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Preface

CSCML, the International Symposium on Cyber Security Cryptography and Machine
Learning, is an international forum for researchers, entrepreneurs, and practitioners in
the theory, design, analysis, implementation, or application of cyber security, cryp-
tography, and machine learning systems and networks, and, in particular, of concep-
tually innovative topics in these research areas.

Information technology has become crucial to our everyday lives, an indispensable
infrastructure of our society and therefore a target for attacks by malicious parties.
Cyber security is one of the most important fields of research these days because
of these developments. Two of the (sometimes competing) fields of research, cryp-
tography and machine learning, are the most important building blocks of cyber
security.

Topics of interest for CSCML include: cyber security design; secure software
development methodologies; formal methods, semantics, and verification of secure
systems; fault tolerance, reliability, and availability of distributed secure systems;
game-theoretic approaches to secure computing; automatic recovery self-stabilizing
and self-organizing systems; communication, authentication, and identification
security; cyber security for mobile and Internet of Things; cyber security of corpora-
tions; security and privacy for cloud, edge, and fog computing; cryptocurrency;
blockchain; cryptography; cryptographic implementation analysis and construction;
secure multi-party computation; privacy-enhancing technologies and anonymity;
post-quantum cryptography and security; machine learning and big data; anomaly
detection and malware identification; business intelligence and security; digital
forensics, digital rights management; trust management and reputation systems; and
information retrieval, risk analysis, and DoS.

The 4th CSCML took place during July 2–3, 2020, in Beer-Sheva, Israel. This year
the conference was organized in cooperation with the International Association for
Cryptologic Research (IACR) and selected papers will appear in a dedicated special
issue in the Information and Computation Journal.

This volume contains 12 contributions selected by the Program Committee and
4 short papers. All submitted papers were read and evaluated by Program Committee
members, assisted by external reviewers. We are grateful to the EasyChair system in
assisting the reviewing process.

The support of Ben-Gurion University (BGU), in particular the BGU-NHSA, BGU
Lynne and William Frankel Center for Computer Science, the BGU Cyber Security
Research Center, the Department of Computer Science, TATA Consultancy Services,
IBM, and Check Point are all gratefully acknowledged.

March 2020 Vladimir Kolesnikov
Gera Weiss

Shlomi Dolev
Sachin Lodha
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Single Tweakey Cryptanalysis
of Reduced-Round SKINNY-64

Orr Dunkelman, Senyang Huang, Eran Lambooij(B), and Stav Perle

University of Haifa, Abba Khoushy Avenue 199, 3498838 Haifa, Israel
eranlambooij@gmail.com

Abstract. SKINNY is a lightweight tweakable block cipher which
received a great deal of cryptanalytic attention following its elegant
structure and efficiency. Inspired by the SKINNY competitions, multiple
attacks on it were reported in different settings (e.g. single vs. related-
tweakey) using different techniques (impossible differentials, meet-in-the-
middle, etc.). In this paper we revisit some of these attacks, identify issues
with several of them, and offer a series of improved attacks which were
experimentally verified. Our best attack can attack up to 18 rounds using
260 chosen ciphertexts data, 2116 time, and 2112 memory.

1 Introduction

Since lightweight cryptography gained academic interest in the early 2000’s,
many different block ciphers have been proposed. In parallel, the cryptographic
community has slowly reached the understanding that “just” block ciphers are
not always suitable or offer somewhat inferior solution, e.g., in the context of
authenticated encryption. Hence, solutions such as tweakable block ciphers were
introduced [9]. Obviously, with the need for lightweight cryptography, the need
for lightweight tweakable block ciphers grew. SKINNY [4] is a lightweight tweak-
able block cipher using the tweakey framework [7]. SKINNY also lies in the basis
of three of the submissions to the lightweight cryptography competition held by
NIST (US National Institute of Standards and Technology), namely ForkAE [1],
Romulus [6], and Skinny-AEAD [5].

This paper contains two main contributions: The paper first looks at extend-
ing truncated differential distinguishers of SKINNY by looking at the bias of
the differences. Namely, we show that one can extend the probability 1 6-round
truncated differential used before in [14] into a longer truncated differential.
However, the new truncated differential has a lower probability, and instead of
predicting the difference in some specific nibble, we predict its bias from random
(in our case, the bias from 1/16). We show that this bias can be observed after
7-, 8-, and even 9-rounds of SKINNY, where some nibbles are biased towards
zero. This results in attacks on up to 15-round SKINNY-64-128 in time 2104

and data 233.
Our second contribution is to revisit previous impossible differential attacks

against SKINNY. We show that some of these attacks had subtle flaws in them,
c© Springer Nature Switzerland AG 2020
S. Dolev et al. (Eds.): CSCML 2020, LNCS 12161, pp. 1–17, 2020.
https://doi.org/10.1007/978-3-030-49785-9_1
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2 O. Dunkelman et al.

which invalidate the attack. We then set to fix the attacks, which in turn reduce
their number of rounds and increases their time and data complexity. The result-
ing attack is against 18-round SKINNY-64-128 in time 2116 and data 260 chosen
plaintexts.

1.1 Related Work

Besides being an interesting target of its own accord, the designers of SKINNY
organized several cryptanalysis competitions to further inspire its analysis. This
effort led to several papers focusing on the cryptanalysis of SKINNY.

Single Tweakey Analysis. For the case of single-tweakey model, a series
of impossible differential attacks (against 18-round SKINNY-n-n, 20-round
SKINNY-n-2n and 22-round SKINNY-n-3n) based on an 11-round impossi-
ble differential distinguisher is presented in [14]. As we later show in Sect. 5,
these attacks contain some flaw that increases their complexity and reduces the
number of affected rounds. An additional impossible differential attack in the
single-tweakey setting is presented against 17-round SKINNY-n-n and 19-round
SKINNY-n-2n in [16]. In addition to this, [12] presents zero-correlation linear
attacks against 14-round SKINNY-64-64 and 18-round SKINNY-64-128 in the
single-tweakey model.

Related Tweakey Analysis. An impossible differential attack against 19-
round SKINNY-n-n, 23-round SKINNY-n-2n and 27-round SKINNY-n-3n in
the related-tweakey model is presented in [10]. In addition, this paper presents
several rectangle attacks against 27-round SKINNY-n-3n in the related-tweakey
model. Improved impossible differential attacks against these variants in the
related-tweakey model are presented in [12]. Zero-correlation attacks in the
related-tweakey settings are presented against 20-round SKINNY-64-64 and
23-round SKINNY-64-192 in [3].

Another impossible differential attack in the related-tweakey settings is
described in [2] targeting 21-rounds of SKINNY-64-128. Furthermore, this
attack is extended to 22-round and 23-round SKINNY-64-128 in the related-
tweakey model. These results use the assumption that certain tweakey bits are
public. Another related-tweak impossible differential attack is presented in [13]:
an 18-round SKINNY-64-64 in the related-tweakey model, which can be trans-
formed to an attack against 18-round SKINNY-64-128 in the related-tweakey
model, with 96-bit secret key and 32-bit tweak.

A new automatic search tool for truncated differential characteristics using
Mixed Integer Linear Programming is presented in [11]. This paper presents
8-round truncated differential characteristics with bias 2−8, 9-round truncated
differential characteristics with bias 2−20 and 10-round truncated differential
characteristics with bias 2−40.

Table 1 summarizes all previously published attacks against SKINNY-64-64
and SKINNY-64-128.
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Table 1. Complexity of single-tweakey attacks against SKINNY-64

Key (bits) Attack Complexity

Rounds Time Data Memory Source

64 Zero-correlation 14 262 262.58 264 [12]

64 Impossible differential 17 261.8 259.5 249.6 [16]

64 Impossible differential† 18 257.1 247.52 258.52 [14]

128 Zero-correlation 18 2126 262.68 264 [12]

128 Impossible differential 18 2116 260 2112 Sect. 5.2

128 Impossible differential 19 2119.8 262 2110 [16]

128 Impossible differential† 20 2121.08 247.69 274.69 [14]
†As we show in Sect. 5, the attack is flawed.

1.2 Organization

This paper is organized as follows: In Sect. 2 we briefly reiterate the specification
of SKINNY. After that the proposed distinguishers are described, discussing
both the construction of the differential distinguisher (Sect. 3) and the extension
to biased differential distinguishers (Sect. 4). In Sect. 4.4 we use the previously
described distinguishers to construct key recovery attacks. Section 5, contains a
discussion of a previous impossible differential analysis of SKINNY, which is
fixed in Sect. 5.2, and improved upon in Sect. 5.3. Finally, Sect. 6 summarizes
this paper.

2 Specification of SKINNY

SKINNY is a family of lightweight tweakable block ciphers using a substitution-
permutation network (SPN) structure. The variants of SKINNY are denoted
by SKINNY-n-t, where n represents the block size (n ∈ {64, 128}) and t rep-
resents the tweakey size (t ∈ {n, 2n, 3n}). Namely, the six variants of SKINNY
are SKINNY-64-64, SKINNY-64-128, SKINNY-64-192, SKINNY-128-128,
SKINNY-128-256, and SKINNY-128-384 with 32, 36, 40, 40, 48 and 56 rounds,
respectively. Both the 64-bit and 128-bit internal states are represented as an
array of 4× 4 cells. The first row contains nibbles 0 to 3 (where 0 is the leftmost
nibble, 3 is the rightmost nibble), the second row contains nibbles 4 to 7, etc.
The cell is a nibble in case of 64-bit version and a byte in case of 128-bit version.
There are 5 operations in each round (depicted in Fig. 1):

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1. The SKINNY round function.
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1. SubCells (SC): The non-linear layer applies an �-bit S-box on each cell, where
� ∈ {4, 8}.

2. AddConstants (AC): This step XOR’s three cells of round constants to the
most significant three cells of the internal state.

3. AddRoundTweakey (ART): In this step, the tweakey bits are XORed to the
first two lines of the internal state.

4. ShiftRows (SR): The second, third, and fourth rows of the internal state are
right-rotated by 1 cell, 2 cells, and 3 cells, respectively.

5. MixColumns (MC): Each column of the internal state is multiplied by the
following binary matrix:

M =

⎡
⎢⎢⎣

1 0 1 0
1 0 0 0
0 1 1 0
1 0 1 0

⎤
⎥⎥⎦ (1)

We omit the tweakey schedule as this is not used in our attacks, and refer the
interested reader to [4].

3 Differential Distinguisher

The attacks in this paper are built using extensions of the 6-round truncated
differential characteristic used in [14]. The characteristic is depicted in Fig. 2.
The colored nibbles depict non-zero differences in the differential characteristic,
while the black nibbles signify unknown differences. The distinguisher starts with
a single active nibble, nibble 12, which after six rounds leads to four nibbles: 4, 7,
9, and 15, that necessarily have a non-zero difference. The distinguisher can be
rotated row-wise, e.g., if we take nibble 13 to be active, after six rounds nibbles:
4, 5, 10, 12, are non-zero, etc.

The six-round characteristic can be extended by one, two, or three rounds
by the use of structures at the beginning of the characteristic (see Fig. 3). This
technique can also be used in the distinguishers discussed in Sect. 4. Extending by
one round does not incur any cost with respect to the data and time complexity
since the SC layer is before the key addition. The two and three round extension
respectively increase the data complexity by 28 and 220 with respect to the non
extended distinguisher. The time complexity is increased by 24 and 220 due to
the added key guessing needed.

3.1 Key Recovery Attack

The first attack that we look at is a 10-round attack using the basic 6-round
distinguisher. As can be seen in Fig. 2: if we have an input difference with one
active nibble, i.e. nibble 12, the output difference after 6 rounds in nibbles 4,
7, 9, and 15 are necessarily non-zero. This distinguisher can be transformed
into an impossible differential attack. We can filter out wrong keys by partially
decrypting the ciphertext, such that we recover the difference in one of these
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SC
AK SR MC

SC
AK SR MC

SC
AK SR MC

SC
AK SR MC

SC
AK SR MC

SC
AK SR MC

Fig. 2. The basic six round differential. White cells are zero differences, colored cells
are non-zero differences and black cells have unknown differences. (Color figure online)

(necessarily non-zero) nibbles, and discard the key if we find a pair for which
the difference in one of these nibbles is 0. On average we need to test 24 pairs
to discard a key. Nevertheless, to filter out all but the correct key, with high
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SC
AK SR MC

SC
AK SR MC

SC
AK SR MC

Fig. 3. Extending the characteristics by one, two, or three rounds. Before the main
differential distinguisher (Fig. 2).

probability, we need more data. The probability that a wrong key passes the
filter is 1−2−4, thus the probability that a wrong key passes x filters is (1−2−4)x.
Given 2k candidate keys, we get the following equation:

(1 − 2−4)x = 2−k (2)

Giving,

x =
k log(2)

log(1 − 2−4)
. (3)

For k = 128 we get: x ≈ 1374 ≈ 210.4, which is the maximum amount of data
needed to mount this attack. Note that this is an upper bound on the amount
of data needed. If the number of possible keys is smaller the amount of data can
also be smaller, but to simplify the analysis we chose to keep the amount of data
needed constant as it does not affect the time complexities of the attacks.

We denote a difference in the i-th nibble by Δi. Using this 6-round distin-
guisher Δ12 → Δ15 we construct a 10-round attack with four rounds of key
recovery, for which we need to guess 6 nibbles (=6 · 4 bits) of key material. This
results in an attack which uses 26·4+4 = 228 4-round decryptions and

24 · log(2)
log(1 − 2−4)

≈ 258 ≈ 28

data, and 28 memory to store the data. Analogous to this we can construct
the other attacks using the 6-round distinguisher. Note that in this instance we
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computed the exact amount of data needed for the attack to succeed, in the
summary given in Table 6 we took the maximum amount of data for the attacks
of this form, due to the small difference in complexity.

4 A Biased Differential Distinguisher

The attack described in Sect. 4.4 is based on the observation that after seven
rounds, in some nibbles of the state, the probability that the nibble difference
is 0 is larger or smaller than 2−4, i.e., it is biased with respect to the random
case. We first show how to efficiently compute the bias of a difference in a state
nibble after r rounds. Then, we list the computed biases after seven and eight
rounds in Tables 2 and 3, respectively. Afterwards, we show the results of our
experiments that confirm the existence of the bias in the output difference. It is
worth noting that in many cases, the observed bias is higher than expected. In
other words, the analysis offers evaluation of explainable attacks (and suggests
a “worst-case” analysis1). Note that although the results discussed here are for
the 64-bit version of SKINNY they can easily be extended to SKINNY-128. We
expect that the biases of SKINNY-128-128 are squared, i.e., they are expected
to exist, but their validation would be infeasible.

4.1 Computing Biases of Differences in Nibbles

To compute the biases in the nibbles after one round we need to compute the
biases after each step of SKINNY (AC, ART, MC, SC, SR). The differences
are unaffected by the tweakey addition (ART) or the add constant (AC), thus
we can ignore these step. The SR operation permutes the nibbles in the state.
The other two operations SC and MC change the biases in a more elaborate
way and are discussed below. Note that as we do not take the key schedule in
consideration we assume independence between the rounds of the cipher.

The bias towards each difference value in a nibble is stored in a vector v,
where v[Δ] contains the bias for the output difference Δ. I.e., v contains 16
different biases, one for each possible difference in the nibble. The state of a
cipher is a vector of bias vectors denoted by W , where W [i] denotes the bias
vector for state nibble i, with in this case 0 ≤ i < 16. In other words, W [i][j]
contains the bias of the i-th nibble of the state with respect to the difference j.

The SC layer applies a non-linear S-box to each nibble in the state. We
can compute the biases after the SC layer by using the Difference Distribution
Table (DDT) of SKINNY’s S-box. Recall that the j-th row of the DDT contains
the probability distribution of the output differences given an input difference
with value j. We denote the j-th row of the DDT as DDT[j]. The equation for
computing the biases for a nibble after the SC layer is given in Eq. 4.

W ′[i] =
j<16∑
j=0

W [i][j] · DDT[i]
16

(4)

1 One can argue that the only way to verify the full attacks is to run then in practice.
However, the running time of most of the attacks is far from being feasible.
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To compute the bias after the MC layer we multiply each column of the state
with the matrix M (Eq. 1) where we define the dot product used in the matrix
multiplication between two bias vectors v, w as:

w′[i] =
j<16∑
j=0

w[j] · v[j ⊕ i] (5)

Obviously, there is a subtle underlying assumption that the differences in differ-
ent nibbles are independent of each other for the calculation to be accurate (this
actually echoes the Markov cipher assumption [8]). As our verification experi-
ments show, this assumption does not always hold, but luckily in our case, on
our favor.

We calculated the biases for 7 and 8 rounds of SKINNY and put the results
in Tables 2 and 3. From Table 3 we can see that after 8 rounds of SKINNY we
have a bias of ≈2−19.5 when inserting a difference of A into nibble C.

One interesting observation, although the effect on the attack is small, is that
for some entries the choice of the input difference has an influence on the bias.
In some cases this difference is quite significant, but for the biases that we use
in the attack the difference is too small to be of any significance. Nevertheless,
in other cases, it can be useful to look at different input differences when doing
this analysis. To verify the results we ran some experiments, the results of these
experiments can be found in Table 4.

We note that the experimental verification suggests that the biases exists,
and in some cases it appears the the real bias is larger than we expect. A probable
cause for this phenomenon is dependencies between rounds.

4.2 Experimental Verification

We have experimentally verified the computed biases. As listed in Table 4, we can
see that in most of the cases, the observed bias either confirms the calculation,
or is significantly higher. As our calculation assumes independence it is very
likely that the higher biases are the result of dependencies between rounds. The
experiments were done using 240 samples under a single key. Hence, reported
biases of less than 2−19, are expected to take place at random. We mark in Table 4
the entries which were verified beyond the random case.

4.3 Decreasing the Time and Data Complexity

To distinguish the permutation from random using the bias in the difference, we
need to verify the presence of the bias. In this section we discuss the number of
samples we need to verify the bias. The cost of verifying the bias directly affects
the time and data complexity of the attacks.

Lemma 1 (Number of samples). Given a differential characteristic with a
bias b and block size n we need 2� samples such that the biased distribution is
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Table 2. The absolute bias (log2) with respect to zero of each output nibble after 7
full rounds of SKINNY starting with only a difference in nibble 12. The bold values in
the table are verified experimentally, while for the underlined values we found higher
biases that could be verified experimentally.

Nibble Input nibble difference value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 −26.7 −27.1 −27.4 −27.2 −27.2 −27.2 −27.4 −27.0 −27.0 −27.0 −26.7 −26.7 −26.7 −27.4 −27.2

1 −61.3 −63.9 −66.1 −64.0 −64.5 −64.2 −66.3 −62.4 −62.4 −63.0 −60.9 −61.4 −61.4 −66.2 −64.6

2 −41.0 −42.1 −42.9 −42.1 −42.2 −42.1 −43.0 −41.6 −41.6 −41.5 −40.8 −41.1 −41.1 −42.9 −42.3

3 −19.6 −19.6 −19.6 −19.6 −19.6 −19.6 −19.6 −19.6 −19.6 −19.5 −19.5 −19.6 −19.6 −19.6 −19.6

4 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9

5 −25.4 −26.4 −27.3 −26.5 −26.7 −26.6 −27.4 −25.9 −25.9 −26.1 −25.2 −25.5 −25.5 −27.3 −26.7

6 −29.4 −30.4 −31.2 −30.4 −30.6 −30.4 −31.3 −29.9 −29.9 −29.9 −29.2 −29.4 −29.4 −31.2 −30.6

7 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9 −7.9

8 −11.7 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8 −11.7 −11.7 −11.7 −11.7 −11.8 −11.8

9 −14.5 −15.1 −15.6 −15.2 −15.3 −15.3 −15.7 −14.7 −14.7 −15.0 −14.5 −14.6 −14.6 −15.6 −15.3

10 −15.1 −15.5 −15.7 −15.5 −15.6 −15.5 −15.7 −15.3 −15.3 −15.4 −15.2 −15.2 −15.2 −15.7 −15.6

11 −21.9 −22.7 −23.4 −22.7 −22.9 −22.8 −23.5 −22.2 −22.2 −22.4 −21.7 −21.9 −21.9 −23.4 −22.9

12 −15.6 −15.7 −15.7 −15.7 −15.7 −15.7 −15.7 −15.7 −15.7 −15.6 −15.5 −15.6 −15.6 −15.7 −15.7

13 −35.9 −37.5 −38.9 −37.6 −38.0 −37.8 −39.0 −36.5 −36.5 −37.1 −35.7 −36.0 −36.0 −38.9 −38.1

14 −37.1 −38.2 −39.0 −38.2 −38.3 −38.2 −39.1 −37.7 −37.7 −37.6 −36.9 −37.2 −37.2 −39.0 −38.4

15 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8 −11.8

Table 3. The absolute bias (log2) with respect to zero of each output nibble after 8
full rounds of SKINNY starting with only a difference in nibble 12. The bold values in
the table are verified experimentally, while for the underlined values we found higher
biases that could be verified experimentally.

Nibble Input nibble difference value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 −77.4 −79.9 −81.8 −80.1 −80.5 −80.3 −82.0 −78.7 −78.7 −79.2 −77.2 −77.7 −77.7 −81.9 −80.6

1 −120 −124 −128 −124 −125 −125 −128 −122 −122 −122 −119 −120 −120 −128 −125

2 −64.3 −65.4 −66.4 −65.5 −65.5 −65.4 −66.4 −64.9 −64.9 −64.8 −64.1 −64.3 −64.3 −66.4 −65.6

3 −49.5 −50.2 −50.8 −50.2 −50.3 −50.3 −50.8 −49.8 −49.8 −49.9 −49.3 −49.5 −49.5 −50.8 −50.4

4 −26.7 −27.1 −27.4 −27.2 −27.2 −27.2 −27.4 −27.0 −27.0 −27.0 −26.7 −26.7 −26.7 −27.4 −27.2

5 −61.3 −63.9 −66.1 −64.0 −64.5 −64.2 −66.3 −62.4 −62.4 −63.0 −60.9 −61.4 −61.4 −66.2 −64.6

6 −41.0 −42.1 −42.9 −42.1 −42.2 −42.1 −43.0 −41.6 −41.6 −41.5 −40.8 −41.1 −41.1 −42.9 −42.3

7 −19.6 −19.6 −19.6 −19.6 −19.6 −19.6 −19.6 −19.6 −19.6 −19.5 −19.5 −19.6 −19.6 −19.6 −19.6

8 −22.9 −21.3 −23.5 −23.3 −23.4 −23.3 −23.5 −23.2 −23.2 −23.2 −22.9 −23.0 −23.0 −23.5 −23.4

9 −29.7 −30.5 −31.2 −30.5 −30.7 −30.6 −31.3 −30.0 −30.0 −30.2 −29.5 −29.7 −29.7 −31.2 −30.7

10 −36.9 −38.1 −39.0 −38.2 −38.4 −38.3 −39.1 −37.5 −37.5 −37.7 −36.8 −37.0 −37.0 −39.0 −38.4

11 −43.8 −45.4 −46.7 −45.4 −45.8 −45.6 −46.9 −44.5 −44.5 −44.8 −43.5 −43.9 −43.9 −46.8 −45.8

12 −41.7 −42.5 −43.0 −42.6 −42.6 −42.6 −43.0 −42.2 −42.2 −42.3 −41.7 −41.8 −41.8 −43.0 −42.7

13 −83.0 −86.5 −89.4 −86.6 −87.3 −86.9 −89.7 −84.5 −84.5 −85.2 −82.5 −83.2 −83.2 −89.5 −87.5

14 −52.6 −53.7 −54.6 −53.7 −53.9 −53.8 −54.7 −53.2 −53.2 −53.1 −52.4 −52.7 −52.7 −54.6 −53.9

15 −34.0 −34.6 −35.2 −34.7 −34.8 −34.8 −35.2 −34.2 −34.2 −34.5 −33.9 −34.0 −34.0 −35.2 −34.8

u standard deviations away from the distribution of differences for a random
permutation. Where:

� ≥ 2b − n − log(1 − 2−n) + 2 · log(u)
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Table 4. The absolute bias (log2) with respect to zero for each output nibble after 7
and 8 rounds. The biases are computed using 240 samples. The statistical significant
results are marked in bold.

Nibble Bias after

7 rounds 8 rounds

Experiment Theory Experiment Theory

0 −16.986 −26.7 −22.067 −75.4

1 −19.610 −61.3 −23.053 −120

2 −20.364 −41.0 −21.580 −64.3

3 −15.505 −19.6 −22.734 −49.5

4 −7.535 −7.9 −18.696 −26.7

5 −11.960 −25.4 −20.470 −61.3

6 −15.790 −29.4 −23.493 −41.0

7 −7.580 −7.9 −15.699 −19.6

8 −9.884 −11.7 −17.772 −22.9

9 −10.836 −14.5 −19.612 −29.7

10 −11.756 −15.5 −20.473 −36.9

11 −14.620 −21.9 −20.051 −43.8

12 −10.446 −15.6 −19.454 −41.7

13 −19.297 −35.9 −21.876 −83.0

14 −18.006 −37.1 −21.753 −52.6

15 −11.382 −11.8 −24.723 −34.0

Proof. The number of output differences observed after N = 2� samples is
binomially distributed with p1 = 2−n in the random permutation case and
p2 = 2−n + 2−b in the construction case. Due to the high number of samples we
are working with we can assume the distributions to be normal. The two dis-
tributions are distinguishable with a non-negligible probability when the means
are at least u standard deviations apart from each other. Thus we look at the
case where:

μ1 + u · sd1 ≤ μ2

N · p1 + u ·
√

N · p1 · (1 − p1) ≤ N · p2

u2 · 2−� · 2−n(1 − 2−n) ≤ 2−2b

� ≥ 2b − n − log(1 − 2−n) + 2 · log(u)
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Following Lemma 1, we obtain that � ≥ 2b + 3.450, for the case that the
number of guessed keys, k′ = 128, and the blocksize n = 4.

� ≥ 2b − n − log(1 − 2−n) + 2 · log(erf(
k′
√

2
))

� ≥ 2b + 3.451

4.4 Key Recovery Attacks

Table 5. For each nibble position the number of key nibbles that have to be guessed
to partially decrypt the nibble for the given number of rounds of SKINNY-64-128 is
given in the table.

Rounds Nibble position

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

3 3 3 3 3 5 5 5 5 3 3 3 3 3 3 3 3

4 6 6 6 6 11 10 11 11 7 8 8 8 6 6 6 6

5 11 11 11 12 20 19 21 22 15 16 16 14 12 11 12 12

6 20 20 21 23 29 29 30 31 26 26 26 22 23 20 22 22

7 29 29 30 31 32 32 32 32 32 32 32 30 31 29 30 30

8 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

In this section we look at several key recovery attacks that can be mounted
using the biases in the difference. The attacks are rather straight forward, thus
we only discuss in detail some of the attacks and give the complexities for the
other attacks in Table 6 (Table 5).

Note that for the attacks in this section we use the theoretical biases (Tables 2
and 3). As is shown in Table 4, the real bias of the distinguishers is significantly
higher. Most probably this difference is caused by dependencies between rounds
that were not accounted for. In comparison, given that the 8-round distinguisher
has an observed bias better by a factor of 16, we expect an attack better by a
factor of 256 (data, time, and memory complexities).

Next we construct a 12-round attack using the 7-round distinguisher by
prepending one round and appending 4 rounds of key recovery. As can be seen in
Table 2 we have four sensible choices for the distinguisher: Δ12 → Δ4,Δ12 → Δ7,
Δ12 → Δ8, and Δ12 → Δ15, with biases respectively: 2−7.9, 2−7.9, 2−11.7, 2−11.8.
Recall that as is shown in Lemma 1 to be able to distinguish a bias of b we need at
most 2−2·b+3.451 pairs (the exact value depends on the number of candidate keys
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that need to be filtered and can be computed using Lemma 1). To decrease the
number of pairs needed and to optimize the overall time complexity of the key
recovery we use the 7-round distinguisher Δ12 → Δ15. This means that, since we
have a set of 224 possible keys, for every key we need to evaluate approximately
22·11.8−4+0.028+2·log(5.3) = 224.44 plaintext pairs for each of the 224 possible keys.
time. This adds up to a time complexity of 224.44+24 = 248.44 time, 224.44 data
complexity and 224.44 memory to store the data. We note that due to the SC
layer being before the key addition we do not need to guess the first round subkey
since we can choose the pairs such that they have the right difference.

Table 6. Summary of the time (data/memory) complexities for key recovery attacks
on Skinny using the different differential distinguishers described in this paper.

Distinguisher Rounds

10 11 12 13 14 15

6-round 228.00(211.00) 248.00(211.00) 284.00(211.00) 2120.0(211.00) – –

7-round 235.12(223.12) 248.43(224.43) 273.55(225.55) 2114.49(226.49) – –

8-round 246.09(238.09) 259.75(239.75) 274.90(246.90) 2108.10(248.10) – –

1 + 6-round 216.00(211.00) 228.00(211.00) 248.00(211.00) 284.00(211.00) 2120.0(211.00) –

1 + 7-round – 235.12(223.12) 248.43(224.43) 273.55(225.55) 2114.49(226.49) –

1 + 8-round – 246.09(238.09) 259.75(239.75) 274.90(246.90) 2108.10(248.10) –

2 + 6-round 212.00(219.00) 220.00(219.00) 232.00(219.00) 252.00(219.00) 288.00(219.00) 2124.0(219.00)

2 + 7-round – 234.49(230.49) 239.12(231.12) 252.43(232.43) 277.55(233.55) 2118.49(234.49)

2 + 8-round – – 250.09(246.09) 263.75(247.75) 278.90(254.90) 2112.10(256.10)

3 + 6-round – 228.00(235.00) 236.00(235.00) 248.00(235.00) 268.00(235.00) 2104.0(235.00)

3 + 7-round – – 255.12(247.12) 268.43(248.43) 293.55(249.55) –

3 + 8-round – – – – – –

5 Revisiting Impossible Differential Attacks
on Single-Tweak SKINNY

An impossible differential attack against reduced-round SKINNY in the single-
tweakey model is proposed in [14]. The attack uses an 11-round impossible dif-
ferential, i.e., a single nibble difference in nibble 12 cannot lead to a difference
only in nibble 8 after 11 rounds.

5.1 Problems with the Attack of [14]

Given the 11-round impossible differential, a standard impossible differential
attack is applied—several structures of plaintexts are taken, such that in each
structure there are many pairs which may obtain the input difference needed for
the impossible differential. Then, in each structure, all the pairs that may lead
to the impossible output difference are located, and each pair is analyzed for the
keys it suggests. These keys are of course wrong, and thus discarded.
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The attack relies heavily on two parts: first, using a series of elaborate and
elegant data structures that allow easy and efficient identification of the proposed
key from a given pair, and, that given a pair, it disqualifies a fraction 2−72 of the
2116 subkeys which are recovered by the attack. Unfortunately,2 the true ratio
is 2−84 as can be seen in Fig. 4 in Appendix A: the probability that a pair of
plaintexts chosen from the structure reaches the input difference is 2−24, whereas
the probability that the corresponding ciphertexts reach the output difference is
2−60.

The result of this issue is that the attack requires more data (and thus time)
to succeed—namely, about 212 times the reported time and data (which are 247.5

chosen plaintexts for 18-round SKINNY-64-64 and 262.7 chosen plaintexts for 20-
round SKINNY-64-128). Hence, the corrected attacks either require more data
than the entire codebook or take more time than exhaustive search (or both).
In Sect. 5.2 we propose a new attack that solves the aforementioned problems.

5.2 Fixing the Impossible Differential Attack

One can fix the attacks by reducing the number of attacked rounds. For exam-
ple, in the case of SKINNY-64-128, attacking 17-round reduced version (which
corresponds to the first 17 rounds of the original attack). Taking 2m structures
of 228 chosen plaintexts, we expect from each structure 255 pairs, out of which
255·2−36 = 219 obtain ciphertext difference that may lead to the output difference
of the impossible differential. Even a näıve implementation, of guessing the 60
involved subkey bits (40 in the two rounds before the impossible differential and
20 after), allows checking which subkeys suggest impossible events. The proba-
bility of an analyzed (pair, subkey) pair to “succeed” (i.e., that a pair/subkey
combination results in a contradiction, thus discarding a wrong subkey guess) is
2−24 · 2−24 = 2−48. Hence, we require 260 · (1 − 2−48)2

19+m 	 260 (as each of the
260 subkeys has probability of (1 − 2−48) to be discarded by any of the 219+m

pairs). Picking m = 32.6 balances between the complexity of exhaustive search
over the remaining key candidates and the näıve partial encryption/decryption
of the pairs.

Specifically, 232.7 structures offer 219+32.7 = 251.7 pairs. Given these pairs,
a wrong subkey guess remains with probability (1 − 2−48)2

51.7
= (1/e)2

3.6
=

(1/e)12.1 = 2−17.5, which implies an exhaustive key search phase of 2128 ·2−17.5 =
2110.5, together with 260 · 219+m · 2 = 2112.6 partial encryptions/decryptions for
each pair. Hence, a näıve implementation takes 2112.9 time and 260.7 chosen
plaintexts for attacking 17-round SKINNY-64-128.

We note that there is another small issue with the analysis of the attacks
reported in [14] related to the memory complexity. In impossible differential
attacks, one needs to store both the data and the list of “discarded” keys (some-
times one can optimize various parts of this complexity). Hence, the memory

2 We have contacted the authors of [14] who confirmed our claim.
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complexity reported in [14] should also be considerably higher. Namely, it is
more than the data complexity (e.g., for the SKINNY-64-128 attack, it is 2116).
In comparison, our 17-round attack has memory complexity of 260.7.

5.3 Improving the Fixed Impossible Differential Attack

We note that one can optimize the time complexity of the impossible differential
attack using pre-computed tables as in [14]. The simplest (and fastest) one is
to construct a table that accepts the two ciphertexts restricted to the 28 bits
with difference, and stores the list of all key candidates that lead to an “output
difference” of the impossible differential, i.e., a difference only in nibble 8. As for
a given 20-bit subkey guessed at the end, the probability that the pair indeed
reaches such an output difference is 2−24, we expect for each pair about 220 ·
2−24 = 2−4 possible subkey suggestions. There are 256 pairs of two 28-bit values
(one from each ciphertext of the pair), and thus we need a hash table of 256

entries (of which only 252 non-empty entries), we can take a ciphertext pair and
immediately identify the subkey it proposes (if it proposes one).

This reduces the time complexity of the basic filtering by a factor of 220, which
allows for an improved time complexity, in exchange for some more data.3 For
m = 24 ·229, we obtain an attack with data complexity of 261.6 chosen plaintexts
and time complexity of 294.6 encryptions. The attack can process each structure
separately and just store the pre-computed table and a bitmap of the subkeys
which are discarded, thus, requiring 260 cells of memory.

The second optimization relies on changing the direction of the attack—
from ciphertext to plaintexts, which allows attacking 18-round variant (rather
than 17 rounds). We collect m = 212 structures of ciphertexts, each structure
with 248 ciphertexts (just before the SC operation of round 18 there are 264

possible values, but they are effectively transformed into 248 possible values
when applying the inverse MC operation, so the structures are defined by having
7 active nibbles at the output of round 16). Each such structure suggests 295

pairs, out of which 295 · 2−36 = 259 satisfy the 0 difference in 9 nibbles when
partially encrypting the obtained plaintexts till the first key addition. For each
of the 40-bit subkey involved in the plaintext side, there is a chance of 2−24 that
a pair is partially encrypted to the input difference of the impossible differential.
Similarly, such a pair has probability 2−44 to partially decrypt (with the 60-bit
subkey involved) to the output difference of the impossible differential. Hence,
we take each of the 259 pairs of each a structure, and use two pre-computed
tables to see which subkeys the pair suggests. On average, we expect a pair to
discard (through the contradiction) a given subkey guess with probability 2−68.
This means that given m = 212.3 structures, the probability of any given key to
remain is (1 − 2−68)m·259 ≈ (1/e)4.3 = 2−12. Then, the exhaustive key search
part takes time which is 2128 · 2−12 = 2116.

3 The extra data is needed to reduce the number of partial keys moving to the exhaus-
tive search phase of the attack, so that the impossible differential phase and the
exhaustive search phase are balanced.
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We note that the list of proposed subkeys can be pre-computed: From the
plaintext side, we take all (228)2 pairs of plaintexts and all 240 subkeys and
compute for each pair of plaintexts which keys satisfy the “input difference”
(in time 296 and memory of 272). For the ciphertext side we can either use
a straightforward approach of testing all (248)2 pairs of inputs and all 260 bit
subkeys, and amortize the pre-computation cost (as is done in many works). The
second option is to follow the early abort technique. Namely, we take all (248)2

pairs of input, and by partially encrypting the 8 nibbles which are not involved
with the key through the last round, we obtain the output differences needed
by the other nibbles to “follow” the differential transitions in the other nibbles.
Then, by the standard approach that given an input difference and an output
difference one knows the (expected) one solution for the key, we obtain the exact
subkey of round 17 that the pair suggests. We then continue for the (pair, subkey
value) and try all 220 remaining subkeys to see what options indeed lead to the
output difference of the impossible differential. Hence, the pre-computation of
the second table takes time (248)2 · 220 = 2116 time (and 2112 memory).

To conclude, by using this technique, we can attack 18-round SKINNY-64-
128 with a data complexity of 260 chosen ciphertexts, a time complexity of 2116

partial encryptions, and using 2112 memory.

6 Conclusion

In this paper we analyzed reduced-round versions of the SKINNY-64-128. We
made several observations regarding the diffusion offered by 8-round SKINNY,
namely showing that even after eight rounds of SKINNY there is a measurable
bias in the output difference. This observation shows that 8 rounds of SKINNY
does not satisfy the strict avalanche criteria [15]. We then used the bias to offer
multiple attacks of which the results are summarized in Table 6.

Finally, we revisited several previous results, showing that [11]’s proposed
bias has a lower bias than expected (if at all). We showed that the impossible
differential attack of [14] contained a subtle, yet, devastating issue. We followed
by fixing the attack (in exchange for a reduced number of attacked rounds). The
best attack we could devise is on 18-round SKINNY-64-128 using 260 chosen
ciphertexts, with time of 2116 encryptions and 2112 memory.

Appendices

A Impossible Differential
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1 SC
AK SR MC

TK ETK

2 SC
AK SR MC

3 SC
AK SR MC

4-14

15 SC
AK SR MC

16 SC
AK SR MC

17 SC
AK SR MC

18 SC
AK SR MC

19 SC
AK SR MC

20 SC
AK SR MC

Fig. 4. The impossible differential used in [14] and in our attacks and which nibbles
are needed to evaluate its “existence”.
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7. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

8. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 2

9. Liskov, M., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. J. Cryptol. 24(3),
588–613 (2011)

10. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey
settings (long paper). IACR Trans. Symmetric Cryptol. 2017(3), 37–72 (2017)

11. Moghaddam, A.E., Ahmadian, Z.: New automatic search method for truncated-
differential characteristics: application to Midori and SKINNY. IACR Cryptology
ePrint Archive 2019, 126 (2019)

12. Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round SKINNY
block cipher. IACR Trans. Symmetric Cryptol. 2018(3), 124–162 (2018)

13. Sun, S., et al.: Analysis of AES, SKINNY, and others with constraint programming.
IACR Trans. Symmetric Cryptol. 2017(1), 281–306 (2017)

14. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis
of reduced-round SKINNY. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017.
LNCS, vol. 10239, pp. 117–134. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57339-7 7

15. Webster, A.F., Tavares, S.E.: On the design of S-Boxes. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 41

16. Yang, D., Qi, W., Chen, H.: Impossible differential attacks on the SKINNY family
of block ciphers. IET Inf. Secur. 11(6), 377–385 (2017)

https://doi.org/10.1007/978-3-319-61204-1_11
https://doi.org/10.1007/978-3-319-61204-1_11
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/978-3-319-57339-7_7
https://doi.org/10.1007/978-3-319-57339-7_7
https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1007/3-540-39799-X_41


Zero-Knowledge to the Rescue:
Consistent Redundant Backup of Keys

Generated for Critical Financial Services

Moti Yung1(B), Cem Paya2, and Daniel James2

1 Google and Columbia University, New York, USA
motiyung@gmail.com

2 Gemini, New York, USA
cemp51d@gmail.com, daniel@gemini.com

Abstract. We present the work on HADKEG: a protocol for Highly
Available Distributed Key Generation. The context is a highly sensitive
redundant generation for use and redundant recovery of a set of sym-
metric cryptography keys. These keys need to be trusted (random) and
secure against failures of randomness employment and leakages, and be
available via a recovery procedure which needs to be redundant (high
availability constraints) yet secure and consistent (i.e., the correct recov-
ery has to be assured regardless of recovery server availability). The
working environment allows for distributed key generating parties initi-
ating the system, and a set of recovery and operating agents that hold
the key and may be at time off-line. These very practical concrete secu-
rity, redundancy (availability), and integrity requirements, that typify
real world highly sensitive services, operate in a special environment
where, as we said, not all recovery agents are available at all times,
yet where transfers of encrypted information is semi-synchronous and
globally available to parties that become on-line. In this architecture,
it turned out, that the usually considered theoretical and costly trans-
ferable Zero-Knowledge proofs, actually help overcome the operational
and integrity constraints. We present a protocol we implemented called
HADKEG: Highly Available Distributed Key Generation. It combined
distributed key generation, special encryption and transferable zero-
knowledge proofs to achieve the practical goal in the working environ-
ment.

1 Introduction

Operating online sensitive valuable services like digital assets exchanges or indi-
vidual wallet hosting service require care. Indeed, every so often in this modern
cryptocurrency age, we hear that a currency exchange [1] has lost some stored
coins and cannot recover them, or attacks of similar nature [3] or the more recent
[2] Canadian exchange incident in 2019. Attacks on such services may grow as the
volume and value of transactions increase. Therefore, when one is to operate a
reliable exchange or a reliable repository of wallets, or any other service involving
c© Springer Nature Switzerland AG 2020
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digital assets, one has to assure reliable backup of securely stored assets. These
assets may be stored for long time in a cold storage (not available online), and
at times, based on client request (that is authenticated and identified) may be
moved to operating storage and then a transaction is performed.

In this short paper we review the design of a cryptographic system for reli-
able secure storage that was implemented in the above context. The emphasize
of this report is on the applied side, demonstrating the underlying problems and
the solutions taken (rather than delving too much into formalizing the problem,
modeling, and proving security). The idea here being that reporting on this in a
more accessible fashion may contribute to the state of the art of best practices
in an industry which is in formation, and is not yet known to be employing the
necessary procedures, in spite of the fact that it is an obvious target to possible
attacks and to internal fraud. We note that our solution has been implemented
in the context of an operational currency exchange and can serve as an example
of such real world concrete implementations (where trust and integrity consid-
erations for real applications may differ then these of many research papers).

In particular, the critical operations like online exchanges need reliability
and integrity assurance, based on careful risk analysis based on the concrete set-
ting., which must include the generation and backup of cryptographic keys. A
common strategy for such backup is encrypting keys to recovery agents, namely
to a sub-set of public-keys which are associated each with a recovery service.
This approach provides the following benefits: (1) after encryption, ciphertexts
become nonsensitive pieces of information (unlike the plaintext keys); (2) allow-
ing each key generation to choose the subset of recovery keys (based on trust
assumptions regarding the owners, geography, operation, etc.); while (3) allow-
ing for easy redundancy, permitting the secret to be recovered using any server
(public-key) out of the subset.

The natural and straightforward approach to implementing this runs into
two risk analysis problems (and we deal with mission critical systems so we need
to mitigate these):

1. The original generation of secrets is done on one system. Therefore, if the
hardware/software has been compromised for whatever reason, the resulting
secret can be fabricated.

2. There is no way to verify that backups were done correctly, short of something
like performing the decryption operation with each of the keys to confirm
that the ciphertexts correspond to the identical plaintext (e.g., via Challenge
Response protocol). This verification step can be costly and, more impor-
tantly, can introduce insecurity if a decryption device is offline and not read-
ily accessible (for instance, because the corresponding private-keys exists on
hardware module that is, often, kept offline for security reasons!). Unless
backups can be verified, the service runs the added risk of inconsistent future
recovery.

This paper presents a new distributed approach centered around transferable
zero-knowledge proofs to address both problem. The solution, in fact, demon-
strates that sometimes, a cryptographic procedure which is thought to be com-
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plicated and unnecessary, given alternatives (e.g., zero-knowledge proofs of pos-
session of a cryptographic key vs. challenge-response protocol to verify possession
of a key), actually becomes the elegant method that solves the very practical
and sensitive scenario, and its cost can be tolerated as well.

1.1 The Setting

The setting we deal with is quite generic. We assume that the bulk data is
encrypted with a symmetric key (collection of symmetric keys) that may be a
master key or data key. We need to keep the keys secure and at the same time
assure recovery, which means that we may use a number of recovery agents,
where availability of one implies the availability of this sensitive key.

For the rest of this paper, we assume that one secret K (obviously, this will
be performed for many keys) is to be generated by an online service and be
backed-up to n servers at different locations each server is associated with a
different public-key. The protocol can be repeated to generate multiple secrets
as necessary, and different instances can select a subset of the n public keys,
based on trust of the user to deposit its keys with some of the servers but not all
(in our example throughout we will assume the entire group is used (w.l.o.g.).
The participants will be key generating parties and there are t of them. (We also
note that a common approach to importing a new secret into an operational
environment involves “wrapping” the secret with a public-key and performing
the unwrap operation with the corresponding private key (when holder of the
key is available). In particular, hardware security modules (HSM’s) compliant
with the PKCS #11 interface have functionality for importing a secret that was
encrypted using a public-key for which the corresponding private key is present
in the HSM.). Further note that each private key corresponding to a public key
may be a threshold key held by a few trustees (this may be a software alternative
to the hardware modules). The nature of the storage and protection of private
keys is left out of the discussion for the rest of this paper, but we assume the
holders are well protected by hardware or threshold arrangement, etc.

Given the above scenario, the challenge here is two-fold:

1. Making it possible for multiple t parties to participate in generating the secret
such that no subset colluding can influence or recover the final secret gener-
ated. (This is a security requirement originating from prevention of a single
point of failure; the main concern here is covert tampered random generation).

2. Making it possible to verify backups were done correctly and all n backup
servers hold the same key. This reduces to the problem of proving that mul-
tiple ciphertexts corresponding to encryptions under different public-keys all
correspond to the same plaintext (integrity/consistency assurance).

A somewhat more formal treatment of the above setting can define a
protocol in which there are n agents each with a public key precomputed and
available. For a generated key, let one of these (the first agent) be the key owner
and the others be the recovery agents (more generally not every key needs the
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involvement of all recovery agents as some keys will be handed to only a subset
of them). Let a set of t participants (key generators) be the elements generating
the key, the key is an element of a group G. The communication is done via a
bulletin board where all messages are tagged by their sender and receiver. No
synchrony is assumes, a party wakes up and collects all the messages sent to it
and can reconstruct its state. The protocol takes place where at the end we want
the properties (stated informally):

1. Sound Key Generation: If one of the t key generators is honest, the key is a
random element of G.

2. Secure Key Generation: If one of the t key generators is honest and all key
recovery agents (or, in general, key recovery agents participating in the key
generation) are honest, then the key is secret.

3. Robust Key Generation: any misbehaving key generator that may introduce
inconsistency (not following the protocol in communication actions) his con-
tribution is eliminated

4. The key is recoverable: Upon a recovery request, if any of the key recovery
agents is available the key is reconstructable (given to the authorized party
requesting recovery). Further:
(a) The recovery is sound: If the authority accepts, the recovered key is the

deposited key with very high probability.
(b) The recovery is consistent: for all recovery agent the result of the recovered

key is the same with very high probability.

Approach: In a nutshell, let us review our approach to the solution: First,
the second challenge reduces to a problem previously studied under the subject
of “ciphertext equality,” with solutions in zero-knowledge proofs (ZKP) context.
We identified this integrity function as central and use variants of such a protocol
(this is a unique case where more traditional integrity methods like “challenge
response” checking do not work). Secondly, and perhaps the main conceptual
contribution of this paper is showing that the standard approach using ZKP in
the context of ElGamal crypto-system [4] also yields an automatic solution to
the first problem (using the additive sharing property of the system) so as to
assure the secrecy and randomness of the distributively selected key.

Note that our approach is based on proofs by the depositing parties of
encrypted data (the key generators which are the input providers), unlike the
models describing integrity of cloud data, by clouds giving proofs of properties
of data they hold on behalf of users as is given in [12,13], where the issue is
integrity (but not secrecy since the data items belong to the verifiers to begin
with!).

On Practicality: A few points are worth mentioning:

– First, that typically, distributed processing and redundancy introduce much
more work and management in actual systems, yet since our context is a
sensitive setting we cannot afford a single point of failure or attack, hence the
distribution and employment of various devices or subsystems is feasible and
desirable.
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– Secondly, note that the multiparty operation is a ceremony at some initial
point (or points) in the system life cycle, hence we can afford overhead asso-
ciated with added procedure, since it does not slow down real time operation,
while assuring such future operations will be reliable (this has been verified
in our ongoing deployment).

– Thirdly, we note that we have built the system from scratch, hence any valid
long standing system can serve as our basic cryptographic cipher (thus, we
can choose AES as the standard symmetric key cipher and ElGamal as the
public key of choice).

We further note that our system design was implemented and serves for the
security of the Gemini crypto assets exchange (https://gemini.com/). In this
very practical setting simplicity and complete risk management arguments of the
methods of choice are crucial and it is hard to over estimate their importance.

1.2 Recap: ElGamal Cryptosystem

The ElGamal cryptosystem is based on the discrete logarithm problem and can
be constructed to operate over any group where DL is considered computation-
ally intractable and it has a proof of semantic security everywhere where the
DH exchange produces a randomly looking value in the group (namely, where
the Decisional Diffie Hellman problem is hard [7,8]).

Given a plaintext M which is a member of the finite group, the ciphertext is
an ordered pair <R,S> of elements in the same group computed as:

k ∈ {1, N − 1} (a random scalar)
R := k ∗ G
S := k ∗ Y + M

where N is the order of the group, G is a generator, Y is the public-key of
the recipient (i.e., the recipient knows a secret key scalar s such that Y =
s ∗ G (which enables decryption, which we do not describe above). Note that
the asterisk represents the scalar multiplication operation in the group. Also
note that the above uses the additive notation typically used over EC groups.

Using the Notation Above, the ElGamal Cryptosystem has a Natural Homomor-
phism: The encryption of the (component wise) sum of messages is the sum of cor-
responding ciphertexts for each individual message. This property proves instru-
mental in combining multiple ciphertexts provided by individual participants.

Comment: Next, we note that we are going to encrypt a value by a number
of ElGamal schemes over the same group and the same ciphertext-specific key
(random value), and this keeps the semantics security (which is the way the
same message is encrypted in our scheme). This is known (based on random
self reducibility), yet, for completeness to see why, note that if there is a single
ciphertext and a single public-key scheme with public key <G,Y > where Y =
s ∗ G and an encryption <R := k ∗ G,S := k ∗ Y + M> encrypted under the
scheme, we can generate other cryptosystems and encryption of the same value

https://gemini.com/
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by choosing an k2 and generating a new public key <G,Y 2 = Y + k2 ∗ G>
and the encryption is generated from known G,Y, k2 to be: <R + k2 ∗ G =
(k+k2)∗G, k2∗Y +S = (k+k2)∗Y +M> which is generated without knowing
M . The public key is a random public key with the same generator G and the
ciphertext distributed randomly (there is a random multiplier unknown to us
(since we do not know k) that is used in this second scheme. This shows that if
a set of multiple encryption (ciphertext) can break M so is a single ciphertext!
With the same random ciphertext key the ciphertext transformation is even
simpler. In any event, multiple encryption keeps semantics security under DDH.

2 The System and the Protocol: “Highly Available
(Recoverable) Distributed Key Generation”
(HADKEG)

In our setting there are redundancies both at the key generating parties (dif-
ferent machines/hardware devices) to assure key is random and secret in spite
of possible leaks, and in the key recovery parties, to prevent loss of availability.
Namely, we have t participants (key generating parties) which are responsible for
jointly generating one secret and assure the backing-up of the key by encrypting
it to the public-keys of t different trusted third-parties (trustees). These public
keys are ElGamal schemes over the same basic group.

Note again that not all parties have to be online to “get the keys” but based
on public record made available, any of these parties is capable of recovery
(in fact, some parties being offline adds to security at times). Note, further,
that among these trustees’ keys, typically one of them will belong to the online
service, for use in importing the secret into its operational environment.

What we want is a ceremony of drawing a key (over a semi-synchronized
network, but with a record on a bulletin board) and assuring its high availability
by any of trustees, with the following specifications as defined above:

1. Sound Key Generation
2. Secure Key Generation
3. Robust Key Generation
4. The key is Recoverable

Some comments:

– Since some trustees recover the key and move it to operation, key availability
means that the key used is the key recovered. (Given a publicly available
ciphertext it is always possible to demonstrate that the recovered value has
been correctly deciphered).

– This procedure of “highly available distributed key generation” may be viewed
as a “dual” of verifiable secret sharing over a public channel with multi-sharers
into a multiple trustees (secret sharing starts from a single value into many
shares, here many shares are collected into a single value (we replicate the
process t-wise for reliability).
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– Note that the trustee’s keys here are assumed to have been pre-generated
and belong to a single entity, which is trusted. We may assume that each
ElGamal scheme was actually generated by a multi-party key generation [5],
and is such that it is random and secure itself, as long as one party is honest.
In such a configuration full trust in all trustees is reduced to trusting one
component of any trustee parties.

– Without loss of generality, we assume the secret is itself an element of the
group used for the ElGamal system (obviously, typically a secure key deriva-
tion function KDF will apply to this key to get a symmetric key/keys for
use).

– The global agreement on operations within the exchange can exploit vari-
ous consensus methods, in particular using the internal blockchain to resolve
operations and get to agree on events (implementing a bulletin board).

– We assume global availability of the protocol transcript so that it is easy to
agree on actions of key generation elements, and actions in general (especially
if a blockchain is used to manage the protocol).

2.1 The HADKEG Protocol

The protocol is given in three phases (combining distributed replicated key gen-
eration with zero knowledge techniques):

1. The public key of the trustees are available (ElGamal schemes over the same
group and the same generator). Then, each participant (key generating party)
individually generates a share of the secret (a random scalar in the group),
encrypts this share with all public-keys of all trustees, and commits to the
ciphertexts, and publishes a commitment to the result. (Commitment scheme
is binding: can be opened in a unique way and is hiding: until opening it hides
the values committed to).

2. Each key generating participant reveals its ciphertexts (for the t trustees).
Then: each participant demonstrates, using a zero-knowledge proof, that these
ciphertexts correspond to encryptions of the same underlying plaintext under
different public-keys.

3. Participants (recovery agents) combine their ciphertexts using the homomor-
phic property of ElGamal cryptosystem to generate the encryptions of the
final secret, which is the “sum” of individual shares according to the group
operation. (Use of the key requires its decryption and applying KDF to it
and then employing it).

Let us present the protocol in more details and sketch the correctness and
security properties achieved.

2.2 Phase 1: Generating Secret Shares

Each key generating participant j independently generates a share of sj of the
secret and encrypts it n-ways (this will be our working example, of course a
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proper subset of the recovery servers may be used, in particular some of the
recovery agents are operating agents using the key and they may change for
different keys). The encryption is using the ElGamal cryptosystem to the public-
key of each trusted third-party, generating a total of n ciphertexts: Cj, j = 1, ..n.
Then each participant publishes a commitment to their collection of ciphertexts.

Comment: What is achieved here is that if one of the t key generating parties j
is honest its share is random. Due to the binding property of the commitment,
at the end of this phase all values are determined. A typical implementation
shares each value to assure that opening of the commitment will happen, so
that the pieces which cannot influence each other (by the security property of
commitment as in [5] for example) are all opened and the key is determined after
the commitment. There is only one way to open based on the binding property.
This is how key generation traditionally is done distributedly, and the proof
follows. For our initial implementation setting, we assume a model in which
parties open their commitments (or fail benignly only) since these are secure
elements (extensions are possible to allow the full malicious parties but for start
this works based on the risk analysis of the specific system: distribution is needed
since we may not trust all randomness and pseudo-randomness of components,
but we trust them to attempt continuation of the protocol with a rare fail stops).

2.3 Phase 2: Proving Plaintext Equality

Each key generating participant then opens its commitment to reveal the set of
n ciphertexts, and engages in a zero-knowledge proof to demonstrates that these
ciphertexts all represent an encryption of the same plaintext (sj).

This in turn can be implemented as t−1 separate proofs, with the k-th proof
showing equivalence between ciphertexts Ck and Ck + 1.

The proof mechanisms is based on existing zero-knowledge proof of knowledge
of a ciphertext and knowledge of discrete logarithm equality. In the implementa-
tion, such proofs are made transferable non-interactive ones via the Fiat-Shamir
compiler [9] (obviously, an interactive version against trusted online available
verifiers would also be possible). Also, we did not need to implement any batch
verification mechanism.

2.4 The Proofs

The proofs are based on a sigma-round: commitment, binary challenge, and a
response (a typical proof like the proof of knowledge of a square root, etc.). Let
us view the basic step of a sigma-round in a step; the composition of such steps to
an interactive proof system and to a non-interactive system based on the Fiat-
Shamir scheme and the fact that they constitute a proof and are simulatable
(zero-knowledge) are, by now, standard.

For proof of equality of two messages under two Given ElGamal ciphertexts:

<P,Q1>
<P,Q2>



26 M. Yung et al.

That are claimed to be encryptions of same message M with same random
ciphertext key (nonce) k, P = k ∗ G, which is the same across all ciphertexts.
Then, Qi = k ∗ Yi + M , for public-key Yi of the i-th recipient.

Then we have:

Q2 − Q1 = (k ∗ Y 2 + M) − (k ∗ Y 1 + M) = k ∗ (Y 2 − Y 1).
And : log[baseG]P = k, log[baseY 2−Y 1](Q2 − Q1) = k

Now the goal is to use zero-knowledge proof of discrete log (index) equality
to prove those logs are equal without revealing k. This is a known procedure
that looks like this after the Fiat-Shamir transform:

1. Pick random w ∈ (1, order) and compute A1 := w ∗ G, A2 := w ∗ (Y 2 − Y 1)
2. In place of an interactive challenge, let c := H(R||Q1||Q2||Y 1||Y 2||A1||A2)

mod the group order (and H being a proper cryptographic hash assumed to
act as a random oracle) via Fiat-Shamir heuristic to derive this by hashing
various inputs.

3. Let z := w + kc. Publish (A1, A2, z) as the Schnorr proof [10] of the fact.

The proof is valid if and only if:

1. z ∗ G = (c ∗ P ) + A1, and
2. z ∗ (Y 2 − Y 1) = c ∗ (Q2 − Q1) + A2

At this point, the ceremony assures publicly that the key pieces drawn and
handed to different trustees are the same value. Recall that we have a global
agreement mechanism on choosing the proper shares.

2.5 Phase 3: Combining Shares

After all the shares are revealed, participants or an independent third-party
can combine the shares by exploiting the additive homomorphism of the ElGa-
mal cryptosystem to create n different encryptions of the combined secret
K = Σt

j=1(sj).
We note that this final result can not be inferred or fully controlled by

any subset of participants other than the entire group of generating parties
(which implies security against leaking key generation parties). Since the pub-
licly revealed ciphertexts are by trustees with strong ElGamal keys, the value
remain secure unless ElGamal is broken. (We note that, technically, since the
ElGamal schemes are over the same group, the proof of security is even tight
due to random self reducibility of the schemes, but this is beyond the scope of
this short paper). Since one of the pieces si is random and independent of all
other values, the key s is random as well. The drawing is robust trivially under
honest but curious (and fail stop only) behavior of the generating parties.

Next we note that because of the individual zero-knowledge proofs covering
each group of ciphertexts output by any key generating participant, the resulting
cipher texts are also guaranteed to be encryptions of the same secret under
different public-keys, hence the property of key availability holds.
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Important Note: One may claim that the system is over using fancy cryptog-
raphy, and one could have waited till the key is collected at the trustees, and
then a challenge-response protocol can be run in parallel on similar challenges to
assure the high availability. First, such challenge response parallel scheme needs
special care, but more importantly, in our context the trustees are not necessar-
ily available for the protocol (as we said above); namely their ciphertext may be
in place but not the holder of the private key which may be hidden in an SHM,
or otherwise in cold storage. Thus, we cannot rely on active party at the time of
the key generation.

