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Abstract

Gondwana Supercontinent in eastern and southern Africa
formed by collision and amalgamation of two crustal
plates, provisionally named East Gondwana and West
Gondwana and the Mozambique Ocean intake between
841 and 632 Ma. East Gondwana consists of the
Arabian–Nubian Shield (ANS) and the older crystalline
basement in Madagascar, India, Antarctica and Australia,
while West Gondwana consists of much of Africa and
South America. Collision and amalgamation of East and
West Gondwana formed the East African Orogeny. The
supercontinent of Gondwana ranged from Neoproterozoic
(*550 Ma ago) to Carboniferous (*320 Ma ago).
Gondwana became the largest continental crust during
the Paleozoic Era (*100 million km2). During the
Carboniferous, Gondwana amalgamated with Euramerica
resulting in the formation of the supercontinent, Pangaea.
Three orogeneses were recognized during the 1990s: the
East African Orogeny (650–800 Ma), Kuunga Orogeny
(including the Malagasy Orogeny in southern Madagas-
car) (550 Ma)—the collision between East Gondwana
and East Africa in two steps—and the Brasiliano Orogeny
(660–530 Ma)—the collision between South American
and African Cratons. Formation of arcs in the ANS
occurred over a *300-million-year period including
supercontinent Rodinia break-up and the assembly of
supercontinent Gondwana. The ANS represents one of
the best documented examples of Late Proterozoic to
Early Paleozoic (950–450 Ma) crustal growth through
processes of lateral arc–arc terrane accretion. The tectonic
development of the ANS spans three phases spanning

over 600 Ma: accumulation of arc terrains inside the
Hijaz Magmatic Arc, accompanied by accretion of the
Hijaz Magmatic Arc against the Nile Craton and
reworking of the accreted arc after accretion. The
Egyptian Nubian Shield (ENS) covers *100,000 km2,
crops out along the Red Sea Hills in the Eastern Desert
and southern Sinai, as well as limited areas in the south
Western Desert (Oweinat area, 2673 ± 21 Ma). The ENE
covers the northeastern part of the East African Orogeny
and stretches over approximately 800 km parallel with
the Red Sea coast between latitudes 22° 00΄ 00˝ and 28°
40΄ 00˝ N. The rocks are covered by Nubia sandstone,
Miocene and later sediments in their western and eastern
margins. The Eastern Desert of Egypt is divided into three
domains, namely, the northern Eastern Desert (NED),
central Eastern Desert (CED) and southern Eastern Desert
(SED); these domains were developed in different
tectonic settings and show a characteristic younging from
(SED) to (NED). Geologically, gneisses, migmatites and
schists dominate the SED as the oldest units, and are
followed by ophiolites, volcanic arc lithologies and
granitoid plutons. The amount of ophiolites increases
and forms with the arc metavolcanics the main types in
the CED. The ophiolites and the metavolcanics are
occasionally unconformably and tectonically overlained
by Dokhan volcanics and molasse sediments. The older
gneisses and migmatites form prominent domal structures
(e.g. Meatiq, Sibai, Hafafit, El-Shalul). Syn-tectonic and
late tectonic granitoids are also present. The NED is
characterized by younger rocks, such as Gattarian gran-
ites, Dokhan volcanics and Hammamat molasse sedi-
ments, whereas older rock types rarely occur. The bulk of
the crust of the SED was created prior to 650 Ma, while
the major pulses of the CED occurred in the interval
(685–575 Ma). In the NED and Sinai, the crust was
principally formed in the period (625–575 Ma).
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2.1 Formation and Amalgamation
of Gondwana Supercontinent

Gondwana is the name for the southern half of an ancient
supercontinent known as Pangaea or Pangea that existed
some 300 Ma, along with a northern supercontinent known
as Laurasia (Meert et al. 2011). The continent broke up
about 180 Ma and eventually split into landmasses we rec-
ognize today: South America, Africa, Madagascar, Sri
Lanka, India, the Arabian Peninsula, Antarctica and Aus-
tralia (Fig. 2.1). Gondwana was the largest unit of conti-
nental crust on Earth for more than two hundred million
years. The name “Gondwana” or “Gondwanaland” is
derived from a tribe in India (Gonds) and “wana” meaning
“land of”. This name was first used in 1879 by Medlicott and
Blanford from the Indian Geological Survey. Wegener
(1915) enlarged the concept of Gondwana and postulated his
ideas regarding continental drift, and the existence of a
previously united Gondwana. Wegener once believed that all
of the continents were together in a “Urkontinent” before
splitting apart and moving to their present places. Most of
Wegener’s findings on fossils and rocks are right, he was in
certain ways highly incorrect. For instance, Wegener figured
that the continents should have plowed like icebreakers into

the ocean crust. Plate tectonics is now the widely accepted
theory that Earth’s crust is fractured into rigid, moving
plates.

Several events, collectively known as the Pan-African
orogeny, led to the amalgamation of most of the continental
fragments of a much older supercontinent, Rodinia. Rodinia
is a supercontinent that was united 1.3–0.9 billion years ago
during Grenville Orogeny and broke up 750–633 million
years ago (McMenamin and McMenamin 1990; Li et al.
2008; Meert 2012). It was surrounded by an ocean called
Mirovia. Valentine and Moores (1970) were perhaps the first
to identify a Precambrian supercontinent called Pangaea that
was renamed as “Rodinia” by McMenamin and McMenamin
(1990). The fragments of the break-up of Columbia collided
and were assembled by global-scale 2.0–1.8 Ga collisional
events and formed Rodinia at c. 1.23 Ga (Zhao et al. 2002,
2004). Condie (2002) reported that Rodinia was created
between 1300 and 900 Ma and that the continental disinte-
gration happened between 950 and 600 Ma (Fig. 2.2). The
break-up of Rodinia started around 950 Ma ago and per-
sisted until ca. 600 Ma (Condie 2002; Rogers and Santosh
2004).

The Mozambique Belt is one of the 800–650 Ma oro-
genic belts and was initially described as the suture dividing

Fig. 2.1 The Gondwanaland supercontinent. The cratons comprising West Gondwana and those comprising East Gondwana (modified after Gray
et al. 2008). Neoproterozoic orogenic belts crisscross the supercontinent. Those associated with the final amalgamation of the supercontinent are
the East African Orogen (750–620 Ma; blue), the Brasiliano-Damara Orogen (630–520 Ma; dark red) and the Kuunga Orogen (570–530 Ma; red)
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East from West Gondwana. The Mozambique Ocean sepa-
rated the Congo–Tanzania–Bangweul Block of central
Africa from Neoproterozoic India (India, the Antongil Block
in far eastern Madagascar, the Seychelles, and the Napier
and Rayner Complexes in East Antarctica). The Azania
continent was an island in the Mozambique Ocean and
include much of central Madagascar, the Horn of Africa and
parts of Yemen and Arabia (Collins and Pisarevsky 2005).
The final formation of Gondwana occurred about 500 mil-
lion years ago (Figs. 2.3, 2.4 and 2.5). Gondwana is super-
ficially divided into western half (South America and Africa)
and an eastern half (Madagascar, Antarctica, Sri Lanka,
India and Australia) and Ediacaran–Cambrian age by coa-
lescence of East Gondwana with West Gondwana with
closing of the Mozambique ocean and development of the
Mozambique Belt (Stern 1994a, b; Meert et al. 2011;
Johansson 2014).

Gondwana amalgamated with Euramerica during the
Carboniferous to create a broader supercontinent called
Pangaea. During the Mesozoic era, Gondwana (and Pan-
gaea) were gradually fragmented. During Silurian, Gond-
wana supercontinent (Australia, Antarctica, India, Arabia,
Africa, and South America, Florida, southern Europe, and
the Cimmerian terranes, namely, Turkey, Iran, Afghanistan,

Tibet and the Malay Peninsula) was centred over the South
Pole. Rheic Ocean is an east–west ocean separating the
southern European sector of Gondwana from northern Eur-
ope (Baltica) and was basically a southwestern extension of
the Paleotethys Sea. During the Caledonian orogeny
(410 Ma ago), a minor supercontinent named Euramerica
was created due to collision between the Avalonia cratons,
Baltica and Laurentian. The Caledonian orogeny was a
mountain-building era recorded in the northern parts of
Ireland and Britain, the Scandinavian Mountains, Svalbard,
eastern Greenland and parts of north-central Europe (Torsvik
and Cocks 2013). In the Permian, the supercontinent of
Euramerica became part of the major Pangaea superconti-
nent. Euramerica became part of Laurasia in the Jurassic
when Pangaea split into two separate continents, Gondwana
and Laurasia. Some 180 Ma, in the Jurassic Period, the
western half of Gondwana (Africa and South America)
separated from the eastern half (Madagascar, India, Australia
and Antarctica) (Figs. 2.6 and 2.7). In the Cretaceous, Africa
broke away from South America, leading to opening of the
South Atlantic Ocean at about 140 Ma. In the same period,
the central part of the Indian Ocean opened, and India parted
from Madagascar, and Australia slowly rifted away from
Antarctica. Also, Laurasia divided into the North America

Fig. 2.2 A proposed
reconstruction of the
supercontinent Rodinia, about
990 million years (after
Johansson 2014). Possible
subduction zone outboard of
Greenland margin follows the
idea of the Valhalla orogenof
Cawood et al. (2010). Separation
and rotation of northern Australia
relative to southern and western
Australia according to Li and
Evans (2011)
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and Eurasia continents. Baltica was part of Eurasia, and the
Laurentian craton was part of North America while Avalonia
became split between the two. The remains of Gondwana
constitute two-thirds of the continental region of today
(Torsvik and Cocks 2013). India collided with Eurasia cre-
ating the Himalayan Mountains 50 million years ago, when
the northward-moving Australian plate has only started its
collision on the southern edge of south-east Asia, a collision
still ongoing today.

There are basically two geodynamic scenarios to explain
the formation of the Gondwana Supercontinent in eastern
and southern Africa during the Pan-African orogenic cycle
(Westerhof et al. 2008). The first scenario involved collision
and amalgamation of East Gondwana and West Gondwana
(*640 to *530 Ma) (Shackleton 1994; Kröner et al. 2001;
Jacobs et al. 2006; Westerhof et al. 2008) and the Mozam-
bique Ocean consumed between 841 and 632 Ma (Cutten
and Johnson 2006). In this model, East Gondwana com-
prised juvenile crust (ANS, and older crystalline basement in
Australia, Antarctica, India and Madagascar), and West
Gondwana was composed of most of South America and
Africa (Figs. 2.4, 2.5 and 2.7). Collision and amalgamation
of East and West Gondwana produced the East Africa
Orogen (EAO) (Stern 1994a, b) that it is an N–S directed

fold belt (6000 km). This orogenic cycle dated *650–
490 Ma (Cahen and Snelling 1966). Kröner (2006) reported
peak granulite facies metamorphism in East Africa and
Madagascar between 640 and 550 Ma. The second scenario
assumes collision and amalgamation of East Gondwana
(ANS and older crystalline basement of the Dharwar Craton
of southern India, Madagascar and the eastern granulites of
Kenya and Tanzania), West Gondwana (Central Africa
craton) and South Gondwana (Antarctica and the Kalahari
craton) (Grantham et al. 2003) (Fig. 2.1). South Gondwana
has been integral since the Grenvillian Orogeny at *1.0 Ga.
In this scenario, the EAO suture directed by the N–S implies
Kuunga Orogen suture directed to the E–W, comprising
from W to E, the Damara–Lufilian–Zambezi (DLZ) Belt
(Fig. 2.8), the Lúrio Thrust Belt (LTB) and, further east-
wards, thrust belts of Sri Lanka (Westerhof et al. 2008). In
this scenario, pan-African remobilization of Mesoprotero-
zoic and older crust south of the Kuunga Suture is confined
to metamorphic overprinting throughout linear N–S-directed
shear zones (Manica Shear Zone, Fig. 2.1) along the eastern
margin of the Zimbabwe Craton (Manhiça et al. 2001; GTK
Consortium 2006; Westerhof et al. 2008).

