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Abstract. Ethereum is a blockchain platform where users can transact
cryptocurrency as well as build and deploy decentralized applications
using smart contracts. The participants in the Ethereum platform are
‘pseudo-anonymous’ and same user can have multiple accounts under
multiple cryptographic identities. As a result, detecting malicious users
engaged in fraudulent activities as well as attribution are quite difficult.
In the recent past, multiple such activities came to light. In the famous
Ethereum DAO attack, hackers exploited bug in smart contracts stole
large amount of cryptocurrency using fraudulent transactions. However,
activities such as ponzi-scheme, tax evasion by transacting in cryptocur-
rency, using pseudo-anonymous accounts for receiving ransom payment,
consolidation of funds accumulated under multiple identities etc. should
be monitored and detected in order to keep legitimate users safe on the
platform. In this work, we detect malicious nodes by using supervised
machine learning based anomaly detection in the transactional behavior
of the accounts. Depending on the two prevalent account types — Exter-
nally Owned Account (EOA) and smart contract accounts, we apply two
distinct machine learning models. Our models achieve a detection accu-
racy of 96.54% with 0.92% false-positive ratio and 96.82% with 0.78%
false-positive ratio for EOA and smart contract account analysis, respec-
tively. We also find the listing of 85 new malicious EOA and 1 smart con-
tract addresses between 20 January 2020 and 24 February 2020. We eval-
uate our model on these, and the accuracy of that evaluation is 96.21%
with 3% false positive.

Keywords: Ethereum blockchain - Malicious accounts + Machine
learning - Anomaly detection + Feature extraction

1 Introduction

In the last decade, blockchain has emerged as an innovative technology plat-
form for a variety of cryptocurrency as well as other applications. The Bitcoin
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cryptocurrency ecosystem [12] is built on the blockchain technology. Transac-
tions between participants of a blockchain platform are verified and agreed on
through a distributed consensus mechanism which obviates the need for a cen-
tralized authority. While cryptocurrency was the first demonstrated application
of blockchain technology, due to the fact that blockchain enables tamper resis-
tant property to the history of transactions using cryptographic hashing, and
it enables authentication of transactions through public key cryptography, it
has proven itself to be a potential technology for building trusted interaction
platform between multiple participants involved in mutual transactions without
having to trust any individual participant. Bitcoin, Ethereum, Monero etc., are
blockchain based cryptocurrency platforms for financial transactions and also
offers pseudo-anonymity to users. This has also given rise to a lot of malicious
activities on these platforms which makes it unsafe for legitimate users on these
platforms. Therefore, automated detection of users who might be engaging in
malicious activities is of utmost importance.

The pseudo-anonymity of participants led the hackers and money launderers
to be part of the network without any fear attribution. However, since pseudo-
anonymity does not provide guaranteed anonymity, researchers have been engaged
in deducing pattern of transactions that could then be matched against fraudulent
transaction patterns. It is worth noting cryptocurrencies are still illegal in some
countries as the cryptocurrencies are generated in these platforms without any con-
nection to the central banking system in the countries, leading to tax evasion, illegal
transactions, ransom payments etc. Soon after the inception of the bitcoin, Online
underworld marketplaces like Silk Road emerged for selling contraband drugs and
other illegitimate items. A vulnerability in the Parity multi-signature wallet on the
Ethereum network resulted in a loss of 31 million US Dollars in a few minutes. If
some benevolent hackers had not stopped the ongoing exploitation, it might have
resulted in a loss of 180 million US Dollars [1].

It is therefore, our focus in this work to find irregularities and the fraudu-
lent transactional behaviors in the Ethereum network. We investigate the past
Ethereum transaction data from its genesis till a certain date (Ethereum being
a public blockchain, one can download the entire data) in search of abnormal
activities. We extract relevant information to train machine learning models for
anomaly detection. The main contributions of this work are as follows:

— We collect the malicous Ethereum addresses of various attack types like phish-
hack, cryptopia-hack, etc. from multiple sources and filter them to obtain
relevant addresses. We also label non-malicious addresses after data prepro-
cessing.

— We extract features from the transactions and use feature engineering to find
the relevant features for classification.

