trivial, so that the connected component of f in Homk(Y,X) is trivial. �
Remark 16.7. There are projective varieties X which are not pseudo-
groupless over k, but for which the conclusion of the theorem above still
holds. For example, a K3 surface or the blow-up of a simple abelian surface
A in its origin. This means that the rigidity of surjective morphisms follows
from properties strictly weaker than pseudo-hyperbolicity. We refer to [56]
for a more general statement concerning rigidity of surjective morphisms.

When introducing the notions appearing in Lang–Vojta’s conjecture,
we made sure to emphasize that every one of these is pseudo-groupless.
Thus, roughly speaking, any property we prove for pseudo-groupless varieties
holds for all pseudo-hyperbolic varieties. This gives us the following rigidity
statement.

Corollary 16.8 (Rigidity for Pseudo-Hyperbolic Varieties). Let X be
a projective integral variety over k and let Y be a projective normal variety
over k. Assume that one of the following statements holds.

(1) The variety X is pseudo-groupless over k.
(2) The variety X is pseudo-Mordellic over k.
(3) The projective variety X is pseudo-algebraically hyperbolic over k.
(4) The projective variety X is pseudo-1-bounded over k.
(5) The projective variety X is pseudo-bounded over k.
(6) The variety X is pseudo-geometrically hyperbolic over k.
(7) The field k equals C and X is pseudo-Brody hyperbolic.

Then the scheme Surk(Y,X) is a countable disjoint union of zero-dimensional
smooth projective schemes over k.

Proof. Assume that either (1)–(6) or (7) holds. Then X is pseudo-groupless
(as explained throughout these notes), so that the result follows from
Theorem 16.6. �

Proving the finiteness of Surk(Y,X) or, equivalently, the boundedness of
Surk(Y,X), for X pseudo-groupless or pseudo-Mordellic seems to be out of
reach currently. However, for pseudo-algebraically hyperbolic varieties the
desired finiteness property is proven in [56] and reads as follows.
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Theorem 16.9. If X is a pseudo-algebraically hyperbolic projective variety
over k and Y is a projective integral variety over k, then the set of surjective
morphisms f : Y → X is finite.

A similar result can be obtained for pseudo-bounded varieties. The precise
result can be stated as follows.

Theorem 16.10. If X is a pseudo-bounded projective variety over k and Y
is a projective integral variety over k, then the set of surjective morphisms
f : Y → X is finite.

To prove the analogous finiteness property for pseudo-1-bounded varieties,
we require (as in the previous section) an additional uncountability assump-
tion on the base field.

Theorem 16.11. Assume k is uncountable. If X is a pseudo-1-bounded
projective variety over k and Y is a projective integral variety over k, then
the set of surjective morphisms f : Y → X is finite.

We conclude with the following finiteness result for pseudo-algebraically
hyperbolic varieties. It is proven in [56] using (essentially) the results in
this section and the fact that pseudo-algebraically hyperbolic varieties are
pseudo-geometrically hyperbolic.

Theorem 16.12. If X is algebraically hyperbolic modulo Δ over k, then for
every connected reduced projective variety Y over k, every non-empty closed
reduced subset B ⊂ Y , and every reduced closed subset A ⊂ X not contained
in Δ, the set of morphisms f : Y → X with f(B) = A is finite.

Note that Theorem 16.12 can be applied with B a point or B = Y . This
shows that the statement generalizes the finiteness result of this section.

17 Hyperbolicity Along Field Extensions

In this section we study how different notions of pseudo-hyperbolicity
appearing in Lang–Vojta’s conjectures (except for those that only make sense
over C a priori) behave under field extensions. In other words, we study how
the exceptional locus for each notion of hyperbolicity introduced in Section 12
behaves under field extensions.

Let us start with X a variety of general type over a field k, and let k ⊂ L
be a field extension. It is natural to wonder whether XL is also of general
type over L. A simple argument comparing the spaces of global sections of
ωX/k and ωXL/L shows that this is indeed the case. This observation is our
starting point in this section. Indeed, the mere fact that varieties of general
type remain varieties of general type after a field extension can be paired
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with the Strong Lang–Vojta conjecture to see that similar statements should
hold for pseudo-groupless varieties, pseudo-Mordellic varieties, and so on.

The first three results we state in this section say that this “base-change”
property can be proven in some cases. For proofs we refer to [15, 50, 56].

Theorem 17.1. Let k ⊂ L be an extension of algebraically closed fields of
characteristic zero. Let X be a projective scheme over k and let Δ be a closed
subset of X. Then the following statements hold.

(1) If X is of general type over k, then XL is of general type over L.
(2) If X is groupless modulo Δ, then XL is groupless modulo ΔL.
(3) If X is algebraically hyperbolic modulo Δ, then XL is algebraically

hyperbolic modulo ΔL.
(4) If X is bounded modulo Δ, then XL is bounded modulo ΔL.

In this theorem we are missing (among others) the notions of 1-
boundedness and geometric hyperbolicity. In this direction we have the
following result; see [15, 46].

Theorem 17.2. Let k ⊂ L be an extension of uncountable algebraically
closed fields of characteristic zero. Let X be a projective scheme over k and
let Δ be a closed subset of X. Then the following statements hold.

(1) If X is 1-bounded modulo Δ, then XL is bounded modulo ΔL.
(2) If X is geometrically hyperbolic modulo Δ, then XL is geometrically

hyperbolic modulo ΔL.

If Δ = ∅, then we do not need to impose uncountability.

Theorem 17.3. Let k ⊂ L be an extension of algebraically closed fields of
characteristic zero. Let X be a projective scheme over k and let Δ be a closed
subset of X. Then the following statements hold.

(1) If X is 1-bounded, then XL is bounded.
(2) If X is geometrically hyperbolic, then XL is geometrically hyperbolic.

The reader will have noticed the absence of the notion of Mordellicity and
arithmetic hyperbolicity above. The question of whether an arithmetically
hyperbolic variety over Q remains arithmetically hyperbolic over a larger
field is not an easy one in general, as should be clear from the following
remark.

Remark 17.4 (Persistence of Arithmetic Hyperbolicity). Let
f1, . . . , fr ∈ Z[x1, . . . , xn] be polynomials, and let X := Z(f1, . . . , fr) =
Spec(Q[x1, . . . , xn]/(f1, . . . , fr) ⊂ A

n
Q

be the associated affine variety over

Q. To say that X is arithmetically hyperbolic over Q is to say that, for
every number field K and every finite set of finite places S of K, the set of
a = (a1, . . . , an) ∈ On

K,S with f1(a) = . . . = fr(a) = 0 is finite. On the other
hand, to say that XC is arithmetically hyperbolic over C is to say that, for
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every Z-finitely generated subring A ⊂ C, the set of a = (a1, . . . , an) ∈ An

with f1(a) = . . . = fr(a) = 0 is finite.

Despite the apparent difference between being arithmetically hyperbolic
over Q and being arithmetically hyperbolic over C, it seems reasonable to
suspect their equivalence. For X a projective variety, the following conjecture
is a consequence of the Weak Lang–Vojta conjecture for X. However, as it
also seems reasonable in the non-projective case, we state it in this more
generality.

Conjecture 17.5 (Persistence Conjecture). Let k ⊂ L be an extension
of algebraically closed fields of characteristic zero. Let X be a variety over k
and let Δ be a closed subset of X. If X is arithmetically hyperbolic modulo
Δ over k, then XL is arithmetically hyperbolic modulo ΔL over L.

Note that we will focus throughout on arithmetic hyperbolicity (as
opposed to Mordellicity) as its persistence along field extensions is easier
to study. The reader may recall that the difference between Mordellicity and
arithmetic hyperbolicity disappears for many varieties (e.g., affine varieties);
see Section 7.3 for a discussion.

This conjecture is investigated in [15, 46, 49, 52]. As a basic example, the
reader may note that Faltings proved that a smooth projective connected
curve of genus at least two over Q is arithmetically hyperbolic over Q in [32].
He then later explained in [33] that Grauert–Manin’s function field version
of the Mordell conjecture can be used to prove that a smooth projective
connected curve of genus at least two over k is arithmetically hyperbolic
over k.

In the rest of this section, we will present some results on the Persistence
Conjecture. We start with the following result.

Theorem 17.6. Let k ⊂ L be an extension of algebraically closed fields
of characteristic zero. Let X be an arithmetically hyperbolic variety over k
such that XL is geometrically hyperbolic over L. Then XL is arithmetically
hyperbolic over L.

Note that Theorem 17.6 implies that the Persistence Conjecture holds for
varieties over k which are geometrically hyperbolic over any field extension
of L.

Theorem 17.6 is inspired by Martin-Deschamps’s proof of the arithmetic
Shafarevich conjecture over finitely generated fields (see also Remark 7.34).
Indeed, in Szpiro’s seminar [82], Martin-Deschamps gave a proof of the
arithmetic Shafarevich conjecture by using a specialization argument on
the moduli stack of principally polarized abelian schemes; see [68]. This
specialization argument resides on Faltings’s theorem that the moduli space
of principally polarized abelian varieties of fixed dimension over C is
geometrically hyperbolic over C. We note that Theorem 17.6 is essentially
implicit in her line of reasoning.
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We will present applications of Theorem 17.6 to the Persistence Conjecture
based on the results obtained in [49, 52]. However, before we give these appli-
cations, we mention the following result which implies that the Persistence
Conjecture holds for normal projective surfaces with non-zero irregularity
h1(X,OX).

Theorem 17.7. Let X be a projective surface over k which admits a non-
constant morphism to some abelian variety over k. Then X is arithmetically
hyperbolic over k if and only if XL is arithmetically hyperbolic over L.

The proofs of Theorems 17.6 and 17.7 differ tremendously in spirit. In fact,
we cannot prove Theorem 17.7 by appealing to the geometric hyperbolicity
of X (as it is currently not known whether an arithmetically hyperbolic
projective surface which admits a non-constant map to an abelian variety
is geometrically hyperbolic). Instead, Theorem 17.7 is proven by appealing
to the “mild boundedness” of abelian varieties; see [15]. More explicitly: in
the proof of Theorem 17.7, we use that, for every smooth connected curve C
over k, there exists an integer n > 0 and points c1, . . . , cn in C(k) such that,
for every abelian variety A over k and every a1, . . . , an in A(k), the set

Homk((C, c1, . . . , cn), (A, a1, . . . , an))

is finite. This finiteness property for abelian varieties can be combined with
the arithmetic hyperbolicity of the surface X in Theorem 17.7 to show that
the surface X is mildly bounded. The property of being mildly bounded is
clearly much weaker than being geometrically hyperbolic, but it turns out
to be enough to show the Persistence Conjecture; see [49, §4.1]. Note that
it is a bit surprising that abelian varieties (as they are very far from being
hyperbolic) satisfy some “mild” version of geometric hyperbolicity. We refer
the reader to [49, §4] for the definition of what this notion entails, and to
[15] for the fact that abelian varieties are mildly bounded.

We now focus as promised on the applications of Theorem 17.6. Our first
application says that the Persistence Conjecture holds for all algebraically
hyperbolic projective varieties.

Theorem 17.8. Let X be a projective algebraically hyperbolic variety over k.
Then X is arithmetically hyperbolic over k if and only if, for every alge-
braically closed field L containing k, the variety XL is arithmetically
hyperbolic over L.

Proof. Since X is algebraically hyperbolic over k, it follows from (3) in
Theorem 17.1 that XL is algebraically hyperbolic over L. Since algebraically
hyperbolic projective varieties are 1-bounded and thus geometrically hyper-
bolic (Corollary 11.5), the result follows from Theorem 17.6. �
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Our second application involves integral points on the moduli space of
smooth hypersurfaces. We present the results obtained in [52] in the following
section.

17.1 The Shafarevich Conjecture for Smooth
Hypersurfaces

We explain in this section how Theorem 17.6 can be used to show the
following finiteness theorem. This explanation will naturally lead us to
studying integral points on moduli spaces.

Theorem 17.9. Let d ≥ 3 and n ≥ 2 be integers. Assume that, for every
number field K and every finite set of finite places S of K, the set of
OK,S-isomorphism classes of smooth hypersurfaces of degree d in P

n+1
OK,S

is
finite. Then, for every Z-finitely generated normal integral domain A of
characteristic zero, the set of A-isomorphism classes of smooth hypersurfaces
of degree d in P

n+1
A is finite.

To prove Theorem 17.9, we (i) reformulate its statement in terms of
the arithmetic hyperbolicity of an appropriate moduli space of smooth
hypersurfaces, (ii) establish the geometric hyperbolicity of this moduli space,
and (iii) apply Theorem 17.6. Indeed, the assumption in Theorem 17.9 can
be formulated as saying that the (appropriate) moduli space of hypersurfaces
is arithmetically hyperbolic over Q and the conclusion of our theorem is then
that this moduli space is also arithmetically hyperbolic over larger fields.
To make these statements more precise, let Hilbd,n be the Hilbert scheme
of smooth hypersurfaces of degree d in P

n+1. Note that Hilbd,n is a smooth
affine scheme over Z. There is a natural action of the automorphism group
scheme PGLn+2 of Pn+1

Z on Hilbd,n. Indeed, given a smooth hypersurface H
in P

n+1 and an automorphism σ of Pn+1, the resulting hypersurface σ(H) is
again smooth.

The quotient of a smooth affine scheme over Z by a reductive group (such
as PGLn+2) is an affine scheme of finite type over Z by Mumford’s GIT.
However, for the study of hyperbolicity and integral points, this quotient
scheme is not very helpful, as the action of PGLn+2 on Hilbd,n is not free.
The natural solution it to consider the stacky quotient, as in [13, 14, 47].
However, one may avoid the use of stacks by adding level structure as in
[48]. Indeed, by [48], there exists a smooth affine variety H ′ over Q with a
free action by PGLn+2,Q, and a finite étale PGLn+2,Q-equivariant morphism
H ′ → Hilbd,n,Q. Let Ud;n := PGLn+2,Q\H ′ be the smooth affine quotient
scheme over Q. To prove Theorem 17.9, we establish the following result.

Theorem 17.10. Let d ≥ 3 and n ≥ 2 be integers. Assume that Ud;n,Q is

arithmetically hyperbolic over Q. Then, for every algebraically closed field k
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of characteristic zero, the affine variety Ud;n,k is arithmetically hyperbolic
over k.

Proof. Let us write U := Ud;n,Q. The proof relies on a bit of Hodge theory.
Indeed, we use Deligne’s finiteness theorem for monodromy representations
[28], the infinitesimal Torelli property for smooth hypersurfaces [35], and
the Theorem of the Fixed Part in Hodge theory [80] to show that Uk is
geometrically hyperbolic over k. Then, as Uk is geometrically hyperbolic over
k, the result follows from Theorem 17.6. �

We now explain how to deduce Theorem 17.9 from Theorem 17.10.

Proof of Theorem 17.9. Write U := Ud;n,Q. First, the assumption in The-
orem 17.9 can be used to show that U is arithmetically hyperbolic over
Q. Then, since U is arithmetically hyperbolic over Q, it follows from
Theorem 17.10 that Uk is arithmetically hyperbolic for every algebraically
closed field k of characteristic zero. Finally, to conclude the proof, let us
recall that arithmetic hyperbolicity descends along finite étale morphisms of
varieties (Remark 3.5). In [53], the analogous descent statement is proven
for finite étale morphisms of algebraic stacks, after extending the notion
of arithmetic hyperbolicity from schemes to stacks. Thus, by applying this
“stacky” Chevalley–Weil theorem to the finite étale morphism Ud;n,k →
[PGLn+2,k\Hilbd,n,k] of stacks, where [PGLn+2,k\Hilbd,n,k] denotes the quo-
tient stack, we obtain that the stack [PGLn+2,k\Hilbd,n,k] is arithmetically
hyperbolic over k. Finally, the moduli-interpretation of the points of this
quotient stack can be used to see that, for every Z-finitely generated normal
integral domain A of characteristic zero, the set of A-isomorphism classes
of smooth hypersurfaces of degree d in P

n+1
OK,S

is finite. This concludes the
proof. �
Remark 17.11 (Period Domains). Theorem 17.10 actually follows from
a more general statement about varieties with a quasi-finite period map (e.g.,
Shimura varieties). Namely, in [52] it is shown that a complex algebraic
variety with a quasi-finite period map is geometrically hyperbolic. For other
results about period domains we refer the reader to the article of Bakker–
Tsimerman in this book [12].

