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Preface

This volume contains the proceedings of the conference Order Analysis and Related
Problems of Mathematical Modeling, which took place at the Vladikavkaz Scientific
Center of the Russian Academy of Sciences (Russia) in July 2019. The conference
was jointly organized by the Southern Mathematical Institute of the Vladikavkaz
Scientific Centre of the Russian Academy of Sciences and Southern Federal
University (Russia) with the support of Ministry of Science and Higher Education
of the Russian Federation. Its aim is to make current developments in operator
theory and differential equations available to the community as rapidly as possible.
Moreover, one of the purposes of this conference was to bring together some young
and beginning researchers in order to connect people from different schools and
generations, give them the opportunity to exchange ideas, and try to attract more
young mathematicians to this fascinating area of research. Among the conference
participants were mathematicians from Belarus, China, Germany, Israel, Italy, Iran,
Russia, Turkey, UK, USA, and Uzbekistan.

The collection presents a wide range of new and interesting problems in operator
theory and its applications reflecting the current state of mathematical research in
Southern Russia. We believe that the reader will find this book to be a delightful
and valuable state-of-the-art account on some fascinating areas of operator theory
ranging from various classes of operators (positive operators, convolution operators,
backward shift operators, singular and fractional integral operators, and partial
differential operators) to important applications.

The articles presented in this collection can be divided into two approximately
equal parts. The first part contains articles on general operator theory related to the
following topics: positive operators on vector and Banach lattices (Emel’yanov E.
Y., Marabeh M. A. A., Pliev M., and Polat F.); Boolean valued analysis of operators
(Kusraev A. G. and Kutateladze S. S.); structural properties of linear operators on
spaces of holomorphic and ultradifferentiable functions (Ivanova O. A., Melikhov
S. N., and Polyakova D.A.); metric theory of surfaces and Killing vector fields on
Riemannian manifolds (Klimentov D. S. and Nikonorov Yu. G.); linear operators
in approximation theory (Gadzhimirzaev R. M., Magomed-Kasumov M. G., Shakh-
Emirov T. N., and Sultanakhmedov M.). The second part consists of articles devoted
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vi Preface

to the extinction in a finite time for a singular parabolic equation on a Riemannian
manifold (Andreucci D. and Tedeev A.F.); regularity of solutions to the linear
singular integral equations (Klimentov S. B.); explicit solutions to Darboux system
for the Christoffel symbols (Kulaev R. Ch. and Shabat A. B.); spectral analysis of the
boundary value problems of incompressible hydrodynamics (Chernish A., Morgulis
A. B., and Il’in K.) and the energy operator of five-electron system (Tashpulatov
S. M.); asymptotics of self-oscillations of viscous incompressible fluid (Revina
S.V.); properties of fractional integral operator (Shishkina E. L.); inverse problems
for evolution equations (Babich P.V. and Levenshtam V.B.); heat conduction and
reconstructing the inhomogeneity laws for piecewise gradient functions (Nesterov
S. A., Vatulyan A. O., and Yurov V. O.); continuous social stratification models
(Kazarnikov A.V.).

We are grateful to the authors of this volume for their contribution and to all the
anonymous referees for their professional and time-consuming work.

Vladikavkaz, Russia Anatoly G. Kusraev
Vladikavkaz, Russia Zhanna D. Totieva
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Extinction in a Finite Time for Parabolic
Equations of Fast Diffusion Type
on Manifolds

D. Andreucci and A. F. Tedeev

Abstract We prove extinction in a finite time for a singular parabolic equation on
a Riemannian manifold, under suitable assumptions on the Riemannian metric and
on the inhomogeneous coefficient appearing in the equation. The result relies on a
suitable embedding theorem, of which we present a new proof.

MSC Classification 35B33, 35B40, 35K92, 46E35

1 Introduction

We consider the Cauchy problem for the nonlinear parabolic equation:

ρ(x)
∂u

∂t
= div(um−1|∇u|p−2∇u), (x, t) ∈ ST = M × (0, T ), (1)

u(x, 0) = u0(x), x ∈ M. (2)

We assume that

p +m− 3 < 0, N > p > 1, (3)

that is, we consider the fast diffusion case. Here M is a noncompact complete
connected Riemannian manifold of topological dimension N , whose measure is

The first author is a member of Italian G.N.F.M.-I.N.d.A.M.

D. Andreucci
Department of Basic and Applied Sciences for Engineering, University of Rome La Sapienza,
Rome, Italy

A. F. Tedeev (�)
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2 D. Andreucci and A. F. Tedeev

denoted here by μ. We denote by d(x) for x ∈ M the distance from a fixed point
x0 ∈ M , and by V (R) the volume of the geodesic ball BR(x0), R > 0.

Assume that the following isoperimetrical inequality holds true for all measur-
able subsets U ⊂ M with a Lipschitz continuous boundary ∂U

|∂U |N−1 ≥ g(μ(U)) , (4)

where g(s) is an increasing function for s > 0. In addition we assume that the
function ω defined as

ω(s) := s
N−1

N

g(s)
, s > 0 , (5)

is non decreasing.
In what follows we denote with a slight abuse of notation ρ(x) = ρ(d(x)), where

we assume ρ(s) to be a continuous decreasing function for s ≥ 0, ρ(0) = 1. We use
the function ρ∗(s), s > 0, defined as the decreasing rearrangement of ρ(d(x)).

We also need the following assumption, to prove a kind of Hardy inequality:

∫ s

0
y−pg(y)p dy ≤ cs−p+1g(s)p , s > 0 , (6)

for a given constant c > 0.

Remark 1.1 In the Euclidean case g(s) = s(N−1)/N it is easily seen that (6) is
equivalent to p < N .

Taking for example M as one of the manifolds with cylindrical end of [2], whose
metric is (out of a compact set) dt2+t2k dM0, where dM0 is the metric of a compact
manifold M0, 0 < k < 1, one could see that assumption (6) amounts essentially to
the non-parabolicity of M in the sense of [2], i.e., to k > (p − 1)/(N − 1). In this

case, g(s) = γ min{s N−1
N , sα}, α = k(N − 1)/(k(N − 1)+ 1), and such condition

is equivalent to the restriction α > (p − 1)/p.

In this note we prove two results. First we prove the following embedding result.
Below we set p∗ = Np/(N − p) and β = N(p +m− 3)+ p.

Theorem 1.2 Assume 1 < p < N , (4)–(6). Then for all u ∈ W 1,p(M) we have the
weighted Sobolev inequality

(∫
M

|u|p∗ω(V (d(x)))−p∗ dμ

)N−p
N ≤ C

∫

M

|∇u|p dμ , (7)

for a suitable constant C > 0 independent of u.
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The result above was proved in [3], in a different framework. Our proof uses a
different technique, relying on a symmetrization approach and on the use of Hardy
inequality, which seems to us to be sharp and very straightforward.

Next we apply the weighted inequality in (7) to the proof of our extinction
result. Let us note, however, that the embedding may be also employed to prove
for example sup bounds and blow up estimates; this will be pursued elsewhere. We
refer to [5] for a definition of weak solution to our problem (the definition given
there carries over straightforwardly to our setting).

Theorem 1.3 Let u be a nonnegative weak solution to (1)–(2), where we assume
(3), (4), (5), (6) and

∫
M

{
ρ(x)ωδ

(
V (d(x))

)} p∗
p∗−δ dμ < ∞ . (8)

Here δ > p may be any value in (p, p∗) if β ≤ 0, and any value p < δ <

p/(p +m− 2) < p∗ if β > 0.
Then u becomes identically zero in M in a finite time.

Similar extinction results are well known in the literature, when ρ = 1 and the
equation is singular, see [1]. In this note we consider the case of the inhomogeneous
fast diffusion equation, for which we quote [6]. Our extinction result reduces to the
one there for the special cases of Euclidean metric; that is, when ω is constant, and
of ρ(s) = (1+ s)−	, β > 0; i.e., we have extinction if 	 > 	∗ = β/(p +m− 2).

2 Proof of the Weighted Sobolev Inequality

We have by Hardy-Littlewood inequality

I :=
(∫

M

|u|p∗ω(V (d(x)))−p∗ dμ

)N−p
N

≤
(∫ ∞

0
(u∗(s))p∗

(
ω(V (d(x)))−p∗

)∗
ds

)N−p
N

. (9)

By definition

∫ ∞

0
(u∗(s))p∗

(
ω(V (d(x)))−p∗

)∗
ds =

∫ ∞

0
(u∗(s))p∗(ω(s))−p∗ ds .
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Next we have by the properties of Lorentz spaces (see [4])

(∫ ∞

0
(u∗(s))p∗(ω(s))−p∗ ds

)N−p
N ≤ c

∫ ∞

0
(u∗(s))ps

p

p∗ −1
(ω(s))−p ds

= c

∫ ∞

0
(u∗(s))ps−p(g(s))p ds . (10)

Next we prove the Hardy inequality

∫ ∞

0
(u∗(s))ps−p(g(s))p ds ≤ c

∫ ∞

0
(−u∗s (s))p(g(s))p ds . (11)

We have

∂

∂s

[
(u∗(s))p

(∫ s

0
y−p(g(y))p dy

)]
= p(u∗(s))p−1u∗s (s)

∫ s

0
y−p(g(y))p dy

+ (u∗(s))ps−p(g(s))p .

Integrating this equality between 0 and ∞ we deduce

∞∫

0

(u∗(s))ps−p(g(s))p ds

= p

∫ ∞

0

(
(u∗(s))p−1(−u∗s (s))

∫ s

0
y−p(g(y))p dy

)
ds . (12)

By the Hölder inequality we obtain

p

∫ ∞

0

(
(u∗(s))p−1(−u∗s (s))

∫ s

0
y−p(g(y))p dy

)
ds ≤

(∫ ∞

0
(u∗(s))ps−p(g(s))p ds

) p−1
p

×
(∫ ∞

0
(−u∗s (s))p

(∫ s

0
y−p(g(y))p dy

)p

[s−p(g(s))p ]−(p−1) ds

) 1
p

. (13)

Applying (6) to the right-hand side of (13) and combining it with (12) we arrive
at (11). Finally, from Polia-Szego principle we obtain

I ≤ c

∫ ∞

0
(−u∗s (s))p(g(s))p ds ≤ c

∫
M

|∇u|p dμ , (14)
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where the last inequality is proved below. Following Talenti’s approach we estimate
by Hölder inequality

1

h

∫
{t<|u|≤t+h}

|∇u| dμ ≤
(

1

h

∫
{t<|u|≤t+h}

|∇u|p dμ

) 1
p
(

1

h
|{t < |u| ≤ t + h}|

) p−1
p

.

On letting h → 0, we obtain

P(t) := |{|u| = t}|N−1 =
(
− d

dt

∫
{t<|u|}

|∇u|p dμ

) 1
p (

− d

dt
v(t)

) p−1
p

, (15)

where v(t) := |{t < |u|}|. Next, by the isoperimetrical inequality (4) we have

P(t) ≥ g(v(t)) . (16)

When we set s = v(t) we get t = u∗(s), and

dv

dt
(t) = u∗s (s) .

Thus (15), (16) imply

g(s)p(−u∗s (s))p ≤ − d

ds

∫
{u∗(s)<|u|}

|∇u|p dμ .

Finally, on integrating the last inequality over (0,∞), we arrive at the desired result.
The proof is complete.

3 Extinction in Finite Time: Proof of Theorem 1.3

On multiplying both the sides of equation (1) by uθ with θ > 0 such that p+m+θ >

2 and integrating by parts yields

d

dt

∫
M

ρvδ dμ = −γ

∫
M

|∇v|p dμ , (17)

where, owing to (3), we have

v = u
p+m+θ−2

p , δ = δ(θ) = (1+ θ)p

p +m+ θ − 2
> p .

We select θ so that the value of δ is the one given in (8); the requirement p∗ > δ

translates into θ > θ0 := (3 − p − m)N/p − 1; note that θ0 > 2 − p − m under
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our assumptions. If θ0 ≥ 0 then no requirement is needed on δ other than δ < p∗;
otherwise one must impose δ < δ(0+) = p/(p+m− 2) which belongs to (p, p∗),
when θ0 < 0.

Applying Hölder inequality and the embedding in (7) to v we get

∫
M

ρvδ dμ ≤ C

(∫
M

|∇v|p dμ

) δ
p
(∫

M

(
ρ(x)ωδ

(
V (d(x)))

) p∗
p∗−δ dμ

) p∗−δ

p∗
.

(18)

On setting

E(t) :=
∫

M

ρ(x)vδ(x, t) dμ ,

and taking into account (8) we arrive at the inequality

d

dt
E(t) ≤ −γ E(t)

p
δ .

Since p
δ

< 1, the last inequality leads to extinction in finite time: E(t) → 0 as
t → t̄ for some t̄ < +∞.
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Inverse Problems in the
Multidimensional Hyperbolic Equation
with Rapidly Oscillating Absolute Term

P. V. Babich and V. B. Levenshtam

Abstract The paper is devoted to the development of the theory of inverse problems
for evolution equations with terms rapidly oscillating in time. A new approach to
setting such problems is developed for the case in which additional constraints are
imposed only on several first terms of the asymptotics of the solution rather than
on the whole solution. This approach is realized in the case of a multidimensional
hyperbolic equation with unknown absolute term.

Keywords Multidimensional hyperbolic equation · Rapidly oscillating absolute
term · Asymptotics of solution · Inverse problem

Mathematics Subject Classification Primary 35B40, 35R30; Secondary 35L10,
35L15

1 Introduction

We consider some problems of recovering rapidly oscillating in time absolute term
from certain data on a partial asymptotics of the solution. Hence we study some of
the coefficient inverse problems. The theory of inverse problems was the subject of
many monographs (see, e.g. [1–14]) and papers (see, e.g. [15–17]). But there are
almost no problems with rapidly oscillating data in the classical theory of inverse
problems.
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This paper as paper [18] was motivated by the paper [15], in which inverse
problems for the one-dimensional wave equation with unknown absolute term was
posed and solved. In [15] right-hand side represented in the form f (x)r(t), where
r is unknown. An additional condition in [17] was the value of q(t) of the solution
at a fixed point x = x0. In [18] we have the same form of the right-hand side
of multidimensional hyperbolic equation, but the unknown term rapidly oscillate:
r = r(t, ωt), ω 
 1. This brings up the question, should we impose an additional
condition on the whole solution, as in [15]. In paper [18] it was established that
the additional condition may be imposed only on several first coefficients of the
asymptotics of the solution rather than on the whole solution. In the present paper
the following inverse problems are solved: (1) f is unknown; (2) f and fast
component of r are unknown.

In conclusion, we mention that, problems with data rapidly oscillating in time
model many physical (and other) processes (in particular, related to high-frequency
mechanical, electromagnetic, and other actions on a medium) see, for example, [19–
24]. The inverse problems with such specificity have been studied in [18, 25, 26] by
us.

This paper consist of four section. In Sect. 2 some principal symbols are listed
that we use in follows. In Sect. 3 important auxiliary results are given. In Sect. 4 we
state the main results. In Sect. 5 the main results are proved.

2 Principal Symbols

Let � denote a bounded domain in R
n, n ∈ N.S its boundary. We denote the

open cylinder � × (0, T ) ⊂ R
n+1 by QT , its closure QT . Consider the following

hyperbolic initial boundary-value problem with a large parameter ω:

∂2u

∂t2
= Lu+ f (x, t)r(t, ωt), (x, t) ∈ QT , (2.1)

u|t=0 = 0,
∂u

∂t

∣∣∣∣
t=0

= 0, (2.2)

u|x∈S = 0, (2.3)

All functions are real. We consider that the symmetric differential expression

Lu =
n∑

i,j=1

∂

∂xi

[
aij (x)

∂u

∂xj

]
− c(x)u− (2.4)
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is defined in � and satisfies the ellipticity condition, so that

aij (x) = aji(x),

n∑
i,j=1

aij (x)ξiξj ≥ γ

n∑
i=1

ξ2
i , where γ = const > 0, (2.5)

for all x ∈ � and any real vector ξ = (ξ1, ξ2, . . . , ξn).
We shall assume that the function r(t, τ ) is defined and is continuous on the set

D = {(t, τ ) : (t, τ ) ∈ [0, T ] × [0,∞)} and 2π-periodic in τ . Let us represent it as
the sum:

r(t, τ ) = r0(t)+ r1(t, τ ),

where r0(t)—is the mean value of r(t, τ ) over τ :

r0(t) = 〈r(t, ·)〉 = 〈r(t, τ )〉τ ≡ 1

2π

2π∫

0

r(t, τ )dτ.

3 The Auxiliary Results

3.1 The Results of V.A. Il’in [27]

Consider the problem

∂2u

∂t2
= Lu+ F(x, t), (x, t) ∈ QT , (3.1)

u|t=0 = ϕ(x),
∂u

∂t

∣∣∣∣
t=0

= ψ(x), (3.2)

u|x∈S = 0, (3.3)

Let domain �, the coefficients of the expression L (2.4), right-hand side F and
initial conditions ϕ and ψ satisfy the following conditions.

I. � is bounded connected domain in R
n, n ∈ N, contained, together with its

boundary S, in an open domain C ∈ R
n.1

1Recall that a domain is said to be normal if the Dirichlet problem for the Laplace equation in this
domain is solvable for continuous boundary function.
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II. Coefficients aij (x) and c(x) ensure existence of full orthonormal in L2(�)

system classic eigenfunctions of problem

{
Lu = λu,

u|S = 0.

To do this, since [27] it suffices to provide further conditions. Functions
aij (x), c(x) can be continued to domain C so that aij ∈ C1+μ(C), c ∈
Cμ(C), μ ≥ 0. Moreover, aij ∈ C[ n

2 ]+2(�), c ∈ C[ n
2 ]+1(�). Let ym, λm, m =

1, 2, . . . , denote eigenfunctions and eigenvalues noted above. We shall assume
that {λm} is nondecreasing sequence: 0 < λ1 ≤ λ2 ≤ . . .

III. Initial functions ϕ ∈ C[ n
2 ]+3(�), ψ ∈ C[ n

2 ]+2(�) and ϕ|x∈S = Lϕ|x∈S =
. . . = L

[
n+4

4

]
ϕ

∣∣∣∣
x∈S

= 0, ψ|x∈S = Lψ|x∈S = . . . = L

[
n+2

4

]
ψ

∣∣∣∣
s∈S

= 0. Let

ϕm, ψm denote the coefficients of the Fourier expansion of functions ϕ(x), ψ(x)

in the basis of ym.
IV. The right-hand side F ∈ C([0, T ], C[ n

2 ]+2(�)), F |x∈S = Lf |x∈S = . . . =
L

[
n+2

4

]
f

∣∣∣∣
x∈S

= 0. Let Fm(t) denote the coefficients of the Fourier expansion

of function F(x, t) in the basis of ym

Theorem 1 (V.A. Il’in) If conditions I–IV hold, the series

u(x, t) =
∞∑

m=1

ym(x)

[
ϕm cos

√
λmt + ψm√

λm

sin
√

λmt

]

+
∞∑

m=1

ym(x)
1√
λm

t∫

0

Fm(τ) sin
√

λm(t − τ )dτ (3.4)

and the series ut , utt obtained by single and double differentiation of (3.4) with
respect to t are converge uniformly in QT . The series uxi , utxi , uxixj obtained by
single and double differentiation of (3.4) with respect to any two variables are
converge uniformly in any domain that is strictly contained in QT . At the same
time, (3.4) is classic solution of (3.1)–(3.3).

This result can be found in [27, Theorems 6, 8].2

Lemma 1 If conditions I, II, III hold, then the bilinear series for eigenfunc-

tions
∞∑

m=1

y2
m(x)

λ
[ n

2 ]+1
m

converge uniformly in �, the bilinear series
∞∑

m=1

∣∣∣ ∂vm(x)
∂xi

∣∣∣2

λ
[ n

2 ]+2
m

and

2Here and in what follows, we use results of [27] in “classical” terms (see [27, Remark 3, p. 114 of
the Russian original]). In [27], such classical versions are not stated explicitly, but when referring
to results of [27], we always mean their classical versions.
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∞∑
m=1

∣∣∣∣ ∂2ym(x)
∂xi ∂xj

∣∣∣∣
2

λ
[ n

2 ]+3
m

converge uniformly in any domain that is strictly contained in �′ ⊂ �.

Lemma 2 Let the coefficients aij (x) be continuous together with their derivatives
up to order k, and c(x) is continuous together with its derivatives up to order k− 1.
We also assume that a function �(x), x ∈ � satisfies the following conditions:

(1) � ∈ Ck+1(�),

(2) �|x∈S = L�|x∈S = . . . = L

[
k
2

]
�

∣∣∣∣
x∈S

= 0.

Then for � inequality of Bessel type holds true:

∞∑
m=1

�2
mλk+1

m ≤

⎧⎪⎪⎨
⎪⎪⎩

∫
�

[∑n
i,j=1 aij

∂
∂xi

(L
k
2 �) ∂

∂xj
(L

k
2 �)+ c(L

k
2 �)2

]
dx, k is even,

∫
�

[
L

k+1
2 �

]2
dx, k is odd.

3.2 The Problem 1

The Direct Problem 1. The Three-Term Asymptotics
Consider problem (2.1)–(2.3), where domain �, elliptic differential expression L

are the same as in Theorem 1.
Concerning the function f (x, t) defined at (x, t) ∈ QT , we assume that there

exist continuous functions f, Lf, ft , ftt , ftt t and Lft , such that all of them belong

to the space of functions C
0,[ n

2 ]+2
t,x (QT ) and, moreover,

f |x∈S = Lf |x∈S = . . . = L

[
n+6

4

]
f

∣∣∣∣
x∈S

= 0.

For brevity, we refer to functions r with these properties as functions of class F1.
We shall assume that the function r(t, τ ) is defined and is continuous on the set

D = {(t, τ ) : (t, τ ) ∈ [0, T ] × [0,∞)} and 2π-periodic in τ . As in Sect. 2 let us
represent r as the sum of slow and oscillating components:

r(t, τ ) = r0(t)+ r1(t, τ );

we shall assume that r0 ∈ C([0, T ]), and the functions r1, r1t , r1t t , and r1t t t belong
to the class C(D). We denote function r with such properties as function of class
R1.
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In the present paper, by a solution of problem (2.1)–(2.3) we mean its classical
solution, i.e., a function u ∈ C(QT ), which has continuous derivatives ut ∈
C(QT ), utt , and uxixj ∈ C(QT ), i, j = 1, n, and satisfies relations (2.1)–(2.3).
Under our assumptions, the solution of problem (2.1)–(2.3), exists and is unique
according to Theorem 1.

Below we define functions and constants needed in what follows:

ρ0(t, τ ) =
τ∫

0

⎛
⎝

p∫

0

r1(t, s)ds −
〈 τ∫

0

r1(t, s)ds

〉

τ

⎞
⎠ dp−

〈 τ∫

0

⎛
⎝

p∫

0

r1(t, s)ds −
〈 τ∫

0

r1(t, s)ds

〉

τ

⎞
⎠ dp

〉

τ

(3.5)

ρ1(t, τ ) =
〈 τ∫

0

ρ0(t, s)ds

〉

τ

−
τ∫

0

ρ0(t, s)ds.

b1,m = −ρ0τ (0, 0)fm(0), (3.6)

dm = −ρ0(0, 0)fm(0), (3.7)

b2,m = −(2ρ1(0, 0)+ ρ0(0, 0))f ′m(0)− (2ρ1t (0, 0)+ ρ0t (0, 0))fm(0), (3.8)

where the fm(t) are the coefficients of the Fourier expansion of f (x, t) in the basis
of ym.

Let us represent the solution of problem (2.1)–(2.3) in the form:

uω(x, t) = Uω(x, t)+Wω(x, t), ω 
 1, (3.9)

Uω(x, t) = u0(x, t)+ ω−1u1(x, t)+ ω−2[u2(x, t)+ v2(x, t, ωt)
]
, ω 
 1,

(3.10)

u0(x, t) =
∞∑

m=1

ym(x)√
λm

t∫

0

fm(s)r0(s) sin
√

λm(t − s)ds, (3.11)

u1(x, t) =
∞∑

m=1

b1,m√
λm

ym(x) sin
√

λmt, (3.12)

v2(x, t, τ ) = f (x, t)ρ0(t, τ ), (3.13)

u2(x, t) =
∞∑

m=1

ym(x)

(
dm cos

√
λmt + b2,m√

λm

sin
√

λmt

)
. (3.14)
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Note that, in view of Theorem 1, the series (3.11)–(3.14) converge uniformly and
absolutely.

Theorem 2 The solution uω(x, t) of problem (2.1)–(2.3) can be expressed in the
form (3.9)–(3.14), where

∥∥Wω(x, t)
∥∥

C(QT )
= o(ω−2), ω →∞. (3.15)

The Inverse Problem 1
Suppose that the function f (x, t) in the initial boundary-value problem (2.1)–(2.3)
is the function of class F1 and the function r ∈ R1 is unknown. Choose a point
x0 ∈ � at which f (x0, t) �= 0, t ∈ [0, T ], and functions ϕ0(t) and χ(t, τ ) satisfying
the conditions:

ϕ0 ∈ C1([0, T ]), ϕ0(0) = 0, ϕ′0(0) = 0;
χ ∈ C3,2(D),

where the function χ(t, τ ) is 2π-periodic in τ and has zero mean
(〈χ(t, ·)〉 = 0

)
.

Consider the functions ϕ1(t) and ϕ2(t) defined by

ϕ1(t) =
∞∑

m=1

b1,m√
λm

ym(x0) sin
√

λmt, (3.16)

ϕ2(t) =
∞∑

m=1

ym(x0)

(
dm cos

√
λmt + b2,m√

λm

sin
√

λmt

)
, (3.17)

where the b1,m, b2,m and dm are the same as in (4.12)–(4.13), but ρ0(t, τ ) is now
defined by

ρ0(t, τ ) = 1

f (x0, t)

( τ∫

0

⎛
⎝

p∫

0

χss(t, s)ds −
〈 τ∫

0

χss(t, s)ds

〉

τ

⎞
⎠ dp−

〈 τ∫

0

⎛
⎝

p∫

0

χss(t, s)ds −
〈 τ∫

0

χss(t, s)ds

〉

τ

⎞
⎠ dp

〉

τ

)
.
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The inverse problem 1 is to find a function r ∈ R1 for which the solution uω(x, t)

of problem (2.1)–(2.3) satisfies the condition

∥∥∥∥uω(x0, t)−
[
ϕ0(t) + 1

ω
ϕ1(t)+ 1

ω2

(
ϕ2(t)+ χ(t, ωt)

)]∥∥∥∥
C([0,T ])

= o(ω−2), ω →∞.

(3.18)

Theorem 3 For any pair of functions χ, ϕ0 and point x0 satisfying the conditions
specified above inverse problem 1 is uniquely solvable.

Remark Finding the function r0 reduces to solving a Volterra equation of the second
kind

f (x0, t)r0(t)+
∫ t

0
K(t, s)r0(s) ds = ϕ′′0 (t), (3.19)

K(t, s) = −
∞∑

m=1

√
λmfm(s) sin

(√
λm(t − s)

)
ym(x0).

Function r1 calculated by

r1(t, τ ) = 1

f (x0, t)

∂2

∂τ 2 χ(t, τ ), (3.20)

Remark Theorems 2 and 3 can be found together with their proof in paper [18].

3.3 The Lemma of Krasnosel’skii et al. [28, Sec. 22.1]

Suppose that � is bounded connected domain in R
n and S is its boundary. We

denote k0 > n
4 is natural value such that S ∈ C2k0 and functions bij , d ∈

C2k0−2(�). Moreover, boundary smoothness meant in the same manner as in [29,
Theorem 15.2]. In space L2(�) consider elliptic differential operator

L0u =
n∑

i,j=1

bij (x)
∂2u

∂xi∂xj

− d(x)u, u ∈ D(L0) ≡ Ẇ 2
2 (�), (3.21)

where Ẇ 2
2 (�) is closure in W 2

2 (�) of set of smooth finite in � function. We shall
assume that coefficient d(x) is so large that L0 is invertible operator. Results of [29]
imply the estimate

∥∥∥L
k0
0 u

∥∥∥
L2
≥ c ‖u‖

W
2k0
2

, u ∈ D(L
k0
0 ), c—positive value. (3.22)



Inverse Problems in the Multidimensional Hyperbolic Equation with Rapidly. . . 15

We assume that the domain � satisfies Sobolev’s imbedding Theorem:

‖u‖Cl(�) ≤ c‖u‖Ws
2 (�), u ∈ Ws

2 (�), (3.23)

where s − l > n
2 , c is positive value. Classic condition for this Theorem is that � is

star domain.
The above leads to the following result:

Lemma 3 For any integer |r| ∈ [0, 2k0 − n
2 ] operator DrL

−k0
0 continuously acts

from L2(�) to C2k0−r− n
2 (�), where Dru = ∂r u

∂x
r1
1 ...x

rn
n

, r = (r1, . . . , rn) is multi-

index with length |r| = r1 + . . .+ rn.

Lemma 3 can be found in [28, Sec.22.2] without specialization of some
requirements to coefficients and boundary.

4 The Main Results

4.1 The Problem 2

The Direct Problem 2. The Main Term of Asymptotics
Let, as in Sect. 3.2, domain � and differential expression L satisfy Theorem 1
conditions.

Let us consider the problem (2.1)–(2.3). From this point onward function f (x, t)

is invariant with t h.e. f (x, t) = f (x), x ∈ �. We also assume that f ∈ C[ n
2 ]+2(�),

f |x∈S = Lf |x∈S = L2f

∣∣∣
x∈S

= . . . = L

[
n+2

4

]
f

∣∣∣∣
x∈S

= 0. (4.1)

Let us denote the class of such functions by F2.
We shall also assume that function r(t, τ ) is defined and is continuous on the set

D = {(t, τ ) : (t, τ ) ∈ [0, T ]× [0,∞)} and 2π-periodic in τ . As above let represent
it as the sum:

r(t, τ ) = r0(t)+ r1(t, τ ),

where r0 is slow component and r1 is oscillating component. Let us assume that
r0 ∈ C([0, T ]), r1 ∈ C(D).

Theorem 4 The following asymptotic formula holds

∥∥uω − u0
∥∥

C(�)
= o(1), ω →∞, (4.2)

where uω is solution of problem (2.1)–(2.3).
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The Inverse Problem 2
Consider the problem (2.1)–(2.3) in bounded connected normal domain � with
boundary S ∈ C2[ n

2 ]+4. Let coefficients of expression L belong to the following
Holder classes:

aij ∈ C3[ n
2 ]+6(�), c ∈ C3[ n

2 ]+5(�), where α ∈ (0, 1), c(x) ≥ 0, x ∈ �. (4.3)

We shall assume that function r(t, τ ) is known, satisfies Theorem 4 conditions, and,
moreover, r0 ∈ C1([0, T ]). Suppose there exists a point t0 ∈ (0, T ] such that

|r0(t0)| > |r0(0)|. (4.4)

Let R2 denote the class of functions r satisfying the above mentioned conditions.
We assume that function f is unknown and belong to the class F2.

Following lemma holds, where

�m(t) ≡
∫ t

0
r0(s) sin

√
λm(t − s)ds, t ∈ [0, T ].

Lemma 4 For any function r ∈ R2 there exist values c0 > 0 and m0 ∈ N such that
for every number m ≥ m0 we have �m(t0) > c0

λm
.

For brevity, we shall assume that set M0 ≡ {m : �m(t0) = 0} = ∅.
Concerning the system (2.1)–(2.3) with unknown function f , we supplement the

problem with function ψ such that

ψ ∈ C3[ n
2 ]+7(�), ψ|x∈S = Lψ|x∈S = L2ψ

∣∣∣
x∈S

= . . . = L3[ n
4 ]+3ψ

∣∣∣
x∈S

= 0.

(4.5)

The inverse problem 2 is to find function f ∈ F2 for which the solution uω(x, t)

of problem (2.1)–(2.3) satisfies the condition:

∥∥uω(x, t0)− ψ(x)
∥∥

C([0,π]) = o(1), ω →∞. (4.6)

Theorem 5 Let functions r0, ψ and point t0 satisfy the conditions specified above.
Then inverse problem 2 is uniquely solvable. At the same time, the function f (x)

calculated by f (x) = ∑∞
m=1 fmym(x), fm = ψm

�m
.

4.2 The Inverse Problem 3

In this section we consider again problem (2.1)–(2.3). Assume that domain � and
coefficients of differential expression L are the same as in previous subsection, e.g.
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coefficients satisfying to conditions (4.3), domain � is bounded, is connected, is
normal, and its boundary S ∈ C2[ n

2 ]+4.
Let function f and r belong to (F3 and R3) respectively:

F3 : f, Lf ∈ C[ n
2 ]+2(�), f |x∈S = Lf |x∈S = . . . = L

[
n+6

4

]
f

∣∣∣∣
x∈S

= 0;
R3 : r(t, τ ) is 2π-periodic in τ . As above let represent it as the sum:

r(t, τ ) = r0(t)+ r1(t, τ ),

where

r0 ∈ C1([0, T ]); r1, r1t , r1t t , r1t t t ∈ C(D)

and a point t0 ∈ (0, T ] such that |r0(t0)| > |r0(0)| there exist.
We shall assume that function r0 is known, and functions f and r1 are unknown.

For brevity, as in Sect. 4.1 suppose that set M0 ≡ {m, �m(t0) = 0} = ∅. Choose a
2π-periodic with zero mean in second variable χ(t, τ ), χ ∈ C3,2(D), D = [0, T ]×
[0,∞), and function ψ ∈ C3[ n

2 ]+9(�) satisfying the conditions

ψ|x∈S = Lψ|x∈S = L2ψ

∣∣∣
x∈S

= . . . = L3[ n
4 ]+4ψ

∣∣∣
x∈S

= 0. (4.7)

And let x0 ∈ � is a point at which f̃ (x0) �= 0, where

f̃ (x) =
∞∑

m=1

f̃mym(x), f̃m = ψm

�m

(4.8)

Consider the functions ϕ0(t), ϕ1(t), ϕ2(t), defined as follows. Function ϕ0(t) is
solution of Cauchy problem

{
ϕ′′0 (t) = f̃ (x0)r0(t)+ ∫ t

0 K(t, s)r0(s) ds,

ϕ0(0) = ϕ′0(0) = 0,
(4.9)

where

K(t, s) = −
∞∑

m=1

√
λmf̃m sin

√
λm(t − s)ym(x0).

Functions ϕ1, ϕ2 satisfying the conditions

ϕ1(t) =
∞∑

m=1

b̃1,m√
λm

ym(x0) sin
√

λmt, (4.10)
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ϕ2(t) =
∞∑

m=1

ym(x0)

(
d̃m cos

√
λmt + b̃2,m√

λm

sin
√

λmt

)
, (4.11)

where

b̃1,m = −ρ0τ (0, 0)f̃m, (4.12)

d̃m = −ρ0(0, 0)f̃m, (4.13)

b̃2,m = −(2ρ1t (0, 0)+ ρ0t (0, 0))f̃m. (4.14)

The inverse problem 3 is to find a functions f and r1 such that f ∈ F3, r1 is
2π-periodic in τ and, moreover, r1, r1t , r1t t , r1t t t ∈ C(D) for which the solution
uω(x, t) of problem (2.1)–(2.3) satisfies the conditions

∥∥∥∥uω(x0, t) −
[
ϕ0(t)+ 1

ω
ϕ1(t)+ 1

ω2

(
ϕ2(t)+ χ(t, ωt)

)]∥∥∥∥
C([0,T ])

= o(ω−2),

(4.15)∥∥uω(x, t0)− ψ(x)
∥∥

C(�)
= o(1), ω →∞. (4.16)

Theorem 6 Let functions r0, ψ, χ and points x0, t0 satisfy the conditions specified
above. Then inverse problem 3 is uniquely solvable. At the same time, the function
f (x) = f̃ (x) calculated by (4.8), and

r1(t, τ ) = (f (x0))−1 ∂2

∂τ 2 χ(t, τ ). (4.17)

5 Proofs of the Main Results

Proof of Theorem 4 Consider the function

Wω(x, t) = uω(x, t)− u0(x, t) =
∞∑

m=1

fmym(x)

λm

t∫

0

sin
√

λm(t − s)r1(s, ωs)ds,

(5.1)
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Note that, in view of Lemmas 1, 2 and Cauchy–Schwarz inequality, the series in
right-hand side of (5.1) converges uniformly with respect to t ∈ [0, T ]. Represent
Wω(x, t) in the form

Wω(x, t) =
m0∑

m=1

fmym(x)

λm

t∫

0

sin
√

λm(t − s)r1(s, ωs)ds+

∞∑
m=m0+1

fmym(x)

λm

t∫

0

sin
√

λm(t − s)r1(s, ωs)ds ≡ Sω,1 + Sω,2, m0 ∈ N.

Let ε is arbitrary value. Taking into account uniform convergence of the series (5.1),
we take number m0 sufficiently large such that for all m, m ≥ m0, and ω > 0

‖Sω,2‖C(�) <
ε

2
. (5.2)

For the estimation of Sω,1 choose δ > 0 so small that

δ∫

0

sin
√

λm(t − s)r1(s, ωs)ds <
ε

2m0s0
, (5.3)

where s0 = max1≤i≤m0

∣∣∣ fi

λi

∣∣∣ ‖yi‖C(�). Further, considering t ∈ (s, T ], we divide the

interval [δ, t] into k equal parts [tj , tj+1), j = 0, k − 1, and apply the relation

t∫

δ

sin
√

λm(t − s)r1(s, ωs)ds =

k−1∑
j=0

⎡
⎢⎣

tj+1∫

tj

sin
√

λm(t − s)r1(s, ωs)ds −
tj+1∫

tj

sin
√

λm(t − tj )r1(tj , ωs)ds

⎤
⎥⎦+

k−1∑
j=0

tj+1∫

tj

sin
√

λm(t − tj )r1(tj , ωs)ds = S1 + S2.

Choose k = k(t) so large that

|S1| <
ε

4m0s0
(5.4)
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for all m : m < m0 and ω > 0.
Further, in view of equality 〈r1(t, τ )〉τ = 0, we choose ω0 sufficiently large that

|S2| <
ε

4m0s0
(5.5)

for given k, t ∈ [0, T ], and any ω > ω0.
Since inequalities (5.4), (5.5) there exists a number ω0 > 0 such that

|Sω,1| <
ε

2
(5.6)

for any ω > ω0. Relations (5.2), (5.6) imply the relation (4.2). This completes the
proof of Theorem 4.

Proof of the Lemma 4 Choose t0 that |r0(t0)| > |r0(0)| and apply the relation

�m(t0) =
t0∫

0

sin
√

λm(t0 − s)√
λm

r0(s)ds = r0(t0)− r0(0) cos
√

λmt0

λm

+
t0∫

0

cos
√

λm(t0 − s)

λm

r ′0(s)ds.

Taking into account the condition (4.4), note that |r0(t0)| �= |r0(0) cos
√

λmt0| for
all m ∈ N. Thus there exist positive values c0 and m0 such that

|�m(t0)| >
c0

λm

for m > m0. The Lemma is proved.

Proof of Theorem 5 Choose t0 that |r0(t0)| > |r0(0)|. We assume that the function
f ∈ F2 is found. It follows from Theorem 4 and conditions (3.11), (4.6) that

∞∑
m=1

fmym(x)�m(t0) =
∞∑

m=1

ψmym(x).

For �m �= 0, m ∈ N(M0 = ∅) we obtain

f (x) =
∞∑

m=1

fmym(x), fm = ψm

�m(t0)
.

It remains to show that f belongs to class F2.
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In the first place we shall show that function f ∈ C[ n
2 ]+2(�). Let us consider the

series

L[ n
2 ]+2f (x) =

∞∑
m=1

ψm

�m(t0)
L[ n

2 ]+2ym(x) =

m0∑
m=1

ψm

�m(t0)
L[ n

2 ]+2ym(x)+
∞∑

m=m0+1

ψm

�m(t0)
λ

[ n
2 ]+2

m ym(x) = Y1 + Y2,

In view of Lemmas 1, 2, 4 and Cauchy–Schwarz inequality, series Y2 may be
estimate as follows

‖Y2‖L2(�) ≤ 1

c0

√√√√ ∞∑
m=m0+1

y2
m(x)

λ
[ n

2 ]+1
m

·
∞∑

m=m0+1

ψ2
mλ

3[ n
2 ]+7

m ,

where c0 and m0 are the same as in Lemma 4.
Further, let g denote the function g(x) = L[ n

2 ]+2f (x), g ∈ L2(�). Thus

f = L−[ n
2 ]−2g.

As in the Lemma 3 consider D[ n
2 ]+2 is the derivative of order

[
n
2

] + 2, and then
apply it to the function f , we obtain

D[ n
2 ]+2f = D[ n

2 ]+2L−[ n
2 ]−2g.

From the Lemma 3 it follows that function D[ n
2 ]+2f is continuous.

Note that, since proved smoothness of the function f and properties of the
eigenfunctions ym(x) it follows that for founded function f (x) conditions (4.1) are
hold. This completes the proof of Theorem 5.

Proof of Theorem 6 Let the hypotheses of current theorem holds. Then according
to Theorem 5 the inverse problem 2 with given functions r0, ψ and point t0 is
uniquely solvable, and function f̃ calculable by (4.8) is the inverse problem 2
solution. Providing similar to Theorem 5 reasoning we obtain that f ∈ F3.

Further, consider system (2.1)–(2.3) with f (x, t) = f̃ (x), and also the inverse
problem 1 with given functions χ, ϕi, i = 0, 2 and point x0. In view condition (4.9),
the function r0(t) satisfies Volterra equation of the second kind

ϕ′′0 (t) = f̃ (x0)r0(t)+
∫ t

0
K(t, s)r0(s) ds,

K(t, s) = −
∞∑

m=1

√
λmf̃m sin

√
λm(t − s)ym(x0).
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From Theorem 3 it follows that the inverse problem 1 with given data is uniquely
solvable, moreover, its solution may be represented in form r(t, τ ) = r0(t) +
r1(t, τ ), where r1 calculated by (4.17). Because of the conditions on function r0
the inverse problem 1, e.g. solution r , belongs to the class R3.

Hence pair of functions f̃ , r1 is solution of the inverse problem 3. This completes
the proof of this Theorem.
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On the Brezis–Lieb Lemma and Its
Extensions
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Abstract Based on employing the unbounded order convergence instead of the
almost everywhere convergence, we identify and study a class of Banach lattices
in which the Brezis–Lieb lemma holds true. This gives also a net-version of the
Brezis–Lieb lemma in Lp for p ∈ [1,∞). We discuss an operator version of the
Brezis–Lieb lemma in certain convergence vector lattices.

Keywords a.e.-convergence · Brezis–Lieb lemma · Banach lattice ·
uo-convergence · Brezis–Lieb space · Pre-Brezis–Lieb property
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1 Introduction

Throughout this paper, (�, �, μ) stands for a measure space in which every set A ∈
� of nonzero measure has a subset A0 ⊆ A, A0 ∈ �, such that 0 < μ(A0) < ∞. It
is known that the Fatou lemma is the following implication

fn
a.e.−−→ f �⇒

∫
|f |dμ � lim inf

∫
|fn|dμ, (1)
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where (fn) is a sequence in L0(μ). The Brezis–Lieb lemma [2, Thm.2] is a
refinement of the Fatou lemma.

Theorem 1 (The Brezis–Lieb Lemma) Let j : C → C be a continuous function
with j (0) = 0 such that, for every ε > 0, there exist two continuous functions
φε, ψε : C→ R+ with

|j (x + y)− j (x)| � εφε(x)+ ψε(y) (∀x, y ∈ C). (2)

Let f be a C-valued function in L0(μ) and (gn) be a sequence of C-valued functions

in L0(μ) such that gn
a.e.−−→ 0; j (f ), φε(gn), ψε(f ) ∈ L1(μ) for all ε > 0, n ∈ N;

and let

sup
ε>0, n∈N

∫
φε(gn(ω))dμ(ω) � C < ∞.

Then

lim
n→∞

∫
|j (f + gn)− (j (f )+ j (gn))|dμ = 0. (3)

Two measure-free versions of Theorem 1 were proved in vector lattices in [5, 9].
The following fact is a corollary of Theorem 1 (see [2, Thm.1]).

Theorem 2 (The Brezis–Lieb Lemma for Lp (0 < p < ∞)) Suppose fn
a.e.−−→ f

and
∫ |fn|pdμ � C < ∞ for all n and some p ∈ (0,∞). Then

lim
n→∞

∫
(|fn|p − |fn − f |p)dμ =

∫
|f |pdμ. (4)

Proof We reproduce short and instructive arguments from [2]. Take j (z) =
φε(z) := |z|p and ψε(z) = Cε|z|p for a sufficiently large Cε . Theorem 1 applied to
the sequence (gn), where gn = fn − f , gives

lim
n→∞

∫
(|fn|p − (|f |p + |fn − f |p))dμ = 0. (5)

The uniform boundedness assumption on the sequence (fn) together with (5) ensure

∫
|f |pdμ � lim sup

n→∞

∫
(|f |p + |fn − f |p)dμ � C. (6)

Formula (6) allows us to rewrite (5) as (4). ��
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The Fatou lemma
(
in the case of a uniformlyLp-bounded sequence (fn)

)
follows

from Theorem 2, since

fn
a.e.−−→ f ⇒

∫
|f |pdμ = lim

n→∞

∫
(|fn|p − |fn − f |p)dμ � lim inf

∫
|fn|pdμ

⇒
∫
|f |dμ � lim inf

∫
|fn|dμ.

The next theorem is an immediate corollary of Theorem 2. Notice that the case
p > 1 was obtained by Frigyes Riesz [11, p.59].

It is known that almost everywhere equality of measurable functions is an
equivalence relation. An equivalence class is denoted by f. The notion Lp means
the collection of all equivalence classes f for which

∫ |f |p < ∞, f ∈ f.

Theorem 3 (The Brezis–Lieb Lemma for Lp (1 � p < ∞)) Let (fn) be

a sequence in Lp(μ) such that fn
a.e.−−→ f in Lp(μ) and ‖fn‖p → ‖f‖p, where

‖fn‖p :=
(∫

�

|fn|pdμ

)1/p

with fn ∈ Lp(μ) and fn ∈ fn. Then ‖fn − f‖p → 0.

The fact that Theorem 3 becomes a Banach-lattice-result by replacing a.e.-
convergence with uo-convergence, motivates investigation of the class of Banach
lattices in which Theorem 2 yields for uo-convergence. One more important reason
for this investigation lies at the sequential nature of a.e.-convergence, which makes
obstacles in obtaining net-versions of the Brezis–Lieb lemma. To show this, we
include [6, Example 1]. Let μ be the Lebesgue measure on [0, 1], Pf in[0, 1] the
family of all finite subsets of [0, 1] ordered by inclusion, and IF the indicator

function of F ∈ Pf in[0, 1]. Then IF
a.e.−−→ I[0,1] and

1∫
0
|IF |dμ = 0, however

lim
F→∞

1∫

0

(|IF |− |IF − I[0,1]|)dμ = lim
F→∞

1∫

0

(−|I[0,1]|)dμ = −1 �= 1 =
1∫

0

|I[0,1]|dμ.

Proposition 2 below may serve as a net extension of Theorem 3.
After introducing Brezis–Lieb spaces, we present and discuss an internal geo-

metric characterization of Brezis–Lieb spaces in Theorem 4 [6, Thm.4]. Possible
extensions of Theorem 4 to locally solid vector lattices are also considered. In the
last part of the paper, we prove Theorem 5 which is an operator version of Theorem 1
in convergence spaces.

In the paper, we consider normed lattices over the complex field C which are
complexifications of uniformly complete real normed lattices. More precisely, the
modulus of z = x + iy ∈ E = F ⊕ iF is defined by

|z| = sup
θ∈[0,2π)

[x cos θ + y sin θ ],
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and its norm is defined by ‖z‖ = ‖z‖E := ‖ |z| ‖F . We also adopt notations E+ =
F+, z = [z]r + i[z]i , x = Re[z], and y = Im[z] for z = x + iy in E. A net (vα) in
a vector lattice E is said to be uo-convergent to v ∈ E whenever, for every u ∈ E+,
the net (|vα − v| ∧ u) converges in order to 0.

2 Brezis–Lieb Spaces

We begin with the following definition [6, Def.1] that is motivated by Theorem 3.

Definition 1 A normed lattice (E, ‖ · ‖) is said to be a Brezis–Lieb space (shortly,
a BL-space) (resp. σ -Brezis–Lieb space ( σ -BL-space) ) if, for any net (xα)

(
resp,

for any sequence (xn)
)

in X such that ‖xα‖ → ‖x0‖ (resp. ‖xn‖ → ‖x0‖ ) and

xα
uo−→ x0 (resp. xn

uo−→ x0 ), there holds ‖xα − x0‖ → 0 (resp. ‖xn − x0‖ → 0 ).

Clearly, any BL-space is a σ -BL-space, and any finite-dimensional normed
lattice is a BL-space. Since the a.e.-convergence for sequences in Lp coincides
with the uo-convergence [8, Prop.3.1], Theorem 3 says that Lp is a σ -BL-space
for 1 � p < ∞. The Banach lattice c0 is not a σ -BL-space. Indeed, let (xn) be

a sequence in c0 given by xn = e2n +
n∑

k=1

1
k
ek , and let x =

∞∑
k=1

1
k
ek in c0. Then

‖x‖ = ‖xn‖ = 1 for all n ∈ N, and xn
uo−→ x, however 1 = ‖x − xn‖ does not

converge to 0. A minor change of a BL-space may turn it into a normed lattice which
is not even a σ -BL-space [6, EX.4]. Indeed, take any infinite dimensional BL-
space E and consider E1 = R ⊕∞ E. Take a disjoint sequence (yn) in E such that

‖yn‖E ≡ 1. Then yn
uo−→ 0 in E [8, Cor.3.6]. For each n ∈ N, let xn = (1, yn) ∈ E1.

Then ‖xn‖E1 = sup(1, ‖yn‖E) = 1 and xn = (1, yn)
uo−→(1, 0) =: x in E1, however

‖xn − x‖E1 = ‖(0, yn)‖E1 = ‖yn‖E = 1 and so, (xn) does not converge to x in
(E1, ‖ · ‖E1). Therefore E1 = R ⊕∞ E is not a σ -Brezis–Lieb space. It could be
interesting to construct an example of a σ -BL-space which is not a BL-space. The
following result of Vladimir Troitsky gives a condition under which a σ -BL-space
is a BL-space (see [6, Prop.2]).

Proposition 1 A Banach lattice with the countable sup property and a weak unit is
a BL-space iff it is a σ -BL-space.

The next definition [6, Def.2] will be used for characterizing BL-spaces.

Definition 2 A normed lattice (E, ‖·‖) is said to have the pre-Brezis–Lieb property
(shortly, pre-BL property), whenever lim sup

n→∞
‖u0 + un‖ > ‖u0‖ for any disjoint

normalized sequence (un)∞n=1 in E+ and for any u0 ∈ E, u0 > 0.

Every finite dimensional normed lattice has the pre-BL property. The Banach lat-
tice c0 obviously does not possess the pre-BL property. The mentioned modification
of the norm in an infinite-dimensional Banach lattice E as above turns it to a Banach
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lattice E1 = R ⊕∞ E without pre-BL property. Indeed, take a disjoint normalized
sequence (yn)∞n=1 in E+. Let u0 = (1, 0) and un = (0, yn) for n � 1. Then (un)∞n=0
is a disjoint normalized sequence in (E1)+ with lim sup

n→∞
‖u0 + un‖ = 1 = ‖u0‖.

The real version of the following result is included in [6, Thm.4]. Here we provide
its complex version.

Theorem 4 For a σ -Dedekind complete Banach lattice E, the following conditions
are equivalent:
(1) E is a BL-space;
(2) E is a σ -BL-space;
(3) E possesses the pre-BL property and has order continuous norm.

Proof (1) ⇒ (2) It is trivial.
(2) ⇒ (3) We show first that E has the pre-BL property. Suppose that there exist

a disjoint normalized sequence (un)∞n=1 in E+ and u0 ∈ E+ with lim sup
n→∞

‖u0 +
un‖ = ‖u0‖. Since ‖u0 + un‖ � ‖u0‖, then lim

n→∞‖u0 + un‖ = ‖u0‖. Denote

vn := u0 + un. By Gao et al. [8, Cor.3.6], un
uo−→ 0 and hence vn

uo−→ u0. Since E is
a σ -BL-space and lim

n→∞‖vn‖ = ‖u0‖, then ‖vn − u0‖ → 0, which is impossible in

view of ‖vn − u0‖ = ‖u0 + un − u0‖ = ‖un‖ = 1. In this part of the proof, both
σ -Dedekind and norm completeness of E were not used.

If the norm in E is not order continuous then, by the Fremlin-Meyer-Nieberg
theorem (see e.g. [1, Thm.4.14]), there exist y ∈ E+ and a disjoint sequence (ek) in
[0, y] such that ‖ek‖ �→ 0. Without loss of generality, we may assume ‖ek‖ = 1 for
all k ∈ N. By σ -Dedekind completeness of E, for any sequence (αn) in R+, there
exist

x0 =
∞∨

k=1

ek, xn = α2ne2n +
∞∨

k=1,k �=n,k �=2n

ek (∀n ∈ N). (7)

Now, we choose α2n � 1 in (7) such that ‖xn‖ = ‖x0‖ for all n ∈ N. Clearly,

xn
uo−→ x0. Since E is a σ -BL-space, then ‖xn − x0‖ → 0, violating

‖xn − x0‖ = ‖(α2n − 1)e2n − en‖ = ‖(α2n − 1)e2n + en‖ � ‖en‖ = 1.

The obtained contradiction shows that the norm in E is order continuous.
(3) ⇒ (1) If E is not a BL-space, then there exists a net (xα)α∈A in E such that

xα
uo−→ x and ‖xα‖ → ‖x‖, but ‖xα − x‖ �→ 0. Then |xα| uo−→|x| and ‖|xα|‖ →

‖|x|‖.
Note that ‖|xα| − |x|‖ �→ 0. Indeed, if ‖|xα| − |x|‖ → 0, then, for any ε > 0,

(|xα|)α∈A is eventually in [−|x|, |x|]+εBE. Thus (|xα|)α∈A, and hence (Re[xα])α∈A

and (Im[xα])α∈A are both almost order bounded. Since E is order continuous and
xα

uo−→ x, then Re[xα] uo−→Re[x] and Im[xα] uo−→ Im[x]. By Gao and Xanthos [7,
Pop.3.7.], ‖Re[xα − x]‖ → 0 and ‖Im[xα − x]‖ → 0, and hence ‖xα − x‖ → 0,
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that is impossible. Therefore, without loss of generality, we may assume xα ∈ E+
and—by normalizing—‖xα‖ = ‖x‖ = 1 for all α.

Passing to a subnet, denoted by (xα) again, we may assume

‖xα − x‖ > C > 0 (∀α ∈ A). (8)

Notice that x � (x − xα)+ = (xα − x)− uo−→ 0, and hence (xα − x)− o−→ 0. Order
continuity of the norm in E ensures

‖(xα − x)−‖ → 0. (9)

Denoting wα = (xα − x)+ and using (8) and (9), we assume

‖wα‖ = ‖(xα − x)+‖ > C (∀α ∈ A). (10)

In view of (10), we obtain

2 = ‖xα‖ + ‖x‖ � ‖(xα − x)+‖ = ‖wα‖ > C (∀α ∈ A). (11)

Since wα
uo−→(x − x)+ = 0, for any fixed β1, β2, . . . , βn,

0 � wα ∧ (wβ1 + wβ2 + . . .+wβn)
o−→ 0 (α →∞). (12)

Since xα
uo−→ x, then xα∧x

uo−→ x∧x = x and so xα∧x
o−→ x. Due to order continuity

of the norm in E, there exists an increasing sequence of indices (αn) in A with

‖x − xα ∧ x‖ � 2−n (∀α � αn).

By (12), we also suppose

‖wα ∧ (wα1 +wα2 + . . .+ wαn)‖ � 2−n (∀α � αn+1).

Since

∞∑
k=1,k �=n

‖wαn ∧ wαk‖ �
n−1∑
k=1

‖wαn ∧ (wα1 + . . .+wαn−1)‖

+
∞∑

k=n+1

‖wαk ∧ (wα1 + . . .+wαk−1)‖

� (n− 1) · 2−n+1 +
∞∑

k=n+1

2−k+1 = n2−n+1, (13)
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the series
∞∑

k=1,k �=n

wαn ∧wαk converges absolutely and hence in norm for any n ∈ N.

Take

ωαn :=
(

wαn −
∞∑

k=1,k �=n

wαn ∧ wαk

)+
(∀n ∈ N).

First, we show that the sequence (ωαn)∞n=1 is disjoint. Let m �= p, then

ωαm ∧ ωαp =
(

wαm −
∞∑

k=1,k �=m

wαm ∧ wαk

)+
∧

(
wαp −

∞∑
k=1,k �=p

wαp ∧wαk

)+

� (wαm −wαm ∧ wαp)+ ∧ (wαp −wαp ∧wαm)+

= (wαm − wαm ∧ wαp) ∧ (wαp − wαm ∧ wαp)

= 0

It follows by (13), that

‖wαn − ωαn‖ =
∥∥∥∥wαn −

(
wαn −

∞∑
k=1,k �=n

wαn ∧ wαk

)+∥∥∥∥

=
∥∥∥∥wαn −

(
wαn − wαn ∧

∞∑
k=1,k �=n

wαn ∧wαk

)∥∥∥∥

=
∥∥∥∥wαn ∧

∞∑
k=1,k �=n

wαn ∧ wαk

∥∥∥∥

� ‖
∞∑

k=1,k �=n

wαn ∧wαk‖

� n2−n+1, (∀n ∈ N). (14)

Combining (14) with (11) gives

2 � ‖wαn‖ � ‖ωαn‖ � C − n2−n+1 (∀n ∈ N).

Passing to the further increasing sequence of indices, we may assume that

‖wαn‖ → M ∈ [C, 2] (n →∞).
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Now

lim
n→∞

∥∥∥∥M−1x + ‖ωαn‖−1ωαn

∥∥∥∥ = M−1 lim
n→∞‖x + ωαn‖ by (14)

= M−1 lim
n→∞‖x + wαn‖ by (9)

= M−1 lim
n→∞‖x + (xαn − x)‖

= M−1 lim
n→∞‖xαn‖

= M−1

= ‖M−1x‖,

violating the pre-BL property for u0 = M−1x and un = ‖ωαn‖−1ωαn , n � 1. The
obtained contradiction completes the proof. ��
A special case of Theorem 4 was proved by Nakano [10, Thm.33.6]. The following
result, which follows from Theorem 4, can be considered as a lemma of Brezis–Lieb
type for nets in Lp .

Proposition 2 Let fα
uo−→ f and ‖fα‖p → ‖f‖p in Lp(μ), 1 � p < ∞. Then ‖fα −

f‖p → 0.

It is not clear whether or not implication (2) ⇒ (3) of Theorem 4 holds without
the assumption that E is σ -Dedekind complete. Since any σ -Brezis–Lieb Banach
lattice has the pre-BL property, for dropping σ -Dedekind completeness assumption
in Theorem 4, it is sufficient to have the positive answer to the following weaker
question.

Question 1 Does the pre-BL property imply order continuity of the norm?

In the end of this section we mention some possible generalizations of Brezis–
Lieb spaces and pre-Brezis–Lieb property. To avoid overloading the text, we restrict
ourselves to the case of multi-normed Brezis–Lieb spaces.

A multi-normed vector lattice (shortly, MNVL) E = (E,M) (see [4]):

(a) is said to be a Brezis–Lieb space if

[xα
uo−→ x0 & m(xα) → m(x0) (∀m ∈M)] ⇒ [xα

M−→ x0];

(b) has the pre-Brezis–Lieb property if, for any disjoint sequence (un)∞n=1 in E+
such that (un) does not converge in M to 0 and for any u0 > 0, there exists
m ∈M such that lim sup

n→∞
m(u0 + un) > m(u0).

A σ -Brezis–Lieb MNVL is defined by replacing of nets with sequences.
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By using the above definitions one can derive from Theorem 4 the following
result.

Corollary 1 For an MNVL E with a separating order continuous multinorm M,
the following conditions are equivalent:
(1) E is a BL-space;
(2) E is a σ -BL-space;
(3) E has the pre-BL property.

3 Operator Version of the Brezis–Lieb Lemma
in Convergent Vector Spaces

In this section we discuss an operator extension of the Brezis–Lieb lemma in
convergent vector spaces. Firstly, let us remind some definitions [3]. A convergence

“
c−→” for nets in a set X is defined by the following conditions:

(a) xα ≡ x ⇒ xα
c−→ x, and

(b) xα
c−→ x ⇒ xβ

c−→ x for every subnet (xβ) of (xα).

A mapping f from a convergence set (X, cX) into a convergence set (Y, cY ) is said

to be cXcY -continuous (or just continuous), if xα
cX−→ x implies f (xα)

cY−→ f (x) for
every net (xα) in X. Under a convergence vector space (X, cX), we understand a
vector space X with the convergence cX such that the linear operations in X are
cX-continuous. (E, cE) is a convergence vector lattice if (E, cE) is a convergence
vector space that is a vector lattice, where the lattice operations are also cE-
continuous. Motivated by the proof of the famous lemma of Brezis and Lieb [2,
Thm.2], we present its operator version in convergent spaces.

The following hypotheses will be used in the next theorem.

(H 1) Let (X, cX) be a convergence complex vector space.
(H 2) Let (E, cE) and (F, cF ) be two convergence complex vector lattices, with F

is Dedekind complete.
(H 3) Let E0 be an order ideal in E+ − E+.
(H 4) Let T : E0 → F be a cE0oF -continuous positive linear operator, where oF

stands for the order convergence in F .
(H 5) Let J : X → E be a cXcE-continuous function with J (0) = 0.
(H 6) For every ε > 0, there exist two cXcE-continuous mappings �ε, �ε : X →

E+ satisfying

|J (x + y)− Jx| � ε�εx +�εy (∀x, y ∈ X). (15)

Theorem 5 (An Operator Version of the Brezis–Lieb Lemma for Nets) Suppose

hypotheses (H 1)−(H 6) are satisfied. Let (gα)α∈A be a net in X satisfying gα
cX−→ 0,
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let f ∈ X be such that |Jf |, �εgα, �εf ∈ E0 for all ε > 0, α ∈ A, and let some
u ∈ F+ exist with T �εgα � u for all ε > 0, α ∈ A. Then

T

(
|J (f + gα)− (Jf + Jgα)|

)
oF−→ 0 (α →∞).

Proof It follows from (15) that

|J (f + gα)− (Jf + Jgα)| � |J (f + gα)− Jgα| + |Jf | � ε�εgα +�εf + |Jf |,

and hence

|J (f + gα)− (Jf + Jgα)| − ε�εgα � �εf + |Jf | (ε > 0, α ∈ A).

Thus

0 � wε,α :=
(
|J (f + gα)− (Jf + Jgα)| − ε�εgα

)
+
� �εf + |Jf | (16)

for all ε > 0 and α ∈ A. It follows from (16) and from cXcE-continuity of J and

�ε, that E0 � wε,α
cE−→ 0 as α →∞. Furthermore, (16) implies

|J (f + gα)− (Jf + Jgα)| � wε,α + ε�εgα (ε > 0, α ∈ A). (17)

Since T � 0 and T �εgα � u, we get from (17)

0 � T

(
|J (f + gα)− (Jf + Jgα)|

)
� T wε,α + εT �εgα � T wε,α + εu (18)

for all ε > 0 and α ∈ A. Since F is Dedekind complete and T is cE0oF -continuous,

T wε,α
oF−→ 0, and in view of (18)

0 � (oF )− lim sup
α→∞

T

(
|J (f + gα)− (Jf + Jgα)|

)
� εu (∀ε > 0).

Then T

(
|J (f + gα)− (Jf + Jgα)|

)
oF−→ 0. ��

We end up by the following remarks on Theorem 5.

1. Replacing nets by sequences one can obtain a sequential version of Theorem 5,
whose details are left to the reader.

2. In the case of F = R and X = E = L0(μ) with the almost everywhere
convergence, E0 = L1(μ), Tf = ∫

f dμ, and J : X → E given by Jf = j ◦ f ,



On the Brezis–Lieb Lemma and Its Extensions 35

where j : C → C is continuous with j (0) = 0 such that for every ε > 0 there
exist two continuous functions φε, ψε : C→ R+ satisfying

|j (x + y)− j (x)| � εφε(x)+ ψε(y) (∀x, y ∈ C),

we obtain Theorem 1 from Theorem 5 by letting �ε(f ) := φε ◦f and �ε(f ) :=
ψε ◦ f .
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On the Commutant of the Generalized
Backward Shift Operator in Weighted
Spaces of Entire Functions

O. A. Ivanova and S. N. Melikhov

Abstract We study continuous linear operators, which commute with the gener-
alized backward shift operator (a one-dimensional perturbation of the Pommiez
operator) in a countable inductive limit E of weighted Banach spaces of entire
functions. This space E is isomorphic with the help of the Fourier-Laplace transform
to the strong dual of the Fréchet space of all holomorphic functions on a convex
domain Q in the complex plane, containing the origin. Necessary and sufficient
conditions are obtained for an operator of the mentioned commutant to be a
topological isomorphism of E. The problem of factorization of nonzero operators
of this commutant is investigated. In the case when the function determining the
generalized backward shift operator, has zeros in Q, the commutant is divided into
two classes: the first one consists of isomorphisms and surjective operators with
finite-dimensional kernels and the second one contains finite-dimensional operators.
Using obtained results, we study the generalized Duhamel product in Fréchet space
of all holomorphic functions on Q.
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1 Introduction

Let Q be a convex domain in C, containing the origin; H(Q) be the Fréchet space
of all holomorphic functions on Q; E be a countable inductive limit of weighted
Banach spaces which with the help of Fourier-Laplace transform is topologically
isomorphic to the strong dual of H(Q). A function g0 ∈ E satisfying the
condition g0(0) = 1 defines the generalized backward shift operator D0,g0(f )(t) =
f (t)−g0(t)f (0)

t
, which is continuous and linear in E. If g0 ≡ 1, then D0,g0 is the

usual backward shift operator (Pommiez operator) D0. In the general case D0,g0 is
a one-dimensional perturbation of D0.

The problem we solve in this article, is to investigate the structure of the set
K(D0,g0) of all continuous linear operators in E commuting with D0,g0 in E. The
set K(D0,g0) has been described in [5]. In the main results we assume that the
function g0 has a finite number of zeros or has no zeros, i.e., g0(z) = P(z)eλz

for some λ ∈ Q and some polynomial P , such that P(0) = 1. In Theorems 4.1
and 4.2 it is shown that K(D0,g0) is divided into two classes. The first one consists
of isomorphisms and surjective operators with finite-dimensional kernels and the
second one contains finite-dimensional operators. If g0 has no zeros, i.e., g0(z) =
eλz for some λ ∈ Q, then the second class is empty. Previously V.A. Tkachenko [11]
investigated properties of the commutant of the operator of generalized integration
in a space of analytic functionals. This space is the dual of a countable inductive
limit of weighted Banach spaces of entire functions, the growth of which is defined
by a ρ-trigonometrically convex function (ρ > 0). The operator of generalized
integration is the adjoint map of D0,g0 , defined by the function g0 = eP for some
polynomial P . Such function g0 has no zeros.

In the dual E′ of E shift operators for D0,g0 define a product⊗ by the convolution
rule. If we identify the strong dual of E with H(Q) with the help of the adjoint map
of the Fourier-Laplace transform, then the operation ⊗ is realized in H(Q) as the
generalized Duhamel product. In the case of g0 ≡ 1 it coincides with the Duhamel
product (with the derivative of the Mikusinski convolution product). The Duhamel
product is closely related to the Volterra operator. It was studied quite intensively
(see the paper of M.T. Karaev [8]). This multiplication is used in the theory of
ordinary differential equations with constant coefficients, in the boundary value
problems of mathematical physics (in the sloping beach problem), in the spectral
theory of direct sums of operators. Investigations of the Duhamel product in the
space of all holomorphic functions on a domain in C go back to N. Wigley [12]. In
this article we prove a criterion for a multiplication operator defined by generalized
Duhamel product to be an isomorphism of H(Q).

Note that the situation, when g0 has zeros, differ significantly from one when
g0 has no zeros. Namely, our proofs use essentially the description of the lattice
of proper closed D0,g0 -invariant subspaces of E, obtained in [7]. If g0 has no zeros,
D0,g0 is unicellular. If g0 has zeros, then this lattice is not linearly ordered, moreover,
the family of finite-dimensional closed D0,g0 -invariant subspaces of H(Q) is also
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not linearly ordered. The mixed structure of this lattice implies the existence of two
“extreme” subsets of K(D0,g0).

2 Preliminary Information

Let Q be a convex domain in C containing the origin, (Qn)n∈N be a sequence of
convex compact subsets of Q with Qn ⊂ int Qn+1 for all n ∈ N, and Q = ⋃

n∈N
Qn.

The symbol int M denotes the interior of a set M ⊂ C in C. For a bounded set
M ⊂ C let HM be the support function of M defined as HM(z) := sup

t∈C
Re(zt),

z ∈ C. We set Hn := HQn , n ∈ N.
Define weighted Banach spaces

En :=
{

f ∈ H(C) | ‖f ‖n := sup
z∈C

|f (z)|
exp(Hn(z))

< +∞
}

, n ∈ N.

Here H(C) is the space of all entire functions on C. Note that En is embedded
continuously in En+1 for each n ∈ N. Put E := ⋃

n∈N
EQ,n and endow E with the

topology of the inductive limit of the sequence of Banach spaces En, n ∈ N, with
respect to embeddings En in E (see [10, Ch. III, § 24]); in symbols, E := ind

n→En.

Let H(Q) be the space of all holomorphic functions on Q with the compact
convergence topology. For a locally convex space F we denote by F ′ the dual of F .
We put ez(t) := ezt , z, t ∈ C. The Fourier-Laplace transform F(ϕ)(z) := ϕ(ez),
z ∈ C, ϕ ∈ H(Q)′, is a topological isomorphism of the strong dual of H(Q) onto
E [3, Theorem 4.5.3].

Fix a function g0 ∈ E with g0(0) = 1. The generalized backward shift operator
is defined by

D0,g0(f )(t) :=
{

f (t)−g0(t)f (0)
t

, t �= 0,

f ′(0)− g′0(0)f (0), t = 0,

f ∈ E. Following [1, 2], we introduce shift operators for the operator D0,g0 by
putting

Tz,g0(f )(t) :=
{

tf (t)g0(z)−zf (z)g0(t)
t−z

, t �= z,

zg0(z)f ′(z)− zf (z)g′0(z)+ f (z)g0(z), t = z,
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z ∈ C, f ∈ E. Set

T̃z,g0(f )(t) :=
{

f (t)g0(z)−f (z)g0(t)
t−z

, t �= z,

g0(z)f ′(z)− f (z)g′0(z), t = z,

f ∈ E, z ∈ C. For z ∈ C the Pommiez operators Dz are defined by

Dz(f )(t) :=
{

f (t)−f (z)
t−z

, t �= z,

f ′(z), t = z,

f ∈ E. All operators Tz,g0 , T̃z,g0 , Dz, z ∈ C, are continuous and linear in E.
For an integer n ≥ 0 by C[z]n we denote the space of polynomials of degree at

most n. Note that Ker Dn
0,g0

= g0C[z]n−1 for all n ∈ N.
With the help of shift operators for D0,g0 in E′ one can define a multiplication

⊗ by (ϕ ⊗ ψ)(f ) = ϕz(ψ(Tz,g0(f )), ϕ, ψ ∈ E′, f ∈ E. By Ivanova and
Melikhov [5, 2.2] the space E′ is an associative and commutative algebra with the
multiplication⊗.

Let K(D0,g0) be the set of all continuous linear operators B in E, such that
BD0,g0 = D0,g0B in E. This set an algebra with the operation of composition
of operators taken as multiplication. Note that Tz,g0 ∈ K(D0,g0) for every z ∈ C.
For a functional ϕ ∈ E′ we define the operator Bϕ(f )(z) := ϕ

(
Tz,g0(f )

)
, z ∈ C,

f ∈ E. It is continuous and linear in E.
In [5, Lemma 17] the following result is proved:

Theorem 2.1 The map ϕ �→ Bϕ is an isomorphism of the algebra (E′,⊗) onto
K(D0,g0).

From Theorem 2.1 it follows that the algebra K(D0,g0) is commutative.
From the commutativity of ⊗ it follows that for each ϕ ∈ E′ the convolution

operator Sϕ : E′ → E′, ψ �→ ϕ ⊗ ψ , is the adjoint of the operator Bϕ : E → E

with respect to the dual system (E, E′).

Remark 2.1 We will use the following well known properties of support functions
Hn:

(i) For each n ∈ N there is ε > 0, such that

sup
z∈C

(Hn(z)+ ε|z| −Hn+1(z)) < +∞.

(ii) lim|t |→+∞

((
sup

|ξ−t |≤δ

Hn(ξ)

)
−Hn+1(t)

)
= −∞ for each n ∈ N and δ > 0.

Let F t : E′ → H(Q) be the adjoint of the operator F : H(Q)′ → E with
respect to dual systems (H(Q)′, H(Q)) and (E′, E). Then F t (ϕ)(z) = ϕ (ez),
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z ∈ Q, ϕ ∈ E′. In addition, F t is a topological isomorphism of the strong dual of E

onto H(Q) (see [6, 3.2]). We will write ϕ̂ := F t (ϕ) for ϕ ∈ E′.
By M we will denote the operator of multiplication by the independent variable.

Remark 2.2

(i) By Ivanova and Melikhov [6, Lemma 14] the equality

Tz,g0(f ) = g0(z)Dz(M(f ))−M(f )(z)Dz(g0), z ∈ C, f ∈ E,

holds.
(ii) For f ∈ E\{0}, h ∈ H(Q) let ωf (z, h) be the Leont’ev’s interpolating func-

tion (see [9]). Using the equality [4, Example 1] ωf (z, h) = F−1(Dz(f ))(h),
z ∈ C, we rewrite the equality in (i) for ϕ ∈ E′ as follows:

Bϕ(f )(z) = g0(z)ωM(f )(z, ϕ̂)−M(f )(z)ωg0(z, ϕ̂), z ∈ C, f ∈ E\{0}.
(2.1)

(iii) Let f ∈ E\{0}, λ ∈ C and f (λ) = 0. By Leont’ev [9, Lemma 2] for the
function f1(t) := f (t)

t−λ

ωf (z, h) = (z− λ)ωf1(z, h)− 1

2πi

∫

C

γf (t)h(t)dt, z ∈ C, h ∈ H(Q).

(2.2)

Here C is a closed convex curve in Q, which surrounds the conjugate diagram
of f , γf is the Borel transform of f .

(iv) For each ϕ ∈ E′, f ∈ E the equality ϕ(f ) = 1
2πi

∫
C

γf (t)ϕ̂(t)dt holds, where

C is a closed convex curve in Q, which surrounds the conjugate diagram of f .

The main purpose of this article is to describe operators of K(D0,g0), which
are isomorphisms of E, and to classify operators of K(D0,g0), which are not
isomorphism of E.

3 Auxiliary Results

We put Bn := {f ∈ En | ‖f ‖n ≤ 1} and ‖ϕ‖∗n := sup
f∈Bn

|ϕ(f )|, ϕ ∈ E′, n ∈ N.

For ϕ ∈ E′ the operator Aϕ(f )(z) := ϕt

(
t T̃z,g0(f )(t)

)
, z ∈ C, f ∈ E, is

continuous and linear in E. For each ϕ ∈ E′ the equality Bϕ(f ) = ϕ(g0)f +Aϕ(f ),
f ∈ E, holds. This enables us to study the properties Bϕ using the theory of compact
operators in Banach spaces. The key tool to this is the following result.
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Lemma 3.1 Let g0 ∈ Em for some m ∈ N. For each functional ϕ ∈ E′, each n ≥ m

the operator Aϕ is compact in En.

Proof The proof is similar to the one by V.A. Tkachenko [11, Theorem 2]. Since
the restriction of ϕ on each space Ek is continuous on Ek , for all n ∈ N, h ∈ En+2
we have

|ϕ(h)| ≤ ‖ϕ‖∗n+2‖h‖n+2.

Fix n ≥ m and ε > 0, z ∈ C, f ∈ Bn. For t ∈ C such that |t − z| ≥ 1/ε we obtain

|t||f (t)g0(z)− f (z)g0(t)|
|t − z| exp(Hn+2(t))

≤ ε

( |t||f (t)||g0(z)|
exp(Hn+2(t))

+ |t||f (z)||g0(t)|
exp(Hn+2(t))

)
≤

ε(C1|g0(z)| + C2|f (z)|) ≤ ε (C1‖g0‖n exp(Hn(z))+ C2 exp(Hn(z))) =

ε(C1‖g0‖n + C2) exp(Hn(z)), (3.1)

where

C1 = sup
h∈Bn

sup
t∈C

|t||h(t)|
exp(Hn+2(t))

< +∞, C2 = sup
t∈C

|t||g0(t)|
exp(Hn+2(t))

< +∞.

Let now |t − z| ≤ 1/ε. Applying the maximum modulus principle to the
holomorphic function f (t)g0(z)−f (z)g0(t)

t−z
, we conclude that there exists t0 ∈ C with

|t0 − z| = 1/ε and

|t||f (t)g0(z)− f (z)g0(t)|
|t − z| exp(Hn+2(t))

≤ εC3
|f (t0)||g0(z)| + |f (z)||g0(t0)|

exp(Hn+1(t)))
≤

2εC3‖g0‖n exp(Hn(t0)+Hn(z)−Hn+1(t)) ≤

2εC3‖g0‖n exp(Hn(z)+ β(z)), (3.2)

where C3 = sup
t∈C

(exp (log(1+ |t|)+Hn+1(t)−Hn+2(t))) < +∞ and

β(z) = sup
|η−z|≤1/ε

((
sup

|ξ−η|≤2/ε

Hn(ξ)

)
−Hn+1(η)

)
.

