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1 Introduction

In the cardiac system, both ventricles have the role of pumping blood in the whole
body. For the sake of enabling this organized role, the ventricular structure allows
its function. Still, each ventricle has its own personalized morphology. Unlike the
left ventricle (LV), the right ventricle (RV) has harsher trabeculae with a fibrous
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discontinuity between valves. The RV provides a thin wall and a crescent shape
which makes it difficult to be modelled geometrically [1]. The assessment of the
LV is widely handled using many segmentation techniques, even at the clinical
practices, they segment and quantify its function automatically [2–4]. However, the
RV is routinely assessed manually by expert radiologists to delineate its boundaries
through the short axis several slices which are a fastidious, laborious, and time-
consuming task. Therefore, automated assessment is crucial especially with the RV
importance increasing for numerous pathological diagnosis. Irrefutably, its complex
structure makes the segmentation task very challenging. Although many approaches
have been proposed to handle those issues [5], still the problem of images variability
and shape deformation from base to apex influence the accuracy of the proposed
methods. In this paper, our goal is to study the impact of the RV MRI short-axis
different slices on the segmentation accuracy using a commercially available cardiac
MRI analysis software (CVi42, version 5.5.1, Circle Cardiovascular Imaging Inc.,
Calgary, Canada) [6]. Thus, we use two MRI exams of sick and healthy patients
to experiment segmentation using the tool mentioned above. Based on the ground
truth drawn by the expert, we compute the accuracy, the dice score metric, and other
functional parameters related to the RV itself. The rest of this paper is organized as
follow: We start by the state of the art in Sect. 2 followed by a description of the
used image data and the experimented platform in Sect. 3. The experimental results
are introduced in Sect. 4. Finally, in Sect. 5, discussion and conclusion are given.

2 State of the Art

The existing attempts to overcome the challenges related to the RV segmentation
make use of many medical imaging segmentation techniques [5]. Based on prior
information, in [7, 8], multi-atlas based approaches are exploited. Since atlas-based
methods depend at the first stage on the database used, its results may fail to provide
high accuracy when the segmented cardiac images present different structures from
those used in the first place. Deformable models are also used for RV segmentation
such in [9] and [10]. These methods are based on the shape information of the
right ventricular. On the other hand, other works make use of graph cuts-based
methods hybridized with several imaging techniques aiming thus to segment the
right ventricular boundaries [11], [12]. Recently with the appearance and the
augmented use of deep learning techniques to solve several imaging problems. In
[12–14], deep learning methods are used for right ventricular segmentation. These
methods depend on used architecture to train the model as well on the amount and
the variation of used training sets. In this paper, we attempt to highlight the main
issues that might hold back the adaptation of the promising deep-learning solutions
for the RV challenging case considering at the first place the RV contour variation
from base to apex. For that interest, we investigate the Cvi42 segmentation results,
as it is based on a deep-learning approach using a fully conventional neural network
trained on thousands of CMRI subjects acquired from the UK Biobank.
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3 Image Data and Experiment Platform

To allow the Cvi42 cardiac segmentation tool assessment, the image data used
encompasses a short-axis cine cardiac MR DICOM images which belong to two
patients gathered from Fattouma Bourguiba Monastir Hospital in Tunisia. One
patient presents a normal case while the other suffers from dysplasia in which the
RV surface appears dilated. The manual RV delineation for both patients’ sequences
performed by the expert, based on the 4-chambers and the long-axis slices, is shown
in Fig. 1 which is to be used as a referential segmentation. The experiment is done
using a 5.10 version of Cvi42 upon an i7 ASUS platform (2.4 GHz CPU, 8GB RAM,
Nvidia GeForce 920M graphical card). The evaluation metrics are computed using
MATLAB R2016a.

Fig. 1 Expert’s manual RV endocardium delineation in end-systole and end-diastole for both
healthy and diseased patient. (For interpretation of segmentation yellow color in this figure, the
reader is referred to the web version of this article)
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4 Experimental Results

In this section, the obtained RV boundaries automatic delineation, as well as the
precession evaluation, are presented.