3 Conclusion

Zero knowledge proofs (ZKPs) [6] were originally designed, first, to be proofs
that allow showing a property of a public value or statement, while being zero-
knowledge, namely, without releasing extra information. It was then extended
to proof of possession of a witness (proof of knowledge). Many applications of
zero-knowledge exist in the literature (chosen ciphertext security of encryption,
signature schemes, assuring anonymity like in group signatures or in a cryp-
tocurrency context, etc.); and also many implications of the existence of zero-
knowledge exists like transforming protocols against passive adversary to one
against malicious one.

In this work we presented a concrete implemented work that is actually
running in a context of a system that requires assurance of integrity (due to
the availability need and essentially desire not to rely on a single source of
randomness in a system when generating sensitive keys) and is in the context
of secure keys. Namely, the assurance has to be performed while not giving
extra information, and perhaps when receivers are not present. This is exactly
the case that transferable zero-knowledge proofs were designed for (and public
key systems are useful at), and it shows that under certain system’s needs and
settings, variations of ZKPs are the right direct tool, and should be considered in
the arsenal of method for assurance and reduced risk in sensitive services (which
demand extra integrity and secrecy) such as a digital assets exchange, especially
at stages where the cost of the proofs are tolerable. Hence we characterize the
situation as “Zero Knowledge to the Rescue.” We would like to note that we did
not invent any radically novel procedure in this work, but rather started honestly
from a set of requirements and reduced them to relatively known procedures that
were put together in a way that they achieve the goals, and in a way that it is
easy to understand and implement them. While this may look trivial, our goal is
to claim that this type of adaptation should be considered in the real world more
often since typically solutions avoid more advanced cryptographic techniques: in
fact it may be the time to consider variants of Zero-Knowledge proofs to be
part of “Applied Cryptography.” Let us end with a related comment that such
techniques as in our work, due to their applicability and practicality, may require
update to modern frameworks of key management like NIST’s one [11] which
seem to need a revision.
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Abstract. The proliferation of Internet of Things (IoT) technology raises major
security andprivacy concerns. Specifically, ordinary electrical appliances are being
transformed into smart connected devices with the capability to sense, compute,
and communicate with their surroundings and the Internet. These smart embed-
ded devices increase the attack surface of the environments in which they are
deployed by becoming new points of entry for malicious activities, resulting in
severe network security flaws. One of the major challenges lies in examining the
influence of IoT devices on the security level of the environment they operate
within. In this paper, we propose a security ranking model for IoT devices, based
on the analytic hierarchy process (AHP) technique, which can be used for the
device risk assessment task. Our implementation of the AHP model is based on a
device-centric approach, where both device-specific features and domain-related
features are taken into account. We applied the proposed model on several IoT
devices in the context of an enterprise network environment, demonstrating its
feasibility in analyzing security-related considerations in smart environments.

Keywords: Internet of Things · Security · Device ranking · Risk assessment ·
Analytic hierarchy process

1 Introduction

The Internet of Things (IoT) defines a new era where physical objects (things), including
home appliances, medical equipment, organizational and industrial infrastructure, wear-
able devices, and more, are transformed into smart connected digital devices with the
ability to sense, compute, and communicate with their surroundings, locally and through
the Internet [1]. This results in complex information and communication technology, in
which most of the data produced by these smart devices is transmitted to, and processed
remotely in, the cloud [2].

The proliferation of IoT technology and its applications poses major security and
privacy risks due to the range of functionalities and capabilities provided by these IoT
systems [3]. Specifically, IoT devices are powered by different operating systems and
are therefore exposed to various types of security breaches and attacks. Moreover, most
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of these smart devices are not developed with security in mind and are designed mainly
on the basis of features and cost considerations. As low resource devices, in terms of
power source, memory size, bandwidth communication, and computational capabilities,
standard security solutions are largely not applicable to such devices [4]. This may result
in severe security flaws, as only lightweight encryption mechanisms and authentication
algorithms can be applied in order to encrypt the data stored on (data at rest), and
transmitted from (data in transit), the device [5].

In addition, as smart connected devices, IoT devices can be continuously connected
to the Internet, either directly or indirectly, via dedicated gateways, and therefore they
are highly accessible—particularly to attackers [6]. These state-of-the-art devices are
equipped with advanced sensing and communication capabilities that permit monitoring
their surroundings, as well as tracking individual users’ activity, behavior, location, and
health condition in real-time. The fact that such devices can operate continuously in
order to gather information from their surroundings greatly increases the risk of privacy
violations [7]. IoT devices are very diverse and heterogeneous, with numerous types of
devices, different vendors and suppliers, a range of operating systems in use, various
connectivity capabilities, etc. Moreover, such devices are used in dynamic contexts and
states, which significantly complicates the assessment of the security and privacy risks
these smart devices pose to the environments they operated on [8].

Recently, IoT technology has been integrated into corporate and industrial environ-
ments, in order to ease theworkload of employees, and increase business productivity and
efficiency levels [9]. However, as IoT devices become more common in the workplace,
employers might begin to exploit them, violating privacy by tracking and recording an
employee’s actions—and even more worrisome—monitoring an employee’s health con-
dition [4]. In addition, sensitive corporate information can be exposed and leaked to unau-
thorized individuals and becomemore accessible to out-siders via these smart connected
devices [10]. The deployment of IoT devices in such environments makes companies
much more vulnerable and increases their attack surface, as such smart devices expose
new vulnerabilities and infiltration points for attackers [8]. Furthermore, IoT devices can
serve as platform for coordinated network attacks (e.g., internal botnet DDoS attacks)
by utilizing their computing capabilities, as well physical attacks (lock doors, overheat
critical infrastructure, etc.) by misleading their built-in sensors [11]. One of the major
problems in such situations is to determine the security risk level the IoT devices pose
to the environments in which they are deployed [12].

In this paper, a security rankingmodel for IoT devices based on the analytic hierarchy
process (AHP) technique [13] is proposed. The suggested model employs a device-
centric approach and uses both device-specific and domain-related features, in order to
derive an individual rank (from a security risk perspective) for IoT devices that operate
in different contexts and states. Device-specific features include an IoT device’s known
vulnerabilities and sensors capabilities elements, with static properties that do not change
over time (unless a software/firmware update/upgrade is performed). Domain-related
features include the contexts and states in which the IoT device operates, and thus
have dynamic properties with respect to the IoT domain use case. Our practical proof
of concept implementation and evaluation of the suggested AHP model operation on
several IoT devices operated in the context of enterprise environments demonstrate the
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feasibility of the proposed model as a ranking technique that can be applied for the
device risk assessment task.

The rest of the paper is structured as follows. In Sect. 2we present work related to this
study. In Sect. 3, we portray in detail the preliminaries for the suggested AHP ranking
model, followed by a model implementation description in Sect. 4. We demonstrate the
operation of the AHP model for ranking several IoT devices in the context of enterprise
network, and discuss the results obtained in Sect. 5. We conclude and suggest possible
future work in Sect. 6.

2 Related Work

Security risk assessment for the IoT domain has been investigated extensively in prior
research. IoT security and privacy risk considerations were defined by NIST [14], which
helps organizations better characterize IoTdevices by their capabilities and used to define
their security risks. Nurse et al. [15] presented differentmethodologies for assessing risks
in the context of the IoT by considering the dynamics and changes in IoT systems, in
order to provide early warning of emerging risk potential. Scientific-based security risk
metrics were defined by Watkins and Hurley [16]; these metrics aim to assess the cyber
maturity level of organizations using amodified CVSS base score alongwith the analytic
hierarchy process (AHP) technique.

Hwang and Syamsuddin [17], and Irfan and Junseok [18] examined the application
of AHP technique for information security matters by developing a framework that eval-
uate information security policy performance. Otair and Al-Refaei [19] presented an
evaluation to Cybercrimes fighting readiness in organizations using the AHP method;
showing how to identify the readiness of an organization to fight cybercrimes and how to
determine the critical factors that affect this readiness. Wilamowski et al. [20] compared
two decision theory methodologies, the analytical hierarchy and analytical network pro-
cesses (AHP and ANP respectively), which applied to cyber security-related decisions
to derive a measure of effectiveness for risk evaluation. Alexander [21] examined the
AHP model for the prioritization of information assurance defense in-depth measures.
Mowafi et al. [22], proposed a context-based AHP framework for eliciting context infor-
mation and adapting it with network access control measures for mobile devices based
on real-time assessment of user’s context.

Risk analysis for different IoT environments has been discussed in various works.
Chang et al. [8] introduced enterprise risk factors for governing the risk of an IoT environ-
ment using a Delphi expert questionnaire. Risk analysis for smart homes was proposed
by Jacobsson et al. [23], emphasizing the security risks and mitigation mechanisms for
such IoT deployments. Abie and Balasingham [24] presented a risk-based adaptive secu-
rity framework for IoT in the eHealth domain; this framework estimates and predicts
risk damage using context awareness and game theory techniques. Mohajerani et al. [25]
suggested cyber-related risk assessment within the power grid which is used to detect
and improve the vulnerability of power systems against the intrusion and malicious acts
of cyber attackers.
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3 Preliminaries

In this section, preliminaries for our proposed security rankingmodel for risk assessment
of IoT devices are defined. This consists of two main components, including: (1) the
model features and elements description, and (2) the analytic hierarchy process technique
definition.

3.1 Features Sets

The ranking of an IoT device under test is derived from the set of features and elements
of the device, defined as a device-centric approach. Namely, the device ranking is defined
based on: (1) device-specific features, including the set of known vulnerabilities and the
set of sensors capabilities (physical sensors and means of communication supported by
the device) which have static properties; and (2) domain-related feature, that includes the
set of contexts and states in which the IoT device operates, thus have dynamic properties,
with respect to the IoT domain use case.

Known Vulnerabilities Feature. The set of knownvulnerabilities elements, denoted as
VK , exist in an IoT device, in terms of software, hardware, and firmware vulnerabilities.
Using this information, it is possible to exploit the device and utilize it for further mali-

cious activities. The setVK for IoT device i is defined byV (i)
K =

{
V (i)
K[1]

,V (i)
K[2]

, . . . ,V (i)
K[l]

}
,

where V (i)
K[j]

refers to known vulnerability element j, and l is the number of known

vulnerabilities elements exist in the device.

Sensors Capabilities Feature. The set of sensors capabilities elements, denoted as SC ,

exist in an IoT device, including the physical sensors and means of communication
embedded in the device. Using this set of sensors capabilities, it is possible to collect
private and sensitive information from/via the device, change the state of the environment
the device is deployed on, and connect to the device via one of its existing means
of communication in order to perform further attacks. This feature is based on the
device type and functionality, where each IoT device has a different set of sensors
such that for IoT device i, the device’s set of sensors capabilities elements is defined

as S(i)
C =

{
S(i)
C[1]

, S(i)
C[2]

, . . . , S(i)
C[m]

}
, where S(i)

C[j]
refers to sensor capability element j

built-in/embedded into the device, and m is the number of sensors capabilities elements
supported by the device.

Operational Contexts Feature. This feature refers to the set of operational contexts,
denoted as CO, in which the device operates, with respect to the IoT domain use case.
Different operational contexts, specifically locations and time of operation, imply differ-
ent security severity. The set of operational contexts elements for IoT device i is defined

by C(i)
O =

{
C(i)
O[1]

,C(i)
O[2]

, . . . ,C(i)
O[n]

}
where C(i)

O[j]
refers to operational context element j,

and n is the number of contexts the IoT device can be operated in.
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3.2 Analytic Hierarchy Process Technique

The analytic hierarchy process (AHP) is a structured technique for decision making
problems. It can be used in a variety of decision situations, including conflict resolution,
resource allocation, choice and prioritization, ranking, and risk analysis [26]. AHP is a
mathematical method based on the solution of eigenvector and eigenvalue tasks, derives
ratio scales from paired comparisons and allows some small inconsistency in judgment.
The input canbe either actualmeasurement (e.g., price,weight, etc.) or subjective opinion
(e.g., satisfaction feeling, preferences, etc.), and the output are ratio scales (results from
eigenvector) and consistency index (results from eigenvalue calculations) [27].

The AHP process is done in several steps, as follows. First, it needs to define the
objective and elements for the problem at hand. Next, structure the elements of themodel
in criteria, sub-criteria, and alternatives groups (hierarchy-like structure). Then, in each
group separately a pairwise comparison between the elements is conducted, in order
to calculate weights (priorities) and consistency ratio. Finally, according to weighting
obtained in the model the alternatives are evaluated [26]. A comparison matrix is defined
for each group of elements based on the expert decision making. Using this approach,
it is possible to rank between the alternatives. Note that, the weights of each group of
elements in the model is summed to 1, and consistency ratio less than 10% considered
a reasonable inconsistency in the results (otherwise the experts request to modify their
selections in order to reduce the bias in the decision making [27]).

In practice, AHP works as follows. For a given group of elements (or criteria), a
pairwise comparison is conducted between these elements, such that for n elements
there are n×(n−1)

2 comparisons (questions). For each pairwise comparison between two
elements i and j, the experts require to select the level of importance between these
elements using the relative scores shown in Table 1. For that a comparison matrix A of
size of n × n is established. Each cell aij in matrix A characterize the importance of the
ith element relative to the jth element such that

aji = 1

aij
(1)

as shown in Table 2 for four elements (criteria). Once matrix A is established, it is
possible to compute the weights of the elements and the consistency ratio of that matrix
using eigenvector and eigenvalue calculations.

This is obtained by the following. First, the normalized pairwise comparison matrix
Anorm is defined by normalized each cell aij in matrix A such that

āij = aij∑n
l=1 alj

(2)

result in the sum of each column j equal to 1. Next, the weight for element (criterion) i,
denoted as wi, is defined by averaging the entries on each row of Anorm, i.e.,

wi =
∑n

l=1 āil
n

. (3)

This define the weights vector W (obtained from eigenvector calculations) as shown
in Table 2. In order to check the consistency of the results (comparison matrix), a
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Table 1. AHP relative scores.

Value Description

1 i and j are equally important

3 i is slightly more important than j

5 i is more important than j

7 i is strongly more important than j

9 i is absolutely more important than j

2, 4, 6, 8 Values for inverse comparison

Table 2. Example for comparison matrix A and the weights vector W.

A C1 C2 C3 C4 W

C1 1 a12 a13 a14 w1

C2 1/a12 1 a23 a24 w2

C3 1/a13 1/a23 1 a34 w3

C4 1/a14 1/a24 1/a34 1 w4

consistency ratio, denoted as CR, is calculated by the following:

CR = CI

RI
(4)

where CI is approximate consistency index defined by:

CI = λmax − n

n − 1
(5)

and RI is a random consistency index, which is a constant value for given order of matrix
n (as shown inTable 3)with respect to a randomly generated pairwise comparisonmatrix.

Table 3. Random inconsistency indices for n = 10.

n 1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Note that λmax is a consistency measure (obtained from eigenvalue calculations)
defined by the following:

λmax =
∑n

i=1 λi

n
(6)
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Fig. 1. AHP model (hierarchy-like structure) for IoT devices ranking task.

where

λi = (Rowi ∈ A) × W

wi
(7)

namelymultiplying row i inmatrixA (before normalized) by the weights vectorW divid-
ing by the appropriate wi (weight of criteria i). If CR > 0.10 than the results considered
not consistent enough and it is required to revise the pairwise comparisons. Otherwise,
the results are reasonable consistent, and it is possible to evaluate the alternatives. From
the obtained results in the hierarchy, each alternative is evaluated (assignedweight) based
on the set of elements (criteria) it contained, with respect to the appropriate weights of
the model. The final weight of an alternative defined by the following weighted sum
calculation [26]:

wAlternative =
∑n

i=1
wi ×

⎛
⎝

m∑
j=1

wij

⎞
⎠ (8)

wherewi and n refer to the weight of element i and the number of elements, respectively,
in the first level criteria (main criteria) of the AHP hierarchy, and wij and m refer to
the weight of element j and the number of elements, respectively, in the second level
criteria under criteria i. Formula (8) represents the calculations for assigning weight for
an alternative usingAHP hierarchywith only two levels criteria (if the hierarchy contains
more levels then the formula should be update appropriately).

4 Model Implementation

In this section, we present the implementation of the proposed AHP ranking model,
as hierarchy structure (Fig. 1), for device risk assessment task. The AHP model was
established by employing the domain expert questionnaire methodology using a set of
pairwise comparisons questions that were defined for each AHP criteria level (group of
elements) in the hierarchy. The questionnaire is available in [31].
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4.1 Expert Analysis

The following is a descriptive statistics about the panel of experts who participated in
the questionnaire, regarding their education, role, and the number of years of experience
they have in the areas of cyber security and the IoT domain.

In total, 20 experts answered the questionnaire, 15 of which are from the hi-tech
industry, with a variety of expertise (30% SW/HW engineers, 20% IT/QA, and 25% in
different areas, such as management and offensive cyber security); the rest of the experts
are from academia (25% researchers). Most of the experts have an academic degree
(25% BSc, 25% MSc/MBA, and 25% PhD) or are in the process of pursuing a degree.
Most also have extensive experience in the cyber security domain (an average of 5 years
of experience) and some experience in the IoT domain (approximately 75% have more
than one year of IoT experience).

4.2 Model Construction

The obtained AHP model, as hierarchy structure, is presented in Fig. 1. The goal is to
rank IoT devices from a security risk perspective. This is obtained based on their features
and elements. Accordingly, the first level criteria are the features sets themselves, and the
second level criteria are the categories/group of elements of these features respectively.
Namely, under known vulnerabilities criterion we defined the Firmware (denoted as
FW), Hardware (HW), and Software (SW) vulnerabilities elements (sub-criteria). Under
sensors capabilities criterionwe definedConnectivity (denoted asConn, and refer to both
wired and wireless communication means exist in IoT devices such as Ethernet, cellular,
Wi-Fi, Bluetooth, ZigBee, NFC, etc.), Multimedia (denoted as Mult, and include mic
and camera sensors, and printing and scanning capabilities), Environmental (denoted
as Env, and include sensors like gas/smoke detector, thermometer, lighting, pressure,
barometer, magnetometer, infrared sensor, etc.), Movement and Position (denoted as
MP, and refer to GPS, motion detector, accelerometer, proximity, gyroscope sensors
and more), and Health Monitoring (denoted as HM, and refer to sensors like hart-rate)
capabilities elements (sub-criteria). Under operational contexts criterion we defined the
following elements (sub-criteria): Mobility (denoted as Mob, and refer to whether the
device is mobile or not), Time (refer to the time of operation), and Location (denoted as
Loc, and refer to the physical location the device is operated on with respect to the IoT
domain use case). Finally, the alternatives are the IoT devices that we aim to rank, from
security risk perspective, using the proposed AHP model.

It should be noted that, we asked the experts to weight/prioritize these ele-
ments/criteria in the model (using the pairwise comparison questions) from “Risk” per-
spective. Meaning, we define risk as a measure for quantifying how an element/criterion
in the questionnaire is more risky (from the expert perspective) compared to other ele-
ments in the same group. For example, for the first level criteria, we asked the experts
which criterion between known vulnerabilities, sensors capabilities, and operational
contexts is more risky (pairwise) from its point of view. This process done also for the
sub-criteria as well.

The weight for each element in the hierarchy is defined based on the AHP procedure,
using the domain expert questionnaire results.We used the multi-criteria AHP calculator
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[26] for establishing the comparison matrix for each group of elements in the model,
as shown in Tables 4, 5, 6 and 7, consolidate all experts’ judgments using the row
geometric mean method (RGMM). In addition, Table 8 presents the quality metrics
results obtained for all the comparison matrixes, including λmax (Principal Eigenvalue),
three consistency indices values: CR (consistency ratio), GCI (geometric consistency
index), and Psi (overall dissonance), as well asMRE (mean relative error for eigenvector
method) and the level of consensus between the experts [26, 28].As canbe seen inTable 8,
all CRs values are less than 10%, the required threshold for AHP, thus the weights of
the elements in the model can be used for evaluating alternatives (otherwise, the experts
are required to modify their selections iteratively until CR < 0.10 is obtained). Most of
the Psi results are zero (as should be), except for SC which equal to 10.0%; most of the
MRE results are quite low, except for SC which equal to 25.3%; and the consensus levels
in most of the criteria are reasonable enough, except for Features criterion which equal
to 30.7%. Meaning, the results obtained from the AHP procedure considered relatively
good, with a reasonable consistency, low MRE and high consensus levels, therefore
the weights in the AHP model can be used for evaluating alternatives. However, as
mentioned, both the Psi and the MRE measures are quite high for SC sub-criterion, and
the consensus level is quite low for Features criterion (shown in bold in Table 8). This
can be resolved by additional processing, such as adjustment of the selections of these
elements by the experts, add additional experts, etc., especially for SC sub-criterion.
Note that, the values presented in the comparison matrices are rounded such that there
are minor differences in the weights (e.g., in Table 4 the weights vector should be {0.4,
0.4, 02}), thus we have the MRE metric in Table 8.

5 Model Operation

In this section, we applied our proposed AHP ranking model on several IoT devices
in the context of enterprise network environment. Namely, we ranked the list of IoT
devices using the suggested model by assigning weights and evaluating alternatives (in
terms of AHP). Note that, the possible range for total weights of IoT devices is [0–1],
where higher weight refers to higher rank (from a security risk perspective). Meaning,
we define which IoT device is more risky and could influence on the security level of
the environment it deployed, in our case enterprise network, the most.

5.1 Alternative Evaluation

In this section we illustrate the process of applying our proposed AHPmodel to evaluate
an alternative (an IoT device). For thatmatter, we choose the IP camera of type of Edimax
IC 3116W, containing the following elements. From known vulnerabilities aspect, there
is only one vulnerability (obtained by employ Nessus vulnerability scanner [29] on the
IP camera), which we define it as Software type vulnerability. This defined by examine
the details of CVE-1999-0511 record.

From sensors capabilities aspect, the device has the following elements (obtained
from the online specs of that device): Connectivity (the device has Wi-Fi and Ethernet
types of connectivity), Multimedia (obviously, the device has camera), Environmental
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Table 4. Comparison metrix for model’s features (main criteria).

Features VK SC CO Wi

VK 1 1 2 0.400

SC 1 1 2 0.405

CO 1/2 1/2 1 0.195

Table 5. Comparison metrix for known vulnerabilities feature (sub-criteria).

VK FW HW SW Wi

FW 1 2 5/8 1/2 0.304

HW 3/8 1 1/4 0.131

SW 2 1/9 3 5/6 1 0.565

Table 6. Comparison metrix for sensors capabilities feature (sub-criteria).

SC Conn Mult Env MP HM Wi

Conn 1 3 3/4 4 5 1/2 5 1/2 0.515

Mult 1/4 1 2 1/2 2 1/2 3 2/3 0.214

Env 1/4 2/5 1 8/9 1 8/9 0.104

MP 1/5 2/5 1 1/8 1 2 2/7 0.106

HM 1/5 1/4 1/2 4/9 1 0.061

Table 7. Comparison metrix for operational contexts feature (sub-criteria).

CO Mobility Time Location Wi

Mobility 1 3 1/2 0.311

Time 1/3 1 1/4 0.119

Location 2 1/8 4 1/9 1 0.570

(the device has Infrared sensor) and Movement and Position (since the device contains
a Motion detector sensor). From operational contexts aspect, the IP camera is stationary
device (thus 0.5wMob is used in the calculations), it can be operated at any time, and can
be deployed in all locations in the organization (thus wLoc is used in the calculations).
According to this definition, we can now evaluate the weight of the IP camera device



Security Ranking of IoT Devices Using an AHP Model 39

Table 8. Quality metrics results for all AHP comparison matrices.

Features VK SC CO

Lambda 3.000 3.015 5.128 3.023

CR 0.0% 1.6% 2.8% 2.4%

GCI 0.00 0.05 0.11 0.07

Psi 0.0% 0.0% 10.0% 0.0%

MRE 0.4% 12.3% 25.3% 15.1%

Consensus 30.7% 48% 58.9% 63.7%

(the alternative), denoted as wIP_Camera, using the proposed AHP model as follows:

wIP_Camera = wVk × wSW + wSc × (wConn + wMult + wEnv + wMP) + wCo

×(0.5wMob + wTime + wLoc) = 0.400 × 0.565 + 0.405 × (0.515 + 0.214 + 0.104
+0.106) + 0.195 × (0.5 × 0.311 + 0.119 + 0.570) = 0.771.

5.2 Ranking IoT Devices

In this section we ranked a list of IoT devices that operated in the context of enterprise
network environment by applying our proposed AHP model, as shown in Table 9.

For each IoT device in Table 9, we present its type andmodel, the elements it contains
(with respect to the AHP model’s features), the device total weight (denoted as DTW),
and the final rank (with respect to the given list of devices). Note that, the elements of
known vulnerabilities (CVE records obtained by applying the Nessus vulnerability scan-
ner [29] on each IoT device) are considered very sensitive information, as they expose
real vulnerabilities that exist in the device. Therefore, we do not present this information
in the paper, only their categorization (SW, FW, or HW) from our perspective, as show
in Table 9 in column VK . Moreover, because each device may have several vulnerabil-
ities, in this work we considering only the maximum/highest vulnerability exists, from
CVSS severity score [32] perspective, in the device. With respect to the elements of
sensors capabilities, for each IoT device we used its technical spec to obtain the set of
sensors it contains (due to space constraints, we also omit this information from the
paper; for full details see the online specs for each IoT device presented in the table).
Based on that information we defined the relevant capabilities, in terms of Connectivity
(Conn), Multimedia (Mult), Movement and Position (MP), Health Monitoring (HM),
and Environmental (Env), that exists for each device, as show in Table 9 in column
SC . In addition, with respect to operational contexts elements, for each IoT device we
referred to its contexts as follows. If the IoT device is mobile device (denoted by M in
Table 9 in column CO), then we considered the full weight of Mobility element (namely
0.311) in the calculations, otherwise we multiplying it by 0.5 (for the case the device is
stationary, denoted by S in column CO, such that we use 0.1555 in the calculations). If
the IoT device can be operated at any time at the day (denoted as T:ALL in column CO),
then the weight of the Time element is fully considered in the calculations, otherwise it
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Table 9. Ranking of IoT devices using the suggested AHP model. For each device type and
specific device model, the device total weight (denoted as DTW) and its final rank (with respect
to the other IoT devices in the list) are defined using the proposed model features and elements.

Device type Model Vk Sc Co DTW Rank

IP camera GeoVision
GV-AVD2700

SW Conn; Mult;
MP; Env

S; T:All; L:All 0.771 1

IP camera Edimax IC
3116W

SW Conn; Mult;
MP; Env

S; T:All; L:All 0.771 1

Smartphone LG G4 SW Conn; Mult;
MP

M; T:Partical;
L:All

0.747 2

Smartwatch ZGPAX S8 SW Conn; Mult;
MP

M; T:Partical;
L:All

0.747 2

Smart TV Samsung UE40K
6000

SW Conn; Mult S; T:ALL;
L:Partial

0.630 3

Smartphone Samsung Galaxy
Edge 7

None Conn; Mult;
MP; HM; Env

M; T:Partial;
L:All

0.588 4

Smartwatch Sony 3 SWR50 None Conn; Mult;
MP; Env

M; T:Partial;
L:All

0.563 5

Smartphone HTC One E9
PLUS

None Conn; Mult;
MP

M; T:Partial;
L:All

0.521 6

Wireless
keyboard

Microsoft 850 FW Conn; Env S; T:All;
L:Partial

0.481 7

Motion
sensor

SimpleHome
XHS7-1001

None Conn; MP; Env S; T:All; L:All 0.458 8

Wireless MK Logitech MK 520 HW Conn; Env S; T:All;
L:Partial

0.412 9

Wi-Fi printer HP Officejet Pro
6830

None Conn; Mult S; T:All;
L:Partial

0.404 10

Smart fridge Samsung
RS757LHQESR

None Conn; Env S; T:All;
L:Partial

0.359 11

considered partially (denoted as T:Partial in the table and the weight is divided by two,
such that instead of 0.119 we used 0.0595). The same is applied for Location element,
meaning if the IoT device can be operated at any location (denoted as L:ALL in Table 9)
then the weight of the Location element is fully considered in the calculations, other-
wise it considered partially (denoted as L:Partial in the table and the weight is divided by
two, such that instead of 0.570 we used 0.285 in the calculations), as shown in Table 9
in column CO. For instance, a Smart Fridge is a stationary device that operated at any
time (always-on) and located only in the kitchen. Thus, its CO vector is defined as {S;
T:ALL; L:Partial} with the appropriate weights. Note, the Time context refer tomorning,
afternoon, evening, and night as possible time of operation, and Location context refer
to server room, meeting room, CxO offices, IT department, internal locations (such as
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hallways, kitchen, etc.), and external locations (such as receptionist, parking, etc.) as
possible locations of operation for IoT devices in enterprise environment.

As can be seen from the results obtained in Table 9, the IP Cameras are ranked the
highest, with respect to the current list of IoT devices. Meaning, based on our proposed
ranking model these specific IP cameras (the specific models that were evaluated) are
the most risky devices, as their weights are the highest. This is obtained due to the
fact that these specific IP cameras contain software vulnerabilities, different sensors
capabilities and from different types (Conn, AV, MP, and Env), and although these
devices are stationary they operating all the time and can be deployed at any location
in the organization (thus are highly accessible to attackers), hence their weights are the
highest. The LG G4 smartphone and the ZGPAX S8 smartwatch devices are ranked
next, as both are mobile devices that can be operated at any location in the organization
and mainly during working hours (thus they defined as T:Partial in the table), both have
software vulnerabilities, and contain several sensors capabilities (Conn, Mult, and MP).

Unexpected resultwas obtained for the Smart TVdevicewhich is ranked next (ranked
3 in the table). The device has software vulnerability, two sensors capabilities (Conn and
Mult) and it defined as stationary device that can be operated at any time but only in
several locations in the organization. It ranked higher than the other smartphone and
smartwatch devices, since these devices do not have any vulnerabilities (this element
in the model has high weight of 0.4) hence are ranked with moderated risk. Another
unexpected result was obtained for the Wi-Fi printer which is ranked 10 (meaning very
low risk), lower than the wireless keyboards and the motion sensor devices. This is due
to the fact the device has no vulnerabilities, has only two sensors capabilities (by our
model) and it is a stationary device that can be operated at any time (namely always-
on) but can be deployed only in several locations. Again, since known vulnerabilities
criterion has high weight (of 0.4) and the device has no vulnerabilities (from any type),
the model ranked it as a low risk device. The device with the lowest rank, hence it is the
least risky device, is the Smart Fridge IoT device. The device has no vulnerabilities, has
only two sensors capabilities (Conn and Env) and it is a stationary device that always-on
which deployed mainly in the kitchen.

6 Summary and Future Work

The Internet of Things domain is evolving everyday with new applications, new IoT
devices, and new network deployments. Accordingly, the attack surface of existing sys-
tems and environments is increasing, resulting in new security risks that need to be
handled. Therefore, a preliminary risk assessment process which quantifies the secu-
rity level of the new technology in the emerging IoT domain is required. In this paper,
a security ranking model for IoT devices is proposed. The suggested model is based
on the analytic hierarchy process (AHP) technique, which can be used for the device
risk assessment task. Moreover, a device-centric approach is considered by using both
device-specific and domain-related features and elements. Device-specific features and
elements, with static properties that do not change over time, include the device’s set
of known vulnerabilities and set of sensors capabilities (physical sensors and means of
communication supported by the device). Domain-related features and elements, with
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dynamic properties that do change over time, include the set of contexts and states in
which the IoT devices operate with respect to the IoT domain use case. These features
are employed in the model in order to quantify the security level of IoT devices using
unique IoT security characterizations.

The AHP model was implemented by employing the domain expert questionnaire
methodology, where 20 experts from different domains participated. The model is con-
structed with a hierarchy structure, where the goal is to rank IoT devices from a security
risk perspective. Therefore, the main criteria of the model are the features themselves
(VK , SC ,CO), and the subcriteria are the elements used as the unique characterizations
in the IoT security domain. The alternatives are the IoT devices that we would like to
rank. We applied the suggested model on several IoT devices in the context of a typi-
cal enterprise network, demonstrating the feasibility of the proposed model to analyze
security-related considerations in smart environments. The proposed model could be
used to prioritize (based on the device ranking assignment) which IoT devices should
be updated or patched first, as well as which devices require additional security analysis
using a security testbed for the IoT domain [30]. Moreover, the proposed model could
also be used as part of a context-based network access control solution for IoT envi-
ronments, providing decision-making functionality, in order to determine whether and
in what context(s) (e.g., specific location, time of operation) to connect a specific IoT
device to the network. Therefore, our suggested security ranking model can be used as
a benchmark for the device risk assessment task.

In future work, additional device-specific and domain-related features and elements
will be used in order to generate a more accurate ranking for the IoT devices, as well
as to adjust the model with respect to different IoT application domains. Moreover,
currently the model considers only the family types of elements (defined as subcriteria
in the AHP model). The specific type and number of elements that exist in each feature
must also be considered, since each element (e.g., specific CVE or specific sensor)
is an attack vector by itself. In addition, regarding the domain expert questionnaire,
questions will address different contexts (e.g., specific attacks, etc.), and additional
experts will be included in order to improve the quality metrics results shown in Table 8.
Furthermore, additional devices and device types will be evaluated in order to test and
verify the model’s assignment in different contexts and states (from both the device
and IoT domain level perspectives). Finally, one of the main disadvantages of using a
domain expert questionnaire is that the model is static (i.e., in order to add a new element
to the model, all of the experts must answer another set of questions or complete the
questionnaire again). Thus, we would like to consider other approaches for the problem
at hand.
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Abstract. Malicious domains are increasingly common and pose a
severe cybersecurity threat. Specifically, many types of current cyber
attacks use URLs for attack communications (e.g., C&C, phishing,
and spear-phishing). Despite the continuous progress in detecting these
attacks, many alarming problems remain open, such as the weak spots
of the defense mechanisms. Because ML has become one of the most
prominent methods of malware detection, we propose a robust feature
selection mechanism that results in malicious domain detection models
that are resistant to black-box evasion attacks. This paper makes two
main contributions. Our mechanism exhibits high performance based on
data collected from ˜5000 benign active URLs and ˜1350 malicious active
(attacks) URLs. We also provide an analysis of robust feature selection
based on widely used features in the literature. Note that even though
we cut the feature set dimensional space in half (from nine to four fea-
tures), we still improve the performance of the classifier (an increase in
the model’s F1-score from 92.92% to 95.81%). The fact that our mod-
els are robust to malicious perturbations but are also useful for clean
data demonstrates the effectiveness of constructing a model that is solely
trained on robust features.

Keywords: Malware detection · Robust features · Domain

1 Introduction

In the past two decades, cybersecurity attacks have become a major issue for
governments and civilians [43]. Many of these attacks are based on malicious web
domains or URLs (See Fig. 1 for the structure of a URL). These domains are
used for phishing [13,23,25,36,41] (e.g. spear phishing), Command and Control
(C&C) [40] and a vast set of virus and malware [15] attacks.
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Fig. 1. The URL structure

The Domain Name System (DNS) maps human-readable domain names
to their associated IP addresses (e.g., google.com to 172.217.16.174). How-
ever, DNS services are abused in different ways to conduct various attacks.
In such attacks, the adversary can utilize a set of domains and IP addresses
to orchestrate sophisticated attacks [9,42]. Therefore, the ability to identify
a malicious domain in advance is a massive game-changer [8–12,14,16,18–
21,30,34,35,37,42,44,46,48,49]. In this context, one of the main questions is
how to identify malicious/compromised domains in the presence of an intelli-
gent adversary that can manipulate domain properties.

A common way of identifying malicious/compromised domains is to collect
information about the domain names (alphanumeric characters) and network
information (such as DNS and passive DNS data1). This information is then used
for extracting a set of features, according to which machine learning (ML) algo-
rithms are trained based on a desirably massive amount of data [9–12,14,16,19–
21,27,30,34,35,37,44,48]. A mathematical approach can also be used in a vari-
ety of ways [18,48], such as measuring the distance between a known malicious
domain name and the analyzed domain (benign or malicious) [48]. Still, while
ML-based solutions are widely used, many of them are not robust; an attacker
can easily bypass these models with minimal feature perturbations (e.g., change
the length of the domain or modify network parameters such as Time To Live,
TTL) [32,45].

For these reasons, we tackle the problem of identifying malicious domains
using a feature selection mechanism which is robust to adversarial manipulation.
Thus, even if the attacker has black-box access to our model, tampering with
the domain properties or network parameters will have a negligible effect on
the model’s accuracy. In order to achieve this goal, we collected a broad set of
both malicious and benign URLs and surveyed for them commonly used features.
Then, we manipulated these features to show that some of them, although widely
used, are only slightly robust or not robust at all.

The rest of the paper is organized as follows: Sect. 2 summarizes related
works, Sect. 3 describes our methodology. In Sect. 4, we present our empirical
analysis and evaluation. Finally, Sect. 5 concludes and summarizes our work.

1 Most works dealing with malicious domain detection are based on DNS features,
and only some take the passive DNS features into account as well.

https://www.google.com/
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2 Related Work

The issue of identifying malicious domains is a fundamental problem in cyberse-
curity. In this section, we survey recent results in identifying malicious domains.
We focus on three significant methodologies: Mathematical Theory approaches,
ML-based techniques, and Big Data approaches.

The use of graph theory to identify malicious domains was more pervasive in
the past [18,22,28,31,48]. Yadav et al. [48] presented a method for recognizing
malicious domain names based on fast flux. Fast flux is a DNS technique used
by botnets to hide phishing and malware delivery sites behind an ever-changing
network of compromised hosts acting as proxies. Their methodology analyzed
the DNS queries and responses to detect if and when domain names are being
generated by a Domain Generation Algorithm (DGA). Their solution was based
on computing the distribution of alphanumeric characters for groups of domains
and by statistical metrics with the KL (Kullback-Leibler) distance, Edit distance
and Jaccard measure to identify these domains. Their results for a fast-flux
attack using the Jaccard Index achieved impressive results, with 100% detection
and 0% false positives. However, for smaller numbers of generated domains for
each TLD, their false-positive results were much higher, at 15% when 50 domains
were generated for the TLD using the KL-divergence over unigrams and 8% when
200 domains were generated for each TLD using Edit distance.

Dolberg et al. [18] described a system called Multi-dimensional Aggregation
Monitoring (MAM) that detects anomalies in DNS data by measuring and com-
paring a “steadiness” metric over time for domain names and IP addresses using
a tree-based mechanism. The steadiness metric is based on a similar domain to
IP resolution patterns when comparing DNS data over a sequence of consecutive
time frames. The domain name to IP mappings were based on an aggregation
scheme and measured steadiness. In terms of detecting malicious domains, the
results showed that an average steadiness value of 0.45 could be used as a reason-
able threshold value, with a 73% true positive rate and only 0.3% false positives.
The steadiness values might not be considered a good indicator when fewer
malicious activities were present (e.g., <10%).

However, the most common approach to identifying malicious domains
is using machine learning (ML) [9,10,14,17,30,35,39,42,44]. Using a set of
extracted features, researchers can train ML algorithms to label URLs as mali-
cious or benign. Shi et al. [42] proposed a machine learning methodology to
detect malicious domain names using the Extreme Learning Machine (ELM) [21]
which is closest to the one employed here. ELM is a new neural network with
high accuracy and fast learning speed. The authors divided their features into
four categories: construction-based, IP-based, TTL-based, and WHOIS-based.
Their evaluation resulted in a high detection rate, an accuracy exceeding 95%,
and a fast learning speed. However, as we show below, a significant fraction
of the features used in this work emerged as non-robust and ineffective in the
presence of an intelligent adversary.

Sun et al. [44] presented a system called HinDom, that generate a heteroge-
neous graph (in contrast to a homogeneous graphs created by [37,48]) in order
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to robustly identify malicious attacks (e.g. spams, phishing, malware and bot-
nets). Even though, HinDom collected DNS and pDNS data, it also has the
ability to collect information from various of clients inside networks (e.g. CER-
NET2 and TUNET) and by that the perspective of it is different than ours (i.e.
client perspective). Nevertheless, HinDom has achieved remarkable results, using
transductive classifier it managed to achieve high accuracy and F1-score with
99% and 97.5% respectively.

Bilge et al. [12] created a system called Exposure, designed to detect malicious
domain names. Their system uses passive DNS data collected over some period of
time to extract features related to known malicious and benign domains. Expo-
sure is designed to detect malware- and spam-related domains. It can also detect
malicious fast-flux and DGA related domains based on their unique features.
The system computes the following four sets of features from anonymized DNS
records: (a) Time-based features related to the periods and frequencies that a
specific domain name was queried in; (b) DNS-answer-based features calculated
based on the number of distinctive resolved IP addresses and domain names,
the countries that the IP addresses reside in, and the ratio of the resolved IP
addresses that can be matched with valid domain names and other services; (c)
TTL-based features that are calculated based on statistical analysis of the TTL
over a given time series; (d) Domain-name-based features are extracted by com-
puting the ratio of the numerical characters to the domain name string, and the
ratio of the size of the longest meaningful substring in the domain name. Using
a Decision Tree model, Exposure reported a total of 100,261 distinct domains
as being malicious, which resolved to 19,742 unique IP addresses. The combina-
tion of features that were used to identify malicious domains led to the successful
identification of several domains that were related to botnets, flux networks, and
DGAs, with low false-positive and high detection rates. It may not be possible
to generalize the detection rate results reported by the authors (98%) since they
were highly dependent on comparisons with biased datasets. Despite the positive
results, once an identification scheme is published, it is always possible for an
attacker to evade detection by mimicking the behaviors of benign domains.

Rahbarinia et al. [37] presented a system called Segugio, an anomaly detec-
tion system based on passive DNS traffic to identify malware-controlled domain
names based on their relationship to known malicious domains. The system
detects malware-controlled domains by creating a machine-domain bipartite
graph that represents the underlying relations between new domains and known
benign/malicious domains. The system operates by calculating the following
features: (a) Machine Behavior based on the ratio of “known malicious” and
“unknown” domains that query a given domain d over the total number of
machines that query d. The larger the total number of queries and the fraction
of malicious related queries, the higher the probability that d is a malware con-
trolled domain; (b) Domain Activity where given a time period, domain activity
is computed by counting the total number of days in which a domain was actively
queried; (c) IP Abuse where given a set of IP addresses that the domain resolves
to, this feature represents the fraction of those IP addresses that were previously
targeted by known malware controlled domains. Using a Random Forest model,
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Segugio was shown to produce high true positive and very low false positive rates
(94% and 0.1% respectively). It was also able to detect malicious domains earlier
than commercial blacklisting websites. However, Segugio is a system that can
only detect malware-related domains based on their relationship to previously
known domains and therefore cannot detect new (unrelated to previous mali-
cious domains) malicious domains. More information about malicious domain
filtering and malicious URL detection can be found in [17,39].

Big Data is an evolving term that describes any voluminous amount of struc-
tured, semi-structured and unstructured data that can be mined for information.
Big data is often characterized by 3Vs: the extreme Volume of data, the wide
Variety of data types and the Velocity at which the data must be processed.
To implement Big Data, high volumes of low-density, unstructured data need to
be processed. This can be data of unknown value, such as Twitter data feeds,
click streams on a web page or a mobile app, or sensor-enabled equipment. For
some organizations, this might be tens of terabytes of data. For others, it may
be hundreds of petabytes. Velocity is the fast rate at which data are received
and (perhaps) acted on. Normally, the highest velocity of data streams directly
into memory rather than written to disk.

Torabi et al. [46] surveyed state of the art systems that utilize passive DNS
traffic for the purpose of detecting malicious behaviors on the Internet. They
highlighted the main strengths and weaknesses of these systems in an in-depth
analysis of the detection approach, collected data, and detection outcomes. They
showed that almost all systems have implemented supervised machine learning.
In addition, while all these systems require several hours or even days before
detecting threats, they can achieve enhanced performance by implementing a
system prototype that utilizes big data analytic frameworks to detect threats
in near real-time. This overview contributed in four ways to the literature. (1)
They surveyed implemented systems that used passive DNS analysis to detect
DNS abuse/misuse; (2) They performed an in-depth analysis of the systems and
highlighted their strengths and limitations; (3) They implemented a system pro-
totype for near real-time threat detection using a big data analytic framework
and passive DNS traffic; (4) they presented real-life cases of DNS misuse/abuse
to demonstrate the feasibility of a near real-time threat detection system proto-
type. However, the use cases that were presented were too specific. In order to
understand the real abilities of their system, the system must be analyzed with
a much larger test dataset.

3 Methodology

Much effort needs to be devoted to collecting an extensive amount of (preferably)
heterogeneous information and a considerable thought needs to be devolved to
choosing the right model to implement and the set of features for its training
phase. In this section, we adhere to these criteria: we first outline the way we col-
lected the dataset and its characteristics (Sect. 3.1). Next, in Sect. 3.2, we define
each of the features we evaluate, followed by the evaluation of their robustness
in Sect. 3.3.
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3.1 Data Collection

The main ingredient of ML models is the data on which the models are trained.
As discussed above, data collection should be as heterogeneous as possible to
model reality. The data we collected for this work include both malicious and
benign URLs: the benign URLs are based on the Alexa top 1 million [1], and
the malicious domains were crawled from multiple sources [3,4,6] due to the fact
they are quite rare. These resources yielded 1,356 malicious active unique URLs
and 5,345 benign active unique URLs (75% benign, 25% malicious). For each
instance, as presented in Fig. 2, we crawled the URL and domain information
properties from Whois, and DNS records.

Whois is a widely used Internet record listing that identifies who owns a
domain, how to get in contact with them, the creation date, update dates, and
expiration date of the domain. Whois records have proven to be extremely useful
and have developed into an essential resource for maintaining the integrity of the
domain name registration and website ownership process. Note that according
to a study by ICANN2 [5], many malicious attackers abuse the Whois system.
Hence we only used the information that could not be manipulated.

Finally, based on these resources (Whois and DNS records), we generated the
following features: the length of the domain, the number of consecutive charac-
ters, and the entropy of the domain from the URLs’ datasets. Next, we calcu-
lated the lifetime of the domain and the active time of domain from the Whois
data. Based on the DNS response dataset (a total of 263,223 DNS records), we
extracted the number of IP addresses, distinct geolocations of the IP addresses,
average Time to Live (TTL) value, and the Standard deviation of the TTL.

3.2 Feature Engineering

Based on previous works surveyed, we extracted a set of features which are com-
monly used for malicious domain classification [9,10,12,35,37–39,42,47]. Specif-
ically, we used the following nine features as our baseline:

– Length of domain:

Length of domain = length(Domain(i)) (1)

The length of domain is calculated by the domain name followed by the TLD
(gTLD or ccTLD). Hence, the minimum length of a domain is four since the
domain name needs to be at least one character (most domain names have
at least three characters) and the TLD (gTLD or ccTLD) is composed of at
least three characters (including the dot character) as well. For example, for
the URL http://www.ariel-cyber.co.il, the length of the domain is 17 (the
number of characters for the domain name - “ariel-cyber.co.il”).

2 Internet Corporation for Assigned Names and Numbers.

http://www.ariel-cyber.co.il
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Fig. 2. Data collection framework

– Number of consecutive characters:

Number of consecutive characters = max{consecutive repeated characters in Domain(i)}
(2)

The maximum number of consecutive repeated characters in the domain. This
includes the domain name and the TLD (gTLD or ccTLD). For example for
the domain “aabbbcccc.com” the maximum number of consecutive repeated
characters value is 4.

– Entropy of the domain:

Entropy of the domain = −
ni∑

j=1

count(cij)
length(Domain(i))

· log
count(cij)

length(Domain(i))

(3)
The calculation of the entropy (i.e., Feature 3) for a given domain Domain(i)

consists of ni distinct characters {ci1, c
i
2, . . . , c

i
ni

}. For example, for the domain
“google.com” the entropy is

−(5 · (
1
10

· log
1
10

) + 2 · (
2
10

· log
2
10

) + 3(· 3
10

· log
3
10

)) = 1.25

The domain has 5 characters that appear once (‘l’, ‘e’, ‘.’, ‘c’, ‘m’), one char-
acter that appears twice (‘g’) and one character that appears three times
(‘o’).

– Number of IP addresses:

Number of IP addresses = ‖distinct IP addresses‖ (4)

https://www.google.com/


52 N. Hason et al.

The number of distinct IP addresses in the domain’s DNS record. For example
for the list [“1.1.1.1”, “1.1.1.1”, “2.2.2.2”] the number of distinct IP addresses
is 2.

– Distinct Geo-locations of the IP addresses:

Distinct Geo-locations of the IP addresses = ‖distinct countries‖ (5)

For each IP address in the DNS record, we listed the countries for each IP
and counted the number of countries. For example for the list of IP addresses
[“1.1.1.1”, “1.1.1.1”, “2.2.2.2”] the list of countries is [“Australia”, “Aus-
tralia”, “France”] and the number of distinct countries is 2.

– Mean TTL value:

Mean TTL value = μ{TTL in DNS records of Domain(i)} (6)

For all the DNS records of the domain in the DNS dataset, we averaged the
TTL values. For example, if we conducted 30 checks of some domain’s DNS
records, and in 20 of these checks the TTL value was “60” and in 10 checks
the TTL value was “1200”, the mean is 20·60+10·1200

30 = 440.
– Standard deviation of the TTL:

Standard deviation of TTL = σ{TTL in DNS records of Domain(i)} (7)

For all the DNS records of the domain in the DNS dataset, we calculated the
standard deviation of the TTL values. For the “Mean TTL value” example
above, the standard deviation of the TTL values is 537.401.

– Lifetime of domain:

Lifetime of domain = DateExpiration − DateCreated (8)

The interval between a domain’s expiration date and creation date in years.
For example for the domain “ariel-cyber.co.il”, according to Whois informa-
tion, the dates are: Created on 2015-05-14, Expires in 2020-05-14, Updated
on 2015-05-14. Therefore the lifetime of the domain is the number of years
from 2015-05-14 to 2020-05-14; i.e. 5.

– Active time of domain:

Active time of domain = DateUpdated − DateCreated (9)

Similar to the lifetime of a domain, the active time of a domain is calculated
as the interval between a domain’s update date and creation date in years.
Using the same example as for the “Lifetime of domain”, the active time
of the domain “ariel-cyber.co.il” is the number of years from 2015-05-14 to
2018-06-04; i.e., 3.
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3.3 Robust Feature Selection

We then turned to evaluating the robustness of the set of features described
above to filter those that could significantly harm the classification process given
basic manipulations. In the following analyse, we assess these features’ robust-
ness (i.e., the complexity of manipulating the feature’s values to result in a false
classification). Table 1 lists the common features along with the mean value and
standard deviation for malicious and benign URLs based on our dataset. Strik-
ingly, the table shows that some of the features have similar mean values for both
benign and malicious instances. For example, whereas “Distinct geolocations of
the IP addresses” is quite similar for both types of instances (i.e., not effective
in malicious domain classification), it is widely used [10,12,42]. Furthermore,
whereas “Standard deviation of the TTL” has distinct values for benign and
malicious domains, we show that an intelligent adversary can easily manipulate
this feature, leading to a benign classification of malicious domains.

Table 1. Feature distributions

Feature Benign mean (std) Malicious mean (std)

Length of domain 14.38 (4.06) 15.54 (4.09)

Number of consecutive characters 1.29 (0.46) 1.46 (0.5)

Entropy of the domain 4.85 (1.18) 5.16 (1.34)

Number of IP addresses 2.09 (1.25) 1.94 (0.94)

Distinct geolocations of the IP addresses 1.00 (0.17) 1.02 (0.31)

Mean TTL value 7,578.13 (17,781.47) 8,039.92 (15,466.29)

Standard deviation of the TTL 2,971.65 (8,777.26) 2,531.38 (7,456.62)

Lifetime of domain 10.98 (7.46) 6.75 (5.77)

Active time of domain 8.40 (6.79) 4.64 (5.66)

In order to understand the malicious abilities of an adversary, we manipulated
the base features over a wide range of possible values, one feature at a time.3 For
each feature we took into account only the range of possible values. Our analysis
considers an intelligent adversary with black-box access to the model (i.e., a set
of features or output for a given input). Our robustness analysis is based on an
ANN model that classifies the manipulated samples, where the train set is our
empirically crawled data, and the test set includes the manipulated malicious
samples. Figure 3 depicts the possible adversary manipulations over any of the
features. Our evaluation metric, the prediction percentage, was defined as the
average detection rate after our modification.

3 Each feature was evaluated over all possible values for that feature.
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Fig. 3. Base feature manipulation graphs (* robust or semi-robust features)

We divided the well-known features into three groups: robust features, robust
features that seemed non-robust (defined as semi-robust), and non-robust fea-
tures. Next, we show how an attacker can manipulate the classifier for each
feature and define its robustness:

1. “Length of domain”: an adversary can easily purchase a short or long
domain to result in a benign classification for a malicious domain; hence
this feature was classified as non-robust.

2. “Number of consecutive characters”: surprisingly, as depicted in
Fig. 3, manipulating the “Number of consecutive characters” feature can
significantly lower the prediction percentage (e.g., move from three con-
secutive characters to one or two). Nevertheless, as depicted in Table 1,
on average, there were 1.46 consecutive characters in malicious domains.
Therefore, manipulating this feature is not enough to break the model, and
we considered it a robust feature.

3. “Entropy of the domain”: in order to manipulate the “Entropy of
the domain” feature as benign domain entropy, the adversary can create
a domain name with entropy <4. For example, let us take the domain
“ddcd.cc” which is available for purchase. The entropy for this domain is
3.54. This value falls precisely in the entropy area of the benign domains
defined by the trained model. This example breaks the model and causes
a malicious domain to look like a benign URL. Hence, we classified this
feature as non-robust.

4. “Number of IP addresses”: note that an adversary can dd many A
records to the DNS zone file of its domain to imitate a benign domain.
Thus, to manipulate the number of IP addresses, an intelligent adversary
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only needs to have several different IP addresses and add them to the zone
file. This fact classifies this feature as non-robust.

5. “Distinct Geolocations of the IP addresses”: in order to be able
to break the model with the “Distinct Geolocations of the IP addresses”
feature, the adversary needs to use several IP addresses from different geolo-
cations. If the adversary can determine how many different countries are
sufficient to mimic the number of distinct countries of benign domains, he
will be able to append this number of IP addresses (a different IP address
from each geo-location) to the DNS zone file. Thus, this feature was also
classified as non-robust.

6–7. “Mean TTL value” and “Standard deviation of the TTL”: there
is a clear correlation between the “Mean TTL value” and the “Standard
deviation of the TTL” features since the value manipulated by the adver-
sary is the TTL itself. Thus, it makes no difference if the adversary cannot
manipulate the “Mean TTL value” feature if the model uses both. In order
to robustify the more, it is better to use the “Mean TTL value” feature
without the “Standard deviation of the TTL” one. Solely in terms of the
“Mean TTL value” feature, Fig. 3 shows that manipulation will not result
in a false classification since the prediction percentage does not drop dra-
matically, even when this feature is drastically manipulated. Therefore we
considered this feature to be robust.
An adversary can set the DNS TTL values to [0,120000] (according to the
RFC 2181 [2] the TTL value range is from 0 to 231 − 1). Figure 3 shows
that even manipulating the value of this feature to 60000 will break the
model and cause a malicious domain to be wrongly classified as a benign
URL. Therefore the “Standard deviation of the TTL” cannot be considered
a robust feature.

8. “Lifetime of domain”: as for the lifetime of domains, based on [42] we
know that a benign domain’s lifetime is typically much longer than a mali-
cious domain’s lifetime. In order to break the model by manipulating the
“Lifetime of domain” feature, the adversary must buy an old domain that
is available on the market. Even though it is possible to buy an appropriate
domain, it will take time to find one, and it will be expensive. Hence we
considered this to be a semi-robust feature.

9. “Active time of domain”: similar to the previous feature, in order to
break “Active time of domain”, an adversary must find a domain with
a particular active time (Fig. 3), which is much more tricky. It is hard,
expensive, and possibly unfeasible. Therefore we considered this to be a
semi-robust feature.

4 Empirical Analysis and Evaluation

4.1 Experimental Design

Before turning to the training phase, we needed to verify that our dataset accu-
rately represented the real-world distribution of URL malware. Hence, we con-
structed our dataset such that 75% were benign URLs, and the remaining 25%
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were malicious domains (˜5,000 benign URLs and ˜1,350 malicious domains
respectively) [7].

The evaluation step measured the efficiency of our different models while
varying the robustness of the features included in the model. Specifically, we
trained the different models using the following feature sets:

– Base (B) - the base feature set defined as the ones commonly used in previous
works (see Table 1 for more details).

– Base Robust (BR) - the subset of base features that were found to be robust
(marked with a * in Fig. 3).

There are many ways to define the efficiency of a model. To account for most
of them, we looked at a broad set of metrics including Accuracy, Recall, the
F1-score, and training time. Note that for each model, we split the dataset into
train and test using the above proportion of 75/25, which is different from the
75/25 (benign/malicious) division used to construct the dataset.

4.2 Models and Parameters

We decided to analyze four commonly used classification models: Logistic Regres-
sion (LR), Support Vector Machines (SVM), Extreme Learning Machine (ELM),
and Artificial Neural Networks (ANN). All the models were trained and evalu-
ated on a Dell XPS 8920 computer, Windows 10 64Bit OS with 3.60 GHz Intel
Core i7-7700 CPU, 16 GB of RAM, and NVIDIA GeForce GTX 1060 6 GB.

In the following paragraphs, for each model, we first describe the hyperpa-
rameters used for the evaluation, followed by the empirical, experimental results
(which summed several tests results using different random train-test sets), and
a short discussion of our findings and their implications.

Logistic Regression. As a baseline for the experiments, and before using
the nonlinear models, we used the LR classification model. We trained the LR
model with the two feature sets and tuned the hyperparameters to maximize
the model’s performance. For the model hyperparameters, the polynomial fea-
ture degree was 3, K-Fold CV, where K = 10 and L-BFGS [26] as the solver.

Table 2. Summary of the results for the LR model

Feature set Accuracy Recall F1-Score Training time

Base 89.99% 38.82% 53.21% 13.41min

Robust Base 88.33% 38.87% 49.42% 1.77 min

Table 2 shows that the Accuracy rates for the feature sets were very sim-
ilar. However, the Accuracy rate measures how well the model predicts (i.e.,
TP+TN) with respect to all the predictions (i.e., TP+TN+FP+FN). Thus given
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the unbalanced dataset, ˜90% Accuracy is not a necessarily a sufficient result.
This can be proven to be correct when looking at the Recall that focuses solely
on the malicious domains that the model identified (i.e., TP) with respect to
all the malicious domains samples that were tested (i.e., TP + FN). These find-
ings suggest that the Accuracy rate was not a good measure in our domain;
therefore, we decided to focus on the F1-score measure, which is a harmonic
mean formula of the Precision and the Recall measures. Finally, based on the
resulting F1-scores, we concluded that LR was not strong enough to learn the
right patterns. Next, we decided to use the SVM model with an RBF kernel as
a nonlinear model.

SVM. For the model hyperparameters, the polynomial feature degree was 3,
K-Fold where k = 10, gamma = 2 and the RBF [33] as the kernel. Compared
to Table 2, Table 3 shows a significant improvement in the Recall and F1-score
measures; e.g., for Base, the Recall and the F1-score measures were both above
90%. By comparison to the similar analysis provided by [42], our SVM model
resulted in a higher Accuracy rate.4. One could be concerned by the fact that
the model trained on the Base feature set resulted in a higher recall (and F1-
score) than the one trained on the Robust Base feature set. However, it should
be recalled that the Robust Base feature set is composed of fewer than half of
the Base features, and may perform worse. We note that our results are based
on analyzing a non-manipulated dataset. As stated above, the Base feature set
includes some non-robust features. Hence, an intelligent adversary can manipu-
late the values of these features, resulting in a wrong classification of malicious
instances (up to the extreme of a 0% recall). This would be significantly harder
for a model that was trained using the Robust Base features, since each of them
was specifically chosen to avoid such manipulations. In order to find models that
were also efficient on the non-manipulated dataset, we examined the two sophis-
ticated models in our analysis, the ELM model as presented in [42] and the ANN
model.