— We detect the malicious nodes in the Ethereum network with a good accuracy.

— We evaluate our model on newly collected 85 malicious EOA and 1 smart
contract addresses between 20 January 2020 and 24 February 2020. The model
achieves a good evaluation accuracy.
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The rest of the paper is organized as follows: Sect.2 briefly describes
the Ethereum blockchain. Section 3 describes relevant related work. Section 4
discusses the proposed methodology. Sectionb describes evaluation results.
Section 7 concludes the work.

2 Background

Vitalik Buterin developed Ethereum [6] in 2013. It is a step forward in the
blockchain technology which brought advances over the Bitcoin blockchain tech-
nology by introducing a programming language which is Turing-complete, and
providing a program execution platform in the blockchain. The programs that
run on Ethereum are called smart contracts. One can build complex decen-
tralized applications using smart contracts. The cryptocurrency of Ethereum
is called Ether, which fuels the Ethereum network. Ethereum Virtual Machine
(EVM) is the computing infrastructure for Ethereum nodes. Currently the main
consensus mechanism used by Ethereum blockchain is Proof of Work (POW),
but Ethereum announced that it will switch to Proof of Stake (POS). The reason
is that that Proof of work is a computationally-intensive process and consumes
an enormous amount of energy.

2.1 Ethereum Accounts

Ethereum has two types of accounts which participate in transactions on the
platform. Figure 1 shows how these accounts interact with each other.

1. Externally Owned Account (EOA): The end-users create EOAs to
become participants in the Ethereum network. Participants generate private
key for each account to digital sign transactions. An externally controlled
account may have a non-zero Ether balance, and can perform transactions
with other EOAs and contracts.

2. Contract/Smart Contracts: These are the self-executing code which can
be invoked by EOAs or by another contract as an internal transaction. A con-
tract also may have an Ether balance and an associated code which performs
arbitrary complex operations on execution.

2.2 Ethereum Transactions

There are three types of transactions in the Ethreum network and they are as
follows:

— Fund Transfer Between EOAs: In this type of transaction, one EOA
transfers funds to another EOA as shown in Fig. 2.
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— Deploy a Contract on the Ethereum Platform: In this type of transac-
tion, EOA deploys a contract using a transaction on the Ethereum network,
as shown in Fig. 3.
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Fig. 3. Deploy a contract on ethereum network
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Execute a Function on a Deployed Contract: In this type of transaction,
Ethereum sends a transaction to execute functions defined in a contract. The
transaction gets performed after the contract deployment, and Fig.4 shows
such a transaction.
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Fig. 4. Execute a function on a deployed contract

2.3 Ethereum Transaction Structure

An Ethereum Transaction record as it is formed and eventually persisted on the
blockchain has a number of fields.

1.

From: This field contains the transaction sender’s address. The length of
this field is 20 bytes. An address is a hash of a public key associated with the
account.

. To: This field has the address of the receiver of the transaction. The length

of this field is 20 bytes. This field can be the address of either an EOA or a
contract account or empty, depending on the type of transaction.

Value: This field has the amount in terms of wei (1 ether = 10 weis)
transferred in the transaction.

Data/Input: In case of contract deployment, this field contains the bytecode
and the encoded arguments and is empty when there is a fund transfer.
Gas Price and Gas Limit: Gas price is the amount (in terms of wei) for
each gas unit related to the processing cost of any transaction which a sender
is willing to pay. In a transaction, the maximum gas units that can be spent
is the gas limit. The gas limit ensures that there is no infinite loop in a smart
contract execution.

