
Chapter 20
Numerical Evaluation of Highly
Oscillatory Integrals of Arbitrary
Function Using Gauss-Legendre
Quadrature Rule

K. T. Shivaram and H. T. Prakasha

20.1 Introduction

The numerical integration of a highly oscillating function is one of the most
difficult parts for solving applied problems in signal processing, image analysis,
electrodynamics, quantum mechanics, fluid dynamics, Fourier transforms, plasma
transport, Bose-Einstein condensates, etc. Analytical or numerical calculation of
these integrals are difficult when the parameter � is increased, In most of the cases,
lower-order quadrature methods are failures such as trapezoidal rule, Simpson’s
rule, etc. The numerical quadrature method for oscillatory integrals was first
implemented by Louis Napoleon George Filon [1]; Filon-type methods show the
efficiently computing aspect of the Fourier integral computation of moments where
something other than x is itself a difficult task. Levin and Sidi [2] evaluate the
first few oscillations of integrand using a standard process, David Levin [3]. the
modified method that does not require the calculation of the moment. Iserles [4]
developed a similar method by the use of higher-order derivatives of the integrand.
Evans and Chung [5] proposed a numerical integration method for computing the
oscillatory integrals; recently Ihsan Hascelik [6] evaluate the numerical integrals
with integrands of the form on 0, 1. by n-point Gauss rule of three-term recurrence
relation method. The integration rule proposed in this paper requires the zeros of
P2n (x) and computed associated weights. The integration points are increased in
order to improve the accuracy of the numerical solution. The reminder of this paper
is presented as follows. In Sect. 20.1, mathematical preliminaries are required for
the understanding concept of the derivation and also calculated Gauss-Legendre
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quadrature sampling points and its weights of order N = 20, 50, 100. Section 20.2
provides the mathematical formulas and illustrations with numerical examples (Fig.
20.1).

20.2 Gauss-Legendre Quadrature Formula over Oscillating
Function

If ω = 1, r = 2, numerical integration of an arbitrary function f is described as
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If ω = 2, r = 200, numerical integration of an arbitrary function f is described as
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If ω = 2, r = 1, numerical integration of an arbitrary function f is described as
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If ω = 1, r = 200, the numerical integration of an arbitrary function f is
described as
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Fig. 20.1 Oscillation of weighted functions. (a) w (x) = cos
(

1
x2

)
. (b) w(x) = cos

(
2

x200

)
. (c)

w(x) = sin
(

2
x

)
. (d) w(x) = sin

(
1

x200

)
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Fig. 20.1 (continued)
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where ξi and ηj are sampling points and wi and wj are corresponding weights. We
can rewrite Eq. (20.1) as where ξi and ηj are sampling points and wi and wj are
corresponding weights. We can rewrite Eq. (20.1) as

I1 =
m∑
i=0

wk f ( xk ) (20.5)

where Wk = 1
2
√

xi
cos

(
1
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)
∗ wi and xk = √

xi. We have demonstrated the

algorithm to calculate sampling points and weights of Eq. (20.5) as follows:

Step 1. k → 1
Step 2. i = 1, m.

Step 3. Wk = 1
2
√

xi
cos

(
1
xi

)
∗ wi

xk = √
xi

Step 4. compute step 3.
Step 5. compute step 2

Computed sampling points and corresponding weights for different values of N
are based on the above algorithm.

20.3 Numerical Results

Compare the numerical results obtained with that of the exact value of various order
N = 20, 50, 100 by Gauss-Legendre quadrature rule; these are tabulated in Table
20.1, and results are accurate in order to increase the order L.

20.4 Conclusion

In this paper, numerical integration of the form
∫ 1
0f (x) sin
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ω
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)
dx and∫ 1

0f (x) cos
(

ω
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)
dx are evaluated numerically with different values of ω and r
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Table 20.1 Compare the numerical results by using Gauss-Legendre quadrature rule

Exact values Order Computed value∫ 1
0

−8x
x4+4
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(

1
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)
dx

= 0.0946528064
Hascelik 6

L = 20
L = 50
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0.0894310923
0.0946122970
0.0946528381∫ 1
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0.134418903421
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L = 20
L = 50
L = 100

0.561087771890
0.461889135655
0.461841783027

. We have applied Gauss-Legendre quadrature rules of order 2 L to evaluate the
typical numerical integration of highly oscillating function.
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