
Comparing the Performance of Message
Delivery Methods for Mobile Agents

Andrei Olaru(B) , Dragoş Petrescu, and Adina Magda Florea

University Politehnica of Bucharest, 060042 Bucharest, Romania
{andrei.olaru,adina.florea}@cs.upb.ro, dragos.petrescu@stud.acs.pub.ro

Abstract. Deploying a large number of mobile agents in scenarios where
agents migrate frequently and/or exchange messages frequently requires
methods for message delivery that are adequate to these specific situ-
ations. Deciding on which message delivery model to use, and whether
a newly developed model is better than existing ones, may be difficult
without an experimental testbed for comparison. This paper presents
a framework for the comparison of message delivery models dedicated
to mobile agent systems. The framework allows the generation of large,
difficult scenarios, in which different methods may be evaluated side-
by-side, revealing trade-offs between success rate, delivery time, and
resource consumption. The architecture of the framework is designed
to quickly integrate new models and to allow the direct deployment of
a model implementation in real-life applications. As validation, we have
integrated the implementation of several well-known delivery models and
made comparisons between these models, from different points of view.

Keywords: Multi-agent systems · Mobile agents · Models and
abstractions for MAS

1 Introduction

Mobile agents enable computation to be performed on a remote machine, by an
autonomous entity that is able to travel between different hosts, thus avoiding
both the difficulties of remote procedure calls and the high bandwidth required
to move, from one machine to another, data instead of code. Beyond current
applications of mobile agents in high-performance computing [2], wireless sensor
networks [6,14], and fog computing [4,16], Future use includes large-scale wireless
sensor networks and smart city infrastructures, which require that the protocols
for messaging between agents scale up with the number of agents, nodes, and
messages, and with the frequency of agent migration.

While they migrate, mobile agents need to be able to receive messages, from
either fixed agents or other mobile agents. A message delivery model (sometimes
called a message delivery protocol in the literature) is a set of rules and methods

This research was supported by grant PN-III-P1-1.2-PCCDI-2017-0734.

c© Springer Nature Switzerland AG 2020
Y. Demazeau et al. (Eds.): PAAMS 2020, LNAI 12092, pp. 188–199, 2020.
https://doi.org/10.1007/978-3-030-49778-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49778-1_15&domain=pdf
http://orcid.org/0000-0002-2718-9195
http://orcid.org/0000-0001-7249-1871
https://doi.org/10.1007/978-3-030-49778-1_15


Comparing the Performance of Message Delivery Methods for Mobile Agents 189

describing how to deliver a message sent from one agent to another that is iden-
tified by its name, in a distributed deployment, considering that the destination
agent is mobile and is able to migrate between different hosts (or nodes). When
mobile agents decide dynamically where to move next, it is challenging to create
a message delivery model such that messages reach a rapidly moving agent in
a timely manner. In the case of a large number of mobile agents that change
host frequently, trade-offs exist between latency, reliability, performance, and
network load. While many message delivery models have been surveyed from a
qualitative point a view [15,17], choosing the appropriate model also requires a
comparison of experimental results.

This paper introduces a framework for the comparison of message delivery
models for multi-agent systems featuring mobile agents. We present the archi-
tecture of the framework, together with tools for analyzing the outcomes of sim-
ulated large-scale experiments. The result is an environment which developers
can use to evaluate the advantages and trade-offs of either pre-implemented or
newly developed models quickly and efficiently, using numerical comparisons for
relevant criteria. The framework is implemented in Java and it is open-source.1

Based on characteristics such as number of agents and nodes, processing
power of nodes, latency of the network, and frequency with which agents send
messages or with which agents migrate, we generate a large number of scenarios
for the simulation of the given conditions.

We have implemented several models for message delivery. All the implemen-
tations are available to the framework through the same API and can transferred
to real-life MAS frameworks, such as the Flash-mas framework [12], or the
popular Jade framework, as MTP instances. The implemented models have been
evaluated on the same scenarios and evaluated according to the same metrics
– message delivery success rate, mean delivery time, and network load. These
metrics quantify the criteria presented by Virmani and by Rawat [15,17], and
are also inspired by the work of Deugo [8]. Based on the results, we were able to
make quantitative comparisons between the models and observe which model is
more appropriate for each situation, whether we are dealing with a high rate of
migration, or a large number of messages, or a resource-constrained network.

The next section presents work related to the subject of this paper. Section 3
introduces the architecture of the framework and its main features. Section 4
covers the comparison between several existing message delivery models, together
with experimental results and discussion. The last section draws the conclusions.