18 Lang’s Question on Openness of Hyperbolicity

It is obvious that being hyperbolic is not stable under specialization. In fact,
being pseudo-groupless is not stable under specialization, as a smooth proper
curve of genus two can specialize to a tree of P

1’s. Nonetheless, it seems
reasonable to suspect that being hyperbolic (resp. pseudo-hyperbolic) is in
fact stable under generization. The aim of this section is to investigate this
property for all notions of hyperbolicity discussed in these notes. In fact,
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on [62, p. 176] Lang says “I do not clearly understand the extent to which
hyperbolicity is open for the Zariski topology”. This brings us to the following
question of Lang and our starting point of this section.

Question 1 (Lang). Let S be a noetherian scheme over Q and let X → S
be a projective morphism. Is the set of s in S such that Xk(s) is groupless a
Zariski open subscheme of S?

Here we let k(s) denote the residue field of the point s, and we let
k(s) → k(s) be an algebraic closure of k(s). Note that one can ask similar
questions for the set of s in S such that Xk(s) is algebraically hyperbolic or
arithmetically hyperbolic, respectively.

Before we discuss what one may expect regarding Lang’s question, let us
recall what it means for a subset of a scheme to be a Zariski-countable open.

If (X, T ) is a noetherian topological space, then there exists another
topology T cnt, or T -countable, on X whose closed sets are the countable
union of T -closed sets. If S is a noetherian scheme, a subset Z ⊂ S is
a Zariski-countable closed if it is a countable union of closed subschemes
Z1, Z2, . . . ⊂ S.

Remark 18.1 (What to Expect? I). We will explain below that the locus
of s in S such that Xs is groupless is a Zariski-countable open of S, i.e.,
its complement is a countable union of closed subschemes. In fact, we will
show similar statements for algebraic hyperbolicity, boundedness, geometric
hyperbolicity, and the property of having only subvarieties of general type.
Although this provides some indication that the answer to Lang’s question
might be positive, it is not so clear whether one should expect a positive
answer to Lang’s question. However, it seems plausible that, assuming the
Strongest Lang–Vojta conjecture (Conjecture 12.1), one can use certain
Correlation Theorems (see Ascher–Turchet [8]) to show that the answer to
Lang’s question is positive.

One can also ask about the pseudofied version of Lang’s question.

Question 2 (Pseudo-Lang). Let S be a noetherian scheme over Q and let
X → S be a projective morphism. Is the set of s in S such that Xk(s) is
pseudo-groupless a Zariski open subscheme of S?

Again, one can ask similar questions for the set of s in S such that
Xk(s) is pseudo-algebraically hyperbolic or pseudo-arithmetically hyperbolic,
respectively.

Remark 18.2 (What to Expect? II). We will argue below that one
should expect (in light of the Strong Lang–Vojta conjecture) that the answer
to the Pseudo-Lang question is positive. This is because of a theorem of
Siu–Kawamata–Nakayama on invariance of plurigenera.

What do we know about the above questions (Questions 1 and 2)? The
strongest results we dispose of are due to Nakayama; see [74, Chapter VI.4].
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In fact, the following theorem can be deduced from Nakayama’s [74,
Theorem VI.4.3]. (Nakayama’s theorem is a generalization of theorems of
earlier theorems of Siu and Kawamata on invariance of plurigenera.)

Theorem 18.3 (Siu, Kawamata, Nakayama). Let S be a noetherian
scheme over Q and let X → S be a projective morphism of schemes. Then,
the set of s in S such that Xs is of general type is open in S.

Thus, by Theorem 18.3, assuming the Strong Lang–Vojta conjecture
(Conjecture 12.1), the answer to the Pseudo-Lang question should be positive.
Also, assuming the Strong Lang–Vojta conjecture, the set of s in S such that
Xk(s) is pseudo-algebraically hyperbolic should be open. Similar statements
should hold for pseudo-Mordellicity and pseudo-boundedness. Although
neither of these statements are known, some partial results are obtained in
[15, §9].

In fact, as a consequence of Nakayama’s theorem and the fact that the stack
of proper schemes of general type is a countable union of finitely presented
algebraic stacks, one can prove the following result.

Theorem 18.4 (Countable-Openness of Every Subvariety Being of
General Type). Let S be a noetherian scheme over Q and let X → S be a
projective morphism. Then, the set of s in S such that every integral closed
subvariety of Xs is of general type is Zariski-countable open in S.

The countable-openness of the locus of every subvariety being of general
type does not give a satisfying answer to Lang’s question. However, it does
suggest that every notion appearing in the Lang–Vojta conjecture should
be Zariski-countable open. This expectation can be shown to hold for some
notions of hyperbolicity. For example, given a projective morphism of schemes
X → S with S a complex algebraic variety, one can show that the locus of
s in S such that Xs is algebraically hyperbolic is an open subset of S in
the countable-Zariski topology; see [15, 29]. This result is essentially due to
Demailly.

Theorem 18.5. Let S be a noetherian scheme over Q and let X → S be
a projective morphism. Then, the set of s in S such that Xs is algebraically
hyperbolic is Zariski-countable open in S.

It is worth noting that this is not the exact result proven by Demailly, as it
brings us to a subtle difference between the Zariski-countable topology on a
varietyX over C and the induced topology onX(C). Indeed, Demailly proved
that, if k = C and Snot-ah is the set of s in S such that Xs is not algebraically
hyperbolic, then Snot-ah ∩ S(C) is closed in the countable topology on S(C).
This, strictly speaking, does not imply that Snot-ah is closed in the countable
topology on S. For example, if S is an integral curve over C and η is the
generic point of S, then {η} is not a Zariski-countable open of S, whereas
{η} ∩ S(C) = ∅ is a Zariski-countable open of S(C).
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In [15] similar results are obtained for boundedness and geometric
hyperbolicity. The precise statements read as follows.

Theorem 18.6 (Countable-Openness of Boundedness). Let S be a
noetherian scheme over Q and let X → S be a projective morphism. Then,
the set of s in S such that Xs is bounded is Zariski-countable open in S.

Theorem 18.7 (Countable-Openness of Geometric Hyperbolicity).
Let S be a noetherian scheme over Q and let X → S be a projective morphism.
Then, the set of s in S such that Xs is geometrically hyperbolic is Zariski-
countable open in S.

Remark 18.8 (What Goes into the Proofs of Theorems 18.5, 18.6,
and 18.7?). The main idea behind all these proofs is quite simple. Let
us consider Theorem 18.5. First, one shows that the set of s in S such
that Xs is not algebraically hyperbolic is the image of countably many
constructible subsets of S. This is essentially a consequence of the fact that
the Hom-scheme between two projective schemes is a countable union of
quasi-projective schemes. Then, it suffices to note that the set of s in S
with Xs algebraically hyperbolic is stable under generization. This relies on
compactness properties of the moduli stack of stable curves.

Concerning Lang’s question on the locus of groupless varieties, we note
that in [55] it is shown that the set of s in S such that Xs is groupless is
open in the Zariski-countable topology on S.

Theorem 18.9 (Countable-Openness of Grouplessness). Let S be a
noetherian scheme over Q and let X → S be a projective morphism. Then,
the set of s in S such that Xk(s) is groupless is Zariski-countable open in S.

We finish these notes with a discussion of the proof of Theorem 18.9.
It will naturally lead us to introducing a non-archimedean counterpart to
Lang–Vojta’s conjecture.

18.1 Non-archimedean Hyperbolicity
and Theorem 18.9

Let S be a noetherian scheme over Q and let X → S be a projective
morphism. Define Sn−gr to be the set of s in S such that Xk(s) is not

groupless. Our goal is to prove Theorem 18.9, i.e., to show that Sn−gr is
Zariski-countable closed, following the arguments of [55]. As is explained in
Remark 18.8, we prove this in two steps.

First, one shows that Sn−gr is a countable union of constructible subsets.
This step relies on some standard moduli-theoretic techniques. Basically, to
say that X is not groupless over k is equivalent to saying that, there is an
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integer g such that the Hom-stack HomAg
(Ug, X×Ag) → Ag has a non-empty

fibre over some k-point of Ag, where Ag is the stack of principally polarized
g-dimensional abelian schemes over k, and Ug → Ag is the universal family.
We will not discuss this argument and refer the reader to [55] for details on
this part of the proof.

Once the first step is completed, to conclude the proof, it suffices to
show that the notion of being groupless is stable under generization. To
explain how to do this, we introduce a new notion of hyperbolicity for rigid
analytic varieties (and also adic spaces) over a non-archimedean field K of
characteristic zero; see [55, §2]. This notion is inspired by the earlier work of
Cherry [20] (see also [6, 21, 22, 66, 67]).

If K is a complete algebraically closed non-archimedean valued field of
characteristic zero and X is a finite type scheme over K, we let Xan be
the associated rigid analytic variety over K. We say that a variety over K
is K-analytically Brody hyperbolic if, for every finite type connected group
scheme G over K, every morphism Gan → Xan is constant. It follows from
this definition that a K-analytically Brody hyperbolic variety is groupless.
It seems reasonable to suspect that the converse of this statement holds for
projective varieties.

Conjecture 18.10 (Non-archimedean Lang–Vojta). Let K be an alge-
braically closed complete non-archimedean valued field of characteristic zero,
and let X be an integral projective variety over K. If X is groupless over K,
then X is K-analytically Brody hyperbolic.

In [20] Cherry proves this conjecture for closed subvarieties of abelian
varieties. That is, Cherry proved the non-archimedean analogue of the Bloch–
Ochiai–Kawamata theorem (Theorem 2.5) for closed subvarieties of abelian
varieties.

In [55] it is shown that the above conjecture holds for projective varieties
over a non-archimedean field K, assuming that K is of equicharacteristic zero
and X is a “constant” variety over K (i.e., can be defined over the residue
field of K). This actually follows from the following more general result.

Theorem 18.11. Let K be an algebraically closed complete non-
archimedean valued field of equicharacteristic zero with valuation ring OK ,
and let X → SpecOK be a proper flat morphism of schemes. If the special
fibre X0 of X → SpecOK is groupless, then the generic fibre XK is K-
analytically Brody hyperbolic.

Proof. This is the main result of [55] and is proven in three steps. Write
X := XK .

First, one shows that every morphism G
an
m,K → Xan is constant by

considering the “reduction” map Xan → X0 and a careful analysis of the
residue fields of points in the image of composed map G

an
m,K → Xan → X0;

see [55, §5] for details. This implies that X has no rational curves.
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Now, one wants to show that every morphism Aan → Xan with A some
abelian variety over K is constant. Instead of appealing to GAGA and trying
to use algebraic arguments, we appeal to the uniformization theorem of
Bosch–Lütkebohmert for abelian varieties. This allows us to reduce to the
case that A has good reduction over OK . In this reduction step we use that
every morphism G

an
m,K → Xan is constant (which is what we established in

the first part of this proof); we refer the reader to [55, Theorem 2.18] for
details.

Thus, we have reduced to showing that, for A an abelian variety over K
with good reduction over OK , every morphism Aan → Xan is constant. To
do so, as A has good reduction over OK , we may let A be a smooth proper
model for A over OK . Note that the non-constant morphism Aan → Xan

over K algebraizes by GAGA, i.e., it is the analytification of a non-constant
morphism A → X. By the valuative criterion of properness, there is a dense
open U ⊂ A whose complement is of codimension at least two and a morphism
U → X extending the morphism A → X on the generic fibre. Now, since X0

is groupless, it has no rational curves. In particular, as A → SpecOK is
smooth, the morphism U → X extends to a morphism A → X by [37,
Proposition 6.2]. However, since X0 is groupless, this morphism is constant
on the special fibre. The latter implies (as A → SpecOK is proper) that the
morphism on the generic fibre is constant; see [55, §3.2] for details. We have
shown that, for every abelian variety A over K, every morphism A → X is
constant and that every morphism G

an
m → Xan is constant.

Finally, by adapting the proof of Lemma 4.4 one can show that the
above implies that, for every finite type connected group scheme G over K,
every morphism Gan → Xan is constant, so that X is K-analytically Brody
hyperbolic (see [55, Lemma 2.14] for details). �

To conclude the proof of Theorem 18.9, we point out that a straightforward
application of Theorem 18.11 shows that being groupless is stable under
generization, as required. �

An important problem in the study of non-archimedean hyperbolicity at
this moment is finding a “correct” analogue of the Kobayashi pseudo-metric
(if there is any at all). Cherry defined an analogue of the Kobayashi metric
but it does not have the right properties, as he showed in [21] (see also [55,
§3.5]). A “correct” analogue of the Kobayashi metric in the non-archimedean
context would most likely have formidable consequences. Indeed, it seems
reasonable to suspect that a K-analytic Brody hyperbolic projective variety
is in fact “Kobayashi hyperbolic” over K and that “Kobayashi hyperbolic”
projective varieties overK are bounded overK by some version of the Arzelà–
Ascoli theorem.
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Math. J. (2), 31(3):349–353, 1979.

85. P. Vojta. A higher-dimensional Mordell conjecture. In Arithmetic geometry
(Storrs, Conn., 1984), pages 341–353. Springer, New York, 1986.

86. Paul Vojta. A Lang exceptional set for integral points. In Geometry and analysis
on manifolds, volume 308 of Progr. Math., pages 177–207. Birkhäuser/Springer,
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1 Introduction

Diophantine Geometry aims to describe the sets of rational and/or integral
points on a variety. More precisely one would like geometric conditions on a
variety X that determine the distribution of rational and/or integral points.
Here geometric means conditions that can be checked on the algebraic closure
of the field of definition.

Pairs, sometimes called log pairs, are objects of the form (X,D) where X
is a projective variety and D is a reduced divisor. These objects naturally
arise in arithmetic when studying integral points, and play a central role in
geometry, especially in the minimal model program and the study of moduli
spaces of higher dimensional algebraic varieties. They arise naturally in the
study of integral points since, if one wants to study integral points on a quasi-
projective variety V , this can be achieved by studying points on (X,D), where
(X \ D) ∼= V , the variety X is a smooth projective compactification of V ,
and the complement D is a normal crossings divisor. In this case, (X,D) is
referred to as a log pair.
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The goal of these notes is threefold:

(1) to present an introduction to the study of rational and integral points on
curves and higher dimensional varieties and pairs;

(2) to introduce various notions of hyperbolicity for varieties and pairs, and
discuss their conjectural relations;

(3) and to show how geometry influences the arithmetic of algebraic varieties
and pairs using tools from birational geometry.

Roughly speaking, a k-rational point of an algebraic variety is a point
whose coordinates belong to k. One of the celebrated results in Diophantine
geometry of curves is the following.

Theorem 1.1. If C is a geometrically integral smooth projective curve over
a number field k, then the following are equivalent:

(1) g(C) ≥ 2,
(2) the set of L-rational points is finite for every finite extension L/k

[Faltings’ theorem; arithmetic hyperbolicity],
(3) every holomorphic map C → Can

C is constant [Brody hyperbolicity], and
(4) the canonical bundle ωC is ample.

In particular, one can view the above theorem as saying that various
notions of hyperbolicity coincide for projective curves. One of the major open
questions in this area is how the above generalizes to higher dimensions.
The following conjecture we state is related to the Green–Griffiths–Lang
conjecture.

Conjecture 1.2. Let X be a projective geometrically integral variety over a
number field k. Then, the following are equivalent:

(1) X is arithmetically hyperbolic,
(2) XC is Brody hyperbolic, and
(3) every integral subvariety of X is of general type.

