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Abstract Given a spline space spanned by Truncated Hierarchical B-splines
(THB), it is always possible to construct a spline space spanned by Locally Refined
B-splines (LRB) that contains the THB-space. Starting from configurations where
the two spline spaces are equal, we address what happens to the properties of
the LRB-space when it is modified by local one-directional refinement at convex
corners of, and along edges between dyadic refinement regions. We show that such
local modifications can reduce the number of B-splines over each element to the
minimum prescribed by the polynomial bi-degree, and that such local refinements
can be used for improving the condition numbers of mass and stiffness matrices.

1 Introduction

The use of Hierarchical B-splines (HB) introduced in [2] has gained much attention
in Isogeometric Analysis (IgA) in recent years. Hierarchical B-splines are based on
a dyadic sequence of grids determined by scaled lattices. On each hierarchical level
a spline space is defined as the tensor product of univariate spline spaces spanned
by uniform B-splines.

Hierarchical B-splines do not constitute a partition of unity, a much desired
property in both Computer Aided Design (CAD) and IgA. As a remedy to this
Truncated Hierarchical B-splines (THB) [5, 13] were introduced, where B-splines
on one hierarchical level are suitably truncated by B-splines from finer hierarchical
levels when the support of a B-spline at a finer level is contained in the support of a
B-spline at a coarser level.

An alternative to the THB-approach for forming a partition of unity came with
the introduction of Locally Refined B-splines (LRB) [1], where initial tensor product
B-splines are split until only B-splines of minimal support remain. LRB permits
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dyadic refinement of hierarchical meshes while ensuring that all B-splines have
minimal support. In the occasional case where meshlines at a dyadic level are
too short to split an LR B-spline, the meshlines in question are extended. This
fact ensures that the spline space spanned by THB-splines is either identical to or
constitutes a subset of the LRB spline space.

In IgA open knot vectors are used to simplify the interpolation of boundary
conditions, as reported for THB in [4] and for LRB in [6]. In open knot vectors
the multiplicity at boundary knots is set to m = d + 1. An alternative approach is
to use B-splines with knot multiplicity of m = 1 along the boundary. In order to
force the partition of unity in this case, a ghost domain is added around the domain
of interest, as seen in [7] for both THB and LRB. This distinction is illustrated for
univariate cubic splines in Fig. 1.

In Sect. 2 we address the effects the choice of boundary knot multiplicity has
on condition numbers. To distinguish between single multiplicity and open knots
at the domain boundary we prefix any method using single knot multiplicity on
the boundary with a ghosted domain by an “S”. Using this naming convention, the
methods addressed in [6] are respectively S-THB and S-LRB. In this paper, we
show that for the same tensor product spline space, THB and LRB are superior
with respect to condition numbers of mass and stiffness matrices compared to
respectively S-LRB and S-THB. We also explain the intriguing near constant
behaviour of the condition numbers reported in [7], where S-LRB and S-THB
were addressed, and condition numbers seemed to be nearly independent of the
refinement level. We show that this is due to single knot multiplicity at domain
boundaries for the examples presented in [7]. Further it is shown that for more levels
of refinement the condition numbers for the mass matrix for S-THB and S-LRB will
meet and then follow the growing curves for respectively THB and LRB.

In HB and THB the refinement procedure (at an element level) consists of
marking elements for splitting. Marked elements are subsequently split in both
parameter directions. This contrasts with the refinement procedure LRB allows,
namely that of splitting an element in a single parameter direction at the time,
provided that at least one B-spline is split in the process. This can be used to modify
the hierarchical refinement, and possibly improve the approximation properties of
the resulting spline space. In the remaining sections we use open knot vectors at
domain boundaries and address how such modifications influence the condition
numbers for mass and stiffness matrices for bi-cubic spline spaces in particular.
The remaining sections are structured as follows:

Section 3 gives a lightweight introduction to box-partitions and spline spaces
over such partitions. The starting point for THB and LRB refinement is a tensor
product spline space. The key concept of element overloading is defined, the
situation where more B-splines cover an element than are needed for spanning the
polynomial space over the element. We briefly summarize some key properties.
Subsequently, we recall the definitions of both LRB and THB splines. We also
relate the refinement strategies for LRB to T-splines [12]. Those readers already
familiar with the contents of this section may feel free to skip it.
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Fig. 1 Spline spaces over the domain � = [0, 5]. In (a), the partition of unity is satisfied at the
boundary by setting the knot multiplicity to m = d +1 = 4. In (b), the partition of unity is satisfied
at the boundary by extending the domain to allow the full polynomial space to be spanned at the
boundary elements. The shaded regions indicate the domain �, and the spline space spanned by
the B-splines over � are the same in both cases

Section 4 takes a look at overloading. We look at how to reduce or completely
remove overloaded regions in a mesh. We showcase some specific overloading
patterns that occur for hierarchical refinement of THB and LRB. Furthermore,
we show how local modifications to the LRB-mesh reduce overloading as well
as condition numbers.