Timestamp: It is the time at which the block is published or mined. Below
is an example of an Ethereum transaction structure.
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1 {"status":"1",
> "message":"OK",
; "result":

. {"blockNumber":"6026742",

; "timeStamp":"1532511199",

6 "hash":"0x94917b89296051b066db2ac572987d...",

7 "nonce":"2560067",

s "blockHash":"0xad77b360c7a8401ea81e875a8fbc9...",
o "transactionIndex":"8",
10 "from":"0x3f5ceb5fbfe3e9af3971dd833d26ba9b5c936f0be",
11 "to":"0x0a0ba956038d4a66002d612648332b9c4ab7646¢c",
12 "value":"500000000000000000",
13 "gas":"21000",

14 "gasPrice":"60000000000",

15 "isError":"0",
16 "txreceipt_status":"1",

17 "input":"0Ox",

1s "contractAddress":"",
19 "cumulativeGasUsed":"227318",
20 "gasUsed":"21000",
21 "confirmations":"3212860"
22 }
23 }

3 Related Work

In this section, we discuss some existing work related to the anomaly detection in
blockchain, more specifically to Bitcoin and Ethereum blockchain. Bitlodine is a
framework to deanonymize the users [16] and is used to extract intelligence from
the Bitcoin network. It labels the addresses automatically or semi-automatically
using the information fetched from web scrapping. The labels used for addresses
are gambling, exchanges, wallets, donations, scammer, disposable, miner, mal-
ware, FBI, killer, Silk Road, shareholder, etc. Bitlodine first parses the transac-
tion data from the Bitcoin blockchain. Then it performs clustering based on user
interaction and labels the clusters and users. Their objective is to label every
address in the network into one of the mentioned categories. Also, they detect
some of the anomalous addresses in the network by tracing their transactions.
The authors verify their system performance on some of the known theft and
frauds in the Bitcoin platform. Bitlodine detects addresses that belong to Silk
Road cold wallet, CryptoLocker ransomware. The proposed modular structure
is also applicable to other blockchains. However, Bitlodine does not use any
machine learning techniques.

In [17], the authors propose a Graph-based forensic investigation of Bitcoin
transactions and perform analysis on Bitcoin transaction data and evaluate the
network data. They use 34,839,029 Bitcoin transactions and 35,770,360 distinct
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addresses. The objective is to detect money theft, fraudulent transactions, and
illegal payments made to the black market. The proposed framework retrieves
all the transaction details of a given address. The proposed framework does
not attempt to detect the anomalous addresses in the network, but it provides
detailed information on addresses. They use clustering to group users together
and multiple graph-based techniques to analyze the money flow within the net-
work. They analyze the flow of money using algorithms like Breadth-First Search
(BFS) algorithm, edge-convergent pattern, and the existence of cycles in the net-
work to detect any money laundering activity.

Thai T. Pham et al. [13,14] propose an anomaly detection method in the
Bitcoin network using the unsupervised learning classifiers like K-means cluster-
ing, Mahalanobis distance, and Support Vector Machine (SVM). The aim is to
detect the suspicious transactions that take place within the network and mark
the users based on these transactions. They use user graph and transaction graph
as the underlying space on which clustering are performed based on a 6 features
of each node in the user graph, and 3 features in the transaction graphs. They
also ran into computational difficulty and had to limit their study to a limited
number of nodes.

Xiapu Luo et al. [11] perform a graph-analysis of the Ethereum network. They
claim to be the first to perform a graph-based analysis of Ethereum blockchain.
The model constructs three different graphs to analyze money transfer, smart
contract creation, and smart contract invocation. The size of the dataset is
— 28,502,131 external transactions and 19,759,821 internal transactions. After
analyzing the graph, they have given the following preliminary insights — the
participants use the Ethereum network more than smart contracts for money
transfer. The insights made by them is pretty obvious as the number of transac-
tions done by a regular user is not comparable to a huge number of transactions
performed in exchanges. Every user does not know the Solidity or Golang to
deploy their contracts. Hence, only a few of them can deploy the contract and
use it. All participants have different requirements for which they interact with
the Ethereum network, so they have the same behavior.

Although some of the above approaches try to find an anomaly in the Bitcoin
network, but none of them has a sophisticated method for anomaly detection.
Like BitIodine [16], the authors attempt to detect paths by searching the net-
work manually, but the proposed method does not have an automated mecha-
nism to detect malicious addresses. Although in [13], the authors use machine
learning techniques for anomaly detection, the reported accuracy is not very
good. Therefore there is a need for an automated and efficient mechanism for
anomalous addresses detection in any blockchain network with high accuracy.