We recall that a variety is of general type if there exists a desingularization
with big canonical bundle. This conjecture is very much related to conjectures
of Bombieri, Lang, and Vojta postulating that varieties of general type
(resp. log general type) do not have a dense set of rational (resp. integral)
points. While Conjecture 1.2 is essentially wide open, it is known that if the
cotangent bundle Ω1

X is sufficiently positive, all three conditions are satisfied.
In particular, the latter two are satisfied if Ω1

X is ample, and the first is
satisfied if in addition Ω1

X is globally generated. We do note, however, that
there are examples of varieties that are (e.g. Brody) hyperbolic but for which
Ω1

X is not ample (see Example 6.11).
In any case, it is natural to ask what can be said about hyperbolicity

for quasi-projective varieties. One can rephrase Conjecture 1.2 for quasi-
projective varieties V , and replace (3) with the condition that all subvarieties
are of log general type. We recall that a variety V is of log general type if
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there exists a desingularization Ṽ , and a projective embedding Ṽ ⊂ Y with
Y \ Ṽ a divisor of normal crossings, such that ωY (D) is big. It is then natural
to ask if positivity of the log cotangent bundle implies hyperbolicity in this
setting.

The first obstacle, is that the log cotangent sheaf is never ample. However,
one can essentially ask that this sheaf is “as ample as possible” (see
Definition 7.11 for the precise definition of almost ample). It turns out
that, with this definition, quasi-projective varieties with almost ample log
cotangent bundle are Brody hyperbolic (see [41, Section 3]). In recent joint
work with Kristin DeVleming [10], we explore, among other things, the con-
sequences for hyperbolicity that follow from such a positivity assumption. We
prove that quasi-projective varieties with positive log cotangent bundle are
arithmetically hyperbolic (see Theorem 8.1), and that all their subvarieties
are of log general type (see Theorem 7.14).

Theorem 1.3 ([10]). Let (X,D) be a log smooth pair with almost ample
Ω1

X(logD). If Y ⊂ X is a closed subvariety, then

(1) all pairs (Y,E), where E = (Y ∩ D)red, with Y �⊂ D are of log general
type.

(2) If in addition Ω1
X(logD) is globally generated, and V ∼= (X \ D) is a

smooth quasi-projective variety over a number field k, then for any finite
set of places S, the set of S-integral points V (Ok,S) is finite.

The main focus of these notes is to present, in a self-contained manner, the
proofs of these statements. In particular, we review the notions of ampleness,
almost ampleness, and global generation for vector bundles (see Section 7).
The proof of the second statement heavily relies upon the theory of semi-
abelian varieties and the quasi-Albanese variety, and so we develop the
necessary machinery (see Section 8).

Along the way, we discuss the related conjecture of Lang (see Conjec-
ture 5.1), which predicts that varieties of general type do not have a dense
set of rational points. We discuss the (few) known cases in Section 5.2. A
related, more general conjecture due to Vojta (see Conjecture 9.5) suggests
that one can control the heights of points on varieties of general (resp. log
general) type. We discuss this conjecture, and we introduce the theory of
heights in Section 9.1.

We are then naturally led to discuss what happens in the function field case
(see Section 10). In this setting, the analogue of Faltings’ Theorem is known
(see Theorem 10.10). Similarly, positivity assumptions on the cotangent
bundle lead to hyperbolicity results. In this context, we discuss a theorem of
Noguchi (see Theorem 10.16) and give insight into what is expected in the
quasi-projective setting.

We first got interested in studying positivity of the log cotangent bundle
to understand “uniformity” of integral points as it relates to the Lang–Vojta
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conjecture. Consequently, we end these notes with a short section discussing
and summarizing some key results in this area.

1.1 Outline

The road map of these notes is the following:

§2 Rational points with a focus on projective curves.
§3 Integral points with a focus on quasi-projective curves.
§4 Tools from positivity and birational geometry.
§5 Lang’s conjecture and some known cases.
§6 Hyperbolicity of projective varieties and positivity of vector bundles.
§7 Hyperbolicity for quasi-projective varieties.
§8 Semi-abelian varieties, the quasi-Albanese, and arithmetic hyperbolicity

of quasi-projective varieties.
§9 Vojta’s conjecture and the theory of heights.

§10 Diophantine geometry over function fields.
§11 Some known consequences of Lang’s conjecture.

1.2 Notation

We take this opportunity to set some notation.

1.2.1 Geometry

Divisors will refer to Cartier divisors, and Pic(X) will denote the Picard
group, i.e. the group of isomorphism classes of line bundles on X. We recall
that a reduced divisor is of normal crossings if each point étale locally looks
like the intersection of coordinate hyperplanes.

1.2.2 Arithmetic

Throughout k will denote a number field, i.e. a finite extension of Q. We
will denote by Mk the set of places of k, i.e. the set of equivalence classes of
absolute values of k. We will denote by Ok = {α ∈ k : |α|v ≤ 1 for every v ∈
Mk} the ring of integers of k, with O∗

k the group of units, and with Ok,S the
ring of S-integers in k, i.e. Ok,S = {α ∈ k : |α|v ≤ 1 for every v /∈ S}. We
will denote an algebraic closure of k by k.
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2 Rational Points on Projective Curves

Some of the main objects of study in Diophantine Geometry are integral
and rational points on varieties. An algebraic variety is the set of common
solutions to a system of polynomial equations with coefficients in R, where
R is usually a field or a ring. In these notes we will consider fields that are
finite extensions of Q, and rings that are finite extensions of Z.

If X is a variety defined over a number field k, i.e. defined by equations
with coefficients in k, then the set of k-rational points of X is the set of
solutions with coordinates in k. In a similar way, one can consider the set of
integral points of X as the set of solutions with coordinates that belong to
the ring of integers of k. However it is sometimes more convenient to take an
approach that does not depend on the particular choice of coordinates used
to present X.

Definition 2.1 (Rational Points). Let X be a projective variety defined
over k. If P ∈ X(k) is an algebraic point, then the residue field k(P ) is a
finite extension of k. We say that P is k-rational if k(P ) = k.

Remark 2.2. The above notion is intrinsic in the sense that it depends
only on the function field of X, which is independent of the embedding in
projective space. In this case a rational point corresponds to a morphism
Spec k → X (Exercise).

For a non-singular curve C defined over a number field k, the genus governs
the distribution of the k-rational points: if a curve is rational, i.e. it has genus
zero, then the set of k-rational points C(k) is dense, at most after a quadratic
extension of k. Similarly, if the curve has genus one, then at most after a
finite extension of k, the set of k-rational points C(k) is dense (see [37]
for a gentle introduction and proofs of these statements). In the genus one
case one can prove a stronger statement, originally proven by Mordell, and
extended by Weil to arbitrary abelian varieties, namely that the set of k-
rational points forms a finitely generated abelian group. We can summarize
this in the following proposition.

Proposition 2.3. Let C be a non-singular projective curve of genus g(C)
defined over a number field k.

• If g(C) = 0, then C(k) is dense, after at most a quadratic extension of k.
• If g(C) = 1, then C(k) is a finitely generated group of positive rank,

(possibly) after a finite extension of k.

In 1922, Mordell conjectured that a projective curve C of genus g(C) > 1
has finitely many k-points. This was proven by Faltings’ [45].

Theorem 2.4 (Faltings’ Theorem [45], Formerly Mordell’s Conjec-
ture). Let C be a non-singular projective curve C defined over a number field
k. If g(C) > 1, then the set C(k) is finite.



202 K. Ascher and A. Turchet

The original proof of Faltings reduced the problem to the Shafarevich
conjecture for abelian varieties, via Parhsin’s trick. The argument uses very
refined and difficult tools like Arakelov Theory on moduli spaces, semistable
abelian schemes, and p-divisible groups, and therefore such a proof is outside
the scope of these notes. A different proof was given shortly after by Vojta
in [97] using ideas from Diophantine approximation while still relying on
Arakelov theory. Faltings in [46] gave another simplification, eliminating the
use of the arithmetic Riemann–Roch Theorem for arithmetic threefolds in
Vojta’s proof, and was able to extend these methods to prove a conjecture
of Lang. Another simplification of both Vojta and Faltings’ proofs was given
by Bombieri in [12] combining ideas from Mumford [78] together with the
ones in the aforementioned papers.

The above results leave open many other Diophantine questions: when is
the set C(k) empty? Is there an algorithm that produces a set of generators
for E(k), for an elliptic curve E defined over k? Is there an algorithm that
computes the set C(k) when it is finite (Effective Mordell)? We will not
address these questions in this notes, but we will mention the very effective
Chabauty–Coleman–Kim method that in certain situations can give answer
to the latter question (see [23, 25, 61, 62, 75]).

2.1 Geometry Influences Arithmetic

In order to generalize, at least conjecturally, the distribution of k-rational
points on curves to higher dimensional varieties, it is convenient to analyze
the interplay between the arithmetic and the geometric properties of curves,
following the modern philosophy that the geometric invariants of an algebraic
variety determine arithmetic properties of the solution set.

We start by recalling the definition of the canonical sheaf.

Definition 2.5. Let X be a non-singular variety over k of dimX = n. We
define the canonical sheaf of X to be ωX =

∧n
Ω1

X/k, where Ω1
X/k denotes

the sheaf of relative differentials of X.

If C is a curve, then ωX = Ω1
C is an invertible sheaf whose sections are the

global 1-forms on C. In this case, we call any divisor in the linear equivalence
class a canonical divisor, and denote the divisor by KC .

Example 2.6. Let C ∼= P
1, with coordinates [x : y]. In the open affine Ux

given by x �= 0 we can consider the global coordinate t = y/x and the global
differential form dt. We can extend dt as a rational differential form s ∈ Ω1

P1 ,
noting that it will possibly have poles. To compute its associated divisor we
note that in the locus Ux ∩ Uy, i.e. where x �= 0 and y �= 0, the section s is
invertible. In the intersection, the basic formula d (1/t) = −dt/t2 shows that
the divisor associated with s is −2P , where P = [0 : 1]. In particular, given
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that any two points are linearly equivalent on P
1, KP1 ∼ −P1 − P2 for two

points on P
1, and degKP1 = −2.

More generally, any divisor D on a smooth curve C is a weighted sum
of points, and its degree is the sum of the coefficients. In the case of the
canonical divisor, if C is a curve of genus g, then KC has deg(KC) = 2g − 2
(see [53, Example IV.1.3.3]).

Given Theorem 2.4 and Proposition 2.3, one can see that the positivity of
the canonical divisorKC determines the distribution of k-rational points C(k).
In particular, the set C(k) is finite if and only if deg(KC) > 0.

There is a further geometric property of curves that mimics the characteri-
zation of rational points given above. If C is a non-singular curve defined over
a number field k, holomorphic maps to the corresponding Riemann Surface
CC (viewed either as the set of complex points C(C) together with its natural
complex structure, or as the analytification of the algebraic variety C) are
governed by the genus g(C). If the genus is zero or one, the universal cover
of CC is either the Riemann sphere or a torus, and therefore there exist non-
constant holomorphic maps C → C with dense image. On the other hand,
if g(C) ≥ 2, the universal cover of CC is the unit disc and, by Liouville’s
Theorem, every holomorphic map to CC has to be constant, since its lift to
the universal cover is constant.

Varieties X where every holomorphic map C → X is constant play
a fundamental role in complex analysis/geometry so we recall here their
definition.

Definition 2.7. Let X be a complex analytic space. We say that X is Brody
Hyperbolic if every holomorphic map X → C is constant. We say that X is
Kobayashi hyperbolic if the Kobayashi pseudo-distance is a distance (see [63]
for definition and properties).

Remark 2.8. When X is compact the two notions are equivalent by [15]
and we will only say that X is hyperbolic. For more details about the various
notions of hyperbolicity and their connection with arithmetic and geometric
properties of varieties we refer to the chapter by Javanpeykar in this volume
[57].

Given a non-singular projective curve C defined over a number field, the
previous discussion can be summarized in the following table:

g(C) deg(KC) Complex hyperbolicity Density of k-points

0 −2 < 0 Not hyperbolic Potentially dense

1 0 Not hyperbolic Potentially dense

≥ 2 2g − 2 > 0 Hyperbolic Finite
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Remark 2.9. In the table, deg(KC) > 0 is equivalent to requiring that ωC

is ample, since for curves a divisor is ample if and only if its degree is positive
(see Section 4.1.1).

3 Integral Points on Curves

The previous section deals with the problem of describing the set C(k), which
we can think of the k-solutions of the polynomial equations that define C. An
analogous problem, fundamental in Diophantine Geometry, is the study of
the integral solutions of these equations, or equivalently of the integral points
of C. However, the definition of integral point is more subtle.

Example 3.1. Consider P
1
C as the set {[x0 : x1] : x0, x1 ∈ C}; if k ⊂ C is

a number field, then the set of rational points, as defined in Definition 2.1,
is the subset P

1
C(k) ⊂ P

1
C consisting of the points [x0 : x1] such that both

coordinates are in k.

Remark 3.2. As points in P
n are equivalence classes, we are implicitly

assuming the choice of a representative with k-rational coordinates. For
example the point [

√
2 :

√
2] is a k-rational point, being nothing but the

point [1 : 1].

Let us focus on the case k = Q. We want to identify the integral points: it
is natural to consider points [x0 : x1] in which both coordinates are integral,
i.e. x0, x1 ∈ Ok = Z. In this case, by definition of projective space, this is
equivalent to considering points of the form [a : b] in which gcd(a, b) = 1.

Now consider the problem of characterizing integral points among Q-
rational points, i.e. given a point P = [ab : c

d ] ∈ P
1(Q), when is this point

integral (assuming we already took care of common factors)? One answer
is to require that b = d = 1; however, the point P can also be written as
P = [ad : bc], and since we assumed that we already cleared any common
factor in the fractions, we have gcd(ad, bc) = 1. So in particular, every
rational point is integral!

Example 3.3. Let us consider the affine curve A
1
C ⊂ P

1
C, as the set {[a :

1] : a ∈ C}. Then A
1(k) = {[a : 1] : a ∈ k}. The integral points should

correspond to {[a : 1] : a ∈ Ok}. Now we can ask the same question as in
Example 3.1, specializing again to k = Q: namely how can we characterize
integral points on A

1 among its Q-rational points? Given a rational point
P = [ab : 1], we can require that b = 1. This is equivalent to asking that
for every prime p ∈ Z, the prime p does not divide b. In the case in which
p | b, we can rewrite P = [a : b] and we can see that the reduction modulo
p of P , i.e. the point whose coordinates are the reduction modulo p of the
coordinates of P , is the point [1 : 0] which does not belong to A

1! This shows
that one characterization of integral points is the set of k-rational points
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Fig. 1 An illustration of
a model (from [4])

Spec kSpec Ok,S

DD
P

σP

XX

whose reduction modulo every prime p is still a point of A1. More precisely,
let D = [0 : 1] ∈ P

1 \ A1 be the point at infinity: integral points A1(Ok) are
precisely the k-rational points A1(k) such that their reduction modulo every
prime of Ok is disjoint from D.

The previous example gives an intuition for a coordinate-free definition of
integral points. Note that, given an affine variety X ⊂ A

n defined over the
ring of integers Ok of a number field k one could try to mimic Definition 2.1 as
follows: define the ring Ok[X] to be the image of the ring Ok[T1, . . . , Tn] inside
the coordinate ring k[X] of X. Now given a rational point P = (p1, . . . , pn) ∈
X(k), it is integral when all the coordinates are in Ok. Therefore the point P
defines a specialization morphism ϕp : Ok[T1, . . . , Tn] → Ok which induces,
by passing to the quotient, a morphism ϕp : Ok[X] → Ok. The construction
can be reversed to show that indeed every such morphism corresponds to an
integral point. Note that this definition depends on the embedding X ⊂ A

n.
We will instead pursue a generalization that is based on Example 3.3.

Recall that the characterization we obtained of A
1(Ok) made use of the

reduction modulo primes of points. To give a more intrinsic and formal
definition we introduce the notion of models.

Definition 3.4 (Models). Let X be a quasi-projective variety defined over
a number field k. A model of X over the ring of integers Ok is a variety X
with a dominant, flat, finite type map X → SpecOk such that the generic
fiber Xη is isomorphic to X. See Figure 1 for an illustration taken from [4].