Section 5 provides a quantitative comparison between the methods. We conduct
our numerical experiments using modified central and diagonal refinement
examples from [7] with a finer initial tensor-product mesh. This gives enough
room on each hierarchical level for the local modifications to take place. The
examples show that LRB with no overloading have smaller condition numbers
for the mass matrix per degree of freedom than THB and LRB with overloading.
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However, the difference seems to be so small that in general all methods have a
similar behaviour.

Section 6 summarizes the main results of this paper.

2 Condition Numbers and Knotline Multiplicity at Domain
Boundary

In [7], hierarchical refinement was performed for five levels of refinement, using
S-THB and S-LRB. The results reported that the number of refinement levels had
little to no influence on the evolution of condition numbers for stiffness and mass
matrices. There were some minute differences between S-THB and S-LRB, but they
followed the same trend. In Fig. 2 we display the condition number of the mass
matrix for up to eight refinement levels for S-THB, S-LRB, THB and LRB when
run on a hierarchical mesh from [7]. The relevant mesh at the fifth refinement level
is displayed in Fig. 4.

The results from [7] is reproduced, and corresponds to the S-THB and S-LRB
curves for the first five refinements. However, at the sixth refinement, the curve
for the condition number of the mass matrix for S-LRB breaks off and grows
exponentially following the curves of LRB that starts three orders of magnitude
lower. In Fig. 2 there are also two additional curves (S-LRB1 and LRB1). These are
added to show that modifying the mesh by inserting additional knot lines in one
parameter direction, with the effect of reducing overloading, significantly reduces
the condition numbers of LRB-refinement. This modified mesh is shown in Fig. 4b.
We will discuss such modifications more closely in Sect. 4.

Multiplicity of domain boundary knot lines also influences the condition number
of the stiffness matrix, as seen in Fig. 3. Here we see that the condition numbers
for single boundary knot multiplicity (S-THB, S-LRB and S-LRB1) are two orders
of magnitude higher than the condition numbers for open knot vectors (THB, LRB,
LRB-1) (Fig. 4).

2.1 Boundary Knotline Multiplicities

We now take a stab at explaining the drastic change in behaviour occuring at
n = 6 refinements for the S-LRB and S-THB methods as shown in Fig. 2. Since
the condition number of a matrix are computed in terms of its largest and smallest
eigenvalues, we decided to take a look at the geometric localization of the eigenvec-
tors corresponding to these eigenvalues. By coloring the hierarchical mesh based on
the influence of each in terms of the corresponding coefficient in the eigenvector,
we obtained a rudimentary geometric visualization of these eigenvectors. In Fig. 5,
we see the smallest eigenvector for the mass-matrix corresponding to LRB and S-
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Fig. 2 The condition number of the mass matrix. We see that under repeated refinement, the
condition numbers corresponding to spline spaces with open knot vectors (THB, LRB) tends
towards the condition numbers corresponding to spline spaces with single knots (S-THB, S-LRB).
We also see that a small local modification to reduce overloading in the LRB-space reduces the
condition number of the mass matrix (S-LRB1, LRB1)
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Fig. 3 The condition number of the stiffness matrix. Here the separation between S-LRB, S-THB,
LRB and THB are seen in even greater effect
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(a)

(b)
Fig. 4 The meshes used for the preliminary comparison. In (a), the unmodified mesh used for
S-THB, S-LRB, THB and LRB. In (b) the modified mesh used for S-LRB1 and LRB1. This mesh
generates a few extra degrees of freedom
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Fig. 5 The eigenvectors corresponding to the smallest eigenvalue of the mass matrix for LRB (a)
to (c), and for S-LRB visualized over the hierarchical mesh after one, three and six refinements
(d) to (f). Darker color indicates higher influence. As we see, the smallest eigenvalues for LRB is
localized in the refined region after only one refinement. On the other hand, S-LRB is localized
in the corners of the domain up until but not including six refinements, as shown for n = 1 and
n = 3. The effect of the locally refined region dominates only after n = 6 refinements as in (f).
(a) n = 1 (LRB). (b) n = 3 (LRB). (c) n = 6 (LRB). (d) n = 1 (S-LRB). (e) n = 3 (S-LRB). (f)
n = 6 (S-LRB)



184 I. Stangeby and T. Dokken

LRB at the first, third and sixth refinement, and in Fig. 6, the corresponding largest
eigenvector.

These figures correspond to the behaviour observed in Fig. 2 where the condition-
ing for LRB grows after only one refinement, whereas S-LRB needs six refinements
before the behaviour in the refined region is registered.

The reason for this behaviour is due to the size of the B-splines defined along
the boundary in comparison to the size of the B-splines defined in the interior of the
domain. In order to illustrate this, we compute analytically the entries in the mass
matrix corresponding to B-splines on various tensor product level and compare these
values to the mass matrix entry corresponding to a B-spline defined in the corner of
the domain.

2.1.1 Observation for the Mass Matrix

Over the domain � = [0, 1] × [0, 1] we define a tensor product grid with element
size �. In the case of bi-cubic spline spaces, the B-spline defined in the lower left
corner of the domain can for LRB and S-LRB be written in terms of their knots as

B := B[x]B[y],
Q := B[s]B[t], (1)

where x = y = [0, 0, 0, 0, �] and s = t = [−3�,−2�,−�, 0, �]. In both cases,
the two B-splines have only one element of support in the domain �, namely β :=
[0, �] × [0, �]. To get a feel for the differences in influence on the mass matrix
these B-splines have, we compute the corresponding diagonal elements in the mass
matrix.