2 Related Work

Existing models for message delivery in mobile agent systems have been previ-
ously surveyed and compared. Deugo [8] compares several classic delivery models
from a theoretical point of view, without actual experiments. Virmani [17] and
Rawat et al. [15] make qualitative comparisons of the state-of the art models
1 The implementation is freely available as a Github repository at https://github.

com/dragospetrescu/mobile agents system simulator.

https://github.com/dragospetrescu/mobile_agents_system_simulator
https://github.com/dragospetrescu/mobile_agents_system_simulator


190 A. Olaru et al.

at the time. However, no means of quantitative comparison are offered. In the
qualitative analyses, the features that are evaluated are generally a subset of
the following: solution to the tracking problem (when an agent moves after the
message is sent, but before the message reaches it), guaranteed message deliv-
ery, support for asynchronous communication, delivery in reasonable time, and
transparency of location. However, without any quantization of these criteria,
one cannot evaluate the trade-offs between features, such as whether a not-
so-perfect success rate is a fair trade-off for other advantages, such as a good
delivery time.

Message delivery models for communication in mobile agent systems are gen-
erally built around several well known schemata:

– the centralized solution, in which one server is tracking the whereabouts of all
agents and forwards their messages accordingly; this is improved by the home
server scheme where different servers are assigned to different partitions of
the agent set, offering a more balanced solution than centralization [18];

– blackboard solutions, in which agents need to visit or contact the blackboard
explicitly in order to get their messages [3,5];

– forwarding proxy solutions, in which each host remembers the next location
to which an agent migrated, and messages will be forwarded along the path
of the agent [7]; the shadow protocol combines the proxy model with the
home server model by using proxies but agents regularly send updates of
their location to their home server [1]; a combination of forwarding proxies
and location servers is used by MEFS [9].

Mobile agents are currently used in several application areas, the most rel-
evant being distributed computing (including here HPC and fog computing)
and wireless sensor networks. In distributed computing, agent-based applica-
tions generally use centralized messaging or centralized directories [4]. However,
experiments are only performed using a relatively small number of agents, a case
for which the centralized server solution works fine. If the applications were to
scale up to larger numbers of agents (e.g. in the thousands), the central server
would become a serious bottleneck. In wireless sensor networks, mobile agents
are used to gather information from WSN nodes. Some works only use mobility
along a pre-calculated itinerary, with no communication [14]. In the cases where
communication is needed, centralized communication methods are used, many
times using Jade [6,13]. This works for small setups or for when the number of
messages is low, but is not adequate to city-scale WSNs.

Research also exists in the field of distributed computing regarding dis-
tributed messaging [10], however these are made to support only fixed message
receivers, which are not able to migrate through the network. This makes the
problem that we address specific to the field of mobile multi-agent systems.

3 Framework Architecture

We see the implementation of a message delivery model as a system distributed
across all hosts, which is able to pick a message from one agent in the system



Comparing the Performance of Message Delivery Methods for Mobile Agents 191

Fig. 1. The structure of elements in a deployment with two hosts, each on one machine,
and 4 agents, two for each host.

and deliver that message to a mobile agent which is its destination, wherever
that agent may be located at the current time.

In a distributed mobile multi-agent system, there exist 3 types of elements:
mobile agents, hosts (or nodes), and what we call deployment support, which is
able to actually send data through the network from one host to another, and is
able to provide information about the network.

The architecture of the framework was built around the following principles:

– there should be a clear separation between the implementation of the message
delivery model and the implementation of application-specific or framework-
specific components of the multi-agent system;

– one should be able to change the message delivery model without changing
the structure of the agents, making the application agnostic with respect to
the delivery model that is used;

– one should be able to transfer the implementation of the delivery model from
the framework to an actual MAS deployment, making the delivery model
agnostic with respect to whether it runs in a simulation or in real-life.

This results in a modular structure which makes the implemented components
be reusable across situations and between simulated and actual deployment.

For both the agents and the hosts we have integrated the separation described
above, resulting in the following elements result (see also Fig. 1):

– the delivery model implementation; this implementation should be deployable
in a real MAS application framework;
• the agent/model segment is the part of a mobile agent which is model-

specific and is able to communicate with the corresponding host/model
segment; it stores any information which model-specific but must travel
together with the agent;

• the host/model segment contains all functionality that is dependent of the
model, but is fixed to the machine, e.g. the registration of agents located
on the host, or the routing of messages to or from the agents on the host;

– the testing components, including everything outside of the delivery model
implementation, and which is used to evaluate the model;



192 A. Olaru et al.

Fig. 2. A UML class diagram, also describing the interactions between the model
implementation and the testing components.

