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Abstract. A growing number of Android malware detection systems are
based on Machine Learning (ML) methods. However, ML methods are
often vulnerable to evasion attacks, in which an adversary manipulates
malicious instances so they are classified as benign. Here, we present a
novel evaluation scheme for evasion attack generation that exploits the
weak spots of known Android malware detection systems. We implement
an innovative evasion attack on Drebin [3]. After our novel evasion attack,
Drebin’s detection rate decreased by 12%. However, when inspecting
the functionality and maliciousness of the manipulated instances, the
maliciousness rate increased, whereas the functionality rate decreased
by 72%. We show that non-functional apps, do not constitute a threat
to users and are thus useless from an attacker’s point of view. Hence,
future evaluations of attacks against Android malware detection systems
should also address functionality and maliciousness tests.
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1 Introduction

Android malware evolves over time, such that malicious versions of popular
Android application PacKages (APKs) can propagate to various Android mar-
kets. One of the most popular techniques in the malware detection domain is
Machine Learning (ML) based detection of malicious entities, where some tech-
niques’ detection rates exceed 99% at times. However, Szegedy et al. [7] showed
that some ML methods (including malware detection systems) are vulnerable
to adversarial examples. A special case of adversarial examples involves using
evasion attacks. Evasion attacks take place when an adversary modifies malware

c© Springer Nature Switzerland AG 2020
S. Dolev et al. (Eds.): CSCML 2020, LNCS 12161, pp. 167–174, 2020.
https://doi.org/10.1007/978-3-030-49785-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49785-9_11&domain=pdf
http://orcid.org/0000-0001-6035-5127
http://orcid.org/0000-0001-9940-5654
http://orcid.org/0000-0002-3670-0784
https://doi.org/10.1007/978-3-030-49785-9_11


168 H. Berger et al.

code so that the modified malware is categorized as benign by the ML, but still
successfully executes the malicious payload.

The main contribution of this work is our analysis of functionality and mali-
ciousness tests for Android evasion attacks that change existing features. To the
best of our knowledge, none of the evasion attacks that changed existing fea-
tures of malicious apps has been evaluated in terms of either functionality or
malicious content maintenance, which raises the question of whether “efficient”
attacks result in nonfunctional apps that would not be malicious as intended.

2 Related Work

In this section, we survey well known ML-based detection systems for Android
malware. We also depict several popular evasion attacks targeting the detection
systems. Then, we examine the functionality and maliciousness tests of Android
malware. As far as we know, they have not been fully explored in previous studies
in the Android malware field.

2.1 Android Malware ML-Based Detection Systems

One of the best known Android malware detection systems is Drebin [3], a
lightweight Android malware detector (it can be installed on mobile phones).
Drebin collects 8 types of features from the APKs. From the Manifest file, Drebin
extracts permissions requests, software/hardware components and intents, and
from the smali code, it extracts suspicious/restricted API calls, used permis-
sions in the app’s run and URL addresses. A different approach is found in
MaMaDroid [14], which extracts features from the Control Flow Graph (CFG)
of an application. MaMaDroid creates a tree of API calls based on package
and family names. After abstracting the calls, the system analyzes the API call
sequence performed by an app, to model its true nature. The third approach
which inspects system features was introduced in Andromaly [19].

2.2 Evasion Attacks on ML-Based Detection Systems

Evasion attacks against ML-based detection systems can take multiple courses.
One course of action is to camouflage specific parts of the app. One well-known
example of camouflage is the use of obfuscation or encryption, which was imple-
mented in Demontis et al. [6]. Reflection, which allows a program to change its
behavior at runtime, is also a classic evasion method, which was exampled in
Rastogi et al. [16]. A typical approach to evasion attacks on ML-based detection
systems involves adding noise to the app, thus misleading the classifier’s assign-
ment of benign and malicious app. An example of the use of this approach can be
found in Android HIV [5] where the authors implemented non-invoked dangerous
functions against Drebin and a function injection against MaMaDroid. Chang-
ing the app flow is another approach, where a detection system that is based
on analyzing the app flow, such as MaMaDroid, fails to detect the malicious
app [5,11].



Evasion Is Not Enough: A Case Study of Android Malware 169

2.3 Functionality and Maliciousness Tests

An evasion attack’s main goal is to evade detection by malware detection sys-
tems. However, two tests can be conducted to identify an attack. The first is
functionality, and the second is maliciousness. These features were explored in
Repackman [18], a tool that automates the repackaging attack with an arbitrary
malicious payload. The authors performed 2 relevant tests for their repackaging
attack, all using Droidutan [17]. For the functionality test (which they termed
feasibility), they used random UI actions. For maliciousness, which they termed
reliability, they measured the apps that successfully executed their payload via
recorded screenshots. To the best of our knowledge, these functionality and mali-
cious content tests have not been mentioned in previous evasion attack studies.