Table 3. Summary of the results for the SVM model

Feature set Accuracy Recall F1-Score Training time

Base 96.49% 91.20% 91.36% 6.06 min

Robust Base 90.14% 56.51% 69.93% 4.7 min

ELM. Model hyperparameters: We generated this model with one input layer,
one hidden layer (that contained 50 or 100 nodes, depending on the ability of
the model to converge), and one output layer. The activation function for the
first layer was ReLU [29], and for the hidden layer was Sigmoid. As with the
former algorithms, in this case as well, we used K-Fold, where k = 10.
4 Because the dataset used by [42] is not publicly available, we could not directly

compare the two models.
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Table 4. Summary of the results for the ELM model

Feature set Accuracy Recall F1-Score Training time

Base 98.17% 88.81% 92.92% 0.01 min

Robust Base 98.83% 92.24% 95.81% 0.006min

The ELM model resulted in high accuracy, and higher Recall rates compared
to Table 2. When compared to the SVM models, the Base model resulted in lower
recall, while the Robust Base resulted in a higher one. Even though the Robust
Base feature set had a low dimensional space, the three rates (i.e., Accuracy,
Recall, and F1-score) were high enough. Next, we compared the ELM model to
an ANN model.

ANN. Model hyperparameters: We generated this model with one input layer,
three hidden layers, and one output layer. For the input layer and the first hidden
layer, we used ReLU; for the second hidden layer, we used LeakyReLU, and for
the third hidden layer, we used Sigmoid as the activation functions. The batch
size was 150, with a learning rate of 0.01 and the Adam [24] optimizer with
β1 = 0.9 and β2 = 0.999. As for the K-Fold Cross-Validation, k was set to 10
(Table 5).

Table 5. Summary of the results for the ANN model

Feature set Accuracy Recall F1-Score Training time

Base 97.20% 88.03% 90.23% 2.63 min

Robust Base 95.71% 83.63% 88.78% 2.68 min

As shown in the table, the Robust Base feature set returned almost 90% F1-
score and around a 83% Recall rate, such that given the low dimensional space
of Robust Base, these results were very good. However, in comparison to Table 4,
the above results were less good even though our goal was met.

Note that all the results provided in this section are based on clean data (i.e.,
with no adversarial manipulation). Naturally, given an adversarial model where
the attacker can manipulate the values of features, models which are based on
the Robust Base feature set will dominate models that are trained using the Base
dataset. Thus, by showing the the Roubst Base feature set does not dramatically
decrease the performance of the defender model using clean data, and based on
the fact that it will be not fail in adversarial settings, we conclude that the
defender should use this feature set of its robust malicious domain detection.
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5 Conclusion

Numerous attempts have been made to tackle the problem of identifying mali-
cious domains. However, many of them fail to successfully classify malware in
realistic environments where an adversary can manipulate the URLs and/or
other extracted features. Specifically, we tackled the case where an attacker has
black-box access to the model (i.e., a set of features or output for a given input),
and tampers with the domain properties (or network parameters). This tamper-
ing has a catastrophic effect on the model’s efficiency.

As a countermeasure, we used a novel intelligent feature selection procedure
which is robust to adversarial manipulation. We evaluate feature robustness and
model effectiveness based on well-known machine and deep learning models over
a sizeable realistic dataset (composed of 5,345 benign URLs and 1,356 malicious
ones). Our evaluation showed that models that are trained using our robust
features are more precise in terms of manipulated data while maintaining good
results on clean data as well. Clearly, further research is needed to create models
that can also classify malicious domains into malicious attack types. Another
promising direction would be clustering a set of malicious domains into one
cyber campaign.
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Abstract. A recent trend in machine learning is the implementation
of machine learning based solvers, such as the sat solver NeuroSat. The
main limitation of NeuroSat is its scaling to large problems. We conjec-
ture that this lack of scaling is due to learning an all-purpose SAT solver,
and that learning to solve specialized SAT problems instead should yield
better results. In this article, we evaluate our hypothesis by training and
testing NeuroSat on SAT problems for differential cryptanalysis on the
block cipher GIFT, and present the resulting classifier NeuroGift. We
show that on these highly structured problems, our models are able to
perform orders of magnitude better than the original NeuroSat, poten-
tially paving the way for the use of specialized solvers for cryptanalysis
problems.

Keywords: Machine learning · Neural network · SAT · GIFT ·
Cryptanalysis

1 Introduction

In recent years, machine learning techniques have become prominent for solving
a wide range of problems. Recently, a promising method to solve combinato-
rial problems using machine learning was proposed. In NeuroSat [SLB+18], the
authors propose to train a machine learning to solve combinatorial problems
expressed in the SAT formalism. Since its publication in 2018, the article gained
a lot of traction, and started a very active (over 80 citations to this day) research
area on how to develop solvers based on machine learning.

In the field of cryptanalysis, SAT solvers, as well as other paradigms, such
as MILP and constraint programming, are frequently used to evaluate the secu-
rity of a primitive [MWGP11,GMS16]. In particular, one of the most promi-
nent forms of cryptanalysis, differential cryptanalysis, requires solving a heavily
combinatorial problem as a starting point to a key recovery attack. Namely,
this preliminary phase requires finding good differential paths, i.e., propagation
patterns from a difference between two plaintexts to a difference between two
ciphertexts, that occur with a good probability. Among other optimisation tools,
c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-49785-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49785-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-49785-9_5


NeuroGIFT: Using a Machine Learning Based Sat Solver for Cryptanalysis 63

SAT solvers have been successfully used for this task [KLT15,MP13]. However,
the SAT problems studied for cryptanalysis typically have way more variables
and clauses than those solvable by NeuroSat (for instance, the problems studied
in this article have thousands of variables). In addition, the main limitation of
NeuroSat is its training regime: the generation of the training set requires to
repeatedly call an external solver, and becomes impractical when the number
of variables goes over a few hundreds [AMW19]. Therefore, it is not possible
to directly apply the original NeuroSat to cryptanalysis problems. On the other
hand, our cryptanalysis problems are very structured, as opposed to the ran-
dom problems for which NeuroSat is trained. Therefore, our hypothesis is that
the neural network can learn from the structure of these problems, yielding
a cryptanalysis-oriented specialised solver, rather than a general purpose SAT
solver. Hence, the research question we are interested in answering is

Can NeuroSat learn to solve highly specialized cryptanalysis problems more
efficiently than generic random problems?

In this article, we present the experiments we led to solve that question.
Training a neural network requires a training set composed of positive samples
and negative samples. In our case, the positive samples are the SAT problems
where the fixed input and output difference correspond to optimal differential
characteristics (i.e., characteristics that have the minimal number of active S-
boxes given a number of rounds), and the negative samples are SAT problems
with fixed input and output differences that do no not correspond to optimal
characteristic (i.e., for which the best possible characteristic has more active S-
boxes than the overall optimal characteristic). We therefore need to be able to
determine rapidly, for a large number of samples, the best possible characteristic
given an input and output difference. We chose to perform our experiments on
the block cipher GIFT, for which this task can be solved rapidly using Crypto-
MiniSat [SNC09] (less than 3 s per problem for 10 rounds).

On the problems we studied, our classifier, NeuroGift, showed remarkable
performance. It was able to solve instances with significantly more variables
than the original NeuroSat, obtain better accuracies, and generalise to bigger
instances much better. Table 1 shows a comparison between the results obtained
in the NeuroSat article and our best classifiers.

Table 1. Comparison of NeuroSat and NeuroGift

NeuroSat NeuroGift

Variables 10 ≤ n ≤ 40 699 ≤ n ≤ 1494

Training set “Millions of pairs” 600 pairs

Best test accuracy 85% 100%

In this article, we present our experimental results, which can be summarised
by the following contributions:
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– We introduce NeuroGift, an adaptation of NeuroSat to the problem of deter-
mining whether there exists an optimal differential path for GIFT-64-128,
satisfying a given input difference, output difference, and number of rounds.

– We present experiments aiming at validating that NeuroGift is actually able
to learn to solve the corresponding SAT problem, rather than exploiting side
information to do its classification.

2 Preliminaries

Since we aim to apply NeuroSAT to a specific kind of SAT problems in crypt-
analysis, we first introduce the related SAT problems. Following that, some rel-
evant information in the field of machine learning is provided. Finally, we recall
NeuroSAT, which is the network we use in this paper.

2.1 GIFT-64-128

GIFT [BPP+17] is a family of lightweight block ciphers proposed at CHES 2017.
As an improved version of PRESENT [BKL+07], it provides much-increased effi-
ciency in all domains. At the same time, the well-known weakness of PRESENT
regarding linear hull effect is overcome. There are two versions of GIFT -
GIFT-64-128 and GIFT-128-128. We only focus on GIFT-64-128 in this paper
and sometimes denote it as GIFT for short.

GIFT-64-128 is a 28-round Substitution Permutation Network (SPN) block
cipher with 64-bit block size that supports 128-bit key. The round function,
which is depicted in Fig. 1, consists of standard operations such as substitution,
permutation and subkey XOR. At the beginning of each round, 16 identical 4-
bit S-boxes are applied in parallel as a non-linear substitution layer. Just after
the substitution, a linear permutation is performed to provide diffusion, and
finally, the state is XORed with the round key and the round constant. For
more information, please find [BPP+17].

2.2 Differential Cryptanalysis

Differential cryptanalysis was first introduced by Biham and Shamir in [BS90].
It is one of the most widely used and efficient forms of cryptanalysis. Consider
a function f : Fb

2 → F
b
2. Let x and x′ be two different inputs for the function

f with a difference Δx := x ⊕ x′, and let y = f(x) and y′ = f(x′), such that

Δy = y ⊕ y′. Now, we are interested in the probability p such that Δx
f−→ Δy.

This can be calculated as such:

P(Δx
f−→ Δy) :=

#{x|f(x) ⊕ f(x ⊕ Δx) = Δy}
2b

(1)

If f is linear, then P(Δx
f−→ Δy) can only be 0 or 1. Thus, the interest lies in

when f is non-linear. In particular, for GIFT, the non-linear component is the
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Fig. 1. Round function of GIFT-64-128.

S-box, which operates on consecutive nibbles (4-bit words) of the state. In order
to study the propagation of a given difference through the S-box, the classical
method is to build a Difference Distribution Table (DDT). Each entry of the
DDT is of the form (Δin,Δout, p), where p is the probability that the difference
Δin results in the difference Δout after an S-Box.

The first step of differential cryptanalysis is to build differential characteris-
tics, i.e., difference propagation paths through the cipher. In particular, we are
interested in maximizing the probability, over all plaintexts and differences,

P
opt
P,δin,δout∈P3(E(P ) ⊕ E(P ′) = δout|P ⊕ P ′ = δin)

Finding such an optimal path is a highly combinatorial problem. One of the
common approaches to tackle it is to use SAT solvers.

2.3 SAT Problem

The boolean satisfiability problem (SAT) focuses on the satisfiability of a given
Boolean formula. The SAT problem is satisfiable if the variables can be replaced
with the values True or False so that the formula is evaluated to be True. It
was shown that the problem is NP-complete [Coo71]. However, modern SAT
solvers based on backtracking search can solve problems of practical interest
with millions of variables and clauses [VHLP08].

For every Boolean formula, there is an equi-satisfiable formula in Conjunctive
Normal Form (CNF), expressed as the conjunction (∧) of the disjunction (∨) of
(possibly negated) variables. Every conjunct of the Boolean formula in CNF is
called a clause, and each (possibly negated) variable within a clause is called a
literal. Since most SAT solvers regard problems in CNF as standard input, we
are required to transform the question into an equivalent one in CNF when we
plan to exploit SAT solver to solve it.

2.4 SAT Problems for GIFT-64-128

The problem we are interested in is about the optimal differential characteristic
of GIFT with the minimum number of active S-boxes. An S-box is said to be
active if it has a non-zero input difference. In practice, the number of active
S-boxes provide a bound on the probability P

opt, and is easier to obtain than
the exact probability of a characteristic. We adopt the method in [SWW18] to
construct the corresponding SAT problems.
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Basically, the clauses in the SAT problem can be divided into two groups. One
group is used to propagate the input difference through the internal components
of the cipher, and the other one depicts the objective function.

To trace the difference propagation of GIFT, the critical point lies in the
manipulation of the S-box, since it is the unique non-linear operation inside the
cipher. Denote x0‖x1‖x2‖x3 and y0‖y1‖y2‖y3 the input and output differences
of the S-box, respectively. An auxiliary boolean variable w is introduced for
each S-box to indicate whether the S-box is active or not. We aim to generate a
group of clauses about xi, yi and w, and all the solutions of these clauses have
a one-to-one correspondence with the elements in the following set

S =
{
x‖y‖w

∣∣∣∣ x → y is a possible propagation,
w = x0 ∨ x1 ∨ x2 ∨ x3

}
,

where x = x0‖x1‖x2‖x3, y = y0‖y1‖y2‖y3. The idea is to add clauses, which
delete the vectors not belonging to the set S. To realise this goal, we first define
a 9-bit boolean function

f(x‖y‖w) =
{

1, if x‖y‖w ∈ S
0, else .

According to the difference distribution table (DDT) of the S-box, we can gener-
ate the product-of-sum representation of f . Each term of the representation stands
for a clause that deletes an impossible case in F

9
2 \ S. This representation can be

simplified by invoking Logic Friday1 software. After that, from the simplified rep-
resentation of f , the clauses tracing the differential propagation of the S-box are
decoded. In total, we obtain 36 clauses, which can be found in AppendixA.

Note that the active S-boxes satisfy w = 1. The sum of wi’s
∑
i

wi equals the

number of active S-boxes of the characteristic. Since we target characteristics
with the minimum number of S-boxes, the objective function is set as

∑
i

wi � τ ,

where τ is a predetermined threshold. This kind of constraint is called cardinal-
ity constraint which can be transformed into a SAT problem in CNF with the

sequential encoding method [Sin05]. Specifically, for the constraint
n∑

i=0

wi � τ ,

new dummy variables ui,j (0 � i � n− 2, 0 � j � τ − 1) are introduced, and the

following clauses will return unsatisfiable when
n∑

i=0

wi is larger than τ ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w0 ∨ u0,0 = 1
u0,j = 1
wi ∨ ui,0 = 1
ui−1,0 ∨ ui,0 = 1
wi ∨ ui−1,j−1 ∨ ui,j = 1
ui−1,j ∨ ui,j = 1
wi ∨ ui−1,τ−1 = 1
wn−1 ∨ un−2,τ−1 = 1

, (2)

where 1 � i � n − 2, 1 � j � τ − 1.
1 http://sontrak.com/.

http://sontrak.com/


NeuroGIFT: Using a Machine Learning Based Sat Solver for Cryptanalysis 67

Denote ui’s the partial sums ui =
∑i

j=1 wj for increasing the value of i
up to the final i = n. The dummy variable ui,j denotes the j-th digit of the i-th
partial sum ui. With sequential encoding method, the constraint

∑n
i=0 wi � τ

is converted into Eq. (2), and it is satisfiable only when the inequality constraint
holds.

For the constraint
n∑

i=0

wi = τ , we only need to notice

n∑
i=0

wi = τ ⇔
n∑

i=0

wi � τ and
n∑

i=0

wi � n − τ.

That is, the equality constraint can be replaced with two sets of clauses, which
are obtained by slightly adjusting the parameters in (2).

2.5 NeuroSAT

NeuroSAT [SLB+18] is designed as a neural classifier to predict the satisfiability
of a SAT problem. In this section, we give an overview of NeuroSAT. For a
more complete explanation and examples, please refer to [SLB+18]. The SAT
problems are encoded as undirected graphs, and NeuroSAT operates on graphs
as a Message Passing Neural Network (MPNN) [GSR+17]. Denote P a SAT
problem with n literals composed of m clauses. The graph GP of P consists of
2n + m nodes. Each element of the n pairs of complementary literals (xi and
xi) is represented as a node. Besides, one node is distributed for each of the m
clauses. The edge between the literal xi and the clause cj exists if and only if cj

is related to xi. To clarify the relationship between xi and xi, a different type of
line is allocated between the corresponding nodes. We define the characteristic
function φ(P ) of P as

φ(P ) =
{

1, if P is satisfiable,
0, otherwise.

NeuroSAT acts as an approximation of the function φ(P ).
In the message passing phase, the graph is embedded in a d-dimensional

space. Each node has an embedding at each time step, and NeuroSAT iteratively
updates this vector space embedding by passing messages back and forth along
the edges of the graph. Denote L(t) a 2n×d matrix where the i-th row stands for
the embedding of the i-th literal li at the time step t. Let C(t) be an m×d matrix,
and its j-th row represents the embedding of the j-th clause cj at the time step
t. The elements of L(0) and C(0) are initialised with a normal distribution. Let
M be a 2n × m matrix, which maintains the messages about the edges in the
graph. M(i, j) = 1 if the literal li occurs in the clause cj , otherwise, M(i, j) = 0.
For encompassing the negation invariance of the SAT problem into the model,
an operation F is introduced. F is parameterised by a matrix L ∈ R

2n×d, which
contains the embeddings of all literals. The function of F is to swap the row
corresponding to the embedding of xi with the row of xi. An iteration consists
of two stages:
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Fig. 2. An iteration of NeuroSAT.

1. each clause receives messages from all its neighbour literals and updates its
embedding, accordingly;

2. each literal refines its embedding according to the messages from its neighbour
clauses as well as its complementary literal.

These operations are implemented by two vanilla neural networks (Lmsg, Cmsg)
and two LSTMs ?? (Lu, Cu). Formally, a single iteration can be expressed as

(
C(t+1), C

(t+1)
h

)
← Cu

(
C(t)

∥∥MT · Lmsg

(
L(t)

)
, C

(t)
h

)
,(

L(t+1), L
(t+1)
h

)
← Lu

(
L(t)

∥∥F (L(t))
∥∥M · Cmsg

(
C(t+1)

)
, L

(t)
h

)
,

where L
(t)
h ∈ R

2n×d and C
(t)
h ∈ R

m×d are the hidden states of Lu and Cu,
respectively. Please refer to Fig. 2 for the framework of the iteration.

After T iterations, in the readout phase, a real number y(T ) is computed as

L
(T )
∗ ← Lvote

(
L(T )

)
,

y(T ) ← mean
(
L
(T )
∗

)
,

where Lvote is a 3-layer neural network, L
(T )
∗ is a 2n-dimensional vector. Denote

the prediction of NeuroSAT for the problem P as NeuroSAT(P ). NeuroSAT(P )
depends on the value of y(T ),

NeuroSAT(P ) =
{

1, if y(T ) > 0,
0, otherwise.

NeuroSAT is trained to minimise the sigmoid cross entropy between y(T ) and
the correct label φ(P ).
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Table 2. Parameters of SAT problems for GIFT.

Round 1 2 3 4 5 6 7 8 9 10

#{Variables} 159 286 445 699 1017 1494 2067 2736 3358 4044

#{Clauses} 748 1433 2182 3120 4186 5569 7144 8911 10585 12387

#{Nodes} 1066 2005 3072 4518 6220 8557 11278 14383 17301 20475

The training set of NeuroSAT is composed of pairs of random SAT prob-
lems on n variables. One problem in the pair is satisfiable, and the other one is
unsatisfiable. The two samples differ by negating only a single literal occurring
in one clause. All the pairs satisfying these properties constitute the set SR(n).
In [SLB+18], the authors trained NeuroSAT with samples randomly drawn from

SR(U(10, 40)) =
40⋃

n=10
SR(n) and tested it on SR(40). On average, the accuracy

of NeuroSAT reaches 85%. When the network is generalised to SR(200), Neu-
roSAT can solve about 25% of them by running for more iterations of message
passing [SLB+18].

3 NeuroGIFT

It was pointed in the paper [SLB+18] that the performance of the network on
problems with more variables (e.g., SR(200)) is not very good. However, in
cryptanalysis, we are faced with problems with more than 200 variables. Table 2
lists the parameters of SAT problems for GIFT regarding different lengths. Our
SAT problems for GIFT, from 2 rounds onwards, already have more than 200
variables. Therefore, in this section, we analyse the feasibility of training Neu-
roSAT on GIFT-related SAT problems. Then, the construction of the training
set is introduced.

3.1 Motivations

Constricted Domain of Definition. If there is no limitation on the system mem-
ory, the training set of NeuroSAT can be randomly drawn from SR(U(1,∞)),
which contains all possible SAT problems in theory. The ultimate goal of Neu-
roSAT is to approximate φ(P ) by transforming P into graphs. Note that there is
a one-to-one correspondence between SR(U(1,∞)) and the set G of all graphs.
NeuroSAT is trained to identify various features of all graphs. However, when
we invoke SAT solvers to realise the automatic search of characteristics used in
cryptanalysis, the SAT problems we are interested in constitute only a small sub-
class of all possible SAT problems. That is to say, we do not require a powerful
classifier as NeuroSAT. What we need in this case is a relatively weaker classifier,
which only works well on a small sub-class of SR(U(1,∞)). It is easier to train
a customised classifier on a restricted domain, intuitively, since the features of
the graphs in the sub-class are not as versatile as those in G. Enlightened by this
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observation, we manage to apply NeuroSAT to identify the optimal differential
characteristic of GIFT. We name this customised classifier as NeuroGIFT.

Similar Structures in Graphs. Although NeuroSAT is trained with small-scale
SAT problems, the authors attempt to extend its scope of application and employ
it to solve bigger problems in the test phase. The performance of the network in
the generalised case is not very good. A possible explanation is that the diversity
of graphs is affected by the number of nodes in the graphs. Thus, in the gen-
eralised case, there may exist some features that NeuroSAT never saw during
the training phase, and NeuroSAT does not know how to make decisions with
these novel features. In cryptanalysis, when we consider the search of differential
characteristics for iterative ciphers, the clauses for one round of difference prop-
agation are iterated several times. Thus, the graphs of SAT problems regarding
different lengths may share a similar structure. We illustrate the graphs of SAT
problems from 5 rounds to 8 rounds of GIFT in Fig. 3. From Fig. 3, we can iden-
tify an apparent iterative property. The outer layers of these figures are similar,
and the graphs corresponding to the long characteristics contain more internal
layers than those related to short characteristics. This figure is to be compared
with Fig. 5, which shows that the graphs for lower number of rounds appear to be
disconnected. In contrast, for 5 to 8 rounds, the graph is connected. We consider
the possibility to apply a network trained with SAT problems no more than r
rounds to predict the satisfiability of SAT problems longer than r rounds. The
intuition is that if NeuroGIFT could learn the rule of iteration in the graphs,
the generalisation would be more accessible than the case in NeuroSAT.

3.2 Construction of Training Set

In NeuroSAT, the information on the graph is involved in the matrix M . Thus,
for NeuroSAT, identifying the graph is equivalent to recognising the matrix. The
construction of SR(U(1,∞)) ensures that M may take any pattern in theory.
Nevertheless, since we restrict ourselves to the specific kind of SAT problems
in NeuroGIFT, the pattern of M is almost fixed. In the case of GIFT, only the
input/output differences and the number of rounds constitute the variations of
M . To guarantee the generality of the model, we must generate the samples,
carefully.

Similarly to the case of NeuroSAT, the training set of NeuroGIFT is com-
posed of pairs of SAT problems - one is SAT sample, and the other one is UNSAT
sample. Let kr denote the number of active S-boxes in the optimal differential
characteristic for r rounds. In all our SAT formulations, we add a constraint
stating that the number of active s-boxes must be kr. In our SAT samples, the
variables of the SAT problem corresponding to the input and output difference
are fixed to values δin, δout such that there exists a differential characteristic
with kr active S-boxes starting with δin and ending with δout. In our UNSAT sam-
ples, the corresponding variables are set to δin, δout, such that there exists no
differential trail with kr active s-boxes starting with δin and ending with δout.
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(a) 5-round SAT problem. (b) 6-round SAT problem.

(c) 7-round SAT problem. (d) 8-round SAT problem.

Fig. 3. Graphs of our SAT problems with different numbers of rounds.

To generate the SAT samples in the training set, we first generate the input
and output differences of all optimal characteristics for the corresponding number
of rounds with the SAT solver Cryptominisat52. Then, we randomly pick one pair
of input and output differences and set them as the input and output differences
of one SAT sample. In this manner, the SAT samples are created one by one.

The selection of the UNSAT sample is technical and will affect the quality of
the final classifier. First, note that the complementary set of the set O consist-
ing all optimal characteristics contains all possible characteristics overriding the
condition of the minimum number of active S-boxes as well as all impossible
characteristics, i.e., we have

U\O = P ∪ I,

where U is the set of all characteristics, P denotes the set of all possible char-
acteristics overriding the condition of the minimum number of active S-boxes
and I stands for the set composed of all impossible characteristics. A natural
way to draw the input and output differences of the UNSAT samples is to set
them as random numbers. Because every bit of a random number has an equal
chance of being a zero or a one, the Hamming weight of the random number in
nibble is usually high3. However, the input and output differences of an optimal
2 https://github.com/msoos/cryptominisat.
3 The probability that any nibble of a random number equals 0x0 is 1/16.

https://github.com/msoos/cryptominisat
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characteristic usually have relatively low Hamming weights. This distinction on
the Hamming weight results in that the characteristics with random input and
output differences only cover the cases in I and a subset of P. A shortcoming
of employing this kind of UNSAT samples is that NeuroSAT cannot learn com-
prehensive information in the underlying space of the training set. Just deciding
by observing the Hamming weights of the input/output differences enables it to
acquire high success probability in the training phase. Whereas it barely makes
right predictions when we feed it with UNSAT samples having low Hamming
weights in the input/output differences during the test phase.

To overcome this shortage, we should make sure that the UNSAT samples will
adequately cover all cases in the set U\O. We utilise the following procedures to
generate the r-round UNSAT samples.

1. Suppose that the optimal r-round characteristic has kr active S-boxes. We
call Cryptominisat5 to output characteristics with kr + 1, kr + 2, . . ., 16 · r
active S-boxes as many as possible4 and store these solutions into Filekr+1,
Filekr+2, . . . , File16·r, respectively.

2. Every time we are required to generate a UNSAT sample, we randomly select an
integer seed s at random and compute the value c = s mod (16r+1). If kr <
c � 16r, we sample a pair of input and output differences from the Filec and
set them as the input and output differences of the UNSAT sample. Otherwise,
the UNSAT sample is given with random input and output differences.

In this way, we guarantee that the UNSAT samples are almost uniformly dis-
tributed over the set U\O. In the training phase, the network may ‘see’ different
kinds of counterexamples, which include not only the characteristics with con-
tradictions but also characteristics with a different number of active S-boxes. It
tries to learn the features in these graphs, and evaluate its learning outcome in
the test phase.

Note that we do not take into account the differential effect: there may exist
differentials for which the best differential characteristic has a relatively low
probability, but that over all possible differential characteristics, have a high
probability. However, we verify (using CryptoMiniSat), for each of our UNSAT
samples, that the best corresponding differential characteristic is not optimal.

We present the three versions of the corresponding classifier, NeuroGift.

3.3 Three Versions of NeuroGIFT

Our experiments resulted in three versions of NeuroGift:

– NeuroGift-V1 is the baseline model. The samples are generated as described
in Sect. 3.2.

4 Since the solver has limited computation power, we cannot obtain all solutions.
However, with the observation on the outputs, we think these solutions are enough
to ensure the versatile of the sample space.
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– NeuroGift-trunc is designed to verify whether NeuroGift-V1 actually learns
the resolution of the SAT problems. Hence, the variables corresponding to
the objective function are removed from the SAT problems.

– NeuroGift-V2 is our best classifier. We keep the input and output differences
in the SAT and UNSAT samples of one pair have same number of non-zero 4-bit
nibbles. By forcing the SAT and UNSAT samples to be more similar, we hope
to force NeuroSat to learn the actual resolution of the formula.

3.4 Parameter Setting

After each epoch of training, we evaluate the performance of the classifier on the
training set. Let T denote a classification as positive, F denote a classification as
negative, and let X ∈ {T, F}, Y ∈ {T, F} respectively represent the prediction
made by the classifier, and the ground truth. For instance, TT denotes num-
ber of samples the classifier correctly classified as positive, whereas TF denotes
the number of samples classified as positive while actually being negative. The
success probability (or accuracy) PS of the classifier is

PS =
TT + FF

TT + TF + FT + FF
.

This quantity expresses the fraction of the samples that are correctly classified.
There are many tunable parameters for NeuroSat, which affect the performance
of the network. It is observed that different parameters have different levels of
influence on the model. We list those with non-negligible influences.

– The type of learning rate decay - There are three ways to modify the learning
rate during the training phase, which are no decay, polynomial decay and
exponential decay. Usually, we are suggested to anneal the learning rate
over time in training deep networks, since it may help us avoid wasting com-
putation bouncing around chaotically with little improvement for a long time.
However, when to decay the learning rate and how to decay it are somewhat
difficult to determine because NeuroSAT is a very complicated network. So,
we take a no decay style in all experiments.

– Learning rate α - Adjusting the learning rate is a little technical. A high
learning rate will make the system unstable, while it takes the model quite a
long time to converge under a low learning rate.

– �2 weight - This term, which enables us to implement �2 regularisation, is
used in the objective function. The intention of exploiting �2 regularisation is
to escape overfitting and enhance the generalisation ability of the model.

– Clip value - It is used to clip the gradient, and this countermeasure allows
us to ensure the gradient within a reasonable scale. With this method, we
can effectively prevent the occurrence of gradient explosion, which is often
encountered in training a deep network.

The memory complexity of NeuroSAT is related to the number of iterations
T and the number of nodes in one batch. Increasing the number of iteration
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T , which is the depth of the deep network, improves the performance of Neu-
roSAT, potentially. Increasing the number of nodes in the batch will accelerate
the training phase. In NeuroGIFT, we must allocate more nodes in the batch
since the problems under consideration involve much more variables and clauses
than those in NeuroSAT. Thus, the value of T remains unchanged in our case,
that is, T = 26.

4 Experimental Results

All our experiments are performed with classifiers trained on problems between
1 and 6 rounds. In additional experiments, we evaluate the generalisation ability
of these classifiers on problems from 7 to 9 rounds. We give the final accuracy
of our classifiers with the following setting: The training and test set composed
of 4 to 6 rounds samples. More specifically, we train the networks on 600 pairs
of problems, composed of 200 4-round problems, 200 5-round problems, and 200
6-round problems. The test set is composed of 100 4-round problems, 100 5-
round problems, and 100 6-round problems. We use a learning rate of 2 × 10−5,
�2 weight of 10−7 and clip value: 0.5.

4.1 NeuroGift-V1

Our first set of experiments directly applies the training method described in
the previous section, and correspond to the classifier NeuroGift-V1.

In preliminary experiments, we use SAT problems varying from 1-round to
6-round to train and evaluate the model. We observe that, while the test results
are good for problems from 1 to 3 rounds, they become heavily biased for the
4 to 6-rounds samples. For the 6-round samples, the network almost regards all
SAT samples as UNSAT samples (Fig. 4).

Our hypothesis is that the low-round samples have a negative effect on the
accuracy of the resulting classifier. Indeed, the structure of the NeuroSat graph
for these samples is different from the general structure for more rounds. This
different structure is illustrated by Fig. 5 (1- and 2-round graphs) and Fig. 3
(5- to 8-round graphs). In particular, the graphs for shorter problems appear
to be disconnected, as opposed to the graphs for larger problems (4 and more
rounds). We conjecture that these disconnected graphs may lead the network to
learn biased solving strategies.

To verify our conjecture, we use a training set composed of problems varying
from 4-round to 6-round to train the network. We evaluate the classifier on a
test set with 60 pairs varying from 4-round problems to 6-round problems, and
the levels of confidence of the network for these problems are shown in Fig. 6.
Note that this training set and the one used to train the classifier in Fig. 6 have
the same amount of samples, but the scale of the vertical axis is enlarged.

It therefore appears that, for the basic classifier NeuroGift-V1, the training
set with problems on 4 to 6 rounds grants better results.
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Fig. 4. Confidence of the NeuroGift-V1 trained with pairs from 1 to 6 rounds, in blue
for the SAT samples, and in red for the UNSAT samples. (Color figure online)

(a) 1-round SAT problem. (b) 2-round SAT problem.

Fig. 5. Graphs corresponding to SAT problems with short lengths.
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Fig. 6. Confidence of the model on the shrunken test set.

The final test accuracy, in the setting described at the beginning of the
section, of the NeuroGift-V1 classifier, is 97%. From this classifier, we attempt
to extract a satisfiable assignment from the SAT samples, following the method-
ology presented in the NeuroSat article. However, we were not able to extract
a solution, leading us to wonder whether our model actually learns to solve the
SAT problem. The corresponding experiments are presented in the next section.
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(a) UNSAT sample.

T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

T = 11 T = 12 T = 13 T = 14 T = 15 T = 16 T = 17 T = 18 T = 19 T = 20

T = 21 T = 22 T = 23 T = 24 T = 25 T = 26 T = 27 T = 28 T = 29 T = 30

(b) SAT sample.

Fig. 7. Propagation of the vector L
(T )
∗ .

4.2 NeuroGift-trunc

One of our attempts at extracting a solution is illustrated on Fig. 7, through
the vectors L

(T )
∗ ’s related to different T ’s (1 � T � 30). The positive values are

represented in red while the negative values are displayed in blue. The darker
the colour, the larger the absolute value of the number.

An unexpected phenomenon can be observed: the variables within the black
frame, which are exactly the set of variables used to count the number of active
SBoxes, seems to be irrelevant to the decision of the classifier. The same pattern
can be observed for SAT and UNSAT samples.

Thus, we design NeuroGift-trunc to test whether NeuroGift-V1 really needs
this part from the SAT problems. This version is different from NeuroGift-V1 in
the construction of the samples. The setting of input and output differences for
the SAT and UNSAT samples is the same as the case of NeuroGIFT-V1. However,
for all samples, we delete the auxiliary variables and clauses corresponding to the
objective function. Thus, SAT problem now encodes the question of whether the
characteristic with the input and output differences is possible or not, whereas
the labels are still related to the objective function.
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The final accuracy of this model is 99%: NeuroGift-trunc performs even bet-
ter than NeuroGift-V1. This is very counter-intuitive, as the UNSAT samples
are not strictly unsatisfiable: the model does not really describe what a satis-
fiable sample is anymore. However, NeuroGift-trunc is able to predict the cor-
responding artificial labels. We conjecture that the very structure of the input
and output difference may give enough information for the classifier to succeed
solely based on the corresponding litterals. We therefore design a new model,
NeuroGift-trunc, where the training set is more carefully designed to eliminate
this structure.

NeuroGift-V2. In general, differential characteristics with an optimal number
of active SBoxes are such that their input and output difference have a given
structure. Typically, the number of non-zero nibbles in these differences is low.
While our experiments, described in AppendixB, did not provide definitive evi-
dence that NeuroGift-V1 makes decisions by counting the number of non-zero
nibbles of the input/output differences, we still wonder its performance after
removing this feature from the training set. In particular, making the number of
non-zero nibbles similar for the SAT and UNSAT samples may force the classi-
fier to learn more specialized resolution features. The resulting classifier is called
NeuroGift-V2. The innovation lies in the construction of the UNSAT samples. In
one pair of samples, we ensure that the Hamming weights of the input/output
differences of the UNSAT and SAT sample are equal, which is accomplished by the
following steps.

1. We randomly sample a pair of input and output differences corresponding
to an r-round optimal characteristic. Then, the Hamming weight hin of the
input difference and the Hamming weight hout of the output difference are
computed, respectively.

2. Two sets of integers {pin
0 , pin

1 , . . . , pin
hin−1} and {pout

0 , pout
1 , . . . , pout

hout−1} satis-
fying the following conditions are generated:

– pin
i and pout

j are random positive integers no more than 16;
– pin

i �= pin
j for all 0 � i < j � hin − 1;

– pout
i �= pout

j for all 0 � i < j � hout − 1.
pin

i ’s and pout
j ’s point out the non-zero nibble positions in the input and

output differences of the UNSAT sample.
3. The positions of the input (resp. output) difference lie in the set

{pin
0 , pin

1 , . . . , pin
hin−1} (resp. {pout

0 , pout
1 , . . . , pout

hout−1}) are set with random
non-zero 4-bit values. Moreover, the remaining positions are fixed as 0x0.

With this method, we eliminate the effect of the Hamming weight on the training
set.

On the same test set as the other 2 variants, NeuroGift-V2 achieves 100%
accuracy. However, we were still not able to extract a solution from the variable
embeddings.
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4.3 Generalisation to More Rounds

The results of the three models are consistent, and the best test accuracies we
obtained are respectively 97%, 100% and 99%. For comparison, the results of
the original NeuroSat article are given in Table 1. These results are encouraging,
and seem to give a positive answer to our main question, which was to deter-
mine whether NeuroSat could perform better on sets of problems sharing similar
structures, rather than random problems.

In essence, with only 600 pairs, our models were able to reach as much as
100% accuracy, whereas the best NeuroSat instance presented in the original arti-
cle only reached 85% accuracy, despite being trained on millions of pairs, and
studying problems with over 15 times less variables. For applications in cryptog-
raphy, the ability of a neural network to make predictions for more rounds than
it was trained for is very important. In particular, while solving the problem for a
few rounds might be easy, it generally becomes exponentially harder as the num-
ber of rounds increases. Therefore, when applying the techniques of NeuroGift to
other ciphers, we will not necessarily be able to generate an appropriate training
set for a high number of rounds efficiently.

In order to evaluate the generalisation abilities of NeuroGift, we pick our best
model (NeuroGift-V2), and tune its parameters for better results. After perform-
ing control experiments, the setting that resulted in the best generalisation was
the following. We train the model on 500 pairs of problems from 1 to 5 rounds
(100 of each), with learning rate 10−5, l2 weight: 10−9, and clip value: 0.5. Under
this setting, we evaluated the generalisation of NeuroGift-V2 on a different test
set for each number of rounds, from 6 to 10. The resulting test accuracies are
given in Table 3.

Table 3. Generalisation ability of NeuroGIFT-V2.

Rounds 6 7 8 9 10

Accuracy 100% 100% 99% 99% 98%

The generalisation accuracy remains very close to 100%, even for 10 rounds
problems, even though 10-rounds problems have 4 times more variables (4044)
compared to the 5-rounds samples seen in training. As a comparison, in the
original NeuroSat article, the accuracy dropped to approximately 40% in a
similar setting (going from at most 40 variables to 160), even though the num-
ber of message passing iterations was increased from 26 to 1000. In contrast, we
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restricted ourselves to 26 iterations. In additional experiments, we observed that
NeuroGift-V1 and NeuroGift-trunc did not generalise as well as NeuroGift-V2.
In particular, the accuracy of NeuroGift-trunc drops to below 90% for 9 rounds.
This could be an indication that NeuroGift-V2 actually learns something closer
to the actual resolution of the SAT problem, even though we were not able to
completely confirm it.

5 Conclusion

Related Work and Extentions. Following the publication of NeuroSat, a wide
range of articles proposing extentions were published. We believe the most
promising one for our application is the PDP framework. The PDP framework
[AMW19], which is an extension of the CircuitSAT framework [AMW18], belongs
to the deep learning SAT solver family as NeuroSAT [SLB+18]. But whereas
NeuroSAT is a supervised framework, the work of Amizadeh et al. takes the
advantage of the probabilistic inference formulation in order to propose an unsu-
pervised setting. In fact, they introduce a differential expression of the energy
function that they want to minimize. With this formulation of the problem,
the work in [AMW19] outperforms the NeuroSAT model. Moreover, the work
allows three different times for learning (Propagation Decimation and Predic-
tion) which leads to an hybrid model. In fact, the three stages are modular: they
can be a fully a neural embedding block or they can be replace by a traditional
non trainable block (like the Survey-propagation guided decimation algorithm
[MMM09] as propagator block for example). However, despite a highly paral-
lelizable model, the training and the inference is quite long (in comparison to
NeuroSAT) when the number of variable of the SAT problem growth. This is
certainly due to the combination of the fact that the model has twice more
embedding than NeuroSAT and the unsupervised setting. Finally, the second
shortcoming of the model is that it is not clear how the model can label an
UNSAT problem.

Discussion of our Results. The use of specialized solvers based on machine learn-
ing, rather than classical solvers, seems to be a promising research direction.
The reason why boils down to the distinction between genericity and speciality:
a solver that only aims at solving cryptanalysis problem does not need to be
good at unrelated problems, and may therefore perform better on very specific
problems. The main limitation to the use of such solvers, if the scaling issues
are solved, will be their approximate nature. A solver such as NeuroGift gives a
likelyhood for the presence of a characteristic with k active S-boxes, as opposed
to a traditional solver that would give an exact answer. While an approximation
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is, in itself, useful (after all, using the best differential characteristic is, in itself,
an approximation to the resistance of a cipher against differential attacks), we
believe further research should consider integrating machine learning solvers as
heuristics to drive the search of classical solvers. This approach has proven effi-
cient for generic SAT solving [SB19]. We believe combining machine learning
based approaches with state-of-the-art solvers will enable progress on problems
that are still difficult for classical solvers, such as cryptanalysis problems on hash
functions.

Conclusion. In this article, we present models for the resolution of differen-
tial cryptanalysis problems with NeuroSat. We show that, when trained on a
restricted set of problems, rather than the set of all SAT problems, the resulting
classifier NeuroGift scales to significantly more variables than the original Neu-
roSat. However, more experiments are required to confirm that NeuroGift is able
to determine the values of the variables, rather than just classifying based on
some hidden structure in the input and output differences. In particular, future
works includes the design of a model where the structure of the UNSAT samples
is even closer to that of the SAT sample, in order to force NeuroGift to learn the
actual resolution. For instance, we could set the input and output differences of
the UNSAT samples to those of two different SAT samples.

While the results presented in this paper are encouraging, they do not address
a fundamental limitation of NeuroSat: the size of the generated graph. For 10
rounds, the graph already has over 20000 nodes. As a comparison, on our orig-
inal benchmarking GPU (GTX 970), we were not able to generate the graph
for more than 7 rounds (11278 nodes) without exhausting the graphic card’s
memory. Therefore, for a broader application of these methods on harder crypt-
analysis problems, a solution must be found to restrict the size of the graph. The
experiments performed with NeuroGift-trunc seem to be a promising option: for
10 rounds, the size of the graph is only 7616 nodes. On the other hand, the gen-
eralisation capabilities of NeuroGift-trunc are not on par with NeuroGift-V2,
so further improvements are needed. A potentially promising alternative left for
future work would be to merge NeuroGift-V2 and NeuroGift-trunc into a single
model, with the training set constraints of NeuroGift-V2, and the truncation of
the objective function from NeuroGift-trunc. Our hope is that the results pre-
sented in this paper lay the groundwork for a larger scale application of machine
learning based solvers to cryptanalysis problems. From these first experimen-
tal results, future research directions include studying primitives and number of
rounds which are more challenging to for classical dedicated solvers.
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Appendix

A Clauses for the S-Box of GIFT

The 36 clauses are provided as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∨ x1 ∨ x2 ∨ x3 ∨ y2 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y1 ∨ y2 = 1
x0 ∨ x1 ∨ x2 ∨ y0 ∨ y1 ∨ y2 = 1
x1 ∨ x2 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x1 ∨ x2 ∨ x3 ∨ y1 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y1 ∨ y2 ∨ y3 = 1
y0 ∨ w = 1
y1 ∨ w = 1
y2 ∨ w = 1
y3 ∨ w = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y2 = 1
x1 ∨ x2 ∨ x3 ∨ y2 ∨ y3 = 1
x1 ∨ x3 ∨ y0 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ y0 ∨ y2 ∨ y3 = 1
x0 ∨ x3 ∨ y0 ∨ y2 ∨ y3 = 1
x0 ∨ x2 ∨ x3 ∨ y2 ∨ y3 = 1
x0 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y3 = 1
x1 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x1 ∨ x2 ∨ x3 ∨ y2 ∨ y3 = 1
x1 ∨ x3 ∨ y0 ∨ y2 ∨ y3 = 1
x0 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x1 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ w = 1
x0 ∨ y0 ∨ y1 ∨ y2 ∨ w = 1
x1 ∨ y0 ∨ y1 ∨ y3 ∨ w = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y1 ∨ y3 = 1
x0 ∨ x1 ∨ x3 ∨ y0 ∨ y2 ∨ y3 = 1
x0 ∨ x2 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x3 ∨ y0 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y0 ∨ y1 ∨ y3 = 1
x1 ∨ x2 ∨ x3 ∨ y0 ∨ y1 ∨ y2 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y0 ∨ y1 ∨ y3 = 1
x0 ∨ x1 ∨ x2 ∨ x3 ∨ y0 ∨ y1 ∨ y3 = 1

.

B Impact of the Samples with Low Hamming Weight

In order to evaluate the impact of samples where the difference has low hamming
weight, we plot the confidence of the network after each message passing iteration
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Fig. 8. Confidence for 6-round Samples. The horizontal axis corresponds to the number
of iterations, and the vertical axis is the value of y(T ). The circles show a characteristic
feature of the UNSAT samples.

during the test phase of NeuroGift-V1, while keeping track of the structure of the
input and output difference. Figure 8 illustrates the confidence of the network
for 6-rounds samples. We can observe that the curves for all SAT samples of the
same length are similar. But the curves of the UNSAT samples are different. We
think that two parameters result in the difference. One reason is the Hamming
weight of the input/output differences. Another one is the differential effect. We
analyse the 60 pairs of samples in the test set. The Hamming weight of the
UNSAT samples are provided in the figures. The samples with the same Hamming
weight are illustrated with same color. It can be found that the curves with
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same color are similar. An interesting example is the UNSAT sample of the 20-th
pair of 6-round samples, this is the unique sample that is wrongfully classified
by the network. Firstly, the Hamming weight of the input/output differences
of this sample is 4, which is even smaller than the value of the optimal trail.
Another fact is that the corresponding differential only have one trail with 16
active S-boxes. Since NeuroGift-V1 is designed to identify the topology structure
of the figure, the dominant trail property causes the network to make the wrong
decision.
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Abstract. Small commercial Unmanned Aerial Systems (UASs), called
drones in common language, pose significant security risks due to their
agility, high availability and low price. There is, therefor, a growing need
to develop methods for detection, localization and mitigation of malicious
and other harmful operation of these drones. This paper presents our
work towards autonomously localizing drone operators based only on
following their path in the sky. We use a realistic simulation environment
and collect the path of the drone when flown from different points of view.
A deep neural network was trained to be able to predict the location of
drone operators, given the path of the drones. The model is able to
achieve prediction of the location of the location of the operator with
73% accuracy.

Keywords: Drone · UAS · Surveillance · Security · Deep learning ·
Deep neural network

1 Introduction

The massive use of drones for civilian and military applications raises many
concerns for airports and other organizations [4]. In December 2018, for example,
drones infamously caused the shutdown of the Gatwick airport in the United
Kingdom. This also happened in Germany, where a drone caused the suspension
of flights in Frankfurt. As the threats that drones incur include also surveillance
and active attacks, defense agencies are looking for ways to mitigate the risks
by locating and tracking operators of drones [3].

A number of different sensor types are available for the detection and locali-
sation of drones and their operators. The most common sensor types studied by
the research community used commercially are: Radio Frequency (RF) [6,10],
Electro-Optical (EO), acoustic and radar. All the approaches that we are aware
of for locating operators, not just the drones, use RF sensors. There are auto-
matic and semi-automatic methods for locating the operators based on the radio
communication between the drone and its operator. There are a number of prob-
lems with this approach. Firstly, such methods are usually tailored to a specific
brand of drones. Furthermore, the radio signal can only be recorded near the
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drone. Finally, there are ways for malicious drone designers to apply cryptogra-
phy and electronic warfare techniques to make localization by analysis of radio
signals very difficult.

In this work we propose a novel method for the localisation of UAS operators
using only the path of the drone in the sky. The approach is based on the obser-
vation that the behaviour of a drone in the air is visibly different depending on
where the pilot is. An experienced external viewer can usually tell if the pilots
uses First-Person-View (FPV) machinery or if they look at the drone from east
or if they look at it from a distance. We assume that the defenders are capable
of tracking the path of the drone in the sky, and show that this information
is enough to gain valuable information on the location of the operator. While
the path can be measured from a relatively large distance [1], it contains infor-
mation because the operators usually react to environmental conditions such as
sun dazzle, obstructions, etc. Our experiments show that the reactions of the
operators to these conditions gives away enough information for obtaining sub-
stantial information about the location of the operator by analyzing the path of
the drone in the sky. Note that we are not necessarily aiming for full localization
in all setting, even the ability of distinguish between three different operators,
looking from three different points of view, carrying the same known task (which
is what we demonstrate in this paper) can be useful for defenders. For example,
the defenders of an airport cad use such knowledge to block the line of sight
of the pilot of an infiltrating drone. To the best of our knowledge, we are the
first to provide a data-set of flight-paths labeled with the point-of-view of the
operator and to train neural networks on such data.

2 Methodology

To allow for a controlled environment, we conducted all our experiments with a
flight simulator that provides a realistic flight experience for the operator that
includes sun gazes, obstructions, and other visual effects that produce the reac-
tions of the operators that allow us to identify their location. Specifically, we used
AirSim (Aerial Informatics and Robotics Simulation), which is an open-source,
cross platform simulator for drones, ground vehicles such as cars and various
other objects, built on Epic Games’ Unreal Engine 4 [5]. AirSim provides more
than 10 km of roads with many city blocks. We used it via its API that allowed
us to retrieve data and control drones in a safe environment. AirSim supports
hardware-in-the-loop with driving wheels and flight controllers physically and
visually realistic simulations. This allowed us to provide drone pilots with a real
remote control and a simulation of the full piloting experience, including the
artifacts that cause pilots to perform maneuvers that unintentionally disclose
their position to the defenders that watch the path of the drone.
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Fig. 1. The setting of our experiments.

As shown in Fig. 1, we collected the path of the drone when flown from three
different viewpoints. Two points, marked with 1 and 2, on two opposite sides of
the intersection and a third point, marked by 3, from First Person View (FPV)
where the operator gets the perspective of a real pilot that seats aboard the
drone. In all the experiments the pilots were instructed to fly the drone from
point A, in the middle of the intersection, to point B, at the bottom left.

Fig. 2. A log of a flight produced by AirSim.

The results of the experiments were files, such as the one presented in Fig. 2,
containing the log of the flight produced by AirSim. This simulates the data that
we expect that the defenders can collect. It contains the full path information
including the position, the orientation, and the picture of the drone in each time
step. As elaborated below, we did not always use all this information with full
accuracy, because it is not necessarily available.

Fig. 3. A comma separated file ready to be used for machine learning.

We then parsed these text files and translated them to the format shown in
Fig. 3 that is more amenable for efficient machine learning tasks. The data-set
that we have created is publicly available and is considered one of the contri-
butions of this paper. The data-set contains 81 flights, 27 from each operator
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location (A, B, or C). Each flight is represented by a file with 360 features con-
sisting of 120 (X, Y, Z) triplets, each representing the position of the drone at
a specific time along the flight. The location of the drone was captured in 8 Hz,
i.e., we recorded an (X, Y, Z) triplet every 125 ms.

3 Results

In this section we report on the main results we obtained with our experiments.

Fig. 4. A dense neural network we used for identification of the location of the drone’s
operator.

3.1 The Path of the Drone Gives Away Information on the Location
of the Pilot

We used the data-set described in Sect. 2 to train neural networks with different
parameters and typologies, as shown in Fig. 5. The topology that yielded the
best results is built of two dense layers as shown in Fig. 4. It allowed us to
demonstrate that it is possible to infer significant information about the location
of the operator form by analyzing the path of the drone.

We repeated the training and quality measurement process many times with
an automatic script that created a variety of similar models by varying the
parameters of the model shown above. We chose the variation of the model that
produced the best results, and tested its accuracy with respect to records in
the data set that were not used for training. This model was able to guess the
viewpoint of the operator with 73% accuracy.

3.2 The Orientation of the Drone Is Not Needed

Beyond location, the defender that observes the drone can also measure its
Euler angles. Because such measurements may require more expensive equip-
ment mounted closer to the drone, we ran experiments to measure how much
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batch size. number of neurons epochs activation function Accuracy
10 80 13 relu 73.99
20 80 13 sigmoid 73.99
20 80 10 relu 73.64
10 20 10 elu 73.64
20 80 13 relu 73.28
10 20 8 relu 73.28
20 20 13 sigmoid 72.92
10 80 10 relu 72.92
10 20 13 elu 72.57
10 80 8 sigmoid 72.57
.
.
.
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Fig. 5. The variations of the neural networks produced by our script.

this information can contribute to the accuracy of identification of the pilot’s
point-of-view.

To this end, we extended our data-set with information about the orientation
of the drone along its flight. When trained and tested with both location and
orientation data, our neural networks achieved accuracy of 74%, which is a one
percent improvement over the accuracy we obtained with location information
only. When trained with orientation data only, the performance degraded a little
to 71% precision. Our conclusion is that it seems that there is no need for
measuring the orientation of the drone, if this entails costs and limitations.

Our explanation to the fact that the orientation information did not con-
tribute much to the accuracy of the inference is that the location and the orien-
tation variables are coupled. Specifically, the speed of the drone in each direction
is a direct function of the thrust of the rotors and the Euler angle that corre-
sponds to that direction. Thus, the location of the drone can be inferred within
some error margins by integrating its rotations on all axes. Evidently, the neural
network that we have designed was able to take advantage of these relations
when we asked it to use only position or only rotation information.

3.3 Recurrent Networks Are Not Better for the Task

Since our motivation was to identify temporal patterns in the data, we thought
that it may be possible to improve the accuracy of the network in performing
the required task by applying a recurrent neural network (RNN). Such networks
have a temporal dimension so they can handle time and sequences.

We tried the recurrent topologies depicted in Fig. 6. As shown in Fig. 7, these
networks yielded only 55% accuracy. We do not know how to explain this per-
formance degradation.
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Fig. 6. Recurrent neural networks that we applied.

3.4 The Effect of Measurement Disturbances, Measurement
Accuracy and and Sampling Rate

While we ideally want to measure the a time-varying position of the drone so we
can accurately reconstruction of the signal from collected discrete data points,
the sampling speed and precision of the measurement instruments can directly
affect the ability to reconstruct the signal [7]. Ideally, the measurement infras-
tructure captures the signal continuously with perfect accuracy (precision and
trueness). But in reality, many devices sample signals discretely. And they are
affected by noise. Systematic noise affects trueness, while random noise compro-
mises precision. Clearly, the more information about the signal we can capture
with the data points, the better accuracy. Where necessary, the amount of sig-
nal data can be increased by collecting more samples per unit of time, and by
improving the signal-to-noise ratio of each sample.

Fig. 7. Recurrent neural networks that we applied.

Figure 8 shows the trade-off between sampling rate and precision. The table
shows that, as expected, reducing the sampling frequency reduces the accuracy
rather dramatically. This shows that the identification of the position of the
operator of the drone relies on relatively high frequency properties of the signal,
i.e., on variation of the path that can only be detected when the position of the
drone is sampled at high frequency.
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Rate Time diff. Accuracy
Hz. seconds
8 0.125 73.57
4 0.25 67.5
3 0.375 60.35
2 0.5 56.07
4/3 0.75 47.28
8/7 0.875 44.64
1 1 40.71

Fig. 8. The effect of the sampling rate on accuracy.

Figure 9 shows the trade-off between the sampling precision and the accu-
racy of the estimation. This data shows that our ability to estimate where the
operator of a drone is does not drop very dramatically when the location of
the drone is measured with lower precision. This indicates that the maneuvers
that the network bases its estimation upon are relatively wide, i.e., we see that
the network is able to detect the differences even with a precision level of one
decimeter.

Figure 10 shows the effect of sampling disturbances on the accuracy of the
estimation. This data shows that event with noise that add up to 5 m to the
measurement, the neural network is able to maintain high estimation accuracy.
This data indicates that the network is capable to ignore the distur

Sampling precision Estimation
meters Accuracy
10−4 73.57
10−3 72.85
10−2 72.85
10−1 68.21
1 37.85

Fig. 9. The effect of the sampling pre-
cision on estimation accuracy.

Sampling Disturbance Estimation
Uniform[0,x] meters Accuracy

0 73.57
1 67.14
5 62.14
10 48.57
15 46.43

Fig. 10. The effect of the sampling pre-
cision on estimation accuracy.

4 Related Work

The usual way for locating drone operators is via RF techniques. Locating drone
signals can be a challenge due to the amount of other WiFi, Bluetooth and IoT
signals in the air. Drone operation radio signal have short duration, their fre-
quency usually hops over most of the band and they have relatively low power.
To effectively collect these signals, network-enabled sensors must be distributed
around the flight area so the defenders can detect and locate the needed sig-
nals. For successful pinpointing of the operator, the signals should be isolated
in frequency and time. After detecting the RC, the geolocation system must tri-
angulate the signal using data it collects from the sensors. Since broad scanning
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of all the traffic is expensive due to sensor allocation and computational com-
plexity, our work may complement RF based system by narrowing the search to
more probable areas based on the drone path, which is easier to follow.

Another way that our work can complement RF based technique is by the
observation that there is a strong association between the maneuvers of the drone
and the command patterns sent via RF. This may allow to solve a crucial issue
with RF based techniques that have trouble identifying the signal related to
a specific drone in an urban environment where many similar signals (possible,
even, from other drones of the same brand). We can train our neural networks to
identify command patterns of the signal transmitted from the operator when the
drone is turning, rotating, accelerating, and decelerating and use it to connect a
signal to a specific drone in the air.

Lastly, RF based techniques can only detect the antenna from which the
signal is sent. This may allow to intercept that antenna, but malicious operators
can easily redirect their signal to another antenna without interrupting their
mission. Our technique allows to get direct information about the viewpoint
of the operators which allows more effective interception. Even identifying that
the operator uses the FPV viewpoint can be useful, because the defenders can
distract this view by clouding the area of the drone.

In the technical level, our work is also related to driver identification [2,8,9].
Models of driving behaviors is an active field of research since the 1950s. Because
driving consists complex actions and reactions, different driver express different
driving behaviors in different traffic situations. These differences can be detected
by observing how drivers use the pedals, the way they use the steering wheel,
how they keep their eyes on the road, how much distance they keep from the
other cars, and many other factors. There is much work on using neural networks
for translating sensory data that is easily collected while driving to an educated
guess of who is currently driving the car. This work is related to ours in that
it also tries to use machine learning for inference of hidden information from
human behaviour. It is interesting to note that while recurrent networks are
the state of the art in the domain of driver identification, we obtained better
performance with dense networks.

5 Conclusions and Future Work

Our initial results indicate that observing the path of a drone can indeed serve
to identify the location of the drone’s operator. It would be interesting to explore
what additional data can be extracted from this information. Possible insights
would include the technical experience level of the drone operator, where was
the drone operator trained in flying, and possibly even the precise identity of the
operator. Another direction would be in improving the machine learning pipeline.
It would be interesting to compare different deep learning architectures, espe-
cially those tailored for the treatment of time-series data. The data-set used for
training and evaluating our models is naturally smaller than machine-generated
corpora used for other tasks such as malware classification. As such, it would
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be interesting to look for a feature set which can be used as input to a classical
machine learning algorithm such as KNN or SVM, which traditionally requires
less data than deep learning models.
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Abstract. Ethereum is a blockchain platform where users can transact
cryptocurrency as well as build and deploy decentralized applications
using smart contracts. The participants in the Ethereum platform are
‘pseudo-anonymous’ and same user can have multiple accounts under
multiple cryptographic identities. As a result, detecting malicious users
engaged in fraudulent activities as well as attribution are quite difficult.
In the recent past, multiple such activities came to light. In the famous
Ethereum DAO attack, hackers exploited bug in smart contracts stole
large amount of cryptocurrency using fraudulent transactions. However,
activities such as ponzi-scheme, tax evasion by transacting in cryptocur-
rency, using pseudo-anonymous accounts for receiving ransom payment,
consolidation of funds accumulated under multiple identities etc. should
be monitored and detected in order to keep legitimate users safe on the
platform. In this work, we detect malicious nodes by using supervised
machine learning based anomaly detection in the transactional behavior
of the accounts. Depending on the two prevalent account types – Exter-
nally Owned Account (EOA) and smart contract accounts, we apply two
distinct machine learning models. Our models achieve a detection accu-
racy of 96.54% with 0.92% false-positive ratio and 96.82% with 0.78%
false-positive ratio for EOA and smart contract account analysis, respec-
tively. We also find the listing of 85 new malicious EOA and 1 smart con-
tract addresses between 20 January 2020 and 24 February 2020. We eval-
uate our model on these, and the accuracy of that evaluation is 96.21%
with 3% false positive.