4 Proposed Methodology

In the Ethereum network, addresses which try to carry out tasks for which
they are not authorized or addresses that attempt to execute the fraudulent
transactions are suspicious addresses. We call their behavior as anomalous. In
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this work, we focus on the past Ethereum transactions to detect the anomaly
in behavior/actions by addresses. We train supervised machine learning models
using features we extract from the transactions performed by the addresses on
the Ethereum network. We mark the addresses as malicious and non-malicious
after the classification by the trained model. We train two models for a different
account types of the Ethereum platform — EOA and smart contract accounts
because both accounts have distinct characteristics and behavior. Our anomaly
detection method performs the following steps:

1. Collection of already publicly available malicious and non-malicious addresses
from various repositories.

2. Collection of transactions executed by all such addresses in the past.

3. Data preprocessing, feature extraction, training and evaluation for:

— EOA Analysis
— Smart contract account analysis.

4.1 Collection of Malicious and Non-malicious Addresses

We use supervised machine learning classification methods to detect malicious
and non-malicious addresses in the Ethereum network. Therefore, we collect the
labeled malicious and non-malicious addresses from various sources. We collect
malicious addresses from the sources, namely etherscan [7], cryptoscamdb [5],
and few addresses from a GitHub repository [9]. Malicious addresses are pub-
licly listed based on different kinds of attack such as a heist, cryptopia-hack,
Upbit-hack, phish-hack, etc., that these addresses have carried out in the past.
These attack types are the same as the ones used by etherscan label word cloud
[8]. We fetch non-malicious addresses from the same sources cryptoscamdb and
etherscan [4]. Initially, we collect a total of 6,154 malicious addresses and 0.1
million non-malicious addresses.

4.2 Collection of Transactions for a Given Address

In this step, we extract all the transactions performed by all malicious and
non-malicious addresses from the Ethereum Blockchain data that we had previ-
ously collected. Transactions contain various fields such as address of the sender,
address of the receiver, timestamp, gas value used for the transaction, the gas
limit for the transaction, transaction hash, block number, etc. Algorithm 1 shows
an approach to extract the transactions from a given address. We collect all the
transactions using the etherscan API and save the transactions in a JSON file
for further processing.
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Algorithm 1. Algorithm for Extraction of Transactions for a given address

Input: Address // List of Ethereum account addresses
(Malicious/Non-Malicious)
Output: Txns // List of transactions for a given address

foreach address € Address do
| Taxns «— ExtractTxn(address)

end

Function ExtractTxn(address):
F «— f‘curl -X GET http://api.etherscan.io/api?module=account&

action=txlist&address=address&sort=asc&apikey=ApiKeyT oken’

return F;
End Function

4.3 Data Preprocessing

In data preprocessing, out of the collected 6,154 malicious addresses, we find
that there are a few duplicate addresses, so we filter them using string com-
parison because the addresses contains the alphanumeric values and we are left
with 5,000 unique malicious addresses. After the string comparison, we find
that few addresses are left, which have the same transactions. This problem
occurs because some addresses are present in two different formats. For exam-
ple, an address is present as Oxfea28cal75a80£5a348016583961f63be8605£80
and OxFeA28cal75A80F5A348016583961f63bE8605£80, but when we compare
them as a string both are different. Therefore, we first convert all the addresses
to lowercase and then we remove all the duplicate addresses. There are a few
addresses in our dataset which have the null transaction. Hence, we remove all
of them too, and finally, we are left with 4,375 malicious address. We apply
the same technique to select the unique non-malicious address. After the unique
address collection, we perform data preprocessing in two steps — filter contract
account & EOA addresses and select verified non-malicious Ethereum account
addresses.