The polynomial restrictions of B and Q to the element β is

B
∣
∣
β
(x, y) = (� − x)3(� − y)3

�6
,

Q
∣
∣
β
(x, y) = (� − x)3(� − y)3

36�6 .

(2)

In other words, B
∣
∣
β

= 36Q
∣
∣
β

. If we now compute the diagonal mass matrix entries
corresponding to these two elements, we obtain the following:

∫

β

B2 = �2

49
,

∫

β

Q2 = �2

49
· 1

362
. (3)

We here see that the matrix element corresponding to the corner B-spline Q

arising in S-LRB is three orders of magnitude smaller than the matrix element
corresponding to B. Recall the disparity between the curves in Fig. 2, where the
differences in the condition numbers also were three orders of magnitude.
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Fig. 6 The eigenvectors corresponding to the largest eigenvalue of the mass matrix for LRB (a)
to (c) and for S-LRB visualized over the hierarchical mesh after one, three and six refinements
(d) to (f). Darker color indicates higher influence. For the largest eigenvalue, the two methods
approximately correspond geometrically, and the largest eigenvalues are constant over refinement
levels for each of the methods. (a) n = 1 (LRB). (b) n = 3 (LRB). (c) n = 6 (LRB). (d) n = 1
(S-LRB). (e) n = 3 (S-LRB). (f) n = 6 (S-LRB)
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Remark 1 This relation between Q and B is both dimension and degree-dependent.
The effect will be magnified for higher spatial dimension and higher polynomial
degree. A similar condition number analysis was performed for embedded methods
in [10], with scaling effects reported along the lines of the effects reported above.

3 Box Partitions, Meshes, and Spline Spaces

In order for the paper to be self-contained, we review the concept of box partitions
and spline spaces over such partitions in the following section. Readers already
familiar with these notions may feel free to skip this section. While the construction
generalizes to any dimension, we will gradually focus our attention to the two-
dimensional case, as this is most relevant for our discussion. A fully general
treatment can be found in [1, 8]. The fundamental building block of a box partition
is the d-dimensional box.

Definition 1 A box β in R
d (or d-box) is the Cartesian product of d closed finite

intervals J1, . . . , Jd :

β =
d×

i=1

Ji. (4)

The dimension of β is defined to be the number of non-trivial intervals in its
definition, and is denoted dim(β). We call a d-box of dimension d an element, while
a d-box of dimension d − 1 is called a mesh-rectangle. To any mesh-rectangle,
we associate an integer k corresponding to which parametric dimension its trivial
component resides, and we call the mesh-rectangle a k-mesh-rectangle if this has
to be emphasized.

In the two-dimensional setting (d = 2), a meshline is a one-dimensional mesh-
rectangle.

Remark 2 Note that these naming-conventions are independent of the dimension of
the ambient space. Hence, a mesh-rectangle may very well be something different
from a rectangle. As an example, a mesh-rectangle in R

4 is an axis aligned
box. Furthermore, the integer k corresponding to any mesh-rectangle encodes
the direction of the mesh-rectangle. In the two-dimensional case, where mesh-
rectangles are lines, a 1-mesh-rectangle is a vertical line, and a 2-mesh-rectangle
is a horizontal line.

As customary in discretizations of computational domains, a large domain is
partitioned into a set of non-overlapping smaller geometrical entities. We call such
a partition in this specific setting a box partition, and this is more precisely defined
as follows:
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Definition 2 Let � ⊂ R
d be an element (d-box of dimension d). A finite collection

E of elements is said to be a box partition of � if

1. βo
i ∩ βo

j = ∅ for all βi, βj ∈ E where βi �= βj , and

2.
⋃

β∈E
β = � .

In other words, a box partition is an interior-disjoint partition of � into a set of
smaller elements.

Associated to any element β is its boundary, which naturally consists of boxes of
dimension one less, i.e., mesh-rectangles. Given a box partition of a larger element
�, it is therefore sensible to discuss the set of mesh-rectangles associated to this box
partition.

Definition 3 (Informal) Given a box partition E of a domain �, we may naturally
associate a set of mesh-rectangles M called a box mesh on � formed by taking
unions of element boundaries.

Remark 3 The link between a box partition E and the associated box mesh M
is such that by knowing one of them you may recover the other. The box mesh
generated by a box partition is denoted M(E), and the box partition generated by a
box mesh is denoted E(M).

As our ultimate goal is to define spline spaces based on tensor-product splines
over box-partitions, we need to have a concept of knot multiplicity in this more
general setting.

Definition 4 A box mesh with multiplicity is a pair (M, μ) where μ : M → N

associates to each mesh-rectangle γ a positive integer μ(γ ), called the multiplicity
of the mesh-rectangle. Note that this is completely analogous to the notion of knot
multiplicity for univariate B-splines.