Collision and amalgamation of the Central Africa Craton
(West Gondwana) and Kalahari Craton (South Gondwana)

Fig. 2.3 Separation and rotation
of the eastern South American
and southern and central African
cratons, as well as East
Antarctica, Australia and India,
relative to a fixed Laurentia, at
750–650 Ma (after Johansson
2014). Formation of large
amounts of juvenile
Neoproterozoic crust in island
arcs, particularly in the Arabian–
Nubian sector
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and Closure of the Zambezi–Adamastor Oceanic Basin
(Johnson et al. 2005) resulted in the Damara–Lufilian–
Zambezi Belt (Fig. 2.8), a major Neoproterozoic suture
(Burke et al. 1977; Oliver et al. 1998; John et al. 2003;

Johnson and Oliver 2000, 2004). The Lufilian and Zambezi
segments of the Damara–Lufilian–Zambezi Belt can be
described as a thin- and thick-skinned, double-verging oro-
gen with thrust transport to the SSE (Müller et al. 2001;

Fig. 2.4 Collision between the
various Gondwana cratons along
the Brasiliano and Pan-African
orogens at 650–550 Ma; juvenile
crust formation followed by arc
collision and northwards
extrusion in the Arabian–Nubian
sector and extensive reworking of
the Saharan metacraton (after
Johansson 2014). Initial break-up
between Laurentia, Amazonia and
Baltica at 600 Ma
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Kuribara et al. 2018) and NNE–NE (Hanson et al. 1994;
Johnson and Oliver 2004), suggesting oblique convergence
between West and South Gondwana (Westerhof et al. 2008).

2.2 Orogens that Shaped the Greater
Gondwana

The assembly of continental blocks forming West Gond-
wana began within the 900–700 Ma time frame, and reached
completion at 550–530 Ma, based on paleomagnetic,

geologic and isotopic data (Meert and Van Der Voo 1997;
Rogers and Santosh 2004; Teixeira et al. 2007). Three oro-
genies were recognized during the 1990s: (i) The East
African Orogeny (650–800 Ma), (ii) Kuunga Orogeny (in-
cluding the Malagasy Orogeny in southern Madagascar)
(550 Ma) and (iii) The Brasiliano Orogeny (660–530 Ma).
The East African and Kuunga are the resultant of the colli-
sion between East Gondwana and East Africa, whereas the
Brasiliano Orogeny is the result of the collision between
South American and African Cratons (Meert and Van Der
Voo 1997).

Fig. 2.5 Final assembly of
Gondwana at around 550–
500 Ma (after Johansson 2014).
Separation of Baltica, Laurentia
and Amazonia from each other
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2.2.1 The West- African–Brasiliano Orogeny

Kennedy (1964) identified a major period of deformation
and metamorphism in Africa that occurred at approximately
500 Ma. Orogeny at this time was soon recognized to be
widespread throughout Africa and was referred to as
‘‘Pan-African”. Geologists in South America also found
numerous orogenic belts of the same age and named them
Brasiliano. The descendants of Rodinia have evolved during

the whole Neoproterozoic and the Cambrian, and they
interacted during that time (ca. 410 Ma as a whole) and
generated the so-called Brasiliano/Pan-African Mobile Belts
(Figs. 2.9 and 2.10) (Brito-Neves et al. 1999). Brasiliano
Orogeny refers to a sequence of Neoproterozoic orogenies
found mostly in Brazil, and elsewhere in South America.
The Brasilia Belt is a complex orogenic system (thin and
thick skin), 1100 km long, displaying structural vergence
towards the São Francisco Craton, with P and T

Fig. 2.6 Gondwana and other adjacent sectors within the still largely united Pangea at 200 Ma, Triassic–Jurassic boundary time.
Palaeolongitudes at 30° intervals were calculated from the position of Pangea over the Africa large low-shear velocity province (LLSVP),
(after Torsvik and Cocks 2013). The black dotted lines indicate the closed Iapetus and Rheic sutures, and the white dotted lines the future zones of
the break-up of Pangea to form the Atlantic Ocean at 195 Ma and the Indian Ocean at 175 Ma. The ‘Greater India’ area is subjectively added as a
northern extension of India at this time (following van Hinsbergen et al. 2012). The island arcs which undoubtedly surrounded parts of the
supercontinent are omitted: AP, The Antarctic Peninsula; C, centre of the Central Atlantic Magmatic Province LIP (for its vast extent, see Fig. 2.6);
DML, Dronning Maud Land, Antarctica; F, Falkland Isles, Fl, Florida; MBL, Marie Byrd Land, Antarctica; MT, the Mexican terranes of
Mixteca-Oaxaquia and Sierra Madre; Pat., Patagonia; TI, Thurston Island, Antarctica; Y, Yucatan. Dotted red lines are the plume generation zones
(PGZ). Solid red lines are subduction zones, with teeth on their downward sides. Blue lines are ocean spreading centres
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metamorphic conditions increasing progressively towards
the west (Brito-Neves et al. 1999). The Brasiliano Orogeny
is a common term for Pan-African/Brasilian Orogeny that
extended not only in South America but across most of
Gondwana (Rogers and Santosh 2004; Kröner and Stern
2004). The orogeny resulted in the closing of several oceans
including the Puncoviscana, the Peri-Franciscano, the
Goianides and the Adamastor (Tohver et al. 2010; Frimmel
and Hartwig 2010). The West African–Brasilian Orogeny
had been tectonically active until the end of the Cambrian
period (*490 Ma; Schmitt et al. 2004; Meert and Lieber-
man 2008). Prior to Gondwana break-up, the Congo Craton
originally linked with the Sao Francisco Craton forming a
larger continental mass wrapped by Brasiliano orogenic belts
(Trompette 1994, 2000). In southern Africa, the Congo and
Kalahari Cratons are separated by a transcontinental
Pan-African orogeny comprising the Damara Belt, the
Lufilian Arc and the Zambezi Belt (Figs. 2.8 and 2.9)
(Kuribara et al. 2018). Brasiliano Orogeny along the western
margin of southern Africa comprises the West Congo,
Kaoko, Gariep and Saldania Belts (Figs. 2.9 and 2.10)
(Hanson 2003).

2.2.2 The Damara–Zambesi–Lufilian Orogeny

The Damara–Zambezi–Lufilian Orogeny developed essen-
tially by closure of linked, narrow ocean basins (Hanson
2003). The Zambezi Belt (Figs. 2.8 and 2.9) lies between the

Fig. 2.7 Pan-African (c.500 Ma) and Grenville-age (c. 1000 Ma)
belts in Gondwana after Harley et al. (2013) and Hoffman (1991).
A major Pan-African suture was inferred to pass from juvenile
Neoproterozoic arc rocks and ophiolite of the Arabian–Nubian shield
(1) into the Mozambique Belt (2), and then pass either into the Damara–
Zambezi Orogen (3a: Hoffman 1991) or Antarctica (3b: Shackleton
1996). Two principal sutures were identified within West Gondwana:
one along the Gariep and Kaoko belts of SW Africa and the Dom
Feliciano and Brasilia belts of South America (4; site of the Adamastor
Ocean: Hartnady et al. 1985), and one along the Pampean, Paraguay
and Araguaia belts of South America (5; site of the Clymene Ocean:
Trindade et al. 2006). Extrapolation of these belts into northern Africa
is hindered by a poor understanding of the Saharan Metacraton
(Abdelsalam et al. 2002) but potential extensions include the Tuareg
Shield (6: Black et al. 1994) and the Oubanguides Belt (7: Pin and
Poidevin 1987). Pre-Grenvillian cratons: AMZ, Amazon; CG,
Congo; EAN, East Antarctic; IN, Indian; KH, Kalahari; NA, North
Australian; RP, Río de la Plata; SA, South Australian; WA, West
Australian; WAF, West African. Grenville-age orogenic belts: af,
Albany– Fraser; cea, Circum East Antarctic; e.g., Eastern Ghats; ir,
Irumide; kb, Kibaran; md, Madagascar; nn, Namaqua– Natal; rs,
Rondônia–Sunsas (Figure and comment are modified after Harley et al.
2013)

Fig. 2.8 Position of the Lufilian arc among the Pan-African belts of
central and southern Africa (modified after Van Hinsbergen et al. 2012)

Fig. 2.9 Distribution of Neoproterozoic units in
Pan-African/Brasiliano tectonic belts in southern Africa and
south-eastern South America (shown in an Upper Cretaceous Gond-
wana break-up position); main orogenic kinematic transport directions
are indicated by arrows (modified after Frimmel 2009)
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Congo Craton and the Kalahari Craton and branches off the
Mozambique Belt in northern Zimbabwe and southern
Zambia (Johnson and Oliver 2002; Kröner and Stern 2004;
Rogers and Santosh 2004; Kuribara et al. 2018). The
Kalahari Craton is an old and stable part of the continental
lithosphere that consists of the Kaapvaal, the Zimbabwe
Craton, the Limpopo Belt and the Namaqua Belt, and
occupies a large portion of South Africa (Johnson and Oliver
2002). The Congo Craton is an ancient Precambrian craton
covered by the Palaeozoic to recent. Congo Basin together
with Tanzania, West African, Zimbabwe and Kaapvaal
cratons constitutes the recent continent of Africa (Johnson
and Oliver 2002). These four cratons were formed between
about 3.6 and 2.0 Ga and have been tectonically stable since
that time (Johnson and Oliver 2002).

The Zambezi Belt was developed through two
tectonothermal events, one between about 890 and 880 Ma
and the other about 550 and 520 Ma. Both events affected
the existing Archean to Mesoproterozoic rocks (Johnson and
Oliver 2002; Kuribara et al. 2018). The second event was
produced during the assembly of the Gondwana Supercon-
tinent as a result of the Congo–Kalahari collision at the end
of the Neoproterozoic (Johnson and Oliver 2002; Hargrove
et al. 2003).

The Damara Orogeny occurred late in the creation of
Gondwana, and the Damara Belt is exposed mainly in
Namibia between the Kalahari and the Congo cratons (Jung

and Mezger 2003; Gray et al. 2008). Damara Belt (Figs. 2.8,
2.9 and 2.10) is produced by the closing of the Damara and
Adamastor oceans and continues northwards into the Kaoko
Belt and southwards into the Saldania and Gariep Belts
(Kröner and Stern 2004). The Damara Orogeny involved the
suturing of the Congo–São Francisco and Río de la Plata
Cratons at 580–550 Ma (together with India forming
northern Gondwana) before the amalgamation of the Kala-
hari and Mawson Cratons in the Kuunga–Damara Orogeny
at 530 Ma (southern Gondwana) (Jung and Mezger 2003;
Gray et al. 2008). The Adamastor Ocean closed southwards
from the Araçuaı  Belt (São Francisco Craton, now in South
America) to the Kaoko Belt (Congo Craton, now in Africa)
580–550 Ma and 545–530 Ma Kalahari Craton in southern
Africa (Gray et al. 2008). The Kaoko Belt is developed by
closing the Adamastor Ocean and comprises a shear zone in
southern Angola known as the 733–550 Ma-old Puros lin-
eament (Kröner and Stern 2004). It branches north-west
from the Damara Belt into Angola and contains strongly
deformed rocks (2030–1450 Ma-old). No island arcs or
ophiolite are known from the Kaoko Belt (Kröner and Stern
2004). The peak of deformation and metamorphism in
Damara Orogeny occurred at 530–500 Ma, while thrusting
against the Kalahari Craton occurred at 480 Ma (Jung and
Mezger 2003; Gray et al. 2008). All African cratons were
assembled by c. 550 Ma, and the final amalgamation of
north and South Gondwana were intra-cratonic during the
last stages of the Damara–Kuunga Orogeny (Gray et al.
2008). The Damara Orogeny produced the Naukluft
Mountains in central Namibia from 550 Ma to 495 Ma
(Gray et al. 2008).

The Lufilian Arc (Fig. 2.8) is about 800 km long that
extends across eastern Angola, the Katanga Province of the
southern Congo and the north-west of Zambia (Ray et al.
2010; Laznicka 2010; Ray et al. 2010). It represents the
continuation of the Damara Belt in Namibia northern Bots-
wana (Kröner and Stern 2004). Its global economic impor-
tance comes from its enrichment in copper and cobalt
deposits.

