
A Tool for Multi-scale Modeling of
Software Architectures: Application
to the Smart Home for Telemonitoring
Elderly People at Home

Ilhem Khlif, Mohamed Hadj Kacem, Khalil Drira, and Ahmed Hadj Kacem

1 Introduction

The design of a software architecture is a complex task. On the one hand, we have
to describe the system with enough details for understanding without ambiguity and
implementing in conformance with architects requirements and users expectations.
On the other hand, we have to master the complexity induced by the increasing
model details both at the human and automated processing levels. So, there is a
need for a new approach that automates the construction of the design architecture
and guarantees its correctness. An iterative modeling process that helps architects
to elaborate complex but yet tractable and appropriate architectural models and
specifications can be implemented by successive refinements. Providing Rules for
formalizing and conducting such a process is our objective, which we implemented
in visual modeling notations. For this purpose, we propose to consider different
architecture descriptions with different levels of modeling details called “the
scales”. We define a step-wise iterative process starting from a coarse-grained
description and leading to a fine-grained description. We propose a modeling
solution to describe software architectures using a visual notation based on the
UML graphic language [1]. UML is a standard modeling language defined by the
OMG. These diagrams are submitted to vertical and horizontal transformations.
The intermediate models provide a description with a given abstraction that

I. Khlif · M. H. Kacem (�) · A. H. Kacem
University of Sfax, ReDCAD Research Laboratory, Sfax, Tunisia
e-mail: ilhem.khlif@redcad.org; mohamed.hadjkacem@isimsf.usf.tn;
ahmed.hadjkacem@fsegs.rnu.tn

K. Drira
LAAS-CNRS, Université de Toulouse, Toulouse, France
e-mail: khalil.drira@laas.fr

© Springer Nature Switzerland AG 2020
L. Chaari (ed.), Digital Health in Focus of Predictive, Preventive and Personalised
Medicine, Advances in Predictive, Preventive and Personalised Medicine 12,
https://doi.org/10.1007/978-3-030-49815-3_18

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49815-3_18&domain=pdf
mailto:ilhem.khlif@redcad.org
mailto:mohamed.hadjkacem@isimsf.usf.tn
mailto:ahmed.hadjkacem@fsegs.rnu.tn
mailto:khalil.drira@laas.fr
https://doi.org/10.1007/978-3-030-49815-3_18


156 I. Khlif et al.

allow the validation to be conducted significantly while remaining tractable w.r.t.
complexity. The validation scope can involve intrinsic properties ensuring the
model correctness w.r.t. the UML description. To ensure model consistency, our
approach supports model transformation and validation of UML models with OCL
constraints. In order to experiment our approach, we tested it with a predictive
and preventive system dedicated to the smart home application for maintaining
personalized medicine at home. This system is helpful for people with loss of
autonomy, exposed to risks of accidents or needing a precise daily medical follow-
up. The remainder of the paper is organized as follows. In Sect. 2, we describe the
multi-scale approach in Sect. 2. Section 3 presents the e-health application dedicated
to the smart home for the homecare of elderly people. We conclude and outline some
perspectives in Sect. 4.

2 Approach in a Nutshell

We propose a multi-scale modeling approach for software architectures [2, 5].
The proposed design approach is founded on UML notations and uses component
diagrams. The diagrams are submitted to vertical and horizontal transformations for
refinement; this is done to reach a fine-grain description that contains necessary
details. The model transformation ensures the correctness of UML description,
and the correctness of the modeled system. UML provides a formal language, the
Object Constraint Language (OCL), to define constraints on model elements. Our
approach supports model transformation and validation of UML models with OCL
constraints [4].

The approach supports the modeling of multi-scale architectures using the semi-
formal language UML. We propose a modeling solution to describe software
architectures using a visual notation based on the UML graphic language. UML
is a standard modeling language defined by the OMG [6]. The UML diagrams make
it possible to present the structural properties as well as the behavioral properties of
the multi-scale architecture. These diagrams are submitted to vertical and horizontal
transformations. The intermediate models provide a description with a given
abstraction that allow the validation to be conducted significantly while remaining
tractable w.r.t. complexity. The validation scope can involve intrinsic properties
ensuring the model correctness w.r.t. the UML description. To achieve this, we
propose a set of model transformation rules. The rules manage the refinement
and abstraction process (vertical and horizontal) as a model transformation from
a coarse-grain description to a fine-grain description. To ensure model consistency,
our approach supports model transformation and validation of UML models with
OCL constraints. The choice of using OCL is motivated by its wide adoption in
the MDE approach and the fact that it is a standard formal language supported by
OMG. The second phase ensures validation of the model with the OCL language.
Consequently, we have defined constraints on the elements of the model using
OCL language. Tools are used to check and validate OCL constraints such as the