Keywords: Ethereum blockchain · Malicious accounts · Machine
learning · Anomaly detection · Feature extraction

1 Introduction

In the last decade, blockchain has emerged as an innovative technology plat-
form for a variety of cryptocurrency as well as other applications. The Bitcoin
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cryptocurrency ecosystem [12] is built on the blockchain technology. Transac-
tions between participants of a blockchain platform are verified and agreed on
through a distributed consensus mechanism which obviates the need for a cen-
tralized authority. While cryptocurrency was the first demonstrated application
of blockchain technology, due to the fact that blockchain enables tamper resis-
tant property to the history of transactions using cryptographic hashing, and
it enables authentication of transactions through public key cryptography, it
has proven itself to be a potential technology for building trusted interaction
platform between multiple participants involved in mutual transactions without
having to trust any individual participant. Bitcoin, Ethereum, Monero etc., are
blockchain based cryptocurrency platforms for financial transactions and also
offers pseudo-anonymity to users. This has also given rise to a lot of malicious
activities on these platforms which makes it unsafe for legitimate users on these
platforms. Therefore, automated detection of users who might be engaging in
malicious activities is of utmost importance.

The pseudo-anonymity of participants led the hackers and money launderers
to be part of the network without any fear attribution. However, since pseudo-
anonymity does not provide guaranteed anonymity, researchers have been engaged
in deducing pattern of transactions that could then be matched against fraudulent
transaction patterns. It is worth noting cryptocurrencies are still illegal in some
countries as the cryptocurrencies are generated in these platformswithout any con-
nection to the central banking system in the countries, leading to tax evasion, illegal
transactions, ransom payments etc. Soon after the inception of the bitcoin, Online
underworld marketplaces like Silk Road emerged for selling contraband drugs and
other illegitimate items. A vulnerability in the Parity multi-signature wallet on the
Ethereum network resulted in a loss of 31 million US Dollars in a few minutes. If
some benevolent hackers had not stopped the ongoing exploitation, it might have
resulted in a loss of 180 million US Dollars [1].

It is therefore, our focus in this work to find irregularities and the fraudu-
lent transactional behaviors in the Ethereum network. We investigate the past
Ethereum transaction data from its genesis till a certain date (Ethereum being
a public blockchain, one can download the entire data) in search of abnormal
activities. We extract relevant information to train machine learning models for
anomaly detection. The main contributions of this work are as follows:

– We collect the malicous Ethereum addresses of various attack types like phish-
hack, cryptopia-hack, etc. from multiple sources and filter them to obtain
relevant addresses. We also label non-malicious addresses after data prepro-
cessing.

– We extract features from the transactions and use feature engineering to find
the relevant features for classification.

– We detect the malicious nodes in the Ethereum network with a good accuracy.
– We evaluate our model on newly collected 85 malicious EOA and 1 smart

contract addresses between 20 January 2020 and 24 February 2020. The model
achieves a good evaluation accuracy.
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The rest of the paper is organized as follows: Sect. 2 briefly describes
the Ethereum blockchain. Section 3 describes relevant related work. Section 4
discusses the proposed methodology. Section 5 describes evaluation results.
Section 7 concludes the work.

2 Background

Vitalik Buterin developed Ethereum [6] in 2013. It is a step forward in the
blockchain technology which brought advances over the Bitcoin blockchain tech-
nology by introducing a programming language which is Turing-complete, and
providing a program execution platform in the blockchain. The programs that
run on Ethereum are called smart contracts. One can build complex decen-
tralized applications using smart contracts. The cryptocurrency of Ethereum
is called Ether, which fuels the Ethereum network. Ethereum Virtual Machine
(EVM) is the computing infrastructure for Ethereum nodes. Currently the main
consensus mechanism used by Ethereum blockchain is Proof of Work (POW),
but Ethereum announced that it will switch to Proof of Stake (POS). The reason
is that that Proof of work is a computationally-intensive process and consumes
an enormous amount of energy.

2.1 Ethereum Accounts

Ethereum has two types of accounts which participate in transactions on the
platform. Figure 1 shows how these accounts interact with each other.

1. Externally Owned Account (EOA): The end-users create EOAs to
become participants in the Ethereum network. Participants generate private
key for each account to digital sign transactions. An externally controlled
account may have a non-zero Ether balance, and can perform transactions
with other EOAs and contracts.

2. Contract/Smart Contracts: These are the self-executing code which can
be invoked by EOAs or by another contract as an internal transaction. A con-
tract also may have an Ether balance and an associated code which performs
arbitrary complex operations on execution.

2.2 Ethereum Transactions

There are three types of transactions in the Ethreum network and they are as
follows:

– Fund Transfer Between EOAs: In this type of transaction, one EOA
transfers funds to another EOA as shown in Fig. 2.
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Fig. 1. Account interaction

Fig. 2. Fund transfer between EOA

– Deploy a Contract on the Ethereum Platform: In this type of transac-
tion, EOA deploys a contract using a transaction on the Ethereum network,
as shown in Fig. 3.

Fig. 3. Deploy a contract on ethereum network
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– Execute a Function on a Deployed Contract: In this type of transaction,
Ethereum sends a transaction to execute functions defined in a contract. The
transaction gets performed after the contract deployment, and Fig. 4 shows
such a transaction.

Fig. 4. Execute a function on a deployed contract

2.3 Ethereum Transaction Structure

An Ethereum Transaction record as it is formed and eventually persisted on the
blockchain has a number of fields.

1. From: This field contains the transaction sender’s address. The length of
this field is 20 bytes. An address is a hash of a public key associated with the
account.

2. To: This field has the address of the receiver of the transaction. The length
of this field is 20 bytes. This field can be the address of either an EOA or a
contract account or empty, depending on the type of transaction.

3. Value: This field has the amount in terms of wei (1 ether = 1018 weis)
transferred in the transaction.

4. Data/Input: In case of contract deployment, this field contains the bytecode
and the encoded arguments and is empty when there is a fund transfer.

5. Gas Price and Gas Limit: Gas price is the amount (in terms of wei) for
each gas unit related to the processing cost of any transaction which a sender
is willing to pay. In a transaction, the maximum gas units that can be spent
is the gas limit. The gas limit ensures that there is no infinite loop in a smart
contract execution.

6. Timestamp: It is the time at which the block is published or mined. Below
is an example of an Ethereum transaction structure.
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1 {"status":"1",

2 "message":"OK",

3 "result":

4 {"blockNumber":"6026742",

5 "timeStamp":"1532511199",

6 "hash":"0x94917b89296051b066db2ac572987d ...",

7 "nonce":"2560067",

8 "blockHash":"0xad77b360c7a8401ea81e875a8fbc9 ...",

9 "transactionIndex ":"8",

10 "from":"0x3f5ce5fbfe3e9af3971dd833d26ba9b5c936f0be ",

11 "to":"0x0a0ba956038d4a66002d612648332b9c4ab7646c ",

12 "value":"500000000000000000",

13 "gas":"21000",

14 "gasPrice":"60000000000",

15 "isError":"0",

16 "txreceipt_status ":"1",

17 "input":"0x",

18 "contractAddress":"",

19 "cumulativeGasUsed":"227318",

20 "gasUsed":"21000",

21 "confirmations":"3212860"

22 }

23 }

3 Related Work

In this section, we discuss some existing work related to the anomaly detection in
blockchain, more specifically to Bitcoin and Ethereum blockchain. BitIodine is a
framework to deanonymize the users [16] and is used to extract intelligence from
the Bitcoin network. It labels the addresses automatically or semi-automatically
using the information fetched from web scrapping. The labels used for addresses
are gambling, exchanges, wallets, donations, scammer, disposable, miner, mal-
ware, FBI, killer, Silk Road, shareholder, etc. BitIodine first parses the transac-
tion data from the Bitcoin blockchain. Then it performs clustering based on user
interaction and labels the clusters and users. Their objective is to label every
address in the network into one of the mentioned categories. Also, they detect
some of the anomalous addresses in the network by tracing their transactions.
The authors verify their system performance on some of the known theft and
frauds in the Bitcoin platform. BitIodine detects addresses that belong to Silk
Road cold wallet, CryptoLocker ransomware. The proposed modular structure
is also applicable to other blockchains. However, BitIodine does not use any
machine learning techniques.

In [17], the authors propose a Graph-based forensic investigation of Bitcoin
transactions and perform analysis on Bitcoin transaction data and evaluate the
network data. They use 34,839,029 Bitcoin transactions and 35,770,360 distinct
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addresses. The objective is to detect money theft, fraudulent transactions, and
illegal payments made to the black market. The proposed framework retrieves
all the transaction details of a given address. The proposed framework does
not attempt to detect the anomalous addresses in the network, but it provides
detailed information on addresses. They use clustering to group users together
and multiple graph-based techniques to analyze the money flow within the net-
work. They analyze the flow of money using algorithms like Breadth-First Search
(BFS) algorithm, edge-convergent pattern, and the existence of cycles in the net-
work to detect any money laundering activity.

Thai T. Pham et al. [13,14] propose an anomaly detection method in the
Bitcoin network using the unsupervised learning classifiers like K-means cluster-
ing, Mahalanobis distance, and Support Vector Machine (SVM). The aim is to
detect the suspicious transactions that take place within the network and mark
the users based on these transactions. They use user graph and transaction graph
as the underlying space on which clustering are performed based on a 6 features
of each node in the user graph, and 3 features in the transaction graphs. They
also ran into computational difficulty and had to limit their study to a limited
number of nodes.

Xiapu Luo et al. [11] perform a graph-analysis of the Ethereum network. They
claim to be the first to perform a graph-based analysis of Ethereum blockchain.
The model constructs three different graphs to analyze money transfer, smart
contract creation, and smart contract invocation. The size of the dataset is
– 28,502,131 external transactions and 19,759,821 internal transactions. After
analyzing the graph, they have given the following preliminary insights – the
participants use the Ethereum network more than smart contracts for money
transfer. The insights made by them is pretty obvious as the number of transac-
tions done by a regular user is not comparable to a huge number of transactions
performed in exchanges. Every user does not know the Solidity or Golang to
deploy their contracts. Hence, only a few of them can deploy the contract and
use it. All participants have different requirements for which they interact with
the Ethereum network, so they have the same behavior.

Although some of the above approaches try to find an anomaly in the Bitcoin
network, but none of them has a sophisticated method for anomaly detection.
Like BitIodine [16], the authors attempt to detect paths by searching the net-
work manually, but the proposed method does not have an automated mecha-
nism to detect malicious addresses. Although in [13], the authors use machine
learning techniques for anomaly detection, the reported accuracy is not very
good. Therefore there is a need for an automated and efficient mechanism for
anomalous addresses detection in any blockchain network with high accuracy.

4 Proposed Methodology

In the Ethereum network, addresses which try to carry out tasks for which
they are not authorized or addresses that attempt to execute the fraudulent
transactions are suspicious addresses. We call their behavior as anomalous. In
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this work, we focus on the past Ethereum transactions to detect the anomaly
in behavior/actions by addresses. We train supervised machine learning models
using features we extract from the transactions performed by the addresses on
the Ethereum network. We mark the addresses as malicious and non-malicious
after the classification by the trained model. We train two models for a different
account types of the Ethereum platform – EOA and smart contract accounts
because both accounts have distinct characteristics and behavior. Our anomaly
detection method performs the following steps:

1. Collection of already publicly available malicious and non-malicious addresses
from various repositories.

2. Collection of transactions executed by all such addresses in the past.
3. Data preprocessing, feature extraction, training and evaluation for:

– EOA Analysis
– Smart contract account analysis.

4.1 Collection of Malicious and Non-malicious Addresses

We use supervised machine learning classification methods to detect malicious
and non-malicious addresses in the Ethereum network. Therefore, we collect the
labeled malicious and non-malicious addresses from various sources. We collect
malicious addresses from the sources, namely etherscan [7], cryptoscamdb [5],
and few addresses from a GitHub repository [9]. Malicious addresses are pub-
licly listed based on different kinds of attack such as a heist, cryptopia-hack,
Upbit-hack, phish-hack, etc., that these addresses have carried out in the past.
These attack types are the same as the ones used by etherscan label word cloud
[8]. We fetch non-malicious addresses from the same sources cryptoscamdb and
etherscan [4]. Initially, we collect a total of 6,154 malicious addresses and 0.1
million non-malicious addresses.

4.2 Collection of Transactions for a Given Address

In this step, we extract all the transactions performed by all malicious and
non-malicious addresses from the Ethereum Blockchain data that we had previ-
ously collected. Transactions contain various fields such as address of the sender,
address of the receiver, timestamp, gas value used for the transaction, the gas
limit for the transaction, transaction hash, block number, etc. Algorithm1 shows
an approach to extract the transactions from a given address. We collect all the
transactions using the etherscan API and save the transactions in a JSON file
for further processing.
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Algorithm 1. Algorithm for Extraction of Transactions for a given address
Input: Address // List of Ethereum account addresses

(Malicious/Non-Malicious)
Output: Txns // List of transactions for a given address

foreach address ∈ Address do
Txns ←− ExtractTxn(address)

end

Function ExtractTxn(address):
F ←− ‘curl -X GET http://api.etherscan.io/api?module=account&
action=txlist&address=address&sort=asc&apikey=ApiKeyToken’
return F ;

End Function

4.3 Data Preprocessing

In data preprocessing, out of the collected 6,154 malicious addresses, we find
that there are a few duplicate addresses, so we filter them using string com-
parison because the addresses contains the alphanumeric values and we are left
with 5,000 unique malicious addresses. After the string comparison, we find
that few addresses are left, which have the same transactions. This problem
occurs because some addresses are present in two different formats. For exam-
ple, an address is present as 0xfea28ca175a80f5a348016583961f63be8605f80
and 0xFeA28ca175A80F5A348016583961f63bE8605f80, but when we compare
them as a string both are different. Therefore, we first convert all the addresses
to lowercase and then we remove all the duplicate addresses. There are a few
addresses in our dataset which have the null transaction. Hence, we remove all
of them too, and finally, we are left with 4,375 malicious address. We apply
the same technique to select the unique non-malicious address. After the unique
address collection, we perform data preprocessing in two steps – filter contract
account & EOA addresses and select verified non-malicious Ethereum account
addresses.

Select Verified Non-malicious Ethereum Account Addresses. Figure 5
shows the process of selection of verified non-malicious addresses for further anal-
ysis. We filter all the non-malicious addresses by checking the "to" and "from"
fields from all transactions performed by a given address. These fields provide
the addresses with which the non-malicious addresses perform the transactions.
If the non-malicious address performs a transaction with any malicious address,
then we drop that address. The assumption is that such an address engaging
in business with a known malicious address could itself be suspicious and hence
we do not want it to represent non-malicious addresses. Finally, we select only
those addresses which do not perform any transaction with any of the malicious
addresses present in our dataset.
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Fig. 5. Verification of non-malicious addresses

Filter Contract Account and EOA Addresses. We filter the EOAs and
contract account addresses because both the account have different transaction
behavioral features and they need to be analyzed separately. To filter the EOA
and contract account addresses, we check the input data field from the collected
transactions and find that in the case of EOA addresses, the input data field
contains the "0x" value. However, in the case of contract account addresses,
this field contains the bytecode of smart contract source code. Also, in the first
transaction of the contract account addresses the "to" field is null, and the
"contractAddress" field includes the address, which is opposite in case of EOA
addresses. At last, after filtering the contract account and EOA addresses, we
are left with 4,124 EOA and 251 contract account addresses out of 4,375 unique
malicious addresses. Similarly, we randomly choose 5,000 non-malicious EOA
addresses and 450 contract addresses for EOA and contract account address
analysis, respectively.

4.4 EOA Analysis

In this section, we discuss the features extracted from the transactions per-
formed by EOA addresses. All the transactions are stored in JSON file format.
We use Python’s JSON library to load, parse the file, and extract the pieces of
information from the stored transactions. We extract the information from vari-
ous fields of the transaction structure such as "to", "from", "timestamp",
"gas", "gasPrice", "gasUsed", "value", "txreceipt status". The fea-
tures such as Value out, Value in, Value difference, Last Txn Value,
Avg value in, Avg value out, and other features related to ether values sent
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and received are extracted from the value field. We extract features from the
timestamp field such as first, last, and mean transaction time among all the
transactions performed by an address. The txreceipt status field from the
transaction structure provides information about success and failed transactions.
If the txreceipt status field returns 1 then the transaction is successful or vice
versa. We extract features like the number of failed and successful transactions
in the incoming and outgoing transactions with the help of txreceipt status
field. The percentage of gas used for the transaction is calculated using gasUsed
field value divided by the gas field value, which is set for the transaction. We get
the percentage of gas used for all the incoming and outgoing transactions and
the average value is taken to calculate the AP gasUsed in and AP gasUsed out
features. All the features related to gas price, which is set in the transaction by
the user who is willing to pay per gas used are extracted from the gasPrice
field. All the extracted features from the transactions are shown in Table 1.

We extract 44 features for EOA addresses analysis in our feature extraction
phase. Though we understand that all the extracted features are not essential to
train the classifiers, and some may make the results of classification models worse
because they do not participate in improving the performance of classification
models. Therefore, we use the Information gain algorithm as a feature reduction
method for dimensionality reduction of the feature vector. We select the top-10,
top-20, top-30, top-40, and top-44 features with the highest info-gain score, as
shown in Table 2. To do this selection process, we apply Random Forest [10],
XGBoost [3], Decision Tree [15], and k-nearest neighbour (k-NN) [2] machine
learning classifiers on top-10, top-20, top-30, top-40, and top-44 features. The
final feature vector for EOA addresses consists of the selected top-30 features
because we obtain the maximum ten-fold cross-validation accuracy for the top-30
features using the XGBoost classifier as shown in Table 5.

4.5 Smart Contract Account Analysis

There are two kinds of transactions present in the contract account addresses
– contract creation and contract invocation by an EOA address as described
in Subsect. 2.2. We first remove all the contract addresses before starting
the analysis for a smart contract that contains a similar bytecode that is
present in the input data field of the transaction structure. Finally, we
have 250 malicious and 300 non-malicious smart contract account address
for the analysis. The information we extract from the transactions performed
by the contract account addresses. It is based on the interaction of the
EOA account with the contract account. The various fields of the trans-
action structure such as "to", "from", "contractAddress", "timestamp",
"gas", "gasPrice", "gasUsed", "value" are used to extract the features.
Table 3 shows the extracted features for the smart contract analysis in the
Ethereum network. From Table 3, one can observe that we extract the features
from both creation and invocation transactions present in contract addresses.
Features from feature id F 1 to F 4 are derived from the contract creation
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Table 1. Extracted features for EOA analysis

F ID Feature Description

F 1 TxnSent The total number of transactions sent

F 2 TxnReceived The total number of transactions received

F 3 Value out The total ether value sent

F 4 Value in The total ether value received

F 5 Value difference Absolute difference between value sent and received [(Value out) - (Value in)]

F 6 distinct address Number of distinct Address contacted

F 7 Total Txn Total Number of Transactions sent and received

F 8 Unique TxnSent The total number of transactions sent to unique addresses

F 9 Unique TxnReceived The total number of transactions received from unique addresses

F 10 First Txn time The timestamp of the block in which the first ever transaction is made

F 11 Last Txn time The timestamp of the block in which the last transaction is made so far

F 12 Active duration Active duration in second [(Last Txn time) - (First Txn time)]

F 13 Last Txn Bit 0/1 (0 if last transaction is incoming transaction else 1)

F 14 Last Txn Value The ether value transferred in the last transaction

F 15 Avg value in Average ether value received in incoming transaction

F 16 Avg value out Average ether value sent in outgoing transaction

F 17 AP gasUsed in The Average percentage of gas used in incoming transactions

F 18 AP gasUsed out The Average percentage of gas used in outgoing transactions

F 19 gasPrice out The total number of gasPrice used in outgoing transactions

F 20 gasPrice in The total number of gasPrice used in incoming transactions

F 21 Avg gasPrice in The Average gasPrice used in incoming transactions

F 22 Avg gasPrice out Average gasPrice out used in outgoing transaction

F 23 Failed Txn in Total number of failed incoming transactions

F 24 Failed Txn out Total number of failed outgoing transactions

F 25 Total Failed Txn Total number of failed transactions (Failed Txn in + Failed Txn out)

F 26 Success Txn in Total number of Success incoiming transactions

F 27 Success Txn out Total number of Success outgoing transactions

F 28 Total Success Txn Total number of Success transactions (Success Txn in + Success Txn out)

F 29 gasUsed in Total gasUsed in incoming transaction

F 30 gasUsed out total gasUsed in outgoing transaction

F 31 Per TxnSent Percentage of transactions sent from all the transactions

F 32 Per TxnReceived Percentage of transactions received from all the transactions

F 33 Std value in Standard deviation of ether value received in incoming transaction

F 34 Std value out Standard deviation of ether value sent in outgoing transaction

F 35 Std gasPrice in Standard deviation of gasPrice used in incoming transactions

F 36 Std gasPrice out Standard deviation of gasPrice used in outgoing transactions

F 37 First Txn Bit 0/1 (0 if last transaction is incoming transaction else 1)

F 38 First Txn Value The ether value transferred in the first transaction

F 39 mean in time Average time difference between incoming transaction

F 40 mean out time Average time difference between outgoing transaction

F 41 mean time Average time difference between all transactions

F 42 Txn fee in Total Transaction fee spent in incoming transaction

F 43 Txn fee out Total Transaction fee spent in outgoing transaction

F 44 Total Txn fee Total Transaction fee spent in all transaction (incoming + outgoing)
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Table 2. Infogain results for EOA analysis

Rank F ID Feature Rank score F ID Feature Rank score F ID Feature

0.46029 F 11 Last Txn time 0.19721 F 21 Avg gasPrice in 0.10026 F 44 Total Txn fee

0.42853 F 39 mean in time 0.19601 F 35 Std gasPrice in 0.10004 F 12 Active duration

0.37441 F 10 First Txn time 0.19324 F 3 Value out 0.07407 F 28 Total Success Txn

0.34817 F 40 mean out time 0.19112 F 16 Avg Value out 0.07407 F 7 Total Txn

0.25935 F 17 AP gasUsed in 0.15878 F 19 gasPrice out 0.05612 F 34 Std value out

0.24183 F 22 Avg gasPrice out 0.15177 F 29 gasUsed in 0.02647 F 36 Std gasPrice out

0.23784 F 9 Unique TxnReceived 0.14819 F 26 Success Txn in 0.01895 F 8 Unique TxnSent

0.23590 F 33 Std value in 0.14819 F 2 TxnReceived 0.01500 F 13 Last Txn Bit

0.23146 F 15 Avg Value in 0.14327 F 5 Value difference 0.01096 F 1 TxnSent

0.23082 F 4 Value in 0.14327 F 6 distinct address 0.01096 F 27 Success Txn out

0.22359 F 38 First Txn Value 0.13781 F 18 AP gasUsed out 0.00797 F 37 First Txn Bit

0.22202 F 32 Per TxnReceived 0.13506 F 41 mean time 0 F 25 Total Failed Txn

0.22202 F 31 Per TxnSent 0.13322 F 14 Last Txn Value 0 F 23 Failed Txn in

0.21338 F 20 gasPrice in 0.12016 F 43 Txn fee out 0 F 24 Failed Txn out

0.19777 F 42 Txn fee in 0.11065 F 30 gasUsed out

Table 3. Extracted features for smart contract account analysis

F ID Feature Description

F 1 Contract Create Contract creation time

F 2 Txn fee contract create Transaction fee spent in contract creation

F 3 Per gasUsed contract create The percentage of gas used during contract creation

F 4 gasPrice contract create Gas price used to create a contract

F 5 First contract invoke time Timestamp for first contract invocation

F 6 Last contract invoke time Timestamp for last contract invocation

F 7 Active duration Active duration (seconds) of contract address

F 8 Total invoke Total number of contract invocations

F 9 unique invoke Total number of contract invocations using unique address

F 10 Avg Per gasUsed contract invoke The average percentage of gas used during contract

invocations

F 11 gasPrice contract invoke Total gas price used for contract invocations

F 12 Avg gasPrice contract invoke Average gas price used for contract invocations

F 13 Txn fee contract invoke Total transaction fee spent in contract invocations

F 14 Avg Txn fee contract invoke Average transaction fee spent in contract invocations

F 15 Value contract invoke Total ether value used in contract invocations

F 16 Avg Value contract invoke Average ether value used in contract invocations

F 17 gasUsed contract invoke Total gas used for contract invocations

F 18 Avg gasUsed contract invoke Average gas used for contract invocations

transactions and features from feature id F 5 to F 18 are taken from the contract
invocation transactions.

For smart contract address analysis, we extract 18 features. Similar to EOA
address analysis, we use infogain as a feature selection algorithm to reduce the
dimensionality of the feature vector. We select top-5, top-10, top-15, and top-18
features with the highest infogain score as shown in Table 4 and then apply the
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same set of classifiers to train and test the model. Finally, we select the top-10
features to train the final model. The reason for selecting the top-10 features is
that these set of features provide the highest ten-fold cross-validation accuracy
using XGBoost classifier as shown in Table 5.

4.6 Classification

We use different machine learning classifiers using Python’s Sckit-learn library,
namely k-NN, Decision Tree, Random Forest, and XGBoost for the classification
of malicious addresses in the Ethereum network. The experiments are carried
out using the Intel i7 octa-core processor having Ubuntu 18.04 LTS with 32 GB
RAM. We split the dataset into 70%-30% for the training and testing of our
model. To check the performance of our model, we apply ten-fold stratified cross-
validation. Also, we tune parameters to minimize the misclassification error.

Table 4. Infogain results for smart contract analysis

Rank score F ID Feature Rank score F ID Feature

0.5732 F 6 Last contract invoke time 0.2498 F 13 Txn fee contract invoke

0.5389 F 17 gasUsed contract invoke 0.2498 F 4 gasPrice contract create

0.5387 F 5 First contract invoke time 0.2006 F 12 Avg gasPrice contract invoke

0.3442 F 18 Avg gasUsed contract invoke 0.1418 F 10 Avg Per gasUsed contract invoke

0.3442 F 8 Total invoke 0.141 F 7 Active duration

0.3047 F 9 unique invoke 0.1091 F 14 Avg Txn fee contract invoke

0.3047 F 3 Per gasUsed contract create 0.1064 F 16 Avg Value contract invoke

0.2498 F 11 gasPrice contract invoke 0.0459 F 15 Value contract invoke

0.2498 F 2 Txn fee contract create 0.0459 F 1 Contract Create

5 Experimental Results

This section describes the results achieved from the EOA analysis and smart
contract account analysis. We perform the analysis for both the account types
separately and extract the features from the behavior of the transactions
present. We apply ten-fold cross-validation for both the analysis to evaluate
our machine learning models’ performance. Table 5 presents the 10-fold cross-
validation results for separate machine learning classifiers on various numbers of
selected features. First, we do the experiments for EOA addresses and examine
the results presented in Table 5. We achieve the highest accuracy that is 96.54%
with a False Positive Rate (FPR) of 0.92% for EOA analysis using XGBoost clas-
sifier with top-30 features. Secondly, we perform the analysis of smart contracts
and examine the results presented in Table 5. For smart contracts analysis, we
achieve the highest accuracy of 96.82% with an FPR 0.78% using the XGBoost
classifier and top-10 features.
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Table 5. Experimental results for EOA and smart contract analysis

Experimental results for EOA analysis
No. of features Random Forest(%) XGBoost(%) Decision Tree(%) k-NN(%)

top-10 95.28 95.74 92.75 92.75
top-20 95.28 96.08 91.93 91.93
top-30 95.62 96.54 92.63 92.63
top-40 95.97 96.31 93.78 93.78
top-44 95.74 96.43 92.86 92.86
Experimental results for smart contract analysis
top-5 94.73 94.73 94.73 94.73
top-10 94.73 96.82 94.73 94.73
top-15 94.73 96.49 96.49 96.49
top-18 94.82 96.49 96.49 96.49

6 Evaluation

Since 20th January, when we last collected our experimental data – 85 new
EOA addresses and only 1 new contract address are flagged as malicious. To
further validate our models, we do the ensemble of all the machine learning
classifiers used earlier to improve the detection accuracy. We test them on the
data collected after 20th January. Out of 85 malicious EOA addresses, our EOA
address analysis model detects 81 as malicious. We also randomly choose 100
non-malicious addresses that are not part of our earlier dataset. Out of 100
non-malicious EOA addresses, our EOA address analysis model detects 97 as
non-malicious, i.e., the overall accuracy of our model is 96.21% with FPR of
3% and FNR 4.71%. Similarly, our contract address analysis model detects the
one newly collected contract address as malicious. This validates that our model
works to a reasonable extent.

7 Conclusion

In this work, we train two classifiers using transactions performed by the
Ethereum addresses on the Ethereum network for EOA analysis and smart con-
tract account analysis. We collect malicious and non-malicious addresses from
various sources. Still, the most important challenge is to label the non-malicious
addresses because this work aims to detect malicious and non-malicious address
with the help of supervised learning. We perform data preprocessing to select
the verified non-malicious addresses and to filter the contract account and EOA
addresses. We extract and select the features from the transactions of addresses
and train different machine learning models, namely Random Forest, Decision



Detecting Malicious Accounts on the Ethereum Blockchain 109

tree, XGBoost, and k-NN for EOA and smart contract account analysis. Finally,
we achieve the highest accuracy of 96.54% and 96.82% for EOA and smart con-
tract account analysis respectively. In the future, we will investigate how to
reduce the false positives and false negatives.
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Abstract. The NIST PQC standardization project evaluates multiple
new designs for post-quantum Key Encapsulation Mechanisms (KEMs).
Some of them present challenging tradeoffs between communication
bandwidth and computational overheads. An interesting case is the set
of QC-MDPC based KEMs. Here, schemes that use the Niederreiter
framework require only half the communication bandwidth compared
to schemes that use the McEliece framework. However, this requires
costly polynomial inversion during the key generation, which is pro-
hibitive when ephemeral keys are used. One example is BIKE, where
the BIKE-1 variant uses McEliece and the BIKE-2 variant uses Nieder-
reiter. This paper shows an optimized constant-time polynomial inver-
sion method that makes the computation costs of BIKE-2 key generation
tolerable. We report a speedup of 11.8× over the commonly used NTL
library, and 55.5× over OpenSSL. We achieve additional speedups by
leveraging the latest Intel’s Vector-PCLMULQDQ instructions on a laptop
machine, 14.3× over NTL and 96.8× over OpenSSL. With this, BIKE-2
becomes a competitive variant of BIKE.

Keywords: Polynomial inversion · BIKE · QC-MDPC codes ·
Constant-time algorithm · Constant-time implementation

1 Introduction

Bit Flipping Key Encapsulation (BIKE) [3] is a code-based KEM that uses
Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) codes. It is one of
the Round-2 candidates of the NIST PQC Standardization Project [20]. BIKE
submission includes three variants: BIKE-1 and BIKE-3 that follow the McEliece
[17] framework and BIKE-2 that follows the Niederreiter [19] framework. The
main advantage of BIKE-2 is communication bandwidth (in both directions)
that is half the size compared to BIKE-1 and BIKE-3. Another advantage is
that BIKE-2 IND-CCA has a tighter security reduction compared to the other
variants. However, it is currently not the popular BIKE variant (e. g., only BIKE-
1 is integrated into LibOQS [21] and s2n [2]). The reason is that BIKE-2 key
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generation involves polynomial inversion (over F2) with computational cost that
shadows the cost of decapsulation (see [18]). This is especially prominent when
protocols are designed to achieve forward-secrecy through using ephemeral keys.

Polynomial inversion over a finite field is a time-consuming operation in sev-
eral post-quantum cryptosystems (e. g., BIKE [3], HQC [1], ntruhrss701 [15],
LEDAcrypt [4]). The literature includes different approaches for inversions,
depending on the polynomial degree and the field/ring over which the polynomi-
als are defined. For example, the Itoh-Tsuji inversion (ITI) algorithm [16] is effi-
cient when the underlying field is F2k for some k. Safegcd [5] implements inversion
through a fast and constant-time Extended GCD algorithm. It is demonstrated
in [5] as a means for speeding up ntruhrss701 [15] and for ECC with Curve25519.
It is also used in the latest implementation of LEDAcrypt [4]. Algorithms for
inversion of sparse polynomials over binary fields are discussed in [13,14]. These
algorithms are based on the division algorithm of [7].

There are (at least) two popular open-source libraries that provide polyno-
mial inversion over F2: a) NTL [24], compiled with the GF2X library [22]; b)
OpenSSL [25]. We note that the Additional code of BIKE (BIKE-2) [9] can be
compiled to use either NTL or OpenSSL. We use this as our comparison base-
line. For this research, we implemented a variant of the ITI algorithm (see also
[6]) for polynomial inversion that leverages the special algebraic structure in our
context, and runs in constant-time.

The paper is organized as follows. Section 2 offers some background and nota-
tion. In Sect. 3 we briefly explain our polynomial inversion method. Section 5
provides our performance results and Sect. 6 concludes this paper with several
concrete proposals.

2 Preliminaries and Notation

In this paper, we indicate hexadecimal notation with a 0x prefix, and place the
LSB on the right-most position. Let Y be a string of bits. We use Y [j] to refer
to the jth bit of Y . Let F2 be the finite field of characteristic 2. Let R be the
polynomial ring F2[x]/ 〈xr − 1〉 for some block size r and let R∗ denote the set
of invertible elements in R. We treat polynomials, interchangeably, as vectors of
bits. For every element v ∈ R its Hamming weight is denoted by wt(v), its bit
length by |v|, and its support (i.e., the positions of the non-zero bits) by supp(v).
In other words, if an element a ∈ R is defined by a =

∑r−1
i=0 αix

i then supp(a) is
the set of positions of the non-zero bits, supp(a) = {i : αi = 1}. Uniform random

sampling from a set U is denoted by u
$←− U . Uniform random sampling of an

element with fixed Hamming weight w from a set U is denoted by u
w←− U .

2.1 BIKE

Table 1 shows the key generation of the variants of BIKE. The computations
are executed over R, and the block size r is a parameter. The weight of the
secret key (sk) is w and we denote the public key by pk. For example, the
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parameters of BIKE-1-CCA for NIST Level-1 as defined in the specification [3]
are: r = 11779, |pk| = 23558, w = 142. Table 1 shows that the key generation
for BIKE-2 requires polynomial inversion. This is a heavy operation that can be
a barrier for adoption when targeting forward-secrecy via ephemeral keys. On
the other hand, BIKE-2 has half the communication cost compared to BIKE-
1 (and ∼2/3 the communication cost compared to the bandwidth-optimized
version of BIKE-3). Specifically, the initiator in BIKE KEM sends pk to the
responder, i.e., f0 for BIKE-2 versus (f1, f0) for BIKE-1. In the other direction,
the responder sends a ciphertext to the initiator (not shown in Table 1). The
length of BIKE-2’s ciphertext is half the length of BIKE-1’s ciphertext (see [3]).
Therefore, reducing the computational cost of polynomial inversion can place
BIKE-2 in an advantageous position.

Table 1. BIKE key generation. Polynomial inversion is required with BIKE-2.

BIKE-1-CPA BIKE-1 BIKE-2 BIKE-2 BIKE-3 BIKE-3
CPA CCA CPA CCA CPA CCA

h0, h1
w/2←−− R

g
≈r/2, odd←−−−−−− R f0 = h1h

−1
0 g

≈r/2, odd←−−−−−− R
(f0, f1) = (gh1, gh0) (f0, f1) = (h1 + gh0, g)

σ0, σ1
$←− R σ0, σ1

$←− R σ0, σ1, σ2
$←− R

sk = (h0, h1) (h0, h1, σ0, σ1) (h0, h1) (h0, h1, σ0, σ1) (h0, h1) (h0, h1, σ0, σ1, σ2)
pk = (f0, f1) f0 (f0, f1)

3 Optimized Polynomial Inversion in F2[x]/〈(x − 1)h〉
with Irreducible h

In this paper, we propose to use an algorithm that is similar to the ITI algorithm
[16]. In both cases, the essence is that raising an element a to the power 2k

(referred to as k-squaring hereafter), can be done efficiently. The ITI algorithm
inverts an element of F2k , where the field elements are represented in normal
basis where computing a2k

consists of k cyclic shifts of a’s vector representation.
This results in fast k-squaring. However, we note that the ITI algorithm can be
generalized to other cases where k-squaring is efficient. One example is the set of
polynomial rings that are used in BIKE and in other QC-MDPC based schemes.

Our inversion algorithm is Algorithm2. It applies Algorithm 1 that computes
a2k−1 for some k = 2t. Algorithm 1 is analogous to [16][Algorithm 2] that com-
putes a−1 ∈ F2� for � = 2t + 1 through Fermat’s Little Theorem as

a−1 = a2�−2 = (a2�−1−1)2 = (a22
t −1)2

BIKE, on the other hand, operates in the polynomial ring R with a value r for
which

R = F2[x]/〈xr − 1〉 = F2[x]/〈(x − 1)h〉
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Algorithm 1. Computing a2k−1 where k = 2t

Input: a

Output: a2k−1

1: procedure Custom exponentiation(a)
2: f = a
3: for i = 0 to t − 1 do

4: g = f22
i

5: f = f · g

6: return f

and h is an irreducible polynomial of degree r − 1. In this ring, ord(a) | 2r−1 − 1
for every a ∈ R∗, and therefore

a−1 = a2r−1−2 (1)

Here, Algorithm [16][Algorithm 2] cannot be used directly because a2r−1−2 =
(a2r−2−1)2 and r − 2 is not a power of 2. Therefore, we use the following decom-
position.

Decomposition of 2r−1−2. In order to apply Algorithm1, we write s = supp(r−
2) and rewrite z = 2r−1 − 2 in a convenient way:

z = 2 · (2r−2 − 1) = 2 ·
∑

i∈s

(
(22

i − 1) ·
(
2(r−2) mod 2i

))
(2)

Algorithm 2 uses Algorithm 1 and the decomposition (2) as follows.

Algorithm 2. Inversion in R = F2[x]/〈(x − 1)h〉 with an irreducible h

Input: a ∈ R∗

Output: a−1

1: procedure Invert(a)
2: f = a
3: res = a
4: for i = 1 to �log(r − 2)� do

5: g = f22
(i−1)

� As in Alg. 1
6: f = f · g
7: if ((r − 2)[i] = 1) then � ith bit of r − 2

8: res = res · f2(r−2) mod 2i

9: res = res2

10: return res

Algorithm 2 requires �log(r−2)�+wt(r−2)−1 multiplications plus �log(r−
2)�+wt(r −2)−1 k-squarings and 1 squaring (in R). The performance depends
on |r − 2| and on wt(r − 2) and choices of r with smaller |r − 2| and wt(r − 2)
lead to better performance.
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Remark 1. The last square in line 9 of Algorithm2 can be saved by changing
line 6 therein to the following line

res = res · f21+(r−2) mod 2i

This optimization is omitted from the algorithm’s description for clarity.

Example 1. The recommended block size (r) for BIKE-1-CCA/BIKE-2-CCA,
Level-1, is r = 11779. Here, 2r−1 − 2 can be written as:

211778 − 2 = 2 ·(1 + 2(2512 − 1) + 2513(21024 − 1)+

21537(22048 − 1) + 23585(28192 − 1))

With this decomposition, Algorithm2 requires 17 polynomial multiplications, 17
k-squarings and 1 squaring.

For implementation efficiency, our method leverages the following observa-
tion.

Observation 1. Let a =
∑

j∈supp(a) xj ∈ R∗. Then,

a2k

=

⎛

⎝
∑

j∈supp(a)

xj

⎞

⎠

2k

=
∑

j∈supp(a)

(xj)2
k

(3)

=
∑

j∈supp(a)

xj·2k

=
∑

j∈supp(a)

xj·2k mod r

The first step in (3) is an identity in a ring with characteristic 2. The last step
uses the fact that ord(x) = r in R. Using Observation 1, we can compute the
k-square of a ∈ R∗ as a permutation of the bits of a.

4 Our Implementation

This section discusses our implementation and further optimizations for Algo-
rithm2. Some explanatory code snippets are provided in AppendicesA, B and C.

Speeding Up the Implementation with Precomputed Tables. The actual values of
k in all the k-squarings of Algorithm 2 depend on r but not on a. Therefore, if r
is fixed, the permutation p0 : j → j · 2k mod r can be pre-computed for all the
relevant values of k (which depends only on r). This speeds up the implementa-
tion. The required storage is �log(r − 2)� + 1 + wt(r − 2) tables where each one
holds |r| values.
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Inverted Permutation. The BIKE implementation stores the polynomials in a
dense representation, i.e., an array of 
r/word size� words where each word
holds word size bits of the polynomial. The straightforward way to permute is
to go over all the words of the data, extract all the word size bits, and store
every one of them in the required position of the output polynomial (as defined by
the permutation map). This approach requires one memory read and word size
writes to random locations in the output data, per word of the input. However,
when we apply the inverted permutation map, the k-square requires word size
random memory reads from the input data and only one memory write to the
output array, per word of the input array. This speeds up the k-squaring in a
noticeable way.

Using Regular Polynomial Square. Squaring a polynomial in R is very efficient
(significantly faster than a k-squaring. See AppendixA). This leads to the fol-
lowing optimization for small values of k: execute a chain of k single squarings
instead of executing a k-square routine. The k value for preferring a k-square
over a chain of squares depends on the implementation. We provide Table 6 in
AppendixA to this end. Consequently, in addition to r − 2 and wt(r − 2), the
efficiency of inversion depends on the number of k-squares that can be replaced
with regular squares. For example, consider r1 = 11779 and r2 = 12347. Here,
inverting a polynomial of degree r1 is expected to be faster than for r2, because
wt(r1 − 2) = 5 < 6 = wt(r2 − 2). However, from the binary representations
r1 − 2 = 0b10111000000001 and r2 − 2 = 0b11000000111001, we see that the
set bits in r2 − 2 are positioned close to the LSB, and the set bits in r1 − 2 are
positioned close to the MSB. If the k-square threshold is 64, then for r1 we can
replace (only) one k-square with a chain of (regular) squares, and for r2 we can
replace 4 such k-squares.

Constant-Time Considerations. Algorithm 2 involves a constant number of steps
for every given (fixed) r because the number and the order of multiplications
and k-squarings are independent of the input. However, to achieve a constant-
time implementation, the multiplication and k-squaring have to be constant-time
routines. The Additional code of BIKE [9] already implements multiplication in
constant-time. Since the k-squaring operation is merely a permutation of bits, it
is straightforward to implement it in constant-time as follows: scan every bit of
the input and update the appropriate bit in the output polynomial. This app-
roach enjoys also constant memory access because the permutation is determined
only by the (fixed) value of r.

Using Vector-PCLMULQDQ. Modern CPUs offer a fast carry-less multiplica-
tion instruction (PCLMULQDQ) that can be used for multiplication in binary
fields. We note that PCLMULQDQ can be a bottleneck when algorithms that
involve polynomial multiplication run on modern architectures: while AVX512
architectures can use wider 512-bit registers (zmm), PCLMULQDQ operates only
on 128-bit registers (xmm). In the recent 10th generation CPUs (codename “Ice
Lake”) Intel R© introduced a vector PCLMULQDQ instruction, and we leverage this
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feature to our advantage. We replaced the 4 × 4 64-bit words schoolbook imple-
mentation that is used in the Additional code of BIKE, with the 8 × 8 64-bit
words schoolbook algorithm of [11]. This yields some improvements. We further
optimized the code to use a 16 × 16 64-bit words Karatsuba multiplication and
observed a total speedup by a factor of 1.08 with this architecture. The details
are explained in AppendixB.

Using Binary-Recursive-Karatsuba. In [8] we recommended to use the binary
recursive-Karatsuba for multiplication for polynomials whose degree is slightly
smaller than a power of two (e. g., r = 32749 for BIKE-1-CPA Level-5). This
allows some optimizations and simpler code because implementation of a 4 × 4
schoolbook suffices (in addition to the binary recursive Karatsuba code). How-
ever, the values of r for the IND-CCA variants of BIKE and for IND-CPA BIKE
in Level-1 and Level-3 are not close to a power of two. Here, padding every multi-
plicand to the closest power of 2 can be costly. For example, padding r = 11779
(as in BIKE-2-CCA Level-1) to the 16384 increases the multiplicands size by
∼40%. To this end, we replaced the lower 8 × 8 multiplication (using Vector-
PCLMULQDQ) with β×β (9 ≤ β ≤ 16) multiplication. This yields multiplications
of sizes 2α ·β, for some integer α > 1. Table 2 shows the exact values. For exam-
ple, for r = 11779, with β = 12, the closest value of the form 2α · β is 12288
(α = 10) with only ∼5% increase in the overall multiplicands size. Our exper-
iments for BIKE-2-CCA Level-1 show that the fastest implementation is as in
[8] with β = 16 and α = 10.

In this case, we can make the implementation faster by avoiding multiplica-
tions of the higher parts of the multiplicands, which are zero. This optimization
depends on the values of r and β.

Table 2. The sizes of the multiplicands (2α ·β) for different choices of α and β. Boldface
values are the closest from above to r = 11779 (BIKE-2-CCA Level-1). Italic values
are the closest from above to r = 24821 (BIKE-2-CCA Level-3).

α β = 9 10 11 12 13 14 15 16

10 9216 10240 11264 12288 13312 14336 15360 16384

11 18432 20480 22558 24576 26624 28672 30720 32768

12 36864 40960 45056 49152 53248 57344 61440 65536

13 73728 81920 90112 98304 106496 114688 122880 131072

5 Results

This section provides performance results and compares them to the specified
baseline.
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The Platforms. We carried out performance measurements on two different plat-
forms, which we call “laptop” and “server” platforms:

– The laptop platform is a Dell XPS 13 7390 2-in-1 laptop. It has a 10th genera-
tion Intel R©CoreTM processor (microarchitecture codename “Ice Lake”[ICL]).
The specifics are Intel R©CoreTM i7-1065G7 CPU 1.30 GHz. This platform has
16 GB RAM, 48 K L1d cache, 32 K L1i cache, 512 K L2 cache, and 8 MiB L3
cache and it supports AVX512 and Vector-PCLMULQDQ instructions. For the
experiments, we turned off the Intel R© Turbo Boost Technology (in order to
work with a fixed frequency and measure performance in cycles).

– The server platform is an AWS EC2 m5.24xlarge instance with the 6th

Intel R©CoreTM Generation (Micro architecture Codename “Sky Lake” [SKL])
Xeon R©Platinum 8175 M CPU 2.50 GHz. This platform has 384 GB RAM,
32 K L1d and L1i cache, 1 MiB L2 cache, and 32 MiB L3 cache that only have
AVX512 capabilities.

Measurements Methodology. The performance reported hereafter is measured in
processor cycles (per single core), where lower count is better. We obtain the
results using the following methodology. Every measured function was isolated,
run 25 times (warm-up), followed by 100 iterations that were clocked (using
the RDTSC instruction) and averaged. To minimize the effect of background
tasks running on the system, every experiment was repeated 10 times, and the
minimum result was recorded.

The Code. Our code is written mainly in C with some x86-64 assembly routines.
Some versions use the Vector-PCLMULQDQ and other AVX512 instructions. On
the Ice Lake machine we compiled the code with gcc (version 9.2.1), using the “-
O3 -march=native” optimization flags and ran it on a Linux OS (Ubuntu 19.04).
On the server platform the code is compiled with gcc (version 7.4.0) in 64-bit
mode, using the “-O3 -march=native” optimization flags and ran on Ubuntu
18.04.2 LTS.

The Comparison Baseline. Our comparison baseline are the implementations
of the popular open-source libraries NTL (compiled with GF2X) [22,24] and
OpenSSL [25]. We do not compare to [7,13,14,16] because they are all slower
than NTL: a) the inversion algorithm of [13] is reported to be 2× faster than
[7], 12× faster than [16], but 1.7× slower than NTL; b) the implementation
in [14] is reported to be 3× slower than NTL. We also measured the inver-
sion function of the LEDAcrypt optimized code [4] that implements safegcd [5].
This code uses AVX2, and our implementation uses AVX512. For fair compar-
ison, we compiled our code with AVX2 instructions only. The performance of
the LEDAcrypt inversion (on “laptop”) is: a) using gcc: 4.05/12.43/27.32 mil-
lion cycles for Level-1/3/5, respectively; b) using clang: 3.29/10.30/22.94 mil-
lion cycles for Level-1/3/5, respectively. The performance of our inversion on
the same platform is: 0.65/2.36/5.37 million cycles for Level-1/3/5, respectively.
The code of [4] runs in constant time and is faster than NTL. On the other hand,
it is slower than our implementation even when we use only the AVX2 code.
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Blinding a Non-constant Time Inversion. Binary polynomial inversion does not
operate in constant-time for either OpenSSL [25] or NTL [24] because these
libraries use the extended GCD based algorithms to compute the inverse. To
address this issue, a recent change in OpenSSL, (between version 1.0.2 to version
1.1.0) protects the implementation by blinding the inversion as follows. The func-
tion BN GF2m mod inv(a, s) computes a−1 mod s by the following sequence: 1)
choose a random b; 2) compute c = ab; 3) invert c); 4) multiply by b. Unfor-
tunately, this does not work in the general case, where s is not necessarily an
irreducible polynomial (see discussion in [12]). If s is reducible, c = ab may
be non-invertible modulo s. This is exactly the case of BIKE-2 where xr − 1
is reducible. Although the OpenSSL function BN GF2m mod inv(a, xr − 1) is
called with invertible a, the blinding may select a random non-invertible poly-
nomial b and then inverting c = ab would fail. In the polynomial ring R a
randomly selected b has probability 1

2 to be non-invertible. For a fair compari-
son (of constant-time implementations), we use the same blinding technique for
NTL as well. For correctness, we always choose b such that wt(b) is odd, and
therefore b is invertible in R.

The results are summarized in Table 3 (for “laptop”), and Table 4 (for
“server”). In all cases, our implementation outperforms the baseline. The rel-
ative speedups for BIKE-2 are higher for Level-1 than for Level-5. This is quite
fortunate because our focus is anyway on Level-1. Note that NIST has announced
that Level-5 is not critical for standardization (we provide Level 5 performance
for the sake of comparison with other works).

We observe that the relative speedup on “laptop” is only slightly better than
on “server” despite the fact that the laptop has a newer (10th generation) CPU
with Vector-PCLMULQDQ. In fact, we expect to see additional speedup as soon
as Intel releases servers with the 10th generation processor.

Table 3. BIKE-2 key generation when the inversion uses NTL with GF2X [22,24],
OpenSSL [25], and our method. The platform is “laptop” (see text). Columns 2–5
count cycles in millions, and lower is better. The r values correspond to the IND-CCA
variants of BIKE for Level-1/3/5.

r NTL
[22,24]

OpenSSL
[25]

This
work

This work
(w/tables)

Speedup
NTL/Our

Speedup
NTL/T
(w/tables)

Speedup
OpenSSL/T
(w/tables)

11779 6.28 42.51 0.47 0.44 13.46 14.31 96.86

24821 9.29 164.95 1.71 1.65 5.44 5.62 99.86

40597 16.37 515.21 4.08 3.85 4.02 4.25 133.91

The use of precomputed permutation tables (see Sect. 3) provides an inter-
esting tradeoff. It improves the overall performance at a cost of occupying some
memory space. The tables that we need to store hold r·(�log(r−2)�+1+wt(r−2))
entries of size r bits (for all security levels of BIKE the entries can be stored
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Table 4. BIKE-2 key generation when the inversion uses NTL with GF2X [22,24],
OpenSSL [25], and our method. The platform is “server” (see text). Columns 2–5
count cycles in millions, and lower is better. The r values correspond to the IND-CCA
variants of BIKE for Level-1/3/5.

r NTL
[22,24]

OpenSSL
[25]

This
work

This work
(w/tables)

Speedup
NTL/Our

Speedup
NTL/T
(w/tables)

Speedup
OpenSSL/T
(w/tables)

11779 4.93 23.22 0.43 0.42 11.51 11.79 55.53

24821 7.64 121.86 1.61 1.59 4.75 4.82 76.78

40597 15.24 342.61 3.89 3.80 3.92 4.01 90.13

in 2 bytes of memory). For example, for BIKE-2-CCA the required memory is
450 KB for Level-1, 1.1 MB for Level-3, and 2 MB for Level-5.

Table 5 shows relative speedups in the BIKE-2 key generation for different
values of r and illustrates the effect of wt(r − 2) on the performance of the key
generation. All the values of r are legitimate choices for BIKE (i.e., xr − 1 =
(x − 1)h, where h is irreducible). We chose one representative for every value
of wt(r − 2) and the table includes the recommended parameters from the [3]
specification.

6 Discussion

The Effect of Different Choices of r on BIKE-2 Performance. In general, the
parameter r determines the sizes of the public key, the ciphertext and thus
the overall latency and bandwidth. So far, r was chosen as the minimum
value that satisfies the security target [3] and the target Decoding Failure Rate
(DFR)Decoding Failure Rate (DFR) of the decoder [10,23]. We propose an addi-
tional consideration, namely wt(r − 2) (recall how the inversion Algorithm 2
depends on wt(r − 2)). The currently recommended r for Level-1 is r = 11779
for which wt(r − 2) = 5. Interestingly, a considerably larger r = 12323 has
wt(r − 2) = 4. Note that [10] shows that ∼r = 12323 is needed and sufficient in
order to achieve a DFR of 2−128.

Two considerations are pointed out in [8]: a) rejection sampling is faster for
values of r that are close (from below) to a power of 2 (e. g., r = 32749 is close
to 215 = 32768 and the rejection rate is 32749/32768 ≈ 1); b) it is useful to pad
multiplicands to the nearest power of two. It follows that the three considerations
should be taken into account together. For example, wt(32749− 2) = 13 is quite
large and the slightly larger r=32771 has wt(32771 − 2) = 2 and seems to be
preferable. However, key generation with r = 32749 takes 4.2M compared to
5.3M cycles with r = 32771.

BIKE-2 Versus BIKE-1. Until now, BIKE-1 seemed to be a more appealing
option than BIKE-2. This is the result of the prohibitive cost of BIKE-2 key gen-
eration that seemed to be an obstacle for adoption, especially when ephemeral
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Table 5. Relative speedups in the BIKE-2 key generation for different values of r.
The table shows how the performance depends on wt(r − 2). The values in boldface
corresponds to the recommended parameters in [3].

r wt(r − 2) Speedup over NTL Speedup over NTL
(with tables)

Speedup over
OpenSSL (with tables)

Server Laptop Server Laptop Server Laptop

12323 4 11.60 13.89 11.81 14.27 62.08 99.13

11779 5 11.51 13.46 11.79 14.31 55.53 96.86

12347 6 10.46 12.62 10.63 12.96 59.64 87.97

11789 7 10.85 12.91 11.09 13.30 70.09 79.63

11821 8 10.37 12.43 10.46 12.72 62.04 68.48

11933 9 9.89 11.96 10.09 12.45 52.86 72.74

12149 10 9.56 11.20 9.76 11.56 52.71 63.69

12157 11 9.23 10.91 9.43 11.39 42.76 64.20

25603 4 5.87 6.70 5.97 7.08 92.06 142.05

24659 5 5.40 6.12 5.49 6.34 87.44 122.43

24677 6 5.18 5.96 5.25 6.17 65.65 107.28

24733 7 5.00 5.89 5.08 6.09 83.44 91.20

24821 8 4.75 5.44 4.82 5.62 76.78 99.86

25453 9 4.65 5.31 4.71 5.54 81.13 101.41

24547 10 4.01 4.59 4.08 4.74 70.83 79.28

24533 11 3.90 4.49 3.97 4.63 58.92 82.64

24509 12 4.49 5.18 4.58 5.45 72.75 93.95

40973 5 4.51 5.18 4.59 5.37 103.48 133.27

41051 6 4.28 4.82 4.33 5.07 107.19 128.89

41077 7 4.06 4.61 4.12 4.77 84.17 132.74

40709 8 3.71 4.23 3.81 4.50 80.66 117.54

40597 9 3.92 4.02 4.01 4.25 90.13 133.91

40763 10 3.41 3.91 3.48 4.13 86.89 105.37

40637 11 3.33 3.71 3.39 3.96 84.55 111.01

40829 12 3.19 3.61 3.27 3.84 83.73 107.99

keys are desired. This left out BIKE-2’s bandwidth advantage. BIKE specifi-
cation [3] addresses this difficulty by using a “batch inversion” approach that
requires pre-computation of a batch of key pairs. Such solutions require that
other protocols are adapted to using batched key pairs, and this raises addi-
tional complications.

Our improved inversion and hence faster key generation avoids the diffi-
culty. For Level-1 (r = 11779) BIKE-2 has key generation/encapsulation/de-
capsulation at 440 K/180 K/1.2 M cycles, and communication bandwidth of
1.4 KB in each direction. By comparison, BIKE-1 (after using our latest mul-
tiplication implementation) has key generation/encapsulation/decapsulation at
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67 K/230 K/1.3 M cycles, and communication bandwidth of 2.8 KB in each direc-
tion. We believe that our results position BIKE-2 as an appealing design choice
among the BIKE variants.

Acknowledgements. This research was partly supported by: NSF-BSF Grant
2018640; The BIU Center for Research in Applied Cryptography and Cyber Secu-
rity, and the Center for Cyber Law and Policy at the University of Haifa, both in
conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.

We would also like to thank Thorsten Kleinjung for his valuable comments on this
work.

A Squaring Using PCLMULQDQ and VPCLMULQDQ

This appendix describes our C implementation for squaring in R, using
PCLMULQDQ. For brevity, we replace the long names of the C intrinsics with
shorter macros as follows.

1#define PERM64(a, mask) _mm512_permutex_epi64(a, mask)
2#define PERM64X2(a, mask , b) _mm512_permutex2var_epi64(a, mask , b)
3#define PERM64VAR(mask , a) _mm512_permutexvar_epi64(mask , a)
4#define MUL(a, b, imm8) _mm512_clmulepi64_epi128(a, b, imm8)
5#define MXOR(src , mask , a, b) _mm512_mask_xor_epi64(src , mask , a, b)
6#define ALIGN(a, b, count) _mm512_alignr_epi64(a, b, count)
7#define STORE(mem , reg) _mm512_storeu_si512(mem , reg)
8#define LOAD(mem) _mm512_loadu_si512(mem)
9#define EXPANDLOAD(mask , mem) _mm512_maskz_expandloadu_epi64(mask , mem)
10
11#define LOAD128(mem) _mm_loadu_si128(mem)
12#define STORE128(mem , reg) _mm_storeu_si128 (mem , reg)
13#define MUL128(a, b, imm8) _mm_clmulepi64_si128 (a, b, imm8)

When PCLMULQDQ (and not vector-PCLMULQDQ) is available, the square func-
tion is

1void gf2x_sqr(uint64_t *res , const uint64_t *a)
2{
3for (size_t i = 0; i < ceil(R/128); i++)
4{
5__m128i va = LOAD128 (( __m128i *)(a+i*2));
6STORE128 (( __m128i *)(&res[i*4]), MUL128(va, va, 0x00););
7STORE128 (( __m128i *)(&res[i*4+2]), MUL128(va, va, 0x11););
8}
9}

When vector-PCLMULQDQ is available, four multiplications can be executed in
parallel and the code is
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1void gf2x_sqr_vpclmulqdq(uint64_t *res , const uint64_t *a)
2{
3__m512i vm = _mm512_set_epi64 (7, 3, 6, 2, 5, 1, 4, 0);
4for (int i = 0; i < ceil(R/512); i++)
5{
6__m512i va = LOAD(&a[i*8]);
7va = PERM64VAR(vm, va);
8
9STORE(&res[i*16], MUL(va, va, 0x00));
10STORE(&res[i*16+8] , MUL(va, va, 0x11));
11}
12}

The permutation and thus some of the flow’s serialization can be removed by
using the mm512 maskz expandloadu epi64 instruction.

1void gf2x_sqr_vpclmulq(uint64_t *res , const uint64_t *a)
2{
3for (int i = 0; i < ceil(R/512); i++)
4{
5__m512i va1 = EXPANDLOAD (0x55 , &a[i*8]);
6__m512i va2 = EXPANDLOAD (0x55 , &a[i*8+1]);
7
8STORE(&res[i*16], MUL(va1 , va1 , 0x00));
9STORE(&res[i*16+8] , MUL(va2 , va2 , 0x00));
10}
11}

However, our experiments show slower results with this instruction.
Table 6 compares squaring and k-squaring in R using our code. Our imple-

mentation starts with squaring up to the described threshold and then continues
with k-squaring. The threshold depends on the platform.

Table 6. Squaring and k-squaring in R using our code. Columns 2 and 3 count cycles,
where lower is better (threshold = floor(k-square/square). The r values correspond to
the IND-CCA variants of BIKE for Level-1/3/5.