Select Verified Non-malicious Ethereum Account Addresses. Figureb
shows the process of selection of verified non-malicious addresses for further anal-
ysis. We filter all the non-malicious addresses by checking the "to" and "from"
fields from all transactions performed by a given address. These fields provide
the addresses with which the non-malicious addresses perform the transactions.
If the non-malicious address performs a transaction with any malicious address,
then we drop that address. The assumption is that such an address engaging
in business with a known malicious address could itself be suspicious and hence
we do not want it to represent non-malicious addresses. Finally, we select only
those addresses which do not perform any transaction with any of the malicious
addresses present in our dataset.
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Fig. 5. Verification of non-malicious addresses

Filter Contract Account and EOA Addresses. We filter the EOAs and
contract account addresses because both the account have different transaction
behavioral features and they need to be analyzed separately. To filter the EOA
and contract account addresses, we check the input data field from the collected
transactions and find that in the case of EOA addresses, the input data field
contains the "0x" value. However, in the case of contract account addresses,
this field contains the bytecode of smart contract source code. Also, in the first
transaction of the contract account addresses the "to" field is null, and the
"contractAddress" field includes the address, which is opposite in case of EOA
addresses. At last, after filtering the contract account and EOA addresses, we
are left with 4,124 EOA and 251 contract account addresses out of 4,375 unique
malicious addresses. Similarly, we randomly choose 5,000 non-malicious EOA
addresses and 450 contract addresses for EOA and contract account address
analysis, respectively.

4.4 EOA Analysis

In this section, we discuss the features extracted from the transactions per-
formed by EOA addresses. All the transactions are stored in JSON file format.
We use Python’s JSON library to load, parse the file, and extract the pieces of
information from the stored transactions. We extract the information from vari-
ous fields of the transaction structure such as "to", "from", "timestamp",
"gas", "gasPrice", "gasUsed", "value", "txreceipt_status". The fea-
tures such as Value_out, Value_in, Value_difference, Last_Txn_Value,
Avg_value_in, Avg value_out, and other features related to ether values sent
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and received are extracted from the value field. We extract features from the
timestamp field such as first, last, and mean transaction time among all the
transactions performed by an address. The txreceipt_status field from the
transaction structure provides information about success and failed transactions.
If the txreceipt_status field returns 1 then the transaction is successful or vice
versa. We extract features like the number of failed and successful transactions
in the incoming and outgoing transactions with the help of txreceipt_status
field. The percentage of gas used for the transaction is calculated using gasUsed
field value divided by the gas field value, which is set for the transaction. We get
the percentage of gas used for all the incoming and outgoing transactions and
the average value is taken to calculate the AP_gasUsed_in and AP_gasUsed_out
features. All the features related to gas price, which is set in the transaction by
the user who is willing to pay per gas used are extracted from the gasPrice
field. All the extracted features from the transactions are shown in Table 1.

We extract 44 features for EOA addresses analysis in our feature extraction
phase. Though we understand that all the extracted features are not essential to
train the classifiers, and some may make the results of classification models worse
because they do not participate in improving the performance of classification
models. Therefore, we use the Information gain algorithm as a feature reduction
method for dimensionality reduction of the feature vector. We select the top-10,
top-20, top-30, top-40, and top-44 features with the highest info-gain score, as
shown in Table2. To do this selection process, we apply Random Forest [10],
XGBoost [3], Decision Tree [15], and k-nearest neighbour (k-NN) [2] machine
learning classifiers on top-10, top-20, top-30, top-40, and top-44 features. The
final feature vector for EOA addresses consists of the selected top-30 features
because we obtain the maximum ten-fold cross-validation accuracy for the top-30
features using the XGBoost classifier as shown in Table 5.

4.5 Smart Contract Account Analysis

There are two kinds of transactions present in the contract account addresses
— contract creation and contract invocation by an EOA address as described
in Subsect.2.2. We first remove all the contract addresses before starting
the analysis for a smart contract that contains a similar bytecode that is
present in the input data field of the transaction structure. Finally, we
have 250 malicious and 300 non-malicious smart contract account address
for the analysis. The information we extract from the transactions performed
by the contract account addresses. It is based on the interaction of the
EOA account with the contract account. The various fields of the trans-
action structure such as "to", "from", "contractAddress", "timestamp",
"gas", "gasPrice", "gasUsed", "value" are used to extract the features.
Table 3 shows the extracted features for the smart contract analysis in the
Ethereum network. From Table 3, one can observe that we extract the features
from both creation and invocation transactions present in contract addresses.
Features from feature id F_1 to F_4 are derived from the contract creation
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F_ID | Feature Description