From inequalities (3.1), (3.2) and Remark 2.1 it follows, that

lim|z|→∞ sup
f∈Bn

|Aϕ(f )(z)|
exp(Hn(z))

= 0.
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Hence the set Aϕ(Bn) is relatively compact in En. ��
Lemma 3.2 Let ϕ ∈ E′. If the operator Bϕ : E → E is injective and ϕ(g0) �= 0,
then it is a topological isomorphism E onto E.

Proof Let g0 ∈ Em for some m ∈ N. By Lemma 3.1 the operator Aϕ is compact
in each Banach space En, n ≥ m. Since the equality Bϕ(f ) = ϕ(g0)f + Aϕ(f ),
f ∈ E, holds and ϕ(g0) �= 0, by the Fredholm alternative the restriction of Bϕ

on each space En, n ≥ m, is a topological isomorphism En on itself. From this it
follows that Bϕ : E → E is a topological isomorphism E onto E. ��

In the next part of this section let g0 = Peλ for some λ ∈ Q and some polynomial
P such that P(0) = 1. By D(P ) we denote the set of all polynomials q , dividing P

and such that q(0) = 1.
We will use the characterization of proper closed D0,g0 -invariant subspaces of E,

obtained in [5, Corollary 20] and [7, Theorem 2].

Lemma 3.3 ([5, 7]) For a subspace S of E the following assertions are equiva-
lent:

(i) S is a proper closed D0,g0-invariant subspace of E.
(ii) There exists a polynomial q ∈ D(P ) of degree greater or equal to 1, such that

S = qE, or there exist a polynomial q ∈ D(P ) and an integer n ≥ 0, such that
n ≥ deg(P ) − deg(q)− 1 and S = qeλC[z]n.

Lemma 3.4 Let ϕ ∈ E′ and the operator Bϕ : E → E be not injective. Then
Bϕ(g0) = 0.

Proof For ϕ = 0 this statement obvious. Let ϕ �= 0 and S := Ker Bϕ . Then S is a
proper closed D0,g0 -invariant subspace of E. We will apply Lemma 3.3.

If there exists a polynomial q ∈ D(P ) of degree greater or equal to 1 such that
S = qE, then g0 ∈ S. We assume now that there are a polynomial q ∈ D(P )

and an integer n ≥ 0 with n ≥ deg(P ) − deg(q) − 1 for which S = qeλC[z]n. If
deg(q) = deg(P ), then q = P and g0 = Peλ ∈ S. Consider the case deg(q) <

deg(P ). In this case there exists λ ∈ C, such that P(λ) = 0 and q(z)(z − λ)

divides P(z). Note that the degree of the polynomial P1(z) = P(z)
q(z)(z−λ)

is equal to

deg(P ) − deg(q)− 1. Hence the function g1(z) = q(z)eλzP1(z) = P(z)
z−λ

eλ belongs
to S. From Bϕ(g1) = 0, by (2.1), it follows that

g0(z)ωM(g1)(z, ϕ̂)−M(g1)ωg0(z, ϕ̂) = 0. (3.3)

for all z ∈ C and 0 = Bϕ(g1)(0) = ϕ(g1). By Remark 2.2, this implies that
1

2πi

∫
C

γg1(t)ϕ̂(t)dt = 0 (a closed convex curve C in Q surrounds the conjugate

diagram of g1). Multiplying (3.3) by z− λ and using the equality (2.2), we infer

g0(z)ωM(g)(z, ϕ̂)−M(g)ωg0(z, ϕ̂) = 0
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for all z ∈ C. Consequently, by (2.1), Bϕ(g0) = 0. ��
Lemma 3.5 The following assertions are equivalent:

(i) The operator Bϕ : E → E is injective.
(ii) ϕ(g0) �= 0.

Proof (i)⇒(ii): From Bϕ(g0) = ϕ(g0)g0 it follows that ϕ(g0) �= 0.
(ii)⇒(i): Suppose that Bϕ is not injective. By Lemma 3.4 Bϕ(g0) = 0 and,

consequently, 0 = Bϕ(g0)(0) = ϕ(g0). A contradiction. ��
For λ ∈ C and an integer k ≥ 0, we introduce the functional δλ,k(f ) := f (k)(λ),

f ∈ E. All these functionals are continuous and linear on E.

Lemma 3.6 Let deg(P ) ≥ 1, k(λ) be the multiplicity of a zero λ of P . Then the
following assertions hold:

(i) δλ,k ⊗ δμ,l = 0 for all zeros λ, μ of P and for all integers k, l with 0 ≤ k ≤
k(λ)− 1, 0 ≤ l ≤ k(μ)− 1.

(ii) Bδλ,k Bδμ,l = 0 for all zeros λ, μ of P and for all integers k, l with 0 ≤ k ≤
k(λ)− 1, 0 ≤ l ≤ k(μ)− 1.

Proof The assertion (i) is verified directly (see, for example, [5, the proof of
Lemma 6]).

The equality in (ii) follows from BϕBψ = Bϕ⊗ψ , ϕ, ψ ∈ E′ (see Theorem 2.1).
��

Suppose that deg(P ) ≥ 1. For a polynomial q ∈ D(P ) of degree greater or equal
to 1 let λj , 1 ≤ j ≤ m, be all different zeros of q , kj be the multiplicity of the zero
λj of q . We define the “canonical” functional, corresponding to q , by

δ(q) :=
m∑

j=1

kj−1∑
k=0

δλj ,k.

Lemma 3.7 Let deg(P ) ≥ 1. For each polynomial q ∈ D(P ) of degree greater or
equal to 1 the equality Ker Bδ(q) = qE holds.

Proof Employing standard calculations, for f ∈ E we obtain:

Bδ(q)(f )(z) = δ(q)t

(
f (t)g0(z)+ z

f (t)g0(z)− f (z)g0(t)

t − z

)
=

g0(z)

m∑
j=1

kj−1∑
k=0

f (k)(λj )+ zg0(z)

m∑
j=1

kj−1∑
k=0

k∑
s=0

Cs
kf (k−s)(λj )

(−1)ss!
(λj − z)s+1

=

g0(z)

m∑
j=1

kj∑
s=1

1

(λj − z)s

kj−s∑
l=0

βs,lf
(l)(λj ), (3.4)
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where all constants βl,s are independent of f ∈ E and βs,kj−s �= 0, 1 ≤ s ≤ kj ,
0 ≤ l ≤ kj − s.

Let Bδ(q)(f ) = 0 for some f ∈ E. From (3.4) it follows that
kj−s∑
l=0

βs,lf
(l)(λj ) =

0, 1 ≤ s ≤ kj , 1 ≤ j ≤ m. Hence f (l)(λj ) = 0, 0 ≤ l ≤ kj − 1, 1 ≤ j ≤ m, and,
consequently, f ∈ qE. Vice versa, if f ∈ qE, then (3.4) implies Bδ(q)(f ) = 0. ��

4 Main Results

In this section we fix a point λ ∈ Q and a polynomial P with P(0) = 1 and put
g0 := Peλ.

Theorem 4.1 For ϕ ∈ E′ the following assertions are equivalent:

(i) The operator Bϕ is a topological isomorphism E onto E.
(ii) ϕ(g0) �= 0.

Proof (i)⇒(ii): If Bϕ is a topological isomorphism E onto E, then the operator Bϕ

is injective. Hence ϕ(g0) �= 0 by Lemma 3.5.
(ii)⇒(i): By Lemma 3.5 Bϕ is injective in E. By Lemma 3.2 Bϕ : E → E is a

topological isomorphism “onto”. ��
We will prove a result on the factorization of nonzero operators Bϕ . Note, that

the lattice of proper closed D0,g0 -invariant subspaces of E is not linearly ordered in
the case when the function g0 has zeros [7, Theorem 2]. This significantly affects
factorization.

For polynomials q, r ∈ D(P ) we denote by (q, r)1 the greatest common divisor
d of q and r with d(0) = 1.

Theorem 4.2 Let ϕ ∈ E′, ϕ �= 0 and ϕ(g0) = 0. Then either there exist ψ ∈ E′,
n ∈ N, for which Bψ is a topological isomorphism E onto E and Bϕ = Dn

0,g0
Bψ ,

or there are a polynomial q ∈ D(P ) of degree greater or equal to 1, an integer
n ≥ 0, ψ ∈ E′, such that Bψ is a topological isomorphism E onto E and Bϕ =
Bδ(q)D

n
0,g0

Bψ .

Proof We will exploit Lemma 3.3. First of all, S = Ker Bϕ is a proper closed
D0,g0 -invariant subspace of H(Q). We suppose that S = qeλC[z]n for some q ∈
D(P ) and some integer n ≥ 0 for which n ≥ deg(P ) − deg(q) − 1. We will show
that q = P . Assume that eg(q) < deg(P ). Since ϕ(g0) = 0, we have Bϕ(g0) =
ϕ(g0)g0 = 0. Consequently, g0 ∈ S and hence PeλC[z]0 ⊂ S. Choose the greatest
integer m ≥ 0 such that PeλC[z]m ⊂ S. Since the space Ker Dm+1

0,g0
= PeλC[z]m

is finite-dimensional and the operator Dm+1
0,g0

: E → E is surjective, there exists

a continuous linear right inverse R : E → E to Dm+1
0,g0

[10, Theorem 10.3]. Then

RDm+1
0,g0

(f ) − f ∈ Ker Dm+1
0,g0

for all f ∈ E. Note that ϕ = 0 on Ker Bϕ , since
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ϕ(f ) = Bϕ(f )(0) for each f ∈ E. Consequently, γ Dm+1
0,g0

= ϕ for the functional
γ := ϕR ∈ E′. For each z ∈ C, f ∈ E we obtain:

Bϕ(f )(z) = ϕ(Tz,g0(f )) = γ
(
Dm+1

0,g0

(
Tz,g0(f )

)) = γ
(
Tz,g0

(
Dm+1

0,g0
(f )

))
=

Bγ

(
Dm+1

0,g0
(f )

)
(z) = Dm+1

0,g0
Bγ (f )(z),

i.e. Bϕ = Dm+1
0,g0

Bγ . In addition, γ (g0) = 0. In fact, otherwise Bγ is injective by

Lemma 3.5 and KerBϕ = Ker Dm+1
0,g0

= PeλC[z]m. A contradiction with Ker Bϕ =
qeλC[z]n. Hence there exist s ∈ N and ξ ∈ E′ for which Bγ = Ds

0,g0
Bξ , and

consequently, Bϕ = Dm+s+1
0,g0

Bξ . This is a contradiction with the maximality of m.
Thus, q = P . By Theorem 4.1 Bψ is a topological isomorphism E onto E.

Let now S = qE for a polynomial q ∈ D(P ) of degree greater or equal to 1. By
Lemma 3.7 KerBδ(q) = qE. Since Ker Bδ(q) has the finite codimension, the image
Bδ(q)(E) is finite-dimensional. From this it follows that Bδ(q)(E) is a Fréchet space
with the topology induced from E. Consequently, there is a continuous linear right
inverse R0 : Bδ(q)(E) → E to Bδ(q) : E → Bδ(q)(E). Define a functional ξ0
on Bδ(q)(E) as ξ0 := ϕR0. Then ξ0 is continuous and linear on Bδ(q)(E) with the
topology, induced from E. By the Hahn-Banach Theorem ξ0 can be extended to a
continuous linear functional ξ on E. Since R0Bδ(q)(f )− f ∈ Ker Bδ(q) = Ker Bϕ

for all f ∈ E, we have ξ0Bδ(q) = ϕ and also ξBδ(q) = ϕ. As in the first case,
from this we infer Bϕ = Bδ(q)Bξ . If ξ(g0) �= 0, then the lemma is proved (with
ψ = ξ and n = 0). If ξ(g0) = 0, then we factorize Bξ in the form Bξ = Dn

0,g0
Bψ ,

where n ∈ N, ψ ∈ E′, ψ(g0) �= 0, or Bξ = Bδ(r)Bτ , τ ∈ E′, r ∈ D(P ). Second
decomposition is not valid, since otherwise Bϕ = Bδ(q)Bδ(r)Bτ = 0 by Lemma 3.6.
In addition, Bψ is a topological isomorphism E onto E by Theorem 4.1. ��
Corollary 4.1 Each nonzero operator from K(D0,g0), which is not finite-
dimensional, is surjective and has a continuous linear right inverse.

Remark 4.1 Let Lat(D0,g0, E) be the lattice of all closed D0,g0 -invariant subspaces
of E. From the proof of Theorem 4.2 it follows, that the set of kernels of all operators
Bϕ , ϕ ∈ E′, coincides with Lat(D0,g0, E) if and only if the function g0 = Peλ has
no zeros, i.e. P ≡ 1.

Remark 4.2 V.A. Tkachenko [11] investigated properties of the commutant of the
operator of generalized integration I in the strong dual of a countable inductive limit
of weighted Banach spaces of entire functions, whose growth is determined with the
help of a ρ-trigonometric convex function (ρ > 0) with values in (−∞,+∞]. The
operator I is the dual map (we use notations of this article) to the operator D0,g0

for a function g0 = eP , where P is a polynomial. This function has no zeros in C.
The operator I is unicellular. In the unicellular case of our article, if g0(z) = eλz,
Theorems 4.1 and 4.2 follow from statements, proved by V.A. Tkachenko [11, § 4,
Property d); Theorem 2].
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5 The Generalized Duhamel Product

We will apply Theorem 4.1 to a multiplication in H(Q). Let g0 = Peλ, where
λ ∈ Q and P is a polynomial such that P(0) = 1. By Ivanova and Melikhov [7,
§ 4] F t (ϕ ⊗ ψ) = F t (ϕ) ∗ F t (ψ) for all ϕ, ψ ∈ E′, where ∗ is an associative and
commutative multiplication in H(Q).

For a polynomial r(z) =
n∑

j=0
bj zj we define the differential operator r(D)(f ) :=

n∑
j=0

bjf (j). Note, that ϕ(Peλ) = P(D)
(F t (ϕ)

)
(λ), ϕ ∈ E′.

Let m := deg(P ) ≥ 1. We introduce polynomials pj , 0 ≤ j ≤ m− 1, for which
m−1∑
j=0

pj (t)zj = P(t)−P(z)
t−z

. Set p̃j (t) := tpj (t), 0 ≤ j ≤ m− 1, t ∈ C. As shown in

[7, § 4], for all f, h ∈ H(Q), z ∈ Q

(f ∗ h)(z) =

h(λ)P (D)(f )(z)+
z∫

λ

P (D)(f )(ξ)h′(z+ λ− ξ)dξ −
m−1∑
j=0

p̃j (D)(f )(z)h(j)(λ),

where the integral is taken along the line segment from λ to z. Employing integration
by parts and substitution η = z + λ− ξ , for f, h ∈ H(Q), z ∈ Q, we infer

(f ∗ h)(z) =

P(D)(f )(λ)h(z)+
z∫

λ

(P (D)(f ))′ (η)h′(z+ λ− η)dξ −
m−1∑
j=0

p̃j (D)(f )(z)h(j)(λ).

This expression for the multiplication ∗ emphasizes the significance of the factor
P(D)(f )(λ). For P ≡ 1

(f ∗ h)(z) = f (λ)h(z)+
z∫

λ

f ′(η)h(z+ λ− η)dη, z ∈ Q, f, h ∈ H(Q).

If P ≡ 1, λ = 0, then f ∗h is the Duhamel product. In the space of all holomorphic
functions on a domain in C, star-shaped with respect to the origin, this product was
investigated for the first time by Wigley [12].
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Define for f ∈ H(Q) the Duhamel operator Gf (h) := f ∗ h, h ∈ H(Q), which

is continuous and linear in H(Q). Note that Ŝϕ(ψ) = Gϕ̂

(
ψ̂

)
for all ϕ, ψ ∈ E′.

Applying standard dual arguments to Theorem 4.1, we get the following result:

Corollary 5.1 For f ∈ H(Q) the operator Gf is a topological isomorphism H(Q)

onto H(Q) if and only if P(D)(f )(λ) �= 0.

In the case g0 ≡ 1, i.e. P ≡ 1, λ = 0, this statement was proved by Wigley [12]
(for a domain Q, which is star-shaped with respect to the origin).
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Global Boundedness of Solutions of
Continuous Social Stratification Model

A. Kazarnikov

Abstract We consider the continuous social stratification model in the special
case when the influence of negative factors is uniformly spread among the society.
We first obtain spatially homogeneous solutions of the problem. Next we employ
the comparison theorems for nonlinear parabolic equations to derive sufficient
conditions of global boundedness and blow up for the solutions which correspond to
spatially inhomogeneous initial data. Finally we perform numerical and analytical
study of the strain localization effect in the case of no external influence on the
society.
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1 Introduction

Mathematical modelling of social phenomena is actively studied in literature.
The methodology of statistical physics is being successfully applied to models
describing social dynamics [1, 2], human cooperation [3] and crime hotspots [4].
In the limit of large populations it becomes possible to apply continuous models,
based on partial differential equations [4, 5].

In the paper [6], the quantitative assessment of the social strain has been sug-
gested. In the same paper the authors have developed a simple mathematical model
for short-range prediction of the background social strain level. This approach
has been consequently successfully applied to the modelling of various social
phenomena: strike movement in Russia during the end of the nineteenth century
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and the beginning of the nineteenth century, social strain in the post-war USSR [7],
the interaction of elite and workers [8] and protest activities [9].

Mathematical models, considered in [6–10] contain a low number of interacting
social groups. The complexity of the equations, however, grows as the number
of social groups increases, which makes qualitative analysis extremely difficult.
In this case it is natural to consider a model of continuous medium. This means
that instead of the discrete set of interacting social groups one can consider their
continuous distribution on some finite interval and arrive at a model of continuous
social stratification

∂P

∂t
= U(x, t)− γ P + μ(x)P 2 + ∂

∂x

(
C(x)

P

1− P

∂P

∂x

)
, (1)

where P = P(x, t) ∈ [0, 1) is the normalized background social strain level (see
[6]), x ∈ (0, 1) is the stratification variable, C(x) is the stratification diffusion of
social strain, μ(x) is the autoexitation of society, U(x, t) is the external influence
on society, γ > 0 is the strain dissipation coefficient and t ≥ 0 is dimensionless
time. This model may be considered as a spatially distributed generalization of those
studied in [6–10]. The term P

1−P
here express the assumption that the speed at which

the social strain spreads to the “neighbouring” social groups grows with the local
level of strain (see [8] for details).

Let us assume that the influence of negative factors is uniformly spread among
the society and put U ≡ U0≥0, C ≡ C0 > 0, μ ≡ μ0 > 0. Then the Eq. (1) can be
written as

∂P

∂t
= U0 − γ P + μ0P 2 + C0

∂

∂x

(
P

1− P

∂P

∂x

)
. (2)

It is also assumed, that the ends of the interval (0, 1) are supplied with
homogeneous Neumann boundary conditions

∂P

∂x
|x=0,1 = 0. (3)

The main purpose of the present work can be formulated as follows: to find
the sufficient conditions of boundedness for the solutions of continuous social
stratification model (2) and to start the numerical and analytical investigation of the
strain localization effect in the Eq. (2) in the special case of no external influence.

2 The Change of Variables

In the Eq. (2) the normalized background social strain level P(x, t) is defined on
the half-closed interval [0, 1). Let us introduce the change of variables, which
transforms the half-closed interval [0, 1) into the half-line [0,+∞). Let us define a



Global Boundedness of Solutions of Continuous Social Stratification Model 51

function T (x, t) by

P(x, t) = T (x, t)

1+ T (x, t)
. (4)

Then T (x, t)
P→1−−−→ +∞, T (x, t)

P→0−−−→ 0 and the Eq. (2) could be written in the
form

∂T

∂t
= U0(1+T )2−γ T (1+T )+μ0T

2+C0(1+T )2 ∂

∂x

(
T

(1+ T )2

∂T

∂x

)
, (5)

while Neumann boundary conditions (3) are expressed by the formula

∂T

∂x
|x=0,1 = 0. (6)

3 Spatially Homogeneous Solutions

By putting T = T (t) in (5) we arrive at the ordinary differential equation

∂T

∂t
= U0 + (2U0 − γ )T + (μ0 + U0 − γ )T 2. (7)

The equilibria of (7) could be obtained from the equation

(μ0 + U0 − γ )T 2 + (2U0 − γ )T + U0 = 0. (8)

Let us define U∗ = γ − μ0, then for U0 �=U∗ the leading coefficient of the
polynomial (8) is not equal to zero and there exists a pair of roots

T
1,2

0 = γ − 2U0 ±
√

γ 2 − 4U0μ0

2(μ0 + U0 − γ )
, (9)

which are real when U0 ≤ Ucr , Ucr = γ 2

4μ0
. If μ0 > γ , then T

1,2
0 ≥ 0, otherwise

the sign of constant solutions of (7) differs with respect to values of μ0 and γ (see
Table 1). If U0 = U∗ then the Eq. (8) becomes a first-order equation. In the case
when γ �= 2μ0 there exists a root T ∗ = − γ−μ0

γ−2μ0
, otherwise if γ = 2μ0 we get that

U∗ = Ucr and as a result the Eq. (8) has no roots.



52 A. Kazarnikov

Table 1 Steady state solutions of the Eq. (5) when μ0 ≤ γ

Condition 0 ≤ U0 < U∗ U = U∗ U∗ < U ≤ Ucr

γ < 2μ0 T 1
0 < 0

T 2
0 ≥ 0

T ∗ = − γ−μ0
γ−2μ0

≥ 0 T 1
0 > 0, T 2

0 > 0

γ = 2μ0 �T ∗ —

γ > 2μ0 T ∗ = − γ−μ0
γ−2μ0

< 0 T 1
0 < 0, T 2

0 < 0

Let us find the solutions of (7) which are different from steady states. First
assume that U0 �=U∗ and U0 < Ucr . Then the general solution of this equation
can be written as

T (t) = T 1
0 +

B

A(1− C0eBt )
, A = μ0 +U0 − γ �=0, B =

√
γ 2 − 4U0μ0, (10)

where C0 = 1 − B

A(T (0)−T 1
0 )

. If 0 < C0 < 1, which corresponds to the case T (0) >

T 1
0 for A > 0 and T (0) < T 1

0 for A < 0, then T (t) → +∞, t → t∗, where
t∗ = 1

B
ln( 1

C0
). Otherwise T (t) → T 1

0 when t → +∞. If U = Ucr then the Eq. (8)
has one multiple root and the general solution of (7) can be written as

T (t) = γ − 2U0

2(μ0 + Ucr − γ )
+ 1

A(C0 − t)
, (11)

where C0 = 1
A(T (0)+T 1

0 )
, and the constant A was defined in (10).

In the case U > Ucr the general solution of (7) can be written as

T (t) = γ − 2U0

4A
+√

Gtg(
A√
G

t + C0), G = 4U0μ0 − γ 2

4A2 , (12)

where C0 = arctg(
T (0)+ 2U0−γ

4A√
G

) and for any initial data T (t) →+∞ when t → t∗.

Let us assume that U0 = U∗ and γ �= 2μ0. Then the general solution of (7) is
given by

T (t) = γ − μ0

γ − 2μ0
+ C0e(γ−2μ0)t , (13)

where C0 = T (0)− γ−μ0
γ−2μ0

. If γ = 2μ0, then we get

T (t) = T (0)+ μ0t . (14)
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4 Sufficient Conditions for Global Boundedness

Spatially homogeneous solutions of the Eq. (5) can be used for studying the
properties of solutions, which correspond to spatially inhomogeneous initial data.
Let us assume that μ0 > γ . If U0 ≤ Ucr then there exists a pair of non-negative
steady states T

1,2
0 and Propositions 1–6 hold. These propositions follow from

existing comparison theorems for nonlinear parabolic partial differential equations
(see. [11–13]).

Proposition 1 Let μ0 > γ and U0 ≤ γ 2

4μ0
and consider a solution T (x, t) of the

problem (5)–(6). Then the following assertions hold:

1. If T (x, 0) < T 1
0 then T (x, t) → T 2

0 as t →+∞.
2. If T (x, 0) > T 1

0 then there exists such t∗ > 0 that T (x, t) →+∞ as t → t∗.

3. If H0 =
1∫

0

T (x,0)
1+T (x,0)

dx >
T 1

0
1+T 1

0
then there exists such t∗ > 0 that T (x, t) →+∞

as t → t∗.

Let us consider the case when U0 > Ucr . Then T
1,2

0 ∈ C and all solutions of the
Eq. (5) blow up.

Proposition 2 Let μ0 > γ and U0 >
γ 2

4μ0
. Let us consider a solution T (x, t) of the

problem (5)–(6). Then there exists such t∗ > 0 that T (x, t) →+∞ as t → t∗.

Let μ0 < γ . Then for 0≤U0 < U∗ solutions of the Eq. (5) are bounded and tend
to the steady state T 2

0 as t →+∞.

Proposition 3 Let μ0 ≤ γ and U ≤ U∗ = γ − μ. Let us consider a solution
T (x, t) of the problem (5)–(6). Then T (x, t) → T 2

0 as t →+∞.

Proposition 4 Let μ0 ≤ γ and U = U∗ = γ − μ. Consider a solution T (x, t) of
the problem (5)–(6). Then the following assertions hold:

1. If μ0 ≤ γ < 2μ0 then T (x, t) → T ∗ = − γ−μ0
γ−2μ0

.
2. If γ ≥ 2μ0 then T (x, t) → +∞ as t →+∞.

Let U∗ < U0 < Ucr . Then the following propositions hold.

Proposition 5 Let U∗ < U0 < Ucr and μ0 ≤ γ ≤ 2μ0. Consider a solution
T (x, t) of the problem (5)–(6). Then the following assertions hold:

1. If T (x, 0) < T 1
0 then T (x, t) → T 2

0 as t →+∞.
2. If T (x, 0) > T 1

0 then there exists such t∗ > 0 that T (x, t) →+∞ as t → t∗.

3. If H0 =
1∫

0

T (x,0)
1+T (x,0)

dx >
T 1

0
1+T 1

0
then there exists such t∗ > 0 that T (x, t) →+∞

as t → t∗.
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Proposition 6 Let γ ≥ 2μ0 and U > U∗ = γ − μ. Consider a solution T (x, t) of
the problem (5)–(6). Then there exists such t∗ > 0 that T (x, t) → +∞ as t → t∗.

5 Social Strain Localization in the Case of No External
Influence

The diffusion term in the Eq. (5) can be written as

C0(1+T )2 ∂

∂x

(
T

(1+ T )2

∂T

∂x

)
= C0

∂

∂x

(
T

∂T

∂x

)
−2C0

T

1+ T

(
∂T

∂x

)2

. (15)

Let us consider the auxiliary equation

∂T

∂t
= (μ0 + U0 − γ )T 2 + (2U0 − γ )T + U0 + C0

∂

∂x

(
T

∂T

∂x

)
, (16)

then the solutions of (16) are at the same time the upper solutions of the Eq. (5). Let
us put U0 = 0. Then the Eq. (16) can be written as

∂T

∂t
= (μ0 − γ )T 2 − γ T + C0

∂

∂x

(
T

∂T

∂x

)
. (17)

Let us assume that μ0 > γ . Then the Eq. (17) possess a family of automodel
solutions (see [14]):

TF (x, t, φ0) =
{

1
1−Feγ t AT cos2(ωT (x − φ0)), |ωT (x − φ0)| ≤ π

2 ;
0, |ωT (x − φ0)| > π

2 ,
(18)

where AT = 4γ
3(μ0−γ )

, ωT =
√

μ0−γ

2
√

2C0
, φ0 ∈ [ π

2ωT
, 1 − π

2ωT
]. If F < 0 then

TF (x, t, φ0) → 0 as t → +∞. If F = 0 then T0(x, φ0) is a spatially inhomo-
geneous stationary solution of the Eq. (17). If F ∈ (0, 1) then TF (x, t, φ0) → +∞
as t → t∗.
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The solutions TF (x, t, φ0) are localized in space, which means that for every
t > 0 we have supp TF (x, t, φ0) = supp TF (x, 0, φ0) and these solutions are
generalized solutions of (17) because there are two degenerate points x = φ0± π

2ωT
.

Therefore, for sufficiently small C0 it is possible to consider combinations of
TF (x, t, φ0), which correspond to different shift values φ0. Since ∂

∂x
TF (φ0, t, φ0) =

0, it is also possible to consider TF (x, t, φ0) which correspond to φ0 = 0, 1, as these
functions also satisfy Neumann boundary conditions (6).

Proposition 7 Let μ0 > γ . Consider a solution T (x, t) of the prob-
lem (5)–(6) such that T (x, 0) <

∑N
k=1 T0(x, φk) for some φ1, . . . , φN with

supp(T0(x, φi))∩supp(T0(x, φj )) = ∅ ∀i �=j : 1 ≤ i, j ≤ N . Then T (x, t) → 0
as t →+∞.

We performed numerical experiments to study the behaviour of the solutions of
the Eq. (5) in the case when T (x, 0) > T0(x, φ0). The calculations were done in
MATLAB, the discretization of infinite-dimensional system was performed by the
Method of Lines (MOL) and the numerical integration of ODE system was done by
the Dormand–Prince method. The experiments were performed for different values
of diffusion coefficient C0. The value of strain dissipation coefficient γ was taken
from the literature (see [8]): γ = 0.1, while the value of autoexcitation coefficient
μ0 was taken as μ0 = 0.3. Initial data were considered in the form: T (x, 0) =
σ [∑N

k=1 T0(x, φk)], where σ > 1.
Let us consider C0 = 0.00012 and T (x, 0) = σ [T0(x, 0)+T0(x, 0.5)+T0(x, 1)].

For 1 < σ < σ0 ≈ 1.08 we observed the convergence of the solution to zero as
t → +∞; for σ ≥ σ0 we observed a local blow up regime (see Fig. 1).

Next consider C0 = 0.0055 and T (x, 0) = σT0(x, 0). In that case the behaviour
of the system was similar to the previous case. However, the critical value σ0 was
lower: for 1 < σ < σ0 = 1.07 the numerical solution decayed in time; otherwise
monotonous growth of the solution was observed (see Fig. 2).

Let us set T (x, 0) = 10T (x, 0.5) and consider the numerical solution of (5) for
the different values of C0. In this case the social strain T (x, t) spreads uniformly
over the whole localization region, which is followed by monotonous growth of the
solution (see Fig. 3).
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Fig. 1 Social strain level P (x, t) which corresponds to the numerical solution of the Eq. (5) for
different values of σ . Initial data: T (x, 0) = σ [T0(x, 0)+T0(x, 0.5)+T0(x, 1)]. Model parameters:
μ0 = 0.3, γ = 0.1, C0 = 0.00012. (a) σ = 1, (b) σ = 1.08, (c) σ = 1.081
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Fig. 2 Social strain level P (x, t) which corresponds to the numerical solution of the Eq. (5) for
different values of σ . Initial data: T (x, 0) = σT0(x, 0). Model parameters: μ0 = 0.3, γ = 0.1,
C0 = 0.0055. (a) σ = 1. (b) σ = 1.07. (c) σ = 1.071
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Fig. 3 Social strain level P (x, t) which corresponds to the numerical solution of the Eq. (5) for
different values of C0. Initial data: T (x, 0) = 10T (x, 0.5). Parameter values: μ0 = 0.3, γ = 0.1.
(a) C0 = 0.00012. (b) C0 = 0.0012. (c) C0 = 0.0025

6 Concluding Remarks

In the present work we have considered the continuous social stratification model in
the special case when the influence of negative factors is uniformly spread among
the society. The introduction of auxiliary variable change has enabled us to apply
existing comparison theorems for nonlinear parabolic equations and derive the
sufficient conditions of global boundedness and blow up for the solutions which
correspond to the spatially inhomogeneous initial data.

It was shown that in the case when the autoexcitation coefficient μ0 is greater
than the strain dissipation coefficient γ the model (2) can demonstrate the lo-
calization and decay of social strain if there is no external influence on the
society and initial strain is localized and bounded, so there exists such constant
φ0 that P(x, 0) ≤ P0(x, φ0) = T0(x,φ0)

1+T0(x,φ0)
. This effect may persist in the model

only for small enough values of diffusion coefficient C0. It was observed from
numerical experiments that a localized blow up regime may exist in the system
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when P(x, 0) > P0(x, φ0). In this case the social strain first spreads uniformly over
the localization region, which is followed by monotonous growth of the numerical
solution.
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Stochastic Test of a Minimal Surface

D. S. Klimentov

Abstract The paper aims to obtain a stochastic test for minimal surfaces. Such
a test is formulated in terms of transition densities of stochastic processes. Two
fundamental forms of the surface generate these processes. This work exhausts the
problem of stochastic test for regular minimal surfaces.
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1 Introduction

A stochastic analogue of the main theorem of surface theory was obtained in [1, 2].
In [1] it was done for the surfaces of positive curvature and in [2] for the surfaces of
nonzero mean curvature.

The purpose of the present paper is to establish a stochastic test for surfaces with
zero mean curvature (minimal surfaces). The technique from [1, 2] is used.

It is assumed that the reader is familiar with the concepts of a stochastic process
and a strictly Markov process, as well as with the basic concepts of the theory of
surfaces in three-dimensional Euclidean space.
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2 Some Definitions from the Theory of Random Processes

We denote by (�,F, P ) some given random space.
Consider a the manifold (phase space) (E,B), where B is a σ -field of Borel’s

sets in E. One can find a detailed definition of a random process on a manifold
in [4].

We introduce some necessary definitions and notation.

Definition 1 ([3, p. 74]) Say that P(t, x, �) (t > 0, x ∈ E, � ∈ B) is a transition
function if the following conditions are fulfilled:

1. If t and x are fixed, then the function P(t, x, �) is a measure on the σ -algebra
B.

2. If t and � are fixed, then P(t, x, �) is B-measurable function of the point x.
3. P(t, x, �) ≤ 1.
4. P(0, x, E \ x) = 0.
5. P(s + t, x, �) = ∫

E
P(s, x, dy)P (t, y, �)

Let μ be some measure on the phase space (E,B).

Definition 2 ([3, p. 75]) Say that p(t, x, y) (t > 0, x, y ∈ E) is a transition density
if the following conditions are fulfilled:

1. p(t, x, y) ≥ 0.
2. If t is fixed, then p(t, x, y) is B×B- measurable function in (x, y).
3.

∫
E p(t, x, y)μ(dy) ≤ 1.

4. p(s + t, x, z) = ∫
E p(s, x, y)p(t, y, z)μ(dy).

It is easy to verify [3, p. 75] that if p(t, x, y) is a transition density then the
formula

P(t, x, �) =
∫

�

p(t, x, y)dy, t > 0, P (t, x, �) = χ�, t = 0

defines a transition function.
Every transition function generates the contractive semigroup Tt by the following

formula [3, p. 80]:

Ttf (x) =
∫

E

P(t, x, dy)f (y),

where f ∈ B, and B is a set of bounded measurable functions with natural linear
operations and the norm ||f || = supx∈E |f (x)|.
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Definition 3 ([3, p. 214]) An operator A is called an infinitesimal operator of the
semigroup Tt (the transition function P(t, x, �)) if

Af (x) = lim
t→+0

Ttf (x)− f (x)

t
.

The domain of the operator A consists of all functions f for which the limit in the
right-hand side exists.

Let a phase space be a smooth manifold. If we contract an infinitesimal operator
to C2-functions, then it is called a generator of stochastic process. In the local
coordinate (xi) for a generator we have

Af (x) = aij ∂i∂jf (x)+ bi∂if (x)− Cf (x),

where ∂i = ∂

∂xi
, aij is a positive definite matrix.

The Kolmogorov backward equation takes place [3, p. 238]:

∂p

∂t
= Ap.

Here A is the generator, and p is the transition density of a stochastic process.
In [3, Ch. 1, 2] it is shown that every Markov process uniquely defines the

contractive semigroup, the transition function and the infinitesimal operator.

3 Main Result

Let F ∈ C3 be a simply connected two-dimensional surface in the three-
dimensional Euclidian space. We assume F is conformal equivalent to a unite disc
and has zero mean curvature. We denote by I = gij dxidxj , II = bij dxidxj and
III = fij dxidxj the first, second and third fundamental form of F respectively.
Here x1, x2 are the local coordinates on the surface F . Without lost of generality
we can assume that the coordinates x1, x2 are isothermal, i. e. I = ds2 =
λ(dx12 + dx22

) [5, p. 193].
Consider three stochastic processes on F ; namely, Xt , Yt and Zt with the

generators AX = gij ∂i∂j , AY = bij ∂i∂j and AZ = f ij ∂i∂j , respectively. We
denote by p1(t, x, y), p2(t, x, y), p3(t, x, y) the transition densities of Xt , Yt and
Zt , respectively.

The next assertions take place.
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Theorem 1 If the transition densities p1 and p3 satisfy the relations

∂tp
1

2�p1
� ln

∂tp
1

2�p1
≤ 0,

�p3

∂tp3 = − ∂tp
1

2�p1 � ln
∂tp

1

2�p1 ·
�p1

∂tp1 ,

where � is the Laplace operator and ∂t is a partial time derivative, then the surface
F is minimal.

Theorem 2 Let the conditions of Theorem 1 are satisfied. If the transition density
p1 of the process Xt and a time derivative of the transition function P 3 of Zt at the
moment t = 0 satisfy the system1

(
�p1

∂p1

)−2×

×

⎡
⎢⎢⎣ 1

4H 2

⎛
⎜⎜⎝

(
K

�p1

∂p1 +
(

�p1

∂p1

)2 ∫
P 3

0 (t, x, dy)
y2

1
2

)(
K

�p1

∂p1 +
(

�p1

∂p1

)2 ∫
P 3

0 (t, x, dy)
y2

2
2

)
−

−
((

K
�p1

∂p1 +
(

�p1

∂p1
t

)2 ∫
P 3

0 (t, x, dy) y1y2

))2

⎞
⎟⎟⎠

⎤
⎥⎥⎦

= ∂t p
1

2�p1 � ln ∂t p
1

�p1 ,

∂

∂xk

[(
�p1

∂tp1

)2

·
(

K
�p1

∂tp1
+

∫
P 3

0 (t, x, dy)
yiyj

1+ δij

)
1

2H

]
−

−�α
ik

(
�p1

∂tp1

)2

·
(

K
�p1

∂tp1
+

∫
P 3

0 (t, x, dy)
yαyj

1+ δαj

)
1

2H
=

= ∂

∂xj

[(
�p1

∂tp
1

)2

·
(

K
�p1

∂tp
1
+

∫
P 3

0 (t, x, dy)
yiyk

1+ δik

)
1

2H

]
−

−�α
ij

(
�p1

∂t p
1

)2

·
(

K
�p1

∂t p
1 +

∫
P 3

0 (t, x, dy)
yαyk

1+ δαk

)
1

2H
,

where �l
ij = 1

2
δlk∂t p

1

�p1

⎡
⎣ ∂

(
δik

�p1

∂t p
1

)

∂xj +
∂

(
δjk

�p1

∂t p
1

)

∂xi −
∂

(
δij

�p1

∂t p1

)

∂xk

⎤
⎦, K = ∂tp

1

2�p1 � ln ∂t p
1

�p1 ,

H 2 =
�p1

∂p1

[∫
P 3

0 (t,x,dy)
y2

2
2 −

∫
P 3

0 (t,x,dy)
y2

1
2

]

4 , then the stochastic processes Xt and Zt

uniquely define the minimal surface F .

1We denote by P 3
0 a time derivative ∂P 3

∂t
(0).
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3.1 Auxiliary Statements

Lemma 1 ([1]) The Gauss curvature K of the surface F and the transition density
p1(t, x, y) satisfy the following relation:

K = ∂tp
1

2�p1 � ln
∂tp

1

2�p1 ,

where � = ∂2

∂x12 + ∂2

∂x22 , x = (x1, x2).

Lemma 2 If the mean curvature H of the surface F equals zero, then the first and
the third fundamental forms of F are proportional.

Proof The following relation is well-known [6, p. 232]:

K · I +H · II + III = 0, (1)

In the case under consideration it has the next form:

K · I + III = 0.

��
Lemma 3 If on F we have H �= 0, I and III are proportional, then F is a sphere.

Proof We can rewrite (1) as

II = −K · I − III

H
.

From here we see that I and II are proportional. Hence, F is a sphere [6, p. 212].
��

It is obvious that the Gauss curvature is non-positive if the mean curvature equals
zero. From this fact and the previous lemmas, we have the next assertion.

Lemma 4 If the Gauss curvature of the surface F is non-positive and I and III

are proportional then the mean curvature H = 0.

3.2 Proof of Main Result

Let us show that the transition density p1 of the stochastic process generating by the
first fundamental form I of F satisfies to the equation:

∂p1

∂t
= 1

λ
�p1,
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where λ is the isothermal element of F . Similarly, for p3 we have

∂p3

∂t
= 1

μ
�p3,

where μ = − ∂tp
1

2�p1 � ln ∂tp
1

2�p1 · �p1

∂tp1 is the coefficient of III .
It follows from the relation

�p3

∂tp3
= − ∂tp

1

2�p1
� ln

∂tp
1

2�p1
· �p1

∂tp1
,

that for p3 the Kolmogorov backward equation takes place:

∂tp
3 = 1

− ∂t p1

2�p1 � ln ∂tp1

2�p1 · �p1

∂t p1

�p3.

From the method of constructing a stochastic process by quadratic form [3, 7],
we have

III = μ(dx12 + dx22
).

We note that the third fundamental form of a surface is nonnegative and defines
the stochastic process [7, p. 19].

Thus, we receive that I and III are proportional.
By Lemma 1 the relation

∂tp
1

2�p1
� ln

∂tp
1

2�p1
≤ 0,

is equivalent to non-positivity of the Gauss curvature of F . Now the main result
follows from Lemma 4 in an obvious way.

From [2] we can deduce a result that is more general.
As above we denote by Zt the stochastic process with transition density p3 and

by P 3
0 a time derivative of the transition function of Zt at the moment t = 0.

By literately repeating the reasoning from [2], we get
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Theorem 3 Let the assumptions of Theorem 1 be satisfied and let the transition
density p1 of the process Xt and the transition function P 3 of the process Zt satisfy
the system:

(
�p1

∂p1

)−2×

×

⎡
⎢⎢⎣ 1

4H 2

⎛
⎜⎜⎝

(
K

�p1

∂p1 +
(

�p1

∂p1

)2 ∫
P 3

0 (t, x, dy)
y2

1
2

)(
K

�p1

∂p1 +
(

�p1

∂p1

)2 ∫
P 3

0 (t, x, dy)
y2

2
2

)
−

−
((

K
�p1

∂p1 +
(

�p1

∂p1
t

)2 ∫
P 3

0 (t, x, dy) y1y2

))2

⎞
⎟⎟⎠

⎤
⎥⎥⎦

= ∂t p
1

2�p1 � ln ∂t p
1

�p1 ,

∂

∂xk

[(
�p1

∂tp
1

)2

·
(

K
�p1

∂tp
1
+

∫
P 3

0 (t, x, dy)
yiyj

1+ δij

)
1

2H

]
−

−�α
ik

(
�p1

∂tp
1

)2

·
(

K
�p1

∂tp
1
+

∫
P 3

0 (t, x, dy)
yαyj

1+ δαj

)
1

2H
=

= ∂

∂xj

[(
�p1

∂tp1

)2

·
(

K
�p1

∂tp1
+

∫
P 3

0 (t, x, dy)
yiyk

1+ δik

)
1

2H

]
−

−�α
ij

(
�p1

∂t p1

)2

·
(

K
�p1

∂t p1
+

∫
P 3

0 (t, x, dy)
yαyk

1+ δαk

)
1

2H
,

where �l
ij = 1

2
δlk∂t p

1

�p1

⎡
⎣ ∂

(
δik

�p1

∂t p
1

)

∂xj +
∂

(
δjk

�p1

∂t p
1

)

∂xi −
∂

(
δij

�p1

∂t p1

)

∂xk

⎤
⎦, K = ∂tp

1

2�p1 � ln ∂t p
1

�p1 ,

H 2 =
�p1

∂p1

[∫
P 3

0 (t,x,dy)
y2

2
2 −

∫
P 3

0 (t,x,dy)
y2

1
2

]

4 . Then the stochastic processes Xt and Zt

uniquely define some minimal surface.
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On Isomorphism of Some Functional
Spaces under Action of Two-dimensional
Singular Integral Operators
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Abstract We address two-dimensional singular integral equations widely used for
constructing and investigating the solutions to the general linear first-order elliptic
systems in the 2D domains. Proving the solvability of such integral equations with
the use of the Calderón–Zygmund theorem brings us at the statements about the
existence of the solution belonging to the spaces of summable functions whose
summability exponents have to be close to the value of two, and the increase of
regularity of the problem’s data does not eliminate this restriction automatically.
In this article, we prove a regularity result for the solutions to two-dimensional
singular integral equations with the use of the representations of the second kind
for the solutions to the first-order general linear elliptic systems discovered by the
author in his prior work.
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Two-dimensional singular integral equations are widely used in constructing and
investigating of solutions to the general linear first-order elliptic systems in the
2D domains, see, for example, articles [1–6]. Proving the solvability of such
integral equations with the use of the Calderón–Zygmund theorem brings us at the
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the increase of regularity of the problem’s data does not eliminate this restriction
automatically. We know of only one result [4] which refines the regularity of the
solutions. We’ll be discussing this result in Remark 1 below, for now we only note
that the constructions used by [4] substantially rely on considering the equations in
the special domain which is the unit disk.

In this article, we prove the regularity of solutions to the linear singular integral
equations in the bounded simply connected domain provided that the problem’s data
are sufficiently regular. The proofs employ the representations of the second kind for
the solutions to the general first-order linear elliptic systems reported by the author
in articles [5, 6].

We now proceed to precise formulations. Let D = {ζ : |ζ | < 1} be the unit disk
in the complex ζ -plane E, z = x + iy, i2 = −1; � = ∂D is the boundary of D; and
D = D∪� and G is the simply connected bounded domain in the complex ζ -plane;
∂G = L; G = G ∪L. Throughout the article, we use the following function spaces
with standard norms:

• the space of functions summable in D with exponent p ≥ 1 denoted as Lp(D);
• the Sobolev space of functions having generalized derivatives of order k =

0, 1, . . . in D summable with exponent p ≥ 1, denoted as Wk
p(D), at that, we

set W 0
p(D) ≡ Lp(D);

• the Hölder space of functions continuously differentiable up to order k = 0, 1, . . .

in D which senior derivatives are Hölder-continuous in D with exponent α ∈
(0, 1) denoted as Ck

α(D) in addition, put C0
α(D) ≡ Cα(D) and denote by Ck

α(�)

the same spaces but consisting of the functions defined on �.

The notation Ck
α(G), Lp(G), Wk

p(G), Ck
α(L) has the same meaning as in the

case G = D or L = �. By the Sobolev–Kondrashov embedding theorem, we
always identify the elements of Wk

p(G) with the continuous functions for k ≥ 1,
p > 2. A reader can refer to monograph [2] for more details on the mentioned

function spaces. We also employ the space W
k− 1

p
p (L) of the traces of the functions

belonging to space Wk
p(G) (see [7, Ch. 5], [3, Ch. 6, §1])).

Let k ≥ 1, 0 < α ≤ 1, l ≥ 2 and p > 2. Let L denote a simple closed curve. We

say that L ∈ Ck
α (L ∈ W

l− 1
p

p ) if there exists a diffemorphism L → � belonging to

Ck
α (W

l− 1
p

p ).
We define the following integral operators:

Tf (ζ ) = TGf (ζ ) = − 1

π

∫∫

G

f (z)

z− ζ
dxdy, z = x + iy,

f (ζ ) ∈ Lp(G), p ≥ 1, ∂ζ̄ Tf (ζ ) = f (ζ ), ∂ζ̄ =
∂

∂ζ̄
;

T f (ζ ) =
(
T f (ζ )

)
, ∂ζ T f (ζ ) = f (ζ ), ∂ζ = ∂

∂ζ
,
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For more details, see [2]. We set

�f (ζ ) = ∂ζ Tf (ζ ) = − 1

π

∫∫

G

f (z)

(z − ζ )2
dxdy,

�f (ζ ) = ∂ζ̄ T f (ζ ) = − 1

π

∫∫

G

f (z)

(z̄ − ζ̄ )2
dxdy,

where the integral is understood in the sense of the Cauchy principal value.
We define two-dimensional singular integral operators:

S1f (ζ ) ≡ f (ζ )+ q1(ζ )�f (ζ )+ q2(ζ )�f (ζ )+
+A(ζ )Tf (ζ )+ B(ζ )Tf (ζ ); (1)

S2f (ζ ) ≡ f (ζ )+�[q1(ζ )f (ζ )+ q2(ζ )f (ζ )]+
+�[A(ζ )T f (ζ )+ B(ζ )T f (ζ )], (2)

where q1(ζ ), q2(ζ ), A(ζ ), B(ζ ), are some complex-valued functions.
The main results of the present work read as follows.

Theorem 1 Let q1(ζ ), q2(ζ ) ∈ C(G). Assume that

|q1(ζ )| + |q2(ζ )| ≤ q0 = const < 1, ζ ∈ G, (3)

A(ζ ), B(ζ ) ∈ Lp(G), p > 2, ∂G = L ∈ C1
α , 0 < α < 1. Then the operators S1

and S2 are linear isomorphisms of the real Banach space Lp(G).

In what follows, let inequality (3) hold by default.

Theorem 2 Assume that q1(ζ ), q2(ζ ), A(ζ ), B(ζ ) ∈ Ck
α(G), k ≥ 0, 0 < α < 1,

∂G = L ∈ Ck+1
α . Then the operators S1 and S2 are linear isomorphisms of the real

Banach space Ck
α(G).

Theorem 3 Assume that q1(ζ ), q2(ζ ), A(ζ ), B(ζ ) ∈ Wk
p(G), k ≥ 1, p > 2,

∂G = L ∈ W
k+1− 1

p
p . Then the operators S1 and S2 are linear isomorphisms of the

real Banach space Wk
p(G).

Remark 1 The result obtained in [4] is a particular case of Theorem 1 which
addresses only operator S1 and G = D. In [4], the author did not used operators
T and � = ∂ζ T . Instead, he employed the following operators

T0f (ζ ) = − 1

π

∫∫

D

[
f (t)

t − ζ
+ ζf (t)

1− ζ t̄

]
dxdy, Re T0f (ζ )||ζ |=1 = 0, �0 = ∂ζ T0.
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These definitions stick the considerations of the article [4] to the unit disk too firmly
which prevents them from being extended to an arbitrary simply connected domain.

2 Auxiliary Statements

We assume that ∂G = L ∈ C1
α by default, and while discussing the spaces Ck

α(G)

(Wk
p(G), k ≥ 1), we assume that L ∈ Ck+1

α (L ∈ W
k+1− 1

p
p ). We need the following

assertions. For their proofs, see [2, Ch. 1, §8] and [6].

Lemma 1 The singular operator � acts continuously in the spaces Ck
α(G), k ≥ 0,

0 < α < 1, and Wk
p(G), k ≥ 0, p > 2. Moreover, ‖�‖L2 = 1 and for each

q0 : 0 < q0 < 1 there exists s0 = s0(q0) > 2 such that q0‖�‖Ls < 1 as 2 < s < s0.
The same assertions hold true for the operator �.

Lemma 2 The operator T acts Ck
α(G) → Ck+1

α (G) and Wk
p(G) → Wk+1

p (G)

continuously for every k ≥ 0, 0 < α < 1, p > 2, and, hence, compactly Ck
α(G) →

Ck
α(G) and Wk

p(G) → Wk
p(G). For every p > 2 and f ∈ Lp(G), function Tf ∈

Cβ(E) β = p−2
p

is holomorphic in the exterior of domain G, and Tf (∞) = 0. The

same assertions hold true for the operator T .

Also, we need several regularity results proved in [6] regarding the following
operator

�w(ζ ) ≡ w(ζ )+ T (q1∂τ w + q2∂τ̄ w + Aw + Bw)(ζ ). (4)

Lemma 3 Let p > 2, A(ζ ), B(ζ ) ∈ Lp(G). Let q1(ζ ), q2(ζ ) be bounded
measurable functions satisfying (3). Then the operator � is continuously invertible
in the space W 1

s (G) for some s with 2 < s ≤ p.

Theorem 4 Let all the assumptions of Lemma 3 be satisfied. Assume, in addition,
that q1(ζ ), q2(ζ ) ∈ C(G). Then � is the linear isomorphism of real Banach space
W 1

p(G).

Theorem 5 Let k ≥ 0 and 0 < α < 1. Let all the assumptions of Lemma 3 be
satisfied. Assume, in addition, that q1(ζ ), q2(ζ ), A(ζ ), B(ζ ) ∈ Ck

α(G), ∂G = L ∈
Ck+1

α . Then � is a linear isomorphism of the real Banach space Ck+1
α (G).

Theorem 6 Let k ≥ 1, p > 2. Let all the assumptions of Lemma 3 be satisfied.
Assume, in addition, that q1(ζ ), q2(ζ ), A(ζ ), B(ζ ) ∈ Wk

p(G), ∂G = L ∈
W

k+1− 1
p

p . Then � is the linear isomorphism of real Banach space Wk+1
p (G).
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Consider now the general linear first-order elliptic system, which we write in the
complex form

∂ζ̄ w + q1(ζ )∂ζ w + q2(ζ )∂ζ̄ w + A(ζ )w + B(ζ )w = R(ζ ). (5)

In (5), ζ = ξ + iη, w = w(ζ ) = u(ζ ) + iv(ζ ) is an unknown complex-valued
function, and ∂ζ̄ = 1/2(∂/∂ξ + i∂/∂η), ∂ζ = 1/2(∂/∂ξ − i∂/∂η). We are about to
formulate the regularity results for solutions to Eq. (5). For this purpose we define
the auxiliary transformation

1

2πi

∫

L

w(t)

t − ζ
dt ≡ Kw(ζ ) = KLw(ζ ). (6)

Lemma 4 Let s > 2 and let w = w(ζ ) ∈ W 1
s (G) be a solution to Eq. (5), where

q1(ζ ), q2(ζ ) ∈ C(G), A(ζ ), B(ζ ), R(ζ ) ∈ Lp(G) for some p > 2. Let ∂G = L ∈
C1

α for some 0 < α < 1. Assume in addition that

�(ζ ) = KLw(ζ ) ∈ W 1
p(G). (7)

Then w(ζ ) ∈ W 1
p(G).

Lemma 5 Let s > 2, k ≥ 0, p > 2 and 0 < α < 1. Let w = w(ζ ) ∈ W 1
s (G) be

a solution to Eq. (5), where q1(ζ ), q2(ζ ), A(ζ ), B(ζ ), R(ζ ) ∈ Ck
α(G) (Wk

p(G)).

Let ∂G = L ∈ Ck+1
α (W

k+1− 1
p

p )). Assume in addition that function � defined by
equality (7) belongs to Ck+1

α (G) (Wk+1
p (G)). Then w ∈ Ck+1

α (G) (Wk+1
p (G)).

Proof of Lemma 4 By Pompeiu’s formula [2, p. 41, 57, 69],

w(ζ ) = 1

2πi

∫

L

w(t)

t − ζ
dt − 1

π

∫∫

G

∂w

∂t̄
· dxdy

t − ζ
, t = x + iy. (8)

The use of equality (8) brings us at the integro-differential equation

�(w) = T R +�

where T R ∈ W 1
p(G) by Lemma 2. Hence, w(ζ ) ∈ W 1

p(G) by Theorem 4. ��
Proof of Lemma 5 repeats the proof of Lemma 4 almost literally but with replacing
Theorem 4 by Theorems 5 and 6.
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3 Proof of Theorems 1–3

First, we prove all assertions of the three theorems regarding operator S1 and then
regarding operator S2.

3.1 Operator S1

Consider equation

S1f (ζ ) = R(ζ ) ∈ Lp(G) (Ck
α(G), Wk

p(G)). (9)

It follows from the results of [1, §4, Sec. 3], [2, Ch. 3, §17, Sec. 4] that Eq. (9) has
a unique solution f (ζ ) ∈ Ls(G) for some s with 2 < s ≤ p. Moreover, it follows
from Lemmas 1 and 2 that S1 acts continuously in space Lp(G) (Ck

α(G), Wk
p(G)).

Hence, by the Banach theorem, we have reduced the proof to inspecting whether
f (ζ ) belongs to Lp(G) (Ck

α(G), Wk
p(G)). To do so, we put w(ζ ) = Tf (ζ ). Given

Eq. (9), we see that w is the solution to Eq. (5). At that, w ∈ W 1
s (G) by Lemma 2.

Finally, Kw(ζ ) ≡ 0 since function w is holomorphic in the exterior of domain G

and w(∞) = 0. Given the listed observations and Lemma 4 (respectively Lemma 5),
we conclude that w ∈ W 1

p(G) (Ck+1
α (G), Wk+1

p (G)), and hence

f (ζ ) = ∂ζ w(ζ ) ∈ Lp(G) (Ck
α(G), Wk

p(G)).

Thus, the case of the operator S1 is completed.

3.2 Operator S2

Define

S0
2f (ζ ) = f (ζ )+�[q1(ζ )f (ζ )+ q2(ζ )f (ζ )]

and

Pf (ζ ) = �[A(ζ )T f (ζ )+ B(ζ )T f (ζ )].

Consider the equation

S2f (ζ ) ≡ S0
2f (ζ )+ Pf (ζ ) = R(ζ ) ∈ Lp(G) (Ck

α(G), Wk
p(G)). (10)
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By Lemma 1, operator S0
2 acts continuously in space Lp(G). Moreover, it is

continuously invertible in Ls(G) for some s with 2 < s ≤ p, see [6, proof of
Lemma 8].

By Lemmas 1 and 2, the operator P is compact in space Lp(G). Thus, the proof
of existence and uniqueness of solutions to Eq. (10) in the space Ls(G) we have
reduced to the problem of uniqueness of the zero solution to the corresponding
homogeneous equation

S2f (ζ ) = 0. (11)

Such a reduction is a consequence to the Fredholm theorem, see, e.g., [8, Ch. 13,
§5, Theorem 1].

Let f (ζ ) ∈ Ls(G) be a solution to the Eq. (11). We set w(ζ ) = T f (ζ ), and put
β = s−2

s
. By Lemma 2, w ∈ Cβ(G), and w is anti-holomorphic in the exterior of

G with

w(∞) = 0. (12)

Let DR = {ζ : |ζ | < R}, let G ⊂ DR . We put �R = ∂DR , DR = DR ∪ �R .
We extend the solution f to Eq. (11) and every coefficient of the operator S2 from
domain G to the disk DR with the zero value. Given such an extension, we consider
Eq. (11) in DR . We rewrite equation (11) as

∂ζ �w(ζ ) = 0.

It follows from the last equation that

�w(ζ ) = �(ζ ) (13)

where �(ζ ) ∈ W 1
s (DR) is anti-holomorphic in DR . It is clear that the values of this

function do not depend on R when ζ ∈ G. Let us show that �(ζ ) ≡ 0. Set

g(ζ ) = T (q1∂ζ w + q2∂ζ w + Aw + Bw)(ζ ).

Without loss of generality, we assume 0 ∈ G. By Lemma 2, function g(ζ ) is
holomorphic outside of G and g(∞) = 0. Define

g∗(ζ ) = g

(
R2

ζ̄

)
, ζ ∈ DR.

Function g∗ delivers the anti-holomorphic extension of function g from the exterior
of disk DR to the interior of it.
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We apply the operator K�R (K�R f = K�R f̄ ) to (13). Note that �(ζ ) and g∗(ζ )

are anti-holomorphic in DR , and w(ζ ) is anti-holomorphic in the exterior of DR and
satisfies (12). Hence, we get

�(ζ ) = g∗(ζ ), ζ ∈ DR. (14)

It follows from Eq. (14) that the absolute values of �(ζ ) in some neighborhood
of zero become arbitrary small when R → +∞. At the same time, the values of
function �(ζ ) are independent of R in some neighborhood of zero. Hence �(ζ ) ≡
0. Then w(ζ ) ≡ 0 and f (ζ ) = ∂ζ w(z) ≡ 0 by (13) and Lemma 3.

Thus, Eq. (10) has a unique solution f (ζ ) ∈ Ls(G), s : 2 < s ≤ p.
From Lemmas 1 and 2, it follows that S2 acts continuously in the space Lp(G)

(Ck
α(G), Wk

p(G)). According to Banach theorem, it remains to show that f (ζ )

belongs to Lp(G) (Ck
α(G), Wk

p(G)).

Again, we denote w(ζ ) = T f (ζ ) and rewrite equation (10) as

∂ζ [�w(ζ )− T R(ζ )] = 0.

Then

�w(ζ )− T R(ζ ) = �(ζ ), (15)

where �(ζ ) ∈ W 1
s (G) is anti-holomorphic in G and T R(ζ ) is anti-holomorphic

outside of G.
By arguing in the way similar to the previous step, we find out that �(ζ ) ≡ 0 in

Eq. (15). Since T R(ζ ) ∈ W 1
p(G) (Ck+1

α (G), Wk+1
p (G)), we conclude that w(ζ ) ∈

W 1
p(G) (Ck+1

α (G), Wk+1
p (G)) by Theorem 4 (5, 6). Hence

f (ζ ) = ∂ζ w(ζ ) ∈ Lp(G) (Ck
α(G), Wk

p(G)),

and this completes the case of operator S2.
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On One Class of Solutions of the Darboux
System
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Abstract We construct a reduction of the three-dimensional Darboux system for
the Christoffel symbols, which describes orthogonal curvilinear coordinate systems.
We show that the class of solutions of the Darboux system is parametrized by
six functions of one variable (two for each of three independent variables). We
give an explicit formulas for Darboux system solutions. In addition, we study the
linear system associated with the Darboux system. This system reduces to a three-
dimensional Goursat problem for a third-order equation with data on coordinate
planes. It is shown that the solution to the Goursat problem admits the separation of
variables and is determined by its values on the coordinate lines.
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with respect to the functions �ij of three variables (x, y, z) ∈ R
3+. Here and below

we follow the notation ∂1 = ∂x = ∂
∂x

, ∂2 = ∂y = ∂
∂y

, ∂3 = ∂z = ∂
∂z

. We are
interested in issues related to the integrability of the system (0.1) and, in particular,
constructing its explicit solutions.

The modern interest in the system (0.1) is due to its close connection to
differential geometry. It occurs when describing conjugate curvilinear coordinate
systems. In the terminology of differential geometry, the unknown functions �ij

are the Kristoffel symbols �ij ≡ �i
ij , i �= j , Levi-Civita connections (see, for

example [1]). Today, there are several approaches to the problem of constructing
conjugate and orthogonal coordinate systems. An approach based on the inverse
problem method in the theory of integrable equations was developed in [2–5]. In
the works of Dubrovin-Novikov [6], Zakharov [3], Tsarev [1], and Krichever [7], an
approach to the construction of such coordinates was proposed, which is based on
the methods of the theory of hydrodynamic type systems. In particular, it was found
that an arbitrary orthogonal coordinate system corresponds to a family of diagonal
Hamiltonian systems of hydrodynamic type. That systems determined from the
system

uy = �12(v − u), vz = �23(w − v), wx = �31(u−w),

uz = �13(w − u), vx = �21(u− v), wy = �32(v −w).
(0.2)

with respect to the functions u, v, w of three variables (x, y, z) ∈ R
3+.

Unfortunately, the solution of the systems (0.1), (0.2) is not possible without
introducing additional conditions. In the works [8, 9] the system (0.2) corresponding
to weakly nonlinear systems of hydrodynamic type was considered. It is character-
ized by the fact that the functions u, v, and w do not depend on the variables x, y,
and z, respectively. This feature makes it possible to obtain explicit formulas for the
solutions of the system (0.2):

u = g2(y)− g3(z)

f2(y)− f3(z)
, v = g3(z)− g1(x)

f3(z)− f1(x)
, w = g1(x)− g2(y)

f1(x)− f2(y)
, (0.3)

where fi , gi are arbitrary functions. In [10] a class of solutions of the Darboux
system satisfying the reduction condition

∂j �jk = ∂k�kj = �jk�kj , i �= j �= k. (0.4)

was introduced. Such reduction provided (local) solvability of the system (0.1) on
the Christoffel symbols in terms of their values on the coordinate axes, allowed to
obtain explicit formulas for solutions of the associated system (0.2). In particular
(see the paper [11]), it was shown that the solutions of the system (0.2) are
parametrized by nine functions of one variable (three for each variable x, y, z).
In addition, the reduction to a weakly nonlinear system (see formulas (0.2)) is a
special case of the approach under consideration.
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In this paper, we give another approach to finding explicit solutions of the
systems of Eqs. (0.1), and (0.2). In Sect. 2, we construct a reduction of the three-
dimensional Darboux system (0.1) with one additional algebraic condition on the
functions �ij . The corresponding class of solutions is characterized by the fact that
the function �ij does not depend on the k-th variable, where the indices i, j, k are
pairwise different. It is shown that the selected class of solutions is parametrized
by six functions of one variable (two for each of the three variables). There is also
some ideological connection with the formulas (0.3). However, we note at once that
the class of solutions of the Darboux system constructed in this article differs from
the class of solutions corresponding to the reduction (0.4). It is determined by the
associated systems (0.2), which, generally speaking, are not related to the property
of weak nonlinearity.

1 Linear System (0.2)

It is well known (see, for example, [1, 3, 6]) that the Darboux system (0.1) occurs
when determining the compatibility conditions of the first order system (0.2). Sub-
stitution of Eqs. (0.2) in the system of Darboux equations (0.1) reduces equations
with quadratic nonlinearity to linear equations of the second order on the function
u, v, w.

Lemma 1 If the functions �ij and u, v, w are related by the Eqs. (0.2), then the
functions �ij satisfy the equation system (0.1), and the functions u, v, w satisfy the
second-order equation system,

wxy + (�32 − �32�21/�31) wx + (�31 − �31�12/�32) wy = 0,

uyz + (�13 − �13�32/�12) uy + (�12 − �12�23/�13) uz = 0,

vzx + (�21 − �21�13/�23) vz + (�23 − �23�31/�21) vx = 0.

(1.1)

Proof Let us consider the pair of Eqs. (0.2):

wy + �32w = �32v, wx + �31w = �31u.

Differentiating first equation with respect to y, and second equation with respect to
x, we get

wxy + �32,xw + �32wx − �32,xv − �32vx = 0,

wxy + �31,yw + �31wy − �31,yu− �31uy = 0.
(1.2)
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To the first derivatives of the function w, on the left hand side, we attract the
equations of this system, and for the derivatives of the functions u, v, on the right
hand side, we attract equations from other pairs:

�32wx = �32�31(u−w), �31wy = �31�32(v − w),

�32vx = �32�21(u− v), �31uy = �31�12(v − u).

Then, subtracting the first equation in (1.2) from the second one, we get a pair of
equations with respect to the functions �ij

�32,x = �31,y, �32,x = �32�21 + �31�12 − �32�31.

From the latter in turn the equations for the functions u, v, w are obtained. Indeed,
taking the first equality in (1.2), we have

wxy + �32wx − �32,x(v −w)− �32vx

= wxy + �32wx − �32,x(v −w)− �32�21(u− v)

= wxy + �32wx − �32,x

�32
wy − �32�21(u− w)+ �32�21(v −w)

= wxy +
(

�32 − �32�21

�31

)
wx +

(
�31 − �31�12

�32

)
wy.

The remaining equations can be obtained similarly.

Lemma 2 If the functions �ij and u, v, w are related by the Eqs. (0.2), then the
function u satisfies the second-order system

uxy + �12ux +
(

�21 − �12,x

�12

)
uy = 0,

uxz + �13ux +
(

�31 − �13,x

�13

)
uz = 0.

(1.3)

The proof is similar to the proof of Lemma 1. To derive the first equation, it is
necessary to consider a pair of equations of the system (0.2) with the functions �12
and �21, whilst the pair of functions �13 and �31 should be considered in case of
the second equation.

Remark 1 From (1.3) by cyclic permutations

x → y → z → x, 1 → 2 → 3 → 1. (1.4)
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one can obtain two more systems of the same form for the functions v and w.
Consequently, each of the functions u, v, w satisfies a system of three second order
hyperbolic equations.

Remark 2 Darboux equations (0.1) admit “conformal” transformations:

x → X(x), y → Y (y), z → Z(z)

which translate the solution �ij of the system (0.1) into the following set of
functions:

�21

X′(x)
,

�31

X′(x)
,

�12

Y ′(y)
,

�32

Y ′(y)
,

�13

Z′(z)
,

�23

Z′(z)
.

In particular, constant solution of the system (0.1) is transferred to the system of
functions of one variable.

2 Reduction of the Darboux System

This section deals with the reduction of the Darboux system. It is determined by the
following property: for i �= j �= k �= i, the function �ij does not depend on the
k-th variable. It is obvious that in the class of functions �ij under consideration, all
constant solutions of the system (0.1) are contained. It is easy to verify that in this
case the Darboux system (0.1) reduces to a system of three algebraic equations

�21

�31
+ �12

�32
= 1,

�32

�12
+ �23

�13
= 1,

�13

�23
+ �31

�21
= 1. (2.1)

In our further considerations, the key role will be played by determinant of the
matrix

� =
⎛
⎝ 0 �12 �13

�21 0 �23

�31 �32 0

⎞
⎠ , det � = �12�23�31 + �13�32�21. (2.2)

Therefore, before proceeding to solving the Darboux system, we first establish the
relationship of the system (2.1) with the determinant of the matrix �.

Lemma 3 The general solution of algebraic equations (2.1) depends on four free
parameters. Moreover, any solution of the system (2.1) satisfies the condition

det � = 0. (2.3)
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Proof Let �12, �21 and �13, �31 be selected as free parameters. From the first and
third equations of the system (2.1) we get

�23 = �13�21

�21 − �31
, �32 = �12�31

�31 − �21
. (2.4)

Substituting in the second equation (2.1) instead of �23, �32, the right-hand sides of
the Eqs. (2.4), we obtain the identity. Therefore, the Eqs. (2.4) are equivalent to the
three Eqs. (2.1).

To prove the second part of the assertion of the lemma, we note that (2.4) implies
the equality (2.4)

�13�21

�23
= −�12�31

�32
.

Now condition (2.3) is obvious by virtue of formulas (2.2).

Remark 3 The “conformal” transformations x → X(x), y → Y (y), z → Z(z)

preserve the form of Eqs. (2.1). Moreover, they do not change the value of the
determinant of the matrix �.

Example 1 It is easy to verify that if �12 = �13 = �21 = 1, �31 = 2, �23 = s and
�32 = −2s, then the matrix � is degenerate for any s ∈ R. At the same time, the
substitution of these values in the left parts of the first and third equations in (2.1)
gives

1

2
+ 1

−2s
= s − 1

2s
,

1

s
+ 2

1
= 2s + 1

s
.

Note that the Eqs. (2.1) are satisfied only for s = −1.

Further, we will show that solutions of the system of three algebraic equa-
tions (2.1) are parametrized by six functions of one variable (two for each of the
variables x, y, z).

Since for k �= i �= j �= k, the function �ij does not depend on the k-th variable,
then from Lemma 3, we have

�21�32

�12�23
= −�31

�13
⇒ �21

�12
= X′(x)

Y ′(y)
,

�32

�23
= Y ′(y)

Z′(z)
,

�21�13

�12�31
= −�23

�32
⇒ �21

�12
= X′(x)

Y ′(y)
,

�13

�31
= −Z′(z)

X′(x)
.

(2.5)

where X, Y, Z—arbitrary functions of one variable.
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Using first equation from (2.1) and (2.5), we get

X′�12

Y ′�31
+Z′�12

Y ′�23
= 1 ⇒ �12

Y ′
(

X′
�31

+ Z′
�23

)
= 1 ⇒ �12

Y ′
(
− Z′

�13
+ Y ′

�32

)
= 1,

therefore,

X′

�31
+ Z′

�23
= Y ′

�12
,

Z′

�13
+ Y ′

�12
= Y ′

�32
. (2.6)

Attracting other equations of system (2.1), we obtain another pair of equations

X′

�21
+ Z′

�13
= Z′

�23
,

X′

�31
+ Y ′

�32
= X′

�21
. (2.7)

Since each fraction in (2.6), (2.7) depends only on two variables, we have

X′

�31
= f3 − f1,

Z′

�23
= f2 − f3,

Y ′

�12
= f2 − f1,

Z′

�13
= f1 − f3,

Y ′

�32
= f2 − f3,

X′

�21
= f2 − f1,

where fi are arbitrary functions, each of which depends only on the ith variable from
the ordered set {x, y, z}. From this, we finally obtain the solution of the Darboux
system (0.1), which, taking into account the arbitrariness of fi and remark 1, can be
written as

�31 = X′

f3(Z)− f1(X)
, �23 = Z′

f2(Y )− f3(Z)
, �12 = Y ′

f2(Y )− f1(X)
,

�13 = Z′

f1(X)− f3(Z)
, �32 = Y ′

f2(Y )− f3(Z)
, �21 = X′

f2(Y )− f1(X)
.

(2.8)

By virtue of Lemma 3 condition (2.3) is a consequence of the algebraic
system (2.1), and Example 1 indicates that condition (2.3) and the system (2.1)
are not the same. Further, we show that if we supplement system (0.1) with the
condition (2.3), then the solutions �ij of the resulting system will not depend on
the k-th variable, i.e. the system of relations (0.1), (2.3) is reduced to an algebraic
system (2.1).

Lemma 4 The solutions of the Darboux system (0.1) satisfy equality (2.3) if and
only if the condition

∂x(�32�23) = ∂y(�13�31) = ∂z(�12�21) = 0 (2.9)

holds.
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Proof From Eqs. (0.1), we get

∂x(�32�23) = �32∂x�23 + �23∂x�32

= �32(�23�31 + �21�13 − �23�21)+ �23(�32�21 + �31�12 − �32�31)

= �32�21�13 + �23�31�12.

Consequently, we arrive at the equivalence

∂x(�32�23) = 0 ⇔ �32�21�13 + �23�31�12 = 0.

The rest of the statement of the lemma can be obtained by cyclic permutations of
the indices {1, 2, 3} and variables {x, y, z}.

Let �ij be solutions of the Darboux system satisfying (2.3). Then from Lemma 4
it follows that the product �12�21 does not depend on z. Hence, there are functions
a12(x, y), a21(x, y) and c(z) such that

�12 = a12c, �21 = a21

c
. (2.10)

Similarly, one can show that

�13 = a13b, �31 = a31

b
,

�23 = a23a, �32 = a32

a
,

(2.11)

where the functions aij depend only on the i and j variables, and the functions a

and b depend only on x and y, respectively. There are two possible options: either
a′(x)b′(y)c′(z) = 0 or a′(x)b′(y)c(z) �= 0. Consider each of them separately.

Let a′(x)b′(y)c′(z) = 0. Since the functions �ij satisfy the semi-Hamiltonian
conditions �ij,k = �ik,j for any triple i �= j �= k �= i (see formula (0.1)), the
equality

a12c
′ = a13b

′ (2.12)

holds. It follows from (2.12) that c(z) = c, b(y) = b, where c and b are nonzero
constants. Then, from the equality �31,y = �32,x , in turn, it follows that the function
a(x) does not depend on x. Consequently, the function �ij does not depend on the
kth variable, k �= i �= j �= k. Therefore �ij satisfy system 2.1.

Now suppose that a′(x)b′(y)c′(z) �= 0. Then from (2.12) it follows that

a12

b′
= a13

c′
.
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The left side does not depend on z, and the right side does not depend on y.
Consequently

a12 = a1(x)b′, a13 = a1(x)c′.

Hence, �12 and �13 admit presentation

�12 = a1(x)b′(y)c(z), �13 = a1(x)b(y)c′(z).

Using similar reasoning we obtain equalities for the remaining four functions �ij

�23 = b1(y)a(x)c′2(z), �21 = b1(y)a′(x)c2(z),

�31 = c1(z)a′2(x)b2(y), �32 = c1(z)a2(x)b′2(y).

Comparing the obtained expressions for �ij with the formulas (2.10) and (2.11), we
obtain that the Darboux system solution (0.1) is parametrized by the procession of
functions of one variable and can be represented as

�12 = X̃(x)Y ′(y)Z(z)

Y 2(y)
, �23 = Ỹ (y)X(x)Z′(z)

Z2(z)
, �31 = Z̃(z)X′(x)Y (y)

X2(x)
,

�13 = − X̃(x)Z′(z)

Y (y)
, �21 = − Ỹ (y)X′(x)

Z(z)
, �32 = − Z̃(z)Y ′(y)

X(x)
,

(2.13)

where

X′(x)Y ′(y)Z′(z) �= 0. (2.14)

Moreover, in view of the Darboux equations (0.1), all six functions of one variable,
defining the parametrization, are interconnected by one functional equation

XỸ

Z
+ Y Z̃

X
+ ZX̃

Y
= 1, (2.15)

which is invariant under cyclic permutations of symbols {X, Y, Z}.
Let us show that the system of relations (2.14), and (2.15) is incompatible. To do

this, we rewrite the Eq. (2.15) as

X2Y Ỹ + Y 2ZZ̃ + Z2XX̃ = XYZ.

Differentiating this equation with respect to x, we get

2XX′Y Ỹ + Z2(XX̃)′ = X′YZ.
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Further, differentiating the obtained equality with respect to z, we have

2ZZ′(XX̃)′ = X′YZ′ ⇒ Z′(2Z(XX̃)′ − X′Y ) = 0.