2.2.3 The East African Orogeny

The EAO (*6000 km N–S) represents the largest continu-
ous Neoproterozoic–Cambrian orogeny on Earth (Fritz et al.
2013). It is subdivided into the ANS in the north, composed
largely of juvenile Neoproterozoic crust (Stern 1994a, b,
2002; Johnson et al. 2011; Fritz et al. 2013) and the
Mozambique Belt (MB) in the south (Figs. 2.1 and 2.11)
comprising mostly pre-Neoproterozoic crust with a Neo-
proterozoic–early Cambrian tectonothermal overprint (Fritz
et al. 2005; Collins 2006; De Waele et al. 2006; Bingen et al.
2009; Fritz et al. 2013).

Fig. 2.10 Collage of Pan-African/Brasiliano tectonic belts around
Archaean to Mesoproterozoic cratonic blocks in Africa and South
America with focus on southern Africa; DF; Dom Feliciano Belt, G;
Gariep Belt, LA; Luiz Alvez microplate, RP; Riodela Plata Craton, S;
Saldania Belt (basement of Permo-Triassic Cape Fold Belt) modified
from Unrug (1996) and Frimmel (2009)
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Fig. 2.11 Distribution of crustal
domains in the East African
Orogen. ANS, Arabian–Nubian
shield; CTB, Congo–Tanzania–
Bangweulu Cratons; ZKC,
Zimbabwe–Kalahari Cratons
(modified after Johnson et al.
2011; Fritz et al. 2013)
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In the early 1980s, the concept of Gondwana assembly in
the Neoproterozoic via East and West Gondwana (Australia–
India–Antarctica and Africa–South America) at the
Pan-African Mozambique Belt (MB) was first proposed
(McWilliams 1981; Stern 1994a, b). The main stage in the
Late Precambrian Gondwana assembly and the continental
collision between East and West Gondwana along the line of
the Mozambique Belt was named the EAO (Stern 1994a, b).
The Mozambique Belt is a suture in the earth’s crust
between East and West Gondwana that extends from East
Antarctica through East Africa (Tanzania, Kenya, Uganda,
Rwanda, Burundi and South Sudan) up to the Arabian–
Nubian Shield (Cutten 2002). Some of the components in
the Mozambique Belt produced when the Mozambique
Ocean opened and the other formed when the ocean later
closed.

Bogdanova et al. (2009) concluded that Rodinia broke up
in four stages between 825 and 550 Ma:

(i) The break-up was superplume initiated (Large
low-shear-velocity provinces, LLSVPs) around 825–
800 Ma whose influences—including crustal arching,
copious bimodal magmatism and thick rift-type sedi-
mentary sequences—have been recorded in the Ara-
bian–Nubian Craton, Tarim, India, South China,
South Australia and Kalahari.

(ii) Rifting proceeded in these same cratons (800–
750 Ma) extending to Laurentia and maybe Siberia.
India, Madagascar and the Congo–Säo Francisco
Craton were split from Rodinia at this time or were
never actual components of the supercontinent.

(iii) As the central areas of Rodinia reached the Equator
around 750–700 Ma, a new pulse of magmatism and
rifting continued the disassembly in western Kalahari,
West Australia, South China, Tarim and most margins
of Laurentia.

(iv) 650–550 Ma several events coincided: the opening of
the Lapetus Ocean; the closing of the Braziliano,
Adamastor, and Mozambique Oceans; and the
Pan-African Orogeny. The result was the formation of
Gondwana.

The late Mesoproterozoic–early Neoproterozoic events of
the southern segment of the East African Orogeny include
separation of the Congo and the contiguous East Sahara
Cratons from Rodinia (*1200 Ma), evolution of the sedi-
mentary basin in Kenya (*820 Ma), development of a
passive margin east of the Tanganyika shield of the Congo
craton, and migmatization, ophiolite emplacement and
metamorphism in the Kenyan segment of the East African
orogen (Shackleton 1986; Mosley 1993; Unrug 1997). In the
northern EAO, bimodal rift-related magmatism has been

dated at 870–840 Ma in the Nubian shield and at 880 Ma in
the Arabian shield (Stern 1994a, b; Unrug 1997). The rifting
events in the late Mesoproterozoic–early Neoproterozoic
include opening of large Arabian–Nubian and Pharusian
Oceans east and west of the Congo–East Sahara–Nile craton
cluster. At about 1000 Ma, passive margins developed along
the eastern borders of the Rio de la Plata, Amazonian and
West African cratons (Trompette 1994). The Adamastor
Ocean opened between the Congo, Saõ Francisco, Rio de la
Plata and Kalahari cratons (Powell 1993).

Two partly incomparable scenarios have been proposed
for Gondwana assembly (Meert 2003). In the first model, the
EAO developed from an accretionary orogeny involving the
amalgamation of arcs and evolved into a collisional orogeny
when the Neoproterozoic Azania Continent collided with the
Congo–Tanzania–Bangweulu Block at c. 640 Ma (Collins
and Windley 2002). In the other model, the East Gondwana
assembly c. 750–530 Ma was produced via two main oro-
genies: the younger Kuunga Orogeny (c. 570–530 Ma) and
the older is the EAO (*750–620 Ma) (Meert 2003).

The EAO extends for more than 6000 km in Gondwana.
The preserved relics of the EAO include exhumed high-PT
metamorphic belts of the Mozambique Belt (Southern India,
Madagascar, East Africa) to greenschist or lower grade
facies belts in the ANS (NE Africa and Arabia) (Cox et al.
2012). The EAO have been resulted from the collision of
amalgamated arc terranes of the ANS with the Azania and
Afif terranes to the east and the Sahara and Congo–Tanzania
Cratons to the west (Fritz et al. 2013) (Figs. 2.11 and 2.12).
Azania is a continental block between the Indian Shield and
Congo–Tanzania–Bangweulu Craton, named after the clas-
sical name for the East African coast (Collins and Pisarevsky
2005). Also, Azania is defined as microcontinent of Archean
and Paleoproterozoic crust (2900–2450 Ma) extend over
Somalia, Madagascar and Arabia (Afif terrane) (Fritz et al.
2013) (Fig. 2.11). A Neoarchean continental block named
Al-Mahfid Block of Yemen links between Azania and Afif
(Windley et al. 1996; Whitehouse et al. 2001). As a result of
the Mozambique Ocean rollback, the Azania Microcontinent
detached from the Congo–Tanzania–Bangweulu Craton and
the subducted oceanic crust beneath central Madagascar
from a subduction zone marked by the eastern Betsimisaraka
Malagasy Suture (Collins and Windley 2002; Collins et al.
2000; 2007 and 2012). Separation of Azania Microcontinent
from the Congo–Tanzania–Bangweulu Block (*800–
750 Ma) produced a back-arc basin that formed behind the
continental arc created on Azania (Collins and Pisarevsky
2005). Both the eastern and western margins of Azania are
marked by Neoproterozoic volcanosedimentary sequences
and rocks formed in an oceanic environment (Collins and
Pisarevsky 2005). The Azanian western margin of Kenya,
Ethiopia, Eritrea, and Sudan, Egypt and Saudi Arabia is
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marked by ophiolites of Neoproterozoic age and juvenile
volcanics (Abdelsalam and Stern 1996; Rogers and Santosh
2004). The ocean between Azania and East Africa was
consumed in the Tonian along an intra-oceanic arc (Collins
et al. 2012). The ocean closed at *630 Ma by collision
between the Azanian and Congo-Tanzanian continents
(Collins and Windley 2002; Collins 2006). This collision
produced highly grade metamorphosed and deformed rocks
in eastern Africa (Hauzenberger et al. 2004, 2007) and
southwestern Madagascar (Jöns and Schenk 2011). At the
same moment, or not long after the East African Orogeny, a
sequence of Cadomian terranes such as Avalonia and
Armorica were rifted off the northern Gondwana margin
early in the Paleozoic and accreted to Laurentia (Keppie
et al. 2003; Fritz et al. 2012, 2013). The rifting of these
terranes, likely due to the withdrawal of the Cadomian arc,

may have enabled the ANS to be expelled to the north
(Jacobs and Thomas 2004; Meert and Lieberman 2008; Fritz
et al. 2012, 2013).

2.2.4 Kuunga Orogeny

The EAO resulted from the amalgamation of arc terranes in
the northern ANS and continental collision between East
African pieces and parts of the Azania terrane in the south
(Collins and Pisarevsky 2005). The change from arc suturing
to continental collision settings is seen in southern Kenya
where southernmost arcs of the ANS merge with thickened
continental margin suites of the Eastern Granulite Belt. The
younger ca. 570–530 Ma Kuunga Orogeny heads from the
Damara–Zambesi–Irumide Belts (De Waele et al. 2006) over

Fig. 2.12 Kuunga-570 to 530 Ma collisional metamorphism of the Kuunga orogeny in red, 620–550 Ma post-collisional extension of the East
African Orogeny in blue (after Meert 2003)
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Tanzania–Mozambique to southern India and clashes with
the EAO in southern-central Tanzania (Fig. 2.12). Two
transitional orogen settings may be defined, (1) that between
island arcs and inverted passive continental margin within
the EAO and (2) that between N–S trending East African
and W–E trending Kuunga Orogenies. SE-Kenya’s Neo-
proterozoic arc suites are revealed as a thin stripe between
west Azania and the eastern granulite belt. This suture is a
long, NNW extended belt that roughly aligns with the
prominent southern ANS shear zones that intersect at the
ANS’s southern tip (Athi and Aswa Shear Zones) (Collins
and Pisarevsky 2005; Fritz et al. 2009, 2012, 2013).

The Kuunga Orogeny (Fig. 2.12) is an orogeny that
occurred during the Ediacaran and Cambrian in South-East
Africa. It is slightly younger than the East African orogeny
and produced by collisions between India and Australia–
East Antarctica and Azania and India (Meert 2003; Collins
2003; Jacobs and Thomas 2004; Boger and Miller 2004;
Collins and Pisarevsky 2005; Kelsey et al. 2008; Cox et al.
2012). It documents the collision between north and south
Gondwana, or what is today Dronning Maud Land in
Antarctica and northern Mozambique in Africa (Meert 2003;
Grantham et al. 2013). India collided with Australia–East
Antarctica and India collided with Azania in the Kuunga
orogeny before the formation of Gondwana (Collins and
Pisarevsky 2005; Kelsey et al. 2008; Cox et al. 2012). The
proposed location of the Azania–India collision named the
Malagasy Orogeny by Collins and Pisarevsky (2005) for the
Ediacaran to Cambrian orogeny that resulted as India col-
lided with Azania and the Congo–Tanzania–Bangweulu
Blocks. The Kuunga Orogeny is prevalent in the southern
East African orogeny in southern India (Fig. 2.12), Mada-
gascar and central Arabia (Stern 1994a, b; Fritz et al. 2013).
In East Africa, an E–W trending belt with Kuunga ages
spreads from Zambia–Malawi across Mozambique and fur-
ther into southern India and Sri Lanka (Collins et al. 2007;
Plavsa et al. 2012; Fritz et al. 2013). Overprinting of Kuunga
structures with the 620 Ma East African fabrics has led to
complex patterns of interference in the Eastern Granulites.

2.3 The Arabian–Nubian Shield (ANS)

The ANS is southward narrowing belt that forms the suture
shared between East and West Gondwana at the northern
end of the EAO (Stern and Kröner 1993; Stern 2002; Stern
et al. 2010; Ali et al. 2009a, b, 2012a, b; Johnson et al. 2011;
Merdith et al. 2017). It stretches over 3500 km to the north
and 1500 km to the east and west (Fig. 2.13), underlying an
area of *2.7 x 106 km2 in the northern half of the EAO
(Stern 1994a, b; Johnson 2014). It is representative of the
continental crust that underlies NE Africa, SW Asia and
Arabia where the eastern half of the shield is a segment of

the Arabian Plate, while the western part pertains to the
African Plate (Johnson and Woldehaimanot 2003; Rogers
and Santosh 2004).