3 Evaluation Metrics

This study involves a number of metrics. These metrics are used to define our
app dataset, evaluate the effectiveness of the attacks against the detection sys-
tems, and formulate insights about our findings. First, we describe the dataset
we gathered and its verification tool. In addition, we discuss functionality and
maliciousness tests for Android evasion attacks. The metrics are:

– Data collection:
• Benign apps: We combine apps from the AndroZoo dataset [1], chosen

from the GooglePlay [8] market, and Drebin’s [3] dataset.
• Malicious apps: We use the malicious apps from the Drebin dataset [3],

CICAndMal2017 [12], AMD [22] and StormDroid [4] datasets.
• Verification: We use VirusTotal (VT) [21] to verify that our apps are

correctly labeled. We define benign apps as apps that are not marked as
malicious by any scanner. Malicious apps are apps that are identified as
malicious by at least 2/4 scanners [3,15]. In our study, we use malicious
apps that are identified by at least two scanners.

– Eliminating dataset biases: Android ML-based detection systems suf-
fer from temporal and spatial biases [15]. Spatial bias refers to unrealistic
assumptions about the ratio of benign to malicious apps in the data. Tem-
poral bias refers to temporally inconsistent evaluations that integrate future
knowledge about the test data into the training data. To avoid these dataset
biases, we follow the properties suggested in [15]. For example, 90% of our
dataset is composed of benign APKs, and the remaining 10% is malicious,
similar to the distribution of global apps [9,13], thus accounting for the spa-
tial bias. To prevent temporal bias, we train the classifiers with apps whose
timestamp is prior to the test data.

– Robustness evaluation: To evaluate robustness, we compute the propor-
tion of instances for which the classifier was evaded; this is our metric of
evasion robustness, with respect to the robustness of the detection system
(similar to the analysis provided in [20]). Thus, evasion robustness of 0%
means that the classifier is successfully evaded every time, whereas evasion
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robustness of 100% means that the evasion fails in every instance. We com-
pare the evasion robustness of our evasion attack compared to the original
malicious APKs detection rate.

– Functionality: In an evasion attack, the attacker tries to conceal the mali-
cious content from the detection system. Constructing an evasion attack with
the use of existing Android malware includes manipulation of the APK, which
is a sensitive task. It may result in any kind of error, thus resulting in a crash.
If the crash occurs in the initial stages of the app’s run, the malicious content
will probably not harm the user at all. Therefore, evaluation of the apps’ func-
tionality is vital when generating an APK evasion attack. The functionality
check includes a test where the app is installed and run on an Android emu-
lator [10]. If the app crashes, this suggests it is not functional. A manipulated
app that passes this test is declared a functional app.

– Malicious Activity/Maliciousness: While a manipulated app that passes
the previous check can be considered a threat to the user, it does not guarantee
that the previous malicious content will run similarly to the previous Android
malware. Therefore, a test for the maliciousness of the app is needed. We
evaluate malicious activity with the following test: We scan the app using VT.
If the number of scanners that indicate the manipulated app to be malicious
is less or equal to the number of scanners identifying the original app as
malicious, this app is said to pass our simple maliciousness test.

4 Case Study

In this section, we demonstrate the use of our tests. We chose Drebin as a test
case for this inquiry, which is one of the best known Android malware detection
systems. For a full description of the Drebin classifier, see [3] (implementation is
available at [2]). First, we depict our attack, which decreases Drebin’s accuracy.
Then, we run our additional tests (see Sect. 3) on the original and manipulated
apps.

4.1 Attacker Model

The attacker has a black-box access to the input and output of the trained
classifier. As can be seen in Fig. 1, The first input (denoted 1 in Fig. 1) for the
classifier is malicious APK samples available to the attacker. Based on this input,
the Drebin classifier outputs a report on these APKs (denoted 2 in Fig. 1), and
an accuracy rate of the classification. The attacker receives this report (denoted
3 in Fig. 1), and manipulates the APKs that Drebin identified as malicious, and
sends them as a second input to the classifier (denoted 4 in Fig. 1). Note that
the attacker aims to modify the APKs such that the final report (denoted 5 in
Fig. 1) will label the malicious APKs as benign and the accuracy rate will be
lower than the initial accuracy rate. While doing so, it verifies the malicious
behavior of the APKs.
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Fig. 1. Attacker model. The attacker sends malicious APKs as input to the classifier
(1). The classifier produces an initial report and an accuracy rate (2). The attacker
receives the output report (3), manipulates the APKs and sends them as a second
input to the classifier (4). Finally, the classifier produces a final report and an accuracy
rate (5).

4.2 Attack Description

Given malicious APKs to manipulate, and the observations from Drebin, the
attacker attempts to conceal the appearance of the observations obtained from
the classifier, while still using them to activate the malicious content. It depack-
ages each APK into its subordinate files. We describe the attack in two stages.
The input for the first stage is a string. It can resemble a URL address or an
API call.