(a) Laptop

r k-square square threshold
11779 16000 230 69
24821 35000 510 68
40597 65000 790 82

(b) Server

r k-square square threshold
11779 20000 350 57
24821 42000 680 61
40597 68000 1100 61

B A 16 × 16 Quad-Words Multiplication Using
VPCLMULQDQ

This appendix describes the C code of our recursive Karatsuba multiplication.



Fast Polynomial Inversion for Post Quantum QC-MDPC Cryptography 123

The mul128x4 function performs four 128-bit Karatsuba multiplications in
parallel.

1static inline void mul128x4(__m512i *h, __m512i *l, __m512i a, __m512i b)
2{
3const __m512i mask_abq = _mm512_set_epi64 (6, 7, 4, 5, 2, 3, 0, 1);
4__m512i s1 = a ^ PERM64(a, _MM_SHUFFLE (2, 3, 0, 1));
5__m512i s2 = b ^ PERM64(b, _MM_SHUFFLE (2, 3, 0, 1));
6
7__m512i lq = MUL(a, b, 0x00);
8__m512i hq = MUL(a, b, 0x11);
9__m512i abq = lq ^ hq ^ MUL(s1, s2, 0x00);
10abq = PERM64VAR(mask_abq , abq);
11*l = MXOR(lq, 0xaa , lq, abq);
12*h = MXOR(hq, 0x55 , hq, abq);
13}

Then, we define the mul512 function that receives two 512-bit zmm registers
(a, b) as input, multiplies them and writes the result into the two registers zh||zl.
The function performs several permutations to reorganize the quad-words. The
relevant masks are:

1const __m512i mask0 = _mm512_set_epi64 (13, 12, 5, 4, 9, 8, 1, 0);
2const __m512i mask1 = _mm512_set_epi64 (15, 14, 7, 6, 11, 10, 3, 2);
3const __m512i mask2 = _mm512_set_epi64 (3, 2, 1, 0, 7, 6, 5, 4);
4const __m512i mask3 = _mm512_set_epi64 (11, 10, 9, 8, 3, 2, 1, 0);
5const __m512i mask4 = _mm512_set_epi64 (15, 14, 13, 12, 7, 6, 5, 4);
6const __m512i mask_s2 = _mm512_set_epi64 (3, 2, 7, 6, 5, 4, 1, 0);
7const __m512i mask_s1 = _mm512_set_epi64 (7, 6, 5, 4, 1, 0, 3, 2);

The m512i variables that are used in this function are: a) xl, xh. These
hold the lower and upper parts of the 128-bit Karatsuba sub-multiplications;
b) xabl, xabh, xab, xab1, xab2. These are used for the middle term of the
256-bit Karatsuba sub-multiplications; c) yl, yh, yabl, yabh, yab. These are
used for middle term of the top 512-bit Karatsuba multiplication; d) t[4] that
holds all the temporary products to mul128 of the middle words.

Define

AX[i] = a[128(i + 1) − 1 : 128i]
BX[i] = b[128(i + 1) − 1 : 128i]
AY [i] = a[256(i + 1) − 1 : 256i]
BY [i] = b[256(i + 1) − 1 : 256i]

Then set

t[0] = AX1 ⊕ AX3||AX2 ⊕ AX3||AX0 ⊕ AX2||AX0 ⊕ AX1
t[1] = BX1 ⊕ BX3||BX2 ⊕ BX3||BX0 ⊕ BX2||BX0 ⊕ BX1
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where

AX1 ⊕ AX3||AX0 ⊕ AX2 = (AX1||AX0) ⊕ (AX3||AX2) = AY 0 ⊕ AY 1
BX1 ⊕ BX3||BX0 ⊕ BX2 = (BX1||BX0) ⊕ (BX3||BX2) = BY 0 ⊕ BY 1

and set the lower 128 bits of t[2], t[3] to (ignoring the upper bits)

t[2][127 : 0] = AX1 ⊕ AX3 ⊕ AX0 ⊕ AX2
t[3][127 : 0] = BX1 ⊕ BX3 ⊕ BX0 ⊕ BX2

1t[0] = PERM64VAR(mask_s1 , a) ^ PERM64VAR(mask_s2 , a);
2t[1] = PERM64VAR(mask_s1 , b) ^ PERM64VAR(mask_s2 , b);
3t[2] = t[0] ^ ALIGN(t[0], t[0], 4);
4t[3] = t[1] ^ ALIGN(t[1], t[1], 4);

The implementation invokes mul128x4 three times: a) for calculating the
lower and the upper 512-bit words; b) for the two middle 256-bit words; c) for
the middle 512-bit word in the top-level Karatsuba. The number of invocations
of VPCLMULQDQ for the entire mul512 is only 9.

1mul128x4 (&xh, &xl, a, b);
2mul128x4 (&xabh , &xabl , t[0], t[1]);
3mul128x4 (&yabh , &yabl , t[2], t[3]);

Finally, we complete the four 128-bit Karatsuba by

1xab = xl ^ xh ^ PERM64X2(xabl , mask0 , xabh);
2yl = PERM64X2(xl, mask3 , xh);
3yh = PERM64X2(xl, mask4 , xh);
4xab1 = ALIGN(xab , xab , 6);
5xab2 = ALIGN(xab , xab , 2);
6yl = MXOR(yl, 0x3c , yl, xab1);
7yh = MXOR(yh, 0x3c , yh, xab2);

and the 512-bit result is

1__m512i oxh = PERM64X2(xabl , mask1 , xabh);
2__m512i oxl = ALIGN(oxh , oxh , 4);
3yab = oxl ^ oxh ^ PERM64X2(yabl , mask0 , yabh);
4yab = MXOR(oxh , 0x3c , oxh , ALIGN(yab , yab , 2));
5yab ^= yl ^ yh;
6
7yab = PERM64VAR(mask2 , yab);
8*zl = MXOR(yl, 0xf0 , yl, yab);
9*zh = MXOR(yh, 0x0f , yh, yab);



Fast Polynomial Inversion for Post Quantum QC-MDPC Cryptography 125

For higher efficiency, our mul1024 Karatsuba implementation holds the data
in zmm registers in order to save memory operations when invoking mul512.

1void mul1024(uint64_t *cp, const uint64_t *ap, const uint64_t *bp) {
2const __m512i a0 = LOAD(ap);
3const __m512i a1 = LOAD(ap + 8);
4const __m512i b0 = LOAD(bp);
5const __m512i b1 = LOAD(bp + 8);
6__m512i hi[2], lo[2], ab[2];
7
8mul512(&lo[1], &lo[0], a0, b0);
9mul512(&hi[1], &hi[0], a1, b1);
10mul512(&ab[1], &ab[0], a0 ^ a1, b0 ^ b1);
11
12__m512i middle = lo[1] ^ hi[0];
13
14STORE(cp, lo[0]);
15STORE(cp + 8, ab[0] ^ lo[0] ^ middle);
16STORE(cp + 16, ab[1] ^ hi[1] ^ middle);
17STORE(cp + 24, hi[1]);
18}

C Fast Permutation

The inverted bit permutation (a = map(b)) of Sect. 4 can be implemented
in a straightforward way as follows. We first convert the map to two maps
bytes map and bits map, where bytes map[i] is the byte index of map(b[i])
and bits map[i] is the position of the relevant bit inside this byte.

1idx = 0;
2for(int i = 0; i < r; i++)
3{
4uint8_t t = 0;
5for (size_t j = 0; j < 8; j++) {
6uint8_t bit = (a[pos_byte[idx]] >> pos_bit[idx]) & 1;
7t |= (bit << j);
8idx++;
9}
10b[i] = t;
11}

A simpler way to apply the map is possible if we store every bit in a byte (that
has the value 0x00 or 0x01).

1for(int i = 0; i < r; i++)
2b[i] = a[map[i]];

This can involve a costly conversion to and from across the representations but
fortunately, we can speed it up with AVX512 (when available)
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1// Converting a binary array (B) to a bytes array (A)
2for(size_t i = 0; i < qw_len; i++)
3STORE(&A[i*8], _mm512_maskz_set1_epi8(B[i], 1));

1// Converting a bytes array (A) to a binary array (B)
2__m512i first_bit_mask = _mm512_set1_epi8 (1);
3for(size_t i = 0; i < qw_len; i++)
4B[i] = _mm512_cmp_epi8_mask(LOAD(&A[i*8]), first_bit_mask , 0);

Note that the mm512 bitshuffle epi64 mask instruction can also be
used for the latter conversion (see next). This instruction requires the
AVX512 BITALG extension while the mm512 cmp epi8 mask instruction
requires only AVX512F which is more common.

1// Converting a bytes array (A) to a binary array (B)
2__m512i first_bit_mask = _mm512_set1_epi64(0 x3830282018100800);
3for(int i=0; i < qw_len; i++)
4B[i] = _mm512_bitshuffle_epi64_mask (LOAD(&A[i*8]), first_bit_mask);
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Abstract. A program in a dataflow architecture is represented as a
dataflow graph. The dataflow nodes in the graph represent operations
to be executed on data. The edges represent a data value being trans-
formed by a dataflow node. Such an architecture can allow exploitation
of parallelism, code sharing, and out-of-order execution. The dataflow
nodes include operations from a small set of operators: logical opera-
tions, switching, addition/subtraction, and multiplication. There is no
arithmetic logic unit nor a floating-point unit. As a result, elementary
operations for integer, and in particular floating-point, arithmetic are
emulated in software. Therefore, when a more advanced functionality
such as trigonometric functions is required, we find that the commonly
used implementations are inefficient. The inefficiency results in an over-
increased dataflow graph that directly translates to wasted area on the
silicon, resulting in increased power consumption and lower through-
put. Volder proposed the CORDIC algorithm for trigonometric functions,
expressed in terms of basic rotations. In this work, we present a correctly-
rounded and efficient implementation of the CORDIC algorithm for the
dataflow architecture.

Keywords: Dataflow · Floating-point · CORDIC · Trigonometric
functions · Elementary functions · Efficient

1 Introduction

There is a great need for making floating-point arithmetic highly efficient for arti-
ficial intelligence (AI) in hardware. The challenge is to reduce hardware overhead
and lowering power usage during the design, training and inference phases of an
AI system [13]. However, this is usually achieved through lowering computation
precision [4,6,9,24]. Reducing computation precision, though, limits the range of
representable numbers or reduces accuracy. Additionally, for non-standard lower
precision it requires a custom floating-point format, which is usually not (or only
partially) compliant to the standardized specifications [3,4,6,13,15].
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Any compute-intensive program is composed of computation building blocks.
Those building blocks are the elementary arithmetic operations: addition, sub-
traction, multiplication and division. Based upon those building blocks are ele-
mentary functions, such as trigonometric functions, exponential and logarithmic
functions, and many more. Trigonometric functions, essentially sine and cosine,
are often used in general, and in particular in AI-based computations.

In most modern architectures, the arithmetic operations are carried out by
hardware elements. In particular, floating-point operations and some of the com-
mon elementary functions are carried out by an integrated floating-point unit
(FPU). In this work, we consider efficient implementation of trigonometric func-
tions, namely sine and cosine, in software for a dataflow architecture.

In the architecture that we consider, there is no FPU and only a subset of
arithmetic operations are supported by hardware. The subset of arithmetic sup-
ported operations include binary and unary addition, binary and unary subtrac-
tion, multiplication, and negation. In case of logical operations, the supported
bitwise operations are AND, OR, and XOR. An additional supported operation
is the SELECT operation, which is used for choosing one of its inputs, based on
a condition and without branching.

The above set of operators may seem restrictive. However, the main purpose
of using such software-defined architecture is the decoupling of the operational
and computational complexity from the underlying hardware implementation. In
other words, similarly to other software-defined concepts, the goal is to use generic
hardware elements and off-burden the computational complexity to software.

In a dataflow architecture, a program is represented by a directed graph,
called a data-flow graph (DFG). The nodes of a DFG represent operators, or
functions, that are applied on data objects. Edges of a DFG represent data
object movement between the operators. An operator can have several outputs
and several or no inputs. The DFG is mapped by a managing software to an
array of logical elements on hardware. Initially, the logical elements on hardware
are generic and the managing software is responsible for reprogramming the
generic logical elements into target operators and activating the appropriate
interconnections between the logical elements.

In contrast to the approach used in common architectures, e.g., von Neumann
architecture, the dataflow approach minimizes amount of resources devoted to
instruction processing, allowing more resources being devoted to arithmetic oper-
ations. In addition, when no dependency exists among data objects the operators
can operate in parallel on the data.

The supported arithmetic operations operate on defined data sizes. If an
operation needs to be applied on a greater data size, then the data will be split
into smaller chunks whose size is supported by the operators, and their output
will be glued in order to construct the final result.

Any logical element can be configured by the managing software to only one of
the mentioned operators. Consequently, any other arithmetic or logical operation
that is not directly supported must be emulated in software. In particular, any
floating-point support (including elementary functions) must also be emulated in
software.
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The commonly used solutions for implementing elementary functions in soft-
ware are table lookup methods or polynomial approximations. The latter requires
several of multiplications and additions/subtractions of floating-point numbers.
In 1959, Volder proposed a special purpose digital computing unit known as
COordinate Rotation DIgital Computer (CORDIC) [16,25]. The proposed algo-
rithm was initially developed for trigonometric functions that were expressed in
terms of basic rotations. The CORDIC algorithm computes 2D rotations using
iterative equations, employing only shift and add operations.

In this work, we propose an implementation of a CORDIC algorithm for
sine and cosine that is optimized for a dataflow architecture and is fully compli-
ant to IEEE-754 single-precision floating-point format. Although we describe an
implementation for single-precision, it is easily extendable to a higher precision.

There exist varying measurements and criteria for defining efficiency and
utilization of programmable hardware. For example, power consumption of a
mapped program, or benchmark evaluating the mapping algorithm. Our main
criteria is efficient utilization of area on the hardware unit. As a measuring
benchmark, we consider the approximated area to be consumed measured in
terms of program’s dataflow graph, namely, the graph’s height and number of
computing (operator) nodes. The measured area is not the actual area that will
be consumed on the hardware unit. The area actually consumed by a particu-
lar program is affected by other factors such as the particular mapping of the
program, types of generic logical elements, geometrical constraints and more.

Similarly to compiler optimizations the mapping software is allowed to mod-
ify the dataflow graph in order to improve its final mapping considering various
constraints such as available area and hardware resources. We can safely state
that the premapping DFG is equivalent to an upper bound of optimal mapping
conditions. Thus, for the purpose of this work, the premapping estimation of
required area from DFG dimensions is a reliable measurement of efficiency and
optimization. We use this benchmark for comparison of our results and through
optimization steps.

Related Work. The CORDIC algorithm is widely used in many fields and
is still actively researched for being extended to other elementary functions,
adaptations and applications [16,18]. The most related work is [11], where a
full-precision floating-point CORDIC implementation was proposed. However,
the use of floating-point operations in each rotation would cause an enormous
computational overhead in a dataflow architecture.

The work [22] proposes a low-latency adaptive CORDIC algorithm. However,
it requires a larger in-memory access (for full-precision) and increased use of
comparison logic. Additionally, it requires the use of multiplication operations,
whereas our goal of using the CORDIC algorithm is to avoid multiplication
operations.

Other CORDIC variants, reviewed in [16,18,20], will result in a similar inef-
ficiency if implemented on a dataflow architecture.
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2 Preliminaries and Notations

IEEE-754 Floating-Point Numbers. Floating-point numbers are numbers
of the form

x = (−1)sx · mx · βex

where β is an integer that represents the radix of the floating-point system, mx

is the significand1 that satisfies |m| < β, ex ∈ {emin . . . emax} is an integer that
represents the exponent, and sx is the sign. For binary floating-point numbers
β = 2.

There are certain binary formats defined by IEEE-754 specifications [1]. In
this paper, we discuss only binary32 and binary64 formats, also called single-
precision and double-precision The structure of those formats is detailed below.

The sign sx is a 1-bit field: sx = 0 for positive numbers and sx = 1 for
negative numbers. The exponent ex is an 8-bit field with values −126 ≤ ex ≤ 127
in binary32, and an 11-bit field with values −1022 ≤ ex ≤ 1023 in binary64. The
exponents are stored using a biased representation, with bias b equal to 127 in
binary32 and 1023 in binary64. The case when the exponent is zero is reserved
for the number 0 and denormal (or subnormal) numbers. The maximal exponent
value is reserved for representing the special values infinity and Not a Number
(NaN), the latter of which is used to represent values that are not real numbers
(for example,

√−1).
For normal numbers, mx ∈ [1, 2). The leading bit (also called the implicit

or the hidden bit) of the significand is always 1 and is not explicitly stored.
The size of the significand, including the hidden bit, is the precision p of the
floating-point format. In case of binary32, the precision is p = 24 and in case of
binary64 the precision is p = 53.

The denormal (subnormal) numbers have ex = 0 but the fraction part is
different from zero. The implicit bit in this case is 0 and the exponent is set to
emin = −126 so that we obtain

x = (−1)sx · mx · 2−126

Correct Rounding. Generally, the result of an arithmetic operation must be
rounded. A floating-point number obtained from converting an infinitely precise
result using IEEE standard’s method is said to be correctly-rounded [1].

What arises from rounding is inaccuracy of the approximated result. When
measuring the accuracy of computer arithmetic operations, it is desirable to
express the inaccuracy in terms of ulps [19]. ulp(x) is the gap between two
floating-point numbers nearest x, even if x is one of them [14]. For estimating
our results, we follow the definition given by Goldberg [8]:

If x̃ = mx̃ · 2ex̃ is the floating-point number that is used to approximate x,
then it is in error by

|mx̃ − x

2ex̃
| · 2p−1

1 The significand is sometimes called the mantissa, but the use of the term mantissa
is discouraged and should be used in the context of logarithms.
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units in the last place. Generalizing to a real number x, ulp(x) = 2max(e,emin)−p+1

for any number x ∈ [2e, 2e+1) [21].
The rounding to nearest even (RN) is the IEEE-754 default rounding mode.

Rounding with this mode, results in the machine number x̃ that is the closest
to the real number x. If x is exactly halfway between two consecutive machine
numbers, return the even one.

Rounding to nearest corresponds to an error of at most 1
2ulp(x) of the real

value. Thus, if x̃ is the machine number that approximates the real number x,
then x̃ = RN(x) =⇒ |x̃ − x| ≤ 1

2ulp(x̃).
Research shows that achieving a correctly-rounded implementation for ele-

mentary functions is difficult [20]. In order to obtain a correct rounding, one
must ensure that after rounding, the exact result is on the same side of a mid-
point as the approximated result [17]. The standard approach is a two-phase
algorithm for correctly rounded results [2,5,17]. The first phase is a computa-
tion that produces, for most cases, a correctly-rounded result. If it is detected
that the result is not correctly-rounded, then the second phase is carried out, in
which the function is recomputed with much higher precision.

We carry through a similar two-phase process for computation of trigono-
metric functions in single-precision. First, an approximation is computed using
64-bit precision. As we show in the Evaluation section, for the vast majority
of cases this is sufficient to return a correctly rounded result. For the few cases
that are incorrectly rounded, their correct result is hard-coded to return without
recomputation. Since there are only a few such cases, and with single-precision
we can actually enumerate those cases, it is much cheaper to hard-code the
correct values instead of recomputing with higher precision.

CORDIC Algorithm. The CORDIC algorithm is based on a decomposition
of an angle θ on a discrete base. The decomposition is given by

θ =
∞∑

k=0

dkwk, dk = ±1, wk = arctan(2−k) .

There are several modes of operation for the CORDIC algorithm. For trigono-
metric functions, the rotation mode is used. The idea is to perform a rotation of
a vector by the angle θ as a sequence of elementary rotations of the angles dnwn.
Starting from (x0, y0), we obtain the point (xi+1, yi+1) by rotating the point
(xi, yi) by angle diwi. We choose the rotation angles such that tan(ωi) = 2−i.
For each rotation, the vector is extended by cos(ωi). For maximal number of
iterations N , the angle is computed by

(
xθ

yθ

)
= cos(w0)

(
1 −di20

di20 1

)
· · · cos(wN )

(
1 −di2−N

di2−N 1

)(
xi

yi

)

or can be rewritten as
(

xθ

yθ

)
= lim

N→∞
K ·

(
1 −di20

di20 1

)
· · ·

(
1 −di2−N

di2−N 1

)(
xi

yi

)
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where K = ΠN−1
i=0 cos(ωi) is a scale factor. The equations used to calculate

xi+1, yi+1 are:

xi+1 = xi − diyi2−i

yi+1 = yi + dixi2−i

zi+1 = zi − diωi

for which the initial values are x0 = 1/K, y0 = 0, z0 = θ.

3 Design and Implementation

The standard floating-point operations are complex and require many elemen-
tary operations. For example, in floating-point multiplication one must: a) check
if the input numbers are invalid (infinity or NaN), b) normalize any subnor-
mals, c) compute the resulting exponent, d) multiply the significands, e) check
for underflow, f) test if the result is subnormal, and lastly g) round and check
for overflow. Seemingly, we have roughly seven actions to perform for each mul-
tiplication, while each such action constitutes a set of elementary operations.
Consequently, each CORDIC iteration using floating-point is very expensive in
terms of elementary operations. Since each such elementary operation will be
translated to at least one logical unit, a CORDIC iteration using floating-point
that consist of hundreds of elementary operations will consume a large area on
chip. Therefore, taking into account the above, our goal will be to reduce the
number of operations per iteration as much as possible in order to reduce the
area consumed by a CORDIC iteration.

In order to obtain at least faithfully-rounded2 calculations for the trigono-
metric functions, all computations must be carried out in higher than the target
precision [8,20]. The logical units in our architecture support only 32-bit arith-
metic operations; any computation of a higher number of bits will be subdivided
into 32-bit operations, and additional gluing operations will be required for com-
puting the final result.

Let us concentrate on the floating-point numbers and their exponents in range
I = [0, π/2]. Any other number out of range I can be range-reduced by one of
the known methods (see [20] for a discussion on several methods). The minimal
normal number in range I is 2−126 which is approximately 1.17549435 × 10−38.
The greatest normal number in range I is π/2, whose unbiased exponent is 0.
The following proposition will help us limit the range of exponents of interest.

Proposition 1. For any single-precision floating-point number x for which
ex < −12, sin(x) = x and cos(x) = 1.

2 Faithful rounding has a maximum error of one ulp, and is not defined by IEEE-
754. It is mentioned for being a less precise rounding mode to emphasize the high
precision requirement.
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Proof. Using Taylor’s approximation for a small number, we have

sin(x) = x + R3(x)

For any x0 in the interval [0, x], R3(x) = sin(3)(x0)·x3

6 , and we know that
|sin(3)(x0)| ≤ 1. We need to show that the error bound R3 is too small relatively
to the floating-point number x.

In other words, we need to find an exponent of a floating-point number x for
which R3 will be smaller than ulp(x). Let ex be such an exponent:

2(3·ex−1)

3
< 2ex · ulp(x) = 2ex−p+1

For precision p = 24 and targeting to an error of 1
2ulp we have:

2(3·ex−1)

3
<

1
2

· 2ex−23

solving for ex we obtain that ex < −12. Similarly, for cosine we have cos(x) =
1 + R2(x), where R2(x) = cos(2)(x0)·x2

2 . However, in this case, note that we are
looking for values that are relatively smaller than ulp(1). As before, for precision
p = 24 and targeting an error of 1

2ulp, we have

22·ex

2
<

1
2

· 2−23

solving for ex similarly results in ex < −12.
��

Proposition 1 tells us that the actual range of exponents that we are interested
in is [−12, 0]. Let us now turn to estimation on the number of bits and the number
of iterations that are required.

Each iteration of the algorithm computes one bit of the result. The 24 bits
of the argument are scaled by an exponent of value from 0 to 12, resulting
in 13 exponents with 24-bits fraction to be mapped to a total of 37 bits. We
need to estimate the number k ≥ 1 of excessive bits needed to compute the
approximation of the trigonometric function so that we are able to correctly
round the approximation to a precision-p correctly rounded result [20]. Namely,
the hard-to-round cases for which the bits appearing after the p bits are either

k bits︷ ︸︸ ︷
011111 . . . 11 xxxx . . .

or
k bits︷ ︸︸ ︷

100000 . . . 00 xxxx . . .

Muller in [20] provides a probabilistic estimation for having at least one input
number leading to a value of k excessive bits. The estimation for k is given by

k ≥ p + log2(ne) + 1.529
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where p is the target precision and ne is the number of possible exponents. The
probability for having at least one input number leading to a value of k or greater
is given by

Pr[k] = 1 − [1 − 21−k]N

where N is the number of floating-point numbers in the set of input values.
Substituting the target precision p = 24 and ne = 13, we obtain

k ≥= 24 + log2(13) + 1.529 ≈ 29.

There, we need 29 bits in addition to the 37 bits computed before - for a total
of at least 66 bits. The probability of having at least one hard-to-round input
number is

Pr[k] = 1 − [1 − 21−29]13×223 ≈ 0.334.

However, in order to take into account 66 bits we would need to use either
128-bits size variable or two different size variables. For example, one of 64 bits
and the other of 32 bits. In the first case, we would have a very low utilization
of data space; in the second case, we would have much more complex compu-
tations with still low utilization of data space. For that matter, we decided to
use 64-bit variables, accepting the higher chance of having hard-to-round cases.
Moreover, rotation angles smaller than arctan(2−56) affect only the lowest 12
bits. The value of those lowest 12 bits is slightly more than the round-off error
for double-precision floating-point numbers, thus, those lowest rotation angles
can be discarded. Practically, this is indeed the case. In the evaluation results
shown in Sect. 4, we show that 57 iterations are enough to obtain correctly-
rounded results with only a few incorrectly rounded numbers with an error at
most 1

2 · ulp(x).

Encoding. In our architecture, we do not have floating-point hardware com-
putation elements and, as mentioned above, utilizing emulated floating-point
operations in software can result in a highly inefficient implementation. There-
fore, we are interested in reducing (as much as possible) the use of floating-point
arithmetic. To do this, we encode each of the input angles to a scaled fixed-point
format. Additionally, we encode the rotation angles and the pre-computed scaling
factor. However, those must be (pre-)computed and encoded in double-precision
in order to adhere to the precision that is used during intermediate computations.
Thus, the encoding procedure expects its input in double-precision format. The
input angle, which is in single-precision, is converted to double-precision before
being encoded. Such conversion does not result in any data loss since it only
positions the significand to a new location and adjusts the exponent as required
by the binary64 format.

The encoding process converts each floating-point number to a scaled fixed-
point format such that the real magnitude of the number is preserved. Working
with floating-point numbers encoded in such way has several advantages.

Mainly, intermediate (higher than the target) precision is preserved among
operations. Other advantages are: a) addition/subtraction operations are exact
and there are no round-off errors, b) full type range is utilized since there is no



136 D. Khankin et al.

Algorithm 1: Floating-Point Encoding
input : integer representation of an angle in double-precision format.
output : 64-bit integer encoding the input X.

1 extract the unbiased exponent ex
2 extract the significand mx with the implicit bit ORed back
3 reposition mx so that the leading bit is in the leftmost position

4 encodedx ← mx × 2−|ex|

5 return encodedx

exponent or sign bits and no exception reserved values, c) no exponent arith-
metic happens in between operations, d) no aligning is required when performing
addition/subtraction, e) no overflow (if floating-point exponent is less than the
integral part of the format), and d) no underflow (due to advantage (a)).

We encode all floating-point numbers that are of interest as follows. The
input value x = m · 2e is represented as x = e11 . . . e0m51 . . . m0:

1. The implicit leading bit of the significand is returned and the number is
shifted to the left most position of a 64-bit integer, discarding the exponent
bits:

53 bits︷ ︸︸ ︷
1.m51 . . . . . . m0

11 bits︷ ︸︸ ︷
0 . . . . . . . . . 0

2. The number is shifted right by |e| bits:

|e| bits
︷ ︸︸ ︷
0 . . . . . . 0

53 bits︷ ︸︸ ︷
1.m51 . . . . . . m0

11 − |e| bits
︷ ︸︸ ︷
0 . . . . . . . . . 0

Algorithm 1 describes the encoding algorithm. First, the exponent and the
significand of the input X are extracted, and the implicit bit is ORed back. The
required scale is computed by subtracting the biased exponent from the exponent
bias, obtaining the absolute value of ex, which is the required scale. We know
that for all numbers belonging to I, the unbiased exponent is not greater than
0. After, the exponent bits are eliminated and the value is scaled according to
its exponent.

Decoding. The decoding process is symmetrical and is described in Algorithm 2.
The decoding begins by computing the number of leading zeros. The exponent is
computed by subtracting the number of leading zeros from the single-precision
exponent bias. The number of leading zeros tells us how much the number is
scaled by a power of two, which is exactly the exponent of the floating-point
format. The significand is first positioned in its target location by shifting it left
as the number of leading zeros minus the exponent size, 11-bits in case of double-
precision format (as those bits were used for the encoded fraction). It may be
the case that the number of leading zeros is less than 11 and thus, the significand
would be shifted right. Then, the significand is shifted to its final location for
single-precision format. The truncated bits are evaluated for rounding decision.
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If the truncated value is closer to the next floating-point number or if it is exactly
halfway and the truncated number is odd, then the number is rounded to even.

CORDIC Procedure. The core CORDIC algorithm remains while we adapt
it to our encoded format and to our available logical operators. The results are
returned through output variables (for example, a pointer in C/C++ languages).
The variable x is initialized to the precomputed and encoded value of 1/K. The
variables y and z are initialized as described earlier in this paper. The variable d
represents the sign of the current angle (i.e., whether we need to rotate forward
or backward in the next step in order to approach zero). Initially, d is set to 0,
since the angle we start with is positive and we need to rotate forward.

At each step of the main computation loop, x and y are multiplied by 2−k

in order to compute the rotation amount. Remember that, in binary integer
arithmetic a multiplication by 2−i is translated into a shift right by i. Next, we
add or subtract the rotation according to the desired direction. We utilize the
SELECT operator and binary arithmetic, instead of branching between addition
and subtraction. Either the rotation amount is left intact or one’s complement
is computed. The result is selected for addition operation.

The precomputed angle ωk is subtracted from z. If the subtracted angle was
greater than z, then z is inverted representing a negative value and d is inverted
to account for that.

4 Accuracy and Performance Evaluation Results

We tested our implementation for the whole range of single-precision numbers.
Single-precision floating-point numbers range from 0 to 3.4028234664 × 10+38,
represented in total by 2, 147, 483, 647 numbers (from 0 to 0x7FFFFFFF). Such
an exhaustive test is feasible to execute on any modern computer. We imple-
mented the well known Payne & Haneck range-reduction technique for num-
bers out of [0, π

2 ] range. Efficient implementation of the Payne & Haneck range-
reduction method is not the scope of our work; a description of the method can
be found in [23].

Algorithm 2: Decoding to a Floating-Point Number
input : Y - 64-bit integer encoding the CORDIC result.
output : integer representation of the result in single-precision format.

1 lz ← the number of leading zeros of Y

2 mx ← Y × 2lz−11

3 ex ← b − lz
4 extract and truncate the trailing 29 bits of mx

5 mask any bits of mx that are higher than the 23rd bit
6 pack x into binary32 with exponent ex and significand mx

7 round x to nearest number, in case of ties to even
8 return x
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Algorithm 3: Adapted CORDIC algorithm.
input : angle encoded with Algorithm 1, out variables for sine/cosine results.

1 x ← 1
K

encoded with Algorithm 1
2 y ← 0, z ← angle, d ← 0, N ← 57

3 for k ← 1 to N do

4 x′ ← y × 2−k

5 y′ ← x × 2−k

6 x′ ← SELECT x′ if d > 0 else ∼x′

7 y′ ← SELECT ∼y′ if d > 0 else y′

8 x ← x + x′

9 y ← y + y′

10 z′ ← z − ωk

11 z ← SELECT z′ if z ≥ ωk else ∼z′

12 d ← SELECT d if z ≥ ωk else ¬d

13 return x as cosine and y as sine

The final computed results from our CORDIC procedure, after decoding,
were bitwise-compared against the expected results computed with a multi-
precision floating-point library (MPFR [7]). In the event of discrepancy, an error
in ulp(x) was computed.

(a) (b)

Fig. 1. (a) Total errors as a function of iterations. (b) Close-up of (a) to the last 14
iterations.

Figure 1a depicts the number of incorrect results as a function of iterations,
and Fig. 1b is a close-up of the last 14 iterations. Figure 1a show that the num-
ber of errors decrease exponentially as the number of iterations grow. The rapid
decrease changes to moderate around 47th iteration, when the elementary rota-
tion angles become too small relatively to the round-off error.
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The relative error curve is less smooth in general and hardly changes towards
the end. This is because though the number of errors can decrease as the number
of iterations increase but the maximal relative error does not necessary decrease
or change. It is important to remark here, that the figures depict the combined
results of sine and cosine. It may happen that the relative error was decreased
in some iteration for one of the functions but not for the other. Figures 2a and
2b show the error measured in ulps.

The least number of errors occurred at iteration 57 with maximal error of
1
2ulp(x), with a total of 7 errors out of 1, 207, 959, 551 numbers in range I. Those
few hard-to-round cases can be hardcoded as literals without requiring additional
memory storage (such as read-only memory or look-up table). Hardcoding the
correct result for those few numbers amounts to a correctly-rounded implemen-
tation. The pattern of truncated bits for hard-to-round numbers is of the form
described earlier. Thus, testing for the existence of such trailing patterns is easy
to implement and can be done in parallel. Iterations greater than 57 do not
improve the relative error nor the number of errors due to lower bits being trun-
cated when such small rotation angles are encoded to scaled fixed-point format.
Remember that, those rotation angles are computed in double-precision, and
thus, require greater range to be properly encoded. However, in order to gain
from further iterations and continue reducing the number of errors by utilizing
those small rotation angles, it is necessary to use greater data types.

We have created a dataflow graph for a single-iteration of the CORDIC
algorithm. The number of compute nodes that we obtained per iteration is 69,
and the height of the dataflow graph is 15. This means that 15 computational
instances (i.e., threads) can run through the loop in parallel. The complete algo-
rithm can be instantiated several times, as much as (approximately) 69 compute
nodes fit in the available area. Though we are interested in correctly-rounded
results, in other settings it may be desirable to relax accuracy requirements.
The CORDIC algorithm has a significant advantage reflected in the simplicity
of adapting it to different requirements. We have calculated the number of com-
pute nodes, and height (latency) as a function of the number of iterations. The
total number of compute nodes would be approximately the number of compute
nodes per iteration multiplied by the number of iterations. Practically, there
would be fewer compute nodes if iterations were unrolled, since the compiler
would then be able to eliminate some compute nodes during its passes. See
Table 1, below, that shows the number of compute nodes and the height of the
dataflow graph when iterations are unrolled.

We compared our results against a high-quality, portable, standalone math-
ematical library called OpenLibm [12]. The dataflow graph for the OpenLibm
library has a total of 74, 376 compute nodes. Our algorithm had 8, 032 total
compute nodes when all iterations were unrolled, and 1, 230 when no iterations
were unrolled.

OpenLibm uses an iterative and highly inefficient range reduction process.
We disabled the range reduction functionality in OpenLibm, discarding any com-
putational errors, in order to compare the trigonometric functions themselves.
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(a) (b)

Fig. 2. (a) Error in ulps as a function of iterations. (b) Close-up of (a) for the last 14
iterations.

The main computation dataflow graph has 8, 334 compute nodes and a height of
228. This is twice as much as our algorithm fully unrolled. After, we considered
only input in range [0;π/4] so no range reduction would occur at all in Open-
Libm. In that scenario, OpenLibm has a total of 25, 684 compute nodes. On the
bright side, the main dataflow graph has 3, 378 compute nodes with height 217.
This size of dataflow graph is comparable to our unrolled 57 iterations. However,
we have much less error when 57 iterations are used. OpenLibm has a total of
24, 133 errors in the range [0; π

2 ] and 612, 217 errors in the rest of the range, with
maximal relative error slightly above 1

2ulp(x).

Table 1. Number of nodes and height as a function of unrolled iterations.

iterations nodes height

40 2,104 282
41 2,172 288
42 2,241 291
43 2,330 303
44 2,382 306
45 2,454 312
46 2,527 318
47 2,601 324
48 2,676 330
49 2,752 336

iterations nodes height

50 2,829 342
51 2,907 348
52 2,986 354
53 3,066 360
54 3,147 366
55 3,229 372
56 3,312 378
57 3,396 384
58 3,481 390
59 3,567 396

iterations nodes height

60 3,673 402
61 3,742 408
62 3,831 414
63 3,921 420
64 4,009 424

5 Discussion

In this work, we described an efficient implementation of the CORDIC algo-
rithm for a dataflow architecture. We showed that our implementation provides
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correctly-rounded results for sine and cosine and that the implementation is
efficient compared to existing state-of-the-art software library.

The use of CORDIC is widespread over many fields. Notably, the CORDIC
algorithm is used in resource-limited hardware. Furthermore, it was recently
used in a large-scale neural-network system [10]. For AI-based use, a relaxing of
the accuracy requirements may be necessary. The CORDIC algorithm is easily
modifiable as it only requires changing the number of iterations to relax accuracy
requirements. Our evaluation results provide an expectation of the number of
errors and the relative errors (in terms of ulp(x)) if accuracy is to be lowered,
together with the expected area utilization.
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Abstract. In the last decade, cloud infrastructures such as Google
Cloud and Amazon AWS have grown vastly in scale and utilization.
Therefore, research into the security and confidentiality of sensitive data
passed through these infrastructures is of great importance. We present
SecureMCMR, a system that utilizes two public clouds for privacy pre-
serving computation outsourcing for MapReduce applications. We also
present analysis of 87 MapReduce applications and the operations they
use. Our results on three MapReduce applications show overhead of
160%, 254%, and 380% over plaintext execution.

1 Introduction

Encryption is a promising approach to privacy preserving computation outsourc-
ing. First, users encrypt their sensitive data then they transform their program
to work using the corresponding encryption scheme. Finally, they upload the
transformed program and encrypted data to the cloud server. The final result is
that they can run their program on a public cloud without leaking sensitive data.
Researchers have proposed different encryption schemes to support a variety of
operations, allowing for larger and larger subsets of programs to be run this way.
Fully Homomorphic Encryption (FHE) [27,59] can perform arbitrary operations
on encrypted data, but in its current state FHE is still prohibitively expen-
sive [28]. An alternative to FHE is Partially Homomorphic Encryption (PHE),
which scales substantially better, but cannot perform arbitrary operations. PHE
is limited in the sense that a given encryption scheme supports only certain oper-
ations on ciphertexts. For example, Linearly Homomorphic Encryption (LHE)
(e.g., the Paillier cryptosystem [47]) supports addition over ciphertexts but not
multiplication or comparison. PHE has been recognized as a promising direction
towards privacy preserving computation outsourcing [23,29,49,55,56,58].

The principal problem with PHE is data incompatibility—when a program
uses one encryption scheme (e.g., Paillier) but later requires an operation that
is not supported (e.g., comparison). Figure 1 illustrates.
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Fig. 1. Data conversion. Variables value and total are encrypted with LHE, allowing
the addition in line 4. However, we cannot perform the comparison on line 6 over
LHE-encrypted total.

One way to address the problem of data incompatibility is to maintain a
trusted machine [23,58] that stores cryptographic keys and in some cases plain-
text input data. The approach resolves data incompatibility by having the
trusted machine perform conversion from one encryption scheme to another,
or carry out the unsupported operations. For example, the trusted machine may
receive data in one encryption scheme (e.g., Paillier), decrypt it, carry out the
computation (e.g., multiplication, exponentiation, etc.), re-encrypt, and send
the result back to the untrusted cloud server. Clearly, this approach entails com-
munication between the server and the trusted machine. This communication
restricts PHE in highly-parallel MapReduce applications, where multiple server
nodes send work to the trusted machine and create a bottleneck.

In this paper, we propose SecureMCMR (Secure [M]ulti-[C]loud computa-
tion for [M]ap [R]educe). SecureMCMR falls into a line of work that makes use
of PHE for computation outsourcing [23,49,55,56,58] improving the trusted-
machine approach in two ways:

1. SecureMCMR replaces the trusted machine with an untrusted cloud server,
thus eliminating the need for clients to maintain secure and computationally
powerful trusted machines.

2. The untrusted cloud server is highly parallel thus alleviating bottlenecks that
arise when multiple server nodes access a single trusted machine.

The overarching problem we address is the following. Can users take advantage
of inexpensive, efficient, and convenient cloud services, while (1) preserving data
privacy, and (2) retaining efficiency of computation. Our specific focus is on
MapReduce applications.

SecureMCMR uses two non-colluding public clouds, cloud A (e.g., Google
Cloud) and cloud B (e.g., Amazon AWS). Cloud A stores public keys and runs
the MapReduce task using LHE. It runs LHE-unsupported operations (e.g.,
multiplication) collaboratively with cloud B, which stores private keys and can
decrypt LHE-encrypted sensitive values. The key guarantee of SecureMCMR is
that cloud A sees only LHE-encrypted ciphertexts of sensitive values, and cloud
B sees only blinded sensitive values, which ensures that neither public cloud can
retrieve sensitive input values.
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We present a framework for reasoning about the security of MapReduce
applications and we classify a corpus of 87 programs. We run 3 MapReduce
applications under SecureMCMR in a real cloud environment, present findings
and outline future directions.

This paper makes the following contributions:

– SecureMCMR, a system for privacy-preserving computation outsourcing for
MapReduce applications.

– A new protocol inspired by Randomized Encoding that allows servers A and
B to collaboratively compute certain LHE-unsupported operations securely.

– A study of the security of a large corpus of MapReduce applications. We study
87 MapReduce applications and the kinds of operations they use. Understand-
ing of ways different operations are used in practice may guide development
of new protocols.

– Results running MapReduce applications under SecureMCMR on Google
Cloud (cloud A) and Amazon AWS (cloud B). The overhead of SecureM-
CMR decreases as the number of Amazon nodes increases, and it remains
acceptable in our experiments at 380%.

The rest of the paper is organized as follows. Section 2 presents an overview of
SecureMCMR and positions our work among related works. Section 3 presents
the cryptographic primitives we make use of, including a description of our proto-
col for collaborative computation of unsupported operations. Section 4 presents
the programming language primitives we make use of. Section 5 presents our
security analysis, including our framework for reasoning about programs that
use comparisons on top of LHE-encrypted execution. Section 6 details our exper-
iments and evaluation. Section 7 concludes.

2 Overview and Related Work

2.1 MapReduce

MapReduce [19] is a highly parallel programming model created to compute
“big data” problems on a large cluster of nodes. Each cluster contains one or
more master nodes along with many worker nodes. A MapReduce job generally
consists of 3 steps: map, shuffle, and reduce. The framework splits the input file
into chunks where each chunk is assigned to a worker node. Each worker node
calls the special map function on each line of input. The map phase outputs
a list of key-value pairs. The shuffle phase sorts the values associated with
each key k. Finally, the reduce phase runs a reduce function per each key k,
collapsing the list of values associated to k into a final result. MapReduce has
been implemented in different frameworks [5,6,22]; it is actively used in a wide
variety of applications.
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2.2 Overview of SecureMCMR

Fig. 2. Multi-cloud infrastructure: Cloud A (Google) acts as the server and computes
over LHE-encrypted data. Cloud B (AWS) acts in liue of the trusted machine. It
receives blinded data, decrypts it, computes over, re-encrypts and sends it back to A.
A and B collaboratively compute LHE-unsupported operations.

SecureMCMR takes a MapReduce application and transforms it to work on
two non-colluding, untrusted servers, cloud A and cloud B. Cloud A takes the
input files in LHE-encrypted form, and runs LHE-supported operations locally.
Whenever it encounters LHE-unsupported operations, it performs computation
collaboratively with cloud B. Cloud A has access to the public key associated
with the LHE scheme and cloud B has access to the public and private keys, i.e.,
B can decrypt the values that A sends (Fig. 2).

Clouds A and B collaboratively compute arbitrary operations that are unsup-
ported by LHE, however, there is varying degree of security (i.e., leakage)
depending on the operation. SecureMCMR computes certain operations, e.g.,
multiplication, securely. We achieve security through a protocol inspired by Ran-
domized Encoding, which encodes multiplications in a way that server B sees only
blinded sensitive values and server A sees only LHE ciphertexts. The protocol
achieves statistical security as we show in Sect. 5. Other operations, particularly
comparisons, inherently leak order sequences of sensitive values, thus creating
adversarial advantage [11,12] for the servers to “guess” plaintext values in the
sequence or distances between two plaintexts; a longer order sequence implies
lower degree of security [11,12]. SecureMCMR computes such operations OPE-
securely, thus realizing the guarantees of Order Preserving Encryption (OPE).
Yet SecureMCMR computes other operations with leakage of aggregate values,
e.g., to compute e−x where x is an inner product of two input vectors, it leaks
the value of x to B. Depending on the information an attacker is looking for
the severity of this leak can change. For example, if the attacker is not looking
for the exact value of x but only the sign of x, then leaking x reveals signif-
icant relevant information. Computing scientific operations securely, precisely,
and efficiently is an ongoing area of research in the secure computation commu-
nity. For example, [41] considers a novel approximation of the sigmoid and [3]
presents implementations and benchmarking of scientific operations based on
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numerical approximation in the SCALE-MAMBA system [2] for secure multi-
party computation.

Across 87 MapReduce programs, we find the majority can be computed
securely or OPE-securely. In addition, the nature of programs is such that OPE
security comes with low adversarial advantage against guessing the exact value
of an OPE ciphertext or the exact distance between two OPE ciphertexts.

2.3 Related Work

The closest related work is work on computation outsourcing for MapReduce
programs. MrCrypt [55] reasons about the uses of variables in the program and
assigns an encryption scheme to each variable. For example, if a variable is used
only in addition operations, it assigns LHE, if it is used in only a comparison, it
assigns OPE, etc. MrCrypt simply gives up on programs that exhibit data incom-
patibility; e.g., it cannot handle the program in Fig. 1. SecureMR [23] handles
certain programs that exhibit data incompatibility using a trusted machine. Our
work falls in line with MrCrypt and SecureMR and their “counterparts” in the
database world, CryptDB [49], which makes use of different encryption schemes
for different columns, but cannot handle incompatibility and Monomi [58], which
handles data incompatibility by sending unsupported operations to a trusted
machine. Our work improves upon MrCrypt and SecureMR in at least two major
ways: (1) it eliminates the trusted machine, and (2) it significantly expands the
security analysis. Another related work is GraphSC framework [44]. It allows
non-cryptography experts to write secure versions of parallel algorithms in the
areas of machine learning, data mining, and graph theory. Our work differs from
GraphSC in several ways. We seek to automatically transform existing MapRe-
duce programs and deploy them with Hadoop, while GraphSC is a library that
allows programmers to write parallel programs in a secure way. Secondly, we use
LHE as the key cryptographic primitive, while GraphSC uses garbled circuits.
Finally, we deploy on Google and AWS, while GraphSC deploys on AWS using
two geographic regions. Additionally, the work of Dinh et. [21] is also related to
secure Hadoop computation. However it focuses on hardware solutions while our
work focuses on software.

Secure Multi-party Computation (MPC) is another approach to secure com-
putation [9,15,21,30,46,60]. Our approach was inspired in part by MPC, how-
ever, we weaken the security guarantees in favor of a performance boost. In
MPC two or more mistrusting parties attempt to compute a task collabora-
tively, without revealing their individual inputs. In our model, clouds A and B
can be viewed as mistrusting parties that collaboratively compute an operation,
although the premise of collaborative computation is different. There has been
significant progress in MPC and adaptations of MPC that target both classical
machine learning algorithms [26,29,41,45,46,52] and deep learning ones [33,38].

Building programming frameworks for MPC is an active, rapidly evolving
area [31]. Early research such as Fairplay [39] (and its extension to MPC Fair-
playMP [8]), Sharemind [10], VIFF [17], and CBMC-GC [25] were later built
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upon in works like Frigate [42], and ABY [20]. VIFF [17] was specifically fol-
lowed by MPyC [54], a powerful MPC framework for Python. Our frameworks
differs because we target Hadoop and Java, the dominant language for MapRe-
duce implementations. Newer compilers include HyCC [13], EzPC [14], SCALE-
MAMBA (formerly SPDZ) [34], and ABY3 [40]. Unfortunately, none of these
systems directly target Hadoop-like frameworks and cannot be used for the
analysis, transformation and deployment of Hadoop MapReduce applications.
In addition, MPC compilers (including ABY, HyCC, and EzPC) restrict loop
bounds to constant values to enhance security. Thus, they cannot be applied on
our benchmark programs with input dependent loop bounds.

Our system can be viewed as a variant of two-party computation (2-PC). The
major difference is that SecureMCMR allows for the automatic transformation of
existing MapReduce programs– we can replace LHE-supported operations with
the equivalent operations over LHE-ciphertexts (e.g. plaintext a = b+c becomes
LHE(a) = LHE(b)⊕LHE(c)), and LHE-unsupported operations with the cor-
responding collaborative protocol (if there is one). The program runs in Hadoop
on cloud A with minimal synchronous communication with B. In contrast, exist-
ing 2-PC compilers (e.g., ABY, HyCC) do not support Hadoop. Extending such
compilers to run in Hadoop is a significant research and engineering task; fur-
thermore, automatic transformation of MapReduce to the inputs that would be
accepted by those systems is unresolved as well. Despite the current state of
MPC implementation, we believe that MPC is the most promising approach to
secure computation, including in the parallel domain, due to its strong security
guarantees. Our results stress the importance of parallelism in the two cloud
systems, and study the kinds of operations used in real world MapReduce pro-
grams, which may guide development of MPC compilers and protocols for the
MapReduce domain.

3 Cryptographic Primitives

This section describes the cryptographic tools we make use of, Linearly Homo-
morphic Encryption (Sect. 3.1), Randomized Encoding (Sect. 3.2), and Order
Preserving Encryption (Sect. 3.3). Section 3.2 details our adaptation of RE for
the purposes of SecureMCMR.

3.1 Linearly Homomorphic Encryption (LHE)

Given a message space M , an LHE scheme is defined, per [29], by:

1. Algorithm Gen generates a pair of keys, a private key sk and a public key pk
given a security parameter κ: (sk , pk) ← Gen(κ)

2. Encryption algorithm Enc takes m ∈ M and the public key, and generates
ciphertext c: c ← Enc(m, pk)

3. Decryption algorithm Dec is a deterministic algorithm that takes c and the
private key and decrypts the plaintext message corresponding to c: m =
Dec(c, sk)
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4. There is a homomorphic operation that operates on ciphertexts: Dec(Enc
(m1, pk) ⊕ Enc(m2, pk), sk) = m1 + m2

As it is standard, the LHE plaintexts are in ZN where N is an RSA modulus.
Negative numbers are represented by the upper half of this range:

[
�N

2
�, N − 1

]
≡

[
−�N

2
	,−1

]

We assume that N is sufficiently large and computation does not overflow the
modulus.

There are several known LHEs, e.g., Paillier [47], Damg̊ard and Jurik [18], and
Damg̊ard, Geisler, and Krøigaard (DGK) [16]. Our framework uses a Java imple-
mentation of Paillier [4]. LHEs follows the standard semantic security property,
which states, informally, that a computationally bounded algorithm cannot gain
additional information about m given only the public key pk and the ciphertext
c of m.

The key takeaway for our purposes is that LHE performs arbitrary affine
transformations on ciphertexts. We can compute (the ciphertext of) m1 · c1 +
m2 · c2 +m3, where m1,m2 and m3 are plaintexts and c1 and c2 are ciphertexts.
Therefore, all affine transformations on program inputs can be computed locally
on Server A. Empirically, a significant amount of computation in the MapReduce
applications was affine operations.

3.2 Randomized Encoding (RE)

Standard RE. Randomized Encoding, described in [7], works as follows. Let
f(x) be a function. RE introduces an encoding function f̂(x; r), where r is uni-
formly random input, and a decryption algorithm, Decode. REs enforce two key
properties: (1) correctness: Decode(f̂(x; r)) = f(x), and (2) privacy: the distri-
bution of f̂(x; r) depends only on f(x), i.e., it reveals only f(x), and does not
reveal any additional information on x. An additional property, (3) efficiency,
states that computing f̂(x; r) is more efficient than computing f(x).

An example from [7] is f(x) = x2 mod N , where x is private input and
N is a public integer. Take f̂(x; r) = x2 + r · N , and Decode(f̂(x; r)) =
f̂(x; r) mod N . Clearly, the randomized encoding is correct because Decode =
(x2 + r · N) mod N = x2 mod N . The encoding is also private, as argued
by Appelbaum; this is because the distributions f̂(x; r) and f̂(x′; r) where
f(x) = f(x′) = y (i.e., x2 = q ·N +y, and (x′)2 = q′ ·N +y), are statistically the
same (intuitively, choosing r or r′, s.t., q·N+y+(r−q)·N = q′ ·N+y+(r′−q′)·N ,
is equally probable).

In traditional RE one party, say party A, may send the result of f̂(x; r), in
our example this is the value x2 + r · N , to another party, say party B. Party
B then retrieves the value of f(x), by applying algorithm Decode. Party B will
not learn anything additional on x (besides x2 mod N , of course), which is
guaranteed by privacy. And party A computes f̂ more efficiently than f because
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modular division is expensive. Crucially, in traditional RE, both parties A and
B can perform arbitrary operations and compute arbitrary functions. Therefore,
neither the encryption (the encoding algorithm) nor the decryption (decoding
algorithm) are constrained. In contrast, in our system encoding of input and
decoding of output are constrained to only affine transformations. We build on
RE, but impose different constraints.

SecureMCMR RE. Our variation of RE, which we call SecureMCMR RE,
defines privacy as follows. For the rest of this paper, when we write RE, we refer
to SecureMCMR RE. We require f̂(e(x; r)), where e(x; r) is an encoding of the
input x such that it does not reveal anything on x. If the inputs x are of bit
length l, we require that the random numbers r are drawn from the integers of
bit length σ + l, where σ is a security parameter. It is an onus on the protocol
designer to show that e(x; r) is secure as we demonstrate for the two protocols
we fit in this framework (recall that e(x; r) is a ciphertext on the side of A, but
a plaintext on the side of B). SecureMCMR RE defines correctness as follows:
Decode(f̂(e(x; r)), x, r) = f(x); the decoding operation Decode takes f̂(e(x; r)),
x, and r and produces the result of f(x). The difference with traditional RE
is that the decoder depends on x and the random inputs r used to encode x.
In our setup Server A performs both the encoding and decoding, x is an LHE-
encrypted ciphertext and r is a random plaintext. Server B computes f̂(e(x; r))
over blinded inputs, thus f̂ can perform arbitrary operations.

Encoding of Multiplication. We consider multiplication f(x, y) = x · y. The
encoding f̂(e(x; r1), e(y; r2)) = (x + r1) · (y + r2) = v. Decode(v, x, y, r1, r2) =
v −x · r2 − y · r1 − r1 · r2. Privacy holds, as x+ r1 and y + r2 blind the values of x
and y, and (x+ r1) · (y + r2) does not reveal any additional information about x
or y. Correctness holds as well, since (x+r1) ·(y+r2)−x ·r2−y ·r1−r1 ·r2 = x ·y.

To establish privacy, we show that e(x; r) is at least statistically secure fol-
lowing the proofs of security in [20,50]. We assume that the Paillier modulus N
is large enough and computations do not overflow N ; this is convenient for cor-
rectness as (x+r1) · (y+r2) does not overflow the modulus and can be viewed as
computation over the integers; however it limits the security of blinding, as now
x+r may reveal the length of x when B decrypts x+r. Consider the view of cloud
B. The value x + r may leak information about the length of x if its length is
shorter than l, where l is the length of the input. The standard approach [20,50]
is to use a statistical parameter σ, i.e., add σ random bits by randomly selecting
padding r of bit length σ + l. We have 0 ≤ r < 2σ+l. The only way x + r reveals
information about the length of x is if the σ most significant bits of r are 0,
which happens with probability 2−σ; this is negligible in the security parameter
σ. Therefore, e(x; r) as applied to x and y is statistically secure. From the point
of view of server A, A receives the Paillier encrypted value (x + r1) · (y + r2)
which is indistinguishable from any other encrypted value by the guarantees of
the Paillier cryptosystem.
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We now plug in SecureMCMR RE into our system. SecureMCMR RE defines
a protocol to compute LHE-unsupported function f(x). It is parameterized by
f̂ , e(x, r), and Decode, meeting the above requirements.

1. Server A generates random r and computes LHE ciphertext c = e(x; r). Recall
that the computation uses only affine transformations on x as A holds the
LHE ciphertext of x.

2. Server A sends c to B.
3. Server B decrypts c and computes m = f̂(Dec(c)).
4. Server B encrypts c = Enc(m) and sends the LHE ciphertext c to A.
5. Server A decodes f̂(c), computing the ciphertext of f(x).

Server B receives only input encodings e(x; r), in ciphertext. It is a require-
ment that e(x; r) is secure, and the protocol designer must establish security of
e(x; r) as we did for the multiplication protocol. Server A receives f̂ as LHE
ciphertext which is secure based on the security guarantees of LHE.

As it is well known, we can approximate any function f(x) by the first n
terms of its Taylor series expansion. A and B can collaboratively compute each
term of the expansion leaving server A to sum up the resulting ciphertexts
computing ≈ f(x). The more terms of expansion the more accurate the Taylor
series estimate. A downside of this is the inefficiency that n communication
rounds entail. Therefore, we define our requirement for efficiency as a single
round of communication, where A and B each send at most a small constant
number of values. Operations are computable in our framework when we can
design a protocol that fits the security and efficiency requirements; operations
are Unknown otherwise. Section 5 has additional discussion.

One can use the framework to encode different operations. We have con-
structed encodings for multiplication (described above) and comparison x ≤ y
(described below), which are necessary to run our benchmarks; we envision
encoding of other operations in future work.

Encoding of Comparison. We adapt a protocol based on multiplication hiding
described by Kerschbaum et al. [37]. We expand the protocol to suit our needs
and argue both correctness and security (there are no proofs in ref. [37]). Recall
that server A wishes to compute x ≤ y, however, A holds both x and y as
LHE-encrypted values. First, Server A computes the ciphertext d = y−x. (Note
that computing Enc(x) in either Paillier or Damgard and Jurik amounts to
computing the multiplicative inverse of Enc(x) in ZN2 .) Then A generates large
non-negative uniformly random integers r and r′ of length σ + l such that r′ < r
and computes r ·d+r′. As in [37], we assume the existence of such random values
r and r′ that the distribution of r · d + r′ is statistically close to uniform over
the set of values of d.
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Server A sends the ciphertext r ·d+ r′ to B.1 B decrypts to a plaintext value
v and sends True if v > 0 and False otherwise. In terms of SecureMCMR RE

f̂x ≤ y(e(y − x; r, r′)) =
{

True if plaintext r · (y − x) + r′ > 0
False otherwise

Decodex ≤ y(v, x, y, r, r′) = v

The protocol is correct: x ≤ y if and only if r · (y − x) + r′ > 0. Correctness
follows from the assumption that the Paillier modulus N is large and computa-
tions r ·d+ r′ do not overflow the modulus. Typical bit length values are l = 32,
σ = 112, and N is 2048 bits, at least [50]. Consider the case d < 0 (d is nega-
tive in the integers). In Paillier, d is represented by N − d′ where d′ = |d|, and
r · (N −d′) mod N = −r ·d′; given the large N , −r ·d′ is in the upper half of the
modulus N . Since r′ < r and d′ is a positive integer, it follows that −r · d′ + r′

is in the upper half of the modulus, i.e., it is a negative integer. Analogously,
x > y implies that r · (y − x) + r′ < 0, and the equivalence follows from simple
contradiction.

To prove security of e(y − x; r, r′) we again use the statistical parameter σ.
r · d + r′ reveals information to server B about the length of d only if the length
of r · d + r′ is less than l + 1. In order to have such a length, r must be 1 (and
r′ must be 0). The probability of selecting a random r = 1 is 1

2σ+l which entails
that hiding is at least statistically secure.

Encoding the rest of the comparison operations in terms of x ≤ y is straight-
forward [35].