It follows that Z(z) = const, which contradicts (2.14).

We summarize the results of this section in the form of the following theorem.

Theorem 1 Let the condition (2.3) be satisfied. Then the Darboux system solutions
are parametrized by six functions of one variable (two for each, each of the variables
x, y, z) and represented by formulas (2.8).

Example 2 It is easy to show that following collection of functions

�31 = 1

ex + e−z
= −�13, �23 = 1

2ey − e−z
= �32, �12 = 1

ex + 2ey
= �21

is a solution of the system (0.1). Moreover, the equality (2.3) holds and the reduction
condition (0.4) is not satisfied.
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Abstract The paper provides a brief overview of the origins, methods and results
of Boolean valued analysis. Boolean valued representations of some mathematical
structures and mappings are given in tabular form. A list of some problems arising
outside the theory of Boolean valued models, but solved using the Boolean valued
approach, is given. The relationship between the Kantorovich’s heuristic principle
and the Boolean valued transfer principle is also discussed.
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1 Introduction

In 1977, Eugene Gordon, a young teacher of Lobachevsky Nizhny Novgorod State
University, published the short note [13] which begins with the words:

This article establishes that the set whose elements are the objects representing reals in a
Boolean valued model of set theory V

(B), can be endowed with the structure of a vector

A. G. Kusraev (�)
Southern Mathematical Institute, Vladikavkaz Scientific Center of the RAS, Vladikavkaz, Russia
e-mail: kusraev@smath.ru

S. S. Kutateladze
Sobolev Institute of Mathematics, Siberian Branch of the RAS, Novosibirsk, Russia
e-mail: sskut@math.nsc.ru

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
A. G. Kusraev, Z. D. Totieva (eds.), Operator Theory and Differential Equations,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-49763-7_9

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49763-7_9&domain=pdf
mailto:kusraev@smath.ru
mailto:sskut@math.nsc.ru
https://doi.org/10.1007/978-3-030-49763-7_9


92 A. G. Kusraev and S. S. Kutateladze

space and an order relation so that it becomes an extended K-space1 with base2
B. It is

shown that in some cases this fact can be used to generalize the theorems about reals to
extended K-spaces.

His note has become the bridge between various areas of mathematics
which helps, in particular, to solve numerous problems of functional analysis
in “semiordered vector spaces” [36] by using the techniques of Boolean valued
models of set theory [6].

In the same year, at the Symposium on Applications of Sheaf Theory to Logic,
Algebra, and Analysis (Durham, July 9–11, 1977), Gaisi Takeuti, a renowned expert
in proof theory, observed that if B is a complete Boolean algebra of orthogonal
projections in a Hilbert space H , then the set whose elements represent reals in the
Boolean valued model V(B) can be identified with the vector lattice of selfadjoint
operators in H whose spectral resolutions take values in B; see [93].

These two events marked the birth of a new section of functional analysis,
which Takeuti designated by the term Boolean valued analysis. The history and
achievements of Boolean valued analysis are reflected in [56–58].

It should be mentioned that in 1969 Dana Scott foresaw that the new nonstandard
models must be of mathematical interest beyond the independence proof, but he was
unable to give a really good evidence of this; see [87]. In fact Takeuti found a narrow
path whereas Gordon paved a turnpike to the core of mathematics, which justifies
the vision of Scott.

Boolean valued analysis signifies the technique of studying the properties of
an arbitrary mathematical object by comparison between its representations in two
different Boolean valued models of set theory. As the models, we usually take the
von Neumann universe V (the mundane embodiment of the classical Cantorian
paradise) and the Boolean valued universe V

(B) (a specially-trimmed universe
whose construction utilizes a complete Boolean algebra B). The principal difference
between V and V

(B) is the way of verification of statements: There is a natural
way of assigning to each statement φ about x1, . . . , xn ∈ V

(B) the Boolean truth-
value [[φ(x1, . . . , xn)]] ∈ B. The sentence φ(x1, . . . , xn) is called true in V

(B)

if [[φ(x1, . . . , xn)]] = 1. All theorems of Zermelo–Fraenkel set theory with the
axiom of choice are true in V

(B) for every complete Boolean algebra B. There
is a smooth and powerful mathematical technique for revealing interplay between
the interpretations of one and the same fact in the two models V and V

(B). The
relevant ascending-and-descending machinery rests on the functors of canonical
embedding X �→ X∧, descent X �→ X↓, and ascent X �→ X↑ acting between V

and V
(B), see [56, 57]. Everywhere below B is a complete Boolean algebra and V

(B)

the corresponding Boolean valued model of set theory; see [6, 99]. A partition of
unity in B is a family (bξ )ξ∈� ⊂ B such that

∨
ξ∈� bξ = 1 and bξ ∧ bη = O

1A K-space or a Kantorovich space is a Dedekind complete vector lattice. An extended K-space
is a universally complete vector lattice, cp. [4] and [104].
2The base of a vector lattice is the inclusion ordered set of all of its bands (that forms a complete
Boolean algebra) [36, 104].
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whenever ξ �= η. The unexplained terms of vector lattice theory can be found
in [4, 70, 71, 85, 104].

2 Kantorovich’s Heuristic Principle

Definition 1 A vector lattice or a Riesz space is a real vector space X equipped with
a partial order ≤ for which the join x ∨ y and the meet x ∧ y exist for all x, y ∈ X,
and such that the positive cone X+ := {x ∈ X : 0 ≤ x} is closed under addition
and multiplication by positive reals and for any x, y ∈ X the relations x ≤ y and
0 ≤ y− x are equivalent. A band in a vector lattice X is the disjoint complement Y ′
of any set Y ⊂ X where Y ′ := {x ∈ X : (∀y ∈ Y ) |x| ∧ |y| = 0}. Let P(X) stand
for the complete Boolean algebra of all band projections in X.

Definition 2 A subset U ⊂ X is order bounded if U lies in an order interval
[a, b] := {x ∈ X : a ≤ x ≤ b} for some a, b ∈ X. A vector lattice X is Dedekind
complete (respectively, laterally complete) if each nonempty order bounded set
(respectively, each nonempty set of pairwise disjoint positive vectors) U in X has
a least upper bound sup(U) ∈ X. The vector lattice that is laterally complete and
Dedekind complete simultaneously is referred to as universally complete.

Definition 3 An f -algebra is a vector lattice X equipped with a distributive multi-
plication such that if x, y ∈ X+ then xy ∈ X+, and if x ∧ y = 0 then (ax) ∧ y =
(xa) ∧ y = 0 for all a ∈ X+. An f -algebra is semiprime provided that xy = 0
implies x ⊥ y for all x and y. A complex vector lattice XC is the complexification
XC := X ⊕ iX (with i standing for the imaginary unity) of a real vector lattice X.

Leonid Kantorovich was among the first who studied operators in ordered vector
spaces. He distinguished an important instance of ordered vector spaces, a Dedekind
complete vector lattice, often called a Kantorovich space or a K-space. This notion
appeared in Kantorovich’s first fundamental article [35] on this topic where he
wrote:

In this note, I define a new type of space that I call a semiordered linear space. The
introduction of such a space allows us to study linear operations of one abstract class (those
with values in such a space) as linear functionals.

Here Kantorovich stated an important methodological principle, the heuristic
transfer principle for K-spaces, claiming that the elements of a K-space can be
considered as generalized reals. Essentially, this principle turned out to be one
of those profound ideas that, playing an active and leading role in the formation
of a new branch of analysis, led eventually to a deep and elegant theory of K-
space rich in various applications. At the very beginning of the development of
the theory, attempts were made at formalizing the above heuristic argument. In
this direction, there appeared the so-called identity preservation theorems which
claimed that if some proposition involving finitely many relations is proven for
the reals then an analogous fact remains valid automatically for the elements of
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every K-space (see [36, 71, 104]). The depth and universality of Kantorovich’s
principle were demonstrated within Boolean valued analysis. See more about the
Kantorovich’s universal heuristics and innate integrity of his methodology in [67].
The contemporary forms of above mentioned relation preservation theorems, basing
on Boolean valued models, may be found in Gordon [15, 18, 21] and Jech [30].

3 Boolean Valued Reals

Boolean valued analysis stems from the fact that each internal field of reals
of a Boolean valued model descends into a universally complete vector lattice.
Thus, a remarkable opportunity opens up to expand and enrich the mathematical
knowledge by translating information about the reals to the language of other
branches of functional analysis.

According to the principles of Boolean valued set theory there exists an internal
field of reals R in a model V(B) which is unique up to isomorphism. In other words,
there exists R ∈ V

(B) for which [[R is a field of reals ]] = 1. Moreover, if [[R ′ is
a field of reals ]] = 1 for some R ′ ∈ V

(B) then [[ the ordered fields R and R ′ are
isomorphic ]] = 1.

By the same reasons there exists an internal field of complex numbers C ∈ V
(B)

which is unique up to isomorphism. Moreover, V(B) |� C = R ⊕ iR. We call R
and C the internal reals and internal complexes in V

(B).
The fundamental result of Boolean valued analysis is Gordon’s Theorem [13]

which reads as follows: Each universally complete vector lattice is an interpretation
of the reals in an appropriate Boolean valued model. Formally:

Gordon Theorem Let B be a complete Boolean algebra, R be a field of reals
within V

(B). Endow R := R↓ with the descended operations and order. Then

(1) The algebraic structure R is a universally complete vector lattice.
(2) The field R ∈ V

(B) can be chosen so that [[R∧ is a dense subfield of R ]] = 1.
(3) There is a Boolean isomorphism χ from B onto P(R) such that

χ(b)x = χ(b)y ⇐⇒ b ≤ [[ x = y ]],
χ(b)x ≤ χ(b)y ⇐⇒ b ≤ [[ x ≤ y ]]

(x, y ∈ R; b ∈ B).

For a detailed proof of the Gordon Theorem, see [45, 56, 58]. Observe also some
additional properties of Boolean valued reals, namely multiplicative structure and
complexification:
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Corollary 1 The universally complete vector lattice R↓ with the descended mul-
tiplication is a semiprime f -algebra with the ring unity 1 := 1∧. Moreover, for
every b ∈ B the band projection χ(b) ∈ P(R) acts as multiplication by χ(b)1.

Corollary 2 Let C be the field of complex numbers within V
(B). Then the algebraic

system C↓ is a universally complete complex f -algebra. Moreover, C↓ is the
complexification of the universally complete real f -algebra R↓; i.e., C↓ = R↓ ⊕
iR↓.

Example 1 Assume that a measure space (�, �, μ) is semi-finite; i.e., if A ∈ �

and μ(A) = ∞ then there exists B ∈ � with B ⊂ A and 0 < μ(B) < ∞.
The vector lattice L0(μ) := L0(�, �, μ) (of cosets) of μ-measurable functions on
� is universally complete if and only if (�, �, μ) is localizable (≡ Maharam).
In this event Lp(�, �, μ) is Dedekind complete; see [11, 241G]. Observe that
P(L0(�, �, μ)) * �/μ−1(0).

Example 2 Given a complete Boolean algebra B of orthogonal projections in
a Hilbert space H , denote by 〈B〉 the space of all selfadjoint operators on H whose
spectral resolutions are in B; i.e., A ∈ 〈B〉 if and only if A = ∫

R
λ dEλ and

Eλ ∈ B for all λ ∈ R. Define the partial order in 〈B〉 by putting A ≥ B whenever
〈Ax, x〉 ≥ 〈Bx, x〉 holds for all x ∈ D(A) ∩ D(B), where D(A) ⊂ H stands for
the domain of A. Then 〈B〉 is a universally complete vector lattice and P(〈B〉) * B.

Example 3 Let � = R⇓ stands for the bounded part of the universally complete
vector lattice R↓, that is, � := {x ∈ R↓ : |x| ≤ C∧ for some C ∈ R}. Then
� is a Dedekind complete vector lattice and �̄ := � ⊕ i� is a complex Dedekind
complete vector lattice. Moreover, � can be endowed with a norm ‖x‖∞ := inf{α >

0 : |x| ≤ α1}.
If μ is a Maharam measure and B in the Gordon Theorem is the algebra of all μ-

measurable sets modulo μ-negligible sets, then R↓ is lattice isomorphic to L0(μ);
see Example 1. If B is a complete Boolean algebra of projections in a Hilbert space
H then R↓ is isomorphic to 〈B〉; see Example 2. The two indicated particular cases
of Gordon’s Theorem were intensively and fruitfully exploited by Takeuti [92–95].
The object R↓ for general Boolean algebras was also studied by Jech [30, 31], and
[32] who in fact rediscovered Gordon’s Theorem. The difference is that in [30]
a (complex) universally complete vector lattice with unit is defined by another
system of axioms and is referred to as a complete Stone algebra. By selecting special
B’s, it is possible to obtain some properties of R.

Remark 1 In 1963 P. Cohen discovered his method of ‘forcing’ and also proved
the independence of the Continuum Hypothesis. A comprehensive presentation of
the Cohen forcing method gave rise to the Boolean valued models of set theory,
which were first introduced by D. Scott and R. Solovay (see Scott [87]) and
P. Vopěnka [103]. A systematic account of the theory of Boolean valued models
and its applications to independence proofs can be found in [6, 33, 91, 99].
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Remark 2 Gordon came to his theorem, while trying to solve the Solovay’s famous
problem. Assuming the consistency with ZFC of the existence of inaccessible
cardinal, R. Solovay established the following result: The statement “Every subset
of R is Lebesgue measurable” is consistent with ZF+DC (Dependent choice), see
[90]. The Solovay’s problem asks whether or not this result remains true without
assumption of consistency of existence of inaccessible cardinal? Gordon failed to
solve this problem but proved the following weaker assertion: The statement “The
Lebesgue measure on R can be extended to a σ -additive invariant measure on the
σ -algebra of sets definable by a countable sequence of ordinals” is consistent with
ZFC,3 see [13, Theorem 7] and [16]. In order to prove this result he needed to
examine a Boolean algebra B with a measure μ :B → R inside V(B) and identify
the descent μ↓ : B↓ → R↓ of μ in V. Thus, he discovered that the algebraic
structure of R↓ is a well-known object, and it is K-space, which he learned from
the book [101].

Remark 3 Many delicate properties of the objects inside V
(B) depend essentially

on the structure of the initial Boolean algebra B. The diversity of opportunities
together with a great stock of information on particular Boolean algebras ranks
Boolean valued models among the most powerful tools of foundational studies,
see [6, 33, 99]. Here it is worth mentioning two deep independence results in
analysis: The sentences SH4 (Souslin’s Hypothesis) and NDH5 (No Discontinuous
Homomorphisms) are independent of ZFC, see [29, 91] and [10], respectively.

4 Boolean Valued Representation of Structures

Every Boolean valued universe has the collection of mathematical objects in full
supply. Available in plenty are all sets with extra structure: groups, rings, algebras,
normed spaces, operators etc. Applying the descent functor to these internal
algebraic systems of a Boolean valued model, we distinguish some bizarre entities
or recognize old acquaintances, which leads to revealing the new facts of their life
and structure.

3Earlier G. Saks [88] without assumption of existence of inaccessible cardinal proved that the
statement “The Lebesgue measure on R can be extended to the σ -additive invariant measure
defined on all subsets of R” is consistent with ZF+ DC.
4H: Every order complete order dense linearly ordered set having no first or last element is order
isomorphic to the ordered set of reals R, provided that every collection of mutually disjoint non-
empty open intervals in it is countable.
5NDH: For each compact space X, each homomorphism from C(X,C) into a Banach algebra is
continuous.
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It thus stands to reason to raise the following question: What structures significant
for mathematical practice are obtainable by the Boolean values interpretation of the
most typical algebraic systems? The answer is given in terms of Boolean sets.

1. A Boolean set or, more precisely, a B-set is by definition a pair (X, d), where
X ∈ V, X �= ∅, and d is a mapping from X×X to B satisfying for all x, y, z ∈ X

the conditions: (1) d(x, y) = O if and only if x = y; (2) d(x, y) = d(y, x);
(3) d(x, y) ≤ d(x, z)∨ d(z, y). Each nonempty subset ∅ �= X ⊂ V(B) provides
an example of a B-set on assuming that d(x, y) := [[x �= y]] = [[x = y]]∗ for
all x, y ∈ X. Another example arises if we furnish a nonempty set X with the
“discrete B-metric” d; i. e., on letting d(x, y) = 1 in case x �= y and d(x, y) = O

in case x = y.
2. For every B-set (X, d) there are a member X of V(B) and an injection ı : X →

X′ :=X ↓ such that d(x, y) = [[ı(x) �= ı(y)]] for all x, y ∈ X and every x ′ ∈ X′
admits the representation x ′ = mixξ∈�(bξ ı(xξ )), with (xξ )ξ∈� ⊂ X and (bξ )ξ∈�

a partition of unity in B. The element X of V(B) is said to be the Boolean
valued representation of the B-set X. If X is a discrete B-set then X = X∧ and
ı(x) = x∧ for all x ∈ X. If X ⊂ V(B) then ı↑ is an injection from X↑ to X
within V(B). Say that X is B-complete (or B-cyclic), whenever ι(X) = X′.

3. A mapping f from a B-set (X, d) to a B-set (X′, d ′) is contractive provided that
d ′(f (x), f (y)) ≤ d(x, y) for all x, y ∈ X. Assume that X and Y are some B-
sets. Assume further that X and Y are the Boolean valued representations of X

and Y , while ı : X → X ↓ and j : Y → Y ↓ are the corresponding injections.
If f : X → Y is a contractive mapping then there is a unique member g of V(B)

such that [[g :X → Y ]] = 1 and f = j−1 ◦ g↓ ◦ ı.
4. In case a B-set X has some a priori structure we may try to furnish the Boolean

valued representation of X with an analogous structure, so as to apply the
technique of ascending and descending to the study of the original structure of
X. Consequently, the above questions may be treated as instances of the unique
problem of searching a well-qualified Boolean valued representation of a B-set
with some additional structure, algebraic B-systems.

5. Thus an algebraic B-system refers to a B-set endowed with a few contractive
operations and B-predicates, the latter meaning B-valued contractive mappings.
The Boolean valued representation of an algebraic B-system appears to be a
conventional two valued algebraic system of the same type. This means that an
appropriate B-completion of each algebraic B-system coincides with the descent
of some two valued algebraic system.

6. The following table shows Boolean valued representations of some structures.
Of course, all these representation results are applied to the study of their
properties by means of Boolean valued analysis. For details, we refer to the
sources indicated in the third column of the table (Table 1).
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Table 1 Structures

Algebraic structure with
order, norm, etc.

Boolean valued
representation

Author [·], year

Complete Boolean algebra
with a complete subalgebra

Complete Boolean algebra Solovay and Tennenbaum
[91]

Amalgated free product of
Boolean algebras over B

Free product of Boolean
algebras

Can be extracted from [91]

Universally complete
Kantorovich space

Field of reals Gordon [13]

Boolean extension of a
uniform space

Complete uniform space Gordon and Lyubetskiı̆
[22–24]

Rationally complete
semiprime abelian ring

Arbitrary field Gordon [19]

Complete ring of fractions of
a semiprime abelian ring

The field of fractions of an
integral domain

Gordon [19]

Unital separated injective
module

Vector space Gordon [20]

Continuous geometrya Irreducible CGb Nishimura [73]

Von Neumann algebra Von Neumann factor Ozawa [78], Takeuti [96]

Kaplansky–Hilbert module Hilbert space Takeuti [96], Ozawa [79, 80]

B-complete C∗-algebra C∗-algebra Takeuti [97]

Type I AW ∗-algebra W ∗-algebra End(H) for a
Hilbert space H

Ozawa [80]

AW ∗-module Hilbert space Ozawa [80]

Embeddable AW ∗-algebra Von Neumann algebra Ozawa [81]

Banach–Kantorovich space Banach space Kusraev [41]

Operator caps and faces Caps and faces of sets of
functionals

Kutateladze [64, 65]

B-simple groups and
B-simple rings

Simple groups and Simple
rings

Takeuti [98]

B-complete Banach space Banach space Kusraev [41, 42], Ozawa [84]

B-compactification (or cyclic
compactification)

Stone-Čech compactification Abasov and Kusraev [1]

B-Dedekind domainb Dedekind domainb Nishimura [75]

B-complete Lie algebra over
a Stone algebra

Lie algebra Nishimura [76]

AL∗-algebrac L∗-algebrac Nishimura [77]
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B-complete JB-algebra JB-algebra Kusraev [43]

B-complete B-dual
JB-algebra

Dual JB-algebra Kusraev [43]

Injective Banach lattice AL-space (L1 space) Kusraev [50, 54]e

Kaplansky–Hilbert latticed Hilbert lattice Kusraev [51]

Ordered preduals to injective
Banach lattices

L1-preduals Kusraev, Kutateladze [59]

aA continuous geometry (= CG) is a complete complemented modular lattice L satisfying the
axioms: supα∈A(xα ∧ z) = (supα∈A xα) ∧ z and infα∈A(yα ∨ z) = (infα∈A yα) ∨ z for all z ∈ L,
increasing family (xα)α∈A, and decreasing family (yα)α∈A in L. A continuous geometry with a
trivial center is called irreducible, Neuman [102]
bA B-Dedekind domain is a B-integral domain that is B-hereditary. A B-integral domain is a B-
complete ring R in which every B-ideal of R is B-projective and for all a, b ∈ R with ab = 0 there
exist e, f ∈ B such that ef = 0, e + f = 1, ea = 0, and f b = 0; see [75, p. 69]. A Dedekind
domain is an integral domain in which every ideal is projective or, equivalently, each nonzero ideal
is a product of prime ideals [7, Chap. 7, § 2]
cAn AL∗-algebra is an AW ∗-module L over a commutative von Neumann algebra A endowed
with an A-bilinear operation [·, ·] : L ×L → L and a unary ∗-operation (·)∗ : L → L such
that for all u, v, w ∈ L we have: (1) [u, u] = 0; (2) [[u, v], w] + [[v, w]u] + [[w, u]v] = 0;
(3) 〈[u, v], w〉 = 〈v, [u∗, w]〉; see [77, p. 245]. An L∗-algebra is a complex Lie algebra L that is
simultaneously a Hilbert space endowed with a ∗-operation satisfying 〈[u, v], w〉 = 〈v, [u∗, w]〉
for all u, v, w ∈ L ; see [86]
dA Kaplansky–Hilbert lattice over � is a real Banach lattice X such that X ⊕ iX is a
Kaplansky–Hilbert module over �̄ and ‖x‖ := ∥∥√〈x, x〉 ∥∥∞ for all x ∈ X, see Example 3. A
Kaplansky–Hilbert lattice over � = R is called a Hilbert lattice, see [71]. The norm ‖x + iy‖ :=√‖〈x, x〉 + 〈y, y〉‖∞ is given incorrectly in [51]
eSome related results can be found in [51, 59, 60]

5 Boolean Valued Representation of Operators

1. Let X be a normed space and let E be a vector lattice. Say that a linear operator
T : X → E has an abstract norm or is dominated if the image T (BX) of the unit
ball BX of X is order bounded in E. Assume now that X is a multinormed space
and E has an order unit 1. An operator T is called piecewise bounded if there
is a partition of unity (πα) in P(E) and a family of continuous seminorms (pα)

such that |παT x| ≤ 1pα(x) for all α and x ∈ X

2. An operator T : E → F between two vector lattices is said to be interval
preserving whenever T is a positive operator and T [0, x] = [0, T x] holds for
each x ∈ E+. A Maharam operator is an order continuous interval preserving
operator. An operator T : E → E on vector lattice is said to be band preserving
if x ⊥ y implies T x ⊥ y for all x, y ∈ E or, equivalently, whenever T keeps all
bands of E invariant, i. e., T (B) ⊂ B holds for each band B of E.

3. Consider a B-complete Banach space Y . Denote by Prtσ (B) the set of all count-
able partitions of unity in B. Say that a sequence (yn)n∈N B-approximates y ∈ Y

if, for each k ∈ N, we have inf{supn�k ‖πn(yn − y)‖ : (πn)n≥k ∈ Prtσ (B)} = 0.
Call a set K ⊂ Y B-compact if K is B-complete and every sequence (yn)n∈N ⊂
K B-approximates some y ∈ K . An operator from a normed space X to Y is
called B-compact or cyclically compact if the image of every norm bounded
subset of X lies in some B-compact subset of Y .



100 A. G. Kusraev and S. S. Kutateladze

4. Suppose E is a Banach lattice. A linear operator T : E → Y is cone B-summing
if and only if there exists a positive constant C such that for every finite collection
x1, . . . xn ∈ E there is a countable partition of unity (πk)k∈N in B such that the
inequality

sup
k∈N

n∑
i=1

‖πkT xi‖ ≤ C

∥∥∥∥
n∑

i=1

|xi |
∥∥∥∥

holds, see [50]. Observe that if B = {0, IY } then a cone B-summing operator is a
cone absolutely summing operator; cp. [85, Ch. 4].

5. Let P = R or P = C. Given an algebra A over the field P, we call a P-linear
operator D : A → A a derivation provided that D(uv) = D(u)v+uD(v) for all
u, v ∈ A. It can be easily seen that an order bounded derivation of a universally
complete f -algebra is trivial (Table 2).

Table 2 Operators

Operator, representation
homomorphism, etc.

Boolean valued representation Author [·], year

Unitary representation of an LCA
group

Character of an LCA group Takeuti [93]

Ordinary differential operator with
parameters in 〈B〉a

Ordinary differential operator Takeuti [93]

〈B〉-valued Fourier transform on
LCA groups

Fourier transform on LCA
groups

Takeuti [94]

Linear operator with abstract norm Norm bounded linear
functional

Gordon [14, 17]

Conditional expectation Lebesgue integral Gordon [17]

B-Compact operator Compact operator Kusraev [39]

Maharam operator Order continuous positive
functional

Kusraev [40]

Piecewise bounded linear operator Continuous linear functional Sikorskiı̆ [89]

Differential polynomial on
D ′(Rn, C) or S ′(Rn, C) with
coefficients in Cb

Constant coefficients
differential polynomial on
D ′(Rn), S ′(Rn)

Sikorskiı̆ [88, 89]

Unitary representation of a locally
compact group

Irreducible unitary
representation

Nishimura [74]

Band preserving operator R
∧-linear function on Boolean

valued reals
Kusraev [46]

Derivation on a universally
complete f -algebra over C

Derivation on the complex
plane

Kusraev [47]

Cone B-summing operator Cone absolutely summing
operator

Kusraev [49]

Weighted conditional expectation
type operator

Weighted conditional
expectation operator

Kusraev, Kutateladze
[58]

aSee Example 2 in § 3
bD ′(Rn, C) (resp. S ′(Rn, C)) is the space of all piecewise bounded operators from D(Rn) (resp.
S (Rn) to C), where C := C↓ = R ⊕ iR is a complex universally complete vector lattice, see
Corollary 2
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6 Problems and Solutions

Boolean valued analysis sheds new light on some old problems and generates a large
number of new ones. We now give a small list of problems that arose independently
of the theory of Boolean valued models, but which were solved by means of Boolean
valued analysis. Details as well as many other aspects of Boolean valued analysis
may be found in the books [10, 21, 56–58, 92] and the survey papers [23, 34, 61]
(Table 3).

Table 3 Problems and solutions

Problem Stems from Reduced to (by means
of BA)

Solved

Intrinsic
characterization of
subdifferentials

Kutateladze [63] Weakly compact
convex sets of
functionals

Kusraev and
Kutateladze [55]

General disintegration
in Kantorovich spaces

Ioffe, Levin [28];
Neumann [72]

Hahn–Banach and
Radon–Nikodým
theorems

Kusraev [40]

Kaplansky Problem:
Homogeneity of a type
I AW ∗-algebra

Kaplansky [38] Homogeneity of
End(H) with H a
Hilbert space

Ozawa [80]

The trace problem for
finite AW ∗-algebra

Kaplansky [37] The trace problem for
a W ∗-factor

Ozawa [82, 83]

Wickstead problem:
Order boundedness of
all band preserving
operators

Wickstead [105] Solvability of Cauchy
type functional
equations

Gutman [26] and
Kusraev [47]

Maharam extension of
a positive operator

Luxemburg and
Schep [69]

Daniel extension of an
elementary integral

Akilov, Kolesnikov,
and Kusraev [2, 3]

Goodearl problem 18
in [12]

Goodearl [12] Theorem 12.16 in [12] Chupin [9]

B-Atomic
decomposition of
vector measures (into
a sum of spectral
measures)

Hoffman-Jørgenson
[27]

Hammer–Sobczyc
decomposition
theorem

Kusraev and
Malyugin [62]

Classification of
AJW -algebrasa

Topping [100] Classification of
predual JB-factors
(JBW -factors)

Kusraev [52, 53]

Description of
operators T with |T | a
sum of two lattice
homomorphisms

Grothendieck [25] Description of
functionals with the
same property

Kutateladze [66]

Classification of
injective Banach
lattices

Cartwright[8] and
Lotz [68]

Classification of
AL-spaces (L1 spaces)

Kusraev [52, 53]

aAn AJW -algebra is a JB-algebra with a Jordan counterpart of Baire condition (= annihilators
are generated by projections), see [5]. For some related results, see [44, 48]
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Approximation Properties of Vallée
Poussin Means for Special Series of
Ultraspherical Jacobi Polynomials

M. G. Magomed-Kasumov

Abstract It is shown that the approximation rate of continuous functions by Vallée
Poussin means V α

n,m(f ) of special series partial sums (α is a parameter in special

series construction) is of the order of the best approximation provided 1
2 < α < 3

2 ,
m . n.

Keywords Jacobi polynomials · Special (sticking) series of ultraspherical
polynomials · Approximation properties · Vallée Poussin means
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1 Main Result

Let μα(x) = (1 − x2)α be a weight with α > 0 and let {P̂ α
n (x), n = 0, 1, . . .} be a

system of polynomials (with positive leading coefficients) orthonormal with respect
to the inner product

1∫

−1

μα(x)P̂ α
n (x)P̂ α

k (x)dx = δnk. (1.1)

The polynomials P̂ α
n (x) are called the orthonormal Jacobi polynomials. We will

also use standardized Jacobi polynomials P α
n (x) that differ from orthonormal ones

by constant and are normed by the condition P α
n (1) = (

n+α
n

)
.
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The special series is defined for functions f (x) ∈ C[−1, 1] as follows:

f (x) ∼ l(f )(x)+ (1− x2)

∞∑
k=0

cα
k (F )P̂ α

k (x), α > 0, (1.2)

where l(f )(x) is a straight line connecting points of function f (x) at the segment
[−1, 1] ends, that is,

l(f )(x) = f (−1)+ f (1)

2
+ f (1)− f (−1)

2
x,

F (x) = f (x)−l(f )(x)

1−x2 and cα
k (F ) is a Fourier–Jacobi coefficient of function F :

cα
k (F ) =

1∫

−1

(
f (t)− l(f )(t)

)
(1− t2)α−1P̂ α

k (t)dt. (1.3)

The partial sums of the special series (1.2) we will denote as

σα
n (f, x) = l(f )(x)+ (1− x)2

n−2∑
k=0

cα
k (F )P̂ α

k (x). (1.4)

Special series was introduced in the article [1] as a generalization of limit
ultraspherical series [2]. In [1] approximation properties of partial sums σα

n (f ) were
investigated. In particular, it was shown that

|f (x)−σα
n (f, x)| ≤ c(α)En(f )

(
1+ln(1+n

√
1− x2)

)
,

1

2
≤ α <

3

2
, f ∈ C[−1, 1],

where En(f ) is the best approximation of a function f by algebraic polynomials pn

of degree n:

En(f ) = inf
pn

max
x∈[−1,1] |f (x)− Pn(x)|.

In [3] approximation properties of Vallée Poussin means

V α
n,m(f ) = V α

n,m(f, x) = 1

m+ 1
[σα

n (f, x)+ · · · + σα
n+m(f, x)] (1.5)

for special series were studied in the case when α = 1
2 and n ≤ qm, where q is an

arbitrary positive fixed number, and the following estimate was obtained:

|f (x)− V
1
2

n,m(f, x)| ≤ c(q)En(f ), f ∈ C[−1, 1].
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Here and elsewhere, c(α) and c(β) are positive numbers (or positive constants) the
dependence only on the given parameters, which, in general, may be different in
different places.

In this paper the above mentioned result is extended to the case 1
2 < α < 3

2
provided n . m (i. e. c1m ≤ n ≤ c2m).

Theorem 1.1 The following estimate of the remainder is valid when the functions
f ∈ C[−1, 1] are approximated by Vallée Poussin means V α

n,m(f, x):

|f (x)− V α
n,m(f, x)| ≤ c(α)En(f ), n . m,

1

2
< α <

3

2
.

2 Proof of the Main Result

The following expression can be obtained for partial sums (1.4) using formula (1.3):

σα
n (f, x) = l(f )(x)+(1−x2)

1∫

−1

[
f (t)−l(f )(t)

]
(1−t2)α−1Kα

n−2(x, t)dt, (2.1)

where

Kα
n(x, t) =

n∑
k=0

P̂ α
k (x)P̂ α

k (t)dt.

From the Vallée Poussin means definition (1.5) and (2.1) we derive equality:

V α
n,m(f, x) = l(f )(x)+ (1− x2)

1∫

−1

(
f (t)− l(f )(t)

)
(1− t2)α−1Kα

n−2,m(x, t)dt,

where

Kα
n,m(x, t) = 1

m+ 1

n+m∑
k=n

Kα
k (x, t).

Let Hn be a space of algebraic polynomials with degree at most n. Note that
since the operators σα

n (f, x) leave the polynomials pn ∈ Hn invariant [1, p. 1042],
the Vallée Poussin means (1.5) have a similar property:

V α
n,m(pn, x) = pn(x), pn ∈ Hn.
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Let H±
n (f ) be a subset of Hn containing only those polynomials that coincide with

the function f (x) at the endpoints of the segment [−1, 1]. Let E±
n (f ) be the best

approximation of a function f (x) ∈ C[−1, 1] by polynomials pn from H±
n (f ) [1,

p. 1042]. If p∗n(x) is the best approximation polynomial for a function f by the set
H±

n (f ), then

|f (x)− V α
n,m(f, x)| ≤ E±

n (f )+ |V α
n,m(f − p∗n)| ≤ E±

n (f )
(

1+�α
n,m(x)

)
,

where

�α
n,m(x) = (1− x2)

∫ 1

−1
(1− t2)α−1

∣∣∣Kα
n−2,m(x, t)

∣∣∣dt (2.2)

is a Lebesgue function of Vallée Poussin means for partial sums of special series of
ultraspherical Jacobi polynomials.

The following will be proved in Sect. 4..

Theorem 2.1 If n . m, then

�α
n,m(x) ≤ c(α),

1

2
< α <

3

2
, −1 ≤ x ≤ 1. (2.3)

Since E±
n (f ) ≤ 2En(f ) [1, p. 1055], Theorem 1.1 follows from Theorem 2.1.

In the next section we give some properties and statements that will be used in the
proof of Theorem 2.1.

3 Auxiliary Information

For convenience of reference we will give here some properties of Jacobi polyno-
mials that can be found, for example, in [4].

1. Relation between orthonormal and standardized polynomials:

P̂ α,β
n (x) =

√
n!(α + β + 2n+ 1)�(α + β + n+ 1)

2α+β+1�(α + n+ 1)�(β + n+ 1)
P α,β

n (x). (3.1)

In particular, it follows from (3.1) that

P̂ α,β
n (x) . √

nP α,β
n (x). (3.2)

2. Symmetry:

P̂ α
n (−x) = (−1)nP̂ α

n (x). (3.3)
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3. Weighted estimate (−1 < x < 1, α, β ≥ −1/2):

|P̂ α,β
n (x)| ≤ c(α)

(√
1− x

)−α− 1
2
(√

1+ x
)−β− 1

2
. (3.4)

4. Uniform estimate (−1 ≤ x ≤ 1, max{α, β} ≥ −1/2):

|P̂ α,β
n (x)| ≤ nmax{α,β}+ 1

2 . (3.5)

5. The Cristoffel–Darboux formula:

K
α,β

k (x, t) =
k∑

j=0

P̂
α,β

j (x)P̂
α,β

j (t) =

√
λn+1

P̂
α,β

k+1(x)P̂
α,β
k (t)− P̂

α,β
k (x)P̂

α,β

k+1(t)

x − t
,
√

λn+1 ≤ 1.

Using the recurrence formula for Jacobi polynomials we can derive from the
latter the following equality [1, p. 1043]:

Kα
k (x, t) = 2−2α−1�(n+ 2)�(n+ 2α + 2)

(n+ 1)(�(n+ α + 1))2 ×

(1− t)P
α+1,α
k (t)P

α,α
k (x)− (1− x)P

α+1,α
k (x)P

α,α
k (t)

x − t
.

Applying (3.2) and (3.4) to the last equation and taking into account Gamma-
function properties yields the following estimate for −1 < x, t < 1 [1, p. 1043]:

|Kα
k (x, t)| ≤ c(α)

|x − t| (1− t2)−
α
2− 1

4 (1− x2)−
α
2− 1

4

(
(1− t2)

1
2 + (1− x2)

1
2

)
.

Since the right-hand side is independent on k, the same estimate is valid for
Kα

n,m(x, y):

|Kα
n,m(x, t)| ≤ c(α)

|x − t| (1− t2)−
α
2− 1

4 (1− x2)−
α
2− 1

4

(
(1− t2)

1
2 + (1− x2)

1
2

)
.

(3.6)

We also need the following statements, the proof of which can be found in [5].
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Lemma 3.1 The representation Kα
m,n(x, t) = ∑6

ν=0 Sν(x, t) holds with

S1(x, t) = 1

(x − t)(m+ 1)

n+m∑
k=n

h1
kP

α,α
k+1(x)P

α,α
k (t),

S2(x, t) = 1

(x − t)(m+ 1)

n+m∑
k=n

h2
kP

α,α
k (x)P

α,α
k+1(t),

S3(x, t) = 1

(x − t)(m+ 1)

n+m∑
k=n

h3
kP

α,α
k (x)P

α,α
k (t),

S4(x, t) = 1

(x − t)(m+ 1)

n+m∑
k=n

h4
kP

α,α
k+1(x)P

α,α
k+1(t),

S5(x, t) = (1− x)(1 + t)

(x − t)(m+ 1)

n+m∑
k=n

δkP
α+1,α
k (x)P

α,α+1
k (t),

S6(x, t) = − (n+m+ α + 2)P
α,α
n+m+1(x)P

α,α
n+m+1(t)− (n+ α + 1)P

α,α
n (x)P

α,α
n (t)

22α+1(m+ 1)(x − t)
,

where hi
k = O(1), δk = O(1), k →∞.

Lemma 3.2 Equality S0(x, t) =
5∑

ν=1
S0

ν (x, t) holds, where

S0
1 (x, t) = (1− x)2(1 + t)

22α+1(m+ 1)(x − t)2×

[(n+m+ 2+ 2α)P
α+2,α
n+m (x)P

α,α+1
n+m (t)− (n+ 1+ 2α)P

α+2,α
n−1 (x)P

α,α+1
n−1 (t)],

S0
2 (x, t) = − (1− x)(1 − t)(1 + t)

22α+1(m+ 1)(x − t)2
×

[(n+m+ 2+ 2α)P
α+1,α+1
n+m (t)P

α+1,α
n+m (x) − (n+ 1+ 2α)P

α+1,α+1
n−1 (t)P

α+1,α
n−1 (x)],

S0
3 (x, t) = (1 − x)(1 + t)

22α+1(m+ 1)(x − t)2×
[ n+m+ 2+ 2α

2(n+m+ 1) + 2α + 1
P

α+1,α
n+m (x)P

α,α+1
n+m (t)− n+ 1+ 2α

2n+ 2α + 1
P

α+1,α
n−1 (x)P

α,α+1
n−1 (t)

]
,

S0
4 (x, t) = (1− x)(1 + t)

22α(m+ 1)(x − t)2

n+m∑
k=n

(2α + 1)(k + α + 1)

(2k + 2α + 3)(2k + 2α + 1)
P

α+1,α
k (x)P

α,α+1
k (t),
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S0
5 (x, t) = (1 − x)(1 + t)

22α+1(m+ 1)(x − t)2
×

n+m∑
k=n

α(α + 1)

2k + 2α + 1
[P α+1,α

k−1 (x)P
α,α+1
k (t)− P

α+1,α
k (x)P

α,α+1
k−1 (t)].

4 Proof of Theorem 2.1

It is easy to see, that �n,m(−x) = �n,m(x) due to the symmetry property (3.3).
Therefore it is sufficient to prove the result in case of 0 ≤ x ≤ 1.

Denote

J b
a (x) = (1− x2)

∫ b

a

(1− t2)α−1
∣∣Kα

n,m(x, t)
∣∣dt (4.1)

and represent the Lebesgue function (2.2) in the following form:

�α
n+2,m(x) = J

−1/2
−1 (x)+ J 1−1/2(x). (4.2)

We show first that

J
−1/2
−1 (x) ≤ c(α)(1− x)

3
4− α

2 ≤ c(α). (4.3)

Indeed, applying the Christoffel–Darboux formula, we get

J
−1/2
−1 (x) ≤ (1− x2)×

∫ −1/2

−1

(1− t2)α−1

(m+ 1)|x − t|
n+m∑
k=n

(
|P̂ α

k+1(x)||P̂ α
k (t)| + |P̂ α

k (x)||P̂ α
k+1(t)|

)
dt.

From here using weighted estimate (3.4) and taking into account that |x − t| ≥ 1/2
we deduce the inequality

J
−1/2
−1 (x) ≤ c(α)(1− x2)

3
4− α

2

∫ −1/2

−1
(1− t2)

α
2− 5

4 dt,

which yields the required estimate (4.3) provided 1
2 < α < 3

2 .
Further, we show that under our assumptions the following estimate holds:

J 1−1/2(x) ≤ c(α). (4.4)
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To this end consider two cases:

0 ≤ x ≤ 1− c2

(m+ n)2 , (4.5)

1− c2

(m+ n)2
≤ x ≤ 1, (4.6)

where c > 1.

4.1 The Case 0 ≤ x ≤ 1 − c2

(m+n)2

Break the expression J 1−1/2(x) as follows:

J 1−1/2(x) = J
x−m+1

m+n

√
1−x

−1/2 (x)+ J
x− 1

m+n

√
1−x

x−m+1
m+n

√
1−x

(x)+

J
x+ 1

m+n

√
1−x

x− 1
m+n

√
1−x

(x)+ J
x+m+1

m+n

√
1−x

x+ 1
m+n

√
1−x

(x)+ J 1
x+m+1

m+n

√
1−x

(x). (4.7)

It should be noted, that for some values of the parameters in the given partition one
or another term may be absent. In particular, we will assume that J b

a (x) = 0 if a ≥ b

and J b
a (x) = J 1

a (x) if b ≥ 1.
The boundedness of the right-hand side terms of the equality (4.7) is proved in

the following Sects. 4.1.1–4.1.4.

4.1.1 Estimation of J
x− m+1

m+n

√
1−x

−1/2 (x)

Applying (3.6) and taking into account that 0 ≤ x < 1, −1/2 ≤ t ≤ x, we get

J
x−m+1

m+n

√
1−x

−1/2 (x) ≤ c(α)

∫ x−m+1
m+n

√
1−x

−1/2

[(1− x

1− t

) 3
4− α

2 +
(1− x

1− t

) 5
4− α

2
] dt

x − t
.

Since 1−x
1−t

≤ 1 when t ≤ x, it follows from the obtained inequality that

J
x−m+1

m+n

√
1−x

−1/2 (x) ≤ c(α)

∫ x−m+1
m+n

√
1−x

−1/2

(1− x

1− t

) 3
4− α

2 dt

x − t
= c(α)I. (4.8)
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In order to estimate integral I we make variable substitution τ = 1− 1−x
1−t

:

I = I
2x+1

3
1

1+m+n
m+1

√
1−x

=
∫ 2x+1

3

1
1+m+n

m+1
√

1−x

dτ

τ (1− τ )
α
2+ 1

4

.

The condition 0 ≤ x < 1 implies that the lower bound of integration a =
1

1+m+n
m+1

√
1−x

is inside the segment [0, 1] and upper bound is inside [ 1
3 , 1]. Hence

we can write the following estimate:

I ≤
{

I
1/3
a + I

(2x+1)/3
1/3 , a < 1/3,

I
(2x+1)/3
1/3 , a ≥ 1/3.

(4.9)

So, since

I
1/3
a ≤ c(α)

∫ 1/3

a

dτ

τ
≤ c(α) ln(1+ m+ n

m+ 1

√
1− x),

I
(2x+1)/3
1/3 ≤

∫ (2x+1)/3

1/3

dτ

(1− τ )
α
2+ 1

4

≤ c(α), α <
3

2
,

the inequality J
x−m+1

m+n

√
1−x

−1/2 (x) ≤ c(α) follows from (4.8) and (4.9) provided m . n.

4.1.2 Estimation of J 1
x+ m+1

m+n

√
1−x

(x)

Reasoning similar to that of the previous section, with taking into account the
relations t ≥ x, 1−x

1−t
≥ 1, lead to the inequality

J 1
x+m+1

m+n

√
1−x

(x) ≤ c(α)

∫ 1

x+m+1
m+n

√
1−x

(1− x

1− t

) 5
4− α

2 dt

t − x
= c(α)I. (4.10)

If we make here integration variable substitution τ = 1− 1−t
1−x

then we get

I =
∫ 1

1
m+n
m+1

√
1−x

dτ

τ (1− τ )
5
4− α

2

.

Note that the lower bound of integration a = 1
m+n
m+1

√
1−x

< 1. It follows from the

inequality x + m+1
m+n

√
1− x < 1 which we assume to be true, since otherwise the

indicated term in the partition (4.7) would be absent, as we have already noted.
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Considering as in previous subsection two cases a < a0 and a ≥ a0, where
a0 ∈ (0, 1) is a fixed number, it is easy to show that

I ≤ c(α)
(

1+ ln(1+ m+ n

m+ 1

√
1− x)

)
, α >

1

2
.

Hence, J 1
x+m+1

m+n

√
1−x

(x) ≤ c(α) provided that m . n.

4.1.3 Estimation of J
x+ 1

m+n

√
1−x

x− 1
m+n

√
1−x

(x)

Using weighted estimate (3.4), from (4.1) we get the relation:

J
x+ 1

m+n

√
1−x

x− 1
m+n

√
1−x

(x) ≤ c(α)(1− x)−
α
2+ 3

4 (n+m+ 1)

∫ x+ 1
m+n

√
1−x

x− 1
m+n

√
1−x

(1− t)
α
2− 5

4 dt.

(4.11)

Since under the hypotheses we have α
2 − 5

4 < 0, the integrand can be estimated from

above by (1− x −
√

1−x
m+n

)
α
2− 5

4 . Then from (4.11) we get:

J
x+ 1

m+n

√
1−x

x− 1
m+n

√
1−x

(x) ≤ c(α)(
1− 1

(m+n)
√

1−x

) 5
4− α

2

. (4.12)

But x satisfies condition (4.5), which implies that (m+ n)
√

1− x ≥ c > 1. Hence,

inequality (4.12) yields J
x+ 1

m+n

√
1−x

x− 1
m+n

√
1−x

(x) < c(α).

4.1.4 Estimation of J
x− 1

m+n

√
1−x

x− m+1
m+n

√
1−x

(x) and J
x+ m+1

m+n

√
1−x

x+ 1
m+n

√
1−x

(x)

Let’s begin with an estimation of J
x− 1

m+n

√
1−x

x−m+1
m+n

√
1−x

(x). We apply Lemma 3.1 and

represent the estimated value in the following form:

J
x− 1

m+n

√
1−x

x−m+1
m+n

√
1−x

(x) = (1− x2)

∫ x− 1
m+n

√
1−x

x−m+1
m+n

√
1−x

(1− t2)α−1
∣∣∣

6∑
ν=0

Sν(x, t)

∣∣∣dt ≤
6∑

ν=0

aν,

where aν = (1− x2)
∫ x− 1

m+n

√
1−x

x−m+1
m+n

√
1−x

(1− t2)α−1|Sν(x, t)|dt .
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Using weighted estimate (3.4) with relation (3.2) and inequality
∑n+m

k=n
1
k
≤

ln(1+ m
n

) we obtain for 1 ≤ ν ≤ 4:

aν ≤ c(α)
1√

1− x

ln(1+ m
n

)

m+ 1

∫ x− 1
m+n

√
1−x

x−m+1
m+n

√
1−x

(1− x

1− t

)− α
2+ 5

4 dt

x − t
=

c(α)
1√

1− x

ln(1+ m
n

)

m+ 1
I. (4.13)

After variable substitution τ = 1− 1−x
1−t

the integral I will take a form:

I =
∫ 1

1+m+n
m+1

√
1−x

1
1+(m+n)

√
1−x

dτ

τ (1− τ )
α
2− 1

4

.

If we introduce the notation

Iv
u =

⎧⎨
⎩

∫ v

u
dτ

τ(1−τ )
α
2 − 1

4
, u < v,

0, u ≥ v,

we can write:

I ≤ I
1/2

1
1+(m+n)

√
1−x

+ I 1
1/2. (4.14)

The first term can be estimated as follows:

I
1/2

1
1+(m+n)

√
1−x

≤
∫ 1/2

1
1+(m+n)

√
1−x

dτ

τ
≤ ln(1+ (m+ n)

√
1− x). (4.15)

It can be easily seen that I 1
1/2 < c(α) provided a < 3/2, hence from (4.14)

and (4.15) we get:

I ≤ c(α) ln(1+ (m+ n)
√

1− x), a < 3/2. (4.16)

Using this inequality, the relation ln(1+x) < x and assuming m . n, for 1 ≤ ν ≤ 4
we deduce from (4.13):

aν ≤ c(α)
1√

1− x

ln(1+ m
n

)

m+ 1
ln(1+ (m+ n)

√
1− x) ≤ c(α)(1+ m

n
) ≤ c(α).
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Similarly we can obtain the following estimate for a5:

a5 ≤ c(α)
ln(1+ m

n
)

m+ 1
I ≤ c(α).

To estimate a6 we use again weighted estimate (3.4) with relation (3.2) and apply
inequality (4.16):

a6 ≤ c(α)

(m+ 1)
√

1− x

(n+m+ α + 2

n+m+ 1
+ n+ α + 1

n

)
I ≤ c(α)

(m+ 1)
√

1− x
I ≤ c(α).

We now proceed to the estimation of a0. To do this we use Lemma 3.2 and
represent a0 as follows:

a0 = (1− x2)

∫ x− 1
m+n

√
1−x

x−m+1
m+n

√
1−x

(1− t2)α−1
∣∣∣

5∑
μ=1

S0
μ(x, t)

∣∣∣dt ≤
5∑

μ=1

bμ, (4.17)

where bμ = (1− x2)
∫ x− 1

m+n

√
1−x

x−m+1
m+n

√
1−x

(1− t2)α−1|S0
μ(x, t)|dt .

Applying weighted estimate (3.2) to S0
μ, it can be shown that

b1 ≤ c(α)

√
1− x

m+ 1

∫ x− 1
m+n

√
1−x

x−m+1
m+n

√
1−x

(1− x

1− t

)5/4−α/2 dt

(x − t)2 , (4.18)

b2 ≤ c(α)

√
1− x

m+ 1

∫ x− 1
m+n

√
1−x

x−m+1
m+n

√
1−x

(1− x

1− t

)3/4−α/2 dt

(x − t)2 , (4.19)

bμ ≤ c(α)

(m+ 1)n

∫ x− 1
m+n

√
1−x

x−m+1
m+n

√
1−x

(1− x

1− t

)5/4−α/2 dt

(x − t)2 , 3 ≤ μ ≤ 5. (4.20)

Note that

∫ x− 1
m+n

√
1−x

x−m+1
m+n

√
1−x

dt

(x − t)2 =
1

x − t

∣∣∣x−
1

m+n

√
1−x

x−m+1
m+n

√
1−x

≤ m+ n√
1− x

. (4.21)

Since 1−x
1−t

≤ 1 and
√

1− x ≥ c
(m+n)

(see (4.5)), inequalities (4.18), (4.19), (4.20),
and (4.21) yield the estimations:

bμ ≤ c(α)
m+ n

m+ 1
, 1 ≤ μ ≤ 2, bμ ≤ c(α)

(m+ n)2

(m+ 1)n
, 3 ≤ μ ≤ 5,

from which it follows that bμ ≤ c(α), 1 ≤ μ ≤ 5 provided m . n. Hence, we have
a0 ≤ c(α) due to (4.17).
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Thus, we have shown that aν ≤ c(α), 0 ≤ ν ≤ 6, and, consequently,

J
x− 1

m+n

√
1−x

x−m+1
m+n

√
1−x

(x) ≤ c(α).

The estimate J
x+m+1

m+n

√
1−x

x+ 1
m+n

√
1−x

(x) ≤ c(α) is proved quite similarly.

4.2 The Case 1 − c2

(m+n)2 ≤ x ≤ 1

We represent J 1−1/2(x) in the following form:

J 1−1/2(x) = J
1− 2c2

(m+n)2

−1/2 (x)+ J 1

1− 2c2

(m+n)2

(x). (4.22)

Assuming that 1−x
1−t

≤ 1, we get from (4.1) and (3.6).

J
1− 2c2

(m+n)2

−1/2 (x) ≤ c(α)

∫ 1− 2c2

(m+n)2

−1/2

[(1− x

1− t

)− α
2+ 3

4 +
(1− x

1− t

)− α
2+ 5

4
] dt

x − t
≤

c(α)

∫ 1− 2c2

(m+n)2

−1/2

(1− x

1− t

)− α
2+ 3

4 dt

x − t
= c(α)I.

Variable substitution τ = 1− 1−x
1−t

in integral I gives us:

I =
∫ 2x+1

3

1− (1−x)(m+n)2

2c2

dτ

τ(1− τ )
α
2+ 1

4

.

Condition (4.6) implies that the lower bound of the obtained integral is not less than
1
2 . Therefore, assuming that α < 3

2 we get:

I ≤ 2
∫ 2x+1

3

1
2

dτ

(1− τ )
α
2+ 1

4

≤ c(α).

Thus, the first term in the right-hand side of (4.22) is bounded. Let’s proceed to the
second term.
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We apply uniform estimate (3.5):

J 1

1− 2c2

(m+n)2

(x) ≤ c(α)(1− x)

∫ 1

1− 2c2

(m+n)2

(1− t)α−1dt
1

m+ 1

n+m∑
k=n

k∑
l=0

(l + 1)2α+1 ≤

c(α)(1− x)
1

(n+m)2α
(n+m)2α+2 = c(α)(1− x)(n+m)2. (4.23)

It follows from condition (4.6) that (1 − x)(n + m)2 ≤ c. Consequently,
inequality (4.23) yields the boundedness of the second term in (4.22).

The proof of Theorem 2.1 is complete.
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Laplace’s Integrals and Stability
of the Open Flows of Inviscid
Incompressible Fluid
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Abstract In this article, we study the spectra of the boundary value problems
which arise from linearizing the Euler equations of incompressible hydrodynamics
near a stationary solution describing a steady flow through a given domain, in
the case when the fluid enters the domain and leave it through some parts of the
boundary. It’s natural to call such flows as open. The spectra of the open flows
are not widely studied compared to the classical case of the fully impermeable
boundaries. Moreover, the methods widely used for the latter fail to cover the
former. We propose a new reduction of finding the eigenmodes of an open flow to
finding ‘zeroes’ of an entire operator-valued function which is a kind of Laplace’s
integral. Here, by zeroes, we mean the values of the complex variable which
deliver degenerations to the mentioned integral. Correspondingly, studying the flow
stability reduces itself to Routh–Hurwitz problem for this integral. For several
particular flows, this problem is solved explicitly with the use of the Polia theorem
on the zeroes of the Laplace integral. As a result, we prove the stability of spectra
for several concrete flows for which were unknown with such proofs before.
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1 Introduction

Let Q = Q(x) be a smooth real vector field defined in some domain of an
Euclidian space, which is finite-dimensional, to begin with. Assume there exists an
equilibrium y : Q(y) = 0. The linear equation governing the small perturbations
of such an equilibrium reads as ż = Q′(y)z, where Q′(y) stands for the differential
of vector field Q at the equilibrium. Each eigenvalue λ of operator Q′(y) gives rise
to an eigenmode of the small perturbations that has the form z(t) = eλtb, where
b denotes the eigenvector of operator Q′(y) which corresponds to eigenvalue λ.
The classical linearization principle of Liapunov’s stability theory asserts that the
equilibrium is asymptotically stable provided that all of its eigenvalues belong to
semi-plane Reλ < 0, and it is unstable if at least one of the eigenvalues belongs to
semi-plane Reλ > 0.

The applications lead us to the study of the smooth families of vector fields
depending on some physical parameters. Then the equilibria also form families,
which, however, can be non-smooth somewhere due to the bifurcation points.
Assume, nevertheless, that the family of equilibria is being observed is smooth in the
vicinity of certain point in the space of parameters. Consider a smooth path passing
through this point in the space of the parameters, and let the parameters change
themselves along it together with the equilibrium and with its spectrum. Such an
altering can lead to transversal intersecting of the imaginary axis by some branches
of the eigenvalues. It is what is called the occurrence of instability. For the 1-
parametric families of the vector fields, there are two generic ways of occurring the
instability of equilibria. Namely, either two branches of simple complex eigenvalues
intersect the imaginary axis at two conjugated points or a single branch of simple
real eigenvalues intersects the imaginary axis at the origin. The former instability is
called oscillatory while the latter is called monotone.

The occurrences of instability indicate the local bifurcations of the equilibria
family, which, in turn, reveal themselves by qualitative changes in the non-linear
dynamics governed by equation ẏ = Q(y).

If there are no additional degenerations, branching the equilibria family itself
accompanies the monotone instability and branching off the limit cycle from the
family accompanies the oscillatory instability (Poincare–Andronov–Hopf bifurca-
tion), and more complex bifurcations occur in the case of additional degeneracy,
e.g. when the neutral spectrum is multiple. For more information on this subject, a
reader could refer to monographs [1, 2, 5].

Considering the evolutional PDEs as infinite-dimensional ODEs is the common
practice in mathematical physics and, in particular, in the continuum mechanics. For
instance, one can treat a steady fluid flow as an equilibrium of the ODE associated to
the Navier–Stokes equation, etc. In many respects, the above assertions remain valid
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in the infinite dimensions even for the vector fields associated with PDEs [3, 4]. For
many important PDEs, one can reduce the study of local bifurcations to the finite
dimensions using the central manifold technique [5].

The spectra of the steady flows of an inviscid incompressible fluid stands as the
classical subject of studies. A reader can find a summary of the classical results and
modern advances in [6, 7] and can also follow the references provided therein. Since
the inviscid fluid with impermeable boundary represents a Hamiltonian system [8]
and the steady flows stand as the equilibria of it, their spectra is symmetrically
relative to the imaginary axis. Also, they include both the continuous and point-wise
components. At that, the former is always non-empty and can be unstable while the
latter can be empty. The situation is very different upon considering the confined
inviscid incompressible flows with pumping and withdrawing the fluid through the
flow boundary. We name such call flows open. Although the spectral properties of
the open flows are not so well known as those which associated with the case of the
empty or fully impermeable boundaries, from what we have learned to the date, it
follows that the spectrum of an open flow can be empty or fully point-wise. Also,
it can belong to the open left complex semi-plane except for a finite number of the
eigenvalues or even in full [9, 10].

In the present article, we discover new classes of inviscid open flows the spectra
of which belongs to the left complex semi-plane. Proofs of these spectral properties
were unknown earlier despite the simplicity of the flows. Here we mean the proofs
in a rigorous sense not relying on certain issues such as the numeric computations
and etc. We treat the mentioned examples uniformly using the rather general
novel reduction of the spectral problem to finding the ‘zeroes’ of an ‘operator-
valued Laplace’s integral’. Here, by zeroes, we mean the values of the complex
variable which deliver degenerations to the mentioned integral. Correspondingly,
examining the stability of eigenmodes brings us at the Routh–Hurwitz problem for
the operator-valued Laplace’s integral. In concrete examples, this integral often acts
as a multiplicative transformation of the Fourier series, and then we arrive at the
Routh–Hurwitz problem for the scalar Laplace’s integral. Although this problem is
solved in general [11], applying the general solution to the concrete problems is
often not easy. Fortunately, the sufficient conditions known as Polia theorem [12] is
enough for our purposes.

As we have mentioned, the spectra of the inviscid open flows had been studied
earlier in [9, 10]. However, the flows examined here are not consistent with boundary
conditions imposed there, while the methods employed there fail for the topology
of the flow domain and boundary conditions considered here.

2 Formulation of the Initial-Boundary Value Problems

The Euler equations governing the inviscid incompressible homogeneous fluid flows
read as

vt + ω × v = −∇H ; H = P + v2/2 curl v = ω; div v = 0. (2.1)
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Here, the unknowns are the vector field of the flow velocity denoted as v and the
scalar field of pressure denoted as P . They have to be determined at every instant of
time at every point of the flow domain that we denote as D. We consider a specified
and non-variable domain D ⊂ R

3 (or D ⊂ R
2), and we assume it to be at least

piece-wisely smooth. The quantity denoted as H is called the Bernoulli function.
Note that the pressure as well as the Bernoulli function is defined up to a constant.
The equation of motion written in (2.1) is known as the Lamb form of the Euler
equation. The equivalent form is

vt + (v,∇)v = −∇P, (2.2)

where(v,∇) stands for the covariant derivative along field v induced by a standard
Riemann metric on R

3 or on R
2. In the Cartesian coordinates xi , ((v,∇)v)i =

vjvixj , where repeating subscript indexes presumes summation. The equivalence of
Eqs. (2.2) and (2.1) follows from the identity

ω × v+∇v2/2 = (v,∇)v.

Let S = ∂D and let n be the exterior normal unit on S. For every t there is a
partition S = S+(t) ∪ S−(t) ∪ S0(t) (up to the set of the zero n − 1-dimensional
measure), where S+(t) = {x ∈ S : v(x, t) · n < 0} is the flow inlet, S−(t) = {x ∈
S : v(x, t) · n > 0} is the flow outlet, and S0(t) = {x ∈ S : v(x, t) · n = 0} is
impermeable wall. By definition, the inlet and outlet are not empty for every open
flow.

Let function γ defined on S be specified, and let

∫

S

γ ds = 0.

Let us impose boundary condition

v · n = γ (x, t), t � 0. (2.3)

Specifying the normal velocity determines the inlet, outlet and impermeable wall. If
γ ≡ 0 and S0 = S for every t then adding the initial condition leads to the correct
initial-boundary value problem, which is a subject of numerous research articles,
e.g. see monograph [13] and the references therein.

Setting boundary condition (2.3) where γ �≡ 0 brings us at the open flows. At
that, however, a correct formulation of the initial-boundary value problem requires
an additional boundary condition. It is not an easy issue. Likely, one should always
impose the extra boundary conditions at the inlet, and there are more than one way
to do so. For instance, one can specify the tangential vorticity:

n× (ω − ω+) = 0 on S+, (2.4)
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The results on this boundary condition trace back to Yudovich [14] who considered
the 2D problem. In two dimensions, v = ue1 + ve2, and rot v = ωe3, where
ω = vx2 − ux1 , and ei , i = 1, 2, 3 is the cartesian frame such that the flow is
invariant to translations along e3. Then condition (2.4) takes the form ω − ω+ = 0
on S+, where ω+ stands for a given scalar function. For such a boundary condition,
Yudovich proved the global existence of the classical solution to the 2D problem
provided that the problem data possess certain regularity. In addition to the natural
smoothness and consistency of the data, he assumed that the flow inlet, outlet and
impermeable wall are unions of connected components of the boundary. Succeeding
authors had gradually got rid of these restrictions [15, 16]. Extending the Yudovich
boundary condition to the 3D flows is due to Kazhikhov [17]. Also, he discovered
an alternative extra boundary condition that reads as

n× (v− v+) = 0 on S+. (2.5)

In other words, in (2.4), the tangential vorticity can be replaced by the tangential
velocity [18]. Note in passing, that neither the global solvability nor the collapses
are known for the Kazhikhov formulation even in two dimensions.1

The Kazhikhov problem arises from the consideration of the vanishing viscosity
limit for the Navier–Stokes system provided that the boundary conditions specify
the flow velocity both on the inlet and on the outlet [19, 20]. Such boundary
conditions describe the pumping/withdrawal of the fluid through the porous walls in
the leading approximation [21].

3 The Liapunov Functionals

Let W : Y → R be a functional on the phase space of some dynamical system
St : Y → Y, t � 0. For a fixed x ∈ Y, define a scalar function wx(t) = W(St x).
Strictly monotone-decreasing (increasing) function wx for every x belonging to
a sufficiently representative set should be seen as an essential manifestation of
the non-conservatism of system St . We call in an informal way the functionals
possessing such property as the Liapunov functionals (for classical theory, see [22]).
Let us consider several simple examples of boundary conditions under which the
inviscid open flows possess the Liapunov functionals.

Consider the Yudovich problem for the planar flows. We recall that we identify
the values of curl with scalars for the 2D vector fields. Let γ �≡ 0 be defined
arbitrarily and ω+ = � ≡ const. Let f = f (r) > 0 for r �= 0, f (0) = 0.

1In three dimensions, the same problem arises irrespective of the boundary conditions and persists
even for the flows on the smooth closed manifolds.
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Then

d

dt

∫

D

f (ω −�) dx = −
∫

S−
f (ω −�)γ ds � 0.

Consequently, in the case of ω+ = const, the Yudovich problem admits a great
family of the positive decreasing Liapunov functionals

ω �→
∫

D

f (ω −�) dx, ω = curl v, (3.1)

where f acts as the family parameter. The expression for the derivative of func-
tional (3.1) follows from the so-called vorticity equation that arises upon applying
curl to the Euler equation (2.1). In effect, the Liapunov functionals allied to (3.1)
exists under the Yudovich boundary conditions for much wider classes of boundary
data [9, 10].

Consider now the Yudovich problem in a multiply connected domain. Assume
that the flow inlet includes a connected component of the boundary denoted as c.
Define functional

v �→
∮

c

v · dx. (3.2)

Integrating equation (2.1) across c brings us at the following identity

d

dt

∮

c

v · dx = −
∫

c

ω+γ ds. (3.3)

Thus, the system admits the Liapunov functional (3.2), that grows linearly provided
that the right-hand side of equality (3.3) does not depend on time and not equal to
zero. If ω+ = � ≡ const �= 0 and γ does not depend on time then the system admits
both the growing functional (3.2) and the decreasing positive functional (3.1). In the
case of such coexistence, the Yudovich problem allows an asymptotic for t →+∞,
the leading term of which describes an accelerating purely circulational flow placed
upon the flow with constant vorticity [23].

Now let us pass to the Kazhikhov problem. Let � and U be constant vectors.
Define a vector field V = �× x + U . Let v be solution to the Kazhikhov problem
arising for γ = V · n and v+ = V in boundary conditions (2.3) and (2.5). Then

d

dt

∫

D

(v− V )2 dx = −
∫

S−
γ (v− V )2 dS � 0.
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Deriving these assertions becomes absolutely transparent upon using the form of
Euler equations given in (2.2). Thus, we get the Kazhikhov problem possessing the
decreasing Liapunov functional defined as

v �→
∫

D

(v− V )2 dx. (3.4)

For the Yudovich problem, the Liapunov functionals (3.1) under certain additional
conditions imply the asymptotic stability of the steady flow with curlv = � = const,
and this result can be generalized to the wider classes of steady vortex flows,
see [9] and references in [10]. Under the Kazhikhov boundary conditions, despite
the decreasing positive Liapunov functional (3.4), it is not clear whether the flow
V possesses the asymptotic stability. Note in passing, that this is true for every
positive value of the fluid viscosity. Such conclusion follows from the Navier–
Stokes equations endowed with boundary condition v = V on S. However, the
decay rate of the perturbations tends to zero together with the fluid viscosity.

4 Elementary and Instructive Example

Let � ∈ R, D = {(x, y), 0 < x < 1}, and ex (ey) denote the unit vector field
parallel to Ox−axis (Oy−axis). In domain D, consider the Kazhikhov problem the
boundary conditions of which are as follows

v|x=0 = ex + �ey, v · ex |x=1 = 1, (4.1)

and all the solutions have to be 2	-periodic in variable y. Thus, S+ = {x = 0},
S− = {x = 1}, S0 = ∅.

Under the boundary conditions formulated in (4.1), there exist a steady flow
defined as V = ex + �ey , H = const. For this flow, the eigenvalue problem
determining the eigenmodes of the small perturbations reads as

λu− �ω = −hx, λv + ω = −hy (4.2)

vx − uy = ω, ux + vy = 0, (4.3)

u|x=0 = v|x=0 = 0, u|x=1 = 0. (4.4)

Here, u, v, h denote the unknown functions. At that, vector field (u, v) stands for the
velocity perturbation while h stands for the perturbation of the Bernoulli function.

Eliminating the unknown h from Eq. (4.2) leads us to the equation

λω + ωx + �ωy = 0.
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The solution to it has the form ω = ω+(y − �x)e−λx , where function ω+
is still undefined. Replacing ω by the obtained solution in the second equation
in (4.2), equating x = 0 and using the boundary condition (4.4) yields the equality
ω+ = −hy(0, y). Now let us turn to reconstructing the velocity. For this purpose,
we introduce the stream function ψ = ψ(x, y), then we resolve the second equation
in (4.3) by setting u = ψy , v = −ψx . As a result, the first equation in (4.3) takes
the form

−�ψ = ω = −e−λxχy(y − �x), (x, y) ∈ D, (4.5)

where χ(y) = h(0, y) is an unknown 2	−periodic function. We supply Eq. (4.5)
with the condition requiring 2	−periodicity in variable y and boundary conditions

ψx |x=0 = 0, ψ|x=1 = 0. (4.6)

Let G : ω �→ ψ be the Green operator for the described boundary value problem.
Then

ψ = −GeλS�x∂yχ

where eλ(z) = eλz and (Shf )(z) = f (z + h). The boundary conditions (4.6) are
equivalent to the second and third boundary conditions in (4.4). Satisfying the first
boundary condition in (4.4) brings us at an equation

∂y |x=0(GeλS�x∂yχ) = 0.

We define

K(λ) : χ �→ ∂y |x=0GeλS�x∂yχ.

Every χ ∈ ker K(λ) gives rise to an eigenmode

u = −∂yGeλS�x∂yχ, v = ∂xGeλS�x∂yχ h(x, y) = χ(y)+
x∫

0

(�ω − λu)(y, s)ds.

The Fourier decomposition allows us to express K(λ) explicitly. It acts as a
multiplicative transform; namely, the multipliers has the form

κβ(z) = −β2

1∫

0

gβ(0, ξ)e−zξ dξ, β ∈ αZ \ {0}, α = π

	
, z = λ+ iβ�
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where gβ stands for the Green kernel of the problem

−w′′(y)+ β2w = f (y), y ∈ (0, 1) w′(0) = w(1) = 0.

Kernel gβ reads as

gβ(x, ξ) = 1

|β| ch β

{
sh |β|(1− ξ) ch βx, x < ξ

sh |β|(1− x) ch βξ, x > ξ.

Hence,

κβ(z) = |β|e−λ

ch β

1∫

0

sh(|β|τ )ezτ dτ, β ∈ αZ \ {0}, α = π

	
. (4.7)

Each zero of function κβ on the plane of the complex variable z corresponds to
eigenvalue λ = z− iβ�. Evidently, the real part of every zero of function κβ on the
z-plane is equal to the real part of eigenvalue λ = z − iβ�. However, the former,
and, therefore, the latter belong to the open left z−semiplane for every β ∈ αZ\ {0}
by Polia’s theorem.

Remark 1 The conclusion we are about to make matches the existence of the
Liapunov functional. Note that the latter circumstance itself implies only locating
the eigenvalues inside the closed left semi-plane.

Remark 2 Let L̃2 denote the space of square-summable 2	−periodic functions
vanishing on average. Then correspondence λ �→ K(λ) : L̃2 → L̃2 determines
the operator-valued entire function on the λ−plane.

Remark 3 Consider now the Yudovich problem in the same strip D with boundary
conditions

v · ex |x=0 = 1, v · ex |x=1 = 1, ω|x=0 = 0.

Again, there exists a steady solution V = ex + �ey , but this time with arbitrary
� ∈ R. Hence, the steady solution is not isolated. For every steady flow of that kind,
we have the spectral problem consisting of Eqs. (4.2), (4.3) and boundary conditions

u|x=0 = 0, u|x=1 = 0, vx − uy |x=0 = 0.

Under such boundary conditions, there exists only one eigenvalue λ = 0, and the
corresponding eigenvectors has the form u = 0, v = const, h = 0.

Henceforth, we focus ourselves on the Kazhikhov problem and extend the
analysis of the above example to more general flows.
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5 Lagrangian Coordinates: Non-Separated Flows

For describing the motion of the material particles of a fluid flow, consider the
Cauchy problem

∂sX = v(X, s); X|s=t = x ∈ D, t > 0, (5.1)

where v = v(x, t) stands for the flow velocity defined in a given domain, which we
denote as D. D is. Let v ∈ C1(D × {t > 0}). There exist τ1 = τ1(x, t) ∈ (0, t)

è τ2 = τ2(x, t) > t , such that solution X = X(s, x, t) to problem (5.1) is well-
defined for s ∈ (τ1(x, t), τ2(x, t)). Mapping s �→ X(s, x, t) parameterizes the path
of the material particle which the fluid flow brings at point x to the time moment t .
Every such path is a characteristic of the Euler equations. Hence the inlet and outlet
are the non-characteristic parts of the boundary while the impermeable part is the
characteristic part.

Consider the evolutional family X induced by a stationary flow V = V (x) ∈
C1(D̄).

Definition 1 We call vector field V as non-separated in D ∪ S if there exists a
function t+ positive and bounded in D ∪ S and such that

∀ x ∈ D ∪ S X(max(t − t+(x), 0), x, max(t, t+(x))) ∈ S+. (5.2)

Note that this time the Cauchy problem (5.1) is time-independent. Consequently,

a+(x)
def= X(max(t − t+(x), 0), x, max(t, t+(x))) = X(0, x, t+(x)).

For every t > t+(x), mapping s �→ X(s, x, t), s ∈ (t − t+(x), t) parameterizes
the same segment 	x of the trajectory of the field V . This segment connects point
x to a+(x) ∈ S+. The trajectories of the field V are called streamlines. Mapping
x �→ a+(x) is nothing else then the projection of D∪S → S+ along the streamlines.

Remark 4 For every non-separated flow,

t∗ = sup
D

t+ < ∞.

Hence, during time t∗, every such flow renews in full the material particles of which
it consists. In particular, for t > t∗ the flow consists of the particles which have
entered the flow domain afterwards the initial time moment, and they have forced
out all the particles initially constituted the flow.

Example 1 Let D = {(x, y) : 0 < x < 1}. Choose function U ∈ C1(R), and define
vector field V : (x, y) �→ (U(y), 0). Field V is the steady solution to the Euler
equations. The corresponding flow is called as shear flow. Let U(y) > 0 ∀ y ∈ R.
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Then S+ = {x = 0}, S− = {x = 1}, S0 = ∅,

X(s, x, y, t) = (x − (t − s)U(y), y), t+(x, y) = x/U(y), a+(x, y) = (0, y).

The shear flow is non-separated provided that infR U(y) > 0. At that, sup t+ =
t∗ = supR U−1(y).

6 Harmonic Flows and Operator-Valued Laplace’s Integral

Definition 2 We call vector field V ∈ C1(D) harmonic if curl V = 0 and div V =
0 in D.

In a sufficiently regular domain, the harmonic fields parallel to the boundary
constitute the finite-dimensional space, the dimension of which is equal to the 1-
dimensional Betty number of the domain. However, definition 1 does not require
the harmonic field to be tangential to the boundary.

Every field V harmonic in the domain D satisfies the Euler equations in D with
H = const.

Let D ⊂ R
n, n = 2, 3 be a smooth domain, and let S = ∂D. Let Mn denote the

direct product of the unit segment and n− 1 copies of the unit circumference.

Definition 3 We call domain D ⊂ R
2 annular if M2 is homeomorphic either to

D ∪ S or to the space of orbits of a discrete subgroup of translations isomorphic to
Z, that acts on D ∪ S.

Definition 4 We call domain D ⊂ R
3 annular if either the manifold with boundary

D ∪ S is homeomorphic to the direct product of unit segment and the 2D smooth
closed manifold or a discrete subgroup of translations isomorphic to Z

n, n = 1, 2
acts on D ∪ S and the space of its orbits is homeomorphic to M3.

The set of the annular domains includes the plane annuli, the planar stripes, the
gaps between the planes, or the cylinders, or the spheres, or the tori, etc.

If a discrete subgroup of translations acts on an annular domain then we always
assume that all the functions considered on such a domain possess the periodicity
consistent with this acting.

Let D be an annular domain. Then S = S1 ∪ S2, S1 ∩ S2 = ∅ and S1, S2 are the
connected smooth surfaces homeomorphic one to another. Consider the Kazhikhov
problem in an annular domain D and let the boundary data of it allow a harmonic
flow such that the inlet coincides with one component of the boundary and the
outlet coincides with the other component. Such a harmonic solution is unique in the
class of harmonic fields. Indeed, the difference between two harmonic solutions is a
harmonic field parallel to the boundary and equal to zero on the inlet. Hence, it has
zero circulations across every closed path in D since every path in D is homological
to some path on the inlet.
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Let D be an annular domain and let V be a harmonic solution to some
Kazhikhov’s problem in D such that S1 = S+ è S2 = S−. The spectrum of the
eigenmodes of such a flow obeys the following eigenvalue problem

λv + ω × V = −∇h; curl v = ω; div v = 0, (6.1)

v× n = 0 on S+, n · v = 0 on S. (6.2)

We will be using space of square-integrable functions on S+ vanishing on
average denoted as L̃2(S+) and the space of bounded operators acting in L̃2(S+)

denoted as B+. Let �(V ) denote the point-wise spectrum of problem (6.1)–(6.2)
for a specified field V .