1. First stage - Encoding: The attacker analyzes Drebin’s observations. It
searches for strings in the smali code that are included in the report. The
attacker replaces the string with its base64 encoding. It stores the encoded
string in the variable of the previous string. Then, the attacker runs a decode
function to translate the encoded string back to its previous representation.
It stores the decoded string in the previous variable of the string.

2. Second stage - Reflection: This stage is only pertinent to encoded strings
that resemble an API call, since strings that resemble a URL skip this stage.
In this stage, the attacker creates a reflection call. The reflection call creates
a general object with the target object from the API call. The next step is
invoking the general object with the specific method name from the API call.

5 Results

We evaluated the effectiveness of our attack and the metrics from Sect. 3. We
used ∼75 K benign apps and ∼32 K malicious apps (for more details on the
source of our data, see Sect. 3). In order to account for a realizable ratio between
benign and malicious files [15], we used a proportion of 90/10 between benign
and malicious apps in our evaluation. Because we had more malicious apps than
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one-tenth of the benign apps’, we randomly split the malicious data into 5 parts
and use the whole benign dataset with each part separately.

In addition, we used a ratio of 80/20 between the train and test data. We did
not use the benign samples of the test data while assessing the attack’s evasion
rate. Overall, we used ∼60 k benign apps and ∼25 k malicious apps as train data,
and ∼6 k malicious apps as test data. To account for variations in the data, we
used 5-fold CV.

5.1 Evasion Robustness

To get a clearer view of the evasion robustness, we evaluated two cases: the
original apps and the evasion attack apps. Any app that triggered an error in
the evasion attack’s construction was not included in the manipulated test data.
Some of the errors we encountered were a result of corrupted APKs that we
could not depackage or repackage. Other errors were a consequence of faults
in the manipulation process. Overall, the error rate did not exceed 10% of the
test data. The results are summarized in Table 1. This table documents the
number of malicious apps in each case and the accuracy rate (including the
standard deviation). Because the standard deviation was marginal (i.e., <0.02),
the evasion robustness rate in each of the splits is similar.

Table 1. Evasion robustness for each case

Number of applications Evasion robustness (SD)

Original 6327 0.964 (0.009)

Evasion attack 5817 0.84 (0.012)

5.2 Functionality and Maliciousness Tests

As stated in Sect. 3, our goal was to test whether our evasion attack would
damage the functionality and maliciousness of the previous Android malware.
We implemented the functionality test on our apps in an emulator using Pixel 2
XL image with SDK 27. We implemented a functionality test on each app before
the manipulation (see Sect. 4.2) and after it. For each app, our functionality test
was implemented as follows: (1) Cleaning of the emulator log; (2) Installation
of the app; (3) Running the app for 1 second; (4) Termination of the app; (5)
Uninstallation of the app; (6) Inspection of the emulator log for crashes. We
removed ∼28% of the apps that were old or faulty, which led to an interesting
insight. Before our evasion attack, 90% of the apps did not crash. After our
attack, only 18% of the apps did not crash. Although a nonfunctional app does
not attack the user who runs it, we implemented the maliciousness test (see
Sect. 3) on the evasion attack apps. After the manipulation, 0.06% of the apps
were identified by an equal number of scanners, and 0.1% apps were identified by
more scanners than before the manipulation. 99.8% of the apps were identified



Evasion Is Not Enough: A Case Study of Android Malware 173

by a smaller number of scanners than before the manipulation, thus resulting in
an increase of ∼9.5 scanners, on average, that did not identify the manipulated
apps. While the evasion attack proved to be malicious and decreased the accuracy
rate of Drebin, it constitutes a minor threat to the Android user community due
to the low level of functionality.

6 Discussion and Conclusion

In this study, we suggested the inclusion of functionality and maliciousness tests
in the evaluation of manipulated apps. In addition, we proposed a novel evasion
attack that achieved a 12% evasion rate. The maliciousness test we implemented
proved that the evasion attack’s apps maintained high malicious value, with
an additional ∼9.5 VT scanners on average that did not recognize the apps as
malicious. However, our functionality test proved that the generated apps’ func-
tionality suffered a tremendous loss, from 90% functional apps to 18% functional
apps. In a classic analysis, such an attack was considered very powerful and dan-
gerous, and may even result in a urgent update of the classifier. In contrast, the
methodology we present proves that the defender has no reason to take steps
in the face of such an attack, because its output is deficient in the functional
side. To the best of our knowledge, this is the first study to consider these tests
for the Android evasion attacks domain. We suggest future works based on our
methodology to engineer sophisticated and efficient attacks against well known
Android malware detection systems. While doing so, the authors should make
sure to maintain high levels of both functionality and maliciousness activity.
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