Over every prime p of Ok we have a variety X ×Ok
Spec kp defined over the

residue field kp which is the “reduction modulo p of X,” while the generic
fiber over (0) is isomorphic to the original X. This will make precise the
notion of reduction modulo p of a prime.

Given a rational point P ∈ X(κ), since X ∼= Xη, this gives a point in the
generic fiber of a model X of X. If the model X is proper, the point P , which
corresponds to a map Spec k → X, will extend to a section σP : SpecOk → X ,
therefore defining the reduction modulo a prime of P : it is just the point
Pp = σ(Ok) ∩ Xp. Therefore, given a proper model of X, there is a well-
defined notion of the reduction modulo a prime of k-rational points.
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The last ingredient we need to define integral points is the analogue of
the point D = [0 : 1] ∈ P

1 \ A
1 in Example 3.3. In the example we used

that the affine curve A
1 came with a (natural) compactification, namely P

1,
and a divisor “at infinity,” namely D. This motivates the idea that to study
integral points, the geometric objects that we need to consider are pairs of a
variety and a divisor, i.e. objects of the form (X,D) where X is a projective
variety (corresponding to the compactification of the affine variety) and D is
a divisor (corresponding to the divisor “at infinity”).

Definition 3.5. A pair is a couple (X,D) where X is a (geometrically
integral) projective variety defined over a field k and a normal crossing divisor
D. A model (X ,D) → SpecOk of the pair, is a proper model X → SpecOk

of X together with a model D → SpecOk of the divisor D such that D is a
Cartier divisor of X .

Remark 3.6. Given a non-singular affine variety Y defined over a field of
characteristic 0, combining the theorems of Nagata and Hironaka, we can
always find a non-singular projective compactification X ⊃ Y such that D =
X \ Y is a simple normal crossing divisor. Therefore we can identify (non-
canonically) every non-singular affine variety Y as the pair (X,D). This gives
a way to characterize the set of integral points on Y as the set of rational
points of X whose reduction modulo every prime does not specialize to (the
reduction of)D. Using models, this gives a formal intrinsic defining of integral
points.

Definition 3.7. Given a pair (X,D), the set of D-integral points of X, or
equivalently the set of integral points of Y = X \D, with respect to a model
(X ,D) of (X,D), is the set of sections SpecOk → X \D. We will denote this
set by X(Ok,D) or Y (Ok) for Y = X \D.

Remark 3.8.

• In the case in which Y is already projective, i.e. X = Y and D = ∅, then
the set of integral points coincide with the set of all sections SpecOk → X .
Since the model X → SpecOk is proper, this is equivalent to the set of
sections of the generic fiber, i.e. maps Spec k → X, which is exactly the set
X(k). This shows that for projective varieties, the set of rational points
coincide with the set of integral points.

• The definition of integral points depends on the choice of the model!
Different choices of models might give different sets of integral points (see
Example 3.9).

• When we consider an affine variety V given inside an affine space A
n as

the vanishing of a polynomial f with coefficients in Ok, this corresponds
to a pair (X,D) where X is the projective closure of V (i.e. the set
of solutions to the equations obtained by homogenizing f), and D the
boundary divisor. In this case there is a natural model of (X,D) given by
the model induced by the natural model of Pn over SpecOk, i.e. P

n
Ok

and
the closure of D inside it. Then one can show (exercise) that the set of
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integral points with respect to this model coincide with solutions of f = 0
with integral coordinates (see discussion before Definition 3.4).

The following example shows that the definition of integral points as above
truly depends on the choice of model.

Example 3.9 (Abramovich). Consider an elliptic curve given as E : y2 =
x3 + Ax + B with A,B ∈ Z, and as usual the origin will be the point at
infinity. Since E is given as the vanishing of a polynomial equation, the
homogenization defines a closed subset of P2

Q. Moreover, since the coefficients
are all integers we get that the same equation defines a model E of E which
is the closure of E inside P

2
Z, i.e. the standard model of P2

Q over SpecZ. Let
P ∈ E(Q) be a rational point which is not integral with respect to D = {0E}.
This means that there exists a prime p ∈ SpecZ such that P reduces to the
origin modulo p. In particular, the section P : SpecZ → E intersects the zero
section over the prime p. Call Q the point of intersection.

Consider now the blow up π : E ′ → E of E at Q: by definition of the
blow up E ′ is also a model of E. To see this, observe that the composition
of π with the model map E → SpecZ is still flat and finite type; moreover
the point we blow up was in a special fiber so it did not change the generic
fiber, which is still isomorphic to E. In this new model the lift of the section
P : SpecZ → E ′ does not intersect the zero section over the prime p. We can
repeat this process for every point where the section P (SpecZ) intersects the
zero section, which will result in a different model for which the point P is
now an integral point! This shows that the notion of integral points depends
on the model chosen.

The following example motivates studying (S,D)-integral points, where S
is a finite set of places.

Example 3.10. Sometimes it is useful to consider rational points that fail
to be integral only for a specific set of primes in Ok. For example the equation
2x+2y = 1 does not have any integral solutions while having infinitely many
rational solutions. However, one sees that it has infinitely many solutions in
the ring Z[ 12 ], which is finitely generated over Z. A solutions in Z[ 12 ], e.g.
( 14 ,

1
4 ), fails to be integral only with respect to the prime 2. More precisely

consider the model of C : 2x + 2y − z = 0 in P
2
Z and of the divisor D = [1 :

−1 : 0], then P = [1 : 1 : 4] is a Q-rational point of C but it is not integral,
since the reduction of P modulo 2 is the point P2 = [1 : 1 : 0] = [1 : −1 : 0]
over F2. On the other hand, for every prime p �= 2, the reduction modulo p

of P is disjoint from D.
Analogously, the rational point P gives rise, since the model is proper, to

a morphism P : SpecZ → C which is not disjoint from D, but such that the
intersection P (SpecZ) ∩ D is supported over the prime 2.

This motivates the following definition:



208 K. Ascher and A. Turchet

Definition 3.11. Let S be a finite set of places of k, and let (X ,D) be a
model of a pair (X,D) defined over k. An (S,D)-integral point is an integral
point P : SpecOk → X such that the support of P ∗D is contained in S. We
denote the set of (S,D)-integral points of (X,D) as X(OS,D). If Y = X \D,
then we denote the set of (S,D)-integral points of Y as Y (OS).

Remark 3.12. One can also define the set of (S,D)-integral points as
sections SpecOk,S → X that do not intersect D, where Ok,S is the ring
of S-integers.

Now that we have an intrinsic definition for integral points we can
concentrate on the problem of describing the set of (S,D)-integral points
on affine curves. As in the case of rational points on projective curves,
the distribution of integral points will be governed by the geometry of
the affine curve, i.e. of the corresponding pair. For one-dimensional pairs, the
fundamental invariant is the Euler characteristic, or equivalently the degree
of the log canonical divisor.

Definition 3.13. Given a non-singular projective curve C and a pair (C, D),
the Euler Characteristic of (C, D) is the integer χD(C) = 2g(C) − 2 + #D,
which corresponds to the degree of the log canonical divisor KC +D.

The Euler Characteristic encodes information of both the genus of the
projective curve C and of the divisorD, and its sign determines the arithmetic
of the affine curve C \D.

Theorem 3.14. Given a pointed projective curve (C, D) defined over a
number field k and a finite set of places S the following hold:

• If 2g(C) − 2 + #D ≤ 0, then the set of (S,D)-integral points is dense,
possibly after a finite extension of k and/or S;

• If 2g(C) − 2 + #D > 0, then the set of (S,D)-integral points is finite
(Siegel’s Theorem).

We treat the case of non-positive Euler Characteristic in the following
example.

Example 3.15. When C is smooth projective, in order for χD(C) to be non-
positive, there are only four cases to consider: if g(C) = 0, then #D ≤ 2,
and if the g(C) = 1, then D = ∅. For projective curves, i.e. when D = ∅,
Proposition 2.3 shows that, up to a finite extension of k, the rational points
are infinite. We showed that for projective varieties, integral and rational
points coincide, which implies that in these cases the set of integral points is
dense, up to a finite extension of the base field.

If we consider affine curves, i.e. such that D �= ∅, then there are only two
remaining cases that we have to discuss, namely A

1 = (P1, P ) and Gm =
(P1, P +Q).
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We saw in Example 3.3 that integral points on A
1 are infinite, and more

generally we have that A
1(OS,D) ∼= Ok,S . In the case of the multiplicative

group Gm the integral points correspond to the group of S-units O∗
k,S . To see

this considerGm as the complement of the origin in A
1, i.e. P1\{[0 : 1], [1 : 0]}.

Then a point [a : b] ∈ Gm(k) is (S,D)-integral if, for every p in Ok,S , we
have that p does not divide neither a or b, i.e. a and b are both S-units.
Finally, Dirichlet’s Unit Theorem implies that the group of S-units is finitely
generated and has positive rank as soon as #S ≥ 2. In particular, for every
number field k, there exists a finite extension for which the rank of O∗

k,S is
positive, and therefore such that Gm(OS,D) is infinite.

In the following example, we show that the set of (S,D)-integral points on
the complement of three points in P

1 is finite.

Example 3.16 (P1 and Three Points). Consider the case of (P1, D)
where D = [0]+[1]+[∞] over a number field k. In this case deg(KP1+D) > 0,
therefore Siegel’s Theorem tells us that the number of (S,D)-integral points
is finite, for every finite set of places S of k. This can be deduced directly in
this case using the S-unit equation Theorem as follows.

Integral points in the complement of [∞] are integral points in A
1 with

respect to the divisor [0]+[1], i.e. u ∈ k such that u ∈ O∗
S (which corresponds

to integrality with respect to [0]) and such that 1−u ∈ O∗
S (which corresponds

to integrality with respect to [1]). Then if we define v = 1− u ∈ O∗
S , the set

of (S,D)-integral points correspond to solutions in S-units of x+ y = 1. The
S-unit Theorem (see e.g. [27, Theorem 1.2.4]) then implies that the set of
solutions is always finite, for every set of places S.

Siegel’s Theorem [90] (and for general number fields and set of places S in
[65, 72]) on the finiteness of the set of (S,D)-integral points is the analogue
of Faltings’ Theorem 2.4. We give here a brief sketch of the proof. For the
details we refer to [56, D.9].

Sketch of Proof of Siegel’s Theorem. We will focus on the case g(C) ≥ 1;
the case of genus zero can be treated via finiteness of solutions of S-unit
equations, see [56, Theorem D.8.4]. We can always assume that C has at
least one rational point, and use the point to embed C → Jac(C), in its
Jacobian.

Suppose that (xi) is an infinite sequence of integral points on C \D. Then
by completeness of C(kv), with v ∈ S, up to passing to a subsequence, (xi)
converges to a limit α ∈ C(kv). In the embedding C ⊂ Jac(C), we see that
for every positive integer m the sequence (xi) becomes eventually constant
in Jac(C)/m Jac(C), which is finite by the Weak Mordell–Weil Theorem. In
particular we can write xi = myi + z, for some fixed z ∈ Jac(C).

Let ϕm : Jac(C) → Jac(C) be the multiplication by m map and define
ψ(x) = ϕm(x)+z = m.x+z. Then (yi) are a sequence of integral points (since
ψ is unramified, and applying Chevalley–Weil Theorem, see [27, Theorem
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1.3.1]) on ψ∗(C) that converges to some β ∈ Jac(C) (eventually up to passing
to an extension).

By definition of the canonical height on Jac(C) (with respect to a fixed

symmetric divisor) one has that ĥ(ψ(yi)) � m2ĥ(yi). By increasing m one
gets very good approximations to α which eventually contradicts Roth’s
Theorem [56, Theorem D.2.1]. �

The sketch of the proof illustrates a couple of very powerful ideas in
Diophantine Geometry: the use of abelian varieties (here played by Jac(C) as
ambient spaces with extra structure), the use of the so-called height machine,
and techniques from Diophantine approximation. A different proof that
avoids the use of the embedding in the Jacobian, thus allowing generalization
to higher dimensions, has been given more recently by Corvaja–Zannier in
[28], replacing Roth’s Theorem by the use of Schmidt’s Subspace Theorem
(see [103, Chapter 3] for more details).

Finally, we can ask about hyperbolicity properties of affine curves, as in
Definition 2.7; it is easy to see that both A

1 and Gm are not hyperbolic (via
the exponential map), while on the other hand the complement of any number
of points in a curve of genus one is hyperbolic (again applying Liouville’s
Theorem). Therefore, if (C, D) is a pair of a non-singular projective curve C
and a reduced divisor D, both defined over a number field k, and S is a finite
set of places containing the Archimedean ones, we can summarize the result
described in the previous sections in the following table:

χD(C) = deg(KC +D) Complex hyperbolicity (S,D)-integral points

≤ 0 Not hyperbolic Potentially dense

> 0 Hyperbolic Finite

4 Positivity of the Canonical Sheaf

As we saw for curves, hyperbolicity was governed by the positivity of the
canonical sheaf. In particular, we saw if g(C) ≤ 1, then degωC ≤ 0 (and C
is not hyperbolic), and if g(C) ≥ 2, then degωC > 0 (and C is hyperbolic).
Conjecturally, positivity of the canonical sheaf governs hyperbolicity of
algebraic varieties. Before introducing the conjectures, we give a few examples
of canonical sheaves on proper algebraic varieties. Recall we saw earlier that
for a curve C, the canonical sheaf degωC = 2g − 2.

Example 4.1 ( [53, Example II.8.20.1]). First consider the Euler
sequence
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0 → OPn → OPn(1)⊕(n+1) → TPn → 0,

where TPn denotes the tangent sheaf. Taking highest exterior powers, we see
that ωPn = OPn(−n− 1).

Example 4.2. If A is an abelian variety, then the tangent bundle of A is
trivial. In particular, ωX = OX .

A standard way to calculate the canonical sheaf of algebraic varieties is
via the adjunction formula, which relates the canonical sheaf of a variety to
the canonical sheaf of a hypersurface inside the variety.

If X is smooth and projective, and Y is a smooth subvariety, then there
is an inclusion map i : Y ↪→ X. If we denote by I the ideal sheaf of Y ⊂ X,
then the conormal exact sequence gives (where ΩX denotes the cotangent
sheaf on X)

0 → I/I2 → i∗ΩX → ΩY → 0.

In particular, taking determinants yields

ωY = i∗ωX ⊗ det(I/I2)∨.

If we let the subvariety Y to be a divisor D ⊂ X, then one obtains the
following.

Proposition 4.3 (Adjunction Formula). Let X be a smooth projective
variety with D a smooth divisor on X. Then

KD = (KX +D)|D.

Example 4.4. We can use the adjunction formula to calculate that the
canonical sheaf of X a smooth hypersurface of degree d in P

n is ωX
∼=

OX(d−n−1). We note one can do similar calculations in the case of complete
intersections.

Now that we have shown some examples of computing canonical sheaves;
we introduce the notions from birational geometry we will use to understand
positivity of the canonical sheaf and hyperbolicity. Our main reference is [69].

4.1 Notions from Birational Geometry

Let X be a projective variety and let L be a line bundle on X. For each
m ≥ 0 such that h0(X,L⊗m) �= 0, the linear system |L⊗m| induces a rational
map
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φm = φ|L⊗m| : X ��� PH0(X,L⊗m).

We denote by Ym = φm(X,L) the closure of its image.

Definition 4.5. Let X be normal. The Iitaka dimension of (X,L) is

κ(X,L) = max
m>0

{dimφm(X,L)},

as long as φm(X,L) �= ∅ for some m. Otherwise, we define κ(X,L) = −∞.

In particular, either κ(X,L) = −∞ or 0 ≤ κ(X,L) ≤ dimX.

Remark 4.6. If X is not normal, consider the normalization ν : Xν → X
and take κ(Xν , ν∗L).

Example 4.7 (Kodaira Dimension). If X is a smooth projective variety
and KX is the canonical divisor, then κ(X,KX) = κ(X) is the Kodaira
dimension of X.