Theorem 1 Let D be an annular domain. Assume that vector field V is harmonic
in D and such that S1 = S+ and S2 = S−. Assume that vector field V generates
the non-separated flow. Then there exists an entire function K+ : λ �→ K+(λ) ∈ B+
such that

�(V ) = {λ : ker K+(λ) �= {0}}.

Function K+ allows an explicit form of writing itself modulo reconstructing the
divergence free field in domain D by its curl under boundary conditions u · n = 0
íà S−, u× n = 0 íà S+.

Lemma 1 Let D ⊂ R
3 be an annular domain, and let ω be a smooth vector field

in D, such that div ω = 0 in D and ω · n = 0 on S1. Consider a boundary value
problem

curlv = ω, div v = 0 in D; v× n = 0 íà S1, v · n = 0 on S2. (6.3)

There exists unique solution v.

Proof of Lemma 1 Let u be a solution to the homogeneous problem (6.3). Then
the circulation of it across every closed path in D is equal to zero by the boundary
condition at S1. (Here we use the fact that domain D is annular). Hence, there exists
scalar function φ such that u = ∇φ in D. Then �φ = 0 in D, dφ/dn = 0 on
S2, and φ ≡ const on S1. From these observations, it follows that φ ≡ const, and
u ≡ 0 â D. Consider now constructing the solution. For the sake of definiteness,
assume that S1 is inside S2. Extend ω up to some field ω̃ defined on R

3 by setting
ω̃ = 0 inside S1, and ω̃ = ∇ψ outside S2 where ψ is a solution to the problem
�ψ = 0, dψ/dn = ω ·n on S2, and ψ(x) = o(1), |x| → ∞. Field ω̃ is divergence-
free in the generalized sense since its normal component is continuous. The decay
rate of field ω̃ on the infinity is suitable for defining a convolution G0 ∗ ω̃, where
G0 = (4π |x|)−1. Consider b = G0 ∗ ω̃. Then curlcurl b = ω̃ in R

3 and in D,
therefore. Since ω · n = 0 on S1, there exists field h harmonic in D and parallel
to S such that field b0 = curl b + h has zero circulations across every closed path
on S1. Hence, there exists function φ0 : (b0 − ∇φ0) × n = 0 on S1. Finally, put
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v = b0 + ∇φ, where �φ = 0 in D, φ = −φ0 on S1, and dφ/dn = −b0 · n on S2.
This step completes the proof. ��
Proof of Theorem 1 By applying curl to Eq. (6.1), we get equation

λω + [ω, V ] = 0. (6.4)

Integration of these equations along the characteristics leads to the following
equality

∂s

(
eλs

(
X′(s, x, t)

)−1
ω (y)

)
= 0, y = X(s, x, t), s ∈ (t − t+(x), t), (6.5)

where X′(s, x, t) is diffrential of the mapping x �→ X(s, x, t) evaluated at point x.
By equality (6.5),

X′(s, x, t)ω (x) = eλ(s−t )ω(y), y = X(s, x, t) s ∈ (t − t+(x), t).

When s → t − t+(x) this equality reads as

ω(x) = e−λt+(x)X+(x)ω+(a+(x)), x ∈ D. (6.6)

where field ω+ is the trace of ω on S+, and

X+(x) = X′(t+(x), a+(x), 0). (6.7)

Since the flow V is non-separated, equality (6.6) defines field ω everywhere in D

correctly provided that one has specified the field ω+ on the flow inlet. Field ω

arising from this definition generally does not allow to represent itself by curl of
some other field. For existing such a representation, two conditions have to be hold.
First, div ω = 0. Second, the flux of field ω through each component of S must
be equal to zero. Since S consists of two components by definition of the annular
domains, it is enough to check the former condition and to show that one of the
fluxes vanishes. From the projection of Eq. (6.1) onto the planes tangential to S+, it
follows that

ω+ = −γ−1n× ∇h, where γ = V · n �= 0. (6.8)

By equality (6.8), ω+ · n ≡ 0 on S+, and the flux of it is equal to zero too. The
vanishing of the normal component of field ω+ on S+ is consistent with boundary
condition (6.2). Indeed, rotnv on S+ does not include normal derivatives of v and
does not depend on the normal component of v. Hence, rotnv = 0 on S+ together
with the tangential velocity.
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Let us turn to the divergence of ω. Let ρ = div ω. From Eq. (6.4), it follows that

λρ + V · ∇ρ = 0.

Since the flow is non-separated, this equation implies that ρ ≡ 0 provided that ρ ≡ 0
on S+. Let ρ+ denote the trace of function ρ on S+. Projecting equation (6.4) on
the normal to S+ and keeping in mind equality (6.8) brings us at equality

ρ+ = γ−1rotn((γ−1n×∇h)× V )

∣∣∣
S+
= γ−1rotn(∇h) |S+ ≡ 0. (6.9)

Actually, equality (6.9) remains true even for every function h and field V provided
that V · n = γ on S+. To see this, consider field

(γ−1n×∇h)× V −∇h,

and note that it is normal to S+.
Let G be the operator reconstructing the velocity by vorticity as described by

lemma 1. Let χ be a scalar function on S+ having zero mean value, and let λ ∈ C.
Put h = χ in equality (6.8) and define operator L+(λ) : χ �→ ω by equalities (6.6)
and (6.8). Define operator

K+(λ) : χ �→ n · (GL+(λ)χ)|S+ , (6.10)

Note that n · (GL+(λ)χ) = 0 on S− and field GL+(λ)χ is divergence-free in D by
the definition of operator G. Therefore, the range of K+(λ) consists of the functions
vanishing on average. Thus, every χλ ∈ ker K+(λ) gives rise to the eigenmodes
defined as vλ = GL+χλ. This observation completes the proof. ��
Remark 5 Adding a constant to χλ does not alter the corresponding eigenmodes.
Therefore, eliminating the constant functions from the domain of operator K+ does
not lead to the loss of the eigenmodes.

Remark 6 One can treat function χ as the trace of the perturbation of the Bernoulli
function on S+, where it coincides with the pressure perturbation because of the
boundary conditions. Hence, vanishing function χ on average matches the fact
that the Bernoulli function, as well as the pressure, are defined up to a constant.
In particular, zero mean value of function χ is equivalent to preserving the mean
pressure on the inlet upon perturbing the basic flow.

Remark 7 We omit the detailed proof of the boundedness of operator K(λ).
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7 Flow Through a Gap Between Two Cylinders

Let D be a gap between two coaxial round cylinders the radii of which are equal
to 1 and a > 1. We set up a cylindrical coordinate system the axis of which
coincides with the axis of cylinders. Let r, θ, z stand for the radial, azimuthal and
axial coordinates, and er , eθ , ez stand for the corresponding unit vectors. In domain
D, consider the Kazhikhov problem the boundary conditions of which reads as

v · n|r=1 = −1; v · n|r=a = 1/a, (7.1)

n× (v− �eθ )|r=1 = 0. (7.2)

From boundary conditions (7.1), it follows that S+ = {r = 1}, S− = {r = a}.
At that, the value of � ∈ R determines the circulation of the flow across the inlet,
that is equal to 2π�. Also, we require 2	−periodicity along z−axis. The harmonic
solutions to this problem has the form

V = r−1(er + �eθ ). (7.3)

The field defined in (7.3) is non-separated. If � = 0, the flow admits the single-
valued scalar potential—that is, V = ∇�.

Note that vector field (7.3) directs the flow outwards the axis of the cylinders.
It is natural to call such a flow diverging and to call the oppositely directed flow
converging. The converging flow arises from the following boundary conditions

v · n|r=1 = 1; v · n|r=a = −1/a, (7.4)

n× (
v− a−1�eθ

)∣∣
r=a

= 0. (7.5)

Then S− = {r = 1} è S+ = {r = a}, and the velocity field of the converging flow
reads as

V = r−1(−er + �eθ ).

We consider in detail only the diverging flows. For the converging flows, the results
are the same as for the converging flows and their proof does not require a new idea.

Consider the eigenvalue problem (6.1)–(6.2) with field V specified in (7.3). Put

bnα = exp i(nθ + αz), n ∈ Z, α ∈ α0Z, α0 = π/	, n2 + α2 �= 0.

Due to the symmetry of the problem, operator K+(λ) takes the diagonal form in the
basis of Fourier harmonic bnα; namely,

K+(λ) : bn,α �→ κn,α(�, a, λ)bn,α.
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Hence, �(V ) coincides with the union of null-sets of all the multipliers denoted as
κn,α(�, a, λ) on the complex plane λ.

Let us calculate K+(λ) explicitly. Put v = bn,α v̂(r), ω = bn,αω̂(r),

ω̂ = ξer + ηeθ + ζ ez, v̂ = uer + veθ + wez;

at that boundary conditions (6.2) takes the form

u(1) = v(1) = w(1) = 0; u(a) = 0. (7.6)

First, consider L+(λ). Relative to the Fourier basis, the system consisting of
Eq. (6.4), condition div ω = 0, and the boundary conditions at S+ take the form

λξ − inr−2(η − �ξ)− iαr−1ζ = 0; ξ |r=1 = 0; (7.7)

λη − iα�r−1ζ +
(
r−1(η − �ξ)

)
r
= 0; η|r=1 = iα; (7.8)

λζ + r−1ζr + iβr−2ζ = 0; ζ |r=1 = −in; (7.9)

r−1 ((rξ)r + inη)+ iαζ = 0. (7.10)

Here, the boundary conditions on S+ arise from representing of condition (6.8)
using the Fourier basis. Eliminating η and ζ from (7.7) with the use of (7.10) brings
us at the system

rλξ + ξr + r−1(in� + 1)ξ = 0, ξ(1) = 0,

which implies that ξ ≡ 0. Bearing in mind this conclusion, we note that
Eqs. (7.8), (7.9), and (7.10) are not independent. Then integrating them gives

ζ = −inE(r); η = iαrE(r); E(r) = E(r, λ, n�) = r−in�e−
λ(r2−1)

2 . (7.11)

We turn to calculating the operator GL+(λ). Reconstructing the velcoity by vorticity
with the use of boundary conditions (7.6) leads to expressions

w(r) =
r∫

1

(iαu− η) ds; rv(r) =
r∫

1

(sζ + inu) ds.

Eliminating the unknowns w and v from equation div v = 0 yields the equation for
finding unknown u. Introducing new unknown function

φ(r) =
r∫

1

u(s) ds
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brings us to the boundary value problem

r2φrr + rφr − (n2 + α2r2)φ = −r2Fn,α; φ(1) = 0, φr (a) = 0, where (7.12)

Fn,α(r, λ, n�) = ((n/r)2 + α2)
r∫

1
E(s, λ, n�) sds,

Given with this problem, we note that κn,α(λ, �, a) = u(1) = φr(1). From this
observation, using the Green function of problem (7.12), we get

κn,α(λ, �, a) = K−1
α,n,a(1)

a∫

1

Kα,n,a(s)Fn,α(s, λ, n�) sds, (7.13)

where Kα,n,a is a solution to Cauchy problem

r2Krr + rKr − (n2 + r2α2)K = 0; K(a) = 1; Kr(a) = 0. (7.14)

Given with the Cauchy problem (7.14), integrating by parts transforms expres-
sion (7.13) into the Laplace’s integral that reads as

κn,α(λ, β, a) = −K−1
α,n,a(1)

a∫

1

r−iβe−λ(r2−1)/2K ′
α,n,a(r)r2dr, β = n�, (7.15)

and (·)′ stands for the derivatives in variable r .
Let �n,α,β,a denote the null set of the Laplace integral (7.15) on the plane

of complex variable λ, and let ��,a stand for the point-wise spectrum of prob-
lem (6.1)–(6.2) in domain D = {(r, θ, z) : 1 < r < a}, when field V has the
form specified in (7.3).

Lemma 2

��,a =
⋃

α∈α0Z, β=n�, n∈Z, n2+α2 �=0

�n,α,β,a

Thus, we have reduced the Routh–Hurwitz problem for the spectrum of flow (7.3)
to the same problem for scalar Laplace’s integrals (7.15).

Lemma 3

�n,α,0,a ⊂ {λ : Re λ < 0} ∀ n ∈ Z, α ∈ R.
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Proof Let us apply Polia’s theorem about the nulls of Laplace integrals (see [12]).
The integral is to be dealt with reads as

a∫

1

e−λ(r2−1)/2 (−rKr) rdr, K = Kα,n,a.

We have to check the following assertions:

∀ r ∈ (1, a) (i) Kr(r) < 0; (ii) (rKr(r))r > 0.

By the Cauchy problem (7.14),

a∫

s

(α2r + n2/r)K2dr = −K(s)Kr(s)s −
a∫

s

K2
r r dr, ∀ s : 1 ≤ s < a.

Hence, K(s)Kr(s) < 0 for s ∈ [1, a) and K(a) = 1 by the initial condition of
problem (7.14). Consequently,

K(r) > 0, Kr(r) < 0,∀ r ∈ (1, a).

Then Eq. (7.14) implies assertion (ii). It completes the proof.
By lemmas 2 and 3, we get ��

Theorem 2 ��,a ∩ {λ : Re λ ≥ 0} �= ∅. Then β = n� �= 0.

Remark 8 By Theorem 2, every eigenmode of potential flow is stable. Moreover,
an eigenmode is stable provided it possesses the rotational symmetry.

Remark 9 At the inlet, every eigenmode of pressure has the form exp(λt + inθ +
iαz) as it follows from remark at page 134). At the same time, there exist the
small perturbations of flow (7.3) which preserve the pressure on the inlet. Such
a perturbation vanishes in a finite time. Indeed, consider a small perturbation
v = v(r, t)eθ + w(r, t)ez, p = p(r, t) (p denotes the perturbation of the pressure).
The system governing such a class of perturbations reads as

2�v

r2 = pr, (rv)t + (rv)r

r
= 0, wt + wr

r
= 0, t > 0, r ∈ (1, a), (7.16)

v|r=1 = 0, w|r=1 = 0, p|r=1 = 0. (7.17)

Integrating this system shows that every solution to it is equal to zero everywhere on
interval r ∈ (1, a) for every t > (a2−1)/2. Hence, the system of spectral projectors
of the point-wise spectrum of flow (7.3) is incomplete.

Remark 10 The assertions of Theorem 2 and Remarks 8 and 9 remains true for the
converging flows.
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Remark 11 Irrespective of the direction of the basic flow, the unstable modes occur
upon increasing the circulation of it—that is, upon increasing the parameter denoted
as �. Moreover, this instability survives upon taking into account the fluid viscosity.
For more details, a reader should refer to articles [24–26].

8 Flow Through a Gap Between Two Spheres

Consider the Kazhikhov problem for Euler equations in a gap between two
concentric spheres. Then the flow domain is D = {1 < |x| < a}, a > 1,
and we assume that the boundary conditions are such that the normal velocities
on the smaller and greater sphere are equal either to the values of −1 and a−2

correspondingly or to the values of 1 and −a−2 correspondingly. The flow obeying
the former (the latter) boundary conditions is called as diverging (converging). The
inlet of the diverging (converging) flow is the smaller (the greater) sphere, and
the other sphere stands as the outlet. We assume that the boundary conditions on
the inlet impose zero tangential velocity. The formulated problems are rotationally
invariant, and each has the rotationally invariant solution that reads as

V = ±er/r2, H = 0, r = |x|, er = ∇r (8.1)

where sign of + (−) corresponds to the diverging (converging) flow. Note that this
flow admits a scalar potential—that is, V = ∓∇r−1.

We will be consider in detail the case of diverging flows. Treatment of the
converging flows is quite similar and leads to the results identical to the case of
the diverging ones. Thus, we will study the eigenmodes of problem (6.1)–(6.2),
where V is the diverging flow determined by equality (8.1). We set the spherical
coordinates

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ, θ ∈ (0, π), ϕ ∈ (−π, π),

and we denote as er, eθ , eϕ the corresponding unit vectors. Let (ξ, η, ζ ) and
(u, v, w) be the coordinates of fields ω and v relative to frame er, eθ , eϕ corre-
spondingly. Thus,

ω = ξer + ηeθ + ζ eϕ, v = uer + veθ +weϕ.

In the spherical coordinates, the Cauchy problem determining operator L+(λ) reads
as

λξ − 1

r3 sin θ

{
(η sin θ)θ + ζϕ

} = 0, ξ |r=1 = 0, (8.2)

λη + 1

r3 {rηr − η} = 0, η|r=1 = χϕ

sin θ
, (8.3)

λζ + 1

r3 {rζr − ζ } = 0, ζ |r=1 = −χθ . (8.4)
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Here, we have been setting the boundary conditions in accordance with condi-
tion (6.8), and, therefore, χ = χ(θ, φ) is an unknown function defined on the inlet.
Integrating the problem (8.2)–(8.4) gives us the following solution

ξ = 0, ηsin θ = E(λ, r)χϕ, ζ = −E(λ, r)χθ , E(λ, r) = re−
λ(r3−1)

3 . (8.5)

Thus, we have an explicit expression for L+(λ). Let us turn to calculating operator
GL+(λ). Given with ω specified in (8.5), equation curl v = ω reads as

(w sin θ)θ = vϕ, uϕ − (rw)rsin θ = rEχϕ, (rv)r − uθ = −rEχθ . (8.6)

Integrating the second and third equations in (8.6) and keeping in mind the boundary
conditions at the inlet gives the following equalities

wr sin θ = �ϕ − E1χϕ, rv = �θ − E1χθ , where (8.7)

�(r, θ, ϕ) =
r∫

1
u dr, E1(λ, r) =

r∫
1
E(λ, s) sds. (8.8)

The expressions (8.7) implies the first equation in (8.6). Then equation div v = 0
takes the form

��+ E1(λ, r)r−2�+χ = 0, (8.9)

where �+f = − 1
sin θ

(fθ sin θ)θ − 1
sin2 θ

fϕϕ is the spherical Beltrami operator. Let
bm be the eigenfunction of operator �+ that corresponds to the eigenvalue μm =
m(m+ 1), m ∈ N. Putting χ = bm, � = �̂m(r)bm brings us at the problem

(
r2�̂′

m

)′ − μm (�̂m − E1(λ, r)) = 0, (8.10)

�̂′
m(1) = 0, �̂m(1) = 0, �̂′

m(a) = 0, (8.11)

Hence,

K+(λ)bm = u|r=1 = �̂′
m(1)bm, ∀bm ∈ Hm,

where Hm stands for the eigen-space of operator �+ corresponding to the eigen-
value μm = m(m+ 1), m ∈ N. Thus, the multipliers are functions

κm(λ, a) = �̂′
m(1)
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where �̂m is the solution to problem (8.10–8.11). Expressing this solution using the
Green function leads to the following equalities

κm(λ, a) = μm

Km,a(1)

a∫

1

Km,a(r)E1(λ, r) dr. (8.12)

Here, Km,a is the solution to homogeneous equation (8.10) satisfying the initial
conditions Km,a(a) = 1, K ′

m,a(a) = 0. Bearing this in mind, we arrive at equality

κm(λ, a) = − 1

Km,a(1)

a∫

1

K ′
m,a(r)E(λ, r)r3dr = 0. (8.13)

Simple transformation of this integral enables us to apply Polia’s theorem and
conclude that the zeroes of every multiplier belong to open left λ−semiplane. Thus
we have arrived at

Theorem 3 Let �a be the point-wise spectrum of the problem (6.1)–(6.2), where V
is one of the fields defined in (8.1) and x ∈ D = {x : 1 < |x| < a} ⊂ R

3. Then
Re (λ) < 0 ∀λ ∈ �a ∀ a ∈ (1,∞).
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Spectral Properties of Killing Vector
Fields of Constant Length and Bounded
Killing Vector Fields

Yu. G. Nikonorov

Abstract This paper is a survey of recent results related to spectral properties of
Killing vector fields of constant length and of some their natural generalizations
on Riemannian manifolds. One of the main result is the following: If g is a Lie
algebra of Killing vector fields on a given Riemannian manifold (M, g), and X ∈ g
has constant length on (M, g), then the linear operator ad(X) : g → g has a
pure imaginary spectrum (Nikonorov, J. Geom. Phys. 145 (2019), 103485). We
discuss also more detailed structure results on the corresponding operator ad(X).
Related results for geodesic orbit Riemannian spaces are considered. Finitely, we
discuss some generalizations obtained recently by Xu and Nikonorov (Algebraic
properties of bounded Killing vector fields. Asian J. Math. 2020 (accepted), see
also. arXiv:1904.08710) for bounded Killing vector fields.
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1 Introduction

We discuss some general properties of Killing vector fields of constant length and
of some their natural generalizations on an arbitrary Riemannian manifold (M, g).
A comprehensive survey on classical results in this direction could be found in
[5, 6]. Important properties of Killing vector fields of constant length (abbreviated
as KVFCL) on compact homogeneous Riemannian spaces are studied in [20].
Some resent results about Killing vector field of constant length on some special

Yu. G. Nikonorov (�)
Southern Mathematical Institute of Vladikavkaz Scientific Centre of the Russian Academy
of Sciences, Vladikavkaz, Russia

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
A. G. Kusraev, Z. D. Totieva (eds.), Operator Theory and Differential Equations,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-49763-7_12

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49763-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-49763-7_12


144 Yu. G. Nikonorov

Riemannian manifolds are obtained in [28, 30]. All manifolds are supposed to be
connected.

Let us consider a Riemannian manifold (M, g) and any Lie group G acting
effectively on (M, g) by isometries. We will identify the Lie algebra g of G with
the corresponded Lie algebra of Killing vector field on (M, g) as follows. For any
U ∈ g we consider a one-parameter group exp(tU) ⊂ G of isometries of (M, g)

and define a Killing vector field Ũ by a usual formula

Ũ(x) = d

dt
exp(tU)(x)

∣∣∣∣
t=0

. (1)

It is clear that the map U → Ũ is linear and injective, but [Ũ, Ṽ ] = − ˜[U, V ]g,
where [·, ·]g is the Lie bracket in g and [·, ·] is the Lie bracket of vector fields on M .
We will use this identification repeatedly in this paper.

Any X ∈ g determines a linear operator ad(X) : g → g acting by Y �→ [X, Y ].
If we consider X as a Killing vector field on (M, g), then some geometric type
assumptions on X imply special properties (in particular, spectral properties) of the
corresponding operator ad(X). In this paper, we study the property of X to be of
constant length and the property to be bounded.

Let us fix some notation. For a Lie algebra g, we denote by n(g) and r(g) the
nilradical (the maximal nilpotent ideal) and the radical of g respectively. A maximal
semisimple subalgebra of g is called a Levi factor or a Levi subalgebra. There is
a semidirect decomposition g = r(g) � s, where s is an arbitrary Levi factor. The
Malcev–Harish-Chandra theorem states that any two Levi factors of g are conjugate
by an automorphism exp(Ad(Z)) of g, where Z is in the nilradical n(g) of g. We
have r(g) = [s, r(g)] ⊕ Cr(g)(s) (a direct sum of linear subspaces), where Cr(g)(s)
is the centralizer of s in r(g). Recall also that [g, r(g)] ⊂ n(g), therefore, [s, r(g)] ⊂
[g, r(g)] ⊂ n(g). Moreover, D(r(g)) ⊂ n(g) for every derivation D of g. For any
Levi factor s, we have [g, g] = [r(g)+ s, r(g)+ s] = [g, r(g)]� s ⊂ n(g) � s. For
a more detailed discussion of the Lie algebra structure we refer to [14].

Recall that a subalgebra k of a Lie algebra g is said to be compactly embedded
in g if g admits an inner product relative to which the operators ad(X) : g �→ g,
X ∈ k, are skew-symmetric. This condition is equivalent to the following one: the
closure of AdG(exp(k)) in Aut(g) is compact, see e.g. [14]. Note that for a compactly
embedded subalgebra k, every operator ad(X) : g → g, X ∈ k, is semisimple and
the spectrum of ad(X) lies in iR, where i = √−1. Recall also that a subalgebra k
of a Lie algebra g is said to be compact if it is compactly embedded in itself. It is
equivalent to the fact that there is a compact Lie group with a given Lie algebra k. It
is clear that any compactly embedded subalgebra k of g is compact.

The following theorem is one of the main results for our discussion.

Theorem 1 (Theorem 1 in [22]) For any Killing field of constant length X ∈ g on
a Riemannian manifold (M, g), the spectrum of the operator ad(X) : g→ g is pure
imaginary, i. e. is in iR.
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This result is a particular case of Theorem 3. It is clear that it is non-trivial only
for noncompact Lie algebras g and only when X is not a central element of g. On
the other hand, there are examples of Killing fields of constant length X ∈ g for
noncompact g. Moreover, Theorems 4 and 5 give us examples when X ∈ n(g) and
ad(X) is non-trivial and nilpotent. In particular, ad(X) is not semisimple in this case.

The paper is organized as follows. In Sect. 2, we consider some important spectral
properties of the operator ad(X) : g �→ g for any Killing vector field of constant
length X ∈ g on a given Riemannian manifold (M, g). One of the main results
is Theorem 2, that implies non-trivial geometric properties of (M, g) in the case
when the Lie algebra g could be decomposed as a direct Lie algebra sum. In Sect. 3,
we discuss some results on Killing vector fields of constant length on geodesic
orbit Riemannian spaces. In particular, Theorems 4 and 5 imply that any Killing
vector field in the center of n(g) has constant length on a given geodesic orbit space
(G/H, g). This observation provides non-trivial examples of Killing vector field of
constant length X such that the operator ad(X) : g �→ g is nilpotent. In Sect. 4, we
discuss general properties of bounded Killing vector fields on a given Riemannian
manifold (M, g). In particular, we consider the generalization of Theorem 1 and
some other spectral properties for bounded Killing vector fields. We also study the
Lie algebra of all bounded vectors in g for a Riemannian homogeneous space G/H ,
on which G acts effectively. This Lie algebra is compact and we completely describe
all bounded Killing vector fields for a Riemannian homogeneous space.

2 KVFCL on General Riemannian Manifolds

In what follows, we assume that a Lie group G acts effectively on a Riemannian
manifold (M, g) by isometries, g is the Lie algebra of G, elements of g are identified
with Killing vector field on (M, g) according to (1).

The following characterizations of Killing vector fields of constant length on
Riemannian manifolds are very useful.

Lemma 1 (Lemma 3 in [6]) Let X be a non-trivial Killing vector field on a
Riemannian manifold (M, g). Then the following conditions are equivalent:

(1) X has constant length on M;
(2) ∇XX = 0 on M;
(3) every integral curve of the field X is a geodesic in (M, g).

Lemma 2 (Lemma 2 in [21]) If a Killing vector field X ∈ g has constant length
on (M, g), then for any Y, Z ∈ g the equalities

g([Y, X], X) = 0 , (2)

g([Z, [Y, X]], X) + g([Y, X], [Z, X]) = 0 (3)
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hold at every point of M . If G acts on (M, g) transitively, then condition (2) implies
that X has constant length. Moreover, the condition (3) also implies that X has
constant length for compact M and transitive G.

Now, we are going to get some more detailed results.

Theorem 2 (Theorem 2 in [22]) Let X ∈ g be a Killing vector field of constant
length on (M, g). Suppose that we have a direct Lie algebra sum g = g1 ⊕ · · ·⊕ gl ,
l ≥ 2. Then for every i = 1, . . . , l, there is an ideal ui in gi such that [X, gi] ⊂ ui

and g(ui , uj ) = 0 on M for every i �= j .

Proof Since X is of constant length, then gi · g(X, X) = g([gi , X], X) = 0 for any
i by Lemma 2. If we take j �= i, then

0 = gj · g([gi , X], X) = g([gi , X], [gj , X]).

Let {ui}, i = 1, . . . , l, be a set of maximal (by inclusion) subspaces ui ⊂ gi , such
that [gi , X] ⊂ ui and g(ui , uj ) = 0 for every i �= j (such a set of subspaces should
not be unique in general). Since

0 = gi · g(ui , uj ) = 0 = g([gi , ui], uj ),

then [gi, ui ] ⊂ ui due to the choice of ui . Hence, every ui is an ideal in gi and in g.
�

Remark 1 If X = X1 + X2 + · · · + Xl , where Xi ∈ gi , then ui �= 0 if Xi is not
in the center of gi . In particular, if Xi �= 0 and gi is simple, then ui = gi . Note,
that Theorem 2 leads to a more simple proof of Theorem 1 in [20] about properties
of Killing vector fields of constant length on compact homogeneous Riemannian
manifolds. See also Remark 4 about geodesic orbit spaces.

In what follows, for a Killing vector field of constant length X ∈ g on (M, g), we
denote by L = L(X) the linear operator ad(X) : g→ g.

The above results lead to the following theorem (see [22] for a detailed proof).

Theorem 3 (Theorem 3 in [22]) Let X ∈ g be a Killing vector field of constant
length on (M, g). Then the following assertions hold.

(1) We have an L-invariant linear space decomposition g = A1 ⊕A2, where A1 =
Ker(L2) and A2 = Im(L2). Moreover, A1 is the root space for L with the
eigenvalue 0 and L is invertible on A2.

(2) If o is a two-dimensional L-invariant subspace, corresponding to a complex
conjugate pair of eigenvalues α ± βi (β �= 0), i. e. L(U) = α · U − β · V and
L(V ) = β ·U +α ·V for some non-trivial U, V ∈ o, then α = 0, g(U, V ) = 0,
and g(U, U) = g(V, V ) on G/H .

(3) All eigenvalues of L have trivial real parts.

Obviously, this result implies Theorem 1.
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In what follows, we use the notation A1 = Ker(L2) and A2 = Im(L2) as in
Theorem 3.

Remark 2 Note that g = A1⊕A2 = Ker(L2)⊕Im(L2) is the Fitting decomposition
(see e.g. Lemma 5.3.11 in [14]) for the operator L. It should be noted that the
decomposition g = Ker(L) ⊕ Im(L) is not valid at least for X ∈ C(n(g)) \ C(g)

(see Theorem 5) since Im(L) ⊂ C(n(g)) ⊂ Ker(L) in this case.

Remark 3 It is interesting to study KVFCL X with Ker(L) �= A1. For such X

the operator L = ad(X) is not semisimple. One class of suitable examples are
X ∈ C(n(g)) for geodesic orbit spaces (G/H, g) as in Theorem 5 (if there is a
vector V ∈ g \ n(g) such that [X, V ] �= 0).

Since always X ∈ Ker(L) = Ker(ad(X)) ⊂ A1, we get A1 �= 0. On the other
hand, it is possible that A1 = g and A2 = 0 (see Remark 5 and Proposition 5).

Proposition 1 (Proposition 7 in [22]) Suppose that X ∈ g has constant length on
(M, g) and A1 = g. Then X ∈ n(g).

Proof If A1 = g, then L2 = (ad(X))2 = 0 on g. Elements X ∈ g with this
property are called absolute zero divisors in g. Using the Levi decomposition g =
r(g) � s, one can show that X ∈ r(g). If X = Xr(g) + Xs, where Xr(g) ∈ r(g)

and Xs ∈ s, then for any Y ∈ s we have (ad(X))2(Y ) = [Xs, [Xs, Y ]] + Z,
where Z = [X, [Xr(g), Y ]] + [Xr(g), [Xs, Y ]] ∈ r(g). Hence, (ad(X))2 = 0 imply
[Xs, [Xs, Y ]] = 0 for all Y ∈ s, i. e. Xs is an absolute zero divisor in s, that
impossible for Xs �= 0. Indeed, if U ∈ s is a non-trivial absolute zero divisor,
then U is a non-trivial nilpotent element in s. Hence, there are V, W ∈ s such
that [W, U ] = 2U , [W, V ] = −2V , and [U, V ] = W by the Morozov–Jacobson
theorem (see e.g. Theorem 3 in [15]). But this implies [U, [U, V ]] = −2U that
contradicts to (ad(U))2 = 0 (see [16] for a more detailed discussion). Therefore,
we get Xs = 0 and X ∈ r(g).

Moreover, it is known that n(g) = {Y ∈ r(g) | (ad(Y ))p = 0 for some p ∈ N},
see e.g. Remark 7.4.7 in [14]. Therefore, X ∈ n(g). �

3 KVFCL on Geodesic Orbit Spaces

Let (M = G/H, g) be a homogeneous Riemannian space, where H is a compact
subgroup of a Lie group G and g is a G-invariant Riemannian metric. We will
suppose that G acts effectively on G/H (otherwise it is possible to factorize by U ,
the maximal normal subgroup of G in H ).

We recall the definition of one important subclass of homogeneous Riemannian
spaces.

A Riemannian manifold (M, g) is called a manifold with homogeneous geodesics
or a geodesic orbit manifold (shortly, GO-manifold) if any geodesic γ of M is an
orbit of a 1-parameter subgroup of the full isometry group of (M, g). Obviously, any



148 Yu. G. Nikonorov

geodesic orbit manifold is homogeneous. A Riemannian homogeneous space (M =
G/H, g) is called a space with homogeneous geodesics or a geodesic orbit space
(shortly, GO-space) if any geodesic γ of M is an orbit of a 1-parameter subgroup of
the group G. Hence, a Riemannian manifold (M, g) is a geodesic orbit Riemannian
manifold, if it is a geodesic orbit space with respect to its full connected isometry
group. This terminology was introduced in [17] by O. Kowalski and L. Vanhecke,
who initiated a systematic study of such spaces. In the same paper, O. Kowalski
and L. Vanhecke classified all GO-spaces of dimension ≤6. A detailed exposition
on geodesic orbit spaces and some important subclasses could be found also in [4,
11, 21], see also the references therein. In particular, one can find many interesting
results about GO-manifolds and their subclasses in [1–3, 6–8, 10, 12, 13, 18, 23–
25, 31, 32].

Recall that all symmetric, weakly symmetric, normal homogeneous, naturally
reductive, generalized normal homogeneous, and Clifford–Wolf homogeneous Rie-
mannian spaces are geodesic orbit, see [10]. Besides the above examples, every
isotropy irreducible Riemannian space is naturally reductive, and hence geodesic
orbit, see e.g. [9].

The following simple result is very useful (Mx denotes the tangent space to M at
the point x ∈ M).

Lemma 3 ([19], Lemma 5) Let (M, g) be a Riemannian manifold and g be its Lie
algebra of Killing vector fields. Then (M, g) is a GO-manifold if and only if for
any x ∈ M and any v ∈ Mx there is X ∈ g such that X(x) = v and x is a
critical point of the function y ∈ M �→ gy(X, X). If (M, g) is homogeneous, then
the latter condition is equivalent to the following one: for any Y ∈ g the equality
gx([Y, X], X) = 0 holds.

Now, we recall the following remarkable result.

Proposition 2 ([19], Theorem 1) Let (M, g) be a GO-manifold, g is its Lie algebra
of Killing vector fields. Suppose that a is an abelian ideal of g. Then any X ∈ a has
constant length on (M, g).

As is noted in [19], Proposition 2 could be generalized for geodesic orbit spaces.
For the reader’s convenience, we provide also the proof of the corresponding result.

Theorem 4 (Theorem 4 in [22]) Let (M = G/H, g) be a geodesic orbit Rieman-
nian space. Suppose that a is an abelian ideal of g = Lie(G). Then any X ∈ a (as a
Killing vector field) has constant length on (M, g). As a corollary, g(X, Y ) ≡ const
on M for every X, Y ∈ a.

Proof Let x be any point in M . We will prove that x is a critical point of the function
y ∈ M �→ gy(X, X). Since (M = G/H, g) is homogeneous, then (by Lemma 3) it
suffices to prove that gx([Y, X], X) = 0 for every Y ∈ g.

Consider any Y ∈ a, then Y · g(X, X) = 2g([Y, X], X) = 0 on M , since a is
abelian.

Now, consider Y ∈ g such that gx(Y, U) = 0 for every U ∈ a. We will prove that
gx([Y, X], X) = 0. By Lemma 3, for the vector X(x) ∈ Mx there is a Killing field
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Z ∈ g such that Z(x) = X(x) and gx([V, Z], Z) = 0 for any V ∈ g. In particular,
gx([Y, Z], Z) = 0. Now, W = X − Z vanishes at x and we get

gx([Y, X], X) = gx([Y, Z +W ], Z +W) = gx([Y, Z +W ], Z) =

gx([Y, Z], Z)+ gx([Y, W ], Z) = gx([Y, W ], Z).

Note that gx([Y, W ], Z) = −gx([W, Y ], Z) = gx(Y, [W, Z]) = 0 due to W(x) = 0
(0 = W · g(Y, Z)|x = gx([W, Y ], Z) + gx(Y, [W, Z])) and [W, Z] = [X, Z] ∈ a.
Therefore, gx([Y, X], X) = 0.

Since every Y ∈ g could be represented as Y = Y1 + Y2, where Y1 ∈ a and
gx(Y2, a) = 0, then x is a critical point of the function y ∈ M �→ gy(X, X). Since
every x ∈ M is a critical point of the function y ∈ M �→ gy(X, X), then X has
constant length on (M, g).

The last assertion follows from the equality 2g(X, Y ) = g(X + Y, X + Y ) −
g(X, X)− g(Y, Y ). �
Corollary 1 Every geodesic orbit Riemannian space (M = G/H, g) with non-
semisimple group G has non-trivial Killing vector fields of constant length.

Proof If the Lie algebra g = Lie(G) is non semisimple, then it has a non-trivial
abelian ideal a (for instance, this property has the center of the nilradical n(g) of g).
Now, it suffices to apply Theorem 4. �

We recall some other important properties of geodesic orbit spaces. Any
semisimple Lie algebra s is a direct Lie algebra sum of its compact and noncompact
parts (s = sc ⊕ snc). The following proposition is asserted in [12], a detailed proof
could be found in [13].

Proposition 3 Let (G/H, g) be a connected geodesic orbit space and let s be any
Levi factor of G. Then the noncompact part snc of s commutes with the radical r(g).

Remark 4 For a geodesic orbit space (G/H, g) we have a direct Lie algebra sum
g = (r(g) � sc)⊕ snc by Proposition 3. Moreover, we can represent snc as a direct
sum of simple noncompact ideals. This decomposition is useful for applying of
Theorem 2.

Proposition 4 (C. Gordon, [12]) Let (G/H, ρ) be a geodesic orbit space. Then the
nilradical n(g) of the Lie algebra g = Lie(G) is commutative or two-step nilpotent.

Theorem 5 (Theorem 5 in [22]) For a geodesic orbit space (G/H, g), we consider
any X ∈ n(g). Then the following conditions are equivalent:

(1) X is in the center C(n(g)) of n(g);
(2) X has constant length on (G/H, g).

Proof (1) ⇒ (2). Since the center C(n(g)) is an abelian ideal in g, then X has
constant length due to Theorem 4.
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(2) ⇒ (1). Since X ∈ n(g) and n(g) is at most two step nilpotent by
Proposition 4, then [Z, [Z, X]] = 0 for any Z ∈ n(g). Now, by Lemma 2, we
have

g([Z, X], [Z, X]) = g([Z, [Z, X]], X) + g([Z, X], [Z, X]) = 0,

hence [Z, X] = 0 for any Z ∈ n(g). Consequently, X ∈ C(n(g)). �
Corollary 2 Under conditions of Theorem 5, any abelian ideal a in g is in C(n(g)).
In particular, C(n(g)) is a maximal abelian ideal in g by inclusion.

Proof It is clear that a is a nilpotent ideal in g, hence a ⊂ n(g). By Proposition 4, a
consists of Killing fields of constant length, hence, a ⊂ C(n(g)) by Theorem 5. �
Remark 5 It should be recalled that there are many examples of geodesic orbit
nilmanifolds [12]. Therefore, Theorems 4 and 5 give non-trivial examples X of
KVFCL on (M = G/H, g), where X ∈ C(n(g)). For any such example, the
operator ad(X) : g→ g is non semisimple, since it is nilpotent. In this case, A1 = g
and L2 = (ad(X))2 = 0.

Let us recall Problem 2 in [20]: Classify geodesic orbit Riemannian spaces with
nontrivial Killing vector fields of constant length. Now, this problem is far from
being resolved. We have one modest result in this direction.

Proposition 5 (Proposition 7 in [22]) Let (G/H, g) be a geodesic orbit space and
X ∈ g = Lie(G). Then the following conditions are equivalent:

(1) X has constant length on (G/H, g) and A1 = Ker(L2) = g;
(2) X is in the center C(n(g)) of n(g).

Proof (1) ⇒ (2). By Proposition 1, we get X ∈ n(g). Hence, X ∈ C(n(g)) by
Theorem 5.

(2) ⇒ (1). By Theorem 5, X has constant length on (G/H, g). Since n(g) is an
ideal in g, then [X, Y ] ∈ n(g) and L2(Y ) = [X, [X, Y ]] ∈ [C(n(g)), n(g)] = 0 for
all Y ∈ g. �

4 Algebraic Properties of Bounded Killing Vector Fields

In this section, we discuss results obtained recently in [29]. Results from the
previous sections lead to the following conjecture.

Conjecture 1 (Conjecture 1 in [22]) If g is semisimple, then any Killing field of
constant length X ∈ g on (M, g) is a compact vector in g, i. e. the Lie algebra R ·X
is compactly embedded in g.
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Initial motivation of the authors of [29] was to prove this conjecture. For this
goal, they applied a special new tool based on the study of bounded Killing vector
fields.

Recall that a Killing vector field on a Riemannian manifold is called bounded
if its length function with respect to the given metric is a bounded function. This
condition is relatively weak. For example, any Killing vector field on a compact
Riemannian manifold is bounded. On the other hand, curvature conditions may
provide serious restrictions for bounded Killing vector fields. For instance, on a
complete negatively curved Riemannian manifold, bounded Killing vector field
must be zero [27]. On a complete non-positively curved Riemannian manifold, a
bounded Killing vector field must be parallel [5].

The following result proves Conjecture 1 (in particular).

Theorem 6 (Theorem 1.2 in [29]) Let M be a connected Riemannian manifold
on which a connected semisimple Lie group G acts effectively and isometrically.
Assume X ∈ g defines a bounded Killing vector field. Then X is contained in a
compact ideal in g.

It is natural to further study this spectral property of bounded Killing vector fields
when G is not semisimple. For this purpose, one can consider a Levi decomposition
g = r(g) + s for g = Lie(G) and the corresponding decomposition X = Xr +
Xs . The following result gives some details on algebraic properties of the bounded
Killing vector fields. For a semisimple Lie algebra s we consider the direct sum
s = sc ⊕ snc of compact and noncompact ideals.

Theorem 7 (Theorem 1.3 in [29]) Let M be a connected Riemannian manifold on
which the connected Lie group G acts effectively and isometrically. Assume that
X ∈ g defines a bounded Killing vector field, and X = Xr + Xs according to the
Levi decomposition g = r(g)+s, where s = sc⊕snc. Then we have the following:

(1) The vector Xs ∈ s is contained in the compact semisimple ideal csc (r(g)) of g;
(2) The vector Xr ∈ r is contained in the center c(n) of n.

Here the centralizer ca(b) of the subalgebra b ⊂ g in the subalgebra a ⊂ g is
defined as ca(b) = {u ∈ a | [u, b] = 0}. In particular, the center c(a) of a ⊂ g
coincides with ca(a).

Theorem 7 helps us find more algebraic properties for bounded Killing vector
fields. In particular, X = Xr + Xs is an abstract Jordan decomposition which
is irrelevant to the choice of the Levi subalgebra s, and the eigenvalues of ad(X)

coincide with those of ad(Xs), which are all imaginary.

Theorem 8 (Theorem 4.1 in [29]) Let M be a connected Riemannian manifold
on which the connected Lie group G acts effectively and isometrically. Assume that
X ∈ g defines a bounded Killing vector field. Let X be decomposed as X = Xr+Xs

according to any Levi decomposition g = r(g)+ s, then we have the following:

(1) The decomposition ad(X) = ad(Xr)+ ad(Xs) is the unique Jordan–Chevalley
decomposition for ad(X) in gl(g);
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(2) The decomposition X = Xr + Xs is the abstract Jordan decomposition which
is unique in the sense that Xs is contained in all Levi subalgebras, i.e. this
decomposition is irrelevant to the choice of the Levi subalgebra;

(3) The eigenvalues of ad(X) coincide with those of those of ad(Xs), counting
multiples.

As a direct corollary, we obtain the following spectral property (that is an obvious
generalization of Theorem 1).

Corollary 3 Let M be a connected Riemannian manifold on which the connected
Lie group G acts effectively and isometrically. Assume that X ∈ g defines a bounded
Killing vector field. Then all eigenvalues of ad(X) : g→ g are imaginary.

When M = G/H is a Riemannian homogeneous space on which the connected
Lie group G acts effectively, we can apply Theorem 7 to prove Theorem 9, which
completely determine all bounded vectors in g for G/H , or equivalently all bounded
Killing vector fields induced by vectors in g. Let us recall necessary definition.

For any smooth coset space G/H , where H is a closed subgroup of G, Lie(G) =
g and Lie(H) = h, we denote prg/h the natural linear projection from g to g/h. We
call any vector X ∈ g a bounded vector for G/H , if

f (g) = ‖prg/h

(
Ad(g)X

)‖, ∀ g ∈ G, (4)

is a bounded function, where ‖ · ‖ is any norm on g/h.
Since the space g/h has a finite dimension, any two norms ‖ · ‖1 and ‖ · ‖2 on it

are equivalent in the sense that

c1‖u‖1 ≤ ‖u‖2 ≤ c2‖u‖1, ∀ u ∈ g/h,

where c1 and c2 are some positive constants. So the boundedness of X ∈ g for G/H

does not depend on the choice of the norm.
When ‖ · ‖ is an Ad(H)-invariant quadratic norm, which defines a G-invariant

Riemannian metric on G/H , the function f (·) on G defined in (4) is right H -
invariant, so it can be descended to G/H , and coincides with the length function
of the Killing vector field induced by X. Hence, we have

Lemma 4 If X ∈ g is a bounded vector for G/H , then it defines a bounded Killing
vector field for any G-invariant Riemannian metric on G/H . Conversely, if G/H

is endowed with a G-invariant Riemannian metric and X ∈ g induces a bounded
Killing vector field, then X is a bounded vector for G/H .

We have the following characterization of bounded vectors.

Theorem 9 (Theorem 1.5 in [29]) Let G/H be a Riemannian homogeneous space
on which the connected Lie group G acts effectively. Let r(g), n(g) and s = sc⊕ snc

be the radical, the nilradical, and the Levi subalgebra respectively. Then the space
of all bounded vectors in g for G/H is a compact subalgebra. Its semisimple part
coincides with the ideal csc (r(g)) of g, which is independent of the choice of the
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Levi subalgebra s, and its abelian part v is contained in c(n(g)), which coincides
with the sum of cc(r(g))(snc) and all two-dimensional irreducible representations of
ad(r(g)) in cc(n(g))(snc) corresponding to nonzero imaginary weights, i.e. R-linear
functionals λ : r→ r/n→ R

√−1.

Note that csc (r(g)) is a compact semisimple summand in the Lie algebra direct
sum decomposition of g, which can be easily determined. On the other hand, for the
abelian factor v, there is a theoretic algorithm which explicitly describes all bounded
vectors in c(n(g)) (see Section 4 in [29]).

Theorem 9 provides a simple proof of the following theorem.

Theorem 10 (Theorem 1.6 in [29]) The space of bounded vectors in g for a
Riemannian homogeneous space G/H on which the connected Lie group G acts
effectively is irrelevant to the choice of H .

Notice that the arguments in [26] indicate that the subset of all bounded
isometries in G is irrelevant to the choice of H . So Theorem 10 can also be proved
by J. Tits’ Theorem 1 in [26], which implies that all bounded isometries in G are
generated by bounded vectors in g.

It should be noted that all lemmas, theorems and corollaries of this section are
still valid when M is a Finsler manifold.
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The Radon-Nikodým Theorem
for Disjointness Preserving Orthogonally
Additive Operators
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Abstract In this article we prove the Radon-Nikodým type theorem for positive
disjointness preserving orthogonally additive operators defined on a vector lattice E

and taking values in a Dedekind complete vector lattice F .

Keywords Orthogonally additive operator · Positive operator · Disjointness
preserving operator · Vector lattice
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1 Introduction and Preliminaries

Orthogonally additive operators in vector lattices first were introduced in [10].
Today the theory of these operators is an area of intense research (see for instance
[1, 6, 11–15]). The aim of this notes is to continue this line of investigation. We
prove a Radon-Nikodým theorem for positive disjointness preserving orthogonally
additive operators.

In this section we present some basic facts concerning vector lattices. For the
standard information we refer to [3]. All vector lattices below are assumed to be
Archimedean.

Let E be a vector lattice. A net (xα)α∈� in E order converges to an element

x ∈ E (notation xα
o−→ x) if there exists a net (eα)α∈� in E+ such that eα ↓ 0 and

|xα − x| ≤ eα for all α ∈ � satisfying α ≥ α0 for some α0 ∈ �. For an element
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x ∈ E the band generated by x is the set

Bx = {y ∈ E : |y| ∧ n|x| ↑ |y|}.

Two elements x, y of the vector lattice E are said to be disjoint (notation x ⊥ y),
if |x| ∧ |y| = 0. For an element x ∈ E its disjoint complement is defined by
{x}⊥ = {y ∈ E : |y| ∧ |x| = 0}. The band Bx is then {x}⊥⊥.

The equality x =
n⊔

i=1
xi means that x =

n∑
i=1

xi and xi ⊥ xj for all i �= j . If

n = 2 we use the notation x = x1�x2. An element y of E is called a fragment of an
element x ∈ E (or a component), if y ⊥ (x − y). The notation y 3 x means that y

is a fragment of x. The set of all fragments of the element x ∈ E is denoted by Fx .

Definition 1.1 Let E be a vector lattice, and let F be a real vector space. An
operator T : E → F is called orthogonally additive if T (x + y) = T x + Ty

for every disjoint elements x, y ∈ E.

It is clear that T (0) = 0. The set of all orthogonally additive operators is a real
vector space with respect to the natural linear operations.

Definition 1.2 Let E and F be vector lattices. An orthogonally additive operator
T : E → F is said to be:

• positive if T x ≥ 0 holds in F for all x ∈ E;
• disjointness preserving, if x ⊥ y implies T x ⊥ Ty;
• order bounded, if it maps order bounded sets in E to order bounded sets in F ;
• laterally-to-order bounded, if the set T (Fx) is order bounded in F for every

x ∈ E.
• regular, if T = S1 − S2, where S1 and S2 are positive orthogonally additive

operators from E to F .

The sets of all positive, regular and laterally-to-order bounded orthogonally additive
operators from E to F are denoted by OA+(E, F ), OAr (E, F ) and P(E, F ),
respectively. The order in P(E, F ) is introduced as follows: S ≤ T whenever
(T − S) ≥ 0. Then P(E, F ) becomes an ordered vector space. For a Dedekind
complete vector lattice F we have the following properties of OAr (E, F ) and
P(E, F ).

Lemma 1.3 ([12, Theorem 3.6]) Let E and F be a vector lattices with F Dedekind
complete. Then P(E, F ) = OAr (E, F ) and OAr (E, F ) is a Dedekind complete
vector lattice. Moreover, for every S, T ∈ OAr (E, F ) and every x ∈ E the
following formulas hold

(1) (T ∨ S)(x) = sup{Ty + Sz : x = y � z};
(2) (T ∧ S)(x) = inf{Ty + Sz : x = y � z};
(3) T +(x) = sup{Ty : y 3 x};
(4) T −(x) = − inf{Ty : y 3 x};
(5) |T |(x) = sup{Ty − T z : x = y � z}
(6) |T x| ≤ |T |(x).
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2 Result

The Radon-Nikodým Theorem is the well-known classical result in the measure
theory.

In the theory of integration the calculation of an integral with respect to a measure
ν can be reduced to the calculation of the integral with respect to a given measure
μ if the former possesses a density with respect to μ (sometimes called Radon-
Nikodým derivative). The cited Radon-Nikodým Theorem ([9], chapt. XI.2, [2],
chapt. 10.6) tells us that this is true for any finite measure ν which is absolutely
continuous with respect to a σ -finite measure μ, i.e. if ν(A) = 0 whenever
μ(A) = 0. We remark that for finite measures ν and μ the first one is absolutely
continuous with respect to μ if and only if ν ∈ {μ}⊥⊥ (see the detailed explanation
in [19], (Chap. 14)).

Some generalizations of the Radon-Nikodým Theorem in the framework of the
theory of linear operators on Banach spaces and on vector lattices were obtained in
[4, 5, 7, 8, 16–18]. In particular, in [7] a positive operator S : E → F is defined to
be absolutely continuous with respect to the operator T : E → F if Sx ∈ {T x}⊥⊥
for any x ∈ E+, where the vector lattices E, F are Dedekind complete. The
equivalence between absolute of a positive linear operator S with respect to a lattice
homomorphism T and the condition S ∈ {T }⊥⊥ was proved in [5]. We remark
that this connection is considered as the operator version of the Radon-Nikodým
Theorem. The aim of this note is to prove the following Radon-Nikodým Theorem
for (nonlinear) orthogonally additive operators.

Theorem 2.1 Let E, F be vector lattices with F Dedekind complete, T ∈
OA+(E, F ) be a disjointness preserving operator and S ∈ OA+(E, F ). Then
the following statements are equivalent:

(1) S ∈ {T }⊥⊥;
(2) Sx ∈ {T x}⊥⊥ for all x ∈ E.

Now, we prove that like in the linear case, the module, the positive part and
the negative part of a disjointness preserving orthogonally additive operator can be
evaluated pointwise.

Lemma 2.2 Let E and F be vector lattices, with F Dedekind complete and
T : E → F be a disjointness preserving operator. Then T ∈ OAr (E, F ) and for
every x ∈ E the following conditions hold:

(1) |T |x = |T x|;
(2) T +x = (T x)+;
(3) T −x = (T x)−;
(4) T +x ∧ T −x = 0.

Proof First we prove that T ∈ OAr (E, F ). By Lemma 1.3 it is enough to show
that T ∈ P(E, F ). Fix x ∈ E. We claim that the set T (Fx) is order bounded in
F . Indeed, for every y ∈ Fx we have (x − y) ⊥ y ⇒ T (x − y) ⊥ Ty. Since T
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preserves disjointness1 there is also

|Ty| ≤ |T (x − y)| + |Ty| = |T (x − y)+ Ty| = |T x|.

Hence T is a laterally-to-order bounded operator and therefore T ∈ OAr (E, F ).
Now we prove the equality |T |x = |T x| for all x ∈ E. By Lemma 1.3 (5) we have

|T |x = sup{Ty − T z : x = y � z} ≥ T x ∨ (−T x) = |T x|.

We need to prove the reverse inequality. Take y, z ∈ E such that x = y � z. Then
Ty ⊥ T z and we may write

Ty − T z ≤ |Ty − T z| = |Ty + T z| = |T (y + z)| = |T x|.

Passing to the supremum on the left-hand side of the above inequality over all
fragments y, z of x such that x = y � z we deduce that |T |x ≤ |T x|. Thus
|T |x = |T x| for any x ∈ E. Since

T + = 1

2
(|T | + T ) and T − = 1

2
(|T | − T )

we may write

T +x = 1

2
(|T | + T )x = 1

2
(|T |x + T x) = 1

2
(|T x| + T x) = (T x)+;

T −x = 1

2
(|T | − T )x = 1

2
(|T |x − T x) = 1

2
(|T x| − T x) = (T x)−.

Finally, we get

T +x ∧ T −x = (T x)+ ∧ (T x)− = 0.

��
For the proof of the main result we need the following auxiliary propositions.

Proposition 2.3 Let E, F be vector lattices with F Dedekind complete, S, T ∈
OA+(E, F ) be disjointness preserving operators. Then T + S is a disjointness
preserving operator if and only if Sx ⊥ Ty for every disjoint elements x, y ∈ E.

Proof Fix a pair of disjoint elements x, y ∈ E and assume that T + S is a
disjointness preserving operator. Then due to the positivity of S and T we have

0 ≤ |Sx| ∧ |Ty| = Sx ∧ Ty ≤ (S + T )x ∧ (S + T )y = 0.

1And by using the relation |a + b| = |a| + |b| for a ⊥ b, a, b,∈ E.
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Hence Sx ⊥ Ty. Now assume that Sx ⊥ Ty for every disjoint elements x, y ∈ E.
Note that the assumptions ensure that

Sx ∧ Sy = T x ∧ Ty = Sx ∧ Ty = Sy ∧ T x = 0.

Thus

0 ≤ (S + T )x ∧ (S + T )y = (Sx + T x) ∧ (Sy + Ty) ≤
(Sx ∧ Sy)+ (T x ∧ Sy)+ (Sx ∧ Ty)+ (T x ∧ Ty) = 0.

��
Proposition 2.4 Let E, F be vector lattices with F Dedekind complete, T ∈
OA+(E, F ) be a disjointness preserving operator and S ∈ OA+(E, F ) satisfies
S ∈ {T }⊥⊥. Then Sx ∈ {T x}⊥⊥ for all x ∈ E.

Proof Since 0 ≤ S ∈ {T }⊥⊥ we have that the sequence Rn := S ∧ nT , n ∈ N

increases and order converges to S in the vector lattice OAr (E, F ). Thus (S ∧
nT )x ↑ Sx for every x ∈ E. Then by using the order closedness of bands

0 ≤ (S ∧ nT )x ≤ nT x ⇒ (S ∧ nT )x ∈ {T x}⊥⊥

we deduce that Sx ∈ {T x}⊥⊥. ��
Proposition 2.5 Let E, F be vector lattices with F Dedekind complete, T ∈
OA+(E, F ) be a disjointness preserving operator and S ∈ OA+(E, F ) satisfies
Sx ∈ {T x}⊥⊥ for all x ∈ E. Then S is a disjointness preserving operator.

Proof If x, y ∈ E, x ⊥ y then for any m, n ∈ N we have

0 ≤ (Sx ∧ nT x) ∧ (Sy ∧mTy) ≤ (n+m)(T x ∧ Ty) = 0

and hence

0 ≤ (Sx ∧ nT x) ∧ (Sy ∧mTy) = 0.

Since Sx ∈ {T x}⊥⊥ and Sy ∈ {Ty}⊥⊥ we have Sx∧nT x ↑ Sx and Sy∧mTy ↑ Sy.
Therefore Sx ∧ Sy = 0. ��
Remark 2.6 We observe that by Proposition 2.4 for a disjointness preserving
operator T ∈ OA+(E, F ), the inclusion 0 ≤ S ∈ {T }⊥⊥ implies that S is a
disjointness preserving operator too.

Proposition 2.7 Let E, F be vector lattices with F Dedekind complete. Let T ∈
OA+(E, F ) be a disjointness preserving operator and 0 ≤ S1, S2 ∈ {T }⊥⊥. Then

(S1 ∧ S2)x = S1x ∧ S2x.
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Proof Let be S′1 = S1 − S1 ∧ S2, S′2 = S2 − S1 ∧ S2 and S = S′1 − S′2. Then
S′1, S′2, |S| ∈ {T }⊥⊥ and S′1 ∧ S′2 = 0. It follows that S+ = S′1 and S− = S′2. By
the Remark 2.6 the operator |S| is disjointness preserving and so, by Lemma 2.2,
we get S′1x ∧ S′2x = 0 for every x ∈ E. This means

(
S1x − (S1 ∧ S2)x

) ∧ (
S2x − (S1 ∧ S2)x

) = 0,

and we deduce that

(S1 ∧ S2)x = S1x ∧ S2x.

for all x ∈ E. ��
Corollary 2.8 Let E, F be vector lattices with F Dedekind complete, S1, S2 ∈
OA+(E, F ) and S1 + S2 be a disjointness preserving operator. Then

S1 ∧ S2 = 0 ⇔ S1x ∧ S2x = 0 for all x ∈ E.

Proof Due to the positivity of S1, S2 we have S1, S2 ≤ S1 + S2. Hence applying
Proposition 2.7 to S1 + S2 we finish the proof. ��
Now we are ready to prove the main result.

Proof of Theorem 2.1 The implication (1) ⇒ (2) is proved in Proposition 2.4.
We prove the implication (2) ⇒ (1). By Proposition 2.5 the operator S is

disjointness preserving. We claim that Sx ⊥ Ty for any disjoint elements x, y ∈ E.
Actually T x ∧ Ty = 0, hence {T x}⊥⊥ ∩ {Ty}⊥⊥ = {0}. Since Ty ∈ {Ty}⊥⊥ and
by assumption Sx ∈ {T x}⊥⊥, according to Proposition 2.3, the operator S + T is
disjointness preserving. Taking into account the decomposition

OAr (E, F ) = {T }⊥⊥ ⊕ {T }⊥

there is a representation S = S1 + S2, with 0 ≤ S1 ∈ {T }⊥⊥ and 0 ≤ S2 ∈ {T }⊥.
Since 0 ≤ S2 + T ≤ S + T the operator S2 + T is also disjointness preserving. By
Corollary 2.8 we have that S2x ∈ {T x}⊥.

On the other hand from 0 ≤ S2x ≤ Sx and Sx ∈ {T x}⊥⊥ for all x ∈ E we
deduce that S2x ∈ {T x}⊥⊥, what implies S2x = 0 for all elements x ∈ E and
therefore S2 = 0. Thus S = S1 ∈ {T }⊥⊥ and the proof is finished. ��

We remark that the Radon-Nikodým type theorem for order bounded positive
disjointness preserving orthogonally additive operators was proved in [1].
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On the Continuous Linear Right Inverse
for a Convolution Operator

D. A. Polyakova

Abstract We consider a surjective convolution operator in the Beurling space of
ultradifferentiable functions of mean type on the real axis. We obtain necessary and
sufficient conditions on the symbol of the operator under which it has a continuous
linear right inverse.

Keywords Spaces of ultradifferentiable functions · Convolution operator ·
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1 Introduction

The problem of the existence of a continuous linear right inverse operator (briefly,
CLRI) for a convolution one was posed by L. Schwartz (see, e.g., [1]) in the
particular case of linear partial differential operators on spaces of C∞-functions.
Later it was studied intensively for spaces of analytic and real analytic functions
by many authors (see [2, 3] and references therein). On the other hand, the case of
C∞-functions and especially ultradifferentiable functions which are very important
in applications have not been studied much. In this relation, recall that the theory of
ultradifferentiable functions (briefly, UDF) and ultradistributions was developed by
Roumier [4], Beurling and Björk [5] in early 1960s and later essentially developed
by Braun, Meise, and Taylor in [6].

Returning to the problem of the existence of CLRI for convolution operators,
note that in [7] Meise and Vogt solved the Schwartz problem for nonquasianalytic
Beurling spaces E(ω)(R) of UDF having, in a certain sense, a maximal type
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with respect to some weight function ω. Later this problem was studied for
nonquasianalytic spaces E(ω)(�) on an open set � ⊂ R

N [8] and quasianalytic
ones E(ω)(R) [9] of the same maximal type. Similarly to the growth theory of entire
functions, UDF of mean type satisfy sharper estimates than functions of maximal
one. This gives us an opportunity to obtain sharper solutions of some problems
in spaces of UDF Ep

(ω)(�) of mean type p ∈ (0,∞). For more details see [10]

where an analog of Borel’s extension theorem for Ep

(ω)(R
N) was established, and

[11] where the Schwartz problem for the space E1
(ω)(I ) on a bounded interval I ⊂ R

was completely solved. It should be noted that in studying spaces of mean type it is
enough to consider the case p = 1 (see [10]).

This paper is devoted to the Schwartz problem for the Beurling space E1
(ω)(R) of

UDF of mean type onR. It should be noted that in our previous papers a systematical
study of convolution operators Tμ on E1

(ω)(R) given by their symbols μ that are

the multipliers of the Fourier–Laplace representation of the dual space to E1
(ω)(R)

was undertaken. In details, in [12] those symbols μ were completely characterised
that generate surjective operators Tμ on E1

(ω)(R) or, in other words, there were
established some conditions on μ under which the convolution equation

Tμf = g (1)

has a solution for every g ∈ E1
(ω)(R). After that in [13] a particular solution of (1)

having an explicit form was constructed. At last, in [14] a form of a general solution
of the corresponding homogeneous equation Tμf = 0 has been established. For
these reasons, the present paper can be considered as a final point in the study of
convolution operators on E1

(ω)(R). On the other hand, it is an extension of the paper
[7] from the case of the Beurling UDF of maximal type to the ones of mean type.
It should be noted that the case E1

(ω)(R) has some essential differences from both

E(ω)(R) and E1
(ω)(I ). To see this it is enough to observe that an important role in the

Schwartz problem for UDF belongs to the structure of the set of entire multipliers of
the dual spaces. For E(ω)(R) and E1

(ω)(I ) this set has an inductive and, respectively,

a projective structure, while for E1
(ω)(R) it has a mixed inductive–projective one.

Thus, the case treated here has its own interest and novelty.
Note also (see [14]) that Eq. (1) includes as particular cases differential equations

of infinite order with constant coefficients

∞∑
k=0

akf
(k)(x) = 0, ak ∈ C;

difference-differential ones

m∑
k=0

n∑
j=0

akjf (k)(x + xj ) = 0, m, n ∈ N0, akj ∈ C, xj ∈ R;
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and integro-differential equations

m∑
k=0

n∑
j=0

akj

∫

R

f (k)(x + y)ϕj (y) dλ = 0, m, n ∈ N0, akj ∈ C,

where ϕj , 0 ≤ j ≤ n, are Lebesgue integrable functions that vanish out of some
segment almost everywhere.

The structure of the paper is as follows. Section 2 contains all we need about
weight functions, spaces and convolution operators that are considered in the paper.
Section 3 contains a functional criterion for a convolution operator on E1

(ω)
(R) to

have a CLRI. In Sects. 4 and 5 necessary and, respectively, sufficient conditions for
the existence of a CLRI are formulated in terms of the behaviour of the symbols
of convolution operators. The final Sect. 6 contains the main result of the paper and
some examples are established.

The author is grateful to the referee for careful reading of the manuscript.

2 Preliminaries

In the approach of Beurling-Bjorck, spaces of UDF are determined by a weight
function. An increasing continuous function ω : [0,∞) → [0,∞) is called a weight
function if it satisfies the following conditions:

(α) ∀p > 1 ∃C > 0 : ω(x + y) ≤ p
(
ω(x)+ ω(y)

)+ C, x, y ≥ 0;
(α′) ω(t) = O(t), t →∞;
(γ ) ln t = o

(
ω(t)

)
, t →∞;

(δ) ϕω(x) := ω(ex) is convex on [0,∞).

If, in addition, the weight ω has the property

(β)
∫∞

1
ω(t)

t2 dt < ∞,

then it is called nonquasianalytic; otherwise—quasianalytic. The examples of
nonquasianalytic weight functions are

ω(t) = lnβ(1+ t), β > 1; ω(t) = t

lnβ(e + t)
, β > 1;

ω(t) = tρ(t), where ρ(t) → ρ ∈ (0, 1) is some proximate order;

and the quasianalytic ones are

ω(t) = t

lnβ(e + t)
, 0 < β ≤ 1; ω(t) = t .
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We may assume without loss of generality that ω(1) = 0. Put ω(z) := ω(|z|),
z ∈ C.

Now let us recall some known properties of weight functions. Obviously,

ω(x + y) ≤ K
(
ω(x)+ ω(y)+ 1

)
, x, y ≥ 0, (2)

for some K ≥ 1. Next, there is A > 0 such that

ω(t) ≤ At, t ≥ 0. (3)

Finally, it is well known that

lim
r↓1

lim sup
t→∞

ω(rt)

ω(t)
= 1. (4)

In addition, list some properties of nonquasianalytic weight functions. (see
[14] and references therein). Firstly, each nonquasianalytic weight ω satisfies the
condition ω(t) = o(t), t → ∞. Next, as usual, we denote by Pω the harmonic
extension of a nonquasianalytic weight ω to the open upper and lower halfplanes:

Pω(x + iy) :=

⎧⎪⎪⎨
⎪⎪⎩

|y|
π

∞∫
−∞

ω(t)

(t−x)2+y2 dt for y �= 0,

ω(x) for y = 0.

Then the function Pω is continuous and subharmonic in C. Moreover, Pω(z) ≥
ω(z), z ∈ C; Pω(iy) = o(y), y →∞.

The Beurling space of UDF of mean type on the real axis is defined as

E1
(ω)(R) :=

{
f ∈ C∞(R) : ∀q ∈ (0, 1), ∀l ∈ (0,∞)

|f |ω,q,l := sup
j∈N0

sup
|x|≤l

|f (j)(x)|
exp qϕ∗ω(j/q)

< ∞
}
.

Here ϕ∗ω(y) = sup{xy − ϕω(x) : x ≥ 0}, y ≥ 0, is the Young conjugate of
ϕω. Functions f from E1

(ω)(R) are supposed complex-valued. The space E1
(ω)(R)

is endowed with the natural topology determined by the family of pre-norms{| · |ω,q,l : q ∈ (0, 1), l ∈ (0,∞)
}

and it is an (FS)-space (see [15]). Let
(E1

(ω)(R)
)′
β

denote the strong dual space of E1
(ω)(R). Then the Fourier-Laplace transform of

functionals F : ϕ �→ ϕ̂(z) := ϕx(e−ixz), z ∈ C, is a topological isomorphism from
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(E1
(ω)(R)

)′
β

onto H 1
(ω)(C), where

H 1
(ω)(C) :=

{
f ∈ H(C) | ∃q ∈(0, 1), ∃l ∈ (0,∞) :

‖f ‖ω,q,l := sup
z∈C

|f (z)|
exp

(
qω(z)+ l| Im z|) < ∞

}
.

The space H 1
(ω)(C) endowed with natural inductive topology is a (DFS)-space [15].

As usual, we define a convolution operator in E1
(ω)(R) as the conjugate one of

a multiplication operator in H 1
(ω)(C). Recall that by Theorem 1 in [12], the set of

all multipliers of the space H 1
(ω)(C), i.e. of all entire functions μ with μH 1

(ω)(C) ⊂
H 1

(ω)(C), coincides with

M1
(ω)(C) = {

μ ∈ H(C)| ∀ε > 0 ∃l > 0 : ‖μ‖ω,ε,l < ∞}
.

For each μ ∈ M1
(ω)(C), the multiplication operator �μ : f �→ μf is a continuous

linear operator from H 1
(ω)(C) to H 1

(ω)(C). Then we find the functional ψμ :=
F−1(μ) in

(E1
(ω)(R)

)′
and introduce the corresponding convolution operator by

(Tμf )(x) := 〈ψμ, f (x + · )〉, x ∈ R, f ∈ E1
(ω)(R) .

Clearly, Tμ acts linearly and continuously in E1
(ω)(R). Everywhere below an entire

function μ ∈ M1
(ω)(C) generating the operators �μ and Tμ will be called the symbol

of these operators.
As it was said in the Introduction, some differential operators of infinite order

with constant coefficients, difference-differential and integro-differential operators
are particular cases of operators Tμ.

The problem of the existence of a CLRI is always studied for surjective operator
Tμ. A complete description of surjective convolution operators in E1

(ω)(R) was
obtained in [12, Theorem 2] (see also [14]). The corresponding result is formulated
in terms of the symbol μ. It should be noted that in [12], the case of an arbitrary
(quasianalytic or nonquasianalytic) weight function was considered. Also, all
multipliers μ from M1

(ω)(C) were studied. In paper [14] devoted to construction of

an absolute basis in ker Tμ, we only considered multipliers from subclass M̃1
(ω)(C)

of M1
(ω)(C), where

M̃1
(ω)(C) = {

μ ∈ H(C)| ∃l0 > 0 : ∀ε > 0 ‖μ‖ω,ε,l0 < ∞}
.

The necessity of that exchange was discussed in [14]. It was also shown that
M̃1

(ω)(C) = M1
(ω)(C) for all nonquasianalytic weights as well as weights ω(t) = kt ,

k > 0. Since the present paper is essentially based on paper [14], we also should
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study symbols μ from M̃1
(ω)(C) only. However, this restriction is not so important

because the main result of the paper (Theorem 6) is technically obtained for
nonquasianalytic weights.

Note also that, if it is suitable, one can replace ω(z) by ω(Re z) in the definition
of spaces H 1

(ω)(C), M1
(ω)(C), and M̃1

(ω)(C) (see [12, Lemmma 1]).
Now, let ω be an arbitrary (not necessarily nonquasianalytic) weight function

and Tμ a surjective convolution operator in E1
(ω)(R) with a symbol μ ∈ M̃1

(ω)(C).
Obviously, only the case of infinite number of zeros of μ is interesting. Indeed,
if μ has a finite number of zeros, the kernel ker Tμ of the operator Tμ has finite
dimension. Thus it is complemented in E1

(ω)(R), and Tμ has a CLRI (see Theorem 1
below). Let now (λs)

∞
s=1 be the sequence of all zeros of μ, |λs | ↑ ∞, and ks denote

the multiplicity of the zero λs . In [14], using the surjectivity of an operator Tμ, we
constructed a special open covering (Uj )∞j=1 of the zero set of μ.

Let us recall the properties of that covering which will be used in the sequel. Fix
any sequence εk ↓ 0; ε1 < 1

A
, where A is the constant from the condition (3). Put

δk = εk

64KHel0
. Here K is the constant from (2); l0 is determined by the multiplier

μ from M̃1
(ω)(C); H := 3 + ln 48. Each number k ∈ N generates in a certain way

a number jk ∈ N, jk ↑ ∞ (see [14]). Given sequences (εk) and (δk), in [14] we
constructed the open covering (Uj )∞j=1 for zeros of μ. In each set Uj it was chosen
a certain point zj by the rule: if Uj (jk ≤ j < jk+1) contains a point zj with
| Im zj | ≤ δkω(Re zj ), then we fix this zj ; otherwise we fix an arbitrary point zj

from Uj . It was shown that in the first case diam Uj ≤ 12δkω(Re zj ); and in the
second one diam Uj ≤ 2| Im zj |. Here diam Uj = sup

{‖z − t‖ : z, t ∈ Uj

}
;

‖z‖ = max
{|Re z|, | Im z|}, z ∈ C.

Finally, for jk ≤ j < jk+1, k ∈ N, put

σj := min
z∈Uj

exp
{− 4εkω(Re z)− 4L0| Im z|}. (5)

In accordance with [14, Lemma 5], for all z ∈ (∂Uj )(σj ) = {
z ∈ C : dist(z, ∂Uj ) <

σj

}
, the following estimate holds:

ln |μ(z)| ≥ −3εkω(Re z)− 3L0| Im z|. (6)

Here L0 = 112KK1H(H + 1)(H1 + 1)el0; the constants K , H , and l0 have been
already described above; H1 := 3+ ln 24(1+β)

β
, β is an arbitrary fixed number from

(0, 1
32 ] (for example, β = 1

32 ); the constant K1 ≥ 1 is determined by the condition

ω(2s + 8eη) ≤ K1
(
ω(s)+ ω(η)+ 1

)
, s, η ≥ 0 .

Introduce numbers mj := ∑
λs∈Uj

ks . Then mj is a number of zeros of μ lying
in Uj , j ∈ N (with multiplicities).

In conclusion, let us prove the following auxiliary lemma which will be used
below.
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Lemma 1 Let ω be an arbitrary weight function, μ ∈ M̃1
(ω)(C) a symbol of the

surjective convolution operator Tμ in E1
(ω)(R), and (Uj )∞j=1 and (zj )∞j=1 chosen

above. If

lim
j→∞

| Im zj |
ω(Re zj )

= 0 , (7)

then for any positive numbers q , l, and ε there is C > 0 such that, for all j ∈ N and
z ∈ Uj ,

qω(Re zj )+ l| Im zj | + l| Im z| ≤ (q + ε)ω(Re z)+ C .

Proof Fix any q, l, ε in (0,∞). By the property (4) of the weight ω, we can find
δ ∈ (

0, 1
A

)
and C > 0 so that

(
q + ε

2

)
ω
( 1

1− δA
t
)
≤ (q + ε)ω(t)+ C , t ≥ 0 . (8)

Using the above estimates for diam Uj and condition (7), we conclude that, for some
j0 ∈ N, diam Uj ≤ δω(Re zj ), j ≥ j0. Then, by (3), diam Uj ≤ δA|Re zj |, j ≥ j0.
Thus, |Re z| ≥ |Re zj | − diam Uj ≥ (1 − δA)|Re zj | for all j ≥ j0, z ∈ Uj , and,
consequently,

|Re zj | ≤ 1

1− δA
|Re z| , j ≥ j0 , z ∈ Uj . (9)

In [14, Lemma 3] the following estimates for | Im z|, z ∈ Uj , j ∈ N, were
obtained. If the set Uj contains the point zj with | Im zj | ≤ δkω(Re zj ), then
| Im z| ≤ 13δkω(Re zj ); otherwise | Im z| ≤ 3| Im zj |. So, in any case,

l| Im zj | + l| Im z| ≤ (l + 3)| Im zj | + 13lδkω(Re zj ) , z ∈ Uj .

Taking into account once again the condition (7) and increasing the number j0, if it
is necessary, we have that

l| Im zj | + l| Im z| ≤ ε

2
ω(Re zj ) , z ∈ Uj , j ≥ j0 . (10)

Combining estimates (8)–(10), we finally obtain that, for all z ∈ Uj , j ≥ j0,

qω(Re zj )+ l| Im zj |+ l| Im z| ≤
(
q+ ε

2

)
ω
( 1

1− δA
Re z

)
≤ (q+ε)ω(Re z)+C .