F_1 | TxnSent The total number of transactions sent

F_2 | TxnReceived The total number of transactions received

F_3 |Value_out The total ether value sent

F_4 |Value_in The total ether value received

F_5 | Value_difference Absolute difference between value sent and received [(Value_out) - (Value_in)]
F_6 |distinct_address Number of distinct Address contacted

F_7 |Total-Txn Total Number of Transactions sent and received

F_8 | Unique_TxnSent The total number of transactions sent to unique addresses

F_9 | Unique_-TxnReceived | The total number of transactions received from unique addresses
F_10 | First_Txn_time The timestamp of the block in which the first ever transaction is made
F_11 | Last_-Txn_time The timestamp of the block in which the last transaction is made so far
F_12 | Active_duration Active duration in second [(Last-Txn_time) - (First-Txn_time)]

F_13 | Last-Txn_Bit 0/1 (O if last transaction is incoming transaction else 1)

F_14 | Last_Txn_Value The ether value transferred in the last transaction

F_15 | Avg_value_in Average ether value received in incoming transaction

F_16 | Avg_value_out Average ether value sent in outgoing transaction

F_17 | AP_gasUsed_in The Average percentage of gas used in incoming transactions

F_18 | AP_gasUsed-out The Average percentage of gas used in outgoing transactions

F_19 | gasPrice-out The total number of gasPrice used in outgoing transactions

F_20 | gasPrice_in The total number of gasPrice used in incoming transactions

F_21 | Avg_gasPrice_in The Average gasPrice used in incoming transactions

F_22 | Avg_gasPrice_out Average gasPrice_out used in outgoing transaction

F_23 | Failed_T'xn_in Total number of failed incoming transactions

F_24 | Failed-Txn_out Total number of failed outgoing transactions

F_25 | Total_Failed_Txn Total number of failed transactions (Failed_Txn_in + Failed_Txn_out)
F_26 | Success_Txn_in Total number of Success incoiming transactions

F_27 | Success_Txn_out Total number of Success outgoing transactions

F_28 | Total_Success_-Txn Total number of Success transactions (Success_Txn_in + Success_Txn_out)
F_29 | gasUsed_in Total gasUsed in incoming transaction

F_30 | gasUsed_out total gasUsed in outgoing transaction

F_31 | Per_TxnSent Percentage of transactions sent from all the transactions

F_32 | Per_TxnReceived Percentage of transactions received from all the transactions

F_33 | Std_value_in Standard deviation of ether value received in incoming transaction
F_34 | Std_value_out Standard deviation of ether value sent in outgoing transaction

F_35 | Std_gasPrice_in Standard deviation of gasPrice used in incoming transactions

F_36 | Std_gasPrice-out Standard deviation of gasPrice used in outgoing transactions

F_37 | First_Txn_Bit 0/1 (0 if last transaction is incoming transaction else 1)