Definition 5 Let a polynomial multi-degree p = (p1, . . . , pd) as well as a
box mesh with multiplicity (M, μ) corresponding to the box-partition E of a d-
dimensional domain � be given. The spline space of degree p over M is defined
as

Sμ
p(M) :=

{

f : � → R : f
∣
∣
β

∈ �p for all β ∈ E

and f ∈ Cpk−μ(γ ) for all k-mesh-rectangles γ ∈ M,

with k = 1, . . . , d
}

. (5)

A dimension formula for general spline spaces over box partitions was presented
in [9]. In general, the dimension depends on both the topological properties of the
box partition and the parametrization of the box partition. In the two-dimensional
case—with some requirements on the length of the constituent meshlines—the
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formula reduces to a formula depending only on the topological features of the
mesh. We consider this outside the scope of this text, and refer the reader to [9] for
details.

In order to compute with spline spaces over box partitions of the form above,
we must be able to construct a set of basis functions that span this space. Several
constructions has been studied. We will only be dealing with Truncated Hierarchical
B-splines, and Locally Refined B-splines.

Before we move on, we define the notion of a hierarchical mesh, a type of box
partition over which spline bases of the aforementioned type may be defined. This
provides a common ground for comparison of the two methods. The construction
is simple and relies on marking regions for which a tensor product mesh of various
refinement levels is used.

Definition 6 Let � be a domain, and let M1 ⊂ · · · ⊂ MM be a sequence of nested
tensor product meshes on �. Let �1 ⊃ · · · ⊃ �M be a set of nested subsets of �

whose boundaries ∂�� align with the meshlines of the corresponding mesh on the
coarser level M�−1 for � = 2, . . . ,M . The hierarchical mesh M is defined as

M = {

γ ∩ �� : γ ∈ M� for � = 1, . . . , M
}

, (6)

i.e., M consists of meshlines from each level intersected with the corresponding
region, see Fig. 7.

(a) (b)

Fig. 7 Two examples of hierarchical meshes. In (a) a mesh consisting of three levels of refinement,
and in (b) a mesh with four levels of refinement. Note here that the region residing at level � = 4
consists of two disjoint components
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3.1 Tensor Product Splines

The foundation for all the locally refined spline spaces over box partitions addressed
in this paper, is the tensor product B-spline. We start by glossing over some
preliminary definitions.

Recall that a univariate B-spline of polynomial degree p relies on exactly p + 2
knots. This observation enables us to define B-splines locally without referring to
some global knot vector.

Definition 7 Given a polynomial degree p and a non-decreasing knot-vector t =
(t1, . . . , tp+2), we recursively define the univariate B-spline B[t] : R → R as
follows:

If p = 0, then

B[t] =
⎧

⎨

⎩

1, x ∈ [t1, t2);
0, otherwise.

(7)

If p > 0, then

B[t](x) = x − t1

tp+1 − t1
B[t−](x) + tp+2 − x

tp+2 − t2
B[t+](x), (8)

where t+ and t− are obtained by dropping the first and last elements of t
respectively:

t+ = (t2, . . . , tp+2), t− = (t1, . . . , tp+1). (9)

In the cases of a vanishing denominator, the whole term is taken to be zero.

Such univariate splines can be easily extended to higher dimensions through a
tensor product construction.

Definition 8 Let the polynomial multi-degree p = (p1, . . . , pd) and the d

local knot vectors t1, . . . , td be given. The d-variate tensor product B-spline
B[t1, . . . , td ] : Rd → R is then defined as

B[t1, . . . , td ](x) =
d

∏

i=1

B[ti](xi), (10)

where x = (x1, . . . , xd).
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The support of B[t1, . . . , td ] is the closure of the area where the B-spline takes
non-zero values, which we denote by:

supp(B[t1, . . . , td ]) =
{

x ∈ Rd : B[t1, . . . , td ](x) �= 0
}

. (11)

Since our B-spline construction is inherently local, we need to know when a
tensor product B-spline has minimal support with respect to some box mesh.

Definition 9 (Informal) A B-spline B = B[t1, . . . , td ] has support on (M, μ)

if all the knot lines of B occurs as meshlines in M. We say that B has minimal
support on (M, μ) if in addition, all the knot lines of B occur consecutively in
(M, μ).

One of the central concepts we will be addressing in this paper is the overloading
of elements. We make this precise in the following definition.

Definition 10 Let a box partition E of a domain � and a polynomial multi-degree
p = (p1, . . . , pd) be given. Assume that we construct a set B of B-splines degree
p over the mesh M corresponding to E. We say that an element β is overloaded
with respect to B if the number of B-splines with support on β is larger than the
dimension of the corresponding space of polynomials over this element, namely

dim(�p(β)) =
d

∏

i=1

(pi + 1). (12)

We now proceed to review the definitions of LR B-splines and THB-splines.

3.2 Locally Refined Spline Spaces

In preparation for the following discussion, we will adopt the notational convention
as in [7] in order to differentiate between the distinct types of basis functions.
Depending on the underlying box partition, some of these types may coincide.