This completes the proof. ��
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3 Functional Criterion

In this section we state a functional criterion for a surjective convolution operator
Tμ on E1

(ω)(R) to have a CLRI. It is based on the duality theory and is similar to the

corresponding one established in [11] for the space E1
(ω)(I ) on a bounded interval

I ⊂ R. In this relation, we only introduce some necessary notation without details
and omit the proof of the criterion.

Denote by J the image Im �μ of the multiplication operator �μ : H 1
(ω)(C) →

H 1
(ω)(C), where μ ∈ H 1

(ω)(C) is such that the corresponding convolution operator

Tμ is surjective from E1
(ω)(R) onto E1

(ω)(R). Since Tμ is supposed surjective, J is

a closed subspace of the space H 1
(ω)(C) (see [12, Theorem 2]). This implies that J

and the corresponding quotient space H 1
(ω)(C)/J are (DFS) ones.

In [14, Lemma 7] the space H 1
(ω)(C)/J was isomorphically described as a

sequence space k∞ which is defined as follows. At first, for every j ∈ N, we
introduce the space H∞(Uj ) of all bounded holomorphic functions in Uj equipped
with the norm ‖g‖∞,j = supz∈Uj

|g(z)|. Then, its closed subspace

Jj =
{
g ∈ H∞(Uj ) : g(l)(λs) = 0, l = 0, . . . , ks − 1, λs ∈ Uj

}

is considered and the corresponding quotient space Xj := H∞(Uj )/Jj , j ∈ N. As
it was pointed out above, |μ(z)| is bounded away from zero in some neighbourhood
of the boundary ∂Uj of the set Uj . So, any equivalence class [f ] in the space Xj

that is generated by some function f ∈ H∞(Uj ) coincides with the space
{
f +μg :

g ∈ H∞(Uj )
}
. The quotient norm in this space is defined by

||| [f ] |||∞,j := inf
f∈[f ] ‖f ‖∞,j = inf

g∈H∞(Uj )
sup
z∈Uj

|f (z)+ μ(z)g(z)|.

Remark Note that for every [f ] ∈ Xj there exists f ∈ [f ] such that ||| [f ] |||∞,j =
‖f ‖∞,j . Indeed, given f0 ∈ [f ], we can find a sequence (gn)∞n=1 of functions
from Jj so that ‖f0 + gn‖∞,j → ||| [f ] |||∞,j as n → ∞. From this it follows,
in particular, that, for some M > 0,

‖gn‖∞,j ≤ M for all n ≥ 1 ,

that is, the sequence (gn)∞n=1 is bounded in H∞(Uj ) and, consequently, in H(Uj ).
Then, by Montel’s theorem, there exists a subsequence (gnk )

∞
k=1 which converges

in H(Uj ) to some function g0. This implies, in particular, that g
(l)
0 (λs) = 0 (l =

0, . . . , ks − 1; λs ∈ Uj ). In addition, we have that ‖g0‖∞,j ≤ M , that is, g0 ∈
H∞(Uj ). Thus, g0 ∈ Jj . Putting f = f0 + g0 ∈ [f ], we have for every z ∈ Uj

|f (z)| = lim
k→∞ |f0(z)+ gnk (z)| ≤ lim

k→∞‖f0 + gnk‖∞,j = ||| [f ]|||∞,j .

Hence, ‖f ‖∞,j ≤ ||| [f ]|||∞,j , which implies that ||| [f ]|||∞,j = ‖f ‖∞,j .
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Obviously, dim Xj = ∑
λs∈Uj

ks = mj , j ∈ N. To this end, put X := ∏∞
j=1 Xj

and

k∞ :=
{
ϕ = ([ϕj ]

)∞
j=1 ∈ X | ∃q ∈ (0, 1), ∃l ∈ (0,∞) :

|̃ϕ|ω,q,l = sup
j≥1

||| [ϕj ] |||∞,j

exp
(
qω(Re zj )+ l| Im zj |

) < ∞
}
.

The space k∞ is equipped with its natural inductive topology and, with respect to
this topology, it is a (DFS) one.

In [14, Lemma 7] it was proved that the map ρ : [f ] ∈ H 1
(ω)(C)/J �→([f |Uj ]

)∞
j=1 is a topological isomorphism from H 1

(ω)(C)/J onto k∞. Clearly this

implies that the map ρ̃ : f ∈ H 1
(ω)(C) �→ ([f |Uj ]

)∞
j=1 is a linear continuous

surjective operator from H 1
(ω)(C) onto k∞.

Now we are ready to state the functional criterion for Tμ to have a CLRI.

Theorem 1 Let ω be an arbitrary weight function and Tμ a surjective convolution
operator in E1

(ω)(R) generated by a symbol μ ∈ M̃1
(ω)(C). The following assertions

are equivalent:

(i) Tμ admits a CLRI;
(ii) ker Tμ is complemented in E1

(ω)(R);
(iii) �μ has a continuous linear left inverse operator;
(iv) J = Im �μ is complemented in H 1

(ω)(C);
(v) ρ̃ admits a CLRI.

Note that, further conditions for the existence of a CLRI for operators Tμ that
will be established in the next sections and lead to our main result are based on the
equivalence (i) ⇔ (v).

4 Necessary Conditions

The first step to our main result is to prove necessary conditions in terms of entire
functions.

Theorem 2 Let ω be an arbitrary weight function and Tμ a surjective convolution
operator in E1

(ω)(R) with a symbol μ ∈ M̃1
(ω)(C). If Tμ admits a CLRI, then there

is a family of functions (gs)
∞
s=1 in H 1

(ω)
(C) with gs(λs) = 1, s ∈ N, satisfying the

condition

(A) ∀q ∈ (0, 1), ∀l ∈ (0,∞) ∃q̃ ∈ (0, 1), ∃̃l ∈ (0,∞), ∃C > 0 :
ln |gs(z)| + qω(Re λs)+ l| Im λs | ≤ q̃ω(Re z)+ l̃| Im z| + C , z ∈ C , s ∈ N .

(11)
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Proof Since Tμ has a CLRI, by Theorem 1, ρ̃ also has a CLRI L : k∞ → H 1
(ω)(C).

Let us consider the following elements in the space k∞

ϕj = ([0], . . . , [0], [1]
j

, [0], . . .
)
, j ∈ N .

Obviously, ||| [1]|||∞,j = 1, so that for all q ∈ (0, 1), l ∈ (0,∞), and j ∈ N,

|̃ϕj |ω,q,l = exp
(− qω(Re zj )− l| Im zj |

)
.

Let f j := L(ϕj ), j ∈ N. Then f j ∈ H 1
(ω)(C), j ∈ N, and ρ̃(f l) =([f l|Uj ]

)∞
j=1 = ϕl , l ∈ N. Therefore, [f j |Uj ] = [1], j ∈ N, so that f j (λs) = 1,

λs ∈ Uj .
For each s ∈ N find j ∈ N with λs ∈ Uj and put gs(z) := f j (z), z ∈ C. Hence,

gs(λs) = 1, s ∈ N, and it remains only to check the condition (A).
Fix any q ∈ (0, 1) and l ∈ (0,∞) and choose an arbitrary q1 ∈ (q, 1). By [14,

Lemma 3], there are l1 ∈ (l,∞) (l1 can be written explicitly) and C1 > 0 such that

qω(Re z)+ l| Im z| ≤ q1ω(Re zj )+ l1| Im zj | + C1

for all z ∈ Uj , j ∈ N. Taking there z = λs , we get

qω(Re λs)+ l| Im λs | ≤ q1ω(Re zj )+ l1| Im zj | + C1 . (12)

Next, since k∞ and H 1
(ω)(C) are (DFS)-spaces and L acts continuously from k∞

into H 1
(ω)(C), it follows that, for q1 and l1, we can find q̃ ∈ (0, 1), l̃ ∈ (0,∞), and

C2 > 0 such that

‖Lϕ‖ω,̃q,̃l ≤ C2 · |̃ϕ|ω,q1,l1

for all ϕ ∈ k∞ with |̃ϕ|ω,q1,l1
< ∞. In particular, ‖Lϕj‖ω,̃q,̃l ≤ C2 · |̃ϕj |ω,q1,l1

,
j ∈ N. Thus,

ln |f j (z)| ≤ q̃ω(Re z)+ l̃| Im z|−q1ω(Re zj )− l1| Im zj |+ ln C2 , z ∈ C , j ∈ N .

Taking into account (12), we finally obtain that functions gs satisfy inequality (11)
with C = C1 + ln C2. ��

The next result contains necessary conditions for the existence of a CLRI in the
desired form.

Theorem 3 Let ω be a nonquasianalytic weight and (λs)
∞
s=1, |λs | ↑ ∞, the

sequence of zeros of a function μ ∈ M1
(ω)(C). If μ generates the surjective
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convolution operator Tμ admitting a CLRI, then

lim
s→∞

| Im λs |
ω(Re λs)

= 0 . (13)

Proof By Theorem 2, there is a family of functions (gs)
∞
s=1 in H 1

(ω)(C) with
gs(λs) = 1, s ∈ N, satisfying the condition (A).

Given ε > 0, choose q ∈ (1 − ε, 1) and l ∈ (0,∞). Then we find q1 ∈ (q, 1),
l1 ∈ (l,∞), and C1 > 0 such that

ln |gs(z)| + qω(Re λs)+ l| Im λs | ≤ q1ω(Re z)+ l1| Im z| + C1 (14)

for all z ∈ C and s ∈ N. By the same reason, for q and l1+2, there are q2 ∈ (q1, 1),
l2 ∈ (l1 + 2,∞), and C2 > 0 such that

ln |gs(z)| + qω(Re λs)+ (l1 + 2)| Im λs | ≤ q2ω(Re z)+ l2| Im z| + C2 (15)

for any z ∈ C, s ∈ N. Next, from condition (α) on weight ω it follows that for each
q3 ∈ (q2, 1) there exists C3 > 0 such that

q2ω(x + y) ≤ q3
(
ω(x)+ ω(y)

)+ C3 , x, y ≥ 0 . (16)

Finally, by the properties of the function Pω (see Sect. 2),

Pω(iy) ≤ |y| + C4 , y ∈ R , (17)

for appropriate C4 > 0.
Applying the Phragmèn-Lindelöf principle [16, 6.5.4], we have for all u+iv ∈ C

with v �= 0,

ln |gs(u+ iv)| ≤ |v|
π

∫ ∞

−∞
ln |gs(t)|

(u− t)2 + v2 dt + |v|ds , s ∈ N , (18)

where ds = lim supr→∞ 2
πr

∫ π

0 ln |gs(reiθ )| sin θ dθ .
Consider ds . From (14) it follows that

ln |gs(reiθ )| ≤ q1ω(r cos θ)+ l1r| sin θ | + C1 , r > 0 , θ ∈ [0, 2π) .

Consequently,

2

πr

∫ π

0
ln |gs(reiθ )| sin θ dθ ≤ 4

πr

(
q1ω(r)+ C1

)+ l1 , r > 0 .

Since ω(r)
r
→ 0, r →∞, we get that ds ≤ l1, s ∈ N.
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Now estimate the integral term in (18). By (15), we have

ln |gs(t)| + qω(Re λs)+ (l1 + 2)| Im λs | ≤ q2ω(t) + C2 , t ∈ R .

Using the last inequality and (16), (17), we finally obtain that

|v|
π

∫ ∞

−∞
ln |gs(t)|

(u− t)2 + v2 dt + qω(Re λs)+ (l1 + 2)| Im λs |

≤ q2 · |v|
π

∫ ∞

−∞
ω(t)

(u− t)2 + v2
dt + C2 =

= q2 · 1

π

∫ ∞

−∞
ω(u+ vt)

t2 + 1
dt + C2 ≤ q3 · 2

π

∫ ∞

0

ω(u)+ ω(vt)

t2 + 1
dt + C2 + C3 =

= q3ω(u)+ q3Pω(iv)+ C2 + C3 ≤ q3ω(u)+ |v| + C5 ,

where C5 := C2 + C3 + C4.
Returning to (18), we now get

ln |gs(u+ iv)| ≤ q3ω(u)+ (l1 + 1)|v| + C5 − qω(Re λs)− (l1 + 2)| Im λs |

for each u+ iv ∈ C with v �= 0 and any s ∈ N. Since all functions are continuous,
this estimate holds in C. Taking u + iv = λs , by gs(λs) = 1, s ∈ N, we conclude
that

(q3 − q)ω(Re λs)− | Im λs | + C5 ≥ 0 , s ∈ N .

Here q3 − q < 1− q < ε, so that

| Im λs | ≤ εω(Re λs)+ C5 , s ∈ N .

Since ε > 0 is arbitrary and |λs | ↑ ∞, this completes the proof. ��

5 Sufficient Conditions

Similarly to the previous Sect. 4, sufficient part consists of sufficient conditions in
terms of a special family of subharmonic functions and conditions in terms of the
symbol μ.

We start with an auxiliary lemma. Recall that Xj = H∞(Uj )/Jj is the Banach
space of dimension mj , j ∈ N. Then, by using the Auerbach lemma [17, 10.5], we
can take bases {[ϕjp] : p = 1, . . . , mj } and {νjp : p = 1, . . . , mj } in the spaces Xj
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and X′
j , respectively, having the following properties:

||| [ϕjp]|||∞,j = 1 , ||| νjp|||′∞,j = 1 , p = 1, . . . , mj ;

< [ϕjp], νjm >= δpm =
{

1 , p = m ,

0 , p �= m .

Put

Ejp =
([0], . . . , [0], [ϕjp]

j

, [0], . . .
)
, p = 1, . . . , mj , j ∈ N .

Evidently, Ejp ∈ k∞ and

|̃Ejp|ω,q,l = exp
{− qω(Re zj )− l| Im zj |

}
, q ∈ (0, 1) , l ∈ (0,∞) . (19)

Lemma 2 System {Ejp : p = 1, . . . , mj ; j ∈ N} forms an absolute basis in k∞.
For each x = ([xj ]

)∞
j=1 ∈ k∞, its expansion by this system has the form

x =
∞∑

j=1

mj∑
p=1

< [xj ], νjp > Ejp . (20)

Proof Let x = ([xj ]
)∞
j=1 be an arbitrary element in k∞. Then in Xj

[xj ] =
mj∑

p=1

< [xj ], νjp > ϕjp , j ∈ N .

So it remains only to check that the series (20) converges absolutely in k∞. Find
q ∈ (0, 1) and l ∈ (0,∞) such that |̃x|ω,q,l < ∞. Then

||| [xj ]|||∞,j ≤ |̃x|ω,q,l · exp
{
qω(Re zj )+ l| Im zj |

}

and

| < [xj ], νjp > | ≤ |̃x|ω,q,l · exp
{
qω(Re zj )+ l| Im zj |

}
. (21)

Fix ε > 0 such that q + ε < 1. Using (19) with q + ε instead of q and l + ε instead
of l, we get

∞∑
j=1

mj∑
p=1

| < [xj ], νjp > | · |̃Ejp|ω,q+ε,l+ε
≤ |̃x|ω,q,l

∞∑
j=1

mj

exp
{
εω(Re zj )+ ε| Im zj |

} .
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By [14, Corollary 1 from Lemma 4], the last series converges. This completes the
proof. ��
Theorem 4 Let ω be an arbitrary weight function and Tμ a surjective convolution
operator in E1

(ω)(R) with a symbol μ ∈ M̃1
(ω)(C). Suppose that there is a family

(uj )∞j=1 of subharmonic functions in C with uj

∣∣
Uj

≥ 0, j ∈ N, satisfying the

condition

(B) ∀q ∈ (0, 1) , ∀l ∈ (0,∞) ∃q̃ ∈ (0, 1) , ∃̃l ∈ (0,∞) , ∃C > 0 :
uj (z)+ qω(zj )+ l| Im zj | ≤ q̃ω(z)+ l̃| Im z| + C , z ∈ C , j ∈ N .

Then Tμ admits a CLRI.

Proof By Theorem 1, it is sufficient to construct a continuous linear operator L

from k∞ into H 1
(ω)(C) which is a right inverse for ρ̃. To do this, we first determine

(see item (a) below) elements fjp = LEjp, where {Ejp : p = 1, . . . , mj ; j ∈ N}
is the absolute basis in k∞ from Lemma 2. Then (item (b) in this proof) we continue
operator L on the whole space k∞ in the natural way. Recall that L acts continuously
from k∞ into H 1

(ω)(C) if and only if for each q ∈ (0, 1) and l ∈ (0,∞) there are

q̃ ∈ (0, 1), l̃ ∈ (0,∞), and C > 0 such that ‖Lϕ‖ω,̃q,̃l ≤ C · |̃ϕ|ω,q,l for all ϕ ∈ k∞

with |̃ϕ|ω,q,l < ∞.
(a) Let us now construct functions fjp in H 1

(ω)(C) with ρ̃(fjp) = Ejp, p =
1, . . . , mj , j ∈ N, which norms in H 1

(ω)(C) satisfy some estimates we need in what
follows.

(1) By the Remark in Sect. 3, in each class [ϕjp] there exists a function ϕjp ∈
H∞(Uj ) with ‖ϕjp‖∞,j = ||| [ϕjp]|||∞,j = 1. Then

|ϕjp(z)| ≤ 1 , z ∈ Uj . (22)

Let k ∈ N, jk ≤ j < jk+1. Put Vj = {z ∈ Uj : dist(z, ∂Uj ) ≥ σj }. Recall that
σj are determined by (5). Thus, for all z ∈ Uj \Vj , j ∈ N, we have the estimate (6).
Take an infinitely differentiable function g in R

2 (see, e.g., [18, Theorem 1.4.1 and
estimate (1.4.2)]) such that

g(z) ≡ 1 on
⋃
j

Vj ; supp g ⊂
⋃
j

Uj ; 0 ≤ g(z) ≤ 1 in C ;

∣∣∣∣∂g

∂z
(z)

∣∣∣∣ ≤ C0

σj

, z ∈ Uj \ Vj ,

where C0 is a constant independent of z ∈ Uj \ Vj and j . Hence,

∣∣∣∂g

∂z
(z)

∣∣∣ ≤ C0 exp
{
4εkω(Re z)+ 4L0| Im z|}, z ∈ Uj \ Vj . (23)
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(2) Fix j ∈ N and p : 1 ≤ p ≤ mj . Put

�jp(z) :=
{

ϕjp(z), z ∈ Uj ,

0, z ∈ C \ Uj ; hjp(z) := −�jp(z)

μ(z)
· ∂g

∂z
(z), z ∈ C.

It is clear that hjp(z) = 0 for all z /∈ Uj \ Vj . Since μ has no zeros in Uj \ Vj ,
the function hjp is infinitely differentiable in R

2. Using (22), (6), and (23), for z ∈
Uj \ Vj , we get

|hjp(z)| ≤ C0 exp max
z∈Uj

{
7εkω(Re z)+ 7L0| Im z|} = C0 exp

{
7εkω(Re z̃j )+ 7L0| Im z̃j |

}
.

(24)

Here z̃j is some point in Uj .
Now obtain a special integral estimate for the function hjp . Let q ∈ (0, 1) and

l ∈ (2A+ 21L0,∞) be arbitrary (A is the constant from condition (3)). Put

ψj (z) := uj (z)+ qω(zj )+ l| Im zj | , z ∈ C , j ∈ N ,

where (uj )∞j=1 is a family of subharmonic functions from the assumptions of the
Theorem. Then ψj are subharmonic in C and

ψj (z) ≤ q̃ω(z)+ l̃| Im z| + ln C1 , z ∈ C , j ∈ N , (25)

for some q̃ ∈ (q, 1), l̃ ∈ (l,∞), and C1 > 1. Using (24) and uj

∣∣
Uj
≥ 0, j ∈ N, we

have
∫
C

|hjp(z)|2 exp
{− 2ψj (z)− 2 ln(1+ |z|2)} dλz ≤ C2

0M2D2
j ,

where

M2 :=
∫
C

dλz

(1+ |z|2)2
, D2

j := exp
{
14εkω(Re z̃j )+14L0| Im z̃j |−2qω(zj )−2l| Im zj |

}
.

Applying [19, Theorem 4.4.2], we solve the ∂-problem ∂v
∂z

= hjp and find its

solution vjp ∈ C∞(R2) such that

∫
C

|vjp(z)|2 exp
{− 2ψj(z)− 4 ln(1+ |z|2)} dλz ≤

C2
0M2D2

j

2
. (26)

(3) Consider the functions fjp(z) := vjp(z)μ(z) + �jp(z)g(z), z ∈ C. From
the proof of Lemma 7 in [14] it follows that fjp ∈ H 1

(ω)(C) and ρ̃(fjp) = Ejp,

p = 1, . . . , mj , j ∈ N. Now we improve the estimates for norms of fjp in H 1
(ω)(C)

obtained in [14].
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Obviously,

|fjp(z)|2 ≤ 2
(|vjp(z)|2|μ(z)|2 + |�jp(z)|2), z ∈ C. (27)

Fix any ε ∈ (
0, min

{ 1−q̃
2 , q

})
. Since μ ∈ M̃1

(ω)
(C), there is C2 > 0 such that

|μ(z)| ≤ C2 exp
{
εω(z)+ l0| Im z|} , z ∈ C . (28)

Next, put ψ̃(z) := (̃q + ε)ω(z) + (̃l + l0)| Im z| + 2 ln(1 + |z|2), z ∈ C.
By (28), (25), and (26), we get

∫
C

|vjp(z)|2|μ(z)|2 exp
{− 2ψ̃(z)

}
dλz ≤

≤ C2
2

∫
C

|vjp(z)|2 exp
{− 2q̃ω(z)− 2̃l| Im z| − 4 ln(1+ |z|2)} dλz ≤

≤ C2
1C2

2

∫
C

|vjp(z)|2 exp
{− 2ψj(z)− 4 ln(1+ |z|2} dλz ≤ C2

0C2
1C2

2M2

2
D2

j .

Note now that �jp = 0 for z /∈ Uj and, by (22), |�jp(z)| ≤ 1 for z ∈ Uj ,
p = 1, . . . , mj , j ∈ N. Applying Lemma 3 in [14], we find C3 > 1 such that

(̃q + ε)ω(z)+ (̃l + l0)| Im z| ≥ qω(zj )+ l| Im zj | − ln C3

2
, z ∈ Uj , j ∈ N .

Then
∫
C

|�jp(z)|2 exp
{− 2ψ̃(z)

}
dλz ≤ C2

3M2 exp
{− 2qω(zj )− 2l| Im zj |

} ≤ C3M2D2
j .

Using this and the above integral estimate for |vjp(z)|2|μ(z)|2 in (27), we get

∫
C

|fjp(z)|2 exp
{− 2ψ̃(z)

}
dλz ≤ C2

4D2
j ,

where C2
4 := (C2

0C2
1C2

2 + 2C2
3)M2. Since the function |fjp |2 is subharmonic, we

finally have

|fjp(z)|2 ≤ 1

π

∫
|t−z|≤1

|fjp(t)|2 exp
{− 2ψ̃(t)

}
dλt · exp sup

|t−z|≤1
2ψ̃(t) ≤

≤ C2
4D2

j exp
{
2(q̃ + ε)ω

(|z| + 1
)+ 2(̃l + l0)

(| Im z| + 1
)+ 4 ln

(
1 + (|z| + 1)2)} .
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By the properties of the weight ω, this implies that

|fjp(z)|2 ≤ C2
5D2

j exp
{
2(̃q + 2ε)ω(z)+ 2(̃l + l0)| Im z|} , z ∈ C , (29)

for all p = 1, . . . , mj , j ∈ N, and some C5 ≥ C4 (C5 is independent of j, p and z).
Let us now consider Dj . Take k̃ ∈ N such that 14εk < ε, k ≥ k̃. Using again

Lemma 3 from [14] with q = ε, l = 14L0, and ε, we have that, for L1 = 2A+21L0
and some C6 > 1, the following estimate holds:

εω(Re z)+ 14L0| Im z| ≤ 2εω(Re zj )+ 2L1| Im zj | + ln C6 , z ∈ Uj , j ∈ N .

Consequently,

14εkω(Re z̃j )+ 14L0| Im z̃j | ≤ 2εω(Re zj )+ 2L1| Im zj | + ln C6 , j ≥ j̃k .

This implies that

D2
j ≤ C2

6 exp
{− 2(q − ε)ω(Re zj )− 2(l − L1)| Im zj |

}
, z ∈ C , j ≥ j̃k .

Note that l > 2A+ 21L0 = L1, so l − L1 > 0.
From (29) it now follows that, for all z ∈ C and j ≥ j̃k ,

|fjp(z)|
exp

{
(q̃ + 2ε)ω(z)+ (̃l + l0)| Im z|} ≤ C5C6 exp

{− (q − ε)ω(Re zj )− (l−L1)| Im zj |
}

.

Therefore, ‖fjp‖ω,̃q+2ε,̃l+l0
≤ C5C6 |̃Ejp|ω,q−ε,l−L1

, p = 1, . . . , mj , j ≥ j̃k .
Recall that C5 and C6 are independent of j and p; l0 and L1 are determined by
ω and μ; ε > 0 is arbitrary small.

In fact, we have shown that for each q ∈ (0, 1) and l ∈ (0,∞) there exist
q̃ ∈ (0, 1), l̃ ∈ (0,∞), and C > 0 such that

‖fjp‖ω,̃q,̃l ≤ C |̃Ejp|ω,q,l , p = 1, . . . , mj , j ≥ j̃k . (30)

These are the desired estimates for the norms of fjp .
To complete the item (a) of the proof, put L(Ejp) := fjp .
(b) Continue now operator L onto the whole space k∞. Let x = ([xj ])∞j=1 ∈

k∞ be an arbitrary element in k∞. Then its expansion by the basis {Ejp : p =
1, . . . , mj , j ∈ N} has the form (20). Put

Lx :=
∞∑

j=1

mj∑
p=1

< νj , [xjp] > fjp . (31)
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We claim that this operator is continuous from k∞ to H 1
(ω)(C). Then it is a CLRI for

the operator ρ̃ which completes the proof.
It remains to check our claim. Fix q ∈ (0, 1) and l ∈ (0,∞). If |̃x|ω,q,l < ∞,

then the coefficients of the series (31) satisfy (21). Take any ε ∈ (
0,

1−q
2

)
. By (30),

for q + ε instead of q and l + ε instead of l, there are q̃ ∈ (0, 1), l̃ ∈ (0,∞), and
C > 0 such that ‖fjp‖ω,̃q,̃l ≤ C |̃Ejp|ω,q+ε,l+ε

. Then

∞∑
j=1

mj∑
p=1

∣∣ < νj , [xjp] >
∣∣·‖fjp‖ω,̃q,̃l ≤ C |̃x|ω,q,l

∞∑
j=1

mj

exp
{
εω(Re zj )+ ε| Im zj |

} .

As above, the last series converges. Clearly this implies that L : k∞ → H 1
(ω)(C) is

continuous. ��
Theorem 5 Let ω be a nonquasianalytic weight function and Tμ a surjective
convolution operator in E1

(ω)(R) with a symbol μ ∈ M1
(ω)(C). If the sequence

(zj )∞j=1 generated by μ satisfies condition (7), then there is a family (uj )∞j=1 of

continuous subharmonic functions in C with uj

∣∣
Uj

≥ 0 for all j ∈ N and the

following property

(B̃) ∀q ∈ (0, 1) , ∀l ∈ (0,∞) , ∀q̃ ∈ (q, 1) ∃C > 0 :
uj (z)+ qω(zj )+ l| Im zj | ≤ q̃ω(z)+ | Im z| + C , z ∈ C , j ∈ N .

Proof Using [11, Lemma 1], take a continuous subharmonic function v such that
v(0) = 0 and

v(z) ≤ | Im z| − qω(z)+ C , z ∈ C ,

for each q ∈ (0, 1) and some C = C(q) > 0. Let uj (z) := supt∈Uj
v(z− t), z ∈ C,

j ∈ N. Then uj are continuous and subharmonic in C. Moreover, uj (z) ≥ v(0) = 0
for z ∈ Uj .

Let us show that the family (uj )∞j=1 satisfies the condition (B̃). Fix q ∈ (0, 1)

and l ∈ (0,∞) and choose q1, q2: q < q1 < q2 < 1. Given q2, find C2 > 0 such
that

v(z) ≤ | Im z| − q2ω(z)+ C2 ≤ | Im z| − q2ω(Re z)+ C2 , z ∈ C .

Next, by condition (α) on the weight ω,

q1ω(x + y) ≤ q2
(
ω(x)+ ω(y)

)+ C1 , x, y ≥ 0 ,

for some C1 > 0. This implies that

q2ω(x − y) ≥ q1ω(x)− q2ω(y)− C1 , x, y ≥ 0 .
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Thus, for all z, t ∈ C,

v(z − t) ≤ | Im z− Im t| − q2ω(Re t − Re z)+ C2 ≤
≤ | Im z| + | Im t| − q1ω(Re t)+ q2ω(Re z)+ C1 + C2 . (32)

By Lemma 1, there exists C3 > 0 such that

qω(Re zj )+ l| Im zj | + | Im t| ≤ q1ω(Re t)+ C3 , t ∈ Uj , j ∈ N .

Hence, the estimate (32) can be continued as follows

v(z − t) ≤ q2ω(Re z)+ | Im z| − (
qω(Re zj )− l| Im zj |

)+ C ,

Evidently, this implies that

uj (z)+ qω(Re zj )+ l| Im zj | ≤ q2ω(Re z)+ | Im z| + C , z ∈ C , j ∈ N .

��
Corollary Under the assumptions of Theorem 5, operator Tμ admits a CLRI.

6 The Main Result

In this Section we give a complete description for symbols of convolution opera-
tors Tμ in E1

(ω)(R) admitting a CLRI. To do this, prove the following lemma.

Lemma 3 Let ω be an arbitrary weight function and μ ∈ M̃1
(ω)(C) a symbol

of a surjective convolution operator in E1
(ω)(R). Then conditions (7) and (13) are

equivalent.

Proof (1) Let (7) hold. Then we can find j0 ∈ N such that | Im zj | ≤ 1
8A

ω(Re zj ),
j ≥ j0. Next, it is clear that ω(t) ≤ K0ω

(
t
4

)
, t ≥ t0, for some K0 ≥ 1 and some

t0 > 0. Choose j̃ ≥ j0 such that |Re zj | ≥ t0 for all j ≥ j̃ .
Fix k ∈ N with jk ≥ j̃ . Consider any j ∈ N: jk ≤ j < jk+1. Two situations

are possible. If Uj contains a point zj with | Im zj | ≤ δkω(Re zj ), then, by [14,
Lemma 2],

(1− 12δkA)|Re zj | ≤ |Re λs | , | Im λs | ≤ 13δkω(Re zj ) .

Hence,

| Im λs | ≤ 13δkω
( 1

1− 12δkA
Re λs

)
.
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Obviously, we may assume that l0 ≥ 1. Then δ1 < ε1
64 < 1

64A
and 1 − 12δkA > 1

2 .
This gives that

| Im λs | ≤ 13δkω(2 Re λs) ≤ 26δkK0ω(Re λs) .

Let now | Im z| > δkω(Re z) for all z ∈ Uj . From Lemma 2 in [14], it then
follows that

|Re λs | ≥ |Re zj | − 2| Im λs | , | Im λs | ≤ 3| Im zj | . (33)

By (3), | Im zj | ≤ 1
8A

ω(Re zj ) ≤ 1
8 |Re zj |. Using the second inequality from (33),

we get that | Im λs | ≤ 3
8 |Re zj |. Consequently, by the first inequality in (33),

|Re λs | ≥ 1
4 |Re zj |. Therefore,

| Im λs |
ω(Re λs)

≤ 3| Im zj |
ω( 1

4 Re zj )
≤ 3K0

| Im zj |
ω(Re zj )

.

Thus, in both situations we have that

| Im λs |
ω(Re λs)

≤ max
{

26δkK0, 3K0
| Im zj |

ω(Re zj )

}
.

Since the right-hand side tends to 0 as j →∞ (or k →∞, or s →∞), it follows
that | Im λs |

ω(Re λs)
→ 0, s →∞.

(2) Let now (13) hold. Obviously, it is sufficient to prove condition (7) in case
when | Im z| > δkω(Re z) for all z ∈ Uj . Applying again Lemma 2 from [14], we
get

|Re zj | ≥ |Re λs | − 2| Im zj | , | Im zj | ≤ 3| Im λs | ,

i.e., we swap λs and zj in (33). Arguing further in the same manner as in the previous
item (1), we have

| Im zj |
ω(Re zj )

≤ 3K0
| Im λs |

ω(Re λs)
, j ≥ j̃ .

This completes the proof. ��
Applying Theorem 3, Corollary from Theorem 5, and Lemma 3, we get the main

result of the paper.
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Theorem 6 Let ω be a nonquasianalytic weight, μ ∈ M1
(ω)(C) a symbol of the

surjective convolution operator Tμ in E1
(ω)(R) and (λs)

∞
s=1, |λs | ↑ ∞, the sequence

of zeros of μ. The following assertions are equivalent:

(i) Tμ admits a CLRI;

(ii) lim
s→∞

| Im λs |
ω(Re λs)

= 0 .

In conclusion let us consider some examples.

Example 1 Let ω be a nonquasianalytic weight function such that ln2 t = o
(
ω(t)

)
,

t →∞, and (λn)∞n=1 be an increasing lacunary sequence of positive numbers. This

means that lim infn→∞ λn+1
λn

> 1. Put

μ(z) =
∞∏

n=1

(
1− z2

λ2
n

)
, z ∈ C.

As it follows from [14, Example 1], μ generates in E1
(ω)(R) a surjective convo-

lution operator Tμ which is a differential operator of infinite order with constant
coefficients. More exactly, if μ(z) is represented by the Taylor series μ(z) =∑∞

k=0 ak(−i)kzk , then Tμf = ∑∞
k=0 akf (k), f ∈ E1

(ω)(R). Since all zeros of μ

are real, Tμ has a CLRI. In other words, differential equation
∑∞

k=0 akf (k) = g

has always a solution f ∈ E1
(ω)(R) which depends linearly and continuously on the

right-hand side g ∈ E1
(ω)

(R) of the equation.

Example 2 (see [14, Example 2]) Let ω be an arbitrary nonquasianalytic weight
and μ(z) = sin z, z ∈ C. Then μ generates in E1

(ω)(R) a surjective difference

operator (Tμf )(x) = 1
2i

(
f (x + 1) − f (x − 1)

)
. Obviously, condition (13) holds,

so Tμ has a CLRI. This means that for each g ∈ E1
(ω)(R), difference equation

f (x + 1) − f (x − 1) = g(x) has a solution f ∈ E1
(ω)(R) depending linearly and

continuously on g.

Example 3 Let ω(t) = tρ(t), where ρ(t) → ρ ∈ (0, 1) is some proximate order.
Suppose that (λs)

∞
s=1, |λs | ↑ ∞, is a sequence of complex numbers satisfying the

condition lims→∞ s

|λs |ρ(|λs |) = 0 and the condition (C′) (see [20, Section II, §1,
p. 95]), that is, the points λs lie inside angles with a common vertex at the origin
and no other points in common; moreover, if we arrange the points of (λs) inside
any of these angles in the order of increasing of their moduli, then for the points that
are inside the same angle we have |λk+1|− |λk| > d|λk|1−ρ(|λk |) for some d > 0. In

[14, Remark 4] it was shown that the function μ(z) = ∏∞
s=1

(
1 − z

λs

)
is a symbol

of the surjective convolution operator Tμ in E1
(ω)(R). Note, that, as in Example 1, Tμ

is a differential operator of infinite order with constant coefficients. It is clear that
Tμ has no a CLRI, if there are α, β such that 0 < α < β < π or π < α < β < 2π

and such that the angle α ≤ arg z ≤ β contains the infinite set of zeros λs of μ. In
particular, Tμ has no a CLRI when all points λs are imaginary, i.e. λs = ±i|λs |.
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Long Wavelength Asymptotics
of Self-Oscillations of Viscous
Incompressible Fluid

S. V. Revina

Abstract We obtain the long wavelength asymptotics of a secondary regime
formed at stability loss of a stationary spatially periodic shear flow with non-zero
average as one of the spatial periods tends to infinity (the wave number vanishes). It
is known that if certain non-degeneracy conditions are satisfied, then from the basic
solution a self-oscillatory regime branches. Recurrence formulas for kth term of
the asymptotics of this secondary solution are obtained. To study the bifurcations
of basic flow we obtain the scheme of Lyapunov-Schmidt method proposed by
V.I. Yudovich. At each step of the Lyapunov-Schmidt method series expansion in
the small parameter α is applied.

Keywords Stability of two-dimensional viscous flows · Kolmogorov flow · Long
wavelength asymptotics
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1 Introduction

Spatial-periodic flows of a viscous fluid are widely used in mathematical modelling
of various physical processes. On the one hand, the condition of the periodicity
of the flow velocity allows one to obtain explicit analytical representations of
space-time structures. On the other hand, such flows can be realized in physical
experiments.

In this paper we consider the two-dimensional (x = (x1, x2) ∈ R
2) viscous

incompressible flow driven by an external forces field F (x, t) that is periodic in x1

S. V. Revina (�)
Southern Federal University, Rostov-on-Don, Russian Federation

Southern Mathematical Institute of the Vladikavkaz Scientific Centre of the Russian Academy
of Sciences, Vladikavkaz, Russian Federation
e-mail: svrevina@sfedu.ru

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
A. G. Kusraev, Z. D. Totieva (eds.), Operator Theory and Differential Equations,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-49763-7_15

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49763-7_15&domain=pdf
mailto:svrevina@sfedu.ru
https://doi.org/10.1007/978-3-030-49763-7_15


186 S. V. Revina

and x2 with periods 	1 and 	2, respectively. The flow is described by the Navier-
Stokes equations:

∂v

∂t
+ (v,∇)v − ν�v = −∇p + F (x, t), div v = 0, (1.1)

where ν = 1/Re is the kinematic viscosity and Re is the Reynolds number. The
period 	1 = 2π , and the ratio of the periods is characterized by the wave number
α: 	2 = 2π/α, α → 0. Let 〈f 〉 denote the average with respect to x1, while 〈〈f 〉〉
denote the average over the period rectangle � = [0, 	1] × [0, 	2]:

〈f 〉 = 1

	1

	1∫

0

f (x, t) dx1, 〈〈f 〉〉(t) = 1

|�|
∫

�

f (x, t) dx1 dx2,

The spatial average velocity is assumed to be given:

〈〈v〉〉 = q. (1.2)

Assume that the velocity field v is periodic in x1 and x2 with the same periods 	1
and 	2 as the external force field.

If F = (0, νF (x1)) and q = (0, q), the unique stationary shear flow V =
(0, V (x1)) can be found as the solution of the problem

−V ′′ = F(x1)− 〈F 〉, 〈V 〉 = q.

The class of such solutions includes the Kolmogorov flow [1]:

V = (0, γ sin(x1)). (1.3)

In [2] the stability of Kolmogorov flow was analyzed using continuous fractions.
In [3] it was proved that, for α � 1, the Kolmogorov flow is a globally stable and
unique, while, for any α < 1 and sufficiently small ν, new stationary solutions
bifurcate from solution (1.3). In [4] the uniqueness and stability results for short-
wave perturbations of the Kolmogorov flow were extended to an unbounded periodic
channel with rigid walls. It was proved in [5] that, for α � 1, the Kolmogorov flow
in a channel with rigid walls remains stable for all Reynolds numbers.

Many modern studies are devoted to the Kolmogorov flow and its various
generalizations. An overview of some of them is given in [6].

In this paper, we are interested in bifurcations of a stationary solution of
system (1.1)–(1.2) of a general form

V = (0, V (x1)) 〈V 〉 �= 0, (1.4)

which is called the basic flow.
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It is known that for sufficiently large viscosity values (small Reynolds numbers),
the stability spectrum lies strictly in the left half-plane of the complex plane and the
basic flow is stable. The loss of stability of steady flow (1.4) is characterized by the
fact that, as a parameter ν varies, the eigenvalues of linear spectral problem pass
from the left to the right half of the complex plane. Critical value is the value of the
parameter ν = νc, in which one or more eigenvalues of the linear spectral problem
cross the imaginary axis. There are two types of stability loss. In the absence of
additional degeneracies at the critical value of the parameter, either a pair of purely
imaginary complex conjugate eigenvalues appears, or the eigenvalue passes through
zero. In the first case the stability loss is oscillatory. In the second case the stability
loss is monotone.

For the first time, a long-wavelength asymptotic expansion for the problem of
stability of general flow (1.4) was constructed in [7]. It was shown in [8] that,
for 〈V 〉 �= 0, a self-oscillation mode bifurcates from (1.4) and the first terms of
asymptotics were found in terms of the stream function. The linear stability of three-
dimensional flows was considered in [9]. In the case when the Reynolds number
passes the critical value found in [9], the leading terms of the asymptotics in a self-
oscillation mode bifurcating from the basic flow were explicitly constructed in [10].

In [11] the leading terms of the asymptotics of secondary modes for basic flow
of the form

V = (αV1, V2)(x) (1.5)

were found but general rules in coefficients expressions were not obtained.
In [12] recurrence formulas for finding the kth term of the long wavelength

asymptotics for the stability of steady shear flows were derived in the case of
nonzero average corresponding to oscillatory loss of stability. The coefficients of
the expansions are explicitly expressed in terms of some Wronskians, as well as
integral operators of Volterra type. It is shown that the eigenvalues of the linear
spectral problem are odd functions of the parameter α, and the critical viscosity is
an even function. In the particular case, when the deviation of the velocity from its
mean value V (x) − 〈V 〉 is an odd function of x, the coefficients of expansion of
the eigenvalues in series in powers of α, starting from the third, are zero and the
eigenvalues can be found exactly: σ1,2 = ±im〈V 〉α, m �= 0.

Long-wave asymptotics of linear adjoint problem in two-dimensional case is
under consideration in [13]. Recurrence formulas for kth term of the velocity and
pressure asymptotics are obtained. The relations between coefficients of linear
adjoint problem and linear spectral problem are obtained.

In [14], recurrence formulas for finding the kth term of the long-wave asymp-
totics for the linear stability problem of two-dimensional basic shear flows of a
viscous incompressible fluid with zero average are derived. It was proved that, if
〈V 〉 = 0 and the basic velocity profile is odd, as in the case of Kolmogorov flow,
then the loss of stability is monotone.

In [15] the results [12] related to shear flows (1.4) are generalized to the case of
flows close to shear (1.4) with 〈V 〉 �= 0. In [15] the first terms of the long-wavelength
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asymptotics are found. The coefficients of the asymptotic expansions are explicitly
expressed in terms of some Wronskians and integral operators of Volterra type, as
in the case of shear basic flow. The structure of eigenvalues and eigenfunctions for
the first terms of asymptotics is identified, a comparison with the case of shear flow
is made.

The aim of this paper is to obtain the recurrence formulas for finding the kth term
of the self-oscillations bifurcating from the basic flow (1.4). The results obtained can
be used to derive the kth term of the secondary regime branching from shear flow
with zero average, which generalizes Kolmogorov flow, and from almost-periodic
shear flow.

Let S2 be the closure in L2(�) of the set of smooth solenoidal vector functions
periodic in the spatial variables x1, x2 with periods 	1 and 	2 respectively, � is
the orthogonal projector in L2(�) onto the subspace S2 (hydrodynamic projector).
Linearizing the Navier-Stokes equations on the main flow (1.4), we obtain a linear
spectral problem in S2:

A(νc)ϕ + iω0ϕ = 0, A(ν)ϕ = −ν��ϕ +�

[
ϕ1V ′(x1)e2 + V (x1)

∂ϕ

∂x2

]
,

(1.6)

here e1, e2 are coordinate unit vectors.
To study the bifurcations of the basic flow, we apply the scheme of the Lyapunov-

Schmidt method proposed by V. I. Yudovich [16, 17]. First we consider the linear
spectral problem (1.6), at the second step we find the eigenvectors of the linear
adjoint problem

A∗(νc)�− iω0� = 0, A∗(ν)� = −�

⎡
⎣ν�� − V (x1)

2∑
j=1

(
∂�j

∂x2
+ ∂�2

∂xj

)
ej

⎤
⎦ .

(1.7)

where A∗ is the Hilbert conjugate to the operator A in S2. In this paper, at each
step of the Lyapunov-Schmidt method, series expansion in the small parameter α is
applied.

Assuming for any solution of the Navier-Stokes equations (1.1)

v = u+ V ,

we arrive at the nonlinear perturbation equation in the space S2:

du

dt
+ A(ν)u = K(u, u),

here K(u, u) = −�(u,∇)u. We denote supercriticality by ε2 = νc − ν, in the
perturbation equation we replace τ = ωt , where ω is the unknown cyclic frequency,
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velocity and pressure perturbations (u, P ) and the frequency ω we will look for in
the form of series in powers of the parameter ε:

u =
∞∑

k=1

εkuk, P =
∞∑

k=1

εkPk, ω =
∞∑

k=1

εkωk (1.8)

Then the velocity perturbation in the first order in ε has the form

u1 = η(ϕeiτ + ϕe−iτ ), (1.9)

where overline denotes complex conjugate, ϕ is a solution to the linear spectral
problem and is found in [12], the amplitude η is determined from the solvability
condition of the perturbation equation at ε3. The velocity perturbation at ε2 has the
following structure

u2 = η2(w + vei2τ + ve−i2τ ), (1.10)

where w and v are solutions of linear inhomogeneous equations in S2

Aw = K(ϕ, ϕ)+K(ϕ, ϕ), 2iω0v + Av = K(ϕ, ϕ) (1.11)

Let H denote the subspace of functions f ∈ L2(0, 	1) that are orthogonal to
unity: 〈f 〉 = 0. The operator I : H → H is the inverse of the differentiation
operator and is completely continuous:

If =
x∫

0

f (s)ds −
〈 x∫

0

f (s)ds

〉
(1.12)

Let Wx(f, g) and Wz(f, g) denote the Wronskians of functions f (x, z) and g(x, z)

in x and z respectively:

Wx(f, g) = f
∂g

∂x
− g

∂f

∂x
, Wz(f, g) = f

∂g

∂z
− g

∂f

∂z
,

the auxiliary function θ characterizes the deviation of the second component of
velocity from its average value:

d2θ

dx2
= V − 〈V 〉, 〈θ〉 = 0.
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The deviation of a periodic function from its period-average value is denoted by
curly brackets:

{F } = F(x)− 〈F 〉.

We present some results [12] related to the linear spectral problem (1.6) that will
be used in this paper.

The components of solution of (1.6) ϕ and P(x, z) are sought in the form of
asymptotics series in powers of parameter α:

ϕ =
∞∑

k=0

ϕkαk, P =
∞∑

k=0

P kαk. (1.13)

The eigenvalues σ = iω0 and critical viscosity νc are also represented in the form
of series

σ(α) =
∞∑

k=0

σkαk, νc = ν∗ +
∞∑

k=1

νkαk. (1.14)

Then

ϕ0
1 = e−imz, ϕ0

2 =
1

ν∗
ϕ0

1(z)
dθ

dx
= 1

ν∗
ϕ0

1(z)a0(x), a0(x) = dθ

dx
, (1.15)

σ0 = 0 and σ1 = im〈V 〉, where m �= 0 is the wave number.
Substituting expansions (1.13) and (1.14) into (1.6) and equating the coefficients

of αk , k � 1, yields a system for finding kth term of the asymptotics of linear
spectral problem:

ν∗
∂2ϕk

1

∂x2 = ∂P k

∂x
+

k∑
j=1

σj ϕ
k−j

1 + V
∂ϕk−1

1

∂z
−

k−1∑
j=1

νj

∂2ϕ
k−j

1

∂x2 −
k−2∑
j=0

νj

∂2ϕ
k−2−j

1

∂z2 , (1.16)

ν∗
∂2ϕk

2

∂x2 = ∂P k−1

∂z
+

k∑
j=1

σj ϕ
k−j

2 + V
∂ϕk−1

2

∂z
−

k∑
j=1

νj

∂2ϕ
k−j

2

∂x2 −

−
k−2∑
j=0

νj

∂2ϕ
k−2−j

2

∂z2 + ϕk
1

dV

dx
, (1.17)

∂ϕk
1

∂x
+ ∂ϕk−1

2

∂z
= 0, 〈ϕk

2〉 = 0,

2π∫

0

ϕk
1 dz = 0. (1.18)
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Here, the sum is assumed to extend over those values of j for which the upper
boundary in the sum is not smaller then the lower one.

As a result, we obtain recurrence formulas [12].

Theorem For shear basic flow with non-zero average (1.4) the critical eigenvalues
are odd functions of wave number α, while the critical values of viscosity are even
functions and

σ2j+1 = (−1)j im2j+1

ν
2j+2∗

〈θ ′a2j−1〉, ν2j = (−1)j m2j

ν
2j+1∗

〈θ ′a2j 〉,

here ak are the coefficients of expansions of ϕk:

ϕk
1 = − 1

νk∗
dkϕ0

1

dzk
I (ak−1(θ))− νk−1

ν∗
ϕ1

1 (1.19)

P k = 1

νk−1∗

dkϕ0
1

dzk
qk(θ)− νk−2

ν∗
{P 2} + 〈P k〉 (1.20)

ϕk
2 =

1

νk+1∗
dkϕ0

1

dzk
ak(θ)− νk

ν∗
ϕ0

2 (1.21)

where ak , qk are expressed in terms of aj and qj for j � k − 1. The term with νk−2
in the expression for P k appears for even k � 4.

The explicit formulas for coefficients ak and qk were found in [12].

2 Recurrence Formulas for Asymptotics of w

The first Eq. (1.11) for finding w has a form:

−ν

(
∂2w1

∂x2 + α2 ∂2w1

∂z2

)
+ αV

∂w1

∂z
= −∂Q

∂x
+

+α
(
Wz(ϕ1, ϕ2)+Wz(ϕ1, ϕ2)

)
, (2.1)

−ν

(
w2ϕ2

∂x2 + α2 ∂2w2

∂z2

)
+ αV

∂w2

∂z
+w1

∂V

∂x
= −α

∂Q

∂z
−

−
(
Wx(ϕ1, ϕ2)+Wx(ϕ1, ϕ2)

)
, (2.2)

∂w1

∂x
+ α

∂w2

∂z
= 0, (2.3)

〈w2〉 = 0,

2π∫

0

w1 dz = 0. (2.4)
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We will seek the unknown components of the velocity and the pressure in the form
of series of powers of the parameter α:

w =
∞∑

k=0

wkαk, Q =
∞∑

k=0

Qkαk. (2.5)

2.1 First Terms of the Asymptotic Expansion of w

We substitute (2.5) in (2.1)–(2.4) and equate the coefficients with the same powers
of α. Up to α0 from the continuity equation (2.3) we deduce that w0

1 is a function of
only z: w0

1 = w0
1(z). Then from (2.1) Q0 = Q0(z).

Substituting the explicit expressions for ϕ0
1 and ϕ0

2 into (2.2), we obtain

ν∗
∂2w0

2

∂x2 = w0
1
∂V

∂x
+ 2

ν∗
θ ′′(x)

Using the integral operator I , we find the solution of this equation:

w0
2(x, z) = 1

ν∗
w0

1(z)a0(x)+ 2

ν2∗
A0(x); A0(x) = θ(x). (2.6)

Averaging Eq. (2.1) and equating the coefficients up to α1, we obtain the
equation:

〈V 〉dw0
1

dz
= 0. (2.7)

From (2.1) and the assumption 〈V 〉 �= 0 we find w0
1(z) = const . Taking into

account (2.4) we find

w0
1(z) = 0. (2.8)

After substitution (2.8) into (2.6) we conclude that w0
2 is a function of only x:

w0
2(x) = 2

ν2∗
θ(x) = 2

ν2∗
A0(x); A0(x) = θ(x). (2.9)

Hence from continuity equation (2.1) we obtain that w1
1 = w1

1(z) and its mean value
over period is zero.

In the particular case when θ(x) is an odd function (as for the Kolmogorov flow),
w0

2(x) is also an odd function.
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For k = 1 Eq. (2.1) takes a form:

∂Q1

∂x
= 0,

hence Q1 = Q1(z).
From (2.2) and (2.4) we obtain the problem for finding w1

2:

− ν∗
∂2w1

2

∂x2
= −w1

1
∂V

∂x
− dQ0

∂z
; 〈w1

2〉 = 0. (2.10)

From the solvability condition of this equation it follows that Q0 = const , and w1
2

is found by the formula

w1
2 =

1

ν∗
w1

1(z)
dθ

dx
. (2.11)

2.2 kth Term of w

For αk and odd k from (2.1)–(2.4) we derive the equations:

−ν∗
∂2wk

1

∂x2 + V (x)
dwk−1

1

dz
= − ∂Qk

∂x
+

k−1∑
j=0

[Wz(ϕ
j
1 , ϕ

k−1−j
2 )+Wz(ϕ

j
1 , ϕ

k−1−j
2 )], (2.12)

−ν∗
∂2wk

2

∂x2
+ wk

1(z)
dV

dx
= − ∂〈Qk−1〉

∂z
−

k∑
j=0

[W(ϕ
j

1 , ϕ
k−j

2 )+W(ϕ
j

1 , ϕ
k−j

2 )], (2.13)

∂wk
1

∂x
+ ∂wk−1

2

∂z
= 0, (2.14)

〈wk
2〉 = 0,

2π∫

0

wk
1 dz = 0. (2.15)

Since the Wronskians on the right-hand sides of the Eqs. (2.12)–(2.15) contain
an odd number of derivatives with respect to z, they are purely imaginary and,
therefore, together with their complex conjugates give zero. In the expression Qk−1,
only the average depends on z. Therefore, Eqs. (2.12)–(2.13) take the form:

−ν∗
∂2wk

1

∂x2 + V (x)
dwk−1

1

dz
= −∂Qk

∂x
, (2.16)

−ν∗
∂2wk

2

∂x2 +wk
1(z)

dV

dx
= −d〈Qk−1〉

dz
(2.17)
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Averaging the first equation of the system (2.16) over the variable x, we arrive at the
equality:

〈V 〉dwk−1
1

dz
= 0. (2.18)

Hence, from 〈V 〉 �= 0, it follows that wk−1
1 (z) = const . Given the fact that the

average of this constant is equal to zero, we arrive at the equality,

wk−1
1 (z) = 0. (2.19)

Substituting (2.19) into (2.14), we obtain that wk−1
2 depends only on x:

wk−1
2 = −

k−1∑
j=2

νj

ν∗
w

k−1−j

2 +

+ 1

ν∗

k−1∑
j=0

I 2
[
{W(ϕ

j

1 , ϕ
k−1−j

2 )} + {W(ϕ
j

1 , ϕ
k−1−j

2 )}
]

. (2.20)

Then from the continuity equation (2.14) and Eq. (2.15) it follows that wk
1 = wk

1(z)

and has zero period average. This implies, in particular, that Eq. (2.16) takes the
form

∂Qk

∂x
= 0

and Qk = Qk(z).
In the particular case of an odd velocity profile (θ(x) is odd), it follows from the

formula (2.20) that wk−1
2 is also odd. Indeed, in the previous steps it was shown that

the first term is odd. In the second term, both arguments of each Wronskian have
the same parity (since k − 1 is even), therefore, all Wronskians are odd in x. Since
the integral operator I is applied to Wronskian twice, the result is that the oddness
will be preserved.

Equation (2.17) takes the form:

ν∗
∂2wk

2

∂x2 = wk
1
dV

dx
+ d〈Qk−1〉

dz
, 〈wk

2〉 = 0. (2.21)

From the solvability condition of (2.21) it follows that 〈Qk−1〉 = 0. Therefore, for
odd k the second component of the stationary solution wk

2 has the form:

wk
2 =

1

ν∗
wk

1(z)
dθ

dx
. (2.22)
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For αk and even k we derive the equalities:

−ν∗
∂2wk

1

∂x2 + V (x)
dwk−1

1

dz
= −∂Qk

∂x
+ 2Wz(ϕ

0
1 , ϕk−1

2 )+

+2Wz(ϕ
k
2
1 , ϕ

k
2−1
2 )+ 2

k
2−1∑
j=1

[Wz(ϕ
j
1 , ϕ

k−1−j
2 )+Wz(ϕ

k−j
1 , ϕ

j−1
2 )] (2.23)

−ν∗
∂2wk

2

∂x2
+ V (x)

∂wk−1
2

∂z
+ wk

1(z)
dV

dx
= −dQk−1

dz
−

k∑
j=2

νj

d2w
k−j
2

dx2
−

−2W(ϕ0
1, ϕk

2)− 2

k
2∑

j=1

[W(ϕ
j
1 , ϕ

k−j
2 )+W(ϕ

k−j+1
1 , ϕ

j−1
2 )]. (2.24)

As in the case of odd k, we arrive at the equalities wk−1
1 (z) = 0, wk−1

2 = 0. Then it
follows from the continuity equation that wk

1 = wk
1(z). From (2.23)we find Qk :

Qk = 2I {Wz(ϕ
0
1, ϕk−1

2 )} + 2I {Wz(ϕ
k
2
1 , ϕ

k
2−1
2 )} +

+2

k
2−1∑
j=1

I {Wz(ϕ
j

1 , ϕ
k−1−j

2 )+Wz(ϕ
k−j

1 , ϕ
j−1
2 )} + 〈Qk〉. (2.25)

In the particular case of an odd velocity profile (θ(x) is odd), it follows from the
formula (2.25) that Qk is even. Indeed, since k−1 is odd, and the Wronskians on the
right-hand side of the equality (2.25) are taken over the variable z, all Wronskians
are odd in x. A single application of the integral operator I changes the parity.

From the second equation of the system we find wk
2: From here we find wk

2:

wk
2 =

1

ν∗
wk

1(z)
dθ

dx
+

k∑
j=2

νj

ν∗
w

k−j
2 + 2

ν∗
I 2{W(ϕ0

1 , ϕk
2)} +

+ 2

ν∗

k
2∑

j=1

I 2{W(ϕ
j

1 , ϕ
k−j

2 )+W(ϕ
k−j+1
1 , ϕ

j−1
2 )}, (2.26)

Thus, the kth term of the nonlinear correction of the velocity perturbation is
found that satisfies the first Eq. (1.11).
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3 Recurrence Formulas for Asymptotics of v

The second Eq. (1.11) for finding v has a form:

2σv1 − ν

(
∂2v1

∂x2
+ α2 ∂2v1

∂z2

)
+ αV

∂v1

∂z
= −∂P

∂x
+ αWz(ϕ1, ϕ2), (3.1)

2σv2 − ν

(
∂2v2

∂x2 + α2 ∂2v2

∂z2

)
+ αV

∂v2

∂z
+ v1

∂V

∂x
= −α

∂P

∂z
−Wx(ϕ1, ϕ2), (3.2)

∂v1

∂x
+ α

∂v2

∂z
= 0, (3.3)

〈v2〉 = 0,

2π∫

0

v1 dz = 0. (3.4)

We will seek the unknown components of the velocity and the pressure in the
form of a series of powers of the parameter α:

v =
∞∑

k=0

vkαk, P =
∞∑

k=0

P kαk. (3.5)

3.1 First Terms of the Asymptotic Expansion of v

Up to α0 from the continuity equation (3.3) we deduce that v0
1 is a function of only

z: v0
1 = v0

1(z). Then from (3.1) P 0 = P 0(z).
Substituting the explicit expressions for ϕ0

1 and ϕ0
2 into (3.2), we obtain

ν∗
∂2v0

2

∂x2 = v0
1
dV

dx
+W(ϕ0

1 , ϕ0
2)

Since the average of the right-hand side of this equation is zero, the solvability
condition is satisfied. We find a solution

v0
2(x, z) = 1

ν∗
v0

1(z)a0(x)+ 1

ν2∗
(ϕ0

1(z))2A0(x), A0(x) = Ia0 = θ(x). (3.6)

In the particular case when θ(x) is odd, the first term containing a0(x) is even in
x, and the second term containing A0(x) is odd in x. Thus, the function v0

2(x, z)

is not even or odd in x, but in z, as will be shown below, both terms behave
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identically. The first term is a solution to a homogeneous equation, and the second
is a heterogeneous one.

We also note that both terms on the right-hand side of Eq. (3.6) have the same
structure as ϕ0

2 in solving the linear spectral problem.
The following notation is used below. If a function f is expressed as a linear

combination of ϕ0
1 and its derivatives with coefficients ak(x) depending on x, then

f (〈ϕk
1 〉) (or f (v0

1(z))) denotes the expression for f with ϕ0
1 replaced by 〈ϕk

1〉 (or
v0

1(z)). Similarly, f̃ (〈ϕk
1〉) (or f̃ ((ϕ0

2)2)) denotes the expression for f with the same
property and, in addition, ak(x) replaced by Ak(x) and

f̃ = 1

ν∗
f.

Using this notation, we rewrite Eq. (3.6):

v0
2(x, z) = ϕ0

2(v0
1(z))+ ϕ̃0

2((ϕ0
1(z))2). (3.7)

We average the first Eq. (3.1):

2σ 〈v1〉 − να2 d2

dz2 〈v1〉 + α
d

dz
〈V (x)v1〉 = α〈Wz(ϕ1, ϕ2)〉. (3.8)

From the equality to zero of the Wronskian average the equation for α1 has the
form:

2σ1v0
1(z)+ d

dz
〈V (x)v0

1(z)〉 = 0. (3.9)

or

〈V 〉
[

2imv0
1(z)+ dv0

1

dz

]
= 0. (3.10)

Hence

v0
1(z) = C0

1e−2imz = C0
1 (ϕ0

1(z))2. (3.11)

If 〈θ ′a1〉 �= 0, then we find C0
1 from the solvability condition of the averaged

Eq. (3.8) for α3

C0
1 = − 4〈θ ′A1〉

3ν∗〈θ ′a1〉 (3.12)

If 〈θ ′a1〉 = 0, then expansion in powers of α is needed, starting from degree −1.
This case is not considered in this paper.
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Similarly, the averaged equation for α2 has the form:

〈V 〉
[

2im〈v1
1〉 +

d〈v1
1〉

dz

]
= ν∗

d2v0
1

dz2 − d2

dz2 〈θ ′v0
2〉. (3.13)

Since the right side of this equation is zero, then

〈v1
1〉 = C1

1e−2imz = C1
1 (ϕ0

1(z))2. (3.14)

If 〈θ ′a1〉 �= 0, then we find C1
1 from the solvability condition of the averaged

Eq. (3.8) for α4:

C1
1 =

i

3〈θ ′a1〉

(
6〈θ ′a2〉C0

1 m

ν∗
+ 8〈θ ′A2〉m

ν2∗

)
(3.15)

Note, that the constant C0
1 is real and the constant C1

1 is purely imaginary.

3.2 kth Term of v

Up to αk , k � 1, from (3.1)–(3.4) we derive the following system of equations:

2
k∑

j=1

σj v
k−j
1 −

k−1∑
j=0

νj

∂2v
k−j

1

∂x2 −
k−2∑
j=0

νj

∂2v
k−2−j

1

∂z2 +

+V (x)
∂vk−1

1

∂z
= −∂P k

∂x
, (3.16)

2
k∑

j=1

σj v
k−j
2 −

k∑
j=0

νj

∂2v
k−j

2

∂x2 −
k−2∑
j=0

νj

∂2v
k−2−j

2

∂z2 +

+V (x)
∂vk−1

2

∂z
+ vk

1
dV

dx
= −∂P k−1

∂z
−

k∑
j=0

Wx(ϕ
j

1 , ϕ
k−j

2 ), (3.17)

∂vk
1

∂x
+ ∂vk−1

2

∂z
= 0, (3.18)

〈vk
2〉 = 0,

2π∫

0

vk
1 dz = 0. (3.19)
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Taking into account the equalities σ1 = im〈V 〉 and σ2 = 0, we average
Eq. (3.16):

〈V 〉
[

2im〈vk−1
1 〉 + d〈vk−1

1 〉
dz

]
= −2

k∑
j=3

σj 〈vk−j
1 〉 −

− d2

dz2 〈θ ′vk−2
2 〉 +

k−2∑
j=0

νj

d2〈vk−2−j

1 〉
dz2 (3.20)

Carrying out the proofs as shown above, we obtain that, for k � 6 the coefficients
of the expansions in powers of α have the following structure:

vk
1 = ϕk

1(v0
1(z))+ ϕ̃k

1((ϕ0
1)2)+

k−1∑
j=1

ϕ
j
1 (〈vk−j

1 〉)+ 〈vk
1 〉 (3.21)

P k = P k(v0
1(z))+ P̃ k((ϕ0

1)2)+
k−1∑
j=1

P j (〈vk−j

1 〉)+ 〈P k〉 (3.22)

vk
2 = ϕk

2(v0
1(z))+ ϕ̃k

2((ϕ0
1)2)+

k−1∑
j=0

ϕ
j

2 (〈vk−j

1 〉) (3.23)

Here

ϕk
1(v0

1(z)) = − 1

νk∗
dkv0

1

dzk
I (ãk−1)− νk−1

ν∗
ϕ1

1(v0
1(z)) = ϕ̂k

1 −
νk−1

ν∗
ϕ1

1 (3.24)

P k(v0
1(z)) = 1

νk−1∗

dkv0
1

dzk
q̃k(θ)− νk−2

ν∗
{P 2} + 〈P k〉 (3.25)

ϕk
2(v0

1(z)) = 1

νk+1∗

dkv0
1

dzk
ãk(θ)− νk

ν∗
ϕ0

2(v0
1(z)) = ϕ̂k

2 −
νk

ν∗
ϕ0

2 (3.26)

The formulas (3.24)–(3.26) have the same structure as in solving the linear
spectral problem (1.19)–(1.21), but the equations for finding the coefficients ãk

and q̃k, in contrast to ak and qk , include 2σj instead of σj . At the same time, for
0 � j � 2 we have the equalities

ãj = aj , q̃j = qj . (3.27)

Expressions ϕ
j
m(〈vk−j

1 〉) and P j (〈vk−j
1 〉) in (3.21)–(3.23) have the same form

as (3.24)–(3.26), but in (3.24)–(3.26) it is necessary to substitute 〈vk−j
1 〉 instead of

v0
1(z).
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Similarly,

ϕ̃k
1((ϕ0

1)2) = − 1

νk∗
dk((ϕ0

1)2)

dzk
I (Ak−1)− νk−1

ν∗
ϕ̃1

1((ϕ0
1)2) (3.28)

P̃ k((ϕ0
1)2) = 1

νk−1∗

dk((ϕ0
1)2)

dzk
Qk(θ)− νk−2

ν∗
{P 2} + 〈P̃ k〉 (3.29)

ϕ̃k
2((ϕ0

1)2) = 1

νk+1∗
dk((ϕ0

1)2)

dzk
Ak(θ)− νk

ν∗
ϕ̃0

2((ϕ0
1)2) = ̂̃

ϕk
2 −

νk

ν∗
ϕ̃0

2 (3.30)

Below there are more detailed expressions for the coefficients of the expansion
of the eigenfunctions in powers of α for even k, which were derived for of k � 6:

ϕ̃k
1((ϕ0

1)2) = − 1

νk∗
dk(ϕ0

1)2

dzk
I (Bk−1(θ))−

k−4∑
j=2

νj

ν∗
˜
ϕ

k−j

1 − 2νk−2

ν∗
ϕ̃2

1 −

−
k−4∑
j=2

νj

ν∗
I 2 ∂2 ˜

ϕ
k−2−j
1

∂z2
+ 2

k−1∑
j=3

σj

ν∗
I 2(

˜
ϕ

k−j

1 ) (3.31)

ϕ̃k
2((ϕ0

1)2) = − 1

νk+1∗

dk(ϕ0
1)2

dzk
Bk(θ)−

k∑
j=2

νj

ν∗
˜
ϕ

k−j

2 −

−
k−4∑
j=2

νj

ν∗
I 2 ∂2 ˜

ϕ
k−2−j
2

∂z2
+ 2

k−1∑
j=3

σj

ν∗
I 2(

˜
ϕ

k−j

2 ) (3.32)

Here, the coefficients Bm(θ) for even m are given by the formula:

Bm(θ) = I 2[{W(θ ′′, IAm−1)} + ν2∗(Qm−1(θ)− Am−2(θ))] +Dm. (3.33)

For odd m, this expression contains an additional term:

Bm(θ) = I 2[{W(θ ′′, IAm−1)} + ν2∗(Qm−1(θ)− Am−2(θ))−

−1

2
〈θ ′Am−3〉Q2(θ)] +Dm. (3.34)

Function Dm(x) is a solution of following equation

1

νm+2∗

dm((ϕ0
1)2)

dzm

d2Dm

dx2
=

m∑
j=0

{Wx(ϕ
j

1 , ϕ
m−j

2 )} + 2
νm−1

ν∗
{Wx(ϕ1

1 , ϕ0
2)} (3.35)
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The coefficients Qm(θ) (through which pressure is expressed) are given by the
formula

Qm(θ) = I {θ ′′IAm−2} − Bm−1(θ)− ν2∗I 2(Am−3) (3.36)

for any m.
For odd k, detailed expressions for the coefficients of the eigenfunctions

expanded in powers of α are given by

ϕ̃k
1((ϕ0

1)2) = − 1

νk∗
dkϕ0

1

dzk
I (bk−1(θ))−

k−1∑
j=2

νj

ν∗
˜
ϕ

k−j

1 −

−
k−5∑
j=2

νj

ν∗
I 2 ∂2 ˜

ϕ
k−2−j
1

∂z2
+ 2

k−2∑
j=3

σj

ν∗
I 2(

˜
ϕ

k−j

1 ) (3.37)

ϕ̃k
2((ϕ0

1)2) = − 1

νk+1∗
dkϕ0

1

dzk
bk(θ)−

k−3∑
j=2

νj

ν∗
˜
ϕ

k−j
2 − 2νk−1

ν∗
ϕ̃1

2 −

−
k−3∑
j=2

νj

ν∗
I 2 ∂2 ˜

ϕ
k−2−j

2

∂z2 + 2
k∑

j=3

σj

ν∗
I 2(

˜
ϕ

k−j

2 ), (3.38)

where Bm(θ) and Qm(θ) are determined in (3.12)–(3.14).
The proof of the formulas (3.21)–(3.38) is by induction.
The kth terms of the asymptotic expansion are found by applying the following

scheme. Given vk−1
2 , we first find vk

1 from continuity equation (3.18):

vk
1 = −I

(
∂vk−1

2

∂z

)
+ 〈vk+1

1 〉. (3.39)

In the second step, taking into account the averaging Eq. (3.20), we determine Pk

from (3.16) up to the average value. In the third step, averaging Eq. (3.17), we find

d〈P k−1〉
dz

= −〈Wx({vk
1}, V )〉 −

k∑
j=0

〈Wx(ϕ
j
1 , ϕ

k−j
2 )〉 (3.40)

Representing the right-hand side of Eq. (3.17) for finding vk
2 in divergent form, we

obtain vk
2 . In the forth step, by using the quantities found at the kth step, we can write

the condition for the solvability of (3.17) for the (k + 2)th term of the asymptotic
expansion. This condition is given by (3.20) with k replaced by k + 2, and it is used
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to find average value of 〈vk+1
1 〉:

〈vk+1
1 〉 = Ck+1

1 e−2imz. (3.41)

From the solvability condition for Eq. (3.20) with k replaced by k+2 we find Ck−1
1 .

Next, the process is repeated.

4 Conclusions

We have constructed the recurrence formula for the long-wavelength asymptotics of
self-oscillations bifurcating from the basic shear flow in general form with non-zero
average.

We have considered two problems (1.11). The solution w of the first problem
is stationary part of non-linear term of secondary flow, while the solution v of the
second problem belongs to the non-stationary part. Both these solutions have been
represented as a series in powers of wave number α, α → 0.

The first component of w is zero

w1
k = 0

for any k and the expansion coefficients of the second component of velocity and
coefficients of pressure vanish

wk
2 = 0, Qk = 0

for odd k.
If k is even then coefficients Qk of pressure are given by (2.25) with 〈Qk〉 = 0

and coefficients wk
2 of velocity are given by (2.26) with w1

k = 0.
If the deviation {V} of velocity from its average value is an odd function, then

θ(x) is odd as well. Then the formulas obtained for w and Q imply that w is odd
and Q is even. Note, that if θ(x) is odd, then a1 = I {W(θ ′, θ)} is odd. Therefore,
〈θ ′a1〉 = 0.

For the second problem, a solution v was obtained under the assumption that
〈θ ′a1〉 �= 0. We obtain kth term of the asymptotics by formulas (3.21)–(3.38).
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The Convergence of the Fourier–Jacobi
Series in Weighted Variable Exponent
Lebesgue Spaces

T. N. Shakh-Emirov and R. M. Gadzhimirzaev

Abstract The article focuses on the problem of basis property for the Jacobi
polynomial system P

α,β
n (x) in the weighted variable exponent Lebesgue space

L
p(x)
μ ([−1, 1]). The sufficient, and in a certain sense, necessary conditions on the

variable exponent p = p(x) > 1 ensuring the uniform boundedness of Fourier-
Jacobi sums S

α,β
n (f ) (n = 0, 1, . . .) with −1 < α, β < −1/2 in L

p(x)
μ ([−1, 1]) are

obtained.

Keywords Jacobi polynomials · Fourier-Jacobi sums · Weighted Lebesgue space
with variable exponent

Mathematics Subject Classification (2010) 42C10, 46E30

1 Introduction

Let E be an arbitrary set on which the Lebesgue measure m is given and let
p = p(x) be nonnegative m-measurable function defined on E. We denote by
L

p(x)
m (E) the space of m-measurable functions f = f (x) defined on E for which the

Lebesgue integral
∫

E
|f (x)|p(x)m(dx) is finite. If p = p(x) is essentially bounded

on E then, as shown in [1], L
p(x)
m (E) is a linear topological space. If an additional

condition 1 ≤ p(x) ≤ p < ∞ holds then L
p(x)
m (E) is a Banach space with the norm

‖f ‖p(·)(E) = inf{α > 0 :
∫

E

∣∣∣∣f (x)

α

∣∣∣∣
p(x)

m(dx) ≤ 1}. (1.1)

T. N. Shakh-Emirov (�) · R. M. Gadzhimirzaev
Dagestan Federal Research Center of the Russian Academy of Sciences, Makhachkala, Russia

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
A. G. Kusraev, Z. D. Totieva (eds.), Operator Theory and Differential Equations,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-49763-7_16

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49763-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-49763-7_16


206 T. N. Shakh-Emirov and R. M. Gadzhimirzaev

If E ∈ R
n, m(dx) = w(x)dx then we will use notation L

p(x)
w (E) instead of

L
p(x)
m (E) and call L

p(x)
w (E) weighted Lebesgue space with variable exponent p(x)

and weight w = w(x). If in addition w(x) ≡ 1 then we will use notation Lp(x)(E)

instead of L
p(x)
1 (E). If 1 < p(x) < ∞, then we define new variable exponent

q(x) = p(x)/(p(x)− 1) and the corresponding variable exponent space L
q(x)
m (E).

As shown in the paper [1], if 1 < p(x) ≤ p(E) < ∞ then the space (L
p(x)
m (E))′ of

linear continuous functionals F defined on L
p(x)
m (E) coincides with the linear span

of the space L
q(x)
m (E): an arbitrary element F ∈ (L

p(x)
m (E))′ can be represented as

F(f ) =
∫

E

f (x)g(x)m(dx),
g

α
∈ L

q(x)
m (E), α �= 0.

In particular, if 1 < p(E) ≤ p(x) ≤ p(E) ≤ ∞, then q also has this property,

and therefore (L
p(x)
m (E))′ = L

q(x)
m (E) as a consequence, the space L

p(x)
m (E) is

reflexive. This result allows us to introduce in L
p(x)
m (E) other norms equivalent to

the original one ‖f ‖p(·)(E) (see (1.1)). Thus, let 1 < p(E) ≤ p(x) ≤ p(E) < ∞,
then the conjugate exponent q(x) = p(x)/(p(x)−1) has, as has already been noted,
the same properties i.e. 1 < q(E) ≤ q(x) ≤ q(E) < ∞, so we can introduce the

following norm of f ∈ L
p(x)
m (E):

‖f ‖∗p(·)(E) = sup
g∈L

q(x)
m (E),

‖g‖q(·)(E)≤1

∫
E

f (x)g(x)m(dx), (1.2)

for which (see [2]) inequality holds

‖f ‖∗p(·)(E) ≤ 2‖f ‖p(·)(E). (1.3)

Let p and q be two variable exponents defined on E for which 1 ≤ p(x) ≤ q(x) ≤
q(E) < ∞. Then for f ∈ L

q(x)
m (E) the following inequality holds (see [2–4])

‖f ‖p(·)(E) ≤ c(p, q)‖f ‖q(·)(E), (1.4)

where here and everywhere in the sequel c, c(p), c(p, q), . . . denote positive
numbers that depend only on these parameters.

Next, let E1 and E2 be two measurable sets with corresponding Lebesgue
measures m1 and m2, with mi(Ei) < ∞, i = 1, 2. Let f = f (x, t) be a measurable
function defined on the Cartesian product E1 × E2. Then the following inequality

∥∥∥∥
∫

E2

f (·, t)m2(dt)

∥∥∥∥
p(·)

(E1) ≤ 2
∫

E2

‖f (·, t)‖p(·)(E1)m2(dt)

holds (see [2–4]).
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We denote by P(−1, 1) the space of variable exponents p, defined on [−1, 1]
and satisfying the following conditions:

(A) the Dini–Lipschitz condition

|p(x)− p(y)| ≤ d

− ln |x − y| , |x − y| ≤ 1

2
;

(B) p([−1, 1]) = minx∈[−1,1] p(x) > 1;
(C) for p there exist positive (arbitrarily small) numbers δi = δi(p) (i = 1, 2) such

that p(x) = p(−1) for x ∈ [−1,−1+δ1] and p(x) = p(1) for x ∈ [1−δ2, 1].
Recently, the approximation theory of Lebesgue spaces with variable exponent

has been intensively developed by many authors (see [4–8] and the references
therein). We note that the most important results obtained in these works are related
to the Dini-Lipschitz condition. In particular, it was shown in [6] that the system of
Legendre polynomials form the basis in Lp(x)(−1, 1) if the variable exponent p(x)

satisfies the Dini–Lipschitz condition (A) and the additional conditions (B), (C).
In this paper we consider the problem of basis property for the Jacobi polynomial

system P
α,β
n (x) in the weighted variable exponent Lebesgue space L

p(x)
μ ([−1, 1])

with weight μ = μ(x) = (1−x)α(1+x)β . In the case of−1 < α, β < −1/2 it will
be shown that if the variable exponent p = p(x) satisfies the conditions (A)–(C)

then the orthonormal system of Jacobi polynomials p
α,β
n (x) = (h

α,β
n )− 1

2 P
α,β
n (x)

(n = 0, 1, . . .) is a basis in L
p(x)
μ ([−1, 1]) provided that 1 < p(1), p(−1) < ∞.