3.3 Order Preserving Encryption (OPE)

The last cryptographic primitive that factors in our system and analysis is Order
Preserving Encryption (OPE) [11,12,36]. An OPE scheme is a symmetric encryp-
tion scheme over a key space, message space M , and ciphertext space C. It is
well known that OPE has weaker security than LHE, RE, and 2-PC protocols.
We make use of OPE as a compromise to achieve better performance: we can
encrypt values with OPE and perform comparison on server A, as opposed to
sharing sensitive values between A and B and performing comparison collabo-
ratively by A and B as is standard in MPC. OPE is defined in terms of three
algorithms:

– A key generation algorithm that returns a key K
– An encryption algorithm Enc that takes a key K and a plaintext m and

returns the ciphertext c
– A decrpyption algorithm Dec that takes K and a ciphertext and returns a

plaintext

1 The protocol assumes that x and y are integers, however, it is trivially adapted to
work over fixpoint representation of real numbers as in the Java implementation of
Paillier we use.
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The correctness property Dec(K,Enc(K,m)) = m holds for every K in the
key space, and m ∈ M . The order-preserving property, if m1 < m2 then
Enc(K,m1) < Enc(K,m2), holds for every K and m1,m2 ∈ M .

Boldyreva et al. [11,12] study OPE and its security properties. It is well-
known that since OPE schemes reveal order of plaintexts, their security is weaker
than LHE or RE. Boldyreva et al. cast an OPE scheme in terms of a Random
Order Preserving Function (ROPF), and describe the “ideal” behavior of an
OPE scheme:

– Key generation picks a ROPF g
– Enc takes the key and a plaintext m and returns g(m)
– Dec takes the key and a ciphertext c and returns g−1(c)

A secure OPE scheme, Boldyreva et al. argue, should closely “mimic” the
behavior of a ROPF. In addition to the characterization of the “ideal” behavior,
they propose an OPE scheme that is secure according to this definition.

Boldyreva et al. [12] give upper and lower bounds on Window One-Wayness
(WOW), a metric of the advantage of an adversary A trying to guess the plain-
text values of OPE ciphertexts. Assuming an ideal OPE scheme, the upper bound
is as follows:

Adv1,z−WOW (A) <
4z√

M − z + 1

where M is the size of the domain of the plaintext, and z is the number of OPE
challenge ciphertexts the adversary sees. Adv1,z−WOW (A) in particular is the
probability that A will find the exact value of at least one of the z challenge
ciphertexts. Intuitively, the larger z is, i.e., the higher the number of ordered
ciphertexts adversary A sees, the higher A’s advantage, and hence the lower over-
all security. Analogous analysis applies to the adversarial advantage in guessing
the distance between two OPE ciphertexts [35].

A key contribution of our work is to apply the upper bound on adversar-
ial advantage on real-world MapReduce programs and study their OPE security,
substantially expanding prior work [23,49,55,58] that has used OPE with poten-
tially weak security guarantees.

4 Programming Primitives

We define the program execution semantics in terms of the notions of the AST
value and program trace. We use these notions in Sect. 5 to reason about pro-
grams with comparisons.

AST Values. We denote values as AST (v1, . . . , vn), where v1, . . . , vn and n ≥ 1
are inputs, which can be either (1) program constants or (2) values read from
MapReduce input files. Inputs are plaintext or sensitive, where sensitive ones
are LHE-encrypted by the client that outsources computation. For example, b0,
b1, ... b5 in Fig. 3 are sensitive program constants, and rating’s are sensitive
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Fig. 3. Histogram, adapted from PUMA, computes a histogram of ratings. The bucket
interval boundaries b0, b1, ... and the rating values are LHE-encrypted inputs.

values read from the MapReduce input file. Inputs are the leaves of the Abstract
Syntax Tree (AST) that computes the actual value. Our notation hints at the
AST, however, we are interested in the inputs, and not the structure of the AST.
For example, consider the value b0*total in line 13 in Fig. 3. Its AST notation will
be AST(b0,1,...,1), as it is computed from inputs b0 and the constant 1 in line
10. As a remark v1, . . . , vn may repeat inputs, as in the example AST(b0,1,...,1).

AST(v1, . . . , vn) is plaintext if all inputs vi’s are plaintext; it is sensitive
otherwise, i.e., there is at least one input that is sensitive. For example the AST
of total, namely AST(1,...,1) is plaintext, and the AST of b0*total is sensitive.
A sensitive AST must be LHE-encrypted on Server A, and blinded on Server B;
this is the correctness invariant enforced by our system.

Traces. An execution trace is the sequence of statements (e.g., x = y and x =
y + z) and tests (e.g., x < y) that the program executes for a given input. For
example, below is a trace for Fig. 3 that sums up the ratings in the first line of
the input file and the average rating falls into the first bucket:

s1 = s0+ rating; total1 = total0+ 1; ...(b0 ∗ totalN ≤ sN) ∧ (sN ≤ b1 ∗ totalN); outValue = 1;
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Here s0, s1,... stand for the partial sumRatings and r0, r1,... stand for the sequence
of rating inputs, and t0, t1,... stand for the partial total.

Consider the trace view of the program: the same trace is running on A and
on B. All sensitive ASTs must be “encrypted”, i.e., available as LHE ciphertexts
on A, and as blinded plaintexts on B. The trace view makes no distinction
between arithmetic operations and comparison operations—each operation in
the trace sequence is either (1) locally computable on Server A, (2) RE-enabled
through communication between A and B, or (3) “unknown”. We elaborate on
“unknown” operations in Sect. 5.

Path Conditions. Note that a trace reveals the results of all comparisons
to both servers A and B. The full sequence of comparison clauses in a trace
T forms the path condition of T . The path condition of a trace T for our
purposes is the sequence of all comparisons. For example, the path condi-
tion for the running example in Fig. 3 and the trace we showed earlier is
(b0 ∗ total <= sumRatings), (sumRatings < b1 ∗ total).

5 Security Analysis

This section presents the security analysis of SecureMCMR. We begin with stat-
ing our assumptions (Sect. 5.1). We describe the different kinds of program oper-
ations (Sect. 5.2) that give rise to the three security levels: Secure, OPE-secure,
and Unknown (Sect. 5.3).

5.1 Assumptions

The goal of SecureMCMR is to distribute computation among two untrusted
public clouds, cloud A (which runs the program over LHE-encrypted values)
and cloud B (which helps run LHE-unsupported operations). Cloud A holds the
public key pk as well as LHE-ciphertexts of sensitive ASTs. Cloud B holds the
private key sk, however, it receives only statistically blinded values.

Our assumptions are:

1. Cloud A and cloud B are non-colluding, i.e., A has no access to B and vice
versa.

2. We assume a passive adversary, e.g., an administrator at either cloud can
monitor memory and traffic but would not attempt active attacks.

3. We assume that servers A and B consider the interval from which values are
drawn to be sufficiently large, in other words, bounds on adversary advantage
due to order information are driven by the size of the ordered sequence z.

We allow that the program code is known to both cloud A and cloud B.
We may state an assumption that the program is not known to cloud B, which
will strengthen our security guarantees. (In this case we will be able to send
any value from A to B, as B does not know anything about the structure of
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the AST.) In practice however, cloud B may infer the program from the set
of LHE-unsupported operations it is asked to perform, particularly, given that
MapReduce applications typically run well-known data analytics tasks. Allowing
that B knows the program code, entails that B has the exact same trace view as
A. Both A and B see the AST of each value.

In addition, since both A and B observe the execution trace, they observe the
number of iterations each loop takes. Thus, they observe the size of container
structures. As expected, knowledge of the exact number of executions a loop
takes can create side-channel leaks when the loop-bound is input dependent. We
examine such leaks in our benchmarks in detail.

5.2 Kinds of Operations

We group operations on sensitive ASTs into 4 categories. Here x and y are
ciphertexts and p is plaintext:

1. LHE-supported arithmetic (LHE): x + y and p · x,
2. RE-supported arithmetic (RE): x · y and xp,
3. Comparison (CMP): x ≤ y, and
4. Unsupported operations (UNK): any other operation, e.g., ex.

LHE operations are carried out locally on Server A. RE ones are carried
collaboratively by Servers A and B; as we argue in Sect. 3.2, RE operations do
not leak additional information about the operands or result to either A or B.
Comparisons are carried locally on A using OPE, or remotely using the encoding
in Sect. 3.2. We classify a programs into one of three security levels, depending
on the kinds of operations it executes. If the static analysis (a standard taint
analysis described in [35]) determines that sensitive inputs reach a LHE, RE,
CMP, or UNK operation, then we say that the program executes LHE, RE,
CMP, or UNK operations, respectively.

5.3 Security Levels

Secure. Secure applications execute only LHE and RE operations. Server A sees
only LHE-encrypted ciphertext of sensitive ASTs, and therefore SecureMCMR
w.r.t. Server A is as strong as LHE encryption (i.e., we have semantic security).
Server B sees statistically blinded sensitive ASTs, and thus, SecureMCMR w.r.t.
Server B is at least statistically secure.

OPE-Secure. OPE-secure applications execute CMP operations (i.e., compar-
isons) in addition to LHE and RE ones. Comparisons present the biggest chal-
lenge to security reasoning. There are two cases, a local CMP and a remote CMP.
Local CMPs have two operands that are inputs vi (rather than ASTs of two or
more leaves). Remote CMPs are ones where at least one operand is a sensitive
AST. In other words, local CMPs use inputs as is, while remote CMPs perform
computation/transformation on inputs. For example, the comparison in line 3
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in Fig. 4 is a local CMP, as both the entryDate column value, and the constant
input date are inputs; the comparisons in lines 10, 12, 14, 16, and 18 in Fig. 3 are
remote CMPs.

Fig. 4. A MapReduce-like program adapted from MrCrypt.

CMP-Local. We first discuss security of local CMPs, significantly expanding
discussion of OPE compared to previous work [23,49,55,58].

Our analysis applies Boldyreva et al’s results to reason about OPE security
(and order information more generally) in real programs. The actual bounds on
adversary advantage depend on what order-preserving operations are executed in
a program. If a program uses a large number of distinct OPE-encrypted cipher-
texts, thus entailing a large z (recall Sect. 3.3), then the bound on adversary
advantage is high and the program’s OPE security is low. Conversely, if it uses
only a few OPE-encrypted ciphertexts, then the bound on adversary advantage
is low and OPE security is high.

Consider Fig. 4. Applying an OPE encryption scheme entails that all vi’s in
column entryDate are encrypted using a key K. In terms of Boldyreva’s anal-
ysis K is, essentially, a randomly chosen Order Preserving Function (ROPF)
(recall Sect. 3.3). Thus, the bounds on the adversary advantage, depend on the
size of the input file. As input files are large, that means OPE security is low—
the adversary can guess the plaintext of a ciphertext with probability very close
to one.

A mitigation is to encrypt each record, i.e., each entryDate with a different
random key, thus associating a different random OPF with each value (i.e.,
rekey). This necessitates encryption of the date constant with different keys as
well, and the comparison becomes

if(entryDatei> date[keyi])...

z however is 2, since the adversary sees exactly 2 ciphertext per random func-
tion, and the bound on Adv1,z−WOW (A) becomes 8√

M−1
. In Sect. 6 we present

analysis of the adversary advantage bounds in our corpus of benchmarks.
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CMP-Remote. Remote comparisons present a challenge because sequences of
such comparisons combined with knowledge of the ASTs of operands may lead
to side-channel leaks. Recall that remote comparisons happen when at least one
of the operands of the comparison is a result of a computation. Many existing
works (e.g., MrCrypt and CryptDB) do not support such programs.

To reason about CMP-remote operations we define the notion of the interval
leak :

Fig. 5. Interval leak example.

Definition 1. Consider an execution trace with corresponding path condition
P . An interval leak occurs when P ⇒ cl ≤ vi or P ⇒ vi ≤ cu, where cl and cu

are plaintext constants, vi is a sensitive input, and the implied interval is strictly
included in vi’s interval.

Figure 5 shows an example of an interval leak. The path condition implied
by the execution is

start node ≤ end node, ..., start node + n ≤ end node

where n is the number of iterations of the loop, a value that can be observed by
the servers. The above path condition implies a lower bound on end node : n ≤
end node and an upper bound on start node : start node ≤ M − n, where M is
the largest value that start node/end node take. There is also an obvious leak of
the difference between end node and start node, however, our analysis does not
take such leaks into account. We are interested in interval leaks on input values
rather than interval leaks on sensitive ASTs because, by definition, every remote
comparison is an interval leak on a sensitive AST. Our technical report presents
additional examples of codes that exhibit interval leaks as well codes that do not
have interval leaks [35].

In addition to interval leaks, we study adversarial advantage due to ordered
sequences of sensitive ASTs. We call these leaks sequence leaks. Let path con-
dition P imply an ordered sequence of sensitive ASTs: a ≤ b ≤ ... ≤ c. a, b, ...,
and c can be treated as points in a Random Order Preserving Function (ROPF)
M → N , per Boldyreva et al. We can then make use of Boldyreva’s framework to
bound leakage due to such ordered sequences: each value (LHE ciphertext) in the
sequence implied by the path condition is viewed as a challenge ciphertext. Thus,
fixing z to be the number of ordered ciphertexts implied by the path condition,
then fixing M , we can apply the bound on Adv1,z−WOW (AP ) from Sect. 3.3.
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In summary, we reason about side channels due to remote comparisons from
two angles: (1) interval leaks on input values, and (2) ordered sequences of sensi-
tive ASTs, applying Boldyreva et al.’s analysis on ordered sequences of sensitive
ASTs implied by path conditions.

Unknown. Our last category includes programs with unknown security guar-
antees. If there is an UNK operation whose operand is a sensitive value according
to our static analysis, then the program is classified as unknown. When the sen-
sitive value is an aggregate agg (e.g., the inner product of two sensitive vectors),
our framework executes the operation by having A send Enc(agg) to B, where
B decrypts it, runs the UNK operation over plaintext arguments, then encrypts
and sends the result back to A. Our classification of Unknown means that the
security guarantees of the framework are Unknown, in a sense that they depend
on the kind of aggregation. B sees the aggregate sensitive value agg . In certain
cases the programmer may deem safe to send the aggregate value to B; this can
happen when the probability that agg leaks information about individual sensi-
tive inputs is small (e.g., the inner product aggregate where the number of points
is large). However, in other cases, the programmer may deem leaking a sensitive
aggregate unsafe. The degenerate case is when agg is a sensitive input itself (e.g.,
the maximal element in a sequence), in which case leaking the sensitive value is
clearly unsafe.

We note that any UNK function can be approximated by the first n terms of
its Taylor series, as we argued earlier. Therefore, in theory the program can be
run securely in terms of addition and multiplication, making use of our multipli-
cation protocol. However, this will require multiple rounds of communication and
violate the efficiency requirement. We have not considered it in our framework.

6 Experimental Results

We analyze MapReduce applications from six different benchmark suites: Pig-
mix2 [48], Brown, Puma [1], HiBench suite [32], TCP-H [57], and MLHadoop [43].
For details on these suites, see [35]. We chose three basic but non-trivial machine
learning algorithms to run on Google Cloud and AWS: LinearRegression, Logis-
ticRegression, and Kmeans. The results and details of our experiments are dis-
cussed in Sect. 6.3.

We address the following research questions:

RQ1. How applicable is our framework? Specifically, what percentage of applica-
tions are Secure, OPE-secure, and Unknown? Is the percentage of Unknown
low?

RQ2. How secure are OPE-secure applications? Specifically, are bounds on
lengths of ordered sequences and thus on adversary advantage low?

RQ3. How scalable is our framework? Is overhead of SecureMCMR over plain-
text execution low?
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Section 6.1 addresses RQ1 and Sect. 6.2 addresses RQ2. Section 6.3 addresses
RQ3; we describe experiments on Google Cloud and Amazon’s AWS, and mea-
sure overhead over plaintext execution on Google Cloud.

6.1 Applicability of SecureMCMR

We apply the analysis from Sect. 5 to classify the benchmarks into security levels
as described in Sect. 5.3. We present a classification of the benchmarks into one
of the four categories introduced in Sect. 5.3: Secure, CMP-local, CMP-remote,
and Unknown.

Based on our analysis, the majority of the analyzed benchmarks, 50.57% are
Secure. 17.24% are Unkown. Table 1 summarizes the results. Results on individ-
ual benchmark suites are presented in [35]. In addition, 50.0% of all benchmarks
with comparisons exhibit short ordered sequences and no interval or sequence
leaks. Our Unknown category includes Grep, HadiBlock, and LogisticRegres-
sion, which depend on operations that we could not represent using RE (e.g.,
LogisticRegression employs the sigmoid function).

Table 1. Counts and percentages across all benchmarks for each category.

Secure CMP-local CMP-remote Unknown

44 19 9 15

50.57% 21.83% 10.34% 17.24%

6.2 OPE Secure

For each benchmark in each suite we analyzed the severity of the leaks created
by comparisons. We found that 63.16% of the CMP-local programs exhibit a
low z value (or allow for rekeying which then entails a low z), and 22.22% of
the CMP-remote programs exhibit short order sequences and no interval leaks.
As mentioned earlier, this amounts to 50.0% of benchmarks with comparisons
exhibiting short ordered sequences and no interval or sequence leaks. Detailed
tables per benchmark suite, as well as detailed analysis and examples can be
found in our technical report [35].

6.3 Scalability of SecureMCMR

To test the scalability of SecureMCMR we transformed three MapReduce pro-
grams from MLHadoop, and studied their performance. Importantly, we used
two different cloud providers to execute the programs.

We chose Machine Learning applications, which have been an important
area of research in secure computation [26,33,38,41,45,52,53]. We chose three
programs from MLHadoop: LinearRegression, LogisticRegression and Kmeans.
They use LHE-unsupported operations that require remote communication such
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as RE-supported multiplication, and they are likely to exhibit slowdown with
SecureMCMR. Neither of these applications is supported by existing frameworks
for MapReduce such as MrCrypt or SecureMR. We note that there is a num-
ber of applications, MLHadoop ones included that can run in SecureMCMR
without any remote communication, as every operation is supported by a single
encryption scheme (e.g., NaiveBaise). The benchmarks span our classification—
LinearRegression is Secure, Kmeans is CMP-remote, and LogisticRegression is
Unknown. LogisticRegression is classified Unknown because it computes e−x as
part of the sigmoid function, where x is a sensitive aggregate value. We argue that
users of SecureMCMR may determine that such an aggregate leak is acceptable
for their purposes.

Overhead ranges from 3.8x for Kmeans to 1.6x for LinearRegression. Impor-
tantly, as the number of cloud B nodes (Amazon) increases, running time
decreases. Adding Amazon nodes improves performance if the current configu-
ration is not able to handle the workload. Otherwise, communication dominates
the cost, and adding nodes no longer improves performance. We observe taper
off in Kmeans when going from 8 to 16 nodes, however, additional experiments
are needed to make a robust conclusion.

For Linear regression we used the Iris Data Set [24] as a base point to generate
a 240,000 data points for training. For Logistic Regression we used a real world
dataset used to classify potential pulsar stars; this dataset has 179,890 points
with 8 features each [51]. For Kmeans classification we created a dataset of
100,000 data points in 2D euclidean space and grouped them into 4 clusters.

We compared the running times of SecureMCMR, which uses both LHE and
network communication for RE-supported operations, with the standard run on
Google Cloud in plaintext. Table 2, Table 3, and Table 4 show the running times,
slowdown and overhead. As expected, increasing the number of Amazon nodes
decreases the overhead. We also found that fewer than 4 Amazon nodes results
in 100% CPU utilization, stalls the experiment, and ultimately crashes the job.
Again, we refer the reader to the technical report [35] for details on utilization
and additional discussion.

Table 2. Run times: Linear Regression

4 nodes 8 nodes 16 nodes

SecureMCMR 528 s 258 s 200 s

Slowdown ≈6.86x ≈3.35x ≈2.60x

Table 3. Run times: Logistic Regression

4 nodes 8 nodes 16 nodes

SecureMCMR 463 s 315 s 244 s

Slowdown ≈6.71x ≈4.57x ≈3.54x
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Table 4. Run times: Kmeans Classification

4 nodes 8 nodes 16 nodes

SecureMCMR 473 s 321 s 315 s

Slowdown ≈7.2x ≈4.89x ≈4.8x

7 Conclusions

We presented SecureMCMR, a novel framework for the analysis and execution
of MapReduce programs using PHE, OPE, and multiple clouds. Using multi-
ple untrusted clouds to execute MapReduce programs removes the bottleneck
created by a single trusted machine. At the time of writing of this paper our
prototype is not yet publicly available, however, we plan to make SecureMCMR
publicly available at https://github.com/proganalysis/type-inference alongside
our previous work on SecureMR [23]. We also presented an analysis of MapRe-
duce programs with comparisons, and the effect comparisons have on the security
of the system. In the future we will continue to research MapReduce programs,
parallelization, and optimization, in the context of SecureMCMR and MPC.
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Abstract. A growing number of Android malware detection systems are
based on Machine Learning (ML) methods. However, ML methods are
often vulnerable to evasion attacks, in which an adversary manipulates
malicious instances so they are classified as benign. Here, we present a
novel evaluation scheme for evasion attack generation that exploits the
weak spots of known Android malware detection systems. We implement
an innovative evasion attack on Drebin [3]. After our novel evasion attack,
Drebin’s detection rate decreased by 12%. However, when inspecting
the functionality and maliciousness of the manipulated instances, the
maliciousness rate increased, whereas the functionality rate decreased
by 72%. We show that non-functional apps, do not constitute a threat
to users and are thus useless from an attacker’s point of view. Hence,
future evaluations of attacks against Android malware detection systems
should also address functionality and maliciousness tests.

Keywords: Cyber security · Android security · Malware detection

1 Introduction

Android malware evolves over time, such that malicious versions of popular
Android application PacKages (APKs) can propagate to various Android mar-
kets. One of the most popular techniques in the malware detection domain is
Machine Learning (ML) based detection of malicious entities, where some tech-
niques’ detection rates exceed 99% at times. However, Szegedy et al. [7] showed
that some ML methods (including malware detection systems) are vulnerable
to adversarial examples. A special case of adversarial examples involves using
evasion attacks. Evasion attacks take place when an adversary modifies malware
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code so that the modified malware is categorized as benign by the ML, but still
successfully executes the malicious payload.

The main contribution of this work is our analysis of functionality and mali-
ciousness tests for Android evasion attacks that change existing features. To the
best of our knowledge, none of the evasion attacks that changed existing fea-
tures of malicious apps has been evaluated in terms of either functionality or
malicious content maintenance, which raises the question of whether “efficient”
attacks result in nonfunctional apps that would not be malicious as intended.

2 Related Work

In this section, we survey well known ML-based detection systems for Android
malware. We also depict several popular evasion attacks targeting the detection
systems. Then, we examine the functionality and maliciousness tests of Android
malware. As far as we know, they have not been fully explored in previous studies
in the Android malware field.

2.1 Android Malware ML-Based Detection Systems

One of the best known Android malware detection systems is Drebin [3], a
lightweight Android malware detector (it can be installed on mobile phones).
Drebin collects 8 types of features from the APKs. From the Manifest file, Drebin
extracts permissions requests, software/hardware components and intents, and
from the smali code, it extracts suspicious/restricted API calls, used permis-
sions in the app’s run and URL addresses. A different approach is found in
MaMaDroid [14], which extracts features from the Control Flow Graph (CFG)
of an application. MaMaDroid creates a tree of API calls based on package
and family names. After abstracting the calls, the system analyzes the API call
sequence performed by an app, to model its true nature. The third approach
which inspects system features was introduced in Andromaly [19].

2.2 Evasion Attacks on ML-Based Detection Systems

Evasion attacks against ML-based detection systems can take multiple courses.
One course of action is to camouflage specific parts of the app. One well-known
example of camouflage is the use of obfuscation or encryption, which was imple-
mented in Demontis et al. [6]. Reflection, which allows a program to change its
behavior at runtime, is also a classic evasion method, which was exampled in
Rastogi et al. [16]. A typical approach to evasion attacks on ML-based detection
systems involves adding noise to the app, thus misleading the classifier’s assign-
ment of benign and malicious app. An example of the use of this approach can be
found in Android HIV [5] where the authors implemented non-invoked dangerous
functions against Drebin and a function injection against MaMaDroid. Chang-
ing the app flow is another approach, where a detection system that is based
on analyzing the app flow, such as MaMaDroid, fails to detect the malicious
app [5,11].
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2.3 Functionality and Maliciousness Tests

An evasion attack’s main goal is to evade detection by malware detection sys-
tems. However, two tests can be conducted to identify an attack. The first is
functionality, and the second is maliciousness. These features were explored in
Repackman [18], a tool that automates the repackaging attack with an arbitrary
malicious payload. The authors performed 2 relevant tests for their repackaging
attack, all using Droidutan [17]. For the functionality test (which they termed
feasibility), they used random UI actions. For maliciousness, which they termed
reliability, they measured the apps that successfully executed their payload via
recorded screenshots. To the best of our knowledge, these functionality and mali-
cious content tests have not been mentioned in previous evasion attack studies.

3 Evaluation Metrics

This study involves a number of metrics. These metrics are used to define our
app dataset, evaluate the effectiveness of the attacks against the detection sys-
tems, and formulate insights about our findings. First, we describe the dataset
we gathered and its verification tool. In addition, we discuss functionality and
maliciousness tests for Android evasion attacks. The metrics are:

– Data collection:
• Benign apps: We combine apps from the AndroZoo dataset [1], chosen

from the GooglePlay [8] market, and Drebin’s [3] dataset.
• Malicious apps: We use the malicious apps from the Drebin dataset [3],

CICAndMal2017 [12], AMD [22] and StormDroid [4] datasets.
• Verification: We use VirusTotal (VT) [21] to verify that our apps are

correctly labeled. We define benign apps as apps that are not marked as
malicious by any scanner. Malicious apps are apps that are identified as
malicious by at least 2/4 scanners [3,15]. In our study, we use malicious
apps that are identified by at least two scanners.

– Eliminating dataset biases: Android ML-based detection systems suf-
fer from temporal and spatial biases [15]. Spatial bias refers to unrealistic
assumptions about the ratio of benign to malicious apps in the data. Tem-
poral bias refers to temporally inconsistent evaluations that integrate future
knowledge about the test data into the training data. To avoid these dataset
biases, we follow the properties suggested in [15]. For example, 90% of our
dataset is composed of benign APKs, and the remaining 10% is malicious,
similar to the distribution of global apps [9,13], thus accounting for the spa-
tial bias. To prevent temporal bias, we train the classifiers with apps whose
timestamp is prior to the test data.

– Robustness evaluation: To evaluate robustness, we compute the propor-
tion of instances for which the classifier was evaded; this is our metric of
evasion robustness, with respect to the robustness of the detection system
(similar to the analysis provided in [20]). Thus, evasion robustness of 0%
means that the classifier is successfully evaded every time, whereas evasion
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robustness of 100% means that the evasion fails in every instance. We com-
pare the evasion robustness of our evasion attack compared to the original
malicious APKs detection rate.

– Functionality: In an evasion attack, the attacker tries to conceal the mali-
cious content from the detection system. Constructing an evasion attack with
the use of existing Android malware includes manipulation of the APK, which
is a sensitive task. It may result in any kind of error, thus resulting in a crash.
If the crash occurs in the initial stages of the app’s run, the malicious content
will probably not harm the user at all. Therefore, evaluation of the apps’ func-
tionality is vital when generating an APK evasion attack. The functionality
check includes a test where the app is installed and run on an Android emu-
lator [10]. If the app crashes, this suggests it is not functional. A manipulated
app that passes this test is declared a functional app.

– Malicious Activity/Maliciousness: While a manipulated app that passes
the previous check can be considered a threat to the user, it does not guarantee
that the previous malicious content will run similarly to the previous Android
malware. Therefore, a test for the maliciousness of the app is needed. We
evaluate malicious activity with the following test: We scan the app using VT.
If the number of scanners that indicate the manipulated app to be malicious
is less or equal to the number of scanners identifying the original app as
malicious, this app is said to pass our simple maliciousness test.

4 Case Study

In this section, we demonstrate the use of our tests. We chose Drebin as a test
case for this inquiry, which is one of the best known Android malware detection
systems. For a full description of the Drebin classifier, see [3] (implementation is
available at [2]). First, we depict our attack, which decreases Drebin’s accuracy.
Then, we run our additional tests (see Sect. 3) on the original and manipulated
apps.

4.1 Attacker Model

The attacker has a black-box access to the input and output of the trained
classifier. As can be seen in Fig. 1, The first input (denoted 1 in Fig. 1) for the
classifier is malicious APK samples available to the attacker. Based on this input,
the Drebin classifier outputs a report on these APKs (denoted 2 in Fig. 1), and
an accuracy rate of the classification. The attacker receives this report (denoted
3 in Fig. 1), and manipulates the APKs that Drebin identified as malicious, and
sends them as a second input to the classifier (denoted 4 in Fig. 1). Note that
the attacker aims to modify the APKs such that the final report (denoted 5 in
Fig. 1) will label the malicious APKs as benign and the accuracy rate will be
lower than the initial accuracy rate. While doing so, it verifies the malicious
behavior of the APKs.
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Fig. 1. Attacker model. The attacker sends malicious APKs as input to the classifier
(1). The classifier produces an initial report and an accuracy rate (2). The attacker
receives the output report (3), manipulates the APKs and sends them as a second
input to the classifier (4). Finally, the classifier produces a final report and an accuracy
rate (5).

4.2 Attack Description

Given malicious APKs to manipulate, and the observations from Drebin, the
attacker attempts to conceal the appearance of the observations obtained from
the classifier, while still using them to activate the malicious content. It depack-
ages each APK into its subordinate files. We describe the attack in two stages.
The input for the first stage is a string. It can resemble a URL address or an
API call.

1. First stage - Encoding: The attacker analyzes Drebin’s observations. It
searches for strings in the smali code that are included in the report. The
attacker replaces the string with its base64 encoding. It stores the encoded
string in the variable of the previous string. Then, the attacker runs a decode
function to translate the encoded string back to its previous representation.
It stores the decoded string in the previous variable of the string.

2. Second stage - Reflection: This stage is only pertinent to encoded strings
that resemble an API call, since strings that resemble a URL skip this stage.
In this stage, the attacker creates a reflection call. The reflection call creates
a general object with the target object from the API call. The next step is
invoking the general object with the specific method name from the API call.

5 Results

We evaluated the effectiveness of our attack and the metrics from Sect. 3. We
used ∼75 K benign apps and ∼32 K malicious apps (for more details on the
source of our data, see Sect. 3). In order to account for a realizable ratio between
benign and malicious files [15], we used a proportion of 90/10 between benign
and malicious apps in our evaluation. Because we had more malicious apps than
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one-tenth of the benign apps’, we randomly split the malicious data into 5 parts
and use the whole benign dataset with each part separately.

In addition, we used a ratio of 80/20 between the train and test data. We did
not use the benign samples of the test data while assessing the attack’s evasion
rate. Overall, we used ∼60 k benign apps and ∼25 k malicious apps as train data,
and ∼6 k malicious apps as test data. To account for variations in the data, we
used 5-fold CV.

5.1 Evasion Robustness

To get a clearer view of the evasion robustness, we evaluated two cases: the
original apps and the evasion attack apps. Any app that triggered an error in
the evasion attack’s construction was not included in the manipulated test data.
Some of the errors we encountered were a result of corrupted APKs that we
could not depackage or repackage. Other errors were a consequence of faults
in the manipulation process. Overall, the error rate did not exceed 10% of the
test data. The results are summarized in Table 1. This table documents the
number of malicious apps in each case and the accuracy rate (including the
standard deviation). Because the standard deviation was marginal (i.e., <0.02),
the evasion robustness rate in each of the splits is similar.

Table 1. Evasion robustness for each case

Number of applications Evasion robustness (SD)

Original 6327 0.964 (0.009)

Evasion attack 5817 0.84 (0.012)

5.2 Functionality and Maliciousness Tests

As stated in Sect. 3, our goal was to test whether our evasion attack would
damage the functionality and maliciousness of the previous Android malware.
We implemented the functionality test on our apps in an emulator using Pixel 2
XL image with SDK 27. We implemented a functionality test on each app before
the manipulation (see Sect. 4.2) and after it. For each app, our functionality test
was implemented as follows: (1) Cleaning of the emulator log; (2) Installation
of the app; (3) Running the app for 1 second; (4) Termination of the app; (5)
Uninstallation of the app; (6) Inspection of the emulator log for crashes. We
removed ∼28% of the apps that were old or faulty, which led to an interesting
insight. Before our evasion attack, 90% of the apps did not crash. After our
attack, only 18% of the apps did not crash. Although a nonfunctional app does
not attack the user who runs it, we implemented the maliciousness test (see
Sect. 3) on the evasion attack apps. After the manipulation, 0.06% of the apps
were identified by an equal number of scanners, and 0.1% apps were identified by
more scanners than before the manipulation. 99.8% of the apps were identified
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by a smaller number of scanners than before the manipulation, thus resulting in
an increase of ∼9.5 scanners, on average, that did not identify the manipulated
apps. While the evasion attack proved to be malicious and decreased the accuracy
rate of Drebin, it constitutes a minor threat to the Android user community due
to the low level of functionality.

6 Discussion and Conclusion

In this study, we suggested the inclusion of functionality and maliciousness tests
in the evaluation of manipulated apps. In addition, we proposed a novel evasion
attack that achieved a 12% evasion rate. The maliciousness test we implemented
proved that the evasion attack’s apps maintained high malicious value, with
an additional ∼9.5 VT scanners on average that did not recognize the apps as
malicious. However, our functionality test proved that the generated apps’ func-
tionality suffered a tremendous loss, from 90% functional apps to 18% functional
apps. In a classic analysis, such an attack was considered very powerful and dan-
gerous, and may even result in a urgent update of the classifier. In contrast, the
methodology we present proves that the defender has no reason to take steps
in the face of such an attack, because its output is deficient in the functional
side. To the best of our knowledge, this is the first study to consider these tests
for the Android evasion attacks domain. We suggest future works based on our
methodology to engineer sophisticated and efficient attacks against well known
Android malware detection systems. While doing so, the authors should make
sure to maintain high levels of both functionality and maliciousness activity.

Acknowledgement. This work was supported by the Ariel Cyber Innovation Center
in conjunction with the Israel National Cyber directorate in the Prime Minister’s Office.
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Abstract. Blockchains, that are essentially distributed public ledgers,
are extremely popular nowadays and are being used for many applica-
tions. One of the more common uses is for crypto-currencies, where they
serve as a structure to store all the transactions publicly, securely, and
hopefully irreversibly. Blockchains can be permissionless, where every-
one can join and potentially contribute the blockchain, and permis-
sioned, where only a few members (usually, much less than a permis-
sionless blockchain) can push new transactions to the chain. While both
approaches have their advantages and disadvantages, we will focus on
a weakness of permissioned blockchains. The known boundary on the
number of faulty participants − up to f for 3f + 1 participants − may
be surpassed, causing the BFT algorithm to fail. A situation where a
malicious adversary compromises/corrupts enough nodes to harm the
blockchain may lead to the complete corruption of the ledger and even
to the destruction of ledger copies the nodes hold. We will suggest a
solution for the reconstruction of the blockchain in the event of such
an attack. Our solution will include a mandatory publication of addi-
tional information by the private users when submitting transactions
and will require them to store their transaction history. We will present
a technique, using verifiable secret sharing (VSS), that will make our
solution trust-less, immediate and per-user independent. Our technique
will prevent the private user from lying, by making such an act enable
the possible exposure of the user’s secret key.

Keywords: Self-stabilization · Blockchain · Public threshold
commitment

1 Introduction

Since the introduction of blockchains [16] they are widely in use. As a public
ledger, the blockchain can be viewed by all of the participants, and after a new
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block is added, it should be hard to revert the change. A new block is usually
added after the nodes perform a BFT (Byzantine Fault Tolerance) consensus
algorithm [15] and decide upon a new block to add. The BFT algorithm is used
to prevent bad blocks from being added to the blockchain, as long as less than f
members are malicious, where 3f + 1 is the total number of members [17]. This
keeps the blockchain trust-able when only some members are malicious at any
given time (because they were bad members to begin with, or because they are
good members that were taken over temporarily by an adversary). The bound f
on the maximal number of Byzantine participants [17] is common knowledge and
an obvious target for the adversary. Given the assumption that the adversary
can compromise several participants, the adversary will surely be motivated to
compromise more than the known number the system can tolerate.

Blockchain Types. In the case of permissionless blockchains, there are many
members and every time a new block is to be added, only a few are selected to
participate in the BFT algorithm and decide upon the new block [14]. In the
permissioned case, there are fewer members and usually, they all participate in
the BFT algorithm and only the leader of the BFT may change from block to
block [5,19]. In those cases, it is assumed that the members are not malicious to
begin with (if each member is a big company, like a bank, it is unlikely that the
members will risk their reputation by deviating from the protocol on purpose),
but may be overtaken by an adversary from time to time, until control over them
is restored (a software/state update that fixes a security bug that exposed the
nodes to attacks, see e.g., [2,4,8,9]). When the blockchain is permissioned, only
the permissioned members directly contribute to the ledger. Although unper-
missioned participants (private wallets) can view the state of the blockchain and
ask to add transactions through queries to the members, the ledger is run by,
and kept at, the members’ databases.

This centralization has its advantages, such as trust efficiency in process-
ing transactions, while still enjoying the accumulated trust in the participating
companies; companies that act as the operators of the blockchain. Permissioned
blockchains are also more resilient to Sybil attacks, since new private users are
usually checked (bank clients, businesses in a managed supply chain, etc.), so
creating many pseudonymous identities is hard. Moreover, since the private users
have no voting power in the BFT algorithm, an adversary holding many private
users has very limited control of the ledger. Forging identities of permissioned
nodes is even more unlikely, since there is a fixed (or a mostly constant) number
of nodes participating in the blockchain management, each one representing a
company or a server, with a known and published corresponding public key, i.e.,
new permissioned parties most certainly cannot be created in large numbers.

In such scenarios, where few delegated nodes control the blockchain, and the
other private participants are only clients of the blockchain, the only important
copies of the ledger are those in the databases of the permissioned members
since new blocks will be added to the blockchain only if they comply with those
copies.
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Weakness of Permissioned Blockchains. This system, of a server-client like
relationship, where the center of power lies at the member nodes, is of course,
vulnerable to many types of attacks. Permissioned blockchain usually consists of
a small number of nodes, thus surpassing the bound f does not require an adver-
sary to compromise many members. In those cases, the blockchain is vulnerable
to undesired changes, illegal transactions and forks. If an adversary successfully
overtakes the blockchain, it may prevent transaction approvals, thus stopping the
regular operating of the services relying on the blockchain (bank transactions,
etc.). The adversary may even eliminate records of past transactions, enabling
double-spending. In an extreme (yet possible) case of an attack, all of those per-
missioned members can be attacked, and their databases can be destroyed or get
severely damaged. The goal of the attack in this case is obvious, to destroy the
blockchain, by deleting all the ledger copies. Those attacks may lead to impor-
tant information held in the ledger getting lost, thus harming both the managing
parties of the blockchain and the end-users.

Trustless Restoration Solution. The solution we propose, where the ledger
is reconstructed from information held at the private users, may be used by
the administrators of the blockchain to ensure self-stability and a promise for
the clients that their balances will not be deleted, even in cases of such severe
attacks. We ask to only save information of transactions where the user is the
payer or the payee, i.e., the user is involved in. The restoration of the user’s
balance will depend only on the user presenting the relevant information to the
permissioned members. At any given time, the nodes may decide to perform a
BFT consensus algorithm over a reconstructing transaction submitted by a user
to decide if reconstruction is needed and publish a call to the users. Another
possibility for initiating a reconstruction is a situation where a node did retain
a valid copy of the ledger after an attack, but other nodes do not hold a valid
copy (or any copy). This inconsistency will surely lead to (and be detected by)
problems in the performing of the BFT algorithm. I those cases a node may also
suggest a reconstruction.

If the user acts honestly, the user’s balance may be restored immediately
after, without the need for any other users to act and share information. We
enforce the users to be honest concerning the (last) sequence of their transac-
tions, by a technique that exposes their private key if a suffix of the sequence is
hidden. This will also ensure that the blockchain can be gradually reconstructed,
wallet by wallet, and there will be no need for a global and finite time period
for users to restore their wallet balances. As far as we know, we are the first to
address this issue, and the solutions we present for the trustless restoration may
be applied in other scopes as well.

The rest of the paper is structured as follows: In Sect. 2, we will describe the
system that we work with, the relationship between the permissioned nodes and
the private users, and some general characteristics of the BFT algorithm used. In
Sect. 3, we will describe a general solution that uses this system, which requires
the users to publish additional data alongside their transactions and ensures that
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the private users keep the necessary information during the regular flow of the
blockchain for later reconstruction after a full wipeout attack. In Sect. 4, we will
introduce the conditions that such data must meet, which will enable trustless
proof of currentness when the permissioned members of the blockchain want
to restore the balances of the wallets after the deletion of their databases. In
Sect. 5, we will show how using verifiable secret sharing (VSS), one can generate
such data that meets those requirements when an appropriate digital signature
scheme is used in the blockchain. In Sect. 6, we will present the formal protocols
for both submitting a transaction request and for restoring a user’s balance in
the reconstructing phase, as well as address how to continue after a restoration.
Finally, in Sect. 7, we will conclude the general ideas introduced in this paper
and where else they can be applied. Due to page limitations many details are
excluded from this preliminary version.

2 Preliminaries

The Blockchain Settings. We will discuss blockchains run by a few permis-
sioned members (nodes). Those nodes collect transactions submitted by users
to be added to the blockchain. They run a BFT consensus algorithm that may
be led by a different node every time, to decide which transaction to accept and
add to the blockchain. During the execution of the algorithm, the nodes vali-
date the transactions by checking their structure, by verifying that the wallet’s
current balance can support such transaction, and by validating their signature.
After the nodes vote and accept a new block, the algorithm outputs a collective
signature on the new ledger state, and this signature can be used by the users to
trust the blockchain’s state [1]. The private user accesses the blockchain through
a permissioned node, for both submitting a transaction and for querying the
state of the blockchain. We assume that the public ledger is stored in such a
way, that all of the past transactions, their order, and the nodes signature on
them, are accessible, and thus, can be queried and stored by the user.

Using Digital Signatures. A new user generates a secret/public key pair
(s, y), where s is used by the user to sign transactions and y is used by the per-
missioned members or other users to verify those signatures [7]. The key pair is
generated for a chosen signature scheme and is used to ensure that no other user
can perform transactions on behalf of this wallet. By using the secret/public key
digital signature scheme, we assume both users and nodes have their public keys
published off-chain (not in the ledger itself), thus will not be deleted even in case
of complete deletion of the ledger copies. This is important for the reconstruction
phase, where the nodes will be presented with transactions approved and signed
by them in the past, and with some data proving that a transaction history of a
user is up-to-date. The public keys must still be accessible by the nodes to make
sure all of this data was not forged, and for the nodes to be able to acknowledge
their past signings.
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3 Transaction Requests Submission and Balance
Restoration

In case of complete deletion of the databases of the permissioned members,
we would like the users to have enough information to enable the nodes to
restore their wallet balance. Users will keep information on transactions they
participated in, meaning transactions they created for paying other users, and
transactions where they were paid, i.e., created by the paying user. All of the
transactions are of course saved alongside the nodes’ collective signature on
them. By saving all of this information and later presenting the information
to the nodes, a user will be able to prove its current balance since the entire
history of payments and incomes is submitted. We must address the problem of
users presenting only a partial history to the nodes, for example, hiding some
big payments they made, and taking advantage of the fact that the nodes have
no valid records of the blockchain history (or no records at all) after the attack.

Requirements for a Solution. To solve this problem we must ensure that (1)
the user will present an ordered history of its transactions, where the transac-
tions are of an increasing index, without a single index skipped from the first
transaction to the most current one, and (2) that the last transaction in this
ordered history is indeed the most up-to-date, meaning no suffix of the history is
omitted by the user. Regarding requirement (2), it can be claimed that if a user
chooses to hide a suffix of the transaction history, probably some lawn made by
the user to other users, the other users will expose this dishonest behavior by
presenting the transaction (a transaction where there transfer money) when they
will come forward to restore their balance. In this case, a way to settle the aris-
ing dispute may be using digital arbitrators [12], possibly other users with high
reputation, who have records of the ledger as well. We aim for trustless, per-user
independent and immediate method, to restore the balances. Since both relying
on other users to expose dishonest behaviors and using trust-able arbitrators to
restore a user’s balance violate those goals, we have to find other solutions.

To meet requirement (1), meaning a user can and must preset an ordered his-
tory of its transactions without any transaction omitted when coming to restore
its balance, we will introduce a general protocol to be followed by the users and
the nodes during the regular flow of the blockchain. The goal of this protocol is
to ensure that the nodes indeed accept and sign every transaction kept in the
user’s history database. We will also force the user to publish some additional
data with every submitted transaction request. This data, together with proof
that the user will have to publish when the balance is to be restored, will make
sure requirement (2) is met. This will enable the nodes to later accept the his-
tory presented by the user to them, as valid proof for the user’s transactions, and
therefore its current balance. We will use a linked-list as a database for the user
to keep a payment transactions “backup” (payments linked list − PLL), and
another one to keep the transactions of payments received (incomes linked list −
ILL). We will assume users have no incentive to hide transactions that increases
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their balance, namely, transactions in which they were paid and will make sure
the users do not hide any transaction in which they paid others. Every user will
have a current transaction number i that will increase with every transaction
request submitted, approved by the nodes and added to the blockchain. The
nodes will also keep track of this index for every user, so that they can validate
that when a user submits a transaction request, it is of the current index i.

Additional Submitted Data. For every transaction, Ti, the user wants to sub-
mit, additional information Di will be added. This means that the user requests
Ri = (Ti,Di) to be added to the blockchain. The nodes will check that Ri is
valid, meaning Ti can be made by the user and that Di corresponds to the latest
index i of the user and is of a correct form. If all conditions are met and the
nodes indeed approve, sign and add Ri to the blockchain, then they increase
the index they keep for that user to i + 1. Then the user itself should check
whether its transaction was approved and add Ri and the collective signature
of the nodes on it to its PLL, as well as increase the transaction requests index.
When the user wishes to do so, probably before submitting transactions, the
user will query the nodes for the state of the blockchain and will check for any
transactions where it was paid and add them to the ILL. Checking for such
income transactions will let the user know its current balance, and adding them
to the ILL will be useful when coming to restore the balance.

Restoration Process. When coming to restore the wallet’s balance, the user
will present its PLL and ILL to the nodes, thus enabling them to verify that the
history shown to them is indeed complete, and was approved and signed by them
in the past. To make sure that the history is unaltered, an additional proof will
be published, so that, if a user claims that Rm = (Tm,Dm) is the last request
submitted and approved, the user will also have to supply a proof Pm. The data
and proof are structured in such a way, that a user will have the incentive to be
honest and not try to claim that Rm′ was the last request and publishing Pm′

when m > m′ is the actual most current transaction index.

4 Enforcing Current Balance Reveal

The Problem. We describe a scenario, where we have a player A that holds
a secret key s and a public key y. The player publishes a series of data Di to
a group C of computationally limited players. At some point (i = m, meaning
Dm was the last data published), the player needs to prove to a third party B,
that may have invalid records or no records of the Di, that m is indeed the most
current index of data that was published, by publishing both the data history
up to Dm and some proof Pm. A knows this point of time may come, and A
may want to cheat by proving that m′ < m is the most current index of data
that was published. A may do so by publishing the history up to Dm′ and a
corresponding proof Pm′ .
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In our case, A is the user that wants to restore the wallet’s balance. C is the
group of other private users that can view and store any data A publishes. B is a
node presented with A’s history and needs to be able to accept what is published
and restore A’s crypto-currency wallet balance. B was attacked, i.e., B cannot
trust the ledger, possibly due to the fact that all records of the public ledger
have been destroyed, so B has invalid records or no records of the Di. The data
Di is the additional data that A is required by the protocol to add to any of the
transaction requests. Finally, Pi is a proof that A will have to publish to claim
that Ri is the most current one submitted. The incentive of A to claim m′ as
the most current index of data published is clear, since requests Rm′+1, ..., Rm

may contain payments A made and wants to be forgotten so that A can double
spend the crypto-currency (Fig. 1).

Fig. 1. C is the group of private users, that may have recorded some of the ledger’s
history, including A transactions. B is a permissioned node with deleted ledger copies.
A sends the history and proof the history is up-to-date to B. The private key and
history are directly accessible only by their holder and the public keys of all parties
are accessible by everyone.

Conditions for a Solution. We will introduce some conditions on Di and Pi:

(a) Only A, the holder of s, can generate Di, Pi, for every i ∈ N.
(b) By viewing H(m) = {Di|1 ≤ i ≤ m} ∪ Pm, a player c ∈ C learns no

additional information on s.
(c) If a player c knows H(m) ∪ Pm′ for some m′ < m, then it can recover s.
(d) For every i ∈ N, it can be verified that a data Di or a proof Pi are valid.1

1 By valid we mean they were generated by A and will indeed enable a player c to
recover s if A did not act honestly.
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Condition (a) is necessary to ensure that the data and proof were indeed
generated by A, thus allowing the nodes to accept requests, knowing A is the real
source of them. Furthermore, when the reconstructing process is taking place,
the nodes can be certain that A is the one trying to restore that balance. To make
the publication of the additional data Di and the proof Pi are safe for an honest
user, we must ensure no information about s is leaked if one does not try to hide
parts of its history. If m is the most current index of transactions an honest user A
submitted before the wipeout attack, it has published H̄(m) = {Di|1 ≤ i ≤ m}
when the blockchain was alive and Pm when it tried to restore its balance. The
total information it published is H(m), and again, we do not want the honest
user to be at risk, hence condition (b) is necessary.

The main idea behind our suggestion lies in condition (c) since we want to
solve the problem of users hiding suffix of their transaction history. In our case,
try to prove Rm′ = (Tm′ ,Dm′) is their most current request submitted and
approved by publishing Pm′ for some m′ < m where Rm is the actual most
current approved request. This condition should deprive A of acting this way,
by putting s at risk if it does. If all of the users know that condition (c) holds
then we expect users to act honestly since they know other users, that may
have stored their entire publishing history, will learn their secret key s if they
decide to misbehave. Then, those users may use s as they wish (for example,
transfer all of the wallet’s crypto-currency to their own wallet). If the nodes know
that condition (c) holds, it should help them accept the information presented
by the user in the reconstruction phase as legitimate, and restore the claimed
balance, since they know the user will have put the secret key to its wallet at risk
otherwise. This idea, of one revealing its own secret key in case of misbehavior,
is similar to [3,13].

Condition (d) is required for the nodes to be able to verify any request a user
submits. If it is impossible to determine whether Di and Pi are valid, a user may
publish additional information and proof that compromises condition (c). Then
the user will be able to publish a proof of any transaction index and hide the
transactions history suffix, thus restoring a greater balance than deserved.

By embedding data that meets all of those conditions into the transaction
requests and proofs, we will be able to achieve our desired goal, of trust-less and
immediate restoration of a user’s balance, in an independent way, i.e., that does
not rely on other participants of the blockchain, thus proving those conditions
are sufficient.

5 Verifiable Secret Public Sharing

Shamir [18] introduced Shamir’s secret sharing (SSS) as a method to divide a
secret into parts (shares), which are generated by the secret owner (dealer), and
distributed amongst a group of participants (shareholders). In a (t, n)-threshold
(t-out-of-n) secret sharing scheme, n participants, each holding a share, can
reconstruct the secret only if t or more of them combine their shares. Moreover,
any group of strictly less than t shareholders, learn nothing about the secret.
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Verifiable secret sharing (VSS) was introduced by Chor, Goldwasser, Micali and
Awerbuch [6], as a secret sharing scheme where every participant can verify that
secret shares are consistent. This is important for preventing a malicious dealer
from sending shares to different participants, which do not define a (single)
secret.

In our use of VSS, the dealer does not deal shares to individual shareholders,
but rather publishes them by including them in the Di it appends to the trans-
actions it wishes to submit. This means, that after a user A submits a request
Ri = (Ti,Di) for a transaction, and the nodes approve it, some shares of the
wallet’s secret key s are published on the blockchain. The main idea is, that for
every transaction, the user A generates three shares of the secret for a 3-out-of-3
verifiable secret sharing scheme, and publishes one to the blockchain. If A is
honest, at no given point in time, all three of those shares will be published, so
if the scheme is secure, no additional information about s is leaked. However,
for a A to try and hide a suffix of its transaction history, it will imply reveal-
ing all three shares of a single 3-out-of-3 verifiable secret sharing scheme shares
generation. By displaying some Rm′ = (Tm′ ,Dm′) as its most current request,
combined with the publishing of Pm′ , its secret key s will be reconstructable.
If a different user c ∈ C was to save both Dm′ and Dm′+1 (that exists since
m′ is not the most up-to-date index of transactions that A submitted) from the
blockchain, then by seeing Pm′ as well, c will have three shares of s, one share
from each data piece.

It is important to note that it is indeed required to be able to verify that the
shares correspond to s, since otherwise, A may use this weakness, publish some
random shares, and will have nothing to hold it back from presenting any prefix
of the transaction history to the nodes after they lost their ledger records.

5.1 Digital Signature

Digital signatures [7] are used to verify the authenticity of digital messages, that
is, to know with a high level of certainty, that a digital message was created by a
known sender and was not altered in any way. In our scenario, they are used by
the nodes, to sign transactions as approved to be published on the blockchain.
This makes it possible for private users to verify their transaction was accepted
and makes it impossible for the nodes to claim they did not approve a spe-
cific transaction. The users use digital signatures when signing the transactions
submitted. This allows both other users and the nodes to be certain that a trans-
action request was submitted by the real owner of the wallet, i.e., the real owner
of the secret key.

Digital signatures use asymmetric cryptography, where the signer has a secret
signing key for signing messages, and a respective published public key, to be used
by the recipient of the signed message, to verify the message origin and integrity.
This also applies to our scenario, where we assume the public keys of every user
and all the permissioned members are published and are not compromised, even
if the databases that hold the public ledger are attacked. Those schemes usually
consist of a key generation algorithm, that outputs a random secret key s and
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a corresponding public key y, a signing algorithm, that given a message to sign
and a secret key outputs a signature on the message, and a signature verification
algorithm, that given a message, a signature, and a public key accepts only if
the signature is indeed the output of signing on the supplied message with the
corresponding secret key as an input, with high probability.

We will use the Digital Signature Algorithm (DSA) [11] as a digital signature
scheme, which is based on the mathematical concepts of modular exponentiation
and the discrete logarithm problem. DSA uses several global parameters for
digital signing:

1. A prime modulus p.
2. A prime divisor of (p − 1), q, of bit length N .
3. A generator g of a subgroup of order q in the multiplicative group of GF (p),

such that 1 < g < p.
4. A hash function h with an output block bit length of outlen.

Nodes (when the blockchain is created) and new users (when joining the
blockchain) will invoke DSA Key Gen, i.e., will randomly or pseudorandomly
generate a secret key s, such that 0 < s < q, i.e, s is in the range [1, q − 1]. The
corresponding public key published is y = gs mod p for a total DSA key pair of
(s, y). One can sign a given message m using DSAs. Verification of signatures,
that require the message, the signature and the public key of the signer, can be
achieved using DSA Verify2.

5.2 Verifiable Secret Sharing Scheme

We will introduce a suggestion based on the ideas of [6,10,18], for the structure
of Di and Pi, that combined with DSA as a digital signature scheme, will meet
all of the four conditions described in Sect. 4, and enable us to force the reveal
of the current balance by the user.

An (t, n)-threshold secret sharing scheme, consists of a probabilistic
polynomial-time algorithm (PPTA) ShareG and a polynomial-time algorithm
(PTA) RecoverG, for some global parameters G. The global parameters G
will be clear from the context so we will drop G from the notation. The
algorithm Share(s) → {(1, s1), (2, s2), . . . , (n, sn)} = S(s) takes a secret
key s as an input and outputs n shares (1, s1), (2, s2), . . . , (j, sj), . . . , (n, sn)
where j is the share’s index and sj is the share’s value. The algorithms
Recover((a1, sa1), (a2, sa2), . . . , (at, sat

)) → s takes as an input any t valid dis-
tinct shares with share indices {a1, . . . , at} ⊆ [1, n] and outputs the original
secret s. Formally,

∀s.Share(s) → S(s) =⇒ ∀T ′ ∈ {T ⊆ S(s)| |T | = t}, Recover(T ′) = s

We will use a (3, 3)-threshold secret sharing scheme, or a 3-out-of-3 scheme, in our
construction of Di and Pi, i.e., Share(s) generated three shares of s, and all three
2 See [11] for full details about random or pseudorandom integer generation and for

formal definitions of DSAs and DSA Verify.
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are required to reconstruct s. We will use p, q, g and h as defined by DSA as the
global parameters G. To create the shares of a given s, the user will randomly or
pseudorandomly generate two integers c1 and c2 such that 0 < c1, c2 < q. Those
integers, that should be kept as a secret by the user, together with s itself, will
define a polynomial Pol(x) = s+c1x+c2x

2. In respect to Pol(x), the ith share of
s is s(i) = (i, Pol(i) mod q) = (i, s + c1i + c2i

2 mod q). The Recovery algorithm
takes t shares, and performs polynomial interpolation [18], to eventually find
Pol(0) = s.

This scheme is secure3 since every two or less distinct shares look just like
random points, yet three shares uniquely define the polynomial Pol(x). To make
this scheme verifiable, we will introduce two additional PTAs. Commit(c) → C
that takes a coefficient generated by the user and outputs a commit C for it,
and Verify(s(i), C1, C2, y) → res ∈ {ACCEPT,REJECT} that takes a share,
commits for both of the polynomial’s coefficients, and the public key of the user,
and ACCEPTs if the share is valid or REJECTs otherwise. We will define:

– Commit(c) = gc mod p

– Verify((i, si), C1, C2, y) = ACCEPT ⇐⇒ gsi mod p = gs+c1i+c2i
2 mod q =

gs · (gc1)i · (gc2)i
2

= y · Ci
1 · Ci2

2 mod p

Corollary 1. If Verify((i, si), C1, C2, y) returns ACCEPT, the verifier knows
that with high probability si = Pol(i) mod q and that s is the free coefficient of
Pol.

5.3 Data and Proof Structure

Now, after defining the digital signature scheme and the verifiable secret sharing
scheme, we may suggest a structure for Di and Pi. For each user, the public
parameters of p,q,g and h, as well as the public key y, will be published and
known by both the nodes and the other private users. For the ith transaction,
the user will randomly or pseudorandomly generate ci1 and ci2 as described in our
proposed VSS scheme. Those will define the polynomial Poli(x) = s+ci1x+ci2x

2.
We will define Cij = gcij mod p as the commit for the jth coefficient of Poli(x),
and si(j) = (j, Poli(j) mod q) as the jth share of s regarding the polynomial
Poli(x). The additional data that will be added to the transaction Ti to create
the request Ri = (Ti,Di), and the proof to be published to claim Ri is the most
current request will be:

– Di = (si(1), si−1(2), Ci1, Ci2, C(i−1)1, C(i−1)2) 4

– Pi = (si(v), Ci1, Ci2), where 2 ≤ v ≤ q − 1 is a random value

So Di will contain the first share and commitments regarding the current polyno-
mial and the second share and commitments regarding the previous polynomial
(the same commitments published in Di−1). Pi will contain a share with an ran-
dom index 2 ≤ v ≤ q−1 and the commitments regarding the current polynomial
3 For a full proof of the scheme security see [18].
4 D1 = (s1(1), C11, C12).
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(the same commitments published in Di). We will discuss the importance of v
in Sect. 6.2.

Theorem 1. The suggested structure for Di and Pi meets all four conditions
defined in Sect. 4.

Proof Sketch. Since both Di and Pi contain shares of a user’s secret key s, only
the user can generate them, so condition (a) is met. If a user is honest, it will
only publish H(m) = {Di|1 ≤ i ≤ m} ∪ Pm where m is the index of the latest
request it submitted, before the nodes were attacked. This means, that even if a
different user c kept all of H(m), c knows only si(1) from Di and si(2) from Di+1

for 1 ≤ i ≤ m − 1. Regarding the last index m, c knows only sm(1) from Dm

and sm(v) from Pm. In total, c does not hold more than two shares for any given
index 1 ≤ i ≤ m. The commitments Cij = gcij also does not add any additional
information about s, so no information about s is leaked beyond what is implied
from y = gs, hence condition (b) is met (due to page limitation, the full security
details are omitted from this preliminary version).