• the agent/testing segment is the part of a mobile agent which participates
in evaluating the message delivery model; the agent/testing segment gen-
erates and initiates the sending of messages, or initiates the migration to
other hosts, all according to the settings in the evaluation scenario; the
agent/testing segment is homologous to an application-specific agent in
a real deployed application.

• the host/testing segment contains all functionality that is fixed to the
host, but is independent of the delivery model, e.g. packing and unpacking
of mobile agents when they migrate from or to the host;

– the deployment support contains all the elements that simulate a real deploy-
ment, such as the capacity to delivery messages between machines;

The resulting structure of the framework is layered. Messages are transmitted
as follows:

1. according to the evaluation scenario, the agent/testing segment of a mobile
agent generates a message and passes it to the agent/model segment of the
same mobile agent;

2. the agent/model implementation performs model-specific processing on the
message and passes it to the local host/model segment of the host;

3. the host/model decides the network identifier of the host at the next hop and
passes the message to the host/testing segment of the host, which passes it
to deployment support ;

4. at every intermediate hop (if required by the model), the message is passed
to the local host/model, which decides on the next hop;

5. on the host which is the destination of the message, the host/model passes
the message to the agent/model segment of the appropriate agent;

6. the agent/model segment passes the message to the agent/testing segment of
the same mobile agent, which updates the statistics related to delivery success
rate and delivery time.

Similarly, when an agent wishes to migrate, it informs the local host/testing,
which packs the agent as a message and passes it to the local host/model, which
routes it the same as with any message; when this special message arrives on the
destination host, the local host/testing will unpack and deploy the agent and
the local host/model will register the migration.



Comparing the Performance of Message Delivery Methods for Mobile Agents 193

There may be other messages that travel through the system, which are not
initiated by the testing components, but by model components, according to the
specific message delivery model. Such messages may be disseminating updates
on the location of agents or attempting to resend messages that have not been
delivered.

In order for a developer or researcher to evaluate a new model one must
only implement two Java classes – one for the agent/model part and one for
the host/model part of the model implementation. The interfaces which these
classes must implement contain a minimum of required methods: the agent/model

must contain a method to create and send a message, a method to receive a
message from the host/model, and a method to initiate the migration to another
host; the host/model must contain a method to send a message to another host
(via deployment support) and a method to interpret a message coming from
another host. The exact communication between the agent and the host parts
of the model implementation is not imposed. These relationships are presented
in Fig. 2.

3.1 Experimental Scenarios

The proposed framework supports the automatic generation of evaluation sce-
narios with the purpose of estimating the performance of the various message
delivery models in real life.

Time in an evaluation scenario is discrete, quantified by means of time units.
In a time unit, each node is able to process a given amount of messages, and on
each direct connection between nodes a message travels for a given length. For
easier interpretation of results, the scenarios presented in this paper simulated a
complete network with edges of varying length, but other network layouts may
be specified in the configuration of experiments. Some delivery models require
the network to be divided into regions. This is also done by the scenario gener-
ation component. While messages could have different sizes, larger sizes can be
simulated by several unit-sized messages.

For each delivery model, about 1000 scenarios were generated, considering
combinations of the following parameters:

– the number of nodes in the deployment – with values of 10, 50, 100;
– the number of agents in the scenario – with values of 2, 10, 100, and 200;
– the probability of an agent migrating to another node in a given time unit

– with values of extremely low, low, normal, high, and extremely high,
each value assigned to a probability between 1 in 1000 and 1 in 10;

– the probability of an agent sending a message to another agent in a given
time unit – with values of extremely low, low, normal, high, and extremely

high, each value assigned to a probability between 1 in 100 and 1 (the highest
probability is when an agent sends one message in each time unit);

– the “CPU” power of hosts, specifying how many messages a host can pro-
cess in a time unit – with values of extremely low, low, normal, high,
and extremely high, each value assigned to a number of 1 to 50 messages
processed in every time unit;



194 A. Olaru et al.

)c()b()a(

Fig. 3. (a) The success rate of Central Server Schema, depending on CPU power and
migration frequency. (b) The delivery time (in time units) and the network load (in
number of messages on the network in a time unit) for the Shadow Protocol, for various
migration frequencies. (c) The performance of RAMDP, in terms of delivery time (on
a log scale), depending on CPU power and network size.