In the paper [9] a similar problem was considered in the variable exponent
Lebesgue space L

p(x)
μ ([−1, 1]) when α, β > −1/2. Moreover, we note that this

problem was solved by I.I. Sharapudinov in [10] in the case when α = β.

2 The Hilbert Transform in Lp(x)(R)

Let p > 1, f ∈ Lp(R). Then we can define the Hilbert transform

Hf = H(f ) = H(f )(x) =
∫
R

f (t)dt

t − x
, (2.1)

where the integral in (2.1) is understood in the sense of the Cauchy principal value,
i.e. H(f )(x) = limε→0 Hε(f )(x), Hε(f )(x) = ∫

|t−x|>ε
f (t)dt
t−x

. It is well known
that the function Hf (x) is finite for almost all x ∈ R. Moreover, if f ∈ Lp(R),
where p = const > 1, then it follows from the well-known Riesz theorem
that ‖H(f )‖p(R) ≤ c(p)‖f ‖p(R). As shown in [11, 12], this estimate can be
generalized to the case when f ∈ Lp(x)(R) if the variable exponent p : R→ [0,∞)
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satisfies the conditions (A) and

|p(x)− p(y)| ≤ c

ln(e + |x|n)
, x, y ∈ �, |y| > |x|, (2.2)

where |x| = (x2
1 + . . .+ x2

n)1/2 for x = (x1, . . . , xn) ∈ R
n, � is an open set in R

n.
In other words, then we have the estimate

‖H(f )‖p(·)(R) ≤ c(p)‖f ‖p(·)(R). (2.3)

Consider the Hilbert transform of the following form

H a,bf = H a,bf (x) =
∫ b

a

f (t)dt

t − x
. (2.4)

Let the variable exponent p satisfies the condition (A) on [a, b]. Then we can extend
p = p(x) to all R in the following way. Let A = 1 + max{|a|, |b|}, p(x) = 3/2
for |x| ≥ A, and extend p(x) linearly and continuously to the segments [−A, a]
and [b, A]. Then it is not difficult to verify that the extended function p satisfies the
conditions (A) and (2.2) on the entire R. On the other hand, if the function f ∈
Lp(x)([a, b]), then it can be extended to all R, assuming f (x) ≡ 0 for x /∈ [a, b]
and we can consider the Hilbert transform

Hf = Hf (x) =
∫
R

f (t)dt

t − x
=

∫ b

a

f (t)dt

t − x
= H a,bf (x).

Thus from (2.3) we deduce

‖H a,b(f )‖p(·)(R) = ‖H(f )‖p(·)(R) ≤ c(p)‖f ‖p(·)(R) = c(p)‖f ‖p(·)([a, b]).
(2.5)

3 Some Information About the Jacobi Polynomials

For arbitrary real α and β the Jacobi polynomials P
α,β
n (x) can be defined [13] using

the Rodrigues formula

P α,β
n (x) = (−1)n

2nn!
1

μ(x)

dn

dxn

{
μ(x)σn(x)

}
,

where μ(x) = μ(x; α, β) = (1−x)α(1+x)β, σ (x) = 1−x2. If α, β > −1, Jacobi
polynomials form an orthogonal system with weight μ(x), i.e.

∫ 1

−1
P α,β

n (x)P α,β
m (x)μ(x)dx = hα,β

n δnm,
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where

hα,β
n = �(n+ α + 1)�(n+ β + 1)2α+β+1

n!�(n + α + β + 1)(2n+ α + β + 1)
. (3.1)

For −1 < α, β and x ∈ [−1, 1] the following estimate holds

√
n|P α,β

n (x)| ≤ c(α, β)

(√
1− x + 1

n

)−α− 1
2
(√

1+ x + 1

n

)−β− 1
2

. (3.2)

This estimate together with the Christoffel-Darboux formula

Kα,β
n (x, y) =

n∑
k=0

P
α,β

k (x)P
α,β

k (y)

h
α,β

k

= 2−α−β

2n+ α + β + 2

�(n+ 2)�(n + α + β + 2)

�(n+ α + 1)�(n+ β + 1)

× P
α,β

n+1(x)P
α,β
n (y)− P

α,β
n (x)P

α,β

n+1(y)

x − y
(3.3)

play a fundamental role in the study of the approximative properties of Fourier–
Jacobi sums. We also note the following properties of the Jacobi polynomials:

P α,β
n (−x) = (−1)nP β,α

n (x), (3.4)

(1− x)P α+1,β
n (x) =

2

2n+ α + β + 2

[
(n+ α + 1)P α,β

n (x)− (n+ 1)P
α,β
n+1(x)

]
. (3.5)

4 Main Result

Let α, β > −1, μ = μ(x) = μ(x; α, β) = (1 − x)α(1 + x)β , L
p(x)
μ ([−1, 1]) be

the Lebesgue space with variable exponent p = p(x) and weight μ. If p ≥ 1 and
f ∈ L

p(x)
μ ([−1, 1]), then we can define the Fourier–Jacobi coefficients

f
α,β
k = 1

h
α,β

k

∫ 1

−1
f (t)P

α,β
k (t)μ(t)dt (4.1)

and the Fourier–Jacobi sum

Sα,β
n (f ) = Sα,β

n (f, x) =
n∑

k=0

f
α,β
k P

α,β
k (x). (4.2)
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The main goal of this paper is to find conditions on the variable exponent p = p(x),
that guarantee the convergence of Fourier sums S

α,β
n (f ) on the Jacobi polynomials

P
α,β
k (x) to the function f ∈ L

p(x)
μ ([−1, 1]) with respect to the norm of the space

L
p(x)
μ ([−1, 1]) for n → ∞. In other words, we consider the problem of the basis

property in the Banach space L
p(x)
μ ([−1, 1]) of the orthonormal Jacobi polynomial

system p
α,β
k (x) = (h

α,β
k )−1/2P

α,β
k (x) (k = 0, 1, . . .), restricting ourselves to the

case −1 < α, β < −1/2. To this end, we introduce a class of variable exponents
P(−1, 1) satisfying the conditions (A), (B), and (C). It is shown that the conditions
(A), (B), and (C) taken together provide the uniform boundedness in L

p(x)
μ ([−1, 1])

of the sequence of linear operators S
α,β
n (f ) (n = 0, 1, . . .) under the additional

condition (4.10). At the same time, we note that (A) and (B) are also necessary
conditions for the uniform boundedness in L

p(x)
μ ([−1, 1]) of the sequence of linear

operators S
α,β
n (f ) (n = 0, 1, . . .).

We need certain transformations for Fourier–Jacobi sums S
α,β
n (f, x). To this end,

we use the Christoffel-Darboux formula (3.3). Then (4.2) can be rewritten as

Sα,β
n (f, x) =

∫ 1

−1
Kα,β

n (x, y)f (y)μ(y)dy. (4.3)

Lemma 4.1 If x �= y, then the Kristoffel-Darboux kernel K
α,β
n (x, y) admits the

following representation

Kα,β
n (x, y) = K

α,β
n1 (x, y)+K

α,β
n2 (x, y),

where

K
α,β
n1 (x, y) = −γn(α, β)

(1− x)P
α+1,β
n (x)P

α,β
n (y)

x − y
,

K
α,β
n2 (x, y) = γn(α, β)

(1− y)P
α+1,β
n (y)P

α,β
n (x)

x − y
,

γn(α, β) = O(n) (n →∞).

The proof of lemma 4.1 follows immediately from (3.3) and (3.5)
Taking into account Lemma 4.1, the equality (4.3) can be rewritten as follows

Sα,β
n (f, x) = γn(α, β)P α,β

n (x)

∫ 1

−1

(1− y)P
α+1,β
n (y)f (y)μ(y)dy

x − y

− γn(α, β)(1 − x)P α+1,β
n (x)

∫ 1

−1

P
α,β
n (y)f (y)μ(y)dy

x − y
, (4.4)
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where the integrals are understood in the sense of the Cauchy principal values. We
consider the case when −1 < α, β < −1/2, μ(x) = (1− x)α(1 − x)β , x ∈ [0, 1).
Since the function f (x)(1− x)α(1− x)β is integrable on (−1, 1), then in this case,
from (4.4) taking into account the weighted estimate (3.2) we derive for almost all
x ∈ [0, 1]

(1− x)
α

p(x) |Sα,β
n (f, x)| ≤

γn(α, β)(1− x)
α

p(x)

∣∣∣∣∣P α,β
n (x)

∫ 1

−1

(1− y)P
α+1,β
n (y)f (y)μ(y)dy

x − y

∣∣∣∣∣

+γn(α, β)(1 − x)
α

p(x) (1− x)

∣∣∣∣∣P α+1,β
n (x)

∫ 1

−1

P
α,β
n (y)f (y)μ(y)dy

x − y

∣∣∣∣∣ ≤

c(α, β)
√

n(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2

∣∣∣∣∣
∫ 1

−1

(1− y)P
α+1,β
n (y)f (y)μ(y)dy

x − y

∣∣∣∣∣

+c(α, β)
√

n(1− x)
α

p(x)
+1

(√
1− x + 1

n

)−α− 3
2

∣∣∣∣∣
∫ 1

−1

P
α,β
n (y)f (y)μ(y)dy

x − y

∣∣∣∣∣ ≤

σ1(f, x)+ σ2(f, x)+ σ3(f, x)+ σ4(f, x), (4.5)

where

σ1(f, x) = c(α, β)(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2

×

∣∣∣∣∣∣∣

− 1
2∫

−1

(1− y)
√

nP
α+1,β
n (y)f (y)μ(y)dy

x − y

∣∣∣∣∣∣∣
(4.6)

σ2(f, x) = c(α, β)(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2

×

∣∣∣∣∣∣∣∣

1∫

− 1
2

(1− y)
√

nP
α+1,β
n (y)f (y)μ(y)dy

x − y

∣∣∣∣∣∣∣∣
(4.7)
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σ3(f, x) = c(α, β)(1− x)
α

p(x)+1
(√

1− x + 1

n

)−α− 3
2

×
∣∣∣∣∣
∫ − 1

2

−1

√
nP

α,β
n (y)f (y)μ(y)dy

x − y

∣∣∣∣∣ (4.8)

σ4(f, x) = c(α, β)(1− x)
α

p(x)
+1

(√
1− x + 1

n

)−α− 3
2

×
∣∣∣∣∣
∫ 1

− 1
2

√
nP

α,β
n (y)f (y)μ(y)dy

x − y

∣∣∣∣∣ (4.9)

The following statement is fundamental.

Lemma 4.2 Let−1 < α, β < −1/2, p ∈ P(−1, 1), μ = μ(x) = (1−x)α(1−x)β ,
f ∈ L

p(x)
μ ([−1, 1]), ‖f ‖p(·)([−1, 1]) ≤ 1,

1 < p(1) < ∞, 1 < p(−1) < ∞. (4.10)

Then

‖σi(f )‖p(·)([0, 1]) ≤ c(α, β, p) (i = 1, 2, 3, 4). (4.11)

5 The Proof of Lemma 4.2

We need the following statement (see [9])

Lemma 5.1 Let −1 < a, b < 1, 0 < γ < 1. Then

1

|a − b|
∣∣∣∣
(

1− b

1− a

)γ

− 1

∣∣∣∣ ≤ 2

(1− a)γ ((1− a)1−γ + (1− b)1−γ )
. (5.1)

We suppose

‖f ‖p(·),μ ≤ 1. (5.2)
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Consider the case i = 1. From (4.6), (3.2) and (5.2) we have

σ1(f, x) ≤ c(α, β)(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2

×
− 1

2∫

−1

μ(y)
(√

1+ y + 1
n

)−β− 1
2 |f (y)|

x − y
dy

≤ c(α, β)(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2

− 1
2∫

−1

μ(y)|f (y)|dy

≤ c(α, β)(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2

. (5.3)

Let 1− x ≤ c
n2 < δ2. Then from (5.3) we get

(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2 = (1− x)

α
p(1)

(√
1− x + 1

n

)−α− 1
2

≤ c(α)(1− x)
α

p(1) nα+ 1
2 . (5.4)

For the case c

n2 < 1− x ≤ 1 we have

(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2 = (1− x)

α
p(1)

(√
1− x + 1

n

)−α− 1
2

≤ c(α)(1− x)
α

p(1) (1− x)−
α
2− 1

4 = c(α)(1− x)
α

p(1)
− α

2− 1
4 . (5.5)

From (5.4) and (5.5) we obtain

σ1(f, x) ≤ c(p, α, β)(1 − x)
α

p(x)− α
2− 1

4 (0 ≤ x ≤ 1). (5.6)

From (5.6) we have

1∫

0

(σ1(f, x))p(x)dx ≤ c(α, β, p)

1∫

0

(1− x)α− αp(x)
2 − p(x)

4 dx ≤ c(α, β, p), (5.7)
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since α − αp(x)
2 − p(x)

4 > −1 as −1 < α < −1/2 and p(1) > 1. Hence from (5.7)
we derive ‖σ1(f )‖p(·)([0, 1]) ≤ c(α, β, p).

In a similar way we estimate ‖σ3(f )‖p(·)([0, 1]). From (4.8), (3.2) and (5.2) we
get

σ3(f, x) ≤ c(α, β)(1− x)
α

p(x)
+1

(√
1− x + 1

n

)−α− 3
2

×
∣∣∣∣∣
∫ − 1

2

−1

√
nP

α,β
n (y)f (y)μ(y)dy

x − y

∣∣∣∣∣

≤ c(α, β)(1−x)
α

p(x)+1
(√

1− x + 1

n

)−α− 3
2 ≤ c(α, β)(1−x)

α
p(x)− α

2+ 1
4 . (5.8)

Since α − αp(x)
2 + p(x)

4 from (5.8) we derive

1∫

0

(σ3(f, x))p(x)dx ≤ c(α, β, p)

1∫

0

(1− x)α− αp(x)
2 + p(x)

4 dx ≤ c(α, β, p). (5.9)

We proceed to the case i = 2. We set

An(y) = √
nP α+1,β

n (y)

(√
1− y + 1

n

)α+ 3
2
(√

1+ y + 1

n

)β+ 1
2

(1+ y)β.

(5.10)

Then

σ2(f, x) = c(α, β)(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2

×

∣∣∣∣∣∣∣∣

1∫

− 1
2

(1− y)
√

nP
α+1,β
n (y)f (y)μ(y)dy

x − y

∣∣∣∣∣∣∣∣

= c(α, β)(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2

×

∣∣∣∣∣∣∣∣

1∫

− 1
2

An(y)(1− y)α+1
(√

1− y + 1
n

)−α− 3
2
(√

1+ y + 1
n

)−β− 1
2

f (y)dy

x − y

∣∣∣∣∣∣∣∣
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≤ c(α, β)(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2

×

∣∣∣∣∣∣∣∣

1∫

− 1
2

An(y)(1− y)α+1
(√

1− y + 1
n

)−α− 3
2

f (y)dy

x − y

∣∣∣∣∣∣∣∣
≤ σ21(f, x)+ σ22(f, x), (5.11)

where

σ21(f, x) = c(α, β)(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2

×

∣∣∣∣∣∣∣∣

1−δ2∫

− 1
2

An(y)(1− y)α+1
(√

1− y + 1
n

)−α− 3
2

f (y)dy

x − y

∣∣∣∣∣∣∣∣
,

σ22(f, x) = c(α, β)(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2

×

∣∣∣∣∣∣∣∣

1∫

1−δ2

An(y)(1− y)α+1
(√

1− y + 1
n

)−α− 3
2

f (y)dy

x − y

∣∣∣∣∣∣∣∣
.

We assume ϕn(y) = An(y)(1− y)α+1
(√

1− y + 1
n

)−α− 3
2

and note that by virtue

of (3.2) there exists a constant c(α, β, p) for which

|ϕn(y)| ≤ c(α, β, p),

(
−1

2
≤ y ≤ 1− δ2

2

)
. (5.12)

We write σ21(f, x) in the form

σ21(f, x) = c(α, β, p)(1− x)
α

p(x)

(√
1− x + 1

n

)−α− 1
2

∣∣∣∣∣∣∣

1∫

1−δ2

ϕn(y)f (y)dy

x − y

∣∣∣∣∣∣∣
(5.13)
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and consider two cases. If 0 ≤ x ≤ 1− δ2/2 then from (2.4) and (5.13) we have

σ21(f, x) ≤ c(α, β, p)

∣∣∣∣∣
∫ 1−δ2

− 1
2

ϕn(y)f (y)dy

x − y

∣∣∣∣∣ = c(α, β, p)|H−1/2,1−δ2g(x)|,
(5.14)

where g(y) = ϕn(y)f (y). We now turn to the estimate (2.5), which, taking into
account (5.12), gives

‖H− 1
2 ,1−δ2g‖p(·)(R) ≤ c(α, β, p)‖g‖p(·)([−1/2, 1− δ2]) ≤

c(α, β, p)‖f ‖p(·)([−1/2, 1− δ2]) ≤ c(α, β, p)‖f ‖p(·),μ([−1/2, 1− δ2]) ≤

c(α, β, p)‖f ‖p(·),μ([−1, 1]) ≤ c(α, β, p). (5.15)

From (5.14) and (5.15) we have

‖σ21(f )‖p(·)([0, 1− δ2/2]) ≤ c(α, β, p). (5.16)

If 1− δ2/2 < x < 1, then

σ21(f, x) = c(α, β, p)(1 − x)
α

p(1)

(√
1− x + 1

n

)−α− 1
2
∫ 1−δ2

− 1
2

|ϕn(y)f (y)|dy.

(5.17)

On the other hand, from (1.4) and (5.12) we have

∫ 1−δ2

− 1
2

|g(y)|dy ≤ c(p)‖g‖p(·)([−1/2, 1− δ2]) ≤

c(α, β, p)‖f ‖p(·),μ([−1/2, 1− δ2]) ≤ c(α, β, p). (5.18)

From (5.17) and (5.18) we find (here xn = 1− c/n2 ≥ 1− δ2)

∫ 1

1−δ2/2
(σ21(f, x))p(x)dx =

∫ 1

1−δ2/2
(σ21(f, x))p(1)dx ≤

c(α, β, p)

⎛
⎜⎝

xn∫

1−δ2/2

(1− x)
α

p(1)
− α

2− 1
4 dx + n

α
2+ 1

4

1∫

xn

(1− x)
α

p(1) dx

⎞
⎟⎠ ≤ c(α, β, p).

(5.19)
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Combining the estimates (5.16) and (5.16), we can write

‖σ21(f )‖p(·)([0, 1]) ≤ c(α, β, p). (5.20)

We now turn to an estimate of the norm of the function σ22(f ). We consider two
cases. If 0 ≤ x ≤ 1− δ2, then from (5.11) we have

σ22(f, x) = c(α, β, p)

∣∣∣∣∣∣∣∣

1∫

1−δ2

An(y)(1− y)α+1
(√

1− y + 1
n

)−α− 3
2

f (y)dy

x − y

∣∣∣∣∣∣∣∣
.

≤ c(α, β, p)

∣∣∣∣∣∣∣∣

1− δ2
2∫

1−δ2

[. . . ]

∣∣∣∣∣∣∣∣
+ c(α, β, p)

∣∣∣∣∣∣∣∣

1∫

1− δ2
2

[. . . ]

∣∣∣∣∣∣∣∣
= σ221(f, x)+ σ222(f, x).

(5.21)

We apply the Gilbert transform (2.4) to the function g(y) = ϕn(y)f (y), then
from (5.21) we have σ221(f, x) = c(α, β, p)|H 1−δ2,1−δ2/2g(x)|, therefore, by
virtue of (2.5) and (5.12) we can write

‖σ221(f )‖p(·)([1− δ2, 1− δ2/2]) ≤ c(α, β, p)‖g‖p(·)([1− δ2, 1− δ2/2]) ≤

c(α, β, p)‖f ‖p(·),μ([1− δ2, 1− δ2/2]) ≤

c(α, β, p)‖f ‖p(·),μ([−1, 1]) ≤ c(α, β, p). (5.22)

Next, from (3.2) and (5.10) it follows that

|An(y)| ≤ c(α, β) (−1/2 ≤ y < 1), (5.23)

so from (5.21) we have using Holder inequality

σ222(f, x) = c(α, β, p)

∣∣∣∣∣∣∣

1∫

1−δ2/2

(1− y)α+1
(√

1− y + 1

n

)−α− 3
2

f (y)dy

∣∣∣∣∣∣∣

≤ c(α, β, p)

∣∣∣∣∣∣∣

1∫

1−δ2/2

(1− y)
α
2+ 1

4− α
p(1) μ

α
p(1) (y)f (y)dy

∣∣∣∣∣∣∣
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≤ c(α, β, p)‖f ‖p(·),μ([1− δ2/2, 1])
⎛
⎜⎝

1∫

1−δ2/2

(1− y)

(
α
2+ 1

4− α
p(1)

)
q(1)

dy

⎞
⎟⎠

1
q(1)

,

(5.24)

where q(1) = p(1)/(p(1) − 1). The last integral is finite, since by virtue of (4.10)(
α
2 + 1

4 − α
p(1)

)
q(1) > −1. Thus, from (5.24) we derive (0 ≤ x ≤ 1− δ2)

σ222(f, x) ≤ c(α, β, p)‖f ‖p(·),μ([1− δ2/2, 1])

≤ c(α, β, p)‖f ‖p(·),μ([−1, 1]) ≤ c(α, β, p),

from which, in turn, we find

‖σ222(f )‖p(·)([0, 1− δ2]) ≤ c(α, β, p). (5.25)

The estimates (5.21), (5.22) and (5.25) taken together give

‖σ22(f )|p(·)([0, 1− δ2]) ≤ c(α, β, p). (5.26)

Consider the case 1− δ2 ≤ x < 1 and note that in this case p(x) = p(1), so we can
obtain for σ22(f, x) the following estimate

σ22(f, x) ≤ c(α, β)(1− x)
α

p(1)− α
2− 1

4

∣∣∣∣∣∣∣

1∫

1−δ2

An(y)(1− y)
α
2+ 1

4 f (y)dy

x − y

∣∣∣∣∣∣∣

= c(α, β)

∣∣∣∣∣∣∣

1∫

1−δ2

An(y)(1− y)
α

p(x) f (y)

x − y

(
1− y

1− x

) α
2+ 1

4− α
p(x)

dy

∣∣∣∣∣∣∣
≤ U(f, x)+ V (f, x), (5.27)

where

U(f, x) = c(α, β)

∣∣∣∣∣∣∣

1∫

1−δ2

An(y)(1− y)
α

p(1) f (y)

x − y
dy

∣∣∣∣∣∣∣
, (5.28)
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V (f, x) = c(α, β)

1∫

1−δ2

|An(y)|(1− y)
α

p(1) |f (y)|
|x − y|

∣∣∣∣∣
(

1− y

1− x

) α
2+ 1

4− α
p(1) − 1

∣∣∣∣∣ dy.

(5.29)

We note that

0 <
α

2
+ 1

4
− α

p(1)
< 1 if 1 < p(1) <

4α

2α + 1
, (5.30)

α

2
+ 1

4
− α

p(1)
= 0 if p(1) = 4α

2α + 1
, (5.31)

0 <
α

p(1)
− α

2
− 1

4
< 1 if

4α

2α + 1
< p(1) < ∞. (5.32)

First we estimate U(f, x). We set ψ(y) = An(y)(1 − y)
α

p(1) f (y) and use the
definition of (2.4), then from (5.28) we have U(f, x) = c(α, β)|H 1−δ2,1ψ(x)|,
therefore, from the estimates (2.5) and (5.23) we find

‖U(f )‖p(·)([1− δ2, 1]) ≤ c(α, β, p)‖ψ‖p(·)([1− δ2, 1]) ≤

c(α, β, p)‖f ‖p(·),μ([1− δ2, 1]) ≤ c(α, β, p). (5.33)

We proceed to estimate ‖V (f )‖p(·)([1 − δ2, 1]) in the case of (5.32). Under
condition (5.30), the value of ‖V (f )‖p(·)([1 − δ2, 1]) is estimated similarly and
‖V (f )‖p(·)([1− δ2, 1]) = 0 in the case of (5.31).

We turn to the relations (2.3), (1.3) and (5.23), from which, assuming γ =
α/p(1)− α/2− 1/4,

Kγ (x, y) = 1

|x − y|
∣∣∣∣
(

1− y

1− x

)γ

− 1

∣∣∣∣ ,

we find

‖V (f )‖p(·)([1− δ2, 1]) ≤ c(α, β) sup
g

1∫

1−δ2

1∫

1−δ2

|g(x)ψ(y)|Kγ (x, y)dxdy,

(5.34)



220 T. N. Shakh-Emirov and R. M. Gadzhimirzaev

where the supremum is taken over all g ∈ Lq(1)([1 − δ2, 1]), for which
‖g‖p(·)([1− δ2, 1]) ≤ 1. We estimate the double integral I from (5.34). We have

I =
∫ 1

1−δ2

∫ 1

1−δ2

|ψ(y)|K
1

p(1)
γ (x, y)

(
1− x

1− y

)− 1
p(1)q(1) ×

|g(x)|K
1

q(1)
γ (x, y)

(
1− x

1− y

) 1
p(1)q(1)

dxdy ≤

(∫ 1

1−δ2

|g(x)|q(1)F1(x)dx

) 1
q(1)

(∫ 1

1−δ2

|ψ(y)|p(1)F2(y)dy

) 1
p(1)

, (5.35)

where

F1(x) =
1∫

1−δ2

Kγ (x, y)

(
1− x

1− y

) 1
p(1)

dy,

F2(y) =
1∫

1−δ2

Kγ (x, y)

(
1− y

1− x

) 1
q(1)

dx.

Let us show that functions F1 and F2 are bounded on [1 − δ2, 1]. To this end we
note that 0 < γ < 1

4 when −1 < α < −1/2 so we can use Lemma 5.1, from which
we have

F1(x) ≤ 2
∫ 1

1−δ2

(1− x)
1

p(1) dy

(1− y)
1

p(1)+γ
((1− y)1−γ + (1− x)1−γ )

≤

2
∫ x

1−δ2

(1− x)
1

p(1) dy

(1− y)
1

p(1)
+1

+ 2
∫ 1

x

(1− x)
1

p(1) dy

(1− y)
1

p(1)
+γ

(1− x)1−γ
≤

2(1− x)
1

p(1) p(1)(1− x)
− 1

p(1) + 2(1− x)
1

p(1)
−1+γ (1− x)

1− 1
p(1)−γ

1− 1
p(1)

− γ
≤ c(α, p),

(5.36)

F2(x) ≤ 2
∫ 1

1−δ2

(1− y)
1

q(1) dx

(1− x)
γ+ 1

q(1) ((1− y)1−γ + (1− x)1−γ )

≤

2
∫ y

1−δ2

(1− y)
1

q(1) dx

(1− x)
1

q(1)
+1

+ 2
∫ 1

y

(1− y)
1

q(1)−1+γ
dx

(1− x)
1

q(1)
+γ

≤
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2(1− y)
1

q(1)
(1− y)

− 1
q(1)

1/q(1)
+ 2(1− y)

1
q(1)

−1+γ (1− y)
1− 1

q(1)
−γ

1− 1
q(1)

− γ
≤ c(α, p).

(5.37)

It follows from (5.23), (5.35), (5.36) and (5.37) that

I ≤ c(α, p)‖g‖q(1)([1− δ2, 1])‖ψ‖p(1)([1− δ2, 1]) ≤
c(α, β, p)‖Anμ

1
p(1) f ‖p(1)([1− δ2, 1]) ≤ c(α, β, p)‖f ‖p(·),μ([1− δ2, 1]) ≤

c(α, β, p)‖f ‖p(·),μ([−1, 1]), (5.38)

Putting together the estimates (5.34) and (5.38) yields

‖V (f )‖p(·)([1− δ2, 1]) ≤ c(α, β, p). (5.39)

From the inequality (5.27), (5.33) and (5.39) we derive

‖σ22(f )‖p(·)([1− δ2, 1]) ≤ c(α, β, p), (5.40)

and from (5.26), (5.40) we get

‖σ22(f )‖p(·)([0, 1]) ≤ c(α, β, p). (5.41)

Comparing (5.20) and (5.41) with (5.11) we see that the assertion of Lemma 4.2
holds for i = 2. We proceed to proof the assertion of Lemma 4.2 for i = 4. We set

Bn(y) = √
n(1+ y)β(

√
1− y + 1

n
)α+ 1

2 P α,β
n (y), (5.42)

�n(y) = Bn(y)(1− y)α(
√

1− y + 1

n
)−α− 1

2 (5.43)

and note, that by virtue of (3.2) we have

|Bn(y)| ≤ c(α, β) (−1/2 ≤ y < 1), (5.44)

|�n(y)| ≤ c(α, β, p) (−1/2 ≤ y < 1− δ2/2). (5.45)

From (4.9), (5.42) and (5.43) we have

σ4(f, x) = c(α, β)(1− x)
α

p(x)
+1

(√
1− x + 1

n

)−α− 3
2

∣∣∣∣∣
∫ 1

− 1
2

�n(y)f (y)dy

x − y

∣∣∣∣∣
≤ σ41(f, x)+ σ42(f, x), (5.46)
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where

σ41(f, x) = c(α, β)(1− x)
α

p(x)
+1

(√
1− x + 1

n

)−α− 3
2

∣∣∣∣∣
∫ 1−δ2

− 1
2

�n(y)f (y)dy

x − y

∣∣∣∣∣ ,

(5.47)

σ42(f, x) = c(α, β)(1− x)
α

p(x)
+1

(√
1− x + 1

n

)−α− 3
2
∣∣∣∣
∫ 1

1−δ2

�n(y)f (y)dy

x − y

∣∣∣∣ .

(5.48)

Let us estimate |σ41(f, x)|. To this end we consider two cases: (1) 0 ≤ x ≤ 1−δ2/2;
(2) 1− δ2/2 ≤ x < 1. If 0 ≤ x ≤ 1− δ2/2 then it follows from (2.4) and (5.47) that

σ41(f, x) ≤ c(α, β, p)

∣∣∣∣∣
∫ 1−δ2

− 1
2

�n(y)f (y)dy

x − y

∣∣∣∣∣ = c(α, β, p)

∣∣∣H− 1
2 ,1−δ2g(x)

∣∣∣ ,

(5.49)

where g(y) = �n(y)f (y), and for 1− δ2/2 ≤ x < 1 we have

σ41(f, x) ≤ c(α, β, p)(1− x)
α

p(1)
+1

(√
1− x + 1

n

)−α− 3
2
∫ 1−δ2

− 1
2

|�n(y)f (y)|dy.

(5.50)

If we turn to the estimate (2.5), then, setting g(y) = �n(y)f (y) and taking into
account (5.42)–(5.45), we can write

‖H− 1
2 ,1−δ2g‖p(·)(R) ≤ c(α, β, p)‖g‖p(·)([−1/2, 1− δ2]) ≤

c(α, β, p)‖f ‖p(·)([−1/2, 1− δ2]) ≤ c(α, β, p)‖f ‖p(·),μ([−1/2, 1− δ2]).
(5.51)

From (5.49) and (5.51) we derive

‖σ41(f )‖p(·)([0, 1− δ2]) ≤ c(α, β, p)‖f ‖p(·),μ([−1, 1]) ≤ c(α, β, p). (5.52)

On the other hand, by virtue of (1.4) and (5.45)

1−δ2∫

− 1
2

|g(y)|dy ≤ c(p)‖g‖p(·)([−1

2
, 1−δ2]) ≤ c(α, β, p)‖f ‖p(·),μ([−1

2
, 1−δ2]) ≤ c(α, β, p),
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therefore, for p ∈ P(−1, 1) from (5.50) we have

1∫

1−δ2

(σ41(f, x))p(x)dx ≤

c(α, β, p)

1∫

1−δ2

[
(1− x)

α
p(1)+1

(√
1− x + 1

n

)−α− 3
2
]p(1)

dx ≤

c(α, β, p)

1∫

1−δ2

(1− x)α+( 1
4− α

2 )p(1)dx ≤

c(α, β, p)δ
α+( 1

4− α
2 )p(1)

2

α + ( 1
4 − α

2 )p(1)+ 1
≤ c(α, β, p). (5.53)

From (5.52) and (5) we find

‖σ41(f )‖p(·)([0, 1]) ≤ c(α, β, p). (5.54)

We proceed to estimate |σ42(f, x)|. To this end, we consider two cases: 1) 0 ≤ x ≤
1− δ2; 2) 1− δ2 ≤ x < 1. If 0 ≤ x ≤ 1− δ2 then according to (5.48) we have

σ42(f, x) = c(α)(1− x)
α

p(1)
+1

(√
1− x + 1

n

)−α− 3
2

×
∣∣∣∣∣
(∫ 1−δ2

− 1
2

+
∫ 1

1−δ2

)
�n(y)f (y)dy

x − y

∣∣∣∣∣ ≤ σ421(f, x)+ σ422(f, x), (5.55)

where

σ421(f, x) = c(α, β, p)

∣∣∣∣
∫ 1−δ2/2

1−δ2

�n(y)f (y)dy

x − y

∣∣∣∣ , (5.56)

σ422(f, x) = c(α, β, p)

∣∣∣∣
∫ 1

1−δ2/2

�n(y)f (y)dy

x − y

∣∣∣∣ . (5.57)

Let us set rn = rn(y) = �n(y)f (y) and use the definition (2.4), then we can
rewrite (5.56) as σ421(f, x) = c(α, β, p)

∣∣H 1−δ2,1−δ2/2rn(x)
∣∣, therefore, by virtue
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of (2.5) and (5.45)

‖σ421(f )‖p(·)([0, 1− δ2]) ≤ c(α, β, p)‖rn‖p(·)([1− δ2, 1 − δ2/2]) ≤
c(α, β, p)‖f ‖p(·)([1− δ2, 1− δ2/2]) ≤

c(α, β, p)‖f ‖p(·),μ([−1, 1]) ≤ c(α, β, p). (5.58)

Next, by virtue of (5.44), (5.57) and taking into account that (5.2) we can write

σ422(f, x) ≤ c(α, β, p)

∫ 1

1−δ2/2
(1− y)α(

√
1− y + 1

n
)−α− 1

2 |f (y)|dy ≤

c(α, β, p)

∫ 1

1−δ2/2
(1− y)

α
q(1) (

√
1− y + 1

n
)−α− 1

2 |f (y)|μ α
p(1) (y)dy ≤

c(α, β, p)‖f ‖p(·),μ([−1, 1])
(∫ 1

1−δ2/2
(1− y)α(

√
1− y + 1

n
)−(α+ 1

2 )q(1)dy

) 1
q(1)

.

Thus (see (5.19)) σ422(f, x) ≤ c(α, β, p) and

‖σ422(f )‖p(·)([0, 1− δ2]) ≤ c(α, β, p). (5.59)

The estimates (5.55), (5.58) and (5.59), taken together, give

‖σ42(f )‖p(·)([0, 1− δ2]) ≤ c(α, β, p). (5.60)

We consider now the case 1− δ2 ≤ x < 1. Let yn = 1− c/n2 > 1− δ2, then

σ42(f, x) ≤ c(α)(1− x)
α

p(1)
− α

2+ 1
4

×
∣∣∣∣∣
∫ 1−yn

1−δ2

Bn(y)(1− y)α(
√

1− y + 1
n
)−α− 1

2 f (y)dy

x − y

∣∣∣∣∣

+ c(α)(1− x)
α

p(1)
− α

2+ 1
4

∣∣∣∣∣
∫ 1

1−yn

Bn(y)(1− y)α(
√

1− y + 1
n
)−α− 1

2 f (y)dy

x − y

∣∣∣∣∣
= I1 + I2. (5.61)

We estimate I1. To this end we write

I1 ≤ G(f, x)+Q(f, x), (5.62)
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where

G(f, x) = c(α)

∣∣∣∣∣
∫ 1−yn

1−δ2

Bn(y)(1− y)
α

p(1) f (y)dy

x − y

∣∣∣∣∣ , (5.63)

Q(f, x) = c(α)

∣∣∣∣∣
∫ 1−yn

1−δ2

Bn(y)(1− y)
α

p(1) f (y)dy

x − y

[(
1− x

1− y

) α
p(1)

− α
2+ 1

4 − 1

]∣∣∣∣∣ .

(5.64)

Value G(f, x) can be estimated in a similar way as U(f, x) therefore we have

‖G(f )‖p(·)([1− δ2, 1]) ≤ c(α, β, p)‖f ‖p(·)([−1, 1]) ≤ c(α, β, p). (5.65)

Next, we note

0 < −α

2
+ 1

4
+ α

p(1)
< 1. (5.66)

and set

Kγ (x, y) = 1

|x − y|
∣∣∣∣
(

1− x

1− y

)γ

− 1

∣∣∣∣ , γ = −α

2
+ 1

4
+ α

p(1)
. (5.67)

Then, taking into account (5.64), we can write

‖Q(f )‖p(·)([1− δ2, 1]) ≤ c(α) sup
g

1∫

1−δ2

1∫

1−δ2

|g(x)Z(y)|Kγ (x, y)dxdy, (5.68)

where Z(y) = Bn(y)(1−y)
α

p(1) , and the supremum is taken over all g ∈ Lq(1)([1−
δ2, 1]), for which ‖g‖p(·)([1 − δ2, 1]) ≤ 1. The double integral J from (5.68) can
be estimated in a similar way as I . Thus

J ≤ c(α, β, p).

Comparing this estimate with (5.68), we derive

‖Q(f )‖p(·)([1− δ2, 1]) ≤ c(α, β, p). (5.69)

From estimates (5.62), (5.65) and (5.69)

I1 ≤ c(α, β, p). (5.70)
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We proceed to I2 estimation. From (5.44) assuming (1− y)αf (y) = g(y) we get

I2 ≤ c(α)nα+ 1
2 (1− x)

α
p(1)

− α
2+ 1

4

∣∣∣∣
∫ 1

1−yn

(1− y)αf (y)dy

x − y

∣∣∣∣
≤ c(α, β)nα+ 1

2 (1− x)
α

p(1)
− α

2+ 1
4 H 1−yn,1g(x)

≤ c(α, β, p)nα+ 1
2 (1− x)

α
p(1)

− α
2+ 1

4 (5.71)

The estimates (5.61), (5.70) and (5.71) give

‖σ42(f )‖p(·)([1− δ2, 1]) ≤ c(α, β, p), (5.72)

and from (5.60) and (5.72) we get

‖σ42(f )‖p(·)([0, 1]) ≤ c(α, β, p). (5.73)

Comparing (5.54) and (5.73) with (5.46), we see that the assertion of Lemma 4.2
holds for i = 4. Thus, Lemma 4.2 is completely proved.

Theorem 5.2 Let −1 < α, β < −1/2, μ = μ(x) = (1 − x)α(1 + x)β , p ∈
P(−1, 1), 1 < p(1) < ∞, 1 < p(−1) < ∞. Then

‖Sα,β
n (f )‖p(·),μ([−1, 1]) ≤ c(α, β, p)‖f ‖p(·),μ([−1, 1]) (5.74)

holds for any function f ∈ L
p(x)
μ ([−1, 1]).

The proof of this assertion is similar to the Theorem 5.1 from [9].

Corollary 5.3 If Theorem 5.2 conditions hold, then the system of orthonormal
Jacobi polynomials {pα,β

n (x)}∞n=0 with −1 < α, β < −1/2 is a basis of the space

L
p(x)
μ ([−1, 1]), where μ = μ(x) = (1− x)α(1+ x)β and consequently

‖f − Sα,β
n (f )‖p(·),μ([−1, 1]) → 0

as n →∞ for arbitrary function f ∈ L
p(x)
μ ([−1, 1]).

References

1. Sharapudinov, I.I.: Topology of the space Lp(t)([0, 1]). Math. Notes 26(4), 796–806 (1979)
2. Sharapudinov, I.I.: Some questions of approximation theory in the Lebesgue spaces with

variable exponent. In: Itogi Nauki. Yug Rossii. Mat. Monograf., vol. 5. Southern Mathematical
Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences and
Republic of North Ossetia-Alania, Vladikavkaz (2012)



The Convergence of the Fourier–Jacobi Series 227

3. Sharapudinov, I.I.: Approximation of functions in L
p(x)

2π by trigonometric polynomials. Izv.
Math. 77(2), 407–434 (2013)

4. Sharapudinov, I.I.: Some aspects of approximation theory in the spaces Lp(x). Anal. Math.
33(2), 135–153 (2007)
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Hyperbolic B-Potentials: Properties
and Inversion

E. L. Shishkina

Abstract The paper is devoted to the study of the fractional integral operator which
is a negative real power of the singular wave operator generated by Bessel operator,
its properties and its inverse using weighted distributions.

Keywords Hyperbolic Riesz B-potential · Fractional power of singular
hyperbolic operator · Lorentz distance · Singular Bessel differential operator ·
Generalized translation · Multidimensional Hankel transform

MSC Classification 31B15, 31B10, 26A33, 46E30

1 Introduction

In recent years, the interest to the Fractional Calculus has been increasing due to
its applications in many fields. As for multidimensional case the most developed
type of fractional integrals are Riesz potentials which are generalized both Newton
potential to the fractional case and Riemann-Liouville fractional integral to the
multidimensional case.

Marcel Riesz was a Hungarian mathematician who first established the fractional
powers of the Laplace and D’Alembert operators (see [1] and [2]). Such potentials
are called the Riesz potentials now and have the forms

Iα
�f (P ) = 1

γn(α)

∫

Rn

f (Q)rα−ndQ
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and

Iα
�f (P ) = 1

Hn(α)

∫

D

f (Q)rα−n
PQ dQ,

where P = (x1, . . . , xn), Q = (ξ1, . . . , ξn), γn(α), Hn(α) is normalizing constant,

r=
√

(x1 − ξ1)2 + (x2 − ξ2)2 + . . .+ (xn − ξn)2

is the Euclidean distance,

rPQ=
√

(x1 − ξ1)2 − (x2 − ξ2)2 − . . .− (xn − ξn)2

is the Lorentz distance, D = {x : x2
1 ≥ x2

2 + . . .+ x2
n} is the positive cone.

In [2] was shown that

�Iα+2
� f (P ) = −Iα

�f (P )

and

�Iα+2
� f (P ) = Iα

�f (P ).

For further properties such as conditions of existence, semigroup property and
inversion see [2–6]. The theory of hyperbolic potentials introduced in [5] was
developed in the articles [7, 8]. As for classical Riesz potentials with Lorentz
distance we refer to [6, 9].

The theory of fractional powers of elliptic operators with Bessel operator

Bν=D2 + ν

x
D, D = d

dx

acting instead of all or some second derivatives in � is well developed (see [10–16]).
Fractional powers of hyperbolic operators, with Bessel operators instead of all or

some second derivatives were studied in [17–21]. Such operators have wide areas of
application such as singular differential equations, differential geometry and random
walks.

In this article we study real powers of

�γ = Bγ1 − Bγ2 − . . .− Bγn, Bγi =
∂2

∂x2
i

+ γi

xi

∂

∂xi

, i = 1, . . . , n.

Composition method (see [22]) was used for construction of (�γ )− α
2 , α > 0.
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2 Basic Definitions

In this section we derive some definitions that we use later in this article.
Suppose that Rn is the n-dimensional Euclidean space,

R
n+={x=(x1, . . . , xn) ∈ R

n, x1>0, . . . , xn>0},

γ=(γ1, . . ., γn) is a multi-index consisting of positive fixed real numbers γi ,
i=1, . . ., n, and |γ |=γ1+. . .+γn.

Let � be finite or infinite open set in R
n symmetric with respect to each

hyperplane xi=0, i = 1, . . . , n, �+ = � ∩ R
n+ and �+ = � ∩ R

n+ where
R

n+={x=(x1, . . . , xn)∈Rn, x1≥0, . . . , xn≥0}. We deal with the class Cm(�+)

consisting of m times differentiable on �+ functions and denote by Cm(�+) the
subset of functions from Cm(�+) such that all derivatives of these functions with
respect to xi for any i = 1, . . . , n are continuous up to xi=0. Class Cm

ev(�+)

consists of all functions from Cm(�+) such that ∂2k+1f

∂x2k+1
i

∣∣∣∣
x=0

= 0 for all non-negative

integer k ≤ m−1
2 (see [23] and [24, p. 21]). In the following we will denote Cm

ev(Rn+)

by Cm
ev . We set

C∞
ev (�+) =

⋂
Cm

ev(�+)

with intersection taken for all finite m and C∞
ev (R+) = C∞

ev .
As the space of test functions we will use the subspace of the space of rapidly

decreasing functions:

Sev =
{

f ∈ C∞
ev : sup

x∈Rn+

∣∣xαDβf (x)
∣∣ < ∞ ∀α, β ∈ Z

n+

}
,

where α = (α1, . . . , αn), β = (β1, . . . , βn), α1, . . . , αn, β1, . . . , βn are integer
non-negative numbers, xα = x

α1
1 x

α2
2 . . . x

αn
n , Dβ = D

β1
x1 . . . D

βn
xn

, Dxj = ∂
∂xj

.

Let L
γ
p(Rn+) = L

γ
p , 1≤p<∞, be the space of all measurable in R

n+ functions
even with respect to each variable xi , i = 1, . . . , n such that

∫

R
n+

|f (x)|pxγ dx < ∞,

here and further

xγ =
n∏

i=1

x
γi

i .
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For a real number p ≥ 1, the L
γ
p-norm of f is defined by

||f ||Lγ
p(Rn+) = ||f ||p,γ =

⎛
⎜⎝

∫

R
n+

|f (x)|pxγ dx

⎞
⎟⎠

1/p

.

Weighted measure of �+ is denoted by mesγ (�+) and is defined by formula

mesγ (�+) =
∫

�+

xγ dx.

For every measurable function f (x) defined on R
n+ we consider

μγ (f, t) = mesγ {x ∈ R
n+ : |f (x)| > t} =

∫

{x: |f (x)|>t}+
xγ dx

where {x:|f (x)|>t}+={x∈Rn+:|f (x)|>t}. We will call the function μγ = μγ (f, t)

a weighted distribution function |f (x)|.
Space L

γ∞(Rn+)=L
γ∞ is the space of all measurable in R

n+ functions even with
respect to each variable xi , i = 1, . . . , n for which the norm

||f ||Lγ∞(Rn+) = ||f ||∞,γ = ess supγ

x∈Rn+
|f (x)| = inf

a∈R{μγ (f, a) = 0}

is finite.
For 1 ≤ p ≤ ∞ the L

γ
p,loc(R

n+) = L
γ
p,loc is the set of functions u(x) defined

almost everywhere in R
n+ such that uf ∈ L

γ
p for any f ∈ Sev .

Definition 1 The space of weighted distributions S′ev(Rn+) = S′ev is a class of
continuous linear functionals that map a set of test functions f ∈ Sev into the set
of real numbers. Each function u(x) ∈ L

γ

1,loc will be identified with the functional
u ∈ S′ev(Rn+) = S′ev acting according to the formula

(u, f )γ =
∫

R
n+

u(x) f (x) xγ dx, f ∈ Sev. (1)

Functionals u ∈ S′ev acting by the formula (1) will be called regular weighted
functionals. All other continuous linear functionals u ∈ S′ev will be called singular
weighted functionals.
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We consider regular distributions

(Pλ
γ , ϕ)γ =

∫

R
n+

Pλ(x)ϕ(x)xγ dx, xγ =
n∏

i=1

x
γi

i , (2)

whereP(x) = α1x2
1+. . .+αnx2

n is quadratic form with complex coefficients, ϕ is an
appropriate test function. Let P=x2

1−x2
2−. . .−x2

n, and P ′ = ε(x2
1+. . .+x2

n), ε > 0.
Weighted distributions (P ± i0)λ

γ are defined by

(P ± i0)λ
γ = lim

ε→0
(P ± iP ′)λ

γ

in which we are passing to the limit under the integral sign in (2).
Generalized function δγ is defined by the equality

(δγ , ϕ)γ = ϕ(0), ϕ(x) ∈ Sev.

Definition 2 The multidimensional generalized translation is defined by the
equality

(γ Ty
xf )(x) = γ Ty

xf (x) = ( γ1T
y1
x1 . . . γnT

yn
xn

f )(x), (3)

where each of one-dimensional generalized translation γi T
yi
xi

acts for i=1, . . ., n

according to

( γi T
yi
xi

f )(x)=
�

(
γi+1

2

)
√

π�
( γi

2

)×

×
π∫

0

f (x1, . . . , xi−1,

√
x2

i + τ 2
i − 2xiyi cos ϕi, xi+1, . . . , xn) sinγi−1 ϕi dϕi.

We will use the generalized convolution product defined by the formula

(f ∗ g)γ (x) =
∫

R
n+

f (y)( γ Ty
xg)(x)yγ dy, f, g ∈ Sev

where γ Ty
x is multidimensional generalized translation (3).

The generalized convolution (u ∗ f )γ of a weighted distribution u ∈ S′ev and a
function f ∈ Sev is defined by

(u ∗ f )γ (x) = (u, γ T·xf )γ
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where the right-hand side denotes u acting on γ Ty
xf as a function of y.

We will deal with the singular Bessel differential operator Bν (see, for
example, [24, p. 5]):

(Bν)t = ∂2

∂t2 +
ν

t

∂

∂t
= 1

tν

∂

∂t
tν ∂

∂t
, t > 0

and the elliptical singular operator or the Laplace-Bessel operator5γ :

5γ = (5γ )x =
n∑

i=1

(Bγi )xi =
n∑

i=1

(
∂2

∂x2
i

+ γi

xi

∂

∂x

)
=

n∑
i=1

1

x
γi

i

∂

∂xi

x
γi

i

∂

∂xi

. (4)

The operator (4) belongs to the class of B-elliptic operators by I. A. Kipriyanovs’
classification (see [24]).

The natural method for the study of operators associated with the Bessel
differential operator is the use of the multidimensional Hankel transform instead
of the Fourier transform.

Definition 3 The Hankel transform of a function f∈L
γ

1 (Rn+) is expressed as

Fγ [f ](ξ) = Fγ [f (x)](ξ) = f̂ (ξ) =
∫

R
n+

f (x) jγ (x; ξ)xγ dx,

where

jγ (x; ξ) =
n∏

i=1

j γi−1
2

(xiξi ), γ1 > 0, . . . , γn > 0,

the symbol jν is used for the normalized Bessel function:

jν(r) = 2ν�(ν + 1)

rν
Jν(r) (5)

and Jν(r) is the Bessel function of the first kind of order ν.
For f ∈ Sev its inverse Hankel transform is defined by

F−1
γ [f̂ (ξ)](x) = f (x) = 2n−|γ |

n∏
j=1

�2
(

γj+1
2

)
∫

R
n+

jγ (x, ξ)f̂ (ξ)ξγ dξ.

If g ∈ S′ev then equality

(Fγ g, ϕ)γ = (g, Fγ ϕ)γ , ϕ ∈ Sev (6)

defines Hankel transform of functional g ∈ S′ev .
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In [25] the space �V consisting of functions vanishing on a given closed set V of
measure zero was considered. The Lizorkin–Samko space �V is dual to �V in the
sense of Fourier transforms. We introduce the space �

γ

V of functions Sev vanishing
with all their derivatives on a given closed set V :

�
γ

V = {ψ ∈ Sev(Rn+) : (Dkψ)(x) = 0, x ∈ V, |k| = 0, 1, 2, . . .}.

Space �
γ
V is dual to �

γ
V in the sense of Hankel transforms:

�
γ

V = {ϕ : Fγ ϕ ∈ �
γ

V }. (7)

Appell hypergeometric function F4(a, b, c1, c2; x, y) (see [26, p. 658]) for
|x|1/2 + |y|1/2<1 has the form

F4(a, b, c1, c2; x, y) =
∞∑

m,n=0

(a)m+n(b)m+n

(c1)m(c2)n m! n! xmyn. (8)

For |x|1/2 + |y|1/2 ≥ 1 function F4(a, b; c1, c2; x, y) is understood as an analytical
continuation, which is determined by the formulas from [27].

3 Definition of the Hyperbolic B-Potentials

Here we consider fractional powers of the hyperbolic expression with Bessel
operators

�γ = Bγ1 − Bγ2 − . . .− Bγn, Bγi =
∂2

∂x2
i

+ γi

xi

∂

∂xi

, i = 1, . . . , n

in Sev and L
γ
p . Negative real powers of �γ will be called hyperbolic B-potentials.

Definition 4 Hyperbolic B-potentials Iα
P±i0,γ for α > n + |γ | − 2 are defined by

formulas

(Iα
P±i0,γ f )(x) = e±

n−1+|γ ′ |
2 iπ

Hn,γ (α)

∫

R
n+

(P ± i0)
α−n−|γ |

2
γ (γ Ty

xf )(x)yγ dy

= e±
n−1+|γ ′ |

2 iπ

Hn,γ (α)

(
(P ± i0)

α−n−|γ |
2

γ ∗ f

)
γ

(x), (9)
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where γ ′ = (γ2, . . . , γn), |γ ′| = γ2 + . . .+ γn,

Hn,γ (α) =

n∏
i=1

�
(

γi+1
2

)
�

(
α
2

)

2n−α�
(

n+|γ |−α
2

) .

It is well known (see for example [24]) that generalized convolution of a weighted
distribution and a regular function is again a regular function.

Using property of weighted distributions (P ± i0)λ
γ from [28] we can rewrite

formulas (9) as

(Iα
P±i0,γ f )(x) = e±

n−1+|γ ′|
2 iπ

Hn,γ (α)

⎡
⎣

∫

K+
rα−n−|γ |(y)(γ Ty

xf )(x)yγ dy+

+e±
α−n−|γ |

2 πi

∫

K−
|r(y)|α−n−|γ |(γ Ty

xf )(x)yγ dy

⎤
⎦ , (10)

where

K+ = {x : x ∈ R
n+ : P(x) ≥ 0}, K− = {x : x ∈ R

n+ : P(x) ≤ 0},

r(y) = √
P(y) =

√
y2

1 − y2
2 − . . .− y2

n.

Function r(y) is a Lorentz distance and K+ is a part of the light cone.
Introducing the notations

(Iα
P+,γ f )(x) =

∫

K+

rα−n−|γ |(y)(γ Ty
xf )(x)yγ dy, (11)

(Iα
P−,γ f )(x) =

∫

K−
|r(y)|α−n−|γ |(γ Ty

xf )(x)yγ dy, (12)

we can write

(Iα
P±i0,γ f )(x) = e±

n−1+|γ ′|
2 iπ

Hn,γ (α)

[
(Iα

P+,γ f )(x)+ e±
α−n−|γ |

2 πi(Iα
P−,γ f )(x)

]
. (13)
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Remark Let y ′ = (y2, . . . , yn), |y ′| =
√

y2
2 + . . .+ y2

n, (y ′)γ ′ = y
γ2
2 . . . y

γn
n . For

n ≥ 3 we have

(Iα
P+,γ f )(x) =

∞∫

0

y
γ1
1 dy1

∫

{|y ′|<y1}+
(y2

1 − |y ′|2)
α−n−|γ |

2 (γ Ty
xf )(x)(y ′)γ ′dy ′,

(14)

(Iα
P−,γ f )(x) =

∞∫

0

y
γ1
1 dy1

∫

{|y ′|>y1}+
(|y ′|2 − y2

1)
α−n−|γ |

2 (γ Ty
xf )(x)(y ′)γ ′dy ′,

(15)

where {|y ′| < y1}+ = {y ∈ R
n+ : |y ′| < y1}, {|y ′| > y1}+ = {y ∈ R

n+ : |y ′| > y1}.
For n = 2 we have

(Iα
P+,γ f )(x) =

∞∫

0

y
γ1
1 dy1

y1∫

0

(y2
1 − y2

2)
α−2−|γ |

2 (γ Ty
xf )(x)y

γ2
2 dy2,

(Iα
P−,γ f )(x) =

∞∫

0

y
γ1
1 dy1

∞∫

y1

(y2
2 − y2

1)
α−2−|γ |

2 (γ Ty
xf )(x)y

γ2
2 dy2.

Theorem 1 Let f ∈ Sev and α > n + |γ | − 2. Then integrals (Iα
P±i0,γ f )(x)

converge absolutely for x ∈ R
n+.

Proof Let us prove absolute convergence of each term in (10). Passing in (10) to
spherical coordinates y=ρσ , ρ=|y|, σ ′=(σ2, . . ., σn) we obtain

∫

K+
rα−n−|γ |(y)(γ Ty

xf )(x)yγ dy =

=
∞∫

0

ρα−1dρ

∫

{S+1 (n),|σ ′|<σ1}
(σ 2

1 − |σ ′|2)
α−n−|γ |

2 (γ Tρσ f )(x)σ γ dS,

where

{S+1 (n), |σ ′| < σ1} = {σ ′ ∈ R
n−1+ : σ 2

1 + |σ ′|2 = 1, |σ ′| < σ1}.
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Using formula γ Ty
xf (x)= γ Tx

yf (y), inequality |γ Ty
xf (x)|≤ sup

R
n+
|f (x)| (see [29, p.

124]) and considering that f ∈ Sev we get

∣∣∣∣∣∣
∫

K+

rα−n−|γ |(y)(γ Ty
xf )(x)yγ dy

∣∣∣∣∣∣ ≤

≤ C

∞∫

0

ρα−1

(1+ ρ2)
α+1

2

dρ

∫

S+1 (n),|σ ′|<σ1

(σ 2
1 − |σ ′|2)

α−n−|γ |
2 σγ dS < ∞,

for α > n + |γ | − 2. Similarly, we get that (12) converges absolutely for α >

n+|γ |−2. So for α > n+|γ |−2 integrals (Iα
P±i0,γ f )(x) converge absolutely. ��

Next we show how hyperbolic B-potentials are connected with the operator
(�γ )k , k ∈ N. We will use this connection in order to define hyperbolic B-potentials
for 0 ≤ α ≤ n+ |γ | − 2.

Theorem 2 If f ∈ Sev , n+ |γ | − 2 < α and k ∈ N then

(�γ )kIα+2k
P±i0,γ f = Iα

P±i0,γ f, (16)

where �γ=Bγ1−
n∑

i=2
Bγi .

Proof Using representation (9) and the property γi T
yi
xi

(Bγi )xi = (Bγi )
γi
xi

T
yi
xi

(see
formula 1.8.3 from [24]) we obtain

(�γ )k(Iα+2k
P±i0,γ f )(x) =

= e±
n−1+|γ ′|

2 iπ

Hn,γ (α + 2k)
(�γ )k

∫

R
n+

(P ± i0)
α+2k−n−|γ |

2
γ (γ Ty

xf )(x)yγ dy =

= e±
n−1+|γ ′ |

2 iπ

Hn,γ (α + 2k)

∫

R
n+

(
γ Ty

x(�γ )k(P ± i0)
α+2k−n−|γ |

2
γ

)
f (y)yγ dy.

For function (P ± i0)λ
γ the next equalities are true (see [28])

(�γ )k(P ± i0)
α+2k−n−|γ |

2
γ = 22k

�
(

α−n−|γ |
2 + k + 1

)

�
(

α−n−|γ |
2 + 1

) �
(

α
2 + k

)
�

(
α
2

) (P ± i0)
α−n−|γ |

2
γ .

(17)
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Since

22k
�

(
α−n−|γ |

2 + k + 1
)

�
(

α−n−|γ |
2 + 1

) �
(

α
2 + k

)
�

(
α
2

) · 1

Hn,γ (α + 2k)
= 1

Hn,γ (α)
,

then using (17) we get

(�γ )k(Iα+k
P±i0,γ f )(x) =

= e±
n−1+|γ ′|

2 iπ

Hn,γ (α)

∫

R
n+

(
γ Ty

x(P ± i0)
α−n−|γ |

2
γ

)
f (y)yγ dy = (Iα

P±i0,γ f )(x)

and the proof is complete. ��
Taking into account (16) let define hyperbolic B-potentials Iα

P±i0,γ for 0 ≤ α ≤
n+ |γ | − 2 as

(Iα
P±i0,γ f )(x) = (�γ )k(Iα+2k

P±i0,γ f )(x) = e±
n−1+|γ ′|

2 iπ

Hn,γ (α + 2k)
(�γ )k

×
∫

R
n+

(P ± i0)
α+2k−n−|γ |

2
γ (γ Ty

xf )(x)yγ dy, (18)

where k =
[

n+|γ |−α
2

]
.

The boundedness of Iα
P±i0,γ from L

γ
p to L

γ
q can be extracted from [17].

Theorem 3 ([30]) Let n + |γ | − 2 < α < n + |γ |, 1 ≤ p <
n+|γ |

α
. For the next

estimate

||Iα
P±i0,γ f ||q,γ ≤ Cn,γ,p||f ||p,γ , f (x) ∈ Sev (19)

to be valid it is necessary and sufficient that q = (n+|γ |)p
n+|γ |−αp

. Constant Cn,γ,p does
not depend on f .

Further operators Iα
P±,γ on function class L

γ
p we will define as continuations of

operators (9) with preservation of boundedness. If integral (9) converges absolutely
for f ∈ L

γ
p then these continuations are representable as

(Iα
P±i0,γ f )(x) = e±

n−1+|γ ′ |
2 iπ

γn,γ (α)

∫

R
n+

(P ± i0)
α−n−|γ |

2
γ (γ Ty

xf )(x)yγ dy, yγ=
n∏

i=1

y
γi

i .



240 E. L. Shishkina

Theorem 4 ([30]) The mixed hyperbolic Riesz B-potentials satisfy the following
semigroup property for f ∈ Sev:

I
β
P±i0,γ Iα

P±i0,γ f = I
α+β
P±i0,γ f. (20)

By virtue of the density Sev in L
γ
p equalities (16) and (20) spread on function

from L
γ
p for 1 < p <

n+|γ |
α

when integrals Iα
P±i0,γ f converge absolutely for

f ∈ L
γ
p .

Theorem 5 ([30]) For f ∈ �V , V = {x ∈ R
n+ : P(x) = 0} Hankel transform of

the Riesz hyperbolic B-potential

Fγ [(Iα
P±i0,γ f )(x)](ξ) = (P ∓ i0)−

α
2 Fγ [f ](ξ). (21)

4 Method of Approximative Inverse Operators and General
Poisson Kernel

Here we describe one approach for inverting potential type operators, based on the
idea of approximative inverse operators developed in [9, 31].

Equation (9) is a convolution operator, where generalized convolution is used.
The problem to invert this or that convolution operator Af = a ∗ f reduces
to multiplication of some convenient integral transform of a function f by the
reciprocal 1

â
of chosen integral transform of the kernel:

Af = a ∗ f, Âf = â · f̂ , Â−1f = 1

â
· f̂ .

Indeed we have

g = Af, Â−1g = 1

â
· â · f̂ = f̂ .

However, in the case of potentials, the multiplier 1
â

, is unbounded at infinity and,
maybe, on some sets. In this case we use the multiplier mε, which is dependent on ε

such that mε

â
vanishes at those sets on which it is necessary and lim

ε→0
mε = 1. So we

can construct ̂A−1
ε f = mε

â
· f̂ . Applying the inverse integral transform and passing

to the limit ε → 0 we obtain A−1. Next it is necessary to prove that the resulting
operator will be inverse to the operator A in some appropriate space. Therefore, the
factor mε should be chosen so that inverse integral transform of mε

â
· f̂ provides a

fairly good class of functions.
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In our case, we take the Hankel transform. Considering that

Fγ Iα
P±i0,γ f = (P ∓ i0)

− α
2

γ Fγ f,

where f∈�
γ

V , V={x∈Rn+ : P(x)=0} we take

Mε,δ = (P ∓ i0)me−δ|ξ |

(P (ξ)+ iε|ξ |2)m
.

So we should prove that left inverse operators to Iα
P±i0,γ are

(Iα
P±i0,γ )−1f ) =

L
γ
p

lim
δ→0

L
γ

2
lim
ε→0

((
F−1

γ

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m

)
(x) ∗ f (x)

)

γ

.

We denote

(Iα
P±i0,γ )−1

ε,δf =
((

F−1
γ

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m

)
(x) ∗ f (x)

)

γ

=

=
∫

R
n+

∓gα
ε,δ(y)(γ Ty

xf (x))yγ dy,

where

∓gα
ε,δ(x) =

(
F−1

γ

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m

)
(x) =

= 2n−|γ |
n∏

j=1
�2

(
γj+1

2

)
∫

R
n+

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ)+ iε|ξ |2)m
jγ (x, ξ)ξγ dξ,

m ≥ n+ |γ | − α
2 , n+ |γ | − 2 < α < n+ |γ |.

Next we consider a certain function used for solving the problem of inverting a
hyperbolic B-potential. Based on the type and properties of this function, we will
call it the general Poisson kernel.

We first prove an auxiliary lemma.

Lemma 1 Hankel transform of the e−δ|x| is

Fγ [e−δ|x|](ξ) =
2|γ |δ

n∏
i=1

�
(

γi+1
2

)
�

(
n+|γ |+1

2

)

√
π(δ2 + |ξ |2)

n+|γ |+1
2

. (22)
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Proof We have

Fγ [e−δ|x|](ξ) =
∫

R
n+

e−δ|x| jγ (x; ξ)xγ dx = {x = ρσ } =

=
∞∫

0

e−δρρn+|γ |−1dρ

∫

S+1 (n)

jγ (ρσ ; ξ)σ γ dS.

Applying the formula (5) we obtain

Fγ [e−δ|x|](ξ) =

n∏
i=1

�
(

γi+1
2

)

2n−1�
(

n+|γ |
2

)
∞∫

0

e−δρj n+|γ |
2 −1(ρ|ξ |)ρn+|γ |−1dρ =

=

n∏
i=1

�
(

γi+1
2

)

2
n−|γ |

2 |ξ | n+|γ |
2 −1

∞∫

0

e−δρJ n+|γ |
2 −1(ρ|ξ |)ρ n+|γ |

2 dρ.

Applying the formula 2.12.8.4 from [26, p. 164] of the form

∞∫

0

xν+2e−pxJν(cx)dx =
2p(2c)ν�

(
ν + 3

2

)
√

π(p2 + c2)ν+ 3
2

, Re ν > −1

we get

∞∫

0

e−δρJ n+|γ |
2 −1(ρ|ξ |)ρ n+|γ |

2 dρ =
2δ(2|ξ |) n+|γ |

2 −1�
(

n+|γ |+1
2

)
√

π(δ2 + |ξ |2)
n+|γ |+1

2

and therefore

Fγ [e−δ|x|](ξ) =

n∏
i=1

�
(

γi+1
2

)

2
n−|γ |

2 |ξ | n+|γ |
2 −1

2δ(2|ξ |) n+|γ |
2 −1�

(
n+|γ |+1

2

)
√

π(δ2 + |ξ |2)
n+|γ |+1

2

=

=
2|γ |δ

n∏
i=1

�
(

γi+1
2

)
�

(
n+|γ |+1

2

)

√
π(δ2 + |ξ |2)

n+|γ |+1
2

.

��
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We give the formula from [32] that will be used further

∫

S+1 (n)

Pγ
ξ f (〈ξ, x〉)xγ dωx =

n∏
i=1

�
(

γi+1
2

)

√
π2n−1�

( |γ |+n−1
2

)
1∫

−1

f (|ξ |p)(1− p2)
n+|γ |−3

2 dp,

(23)

where f (t)(1−t2)
n+|γ |−3

2 ∈L1(−1, 1).

Definition 5 Function

Pγ (x, δ) =
2n�

(
n+|γ |+1

2

)
√

π
n∏

j=1
�

(
γj+1

2

) δ (δ2 + |x|2)− n+|γ |+1
2 , δ > 0 (24)

is called the general Poisson kernel.

Lemma 2 For Pγ (x, δ) the following properties are valid

1. Fγ [Pγ (x, δ)](ξ) = e−δ|ξ |,
2.

∫
R

n+
Pγ (x, δ)xγ dx = ∫

R
n+

Pγ (x, 1)xγ dx = 1,

3. Pγ (x, δ) ∈ L
γ
p, 1 ≤ p ≤ ∞.

Proof

1. From Lemma 1 we get

F−1
γ [e−δ|x|](ξ) = 2n−|γ |

n∏
j=1

�2
(

γj+1
2

)Fγ [e−δ|x|](ξ) =

= 2n−|γ |
n∏

j=1
�2

(
γj+1

2

)
2|γ |δ

n∏
i=1

�
(

γi+1
2

)
�

(
n+|γ |+1

2

)

√
π(δ2 + |ξ |2) n+|γ |+1

2

=

=
2nδ�

(
n+|γ |+1

2

)
√

π
n∏

j=1
�

(
γj+1

2

) 1

(δ2 + |ξ |2)
n+|γ |+1

2

= Pγ (x, δ).

Hence we obtain Fγ [Pγ (x, δ)](ξ) = e−δ|ξ |.
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2. Consider the integral
∫
R

n+
Pγ (x, δ)xγ dx. We have

∫

R
n+

Pγ (x, δ)xγ dx =
2nδ�

(
n+|γ |+1

2

)
√

π
n∏

j=1
�

(
γj+1

2

)
∫

R
n+

xγ dx

(δ2 + |x|2) n+|γ |+1
2

= {x = δy} =

=
2n�

(
n+|γ |+1

2

)

√
π

n∏
j=1

�
(

γj+1
2

)
∫

R
n+

yγ dy

(1+ |y|2) n+|γ |+1
2

=
∫

R
n+

Pγ (x, 1)xγ dx.

Let us show now that
∫
R

n+
Pγ (x, 1)xγ dx = 1. Going over to spherical

coordinates we obtain

∫

R
n+

yγ dy

(1+ |y|2) n+|γ |+1
2

= {y = ρσ } =
∞∫

0

ρn+|γ |−1 dρ

(1+ ρ2)
n+|γ |+1

2

∫

S+1 (n)

σ γ dS =

=

n∏
i=1

�
(

γi+1
2

)

2n−1�
(

n+|γ |
2

)
∞∫

0

ρn+|γ |−1 dρ

(1+ ρ2)
n+|γ |+1

2

= {ρ2 = r} =

=

n∏
i=1

�
(

γi+1
2

)

2n�
(

n+|γ |
2

)
∞∫

0

r
n+|γ |

2 −1

(1+ r)
n+|γ |+1

2

dr.

Using the formula 2.2.5.24 from [33, p. 239] of the form

∞∫

0

xα−1

(x + z)β
dx = zα−βB(α, β − α), 0 < Re α < Re β,

we obtain

2

∞∫

0

ρn+|γ |−1 dρ

(1+ ρ2)
n+|γ |+1

2

=
∞∫

0

r
n+|γ |

2 −1

(1+ r)
n+|γ |+1

2

dr =
√

π�
(

n+|γ |
2

)

�
(

n+|γ |+1
2

) (25)
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and

∫

R
n+

yγ dy

(1+ |y|2) n+|γ |+1
2

=

n∏
i=1

�
(

γi+1
2

)

2n�
(

n+|γ |
2

)
√

π�
(

n+|γ |
2

)

�
(

n+|γ |+1
2

) =
√

π
n∏

i=1
�

(
γi+1

2

)

2n�
(

n+|γ |+1
2

) .

Finally,

∫

R
n+

Pγ (x, 1)xγ dx =
2n�

(
n+|γ |+1

2

)

√
π

n∏
j=1

�
(

γj+1
2

)
∫

R
n+

yγ dy

(1+ |y|2) n+|γ |+1
2

=

=
2n�

(
n+|γ |+1

2

)
√

π
n∏

j=1
�

(
γj+1

2

)
√

π
n∏

i=1
�

(
γi+1

2

)

2n�
(

n+|γ |+1
2

) = 1.

3. We finally prove that Pγ (x, δ) ∈ L
γ
p, 1 ≤ p ≤ ∞. We have

∫

R
n+

xγ dx

(δ2 + |x|2)p
n+|γ |+1

2

= δ(n+|γ |)(1−p)−p

∫

R
n+

xγ dx

(|x|2 + 1)p
n+|γ |+1

2

=

= {x = ρσ, |x| = ρ} = δ(n+|γ |)(1−p)−p

∞∫

0

ρn+|γ |−1dρ

(ρ2 + 1)p
n+|γ |+1

2

∫

S+1 (n)

σ γ dS.

Applying (25) for 1 ≤ p < ∞ we get

||Pγ (x, δ)||p,γ =

⎛
⎜⎜⎝δ(n+|γ |)(1−p)−p

√
π�

(
n+|γ |

2

)

2�
(

n+|γ |+1
2

)
n∏

i=1
�

(
γi+1

2

)

2n−1�
(

n+|γ |
2

)
⎞
⎟⎟⎠

1
p

=

=

⎛
⎜⎜⎝δ(n+|γ |)(1−p)−p

√
π

n∏
i=1

�
(

γi+1
2

)

2n�
(

n+|γ |+1
2

)
⎞
⎟⎟⎠

1
p

< ∞.

For p = ∞ we get inequality ||Pγ (x, δ)||∞,γ < ∞ tending to the limit.
��



246 E. L. Shishkina

Following [34] (see Theorem 1.18, p. 17) we prove that a generalized convolution
of a function with the Poisson kernel tends to a function in L

γ
p .

Let

(Pγ,δf )(x) = (f (x) ∗ Pγ (x, δ))γ . (26)

Lemma 3 If f ∈ L
γ
p , 1 ≤ p ≤ ∞ or f ∈ C0 ⊂ L

γ∞ then

||(Pγ,δf )(x)− f (x)||p,γ → 0 with δ → 0.

Proof Considering the property 2 from Lemma 2 we can write

(f (x) ∗ Pγ (x, δ))γ − f (x) =
∫

R
n+

[ γ Ty
xf (x)− f (y)]Pγ (y, δ)yγ dy.

Hence, applying the generalized Minkowski inequality, we obtain

||(f (x) ∗ Pγ (x, δ))γ − f (x)||p,γ ≤

≤
∫

R
n+

⎛
⎜⎝

∫

R
n+

[ γ Ty
xf (x)− f (x)]pxγ dx

⎞
⎟⎠

1
p

|Pγ (y, δ)|yγ dy = {y = δt} =

=
∫

R
n+

⎛
⎜⎝

∫

R
n+

[ γ Tδt
x f (x)− f (x)]pxγ dx

⎞
⎟⎠

1
p

|Pγ (t, 1)|tγ dt. (27)

From [35] (see Lemma 3.6, p. 166) it follows that for f ∈ L
γ
p

|| γ Tδt
x f (x)− f (x)||p,γ ≤ c||f (x)||p,γ ,

and from [36] (see the preposition 4.1, p. 182) follows that

lim
δ→0

⎛
⎜⎝

∫

R
n+

[ γ Tδt
x f (x)− f (x)]pxγ dx

⎞
⎟⎠

1
p

= 0.

Then, by the Lebesgue theorem on dominated convergence, the integral (27) tends
to zero when δ → 0, since the integrand is majorized by the integrable function
c||f ||p,γ |Pγ (t, 1)|tγ . ��



Hyperbolic B-Potentials: Properties and Inversion 247

5 Representation of the Kernel ∓gα
ε,δ

In this section we get the integral kernel representation ∓gα
ε,δ .

Theorem 6 Function ∓gα
ε,δ can be presented in the form

∓gα
ε,δ(x) = 22−|γ |

δn+|γ |+α
n∏

i=1
�

(
γi+1

2

) �(n+ |γ | + α)

�
(

γ1+1
2

)
�

(
n+|γ ′|−1

2

)×

×
∞∫

0

rn+|γ ′|−2 (1− r2 ∓ i0)m+ α
2

(1+ r2)
n+|γ |+α

2 (1− r2 + iε(1+ r2))m
×

×F4

(
β

2
,

β + 1

2
; γ1 + 1

2
,

n+ |γ ′| − 1

2
; − x2

1

δ2(1+ r2)
,− (r|x ′|)2

δ2(1+ r2)

)
dr.

where β = n + |γ | + α F4(a, b, c1, c2; x, y) is the Appell hypergeometric
function (8).

Proof We represent the function ∓gα
ε,δ(t) as the sum

∓gα
ε,δ(x) = F−1

γ

(P ∓ i0)m+ α
2 e−δ|x|

(P (x)+ iε|x|2)m
=

= 2n−|γ |
n∏

j=1
�2

(
γj+1

2

)
∫

R
n+

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m
jγ (x, ξ)ξγ dξ =

= 2n−|γ |
n∏

j=1
�2

(
γj+1

2

)
⎡
⎢⎣

∫

{P(ξ)>0}+

P m+ α
2 (ξ)e−δ|ξ |

(P (ξ) + iε|ξ |2)m
jγ (x, ξ)ξγ dξ+

+e∓(m+ α
2 )πi

∫

{P(ξ)<0}+

|P(ξ)|m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m
jγ (x, ξ)ξγ dξ

⎤
⎥⎦ .