If a user is not honest, i.e., although the published history is H̄(m) = {Di|1 ≤
i ≤ m}, the user decides to publish a proof Pm′ for some m′ < m, then a dif-
ferent user c that kept H̄(m) and sees the published Pm′ knows sm′(1) from
Dm′ ∈ H̄(m), sm′(2) from Dm′+1 ∈ H̄(m) (again, since m′ < m, Dm′+1 was
published), and sm′(v) from Pm′ . Condition (c) is met since those three shares
put together, can be used as an inputs for Recovery to reconstruct s. The final
condition (d) is met since Di contains enough information to validate it was
generated by the holder of s and that the shares indeed correspond to s by run-
ning Verify(si(1), Ci1, Ci2, y) and Verify(si−1(2), C(i−1)1, C(i−1)2, y) and check
that both return ACCEPT. The same can be done regarding Pi by running
Verify(si(v), Ci1, Ci2, y). 
�

6 Transaction Requests Submission and Balance
Restoration Protocols

Now, that we have structured Di and Pi in a way that meets all of the conditions
to enforce a user to reveal the real transactions history, i.e., ask to restore its
real balance before the permissioned participants were attacked, we may present
the full protocols to be followed by both the users and the nodes.

6.1 Request Submission

First, we introduce the protocol for the submission process of a request by a user,
and its validation by the nodes, before adding it to the blockchain. We assume
accessibility to the public keys and the corresponding DSA domain parameters
p, q, g and h of the participants.
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The Protocol. The user constructs a request and submits it to a node using
Submit To Node() (lines 1.a–1.j). The node verifies the DSA signature on the
transaction using DSA Verify(), the validity of the transaction itself (that the
transaction is between existing wallets, that the payer has sufficient balance, or
any other requirements of the specific blockchain) using Transaction Verify()
and then verifies the shares using Verify() (lines 2.a–2.d.iii). If the transac-
tion verification passes, the node will add it to the pool of pending requests by
using Add To Requests Pool() (line 2.e.i). Then, the nodes perform the BFT
algorithm and the request may be accepted and published on the ledger.

The user will be able to query the state of the blockchain and see if the request
was indeed published using Check Request Accepted() (line 4.a). The user will
get the nodes’ collective signature on the transaction from the blockchain using
Get Nodes Signature() and will add both the request and the signature to the
PLL using Add To PLL() (lines 4.a.i–4.a.iii). This will enable the user to later
prove to the nodes that the request was accepted into the blockchain and signed
by them. If all of the steps above pass, both the user and the nodes increase the
user’s current transaction number by one.

Protocol 1. Transaction Request Submission
Input: Both the user and the nodes hold the current transaction index of the
user i and the user’s public key y, as well as the user’s DSA domain parameters
p,g,g,h. Only the user holds its secret key s and c(i−1)1, c(i−1)2.

The protocol:

1. Submitting a Request (User).
(a) Randomly or pseudorandomly generate two integers ci1,ci2 s.t. 0 <

ci1, ci2 < q
(b) Ci1 ← gci1 mod p, Ci2 ← gci2 mod p.
(c) Poli(x) ← s + ci1x + ci2x

2.
(d) si(1) ← (1, Poli(1) mod q)
(e) if i = 1 :

(i) Di ← (si(1), Ci1, Ci2)
(f) else :

(i) si−1(2) ← (2, Poli−1(2) mod q)
(ii) Di ← (si(1), si−1(2), Ci1, Ci2, C(i−1)1, C(i−1)2)

(g) ti ← transaction to submit
(h) Ti ← (ti,DSAs(ti))
(i) Ri ← (Ti,Di)
(j) Submit To Node(Ri)

2. Verifying a Request (Node).
(a) dsa v ← DSA Verify(Ti, y)
(b) trans v ← Transaction Verify(Ti)
(c) if i = 1 :

(i) ss v ← Verify(si(1), Ci1, Ci2, y)
(d) else :

(i) ssi v ← Verify(si(1), Ci1, Ci2, y)
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(ii) ssi−1 v ← Verify(si−1(2), C(i−1)1, C(i−1)2, y)
(iii) ss v ← ssi v ∧ ssi−1 v:

(e) if dsa v ∧ ss v ∧ trans v:
(i) Add To Requests Pool(Ri)

(f) else :
(i) REJECT

3. Perform BFT (Nodes).
The nodes perform the BFT algorithm and the request Ri may get published
on the blockchain. If it does, both the request and the nodes signatures on it
- Sign(Ri) - are published on the public ledger and the nodes should increase
the transactions counter of the user by one.

4. Record Accepted Request (User).
(a) if Check Request Accepted(Ri) :

(i) Signi ← Get Nodes Signature(Ri)
(ii) Add To PLL(Ri, Signi)
(iii) user current transaction number ← i + 1

6.2 Balance Restoration

We assume the permissioned members have been attacked and may hold no
records of the public ledger. We do require that they still hold their secret and
public keys, as well as having access to the public keys of the users and their
respective DSA domain parameters.

Conditions for Continuing After Restoration. We must remember that
users will want to continue and submit transaction requests using their secret
key after the restoration of the balance. Since the users published sm(1) in Dm

and we require that they publish Pm in the restoration process, sm(v) will be
published as well. This means that sm(2) shall not be published at all, otherwise,
even an honest user will expose the secret key. If the blockchain is attacked again,
and another reconstruction will be necessary, the user may try to claim m is still
the most current index of a submitted request, even though other transactions
have been submitted since. If the share index of the proof was a constant, e.g.,
3, then publishing Pm again (that contains sm(3)), would have kept sm(1) and
sm(3) as the only shares regarding Polm that have been exposed. We will require
that a new reconstruction will mean a new random 2 ≤ v′ ≤ q − 1 share index,
that will be different from v with high probability, so 3 different shares - sm(1),
sm(v), sm(v′), will have to be published by a dishonest user.

When we reconstruct the ledger, we assume that an honest majority will
have been restored, i.e., no more than f out of the 3f + 1 nodes are byzantine.
If a reconstruction of the ledger is required once again, a malicious user may
know which node is byzantine, and submit the restoration request to this node.
The byzantine node can purposely ask the user to present a proof with v′ = v,
and the user will be able to claim m as the most current transaction index. To
solve this, each node will publish a random value 2 ≤ v̂node ≤ q− 1 and its DSA



Toward Self-stabilizing Blockchain 189

signature sign(v̂node) off-chain. The user will have to choose f + 1 nodes, ask
them to generate another pair (vnode, sign(vnode)) and use all of those values
bit-wise XOR as the published share’s index.

Lemma 1. By requiring the user to collect f + 1 different values from f + 1
different nodes, and publishing a share with the values bit-wise XOR as an index,
we prevent, with high probability5, the user from claiming m as the most current
transaction index.

Proof Sketch. Even if there are f byzantine nodes, and the user knows who all of
them are, at least one value will be a random value generated by an honest node.
Let us assume a user receives {(v′

1, sign(v′
i)), . . . , (v

′
f+1, sign(v′

f+1))} and w.l.o.g
only (v′

f+1, sign(v′
f+1) was generated by an honest node. In the worst case, the

user can control the other f nodes so the user can choose
f⊕

i=1

(v′
i⊕ v̂′

i) = v′′. Since

we assume v′
f+1⊕ v̂′

f+1 = v′′
f+1 is a random value the user cannot control, we will

get that (v′′ ⊕ v′′
f+1) mod q = v′ is again a random value that the user cannot

control and that does not equal the previous value v. Since the user already
holds f + 1 signed pairs (vnode, sign(vnode)) from the previous restoration, the
user may try to cheat and use the same v, so we use the newly published values
v̂node in the XOR to ensure a true new random value is enforced.

Finally, we will discuss a case where a user did not submit any request
between two reconstructions. Again, we want an honest user to be able to restore
the wallet’s balance once more, without exposing the secret key s. Since pub-
lishing Pm again, that contains sm(v′), will probably expose s, we will generate
Polm+1 and publish corresponding shares together with the proof and will also
increase the transactions index to m+ 2 after restoration (submit an additional
data for a “shadow” transaction). Now, an honest user that has submitted no
real transactions between two attacks will no longer face this issue.

The Protocol. When the user wants to restore the balance, the user will first
collect f + 1 pairs (vnode, sign(vnode)) of random values and their signatures
(signed by the public key ynode) generated by f + 1 different nodes, by using
Collect Values(). The user will collect the corresponding f + 1 nodes’ public
values using Collect Public Values(). Then the user will calculate the bit-wise
XOR of the values (lines 1.a–1.c). A special transaction request will be submitted
by the user using Submit To Node() (lines 1.d–1.l). This transaction will include
the PLL, ILL, the corresponding proof for the claimed most current index (that
contains a share with the XOR value as the index), the first share regarding a
new polynomial and the commitments for the new polynomial’s coefficients, as
well as the collected values and public values.

The node will verify that the PLL is complete, i.e., contains a continuous
history of transaction requests of increasing index up to some index m and that

5 DSA defines 2N−1 ≤ q ≤ 2N where N ∈ {160, 224, 256} is the bit length of q.
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the appended signatures and additional data are valid, using Verify PLL(). The
node will also verify that the ILL contains signed transactions and that the user
is the payee in all of the transactions using Verify ILL() (lines 2.a–2.b). The
proof supplied by the user will be verified as well, i.e., matches m, the values’
signatures will be verified using DSA Verify(), and the XOR will be verified using
Verify XOR(). The proof share and the first share of the next polynomial will
be verified using Verify() (lines 2.c–2.f). The node can be sure that if the user
decided to include Pm in the request, there is no missing suffix in the presented
PLL. If all verifications pass, the node adds the request to the pool of pending
requests by using Add To Requests Pool() (line 2.g.i).

Then, the nodes perform the BFT algorithm, where those conditions are
checked by the other nodes as well and the request may be accepted and pub-
lished on the ledger. This means that the nodes accept the requested balance (the
outcomes from the PLL subtracted from the incomes from the ILL) as the user’s
balance, the presented index as the user’s transaction index and the user may
continue to participate in the blockchain without losing any crypto-currency.

The user will check whether the restoration request was accepted into the
blockchain and act similarly to Protocol 1.

Protocol 2. Balance Restoration

Input: Both the user and the nodes hold the user’s public key y, as well as the user’s
DSA domain parameters p,g,g,h. Only the user holds its secret key s, the polynomial
Pm(x) and the corresponding coefficients commits Cm1, Cm2 as well as its PLL (with
transactions up to index m) and its ILL.

The protocol:

1. Submitting a Restoration Request (User).
(a) V = {(v1, sign(vi)), . . . , (vf+1, sign(vf+1))} ← Collect Values()
(b) PV = {(v̂1, sign(v̂i)), . . . , (v̂f+1, sign(v̂f+1))} ← Collect Public Values()

(c) v ← (
f+1⊕

i=1

(vi ⊕ v̂i)) mod q

(d) sm(v) ← (v, Polm(v) mod q)
(e) Pm ← (sm(v), Cm1, Cm2)
(f) Randomly or pseudorandomly generate two integers c(m+1)1,c(m+1)2 s.t. 0 <

c(m+1)1, c(m+1)2 < q
(g) C(m+1)1 ← gc(m+1)1 mod p, C(m+1)2 ← gc(m+1)2 mod p
(h) Polm+1(x) ← s + c(m+1)1x + c(m+1)2x

2

(i) sm+1(1) ← (1, Polm+1(1) mod q)
(j) Dm+1 ← (sm+1(1), C(m+1)1, C(m+1)2)
(k) Rm+1 ← (PLL, ILL, Pm,V,PV, Dm+1)
(l) Submit To Node(Rm+1)

2. Verifying a Restoration Request (Node).
(a) PLL v ← Verify PLL(PLL)
(b) ILL v ← Verify ILL(ILL)

(c) sign v ←
f+1∧

i=1

DSA Verify(Vi = (vi, sign(vi)), yi)

(d) p sign v ←
f+1∧

i=1

DSA Verify(PVi = (v̂i, sign(v̂i)), yi)
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(e) xor v ← Verify XOR(v1, v̂1, . . . , vf+1, v̂f+1, v)
(f) ss v ← Verify(Pm, y) ∧ Verify(Dm+1, y)
(g) if PLL v ∧ ILL v ∧ ss v ∧ sign v ∧ p sign v ∧ xor v:

(i) Add To Requests Pool(Rm+1)
(h) else :

(i) REJECT

3. Perform BFT (Nodes).
The nodes perform the BFT algorithm and the request Rm+1 may be published on
the blockchain if it passes the other nodes validations as well. If it does, both the
request and the nodes signatures on it - Sign(Rm+1) - are published on the public
ledger and the nodes should set the transactions counter of the user to m + 2 and
then the user balance is restored.

4. Record Accepted Request (User).
(a) if Check Request Accepted(Rm+1) :

(i) Signm+1 ← Get Nodes Signature(Rm+1)
(ii) Add To PLL(Rm+1, Signm+1)
(iii) user current transaction number ← m + 2

7 Conclusion

We have addressed one of the problems of permissioned blockchains, the fact that
the ledger is held only in the databases of the permissioned members. Being so,
this weakness becomes a point of failure, when those databases are attacked or
destroyed. We have introduced a way to reconstruct each user’s balance, without
the need for other users to contribute information and without requesting the
nodes to trust the private users. We have done so by neutralizing the incentive
for users to hide payments they made, with the risk of exposing their secret key,
using the digital signature used in the blockchain and VSS. Our technique, is
publishing additional data with every publication, and then supplying proof of
currentness to a third party, that knows that the secret key of the publisher may
be exposed in case of dishonesty. This technique may be applied in other scopes
as well, such as general proof of currentness.
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Abstract. With the increased dependence on cloud computing, there
is growing concern for privacy of data that is stored and processed on
third party cloud service providers. Of many solutions that achieve pri-
vacy preserving computations, fully homomorphic encryption (FHE) is
a promising direction. FHE has several applications that can be used
to perform computations on encrypted data without decrypting them.
In this paper, we focus on realizing privacy preserving machine learning
(PPML) using FHE. Our prime motivation behind choosing PPML is
the increased use of machine learning algorithms on end-user’s data for
predictions or classification, where privacy of end-user’s data is at stake.
Given the importance of PPML and FHE, we formulate a recommender
system that enables machine learning experts who are new to cryptog-
raphy to efficiently realize a machine learning application in privacy pre-
serving manner. We formulate the recommender system as a multi objec-
tive multi constraints optimization problem along with a simpler single
objective multi constraint optimization problem. We solve this optimiza-
tion using TOPSIS based on experimental analysis performed on three
prominent FHE libraries HElib, SEAL and HEAAN from the PPML
perspective. We present the observations on the performance parame-
ters such as elapsed time and memory usage for the primitive machine
learning algorithms such as linear regression and logistic regression. We
also discuss the technical issues in making the FHE schemes practically
deployable and give insights into selection of parameters to efficiently
implement PPML algorithms. We observe that our estimates for matrix
multiplication and linear regression correlate with the experimental anal-
ysis when assessed using an optimizer. The proposed recommendation
system can be used in FHE compilers to facilitate optimal implementa-
tion of PPML applications.
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Regular Submission, CSCML 2020.

c© Springer Nature Switzerland AG 2020
S. Dolev et al. (Eds.): CSCML 2020, LNCS 12161, pp. 193–218, 2020.
https://doi.org/10.1007/978-3-030-49785-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49785-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-49785-9_13


194 I. Shaik et al.

1 Introduction

The evolution of data driven digital transformation has led the way to increased
dependence on cloud service providers (CSPs). Organizations are embracing
third-party cloud computing services to outsource storage and computations
which can be easily managed with low cost overhead. In the recent years, there
has been exponential increase of data in existence as well as the corresponding
cloud services usage. This has lead to growing concern for data privacy. For
privacy and confidentiality, data can be encrypted and stored on the CSP. How-
ever, the existing non-FHE encryption schemes restrict computations on the
encrypted data. To enable computations while still preserving confidentiality
and privacy of data, several privacy preserving computation methodologies have
evolved, of which prominent ones are trusted execution environments (TEE) [1],
multi-party computations (MPC) [2], Garbled circuits [3] and fully homomor-
phic encryption (FHE) [4]. Of these, homomorphic encryption has been the most
promising option. Though fully homomorphic encryption has been an open prob-
lem since long [5], it is only with Gentry’s scheme (2009) [4] that the pace of
development has increased. Since then, consequent advances in homomorphic
encryption schemes has garnered lot of interest to practically develop privacy
preserving applications with use of homomorphic encryption schemes. Hence
the scope of our study is limited to FHE based implementations.

FHE enables clients to securely outsource data storage to CSPs while still
allowing computations on the encrypted data without the need for decryption.
FHE comes with a wide range of applications to perform computations without
revealing underlying data to the third party. In this direction, we focus on one
such application, privacy preserving machine learning (PPML), that has great
impact in current information age. At present, machine learning (ML) is of great
interest to the organizations to improve their services by making their systems
to automatically learn through the ML algorithms without the need for explicit
programming. However, existing ML models operate at the cost of user’s pri-
vacy as their sensitive data is stored at third party organizations without any
safeguards from the service provider. To enable privacy of client’s data, there is
a need to perform privacy enabled ML, where FHE can be leveraged to develop
private machine learning paradigms that preserve privacy and confidentiality of
users’ data.

The existing literature focuses on implementing PPML algorithms to solve
specific problems such as private genomic sequencing or encrypted computation
on genomic data and so on in privacy preserving manner. However these algo-
rithms are optimized for a given usecase. Therefore, there is a need for generic
framework that enables end-users to select an appropriate FHE scheme and it’s
parameter set based on PPML application needs. Thereby PPML applications
can be implemented in an efficient manner.

There are several FHE libraries which implement various FHE schemes and
optimizations. But for a machine learning expert, working with FHE libraries
can be challenging. Using FHE libraries for PPML requires understanding of
how the computations happen to make the implementations more efficient and
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get optimal performance. Hence, there is need for Recommendation system for
machine learning experts on FHE libraries. In order to do this, one has to study
various implementations of FHE libraries to see which one suits better based on
the application.

Hence to address this, there are compilers such as CHET, which facilitates
to build applications which requires Privacy preserving computation based on
specific homomorphic encryption scheme/library. However, PPML applications
might need to depend on different libraries and schemes for optimal performance.
To facilitate this, we propose a generic framework that recommends users to
select best the FHE library and FHE scheme (along with parameter configura-
tions) supported by it among several FHE libraries to build PPML application
efficiently.

1.1 Our Contribution

Our contribution in this paper can be categorized as follows:

– Recommender system for FHE: We present a novel framework for a rec-
ommender system for FHE libraries which suggests the optimal parameter
set for a given application. We theoretically analyze the proposed recommen-
dation system and investigate FHE schemes from PPML perspective. For a
thorough investigation, we follow a two step approach wherein:

• We come up with an optimal recommendations on library and scheme to
use along with settings like packing, bootstrapping and parameter selec-
tion for primitive ML computations.

• We provide estimates for computations such as matrix multiplication,
linear regression based on primitive operations. Our estimates and actual
computation times for matrix multiplication and linear regression are
given as input to the optimizer (TOPSIS [6]). We note that optimizer is
recommending the same in both these cases.

This study is intended for programmers and machine learning experts who are
new to cryptography and plan to implement machine learning applications
in a privacy preserving manner based on FHE. From PPML perspective,
we need to configure the parameters by taking into account aspects such as
accuracy required, whether the application needs to be interactive or non-
interactive, packing is required or not, security levels and noise threshold. We
recommended parameter choices for existing FHE libraries to achieve optimal
performance.

1.2 Related Work

Ever since the first fully homomorphic encryption scheme was proposed in 2009,
there had been significant advances in devising more efficient schemes as well
as improving efficiency of applications built on FHE encrypted data. One of
the most important benchmarking platform was provided by iDash - a Genome
sequence competition [7], which emphasized on efficient application of machine
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learning algorithms on private genome datasets for prediction or classification in
a privacy preserving manner. The entries into this competition have seen many
HE implementations with optimizations making them ready for practical use. In
the context of secure computation on genomic data, most notable work in iDash
2015 [8] investigated private genome analysis over encrypted data based on the
BGV [9] and YASHE schemes [10]. While the BGV implementation efficiently
evaluated circuits of larger depths (like the Hamming distance algorithm or
approximate Edit distance algorithm), low depth circuits (such as minor allele
frequencies or c2 test statistic in a case-control study) evaluation was more
efficient in YASHE instantiation. [11] studies Privacy-preserving genome-wide
association on cloud environment using fully homomorphic encryption. They
demonstrate with experimentation that secure outsourcing computation of one
c2 test and evaluation of one linkage disequilibrium with 10,000 subjects takes
35 ms and 80 ms respectively. Zhang et al. [12] proposed a framework to enable
secure division over encrypted data by introducing two division protocols with a
trade-off between complexity and accuracy in computing chi-square statistics. In
2016, Çetin et al. [13] demonstrated the feasibility of privacy preserving queries
(single/multi query) on homomorphically encrypted genomic data using SEAL
based implementation for queries over large datasets of sizes ranging from 10,000
to 100,000 rows [13].

Machine learning techniques like logistic regression over encrypted data was
investigated in 2017 [14,15]. The implementation of [14] encodes the whole
dataset into a single ciphertext using the packing technique and uses approxi-
mate arithmetic over encrypted data which allows computation for the required
accuracy. Here nestrov gradient descent method is used for faster convergence for
logistic regression in non interactive way. They also proposed an iterative method
for performing logistic regression for larger datasets. [15] implementation uses
scale factors and “combining bootstrapping with scaling” approach to achieve
fixed point arithmetic on encrypted data. They used gradient descent using sig-
moid function (approximated using Taylor series). However their solution took
much longer time compared to [14]. iDash-2018 competition explored Genome
Wide Association Studies (GWAS) based on homomorphically encrypted data
for large datasets which was efficiently computed in 0.09 min by [16]. They com-
puted Fisher scoring and semi-parallel GWAS algorithms over homomorphically
encrypted data with several optimization methodologies. They implemented
using HEAAN. It requires 30 to 40 min for 245 samples containing 10,000 to
15,000 SNPs (Single Nucleotide Polymorphism) and gives high accuracy.

Other most prominent works in literature that focus on logistic regression
on encrypted data include [17–23] and PPML on cloud [24]. For more general
information on HE and machine learning over encrypted data refer [25–29].

Prominent open source implementations of FHE include HElib, SEAL,
HEAAN, PALISADE [30], TFHE [31] and nGraph-HE [32]. HElib is one of
the first libraries for FHE by IBM. It’s main advantage is working with binary
(bitwise) data as it supports bootstrapping for binary inputs. SEAL was devel-
oped by Microsoft to provide support for integer and floating point arithmetic on



A Recommender System for Efficient Implementation 197

encrypted data. However, SEAL doesn’t support packing for floating point and
negative numbers which is required for PPML. HEAAN has support for this and
also provides support for bootstrapping. PALISADE library supports wide vari-
ety of cryptographic primitives, however does not support bootstrapping. TFHE
library works primarily for binary inputs with support for bootstrapping. The
existing state-of-art has research on homomorphic compilers that deal with a spe-
cific FHE library or a scheme. CHET [33] takes computation as input from the
user, calculates the optimal parameters required for the computation and gives
a code snippet which implements the computation. The code snippet is gener-
ated using CKKS scheme implemented in (i) HEAAN (ii) SEAL. Alchemy [34]
is a compiler that converts code in domain specific language to its correspond-
ing optimized homomoprhic encryption code which doesn’t require knowledge
on FHE. It supports BGV-style [9] cryptosystem as defined and implemented in
[35], a recent Haskell framework for FHE and lattice-based cryptography more
generally. Out of these, HElib, SEAL and HEAAN have been widely used in
the recent times for PPML. Hence, we consider these three libraries for our
experiments.

In Sect. 2, we briefly describe the basics of FHE and models of PPML based
on FHE. Section 3 describes the state of the art opensource implementations of
FHE and summarizes the implementation aspects in making the current FHE
schemes practical. In Sect. 4 we illustrate the machine learning case studies such
as matrix multiplication, linear regression and logistic regression and present the
experimental results in terms of elapsed time (ET) and memory usage. We also
suggest from PPML perspective what support is needed for PPML algorithms
to be implemented. In Sect. 5 we propose a novel framework for a recommen-
dation system for PPML applications based on FHE. We provide our analysis
on computations like matrix multiplication and linear regression and solve them
using TOPSIS optimizer.

2 Brief Overview of FHE and PPML

FHE allows arbitrary computations on encrypted data without decrypting them.
Given a set of ciphertexts {c1 . . . cn} corresponding to messages {m1 . . . mn}, one
can compute a function F{c1 . . . cn} resulting in an encrypted output, which
when decrypted is equal to the result of computation F(m1 . . .mn). A typical
public key encryption algorithm ξ has KeyGenξ, Encryptξ, Decryptξ functions
that perform generation of public and private key pairs, encrypting a message
with public key and decrypt a message with private key respectively. In addi-
tion to these functions, FHE encryption algorithms have an Evalξ function that
evaluates a given function F over a set of input ciphertexts c = {c1 . . . cn}.
Operations supported by FHE encryption schemes depend on the underlying
mathematical structure of the ciphertexts.

Applications based on homomorphic encryption can use either bit-wise
encryption instantiation or integer-wise encryption instantiation to encrypt data,
however bit-wise encryption increases the size of data sets. The space required
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to store the ciphertext of an l-bit integer in bit-wise encryption instantiation is
l-ciphertext units where as integer-wise encryption requires only one ciphertext
unit. Studies like [36] suggest that through optimizations integer wise encryption
is more efficient than bit-wise encryption. The challenge is to bring a balance
between space and performance.

(a) (b)

Fig. 1. (a) Computation as a Service (b) Prediction as a Service. Diagram inspired
from [37]

2.1 Computational Models for PPML Based on FHE

FHE can be applied to ML in two scenarios: computation as a service and
prediction as a service. In computation as a service model (See Fig. 1a), client
wants to outsource ML computations to the CSP but does not want to reveal
data to it. Here, client knows what ML algorithm it is outsourcing and sends the
algorithm and encrypted data to the CSP. The CSP performs the computations
on the ciphertexts and sends the encrypted result back to the client. In prediction
as a service scenario (See Fig. 1b), the service provider has proprietary machine
learning algorithms which he does not wish to share with the client. In the same
way, the client does not wish to share confidential data to the service provider.
Hence, using FHE, the client can provide encrypted inputs to the cloud service
provider, who then feeds these encrypted inputs to the proprietary ML algorithm
and develop model parameters. The CSP can then use this encrypted model to
provide prediction as a service to the client. This way objectives of both client
and server are realized.

Though there is subtle difference in the two scenarios, the common part of the
two is the computation hosted on the server side. For efficiency of the services,
these computations has to be efficient, which is focus of our study. In this paper,
we analyze algorithms from both computation as a service as well as prediction
as a service perspective.
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2.2 Limitations of FHE

Noise management is a major limitation of FHE. Every ciphertext has inherent
noise associated which increases with number of computations. There are two
ways for noise management, (i) Bootstrapping and (ii) Modulus Switching. Boot-
strapping is used to reduce the noise and get fresh ciphertext homomorphically at
the expense of computation time. Modulus Switching helps in reducing noise but
to certain extent only. This limits the use of FHE to applications which require
only operations which are linear in nature. Hence, we require linear approxima-
tion of non-linear functions. Recent advances have seen use of approximation of
non linear functions, like calculating the exponent, with reduced computational
complexity. For instance [15] uses approximation of Sigmoid function to polyno-
mial evaluation upto degrees 3, 5 and 7 depending on the accuracy needed.

Another important consideration is Parameter optimization. It is essential
to find the optimal set of values for the parameters mentioned in Sect. 3. These
parameters, in particular the Polynomial modulus (N) and the Coefficient mod-
ulus (q) have significant impact on performance. For instance, higher N value
is better for Bootstrapping, however doubling N value will also double the size
of the ciphertext and the time taken for computations. Current fully homomor-
phic encryption schemes are computationally expensive and memory intensive.
Encrypted computations using first homomorphic encryption scheme by Craig
Gentry from 2009 [4], was 100 trillion times slower than plaintext operations.
Over the last decade, the performance has seen significant process now reaching
million times level [38,39]. The progress is optimistic and we can expect more
efficient schemes in the future.

In the next section we present some insights into technical aspects of FHE
implementations and discuss issues which are important in making FHE based
PPML applications efficient.

3 FHE Libraries and Implementation Aspects

In this section we mainly focus on three FHE libraries namely HElib, SEAL and
HEAAN. We talk about the pros and cons of these libraries, parameter settings
and features like packing and bootstrapping.

3.1 The Trio

HElib, SEAL and HEAAN are among the most widely used open source libraries
for FHE. While all three libraries support CKKS scheme, HElib additionally
supports BGV and SEAL supports BFV. Summary of operations supported by
each of these libraries are given in Table 1. HElib supports bootstrapping for Bit-
wise encryption and HEAAN for both Bit-wise and Integer-wise (floating point)
encryption respectively. SEAL has automatic parameter selection, while HEAAN
allows fine grained control over parameter selection for any PPML application.
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3.2 Other Libraries

Other prominent publicly available FHE libraries include PALISADE, TFHE
and nGraph-HE. PALISADE library supports a wide range of cryptographic
primitives including public-key encryption, homomorphic encryption, digital
signatures, proxy re-encryption, identity-based encryption, and attribute-based
encryption. iDash 2018 winning entry uses PALISADE for its implementation.
TFHE implements a ring variant of the GSW cryptosystem. It implements a very
fast gate-by-gate bootstrapping. It allows users to give a circuit for computation.
nGraph is Intel’s graph compiler for Artificial Neural Networks. nGrpah-HE is
a backend for nGraph to support computations on encrypted data.

Table 1. Comparing libraries

Scheme Integer-wise Bit-wise Negative numbers Fractional numbers Bootstrapping Packing

HElib ✓ ✓ ✗ ✗ ✓ ✓

SEAL ✓ ✓ ✓ ✓ ✗ ✓

HEAAN ✓ ✓ ✓ ✓ ✓ ✓

3.3 Parameters and Considerations

FHE schemes primarily rely on hardness of three types of hardness assumptions:

1. Lattice: These type of schemes rely on hardness of lattice problems like
Shortest Vector Problem (SVP) and Closest Vector Problem (CVP).

2. LWE: These type of schemes rely on hardness of Learning With Errors prob-
lem. The problem with these schemes is that the key sizes are much larger.

3. RLWE: These type of schemes rely on hardness of Ring LWE problem which
is efficient due to the underlying ring structure.

Ring based Learning with Errors (RLWE) is the basis for most of the efficient
FHE schemes. Typical parameters in RLWE based FHE schemes are:

– M - the cyclotomic polynomial
– N - degree of cyclotomic polynomial N = φ(M)
– p - modulus for coefficients in the plaintext
– t = pr - plaintext modulus, for an exponent r

– h - 1-norm of the secret key (For example, 1-norm of vector x is
n∑

i=1

|xi|)
– q = q1 ∗ q2 . . . ql where l = 1 . . . L and L is the number of primes and q is the

coefficient modulus for ciphertext and q1 . . . ql are small primes
– α - the width of Gaussian distribution for sampling error
– χ - the error distribution.
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As part of the HE standardization, the suggested parameters sets are avail-
able at [40]. We have performed the experimentation using these parameter sets.
Parameter selection plays a crucial part in performance of any FHE application.
There can be different parameter sets subjecting to same level of security. How-
ever, the challenge is to choose a set that is suitable for a particular application
(or depth). The analysis on optimal choice of parameters is an active research
area and there are some results available in the literature [41].

The parameters that have significant effect on the performance of FHE appli-
cations are lattice dimension N , q. The parameter q should be large which sets
the noise limit to a higher level and enables us to do more computations. It can
also be computed as product of a set of small primes. The small primes q1 . . . ql

are a chain of moduli of decreasing sizes q1 > q2 > . . . ql which can be used
for modulus switching. During homomorphic evaluation, the modulus can be
switched to lower level which helps in reducing noise as well to certain extent.
For example, in FV scheme (implemented in SEAL library [42]), to perform
10 multiplications, requires a polynomial modulus degree of 8124 and plaintext
modulus of at least 2243 for a fractional encoding in base 3 [41]. The parame-
ters N and p determine the number of plaintext slots, which specifies how many
elements can be packed in a single ciphertext. The number of plaintext slots
depends on the cyclotomic polynomial which is a product of d-irreducible fac-
tors. Each factor corresponds to a plaintext slot in plaintext modulus and is of
degree φ(M)/d.

Some libraries such as HEAAN (implementation of CKKS scheme) has a
provision to specify accuracy of the approximate arithmetic on ciphertexts. This
accuracy depends on plaintext modulus. Higher plaintext modulus gives more
accuracy. The error distribution and sparse secret should be small which in-
turn reduces the noise. The parameter selection criteria depends on the type of
application and its circuit depth, multiplicative depth and the level of accuracy
required. Depending on the type of application such as private computation on
encrypted genomic data or private search, challenge is to choose an optimal
parameter set that achieves better performance.

3.4 Ciphertext Packing

It is a technique where a vector of plaintexts are packed into a single cipher-
text to get the advantage of space or computational efficiency. This enables
computations to be performed parallelly in a Single Instruction Multiple Data
(SIMD) manner. There are several ciphertext packing techniques available in lit-
erature [43–46]. All these techniques are based on polynomial Chinese Reminder
Theorem (CRT) plaintext packing that has plaintext space M which is repre-
sented as a n-dimensional vectors in Rn over ring R using encoding or decoding
methods [47]. One can encode an element of Rn into a ciphertext and perform
component wise multiplication over the plaintext slot where each plaintext slot
corresponds to each of the l irreducible factors with degree φ(M)/l and in plain-
text modulus of the cyclotomic polynomial [47]. This enables us to parallelize
the computations. However, the main drawback of packing is it not possible to
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access inputs in individual slots. To overcome this problem, we need to perform
the rotation operation on plaintext slots where we can define the rotation opera-
tion on a encryption ct of m = {m0 . . . mn−1} as {ml . . . mn−1,m0, . . . ml−1} for
l-rotations. The rotation operation is usually required while performing matrix
operations on packed ciphertexts. Performing computations on specific slots is
expensive as it requires large number of rotations and constant multiplications.
Therefore, there is a need to homomorphically unpack the ciphertext on the fly,
perform operations on the individual elements and homomorphically pack the
elements back into the ciphertext [45]. Table 2 summarizes the complexities of
the packing techniques.

Table 2. Comparison of matrix multiplications for a d-dimension matrix with and
without packing, This table is taken from [47]

Scheme No of ciphertexts Complexity Circuit depth Rotation required?

Without packing d2 O(d3) 1 mult ✗

Halevi-Shoup [39] d O(d2) 1 mult ✓

JKLS [47] 1 O(d) 1 mult+ 2 Cmult ✓

For matrix multiplication algorithm (d×d) without using packing technique,
we encrypt each element of a matrix to get d2 ciphertexts (complexity of the
algorithm is O(d3)). Halevi-Shoup used packing technique (for matrix vector
multiplication) to pack matrix diagonally, which requires only d ciphertexts
and complexity reduces to O(d2). However, recent packing techniques like JKLS
encrypts the whole matrix into a single ciphertext hence reducing the complexity
to O(d) (requires rotations to add results). All these packing methodologies are
agnostic to any FHE scheme.

From PPML perspective, packing is required inorder to improve the space
efficiency and speed up the computation process of ML algorithms. To make
these algorithms non-interactive, bootstrapping is required, which is expensive.
However, to make ML algorithms more efficient and non-interactive, methodolo-
gies have to be designed to perform light weight bootstrapping on the packed
ciphertexts. Furthermore, server can save computation time by packing differ-
ent user’s encrypted data into single ciphertext (i.e. Ciphertext packing) and
do the common operation that needs to be performed and then unpack to indi-
vidual user’s ciphertexts and carry out the remaining operations (referred to as
on-the-fly packing). Efficient on-the-fly packing is necessary in ML applications.

3.5 Bootstrapping

Noise management is one of the crucial parts in making any HE scheme practical.
In homomorphic encryption, every ciphertext has some noise associated with it.
This noise increases with every computation and the decryption fails if the noise
crosses certain threshold value. The threshold value usually depends on the type
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of homomorphic encryption scheme and its parameter values. The number of
homomorphic operations that can be performed depends on the threshold value.

Therefore, to be able to use homomorphic encryption in practical applica-
tions, there has to be new techniques in order to improve the number of opera-
tions that can be performed on ciphertexts, such as modulus switching. However
the noise grows with every operation. To address the problem of growing noise
in ciphertexts, bootstrapping has been introduced which can homomorphically
decrypt the ciphertext and produce a ciphertext with lesser noise. However,
bootstrapping is an expensive operation.

Currently, the most promising bootstrapping schemes for integer-wise encryp-
tion are the BGV, FV and CKKS. Out of these CKKS seems to be the most prac-
tical scheme. CKKS involves re-scaling the obtained message after computation
using modulus switching to get a message with reduced error value (Table 3).

Table 3. Summary of Bootstrapping Schemes, h is 1-norm of the secret key and t = pr

is the plaintext modulus, K is a small constant related to security parameter

Scheme Parameters Security level

(in bits)

Circuit depth Time (in secs)

BGV [48] n =

16384, slots =

1024, log p =

16

76 O(2 log(t) + log(h)) 320

Improved BGV [49] – 80 O(log(t) + log(h)) –

FV [49] n =

16384, slots =

64, log q =

558

92.9 O(log(log(t)) + log(h)) 193

Slim method for FV [49] – 6.75

CKKS [50] log N =

15, slots =

64, log p =

23, log q = 29

80 O(log Kq) 24.6

Improved CKKS [51] log N =

15, slots =

10, log p =

25, log q = 29

max(log K + 2, log(log q)) 0.04

From PPML perspective, homomorphically estimating the model parameters
is computationally expensive as it requires many iterations to get the desired
accuracy. For example, linear regression requires two multiplications for each
iteration and suppose that the Recrypt (getting a fresh ciphertext by bootstrap-
ping (non-interactive mode) or decrypt/encrypt (interactive mode)) operation
takes x seconds. Recrypt has to be performed after every iteration or some
y iterations to get a fresh ciphertext depending on the multiplicative depth of
each iteration. Therefore, the execution time for 100 iterations will be a+100x/y
where a is the time taken for each iteration. Therefore, even a small execution
time of Recrypt will be a multiple of the number of iterations which hinders the
performance of AI applications.
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4 Case Studies

In this section we experimentally evaluate machine learning primitives for PPML
and also give recommendations for each computation. All experiments are done
on Intel Xeon Gold CPU clocked at 2.4 Ghz with 64 GB RAM and 32 cores. Input
sizes for all our experimental analysis is 64 bits. All parameters are configured
to enable 80-bit security.

4.1 FHE Primitive Operations

Table 4 shows the timings of primitive operations implemented using HElib,
SEAL and HEAAN libraries.

Table 4. Performance of Primitive operations

Operation HElib (ms) SEAL (ms) HEAAN (ms) Plain(Unencrypted) (ns)

Add 0.96 0.28 0.98 99

Sub 1 0.22 3.4 107

Mul 16.66 14.5 31.3 121

This clearly shows that SEAL is the fastest among the three libraries for
primitive operations. It is important to point out that result of any computation
in HElib is in the range [0, p − 1], whereas for SEAL and HEAAN it is in the
range [−(p − 1)/2, (p − 1)/2]. So negative integer results from HElib lie in the
second half of the range and has to be re-interpreted after the computation. We
infer from Table 4 that primitive operations on encrypted data are 106 times
slower than the operations on plaintext.

From PPML perspective, it is important to have support for floating point
arithmetic and negative numbers as most computations require support for them.
HElib natively doesn’t support neither of them. We will need an additional NTL
wrapper on top of HElib library to support this. Hence, for further comparisons
we only go with SEAL and HEAAN.

Division: All the three libraries support division of ciphertext by a power
of 2. However, HElib does not have support for division by a non power of 2
number. In SEAL and HEAAN, if we want to perform division by a number ‘x’,
then we can encode and encrypt it as a fractional number ‘1/x’ and then do the
multiplication. However efficient division of ciphertexts is still an open problem.

Recommendation: From PPML perspective, SEAL and HEAAN libraries
are more suitable as they provide support for floating point arithmetic and neg-
ative numbers. For primitive operations, SEAL is faster. However for packing
support to floating point and negative numbers, HEAAN is preferred.

We now present recommendation of library and FHE scheme for PPML
through experimental analysis for PPML primitives such as Matrix multipli-
cation and Linear regression operations. We validate this recommendation by
solving our proposed optimization problem through TOPSIS.
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4.2 Matrix Multiplication

Matrix multiplication is perhaps the most basic operation for any machine learn-
ing algorithm. We demonstrate how timings for matrix multiplication vary based
on the underlying hardware support, primarily the number of cores available for
processing, so that it helps in deciding the appropriate level of hardware for a
particular PPML algorithm based on the scale of inputs.

Table 5. Matrix multiplication - memory usage (in GB)

Dim HElib SEAL HEAAN

10 × 10 0.19 0.12 0.22

20 × 20 0.75 0.175 0.777

25 × 25 1.2 0.291 1.2

30 × 30 1.7 0.524 1.6

50 × 50 2.68 1.18 4.2

100 × 100 11.4 3.78 17.78

Figure 2 and 3 shows matrix multiplication performance on a 8, 16 and 32
core CPUs. For all these configurations, SEAL performs better than HElib and
HEAAN. Our intuition is that HEAAN is taking more time as it has support
for negative numbers as well as floating point numbers.

Table 5 shows statistics on memory consumption of each of these libraries
for matrix multiplication operation. It is important to point out that ciphertext
memory consumption is less in SEAL when compared to HElib and HEAAN. We
implemented matrix multiplication using Intel’s TBB for parallelization. SEAL
fares better in terms of memory consumed for matrix multiplication.

Table 5 shows the high computational requirements for FHE even for prim-
itive operations like matrix multiplication. However, from PPML perspective,
typical datasets have columns in the range 100 to 200 while the number of rows
go beyond 100,000. Packing based solutions for FHE are recommended for work-
ing with such datasets.

Fig. 2. Matrix multiplication performance - 8 and 16 core CPU - time (secs)
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Fig. 3. Matrix multiplication performance - 32 core CPU - time (secs)

Recommendation: SEAL performs better in terms of memory and time.
However for working with larger datasets in the case of PPML, packing based
implementations are needed where HEAAN fares better and easier to use.

Packed Matrix Multiplication: Machine learning algorithms typically
require to work on large datasets. This will be difficult to support for FHE
libraries as the memory requirements are too huge to encrypt and work with
such large datasets. To overcome this, FHE libraries provide support for pack-
ing. Packing technique packs multiple plaintext elements into a single ciphertext
to allow SIMD operation. We demonstrate the use of packing for Matrix multi-
plication.

For packed matrix mult, we compare SEAL and HEAAN CKKS scheme
implementations. To encode 100 × 100 matrix, we need 10000 slots. To get this
we need to set N = 32768. We observed that while HEAAN takes less memory
per ciphertext to represent this, while SEAL is faster in computation. Hence, for
PPML applications with larger datasets it is recommended to choose HEAAN.

From memory perspective the packing based solution looks promising, how-
ever the operations on packed ciphertext are very restrictive. For example, to
complete the matrix multiplication we have to perform rotations and additions.
However, the operations have to be carefully mapped to individual slots for
packing to be effective which might not be the case for a generic computation.

4.3 Linear Regression

Linear Regression is one of the most basic machine learning algorithms used for
modeling the relationship between a scalar response (or dependent variable) and
one or more explanatory variables. We implemented the basic version of linear
regression with gradient descent using SEAL and HEAAN libraries.

We observed that, configuring noise budget (which determines number of
multiplications that can be done before bootstrapping or interaction is needed)
is much easier in HEAAN library. The default parameters in SEAL for N = 8192
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Table 6. Linear Regression per iteration performance for SEAL (on 32-core CPU),
E.T - Elapsed Time, Communication Cost is the one way cost of sending θ values per
interaction, Memory consumption for N= 8192 parameter level for 150 × 4 dataset is
1.1 GB and for 265× 10 dataset is 2.5 GB, Higher parameters give more multiplicative
depth hence allowing us to use interaction in step-wise manner.

N(Poly mod) x:Input θ:Params y:Target SEAL E.T Comm. Cost

8192 150 × 4 4 × 1 150 × 1 10 s 484 KB

16384 150 × 4 4 × 1 150 × 1 48.9 s 968 KB

8192 265 × 10 10 × 1 265 × 1 29.4 s 484 KB

16384 265 × 10 10 × 1 265 × 1 146.2 s 968 KB

Table 7. Linear Regression per iteration Timings using packing for HEAAN (on 32-
core CPU) BS represents bootstrapping operation; Communication Cost is the one way
cost of sending θ value per interaction
Memory consumption for 150× 4 dataset reduced to 120MB and for 265× 10 reduced
to 450 MB. In HEAAN, we achieve non-interactive model using bootstrapping.

N(Poly mod) x:Input θ:Params y:Target E.T w/o BS Comm. Cost

2048 150 × 4 4 × 1 150 × 1 7.4–2.3 s 273 KB

8192 265 × 10 10 × 1 265 × 1 92.8–34.5 s 1.1 MB

allowed us to do only 3–4 multiplications before noise budget was exhausted.
Hence interaction was needed in almost every iteration. HEAAN facilitates easier
configuration of parameters for higher noise budget, hence allowing us to go for
interaction once in every five iterations. This is done by setting log q parameter
in HEAAN to a higher value. From a cloud service perspective, having lesser
interaction is very important.

Linear regression algorithm typically runs for multiple iterations and then
terminates based on the stopping criteria. The number of iterations also depends
on the initial values for the model. With a good understanding of the dataset,
these values can be optimally set to minimize the number of iterations.

Packed Linear Regression Without Bootstrapping: The important thing
to remember in packed implementation of any algorithm is the data movement
between the slots, as the entire matrices are represented as just a single vector of
values in each slot. This is explained in the Appendix 6. Table 6 and 7 presents the
experimental results for linear regression per iteration using SEAL and HEAAN
respectively on a 32-core CPU. Without bootstrapping, we need smaller param-
eter settings. In HEAAN, after every multiplication, we do a modular switching
operation to reduce parameter to a lower ciphertext modulus. Therefore, the
computation time also decreases.
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Packed Linear Regression with Bootstrapping: With bootstrapping, it is
possible to achieve non-interactive model. We experimented this with HEAAN
library. For bootstrapping we need to set parameters very high, like log N should
be set to atleast 15 and we need more noise budget. Under this setting, 150 × 4
data set takes 320–240 s per iteration and 265 × 10 dataset takes 950–500 s. The
performance increases as we switch to a lower modulus.

Recommendation: PPML algorithms like Linear regression require lots
of iterations to converge. However FHE requires recrypt procedure to handle
noise. SEAL runs faster but needs interaction with client for recrypt (decrypt
then encrypt). For enabling bootstrapping, we need log N to be 15. HEAAN is
slower but has support for bootstrapping which makes it non interactive.

4.4 Logistic Regression

Logistic Regression is simple machine learning algorithm widely used for classi-
fication of data. It uses a sigmoid function which evaluates exponents. However,
calculating exponents in FHE domain can be very expensive. Several studies have
proposed using approximations of sigmoid function using Taylor series upto a
certain degree of polynomial [14,15]. This helps in achieving the accuracy as well
as reducing the computational complexity.

We trained and tested logistic regression implementation for low birth weight
dataset [52] which had 189 rows and 8 features and a binary output for classi-
fication. The dataset is used to identify the risk factors associated with giving
birth to low birth weight baby (weighing less than 2.5 Kgms). The dataset is
used to predict the birth weight of babies based on some behavioral variables.
Our implementation follows closely the implementation of [14]. The total run-
ning time for getting model parameters was 14.5 s for 7 iterations and we got
AUC of 0.785.

For this, we set the N value to 8192 which gives us 4096 slots for packing.
We packed the dataset into a single ciphertext by padding extra zeroes to make
dimensions as 256 × 16. This is done to ensure correct data movement in slots
as explained in [14]. The log q was set to sufficiently high value such that no
interaction was needed. This can be calculated as per guidelines in [14].

Recommendation: Noise budget can be set appropriately in HEAAN to
ensure no interaction is needed for certain number of iterations. For larger
datasets, we can divide the dataset column wise and then do PPML algorithm
iteratively.

4.5 Bootstrapping

In this section, we describe the experimental results of bootstrapping technique
in HEAAN library. Figure 4b illustrates the error deviation (± actual value) after
bootstrapping operation for different input values and parameter values such as
log p and slots. Here log p denotes the accuracy of the computation and slots
represent the number of values that can be packed. For bootstrapping to work,
we require (log p + log (input)) < (log q), this is because of the depth of the
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bootstrapping circuit. We note that the time taken for bootstrapping operation
remains constant with varying log p value. It takes 5.2 s and 5.7 s for 8 and 16
slots respectively. Figure 4a shows the time taken for bootstrapping operation
with increasing number of slots value. We observe that bootstrapping time grows
exponentially with respect to the number of slots.

Fig. 4. (a) Slots vs Time (b) Input values vs Error Deviation; For 8 slots

Recommendation: HEAAN library has support for Bootstrapping. log p
determines precision of arithmetic computations. Lesser log p gives less precision,
however larger log p is not suitable to bootstrapping as it has to follow log p +
log (value) < (log q), i.e. log p < log (q/value) Therefore, log p around 23–
30 is suitable for most PPML applications if the range of input values is fixed.
However, for unknown input values lower log p can be used.

Summary: For primitive operations on FHE data such as addition, sub-
traction, multiplication and matrix multiplication, SEAL outperforms HElib and
HEAAN. Hence, SEAL is recommended for non-packing based implementations.
We recommended HEAAN for packing based implementations as it supports
packing floating point numbers as well as negative numbers. We also recom-
mended HEAAN for the linear/logistic regression algorithms as it allows us to
make the interaction with the client once in every five iterations which makes it
semi-interactive model. For bootstrapping operation, HEAAN is recommended.
To set parameter n we need n = 2k, S.T n ≥ ab, where ab is dimension of matrix
to be encrypted, parameter N has to be (atleast) 2n. log p is for precision which
we recommend for PPML applications to be between 23–30. log Q can be set as
log p + log(value) < log q.

Compilers like CHET and Alchemy estimate parameters for a specific com-
putation and using a specific FHE scheme. Hence there is need for a generic
framework to estimate the best scheme and parameter combinations for any
PPML computation. In the next section, we propose a novel framework for a
recommender system for PPML applications based on FHE. We provide experi-
mental analysis with our recommendation system for matrix multiplication and
linear regression to validate our observations in Sects. 3 and 4.
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5 Recommendation System for FHE

In this section, we formally define our recommender system and provide the
description on how we evaluate the inputs provided by the users.

5.1 Formulation

Given an input application which is represented as a computing function F with
input data set and its associated constraints such as computation time τf , mem-
ory mf, communication cost commf , computation cost ξf and security level λ,
objective of the proposed recommendation system is to find an optimal recom-
mendation (w.r.t. τf, mf, commf , ξf and λ) to efficiently implement an appli-
cation in a privacy preserving manner using any of the available FHE libraries.
Let L = {l1 . . . lα} be the set of FHE libraries available and each library lq
with security level λj supports set of Slq = {sq1 , sq2 , ...., sqρq

} FHE schemes. We
assume that an application is represented as F, wherein F = {f1, f2, f3, ...fn}
is represented as an arithmetic expression tree and each fi ∈ F are the nodes
(sub computations of F) of the tree. Note that fτ

ijk, fm
ijk, fcomm

ijk and fξ
ijk are the

computation time, memory, communication cost and computation cost require-
ment to compute fi using library lj and FHE scheme Sljk

respectively. Now
the proposed recommendation system is modeled as a multi objective and multi
criterion optimization problem with a goal to minimize computation time τ ,
memory consumption m, communication cost comm and computation cost of a
function F in a privacy preserving manner.

Fτ
∗ = argmin{F τ

j |F τ
j = argmin{F τ

jk|λj > λ}k∈Slj
, lj ∈ L} (1)

F∗
m = argmin{Fm

j |Fm
j = argmin{Fm

jk |λj > λ}k∈Slj
, lj ∈ L} (2)

Fξ
∗ = argmin{F ξ

j |F ξ
j = argmin{F ξ

jk|λj > λ}k∈Slj
, lj ∈ L} (3)

F∗
comm = argmin{F comm

j |Fm
j = argmin{F comm

jk |λj > λ}k∈Slj
, lj ∈ L} (4)

F τ
jk =

|F|∑

i=1

fτ
ijkxijk ≤ τf , Fm

jk =
|F|∑

i=1

fm
ijkxijk ≤ mf (5)

F comm
jk =

|F|∑

i=1

fcomm
ijk xijk ≤ commf , F ξ

jk =
|F|∑

i=1

fξ
ijkxijk ≤ ξf (6)

xijk =

{
1 If fi can be computed using library lj and FHE scheme Sljk

0 otherwise

|F|∑

k=1

xijk = |F| (7)
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The above described multi objective optimization can be converted into single
objective function, which is described as follows

F∗ = argmin{Fj |Fj = argmin{Fjk|λj > λ}k∈Slj
, lj ∈ L} (8)

Fjk =
|F|∑

i=1

fijkxijk (9)

fijk = Wτ ∗ fτ
ijk + Wm ∗ fm

ijk + Wcomm ∗ fcomm
ijk + Wξ ∗ fξ

ijk (10)

Wτ + Wm + Wcomm + Wξ = 1 (11)

|F|∑

i=1

fτ
ijkxijk ≤ τf ,

|F|∑

i=1

fm
ijkxijk ≤ mf (12)

|F|∑

i=1

fcomm
ijk xijk ≤ commf ,

|F|∑

i=1

fξ
ijkxijk ≤ ξf (13)

xijk =

{
1 If fi can be computed using library lj and FHE scheme Sljk

0 otherwise

|F|∑

k=1

xijk = |F| (14)

These inputs can be fed into the system through various methods. For example,
a configuration file or a mathematical formula. Based on the given inputs, the
optimization problem can be modelled in two ways:

– Model A: User provides all the constraints based on which recommendation
is provided.

– Model B: User provides only the computation to be performed where our
system comes up with different set choices for the user to choose based on
the requirement.

5.2 Analysis

We now present our analysis for a recommendation system using formulation
mentioned earlier. The optimization is multi-objective since we want to reduce
computation time, memory requirement at the same time keeping parameters
as low as possible which depends on packing required or not, bootstrapping for
interactive or non interactive etc. However solving multi objective optimization
is believed to be hard problem [53–55]. Hence we present our analysis for a single
objective optimization problem using TOPSIS optimizer (Tables 8 and 9).
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Table 8. Analysis for 100 × 100 Matrix Mult, ∗ includes memory for keys, temporary
storage etc. for logN = 12

Operation Calculated estimates Practical w/o packing Practical with packing

HElib SEAL HEAAN HElib SEAL HEAAN SEAL2 HEAAN2

Add + Mul (millisecs) 16 13.5 28.9 16 13.5 28.9 30 283

100 × 100 Matrix mult

on 32 cores (secs)

330 200 1100 680 278 745 11.7 22.5

Memory per ciphertext

(KB)

443 16 106 443 16 106 262144 1048

Memory for 100 × 100

matrix mult (GB)

4.4 0.16 1.06 11.4∗ 3.78∗ 17.78∗ 0.8∗ 0.14∗

Rank - Time and Mem

equal weight

2 1 3 4 3 5 1 2

Rank - Mem more

weight than Time

3 1 2 4 3 5 2 1

We gave two sets of inputs to the recommendation system optimization solver
(TOPSIS), set-I is Columns {2, 3 and 4} and set-II is Columns {5 − 10}. Set-
I give estimates of each of the operations based on the computation of basic
primitive operations. Using this the optimizer gave SEAL library as the optimal
solution for matrix multiplication. For set-II, if time and memory consumption
are given same weightage by the user, the optimizer gives SEAL-2 as the optimal
solution, with HEAAN 2 as the second preference and SEAL as third. However,
if memory is given higher weightage, then optimizer returns HEAAN-2 as the
optimal solution, SEAL-2 and SEAL as second and third preference respectively.

Table 9. Analysis for Linear Regression for 150×4, ∗includes memory for keys, tempo-
rary storage etc. logN for SEAL is 8192 and HEAAN is 2048 as explained in Sect. 4.4

Operation Calculated estimates Practical

SEAL HEAAN SEAL HEAAN

Add (millisecs) 2 0.88 2 0.88

Mul (millisecs) 62.8 470 62.8 470

Time - Linear Regression - 150 × 4
dataset (secs)

2 1.8 10 7.7

Memory per ciphertext (KB) 64 524 64 524

Memory for LR (MB) 151 0.01 921∗ 0.469∗

Rank 2 1 2 1

We gave two sets of inputs to the recommendation system optimization solver
(TOPSIS), set-I Columns {2 and 3} and set-II Columns {4 and 5}. The optimizer
gives HEAAN as the best solution for both the sets.
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6 Conclusion

Privacy is a growing concern, especially when it comes to who is processing our
data. FHE seems to be the most promising solution to this problem. In this
regard, we have considered three prominent libraries for machine learning over
encrypted data namely HElib SEAL and HEAAN and compared them for various
usecases to demonstrate the usability of each of these libraries for specific sce-
narios. We proposed a novel framework for a recommendation system as a multi
objective multi constraint optimization problem, along with a simpler version of
it as a single objective multi constraint optimization problem. We supported our
formulation with calculated estimates and actual computation times for matrix
multiplication and linear regression and solving single objective multi constraint
optimization using TOPSIS optimizer. The proposed recommendation system
can be used in FHE compilers to facilitate optimal implementation of PPML
applications. As part of our future work, we will be continuously evaluating
more computations using our framework.

Acknowledgement. We would like to thank the anonymous reviewers for their valu-
able feedback and comments on improving this paper.

Appendix

In this section, we describe the data movement in slots in packed linear regression
algorithm.

Packed Linear Regression

Input matrix X is encrypted in a single ciphertext where m × n < N/2. The
model values w are encoded and encrypted in a single ciphertext by duplicating
the values m times.

Xm×n =

⎡

⎢
⎢
⎢
⎢
⎣

x11 . . . x1n

x21 . . . x2n

. . . . .

. . . . .
xm1 . . . xmn

⎤

⎥
⎥
⎥
⎥
⎦

m×n

wn×1 =

⎡

⎢
⎢
⎢
⎢
⎣

w1

w2

.

.
wn

⎤

⎥
⎥
⎥
⎥
⎦

n×1

Enc[Xm×n] = Enc

⎡

⎢
⎢
⎢
⎢
⎣

x11 . . . x1n

x21 . . . x2n

. . . . .

. . . . .
xm1 . . . xmn

⎤

⎥
⎥
⎥
⎥
⎦

m×n

Enc[wn×1] = Enc

⎡

⎢
⎢
⎢
⎢
⎣

w1 w2 . . . wn

w1 w2 . . . wn

.

.
w1 w2 . . . wn

⎤

⎥
⎥
⎥
⎥
⎦

m×n

The subscripts are written only to provide clarity of how values in slots need to
be mapped for operations to be done correctly.
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The output matrix is encoded by placing each yi value at index multiples
of n.

Ym×1 =

⎡

⎢
⎢
⎢
⎢
⎣

y1
y2
.
.

ym

⎤

⎥
⎥
⎥
⎥
⎦

m×1

=⇒ Enc[Ym×1] = Enc

⎡

⎢
⎢
⎢
⎢
⎣

y1 0 . . . 0
y2 0 . . . 0
.
.

ym 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎦

m×n

Now we begin the computation of following LR algorithm:

θupdate = θ − α[Y − wX]XT

– Computing wX. Multiplying two ciphertexts X and w multiplies values in
each slots respectively. To complete the multiplication, rotate the slots n − 1
times and add to the original result.

To remove the garbage values in other slots, multiply by 1 matrix defined as
follows:

Enc[wX] = Enc

⎡
⎢⎢⎢⎢⎣

x1 × W ∗ . . . ∗
x2 × W ∗ . . . ∗

.

.

xm × W ∗ . . . ∗

⎤
⎥⎥⎥⎥⎦

m×n

× Enc

⎡
⎢⎢⎢⎢⎣

1 0 . . . 0

1 0 . . . 0

.

.

1 0 . . . 0

⎤
⎥⎥⎥⎥⎦

m×n

= Enc

⎡
⎢⎢⎢⎢⎣

x1 × W 0 . . . 0

x2 × W 0 . . . 0

.

.

xm × W 0 . . . 0

⎤
⎥⎥⎥⎥⎦

m×n

– Compute Y − wX. Since the yi values are in their respective slots, we can
proceed with subtraction operation.

The result of the subtraction is as follows:

Enc

⎡

⎢
⎢
⎢
⎢
⎣

A1 0 . . . 0
A2 0 . . . 0
.
.