The East Gondwana assembly was driven mainly by the
Mozambique subduction recorded in the formation of two
main orogens, Eastern Orogen and Kuunga (Meert 2003;
Collins and Pisarevsky 2005; Merdith et al. 2017). West
Gondwana is represented by Archaean and Palaeoprotero-
zoic continental crust belonging to the Saharan Metacraton,
which was strongly reworked by Neoproterozoic thermal
and deformational events and is discontinuously exposed
west of the Nile (Fritz et al. 2013). The Saharan Metacraton
is a large area of continental crust in the north-central part of
Africa. Other names have been used to describe the general
area that reflects different views of its nature and extent.
These include “Nile Craton”, “ Ghost Sahara Congo Craton”
and “Eastern Saharan Craton” (Stern 2002). Abdelsalam
et al. (2011) defined a metacraton as “a craton that has been
remobilized during an orogenic event but is still recogniz-
able dominantly through its rheological, geochronological
and isotopic characteristics”. Liégeois et al. (2013) summa-
rized the main distinctive characteristics of the metacraton as
follows: (1) absence of pre-collisional events; (2) absence of
lithospheric thickening, high-pressure metamorphism being
generated by subduction, leading to high gradient in strain
and metamorphic intensity; (3) preservation of pre-collision
allochthonous ocean terranes; (4) abundant post-collisional
magmatism associated with shear zones but not with litho-
spheric thickening; (5) presence of high-temperature–
low-pressure metamorphism linked to post-collisional mag-
matism; (6) intracontinental orogenic belts not related to
either subduction or oceanic basin closure.

2.3.1 Geology of the Arabian–Nubian Shield

The ANS consists of Precambrian metamorphic rocks
cropping out along the coastline of the Red Sea, and exposed
in areas of the Arabian and Sahara Deserts (Fig. 2.14), and
in the highlands of Yemen, the Asir Province of Arabia and
Ethiopian Highlands of the south (Figs. 2.11, 2.13 and 2.14).
The ANS includes areas of western Arabia and northeastern
Africa (Somalia, Yemen, Ethiopia, Eritrea, Sudan, Saudi
Arabia, Egypt, Jordan and Palestine) (Johnson and Wolde-
haimanot 2003; Johnson et al. 2011; Fritz et al. 2012, 2013;
Johnson 2014). Formation of arcs in the ANS occurred over
a *300-million-year period including supercontinent
Rodinia break-up and the assembly of supercontinent
Gondwana. The arc assemblages include metavolcanics and
volcanoclastic metasediments as well as large amounts of
diorite, tonalite, trondhjemite and granodiorite. Geochemi-
cally, the arcs have calc-alkaline to tholeiitic and locally
MORB chemistry (Johnson 2014). The oceanic crust in the
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ANS is represented by ophiolite complexes, ranging from
845 to 675 Ma (Stern et al. 2004; Johnson 2014) (Fig. 2.14).
The arc assemblages range from *870 to 615 Ma (Stern
et al. 2004). Based on differences in age of formation,
structural style and, locally, isotopic characteristics, the arc
assemblages are divided into tectonostratigraphic terranes
(Johnson et al. 2011; Stern et al. 2004; Johnson 2014)
(Figs. 2.11 and 2.13). Boundaries between the terranes are
ophiolite-decorated shear zones or sutures and transcurrent
shear zones (Johnson 2014) (Fig. 2.13). Most protoliths are
early to middle Cryogenian, but Tonian rocks are locally
preserved in the central and southern ANS (Johnson 2014).
Arc amalgamation and suturing occurred between *780
and 600 Ma. The accretion between the ANS and the
Saharan Metacraton reflects a terminal collision between the
ANS and West Gondwana blocks at approximately 650–
580 Ma (Johnson et al. 2011; Fritz et al. 2012, 2013;
Johnson 2014). Metamorphic grades in the ANS range from
granulite facies in the south, decreasing to greenschist facies
to the north and occurred during transpressional east–west
shortening, north–south extension, strike–slip shearing and
tectonic escape (Johnson 2014).

In the south, the west margin of the ANS is defined by
juxtaposition of ophiolite and ophiolitic mélanges and

juvenile Neoproterozoic arc magmatic terranes with the MB,
the Sahara Metacraton and the Archean Congo–Tanzania
Craton (Fritz et al. 2012, 2013) (Figs. 2.11, 2.13 and 2.15).
The Congo Craton is an ancient Precambrian craton that
with the Kaapvaal, Zimbabwe, Tanzania and West African
Cratons form the modern continent of Africa (Rogers and
Santosh 2004; Ernst et al. 2013). These cratons were formed
between about 3.6 and 2.0 Ga and have been tectonically
stable since that time (Rogers and Santosh 2004; Ernst et al.
2013). The Congo Craton occupies a significant portion of
Central South Africa, from the Kasai region of the Demo-
cratic Republic of Congo to Sudan and Angola. It forms
parts of the countries of Gabon, Cameroon and the Central
African Republic. A small portion extends into Zambia as
well, where it is called the Bangweulu Block (Ernst et al.
2013).

Most of the ANS western margin is not defined in the
north, as it is covered by Mesozoic to Cenozoic sedimentary
rocks (Fritz et al. 2013). In Sudan and Kenya, the western
margin crops out in the Keraf Arc-Continent Suture
(Abdelsalam et al. 1998), the Kabus ophiolite (Shellnutt
et al. 2017, 2018), the Sekerr ophiolite of northwestern
Kenya (Mosley 1993; Shellnutt et al. 2017) and the Kinyiki
ophiolite (Fig. 2.13) of southern Kenya (Frisch and Pohl

Fig. 2.13 Tectonic map of the
Arabian–Nubian shield showing
the locations and extents of
terranes, sutures and
post-accretionary structures
Modified after Johnson and
Woldehaimanot (2003), Hargrove
et al. (2006) and Abdelsalam
(2010)
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Fig. 2.14 Simplified geological map of the Arabian shield (after Johnson 2006)
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Fig. 2.15 The Arabian–Nubian Shield in relation to older crust on its margins (after Fritz et al. 2013 and Johnson 2014). Ophiolites schematically
shown after (Berhe 1990): A Allaqi; Ad Adola; Ak Akobo; B Baragoi; BU Bi’r Umq; E Jabal Ess; G Gebel Gerf; H Halaban; K Kinyiki; M
Moyale; MS Moroto-Sekerr; N Nuba; Na Nakasib; S Sol Hamed; T Jabal Thurwah; Ta Jabal Tays; Tu Bi’r Tuluhah; TY Tuludimtu-Yubdo; U
Jabal Uwayjah; W Jabal Wask (after Johnson 2014)
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1986). The Keraf Suture is an N-trending suture about
500 km long and *50 km wide. It formed during Gond-
wana amalgamation and lies between the ANS in the east
and the older Nile Craton to the west (Abdelsalam et al.
1998). The southern part of the suture is dominated by N-
and NNW-striking, sinistral strike–slip shear zones, whereas
the northern part is deformed by N-trending upright folds
(Abdelsalam et al. 1998). The southern tip of the ANS is
represented by old amphibolites and gneisses (955–845 Ma)
close to Galana–Athi shear zone (Fig. 2.15) which is con-
sidered as part of Azania craton (Bauernhofer et al. 2008)
(Figs. 2.11 and 2.13).

The eastern margin of the ANS in Kenya, Ethiopia and
Somalia is marked by the Mutito-Bruna Shear Zone (Mosley
1993). Mutito-Bruna Shear Zone (Figs. 2.11 and 2.15)
occurs in contact with Azania and represents intense ductile
shearing producing closely spaced steep, upright, N–S or
NNW–SSE ductile zones, often with a constrictional, linear
tectonite fabric generally with a sinistral shear sense (Mosley
1993). The Mutito shear zone (Figs. 2.11 and 2.15) separates
the Barsaloi-Adola Moyale ophiolitic belts from the poorly
exposed older suites of the Burr Complex in southern
Somalia (Mosley 1993). The boundary between shared by
Azania and the ANS in Yemen is probably defined by
arc-continent sutures along the Abas and Al-Mahfid terranes
(Figs. 2.11 and 2.13). The boundaries between the ANS and
the Afif Terrane and Khida Subterrane in eastern Saudi
Arabia are arc–arc sutures (Johnson et al. 2011); therefore,
they considered as crustal blocks within the ANS
(Fig. 2.13).

The ANS initiated by at c. 870 Ma by rifting of Rodinia,
closure of the Mozambique Ocean and accumulation of
volcanic arcs during a few hundred million years
before *600 Ma (Rogers and Santosh 2004; Johnson et al.
2011; Fritz et al. 2013) on thin juvenile crust of the
Mozambique Ocean. This region of juvenile crust extends to
the northern margin of the Ethiopian flood basalts and also
appears in scattered outcrops just south of the basalts
(Rogers and Santosh 2004; Fritz et al. 2013). The ANS
incorporates Middle Cryogenian–Ediacaran (790–560 Ma)
terrestrial and shallow-marine sedimentary and volcanic
successions (Fig. 2.16) which lie unconformably on Cryo-
genian juvenile crust. The older units were deposited in the
central ANS after 780–760 Ma shearing and suturing. In the
northern ANS, *700 Ma suturing is consistent with Middle
Cryogenic Basins. In the eastern ANS, Late Cryoge-
nian basins were superimposed and accompanied by Nabi-
tah Orogeny at 680–640 Ma (Johnson et al. 2011, 2013).
Ediacaran successions are found in pull-apart and trans-
pressive basins formed during final consolidation of the
ANS (Johnson et al. 2011, 2013).

Ediacaran post-amalgamation basins are widespread in
the ANS (Fig. 2.17). The fill of these basins includes

Dokhan volcanics and sedimentary rocks belonging to
Hammamat and Thalbah Groups, and the Saramuj Con-
glomerates (Johnson et al. 2011, 2013). Deposition of
oceanic volcanic arcs was followed by intrusion of
post-tectonic granites and stabilization of the terrane
between 600 and 500 Ma, terminated at c. 550 Ma by the
transformation of the northerly sections of the EAO into a
passive margin on the southern shore of palaeo-Tethys (Fritz
et al. 2013). The Kuunga shortening phase occurs under
central Arabia’s Phanerozoic and is absent from the exposed
ANS (Johnson et al. 2011; Cox et al. 2012).

2.3.2 Ophiolites of the Arabian–Nubian Shield

The ANS formed from *870 to 550 Ma is one of the lar-
gest tracts of juvenile Neoproterozoic crust (Johnson 2014).
The main diagnostic features of the ANS ophiolites are
(i) greenschist facies metamorphism, (ii) dismembered,
altered and consist mainly of tectonized harzburgites, pil-
lowed basalts and gabbros as well as plagiogranite
(Fig. 2.15), (iii) several ophiolites have sheeted dike com-
plexes (such as Ghadir, Onib and Ess), (iv) shearing along
NW-trending strike–slip faults and shear zones pertaining to
the Najd Fault System especially ophiolites in the northern
ANS (Sultan et al. 1988; Stern et al. 2004) and (v) form
nappe complexes along terrane sutures, especially In the
northern ANS.

Mid-Neoproterozoic ophiolites (690–890 Ma) are well
represented in the ANS and extend 3000 km N–S
and >1000 km E–W from the farthest north (Jebel Ess)
almost to the equator, and from Rahib in the west to Jabal
Uwayjah (45°E) in the east (Stern et al. 2004), encompassing
an area of around two million square kilometres (Fig. 2.1,
Stern et al. 2004). The ophiolite belts represent sutures
marking the location of island arcs extending to those in
Saudi Arabia on a pre-Red Sea drift reconstruction and
further south to Mozambique (Fig. 2.15). North of the Bi’r
Umq-Nakasib suture, the ophiolite belts strike nearly E–W
(Stern et al. 2004). Bi’r Umq-Nakasib suture extends SW
from Thurwah and Bi’r Umq Ophiolites in Arabia and
extends over the Red Sea through Oshib and Meritri Ophi-
olites in Sudan.

Reconstruction of relative ages across the ANS demon-
strates that the ophiolite belts young to the east (Berhe
1990). Geological and geochemical studies suggest rifting at
c. 1200 Ma, and subsequent convergence led to the devel-
opment of intra-oceanic arcs and associated marginal basins
in the north and narrow basins further south in Kenya and
Tanzania (Berhe 1990). Many of the ANS mafic–ultramafic
complexes evolved in a seafloor spreading environment,
while others are the substrate of island arcs (Quick 1990,
1991; Stern et al. 2004), while others may be layered
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intrusions (Stern et al. 2004). The Yubdo complex in Wes-
tern Ethiopia consists of harzburgite, cumulate sequence of
ultramafic, gabbroic rocks and metabasalts (Berhe 1990).
The Baragoi complex in Kenya is composed of tectonized
harzburgite, dunite with chromite pods, ultramafics and
gabbroic rocks. Available evidence for the Adola Moyale
Belt, in Southern Ethiopia and NE Kenya, point to MORB
and island-arc geochemistry, of a back-arc environment
(Berhe 1990). The Ingessana Complex in Sudan has an
island-arc tholeiitic tectonic affinity that indicates develop-
ment in a supra-subduction setting. The data from Sol
Hamed Complex in Egypt suggest a back-arc basin (Berhe
1990).