Let

J1 =
∫

{P(ξ)>0}+

P m+ α
2 (ξ)e−δ|ξ |

(P (ξ) + iε|ξ |2)m
jγ (x, ξ)ξγ dξ,

J2 =
∫

{P(ξ)<0}+

|P(ξ)|m+ α
2 e−δ|ξ |

(P (ξ)+ iε|ξ |2)m
jγ (x, ξ)ξγ dξ.
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Going in J1 over to spherical coordinates ξ ′ = ρσ , σ ∈ R
n−1+ , ρ = |ξ ′| we obtain

J1 =
∞∫

0

j γ1−1
2

(x1ξ1)ξ
γ1
1 dξ1×

×
∫

|ξ ′|2<ξ2
1

(ξ2
1 − |ξ ′|2)m+ α

2 e
−δ

√
ξ2

1+|ξ ′|2

(ξ2
1 − |ξ ′|2 + iε(ξ2

1 + |ξ ′|2))m
jγ (x ′, ξ ′)(ξ ′)γ ′ dξ ′ =

=
∞∫

0

j γ1−1
2

(x1ξ1)ξ
γ1
1 dξ1

ξ1∫

0

ρn+|γ ′|−2 (ξ2
1 − ρ2)m+ α

2 e
−δ

√
ξ2

1+ρ2

(ξ2
1 − ρ2 + iε(ξ2

1 + ρ2))m
dρ×

×
∫

S+1 (n−1)

jγ (x ′, ρσ)(σ )γ ′ dS.

The next formula

∫

S+1 (n−1)

jγ (x ′, ρσ)(σ )γ ′ dS =

n∏
i=2

�
(

γi+1
2

)

2n−2�
(

n−1+|γ ′|
2

) j n−1+|γ ′|
2 −1

(ρ|x ′|),

is valid (see [37]), therefore

J1 =

n∏
i=2

�
(

γi+1
2

)

2n−2�
(

n−1+|γ ′|
2

)
∞∫

0

j γ1−1
2

(x1ξ1)ξ
γ1
1 dξ1×

×
ξ1∫

0

ρn+|γ ′|−2j n−1+|γ ′|
2 −1

(ρ|x ′|) (ξ2
1 − ρ2)m+ α

2 e
−δ

√
ξ2

1+ρ2

(ξ2
1 − ρ2 + iε(ξ2

1 + ρ2))m
dρ = {ρ = ξ1r} =

=

n∏
i=2

�
(

γi+1
2

)

2n−2�
(

n−1+|γ ′|
2

)
∞∫

0

j γ1−1
2

(x1ξ1)ξ
n+|γ |−1+α

1 dξ1×

×
1∫

0

rn+|γ ′|−2j n−1+|γ ′|
2 −1

(rξ1|x ′|) (1− r2)m+ α
2 e−δξ1

√
1+r2

(1− r2 + iε(1+ r2))m
dr =
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=

n∏
i=2

�
(

γi+1
2

)

2n−2�
(

n−1+|γ ′|
2

) 2
γ1−1

2 �
(

γ1+1
2

)

x
γ1−1

2
1

2
n−1+|γ ′|

2 −1�
(

n−1+|γ ′|
2

)

|x ′| n−1+|γ ′|
2 −1

×

×
1∫

0

r
n+|γ ′|−1

2
(1− r2)m+ α

2

(1− r2 + iε(1+ r2))m
dr×

×
∞∫

0

ξ
n+|γ |

2 +α+1
1 e−δξ1

√
1+r2

J γ1−1
2

(x1ξ1)J n−1+|γ ′ |
2 −1

(rξ1|x ′|) dξ1 =

=
2
|γ |−n

2

n∏
i=1

�
(

γi+1
2

)

x
γ1−1

2
1 |x ′| n−1+|γ ′|

2 −1

1∫

0

r
n+|γ ′ |−1

2
(1− r2)m+ α

2

(1− r2 + iε(1+ r2))m
dr×

×
∞∫

0

ξ
n+|γ |

2 +α+1
1 e−δξ1

√
1+r2

J γ1−1
2

(x1ξ1)J n−1+|γ ′|
2 −1

(rξ1|x ′|) dξ1.

To calculate the internal integral, apply the formula 2.12.38.2 from [26, p. 194] of
the form

∞∫

0

xa−1 e−px Jμ(bx) Jν(cx)dx = bμcν

2μ+νpa+μ+ν

�(a + μ+ ν)

�(μ+ 1)�(ν + 1)
×

×F4

(
a + μ+ ν

2
,

a + μ+ ν + 1

2
;μ+ 1, ν + 1; − b2

p2 ,− c2

p2

)
,

Re (a + μ+ ν) > 0; Re p > 0.

We have

a = n+ |γ |
2

+ α + 2, p = δ
√

1+ r2, μ = γ1 − 1

2
,

ν = n− 1+ |γ ′|
2

− 1, b = x1, c = r|x ′|
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and

∞∫

0

ξ
n+|γ |

2 +α+1
1 e−δξ1

√
1+r2

J γ1−1
2

(x1ξ1)J n−1+|γ ′|
2 −1

(rξ1|x ′|) dξ1 =

= x
γ1−1

2
1 (r|x ′|) n+|γ ′|−3

2

2
n+|γ |

2 −2(δ
√

1+ r2)n+|γ |+α

�(n+ |γ | + α)

�
(

γ1+1
2

)
�

(
n+|γ ′|−1

2

)×

×F4

(
β

2
,

β + 1

2
; γ1 + 1

2
,

n+ |γ ′| − 1

2
; − x2

1

δ2(1+ r2)
,− (r|x ′|)2

δ2(1+ r2)

)
,

where β = n+ |γ | + α. Then

J1 =
2
|γ |−n

2

n∏
i=1

�
(

γi+1
2

)

x
γ1−1

2
1 |x ′| n−1+|γ ′|

2 −1

1∫

0

r
n+|γ ′ |−1

2
(1− r2)m+ α

2

(1− r2 + iε(1+ r2))m
dr×

× x
γ1−1

2
1 (r|x ′|) n+|γ ′ |−3

2

2
n+|γ |

2 −2(δ
√

1+ r2)n+|γ |+α

�(n+ |γ | + α)

�
(

γ1+1
2

)
�

(
n+|γ ′|−1

2

)×

×F4

(
β

2
,

β + 1

2
; γ1 + 1

2
,

n+ |γ ′| − 1

2
; − x2

1

δ2(1+ r2)
,− (r|x ′|)2

δ2(1+ r2)

)
.

=

n∏
i=1

�
(

γi+1
2

)

2n−2δβ

�(n+ |γ | + α)

�
(

γ1+1
2

)
�

(
n+|γ ′|−1

2

)×

×
1∫

0

rn+|γ ′|−2 (1− r2)m+ α
2

(1+ r2)
n+|γ |+α

2 (1− r2 + iε(1+ r2))m
×

×F4

(
β

2
,

β + 1

2
; γ1 + 1

2
,

n+ |γ ′| − 1

2
; − x2

1

δ2(1+ r2)
,− (r|x ′|)2

δ2(1+ r2)

)
dr.
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Similarly, we find

J2 =

n∏
i=1

�
(

γi+1
2

)

2n−2δβ

�(β)

�
(

γ1+1
2

)
�

(
n+|γ ′|−1

2

)×

×
∞∫

1

rn+|γ ′|−2 (1− r2)m+ α
2

(1+ r2)
n+|γ |+α

2 (1− r2 + iε(1+ r2))m
×

×F4

(
β

2
,

β + 1

2
; γ1 + 1

2
,

n+ |γ ′| − 1

2
; − x2

1

δ2(1+ r2)
,− (r|x ′|)2

δ2(1+ r2)

)
dr.

Multiplying by the corresponding constants, adding J1(x) with J2(x) and taking
into account that

(1− r2 ∓ i0)m+ α
2 = (1− r2)

m+ α
2+ + e∓(m+ α

2 )πi(1− r2)
m+ α

2−

we obtain the statement of the proved theorem. ��

6 Inversion of the Hyperbolic B-Potentials

Consider a convolution operator

Af = (T ∗ f )γ , f ∈ Sev. (28)

In the images of Hankel transform we can write

Fγ [Af ] = Fγ [T ] · Fγ [f ].

Definition 6 Let M∈S′ev . The weighted distribution is called B-multiplier in L
γ
p ,

if for all f ∈ Sev the generalized convolution (F−1
γ M ∗ f )γ belongs to L

γ
p and the

supremum

sup
||f ||p,γ=1

||(F−1
γ M ∗ f )γ ||p,γ (29)

is finite. Linear space of all such M is denoting by the Mp,γ=Mp,γ (Rn+). Norm in
Mp,γ is the supremum (29).
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Consider a singular differential operator

(DB)βi
xi
=

⎧⎨
⎩

B
βi
2

γi , β = 0, 2, 4, . . . ,

Dxi B
βi−1

2
γi

, β = 1, 3, 5, . . . ,

where Bγi = ∂2

∂xi
+ γi

xi

∂
∂xi

.
In the article [38] was proved the following criterion of B-multiplier of the type

of Mikhlin criterion.

Theorem 7 Let M(ξ)∈Ck
ev(Rn+)\{0}, where k is even number grater then n+|γ |

2 and
there is a constant A which does not depend on β = (β1, . . . , βm), |β|<k, such that
for ξ �=0, ξ∈Rn

+ the condition

∣∣∣ξβ (DB)
β
ξ M(ξ)

∣∣∣ ≤ A

holds. Then M(ξ) is B-multiplier for 1 < p < ∞.

Lemma 4 Let ε, δ > 0 are fixed numbers and m ≥ n+ |γ | − α
2 . Function

M∓
α,ε,δ(ξ) =

{
(P∓i0)

m+ α
2 e−δ|ξ |

(P (ξ)+iε|ξ |2)m , P (ξ) �= 0;
0, P (ξ) = 0

is B-multiplier for 1 < p < ∞.

Proof We prove the estimate

∣∣∣ξβ1
1 . . . ξβn

n (DB)
β1
ξ1

. . . (DB)
βn

ξn
M∓

α,ε,δ(ξ)

∣∣∣ ≤ C(ε, δ). (30)

For ξ /∈ V = {ξ ∈ R
n+ : P(ξ) = 0} we have

|(DB)
j
ξ (P ∓ i0)m+ α

2 | ≤ C1|ξj | · |P(ξ)|m+ α
2−|j |,

|(DB)k
ξ (P (ξ) + iε|ξ |2)−m| ≤ C2|ξk| · |P 2(ξ)+ ε2|ξ |4|−m+|k|

2 ,

|(DB)r
ξ e−δ|ξ || ≤ C3|ξr | · e−δ|ξ |

|ξ |2r−1 .

Using these estimates and the formula of the type of Leibniz formula for B-
differentiation of the following form:

Bl
i (u v) =

2l∑
k=0

Ck
2l

(
D2l−k

Bi
u
) (

Dk
Bi

v
)
+

2l−2∑
m=1

1

xm
i

P2l−m

(
DBi v;DBi u

)
,
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where

P2l−m

(
DBi v;DBi u

) =
2l−v−1∑

j=1

a2l−m−j,j (γj )
(
D

2l−m−j
Bi

u
) (

D
j
Bi

v
)

,

we get the required estimate (30).
If ξ ∈ V then the estimate (30) follows from the continuity of the function

M∓
α,ε,δ(ξ) and its derivatives on V . ��

Lemma 5 Function ∓gα
ε,δ(x) belongs to space L

γ
p , 1 < p < ∞.

Proof Since the function

∓gα
ε,δ(t) = F−1

γ

(P ∓ i0)m+ α
2 e−δ|x|

(P (x)+ iε|x|2)m

is representable by an operator generated by the B-multiplier M∓
α,ε,δ(ξ) in L

γ
p then

∓gα
ε,δ ∈ L

γ
p . ��

Lemma 6 Let f ∈ Sev . The operator

(Iα
P±i0,γ )−1

ε,δf (x) =
∫

R
n+

∓gα
ε,δ(t)(

γ Tt
xf (x))tγ dt

is bounded in L
γ
p , 1 < p < ∞.

Proof By definition of the operator

(Iα
P±i0,γ )−1

ε,δf =
((

F−1
γ

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m

)
(x) ∗ f (x)

)

γ

it is a generalized convolution (F−1
γ M∓

α,ε,δ ∗ f )γ with the B-multiplier M∓
α,ε,δ(ξ)

therefore belongs to L
γ
p . ��

Lemma 7 Let f ∈ �
γ
V , V={ξ∈Rn+:P(ξ)=0} then

((Iα
P±i0,γ )−1

ε,δIα
P±i0,γ f )(x) = (Pγ,δf )(x)+ 2n−|γ |

n∏
j=1

�2
(

γj+1
2

)
m∑

k=0

Ck
m(−iε)k(Aγ,δ,ε

k f )(x),

where (Pγ,δf )(x) is a generalized convolution with the Poisson kernel (26)

(Aγ,δ,ε
k f )(x) = (A

γ,δ,ε
k (x)∗f (x))γ , A

γ,δ,ε
k (x) =

∫

R
n+

|ξ |2ke−δ|ξ |
(P (ξ)+ iε|ξ |2)k

jγ (x, ξ)ξγ dξ.
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Proof Let Iα
P±i0,γ f = g. We have

Fγ ((Iα
P±i0,γ )−1

ε,δg)(x) = Fγ

((
F−1

γ

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m

)
(x) ∗ g(x)

)

γ

=

= (P ∓ i0)
m+ α

2
γ e−δ|x|

(P (x)+ iε|x|2)m
· Fγ g = (P ∓ i0)

m+ α
2

γ e−δ|x|

(P (x)+ iε|x|2)m
· (P ∓ i0)

− α
2

γ Fγ f =

= (P ∓ i0)m
γ e−δ|x|

(P (x)+ iε|x|2)m
· Fγ f.

Then

((Iα
P±i0,γ )−1

ε,δI
α
P±i0,γ f )(x)=F−1

γ

(
(P ∓ i0)m

γ e−δ|x|

(P (x)+ iε|x|2)m
· Fγ f

)
=

=
(

F−1
γ

(P ∓ i0)m
γ e−δ|x|

(P (x)+ iε|x|2)m
∗ f

)

γ

. (31)

Applying to F−1
γ

(P∓i0)m
γ e−δ|x|

(P (x)+iε|x|2)m the Newton’s binomial formula we obtain

F−1
γ

(P ∓ i0)mγ e−δ|x|

(P (x) + iε|x|2)m
= 2n−|γ |

n∏
j=1

�2
(

γj+1
2

)
⎡
⎢⎣

∫

{ξ1>|ξ ′|}+

(ξ2
1 − |ξ ′|2)me−δ|ξ |

(P (ξ)+ iε|ξ |2)m
jγ (x, ξ)ξγ dξ+

+e∓mπi

∫

{ξ1<|ξ ′|}+

(|ξ ′|2 − ξ2
1 )me−δ|ξ |

(P (ξ)+ iε|ξ |2)m
jγ (x, ξ)ξγ dξ

⎤
⎥⎦ =

= 2n−|γ |
n∏

j=1
�2

(
γj+1

2

)
⎡
⎢⎣

∫

{ξ1>|ξ ′|}+

(
(1− iε|ξ |2

P(ξ)+ iε|ξ |2
)m

e−δ|ξ |jγ (x, ξ)ξγ dξ+

+e∓mπi (−1)m
∫

{ξ1<|ξ ′|}+

(
(1− iε|ξ |2

P(ξ)+ iε|ξ |2
)m

e−δ|ξ |jγ (x, ξ)ξγ dξ

⎤
⎥⎦ =
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= 2n−|γ |
n∏

j=1
�2

(
γj+1

2

)
m∑

k=0

Ck
m(−iε)k

⎡
⎢⎣

∫

{ξ1>|ξ ′|}+

|ξ |2ke−δ|ξ |
(P (ξ)+ iε|ξ |2)k

jγ (x, ξ)ξγ dξ+

+
∫

{ξ1<|ξ ′|}+

|ξ |2ke−δ|ξ |
(P (ξ)+ iε|ξ |2)k

jγ (x, ξ)ξγ dξ

⎤
⎥⎦ =

= 2n−|γ |
n∏

j=1
�2

(
γj+1

2

)
m∑

k=0

Ck
m(−iε)k

∫

R
n+

|ξ |2ke−δ|ξ |
(P (ξ)+ iε|ξ |2)k

jγ (x, ξ)ξγ dξ.

For m = 0 applying of (22) gives

(F−1
γ e−δ|ξ |)(x) = 2n−|γ |

n∏
j=1

�2
(

γj+1
2

)
2|γ |δ

n∏
i=1

�
(

γi+1
2

)
�

(
n+|γ |+1

2

)

√
π(δ2 + |x|2) n+|γ |+1

2

=

=
2n�

(
n+|γ |+1

2

)
√

π
n∏

j=1
�

(
γj+1

2

) δ (δ2 + |x|2)− n+|γ |+1
2 = Pγ (x, δ). (32)

Here Pγ (x, δ) is general Poisson kernel (24). By Lemma 2 Pγ (x, δ) ∈ L
γ
p .

Introducing the notation

A
γ,δ,ε

k (x) =
∫

R
n+

|ξ |2ke−δ|ξ |

(P (ξ)+ iε|ξ |2)k
jγ (x, ξ)ξγ dξ = Fγ

|x|2ke−δ|x|

(P (x)+ iε|x|2)k

for m > 0 we get

F−1
γ

(P ∓ i0)m
γ e−δ|x|

(P (x)+ iε|x|2)m
= 2n−|γ |

n∏
j=1

�2
(

γj+1
2

)
m∑

k=0

Ck
m(−iε)kA

γ,δ,ε

k (x). (33)

Substituting (32) and (33) in (31) we obtain the statement of the theorem for f∈�
γ

V .
��

Theorem 8 Let f ∈ �
γ
V , V={ξ∈Rn+:P(ξ)=0}, 1 < p <

n+|γ |
α

, p ≤ 2,
n+|γ |−2<α<n+|γ |, then

((Iα
P±i0,γ )−1Iα

P±i0,γ f )(x) = f (x),
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where

(Iα
P±i0,γ )−1f ) =

L
γ
p

lim
δ→0

L
γ

2
lim
ε→0

((
F−1

γ

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m

)
(x) ∗ f (x)

)

γ

here the limit by ε is understood by norm in L
γ

2 and the limit by δ is understood by
norm in L

γ
p .

Proof From Lemma 7 follows that it is enough to show

L
γ
p

lim
δ→0

L
γ
2

lim
ε→0

⎡
⎢⎢⎢⎣(Pγ,δf )(x)+ 2n−|γ |

n∏
j=1

�2
(

γj+1
2

)
m∑

k=0

Ck
m(−iε)k(Aγ,δ,ε

k f )(x)

⎤
⎥⎥⎥⎦ = f (x).

Find the limit for ε in L
γ

2 . We have

(Aγ,δ,ε
k f )(x) = (A

γ,δ,ε
k (x) ∗ f (x))γ =

=
∫

R
n+

Fγ

[ |x|2ke−δ|x|

(P (x)+ iε|x|2)k

]
(y)(γ Ty

xf )(x)yγ dy =

=
∫

R
n+

Fγ

[
|x|2ke− δ

2 |x|

(P (x)+ iε|x|2)k
e−

δ
2 |x|

]
(y)(γ Ty

xf )(x)yγ dy =

=
∫

R
n+

Fγ

[
|x|2ke− δ

2 |x|

(P (x)+ iε|x|2)k
Fγ

[
Pγ

(
z,

δ

2

)]
(x)

]
(y)(γ Ty

xf )(x)yγ dy.

Using Parseval Equation to Hankel transform (see [24, p. 20]) we obtain

||(−iε)k(Aγ,δ,ε
k

f )(x)||22,γ=||(Aγ,δ,ε
k

(x) ∗ f (x))γ ||22,γ=||Fγ A
γ,δ,ε
k

(x) · Fγ f (x))γ ||22,γ=

= 2n−|γ |
n∏

j=1
�2

(
γj+1

2

)
∫

R
n+

∣∣∣∣∣
(−iε)k |x|2ke− δ

2 |x|
(P (x) + iε|x|2)k

Fγ

[
Pγ

(
x,

δ

2

)]
Fγ f (x)

∣∣∣∣∣
2

xγ dx =

= 2n−|γ |
n∏

j=1
�2

(
γj+1

2

)
∫

R
n+

∣∣∣∣∣
(−iε)k |x|2ke− δ

2 |x|
(P (x)+ iε|x|2)k

Fγ

[
(Pγ,δf )(x)

]∣∣∣∣∣
2

xγ dx.
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Considering that

∣∣∣∣∣
(−iε)k|x|2ke− δ

2 |x|

(P (x)+ iε|x|2)k
Fγ

[
(Pγ,δf )(x)

]∣∣∣∣∣
2

≤ e−δ|x| ∣∣Fγ

[
(Pγ,δf )(x)

]∣∣2

and e−δ|x| ∣∣Fγ

[
Pγ

(
x, δ

2

)]∣∣2 ∈ L
γ

1 on the basis of the Lebesgue dominated
convergence theorem, we obtain that

(−iε)k(Aγ,δ,ε

k f )(x) → 0 for ε → 0 in L
γ

2 .

The fact that

||(Pγ,δf )(x)− f (x)||p,γ → 0 for δ → 0

was proved in Lemma 3. Thus, the theorem is proved. ��
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Some Properties of Sobolev Orthogonal
Polynomials Associated with Chebyshev
Polynomials of the Second Kind

M. S. Sultanakhmedov

Abstract This paper considers the polynomials Ur,n(x) (r = 1, 2, . . .; n =
0, 1, 2, . . .) which are orthonormal with respect to Sobolev-type inner product on
the segment [−1, 1] with the weight function μ(x) = √

1− x2 and associated
with classical Chebyshev polynomials of the second kind Un(x). We obtain explicit
formulas for Ur,n(x) as well as recurrence relations for two special cases r = 1 and
r = 2, which are important for applications. Additionally, the asymptotic properties
of the polynomials Ur,k(x) are studied.

Keywords Sobolev orthogonal polynomials · Chebyshev polynomials ·
Asymptotic properties · Recurrence relations · Explicit formulas · Function
approximation
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1 Introduction

Following the established notation, we denote by L
p
ω(a, b) the space of functions

f (x) measurable on (a, b) for which
b∫
a

|f (x)|pω(x)dx < ∞, where ω = ω(x) is a

weight function.
Let {ϕn}∞n=0 be a system of functions orthonormal in L2

ω(a, b). In other words,

〈ϕn, ϕm〉L2
ω
=

∫ b

a

ϕn(t)ϕm(t)ω(t)dt = δn,m,
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where δn,m is the Kronecker symbol.
By Wr

L2
ω(a,b)

we denote the Sobolev space which consists of functions f (x),

continuously differentiable r − 1-times on [a, b] and such that f (r−1)(x) is
absolutely continuous on [a, b] and f (r)(x) ∈ L2

ω(a, b). The inner product in
Wr

L2
ω(a,b)

is defined using the equality

〈f, g〉 =
r−1∑
ν=0

f (ν)(a)g(ν)(a)+
∫ b

a

f (r)(t)g(r)(t)ω(t)dt. (1.1)

Inner products of this kind are called Sobolev-type inner products. From the system
{ϕk(x)}, we can generate functions orthogonal with respect to inner product (1.1)
using the following equations:

ϕr,k(x) = (x − a)k

k! , k = 0, 1, . . . , r − 1, (1.2)

ϕr,r+k(x) = 1

(r − 1)!
x∫

a

(x − t)r−1ϕk(t)dt, k = 0, 1, . . . . (1.3)

More precisely, the following statement was proved in [1].

Theorem A Suppose that the functions ϕk(x) (k = 0, 1, . . .) form a complete
orthonormal system in L2

ω(a, b). Then the system {ϕr,k(x)}∞k=0, generated by the
system {ϕk(x)}∞k=0 with the help of the equalities (1.2)–(1.3), is complete in Wr

L2
ω(a,b)

and orthonormal with respect to the inner product (1.1).

I.I. Sharapudinov in [1] considered the polynomials associated with the classical
Chebyshev polynomials of the first kind Tn(x) = cos(n arccos x) and orthogonal on
[−1, 1] with respect to the Sobolev inner product (1.1) when the weight function
has a form ω(x) = 1√

1−x2
.

The distinctive feature of inner products of the Sobolev-type of this kind is the
presence of special points in the neighborhood of which the behavior of Sobolev
orthogonal functions can be “controlled”. Due to this feature, it is possible to
construct the Fourier series by the Sobolev orthogonal polynomials which partial
sums coincide with the approximated function at the ends of the orthogonality
segment. Such series proved to be a convenient tool for different applied tasks such
as representing solutions of the Cauchy problem for differential equations.

Additionally, in [2, 3] we studied the approximative properties of special wavelets
based on classical Chebyshev polynomials of the second kind

Un(x) = sin (n+ 1) arccos x

sin arccos x
, (n = 0, 1, 2, . . .),
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which also have the property of coincidence with the approximated function at the
end points of the orthogonality segment (at the points ±1).

In this article, we consider polynomials Ur,n(x) (r = 1, 2, . . . ; n = 0, 1, 2, . . .)

which are Sobolev orthonormal on the segment [−1, 1] with the weight function
ω = μ(x) = √

1− x2 and associated with Chebyshev polynomials of the second
kind. We obtained the explicit formulas for Ur,n(x), as well as recurrence relations
for two important special cases r = 1 and r = 2. Also, we studied the asymptotic
properties of the polynomials Ur,k(x).

2 Some Properties of Jacobi and Chebyshev Polynomials

For arbitrary real α and β the Jacobi polynomials P
α,β
n (x) can be determined using

the Rodrigues formula (see [4]):

P α,β
n (x) = (−1)n

2nn!
1

ρ(x)

dn

dxn

{
ρ(x)σn(x)

}
, (2.1)

where ρ(x) = ρ(x; α, β) = (1− x)α(1+ x)β, σ (x) = 1− x2. If α, β > −1, then
Jacobi polynomials form a complete orthogonal system in L2

ρ(−1, 1), i.e.

∫ 1

−1
P α,β

n (x)P α,β
m (x)ρ(x)dx = hα,β

n δnm, (2.2)

where

hα,β
n = �(n+ α + 1)�(n+ β + 1)2α+β+1

n!�(n + α + β + 1)(2n+ α + β + 1)
. (2.3)

We will need the following properties of Jacobi polynomials (see [4, 5]):

P α,β
n (−x) = (−1)nP β,α

n (x),

P α,β
n (−1) = (−1)n

(
n+ β

n

)
, P α,β

n (1) =
(

n+ α

n

)
, (2.4)

d

dx
P α,β

n (x) = 1

2
(n+ α + β + 1)P

α+1,β+1
n−1 (x), (2.5)

dν

dxν
P α,β

n (x) = (n+ α + β + 1)ν

2ν
P

α+ν,β+ν
n−ν (x), (2.6)
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where (a)0 = 1, (a)ν = a(a + 1) . . . (a + ν − 1),

(
n

l

)
P α,−l

n (x) =
(

n+ α

l

)(
x + 1

2

)l

P
α,l
n−l(x), 1 ≤ l ≤ n, (2.7)

P α,β
n (x) =

(
n+ α

n

) n∑
k=0

(−n)k(n+ α + β + 1)k

k!(α + 1)k

(
1− x

2

)k

, (2.8)

(1− x)α(1 + x)βP α,β
n (x) = (−1)m

2mn[m]
dm

dxm

{
(1 − x)m+α(1+ x)m+βP

m+α,m+β
n−m (x)

}
,

(2.9)

where k[0] = 1, k[r] = k(k − 1) . . . (k − r + 1).
Let us also consider the expression

P
a,a
n (x)

P
a,a
n (1)

=
[n/2]∑
j=0

n!(α + 1)n−2j (n+ 2a + 1)n−2j (1/2)j (a − α)j

(n− 2j)!(2j)!(a + 1)n−2j (n− 2j + 2α + 1)n−2j

×

× 1

(n− 2j + a + 1)j (n− 2j + α + 3/2)j

P
α,α
n−2j (x)

P
α,α
n−2j (1)

, (2.10)

where [b] is the integer part of number b. Taking into account that P
α−r,α−r
k+r (x) and

P
α,α
k+r−2j (x) are analytical functions with respect to α, the next statement follows

from equality (2).

Lemma 1 Let α > −1 be real and r ≥ 1, k ≥ r + 1 be integers. Then

P
α−r,α−r
k+r (x) =

r∑
j=0

λα
j P

α,α
k+r−2j (x),

where

λα
j = λα

j (r, k) = (−1)j (k − r + 2α + 1)k+r−2j (1/2)j r [j ](α + k)[j ]

(k + r − 2j + 2α + 1)k+r−2j (k + r − 2j + α + 3/2)j (2j)! .

The Chebyshev polynomials of the first and second kinds are well-known special
cases of Jacobi polynomials. The Chebyshev polynomials of the first kind

Tn(x) = cos n arccos x, n = 0, 1, 2, . . . ,
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form a complete orthogonal system in L2
κ(−1, 1) with the weight function κ(x) =

(1− x2)− 1
2 , while the Chebyshev polynomials of the second kind

Un(x) = sin (n+ 1) arccos x

sin arccos x
, n = 0, 1, 2, . . . ,

form a complete orthogonal system in L2
μ(−1, 1) where μ(x) = √

1− x2.
There are several relations between these two kinds of polynomials. We will use

this one:

2Tn(x) = Un(x)− Un−2(x), n ≥ 2. (2.11)

The relation between Un(x) and the standardized Jacobi polynomials is shown
by the next equation:

Un(x) = 4nn!(n+ 1)!
(2n+ 1)! P

1
2 , 1

2
n (x). (2.12)

Using Lemma 1 for the case α = 1
2 , we can derive the following statement.

Lemma 2 Let k, r be integers, r ≥ 1, k ≥ r + 1. Then

P
1
2−r, 1

2−r

k+r (x) = (2k + 1)!
(k!)24k+r

r∑
j=0

(−1)j

j !
(k + r − 2j + 1)r [j ]k[r−1]

(k + r − j + 1)[r+1] Uk+r−2j (x).

Finally, we also give here an asymptotic formula for the Jacobi polynomials that
will be needed in the study of asymptotic properties of polynomials Ur,n(x). Let α

and β be arbitrary real numbers,

s(θ) = π−
1
2

(
sin

θ

2

)−α− 1
2
(

cos
θ

2

)−β− 1
2

,

λn = n+ α + β + 1

2
, γ = −

(
α + 1

2

)
π

2
.

Then for 0 < θ < π the next asymptotic formula holds

P α,β
n (cos θ) = n−

1
2 s(θ)

(
cos(λnθ + γ )+ vn(θ)

n sin θ

)
, (2.13)

where for vn(θ) = vn(θ; α, β) the estimate

|vn(θ)| ≤ c(α, β, δ)

(
0 <

δ

n
≤ θ ≤ π − δ

n

)
(2.14)
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takes place. In particular, for Chebyshev polynomials of the first kind the asymptotic
formula takes the following form

Tn(cos θ) = 4n(n!)2

(2n)!√πn

(
cos nθ + v̂n(θ)

n sin θ

)
, (2.15)

where

|v̂n(θ)| ≤ c(δ), 0 <
δ

n
≤ θ ≤ π − δ

n
.

3 The Chebyshev–Sobolev Polynomials of the Second Kind

It is easy to show that

∫ 1

−1
Un(x)Um(x)μ(x)dx = πδnm

2
. (3.1)

Hence the polynomials Ûn(x) = √
2/πUn(x) are orthonormal in L2

μ(−1, 1).
Then we consider the polynomials Ur,k(x) (r = 1, 2, . . .) defined on [−1, 1] by

the equalities

Ur,k(x) = (x + 1)k

k! , k = 0, 1, . . . , r − 1, (3.2)

Ur,r+n(x) =
√

2/π

(r − 1)!
x∫

−1

(x − t)r−1Un(t)dt, n = 0, 1, . . . . (3.3)

The next statement directly follows from Theorem A.

Corollary A For any integer r > 0, the system of polynomials {Ur,k(x)}∞k=0
generated by equalitites (3.2)–(3.3) is complete in Wr

L2
μ(−1,1)

and is orthonormal

with respect to the Sobolev-type inner product.

To proceed with the study of the asymptotic properties of polynomials Ur,k(x),
first we need to obtain some representations for these polynomials.

Theorem 1 For an arbitrary integer r > 0 and n ≥ 0 the following equality holds

Ur,r+n(x) = (−1)n

√
2

π

n∑
k=0

(−2)k

(k + r)[r]

(
n+ k + 1

n− k

)
(1+ x)k+r . (3.4)
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Proof We use (2.8) and write

P
1
2 , 1

2
n (x) = (−1)nP

1
2 , 1

2
n (−x) = (−1)n

(
n+ 1

2
n

) n∑
k=0

(−n)k(n+ 2)k

k!( 3
2 )k

(
1+ x

2

)k

=

= (−1)n (2n+ 1)!
4n(n!)2

n∑
k=0

4k (−n)k(n+ 2)k

(2k + 1)!
(

1+ x

2

)k

.

From (2.12) we get

Un(x) = 4nn!(n+ 1)!
(2n+ 1)! P

1
2 , 1

2
n (x) = (−1)n

n∑
k=0

4k (−n)k(n+ 1)k+1

(2k + 1)!
(

1+ x

2

)k

.

Next, from the definition (3.3) we have:

Ur,r+n(x) =
√

2/π

(r − 1)!
x∫

−1

(x − t)r−1Un(t)dt =

= (−1)n

√
2

π

n∑
k=0

4k(−n)k(n+ 1)k+1

(2k + 1)!
1

(r − 1)!
x∫

−1

(x − t)r−1
(

1+ t

2

)k

dt.

Additionally, from the Taylor formula

(
1+ x

2

)k+r

= (k + r)[r]

2r (r − 1)!
x∫

−1

(x − t)r−1
(

1+ t

2

)k

dt, (3.5)

follows

Ur,r+n(x) = (−1)n

√
2

π

n∑
k=0

4k(−n)k(n+ 1)k+1

(2k + 1)!
2r

(k + r)[r]

(
1+ x

2

)k+r

=

= (−1)n

√
2

π

n∑
k=0

(−2)k

(k + r)[r]

(
n+ k + 1

n− k

)
(1+ x)k+r .

The established equality (3.4) will be used to study the asymptotic properties of
the polynomials Ur,n+r (x) in a neighborhood of the point x = −1. However, for
−1 + ε ≤ x the formula (3.4) becomes inappropriate for studying the asymptotic
behavior of the polynomials Ur,n+r (x) as n → ∞. Therefore, it is necessary to
find other representations for these polynomials that could be used to study their
behavior as n →∞ in the case when x is not in close proximity to −1.



266 M. S. Sultanakhmedov

First, for n > max(0, r − 2) it is obvious that (n + 1)[r] �= 0 and we can use
equality (2.6):

P
1
2 , 1

2
n (x) = 2r

(n+ 1)[r]
dr

dtr
P

1
2−r, 1

2−r

n+r (x),

whence

Un(x) = 4nn!(n+ 1)!
(2n+ 1)! P

1
2 , 1

2
n (x) = 22n+r n!(n− r + 1)!

(2n+ 1)!
dr

dtr
P

1
2−r, 1

2−r

n+r (x).

Then let us consider the expression

Ur,r+n(x) =
√

2/π

(r − 1)!
x∫

−1

(x − t)r−1Un(t) dt =

= 22n+r n!(n− r + 1)!
(2n+ 1)!

√
2/π

(r − 1)!
x∫

−1

(x − t)r−1 dr

dtr
P

1
2−r, 1

2−r

n+r (t) dt =

= 22n+rn!(n− r + 1)!
(2n+ 1)!√π/2

[
P

1
2−r, 1

2−r

n+r (x)−
r−1∑
ν=0

(1+ x)ν

ν!
{

P
1
2−r, 1

2−r

n+r (t)

}(ν)

t=−1

]
.

(3.6)

Due to (2.6) we have

{
P

1
2−r, 1

2−r

n+r (t)

}(ν)

= (n+ 2− r)ν

2ν
P

1
2+ν−r, 1

2+ν−r

n+r−ν (t), (3.7)

and from (2.4) follows

P
1
2+ν−r, 1

2+ν−r

n+r−ν (−1) = (−1)n+r−ν

(
n+ 1

2
n+ r − ν

)
=

=
(−1)n+r−ν�

(
n+ 3

2

)

�
(
ν − r + 3

2

)
(n+ r − ν)!

. (3.8)

From (3.7) and (3.8) we get

{
P

1
2−r, 1

2−r

n+r (t)

}(ν)

t=−1
=

(−1)n+r−ν�
(
n+ 3

2

)
(n+ 2− r)ν

2ν�
(
ν − r + 3

2

)
(n+ r − ν)!

= Aν,n,r . (3.9)
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Comparing (3.6) and (3.9) we can then write

Ur,r+n(x) = 22n+r n!(n− r + 1)!
(2n+ 1)!

√
2

π

[
P

1
2−r, 1

2−r

n+r (x)−
r−1∑
ν=0

Aν,n,r

ν! (1+ x)ν

]
.

(3.10)

Next, due to the equalities

�(z)�(1 − z) = π

sin(πz)
, �(z+ 1/2) =

√
π�(2z)

22z−1�(z)

for n ≥ r + 1 we get

Aν,n,r =
(−1)n+r−ν�

(
n+ 3

2

)
(n+ 2− r)ν

2ν�
(
ν − r + 3

2

)
(n+ r − ν)!

=

=
(−1)n+r−ν�

(
n+ 3

2

)
�

(
r − ν − 1

2

)
(n+ 2− r)ν

2ν�
(
ν − r + 3

2

)
�

(
r − ν − 1

2

)
(n+ r − ν)!

=

=
(−1)n+r−ν�

(
n+ 3

2

)
�

(
r − ν − 1

2

)
(n+ 2− r)ν sin π(ν − r + 3/2)

2νπ (n+ r − ν)! =

= (−1)n+1 (2n+ 2)!√π

4n+1(n+ 1)!
(2(r − ν − 1))!√π

4r−ν−1(r − ν − 1)!
(n+ 2− r)ν

2νπ (n+ r − ν)! =

= (−1)n+1 2ν+1 (2n+ 1)!
4n+rn!

(2(r − ν − 1))!
(r − ν − 1)!

(n+ 2− r)ν

(n+ r − ν)! .

Now we refer to Lemma 2, from which we deduce

22n+2r (n!)2

(2n+ 1)!n[r−1]P
1
2−r, 1

2−r

n+r (x) =
r∑

j=0

(−1)j

j !
(n+ r − 2j + 1)r [j ]

(n+ r − j + 1)[r+1] Un+r−2j (x),

22n+rn!(n− r + 1)!
(2n+ 1)! P

1
2−r, 1

2−r

n+r (x) =
r∑

j=0

(−1)j

(
r

j

)
(n+ r − 2j + 1) Un+r−2j (x)

2r (n+ r − j + 1)[r+1] .

Then, returning to (3.10), we derive the following result.
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Theorem 2 If n ≥ r + 1, then

Ur,r+n(x) =
√

2

π

⎡
⎣ r∑

j=0

(−1)j

(
r

j

)
(n+ r − 2j + 1) Un+r−2j (x)

2r (n+ r − j + 1)[r+1] −

− 22n+r (n!)2

(2n+ 1)!n[r−1]
r−1∑
ν=0

Aν,n,r

ν! (1+ x)ν

]
. (3.11)

4 Recurrence Relations for Polynomials U1,n(x) and U2,n(x)

As it was already mentioned above, Sobolev orthogonal polynomials proved to be
an effective tool for the approximate solution of the Cauchy problem for ODEs.
Regarding this, two special cases are of particular importance: r = 1 and r = 2. We
will consider them here apart from others.

1. First, let r = 1.

A0,n,1 = (−1)n+1

(n+ 1)!
(2n+ 1)!
22n+1n! , n = 2, 3, . . . .

From here and from (3.11) we deduce

U1,n+1(x) =
√

2

π

[
(n+ 2) Un+1(x)

2(n+ 2)[2]
− n Un−1(x)

2(n+ 1)[2]
− (−1)n+1

(n+ 1)

]
=

= 1

n+ 1

√
2

π

[
Un+1(x)− Un−1(x)

2
− (−1)n+1

]
=

= 1

n+ 1

√
2

π

[
Tn+1(x)− (−1)n+1

]
.

Using (3.2)–(3.3), we calculate U1,k for k = 0, 1, 2 and finally get

Corollary 1 The following equalities hold

U1,0(x) = 1, U1,1(x) =
√

2

π
(x + 1), U1,2(x) =

√
2

π

(
x2 − 1

)
,

U1,n(x) =
√

2

π

Tn(x)− (−1)n

n
, n ≥ 3.
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2. For r = 2 and n ≥ 3 we have

A0,n,2 = (−1)n+1 (2n+ 1)!
4n+1n! (n+ 2)! , A1,n,2 = (−1)n+1 (2n+ 1)!

4n+1(n− 1)!(n+ 1)! ,

U2,n+2(x) =
√

2

π

⎡
⎣ 2∑

j=0

(−1)j

(
2

j

)
(n− 2j + 3) Un−2j+2(x)

4 (n− j + 3)[3]
−

− 4n+1(n!)2

(2n+ 1)!n
1∑

ν=0

Aν,n,2

ν! (1+ x)ν

]
=

=
√

2

π

[
Un+2(x)

4 (n+ 1)(n+ 2)
− Un(x)

2 n(n+ 2)
+ Un−2(x)

4 n(n+ 1)
−

− (−1)n+1(n− 1)!
(n+ 2)! − (−1)n+1n!

(n+ 1)! (1+ x)

]
=

= 1

n+ 1

√
2

π

[
1

2 (n+ 2)

(
Tn+2(x)− n+ 2

2n
Un(x)

)
+

+Un−2(x)

4 n
+ (−1)n

(
x + 1+ 1

n(n+ 2)

)]
=

= 1

n+ 1

√
2

π

[
Tn+2(x)

2 (n+ 2)
− Tn(x)

2n
+ (−1)n

(
x + 1+ 1

n(n+ 2)

)]
.

Using (3.2)–(3.3), we calculate U2,k for k = 0, 1, 2, 3, 4 and finally get

Corollary 2 The following equalities hold

U2,0(x) = 1, U2,1(x) = x + 1, U2,2(x) = (x + 1)2

√
2π

,

U2,3(x) = (x − 2)(x + 1)2

3
√

π/2
, U2,4(x) = 2x4 − 3x2 + 2x + 3

3
√

2π
,

U2,n(x) = 1

n− 1

√
2

π

[
Tn(x)

2 n
− Tn−2(x)

2 (n − 2)
+ (−1)n

(
x + 1+ 1

n(n− 2)

)]
, n ≥ 5.

Remark See [6] for more information on recurrence formulas for Sobolev orthogo-
nal polynomials associated with classic orthogonal polynomials.
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5 Asymptotic Properties of the Polynomials Ur,n(x)

The results obtained in the previous sections are applied here to the study of the
behavior of the polynomials Ur,n(x) as n → ∞. Let us start with the case when x

is in close proximity to −1.

Theorem 3 For real a > 0 the following asymptotic formula holds

Ur,n+r (x) = (−1)n(n+ 1)√
π/2

(1+ x)r

(
1

r! + vr,n(x)

)
, (5.1)

where for the remainder vr,n(x) an estimate

|vr,n(x)| ≤ c(a, r)n2|1+ x|

holds, when |1+ x| ≤ a
n2 .

Proof Using Theorem 3, we rewrite equality (3.4) as follows

Ur,r+n(x) = (−1)n(n+ 1)√
π/2

(1+ x)r

[
1

r! +
n∑

k=1

(−2)k

(k + r)[r]

(
n+ k + 1

n− k

)
(1+ x)k

n+ 1

]
.

Denote by

vr,n(x) =
n∑

k=1

(−2)k

(k + r)[r]

(
n+ k + 1

n− k

)
(1+ x)k

n+ 1

and estimate this value when |1+ x| ≤ a
n2 :

|vr,n(x)| ≤
n∑

k=1

2k

(k + r)[r]
(n+ k + 1)!

(n− k)!(2k + 1)!
|1+ x|k
n+ 1

≤

≤
n∑

k=1

2k

(2k + 1)!(k + r)[r]
(n− k + 1)2k+1

(n+ 1)
|1+ x|k ≤

≤ c n2 |1+ x|
∞∑

k=1

(2a)k−1

(2k + 1)!(k + r)[r]
≤ c(a, r) n2 |1+ x| .

The theorem is proved.

Next we consider the case−1+ a
n2 ≤ x ≤ 1− a

n2 , where a > 0. Here we consider
only two particular values of r , namely: r = 1 and r = 2, which are of particular
practical interest as was mentioned above.
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First, from Corollary 1 and asymptotic formula (2.15) we have

U1,n(x) = 1

n

√
2

π

[
4n(n!)2

(2n)!√πn

(
cos nθ + vn(θ)

n sin θ

)
− (−1)n

]
=

= 4n(n!)2
√

2

(2n)!πn
√

n

(
cos nθ + vn(θ)

n sin θ

)
− (−1)n

√
2

n
√

π
.

Theorem 4 For 0 < θ < π the following asymptotic formula holds

U1,n(x) = 4n(n!)2
√

2

(2n)!πn
√

n
(cos nθ + ηn(θ))+ γn,

where

ηn(θ) = vn(θ)

n sin θ
, γn = (−1)n+1

√
2

n
√

π
,

and for vn(θ) the estimate

|vn(θ)| ≤ c(δ)

takes place when 0 < δ
n
≤ θ ≤ π − δ

n
.

Then, from (3.10) for r = 2 we have

U2,n+2(x) = 4n+1n!(n− 1)!
(2n+ 1)!

√
2

π

[
P
− 3

2 ,− 3
2

n+2 (x)− A0,n,2 − (1+ x)A1,n,2

]
.

(5.2)

Additionally, asymptotic formula (2.13) for α = β = − 3
2 gives us

P
− 3

2 ,− 3
2

n (cos θ) = 1

2
√

πn

(
cos nθ − cos(n− 2)θ

2
+ vn(θ)

n

)
, (5.3)

where

|vn(θ)| ≤ c(δ), 0 <
δ

n
≤ θ ≤ π − δ

n
.
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Then using (5.2)–(5.3) we get

U2,n(cos θ) = 4n−1

π
√

2n

(n− 2)!(n− 3)!
(2n− 3)!

(
cos nθ − cos(n− 2)θ

2
+ vn(θ)

n

)
+

+ (−1)n

n− 1

√
2

π

(
1+ cos θ + 1

n (n− 2)

)
.

Theorem 5 For 0 < θ < π the following asymptotic formula holds

U2,n(cos θ) = σ̂n

(
cos nθ − cos(n− 2)θ

2
+ vn(θ)

n

)
+ ν̂n(θ),

where

σ̂n = 4n−1

π
√

2n

(n− 2)!(n− 3)!
(2n− 3)! , ν̂n(θ) = (−1)n

n− 1

√
2

π

(
1+ cos θ + 1

n (n− 2)

)
,

and for vn(θ) the estimate

|vn(θ)| ≤ c(δ)

takes place when 0 < δ
n
≤ θ ≤ π − δ

n
.

Finally we consider the case |1 − x| ≤ a
n2 . We will need the following two

lemmas.

Lemma 3 For real a > 0 and integer r ≥ 1, the following asymptotic formula
holds

P
1
2−r, 1

2−r

n+r (x) =
(

n+ 1
2

n+ r

) (
1+ qr,n(x)

) =

= �(n + 3
2 )

(n+ r)!√π

(2r − 3)!!
(−2)r−1

(
1+ qr,n(x)

)
, (5.4)

where for the remainder qr,n(x) estimate

|qr,n(x)| ≤ c(a, r)n2|1− x|, (5.5)

takes place, when |1− x| ≤ a

n2 .

Proof From (2.8) we get

P
1
2−r, 1

2−r

n+r (x) =
(

n+ 1
2

n+ r

)[
1+

n+r∑
k=1

(−n− r)k(n− r + 2)k

k!( 3
2 )k

(
1− x

2

)k
]

.
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For the remainder term in this equality we can use the similar reasoning to the one
used in the proof of Theorem 5 to obtain the estimate (5.5).

Lemma 4 For real a > 0 the next asymptotic formula holds

r−1∑
ν=0

Aν,n,r

ν! (1+ x)ν = (−1)n+1
�

(
n+ 3

2

)

(n+ 1)!√π

(1+ x)r−1

(r − 1)! (1+ hr,n(x)), (5.6)

where for the remainder hr,n(x) estimate

|hr,n(x)| ≤ c(a, r)n−2,

takes place, when |1− x| ≤ a
n2 .

Proof This statement directly follows from (3.9).

Finally, from (3.10) and Lemmas 3 and 4 we deduce the following result.

Theorem 6 For n ≥ r − 1 the next asymptotic formula holds

Ur,r+n(x) = 2r

(n+ 1)[r+1]
1√
2π

[
(2r − 3)!!

(−2)r−1(n+ 2)r−1
(1+ qr,n(x))+

+(−1)n (1+ x)r−1

(r − 1)! (1+ hr,n(x))

]
,

where for the remainders qr,n(x) and hr,n(x) the estimates

|qr,n(x)| ≤ c(a, r)n2|1− x|, |hr,n(x)| ≤ c(a, r)n−2,

take place, when |1− x| ≤ a
n2 .
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Operator of Five-Electron Systems in the
Hubbard Model—Doublet States
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Abstract We consider a five-electron system in the Hubbard model with a cou-
pling between nearest-neighbors. The structure of essential spectrum and discrete
spectrum of the systems in the first and second doublet states in a ν-dimensional
lattice are investigated.
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1 Introduction

In the early 1970s, in these three papers [1–3], a simple metal model was proposed,
having become a fundamental model in the theory of strongly correlated electron
systems, that appeared almost simultaneously and independently. In that model, a
single nondegenerate electron band with a local Coulomb interaction is considered.
The model Hamiltonian contains only two parameters: the matrix element t of
electron hopping from a lattice site to a neighboring site and the parameter U

of the on-site Coulomb repulsion of two electrons. In the secondary quantization
representation, the Hamiltonian can be written as

H = t
∑
m,γ

a+m,γ am,γ + U
∑
m

a+m,↑am,↑a+m,↓am,↓, (1)
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where a+m,γ and am,γ denote Fermi operators of creation and annihilation of an
electron with spin γ on a site m and the summation over τ means summation over
the nearest neighbors on the lattice.

The model proposed in [1–3] was called the Hubbard model, after John Hubbard,
who had made a fundamental contribution to the study of the statistical mechanics
of that system, although the local form of Coulomb interaction had been first
introduced for an impurity model in a metal by Anderson [4]. We also recall
that the Hubbard model is a particular case of the Shubin-Wonsowsky polaron
model [5], which had appeared 30 years before [1–3]. In the Shubin-Wonsowsky
model, along with the on-site Coulomb interaction, the interaction of electrons on
neighboring sites is also taken into account. The Hubbard model is an approximation
used in solid state physics to describe the transition between conducting and
insulating states. It is the simplest model describing particle interaction on a lattice.
Its Hamiltonian contains only two terms: the kinetic term corresponding to the
tunnelling (hopping) of particles between lattice sites and a term corresponding to
the on-site interaction. Particles can be fermions, as in Hubbard’s original work,
and also bosons. The simplicity and sufficiency of Hamiltonian (1) have made
the Hubbard model very popular and effective for describing strongly correlated
electron systems.

The Hubbard model well describes the behaviour of particles in a periodic
potential at sufficiently low temperatures, therefore, all particles that are in the
lower Bloch band and involved in long-range interactions can be neglected. If
the interaction between particles on different sites is taken into account, then the
model is often called the extended Hubbard model. It was proposed to describe
electrons in solids, that remains to be of particular interest for high-temperature su-
perconductivity studies. Later, the extended Hubbard model also found applications
in describing the behaviour of ultra-cold atoms in optical lattices. In considering
electrons in solids, the Hubbard model can be regarded as a sophisticated version
of the model of strongly bound electrons, involving only the electron hopping term
in the Hamiltonian. In the case of strong interactions, these two models can give
essentially different results. The Hubbard model predicts exactly the existence of
so-called Mott insulators, where conductance is absent due to strong repulsion
between particles. The Hubbard model is based on the approximation of strongly
coupled electrons. In the strong coupling approximation, electrons initially occupy
orbitals in atoms (lattice sites) and then hop over to other atoms, thus conducting the
current. Mathematically, this is represented by the so-called hopping integral. This
process can be considered as the physical phenomenon underlying the occurrence
of electron bands in crystal materials. But the interaction between electrons is
not considered in more general band theories. In addition to the hopping integral,
which explains the conductance of the material, the Hubbard model contains the so-
called on-site repulsion, corresponding to the Coulomb repulsion between electrons.
This leads to a competition between the hopping integral, which depends on the
mutual position of lattice sites, and the on-site repulsion, which is independent from
the atom positions. As a result, the Hubbard model explains the metal-insulator
transition in oxides of some transition metals. When such a material is heated, the
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distance between nearest-neighbour sites increases, the hopping integral decreases,
and on-site repulsion becomes dominant.

The Hubbard model is currently one of the most extensively studied multielectron
models of metals [6–10]. But little is known about exact results for the spectrum
and wave functions of the crystal described by the Hubbard model, and obtaining
the corresponding statements is therefore of great interest. The spectrum and wave
functions of the system of two electrons in a crystal described by the Hubbard
Hamiltonian were studied in [6]. It is known that two-electron systems can be
in two states, in the triplet and singlet ones[6–10]. It was proved in [6] that the
spectrum of the system Hamiltonian H t in the triplet state is purely continuous
and coincides with a segment [m, M], and the operator H s of the system in the
singlet state, in addition to the continuous spectrum [m, M], has a unique antibound
state for some values of the quasimomentum. For the antibound state, correlated
motion of the electrons is realized and a large contribution of binary states takes
place. Due to the closeness of the system, the energy must remain constant and
large. This prevents the electrons from being separated by long distances. Next, an
essential point is that bound states (sometimes called scattering-type states) do not
form below the continuous spectrum. This can be easily understood because the
interaction is repulsive. We note that a converse situation is realized for U < 0 :
below the continuous spectrum, there is a bound state (antibound states are absent)
because the electrons are then attracted to one another.

For the first band, the spectrum is independent of the parameter U of the
two-electron on-site Coulomb interaction and corresponds to the energy of two
noninteracting electrons, being exactly equal to the triplet band. The second band is
determined by Coulomb interaction to a much greater degree: both the amplitudes
and the energy of two electrons depend on U, and the band itself disappears as
U → 0 and increases without bound as U → ∞. The second band largely
corresponds to a one-particle state, namely, the motion of the doublet, i.e., two-
electron bound states.

The spectrum and wave functions of the three-electron system in a crystal
described by the Hubbard Hamiltonian were studied in [11].

The spectrum of the energy operator of the four-electron system in a crystal
described by the Hubbard Hamiltonian in the triplet state were studied in [12]. In the
four-electron systems are exists quintet state, and three type triplet states, and two
type singlet states. The spectrum of the energy operator of four-electron systems in
the Hubbard model in the quintet, and singlet states were studied in [13].

Here, we consider the energy operator of five-electron systems in the Hubbard
model and describe the structure of the essential spectra and discrete spectrum of
the system for first and second doublet states.

The Hamiltonian of the chosen model has the form

H = A
∑
m,γ

a+m,γ am,γ + B
∑

m,τ,γ

a+m+τ,γ am,γ + U
∑
m

a+m,↑am,↑a+m,↓am,↓. (2)

Here, A is the electron energy at a lattice site, B is the transfer integral between
neighboring sites (we assume that B > 0 for convenience), τ = ±ej , j =
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1, 2, . . . , ν, where ej are mutually orthogonal unit vectors, which means that the
summation is taken over the nearest neighbors, U is the parameter of the on-site
Coulomb interaction of two electrons, γ is the spin index, γ =↑ or γ =↓, ↑ and
↓ denote the spin values 1

2 and − 1
2 , and a+m,γ and am,γ are the respective electron

creation and annihilation operators at a site m ∈ Zν.

There exist a sextet state, four type quartet states and five type doublet states in
the five-electron systems.

The energy of the system depends on its total spin S. Along with the Hamiltonian,
the Ne electron system is characterized by the total spin S, S = Smax, Smax −
1, . . . , Smin, Smax = Ne

2 , Smin = 0, 1
2 .

Hamiltonian (2) commutes with all components of the total spin operator S =
(S+, S−, Sz), and the structure of eigenfunctions and eigenvalues of the system
therefore depends on S. The Hamiltonian H acts in the antisymmetric Fo’ck space
Has .

Let H be a Hilbert space and denote by Hn the n-fold tensor product Hn =
H⊗H⊗

. . .
⊗H. We set H0 = C and define F(H) = ⊕∞

n=0 Hn. The F(H)

is called the Fock space over H; it will be separable, if H is. For example, if
H = L2(R), then an element ψ ∈ F(H) is a sequence of functions ψ =
{ψ0, ψ1(x1), ψ2(x1, x2), ψ3(x1, x2, x3), . . .}, so that

|ψ0|2 +
∞∑

n=1

∫
Rn

|ψn(x1, x2, . . . , xn)|2dx1dx2 . . . dxn < ∞.

Actually, it is not F(H) itself, but two of its subspaces which are used most
frequently in quantum field theory. These two subspaces are constructed as follows:
Let Pn be the permutation group on n elements, and let {ψn} be a basis for space
H. For each σ ∈ Pn, we define an operator (which we also denote by σ ) on basis
elements Hn by σ(ϕk1

⊗
ϕk2

⊗
. . .

⊗
ϕkn) = ϕkσ(1)

⊗
ϕkσ(2)

⊗
. . .

⊗
ϕkσ(n)

. The
operator σ extends by linearity to a bounded operator (of norm one) on space Hn,

so we can define Sn = 1
n!

∑
σ∈Pn

σ. It is an easy exercise to show that, the operator
Sn is the operator of orthogonal projection: S2

n = Sn, and S∗n = Sn. The range of Sn

is called n-fold symmetric tensor product of H. In the case, where H = L2(R) and
Hn = L2(R)

⊗
L2(R)

⊗
. . .

⊗
L2(R) = L2(Rn), SnHn is just the subspace of

L2(Rn), of all functions, left invariant under any permutation of the variables. We
now define Fs(H) = ⊕∞

n=0 SnHn. The space Fs(H) is called the symmetric Fock
space over H, or Boson Fock space over H.

Let ε(.) be function from Pn to {1,−1}, which is one on even permutations
and minus one on odd permutations. Define An = 1

n!
∑

σ∈Pn
ε(σ )σ ; then An is

an orthogonal projector on Hn. AnHn is called the n-fold antisymmetric tensor
product of H. In the case where H = L2(R), AnHn is just the subspace of
L2(Rn) consisting of those functions odd under interchange of two coordinates.
The subspace Fa(H) = ⊕∞

n=0 AnHn is called the antisymmetric Fock space over
H, or the Fermion Fock space over H.
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2 First Doublet State

There exist five type doublet states in the system. The doublet state cor-
responds to the basis functions 1d

1/2
m,n,r,t,l∈Zν = a+m,↓a+n,↓a+r,↑a+t,↑a+l,↑ϕ0

and 2d
1/2
m,n,r,t,l∈Zν = a+m,↓a+n,↑a+r,↓a+t,↑a+l,↑ϕ0 and 3d

1/2
m,n,r,t,l∈Zν =

a+m,↓a+n,↑a+r,↑a+t,↓a+l,↑ϕ0 and 4d
1/2
m,n,r,t,l∈Zν = a+m,↓a+n,↑a+r,↑a+t,↑a+l,↓ϕ0 and

5d
1/2
m,n,r,t,l∈Zν = a+m,↑a+n,↓a+r,↓a+t,↑a+l,↑ϕ0.

The subspace 1Hd
1/2, corresponding to the first five-electron doublet state is the

set of all vectors of the forms 1ψd
1/2 =

∑
m,n,r,t,l∈Zν f (m, n, r, t, l)1d

1/2
m,n,r,t,l∈Zν,

f ∈ las
2 , where las

2 is the subspace of antisymmetric functions in the space
l2((Zν)5).

The restriction 1H d
1/2 of H to the subspace 1Hd

1/2, is called the five-electron first
doublet state operator.

Theorem 1 The subspace 1Hd
1/2 is invariant under the operator H, and the

operator 1H d
1/2 is a bounded self-adjoint operator. It generates a bounded self-

adjoint operator 1H
d

1/2, acting in the space las
2 as

(1H
d

1/2f )(m, n, r, t, l) = 5Af (m, n, r, t, l)+ B
∑

τ

[f (m+ τ, n, r, t, l)+

+f (m, n+ τ, r, t, l) + f (m, n, r + τ, t, l)+ f (m, n, r, t + τ, l)+
+f (m, n, r, t, l + τ )] + U [δm,r + δn,r + δm,t + δn,t + δm,l + δn,l]f (m, n, r, t, l),

(3)

where δk,j is the Kronecker symbol. The operator 1H d
1/2 acts on a vector 1ψd

1/2 ∈
1Hd

1/2 as

1H d
1/2

1ψd
1/2 =

∑
m,n,r,t,l∈Zν

(1H
d

1/2f )(m, n, r, t, l)1d
1/2
m,n,r,t,l∈Zν . (4)

Proof We act with the Hamiltonian H on vectors ψ ∈ 1Hd
1/2 using the standard

anticommutation relations between electron creation and annihilation operators at
lattice sites, {am,γ , a+n,β } = δm,nδγ,β, {am,γ , an,β} = {a+m,γ , a+n,β} = θ, and also

take into account that am,γ ϕ0 = θ, where θ is the zero element of 1Hd
1/2. This

yields the statement of the theorem.

Lemma 1 The spectrum of the operators 1H d
1/2 and 1H

d

1/2 coincide.
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Proof Because 1H d
1/2 and 1H

d

1/2 are bounded self-adjoint operators, it follows from
the Weyl criterion (see, for example, [14, Ch. VII, §14]) that there exists a sequence
of vectors ψn such that

ψn = ∑
p,q,r,t,s fn(p, q, r, t, s)a+p,↓a+q,↓a+r,↑a+t,↑a+s,↑ϕ0, ||ψn|| = 1, and

lim
n→∞ ||

1H d
1/2ψn − λψn|| = 0, (5)

where λ ∈ σ(1H d
1/2). On the other hand,

||1Hd
1/2ψn − λψn||2 = (1Hd

1/2ψn − λψn,1 Hd
1/2ψn − λψn) =

∑
p,q,r,t,s

||(1H
d

1/2fn(p, q, r, t, s)−

−λfn(p, q, r, t, s)||2(a+p,↓a+q,↓a+r,↑a+t,↑a+s,↑ϕ0, a+p,↓a+q,↓a+r,↑a+t,↑a+s,↑ϕ0) = ||1H
d

1/2Fn − λFn||2×

×(ap,↓aq,↓ar,↑at,↑as,↑a+p,↓a+q,↓a+r,↑a+t,↑a+s,↑ϕ0, ϕ0) = ||(1H
d

1/2 − λ)Fn||2(ϕ0, ϕ0) =

= ||(1H
d

1/2 − λ)Fn||2 → 0,

n → ∞. Here Fn = (fn(p, q, r, t, s))p,q,r,t,s∈Zν and ||Fn||2 = ∑
p,q,r,t,s

|fn(p, q, r, t, s)|2 = ||ψn||2 = 1. It follows that λ ∈ σ(1H
d

1/2). Consequently,

σ(1H d
1/2) ⊂ σ(1H

d

1/2). Conversely, let λ ∈ σ(1H
d

1/2). Again by the Weyl criterion,

there then exists a sequence Fn such that ||Fn|| =
√∑

p,q,r,t,s |fn(p, q, r, t, s)|2 =
1 and

||(1H
d

1/2Fn − λFn|| → 0, (6)

as n →∞.

Setting ψn = ∑
p,q,r,t,s fn(p, q, r, t, s)a+p,↓a+q,↓a+r,↑a+t,↑a+s,↑ϕ0, we have

||ψn|| = ||Fn|| = 1 and ||1H d

1/2Fn − λFn|| = ||1H d
1/2ψn − λψn||. This, together

with formula (6) and the Weyl criterion, implies that λ ∈ σ(1H d
1/2), and hence

σ(1H
d

1/2) ⊂ σ(1H d
1/2). These two relations imply that σ(1H

d

1/2) = σ(1H d
1/2)

We let F denote the Fourier transform: F : l2((Zν)5) → L2((T ν)5) ≡ 1H̃d
1/2,

where T ν is a ν-dimensional torus with the normalized Lebesgue measure dλ :
λ(T ν) = 1.

We set 1H̃ d
1/2 = F 1H

d

1/2F−1. In the quasimomentum representation, the

operator 1H̃ d
1/2 acts in the Hilbert space Las

2 ((T ν)5) as

1H̃ d
1/2

1ψd
1/2 = {5A+ 2B

ν∑
i=1

[cosλi + cosμi + cosγi + cosθi + cosηi ]}f (λ, μ, γ, θ, η)+

(7)
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+U

∫
T ν
[f (s, μ, λ+ γ − s, θ, η)+ f (s, μ, γ, λ+ θ − s, η)+ f (s, μ, γ, θ, λ+ η − s)+

+f (λ, s, μ+ γ − s, θ, η)+ f (λ, s, γ, μ+ θ − s, η)+ f (λ, s, γ, θ, μ+ η − s)]ds,

where Las
2 ((T ν)5) is the subspace of antisymmetric functions in L2((T ν)5).

Using tensor products of Hilbert spaces and tensor products of operators in
Hilbert spaces [15], we can verify that the operator 1H̃ d

1/2 can be represented in
the form

1H̃ d
1/2

1ψd
1/2 = H̃ 1

2 (λ, γ )
⊗

I
⊗

I+I
⊗

H̃ 2
2 (μ, θ)

⊗
I+I

⊗
I
⊗

H̃ 3
2 (λ, η)

(8)

where

(H̃ 1
2 f )(λ, γ ) = −{2A+ 2B

ν∑
i=1

(cos λi + cos γi)}f (λ, γ )− 2U

∫
T ν

f (s, λ+ γ − s)ds,

(H̃ 2
2 f )(μ, θ) = −{2A+ 2B

ν∑
i=1

(cos μi + cos θi )}f (μ, θ)+ 2U

∫
T ν

f (s, μ+ θ − s)ds,

(H̃ 3
2 f )(λ, η) = {A+ 2B

ν∑
i=1

cos ηi)}f (λ, η),

and I is the unit operator.
The spectrum of the operator A

⊗
I+I

⊗
B, where A and B are densely defined

bounded linear operators, was studied in [16–18]. Explicit formulas were given there
that express the essential spectrum σess(A

⊗
I + I

⊗
B) and discrete spectrum

σdisc(A
⊗

I + I
⊗

B) of operator A
⊗

I + I
⊗

B in terms of the spectrum σ(A)

and the discrete spectrum σdisc(A) of A and in terms of the spectrum σ(B) and the
discrete spectrum σdisc(B) of B :

σdisc(A
⊗

I + I
⊗

B) = {σ(A)\σess(A)+ σ(B)\σess(B)}\{(σess(A)+
+σ(B)) ∪ (σ (A)+ σess(B))}, (9)

σess(A
⊗

I + I
⊗

B) = (σess(A)+ σ(B)) ∪ (σ (A)+ σess(B)). (10)

It is clear that σ(A
⊗

I + I
⊗

B) = {λ+ μ : λ ∈ σ(A), μ ∈ σ(B)}.
Therefore, we must investigate the spectrum of the operators H̃ 1

2 , H̃ 2
2 , and H̃ 3

2 .

Let �1 = λ + γ, �2 = λ + θ, �3 = λ + η, �4 = μ + γ, �5 = μ + θ, and
�6 = μ+ η.

Let the total quasimomentum of the two-electron system λ+γ = �1 be fixed. We
let L2(��1) denote the space of functions that are square integrable on the manifold
��1 = {(λ, γ ) : λ + γ = �1}. It is known ([19], chapter II, pp. 63–84, and
[15], chapter XIII, paragraph 16, pp. 303–341) that the operator H̃ 1

2 and the space
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H̃1
2 ≡ L2((T ν)2) can be decomposed into a direct integral H̃ 1

2 =
⊕∫

T ν H̃ 1
2�1

d�1,

H̃1
2 =

⊕∫
T ν H̃1

2�1
d�1 of operators H̃ 1

2�1
and spaces H̃1

2�1
= L2(��1) such that

H̃1
2�1

are invariant under H̃ 1
2�1

and H̃ 1
2�1

act in H̃1
2�1

according to the formula

(H̃ 1
2�1

f�1)(λ) = −{2A+4B
∑ν

i=1 cos
�i

1
2 cos(

�i
1

2 −λi)}f�1(λ)−2U
∫

T ν f�1(s)ds,

where f�1(x) = f (x, �1 − x).

It is known that the continuous spectrum of H̃ 1
2�1

is independent of the

parameter U and consists of the intervals σcont (H̃
1
2�1

) = Gν
�1

= [−2A −
4B

∑ν
i=1 cos

�i
1

2 ,−2A+ 4B
∑ν

i=1 cos
�i

1
2 ].

Definition 1 The eigenfunction ϕ�1 ∈ L2(T ν × T ν) of the operator H̃ 1
2�1

corresponding to an eigenvalue z�1 /∈ Gν
�1

is called a bound state (BS)(antibound

state (ABS)) of H̃ 1
2 with the quasi momentum �1, and the quantity z�1 is called the

energy of this state.

We consider the operator K�1(z) acting in the space H̃1
2�1

according to the
formula

(K�1(z)f�1)(x) =
∫

T ν

2U

−{2A+ 4B
∑ν

i=1 cos
�i

1
2 cos(

�i
1

2 − ti )} − z

f�1(t)dt.

It is a completely continuous operator in H̃1
2�1

for z /∈ Gν
�1

.

We set Dν
�1

(z) = 1− 2U
∫

T ν
ds1ds2...dsν

−2A−4B
∑ν

i=1 cos
�i

1
2 cos(

�i
1

2 −si )−z

.

Lemma 2 A number z = z0 /∈ Gν
�1

is an eigenvalue of the operator H̃ 1
2�1

if and
only if it is a zero of the function Dν

�1
(z), i.e., Dν

�1
(z0) = 0.

Proof Let the number z = z0 /∈ Gν
�1

be an eigenvalue of the operator H̃ 1
2�1

, and
ϕ�1(x) be the corresponding eigenfunction, i.e.,

−{2A+ 4B

ν∑
i=1

cos
�i

1

2
cos(

�i
1

2
− xi)}ϕ�1(x)− 2U

∫
T ν

ϕ�1(s)ds = z0ϕ�1(x).

Let ψ�1(x) = [−{2A+ 4B
∑ν

i=1 cos
�i

1
2 cos(

�i
1

2 − xi)} − z]ϕ�1(x). Then

ψ�1(x)−
∫

T ν

2U

−{2A+ 4B
∑ν

i=1 cos
�i

1
2 cos(

�i
1

2 − xi)} − z

ψ�1(t)dt = 0,

i.e., the number μ = 1 is a eigenvalue of the operator K�1(z). It then follows that
Dν

�1
(z0) = 0.
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Now let z = z0 be a zero of the function Dν
�1

(z), i.e., Dν
�1

(z0) = 0. It follows
from the Fredholm theorem that the homogeneous equation

ψ�1(x)− 2U

∫
T ν

ψ�1(s)ds1 . . . dsν

−2A− 4B
∑ν

i=1 cos
�i

1
2 cos(

�i
1

2 − si )− z

ds = 0

has a nontrivial solution. This means that the number z = z0 is an eigenvalue of the
operator H̃ 1

2�1
.

We consider the one-dimensional case.

Theorem 2

a) At ν = 1 and U < 0, and all values of parameters of the Hamiltonian, the

operator H̃ 1
2�1

has a unique eigenvalue z1 = −2A+2
√

U2 + 4B2 cos2 �1
2 , that

is above the continuous spectrum of H̃ 1
2�1

, i.e., z1 > M1
�1

.

b) At ν = 1 and U > 0, and all values of parameters of the Hamiltonian, the

operator H̃ 1
2�1

has a unique eigenvalue z̃1 = −2A−2
√

U2 + 4B2 cos2 �1
2 , that

is below the continuous spectrum of H̃ 1
2�1

, i.e., z̃1 < m1
�1

.

Proof If U < 0, then in the one-dimensional case, the function Dν
�1

(z) increases

monotonically outside the continuous spectrum domain of the operator H̃ 1
2�1

. For

z < m1
�1

the function Dν
�1

(z) increases from 1 to +∞, Dν
�1

(z) → 1 as z → −∞,

Dν
�1

(z) → +∞ as z → m1
�1
− 0. Therefore, below the value m1

�1
, the function

Dν
�1

(z) cannot vanish. For z > M1
�1

, and U < 0, the function Dν
�1

(z) increases

from −∞ to 1, Dν
�1

(z) → −∞ as z → M1
�1
+ 0, Dν

�1
(z) → 1 as z → +∞.

Therefore, above the value M1
�1

, the function Dν
�1

(z) has a single zero at the point

z = z1 = −2A+2
√

U2 + 4B2 cos2 �1
2 > M1

�1
. If U > 0, then the function Dν

�1
(z)

decreases monotonically outside the continuous spectrum domain of the operator
H̃ 1

2�1
. For z < m1

�1
the function Dν

�1
(z) decreases from 1 to −∞, Dν

�1
(z) → 1 as

z → −∞, Dν
�1

(z) → −∞ as z → m1
�1
− 0. Therefore, below the value m1

�1
, the

function Dν
�1

(z) has a single zero at the point z̃1 = −2A−2
√

U2 + 4B2 cos2 �1
2 <

m1
�1

.

For z > M1
�1

, and U > 0, the function Dν
�1

(z) decreases from +∞ to 1,

Dν
�1

(z) → +∞ as z → M1
�1
+ 0, Dν

�1
(z) → 1 as z →+∞. Therefore, above the

value M1
�1

, the function Dν
�1

(z) cannot vanish.
In the two-dimensional case, we have similar results.
If U > 0, then the function D2

�1
(z) decreases monotonically outside the

continuous spectrum domain of the operator H̃ 1
2�1

. For z < m2
�1

the function
Dν

�1
(z) decreases from 1 to −∞, Dν

�1
(z) → 1 as z → −∞, Dν

�1
(z) → −∞
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as z → m2
�1
− 0. Therefore, below the value m2

�1
, the function Dν

�1
(z) has a single

zero at the point z1 < m2
�1

.

If U < 0, for z > M2
�1

, then the function D2
�1

(z) increases from −∞ to 1,

Dν
�1

(z) → 1 as z → +∞, Dν
�1

(z) →−∞ as z → M2
�1
+ 0. Therefore, above the

value M2
�1

, the function Dν
�1

(z) has a single zero at the point z̃1 > M2
�1

.

We consider three-dimensional case. Denote m = ∫
T 3

ds1ds2ds3∑3
i=1 cos

�i
1

2 (1+cos(
�i

1
2 −si ))

.

For U < 0, and U < − 2B
m

, above the continuous spectrum of the operator H̃ 1
2�1

,

the function D3
�1

(z) has a single zero at the point z = z1 > M3
�1

. For U < 0, and

− 2B
m
≤ U < 0, above of the continuous spectrum of the operator H̃ 1

2�1
, the function

D3
�1

(z) cannot vanish.

Denote M = ∫
T 3

ds1ds2ds3∑3
i=1 cos

�i
1

2 (1−cos(
�i

1
2 −si ))

.

For U > 0, and U > 2B
M

, below the continuous spectrum of the operator H̃ 1
2�1

,

the function D3
�1

(z) has a single zero at the point z̃1 > M3
�1

. For 0 < U ≤ 2B
M

,

above of the continuous spectrum of the operator H̃ 1
2�1

, the function D3
�1

(z) cannot
vanish.

We have now studied the spectrum of the operator H̃ 2
2�2

, i.e., the operator

(H̃ 2
2�2

f�2)(λ) = −{2A+4B

ν∑
i=1

cos
�i

2

2
cos(

�i
2

2
−λi)}f�2(λ)+2U

∫
T ν

f�2(s)ds.

It is known that the continuous spectrum of the operator H̃ 2
2�2

is independent of

U and coincides with the segment σcont (H̃
2
2�2

) = [−2A−4B
∑ν

i=1 cos
�i

2
2 ,−2A+

4B
∑ν

i=1 cos
�i

2
2 ] = Gν

�2
.

We let L2(��2) denote the space of functions that are square integrable on the
manifold ��2 = {(λ, θ) : λ + θ = �2}. That the operator H̃ 2

2 and the space H̃2
2 ≡

L2((T ν)2) can be decomposed into a direct integral H̃ 2
2 =

⊕∫
T ν H̃ 2

2�2
d�2, H̃2

2 =⊕∫
T ν H̃2

2�2
d�2. Each operator H̃ 2

2�2
acts in H̃2

2�2
= L2(��2) as (H̃ 2

2�2
f�2)(λ) =

−{2A+4B
∑ν

i=1 cos
�i

2
2 cos(

�i
1

2 −λi)}f�2(λ)+2U
∫

T ν f�2(s)ds, where f�2(x) =
f (x, �2 − x).

We set Dν
�2

(z) = 1+ 2U
∫

T ν
ds1ds2...dsν

−2A−4B
∑ν

i=1 cos
�i

2
2 cos(

�i
2

2 −si )−z

.

The analogue of the Lemma 2 holds for the in this case. We consider the one-
dimensional case.
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Theorem 3

a) At ν = 1 and U < 0 and for all values of the parameter of the Hamiltonian, the

operator H̃ 2
2�2

has a unique eigenvalue z = z2 = −2A−2
√

U2 + 4B2 cos2 �2
2 ,

that is below the continuous spectrum of operator H̃ 2
2�2

, i.e., z2 < m1
�2

.

b) At ν = 1 and U > 0 and for all values of the parameter of the Hamiltonian, the

operator H̃ 2
2�2

has a unique eigenvalue z = z̃2 = −2A+2
√

U2 + 4B2 cos2 �2
2 ,

that is above the continuous spectrum of operator H̃ 2
2�2

, i.e., z̃2 > M1
�2

.