Type Basis Function

Tensor Product B-spline B B

Truncated Hierarchical B-spline H H

LR B-spline L L

Furthermore, in this and the following sections we will be dealing with box
partitions and spline spaces in R

2, unless otherwise stated.
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3.2.1 LR-Splines

Locally Refined B-splines (LRB or LR-splines) was introduced by [1]. The LR-
spline framework permits the insertion of local splits in a tensor product mesh, and
subsequently enables local refinement of the mesh. Being scaled tensor product
B-splines, LR-splines admit a set of nice properties. The set of LR B-splines
form a partition of unity. Their scaling weights are positive, meaning that they
satisfy the convex hull property, and are therefore inherently stable in computations.
Moreover, with some restrictions on the refinement process, linear independence of
the resulting set of functions can be guaranteed.

LR-splines are defined over so-called LR-meshes, being special box partitions.
Starting from an initial tensor product mesh, meshlines are inserted sequentially,
yielding a sequence of box-meshes, where no meshline is allowed to terminate in
the middle of an element. This is formalized in the following definition, and Fig. 8
gives an example.

Definition 11 An LR mesh is a box mesh M = MN resulting from a sequence of
meshline insertions in an initial tensor product mesh M1. That is

Mi+1 = Mi + γi (13)

for i = 1, . . . , N − 1 where each intermediate mesh is a box mesh.

Remark 4 We often think of an LR-mesh as a sequence of intermediate meshes

M = MN ⊇ MN−1 ⊇ · · · ⊇ M2 ⊆ M1 (14)

as each intermediate step is needed for the LR B-spline construction.

(a) (b)

Fig. 8 In (a), an initial tensor product mesh, which is also an LR-mesh. In (b), an LR-mesh
obtained from the insertion of three meshlines in the initial tensor product mesh from (a)
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Over such an LR-mesh we may define the associated set of LR B-splines
algorithmically. Starting from an initial space of tensor product B-splines, meshlines
are inserted sequentially. Whenever a meshline completely traverses the support of
a B-spline, the B-spline is split according to the knot insertion procedure, and two
new B-splines are added. The B-spline that was split is removed.

Definition 12 Let M be an LR-mesh over a domain � and p = (p1, p2) a
polynomial bi-degree. We define the set L(M) of LR B-splines of degree p over
M algorithmically as in Algorithm 3.1.

Algorithm 3.1 The LR B-spline construction
Let L1 := B(M1) be the set of tensor product B-splines on M1.
for each intermediate mesh Mi+1 = Mi + γi , with i = 1, . . . , N − 1 do

Li+1 := Li

while there exists B ∈ Li+1 without minimal support on Mi+1 do
B+, B− = SPLIT(B, γi) � knotline insertion
Li+1 = (Li+1 \ {B}) ∪ {

B+, B−} � update the set of B-splines
end while

end for
L(M) := LN

Remark 5 Note that all LR B-splines have minimal support on the resulting mesh.
This is by construction. However, there is an important distinction to be made,
namely that the set of LR B-splines differ from the set of minimal support B-splines
on the resulting mesh. This is due to the LR refinement procedure putting some
restrictions on the resulting mesh. A survey on the properties of LR-splines and
minimal support B-splines are given in [8].

3.2.2 Truncated Hierarchical B-Splines

Hierarchical B-splines, first introduced in [2], is a method for specifying locally
refined spline spaces on hierarchical meshes. Recall that a hierarchical mesh consists
of regions corresponding to various levels of tensor product grids. The hierarchical
B-spline construction involves replacing any B-spline with support completely
contained in a region of a finer level by B-splines at this finer level. This procedure
will, however, lead to coarse B-splines partially overlapping the finer regions, and
does not constitute a partition of unity.

A remedy to this problem came with the introduction of Truncated Hierarchical
B-splines [5], where B-splines on a coarse level are truncated by B-splines on a finer
level. This leads to the resulting set of B-splines forming a partition of unity. The
construction relies on the truncation operator. Recall that a spline f ∈ span(B�)
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can be represented in terms of the finer basis B�+1:

f =
∑

Bi∈B�+1

c�+1
i (f )Bi, (15)

where c�+1
i (f ) is the coefficient multiplying Bi in the representation of f in terms

of B�+1. For uniform B-splines, this relation is often called the two-scale relation.
The truncation operator is defined as follows:

Definition 13 Let B ∈ B� be a coarse B-spline. The truncation with respect to the
set of fine B-splines B�+1 and the corresponding region ��+1 is

trunc�+1B :=
∑

Bi∈B�+1
suppBi �⊆��+1

c�+1
i (B)Bi. (16)

Remark 6 The definition above represents the truncation operator in an additive
sense, where the contributions from the finer level are summed up. It is also possible
to represent the truncation operator subtractively, by instead removing the bits of the
representation that have been replaced by finer B-splines:

trunc�+1B = B −
∑

Bi∈B�+1
suppBi⊆��+1

c�+1
i (B)Bi (17)

Definition 14 Let M be a hierarchical mesh over a domain � (see Definition 6)
and p = (p1, p2) a polynomial bi-degree. On each level � = 1, . . . , N we have a
tensor product spline space V� spanned by a collection of B-splines B� = B(M�).
We define the set of THB-splines of degree p over M algorithmically as in
Algorithm 3.2.