ANS ophiolitic lavas often describe a subalkaline suite of
low K and high Ti contents. They reveal both tholeiitic and
calc-alkaline affinities and include a significant subordinate
proportion of boninites Arabian shield (Stern et al. 2004).
ANS ophiolites are frequently associated with a 1- to
3-km-thick sequence of ultramafic cumulates (dunite- and
pyroxene-rich lithologies) transitioning into higher layered
gabbroic rocks (Stern et al. 2004). A supra-subduction zone
setting for the Egyptian Eastern Desert ophiolites is com-
monly accepted (e.g. El Bahariya and Arai 2003; Azer and
Khalil 2005; Azer and Stern 2007; Farahat et al. 2011;
Ahmed et al. 2012; Abdel-Karim et al. 2016; El Bahariya
2018). Furthermore, a back-arc setting is generally favoured

Fig. 2.16 Volcanosedimentary basins in the Arabian–Nubian Shield unconformable on basement composed of older arc rocks and amalgamated
terranes (terrane names in red italics) (after Johnson et al. 2011, 2013)
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(El-Sayed et al. 1999; Ahmed et al. 2001; El Bahariya and
Arai 2003; Farahat et al. 2004; El Gaby 2005; Abdel-Karim
et al. 2008; El Bahariya 2018). Also, a fore-arc environment
was proposed on the basis of whole-rock chemistry and
mineral analyses of serpentinites (Stern 2004; Azer and
Stern 2007; Azer et al. 2013).

Neoproterozoic ophiolites and ophiolitic mélange (El
Bahariya 2012) are widespread in the southern and central
sectors of the ENS. The components of ophiolites are dis-
membered and altered and include harzburgite, cumulate
ultramafics, sheeted dikes, pillowed basalt, layered gabbro
and plagiogranite (Stern et al. 2004). A complete ophiolite
section was detected in a few places in the ENS (e.g. Gerf,
Fawkhir, Ghadir) including serpentinized ultramafics, lay-
ered and isotropic gabbros, sheeted dykes and mafic lavas
including pillow basalts. Mostly, the Egyptian ophiolites
occur as tectonized masses, sheets, lenses and mélanges of
these ophiolitic components (El Sharkawy and El Bayoumi
1979; Azer et al. 2013). The ophiolites in the Central Eastern
Desert show characteristics of both MORB-type and
SSZ-type ophiolites and classified from oldest to youngest

by El Bahariya (2018) based on mode of occurrences and
geological characteristics into (1) MORB intact ophiolites
(e.g. Muweilih, Ghadir), (2) dismembered ophiolites and
(3) arc-associated ophiolites (e.g. El Sid, Esel). Dismem-
bered ophiolites occur either as (i) ophiolite blocks in mél-
anges (e.g. Kareim El Abiad tectonic mélange, Garf tectonic
mélange, Muweilih olistostrome, Esel olistostrome, Um Esh
olistostromal mélange and Mubarak olistostromal mélange)
or as (ii) ophiolites along structural contacts (Abu Meriewa
occurrence, Sodmien occurrence, Um Saneyat occurrence
and Um Khariga occurrence (El Bahariya 2018).

2.3.3 How Juvenile Is the Arabian–Nubian
Shield?

As mentioned before, the ANS is the northern half of a great
collision zone called the EAO. This collision zone was
created at the end of the Neoproterozoic time, when East and
West Gondwana combined to create the Gondwana super-
continent. Across what is now Southern Africa, the most

Fig. 2.17 Ediacaran
sedimentary and volcanic basins
in the Arabian–Nubian Shield,
showing their common
juxtaposition to shear zones,
gneiss belts and core complexes
(gneiss domes) (after Johnson
et al. 2011, 2013). Identified
successions and basins: Al—
Ablah; Am—Amaki; An—Antaq;
E—Elat Conglomerate; Ee—Esh
El Mellaha; Em—El-Miyah; Dk
—Gebel Dokhan; Dq—Dhaiqa;
Fa—Fatima; Fh—Fatirah area;
Ha—Wadi Hammamat; Hm—
Hamir; Hn—Hadn; Ig—Wadi
Igla; J—unnamed Jibalah group
basins; Jb—Jibalah; Jf—Jifn; Jn
—Junaynah; Ju—Jurdahiway; Ka
—Wadi Kareim; QN—Wadi
Quieh, Nuqara, and Wassif; Rb—
Rubtayn; S—Saramuj
Conglomerate; Th—Thalbah;
Ur-Sd—Gebel Urf-Wadi Um
Sidra; Z—Zeidun
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intense part of the collision occurred, where older crust in
Tanzania, Mozambique and Madagascar was remobilized to
form the Mozambique Belt (MB). This great collision was
responsible for the Pan-African Orogeny near the end of
Neoproterozoic time (Kröner and Stern 2004). The crust of
the MB is quite different from that of the Arabian–Nubian
Shield, which is predominantly “juvenile” crust, that is, crust
that formed from partial melting of Earth’s mantle, although
much older Archean and Paleoproterozoic crustal materials,
is exposed west of the Nile in Egypt, in the SE part of the
shield in Arabia, in eastern Ethiopia and in Yemen (Kröner
and Stern 2004).

The Arabian shield retains a sustained magmatic record
of amalgamated juvenile terranes that contain a wide variety
of early Neoproterozoic to Cambrian granitoids intruding
into volcanosedimentary basin assemblages. Robinson et al.
(2014) provided U–Pb zircon dating of 19 examples of
granitoids that intruded eight terranes of the Arabian shield
and defined four separate magmatic events: anorogenic
(� 525 Ma), post-tectonic (� 620 Ma), syncollisional
(� 710 Ma) and island arc (� 845 Ma).

With the development of island-arc magmatism associ-
ated with the closing of the Mozambique Ocean, syncolli-
sional magmatism in the ANS at 715 Ma reflects the first
level of terrane amalgamation in the Mozambique Ocean
due to the convergence associated with East Africa and
East Gondwana subduction. The accretion/arc collision in
the western ANS (west of Afif) was terminated at � 630
Ma due to collision of Azania with the Congo–Tanzania–
Bangweulu Block (Collins and Windley 2002; Collins and
Pisarevsky 2005). The emergence of post-tectonic mag-
matism intruding the Nabitah Belt and the creation of
western ANS back-arcs reinforce this understanding. East
of Afif, the appearance of � 611–607 Ma post-tectonic
magmatism cross-cutting the Halaban Suture, possibly
corresponds with the collision of the Afif-Abas Block and
eastern Arabia (Collins and Pisarevsky 2005). The final
phases of the Gondwana assembly are reported
from *5570–530 Ma in the northern EAO and split into
two orogenic periods, the Kuunga and Malagasy, respec-
tively (Collins et al. 2014 and references therein). It is
proposed that India’s interaction with the Congo–Tanza-
nia–Bangweulu Block (Malagasy Orogeny) has produced
the ca. 525 Ma A-type magmatism (Hijaz Terrane). It is
well known that the major transform fault systems such as
the NFS are spread throughout the northern Arabian
shield and shape a sequence of reactivated events that
cause magmatism (Stern 1985; Johnson et al. 2011) such
as � 525 Ma Mardabah Complex.

However, no crust older than � 890 Ma (Deschamps
et al. 2004; Hargrove et al. 2006) is exposed in the core of
the juvenile ANS, and crust of Mesoproterozoic age is not
exposed anywhere in the ANS. Hargrove et al. (2006)

concluded that the ANS is less juvenile than presently
appreciated and may contain a significant amount of conti-
nental crust and estimates of crust-formation rates that cite
the ANS as a model for juvenile crust should consider this
possibility.

2.3.4 Accretion and Thickening in the Arabian–
Nubian Shield

The relics of the EAO (�6000 km long in Gondwana)
include high-grade metamorphic complexes in the Mozam-
bique Belt, and greenschist or lower grade belts of volcanics,
plutons and sedimentary rocks in the Arabian–Nubian shield
(Cox et al. 2012). The metamorphism connected to the
closing of the Mozambique Ocean in southern India and
eastern Madagascar was linked to an Ediacaran collision
between the Congo–Tanzania–Bangweulu Block and India
in the Neoproterozoic time (Clark et al. 2009; Collins et al.
2003, 2007; Cox et al. 2012) that had previously accreted a
continent known as Azania during the Cryogenian (Collins
2006; Collins and Windley 2002) to form the Malagasy
Orogen (Collins and Pisarevsky 2005).

The ANS took about 300 million years to develop. The
oldest rocks related to the ANS crust’s formative cycle
created by the coalescence of island-arc and back-arc basins
and even oceanic plateaus. The oldest rocks in this series are
around 870 Ma and are located in E Sudan and south-
east Saudi Arabia (Whitehouse et al. 2001; Collins and
Windley 2002; Hargrove et al. 2006). The oldest units are
commonly ophiolites, which demonstrate that the creation of
continental ANS crust began with the forming of oceanic
crust by the expansion of the seafloor, accompanied by
subduction and island-arc development (Johnson et al.
2011). The early magmatic stages in the ANS involve the
presence of dense oceanic tholeiite sequences in
intra-oceanic settings accompanied by bimodal volcanism of
island-arc chemistry 950–650 Ma. Such processes culmi-
nated in huge amounts of mafic crust and lithospheric mantle
within the ANS and crustal overprinting (Bentor 1985; Stein
and Goldstein 1996; Stein 2003) for producing, these
upwelling plumes possibly provide the lithophile
element-enriched sources for younger calc-alkaline (640–
590 Ma) and alkaline (590–550 Ma) magmatism (Robinson
et al. 2014).

Over the time 780–620 Ma, various island arcs collided
and these tectonic terranes sutured and developed a pro-
gressively large and dense nucleus of continental juvenile
crust. This thickening resulted in the formation of several
suture zones, marked by obduction of ophiolites and intense
deformation (Johnson et al. 2011; Cox et al. 2012). Crustal
thickening was also accompanied by melting and magmatic
fractionation of mafic magmas that ponded deep in the crust.
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These melts rose upwards to be emplaced as granitic plutons.
Magmatism during this episode is characterized by tholeiites
and calc-alkaline suites (Robinson et al. 2014).

The juvenile ANS crust was trapped between great tracts
of converging continental crust. A protracted episode of
continental collision started at about 610 Ma ago and
continued for about 50 million years. Collision was more
intense in the south, but it also strongly affected the ANS
(Kröner and Stern 2004). The arc terranes and sutures in the
southern ANS were deformed by N–S-oriented upright
folds and shear zones forming elongated systems such as
the Hamisana Shear Zone in North Sudan and South Egypt
(Johnson and Woldehaimanot 2003). The ANS was influ-
enced more far north and east by the development of the
broad NW-SE pattern of the Najd Fault System (NFS). The
composition of igneous rocks became distinctively more
evolved as the collision continued and the crust continued
to thicken. Deep erosion, possibly by a continental ice
sheet, happened during this time. All tectonic and mag-
matic activities ended by the time the Cambrian sandstones
were deposited, about 530 million years ago (Stein 2003;
Robinson et al. 2014). A variety of characteristics have
been traced to late stage extension tectonics, including a
large NE–SW trending dyke swarm, NE–SW trend normal
faults and NW-SE trend sedimentary basins filled with
post-orogenic molasse deposits (Blasband et al. 2000;
Johnson and Woldehaimanot 2003; Kröner and Stern
2004).

2.3.5 Tectonic Models of the Arabian–Nubian
Shield

The ANS contains a vast expanse of Neoproterozoic juvenile
oceanic arc crust surrounded by older cratonic crust to the
west and east (Stoeser and Frost 2006). Fritz et al. (2013)
and Hamimi et al. (2019) recognized five main phases pro-
duced the ANS: (1) rifting of the African craton (� 1200–
950 Ma); (2) ensimatic island-arc development (� 950–
715 Ma); (3) formation of the Arabian–Nubian Neocraton
by microplate accretion and continental collision (715–
640 Ma); (4) collision-related intra-cratonic magmatism and
tectonism (� 640–550 Ma); and (5) epicontinental subsi-
dence (<550 Ma), commonly found in fault-bound basins
(Nettle et al. 2013).