A Tool for Multi-scale Modeling of Software Architectures: Application to the. . . 157

Meta-Model

Structural
Model

Behavioral
Model

Checking 
with ocl-
based tools

Invariants

Pre/post-
conditions

OCLinEcore 
Editor

USE tool

Eclipse Plug-ins

Transforming models 
in XML form

Design and 
development of
Eclipse plugins

Validation 
of the 

model with 
OCL

Generating
XML files

Fig. 1 Description of used tools for multi-scale modeling

OCLinEcore Editor to validate the invariants and the USE tool to validate the
pre/post conditions. The third phase allows XML files to be generated using XMI,
which transforms the models into XML. So we can get the XML file of the templates
that we created. Figure 1 shows the different used tools during the design process.

2.1 Multi-scale Modeling

We present the multi-scale approach by a two-dimensional array describing vertical
and horizontal scales [3]. The top-down scale transformation process, much like
regular refinement, begins with a high level description of a system which we
describe as a whole. Then, scale changes are applied to obtain a more detailed
description, by describing components and connections. An iterative modeling
allows to refine software systems descriptions. The vertical scales add the archi-
tecture decomposition details to obtain a more detail on the internal architecture
of previously defined components. The horizontal scales describe or give details
on the interconnections between components and their interfaces. We iterate on the
architecture until reaching the details necessary to verify the associated architectural
properties. The first scale Sv0 begins with specifying the application requirements.
It defines the whole application by its name. Two horizontal refinements called
horizontal scales are associated with the first scale Sv1. The first horizontal scale



158 I. Khlif et al.

shows all components that compose the application. The second one describes the
links between those components. Four horizontal refinements are associated with
the second scale Sv2. The first scale presents subcomponents for components, and
enumerates all the roles that each component can take. The second one identifies the
list of communication ports for each component, and refines those roles. The third
one shows the list of interfaces for communication ports. The last one is obtained
by successive refinements while adding the list of connections established between
components and subcomponents. This scale allows us to define the architectural
style. With a graphical modeling language like UML, we are not able to express
all the information required to convey the exact information of the domain in the
diagram. We propose to use OCL to define constraints on models to define the well-
formedness rules of our iterative design process.

3 Application to the Smart Home System

This section focuses on modeling the smart home system for the homecare monitor-
ing of elderly and disabled persons. The smart home constituent elements are largely
distributed in the house area. The main issue is to ensure efficient management
of the optimized comfort, and the safety of the elderly and disabled person at
home. We specify the essential information architecture and we illustrate, in (Fig. 2),
the constituent elements of the smart home System. The monitoring center is

Smart 
Phone

Tablet

PC

Fall
Sensor

Presence
Sensor

Humidity
Sensor

Air Conditionner

Video
Camera

Microphone

Convector

Blood 
Pressure
Sensor Oximeter

Pulse
WeightScale

sensor

Temperature
Sensor

Doctor Nurse

HomeCare Actor

Medical Surveillance 
Center

Environment Control & 
Comfort Management

Monitoring CenterEquipement

WifiDevice

Physiological Sensor
Medical
Assistant

Emergency 
Service

Emergency Surveillance
Center

Eldery
Person

Relatives

User

Activity Sensor

Environment Sensor

Fig. 2 Smart home system



A Tool for Multi-scale Modeling of Software Architectures: Application to the. . . 159

composed of three systems:the Environment Control and Comfort Management,
the Emergency Surveillance Center, and the Medical Surveillance Center. Thus,
the actors selected who interact with other entities of the system are: The Home
Care Actor, who interacts with the monitoring center, by setting medical or
emergency conditions. The Equipment, that includes sensors and house devices.
The emergency surveillance center controls critical situations using the activity
sensors. In order to track the presence, activity sensors can be installed in each
room. Activity sensors include fall sensors, presence sensors, video camera and
microphone. The sensors send urgent signals to the center which treats immediately
the received information. Once the signal is correct and the situation is critical,
the center call the Emergency Medical Service to react and help the person. The
medical surveillance center monitors physiological sensors. To track the medical
information, physiological sensors can be installed in the bed, the chair, and on
the body to detect the O2 level, the blood pressure, and the weight. The functions
are achieved by the Oximeter, the Pressure Sensor, and the Weight Scale Sensor,
classified as physiological sensors. While there are problems, the center requires the
medical assistant intervention (the doctor, the nurse). The comfort management and
the environment control system guarantees a comfort life for the users which are
the elderly person and his relatives. This center enables communications between
users, control the environment sensors (Humidity and Temperature Sensors), and
commands the house devices (Convectors, Air conditioners). We are interested in
studying the smart home system established for the home monitoring of elderly and
disabled persons at home.