Algorithm 3.2 The THB-spline construction
Let H1 = B(M1) be the set of tensor product B-splines on M1.
for each level � = 1, . . . , N − 1 do

H trunc
�+1 :=

{

trunc�+1H : H ∈ H� and supp(H) �⊆ ��+1

}

Hnew
�+1 := {

B ∈ B�+1 : supp(β) ⊆ ��+1
}

H�+1 := H trunc
�+1 ∪ Hnew

�+1

end for
H = HN .
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Remark 7 Note that in the cases where a B-spline B ∈ B� is truncated with respect
to B�+1 and ��+1 and the support of B happen to be entirely contained in ��+1,
the truncation operator completely removes the coarse B-spline. In the THB-spline
construction, this has the effect of replacing the coarse B-splines with fine B-splines
defined in its support.

Remark 8 A simple framework for the implementation of truncated hierarchical B-
splines is given in [3], and this serves as a good introduction to the many ways
such splines have been implemented in the literature. Efficient algorithms for the
assembly of finite element matrices are also presented.

3.2.3 T-Splines

While not directly addressed in this paper, we briefly mention T-splines as LRB
with local modifications to the LR-meshes used in this paper will reproduce the
spline space generated by semi-standard T-splines [12] and Analysis Suitable T-
splines [11]. An example of an Analysis Suitable T-mesh in the index domain is
displayed in Fig. 9 to the left, with the corresponding LR-mesh to the right. This is
a close up of the structure of a mesh similar to the one used in Fig. 11b.

(a) (b)

Fig. 9 In (a) a T-spline mesh in the index domain. The dots denote Greville points or “anchors” for
each individual B-spline. A black dot is a B-spline at level � = 0 and a green star a B-spline at level
� = 1. The resulting spline space can be replicated by an LR-mesh without overloaded elements
(c.f. Fig. 11b), as displayed in (b). Here we have used multiplicity m = 4 along the boundary
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4 Local Modification of Meshes and the Reduction
of Overloading

In this section we take a deeper look at the overloading of elements, and how local
modifications to the mesh may be used to remedy this. Recall from the previous
definition that an element β in a box-partition E is said to be overloaded if the
number of supported B-splines on the element exceeds the number needed to span
the full polynomial space over the element.

We are interested in such overloaded regions, because by reducing or removing
completely the overloading on elements we may

1. reduce the bandwidth of the resulting finite element matrices; and
2. improve conditioning of finite element matrices.

Such overloaded regions occur for LRB in convex corners of a fine hierarchical
level, where a large B-spline from one hierarchical level overlaps several elements
of a finer hierarchical level. For THB, overloading occurs along any border between
two hierarchical levels. By coloring in elements with too many supported B-splines
we obtain a visualization of this phenomenon, as seen in Fig. 10 on a hierarchical
mesh with three levels of refinement.

In order to reduce, or completely remove such overloaded regions, we may for
LRB extend meshlines from the fine hierarchical level to the coarse level, in order to
split the culprit B-splines. The length needed for this extended meshline depends on
the polynomial degree of the B-spline to be split. In Fig. 11 we see the effects of two
types of meshline extension to the LRB-mesh from Fig. 10 for a space of bi-cubic
splines. The corresponding splines are named LRBNO and T-LRBNO, signifying
the fact that these local modifications completely remove overloading.

In order to capture what is happening, we take a closer look at overloading in a
convex corner in Fig. 12 where we show how B-splines from the coarse level of a
hierarchical mesh may overlap with B-splines from the fine level in such a way that
too many B-splines are active over a given element.

5 Numerical Experiments

In order to compare the methods addressed in this paper, we assemble the mass
and stiffness matrices associated to discretizations of partial differential equations
using IgA or FEM. By computing the condition number of these matrices, we
obtain a metric useful for comparison. These matrices arise amongst others in the
discretizations of the Poisson equation, and in the computation of the L2-projection
of a function.
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(a)

(b)

Fig. 10 The overloading patterns on a hierarchical mesh with two levels of refinement. In (a),
we see that regions in the corners of the refined regions are overloaded, due to the influence
of four LR B-splines from the coarser layer, whose support has not been split by any newly
introduced meshlines. In (b) we observe “bands” of overloaded elements along the boundary
between two consecutive refinement levels for THB, arising due to the fact that fine B-splines
must be completely contained in the support of a coarse B-spline before truncation occurs. (a)
LRB. (b) THB
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(a)

(b)

Fig. 11 Two different local modifications with the effect of completely removing the overloaded
elements. In (a) we extend the meshlines closest to the convex corner by three elements, and the
meshline next to them by one element. This has the effect of completely removing the overloading
on the corner elements. In (b), we make a mesh that can be defined using T-splines that has no
overloading. As in (a) meshlines closest to the corners are extended by three, while meshlines at
the borders between refinement levels are extended by two as in Fig. 9. (a) LRBNO. (b) T-LRBNO