The Arabian shield in Western Saudi Arabia was devel-
oped in Neoproterozoic through three main stages:
(1) Island-arc creation and accretion, primarily during the
time � 870–620 Ma; (2) Continental orogenesis after col-
lision with East Gondwana’s north-western margin, � 660–
620 Ma; and (3) post-collisional extension, magmatism and
sedimentation � 620–540 Ma (Greenwood et al. 1976;
Al-Shanti and Mitchell 1976; Schmidt et al. 1979; Stoeser

and Camp 1985; Kröner 1985; Genna et al. 2002; Johnson
and Woldehaimanot 2003; Stoeser and Frost 2006). The
collision was occurred in the south, whereas subduction of
oceanic crust continued in the north until approximately
620 Ma (Doebrich et al. 2007); therefore, there is overlap in
ages for arc formation and collision.

During collisional orogenesis, the Najd Fault System
(NFS) (a major left-lateral fault system) developed
throughout the northern part of the Arabian shield. The Najd
was described as the product of tectonic escape, similar to
those arising from the collision between India and Asia
(Schmidt et al. 1979; Burke and Sengor 1986). Three of the
most prominent of the Najd Fault Zones, Ruwah, Ar Rika
and Halaban-Zarghat (Al-Saleh et al. 1998) are shown in
Figs. 2.17 and 2.18. Moore (1979) described this system as a
major transcurrent (strike–slip) fault system, of Proterozoic
age in the Arabian shield. The NFS was identified originally
as a huge late Proterozoic and early Phanerozoic
NW-trending brittle–ductile shear zone with 300 km width
and length over 1100 km extending over the north part of
the ANS (Stern 1985; Johnson et al. 2011). The displace-
ment along the strike of the NFS was reported by Brown
(1972) and Hamimi et al. (2019) as 240 km cumulative
displacement but field displacements can be demonstrated as
only tens of kilometres for faults (Johnson et al. 2011).
The NFS and other NW-trending strike–slip faults in the
ANS are known to be post-accretionary structures and were
deduced from the squeezing of the Arabian–Nubian shield
between East and West Gondwana (Berhe 1990; Stern
1994a, b; Abdelsalam 1994; Abdelsalam and Stern 1996;
Abdelsalam et al. 2003; Hamimi et al. 2019). The formation
of NFS is a result of simple shear that allowed the Nubian
and southern Arabian shield to move several hundred kilo-
metres sinistrally with respect to northern Arabia (Moore
1979; Hamimi et al. 2019).

Stoeser and Frost (2006) recognized two stages for ter-
rane accretion of the Arabian shield: (1) Accretion of terrane
emerging from the closure of ocean basins (e.g. Stoeser and
Camp 1985; Johnson and Woldehaimanot 2003) and
(2) Lateral transpressional accretion as suggested for the
North American Western Margin (Samson and Patchett
1991). Furthermore, although most theories include mainly
the accretion of oceanic island arcs, some have indicated that
the accretion of oceanic plateaus has also played an impor-
tant role in the evolution of the ANS (e.g. Stein and Gold-
stein 1996).

The terrane concept has been applied to the ANS since
the mid-1980s, developing out of earlier
plate-tectonic/subduction zone and accreted island-arc con-
cepts, and leads to the interpretation that the exposed and
immediately adjacent concealed Proterozoic rocks of west-
ern Arabia and northeastern Africa are a collage of crustal
blocks, or terranes that, with varying degrees of confidence,
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can be correlated across the Red Sea, thereby linking the
now separated Arabian and Nubian shields. Given the
reconnaissance nature of geologic mapping in the Arabian
shield, details about the origins, ages, structure and con-
vergence of the terranes remain to be established, and the
terrane-collage model is, strictly speaking, a working
hypothesis.

2.4 The Egyptian Nubian Shield

Although Precambrian rocks underlie the entire Egypt and
Sudan, they are best known where exposed in the Nubian
Shield, in the Egyptian Eastern Desert and Northern Sudan.
In the shield, the Precambrian rocks are mostly Neopro-
terozoic. The tectonic development of the ANS spans three

phases spanning over 600 Ma: accumulation of arc terrains
within the Hijaz Magmatic Arc, accompanied by accretion
of the Hijaz Magmatic Arc towards the Nile Craton and
reworking of the accreted arc after accretion (Fritz et al.
1996; Abdelsalam and Stern 1996; Augland et al. 2012). The
Egyptian Nubian Shield (ENS) covers *100,000 km2,
crops out along the Red Sea Hills in the Eastern Desert and
southern Sinai, as well as limited areas in the south Western
Desert (Oweinat area) (El Gaby et al. 1990; Hassan and
Hashad 1990). The basement complex of the ENS comprises
four main tectonostratigraphic units (Hamimi et al. 2019)
from bottom upward as follows: (1) high-grade gneisses and
migmatites, (2) arc-type volcanic/volcanosedimentary units,
along with dismembered ophiolites, (3) the Ediacaran
Hammamat and Dokhan supracrustal sequences, and
(4) granitoids. During the Cambrian until the Cretaceous, the

Fig. 2.18 Major sutures and
shear zones in the Arabian–
Nubian Shield (modified after
Johnson 2006)
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Nubian Shield’s rocks were almost constantly hidden by
Phanerozoic sedimentary rocks, until the uplift and defor-
estation correlated with the division of Arabia and Africa
culminated in the Nubian shield becoming revealed as it is
today. Juvenile Neoproterozoic rocks predominate in the
Nubian shield and extend distances of 1000 km from
northern Sudan to northern Egypt.

Four major lithological components describe the ENS
(Fig. 2.19): predominantly juvenile arc, supracrustal series,
ophiolites and gneiss domains enclosing core complexes and
intrusions of granitoids (Fritz et al. 1996, 2002; Abd El-Naby
et al. 2000, Shalaby et al. 2005; Abd El-Wahed 2008, 2014;
Ali et al. 2015; Hamimi et al. 2019; Abd El-Wahed et al.
2019a, b; Hamimi et al. 2019; Zoheir et al. 2019b; Hamimi
and Abd El-Wahed 2020; Fowler and Hamimi 2020; Abd
El-Wahed and Hamimi 2020). These units were tectonically
mixed by thrusting associated with accretion and sinis-
tral strike–slip shearing along the Najd and other NW-striking
shear zones, particularly in the central part of Eastern Desert
of Egypt (Abd El-Wahed 2010; Hamimi et al. 2019). Sheared
granitoid gneisses occur locally in antiformal “domal” loca-
tions in the Eastern Desert of Egypt, typically surrounded by
low-grade supracustal assemblages, such as the Meatiq
(Sturchio et al. 1983; Fritz et al. 1996; Andresen et al. 2009,
2010; Hamdy et al. 2017; Mohammad et al. 2019), Hafafit
(Greiling et al. 1994, Abd El-Naby et al. 2008, Lundmark
et al. 2012; Ali et al. 2015; Makroum 2017; Hamimi et al.
2019), El-Shalul (Hamimi et al. 1994, Osman 1996, Ali et al.
2012a) and in the region along Wadi Beitan (Abdel Khalek
et al. 1992; Ali et al. 2015). The gneiss domes of the Egyptian
Eastern Desert were previously interpreted to represent a
pre-Neoproterozoic (pre-Pan-African) basement (e.g.
El-Ramly and Akaad 1960; El-Ramly 1972; El-Gaby et al.
1984, 1988, 1990; Hamimi et al. 1994). However, other
authors argued that the Eastern Desert gneissic rocks are of
juvenile origins and formed in intra-oceanic or continental arc
settings within, or on the margin of, the Mozambique Ocean,
or along one or more magmatic arcs along the western margin
of this ocean prior to amalgamation of East and West
Gondwana at � 630 Ma (El-Ramly et al. 1984, 1993;
Greiling et al. 1984, 1988; Stern 1994a, b; Abd El-Wahed
2008, 2014; Andresen et al. 2009, 2010; Abd El-Wahed and
Kamh 2010; Augland et al. 2012, Lundmark et al. 2012; Ali
et al. 2009a, b; 2010a, b, 2012a, b, 2015; Abd El-Wahed et al.
2016, 2019a, b; Zoheir et al. 2019b: Hamimi et al. 2019;
Hamimi and Abd El-Wahed 2020; Fowler and Hamimi 2020;
Abd El-Wahed and Hamimi 2020).

The Egyptian Eastern Desert was subdivided by Stern
and Hedge (1985) into Northern, Central and South-Eastern
Desert regions (NED, CED and SED); all reveal different
aspects of the region’s protracted and intense Neoprotero-
zoic episode of deformation and igneous activity.

2.4.1 The South-Eastern Desert (SED)

The details of the Neoproterozoic of the SED are still poorly
known. The SED differs from the CED in several styles (Stern
2018): (i) it is much less studied; (ii) it lacks interesting
sediments such as BIF and diamictite; (iii) it has some vol-
canogenic massive sulphides, whereas the CED does not
(Abd El-Rahman et al. 2012); (iv) there are no major sedi-
mentary or volcanic Ediacaran successions as described in the
NED and CED, such as the Hammamat Group and Dokhan
Volcanics; and (v) it contains equal amounts of serpentinites
to those of CED except for Abu Dahr ophiolites (Gahlan et al.
2015) and those defining the Allaqi–Heiani Suture in the
southern SED (Zimmer et al. 1995; Gahlan and Arai 2009;
Ali et al. 2010a; Azer et al. 2013). The SED usually tends to
be more deeply exposed than the CED and is less influenced
by Najd shearing (Stern 2018). Gneisses in the ENS represent
the infrastructure rocks that exposed in tectonic windows
beneath the suprastructure rocks. Gneisses and related rocks
in the SED are sheared and ductility-deformed at shallow
depths such as the gneisses of El-Hudi, Haimur-Abu Swayel,
Abu Fas, Beitan, Khuda, Sikait and Hamisana.

The SED is characterized by the presence of Allaqi–Heiani
Suture (AHS) and the Hamisana shear zone (HSZ). The AHS is
a part of the megascopic Allaqi–Heiani–Oneib–Sol Hamed–
Yanbu Suture (AHOSHYS) (Abdelsalam and Stern 1996,
Abdelsalam et al. 2003; Zoheir et al. 2019a) that extends �E–
W for at least 600 km, from the western edge of the shield in
Egypt to the eastern edge of basement exposures in NW Arabia
(Ali et al. 2010a). The AHS tracks eastward from Wadi Alla-
qi’s entry into Lake Nasser along the Egyptian–Sudan border to
Gabal Gerf along the Red Sea (Ali et al. 2010a). Here, the
suture is thought to be displaced southwards along the N–
S HSZ and continues NE along the Onib segment to the Red
Sea, across which it can be traced into northwestern Saudi
Arabia (Ali et al. 2010a). The Allaqi–Heiani belt is an arc–arc
suture accreted and formed between � 730 and 709 Ma (Ali
et al. 2010a, b). It separates the Midyan–South-Eastern Desert
terrane in the North from the � 830–720 Ma Hijaz–Gebeit
terrane to the South (Shackleton 1994; Abdelsalam and Stern
1996; Abdelsalam et al. 2003; Hamimi et al. 2019; Zoheir et al.
2019a). In the central and western portions of the Allaqi–Heiani
suture, ophiolites form imbricate thrust-bound sheets and slices
of serpentinite, amphibolite, metagabbro and metabasalt,
embedded in a strongly tectonized carbonate talc matrix, cre-
ating an elongated WNW–ESE or E–W belt (Abdelsalam and
Stern 1996; Abdelsalam et al. 2003; Zoheir and Klemm 2007).

The HSZ is an ophiolite-decorated post-accretionary
structure (Stern et al. 1990) and not a suture as suggested
by Berhe (1990). The AHOSHYS is broad and consists of
four major lithologic associations: (i) ophiolites, (ii) is-
land-arc metavolcanic and metasedimentary successions,
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Fig. 2.19 Geological map of the
Egyptian Nubian Shield
Compiled from the Geological
Map of Egypt (El-Ramly 1972)
and the CONCO geological maps
(Klitzch et al. 1987)
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(iii) gabbroic to granitic intrusions and (iv) gneiss (Stern
et al. 1990, Abdelsalam et al. 2003, Zoheir and Klemm
2007; Gahlan and Arai 2009; Ali et al. 2010a). The Allaqi
segment of the AHOSHYS separates the SE segment of the
Eastern Desert Terrane in the north from the Gabgaba Ter-
rane to the south (Abdelsalam and Stern 1996; Ali et al.
2010a).