F_38 | First_Txn_Value The ether value transferred in the first transaction

F_39 | mean_in_time Average time difference between incoming transaction

F_40 | mean_out_time Average time difference between outgoing transaction

F_41 | mean_time Average time difference between all transactions

F_42 | Txn_fee_in Total Transaction fee spent in incoming transaction

F_43 | Txn_fee_out Total Transaction fee spent in outgoing transaction

F_44 | Total_Txn_fee Total Transaction fee spent in all transaction (incoming + outgoing)
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Table 2. Infogain results for EOA analysis
Rank F_ID | Feature Rank score | F_ID | Feature Rank score | F_ID | Feature
0.46029 | F_11 | Last_Txn_time 0.19721 F_21 | Avg_gasPrice_in | 0.10026 F_44 | Total_Txn_fee
0.42853 | F_.39 | mean_in_time 0.19601 F_35 | Std_gasPrice_in | 0.10004 F_12 | Active_duration
0.37441 | F_10 | First-Txn-time 0.19324 F_3 |Value-out 0.07407 F_28 | Total-Success-Txn
0.34817 | F_.40 | mean_out_time 0.19112 F_16 | Avg_Value_out 0.07407 F_7 | Total-Txn
0.25935 | F_17 | AP_gasUsed_in 0.15878 F_19 | gasPrice_out 0.05612 F_34 | Std_value_out
0.24183 | F_.22 | Avg_gasPrice_out 0.15177 F_29 | gasUsed-in 0.02647 F_36 | Std_gasPrice_out
0.23784 | F_9 | Unique-TxnReceived | 0.14819 F_26 | Success-Txn_in |0.01895 F_8 |Unique_-TxnSent
0.23590 | F_33 | Std_value_in 0.14819 F_2 TxnReceived 0.01500 F_13 | Last_Txn_Bit
0.23146 | F_15 | Avg_Value.in 0.14327 F_5 Value_difference | 0.01096 F_1 TxnSent
0.23082 |F_4 Value_in 0.14327 F_6 distinct_address | 0.01096 F_27 | Success_Txn_out
0.22359 | F_38 | First-Txn-Value 0.13781 F_18 | AP_gasUsed-out | 0.00797 F_37 | First-Txn_Bit
0.22202 | F_.32 | Per-TxnReceived 0.13506 F_41 | mean_time 0 F_25 | Total_Failed-Txn
0.22202 | F_31 | Per_TxnSent 0.13322 F_14 | Last_Txn_Value |0 F_23 | Failed_Txn_in
0.21338 | F-20 | gasPrice-in 0.12016 F_43 | Txn_fee_out 0 F_24 | Failed-Txn-out
0.19777 | F_42 | Txn_fee_in 0.11065 F_30 | gasUsed-out
Table 3. Extracted features for smart contract account analysis

F_ID | Feature Description

F_1 |Contract_Create Contract creation time

F_2 | Txn_fee_contract_create Transaction fee spent in contract creation

F_3 |Per_gasUsed_contract_create The percentage of gas used during contract creation

F_4 |gasPrice_contract_create Gas price used to create a contract

F_5 |First_contract_invoke_time Timestamp for first contract invocation

F_6 |Last_contract_invoke_time Timestamp for last contract invocation

F_7 | Active_duration Active duration (seconds) of contract address

F_8 |Total_invoke Total number of contract invocations

F_9 |unique_invoke Total number of contract invocations using unique address

F_10 | Avg_Per_gasUsed_contract_invoke | The average percentage of gas used during contract

invocations

F_11 | gasPrice_contract_invoke Total gas price used for contract invocations

F_12 | Avg_gasPrice_contract_invoke Average gas price used for contract invocations

F_13 | Txn_fee_contract-invoke Total transaction fee spent in contract invocations

F_14 | Avg_Txn_fee_contract_invoke Average transaction fee spent in contract invocations

F_15 | Value_contract_invoke Total ether value used in contract invocations

F_16 | Avg_Value_contract_invoke Average ether value used in contract invocations

F_17 | gasUsed_contract-invoke Total gas used for contract invocations

F_18 | Avg_gasUsed_contract_invoke Average gas used for contract invocations

transactions and features from feature id F_5 to F_18 are taken from the contract
invocation transactions.

For smart contract address analysis, we extract 18 features. Similar to EOA
address analysis, we use infogain as a feature selection algorithm to reduce the
dimensionality of the feature vector. We select top-5, top-10, top-15, and top-18
features with the highest infogain score as shown in Table4 and then apply the
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same set of classifiers to train and test the model. Finally, we select the top-10
features to train the final model. The reason for selecting the top-10 features is
that these set of features provide the highest ten-fold cross-validation accuracy
using XGBoost classifier as shown in Table 5.

4.6 Classification

We use different machine learning classifiers using Python’s Sckit-learn library,
namely k-NN, Decision Tree, Random Forest, and XGBoost for the classification
of malicious addresses in the Ethereum network. The experiments are carried
out using the Intel i7 octa-core processor having Ubuntu 18.04 LTS with 32 GB
RAM. We split the dataset into 70%-30% for the training and testing of our
model. To check the performance of our model, we apply ten-fold stratified cross-
validation. Also, we tune parameters to minimize the misclassification error.