The framework is used via a command-line interface offering arguments spec-
ifying the Json files describing the hosts, the agents and the network, as well
as values for migration frequency, message frequency, processing power, and the
duration of the simulation. The configuration files for hosts and agents may
contain per-host/per-agent values for processing power and for migration and
messaging frequency. The framework is able to automatically generate all of
the necessary Json files, randomly, based on several parameters. Using files,
however, as opposed to generating the scenario at every execution, allows for
improved repeatability of experiments.

The results of one evaluation scenario are returned after the specified number
of time units, as a tuple of 4 values which we use as comparison criteria, as
detailed in the next section.

4 Comparison of Message Delivery Models

In order to demonstrate how our framework is able to handle comparison between
message delivery models, we have implemented several such models and com-
pared the experimental results of their evaluation.

In the comparison, we focused on how well various models handled difficult
scenarios, characterized by limited processing power, increased number of mes-
sages, or increased probability of migration. For each evaluation scenario, we
have used average parameters for all but a chosen characteristic of the scenario,
and we have varied that characteristic in order to evaluate its impact on the
performance of the model. As comparison criteria we use 4 values which the
framework computes for each scenario or for an entire batch of scenarios.

The message delivery rate is the ratio of messages successfully delivered
during the entire simulation, over the total number of sent messages:

Delivery rate =
number of messages which have been delivered

total number of sent messages



Comparing the Performance of Message Delivery Methods for Mobile Agents 195

The mean message delivery time is average number of time units it takes
to deliver a message:

Time =
∑message

i message delivery time for message i
total number of messages

The mean network load is the average number of messages which are in
transit over the network, over the entire time of the simulation:

Load =
∑steps

i number of messages in transit at time unit i
number of steps

The mean time during which messages that do not get to be delivered stay
in the network or on the hosts, before being discarded, is computed as:

Timefailures =

∑
failed messages time spent in transit

number of failed messages

In order to validate the presented framework, we have implemented several
known message delivery models from the literature. For each model, we have run
1000 scenarios with various configurations of the parameters. Each experiment
ran for 100,000 time units, of which 30,000 time units were left for messages
to be delivered, with no new messages being sent. We have grouped message
delivery models into two categories [8]:

– asynchronous models, where it is the message that travels through the net-
work, trying to reach its destination agent (leading to the chasing problem);
such models are CS, FP, HSS, MDP, and MEFS (in some cases);

– synchronous models, where it is the destination agent that needs to synchro-
nize with the source of the message or with the host where the message is
currently stored and, once synchronized, the message is delivered immedi-
ately, so that messages spend almost no time traveling through the network;
such models are RAMDP, Blackboard, and MEFS (in some cases).

For asynchronous models, we have analyzed how the success rate, the network
load, and the delivery time are influenced by migration frequency and message
frequency. Figure 4 presents these results, from which we can derive some useful
insights into the situations various models are adequate for. In this comparison,
the number of agents was large and CPU power has been relatively limited, in
order to observe the efficiency of the models.

The Central Server Scheme (CS) model is characterized by the existence
of a particular, central, server, which knows the locations of all agents. When
agent migrate, they notify the central server. Every message that is sent between
agents passes through the central server, which forwards it to the host where the
destination is located. The central server is the bottleneck of the system and the
performance of the system relies on the performance of the central server machine
(as seen in Fig. 3 (a)). While the migration frequency has a moderate impact on
performance, increasing the number of messages decreases performance abruptly



196 A. Olaru et al.

(see Fig. 4 (b)), because all messages queue on the central server and don’t get
to be delivered. For situations where the number of messages is reasonable and
reliability is not required at 100%, CS is well suited.

The Home Server Scheme (HSS) improves CS by distributing the central
registry to several servers, with each agent being assigned to a specific home
server [18]. Home servers know the distribution of agents among servers. HSS
generally has good performance, but delivery time increases when there is a
large number of agents, because, as with CS, performance is limited by the
performance of individual nodes.

In the Forwarding Proxy Protocol (FP), an agent leaving a host leaves
a proxy on the host, pointing to its next location [7]. A message must ‘chase’ an
agent in order to reach it. FP is the only completely decentralized model, among
the models compared. FP has very good success rate even when the number of
messages is very large. Its advantage comes at the cost of long delivery times
and high network usage, even when the migration frequency or the number of
messages are moderate. However, if reliability is needed, FP is the best choice.
Other models based on FP add home servers, which need CPU performance in
order to route messages.