The Kodaira dimension is a birational invariant, and the Kodaira dimen-
sion of a singular variety X is defined to be κ(X ′) where X ′ is any
desingularization of X. However, care needs to be taken in this case. When
X is not smooth, the dualizing sheaf ωX can exist as a line bundle on X, but
κ(X,ωX) > κ(X). This is the case, e.g. if X is the cone over a smooth plane
curve of large degree (see [69, Example 2.1.6]).

4.1.1 Positivity of Line Bundles

Definition 4.8. A line bundle L on a projective variety X is ample if for
any coherent sheaf F on X, there exists an integer nF such that F ⊗ L⊗n is
generated by global sections for n > nF . Equivalently, L is ample if a positive
tensor power is very ample, i.e. there is an embedding j : X → P

N such that
L⊗n = j∗(OPN (1)).

The following result is a standard way for checking if a divisor is ample.

Theorem 4.9 (Nakai–Moishezon). Let X be a projective scheme and let
D be a divisor. The divisor D is ample if and only if DdimY .Y > 0 for all
subvarieties Y ⊂ X.

Corollary 4.10. If X is a surface, then a divisor D is ample if and only if
D2 > 0 and D. C > 0 for all curves C ⊂ X.

Example 4.11. By Riemann–Roch, a divisor D on a curve C is ample if
and only if degD > 0.

Example 4.12. We saw in Example 4.1 that ωPn = OPn(−n−1). Therefore,
we see that ωPn is never ample for any n, as no power of ωPn will have nonzero
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sections. It is not so hard to see that −ωPn is ample for all n. This is referred
to as anti-ample.

Example 4.13. In Example 4.4 we computed the canonical sheaf for
hypersurfaces of degree d in P

n using the adjunction formula. From this we
see that

(1) If d ≤ n, then ωX is anti-ample.
(2) if d = n+ 1, then ωX = OX , and thus is not ample.
(3) If d ≥ n+ 2, then ωX is very ample (exercise using Serre Vanishing).

Definition 4.14. A line bundle L on a projective variety X is big if
κ(X,L) = dimX. A Cartier divisor D on X is big if OX(D) is big.

Remark 4.15. There are some standard alternative criteria for big divisors.
One is that there exists a constant C > 0 such that h0(X,OX(mD)) ≥ C ·mn

or all sufficiently large m (see [69, Lemma 2.2.3]). Another is that mD can
be written as the sum of an ample plus effective divisor (Kodaira’s Lemma,
see [69, Corollary 2.2.7]).

Definition 4.16. We say that X is of general type if κ(X) = dim(X), i.e.
ωX is big.

Example 4.17. We see immediately that ample implies big so that varieties
with ample canonical sheaves are of general type. In this case, some power
ω⊗m
X for m � 0 embeds X into a projective space.

Example 4.18. For curves big is the same as ample, so general type is
equivalent to g(C) ≥ 2.

Some examples of varieties of general type are high degree hypersurfaces
(in P

3 we require d ≥ 5) and products of varieties of general type (e.g.
product of higher genus curves). It is worth noting that projective space P

n

and abelian varieties are not of general type.

Remark 4.19. There exist big divisors that are not ample. One of the
standard ways to obtain examples is to note that bigness is preserved under
pullback via birational morphisms, but ampleness is not. Suppose X and Y
are proper, and f : X → Y is a birational morphism. A divisor D on Y is
big if and only if f∗D is big on X. This is easy to see using Definition 4.14,
since X and Y have isomorphic dense open subsets.

We now give an example to show that ampleness is not preserved. Suppose
H be a line in P

2, and let f : X → P
2 be the blowup of P2 at a point with

exceptional divisor E. Then f∗H is big by the above discussion, but f∗H
is not ample since the projection formula gives that (f∗H).E = 0, and thus
violates Theorem 4.9.
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4.2 Log General Type

As we saw for proper curves, hyperbolicity was essentially governed by the
positivity of the canonical sheaf. For affine curves, we saw that hyperbolicity
was governed by positivity of the log canonical divisor. As a result, we discuss
a mild generalization that will be needed later—the notion of log general type
for quasi-projective varieties. Recall that we saw in Remark 3.6 that given
a quasi-projective variety V , one can always relate it to a pair (X,D) of a
smooth projective variety and normal crossings divisor D.

Definition 4.20. We say that V (or the pair (X,D)) is of log general type
if ωX(D) is big.

Of course any pair (X,D) with X of general type will be of log general.
Perhaps more interesting examples are when X does not have its own
positivity properties.

Example 4.21 (Curves). A pointed curve (C,D =
∑

pi) is of log general
type if:

• g(C) = 0 and #(D) ≥ 3,
• g(C) = 1 and #(D) ≥ 1, or
• g(C) ≥ 2.

This is because degωC = 2g − 2 and so degωC(D) = 2g − 2 + #D.

Example 4.22. If X = P
2 and D is a normal crossings divisor, then the

pair (X,D) is of log general type if the curve D has deg(D) ≥ 4. Again, this
is because ωX(D) ∼= OP2(−3+ deg(D)). More generally, if X = P

n, then one
requires degD ≥ n+ 2.

As we will see in the next section, there are conjectural higher dimensional
analogues of Faltings’ Theorem which assert hyperbolicity properties of
projective varieties X which are of general type. In the quasi-projective
setting, there are also conjectural analogues that ask for log general type.

5 Lang’s Conjecture

We are now in a position to state the conjectural higher dimensional
generalization of Faltings’ Theorem. The main idea is that varieties of general
type should satisfy an analogous arithmetic behavior to curves of high genus.

The first conjecture that we mention is due to Bombieri (in the case
of surfaces) and Lang: Bombieri addressed the problem of degeneracy of
rational points in varieties of general type in a lecture at the University of
Chicago in 1980, while Lang gave more general conjectures centered on the
relationship between the distribution of rational points with hyperbolicity
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and Diophantine approximation (see [68] and [66]). The conjecture reads as
follows:

Conjecture 5.1 (Lang’s Conjecture, Bombieri–Lang for Surfaces).
Let X be a (projective) variety of general type over a number field k. Then
X(k) is not Zariski dense.

We note that one cannot expect that X(k) would be finite once dimX ≥ 2,
as varieties of general type can, for example, contain rational curves, which
in turn (potentially) contain infinitely many rational points.

5.1 Generalizations of Lang and Other
Applications

From the previous discussion we have seen that Conjecture 5.1 conjecturally
extends Faltings’ Theorem 2.4. It is natural to ask whether a similar extension
exists for Siegel’s Theorem 3.14. Indeed such a generalization exists: the role
of curves with positive Euler Characteristic is played now by pairs of log
general type. Then, the conjectural behavior of integral points is summarized
in the following conjecture due to Vojta, and, in the following reformulation,
using ideas of Lang.

Conjecture 5.2 (Lang–Vojta). Let X be a quasi-projective variety of log
general type defined over a number field k and let OS,k the ring of S-integers
for a finite set of places of k containing the Archimedean ones. Then the set
X(OS,k) is not Zariski dense.

As was with the Lang conjecture for projective varieties, the finiteness
result of Siegel becomes non-density. In higher dimensions, the positivity of
the log canonical divisor is not sufficient to exclude the presence of infinitely
many integral points. In particular, varieties of log general type of dimension
at least two can contain (finitely many) curves that are not of log general
type.

Example 5.3 (P2 and 4 Lines). We can considerD = x0x1x2(x0+x1+x2)
as a divisor in P

2
Q, and S a finite set of places. Then (S,D)-integral points are

a subset of points of the form [x0 : x1 : x2] where x0, x1, and x2 are S-units.
This is equivalent to requiring that the points are integral with respect to the
three lines x0 = 0, x1 = 0, and x2 = 0. In particular we can consider points
of the form (x0 : x1 : x2) = (1 : x : y) with x, y ∈ O∗

S . The integrality with
respect to the fourth line implies that 1+ x+ y is not 0 modulo every p /∈ S.
So if we define z := 1 + x+ y, then z is a S-unit and we have that

z − x− y = 1
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which is the classical S-unit equation to be solved in units. Then, as an
application of Schmidt’s subspace theorem [96, Theorem 2.2.1], one gets
that there are only finitely many solutions outside the three trivial families:

⎧
⎪⎪⎨
⎪⎪⎩

z = 1

x = u

y = −u

⎧
⎪⎪⎨
⎪⎪⎩

z = u

x = −1

y = u

⎧
⎪⎪⎨
⎪⎪⎩

z = u

y = −1

x = u

These families correspond to curves in X with non-positive Euler character-
istic (since they intersect the divisor D in only two points—passing through
two of the singular points of D). In particular by Theorem 3.14, there will
be infinitely many (S,D)-integral points contained in these curves, up to a
finite extension of Q.

Conjecture 5.2 is a consequence of a more general conjecture, proposed by
Paul Vojta and related to his “landmark Ph.D. Thesis,” which gave the basis
for a systematic treatment of analogies between value distribution theory
and Diophantine geometry over number fields. Based on this analogy Vojta
formulated a set of far-reaching conjectures. For a detailed description we
refer to [96] as well as chapters in the books [13, 56, 83]. We will discuss this
in Section 10.

Finally we mention that more recently Campana has proposed a series of
conjectures based on a functorial geometric description of varieties that aims
at classify completely the arithmetic behavior based on geometric data. For
this new and exciting developments we refer to Campana’s chapter [19] in
this book.

5.2 Known Cases of Lang’s Conjecture

As noted above, Faltings’ second proof of the Mordell conjecture followed
from his resolution of the following conjecture of Lang.

Theorem 5.4 ([46, 47]). Let A be an abelian variety over a number field K
and let X be a geometrically irreducible closed subvariety of A which is not
a translate of an abelian subvariety over K. Then X ∩ A(K) is not Zariski
dense in X.

In particular, one has the following corollary.

Corollary 5.5 (Faltings). Let A be an abelian variety defined over a
number field K. If X is a subvariety of A which does not contain any
translates of abelian subvarieties of A, then X(K) is finite.

Using this result, Moriwaki proved the following result, whose generaliza-
tion is one of the main results in these notes.
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Theorem 5.6 ( [76]). Let X be a projective variety defined over a number
field k such that Ω1

X is ample and globally generated. Then X(k) is finite.

Sketch of Proof. Using Faltings’ Theorem 5.4, and the Albanese variety, one
can show that if X is a projective variety with Ω1

X globally generated,

then every irreducible component of X(k) is geometrically irreducible and
isomorphic to an abelian variety. We will see in Proposition 6.9, that if Ω1

X

is ample, then all subvarieties of X are of general type, and so X does not
contain any abelian varieties. Therefore by Corollary 5.5, the set X(k) is
finite. �

For curves Ω1
C

∼= ωC , but for higher dimensional varieties X, assuming
positivity of the vector bundle Ω1

X is a stronger condition than assuming
positivity of ωX . In the following section, we will review positivity for vector
bundles.

5.3 Known Cases of the Lang–Vojta Conjecture

In the context of degeneracy of S-integral points, as predicted by Conjec-
ture 5.2, the analogue of Theorem 5.4 is the following result due to Vojta.
For the definition of semi-abelian varieties see Definition 8.2.

Theorem 5.7 ([98, 99]). Let X ⊂ A be an irreducible subvariety of a semi-
abelian variety A defined over a number field k. If X is not a translate of
a semi-abelian subvariety, then for every ring of S-integers Ok,S, the set of
integral points X(Ok,S) is not Zariski dense in X.

Corollary 5.8. In the above setting, if X does not contain any translate of
a semi-abelian subvariety of A, then X(OD,S) is a finite set.

In a parallel direction, the Lang–Vojta conjecture is known when the
divisor D has several components: we discussed one example of this in
Example 5.3. Such results arise from the higher dimensional extension of
a method developed by Corvaja and Zannier in [28] to give a new proof
of Siegel’s Theorem. In [29], Corvaja and Zannier prove a general result
that implies non-density of S-integral points on surface pairs (X,D) where
D has at least two components that satisfy a technical condition on their
intersection numbers. This result has been generalized by the same authors,
Levin, Autissier et al., extending the method both to higher dimensions as
well as refining the conditions on the divisorD; see e.g. [11, 30, 32, 35, 71]—we
refer to [27, 34] for surveys of known results.
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6 Hyperbolicity of Projective Varieties and Ample
Cotangent Bundles

The goal of this section is to understand the assumptions in Theorem 5.6—
namely ampleness and global generation for vector bundles. Recall that the
definition of ampleness for line bundles was given in Definition 4.8.

Definition 6.1. Let E be a vector bundle on a projective variety X and let
H be an ample line bundle. We say that

• E is globally generated if there exists a positive integer a > 0 and a
surjective map
Oa

X → E → 0.
• E is ample if there exists a positive integer a > 0 such that the sheaf

Syma(E)⊗H−1 is globally generated, and
• E is big if there exists a positive integer a > 0 such that the sheaf

Syma(E)⊗H−1 is generically globally generated.

Remark 6.2. These definitions are independent of the choice of ample line
bundle H (see [95, Lemma 2.14a].

We note that there are alternative ways to describe ampleness and bigness
for vector bundles (see [52]).

Proposition 6.3. A vector bundle E be on a projective variety X is ample
if and only if OP(E)(1) is ample on P(E).

Remark 6.4. One can try to make the above definition for big, namely
that E is big if and only if OP(E)(1) is big, but this definition does not always
coincide with the above definition (see Example 6.5). We will call E weakly
big if OP(E)(1) is big to distinguish the two notions.

Example 6.5. The vector bundle E = OP1 ⊕ OP1(1) is weakly big, but not
big as in Definition 6.1. This is because any symmetric power will have a
OP1 summand, which will become negative when tensoring with H−1. In
particular, it will never be generically globally generated. The fact that E
is weakly big follows from the following calculation (or see Remark 4.19).
The nth symmetric power is Symn(E) = OP2 + OP1(1) + · · · + OP1(n) so
h0(Symn(E)) = 1 + 2 + · · · + (n + 1) = cn2 + . . . , and therefore grows like
a degree 2 polynomial. If X = P(E) then X = F1, the Hirzebruch surface.
Consider the natural map f : F1 → P

1 then f∗(O(n)) = Symn(E), and so
h0(F1,O(n)) = h0(P1, Symn(E)).

We will need the following fact repeatedly:

Proposition 6.6 ([52, Proposition 2.2 & 4.1]). Any quotient of an ample
vector bundle is ample. The restriction of an ample vector bundle is ample.
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Sketch of Proof of 6.6. We show the quotient result, the other result is
similar. If A → B is a surjective map of vector bundles, then Symn(A)⊗F →
Symn(B) ⊗ F is surjective. So if the former is globally generated, so is the
latter. �
Example 6.7. Let X = P

1. Recall that any vector bundle of rank r on P
1

can be decomposed as the sum of r line bundles. Then OX ⊕OX is globally
generated (but not ample nor big). The vector bundle OX(1) ⊕ OX(1) is
ample.

Example 6.8. Let X = P
n. Then TX is ample by the Euler sequence

combined with Proposition 6.6, and TX(−1) is globally generated, but neither
ample nor big. To see it is globally generated, note that tensoring the Euler
sequence with OX(−1), we obtain

OX(−1) → O⊗(n+1)
X → TX(−1) → 0.

The fact that it is not ample follows since the restriction of TX(−1) to a

line l ⊂ P
n is Ol(1) ⊕ O⊗(n+1)

l . One can also show that TPn(−1) is not big
(see [55, Remark 2.4]).

We are now ready to prove the main result in this section.

Proposition 6.9 ([70, Example 6.3.28]). Let X be a smooth projective
variety with ample cotangent bundle Ω1

X . Then all irreducible subvarieties of
X are of general type.

Proof. Let Y0 ⊂ X be an irreducible subvariety of dimension d, and let
μ : Y → Y0 be a resolution of singularities. Then there is a generically
surjective homomorphism μ∗Ωd

X → Ωd
Y = OY (KY ). Since Ωd

X is ample, the
pullback μ∗Ωd

X is big (see Remark 4.19) and thus OY (KY ) is also big. �
Remark 6.10.