3.1 Structural Features

We experiment our approach by applying successive iterations to the smart home
SoS. We illustrate the implemented iterative process applied to the smart home
system. We obtained then the following results: In S0.0, we define the application
named “SmartHome”. The constituent systems of the smart home are described
(in S1.1): HomeCare-Actor, Equipment, and MonitoringCenter. Those systems com-
municate with each other via the monitoring center. Those participants communicate
with each other via the monitoring center. Those relationships are represented
(in S1.2) as links. UML associations. We also illustrate instances obtained in
the next scale. We apply successive model transformation operations to add the
following composites: MedicalAssistant, EmergencyService, User, Physiological-
Sensor, Activity-Sensor, Environment-Sensor, House-Device, MedicalSurveillance-
Center, EmergencySurveillanceSystem, and EnvironementControlAndComfortMan-
agement. The MonitoringCenter plays the role of an “EventDispatcher”. The
HomeCare-Actor and Equipement play roles of “Producer-Consumer” in the
application. S2.1 allows to add the list of the ports for each component. We
briefly describe the list of required/provided services of the HomeCare-Actor
component. The MedicalAssistant receives information about the patient’s situa-



160 I. Khlif et al.

Fig. 3 Structural modeling applied to the smart home (Scale Sv3/Sh3)

tion from the MedicalSurveillanceCenter, he manages the patient’s medical care
(provides) and return a report after the care. The EmergencyService receives
information about a critical situation EmergencySurveillanceCenter, reacts to save
the patient (provides), and return a report after the intervention. The User receives
not only emergency and medical services but also comfort services like online
communication or house device command provided by the EnvironementControl
And ComfortManagement component. S2.2 assigns to each port an interface of the
type provided or required according to the type of service. Finally, we indicate
at the scale S2.3 connections established according to the used topology and we
define the “Publish-Subscribe” style. We implemented Eclipse plugins that allow
multi-scale modeling of a software architecture based on the component diagram
and the sequence diagram. We have checked and validated the OCL constraints
under Eclipse (the structural part) and with the USE tool (the dynamic part).
Finally, we have presented the level of instances of our case study using the Eclipse
plugins (Fig. 3).

4 Conclusion

In this paper, we applied the multi-scale modeling approach on a case study for
a predictive and preventive system dedicated to the smart home application for
maintaining personalised medicine at home. This system is helpful for people with
loss of autonomy, exposed to risks of accidents or needing a precise daily medical
follow-up. We have experimented and evaluated the functional and the performance
aspect of our approach as well as the functional aspect of our developed tool



A Tool for Multi-scale Modeling of Software Architectures: Application to the. . . 161

supporting the multi-scale modeling approach for software architectures. In our
future work, we expect to apply the multiscale modeling approach to other complex
use cases for e-health applications for public health.

References

1. Khlif, I., Hadj Kacem, M., Hadj Kacem, A.: Iterative multi-scale modeling of software-intensive
systems of systems architectures. In: Proceedings of the Symposium on Applied Computing,
SAC 2017, Marrakech, 3–7 Apr 2017, pp. 1781–1786 (2017)

2. Khlif, I., Hadj Kacem, M., Hadj Kacem, A., Drira, K.: A multi-scale modelling perspective for
SoS architectures. In: Proceedings of the 2014 European Conference on Software Architecture
Workshops, ECSAW 14. Association for Computing Machinery, New York (2014)

3. Khlif, I., Hadj Kacem, M., Hadj Kacem, A., Drira, K.: A UML-based approach for multi-scale
software architectures. In: 17th International Conference on Enterprise Information Systems
(ICEIS), pp. 374–381 (2015)

4. Khlif, I., Hadj Kacem, M., Stolf, P., Hadj Kacem, A.: Software architectures: multi-scale refine-
ment. In: 14th IEEE International Conference on Software Engineering Research, Management
and Applications, SERA 2016, Towson, 8–10 June 2016, pp. 265–272 (2016)

5. Khlif, I., Tounsi, I., Hadj Kacem, M., Eichler, C., Hadj Kacem, A.: A refinement-based approach
for specifying multi-scale software architectures: application to sos. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, SAC ’18, pp. 1660–1667. ACM, New York
(2018)

6. UML, O.M.G.: Unified modelling language: Infrastructure (2011)


	A Tool for Multi-scale Modeling of Software Architectures: Application to the Smart Home for Telemonitoring Elderly People at Home
	1 Introduction
	2 Approach in a Nutshell
	2.1 Multi-scale Modeling

	3 Application to the Smart Home System
	3.1 Structural Features

	4 Conclusion
	References