The Shadow Protocol combines HSS and FP features, with agents using
proxies but periodically updating their location on their home server (the
‘shadow’) [1]. The shadow forwards the message to the last location that it
knows and from there the message chases the agent via proxies. Performance of
the Shadow Protocol is better than FP when migration frequency increases, but
is worse when the number of messages is large. The results in Fig. 3 (b) show how
a lack of migration is related to higher network load, as more frequent migration
leads to more frequent refresh of the information in the shadow, and therefore
better performance. Being pseudo-centralized, performance of the Shadow Proto-
col can benefit from increased CPU performance for home servers. If the number
of messages is not very high, Shadow offers good all-around performance.

The Message Efficient Forwarding Schema also combines centralized
server features with forwarding proxies, introducing more reliability by placing
forwarding proxies on hosts where it migrates from, and also changing its reg-
istration from the old host to the new host in order to increase efficiency [9].
MEFS has similar results to FP.

Message Delivery Protocol (MDP) uses a hierarchical structure to track
the location of agents and to route messages in the system [11]. The structure,
however, needs to be created specifically for each particular deployment. MDP
is quite reliable when there are many messages, has good delivery times and
does not load the network. It never achieves perfect reliability, but it is a good
trade-off if short delivery times and low network usage are required.

We can observe that, when CPU power is limited, no asynchronous model
handles a large number of messages too well, except maybe FP, which comes
with other disadvantages for less stressful scenarios. For the case of very frequent
messaging, MDP is a good choice.



Comparing the Performance of Message Delivery Methods for Mobile Agents 197

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Comparison of asynchronous models, for 100 nodes and 200 agents. On the
left, migration probability varies between 1‰ and 10%, with messaging probability of
10%. On the right, messaging probability varies between 1% and 100%, with migration
probability of 1%.

For synchronous models, we have analyzed how the success rate, the net-
work load, and the delivery time are influenced by migration frequency. For
these models, we have not presented a comparison where the messaging fre-
quency varies, because their performance is not influenced by the number of
messages – an agent retrieves all its messages received until that point at once.
For the same reason, except for MEFS, which is a hybrid model, the network
load is also quite low, as messages don’t chase agents, but just wait on a host
until an agent retrieves them.

In the Blackboard model, every node hosts a blackboard where agents leave
messages [3]. An agent which is the destination of a message needs to move to
the host where the message is stored in order to receive it. Lacking a specific
action from the part of the agents to visit all hosts, the success rate of message
delivery is low, and only increases when agents migrate frequently, having the
opportunity to visit more hosts.



198 A. Olaru et al.

)c()b()a(

Fig. 5. Comparison of synchronous models, for 100 nodes and 200 agents, when migra-
tion probability varies between 1‰ and 10%, and messaging probability is 10%.

The Reliable Asynchronous Message Delivery Protocol (RAMDP)
groups agents in regions and each region has a blackboard for messages [5].
Whenever an agent migrates, it informs the region and in return it receives
its messages. As with the blackboard model, performance increases when agents
migrate frequently, also because an agent receives messages only after it migrates
and informs the region server. The design of the regions is important, as is
visible in the case displayed in Fig. 3 (c), where a network of medium size offers
the best performance because the number of regions is more adequate to the
number of agents and nodes. RAMFS offers good success rate, especially when
the frequency of migration is higher. As message retrieval is related to agent
migration, agents that don’t migrate don’t get to receive their messages very
often (Fig. 5).

5 Conclusion and Future Work

We have presented a framework for the experimental evaluation of message deliv-
ery models in a variety of scenarios, allowing users to compare the performance
of various models and to ascertain which model is adequate for a specific sit-
uation. We have integrated the implementation of several delivery models and
compared their performance in stressful scenarios. We were able to draw several
conclusions related to the suitability of the models for various usage situations.

The framework does not currently support evaluating the robustness of a
model when faced with network failure, faulty implementation, or agents that
crash unexpectedly, nor the impact of the adoption of open systems, in which
agents are able to enter and leave freely. This is a part of future work.

We intend to extend the framework with further metrics, for instance for ana-
lyzing CPU consumption, as opposed to only limiting CPU usage. We intend to
develop the tools needed to analyze hosts individually, or by regions, as opposed
to evaluating metrics across all hosts.