(1) It is worth noting that the converse is not true, that is there are
hyperbolic varieties X such that the cotangent bundle Ω1

X is not ample,
see Example 6.11.

(2) In general, it is not so easy to find varieties X with ample cotangent
bundle Ω1

X (see [70, Section 6.3.B]).

We saw in Theorem 5.6, that if we also assume that Ω1
X is globally

generated, we can obtain finiteness of integral points (unconditionally with
respect to Lang’s conjecture). Finally, although we will not prove it, we
recall that Kobayashi proved (see [70, Theorem 6.3.26]) that if X is a
smooth projective variety with ample cotangent bundle Ω1

X , then X is Brody
hyperbolic (see also [41, Proposition 3.1]). Again, there are examples of Brody
hyperbolic varieties for which Ω1

X is not ample (see Example 6.11).
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Example 6.11 ( [70, Remark 6.3.27]). Let B be a curve of genus g(B) ≥
2 and consider the variety X = B × B. Then X is hyperbolic but Ω1

X is
not ample as its restriction to Y = B × {pt} has a trivial quotient. On
the other hand, consider a holomorphic map C → X = B × B. Since B is
hyperbolic, the map cannot be contained in a fiber. Consider the composition
C → B × B → B. This is a holomorphic map to a curve of genus ≥ 2 and
therefore by Liouville’s theorem must be constant.

Example 6.12 ([70, Construction 6.3.37]).

(1) Let X1, X2 be smooth projective surfaces (over C) of general type
with c1(Xi)

2 > 2c2(Xi). Then a complete intersection of two general
sufficiently positive divisors in X1 ×X2 is a surface X with Ω1

X ample.
(2) Let f : X → B be a non-isotrivial family of smooth projective curves of

genus g ≥ 3 over a smooth curve of genus g(B) ≥ 2. Then Ω1
X is ample.

These are called Kodaira surfaces.

Example 6.13 ([70, Example 6.3.38]). Let Y1, . . . , Ym be smooth pro-
jective varieties of dimension d ≥ 1 with big cotangent bundle (e.g. if Yi are
surfaces of general type with c1(Y )2 > c2(Y ) ) and let

X ⊆ Y1 × · · · × Ym

be a general complete intersection of sufficiently high multiples of an ample
divisor. Then if

dimX ≤ d(m+ 1) + 1

2(d+ 1)
,

then X has ample cotangent bundle Ω1
X .

Example 6.14 ([39]). If X is the complete intersection of e ≥ n sufficiently
ample general divisors in a simple abelian variety of dimension n + e, then
the cotangent bundle Ω1

X is ample.

Debarre conjectured that if X ⊂ P
r is the complete intersection of e ≥ r/2

hypersurfaces of sufficiently high degree, then the cotangent bundle Ω1
X is

ample [39]. This conjecture is now a theorem of Brotbek and Darondeau
[16] and independently, Xie [102]. We state one of the related results.

Theorem 6.15 ([16, 102]). In every smooth projective variety M for each
n ≤ dim(M)/2, there exist smooth subvarieties of dimension n with ample
cotangent bundles.

Remark 6.16. Brotbek–Darondeau prove Debarre’s conjecture without
providing effective bounds. Xie provides effective bounds, and the work of
Deng [42] improves these bounds. Work of Coskun–Riedl improves the bound
in many cases [36].

In the next section, we shift our focus to quasi-projective varieties.
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7 Hyperbolicity of Log Pairs

Using the ideas introduced in the above section, we now wish to understand
positivity conditions on a pair (X,D) that will guarantee hyperbolicity. We
first define what hyperbolicity means for quasi-projective varieties.

Definition 7.1. Let X be a projective geometrically integral variety over a
field k, let D be a normal crossings divisor on X, and let V = X \D.

• V = (X \D) is arithmetically hyperbolic if V (OD) is finite.
• VC is Brody hyperbolic if every holomorphic map C → VC is constant.

Then the conjectures in the spirit of Green–Griffiths–Lang–Vojta assert
that the above are equivalent, and are additionally equivalent to all subva-
rieties of V being of log general type. Recall that aside from the canonical
sheaf, the main player to study hyperbolicity was the cotangent sheaf Ω1

X .
We now consider the generalization to pairs.

Definition 7.2. Let X be a smooth projective variety and let D =
∑r

j=1 Dj

be a reduced normal crossings divisor on X. The log cotangent bundle
Ω1

X(logD) denotes the sheaf of differential forms on X with logarithmic poles
along D.

For example, if dimX = n and U ⊂ X is an open set such that D|U =
z1z2 · · · zk = 0 (with k < n), then

H0(U,Ω1
X(logD)) = Span{dz1

z1
, . . . ,

dzk
zk

, dzk+1, . . . , dzn}.

The natural idea would be to ask whether or not ampleness of the log
cotangent bundle Ω1

X(logD) implies the desired hyperbolicity properties. It
turns out that the log cotangent bundle Ω1

X(logD) is never ample. Indeed,
there are non-ample quotients coming from D which violate the quotient
property from Proposition 6.6.

Proposition 7.3 ( [10, 17]). Let X be a smooth variety of dimX > 1
and D �= ∅ a normal crossings divisor on X. Then the log cotangent sheaf
Ω1

X(logD) is never ample.

Proof. Suppose that the log cotangent bundle Ω1
X(logD) were ample.

Consider the following exact sequence (see [44, Proposition 2.3]):

0 → Ω1
X → Ω1

X(logD) → ⊕r
j=1Dj → 0,

where Dj are the components of D. Now consider the restriction of this
sequence to a component Di ⊆ D, and tensor with ODi

.
In this way one obtains a surjection

A → ODi
+Q → 0,
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where A is an ample sheaf (being the restriction of an ample sheaf), and Q is
a torsion sheaf supported at Di ∩Dj , whenever Di ∩Dj �= ∅. We note that if
there is no common point between any two irreducible components of D, in
particular if D is irreducible, then the second term of the sequence will just be
ODi

. Then, since ODi
⊕Q (and in particular ODi

) is not ample, there cannot
be a surjection from an ample sheaf (this would violate Proposition 6.6) and
thus the log cotangent bundle Ω1

X(logD) cannot be ample. �
Instead, we can ask what happens if the log cotangent bundle Ω1

X(logD)
is, in a sense, as ample as possible. Before introducing our notion of almost
ample, we recall the definition of the augmented base locus. Let Bs(D) denote
the base locus of D.

Definition 7.4. The stable base locus of a line bundle L on a projective
variety X is the Zariski closed subset defined as

B(L) :=
⋂
m∈N

Bs(mL),

and the augmented base locus (aka non-ample locus) of L is

B+(L) :=
⋂
m∈N

B(mL−A),

where A is any ample line bundle on X.

Remark 7.5. If E is a vector bundle on X we define the augmented base
locus as π(B+(O(1)P(E)) where π : P(E) → X. Note that B+(L) is empty if
and only if L is ample, and that B+(L) �= X if and only if L is big (see [43,
Example 1.7].

Example 7.6 (Nef and Big Divisors). Let L be a big and nef divisor
on X. We define the null locus Null(L) ⊆ X to be the union of all positive
dimensional subvarieties V ⊆ X with (LdimV · V ) = 0. Then this is a proper
algebraic subset of X (see [70, Lemma 10.3.6]), and a theorem of Nakamaye
(see [70, Theorem 10.3.5]) says that

B+(L) = Null(L).

Example 7.7 (Surfaces). If X is a smooth surface and D is a big divisor
on X, then there exists a Zariski decomposition D = P +N , where P is the
nef part, and N is the negative part. In this case, one can prove (see [43,
Example 1.11]) that

B+(D) = Null(P ).
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Theorem 7.8 ( [14]). Let L be a big line bundle on a normal projective
variety X. The complement of the augmented base locus is the largest Zariski
open set such that the morphism φm(X,L) is an isomorphism onto its image.

Before giving our definition of almost ample, we recall the notion of
augmented base loci for coherent sheaves.

Definition 7.9 ( [14, Definition 2.4]). Let X be a normal projective
variety, let F be a coherent sheaf, and A an ample line bundle. Let r =
p/q ∈ Q > 0. The augmented base locus of F is

B+(F ) :=
⋂

r∈Q>0

B(F − rA),

where B(F − rA) = B(Sym[q] F ⊗A−p).

Remark 7.10.

(1) The augmented base locus does not depend on the choice of an ample
divisor A.

(2) By [14, Proposition 3.2], if F is a coherent sheaf and π : P(F ) =
P(SymF ) → X is the canonical morphism, then π(B+(OP(F)(1))) =
B+(F ), i.e. the non-ample locus of F .

Definition 7.11. Let (X,D) be a pair of a smooth projective variety and a
normal crossings divisor D. We say that the log cotangent sheaf Ω1

X(logD)
is almost ample if

(1) Ω1
X(logD) is big, and

(2) B+(Ω
1
X(logD)) ⊆ Supp(D).

Remark 7.12.

(1) We can define the above notion more generally for singular varieties
(see [10]), e.g. varieties with lc and slc singularities coming from moduli
theory. This is necessary to obtain the uniformity results in loc. cit.;
however, it is unnecessary for the proof of Theorem 8.1.

(2) When X is smooth, our notion does not quite coincide with almost ample
as in [17, Definition 2.1]. If the log cotangent sheaf is almost ample in
the sense of [17], then it is almost ample in our sense. However, our
definition is a priori weaker.

(3) Brotbek–Deng proved that for any smooth projective X there exists a
choice of D so that the log cotangent bundle Ω1

X(logD) is almost ample
(see Theorem 7.13).

(4) For a log smooth pair (X,D) with almost ample Ω1
X(logD), the

complement X \D is Brody hyperbolic by the base locus condition (see
e.g. [41, Proposition 3.3]).

We now state the above theorem of Brotbek–Deng.
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Theorem 7.13 ([17, Theorem A]). Let Y be a smooth projective variety
of dimY = n and let c > n. Let L be a very ample line bundle on Y . For
any m ≥ (4n)n+2 and for general hypersurfaces H1, . . . , Hc ∈ |Lm|, writing
D =

∑c
i=1 Hi, the logarithmic cotangent bundle Ω1

Y (logD) is almost ample.
In particular, Y \D is Brody hyperbolic.

We now present the proof that almost ample log cotangent implies that all
subvarieties are of log general type. We note that the proof of the statement
in full generality is outside the scope of these notes, and so we present a
simplified proof which works for log smooth pairs.

Theorem 7.14 ([10, Theorem 1.5]). Let (X,D) be a log smooth pair. If
(X,D) has almost ample log cotangent Ω1

X(logD), then all pairs (Y,E) where
E := (Y ∩ D)red with Y ⊂ X irreducible and not contained in D are of log
general type.

Proof. Consider a log resolution (Ỹ , Ẽ) → (Y,E), which gives a map φ :

(Ỹ , Ẽ) → (X,D). Since Y is not contained in D, by the definition of almost
ample, Y is not contained in the base locus of Ω1

X(logD). This gives a map

φ∗(Ω1
X(logD)) → ΩỸ (log Ẽ). The image of this map is a big subsheaf of

ΩỸ (log Ẽ), being a quotient of a big sheaf, and thus its determinant is also

big. By [20, Theorem 4.1] (see also [86, Theorem 1]) KỸ + Ẽ is big, and so
(Y,E) is of log general type. �
Remark 7.15. In the above proof, we used that the quotient of a big sheaf
is a big sheaf. We stress that this is not true for weakly big. The key idea is to
be big there is a generically surjective map, and this map remains generically
surjective when restricting to a subvariety not contained in the base locus
(in this case a subvariety contained in the divisor D).

In [10], we prove this statement in further generality. Namely, we prove
the result for pairs with singularities which arise from moduli theory (i.e. lc
and slc singularities). This is necessary for the proofs of uniformity in loc. cit.
We now show an alternative proof for Theorem 7.14 in the case dimX = 2,
which avoids the use of [20].

Alternative Proof of Theorem 7.14 If dimX = 2. By assumption, Ω1
X(logD)

is big and so its restriction to any subvariety Y �⊂ D is still big. Since Y is
a curve, big is equivalent to ample, and so the restriction is actually ample.
Consider the normalization φ : Y v → Y and denote by Ev the divisor
Ev = φ−1(E) ∪ { exceptional set of φ}. Since Ω1

X(logD)|Y is ample, its
pullback φ∗(Ω1

X(logD)|Y ) is big. There is a generically surjective map (see
[51, Theorem 4.3])

φ∗(Ω1
X(logD)|Y ) → Ω1

Y v (Ev) = OY v (KY v + Ev).
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Therefore we see that OY v (KY v + Ev) is big and so (Y,E) is of log general
type. �

8 Semi-abelian Varieties and the Quasi-Albanese
Map

In this section we introduce semi-abelian varieties, and prove a generalization
of Moriwaki’s theorem. In particular, we show that the Lang–Vojta conjecture
holds for varieties which have almost ample and globally generated log
cotangent bundle.

Theorem 8.1 ([10]). Let V be a smooth quasi-projective variety with log
smooth compactification (X,D) over a number field K. If the log cotangent
sheaf Ω1

X(logD) is globally generated and almost ample, then for any finite
set of places S the set of S-integral points V (OK,S) is finite.

We begin with the definition of a semi-abelian variety. Our discussion
follows [48].

Definition 8.2. A semi-abelian variety is an irreducible algebraic group A
which, after a suitable base change, can be realized as an extension of an
abelian variety by a linear torus, i.e. the middle term of an exact sequence

1 → G
r
m → A → A0 → 1,

where A0 is an abelian variety.

Example 8.3. Immediate examples of semi-abelian varieties are tori and
abelian varieties. Any product of a torus with an abelian variety is a semi-
abelian variety called split.

By Vojta’s generalization of Faltings’ theorem (see Theorem 5.7 and
Corollary 5.8), one way to obtain finiteness of the set of integral points is
to consider varieties X \D that satisfy the following two conditions:

(1) X \D embeds in a semi-abelian variety as a proper subscheme;
(2) X \D does not contain any subvariety which is isomorphic to (a translate

of) a semi-abelian variety.

Clearly the two conditions imply that the set of D-integral points on X is
finite. This strategy has some similarity with the proof of Siegel’s Theorem
using the Roth’s Theorem, where one make use of the embedding of the curve
in its Jacobian.

To embed a pair in a semi-abelian variety we will use the theory of
(quasi-)Albanese maps. Recall that every variety admits a universal mor-
phism to an abelian variety, called the Albanese map. The same is true for
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quasi-projective varieties where the universal morphism instead maps to a
semi-abelian variety.

Definition 8.4 ([48, Definition 2.15]). Let V be a smooth variety. The
quasi-Albanese map

α : V → AV

is a morphism to a semi-abelian variety AV such that

(1) For any other morphism β : V → B to a semi-abelian variety B, there is
a morphism f : AV → B such that β = f ◦ α, and

(2) the morphism f is uniquely determined.

The semi-abelian variety AV is called the quasi-Albanese variety of X and
was constructed originally by Serre in [87, Théorème 7].

Remark 8.5.

• If V = C is a projective curve, then AV is the abelian variety Jac(C).
• If V = X \D is rational, then AV is a torus. (Exercise)
• There is no semi-abelian subvariety of AV containing α(V ).

8.1 Construction of AV

We briefly sketch the construction of AV for a smooth quasi-projective variety
V defined over the complex numbers. More generally if V is defined over a
perfect field k one can define more abstractly the Albanese variety to be the
dual of the Picard variety of X. In what follows we use the standard notation
q(V ) = dimH0(X,Ω1

X(logD)) and q(X) = dimH0(X,Ω1
X).

Let {ω1, . . . , ωq(X), ϕ1, . . . , ϕδ} be a basis of H0(X,Ω1
X(logD)). The quasi-

Albanese variety of V is AV
∼= C

q(V )/L, where L is the lattice defined by the
periods, i.e. the integrals of the basis elements ofH0(X,Ω1

X(logD)) evaluated
on a basis of the free part of H1(V,Z). Then AV is a semi-abelian variety [48,
Lemma 3.8]. If 0 ∈ V is a point of V , then the map α : V → AV is defined as

P 	→
(∫ P

0

ω1, . . . ,

∫ P

0

ωq(X),

∫ P

0

ϕ1, . . .