Table 4. Infogain results for smart contract analysis

Rank score | F_ID | Feature Rank score | F_ID | Feature

0.5732 F_6 |Last_contract_invoke_time 0.2498 F_13 | Txn_fee_contract_invoke

0.5389 F_17 | gasUsed_contract-invoke 0.2498 F_4 |gasPrice_contract_create

0.5387 F_5 |First_contract_invoke_time 0.2006 F_12 | Avg_gasPrice_contract_invoke
0.3442 F_18 | Avg_gasUsed_contract_invoke | 0.1418 F_10 | Avg_Per_gasUsed_contract_invoke
0.3442 F_8 |Total_invoke 0.141 F_7 | Active_duration

0.3047 F_9 |unique_invoke 0.1091 F_14 | Avg_-Txn_fee_contract_invoke
0.3047 F_3 |Per_gasUsed_contract_create |0.1064 F_16 | Avg_Value_contract_-invoke
0.2498 F_11 | gasPrice_contract_-invoke 0.0459 F_15 | Value_contract_invoke

0.2498 F_2 | Txn_fee_contract_create 0.0459 F_.1 |Contract_Create

5 Experimental Results

This section describes the results achieved from the EOA analysis and smart
contract account analysis. We perform the analysis for both the account types
separately and extract the features from the behavior of the transactions
present. We apply ten-fold cross-validation for both the analysis to evaluate
our machine learning models’ performance. Tableb presents the 10-fold cross-
validation results for separate machine learning classifiers on various numbers of
selected features. First, we do the experiments for EOA addresses and examine
the results presented in Table 5. We achieve the highest accuracy that is 96.54%
with a False Positive Rate (FPR) of 0.92% for EOA analysis using XGBoost clas-
sifier with top-30 features. Secondly, we perform the analysis of smart contracts
and examine the results presented in Table5. For smart contracts analysis, we
achieve the highest accuracy of 96.82% with an FPR 0.78% using the XGBoost
classifier and top-10 features.
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Table 5. Experimental results for EOA and smart contract analysis

Experimental results for EOA analysis

No. of features Random Forest(%) XGBoost(%) Decision Tree(%) | k-NN(%)
top-10 95.28 95.74 92.75 92.75
top-20 95.28 96.08 91.93 91.93
top-30 95.62 96.54 92.63 92.63
top-40 95.97 96.31 93.78 93.78
top-44 95.74 96.43 92.86 92.86
Experimental results for smart contract analysis

top-5 94.73 94.73 94.73 94.73
top-10 94.73 96.82 94.73 94.73
top-15 94.73 96.49 96.49 96.49
top-18 94.82 96.49 96.49 96.49

6 Evaluation

Since 20t January, when we last collected our experimental data — 85 new
EOA addresses and only 1 new contract address are flagged as malicious. To
further validate our models, we do the ensemble of all the machine learning
classifiers used earlier to improve the detection accuracy. We test them on the
data collected after 20t" January. Out of 85 malicious EOA addresses, our EOA
address analysis model detects 81 as malicious. We also randomly choose 100
non-malicious addresses that are not part of our earlier dataset. Out of 100
non-malicious EOA addresses, our EOA address analysis model detects 97 as
non-malicious, i.e., the overall accuracy of our model is 96.21% with FPR of
3% and FNR 4.71%. Similarly, our contract address analysis model detects the
one newly collected contract address as malicious. This validates that our model
works to a reasonable extent.

7 Conclusion

In this work, we train two classifiers using transactions performed by the
Ethereum addresses on the Ethereum network for EOA analysis and smart con-
tract account analysis. We collect malicious and non-malicious addresses from
various sources. Still, the most important challenge is to label the non-malicious
addresses because this work aims to detect malicious and non-malicious address
with the help of supervised learning. We perform data preprocessing to select
the verified non-malicious addresses and to filter the contract account and EOA
addresses. We extract and select the features from the transactions of addresses
and train different machine learning models, namely Random Forest, Decision
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tree, XGBoost, and k-NN for EOA and smart contract account analysis. Finally,
we achieve the highest accuracy of 96.54% and 96.82% for EOA and smart con-
tract account analysis respectively. In the future, we will investigate how to
reduce the false positives and false negatives.
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