References

1. Baumann, J., Rothermel, K.: The shadow approach: an orphan detection protocol
for mobile agents. Pers. Ubiquit. Comput. 2(2), 100–108 (1998)



Comparing the Performance of Message Delivery Methods for Mobile Agents 199

2. Benchara, F.Z., Youssfi, M., Bouattane, O., Ouajji, H.: A new scalable, distributed,
fuzzy c-means algorithm-based mobile agents scheme for HPC: SPMD application.
Computers 5(3), 14 (2016)

3. Cabri, G., Leonardi, L., Zambonelli, F.: Mobile-agent coordination models for
Internet applications. Computer 33(2), 82–89 (2000)

4. Chang, C., Srirama, S.N., Buyya, R.: Indie Fog: an efficient Fog-computing infras-
tructure for the Internet of Things. IEEE Comput. 50(9), 92–98 (2017)

5. Choi, S., Kim, H., Byun, E., Hwang, C., Baik, M.: Reliable asynchronous message
delivery for mobile agents. IEEE Internet Comput. 10(6), 16–25 (2006)

6. Derakhshan, F., Yousefi, S.: A review on the applications of multiagent systems
in wireless sensor networks. Int. J. Distrib. Sens. Netw. 15(5), 1550147719850767
(2019)

7. Desbiens, J., Lavoie, M., Renaud, F.: Communication and tracking infrastructure
of a mobile agent system. In: Proceedings of the Thirty-First Hawaii International
Conference on System Sciences, vol. 7, pp. 54–63. IEEE (1998)

8. Deugo, D.: Mobile agent messaging models. In: Fifth International Symposium
on Autonomous Decentralized Systems, ISADS 2001, Dallas, Texas, USA, 26–28
March 2001, pp. 278–286. IEEE Computer Society (2001)

9. Jingyang, Z., Zhiyong, J., Daoxu, C.: Designing reliable communication protocols
for mobile agents. In: 2003 23rd International Conference on Distributed Comput-
ing Systems Workshops, Proceedings, pp. 484–487. IEEE (2003)

10. John, V., Liu, X.: A survey of distributed message broker queues. CoRR
abs/1704.00411 (2017). http://arxiv.org/abs/1704.00411

11. Lazar, S., Weerakoon, I., Sidhu, D.: A scalable location tracking and message
delivery scheme for mobile agents. In: 7th Workshop on Enabling Technologies
(WETICE 1998), Infrastructure for Collaborative Enterprises, CAUSA, Proceed-
ings, 17–19 June 1998, Palo Alto, pp. 243–249. IEEE Computer Society (1998)

12. Olaru, A., Sorici, A., Florea, A.M.: A flexible and lightweight agent deployment
architecture. In: 22nd International Conference on Control Systems and Computer
Science, Bucharest, Romania, 28–30, pp. 251–258. IEEE (2019)

13. Outtagarts, A.: Mobile agent-based applications: a survey. Int. J. Comput. Sci.
Netw. Secur. 9(11), 331–339 (2009)

14. Qadori, H.Q., Zulkarnain, Z.A., Hanapi, Z.M., Subramaniam, S.: Multi-mobile
agent itinerary planning algorithms for data gathering in wireless sensor networks:
a review paper. Int. J. Distrib. Sens. Netw. 13(1), 1550147716684841 (2017)

15. Rawat, A., Sushil, R., Sharm, L.: Mobile agent communication protocols: a com-
parative study. In: Jain, L.C., Behera, H.S., Mandal, J.K., Mohapatra, D.P. (eds.)
Computational Intelligence in Data Mining - Volume 1. SIST, vol. 31, pp. 131–141.
Springer, New Delhi (2015). https://doi.org/10.1007/978-81-322-2205-7 13

16. Roman, R., López, J., Mambo, M.: Mobile edge computing, Fog et al.: a survey
and analysis of security threats and challenges. Future Gener. Comput. Syst. 78,
680–698 (2018)

17. Virmani, C.: A comparison of communication protocols for mobile agents. Int. J.
Adv. Technol. 3(2), 114–122 (2012)

18. Wojciechowski, P.T.: Algorithms for location-independent communication between
mobile agents. In: Proceedings of AISB 2001 Symposium on Software Mobility and
Adaptive Behaviour (2001)

http://arxiv.org/abs/1704.00411
https://doi.org/10.1007/978-81-322-2205-7_13

	Comparing the Performance of Message Delivery Methods for Mobile Agents
	1 Introduction
	2 Related Work
	3 Framework Architecture
	3.1 Experimental Scenarios

	4 Comparison of Message Delivery Models
	5 Conclusion and Future Work
	References