∫ P

0

ϕδ

)
.

The map α is well defined [48, Lemma 3.9] and one can check that α is
an algebraic map [48, Lemma 3.10]. In particular dimAV = q(V ). We will
denote by d(V ) = dimα(V ).

We see now that in order to use the quasi-Albanese variety we will need
to impose some condition on the positivity of the sheaf Ω1

X(logD). The main
idea is that the geometric conditions on the log cotangent sheaf will ensure
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that we can embed V inside its quasi-Albanese as a proper subvariety and
then ensure that it does not contain any proper semi-abelian subvariety and
conclude using Vojta’s Theorem 5.7.

8.2 Proof of the Main Theorem

We begin with the following.

Proposition 8.6. Let V be a smooth quasi-projective variety over a number
field K. If d(V ) < q(V ), then the closure of V (OS,K) in V is a proper closed
subset.

Proof. Assume V (OS) �= ∅. Since d(V ) < q(V ), the quasi-Albanese map α
is not surjective. In particular α(V ) is a proper subvariety of a semi-abelian
variety AV . If V (OS) is dense in V , then so is its image α(V )(OS) in α(V ). By
Vojta’s Theorem (Theorem 5.7), the image α(V ) is a semi-abelian subvariety
of AV . This is a contradiction by Remark 8.5 (alternatively think about
α(V )(OS) generating AV (OS)). �

Now we discuss the consequences of Ω1
X(logD) being almost ample and

globally generated.

Lemma 8.7. Let V be a smooth quasi-projective variety with log smooth
compactification (X,D) over a field k of characteristic zero. If the sheaf
Ω1

X(logD) is almost ample and globally generated, then q(V ) ≥ 2 dimV .

Proof. If P = Proj(Ω1
X(logD)) and L = OP (1), then since Ω1

X(logD) is
globally generated there is a morphism φ|L| : P → P

N where φ∗
|L|OPN (1) = L

and N = dimk H
0(P,L) − 1. Furthermore, by definition L is big. Then the

map φ|L| is generically finite which implies that

dimP = dimφ|L|(P ) ≤ N = dimk H
0(P,L)− 1.

Noting that dimP = 2dimV − 1 we obtain that

q(V ) = dimH0(X,Ω1
X(logD)) ≥ 2 dimV.

�
Theorem 8.8. Let V ∼= (X \D) be a log smooth variety over a number field
k, let AV be a semi-abelian variety, and let α : V → AV be a morphism.
If α∗(Ω1

AV
) → Ω1

V is a surjective map of sheaves, then every irreducible
component of V (OS) is geometrically irreducible and isomorphic to a semi-
abelian variety.
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Proof. Let Y be an irreducible component of V (OS). Since Y (OS) is dense
in Y , we see that Y is geometrically irreducible. We are thus left to show that
Y is isomorphic to a semi-abelian variety. For this we will use [48, Theorem
4.2] and so it suffices to show that Y is smooth and α|Y is étale.

Let B = α(Y ). Since Y (k) is dense in Y , so is B(k) in B. By Vojta’s
theorem (see Theorem 5.7), B is a translated of a semi-abelian subvariety
of AV . Consider the following diagram:

We know that h : (α|Y )∗(Ω1
B) → Ω1

Y is surjective. On the other hand,
rank(Ω1

B) ≤ rank(Ω1
Y ) and the former is locally free. Therefore h is actually

an isomorphism. Therefore Y is smooth over k and α|Y is étale. Thus we
conclude the result by [48, Theorem 4.2] �
Corollary 8.9. Let V ∼= (X \ D) be a log smooth variety over a number
field k. If the log cotangent sheaf Ω1

X(logD) is globally generated, then

for every finite set of places S, every irreducible component of V (OS) is
geometrically irreducible and isomorphic to a semi-abelian variety.

Proof. Consider the quasi-Albanese map α : V → AV . Since Ω1
X(logD) is

globally generated and H0(V,Ω1
V ) ⊗ OAV

∼= Ω1
AV

by [48, Lemma 3.12] the
map α∗(Ω1

AV
) → Ω1

V is surjective. Therefore applying Lemma 8.7 gives the
desired result. �
Proof 1 of Theorem 8.1. For a smooth variety V with log smooth completion
(X,D), assuming that Ω1

X(logD) is almost ample implies there are no
semi-abelian varieties inside V (see Theorem 7.14). Therefore, the set
V (OS) is finite when Ω1

X(logD) is globally generated and almost ample by
Corollary 8.9. �

We now give a proof that does not use Theorem 7.14.

Proof 2 of Theorem 8.1. Assume that V (OS) has an irreducible component
Y of dimension dimY ≥ 1. Let (Y ,E) denote the completion of Y . Note
that Y is geometrically irreducible. Furthermore, Ω1

X(logD)|Y is almost
ample and globally generated. Therefore Ω1

Y
(logE) is almost ample and

globally generated as well. By Lemma 8.7, q(Y ) ≥ 2 dimY . Therefore, by
Proposition 8.6, Y (OS) is not dense in Y , which is a contradiction. �
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9 Vojta’s Conjecture

The goal of this section is to introduce Vojta’s conjecture and the relevant
height machinery to present a result analogous to Theorem 8.1 in the function
field setting. This result gives a height bound for integral points that is
predicted by Vojta’s main conjecture (Conjecture 9.5). We will see in this
section that this “main” conjecture implies Conjecture 5.2.

9.1 Vojta’s Conjecture and the Theory of Heights

We will now recall the basic definition needed to state the main conjecture
whose specific reformulation will imply Conjecture 5.2. The main technical
tool is the concept of height, that plays a fundamental role in almost all results
in Diophantine Geometry. The idea is that a height function measures the
“arithmetic complexity” of points. In the classical case of Pn the logarithmic
height is defined as

H(x0 : · · · : xn) = max
i

(|xi|)

for a rational point (x0 : · · · : xn) ∈ P
n(Q) with integer coordinates

without common factors. Weil extended this notion to treat arbitrary height
functions on algebraic varieties defined over number fields. In this language,
the logarithmic height on P

n is the height associated with a hyperplane divisor
over Q.

Definition 9.1 (Weil’s Height Machinery). Let X be a smooth projec-
tive algebraic variety defined over a number field k. There exists a (unique)
map

hX, : Pic(X) → {functions X(k) → R}

well defined up to bounded functions, i.e. modulo O(1), whose image hX,D

for a class D ∈ Pic(X) is called a Weil height associated with D. The map
hX, satisfies

(a) the map D 	→ hX,D is an homomorphism modulo O(1);
(b) if X = P

n and H ∈ Pic(Pn) is the class of some hyperplane in P
n, then

hX,H is the usual logarithmic height in the projective space;
(c) Functoriality: for each k-morphism f : X → Y of varieties and for each

D ∈ Pic(Y ) the following holds:

hX,f∗D = hY,D +O(1).

By abuse of notation, for a divisor D, we will denote the height
corresponding to the class O(D) ∈ Pic(X) with hX,D. The previous definition
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can be extended to non-smooth varieties (even non-irreducible ones) and over
any field with a set of normalized absolute values which satisfy the product
formula, see [68] for further details. From the previous definition one can
show the following properties for the height machinery:

Proposition 9.2 ( [56, 68]). With the above notation, the function hX,

satisfies

(d) Let D be an effective divisor in X then, up to bounded functions, hX,D ≥
O(1);

(e) Northcott’s Theorem: Let A be an ample divisor in X with associated
height function hX,A then, for all constants C1, C2, and every extension
k′ of k with [k′ : k] ≤ C2, the following set is finite:

{P ∈ X(k′) : hX,A(P ) ≤ C1}.

The second ingredient we need to introduce to formally state Vojta’s
conjecture is the notion of local height. Morally we want a function which
measures the v-adic distance from a point to a divisor D and such that a
linear combination of these functions when v runs over the set of places gives
a Weil height for the divisor D. This motivates the following:

Definition 9.3 (Local Height). Let X be a smooth projective variety
defined over a number field k. Then there exists a map

λ : Pic(X) → { functions
∐

v∈Mk

X \ suppD(kv) → R}

defined up to Mk-bounded functions, i.e. up to constant maps Ov(1) : Mk →
R that are nonzero for finitely many places v ∈ Mk, such that:

(a) λ is additive up to Mk bounded functions;
(b) given a rational function f on X with associated divisor div(f) = D.

Then

λD,v(P ) = v(f(P ))

up to Ov(1), for each v ∈ Mk where P ∈ U ⊂ X \ suppD(kv) with U
affine and max|P |v = 0 for all but finitely many v;

(c) Functoriality: for each k-morphism g : X → Y of varieties and for each
D ∈ Pic(Y ) the following holds:

λg∗D,v = λD,v ◦ g +Ov(1);

(d) if D is an effective divisor, then λD,v ≥ Ov(1);
(e) if hD is a Weil height for D, then
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hD(P ) =
∑

v∈Mk

dvλD,v(P ) +O(1)

for all P /∈ suppD, with dv = [kv : Qv]/[k : Q].

For the detailed construction and related properties of local height we
refer to [68] and [88]. One intuition behind the work of Vojta was the fact
that local heights are arithmetic counterparts of proximity functions in value
distribution theory: to see this consider a metrized line bundle L with a
section s and metric |·|v: the function P 	→ log|s(P )|v is a local height at v.
Following Vojta [96] one can introduce arithmetic proximity and counting
functions for algebraic varieties over number fields in the same spirit.

Definition 9.4. Let S be a finite set of places of k, and let (X,D) be a pair
defined over k. Then the following functions are well defined:

mS,D(P ) =
∑
v∈S

dvλD,v(P )

NS,D(P ) =
∑
v/∈S

dvλD,v(P )

called the arithmetic proximity function and arithmetic counting function
respectively. By definition,

hD(P ) = NS,D(P ) +mS,D(P ).

With these definitions we can now state the main Vojta conjecture which
translates Griffiths’ conjectural “Second Main Theorem” in value distribution
theory.

Conjecture 9.5 (Vojta). Let X be a smooth irreducible projective variety
defined over a number field k and let S be a finite set of places of k. Let D
be a normal crossing divisor and A an ample divisor on X. Then for every
ε > 0 there exists a proper closed subset Z such that, for all P ∈ X(k) \ Z,

mS,D(P ) + hKX
(P ) ≤ εhA(P ) +O(1).

Vojta’s main conjecture 9.5 is known to imply most of the open conjectures
and fundamental theorems of Diophantine Geometry (Masser–Osterlé abc
conjecture, Faltings’ Theorem, . . . ).

We end this section by two propositions which show how the above stated
conjectured implies the Bombieri–Lang conjecture 5.1 and the Lang–Vojta
conjecture 5.2. For other implications and discussions we refer the interested
reader to [96] or [83].
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Remark 9.6. We recall that by Remark 4.15 (Kodaira’s Lemma), a big
divisor D has a positive multiple that can be written as the sum of an ample
and effective divisor. In the following proofs we will always assume that this
multiple is the divisor itself for simplifying the notation, as this can be done
without loss of generality.

Proposition 9.7. Vojta conjecture 9.5 implies Bombieri–Lang conjec-
ture 5.1.

Proof. If X is of general type, then KX is big, i.e. there exists a positive
integer n such that nKX = B+E with B ample and E effective, and we will
assume n = 1. Now Conjecture 9.5 with D = 0 and A = B gives

(1− ε)hB(P ) + hE(P ) ≤ O(1).

By Proposition 9.2, hE(P ) ≥ 0 and hence, by Northcott’s Theorem 9.2(e),
the set X(K) is not Zariski dense in X. �

In order to prove that Vojta conjecture is stronger than the Lang–Vojta
conjecture we need the following reformulation of the property of being S-
integral in terms of the functions defined in Definition 9.4: a point P is
S-integral if NS,D(P ) = O(1) and in particular mS,D(P ) = hD(P ) + O(1).
Using the characterization of bigness mentioned above (Remark 4.15), we
prove the following.

Proposition 9.8. Vojta’s conjecture 9.5 implies the Lang–Vojta conjec-
ture 5.2.

Proof. For a log general type variety (X,D) one has

KX +D = B + E,

for B ample and E effective. Hence Vojta’s conjecture with A = B gives, for
S-integral points,

(1− ε)hB(P ) + hE(P ) ≤ O(1).

As before, hE(P ) ≥ 0; thus, using Northcott’s Theorem, the set of S-integral
points of (X,D) is not Zariski dense. �

10 Function Fields

Function fields in one variable and number fields share several properties. This
deep analogy was observed in the second half of the 19th century; one of the
first systematic treatments can be found in the famous paper by Dedekind
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and Weber [40]. Further descriptions, due to Kronecker, Weil, and van der
Waerden, settled this profound connection which finally became formally
completed with the scheme theory developed by Grothendieck.

Definition 10.1 (Function Field). A function field F over an alge-
braically closed field k is a finitely generated field extension of finite
transcendence degree over k. A function field in one variable, or equivalently
a function field of an algebraic curve, is a function field with transcendence
degree equal to one.

Remark 10.2. With the language of schemes the function field of a curve
X, or more general of every integral scheme over an algebraic closed field,
can be recovered from the structure sheaf OX in the following way: given any
affine open subset of X, the function field of X is the fraction field of OX(V ).
Moreover, if η is the (unique) generic point of X, then the function field of
X is also isomorphic to the stalk OX,η.

The analogy between number fields and function fields of curves, also
known as algebraic function fields in one variable, comes from the fact
that one-dimensional affine integral regular schemes are either smooth affine
curves over a field k or an open subset of the spectrum of the ring of integers
of a number field. Formally, given a number field k with ring of integers Ok

the scheme SpecOk is one-dimensional affine and integral. From this analogy,
several classical properties of number fields find an analogue in the theory of
function field. In particular the theory of heights can be defined over function
fields.

Definition 10.3. Given a function field F in one variable of a non-singular
curve C, each (geometric) point P ∈ C determines a non-trivial absolute
value by

|f |P := e− ordP (f).

Moreover if Q �= P , then the absolute values |·|Q and |·|P are not equivalent.

Remark 10.4.

• The definition could have been given more generally for function fields of
algebraic varieties regular in codimension one (or rather for regular models
of higher dimensional function fields), replacing the point P with prime
divisors. Extensions exist also for function fields over non-algebraically
closed fields in which one should replace points with orbits under the
absolute Galois group.

• From the fact that any rational function f on a projective curve has an
associated divisor of degree zero, it follows that the set of absolute values
satisfy the product formula.
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Table 1 Number Fields
and Function Fields
analogy

Number Field Function Field

Z k[x]

Q k(x)

Qp k((x))

k finite extension of Q F function field of C
Place Geometric point

Finite set of places Finite set of points

Ring of S-integers Ring of regular functions

SpecOk,S Affine curve C \ S

Product formula deg principal divisor = 0

Extension of number fields Dominant maps

Extension of ideals Pullback of divisors

Given the set of absolute values MF for a function field in one variable F ,
normalized in such a way that they satisfy the product formula, heights can
be defined for F in the following way:

Definition 10.5. Let F = k(C) be as before. For any f ∈ F the height of
f is

h(f) = −
∑
P∈C

min{0, ordP (f)} =
∑
P∈C

max{0, ordP (f)}.

In the same way for a point g ∈ P
n(F ), g = (f0 : · · · : fn), its height is

defined as

h(g) = −
∑
P∈C

min
i

{ordP (fi)}.

From the definition it follows that a rational function on a regular curve
has no poles if and only if its height is zero if and only if it is constant on the
curve.