198 I. Stangeby and T. Dokken

Fig. 12 The effects of extending meshlines on the bi-cubic B-splines covering the element in pink.
The upper left corner of each B-spline is marked with a black dot. The knotlines of each B-spline
can be identified by starting from the dot and going four knotlines to the right/down. We chose
to not use Greville points as some overloaded configurations produce overlapping Greville points.
In the upper mesh we look at the element just inside the corner of the region refined, and no
overloading occurs. In the middle meshes we move one element diagonally into the refined region.
Before refinement the overloading is one, and after additional lines are inserted the overloading is
removed. In the bottom meshes we move two additional element diagonally into the refined region,
Before refinement the overloading is four, after additional lines are inserted the overloading is
removed
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5.1 L2-Projection

Given a domain �, a function f : � → R in some space of functions V , and a finite-
dimensional subspace Vh of V , we are interested in finding the function u ∈ Vh that
minimizes the L2(�)-error

‖e‖L2 = ‖u − f ‖L2 . (18)

This can be reformulated as a variational equation by requiring u to satisfy

∫

�

uvd� =
∫

�

f vd�, (19)

for all v ∈ Vh. By introducing a basis
{

ϕ1, . . . , ϕN

}

for Vh, which in our case will
be one of the THB or LRB-bases, we may write this as a linear equation

Mc = b, (20)

where M is the mass matrix and c is the vector of coefficients representing u in our
chosen basis. The entries for M and the right-hand side b are given as

Mij =
∫

�

ϕiϕj d�, bj =
∫

�

f ϕj d�. (21)

5.2 The Poisson Equation

A commonly encountered differential equation is the Poisson equation. Given a
function f : � → R, we wish to find a function u in a space of admissible functions
V such that

− 	u = f in �, (22)

subject to the boundary conditions

u = 0 on 
D ,
∂u

∂n
= g on 
N. (23)

Here 
D denotes the Dirichlet-boundary and 
N the Neumann-boundary. We
assume ∂� = 
D ∪ 
N and 
D ∩ 
N = ∅. Furthermore, n is the outward facing
boundary normal to � and g is the prescribed flux along the boundary. This is called
the strong form of the Poisson equation.

By multiplying the strong form with a suitable test function, and integrating
over the domain, we obtain the variational form of the Poisson equation. The
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requirements on the smoothness of the sought solution u can be relaxed, by moving
some derivatives onto the test-functions. Again, we seek the solution u in a subspace
Vh of V spanned by a set of basis functions

{

ϕ1, . . . , ϕN

}

. The variational form of
the Poisson-equation then reads

∫

�

∇u · ∇vd� =
∫


N

gvdS −
∫

�

f vd�, (24)

for all v ∈ Vh. Rewriting this in terms of the basis functions, we obtain the system
of linear equations

Ac = b, (25)

where A is the stiffness matrix of the problem. The entries of A and b are given as

Aij =
∫

�

∇ϕi · ∇ϕj d�, bj =
∫


N

ϕjgdS −
∫

�

f ϕj d�. (26)

5.3 Condition Numbers

The condition number of a matrix B ∈ R
n×n quantifies how sensitive the solution x

to the linear system Bx = y is to small perturbations both in B and the right-hand
side y and is formally defined as

Cond(B) := ‖B‖‖B−1‖, (27)

where ‖·‖ is some matrix norm. Note that the condition number is norm-dependent,
but all matrix norms are equivalent on R

n×n. We will be computing the condition
numbers in the 2-norm, and in this specific setting for normal matrices the condition
number can be computed as the ratio between the largest and smallest eigenvalue

Cond(B) = |λ1(B)|
|λn(B)| . (28)

Here λ1 ≥ λ2 ≥ . . . ≥ λn, i.e., ordered in a decreasing fashion.
As in [7], we chose to estimate the condition numbers of the matrices before

imposing any boundary conditions, as imposing boundary conditions can have a
large impact on the conditioning of the matrix. The mass matrix M is non-singular,
even with no imposed boundary condition. The stiffness matrix A however will be
singular, and have a zero-eigenvalue of multiplicity one.

In addition to this, the computation of the smallest eigenvalue of a matrix is a
numerically unstable procedure. We will therefore estimate the condition numbers
as follows:
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Cond(M) ≈ |λ1(M)|
|λn(M)| , and Cond(A) ≈ |λ1(A)|

|λn−1(A)| , (29)

using the second-smallest eigenvalue for the stiffness matrix.

5.4 Numerical Results

Below we present results of the numerical simulations. As LRBNO generates higher
dimensional spline spaces than THB and LRB we plot the condition numbers as a
function of the degrees of freedom. Just plotting the condition numbers as a function
of the levels provides less information. By including the dimension of the spline
space we obtain a clearer distinction between the methods.

5.4.1 Central Refinement

We assemble the stiffness and mass matrices on a sequence of meshes corresponding
to central refinement, shown at the third refinement for bi-cubic splines in Figs. 10
and 11. In addition to the bi-cubic case, we also assemble the matrices on similar
meshes for bi-quadratic and bi-quartic spline spaces, where the spacing between
each refined region is kept the same for all degrees. The results are shown in Figs. 13
and 14. Unfortunately, due to time constraints, we were not able to get results for
bi-quartic THB-splines.

Start by noting that for the mass matrix, THB performs better than LRB with no
modifications, while for the stiffness matrices, the two methods are comparable with
LRB having a slight advantage. The number of degrees of freedom are the same. By
locally modifying the mesh, as is the case for LRBNO and T-LRBNO, we see that
the number of degrees of freedom goes up, as expected. The condition number per
degree of freedom is smallest for T-LRBNO.