2.4.2 The Central Eastern Desert (CED)

The CED is in several respects the best known of the three
subdivisions of the Eastern Desert, as its supracustal
sequences are especially fascinating and insightful.
The CED was characterized by two prominent tectonos-
tratigraphic units; (i) The lower unit is commonly referred to
as the structural basement (Infrastructure) (El-Gaby et al.
1990) or as ‘‘lower tier” (e.g. Bennett and Mosley 1987;
Greiling et al. 1994) and comprises high-grade metamorphic
gneisses, migmatites, schists and amphibolites; and (ii) the
second unit is commonly referred to as structural cover
(Suprastructure) or the Pan-African nappes and is described
as the upper unit including low-grade metamorphosed
ophiolite slices (serpentinites, pillow lavas, metagabbros),
arc metavolcanics and arc metasediments (e.g. El-Gaby et al.
1990; Gahlan et al. 2012). Abdel-Karim and Ahmed (2010)
summarized what is known about 38 different occurrences of
ophiolitics in CED and SED. Greenschist facies arc vol-
canics and volcanoclastic metasedimentary rocks are
important supracrustal constituents of the CED above the
ophiolites (Figs. 2.20 and 2.21). Collectively, the infras-
tructure and supracrustal rocks were intruded by syn-tectonic
calc-alkaline granites and metagabbros–diorite complex and
covered by Phanerozoic sediments (Abd El-Wahed et al.
2010).

The ensimatic (oceanic) assemblage in the CED repre-
sents the oldest units, with � 750 Ma U-Pb zircon ages
(Kröner et al. 1992; Andresen et al. 2009; Ali et al. 2009b;
Stern 2018). It is perforated with Cryogenian I-type grani-
toids and Ediacaran A-type granites (Ali et al. 2012b) and
dislocated by a number of magmatic–metamorphic core
complexes (Stern 2018).

The later stages of the CED’s crustal growth are distin-
guished by eruption of Dokhan volcanics that is consistent
with the deposition of molasse-type Hammamat molasse
sediments formed in terrestrial alluvial fan/braided stream
environment (Grothaus et al. 1979; Abd El-Wahed 2010;
Bezenjania et al. 2014). In response to the differential relief
between more elevated regions of the NED and topograph-
ically lower areas of the CED which followed Najd fault
deformation of the CED and volcanic rifting in the NED,

Hammamat basins developed (Stern 2018). In addition, the
crustal rocks were intruded by late to post-tectonic granites.

Fig. 2.20 Simplified geological map of the Central and part of the
Northern Eastern Desert of Egypt showing distribution of Hammamat
molasse basins (after Abd El-Wahed 2010; Compiled from the
Geological Map of Egypt (El-Ramly 1972) and the geological map
of Quseir (Klitzch et al. 1987). Major structures are after Fritz et al.
(1996), Bregar et al. (2002), Shalaby et al. (2005) and Abd El-Wahed
(2008). HG, Hafafit gneiss; WH, Wadi Hafafit; NG, Wadi Nugrus; GG,
Gebel (G.) Nugrus; IG, Wadi Igla molasse basin; IH, Igl Al-Ahmar
monzogranite, GX, G. Umm Nagat; NNS, Um Nar-Nugrus shear zone;
EU, Gebel El-Umra older granite; MI, El-Miyah molasse basin; KD,
Kadabora monzogranite pluton; SHG, El-Shalul gneisses; AT, Atawi
molasse basin; GAT; Gebel Atawi Alkali feldspar granite; EN, Andiya
molasse basin; AG, Abu Gheryan molasse basin; Si, Gebel Sibai alkali
feldspar granite; SG, Sibai gneisses; WSSZ, Wadi Sitra shear zone;
KASZ, Kab Ahmed Shear zone, HG; Homrat Ghaunam alkali feldspar
granite; ZI, Wadi Zeidun molasse basin; SZS, Wadi Zeidoun-Wadi
El-Shush strike–slip fault; QA, Wadi El-Qash molasse basin; KR,
Kareim molasse basin; TH, Um Esh-Um Seleimat molasse basin; HA,
Hammamat molasse basin; UH, Um Had granite pluton; WA, Wadi
Atalla; MG, Meatiq gneisses; QU, Wadi Quieh molasse basin; AS, Abu
Sheqeili molasse basin; GZ, G. Umm Zarabit; GK, G. Kafari; GS, G.
Gasus; GD, G. el-Dob; GF, G. Abu Furad; GT, G. Umm Taghir; GR,
G. Ras Barud; GM, G. el-Magal; GA, G. Umm Anab; GY, G.
Samyuk; GN, G. Shayib el Banat; GQ, G. Qattar; GU, G. Umm
Araka; UT, Umm Tawat molasse basin and AD, Gebel Dokhan
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Fig. 2.21 Geological map of the southern part of the Central Eastern Desert of Egypt (modified after Conoco 1987). 1; core complexes 2;
serpenitintes, 3; ophiolitic metagabbros, 4; metavolcanics and metasediments, 5; syn-tetonic intrusive metagabbros, 6; syn-tectonic granite, 7;
Dokhan volcanics, 8; molasse sediments, 9; felsites, 10; gabbros, 11; post to late tectonic granites; 12; ring complex, 13; Natash volcanics and 14;
trachyte plugs. GAK; Gebel Abu Khruq, HCC; Hafafit core complex, GOM; Wadi Ghadir ophiolitic mèlange, HM; Hamash gold mine, NSZ;
Wadi Nugrus shear zone, GS; Gebel Sukkari and Sukkari gold mine, GUK; Gebel Um Khariga, IG; Igla molasse basin, DMD; Dubr metagabbro–
diorite complex, GIA; Gebel Igl Al- Ahmar, HW, Gebel Homrat Waggad, GY, Gebel El-Yatima, GUS; Gebel Umm Salim, US, Gebel Umm Saltit,
GK; Gebel Abu Karanish, GM, Gebel Al Miyyat, USZ; Um Nar shear zone, GUM; Gebel El-Umra, GK; Gebel Kadabora, GA; GH; Gebel
El-Hidilawi, GU; Gebel Umm Atawi, GSH; Gebel El-Shalul, GR; Gebel El Rukham; SCC; Sibai core complex, GS; Gebel Sibai, WZ; Wadi
Zeidon, WSSZ; Wadi Sitra shear zone, WKSZ; Wadi Kab Ahmed shear zone, K; Kareim molasse basin. The major structures are after Akaad et al.
(1993), Fritz et al. (1996) Helmy et al. (2004), Shalaby et al. (2005), Abd El-Wahed (2008) and Abd El-Wahed and Kamh (2010)
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The CED is mostly distinguished by the domination of
NW-striking tectonic structure (Fig. 2.21) marking the NW–

SE sinistral shear zone of the NFS (Abd El-Wahed and
Kamh 2010; Abd El-Wahed 2014; Abdeen et al. 2014; Abd
El-Wahed et al. 2016, 2019a, b; Hamimi et al. 2019; Hamimi
and Abd El-Wahed 2020; Fowler and Hamimi 2020; Abd
El-Wahed and Hamimi 2020). Nappe transport directions
reported from the CED show a variance from top to the NE
(e.g. El Bayoumi and Greiling 1984), top-to-the-NW (Ries
et al. 1983; Greiling 1987), top-to-the-SE (Kamal El Din
et al. 1992) and top-to-the-SW (Abdeen et al. 2002;
Abdelsalam et al. 2003). Oblique convergence transpression
(Abd El-Wahed and Kamh 2013), whether dextral or sinis-
tral, is a current mechanism adopted by many authors (Fritz
et al. 1996, 2002, 2013; Loizenbauer et al. 2001; Makroum
2001; Bregar et al. 2002; Helmy et al. 2004; Shalaby et al.
2005; Abd El-Wahed 2008, 2010; 2014; Shalaby 2010; Abd
El-Wahed and Kamh 2010; Zoheir and Lehmann 2011;
Zoheir and Weihed 2014; Abd El-Wahed et al. 2016; Abd
El-Wahed and Thabet 2017; Makroum 2017; Hamdy et al.
2017; Stern 2018) to explain and imply the deformation
styles in the CED.

Simply and collectively, Abd El-Wahed and Kamh
(2010) listed the deformation events of the CED as follows:
(1) D1 associated with NNW-ward thrusts; (2) D2 related to
NE- and SW-directed thrusts; (3) D3 attributed to sinistral
movement along the NW-striking shears of the NFS; (4) D4

associated with dextral movement along NE-trending shear
zones; and (e) D5 later events. The NNW-directed thrusts
were created as a result of oblique convergence during
island-arc accretion (690–650 Ma) in Sibai gneisses (Bregar
et al. 2002; Fowler et al. 2007; Augland et al. 2012) and 630
and 609 Ma in Meatiq and Hafafit gneiss-cored domes
(Andresen et al. 2009). The tectonic system changed from
the compressional arc accretion setting to the sinistral
transpressional regime between 650 and 540 Ma. In the
CED, exhumation of the core complexes (e.g. Meatiq, Sibai,
El-Shalul and Hafafit) is related to the sinistral slip along the
NFS, which bound them from the SW and NE (Fritz et al.
1996). Not only core complexes of CED but also the
Hammamat sediments are tectonically affected by the NFS
(Abd El-Wahed 2010).

The NFS and the other NW-trending strike–slip shear
zones of the ANS were initially post-accretionary structures
and were deduced from the stretching of the ANS between
East and West Gondwana (Berhe 1990; Stern 1994a, b;
Abdelsalam and Stern 1996; Abdelsalam et al. 2003).
The NFS comprises brittle and ductile shears in a region up
to 300 km in width and about 1,100 km long, including the
north part of the Arabian shield.

Different scenarios were suggested to interpret one of the
major landmarks of the CED, the gneissic domes or core
complexes (Meatiq, Sibai, El-Shalul and Hafafit). Gneiss

domes have been diversely interpreted as (1) antiformal stacks
produced by thrusting (Greiling et al. 1994), (2) core com-
plexes associated with NW-SE crustal extension (Fritz et al.
1996; Bregar et al. 2002; Abd El-Wahed 2008; Makroum
2017; Hamdy et al. 2017; Abd El-Wahed et al. 2019a, b; Abd
El-Wahed and Hamimi 2020) and (3) interference patterns of
sheath folds (Fowler and El Kalioubi 2002—for the Hafafit
Complex). Recently, there are two tectonic models to explain
the formation and exhumation of these core complexes in the
CED: (1) Orogen-parallel extension model (Fritz et al. 1996)
assigned evolution of the core complexes to sinistral shear
activity on NFS-related shear zones and (2) extensional tec-
tonics model as a result of simultaneous NW–SE folding and
NW–SE extension (Fowler et al. 2007; Andresen et al. 2010).

Nugrus shear zone is one of the CED’s main
NW-trending shear zones that divides the CED from Egypt’s
SED and forms the border between the Wadi Ghadir region
(East) and the Hafafit Core Complex (West). Nugrus shear
zone starts with a thickness of 750 m retaining its width at
least as far as Gabal Sikait, where its thickness decreased by
50 m (Harraz and El-Sharkawy 2001; Fowler and Osman
2009). Lundmark et al. (2012) dated to � 595 Ma the
sinistral shearing on the Nugrus Shear Zone.

Nugrus shear zone is interpreted as thrust showing
top-to-W- or SW tectonic transport over the continental
margin (El Bayoumi and Greiling 1984; El-Ramly et al.
1984; El-Gaby et al. 1988) or as roof thrust linked up
NW-dipping thrust imbricates of gneissic rocks and allowing
NW-ward displacement of low-grade CED metavolcanics
over the gneisses (Greiling et al. 1994 and Greiling 1997).
Many workers considered Nugrus shear zone as a
Najd-related ductile strike–slip shear (Fritz et al.1996; Sha-
laby et al. 2005; Abd El-Wahed et al. 2016; Makroum 2017).
Fowler and Osman (2009) described Nugrus shear zone as
an example of E–W striking low-angle normal ductile shear
with low-angle N-dip.