Am 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎦

m×n

where Ai = yi − (xi × W )

– Compute [Y − wX] × XT . As we can see, there is a mismatch in the values
in each slots of Y − wX and XT and we cannot simply proceed with the
multiplication. Now we have to move the data between the slots to get the
following transformation:

Enc

⎡

⎢
⎢
⎢
⎢
⎣

A1 A2 . . . Am

A1 A2 . . . Am

.

.
A1 A2 . . . Am

⎤

⎥
⎥
⎥
⎥
⎦

n×m

This is done using the following steps which takes much computation time.
Let B=(Y-wX), sum ← Enc(0), A ← Enc(0). Let set(i) denote function
which sets ith slot of vector as 1 and remaining as 0 and gets an encryption
of this vector
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for i ← 0 to m-1
Add(sum, mul(rotate − left(B, i*n-i),set(i)))

for i ← 1 to n-1
Add(A, rotate-right(sum, i*m))

set(i) is used to get the Ai value and then it is rotated to the appropriate
location and added to sum. This completes getting all m values together. The
we again rotate these values and add n− 1 times to complete the transfor-
mation. Efficient on-the fly packing will be useful to solve this issue of data
movement in between operations.

Enc

⎡

⎢
⎢
⎢
⎢
⎣

A1 × x11 A2 × x21 . . . Am × xm1

A1 × x12 A2 × x22 . . . Am × xm2

.

.
A1 × x1n A2 × x2n . . . Am × xmn

⎤

⎥
⎥
⎥
⎥
⎦

n×m

Now we perform rotation of matrix to complete multiplication and multiply
with 1 matrix to get:

Enc

⎡

⎢
⎢
⎢
⎢
⎣

A1 × X1 0 . . . 0
A2 × X2 0 . . . 0

. 0 . . . 0

. 0 . . . 0
An × Xn 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎦

n×m

where AiXi =
m∑

j=1

Ajxjk for k ∈ [1, n]

– Multiply [Y − wX]XT with α, the learning rate Now the values of gradient
have to be mapped to respective slots for theta updation as follows:

θupdate = Enc

⎡

⎢
⎢
⎢
⎢
⎣

w1 − A1X1α w2 − A2X2α . . . wn − AnXnα
w1 − A1X1α w2 − A2X2α . . . wn − AnXnα

. . . . . .

. . . . . .
w1 − A1X1α w2 − A2X2α . . . wn − AnXnα

⎤

⎥
⎥
⎥
⎥
⎦

m×n

The algorithm is repeated until θ converges.
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Abstract. The Domain Name System (DNS) is an essential component of the
internet infrastructure, used to translates domain names into IP addresses. Threat
actors often abuse this system by registering and taking over thousands of Internet
domains every day. These serve to launch various types of cyber-attacks, such as
spam, phishing, botnets, and drive-by downloads. Currently, themain countermea-
sure addressing such threat is reactive blacklisting. Since cyber-attacks are mainly
performed for short periods, reactive methods are usually too late and hence inef-
fective. As a result, new approaches to early identification of malicious websites
are needed. In the recent decade, many novel papers were published offering sys-
tems to calculate domain reputation for domains that are not listed in common
black-lists. This research implements three such approaches and evaluates their
effectiveness in detecting malicious phishing domains. The social network analy-
sis technique performed best, as it achieved a 60.71% detection rate with a false
positive rate of only 0.35%.

Keywords: Cyber security · DNS · Reputation system · Attack · Phishing ·
Social network analysis · Privacy-preserving security

1 Introduction

In current days, information security is an important aspect of any organization’s busi-
ness. Finding a cyber-attack in an enterprise network is often analogous to finding the
needle in the haystack. Analysis of DNS traffic can be helpful for such quests, as it can
provide high quality, cheap and fast attack detection.

Information security usually comes with three price tags: network performance, pri-
vacy violation, and false-positive alerts. Network performance impact is caused by deep
traffic inspection. Privacy violation is caused by the need to decrypt private encrypted
traffic for inspection. False-positive alerts are due to the variance of each network, that
challenges any system’s ability to generalize. Attack discovery by analysis ofDNS traffic
can reduce the price tag of all three aspects. DNS is a very simple plaintext protocol con-
taining short messages, usually over UDP protocol. Hence its analysis is simple and fast.
On the other hand, its true positive detection would always be inferior to the detection
that can be achieved by full packet inspection.
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The research presented here covers three major techniques of discovering cyber-
attacks via analysis of DNS: passive DNS analysis, domain registration WHOIS record
analysis, and predictive domain names blacklisting. To cover as much ground as possi-
ble, we employed three approaches that have already appeared in the literature: social
network analysis, machine learning, and Markov chain model. These three approaches
were implemented in a single system and were compared in an extensive experimental
evaluation.

The rest of this paper is structured as follows. Section 2 presents the background and
discusses the related work. Sections 3, 4, and 5 describe the experimental evaluation,
where Sect. 3 describes the datasets used, Sect. 4 discusses in detail the implemented
algorithms, and Sect. 5 presents the results of the experiments. Section 6 concludes the
paper and outlines future work.

2 Background and Related Work

This section is divided into three subsections, each surveys a different approach for
detecting malicious internet domains.

2.1 Machine Learning

Machine Learning is the science of getting a computer to learn and act like humans do
and improve their learning over time in an autonomous fashion, by feeding it data and
information in the form of observations and real-world interactions. Machine learning
algorithms are commonly divided into supervised learning and unsupervised learning.
Supervised learning is algorithms that are useful when there is a large dataset with target
labels. While unsupervised learning is useful when there are no labels of a given dataset.

Passive DNS (pDNS) [1] is a collection system that harvests DNS responses. The
harvesting is deployed between a DNS server and a higher hierarchy DNS server. pDNS
approach advantage is that it keeps the user data private, since there is no visibility to
which host had issued each query. The drawback is a lack of ability to correlate different
suspicious activity to a specific host. [2, 3] describe systems, which are respectively
named EXPOSURE and Notos. Both systems train a supervised machine learning algo-
rithmover a dataset of knownbenign andmalicious domains extracted fromapDNS feed.
The trained models are used to compute a reputation score for newly observed domains
to indicate whether the newly observed domains are benign or malicious. EXPOSURE
features are mostly based on the anomalous DNS behavior of cyber-attacks. An empir-
ical reexamination of global DNS behavior [4] published two years after EXPOSURE
paper was published, shows that most of the EXPOSURE major features have become
obsolete. Notos uses features mostly based on reuse of the threat actor infrastructures i.e.
network subnets. Unlike EXPOSURE, Notos concept leverage threat actor infrastructure
reuse is still valid. A major drawback of the Notos system is the need for a vast pDNS
repository available with constant classifier retraining.

WHOIS data describes the registration of the domain such as registration date, last
modified date, expiration date, registrant contact information, registrar contact informa-
tion and name server domain. Once the domain has been registered, the relevant registry
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is the owner of the WHOIS record. The advantage of the WHOIS-based reputation app-
roach is that it could be the first line of defense in detecting new malicious domains. It
also enables following threat actors that are reusing registrant strings. Its drawback is that
WHOIS information is often anonymized or only partly available, as each registry infor-
mation is not standard for WHOIS record completeness. PREDATOR [5] is a system
aimed to achieve early detection of malicious domains by using only WHOIS records
as input. The paper referenced below describes the process for feature engineering. It
results in 22 features that help distinguish abusive domain registration behavior char-
acteristics from legitimate registration behavior, 16 of which have not been identified
or analyzed in previous work. These features are fed into a state-of-the-art supervised
learning algorithm.

2.2 Social Network Analysis

Social network analysis (SNA) is the process of investigating social structures using
networks and graph theory. It characterizes networked structures in terms of nodes and
edges of a graph. Social network analysis has also been applied to understanding behav-
ior by individuals, organizations, and relationships betweenwebsites. Hyperlink analysis
can be used to analyze the connections between websites or web pages to examine how
information flows as individuals navigate the web. PageRank algorithm [6] which per-
forms social network analysis is used by Google to decide which search results return
for their users’ search query. In the PageRank algorithm any reference, e.g. hyperlink
to web pages, are edges. Node importance is increased by two factors: the in-degree
and the importance of the referred nodes. [7] suggested a PageRank approach to detect
Phishing websites. A topology-based flowmodel for computing domain reputation [8] is
a reputation system based on the pDNS dataset. It relies on the Domain-IP relationships
which were proven to be useful for calculating a domain reputation score by the Notos
system [3]. However, instead of using a machine learning classifier, it uses an interest-
ing approach based on a flow algorithm, commonly used for computing trust in social
networks and virtual communities. The goal of the flow algorithm is to assign domains
with reputation scores given an initial list of domains with a known reputation, benign
or malicious. Our social analysis implementation is based on this approach.

2.3 Markov Chain

AMarkov chain is a stochastic model describing a sequence of possible events in which
the probability of each event depends only on the state attained in the previous event.
Each possible transition between two states can be taken with a transition probability.
Proactive Discovery of Phishing Related Domain Names [9] describes a system that
generates a blacklist of domains by using a Markov chain model and relevant lexical
features extracted from a semantic splitter. Domain-specific knowledge is added from
semantic tools. Themodel leverages the fact that threat actor commonly reuses the string
pattern used when registering domains for the purpose of a Phishing campaign.

In the experimental evaluation presented below, we compare and evaluate the above
three approaches.
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3 Experimental Evaluation – The Dataset

This section describes the dataset collection and enrichment made for the domain
classifiers’ training and testing.

3.1 Data Collection

Data for this project was gathered from 4 free origins: Cisco Umbrella 1 Million pop-
ular DNS records and Alexa top 1 Million popular sites were used for benign domain
collection, OpenPhish and PhishTank were used for malicious domains collection. All
the mentioned origins publish a CSV file which is updated at least daily. Alexa dataset is
designed to be an estimate of a website’s popularity. As of May 2018, Alexa claims the
ranking is calculated from a combination of daily visitors and pageviews on a website
over a 3-month period. Cisco Umbrella, formally known as OpenDNS, the dataset is
based on the Umbrella global network of more than 100 Billion DNS queries per day,
across 65 million unique active users, in more than 165 countries. Although the data
source is quite different from Alexa’s, it’s arguably considered to be more accurate as
it’s not based on only HTTP requests from users with browser additions.

Figure 1 shows the clear difference between the feeds. For example, while Netflix
owns 10 out of the top 15 domains in the Cisco Umbrella ranking, the first entry of a
Netflix domain in Alexa ranking on the same day is at the rank of 22. Another example
is Microsoft’s Windows updates domains that have 3 out of the top 15 domains in the
Cisco Umbrella ranking but get much lower ranks on the Alexa ranking.

Fig. 1. Top 15 rows of Alexa ranking and Cisco Umbrella ranking feeds respectively on both
snapshots were taken on 17-Dec-2019.

OpenPhish and PhiskTank dataset are based on community trusted members who
share their threat intelligenceof phishingwebsites. It’s interesting toknow that PhishTank
was founded byOpenDNS as the community which several years later released the Cisco
Umbrella feed as well. Unlike benign domain sources, the malicious domain sources
contain URLs and not domains. Therefore, before adding them to the dataset, some
parsing should be made to extract the domains. Table 1 summarizes the data sources’
characteristics.
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Table 1. Summary of the data sources used on this project.

Attribute Cisco Umbrella
(OpenDNS)

Alexa OpenPhish Phish Tank

Classification Benign Benign Malicious Malicious

Update Daily Daily Hourly Hourly

Records Type Domain Domain URL URL

License Free Free Free for partial
content

Free

Source DNS queries Web page views Community Community

Further Context Popularity rank Popularity rank Phishing
objective

Phishing objective

Established 2016 1996 2014 2006

3.2 Data Enrichment

The data collected from the sources described in the previous section is enriched with
DNS “A” record, DNS “NS” record, Autonomous System (AS) data, and parsed for
processing convenience. DNS “A” record is the IPv4 address of the queried domain,
DNS “NS” record is the nameserver of the queried domain. AS is the upper hierarchy of
the IP address. an example of an enriched record is shown in Table 2. The record after
enrichment contains the following fields:

– domain – the input domain.
– timestamp – the timestamp if the first time the data collection encountered the domain.
– label – ‘0’ if the domain is benign, ‘1’ if the domain is malicious.
– base domain – the domain as it appears on the whois registration, for example,
edition.cnn.com base domain is cnn.com.

– domain name – the base domain name without the public suffix, for example,
edition.cnn.com domain name is cnn.

– Domain IP – the current domain’s DNS “A” record, IP address of the input domain.
– AS number – Autonomous System (AS) number of the domain’s IP address.
– AS subnet – the matching subnet of the IP address’s Autonomous System Number
(ASN).

– AS name – the official name of the ASN owner of the domain IP address.
– Nameserver – the current base domain DNS “NS” record, nameserver of the base
domain.

– NS base domain – the base domain of the nameserver.
– NS domain IP – the current domain’s DNS “A” record, IP address of the nameserver.
– NS AS number – ASN of the nameserver’s IP address.
– NS AS subnet – the matching subnet of the nameserver’s IP address ASN.
– NS AS name – the official name of the nameserver’s IP address ASN owner.

The use of the above datasets by the three algorithms will be explained next.



224 E. Paz and E. Gudes

Table 2. The enriched record of edition.cnn.com

Attribute Value

domain edition.cnn.com

timestamp 2020-01-13T19:36:02.817160

label 0

base domain cnn.com

domain name cnn

domain IP 151.101.65.67

AS number 54113

AS subnet 151.101.64.0/22

AS name FASTLY - Fastly US

nameserver ns-1630.awsdns-ll.co.uk

NS base domain awsdns-ll.co.uk

NS domain IP 205.251.198.94

NS AS number 16509

NS AS subnet 205.251.198.0/24

4 Experimental Evaluation – The Implemented Classifiers

This section describes the three algorithms used in the domain classifier models
implementation.

4.1 Machine Learning

Themachine learning classifier implemented for the experiment is based on the PREDA-
TOR system [5]. That paper describes 22 types of features used by. These features are
divided into three groups: domain profile features, registration history features, and batch
correlation features. Unfortunately, the data on registration history features and batch
correlation features is not publicly available. Therefore, we focus on domain profile
features only. Table 3 shows the PREDATOR feature importance. From the table, we
can see that the focus on domain profile features is reasonable since the top 6 features
out of the 22 and the top 7 out of the top 8 are domain profile features.

The features we selected to implement in our research are:

– Authoritative nameservers (ranked #1), to increase the detection rate the base domain
of the nameserver was used the feature.

– IP addresses of nameservers (ranked #3)
– ASN of nameserver IP addresses (ranked #5)

The project doesn’t contain the following features that were presented in PREDA-
TOR:
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– Trigrams in the domain name (ranked #2) since it causes a massive increase in the
number of features and led the classifier to be slow, heavy and tend for overfitting.

– Registrar (ranked #4), this feature can be extracted only from a premium paid feed.
Which conflicts with one of the research’s secondary goals to the classifiers to be
based on free and open repositories only.

– Daily hour of registration & weekday of registration (ranked #6 and #8) since this
data is simply not publicly available in any form.

The selected features are categorial, therefore they are translated into binary features
since binary features are more common for training Machine Learning models. Table 4
shows an example of categorical features the model decodes into binary features. (Since

Table 3. Ranking of feature importance in PREDATOR [3] (D for domain profile category, R for
registration history category, and B for batch correlation category).

Rank Category Feature Score ratio

1 D Authoritative nameservers 100.00%

2 D Trigrams in domain name 64.88%

3 D IP addresses of nameservers 62.98%

4 D Registrar 61.28%

5 D ASes of nameserver IP addresses 30.80%

6 D Daily hour of registration 30.30%

7 B Name cohesiveness 28.98%

8 D Weekday of registration 22.58%

9 R Dormancy period for re-registration 20.58%

10 R Re-registration from same registrar 19.5.%

11 R Life cycle 18.55%

12 D Edit distances to known-bad domains 17.72%

13 R Previous registrar 16.50%

14 B Brand-new proportion 14.60%

15 B Retread proportion 13.71%

16 B Drop-catch proportion 12.90%

17 D Containing digits 11.25%

18 D Name length 10.71%

19 D Ratio of the longest English word 9.60%

20 B Probability of batch size 8.66%

21 D Containing “-” 80.2%

22 D Length of registration period 3.34%
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many of the values of the features are repeating many times, the binary representation
is not so sparse and not very space consuming.)

For the 18 records shown in Table 4, there is a limit of 18 * 3 = 54 decode features.
Table 5 continues the example in Table 4. It shows the decoding result which ended with
11 “NS Base Domain” features, 14 “NS AS Subnet” features, and 13 “NS AS Name”
features. Total of 38 features. The greater the dataset, the lower is the ratio between
the maximal number of decoded features and the resulted amount. That is due to the
repeatedness of the features.

For the phishing domain paypalaccounttologinaccountsummarmay.com the feature
vector would be “ispvds.com”, “94.250.248.0/23”, and “THEFIRST-AS RU” set to 1.
The other features would be set to 0.

Since this research didn’t focus on machine learning classifiers optimization, we
have tested two well-known classifiers with their out-of-the-box settings. The classifiers
are Logistic Regression and XGBoost. when the latter was state-of-the-art when we
started the experiments.

4.2 Social Network Analysis

This classifier was inspired by the Flow Model of [8]. The Flow Model relies on the
Domain-IP relationships which were proven to be useful for calculating domain rep-
utation scores by the Notos system [2]. However, instead of using a machine learning
classifier, it uses an interesting approach based on social network analysis (SNA) algo-
rithm, commonly used for computing trust in social networks and virtual communities.
The main idea of [8] is to use Reputation as an asset which flows via the edges of the
graph, wherein each iteration, for each node, the reputation from its neighboring nodes is
aggregated into the current node and is normalized into a value between 0 and 1. Unlike
the original paper, we found it to be more useful to work on a graph data structure than
on an adjacency matrix. That is because an adjacency matrix is less intuitive and less
efficient from a performance point-of-view. Another difference from the original paper
is the entities we used on the graph. We leverage all the enriched data described in the
“Data Enrichment” section. Adding the “NS” DNS records and ASN data, while the
original paper used only “A” records. This results with differences in the meaning of
edges as is explained next.

Figure 2 shows the Python function implementation involved in the training phase
which constructs the graph. “train” is the model interface function. For every record in
the given input dataset, it calls “_append_row_to_graph”which append a single enriched
domain record to the graph. Notice that the record contains the ground truth label as well.
Other than the label domain, 0 for benign and 1 for malicious, all the of the other nodes
get the initial value of 0.5. Lines 7–15 are adding the nodes to the graph, lines 17–25 are
adding the edges between the nodes that were previously added. This means that edges
represent different types of connections, not only domain-IP connections such as IP-AS
domain-Subnet, AS name-AS number and more as listed in Fig. 2. INITIAIL_VALUE
is the default value for the non-labeled nodes. In the experiments described in Sect. 4,
the INITIAIL_VALUE was set to 0.5.

Figure 3 shows the visualization of a populated graph. When we add the unlabeled
enriched node “edition.cnn.com”, additional nodes and edges are created: green nodes
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Table 5. Decoded features for the records of Table 4.

NS base domain NS AS subnet NS AS name

akam.net 104.155.0.0/19 AKAMAI-ASN2 US

cloudflare.com 119.28.48.0/23 CHINANET-IDC-GD China Telecom (Group) CN

dendrite.network 156.154.65.0/24 CHINANET-SH-AP China Telecom (Group) CN

dnspod.com 173.245.59.0/24 CLOUDFLARENET-Cloudflare Inc. US

dynect.net 180.160.0.0/13 DYNDNS-Oracle Corporation US

dynu.com 204.13.250.0/24 GODADDY DE

freenom.com 208.78.70.0/24 GOOGLE-Google LLC US

ispvds.com 208.91.198.0/23 LINODE-AP Linode LLC US

iwantmyname.net 45.79.208.0/20 NICEIT NL

speedhost.in 45.9.148.0/24 PUBLIC-DMAIN-REGISTRY-PDR US

ultradns.net 59.36.112.0/20 TENCENT-NET-AP-CN Tencent Building Kejizhongyi
Avenue CN

83.169.54.0/23 THEFIRST-AS RU

94.250.248.0/23 ULTRADNS-NeuStar Inc. US

are labeled as benign, red are labeled as malicious and brown nodes are unlabeled. As
expected, most of the neighbors of “edition.cnn.com” are benign or unlabeled. The only
red node in the graph is a subdomain of a freemium hosting service. Freemium hosting is
a service that offers free basic web services deployment and a paid fully-suite package.
In this case, codeanywhere.com is a freemium service that was abused for malicious
purposes.

After all enriched labeled domain records were appended to the graph, we can start
the training phase. To train the graph all we need is to run several iterations of updating
every node in the graph using the function described in Algorithm 1. This process
propagates the reputation score of every node to its neighbors. Notice that even nodes
that are initially labeled as benign could get a malicious score and vice versa. This is
by design since it’s known that ground truth in cyber-security is a real tough problem
and often domains are falsely labeled as benign or malicious. Our analysis shows that
5 iterations are enough, [8] reached a similar conclusion on their implementation. In
each iteration, every node score is set to be the average between its current score and the
average score of its neighbors as described on Algorithm 1.

After building the network graph it can be used for calculating unlabeled domain
reputation by following the below steps:

1. Enriched the domain as described in Sect. 3.2.
2. Append the enriched domain record to the graph as described in Fig. 2.
3. Propagate the reputation score of every node to its neighbors as described above.
4. Return the analyzed domain’s current reputation score.
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Fig. 2. Append enriched domain record to the graph function

4.3 Markov Chain

The Markov chain classifier implemented for the experiment used the name decom-
position using the Compound-Word-Splitter python package. After the domain name
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Fig. 3. Ego graph with radius 3 of edition.cnn.com (Color figure online)

decomposition phase words statistics are gathered. Figure 4 shows an example of words
statistics gathering for the word “free” and the word “pay”.

In the case of the word “free”, the next transition in the Markov chain would be any
one of the words in the “transitions” counter. Since all the followingwords have the same
amount of appearances following the word “free”, they would get the same probability
for the next phase: 1/11 = 0.090909. In the case of the word “pay,” the next transition
in the Markov chain would be any one of the words in the “transitions” counter. Since
all the following words but the word “problems” have the same amount of appearances
following the word “free”, they would get the same probability for the next phase: 1/13
= 0.076923 and the word “problems” which appeared twice, it’s probability would be
2/13 = 0.153846.

The decision to end the domain name, i.e. not to continue with another transition, is
made using the “sentence_length” field in the “word statistics” data structure as shown
in Fig. 4, lines 9–14 left and lines 8–13 right. The stop criterion is based on the sentence
words length statistics of the last word in the generated domain name using the Markov
chain, we have created a predictive blacklist of domain names similarly as described on
[8]. For increased coverage the public suffix is not apart of our model, e.g. we assume
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Fig. 4. Word statistics for the words “free” and “pay” respectively

the model predicts the domain name is malicious for all public suffixes. Table 6 shows
an example of domains generated by the Markov model.

5 Experimental Evaluation – The Results

This section covers the process of the experiments: data cleaning, threshold selection,
and classifier result evaluation.

5.1 Data Cleaning

In the early stages of the experiment, an anomaly popped up. Many malicious domains
were hosted as a subdomain of popular hosting websites such as 000webhostapp.com,
azurewebsites.net, duckdns.org, no-ip.com, no-ip.org, wixsite.com. The all the men-
tioned domain serves a website that offers a freemium hosting platform. Threat actor
takes advantage of these freemium services for their malicious purpose. Consider the
enriched domain record in Table 7. The malicious domain is hosted on a legit domain
infrastructure, the malicious domain is hosted on a legit domain infrastructure, i.e. the
webserver IP address, and the domain nameserver are not strongly tied to the attacker.
In order to avoid causing confusion to the classifiers, malicious domains hosted on the
mentioned hosting providers were removed from the train and test set. It resulted in a
32% reduction in the dataset. That is not a great loss since these domains could not
be analyzed by the classifier developed in this project anyway since the top domain is
always benign. Therefore, we have decided the classifier should not train and test on
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Table 6. Domains predicted to be malicious by the Markov model

Domain name Words

freedompowerglobalkarma freedom;power;global;karma

attorneyusahastudiolife attorney;us;aha;studio;life

pastoronlinebanking pastor;online;banking

aidecipakistantrips aide;ci;pakistan;trips

frostemcampaigns frost;em;campaigns

carpetsbemobilevices carpets;be;mobile;vices

bankonlinevideos bank;online;videos

bankonlinecentertaipei bank;online;center;taipei

freeksbargranola free;ks.bar;granola

freesignals free;signals

finddeviceintpay find;device;int;pay

paypaylogin pay;pay;login

paymentpartner payment;partner

applespayinfo apples;pay;info;

paceappdomain pace;app;domain

these hosting domain records. These kinds of malicious websites can be detected by
other approaches that are not discussed in this paper such as webpage visual analysis
and webpage source code analysis.

Table 7. Malicious website hosted on legit domain infrastructure

Domain AS Subnet AS Name NS Base Domain

peringatanfacebook5.wixsite.com 185.230.62.0/24 WIS-COM IL dynect.net

france-apple-store.azurewebsites.net 168.61.0.0/16 MICROSOFT-COPR-MSN-AS-BLOCK US azuredns-prd.info

microsoft-web-gh.000webhostapp.com 145.14.144.0/23 AWEX US 000webhost.com

chasecure.duckdns.org 192.169.69.0/24 WOW-Wowrack.com US duckdns.org

5.2 Data Separation

To decide which threshold every classifier should have We have visualized all the
classifiers’ verdicts into the charts seen in Fig. 5.

The classifiers’ threshold selection is an important part of the experiment. The opti-
mal threshold is the one that conducts a perfect separation between the classes. In our
case the separation between benign and malicious domains. Since in real life the optimal
threshold is not perfect, we’ll select a threshold that maximizes true positives and at cost
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Fig. 5. Classification data separation charts. Blue represents benign sample probabilities, red are
malicious sample probabilities, dashed green line is the selected threshold. (Color figure online)

of minimal false positives. In Fig. 5 we can see the places the red line is high then the
blue line. For the Markov model, the threshold is a Boolean threshold, but unfortunately
in the experiment, it had more false positives in any threshold. The selected thresholds
are listed in Table 8.

Table 8. The selected threshold for the classifiers

Model Threshold

SNA 0.67

XGBoost 0.93

Logistic Regression 0.95

Markov 1

5.3 Evaluation

After the classifiers’ decision threshold was set its possible to translate the classifiers’
probabilities results into verdicts. The evaluation was made on data collected between
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17-Dec-2019 and 23-Dec-2019. In that time period, 20,640 labeled domain samples
were collected. 18,148 were labeled as benign and 2,222 were labeled as malicious. The
test set was collected from the origins described in Sect. 3.1. Tables 9 show the clear
advantage of the SNA classifier which produced a detection rate of 83.89% at the price
of 1.09% false-positive rate.

Table 9. Confusion matrixes of the Logistic Regression, XGBoost, and SNA classifiers
respectively

Class Benign Malicious Benign Malicious Benign Malicious

Benign 98.74% 12.60% 99.74% 0.26% 98.91% 1.09%

Malicious 82.49% 17.51% 65.00% 5.00% 16.11% 83.89%

The ROC curve shown in Fig. 6, confirms the SNA model out-performed the other
classifiers on any given threshold. You can see its line always above the Logistic
Regression and XGBoost classifier. It’s also interesting to see that the simplistic Logis-
tic Regression algorithm outperformed the state-of-the-art machine learning algorithm
XGBoost.

Fig. 6. ROC Curve using the thresholds shown in Table 6.

The PREDATOR [5] system baseline its evaluation of on a given FPR of 0.35%. For
the results to be comparable with each other, we did the same. The experiment results
are shown in Table 10. The results show that the SNA model reaches a similar detection
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rate to PREDATOR, while the other classifiers performed quite poorly. That is without
optimization tuning of the training and testing window size as is done in the PREDATOR
paper. In the experiment the SNA model was rebuilt every 2 h, that is possible since the
graph construction takes less than a minute. PREDATOR paper doesn’t specify how
much time it takes to train the model, but I guess it’s much more than a minute.

Table 10. Classifier detection rate under a 0.35% false-positive rate

Model TPR

PREDATOR 70.00%

SNA 60.71%

XGBoost 5.40%

Logistic Regression 7.56%

Markov 0.00%

6 Conclusion

“Average uptime of phishing attacks is around 2 days and the median uptime is only
12 h. Due to this very short lifetime, reactive blacklisting is too slow to effectively
protect users from phishing” [9]. This quote conveys the importance of this work. The
phishing use-case is extraordinary from that perspective that it lives for a very short time.
Therefore, a proactive approach is a clear requirement for detected threats.

The described experiments demonstrate it’s not practical to guess the domain names
to be registered. A more realistic approach would be to consistently learn the internet
domains’ neighborhood e.g. IP, network, ASN, nameservers, etc. while doing so, con-
stantly calculating each node’s reputation. The SNA approach was proven to be very
successful reaching a detection rate of 83.89% under a 1.09% false-positive rate and
60.71% under a 0.35% false-positive rate.

Despite the fact, it reached a lower detection rate then PREDATOR [5] 70%detection
rate given the same FPR it’s a big achievement. That is because of the PREDATOR
leverage propriety dataset which is very expensive and takes plenty of resources the
manage. When all the classifiers developed in this project all rely only on open source
data sources, and all the setup and software components described in Sect. 5 ran on a
standard laptop. Unlike the SNA model, PREDATOR had many optimizations on the
training window as shown in Table 8, where the true positive vary in the range of 58%–
70%. Moreover, the SNA model obtains even better results than PREDATOR when
considering high acceptable FPR.

A ground for future work can be to optimize the project models or create a meta-
classifier that would combine the machine learning classifiers with the SNA classifier.
We assume that any of the two would push the results higher than 70%.
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Abstract. The goal of this paper is to present an efficient realistic met-
ric for evaluating cache scheduling algorithms in multi-user multi-cache
environments. In a previous work, the requests sequence was set deliber-
ately by an opponent (offline optimal) algorithm in an extremely unre-
alistic way, leading to an unlimited competitive ratio and to extremely
unreasonable and unrealistic cache management strategies. In this paper,
we propose to analyze the performance of cache management in a typical
scenario, i.e., we consider all possibilities with their (realistic) distribu-
tion. In other words, we analyze the average case and not the worst case
of scheduling scenarios. In addition, we present an efficient, according
to our novel average case analysis, online heuristic algorithm for cache
scheduling. The algorithm is based on machine-learning concepts, it is
flexible and easy to implement.
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1 Introduction

A multi-user concurrent cache system should satisfy users’ memory page
requests. Finding an efficient cache management for these systems is of high inter-
est and importance. A cache scheduling algorithm decides, upon each request
that results in a page fault (when the cache is full), which page to evict from
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the cache in order to insert the newly requested page. The algorithm should
minimize the number of page faults.

Offline paging strategies may align the demand periods of (known to the
offline) future requests. An online strategy does not know the exact sequence of
future requests. Thus, an optimal offline strategy has a significant advantage over
an online strategy. The sole purpose of considering the offline case is to form a
basis for comparison with the online scheduling. For example, if the competitive
ratio is 1, then the online algorithm is obviously optimal, as it is not affected
adversely by the uncertainty of future requests. Of course, one cannot hope for
such a ratio for an online algorithm. Previous works show that, in multi-core
paging, the competitive ratio of traditional algorithms in the scope of multi-
cache systems, such as LRU, FIFO, CLOCK, and FWF, may be arbitrarily
large.

Both [1] and [2] show that traditional online paging algorithms are non-
competitive in a multi-core model. They do this by defining an extremely unre-
alistic request sequence chosen by an adversary, which leads to unreasonable
offline cache management strategies and an unbounded competitive ratio. Thus,
apparently, one cannot compare the real efficiency of (the offline and) the online
algorithm. In this paper we propose an alternative version of near-optimal offline
algorithm.

2 Related Work

Cache performance has been extensively studied in multi-core architectures but
less so in multi-server architectures. Some proposed techniques are able to sched-
ule requests [1] so that the paging strategy can choose to serve requests of some
sequences and delay others. Thus, the order in which requests are served is algo-
rithm dependent. Lopez-Ortiz and Salinger [2] present another technique that
discards this possibility. Given a request, the algorithm must serve the request
without delay. The algorithm presented in [2] is limited by a two-level non-
distributed memory system. Awerbuch et al. [3] present a distributed paging
algorithm for more general networks. Although the algorithm in [3] is applicable
to distributed systems, it serves requests in a sequential manner: at any time
a processor p may invoke a single request. In our model, requests from all the
servers in the system are served simultaneously.

Competitive analysis is a method invented for analyzing online algorithms, in
which the performance of an online algorithm is compared to the performance of
an optimal offline algorithm that can view the sequence of requests in advance.
An algorithm is competitive if its competitive ratio – the ratio between its per-
formance and the offline algorithm’s performance is bounded. The quality of an
online algorithm on each input sequence is measured by comparing its perfor-
mance to that of an optimal offline algorithm, which is, for an online problem,
an unrealizable algorithm that has full knowledge of the future. Competitive
analysis thus falls within the framework of worst-case complexity [4].
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3 System Model Settings

Suppose, in general, that we have servers S1, S2, ..., Sn, and corresponding lists
of possible requests R1, R2, ..., Rn, where Ri = {ri1, ..., rili} is of length li. The
system contains a cache of size K, and a slow memory with access latency time
of t. Denote by R = ∪n

i=1Ri the set of all possible requests. We implicitly assume
that K < |R|, but in practice K is usually much smaller even than each of the
|Ri|’s separately.

A singleton is a subset of size K of R, namely, any of the possible cache con-
figurations. (The term derives from the fact that, in the process of constructing
the full execution tree, we often place several possible cache configurations at a
node, with the intention of resolving only later the identity of the actual config-
uration residing there.) Each of the singleton configurations starts an execution
tree.

When expanding a node consisting of several singletons, we have branches
corresponding to each of these singletons with possible request configurations. In
fact, we cross out some of these branches. Namely, each of the request sequences
yields some number, between 0 and n, of page faults for each of the singletons.
For each request sequence, we leave only those branches yielding a minimal
number of page faults and discard of all others.

For each request sequence, and each singleton with a minimal number fmin

of page faults in the current node, we need to consider those singletons we may
move to. For each singleton, these are the singletons obtained from it by:

i Leaving intact all the requests that are currently in the cache and have been
queried now.

ii Replacing any fmin requests currently in the cache, that have not been queried
now, by the fmin missing requests.

iii Leaving the rest of the requests untouched.

Now we explain how, given a node and a request configuration, we construct
the corresponding child of the node. We go over all singletons in the node. For
each singleton, we find as above the set of singletons we may move to. The child
consists of the union of all these sets of configurations. A node containing one
singleton A is labeled by A, a node containing A and B - by AB, and so forth.

In principle, we need to expand the execution tree so as to deal with all possi-
ble sequences of request configurations. However, there is no point in expanding
a node that has been encountered already. Hence, we expand the tree only until
no more nodes with new content can be generated. We mention in passing that,
even if the request sequence is infinite, this allows us to deal with a finite expan-
sion of the full execution tree. In fact, the number of singletons is

(|R|
K

)
. Hence

the number of distinct node labels we may encounter is at most 2(
|R|
K ). Hence, we

will never have to expand the execution tree beyond depth 2(
|R|
K ). This bound is

probably way above the actual depth we will get, but serves to demonstrate that
the process terminates. When we expand all the nodes, usually some potential
node labels will not appear. Moreover, there may well be pairs of equivalent
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labels, namely, nodes having the same behavior when expanded. When several
labels are found to be equivalent, we may replace any occurrence of one of them
by that of a representative of the group. This tends to shorten the algorithm
a great deal. Our goal is to calculate the expected number of page faults per
group of simultaneously arriving requests. As we consider all possible request
sequences, so that the full execution tree is infinite, we need to define what this
expected number means. Suppose we expand the tree from a singleton A. Denote
by Ai, 0 ≤ i < ∞, the subtree of the full execution tree consisting of all nodes
up to level i. (Thus, for example, A0 = A.) We introduce the following notations:
EA(i) – number of execution paths in Ai.
FA(i) – number of page faults in Ai, i.e., the sum of the numbers of page faults
over all execution paths in the tree.
PA(i) – average number of page faults per execution path in Ai.
RA(i) – average number of page faults per request in Ai.

It will be convenient in our calculations to consider also execution trees start-
ing with nodes containing several singletons. We will use similar notations. For
example, (BC)i will denote the subtree of the full execution tree consisting of
all nodes up to level i, starting with BC, and E(BC)(i) will denote the number
of execution paths in (BC)i.

Out of the four quantities above – EA(i), FA(i), PA(i), RA(i) – only the last
is really interesting for us. In fact, we are interested mostly in the asymptotics
of RA(i) as i → ∞. The average of these asymptotic values over all singletons A
is the baseline (offline bound) we use to calculate the competitive ratio of online
algorithms. To calculate RA(i), it will be convenient to start with the other three
quantities. Moreover, as hinted above, it will be convenient to calculate these
quantities not only for singletons, but for sets of singletons as well.

We start with the number of execution paths EA1A2...Ak
(i), where A1A2...Ak

is any possible cache configuration and i ≥ 0. We construct a system of recur-
rence equations for these quantities as follows. Suppose we want to express
EA1A2...Ak

(i + 1) in terms of similar quantities, related to depth i. To this end,
we need to open the node A1A2...Ak just once for each of the possible combina-
tions of requests. Thus, the node has

∏n
j=1 |Rj | children. Each child B1B2...Bh

of A1A2...Ak contributes EB1B2...Bh
(i) to EA1A2...Ak

(i + 1). We obtain a sys-
tem of homogeneous linear recurrence equations with constant coefficients for
the sequences EA1A2...Ak

(i)∞
i=0, over all possible cache configurations A1A2...Ak.

The initial values EA1A2...Ak
(0) are all 1. Note that all coefficients in the resulting

equations are non-negative, and their sum in each equation is the same, namely∏n
j=1 |Rj |. Thus, the matrix of coefficients is a scalar multiple of a stochastic

matrix, which may facilitate the calculation.
The calculation of the FA1A2...Ak

(i)’s is similar, but the equations are this
time non-homogeneous. That is, FA1A2...Ak

(i+ 1) may be expressed as a sum of
FB1B2...Bh

(i)’s, but we need to add also the number of page faults that are due
to a 1-step expansion of A1A2...Ak. If this number is f , then the expression for
FA1A2...Ak

(i+ 1) contains an additional f · (∏n
j=1 |Rj |)i addend. Notice that the

initial conditions this time are FA1A2...Ak
(0) for all configurations A1A2...Ak.
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Once EA(i) and FA(i) have been calculated, we readily find PA(i) and RA(i):

PA(i) =
FA(i)
EA(i)

, RA(i) =
PA(i)

i
.

Recall that, as the recurrence equations defining EA1A2...Ak
(i) and

FA1A2...Ak
(i) are linear with constant coefficients, it is easy to provide explicit

expressions for them (assuming that one can find the eigenvalues of the matrix of
coefficients, or at least good approximations of these eigenvalues). These expres-
sions are combinations of exponentials (or exponential-polynomials if there are
multiple eigenvalues). Hence their asymptotics is trivial to understand, and so
is that of RA(i).

4 An Optimal Offline Algorithm: Full Execution Tree

In this section, we present a baseline for comparing online algorithms for schedul-
ing multi-user concurrent distributed cache. This baseline is the optimal offline
algorithm. This algorithm manages the cache in such a way that the average
number of faults is minimal. Our first algorithm calculates the average accu-
rately, for an arbitrary given distribution on the space of all request sequences,
as long as this distribution results in an execution tree with a finite number of
nonequivalent nodes. Usually, however, we will reduce the time this calculation
requires by resorting to faster and less accurate algorithms. Our second and third
algorithms will provide such simplifications.

In principle, to calculate #pf for the optimal algorithm, we need to run the
algorithm for all possible request sequences, find the minimal number of page
faults for each sequence, and then calculate the average over all sequences (under
the assumed distribution over the space). This approach has indeed been taken
in [2]. Below, we reduce the time required for the calculation by assigning some
(unknown) number of future page faults to each state. We construct a tree, its
nodes correspond to the possible states of the cache, and its edges correspond
to the various possible requests at each state. Whenever we return to a state
visited earlier, we do not need to continue from this state anymore. We simplify
the calculation further by noticing that various pairs of nodes of the tree are
equivalent.

Example 1: Suppose we have two servers S1, S2, with corresponding sets of
possible requests R1 = {r11, r12}, R2 = {r21, r22}, assumed to be disjoint, a cache
of size K = 3, and access latency time t = 0. The

(
4
3

)
= 4 singletons are

A = {r11, r12, r21}, B = {r11, r12, r22}, C = {r11, r21, r22},D = {r12, r21, r22}.
At each time unit, there are 4 possibilities for the servers’ requests, which we
denote as follows:

1-1 = (r11, r
2
1), 1-2 = (r11, r

2
2), 2-1 = (r12, r

2
1), 2-2 = (r12, r

2
2).
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Fig. 1. A 1-step expansion of an execution tree for each singleton.

In Fig. 1, we depict the 1-step expansions of all possible execution trees
started by singletons. Here, a ‘.’ label to the left of a request signifies that
it yields a page fault.

Fig. 2. A 1-step expansion of an execution tree for each generated pair of singletons.

Figure 2 provides 1-step expansions of the nodes comprising 2 singletons,
obtained in Fig. 1. An ‘x’ means that the corresponding branch is crossed out.

We have expanded all the possible cache configurations. Since all singletons
are equivalent, a two-step execution tree started from any singleton, say from A,
is as in Fig. 3.

It is easy to verify in this case that all singleton nodes are equivalent to each
other, and so are all nodes consisting of a pair of singletons. We will use A as a
representative of the singletons, and AB as a representative pair. For the number
of execution paths, we obtain the recursion:

EA(i + 1) = 2EA(i) + 2EAB(i),
EAB(i + 1) = 2EA(i) + 2EAB(i)
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Fig. 3. A 2-steps expansion of an execution tree.

Along with the initial conditions EA(0) = EAB(0) = 1, this yields:

EA(i) = EAB(i) = 4i, i ≥ 0.

For the number of page faults, the recurrence is:

FA(i + 1) = 2FA(i) + 2FAB(i) + 2 · 4i,
FAB(i + 1) = 2FA(i) + 2FAB(i) + 4i

The initial conditions are FA(0) = FAB(0) = 0. We obtain

FA(i) = (
3
8
i +

1
4
) · 4i, FAB(i) =

3
8
i · 4i, i ≥ 0.

It follows that

PA(i) =
(
3
8
i +

1
4
) · 4i

4i
=

3
8
i +

1
4
, i ≥ 0,

and finally:

RA(i) =
3
8

+
1
4i

−→
i→∞

3
8
. (1)

Thus, the expected #pf for the offline algorithm is 0.375, which is slightly more
than one failure per 3 requests. Note that, by (1), the expected #pf per request
reduces as we consider larger initial subtrees of the execution tree.

5 Heuristic Online Algorithm: Dynamic Machine
Learning

A simple-minded approach to the question of optimizing the cache is to put in it
those requests that occur most often. Namely, suppose we did not have a cache.
At each stage, we would have n page faults. (Recall that, if several servers ask
simultaneously for the same r, we count each of them as causing an additional
fault). How much do we gain by placing some rj ∈ R in the cache? For each
i such that rj ∈ Ri, there is a probability of pij for Si to ask for rj (where∑

j:rj∈Ri
pij = 1 for each i). Hence, by having rj in the cache, we reduce #pf by
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v(rj) =
∑

i:rjRi
pij . To reduce #pf as much as possible, we place in the cache

those requests r for which the quantity v(r) is among the K maximal ones (ties
broken arbitrarily). Note, that this tends to give more cache lines to servers with
fewer possible requests.

Lemma 1. If the probabilities pi,j of each server Si asking for each rj do not
change with time, and the servers are independent, then the algorithm proposed
above is optimal.

Proof. Denote the proposed algorithm by H, and let H ′ be some other algorithm.
Denote by C(H) the content of the cache when using H, and by C(H ′) the
analogous quantity for H ′ (which may change with time, depending on the way
H ′ works). Then the expected number of page faults per time unit, when using
H, is #pf(H) = n − ∑

rj ∈ cache of H v(rj). The corresponding number for H ′

is #pf(H ′) = n − ∑
rj ∈ cache of H′ v(rj). Since the algorithm H chooses the

j’s with maximal v(rj), the number of page faults for H does not exceed the
analogous number for H ′. �	

6 Future Research Directions

The most challenging question is whether one can design an online algorithm
with a bounded approximation ratio relative to the optimal offline algorithm. If
so, how can we reach the best ratio?

References

1. Hassidim, A.: Cache replacement policies for multicore processors. In: Proceedings
of 1st Symposium on Innovations in Computer Science (ICS), pp. 501–509 (2010)

2. Lopez-Ortiz, A., Salinger, A.: Paging for multi-core shared caches. In: Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference, pp. 113–127
(2012)

3. Awerbuch, B., Bartal, Y., Fiat, A.: Distributed paging for general networks. In:
Proceedings of the 7th Annual ACMSIAM Symposium on Discrete Algorithms, pp.
574–583 (1996)

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis, vol. 53.
Cambridge University Press, New York (1998)

5. Taylor, H.M., Karlin, S.: An Introduction to Stochastic Modeling, 3rd edn. Academic
Press, San Diego (1998)

6. Dynkin, E.B.: Theory of Markov Processes, Pergamon (1960)
7. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.

Commun. ACM 28(2), 202–208 (1985)



CryptoRNN - Privacy-Preserving
Recurrent Neural Networks Using

Homomorphic Encryption

Maya Bakshi and Mark Last(B)

Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
bakshim@gmail.com, mlast@bgu.ac.il

Abstract. Recurrent Neural Networks (RNNs) are used extensively for
mining sequential datasets. However, performing inference over an RNN
model requires the data owner to expose his or her raw data to the
machine learning service provider. Homomorphic encryption allows cal-
culations to be performed on ciphertexts, where the decrypted result is
the same as if the calculation has been made directly on the plaintext.
In this research, we suggest a Privacy-Preserving RNN–based inference
system using homomorphic encryption. We preserve the functionality of
RNN and its ability to make the same predictions on sequential data,
within the limitations of homomorphic encryption, as those obtained for
plaintext on the same RNN model. In order to achieve this goal, we need
to address two main issues. First, the noise increase between successive
calculations and second, the inability of homomorphic encryption to work
with the most popular activation functions for neural networks (sigmoid,
ReLU and tanh). In this paper, we suggest several methods to handle
both issues and discuss the trade-offs between the proposed methods.
We use several benchmark datasets to compare the encrypted and unen-
crypted versions of the same RNN in terms of accuracy, performance,
and data traffic.

Keywords: Homomorphic encryption · Data privacy · Encrypted
machine learning · Privacy preserving machine learning · Privacy
preserving recurrent neural networks · Encrypted recurrent neural
netwroks

1 Introduction

With the recent growth of cloud computing services and cloud cost reduction,
machine learning as a service (MLaaS) has been in high demand. The main
contribution of MLaaS is the ability of each data provider to consume machine
learning services over the net using the cloud, with no need for machine learning
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skills. With the increasing spread of systems which are HIPAA (Health Insur-
ance Portability and Accountability Act) and GDPR (General Data Protection
Regulation) compliant, one of the most challenging issues for MLaaS is the need
for security and privacy protection. Whether they are processing private med-
ical records, sensitive security information, or confidential military data, data
providers must trust the machine learning service provider. Privacy-preserving
machine learning as a service allows such trust, if the data provider can send
encrypted data to the service provider and get back an encrypted result.

Some of the privacy-preserving machine learning solutions are based on secure
multiparty computation (SMPC), some are based on homomorphic encryption
(which allows performing calculations directly on the encrypted data), and some
combine both. Some of the solutions focus on the training phase, while others
focus on the inference phase. In this research, we present a privacy-preserving
machine learning inference system, based on a homomorphic encryption cryp-
tosystem. The inference model is a recurrent neural network, which has not
been studied in the context of privacy-preserving machine learning yet. RNN
layer holds the previous layer’s output as a context, which is then processed
alongside the new input of the current iteration. Our main goal is to ensure
that the prediction results of encrypted data will be as close as possible to the
prediction results of plaintext in terms of performance and accuracy.

2 Methodology

2.1 Homomorphic Encryption Type

We implement privacy-preserving RNN inference with SHE (Somewhat Homo-
morphic Encryption) and handle the issue of noise increase by using a refresh
mechanism which can be implemented using various suggested methodologies.

2.2 Homomorphic Encryption Tool

Our requirements of the HE framework were implementation of SHE, with the
ability to encrypt and perform computations on both rational numbers and inte-
gers. We chose Microsoft SEAL (Simple Encrypted Arithmetic Library) devel-
oped by Microsoft Research [1], implementing the CKKS (Cheon-Kim-Kim-
Song) [2] homomorphic encryption scheme, which is used for rational numbers.

2.3 Activation Functions

- Since we need to work with homomorphic encrypted data we can only perform
multiplications and additions, thus any non-linear calculation on ciphertext is
impossible. We propose three main methods to deal with the activation functions,
each one resulting in a different classification accuracy.
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2.4 Handling the Noise Increase

Due to the RNN structure we need to handle the noise increase of any ciphertext
as well as the context. We implemented ciphertext refresh mechanism in three
different methodologies and we discuss the trade-offs between them in this paper.

The three suggested refresh methods are:

Client Performs Non-linear Calculations - For the use case of non-linear
inference, the server sends ciphertexts to the client, which calculates the non-
linear functions and returns the resulting ciphertext to the server.

Refresh After Each Multiplication - Using polynomial activation functions
in the inference phase, this refresh mode requires a ciphertext refresh after each
multiplication, resulting in faster inference and smaller ciphertexts, but more
communication with the client.

Refresh After Each Record - Using polynomial activation functions in the
inference phase, this refresh mode requires a ciphertext refresh after each record’s
classification, resulting in a slower inference and larger ciphertexts, but less com-
munication with the client.

2.5 Security Level and Cryptographic Scheme Parameters

We ensure the security standard compliance as described in [3]. The parame-
ter generation algorithm is used to instantiate various parameters used in the
HE algorithms. We used security level of 128-bit and precision of 40-bit for all
experiments. The rest of the parameters were selected as per the standard.

3 Experiments Design and Evaluation Methods

3.1 Datasets

Table 1 summarizes the parameters of the datasets we used.

Table 1. Dataset parameters

Dataset Classes

num

Features

num

Feature

types

Training

records

num

Testing

records

num

Majority

rule

accuracy

Wall-following robot naviga-

tion [6]

4 2 Real 3,890 1,565 0.406

Activity recognition with

healthy older people [5]

4 8 Real 44,317 1,718 0.657

EEG eye state [7] 2 14 Real 11,234 3,746 0.275

Occupancy detection [4] 2 5 Real 8,143 1,000 0.210
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3.2 Performance Metrics

All experiments implement classification. The following performance metrics are
calculated for each experiment:

– Classification Accuracy:
(TP+TN)

(TP+TN+FP+FN)

We measure the accuracy of both encrypted inference and plaintext inference.
– Inference time per record - mean time in milliseconds for encrypted record

inference.
– Traffic per record - total data traffic in bytes per record for both directions

(client-server and server-client).
– Number of communications - number of communications from the server

to the client during each record’s inference. This communication is required
for ciphertext refresh or for non-linear calculation on ciphertext.

3.3 Experiments Details

We performed five sets of experiments. Each set refers to one dataset from the
list in 3.1 and an RNN architecture, which can be a simple RNN (with one
RNN layer) or RNN with one RNN hidden layer and one feed forward layer. In
addition, for each set we induced two models based on the selected architecture.
One is non-linear model based on sigmoid activation function and the second is
polynomial model with polynomial activation functions.
For each set, we defined five experimental configurations:

Exp1 - Non-linear Training, Non-linear Inference, No Refresh - the
inference is based on the non-linear model, where the non-linear functions are
calculated by the client. This calculation involves decryption and encryption of
the ciphertext, thus an additional refresh is needed only for RNN with a hidden
layer and the context needs to be refreshed as well. The ciphertext is small due
to a low multiplicative depth.
Experiment Description :

– Non-linear model - training uses at least one non-linear activation function.
– Inference - based on the trained model, using sigmoid activation functions

calculated by the client. For the RNN layer, the server sends the weights
multiplication matrix to the client for refresh. For the feed-forward layer with
non-linear activation function - for each unit, the classifier sends ciphertext
to the client, which decrypts it, calculates sigmoid, encrypts it, and sends the
ciphertext back to the server.

– Refresh mode - In addition to the calculation of the sigmoid by the client, for
any layer with linear activation function the weights multiplication matrix is
refreshed for each record.
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Exp2 - Non-linear Training, Polynomial Inference, Refresh per Multi-
plication - the inference is based on the non-linear model, where the non-linear
functions are replaced by a polynomial approximation to the non-linear activa-
tion functions. In this experiment, we refresh the ciphertext after each multipli-
cation. The ciphertext is small due to a low multiplicative depth.
Experiment Description :

– Non-linear model - training uses at least one non-linear activation function.
– Inference – sigmoid activation function is replaced by sigmoid’s approxima-

tion function of degree 2, or by square function. The polynomial activation
functions are calculated by the server.

– Refresh mode – The ciphertext is refreshed after each multiplication on the
ciphertext.

Exp3 - Non-linear Training, Polynomial Inference, Refresh per Record
- the inference is based on the non-linear model, where the non-linear functions
are replaced by a polynomial approximation to the non-linear activation func-
tions. In this experiment, we refresh the ciphertext once per record. The cipher-
text is large due a high multiplicative depth.
Experiment Description :

– Non-linear model - training uses at least one non-linear activation function.
– Inference – sigmoid activation function is replaced by sigmoid’s approxima-

tion function of degree 2, or by square function. The polynomial activation
functions are calculated by the server.

– Refresh mode – The context of the RNN layer is refreshed once per record.

Exp4 - Polynomial Training, Polynomial Inference, Refresh per Multi-
plication - the inference is based on the polynomial model. In this experiment,
we refresh the ciphertext after each multiplication. The ciphertext is small due
to a low multiplicative depth.
Experiment Description :

– Non-linear model - training uses at least one non-linear activation function.
– Inference – sigmoid activation functions are replaced by polynomial activation

functions of degree 2, which are calculated by the server.
– Refresh mode – The context of the RNN layer is refreshed once per record.

Exp5 - Polynomial Training, Polynomial Inference, Refresh per
Record - the inference is based on the polynomial model. In this experiment,
we perform ciphertext refresh once per record. The ciphertext is large due to
high multiplicative depth.
Experiment Description :

– Polynomial model - training uses sigmoid’s approximation activation function
of degree 2, or square function.
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– Inference – based on the trained model, no change.
– Refresh mode – The context of the RNN layer is refreshed once per record.

Table 2 describes the dataset and the RNN architecture used in each experi-
ment.

Table 2. Experiments description

Experiment set Dataset RNN descrip-
tion

RNN
layer
input
dimen-
sion

RNN
layer
output
dimen-
sion

Feed
for-
ward
layer
input
dimen-
sion

Feed
for-
ward
layer
output
dimen-
sion

Set1 Wall-following
robot naviga-
tion

Simple RNN
(no hidden
layers)

2 4 – –

Set2 Wall-following
robot naviga-
tion

RNN with one
hidden layer

2 6 6 4

Set3 Activity recog-
nition with
healthy older
people

Simple RNN
(no hidden
layers)

8 4 – –

Set4 EEG eye state RNN with one
hidden layer

14 10 10 2

Set5 Occupancy
detection

RNN with one
hidden layer

5 14 14 2

3.4 Summary of Results

As indicated above, the proposed CryptoRNN methodology was implemented in
five different configurations:

– Exp1 : Non-linear training, non-linear inference, no refresh - This
methodology is recommended for use when a model’s confidentiality is low
and we have trained a non-linear model, which we would like to continue
using and we can expose the client to the non-linear units. In this case, we
can use a low coefficient modulus and thus we get a short inference time, a
moderate number of server-client communications, and a low data traffic size.
The inference accuracy is close to the known accuracy of the trained model.

– Exp2 - Non-linear training, polynomial inference, refresh per mul-
tiplication - This methodology is recommended for use when the model’s
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confidentiality must be high, we have trained a non-linear model and we
cannot expose the client to the non-linear units. Instead of using non-linear
functions (which is not possible for encrypted data) in the inference phase,
we replace them with polynomial approximation functions (using the same
model). We can have as many communications as we need from the server
to the client and we would like to achieve a shorter inference time. In this
case, we can use a low coefficient modulus, send the ciphertext to the client
for refresh after each multiplication, and thus get a short inference time, a
high number of server-client communications and a low data traffic size. The
inference accuracy may be lower than that of the trained model.

– Exp3 - Non-linear training, polynomial inference, refresh per record
- This methodology is recommended for use when the model’s confidentiality
must be high, we have trained a non-linear model and we cannot expose the
client to the non-linear units. Instead of using non-linear functions (which is
not possible for encrypted data) in the inference phase, we replace them with
polynomial approximation functions (using the same model). We would like
to have minimum communications from the server to the client and we can
accept a longer inference time. In this case, we can use a high coefficient mod-
ulus, the computational requirements become heavier, we send the ciphertext
to the client for refresh once per record and thus we get longer inference time,
low number of server-client communications and high data traffic size because
the ciphertext size is larger. The accuracy of the inference may be lower then
the accuracy of the trained model.

– Exp4 - Polynomial training, polynomial inference, refresh per mul-
tiplication - This methodology is recommended for use when the model’s
confidentiality must be high and we have trained a polynomial model, we can
have as many communications as we need from the server to the client and
we would like to achieve a shorter inference time. In this case, we can use
a low coefficient modulus, send the ciphertext to the client for refresh after
each multiplication, and thus get a short inference time, a high number of
server-client communications and a low data traffic size. The inference accu-
racy is identical to that of the trained model, but in most cases is lower than
that of the non-linear model.

– Exp5 - Non-linear training, polynomial inference, refresh per record
- This methodology is recommended for use when the model’s confidentiality
must be high and we have trained a polynomial model. We would like to have
minimum communications from the server to the client and we can accept a
longer inference time. In this case, we can use a high coefficient modulus, the
computational requirements become heavier, we send the ciphertext to the
client for refresh once per record and thus we get a longer inference time, a low
number of server-client communications and a high data traffic size because
the ciphertext size is bigger. The inference accuracy is identical to that of the
trained model, but in most cases is lower than that of the non-linear model.

Table 3 summarizes the trade-offs and compares the suggested methodologies.
We referred to inference time as ‘Moderate’ when it was about 2 times higher
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Table 3. CryptoRNN - Methodologies Comparison

Exp Refresh

mode

Training

activation

function

Inference

activation

function

Model

confiden-

tiality

level

data

traffic

Inference

time

#Communi-

cations

Coefficient

modulo

Accuracy

Exp1 Once per

linear

layer

Non-linear Non-linear

(calculated

by client)

Low Low

moderate

Low

moderate

Moderate Moderate High

Exp2 Operation Non-linear Polynomial High Low

moderate

Low

moderate

High High Low

Exp3 Record Non-linear Polynomial High High High Low Low Low

Exp4 Operation Polynomial Polynomial High Low

moderate

Low

moderate

High High Moderate

Exp5 Record Polynomial Polynomial High High High Low Low Moderate

compared to ‘Low’, and as ‘High’ when it was at least 3 times higher than ‘Low’.
The data traffic was considered as ’Moderate’ when it was less than 3 times larger
than ‘Low’, and as ‘High’ when it was 3 times and above larger than ‘Low’. We
found that on average, the inference time of an encrypted record is longer than
inference of unencrypted record by four orders of magnitude. Still, one should
take into account that the encrypted inference times were between 100 to 3500
ms per record only.

4 Conclusions

In this research, we tested our hypothesis that RNN inference is feasible on
encrypted data. We developed and evaluated a privacy-preserving machine learn-
ing system, CryptoRNN, which has the ability to train a Recurrent Neural Net-
work based on unencrypted data and then use the induced model in order to
perform inference on encrypted data. We proved that privacy-preserving infer-
ence for RNN is feasible under the limitations of homomorphic encryption by
showing in all experiments that we obtain identical results for both encrypted
and unencrypted inference using the same models.

Once we demonstrated successful inference on encrypted data, we suggested
several methodologies to address the encrypted inference task while consider-
ing the trade-off between the issues of data traffic, inference time, server-client
communications, accuracy, and the confidentiality of the model.

For future work, we suggest working with parallel computing. In this research,
we executed the encrypted calculations of neurons in a layer one-by-one. With
parallel computation, we could decrease the inference time. Polynomial approx-
imations of higher order than two may also be considered.
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