We end this subsection with Table 1, which illustrates the interplay and the
similarity between number fields and function fields. We stress in particular
how each geometric object in the right column, in particular dominant maps
and pullbacks, are analogous to purely arithmetic notions like extensions
of fields and extensions of ideals. This analogy can be further explored
using Arakelov Theory and extending the notion of divisors to number fields
by suitably compactifying the affine curve SpecOk,S ; in this framework an
intersection theory can be defined for such compactified divisors sharing many
analogous properties of intersection theory on the geometric side. We refer
to [67] for further details on this subject.
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10.1 Mordell Conjecture for Function Fields

Over function fields one cannot expect Faltings’ Theorem 2.4 to hold as shown
by the following examples.

Example 10.6. Let C be a curve with g(C) > 1 defined over C and consider
the trivial family C × P

1 → P
1. The family can be viewed as the curve C

(trivially) defined over the function field C(t) of P1. All fibers of the family,
being isomorphic to C have genus greater than one. The Mordell Conjecture
over function fields, without any other restriction, should imply that the set
of C(t)-rational points of C, i.e. there are finitely many sections P1 → C×P

1.
However this is easily seen to be false by considering constant sections P1 →
{P} × P

1 for each point P ∈ C(C). In particular, the general type curve C
defined over C(t) has infinitely many C(t)-rational points.

From the previous example one could guess that the problem relied on the
fact that the family was a product and the curve C was actually defined over
the base field C rather than on the function field C(t), i.e. the family was
trivial. However, as the following example shows, things can go wrong even
for non-trivial families.

Example 10.7 (Gasbarri [49]). Consider the curve C := (x+ty)4+y4−1
defined over C(t). It has an associated fibration C → P

1 whose generic fiber
Ct0 = (x + t0y)

4 + y4 − 1 is a smooth projective curve of genus g(Ct0) = 3.
Again if we consider the same statement of Theorem 2.4 only replacing the
number field with the function field C(t) we would expect that the number of
C(t)-rational points of C to be finite. However we claim that C(C(t)) is infinite;
to see this consider the equation α4 + β4 = 1 over C2: it has infinitely many
solutions. Each solution gives a C-point of Ct0 , namely (α − t0β, β) proving
the claim. Moreover the family is not trivial in the sense of the previous
example, i.e. C is not defined over C. Notice however that each fiber of the
family is isomorphic to the curve x4 + y4 = 1 via x+ ty 	→ x and y 	→ y.

Motivated by the previous examples we give the following:

Definition 10.8. Given a family of irreducible, smooth projective curves
C → B over a smooth base B, we say that the family is isotrivial if Cb is
isomorphic to a fixed curve C0 for b in an open dense subset of B. With
abuse of notation, we will say that a curve C defined over a function field F
is isotrivial if the corresponding fibration C → B is isotrivial, where B is a
curve with function field F .

Isotriviality extends the notion of (birational) triviality for family of
curves, i.e. a product of curves fibered over one of the factors is immediately
isotrivial. At the same time this notion encompasses many other families
that are not products, like the one defined in the previous example. However,
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after a cover of the base of the family, each isotrivial family becomes trivial;
in particular the following easy lemma holds:

Lemma 10.9. Given an isotrivial family C → B of smooth projective
irreducible curves, there exists a cover B′ → B such that the base changed
family C ×B B′ → B′ is a generically trivial family, i.e. is birational to a
product C ×C B0.

Lemma 10.9 implies that rational points for curves defined over function
fields will not be finite for isotrivial curves. The analogous form of Mordell
Conjecture for function fields thus asks whether this holds only for this class
of curves. We can then restate Theorem 2.4 in the following way:

Theorem 10.10. Let C be a smooth projective curve defined over a function
field F of genus g(C) > 1. If C(F ) is infinite, then C is isotrivial.

Theorem 10.10 was proved in the sixties by Manin [73] (although with a
gap fixed by Coleman [26]) using analytic arguments, and later by Grauert
[50] using algebraic methods. Samuel in [84] gave a proof in characteristic
p using ideas of Grauert. A detailed explanation of Grauert methods can be
found in Samuel’s survey [85]. In Mazur’s detailed discussion of Faltings’
proof of Mordell Conjecture [74], Mazur stresses the role of Arakelov [7]
and Zahrin’s [104] results which imply new proofs of the Geometric Mordell
Conjecture, using ideas of Parshin: this gives even more importance to the
geometric case.

One of the ideas of Grauert’s proof, which is central in some of the higher
dimensional extensions is the following: suppose C is a curve defined over a
function field F of a curve B, corresponding to a fibration π : X → B. Then
one can prove that almost all sections of the fibration, which correspond to
rational points, verify a first order differential equation, i.e. almost all sections
are tangent to a given horizontal vector field. Formally each section σ : B → X
can be lifted to the projective bundle B → P(Ω1

X) = Proj(Sym(Ω1
X)) via the

surjective map σ∗Ω1
X → Ω1

B. Grauert proves (in a different language) that
there exists a section φ of a suitable line bundle over P(Ω1) whose zero section
contains all but finitely many images of sections. Grauert then concludes
that if infinitely many sections exist, given the fact that they satisfy the
differential equation given by φ = 0, a splitting is provided for the relative
tangent sequence which implies that the family is isotrivial (via the vanishing
of the Kodaira–Spencer class).

In particular, Grauert’s construction gives first insights towards the theory
of jet spaces which occupy a central role in some degeneracy results in the
complex analytic setting. In this direction, recent analogues of Theorem 10.10
in higher dimension have been proved by Mourougane [77] for very general
hypersurfaces in the projective space of high enough degree using proper
extensions of the ideas briefly described above.
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10.2 Vojta Conjecture for Function Fields

Since function fields possess a theory of heights analogous to the theory over
number fields, one can translate Vojta’s Main Conjecture 9.5 to the function
field case. The main conjecture implies the following height bound for varieties
of log general type over function fields.

Conjecture 10.11. Let (X ,D) be a pair over a function field F = k(B)
whose generic fiber (X,D) is a pair of log general type. Then, for every ε > 0
there exists a constant C and a proper closed subvariety Z such that for all
P (∈ X \ Z)(F ) one has

hKX+D(P ) ≤ C(χ(P ) +N
(1)
D (P )) +O(1) (1)

where, given a point P ∈ X (L) corresponding to a cover BP → B of degree n,
corresponding to the field extension L ⊃ F , we have that χ(P ) = χ(BP )/n.

Moreover, the truncated counting function N
(1)
D (P ) is the cardinality of the

support of P ∗D.

Note that for varieties of log general type the height in (1) is associated
with a big divisor. In this case, if the set of points of bounded height is Zariski
dense, then the model is isotrivial. Moreover, if one considers only points
defined over F , then the characteristic of the point P reduces to 2(g(B))− 2
and one recovers the usual conjecture for (D,S)-integral points where #S ≥
N

(1)
D (P ).
In this latter case one can relate Conjecture 10.11 to hyperbolicity using

the following result of Demailly.

Theorem 10.12 (Demailly [41]). Let X be a projective complex variety
embedded in some projective space for a choice of a very ample line bundle.
Then if the associated manifold is Kobayashi hyperbolic the following holds:
there exists a constant A > 0 such that each irreducible curve C ⊂ X satisfies

deg C ≤ A(2g(C̃)− 2) = Aχ(C̃),

where C̃ is the normalization of C.
Following this result, Demailly introduced the following notion.

Definition 10.13. A smooth projective variety X is algebraically hyperbolic
if there exists a constant A such that for each irreducible curve C ⊂ X the
following holds:

deg C ≤ Aχ(C̃).
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Using strong analogies between hyperbolicity and degeneracy of rational
points Lang conjectured that a general type variety should be hyperbolic
outside a proper exceptional set and therefore one could also conjecture that
the variety should be algebraically hyperbolic outside that set (for more on
algebraically hyperbolic varieties we refer to [58, 59]). This allows one to
rephrase Conjecture 10.11 as follows.

Conjecture 10.14 (Lang–Vojta for Function Fields). Given an affine
variety X embedded as X \D for a smooth projective variety X and a normal
crossing divisor D, if X is of log general type, then there exists a proper
subvariety Exc (called the exceptional set) such that there exists a bound
for the degree of images of non-constant morphisms C → X from affine
curves whose image is not entire contained in Exc, in terms of the Euler
Characteristic of C.

By the previous remark it is easy to see that Conjecture 10.11 implies
Conjecture 10.14.

We note that most of the known techniques used for the number field case
can be used to prove analogous results in the function field setting. However,
due to the presence of tools that are not available over number fields, most
notably the presence of derivation, one can obtained stronger results that
lead to cases of Conjecture 10.14 and Conjecture 10.11 in settings that are
currently out of reach in the function field case. We refer to the articles
[18, 22, 24, 31, 33, 77, 81, 94, 100, 101] as some examples of results over function
fields along these lines.

Remark 10.15. For the sake of completion, we discuss briefly how algebraic
hyperbolicity fits in with our previous discussions on hyperbolicity (see [70,
Example 6.3.24].

• If X is algebraically hyperbolic, then X contains no rational or elliptic
curves.

• If X is algebraically hyperbolic, then there are no non-constant maps f :
A → X from an abelian variety A.

• Kobayashi (and thus Brody) hyperbolicity implies algebraic hyperbolicity
for projective varieties.

Furthermore, a theorem of Kobayashi (see [70, Theorem 6.3.26]) states that
if Ω1

X is ample, then X is algebraically hyperbolic.

10.3 Moriwaki for Function Fields

The analogue of Theorem 5.6 over function fields is the following theorem
due to Noguchi.
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Theorem 10.16 (Noguchi [79]). Let X be a smooth variety over a
function field F . If Ω1

X is ample, then the conclusion of Conjecture 10.11
holds.

It is therefore natural to consider the analogous question for pairs. As
pointed out several times in these notes, for a pair (X,D), the analogous
assumption on the positivity of the log cotangent, is to require that Ω1

X(logD)
is almost ample. In this setting the following was suggested to us by Carlo
Gasbarri.

Expectation 10.17. Let (XF , D) be a log smooth non-isotrivial pair
over F . If Ω1

XF /F (logD) is almost ample, then there exists a constant A

and a proper closed subset Z � XF such that for every p ∈ (XF \ Z)(F ) we
have that

hKX+D(P ) ≤ A(χ(P ) +N
(1)
D (P )) +O(1)

where P is a model of p over C.
The intuition is as follows: first one obtains a height bound for lifts of

sections over the projectivization of the model of the log cotangent sheaf.
Then using the almost ample hypothesis together with the non-isotriviality
of the pair, one shows that the base locus of the structure sheaf of the
projectivized bundle does not dominate the base.

11 Consequences of Lang’s Conjecture

For the sake of completeness, and due to our personal interests, we conclude
these notes with a few consequences of Lang’s conjecture.

11.1 Consequences of Lang’s Conjecture –
Uniformity

Caporaso–Harris–Mazur [21] showed that Conjecture 5.1 implies that #C(K)
in Faltings’ Theorem is not only finite, but is also uniformly bounded by a
constant N = N(g,K) that does not depend on the curve C.
Theorem 11.1 (See [21]). Let K be a number field and g ≥ 2 an integer.
Assume Lang’s conjecture. Then there exists a number B = B(K, g) such
that for any smooth curve C defined over K of genus g the following holds:
#C(K) ≤ B(g,K)
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Pacelli [80] (see also [1]), proved that N only depends on g and [K : Q].
Some cases of Theorem 11.1 have been proven unconditionally [60, 82, 92]
depending on the Mordell–Weil rank of the Jacobian of the curve and for
[82], on an assumption related to the Height conjecture of Lang–Silverman.
It has also been shown that families of curves of high genus with a uniformly
bounded number of rational points in each fiber exist [38].

Näive translations of uniformity fail in higher dimensions as subvarieties
can contain infinitely many rational points. However, one can expect that
after removing such subvarieties the number of rational points is bounded.
Hassett proved that for surfaces of general type this follows from Conjec-
ture 5.1, and that the set of rational points on surfaces of general type lie in
a subscheme of uniformly bounded degree [54].

The main tool used to prove the above uniformity results is the fibered
power theorem and was shown for curves in [21], for surfaces [54] and
in general by Abramovich [2]. In higher dimensions, similar uniformity
statements hold conditionally on Lang’s conjecture, and follow from the
fibered power theorem under some additional hypotheses that take care of
the presence of subvarieties that are not of general type [6].

11.1.1 Consequences of the Lang–Vojta Conjecture –
Uniformity

We saw above that Lang’s conjecture had far-reaching implications for
uniformity results on rational points for varieties of general type. One can
analogously ask if the Lang–Vojta conjecture implies uniformity results for
integral points on varieties of log general type. It turns out that such results
are much more subtle in the pairs case, but we review some of the known
results here.

This question was first addressed in [3] when Abramovich asked if the
Lang–Vojta conjecture implies uniformity statements for integral points.
Abramovich showed this cannot hold unless one restricts the possible models
used to define integral points (see Example 3.9). Instead, Abramovich defined
stably integral points, and proved uniformity results (conditional on the Lang–
Vojta conjecture), for stably integral points on elliptic curves, and together
with Matsuki [5] for principally polarized abelian varieties. While we do not
give a precise definition of stably integral points in these notes, we remark that
they are roughly integral points which remain integral after stable reduction.
We refer the interested reader to our paper [10].

In [10], we prove various generalizations of the work of Abramovich and
Abramovich–Matsuki. In particular, we prove that the Lang–Vojta conjecture
implies that the set of stably integral points on curves of log general type
is uniformly bounded. Additionally, we prove a generalization of Hassett’s
result, showing that the Lang–Vojta conjecture implies that (stably) integral
points on families of log canonically polarized surfaces lie in a subscheme
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whose degree is uniformly bounded. Finally, we prove, assuming the Lang–
Vojta conjecture, and under the assumption that the surfaces have almost
ample log cotangent, that the set of stably integral points on polarized
surfaces is uniformly bounded.

Finally, we note that results present in [10] have two key ingredients. One
is a generalization of the fibered power theorems mentioned in Section 11.1
to the case of pairs [8]. The other, is a generalization of Theorem 7.14, which
gives a condition so that subvarieties of a singular surface of log general type
are curves of log general type. It turns out that proving a result for stably
integral points requires the use of the compact moduli space of stable pairs,
and as such, we are forced to work with singular surfaces.

11.2 Consequences of Lang’s Conjecture – Rational
Distance Sets

A rational distance set is a subset S of R2 such that the distance between
any two points of S is a rational number. In 1946, Ulam asked if there exists
a rational distance set that is dense for the Euclidean topology of R2. While
this problem is still open, Shaffaf [89] and Tao [93] independently showed
that Lang’s conjecture implies that the answer to the Erdős-Ulam question is
“no.” In fact, they showed that if Lang’s conjecture holds, a rational distance
set cannot even be dense for the Zariski topology of R2, i.e. must be contained
in a union of real algebraic curves.

Solymosi and de Zeeuw [91] proved (unconditionally, using Faltings’ proof
of Mordell’s conjecture) that a rational distance contained in a real algebraic
curve must be finite, unless the curve has a component which is either a line or
a circle. Furthermore, any line (resp. circle) containing infinitely many points
of a rational distance set must contain all but at most four (resp. three)
points of the set. One can rephrase the result of [91] by saying that almost
all points of an infinite rational distance set contained in a union of curves
tend to concentrate on a line or circle. It is therefore natural to consider the
“generic situation,” and so we say that a subset S ⊆ R

2 is in general position
if no line contains all but at most four points of S, and no circle contains all
but at most three points of S. For example, a set of seven points in R

2 is in
general position if and only if no line passes through 7− 4 = 3 of the points
and no circle passes through 7− 3 = 4 of the points.

In particular, the aforementioned results show that Lang’s conjecture
implies that rational distance sets in general position must be finite. With
Braune, we proved the following result.

Theorem 11.2 ( [9, Theorem 1.1]). Assume Lang’s conjecture. There
exists a uniform bound on the cardinality of a rational distance set in general
position.
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We can rephrase this theorem as follows.

Corollary 11.3 ([9, Corollary 1.2]). If there exist rational distance sets
in general position of cardinality larger than any fixed constant, then Lang’s
conjecture does not hold.

We note that we are unaware of any examples of rational distance sets in
general position of cardinality larger than seven (the case of seven answered
a question of Erdős, see [64]).
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