5.4.2 Diagonal Refinements

We now consider the case of diagonal refinement for bi-cubic spline spaces. Again,
we use the same hierarchical mesh for LRB and THB. We will only consider one
sequence of meshes with local modifications. In the diagonal refinement setting, the
corners of the refined region are sufficiently close to each other so that we need
to make a decision on which direction to refine in. The diagonally refined mesh
is not compatible with a T-spline type mesh, and will therefore not be taken into
consideration here.

We assemble stiffness and mass matrices on the meshes displayed in Fig. 15.
The results are shown in Figs. 16 and 17. Note that for the diagonal refinement,
the number of degrees of freedom generated when removing overloading, shown in
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Fig. 13 The condition numbers for mass matrices over a centrally refined hierarchical mesh
for six levels of refinement. In the figures N denotes the number of degrees of freedom in the
corresponding space. (a) Quadratic. (b) Cubic. (c) Quartic
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Fig. 14 The condition numbers for stiffness matrices over a centrally refined hierarchical mesh
for six levels of refinement. In the figures N denotes the number of degrees of freedom in the
corresponding space. (a) Quadratic. (b) Cubic. (c) Quartic
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Fig. 15 The overloading
patterns on a hierarchical
mesh with three levels of
diagonal refinement. In this
case, we see in greater effect
the behaviour of LRB over
convex corners. Here the
difference in overloading
between THB and LRB are
smaller, as opposed to the
central refinement case, due
to the high number of corners
relative to the length of the
sides of the refined levels. By
using a one-directional
meshline extension along the
diagonal, and extensions
similar to the
central-refinement case, we
may completely remove
overloading. (a) LRB. (b)
THB. (c) LRBNO

(a)

(b)

(c)
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Fig. 16 Condition numbers for mass matrices over a diagonally refined hierarchical mesh for four
levels of refinement. There is one data point for each method at each refinement level. The first
point is the same for all methods as the all methods start from the same tensor product spline
space. N denotes the number of degrees of freedom in the corresponding spline space. The none
overloaded LRBNO mesh has clearly the smallest condition numbers
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Fig. 17 The condition numbers for stiffness matrices over a diagonally refined hierarchical mesh
for four levels of refinement. In the figures N denotes the number of degrees of freedom in the
corresponding space. All methods are similar in behaviour with respect to condition numbers as a
function of degrees of freedom

the mesh in Fig. 15c, is a fair bit larger than the unmodified counterparts. Despite
this, LRBNO outperforms THB and LRB by a significant amount when it comes to
the mass matrix. The conditioning of the stiffness matrix on the other hand grows
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approximately linearly with the number of degrees of freedom, and no significant
effect of the overload-reduction can be seen.

6 Conclusion

We have addressed differences and similarities of Truncated Hierarchical B-splines
(THB) and Locally Refined B-splines (LRB) on similar hierarchical meshes. The
overall conclusion is that there are no big differences between the methods with
respect to condition numbers of mass and stiffness matrices for the example meshes
addressed.

• When THB and LRB are run on identical meshes THB has better condition
numbers for the mass matrix except for the most complex example run, the
diagonal example in Figs. 15 and 16. The behaviour of the stiffness matrix is
very similar for both methods.

• When making a mesh for LRB that has no overloading the condition numbers for
the mass matrix of LRB are smaller than those of THB, with condition numbers
of stiffness being similar. It should be noted that using meshes for LRB that has
no overloading guarantees that the B-splines generated are linearly independent,
and that the number of B-splines covering an element is the minimal needed
for spanning the polynomial space over the element. For hierarchical meshes of
bi-degree less than (4, 4) there is always linear independence in the set of LR
B-splines generated. For bi-degree (4, 4) and higher linear dependence can occur
in very special configurations when the elements outside two opposing concave
corners of a refinement region is covered by the same B-spline from a cruder
level. This happens for bi-degree (4,4) when a refinement region is split if just
one element from the cruder level is not refined, e.g., the refinement region is
locally very narrow.

When trying to represent hierarchical refinements using T-splines as in Fig. 9
there is a region of one directional refinement of length two just outside the
boundary of the refinement region. This gives a smoother transition between
refinement levels that can also be replicated by LRB. The results in Figs. 13 and 14
show a better behaviour than going directly from one refinement level to the
next. Having such an intermediate level of refinement if possible is advantageous.
However, in situations such as the diagonal refinement in Fig. 15 this is not possible.

Most often THB is described as based on dyadic sequences of grids determined
by scaled lattices over which uniform B-spline spaces are defined. This implies
that there is single knot multiplicity along domain boundaries. However, variants
of THB are published [4] where open knots are used along the domain boundary. In
Sect. 2 we have shown that open knot vectors are preferable, not only with respect to
simplified interpolation of boundary conditions, but also to avoid that the condition
number of the mass matrix is biased by the boundary B-splines. As we see the same
effect for LR B-splines we have a strong recommendation that open knot vectors
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are used for locally refined splines, rather than single knot multiplicity at domain
boundaries.
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