The NW-trending sinistral shear zone-related transpression
is conjugated and overprinted by the dominant dextral trans-
pression along NE–SW trending shear zones (Shalaby et al.
2005; Abd El-Wahed and Kamh 2010) (Fig. 2.21). Abd
El-Wahed (2014) documented a huge NE-trending shear belt
(up to 110 km in length) occupying the area between Wadi
Barramiya and Wadi Sha’it (Fig. 2.21) to the west (up to
60 km in width) and extends through the whole width of the
Central Eastern Desert to include the area between Wadi
Mubarak and Wadi Ghadir on the Red Sea coast (up to
120 km in width) (Fig. 2.21). The 40–60-km-wide, ENE–
WSW trending Mubarak–Barramiya Shear Belt (MBSB)
deforms supracrustal successions and structures associated
with the NW-trending shear fabric (Fig. 2.21). The MBSB is
interpreted as a dextral transpressive shear zone ceased the
extension of the NSZ and modelled in terms of a regional
“flower structure” (Abd El-Wahed and Kamh 2010).
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2.4.3 The Northern Eastern Desert (NED)

The NED (Fig. 2.20) is remarkably different from both the
CED and the SED. The NED is characterized mainly by (i) a
wide range of Ediacaran igneous rocks and associated Ham-
mamat sediments (Wilde and Youssef 2000), (ii) absence of
ophiolites and scarcity of gneisses, (iii) BIF and diamictite is
unknown, (iv) absence of Najd deformation, (v) abundance of
dike swarms that trend E–W to NE–SW, (vi) abundance of
epizonal A-type granites indicating strong extension, and
(vii) abundance of Dokhan Volcanics (Stern and Hedge
1985). The Dokhan volcanics occupy a limited area of the
Egyptian basement and are best exposed north of latitude 26°
N in the Eastern Desert (e.g. NED and northernmost CED)
particularly at their type locality Gabal Dokhan. Dokhan
Volcanics are unmetamorphosed rocks felsic to intermediate
composition and have medium- to high-K calc-alkaline
affinities. Dokhan Volcanics have been formed in subaerial
environment and commonly associated and/or interbedded
with Hammamat molasse sediments (Abd El-Wahed 2010;
Eliwa et al. 2014b; El-Bialy 2020). Breitkreuz et al. (2010)
reported the eruption of the Dokhan Volcanics during two
major volcanic pulses: 630–623 and 618–592 Ma. The
Hammamat molasses of the ENS were developed between
650 and 580 Ma in individual basins in variable tectonic
settings (Fritz and Messner 1999; Shalaby et al. 2006; Abd
El-Wahed 2010). Dessouky et al. (2019) indicated that the
Hammamat molasse sediments have been deposited during
three tectonic settings: (i) pre-collision stage comprise fore‐
arc, intra‐arc and back‐arc basins; (ii) syn‐collision stage
include fore‐arc basins and low land basins; and (iii) late‐
collision stage embrace low land and intramontane basins.

The most exciting recent developments in the studies of
the NED are the presence of small tracts of Cryogenian and
Tonian igneous rocks (Stern 2018) including the 666 Ma
Mons Claudianus granodiorite (Stern 2018), Tonian mus-
covite tonalite and I-type muscovite-bearing trondhjemite
and granodiorite with complexity in the U-Pb zircon ages
at � 740 Ma (Eliwa et al. (2014a), the presence of � 720
Ma ignimbrites unconformably overlying the � 740 Ma
granitoids (Bühler et al. 2014), the presence of � 780 Ma
dacite (Abd El-Rahman et al. 2017).

2.4.4 The Egyptian Nubian Shield in Sinai

The basement rocks in Sinai (Fig. 2.19) comprise four
complexes: the Feiran–Solaf, Sa’al–Zaghra, Kid and Taba
Metamorphic complexes. The metamorphic complexes are
composed of orthogneisses and metasedimentary–metavol-
canic sequences. They are surrounded by younger
non-metamorphosed intrusions and volcanosedimentary
sequences and metamorphosed at greenschist to amphibolite

and rarely up to granulite facies conditions (Shimron 1984;
Jarrar et al. 1993; El-Shafei and Kusky 2003; Abu El-Enen
et al. 2003, 2004; Fowler and Hassan 2008; Abu-Alam and
Stüwe 2009, 2010; Azer and Farahat 2011).

These metamorphic complexes were considered to be
pre-Pan-African by El-Gaby et al. (1990) and Abu Anbar et al.
(2004). Nonetheless, other studies have recorded geochrono-
logical evidence that point to the Pan-African period (Bielski
1982; Stern and Manton 1987; Eliwa et al. 2008). A younger
tectono-magmatic period in Sinai is distinguished by large
intrusions of calc-alkaline magma during ca. 635–590 Ma (Ali
et al. 2009a, b; Be’eri-Shlevin et al. 2009). Post-collisional
calc-alkaline granitoids were placed from c. 635 to 590 Ma,
while the alkaline granite suite was developed over a span of c.
Ma 608–580 (Be’eri-Shlevin et al. 2009). Despite close associ-
ation in space and time, calc-alkaline and alkaline granitoids are
clearly distinguished in some major and trace element charac-
teristics. This was demonstrated for 27 key plutons and plutonic
complexes (Be’eri-Shlevin et al. 2009; Azer et al. 2010; Eyal
et al. 2010; Azer and Farahat 2011). The alkaline activity was
dominated by bimodal alkaline volcanism and shallow intrusions
of granitoids, which are mostly A-types, along with dike swarms
(Beyth et al. 1994; Kessel et al. 1998; Samuel et al. 2007; Eyal
et al. 2010). The volcanosedimentary successions of southern
Sinai (Kid, Ferani, Rutig, Sa’al–Zaghra, Iqna Shar’a, Khashabi
and Meknas) have been associated with the Dokhan–Hamma-
mat successions (Shimron 1980; Bentor 1985; El-Gaby et al.
1991; Basta 1997; Azzaz et al. 2000; Moussa 2003; Azer 2007;
El-Bialy 2010; Azer and Farahat 2011).

The Katherina Volcanics at Gabal Ma’ain (580–590 Ma)
in the Sinai consists of porphyritic rhyolite lavas (450 m
thick) with minor pyroclastics intruded by alkaline grani-
toids (578 ± 8 Ma) (El-Bialy and Hassen 2012). The Tarr
Albitites complex comprises intrusive and volcanic erup-
tions of albitite surrounded by an emplacement breccia
containing veins and dykes of carbonates (Azer et al. 2008).
Zircons separated from the albitites yield a U–Pb age of
605 ± 15 Ma, and this is also the age of the intrusive car-
bonates (Azer et al. 2008). Geochemical signatures of Tarr
Albitites indicate that they represent pristine igneous rocks
and are not metasomatic products (Azer et al. 2008)

2.5 Summary and Concluding Remarks

1. Rodinia was created at c. 1.23 Ga by accretion and
aggregation of fragments formed by the break-up of an
older supercontinent, Columbia, created by global events
of 2.0–1.8 Ga. Between 1300 and 900 Ma, Rodinia was
established and the continental break-up occurred
between 950 and 600 Ma. The first components of
Gondwana begin to collide around the same time period,
leading towards the creation of a global supercontinent.
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2. There are basically two geodynamic scenarios to
explain the formation of the Gondwana Supercontinent
in eastern and southern Africa during the Pan-African
Orogenic Cycle:
i. collision and amalgamation of East Gondwana and

West Gondwana (*640 to *530 Ma) and closing
of the Mozambique Ocean between 841 and
632 Ma as well as deformation during the East
African Orogeny.

ii. collision and amalgamation of East Gondwana
(ANS and older crystalline basement of the Dhar-
war Craton of southern India; Madagascar and the
eastern granulites of Kenya and Tanzania), West
Gondwana (Central Africa craton) and South
Gondwana (Antarctica and the Kalahari craton).

3. The Brasiliano Orogeny is the term used for the larger
Pan-African/Brasiliano Orogeny that extended not only
in South America but across most of Gondwana. The
Damara–Zambezi–Lufilian Orogeny developed essen-
tially by closure of linked, narrow ocean basins. The
Zambezi Belt lies between the Congo Craton and the
Kalahari Craton and branches off the MB in northern
Zimbabwe and southern Zambia. The Damara Orogeny
occurred late in the creation of Gondwana and the
Damara Belt is exposed mainly in Namibia between the
Kalahari and the Congo Cratons. The Lufilian Arc is
about 800 km (500 mi) long extends across eastern
Angola, the Katanga Province of the southern Congo
and the northwest of Zambia. The Kaoko Belt branches
north-west from the Damara Belt into Angola.

4. The relics belonging to the East African Orogeny
include high-grade metamorphic rocks within the
Mozambique belt to greenschist facies rocks in NE
Africa and the ANS. The late Mesoproterozoic–early
Neoproterozoic events of the southern segment of the
East African Orogeny include separation of the Congo
and the contiguous East Sahara Cratons from Rodinia
(*1200 Ma).

5. The Kuunga Orogeny is an orogeny that occurred
during the Ediacaran and Cambrian in SE Africa. It is
slightly younger than the East African Orogeny and
produced by collisions between India and Australia–
East Antarctica and Azania and India.

6. The ANS is southward narrowing belt straddling the
suture separating East and West Gondwana at the
northern end of the EAO. It extends over 3500 km
north–south and more than 1500 east–west at its widest,
underlying an area of *2.7 � 106 km2 in the north
half of the East African Orogeny. The ANS combines
areas of western Arabia and northeastern Africa
(Palestine, Jordan, Saudi Arabia, Egypt, Sudan, Ethio-
pia, Eritrea, Somalia and Yemen).

7. Mid-Neoproterozoic ophiolites are common in the
ANS, and range from 690 to 890 Ma and extend
3000 km N–S and > 1000 km E–W.
A supra-subduction zone setting for the Egyptian
Eastern Desert ophiolites is broadly popular but also a
back-arc setting has also been inferred.

8. Two stages for terrane accretion of the Arabian shield:
(1) terrane accretion and (2) lateral transpressional
accretion.

9. The ANS took about 300 million years to form. The
earliest rocks identified with the ANS crust’s formative
process produced by the coalescence of island-arc and
back-arc basins, and probably ocean plateaus. The
oldest rocks of this series are around 870 Ma and are
exposed in the eastern Sudan and South Arabia.

10. The ENS covers *100,000 km2, crops out along the
Red Sea Hills in the Eastern Desert and southern Sinai,
as well as limited areas in the south Western Desert
(Oweinat area). The basement complex of the ENS
comprises four main tectonostratigraphic units from
bottom upward as follows: (1) high-grade gneisses and
migmatites, (2) arc-type volcanic/volcanosedimentary
units, along with dismembered ophiolites, (3) the Edi-
acaran Hammamat and Dokhan supracrustal sequences,
and (4) granitoids.

11. The CED is dominated by ophiolitic rocks, arc vol-
canics and volcaniclastics as well as BIF and diamictite.
The CED is mainly defined by the predominance of an
NW-trending structural fabric that marks the NW–SE
sinistral strike–slip shear zone related to Najd Fault
System.

12. The SED differs from the CED in several styles: (i) it is
much less studied, (ii) it lacks interesting sediments
such as BIF and diamictite, (iii) it has some vol-
canogenic massive sulphides, whereas the CED does
not, (iv) lacks Hammamat molasse sediments and
Dokhan Volcanics found in the NED and CED, and
(v) has a similar abundance of serpentinite as the CED.

13. The NED differs from the CED or the SED. It is
characterized mainly by (i) abundance of Hammamat
sediments and Dokhan Volcanics, (ii) absence of
ophiolites and scarcity of gneisses, (iii) absence of BIF
and diamictite, (iv) absence of Najd deformation,
(v) abundance of bimodal dike swarms, (vi) abundance
of epizonal A-type granites indicating strong extension,
and (vii) abundance of Dokhan Volcanics.

14. The basement rocks in Sinai are divided into four
metamorphic complexes: the Feiran–Solaf, Sa’al–
Zaghra, Kid and Taba Metamorphic Complexes. The
metamorphic complexes contain orthogneisses and
metasedimentary-metavolcanic sequences.
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