4.1 Segmentation Results

Figure 2 shows the segmentation results of the automated segmentation tool, in
which the yellow line is the result of endocardium delineation. Compared to manual
segmentation, we notice that the software has failed to detect the first basal and
the last apical slices in the case of the healthy patient. However, in the case of
dysplasia patient, most of the apical slices were missed out as well as some basal
slices. Furthermore, the precession of contouring is clearly over and underestimated

Fig. 2 Automatic Cvi42 RV endocardium delineation in end-systole and end-diastole for both
healthy and diseased patient. (For interpretation of segmentation yellow color in this figure, the
reader is referred to the web version of this article)
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especially for the diseased case. The exact metrical evaluation of these delineation
results is assessed in the following sub-section.

4.2 Empirical Evaluation

In this paper, we compute the Dice metric (DM) and the accuracy for the sake of
evaluating the performance of the RV automatic segmentation offered by the tool
(Cvi42). The DM is the overlap between the automatic segmentation result and the
manual segmentation result computed following the Eq. (1) [5], and the accuracy
computed based on true positives, true negatives, false positives and false negatives
as it is described in the Eq. (2). Graphics in Figs. 3 and 4 show respectively the
obtained results for the Accuracy and the DM.

DM (U, V ) = 2
UV

U + V
(1)
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Fig. 3 Accuracy evaluation of Short-Axis Slices from (S2➔S17) for both End-Systolic and End-
Diastolic phases considering both normal and diseased patients
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Fig. 4 Dice score metric evaluation of Short-Axis Slices from (S2➔S17) for both End-Systolic
and End-Diastolic phases considering both normal and diseased patients

Table 1 Right ventricular
functional parameters.
(RVESV): RV End Systolic
Volume, (RVEDV): RV End
Diastolic Volume, RVEF):
RV Ejection Fraction

Healthy patient Diseased patient

Ground truth RVEDV: 75.4 ml/m2 RVEDV: 491 ml
RVESV: 32.2 ml/m2 RVESV: 410 ml
RVEF: 57% RVEF: 6%

Automatic RVEDV: 209.52 ml RVEDV: 401.04 ml
RVESV: 114.45 ml RVESV: 276.12 ml
RVEF: 45.37% RVEF: 31.15%

Accuracy = T P + TN

T P + TN + FP + FN
(2)

Table 1 shows some functional parameters such as RV End-systolic Volume, RV
End-Diastolic Volume, and the ejection fraction of the assessed cases. The presented
values obtained by the expert and the segmentation tool might be computed
according to the Eqs. (3, 4 and 5).

RVESV = mint [V (t)] (3)

RVEDV = maxt
[
V (t)

]
(4)

RVEF (%) = RVEDV − RVESV

RVEDV
× 100 (5)
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Considering both the RV-end-systolic-volume and the RV-end-diastolic-volume,
the values obtained by the segmentation tool seem to be higher compared to the
values obtained by the expert for the case of the healthy patient. However, in
the case of the diseased patient, we find that the automatically obtained volumes
show lower values than those obtained by the expert. Consequently, the resulting
ejection fraction obtained by the automatic segmentation is lower for the case
of the healthy patient and higher for the diseased one compared to the expert’
referential results. Indeed, as the main goal of the RV boundaries segmentation is to
allow accurate functional parameters computing. Thus, any under or over-estimated
contours even at the basal or apical slices might influence the obtained parametrical
results especially for the case of pathological patients where neither the size nor the
end-systolic and the end-diastolic phases are normal.

5 Conclusion and Discussion

In this paper, a deep-learning-based cardiac segmentation tool is considered for
evaluating the impact of CMRI slice from base to the apex on the effectiveness
of the segmentation. The metrical presented results in Fig. 3 and Fig. 4 show
respectively the computed Accuracy and Dice metric values for each short-axis
slice from base to apex (S2, S3 . . . S17). The very first basal slice is excluded as
it doesn’t belong to the RV space. For the healthy patient, the included slices are
S2, S3 . . . S12. However, the pathological patient covers the whole 16 slices as
the RV is dilated. For both patients, the very first basal and the very last epical
slices associate low accuracy and DM. Besides, the accuracy and the DM results
are low for the entire pathological patient’ slices compared to the healthy slices.
Thus, the segmentation results show that from central to basal and apical slices
the effectiveness of the delineation decreases. Also, the case of dysplasia illustrates
how widely the effectiveness decreases and how do the diseased cases influence the
accuracy of segmentation. As a perspective, we attempt to tackle the basal and apical
segmentation issues as well as the pathological problem toward a better effective
segmentation process based on deep-learning approaches.
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