Theorem 3 is proved totally similarly to Theorem 2.
In the two-dimensional case, we have analogously results.
If U < 0, then the equation D2

�2
(z) = 0 has a unique solution z2 < m2

�2
,

below the continuous spectrum of the operator H̃ 2
2�2

. If U > 0, then the equation

D2
�2

(z) = 0 has a unique solution z̃2 > M2
�2

, above the continuous spectrum of the

operator H̃ 2
2�2

.

We consider three-dimensional case. Denote M = ∫
T 3

ds1ds2ds3∑3
i=1 cos

�i
2

2 (1−cos(
�i

2
2 −si ))

.

For U < 0, and U < − 2B
M

, below of the continuous spectrum of the operator
H̃ 2

2�2
, the function D3

�2
(z) has a single zero at the point z = z2 < m3

�2
. For U < 0,

and − 2B
M

≤ U < 0, below of the continuous spectrum of the operator H̃ 2
2�2

, the

function D3
�2

(z) cannot vanish. Denote m = ∫
T 3

ds1ds2ds3∑3
i=1 cos

�i
2

2 (1+cos(
�i

2
2 −si ))

.

For U > 0, and U > 2B
m

, above of the continuous spectrum of the operator
H̃ 2

2�2
, the function D3

�2
(z) has a single zero at the point z = z̃2 > M3

�2
. For

U > 0, and 0 < U ≤ 2B
m

, above of the continuous spectrum of the operator H̃ 2
2�2

,

the function D3
�2

(z) cannot vanish.

Let �3 = λ+ η. Now we investigated the spectrum of the operator H̃ 3
�3

.

(H̃ 3
�3

f�3)(λ) = {A+ 2B

ν∑
i=1

cos(�3 − λi)}f�3(λ).

It is obvious that the spectrum of operator H̃ 3
�3

is purely continuous and coincides
with the value set of the function h�3(λ) = A + 2B

∑ν
i=1 cos(�3 − λi), i.e.,

σ(H̃ 3
�3

) = σcont (H̃
3
�3

) = [A− 2Bν, A+ 2Bν].
Now, using the obtained results and representation (8), we describe the structure

of essential spectrum and the discrete spectrum of the operator 1H̃ d
1/2 of first five-

electron doublet state:

Theorem 4 At ν = 1 and U < 0 the essential spectrum of the system of first
five-electron doublet state operator 1H̃ d

1/2 is exactly the union of four segments:

σess (
1H̃ d

1/2) = [a+c+e, b+d+f ]∪[a+e+z2, b+f+z2]∪[c+e+z1, d+f+z1]∪[e+z1+z2, f+z1+z2].
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The discrete spectrum of the operator 1H̃ d
1/2 is empty: σdisc(

1H̃
q

3/2) = ∅.

Here and hereafter a = −2A− 4B cos �1
2 , b = −2A+ 4B cos �1

2 , c = −2A−
4B cos �2

2 , d = −2A + 4B cos �2
2 , e = A − 2B, f = A + 2B, z1 = −2A +

2
√

U2 + 4B2 cos2 �1
2 , z2 = −2A− 2

√
U2 + 4B2 cos2 �2

2 .

Theorem 5 At ν = 1 and U > 0 the essential spectrum of the system of first
five-electron doublet state operator 1H̃ d

1/2 is exactly the union of four segments:

σess (
1H̃ d

1/2) = [a+c+e, b+d+f ]∪[a+e+̃z2, b+f +̃z2]∪[c+e+̃z1, d+f +̃z1]∪[e+̃z1+̃z2, f +̃z1+̃z2].

The discrete spectrum of the operator 1H̃ d
1/2 is empty: σdisc(

1H̃
q
3/2) = ∅.

Here z̃1 = −2A− 2
√

U2 + 4B2 cos2 �1
2 , z̃2 = −2A+ 2

√
U2 + 4B2 cos2 �2

2 .

Proof It follows from representation (8) that σ(1H̃ d
1/2) = {λ + μ + θ : λ ∈

σ(H̃ 1
2�1

), μ ∈ σ(H̃ 2
2�2

), θ ∈ σ(H̃ 3
2�3

)}, and in the one-dimensional case, the

continuous spectrum of operator H̃ 1
2�1

is σcont (H̃
1
2�1

) = [−2A−4B cos �1
2 ,−2A+

4B cos �1
2 ], and the discrete spectrum of H̃ 1

2�1
consists of a single point z1. The

continuous spectrum of operator H̃ 2
2�2

is σcont (H̃
2
2�2

) = [−2A−4B cos �2
2 ,−2A+

4B cos �2
2 ], and the discrete spectrum of H̃ 2

2�2
consists of a single point z2. The

spectra of the operator H̃ 3
�3

is a purely continuous and consists of the segment
[A− 2B, A+ 2B]. Therefore, the essential spectrum of the system of first doublet-
state operator 1H̃ d

1/2 is the union of four segments, and the first doublet-state

operator 1H̃ d
1/2 has no eigenvalues.

Theorem 5 is proved totally similarly to Theorem 4.
In the two-dimensional case the similar results occur.
We now consider the three-dimensional case.

Theorem 6 The following statements hold:

a) Let ν = 3 and U < 0, U < − 2B
m

, M > m, or U < 0, U < − 2B
M

, M < m. Then
the essential spectrum of the system first five-electron doublet state operator
1H̃ d

1/2 is the union of four segments:

σess(
1H̃

q

3/2) = [a + c + e, b + d + f ] ∪ [a + e + z2, b + f + z2] ∪
× ∪ [c + e + z1, d + f + z1] ∪ [e + z1 + z2, f + z1 + z2].

The discrete spectrum of the operator 1H̃ d
1/2 is empty: σdisc(

1H̃ d
1/2) = ∅.
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Here, a = −2A−4B
∑3

i=1 cos
�i

1
2 , b = −2A+4B

∑3
i=1 cos

�i
1

2 , c = −2A−
4B

∑3
i=1 cos

�i
2

2 , d = −2A+4B
∑3

i=1 cos
�i

2
2 , e = A−6B, f = A+6B, and

z1, z2 are the eigenvalues of the operators H̃ 1
2�1

, H̃ 2
2�2

, correspondingly.

b) Let ν = 3 and U < 0,− 2B
m
≤ U < − 2B

M
, and M > m, or U < 0,− 2B

M
≤ U <

− 2B
m

, and M < m. Then the essential spectrum of the system first five-electron
doublet state operator 1H̃ d

1/2 is the union of two segments: σess(
1H̃ d

1/2) = [a +
c+ e, b + d + f ] ∪ [a + e+ z2, b + f + z2] or σess(

1H̃ d
1/2) = [a + c+ e, b +

d + f ] ∪ [a + e+ z1, b+ f + z1]. The discrete spectrum of the operator 1H̃ d
1/2

is empty: σdisc(
1H̃ d

1/2) = ∅.

c) Let ν = 3 and U < 0, − 2B
m
≤ U < 0, and M > m, or U < 0, − 2B

M
≤ U < 0,

and M < m. Then the essential spectrum of the system first five-electron doublet
state operator 1H̃ d

1/2 is consists of a single segment: σess(
1H̃ d

1/2) = [a + c +
e, b+d+f ], and the discrete spectrum of the system first singlet-state operator
1H̃ d

1/2 is empty: σdisc(
1H̃ d

1/2) = ∅.

Theorem 7 The following statements hold:

a) Let ν = 3 and U > 0, U > 2B
m

, M > m, or U > 0, U > 2B
M

, M < m. Then the
essential spectrum of the system first five-electron doublet state operator 1H̃ d

1/2
is the union of four segments:

σess(
1H̃

q

3/2) = [a + c + e, b + d + f ] ∪ [a + e + z̃2, b + f + z̃2]
× ∪ [c + e + z̃1, d + f + z̃1] ∪ [e + z̃1 + z̃2, f + z̃1 + z̃2].

The discrete spectrum of the operator 1H̃ d
1/2 is empty: σdisc(

1H̃ d
1/2) = ∅.

Here, a = −2A− 4B
∑3

i=1 cos
�i

1
2 , b = −2A+ 4B

∑3
i=1 cos

�i
1

2 , c = −2A−
4B

∑3
i=1 cos

�i
2

2 , d = −2A+4B
∑3

i=1 cos
�i

2
2 , e = A−6B, f = A+6B, and

z̃1 is an eigenvalue of the operator H̃ 1
2�1

, and z̃2 is an eigenvalue of the operator

H̃ 2
2�2

.

b) Let ν = 3 and U > 0, 2B
m
≤ U < 2B

M
, and M < m, or U > 0, 2B

M
≤ U < 2B

m
,

and M > m. Then the essential spectrum of the system first five-electron doublet
state operator 1H̃ d

1/2 is the union of two segments: σess(
1H̃ d

1/2) = [a+c+e, b+
d+f ]∪ [a+ e+ z̃2, b+f + z̃2] or σess(

1H̃ d
1/2) = [a+ c+ e, b+d+f ]∪ [a+

e + z̃1, b + f + z̃1], and the discrete spectrum of the system first doublet-state
operator 1H̃ d

1/2 is empty: σdisc(
1H̃ d

1/2) = ∅.

c) Let ν = 3 and U > 0, 0 < U ≤ 2B
m

, and M < m, or U > 0, 0 < U ≤ 2B
M

,

and M > m. Then the essential spectrum of the system first five-electron doublet
state operator 1H̃ d

1/2 is consists of a single segment: σess(
1H̃ d

1/2) = [a + c +
e, b+ d + f ], and the discrete spectrum of the system first five-electron doublet
state operator 1H̃ d

1/2 is empty: σdisc(
1H̃ d

1/2) = ∅.
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We now consider the three-dimensional case. Let ν = 3, and �1 =
(�0

1, �0
1, �0

1), and �2 = (�0
2, �0

2, �0
2).

Then the continuous spectrum of the operator H̃ 1
2�1

is consists of the segment

σcont (H̃
1
2�1

) = G3
�1
= [−2A− 12B cos

�0
1

2 ,−2A+ 12B cos
�0

1
2 ].

We consider the Watson integral W = 1
π3

∫ π

0

∫ π

0

∫ π

0
3dxdydz

3−cosx−cosy−cosz
≈ 1516

(see [20]). Because the measure ν is normalized,
∫

T 3
ds1ds2ds3

3−∑3
i=1 cos(�i

3−si )
= W

3 .

Theorem 8 At ν = 3 and U < 0 and the total quasimomentum �1 of the system
have the form �1 = (�1

1, �2
1, �3

1) = (�0
1, �0

1, �0
1). Then the operator H̃ 1

2�1
has

a unique eigenvalue z̃1 if U < − 6B cos
�0

1
2

W
, that is above of continuous spectrum of

operator H̃ 1
2�1

. Otherwise, the operator H̃ 1
2�1

has no eigenvalue, that is above of

continuous spectrum of operator H̃ 1
2�1

.

Theorem 9 At ν = 3 and U > 0 and the total quasimomentum �1 of the system
have the form �1 = (�1

1, �2
1, �3

1) = (�0
1, �0

1, �0
1). Then the operator H̃ 1

2�1
has

a unique eigenvalue z1 if U >
6B cos

�0
1

2
W

, that is below of continuous spectrum of
operator H̃ 1

2�1
. Otherwise, the operator H̃ 1

2�1
has no eigenvalue, that is below of

continuous spectrum of operator H̃ 1
2�1

.

In this case the continuous spectrum of the operator H̃ 2
2�2

is consists of the
segment

σcont (H̃
2
2�2

) = G3
�2
= [−2A− 12B cos

�0
2

2 ,−2A+ 12B cos
�0

2
2 ].

Theorem 10 At ν = 3 and U < 0 and the total quasimomentum �2 of the system
have the form �2 = (�1

2, �2
2, �3

2) = (�0
2, �0

2, �0
2). Then the operator H̃ 2

2�2
has

a unique eigenvalue z2 if U < − 6B cos
�0

2
2

W
, that is below of continuous spectrum of

operator H̃ 2
2�2

. Otherwise, the operator H̃ 2
2�2

has no eigenvalue, that is below of

continuous spectrum of operator H̃ 2
2�2

.

Theorem 11 At ν = 3 and U > 0 and the total quasimomentum �2 of the system
have the form �2 = (�1

2, �2
2, �3

2) = (�0
2, �0

2, �0
2). Then the operator H̃ 2

2�2
has

a unique eigenvalue z̃2 if U >
6B cos

�0
2

2
W

, that is above of continuous spectrum of
operator H̃ 2

2�2
. Otherwise, the operator H̃ 2

2�2
has no eigenvalue, that is above of

continuous spectrum of operator H̃ 2
2�2

.

We now using the obtaining results and representation (8), we can describe the
structure of essential spectrum and discrete spectrum of the operator of first five-
electron quartet state:

Let ν = 3 and �1 = (�0
1, �0

1, �0
1), and �2 = (�0

2, �0
2, �0

2).

Theorem 12 The following statements hold:
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a) Let U < 0, and U < − 6B cos
�0

1
2

W
, cos

�0
1

2 > cos
�0

2
2 , or U < 0, U <

− 6B cos
�0

2
2

W
, cos

�0
1

2 < cos
�0

2
2 . Then the essential spectrum of the system

first five-electron doublet state operator 1H̃ d
1/2 is the union of four segments:

σess(
1H̃ d

1/2) = [a1+ c1+ e1, b1+d1+f1]∪ [a1+ e1+ z2, b1+f1+ z2]∪ [c1+
e1 + z1, d1 + f1 + z1] ∪ [e1 + z1 + z2, f1 + z1 + z2]. The discrete spectrum of
the operator 1H̃ d

1/2 is empty: σdisc(
1H̃

q
3/2) = ∅.

Here and hereafter a1 = −2A − 12B cos
�0

1
2 , b = −2A + 12B cos

�0
1

2 , c1 =
−2A−12B cos

�0
2

2 , d1 = −2A+12B cos
�0

2
2 , e1 = A−6B, f1 = A+6B, and

z1 is an eigenvalue of the operator H̃ 1
2�1

, and z2 is an eigenvalue of the operator

H̃ 2
2�2

.

b) Let U < 0, and − 6B cos
�0

1
2

W
≤ U < − 6B cos

�0
2

2
W

, cos
�0

1
2 > cos

�0
2

2 , or

− 6B cos
�0

2
2

W
≤ U < − 6B cos

�0
1

2
W

, cos
�0

1
2 < cos

�0
2

2 . Then the essential spectrum
of the system first five-electron doublet state operator 1H̃ d

1/2 is the union of two

segments: σess(
1H̃ d

1/2) = [a1+c1+e1, b1+d1+f1]∪[a1+e1+z2, b1+f1+z2],
or σess(

1H̃ d
1/2) = [a1 + c1 + e1, b1 + d1 + f1] ∪ [a1 + e1 + z1, b1 + f1 + z1].

The discrete spectrum of the operator 1H̃ d
1/2 is empty: σdisc(

1H̃ d
1/2) = ∅.

c) Let U < 0, − 6B cos
�0

1
2

W
≤ U < 0, cos

�0
1

2 < cos
�0

2
2 or − 6B cos

�0
2

2
W

≤ U <

0, cos
�0

1
2 > cos

�0
2

2 . Then the essential spectrum of the system first five-electron
doublet state operator 1H̃ d

1/2 is consists of a single segment: σess(
1H̃ d

1/2) = [a1+
c1 + e1, b1 + d1 + f1], and discrete spectrum of the system first five-electron
doublet state operator 1H̃ d

1/2 is empty: σdisc(
1H̃ d

1/2) = ∅.

Theorem 13 The following statements hold:

a) Let U > 0, and U >
6B cos

�0
1

2
W

, cos
�0

1
2 > cos

�0
2

2 , or U > 0, U >

6B cos
�0

2
2

W
, cos

�0
1

2 < cos
�0

2
2 . Then the essential spectrum of the system first

five-electron doublet state operator 1H̃ d
1/2 is the union of four segments:

σess(
1H̃ d

1/2) = [a1+ c1+ e1, b1+d1+f1]∪ [a1+ e1+ z̃2, b1+f1+ z̃2]∪ [c1+
e1 + z̃1, d1 + f1 + z̃1] ∪ [e1 + z̃1 + z̃2, f1 + z̃1 + z̃2]. The discrete spectrum of
the operator 1H̃ d

1/2 is empty: σdisc(
1H̃

q
3/2) = ∅.

Here and hereafter a1 = −2A − 12B cos
�0

1
2 , b1 = −2A + 12B cos

�0
1

2 , c1 =
−2A−12B cos

�0
2

2 , d1 = −2A+12B cos
�0

2
2 , e1 = A−6B, f1 = A+6B, and

z̃1 is an eigenvalue of the operator H̃ 1
2�1

, and z̃2 is an eigenvalue of the operator

H̃ 2
2�2

.
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b) Let U > 0, and
6B cos

�0
1

2
W

≤ U <
6B cos

�0
2

2
W

, cos
�0

1
2 < cos

�0
2

2 , or
6B cos

�0
2

2
W

≤
U <

6B cos
�0

1
2

W
, cos

�0
1

2 > cos
�0

2
2 . Then the essential spectrum of the system

first five-electron doublet state operator 1H̃ d
1/2 is the union of two segments:

σess(
1H̃ d

1/2) = [a1 + c1 + e1, b1 + d1 + f1] ∪ [a1 + e1 + z̃2, b1 + f1 + z̃2], or

σess(
1H̃ d

1/2) = [a1 + c1 + e1, b1 + d1 + f1] ∪ [a1 + e1 + z̃1, b1 + f1 + z̃1]. The

discrete spectrum of the operator 1H̃ d
1/2 is empty: σdisc(

1H̃ d
1/2) = ∅.

c) Let U > 0, and 0 < U ≤ 6B cos
�0

1
2

W
, cos

�0
1

2 < cos
�0

2
2 or 0 < U ≤

6B cos
�0

2
2

W
, cos

�0
1

2 > cos
�0

2
2 . Then the essential spectrum of the system first

five-electron doublet state operator 1H̃ d
1/2 is consists of a single segment:

σess(
1H̃ d

1/2) = [a1+c1+e1, b1+d1+f1], and the discrete spectrum of the system

first five-electron doublet state operator 1H̃ d
1/2 is empty: σdisc(

1H̃ d
1/2) = ∅.

Consequently, the essential spectrum of the system first five-electron doublet
state operator 1H̃ d

1/2 is the union of no more than four segments, and discrete

spectrum of the operator 1H̃ d
1/2 is empty.

3 Second Doublet State

The second doublet state corresponds to the basis functions 2d
1/2
m,n,r,t,l∈Zν =

a+m,↓a+n,↑a+r,↓a+t,↑a+l,↑ϕ0. The subspace 2Hd
1/2, corresponding to the second

five-electron doublet state is the set of all vectors of the form 2ψd
1/2 =∑

m,n,r,t,l∈Zν f (m, n, r, t, l)2d
1/2
m,n,r,t,l∈Zν, f ∈ las

2 , where las
2 is the subspace of

antisymmetric functions in the space l2((Zν)5).

The restriction 2H d
1/2 of H to the subspace 2Hd

1/2, is called the five-electron
second doublet state operator.

Theorem 14 The subspace 2Hd
1/2 is invariant under the operator H, and the

operator 2H d
1/2 is a bounded self-adjoint operator. It generates a bounded self-

adjoint operator 2H
d

1/2 acting in the space las
2 as

(2H
d

1/2f )(m, n, r, t, l) = 5Af (m, n, r, t, l)+ B
∑

τ

[f (m+ τ, n, r, t, l)+ f (m, n + τ, r, t, l)+

+f (m, n, r + τ, t, l)+ f (m, n, r, t + τ, l)+ f (m, n, r, t, l + τ)] +U [δm,n + δm,t+
+δm,l + δn,r + δr,t + δr,l ]f (m, n, r, t, l), (11)
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where δk,j is the Kronecker symbol. The operator 2H d
1/2 acts on a vector 2ψd

1/2 ∈
2Hd

1/2 as

2H d
1/2

2ψd
1/2 =

∑
m,n,r,t,l∈Zν

(2H
d

1/2f )(m, n, r, t, l)2d
1/2
m,n,r,t,l∈Zν . (12)

Proof The proof of the theorem can be obtained from the explicit form of the action
of H on vectors ψ ∈ 2Hd

1/2 using the standard anticommutation relations between

electron creation and annihilation operators at lattice sites, {am,γ , a+n,β} = δm,nδγ,β,

{am,γ , an,β} = {a+m,γ , a+n,β } = θ, and also take into account that am,γ ϕ0 = θ, where

θ is the zero element of 2Hd
1/2. This yields the statement of the theorem.

We set 2H̃ d
1/2 = F 2H

d

1/2F−1. In the quasimomentum representation, the

operator 2H̃ d
1/2 acts in the Hilbert space Las

2 ((T ν)5) as

2H̃ d
1/2

2ψd
1/2 = {5A+ 2B

ν∑
i=1

[cosλi + cosμi + cosγi + cosθi + cosηi ]}f (λ, μ, γ, θ, η)+

(13)

+U

∫
T ν
[f (s, λ+ μ− s, γ, θ, η)+ f (λ, s, μ+ γ − s, θ, η)+ f (λ, μ, s, γ + θ − s, η)+

+f (λ, μ, s, θ, γ + η − s)+ f (s, μ, γ, λ+ θ − s, η)+ f (s, μ, γ, θ, λ+ η − s)]ds,

where Las
2 ((T ν)5) is the subspace of antisymmetric functions in L2((T ν)5).

Taking into account that the function f (λ, μ, γ, θ, η) is antisymmetric, we can
rewrite formula (13) as

2H̃ d
1/2 = H̃ 4

2

⊗
I
⊗

I + I
⊗

H̃ 5
2

⊗
I + I

⊗
I
⊗

H̃ 6
2 , (14)

where

(H̃ 4
2 f )(λ, μ) = {2A+ 2B

ν∑
i=1

[cos λi + cos μi]}f (λ, μ)+ U

∫
T ν

f (s, λ+ μ− s)ds

+U

∫
T ν

f (s, λ+ θ − s)ds,

(H̃ 5
2 f )(γ, θ) = {2A+ 2B

ν∑
i=1

[cos γi + cos θi]}f (γ, θ)+ U

∫
T ν

f (s, γ + θ − s)ds

+U

∫
T ν

f (s, μ+ γ − s)ds,
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(H̃ 6
2 f )(λ, η) = {A+ 2B

ν∑
i=1

cos ηi}f (λ, η)− U

∫
T ν

f (s, γ + η − s)ds

−U

∫
T ν

f (s, λ+ η − s)ds,

and I is the unit operator.
Taking into account that λ, μ, γ, θ, η ∈ T ν, we can express the action of

operators H̃ 4
2 , H̃ 5

2 , H̃ 6
2 in the form

(H̃ 4
2 f )(λ, μ) = {2A+ 2B

ν∑
i=1

[cos λi + cos μi]}f (λ, μ)+ 2U

∫
T ν

f (s, λ+ μ− s)ds,

(H̃ 5
2 f )(γ, θ) = {2A+ 2B

ν∑
i=1

[cos γi + cos θi ]}f (γ, θ)+ 2U

∫
T ν

f (s, γ + θ − s)ds,

(H̃ 6
2 f )(λ, η) = {A + 2B

ν∑
i=1

cos ηi}f (λ, η)− 2U

∫
T ν

f (s, λ+ η− s)ds.

We must therefore study the spectrum and bound states (antibound states)
of the operators H̃ 4

2 , H̃ 5
2 and H̃ 6

2 . Let the total quasimomentum of the two-
electron systems be fixed: �1 = λ + μ, �2 = γ + θ, �3 = λ + η. We let
L2(��1) (correspondingly, L2(��2) and L2(��3)) denote the space of functions
that are square integrable on the manifold ��1 = {(λ, μ) : λ + μ = �1}
(correspondingly, ��2 = {(γ, θ) : γ + θ = �2} and ��3 = {(λ, η) : λ + η =
�3}). That the operator H̃ 4

2 , H̃ 5
2 and H̃ 6

2 and the space H̃2 ≡ L2((T ν)2) can
be decomposed into a direct integral H̃ 4

2 = ⊕∫
T ν H̃ 4

2�1
d�1 (correspondingly,

H̃ 5
2 = ⊕∫

T ν H̃ 5
2�2

d�2 and H̃ 6
2 = ⊕∫

T ν H̃ 6
2�3

d�3), H̃2 = ⊕∫
T ν H̃2�1d�1

(correspondingly, H̃2 = ⊕∫
T ν H̃2�2d�2 and H̃2 = ⊕∫

T ν H̃2�3d�3). Each
operator H̃ 4

2�1
(correspondingly, H̃ 5

2�2
and H̃ 6

2�3
) acts in H̃2�1 (correspondingly,

H̃2�2 and H̃2�3 ) as

(H̃ 4
2�1

f�1)(λ) = {2A+ 4B

ν∑
i=1

cos
�i

1

2
cos(

�i
1

2
− λi)}f�1(λ)+ 2U

∫
T ν

f�1(s)ds,

(correspondingly,

(H̃ 5
2�2

f�2)(γ ) = {2A+ 4B

ν∑
i=1

cos
�i

2

2
cos(

�i
2

2
− γi)}f�2(γ )+ 2U

∫
T ν

f�2(s)ds,

(H̃ 6
2�3

f�3)(λ) = {A+ 2B

ν∑
i=1

cos(�i
3 − λi)}f�3(λ)− 2U

∫
T ν

f�3(s)ds),
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where f�1(λ) = f (λ, �1 − λ) (correspondingly, f�2(γ ) = f (γ, �2 − γ ) and
f�3(λ) = f (λ, �3 − λ)).

The continuous spectrum of operator H̃ 4
2�1

(correspondingly, H̃ 5
2�2

and H̃ 6
2�3

)
does not depend on the parameter U and consists of the intervals Gν

�1
=

[2A − 4B
∑ν

i=1 cos
�i

1
2 , 2A + 4B

∑ν
i=1 cos

�i
1

2 ] (correspondingly, Gν
�2

= [2A −
4B

∑ν
i=1 cos

�i
2

2 , 2A+ 4B
∑ν

i=1 cos
�i

2
2 ] and Gν

�3
= [A− 2Bν, A+ 2Bν]).

We set Dν
�1

(z) = 1+ 2U
∫

T ν
ds1ds2...dsν

2A+4B
∑ν

i=1 cos
�i

1
2 cos(

�i
1

2 −si )−z

.

The analogue of Lemma 2 holds for this case. We consider the one-dimensional
case.

Theorem 15

a) At ν = 1 and U < 0 and for all values of the parameter of the Hamiltonian, the

operator H̃ 4
2�1

has a unique eigenvalue z1 = 2A− 2
√

U2 + 4B2 cos2 �1
2 that is

below the continuous spectrum of H̃ 4
2�1

, i.e., z1 < m1
�1

.

b) At ν = 1 and U > 0 and for all values of the parameter of the Hamiltonian, the

operator H̃ 4
2�1

has a unique eigenvalue z̃1 = 2A+ 2
√

U2 + 4B2 cos2 �1
2 that is

above the continuous spectrum of H̃ 4
2�1

, i.e., z̃1 > M1
�1

.

Proof If U < 0, then in the one-dimensional case, the function Dν
�1

(z) decreases

monotonically outside the continuous spectrum domain of the operator H̃ 4
2�1

. For

z < m1
�1

the function Dν
�1

(z) decreases from 1 to −∞, Dν
�1

(z) → 1 as z → −∞,

Dν
�1

(z) → −∞ as z → m1
�1
− 0. Therefore, below the value m1

�1
, the function

Dν
�1

(z) has a single zero at the point z = z1 = 2A − 2
√

U2 + 4B2 cos2 �1
2 . For

z > M1
�1

, and U < 0, the function Dν
�1

(z) decreases from +∞ to 1, Dν
�1

(z) →
+∞ as z → M1

�1
+ 0, Dν

�1
(z) → 1 as z →+∞. Therefore, above the value M1

�1
,

the function Dν
�1

(z) cannot vanish. If U > 0, then the function Dν
�1

(z) increases

monotonically outside the continuous spectrum domain of the operator H̃ 1
2�1

. For

z < m1
�1

the function Dν
�1

(z) increases from 1 to +∞, Dν
�1

(z) → 1 as z →
−∞, Dν

�1
(z) → +∞ as z → m1

�1
− 0. Therefore, below the value m1

�1
, the

function Dν
�1

(z) cannot vanish. For z > M1
�1

, and U > 0, the function Dν
�1

(z)

increases from −∞ to 1, Dν
�1

(z) → −∞ as z → M1
�1
+ 0, Dν

�1
(z) → 1 as

z → +∞. Therefore, above the value M1
�1

, Dν
�1

(z) has a single zero at the point

z̃1 = 2A+ 2
√

U2 + 4B2 cos2 �1
2 .

In the two-dimensional case, we have similar results.
We consider three-dimensional case. Denote m = ∫

T 3
ds1ds2ds3∑3

i=1 cos
�i

1
2 (1+cos(

�i
1

2 −si ))

.

For U < 0, and U < − 2B
m

, below of the continuous spectrum of the operator
H̃ 4

2�1
the function D3

�1
(z) has a single zero at the point z1 < m3

�1
. For U < 0, and
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− 2B
m
≤ U < 0, below of the continuous spectrum of the operator H̃ 4

2�1
the function

D3
�1

(z) = 0 cannot vanish.

Denote M = ∫
T 3

ds1ds2ds3∑3
i=1 cos

�i
1

2 (1−cos(
�i

1
2 −si ))

.

For U > 0 and U > 2B
M

, above of the continuous spectrum of the operator H̃ 4
2�1

the function D3
�1

(z) has a single zero at the point z̃1 > M3
�1

. For 0 < U ≤ 2B
M

,

above of the continuous spectrum of the operator H̃ 4
2�1

the function D3
�1

(z) cannot
vanish.

We now study the spectrum of the operator H̃ 5
2�2

. The operators H̃ 4
2�1

and H̃ 5
2�2

,

is the equal operators. Therefore, the spectrum of these operators is coincide, also.
We now study the spectrum of the operator

(H̃ 6
2�3

f�3)(λ) = {A+ 2B

ν∑
i=1

cos(�i
3 − λi)}f�3(λ)− 2U

∫
T ν

f�3(s)ds.

It is known that the continuous spectrum of H̃ 6
2�3

is independent on U and

coincides with the segment σcont (H̃
6
2�3

) = [A− 2Bν, A+ 2Bν].
We set Dν

�3
(z) = 1− 2U

∫
T ν

ds1ds2...dsν

A+2B
∑ν

i=1 cos(�i
3−si )−z

.

The analogue of Lemma 2 holds for the in this case. We consider the one-
dimensional case.

It is clear that the at U < 0 (U > 0) exists only one solution of the equation
Dν

�3
(z) = 0, that is above (below) the continuous spectrum of the operator H̃ 6

2�3
.

Theorem 16

a) At ν = 1 and U < 0 and for all values of the parameter of the Hamiltonian, the
operator H̃ 6

2�3
has a unique eigenvalue z3 = 2A + 2

√
U2 + B2, that is above

the continuous spectrum of operator H̃ 6
2�3

, i.e., z3 > M1
�3

.

b) At ν = 1 and U > 0 and for all values of the parameter of the Hamiltonian,
the operator H̃ 6

2�3
has a unique eigenvalue z = z̃3 = 2A− 2

√
U2 + B2, that is

below the continuous spectrum of operator H̃ 6
2�3

, i.e., z̃3 < m1
�3

.

In the two-dimensional case the similar situation is to occur. For U < 0, the
function D2

�3
(z) above the continuous spectrum of the operator H̃ 6

2�3
has a single

zero at the point z2 > M2
�3

. For U > 0, the function D2
�3

(z) below the continuous

spectrum of the operator H̃ 6
2�3

has a single zero at the point z̃2 < m2
�3

.

We now consider three-dimensional case. For U > 0, and U > 3B
W

, the function
D3

�3
(z) below the continuous spectrum of the operator H̃ 6

2�3
has a single zero at

the point z3 < m3
�3

. For 0 < U ≤ 3B
W

, the function D3
�3

(z) below the continuous

spectrum of the operator H̃ 6
2�3

cannot vanish. For U < 0, and U < − 3B
W

, the

function D3
�3

(z) above the continuous spectrum of the operator H̃ 6
2�3

has a single
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zero at the point z̃3 > M3
�3

. For − 3B
W

≤ U < 0, the function D3
�3

(z) above the

continuous spectrum of the operator H̃ 6
2�3

cannot vanish.
Now, using the obtained results and representation (14), we describe the structure

of the essential spectrum and the discrete spectrum of the operator 2H̃ d
1/2 second

five-electron doublet state:

Theorem 17 At ν = 1 and U < 0 the essential spectrum of the system of second
five-electron doublet state operator 2H̃ d

1/2 is exactly the union of seven segments:

σess(
2H̃ d

1/2) = [a + c + e, b + d + f ] ∪ [a + e + z2, b + f + z2]∪
∪[c + e + z1, d + f + z1] ∪ [e + z1 + z3, f + z1 + z3]∪

∪[a + c + z3, b + d + z3] ∪ [a + z2 + z3, b + z2 + z3] ∪ [e + z1 + z2, f + z1 + z2].

The discrete spectrum of the operator 2H̃ d
1/2 is consists of no more than one point:

σdisc(
2H̃ d

1/2) = {z1 + z2 + z3}, or σdisc(
2H̃ d

1/2) = ∅.

Here and hereafter a = 2A − 4B cos �1
2 , b = 2A + 4B cos �1

2 , c = 2A −
4B cos �2

2 , d = 2A + 4B cos �2
2 , e = A − 2B, f = A + 2B, z1 = 2A −

2
√

U2 + 4B2 cos2 �1
2 , z2 = 2A− 2

√
U2 + 4B2 cos2 �2

2 , z3 = A+ 2
√

U2 + B2.

Theorem 18 At ν = 1 and U > 0 the essential spectrum of the system of second
five-electron doublet state operator 2H̃ d

1/2 is exactly the union of seven segments:

σess(
2H̃ d

1/2) = [a + c + e, b + d + f ] ∪ [a + e + z̃2, b + f + z̃2]∪
∪[c + e + z̃1, d + f + z̃1] ∪ [e + z̃1 + z̃3, f + z̃1 + z̃3]∪

∪[a + c + z̃3, b + d + z̃3] ∪ [a + z̃2 + z̃3, b + z̃2 + z̃3] ∪ [e + z̃1 + z̃2, f + z̃1 + z̃2].

The discrete spectrum of the operator 2H̃ d
1/2 is consists of no more than one point:

σdisc(
2H̃ d

1/2) = {̃z1 + z̃2 + z̃3}, or σdisc(
2H̃ d

1/2) = ∅.

Here z̃1 = 2A+ 2
√

U2 + 4B2 cos2 �1
2 , z̃2 = 2A+ 2

√
U2 + 4B2 cos2 �2

2 , z̃3 =
A− 2

√
U2 + B2.

In the two-dimensional case the similar results are to occur.
We now consider the three-dimensional case. Let ν = 3.

Theorem 19 The following statements hold:

a) Let U < 0, and U < − 2B
m

, m < 2
3 W, or U < 0, U < − 3B

W
, m > 2

3 W. Then
the essential spectrum of the system second five-electron quartet state operator
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2H̃ d
1/2 is the union of seven segments:

σess(
2H̃ d

1/2) = [a + c + e, b + d + f ] ∪ [a + c + z̃3, b + d + z̃3]∪
∪[a + e + z2, b+ f + z2] ∪ [a + z2 + z̃3, b+ z2 + z̃3]∪

∪[c + e + z1, d + f + z1] ∪ [c + z1 + z̃3, d + z1 + z̃3] ∪ [e + z1 + z2, f + z1 + z2].

The discrete spectrum of the operator 2H̃ d
1/2 is consists of no more than one

point: σdisc(
2H̃ d

1/2) = {z1 + z2 + z̃3}, or σdisc(
2H̃ d

1/2) = ∅.

Here, a = 2A − 4B
∑3

i=1 cos
�i

1
2 , b = 2A + 4B

∑3
i=1 cos

�i
1

2 , c = 2A −
4B

∑3
i=1 cos

�i
2

2 , d = 2A+ 4B
∑3

i=1 cos
�i

2
2 , e = A− 6B, f = A+ 6B, and

z1is an eigenvalue of the operator H̃ 4
2�1

,and z2 is an eigenvalue of the operator

H̃ 5
2�2

, and z̃3 is an eigenvalue of the operator H̃ 6
�3

.

b) Let U < 0, − 3B
W
≤ U < − 2B

m
, and m > 2

3W. Then the essential spectrum of
the system second five-electron quartet state operator 2H̃ d

1/2 is the union of four
segments:

σess(
2H̃ d

1/2) = [a + c + e, b + d + f ] ∪ [a + e + z2, b + f + z2] ∪
∪[c + e + z1, d + f + z1] ∪ [e + z1 + z2, f + z1 + z2].

The discrete spectrum of the operator 2H̃ d
1/2 is empty: σdisc(

2H̃ d
1/2) = ∅.

c) Let U < 0, − 2B
m
≤ U < − 3B

W
, and m < 2

3W. Then the essential spectrum of
the system second five-electron quartet state operator 2H̃ d

1/2 is the union of two
segments:

σess(
2H̃ d

1/2) = [a + c + e, b + d + f ] ∪ [a + c + z̃3, b + d + z̃3].

The discrete spectrum of the operator 2H̃ d
1/2 is empty: σdisc(

2H̃ d
1/2) = ∅.

d) Let U < 0, − 2B
m

≤ U < 0 and m > 2
3W, or − 3B

m
≤ U < 0, and m <

2
3W. Then the essential spectrum of the system second five-electron quartet state
operator 2H̃ d

1/2 is consists of a single segment: σess(
2H̃ d

1/2) = [a+c+e, b+d+
f ], and the discrete spectrum of the operator 2H̃ d

1/2 is empty: σdisc(
2H̃ d

1/2) = ∅.

Let ν = 3.

Theorem 20 The following statements hold:
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a) Let U > 0, and U > 2B
M

, M < 2
3W, or U > 0, and U > 3B

W
, M > 2

3 W. Then
the essential spectrum of the system second five-electron quartet state operator
2H̃ d

1/2 is the union of seven segments:

σess(
2H̃ d

1/2) = [a + c + e, b + d + f ] ∪ [a + c + z3, b + d + z3]∪
∪[a + e + z̃2, b+ f + z̃2] ∪ [a + z̃2 + z3, b+ z̃2 + z3]∪

∪[c + e + z̃1, d + f + z̃1] ∪ [c + z̃1 + z3, d + z̃1 + z3] ∪ [e + z̃1 + z̃2, f + z̃1 + z̃2].

The discrete spectrum of the operator 2H̃
q

1/2 is consists of no more than one

point: σdisc(
2H̃ d

1/2) = {̃z1 + z̃2 + z3}, or σdisc(
2H̃ d

1/2) = ∅.

Here, z̃1 is an eigenvalue of the operator H̃ 4
2�1

, and z̃2 is an eigenvalue of the

operator H̃ 5
2�2

, and z3 is an eigenvalue of the operator H̃ 6
�3

.

b) Let U > 0, 3B
W

≤ U < 2B
M

, and M < 2
3 W. Then the essential spectrum of

the system second five-electron quartet state operator 2H̃ d
1/2 is the union of four

segments:

σess(
2H̃ d

1/2) = [a + c + e, b + d + f ] ∪ [a + e + z̃2, b + f + z̃2] ∪
∪[c + e + z̃1, d + f + z̃1] ∪ [e + z̃1 + z̃2, f + z̃1 + z̃2].

The discrete spectrum of the operator 2H̃ d
1/2 is empty: σdisc(

2H̃ d
1/2) = ∅.

c) Let U > 0, 2B
M

≤ U < 3B
W

, and M > 2
3 W. Then the essential spectrum of

the system second five-electron quartet state operator 2H̃ d
1/2 is the union of two

segments:

σess(
2H̃ d

1/2) = [a + c + e, b + d + f ] ∪ [a + c + z3, b + d + z3].

The discrete spectrum of the operator 2H̃ d
1/2 is empty: σdisc(

2H̃ d
1/2) = ∅.

d) Let U > 0, 0 < U ≤ 3B
W

, and M < 2
3W, or U > 0, 0 < U ≤ 2B

M
, and M >

2
3W. Then the essential spectrum of the system second five-electron quartet state
operator 2H̃ d

1/2 is consists of a single segment: σess(
2H̃ d

1/2) = [a+c+e, b+d+
f ], and the discrete spectrum of the operator 2H̃ d

1/2 is empty: σdisc(
2H̃ d

1/2) = ∅.

Let ν = 3 and �1 = (�0
1, �0

1, �0
1), and �2 = (�0

2, �0
2, �0

2).

It is known that the continuous spectrum of H̃ 4
2�1

is independent of U and

coincides with the segment σcont (H̃
4
2�1

) = [2A− 12B cos
�0

1
2 , 2A+ 12B cos

�0
1

2 ].
Theorem 21 At ν = 3 and U < 0 and the total quasimomentum �1 of the system
have the form �1 = (�1

1, �2
1, �3

1) = (�0
1, �0

1, �0
1). Then the operator H̃ 4

2�1
has a

unique eigenvalue z1 if U < − 6B cos
�0

1
2

W
, that is below the continuous spectrum of
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operator H̃ 4
2�1

. Otherwise, the operator H̃ 4
2�1

has no eigenvalue, that is below the

continuous spectrum of operator H̃ 4
2�1

Theorem 22 At ν = 3 and U > 0 and the total quasimomentum �1 of the system
have the form �1 = (�1

1, �2
1, �3

1) = (�0
1, �0

1, �0
1). Then the operator H̃ 4

2�1
has

a unique eigenvalue z̃1 if U >
6B cos

�0
1

2
W

, that is above the continuous spectrum of
operator H̃ 4

2�1
. Otherwise, the operator H̃ 4

2�1
has no eigenvalue, that is above the

continuous spectrum of operator H̃ 4
2�1

.

It is known that the continuous spectrum of H̃ 5
2�2

is independent of U and

coincides with the segment σcont (H̃
5
2�2

) = [2A− 12B cos
�0

2
2 , 2A+ 12B cos

�0
2

2 ].
Theorem 23 At ν = 3 and U < 0 and the total quasimomentum �2 of the system
have the form �2 = (�1

2, �2
2, �3

2) = (�0
2, �0

2, �0
2). Then the operator H̃ 5

2�2
has a

unique eigenvalue z2 if U < − 6B cos
�0

2
2

W
, that is below the continuous spectrum of

operator H̃ 5
2�2

. Otherwise, the operator H̃ 5
2�2

has no eigenvalue, that is below the

continuous spectrum of operator H̃ 5
2�2

.

Theorem 24 At ν = 3 and U > 0 and the total quasimomentum �2 of the system
have the form �2 = (�1

2, �2
2, �3

2) = (�0
2, �0

2, �0
2). Then the operator H̃ 5

2�2
has

a unique eigenvalue z̃2 if U >
6B cos

�0
2

2
W

, that is above the continuous spectrum of
operator H̃ 5

2�2
. Otherwise, the operator H̃ 5

2�2
has no eigenvalue, that is above the

continuous spectrum of operator H̃ 5
2�2

.

Now, using the obtained results and representation (14), we describe the structure
of the essential spectrum and the discrete spectrum of the system second five-
electron quartet state operator 2H̃ d

1/2:

Let ν = 3 and �1 = (�0
1, �0

1, �0
1), and �2 = (�0

2, �0
2, �0

2).

Theorem 25 The following statements hold:

a) Let U < 0, U < − 6B cos
�0

1
2

W
, cos

�0
1

2 > cos
�0

2
2 , and cos

�0
1

2 > 1
2 , or U < 0,

U < − 6B cos
�0

2
2

W
, cos

�0
1

2 < cos
�0

2
2 and cos

�0
2

2 > 1
2 . Then the essential spectrum

of the system second five-electron doublet state operator 2H̃ d
1/2 is consists of the

union of seven segments: σess(
2H̃ d

1/2) = [a1+c1+e1, b1+d1+f1]∪[a1+e1+
z2, b1+f1+z2]∪[c1+e1+z1, d1+f1+z1]∪[e1+z1+z2, f1+z1+z2]∪[a1+
c1+z̃3, b1+d1+z̃3]∪[a1+z2+z̃3, b1+z2+z̃3]∪[c1+z1+z̃3, d1+z1+z̃3]. The
discrete spectrum of the operator 2H̃ d

1/2 is consists of no more than one point:

σdisc(
2H̃ d

1/2) = {z1 + z2 + z̃3}, or σdisc(
2H̃ d

1/2) = ∅.
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Here and hereafter a1 = 2A − 12B cos
�0

1
2 , b1 = 2A + 12B cos

�0
1

2 , c1 =
2A − 12B cos

�0
2

2 , d1 = 2A + 12B cos
�0

2
2 , e1 = A − 6B, f1 = A + 6B, and

z1 is an eigenvalue of the operator H̃ 4
2�1

, and z2 is an eigenvalue of the operator

H̃ 5
2�2

, and z̃3is an eigenvalue of the operator H̃ 6
�3

.

b) Let U < 0, − 6B cos
�0

1
2

W
≤ U < − 6B cos

�0
2

2
W

, cos
�0

1
2 > cos

�0
2

2 , and cos
�0

2
2 > 1

2 ,

or − 6B cos
�0

2
2

W
≤ U < − 6B cos

�0
1

2
W

, cos
�0

1
2 < cos

�0
2

2 , and cos
�0

1
2 > 1

2 . Then
the essential spectrum of the system second five-electron doublet state operator
2H̃ d

1/2 is consists of the union of four segments:

σess(
2H̃ d

1/2) = [a1 + c1 + e1, b1 + d1 + f1] ∪ [a1 + e1 + z2, b1 + f1 + z2] ∪
[a1 + c1 + z̃3, b1 + d1 + z̃3] ∪ [a1 + z2 + z̃3, b1 + z2 + z̃3], or σess(

2H̃ d
1/2) =[a1+ c1+ e1, b1+ d1 + f1] ∪ [a1+ e1 + z1, b1+ f1 + z1] ∪ [a1+ c1+ z̃3, b1 +

d1 + z̃3] ∪ [c1 + z1 + z̃3, d1 + z1 + z̃3]. The discrete spectrum of the operator
2H̃ d

1/2 is empty: σdisc(
2H̃ d

1/2) = ∅.

c) Let U < 0, − 6B cos
�0

1
2

W
≤ U < − 3B

W
, cos

�0
1

2 < cos
�0

2
2 , and cos

�0
1

2 > 1
2 ,

or − 6B cos
�0

2
2

W
≤ U < − 3B

W
, cos

�0
1

2 > cos
�0

2
2 , and cos

�0
2

2 > 1
2 . Then the

essential spectrum of the system second five-electron doublet state operator
2H̃ d

1/2 is consists of the union of two segments:

σess(
2H̃ d

1/2) = [a1 + c1 + e1, b1 + d1 + f1] ∪ [a1 + c1 + z̃3, b1 + d1 + z̃3]. The

discrete spectrum of the operator 2H̃ d
1/2 is empty: σdisc(

2H̃ d
1/2) = ∅.

d) Let U < 0, − 6B cos
�0

1
2

W
≤ U < 0, cos

�0
1

2 < cos
�0

2
2 and cos

�0
1

2 < 1
2 , or

− 6B cos
�0

2
2

W
≤ U < 0, cos

�0
1

2 > cos
�0

2
2 , and cos

�0
2

2 < 1
2 . Then the essential

spectrum of the system second five-electron doublet state operator 2H̃ d
1/2 is

consists of a single segments: σess(
2H̃ d

1/2) = [a1 + c1 + e1, b1 + d1 + f1],
and discrete spectrum of the operator 2H̃ d

1/2 is empty: σdisc(
2H̃ d

1/2) = ∅.

Theorem 26 The following statements hold:

a) Let U > 0, U >
6B cos

�0
1

2
W

, cos
�0

1
2 > cos

�0
2

2 , and cos
�0

1
2 > 1

2 , or U > 0,

U >
6B cos

�0
2

2
W

, cos
�0

1
2 < cos

�0
2

2 , and cos
�0

2
2 > 1

2 . Then the essential spectrum
of the system second five-electron doublet state operator 2H̃ d

1/2 is consists of the

union of seven segments: σess(
2H̃ d

1/2) = [a1+c1+e1, b1+d1+f1]∪[a1+e1+
z̃2, b1+f1+ z̃2]∪[c1+e1+ z̃1, d1+f1+ z̃1]∪[e1+ z̃1+ z̃2, f1+ z̃1+ z̃2]∪[a1+
c1+z3, b1+d1+z3]∪[a1+z̃2+z3, b1+z̃2+z3]∪[c1+z̃1+z3, d1+z̃1+z3]. The
discrete spectrum of the operator 2H̃ d

1/2 is consists of no more than one point:

σdisc(
2H̃ d

1/2) = {̃z1 + z̃2 + z3}, or σdisc(
2H̃ d

1/2) = ∅.
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Here and hereafter, z̃1 is an eigenvalue of the operator H̃ 4
2�1

, and z̃2 is an

eigenvalue of the operator H̃ 5
2�2

, and z3 is an eigenvalue of the operator H̃ 6
�3

.

b) Let U > 0,
6B cos

�0
1

2
W

≤ U <
6B cos

�0
2

2
W

, cos
�0

1
2 < cos

�0
2

2 , and cos
�0

1
2 >

1
2 , or

6B cos
�0

2
2

W
≤ U <

6B cos
�0

1
2

W
, cos

�0
1

2 > cos
�0

2
2 , and cos

�0
2

2 > 1
2 . Then

the essential spectrum of the system second five-electron doublet state operator
2H̃ d

1/2 is consists of the union of four segments:

σess(
2H̃ d

1/2) = [a1 + c1 + e1, b1 + d1 + f1] ∪ [a1 + e1 + z̃2, b1 + f1 + z̃2] ∪
[a1 + c1 + z3, b1 + d1 + z3] ∪ [a1 + z̃2 + z3, b1 + z̃2 + z3], or σess(

2H̃ d
1/2) =[a1+ c1+ e1, b1+ d1 + f1] ∪ [a1+ e1 + z̃1, b1+ f1 + z̃1] ∪ [a1+ c1+ z3, b1 +

d1 + z3] ∪ [c1 + z̃1 + z3, d1 + z̃1 + z3]. The discrete spectrum of the operator
2H̃ d

1/2 is empty: σdisc(
2H̃ d

1/2) = ∅.

c) Let U > 0,
6B cos

�0
1

2
W

≤ U < 3B
W

, cos
�0

1
2 < cos

�0
2

2 , and cos
�0

2
2 > 1

2 , or

6B cos
�0

2
2

W
≤ U < 3B

W
, cos

�0
1

2 > cos
�0

2
2 , and cos

�0
1

2 > 1
2 . Then the essential

spectrum of the system second five-electron doublet state operator 2H̃ d
1/2 is

consists of the union of two segments:
σess(

2H̃ d
1/2) = [a1 + c1 + e1, b1 + d1 + f1] ∪ [a1 + c1 + z̃1, b1 + d1 + z̃1], or

σess(
2H̃ d

1/2) = [a1 + c1 + e1, b1 + d1 + f1] ∪ [a1 + c1 + z̃2, b1 + d1 + z̃2]. The

discrete spectrum of the operator 2H̃ d
1/2 is empty: σdisc(

2H̃ d
1/2) = ∅.

d) Let U > 0, 0 < U ≤ 3B
W

, cos
�0

1
2 < cos

�0
2

2 , (cos
�0

1
2 > cos

�0
2

2 ), and cos
�0

1
2 >

1
2 , or 0 < U ≤ 6B cos

�0
1

2
W

, cos
�0

1
2 < cos

�0
2

2 and cos
�0

1
2 < 1

2 , or 0 < U ≤
6B cos

�0
2

2
W

, cos
�0

1
2 > cos

�0
2

2 , and cos
�0

2
2 < 1

2 . Then the essential spectrum of the
system second five-electron doublet state operator 2H̃ d

1/2 is consists of a single

segments: σess(
2H̃ d

1/2) = [a1 + c1 + e1, b1 + d1 + f1], and discrete spectrum of

the operator 2H̃ d
1/2 is empty: σdisc(

2H̃ d
1/2) = ∅.
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On Coefficient Inverse Problems of Heat
Conduction for Functionally Graded
Materials

A. O. Vatulyan and S. A. Nesterov

Abstract The inverse heat conduction problem on the identification of thermo-
physical characteristics of the functionally graded layer of a two-layer hollow long
cylinder is considered. The input information is the measured temperature on the
upper surface of the cylinder. The direct problem after the Laplace transform is
solved using the Galerkin’s method and the inversion of transformants, based on the
theory of residues. Two approaches are used to solve the inverse problem. The first
approach is the development of a previously developed iterative approach, at each
step of which the Fredholm integral equation of the 1st kind is solved. The second
approach is based on the algebraization of solution of the direct problem. Specific
examples of reconstruction of thermal conductivity laws of change and heat capacity
of the cylinder are considered. Two approaches are compared.

Keywords Heat conductivity coefficient · Heat capacity · Long hollow cylinder ·
Functionally graded materials · Galerkin’s method · Inverse coefficient problem ·
Identification · Iterative scheme · Algebraization

MSC 80A20, 80A23

1 Introduction

The study of heat distribution in cylindrical layered bodies is of great importance
in metallurgy, aviation and space technology. For quantitative calculations of heat
distribution processes, knowledge of the thermophysical properties of materials is
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required. Typically, layered structures are made from uniform materials. Recently,
however, to specify the design of the required properties, one of the layers is
increasingly being made from functionally graded materials (FGM). FGM are
composites with variable physical properties [1]. But the production of FGM is a
complex technological process. Due to the multi-stage technological operations,
deviations from the established norms may be present in the final product. The
thermophysical characteristics of the FGM can be determined only by solving the
coefficient inverse problem (CIP) of heat conduction. The number of works devoted
to the reconstruction of the thermophysical properties of materials is quite large [2–
17].

Two types of formulation of inverse heat conduction problems are widespread.
For the first type, additional information is considered known at the internal points
of the body at some point in time [2], for the second type—only on a part of
the boundary and at a certain time interval [3]. The second formulation of the
problem is experimentally the most feasible in practice. But in the case of the
second formulation, CIP is a nonlinear problem. The common approach to solving
nonlinear CIP is based on the application of well-established iterative algorithms [2–
12]. For this, the residual functional is composed, to minimize which, as a rule,
gradient methods [2–10] or genetic algorithms [11] are used. Alternative non-
iterative solution methods are also used: the quasi-inversion method [14], the
method for the treatment of difference scheme [15], etc. In [12, 16–19] for the
solution of inverse heat conduction problems for a rod, a layer and a single-
layer cylinder the iterative process was constructed, at each step of which the
linearized Fredholm integral equations of the 1st kind were solved. However, in
these works the functions characterizing heterogeneity had either piecewise constant
or continuous character. At the same time, the question of the identification of
thermophysical characteristics as functions having breakpoints of the 1st kind at
the boundary of contact of the layers remained unexplored. In this paper, the
formulation of the CIP of heat conduction for a two-layer cylinder is given. After
the Laplace transform, the direct problem is solved on the basis of the Galerkin’s
projection method. To solve the inverse problem, two approaches are used. The
first approach is the development of the previously developed iterative approach, at
each step of which the Fredholm integral equations of the 1st kind are solved. The
second approach is based on the algebraization of the direct problem. Computational
experiments on the reconstruction of various laws of changes in thermophysical
characteristics are carried out.

2 Statement of the Problem

Consider the problem of heat propagation in a two-layer infinite hollow cylinder
thickness h, the inner layer of which is thickness h1 that is assumed to be made
of FGM with characteristics k1(r), c1(r), and the outer layer thickness h2 =
h − h1 made of a homogeneous material with constant characteristics k2, c2. Zero
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temperature is maintained on the inner surface of the cylinder r = a, and heat flow
q = q0H(t) acts on the outer surface r = b. The initial-boundary-value problem
has the form [16]:

1

r

∂

∂r
(k(r)r

∂T

∂r
) = c(r)

∂T

∂t
, a ≤ r ≤ b, t > 0, (1)

T (a, t) = 0, −k(b)
∂T

∂r
(b, t) = q0H(t), (2)

T (r, 0) = 0. (3)

Go to (1)–(3) to dimensionless parameters and functions, denoting:

z = r − a

b − a
, z0 = a

b − a
, k̄(z) = k(r)

k2
, c̄(z) = c(r)

c2
,

τ = k2t

c2(b − a)2 , W(z, τ ) = k2T

q0(b − a)
, H1 = h1

b − a
. (4)

After dimensioning, the initial-boundary-value problem (1)–(3) takes the form:

1

z+ z0

∂

∂z
(k̄(z)(z+ z0)

∂W

∂z
) = c̄(z)

∂W

∂τ
, 0 ≤ z ≤ 1, (5)

W(0, τ ) = 0, −k̄(1)
∂W

∂z
(1, τ ) = H(τ) (6)

W(z, 0) = 0. (7)

The direct problem of heat conduction is to determine the function of (5)–(7) at
known thermophysical characteristics c̄(z), k̄(z).

In the inverse problem, it is required from (5)–(7) to determine one of the
thermophysical characteristics of the functionally graded layer of the cylinder.

As additional information, is the temperature, measured on the outer surface of
the cylinder z = 1 on the informative time interval [b1, b2]:

W(1, τ ) = f (τ), τ ∈ [b1, b2]. (8)

We have two settings of the CIP of heat conduction in dimensionless form:

1. from (5)–(7) according to information (8) to find c̄1(z) under the known law
k̄1(z);

2. from (5)–(7) according to information (8) to find k̄1(z) under the known law
c̄1(z).
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3 The Solution of the Direct Problem of Heat Conduction

The solution of the inverse problem depends on the accuracy of the solution of the
direct problem. In the case of arbitrary laws of heterogeneity, sufficient accuracy is
provided by approximate analytical methods, for example, the Galerkin’s projection
method [16, 17].

To do this, we apply to (5), (6) the Laplace transform and, taking into account
the initial condition (7), we obtain:

1

z+ z0

d

dz
(k̄(z)(z+ z0)

dW̃

dz
) = pc̄(z)W̃(z, p), (9)

W̃(0, p) = 0, −k̄(1)
dW̃

dz
(1, p) = 1

p
. (10)

Here it is indicated: p is the Laplace transform parameter, W̃ (z, p) is the
transformant of dimensionless temperature.

In accordance with the Galerkin’s method, we present an approximate solu-
tion (9), (10) in the form of an expansion in a system of basis functions [16]:

W̃N(z, p) = φ0(z, p)+
N∑

i=1

ãi(p)φi(z). (11)

Here φ0(z, p) = − z
p

, is a function, satisfying inhomogeneous boundary condi-

tions (10), φi(z) = sin (2i−1)πz
2 are the orthogonal functions satisfying homoge-

neous boundary conditions.
Requiring orthogonality of the residual

εN = 1
z+z0

d
dz

(k̄(z)(z+ z0)
dW̃N

dz
)− pc̄(z)W̃N(z, p) to the basis functions φi , we

obtain a system of algebraic equations with respect to ãi(p):

n∑
j=1

Gji ãi(p) = Dj , (12)

where Gji =
1∫

0

1
z+z0

k̄(z)
dφi

dz
φjdz −

1∫
0

k̄(z)
dφi

dz

dφj

dz
dz − p

1∫
0

c̄(z)φiφjdz +

k̄(1)φj (1)
dφi

dz
(1), Dj =

1∫
0

1
z+z0

k̄(z)
dφ0
dz

φjdz −
1∫

0
k̄(z)

dφ0
dz

dφj

dz
dz − p

1∫
0

c̄(z)φ0φj

dz+ k̄(1)φj (1)
dφ0
dz

(1).
Since k̄(z) and c̄(z) are piecewise continuous functions, in the work the integra-

tion interval [0, 1] was divided into sections, corresponding to the individual layers
of the cylinder.
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After solving system (12), we compose an expression for the temperature
transform on the outer surface of the cylinder:

W̃N(1, p) = φ0(1, p)+
N∑

i=1

ãi(p)φi(1). (13)

To find the originals of the functions by their transformants, we need to apply the
inverse Laplace transform, i.e. calculate the contour Riemann-Mellin’s integral by
the formula:

F(τ) = 1

2πi

a+i∞∫

a−i∞
F̃ (p)epτ dp, (14)

where the integral is taken along the line p = a > 0. In the case when the
integral (14) is an integral of a meromorphic function, it can be transformed using
the residue theory, which allows us to obtain an expression for the original by
expanding it into series in exponential functions:

F(τ) =
∞∑

j=1

res(F̃ (pj )epj τ ), τ > 0. (15)

Calculations in the Maple showed that function (14) is a fractional-rational
function of p and does not have other singular points but real negative poles. Residue
theory was used to find the originals of temperature.

The proposed method for solving problem (5)–(8) was tested on the example of
a two-layer cylinder with characteristics c̄1 = 0.5 (0 ≤ z ≤ 0.5), c̄2 = 1 (0.5 < z ≤
1), k̄1 = 0.25 (0 ≤ z ≤ 0.5), k̄2 = 1 (0.5 < z ≤< 1). It was found that if in the
Galerkin’s method we restrict ourselves to three coordinate functions N = 3, then
the greatest error arises at short times τ ∈ [0, 0.09]. At the same time τ > 0.09, the
error of the Galerkin’s method does not exceed 2%. Figure 1 shows a graph of the
change in dimensionless temperature from time on the outer surface of the cylinder,
obtained analytically (solid line) and by the Galerkin’s method at N = 3 (points).

4 The Solution of the Inverse Heat Conduction Problem
Based on an Iterative Approach

The inverse problem (5)–(8) is a nonlinear problem. To solve this problem, two
approaches are proposed: (1) the iterative process previously developed in [16]; (2)
the method of algebraization.
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Fig. 1 Temperature change on the outer surface of the cylinder over time

Let us consider in detail the construction of the iterative process of identification
of thermophysical characteristics.

The dimensionless thermophysical characteristics of the functionally graded
layer of the cylinder ā(z) (c̄1(z), k̄1(z)) were restored in two stages.

At the first stage, the initial approximation in the class of positive bounded linear
functions ā(0)(z) = a1z+a2 was determined on the basis of minimizing the residual
functional, which has the form:

J =
b2∫

b1

(f (τ )−W(n−1)(1, τ ))2dτ , (16)

At the second stage, based on the solution of operator equations of the 1st kind,
the corrections of the reconstructed functions δā(n−1) were found, and the iterative
process of their refinement was constructed according to the scheme: ā(n)(z) =
ā(n−1)(z)+ δā(n−1)(z).
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The operator equations for finding corrections have the form of Fredholm integral
equations of the 1st kind [16]:

1∫

0

δk̄(n−1)R1(z, τ )dz = f (τ)−W(n−1)(1, τ ), τ ∈ [b1, b2], (17)

1∫

0

δc̄(n−1)R2(z, τ )dz = f (τ)−W(n−1)(1, τ ), τ ∈ [b1, b2]. (18)

Here, the kernels of integral equations (17), (18) have the form:

R1(z, τ ) =
τ∫
0

∂2W(n−1)(z,τ1)
∂z∂τ1

(
∂W(n−1)(z,τ1−τ )

∂z
− W(n−1)(z,τ1−τ )

z+z0
)dτ1,

R2(z, τ ) =
τ∫
0

∂W(n−1)(z,τ1)
∂τ1

∂W(n−1)(z,τ1−τ )
∂τ1

dτ1.

The solution of integral equations (17), (18) is an ill-posed problem; for its
regularization, the Tikhonov’s method was used [20].

The exit from the iterative process was carried out when the residual func-
tional (16) reached a threshold value equal to 10−6.

5 The Solution of the Inverse Problem by the Algebraization
Method

The application of the method of algebraization will be considered in detail on the
example of finding the law of change of specific heat capacity c̄1(z).

We will seek an approximate solution of the CIP in the form of an expansion:

c̄1(z) =
m∑

j=1

gjψj (z), ψi(z) = zj−1, j = 1..m. (19)

We substitute (19) in the formulas for the coefficients of the system of equations (12)
and solve it analytically in the Maple. Further, by the formula (13) we find the
expression for the transform of temperature on the outer surface of the cylinder,
which has the form:

W̃N (1, p, g1, g2, . . . , gm) = AN(p, g1, g2, . . . , gm)

BN(p, g1, g2, . . . , gm)
. (20)

The temperature on the outer surface of the cylinder monotonically increases
from zero and eventually reaches a certain limiting value. Therefore, we can
approximate additional information (8), measured at time instants τi = τ1 + (i −
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1)�τ , i = 1..2m+1, on a time interval [b1, b2], in the form of a linear combination
of exponential functions:

f (τ) ≈ s0 + s1ep1τ + s2ep2τ + . . .+ smepmτ , (21)

where p1, p2, . . . , pm, s1, s2, . . . , sm are negative numbers, s0 is a positive number.
We find the indices of exponents p1, p2, . . . , pm in the expansion (21) by the

method of Prony [21]. We introduce the quantities vi = f (τi)− f (τi+1). Then the
indices of exponents p1, p2, . . . , pm can be found by the formula:

pj = 1

�τ
ln uj , j = 1..m, (22)

where uj are the roots of the characteristic equation

αmzm + . . .+ α2z2 + α1z+ 1 = 0. (23)

To find the coefficients αj , j = 1..m of the characteristic polynomial (23), it is
necessary to solve the system of recursive difference equations. So, for example,
when m = 3 this system has the form:

v1 + α1v2 + α2v3 + α3v4 = 0,

v2 + α1v3 + α2v4 + α3v5 = 0,

v3 + α1v4 + α2v5 + α3v6 = 0. (24)

The numerical values of the parameter p will be the poles of function (20) if they
vanish the expression BN (p, g1, g2, . . . , gm). Therefore, to find the coefficients of
decomposition gj , j = 1..m, we assume BN(p, g1, g2, . . . , gm) = 0, and as the
values of the parameter p, we use the approximate values of the m first indices
of the exponents found by the formula (22). As a result of the substitutions we
obtain a system of m nonlinear algebraic equations, the solution of which are m

sets of numbers (g1, g2, . . . , gm). Further, for each set of numbers (g1, g2, . . . , gm),
according to formula (19), the function c̄1(z) was determined. As the first criterion
for the selection of a suitable set (g1, g2, . . . , gm), we introduce the boundedness of
the specific heat capacity of the functionally graded part 0 < c− < c̄1(z) < c+.
From further consideration, we remove those sets of numbers (g1, g2, . . . , gm) that
do not satisfy this criterion. The minimum value of the residual functional (16) acts
as the second criterion for skipping a suitable set (g1, g2, . . . , gm).

Similarly, based on the algebraization method, the thermal conductivity coeffi-
cient k̄1(z) was determined.

Comment By the formula (22), no more than three indices of exponents can be
stably determined, therefore, the algebraization method is limited by the possibility
of reconstruction in the form of linear and quadratic functions. In addition, stable
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solutions to the inverse problem are obtained if no more than three coordinate
functions are used to solve the direct problem by the Galerkin’s method. However, in
this case, due to the large calculation error at small times, it is necessary to measure
additional information at τ > 0.09.

6 Results of Computational Experiments

Computational experiments to reconstruction the thermophysical characteristics of
the functionally graded layer of the cylinder are carried out. Only one of the
thermophysical characteristics was restored. The second characteristic was assumed
to be known, having the same law of heterogeneity as the first. Calculations were
made at z0 = 1.

In the first series of experiments, the first approach was used to reconstruction
the thermophysical characteristics. The success of the reconstruction depended
strongly on the choice of the time interval for the measure of additional information.
The most informative is the interval taken in the time zone near the beginning
of observation, when the temperature changes most rapidly. It is found that the
temperature measurement on the outer surface of the cylinder is most informative
in the interval [b1, b2] = [0, 0.8]. When solving the inverse problem on the basis
of the iterative approach, the corrections of the reconstructed coefficients are found
from the solution of Fredholm integral equations of the 1st kind, the discretization of
which yields a poorly conditioned system of linear algebraic equations. It is enough
to know additional information on an informative time interval of 5–8 points in
time, since the Tikhonov’s method is used to regularize the system of equations [20].
The Tikhonov’s method allows solving both underdetermined and overdetermined
systems of equations. If we take a large number of points in time, then the volume
of calculations increases, but the accuracy of the solution practically does not
increase. To satisfy the exit condition, no more than 8 iterations were required. The
maximum error in the restoration of monotonic functions did not exceed 4%, and
nonmonotonic−7%.

In the second series of experiments, a second approach was used to reconstruct
the thermophysical characteristics. The reconstruction took place in the class of
quadratic functions (m = 3). Additional information was measured in points τi =
0.1i, i = 1..7. The maximum error of identification of monotonic functions did not
exceed 5%, and nonmonotonic−14%.

Figures 2, 3, and 4 show the result of reconstruction of thermophysical charac-
teristics at z ∈ [0, 0.5]. In this case, the solid line shows the exact law, the dots are
restored on the basis of the first approach, the dash-dotted lines are restored on the
basis of the second approach.

Figure 2 shows the result of reconstruction of an increasing function c̄1(z) =
1.2 + 0.8z2. In the case of applying the first approach, the maximum error in the
recovery of specific heat capacity (6%) arose in the vicinity of z = 0, which is due
to the features of the kernel of the integral equation (18). In the case of the second
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Fig. 2 Result of reconstruction of increasing function c̄1(z) = 1.2 + 0.8z2

approach, the error of reconstruction did not exceed 4%. Moreover, in comparison
with the first approach, the largest error of reconstruction did not occur in the
neighborhood of z = 0.

Figure 3 shows the result of restoring the decreasing function k̄1(z) = 0.6+ e−z.
From Fig. 3 it is seen that in the case of restoration of the coefficient of thermal
conductivity as a monotone function, the errors of reconstruction for the first and
second approaches differ slightly and do not exceed 4%.

Figure 4 shows the result of reconstruction of a nonmonotonic function k̄1(z) =
1 + sin(2πz). From Fig. 4 it is seen that the errors of reconstruction of the thermal
conductivity as a nonmonotonic function are very different. In the case of applying
the first approach, the maximum error of recovery did not exceed 3%. In the case
of the second approach, the reconstruction error increased to 13%. For a more
successful reconstruction in the case of the second approach, it is necessary to take
a larger number of coordinate functions, for example, m = 4. However, this is not
always possible due to the instability of determining the indices of exponents by the
Prony method.

Using the functions k1(z) = 0.6 + ez as an example, we studied the effect
of the thickness of the functionally graded layer of the cylinder on the results of
reconstruction. It was found that when using both methods of solving CIP, the
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Fig. 3 The result of the reconstruction of a decreasing function k̄1(z) = 0.6 + e−z

reconstruction error increases with decreasing thickness of the functionally graded
layer. So, for H1 = 0.5, the reconstruction error when using both approaches does
not exceed 4%, however, for H1 = 0.1 it increases to 15%, and for H1 < 0.03
reconstruction becomes impossible. This is due to the fact that the solution of the
inverse problem strongly depends on the sensitivity of the input information. With
a decrease in the layer thickness, where the functions change most strongly with
respect to the total thickness, the sensitivity of the input information decreases and,
as a result, the reconstruction results deteriorate.

Using the reconstruction of the function k̄1(z) = 0.6 + e−z for H1 = 0.5 as an
example, we discussed the influence of noise of the input information on accuracy
of reconstruction.

The noise of input information was modelled using the ratio:

fβ(τ ) = f (τ)(1+ βγ ), (25)

where β is the noise value, γ is the random variable with a uniform distribution law
on the segment [−1, 1].
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Fig. 4 The result of the reconstruction of nonmonotonic function k̄1(z) = 1+ sin(2πz)

In the presence of noise, the error of reconstruction increased with growth β, and
at 2% noise modelling the measurement error, it reached 7% in the case of the first
approach, and 23% in the case of the second approach. Therefore, in comparison
with the second approach, the reconstruction procedure based on the first approach
was much more resistant to noise of input information.

7 Conclusions

The coefficient inverse heat conduction problem for a two-layer cylinder with a
functionally graded layer is studied. The direct problem of thermal conductivity is
solved on the basis of the Galerkin projection method and residue theory. To solve
the inverse problem, two approaches are used. The first approach is the development
of the previously developed iterative approach, at each step of which the Fredholm
integral equations of the 1st kind are solved. The second approach is based on the
algebraization of the direct problem.
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It was found that the iterative approach provides high accuracy in the case of the
reconstruction of both monotonic and nonmonotonic functions. The method of al-
gebraization allows identification with high accuracy only for monotonic functions,
but with much less machine time than the iterative approach. For nonmonotonic
functions, the solution obtained by the algebraization method can serve as an initial
approximation in the iterative process. Using the iterative approach, the maximum
error in the reconstruction of specific heat occurred in the vicinity of z = 0, which is
associated with the features of the kernel of the integral equation. The algebraization
method is deprived of this drawback. However, the reconstruction procedure using
the algebraization method turned out to be more sensitive to the noise of input
information than using the iterative approach. It was found that with a decrease
in the thickness of the functional gradient layer when using both approaches, the
error in the reconstruction of thermophysical characteristics increases.
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A Study of the Waves Processes
in Inhomogeneous Cylindrical
Waveguides

A. O. Vatulyan and V. Yurov

Abstract A number of problems on oscillations of a cylindrical waveguide, inho-
mogeneous in radial direction, in the absence and presence of annular delamination
are investigated. A canonical system of the first-order differential equations with
respect to the four functions is formulated. In the absence of the defect, a technique
for calculating fields based on a combination of the Fourier integral transform and
the analysis of the auxiliary Cauchy problems is presented. For a waveguide in the
presence of the annular delamination, a scheme for constructing a system of integral
equations with difference kernels with respect to the jumps of displacement vector
components is presented by means of the analysis of a number of other auxiliary
Cauchy problems. The structure of hypersingular kernels is studied, and an approach
to solving the system of integral equations based on the boundary element method is
proposed. The solution is analyzed depending on the number of elements used. The
inverse problem on reconstructing the inhomogeneity laws for piecewise gradient
functions is solved.
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1 Introduction

Cylindrical structures that are non-uniform in the radial direction have been
increasingly used in modelling of real objects (e.g., pipelines, vessels, etc.). In order
to describe wave propagation in such structures at high frequencies in a proper way,
one needs models taking into account laws of variation of elastic modules inside
a body, as far as calculations for structures with averaged characteristics do not
often provide correct information. In addition, determination of variation laws for
inhomogeneity functions based on the wave fields that are measured at the boundary
is a problem of certain importance.

Mathematical aspects of wave propagation in inhomogeneous waveguides re-
quire the study of the operator sheaf with two spectral parameters. For homogeneous
cylindrical waveguides, dispersion relations are constructed in an analytical form
through cylindrical functions and were studied in sufficient detail. One may only an
asymptotic or numerical analysis for operators with variable properties. In [1], the
authors present a brief review of dispersion characteristics of normal modes in an
elastic slab and a cylinder. For 125-year history the key topics of the problem and
its modern reflection in the global information space are elucidated. The problem
on a thick radially inhomogeneous cylinder is solved in [2]. In [3], the oscillations
of a cylinder which is inhomogeneous in the circumferential and radial directions
are studied. A numerical method for calculating wave propagation in an infinite
laminated cylinder is presented in [4]. In [5], the authors describe an approach to
the analysis of forced oscillations of an inhomogeneous waveguide. The waveguide
inhomogeneity is associated both with the variability of the elastic moduli and with
the presence of variable fields of residual stresses of different structures. The results
of these studies indicate that in the low-frequency region, where only one mode
propagates (close to the rod’s one), the velocities and wave fields are determined
only by the average values of the elastic moduli in the cross section.

In problems associated with modelling of waves in bodies containing cracks, two
approaches are most often used. The first one is historically related to the reduction
of mixed problem to a system of integral equations for displacement jumps (usually
with hypersingular kernels) and construction of their solutions either the systems
of the second kind Fredholm integral equations with subsequent discretization, or
using the direct boundary element method [6]. The second approach, which has been
actively used in recent years, is based on the conjugation of analytical solutions for
an infinite waveguide and finite element methods to study the vibrations of finite
regions containing a defect [7, 8]; note that within such an approach, semi-infinite
parts of the waveguide are usually assumed to be homogeneous. The advantages
of this approach include the significant arbitrariness of the inhomogeneity and
geometry of the finite part, however, the emerging problems of interfacing with
analytical solutions can introduce a significant error into the solution.

An important aspect of the problems of inhomogeneous bodies oscillation
is inverse identification of the inhomogeneity laws. The works [9, 10] present
a study of finite-dimensional inverse problems by means of parametrizing the
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desired laws of inhomogeneity by a finite number of parameters, based on the
use of the popular technique for minimizing the residual functional. An approach
to identifying coefficients for elliptic boundary value problems is described, in
particular when identifying variable Lame coefficients, the minimization problem
is studied in a Banach space, and some stability estimates are given. For numerical
research, finite element discretization in combination with regularizing approaches
was used. The ability to evaluate rapidly changing or even discontinuous coefficients
is demonstrated. The proposed method allows to determine efficiently the Lame
parameters in a linear isotropic elastic body.

A plenty of inverse problems were solved by minimizing the residual functional,
including those that determined constant characteristics [11, 12], where the elastic
modules of an orthotropic composite were determined from additional data on the
displacement field of the surface.

The work consists of three parts. The first part is devoted to the study of
wave fields of inhomogeneous waveguide with annular cross-section in the case
of an arbitrary law of moduli change. In the second part, wave fields at the
boundary in the presence of annular delamination in a bounded region are studied,
the system of integral equations for displacement jumps and its approximate
solution are presented. The third part is concerned with simple inverse problems
of inhomogeneity laws identification.

2 Problem for Inhomogeneous Waveguide

Let us consider waves in a cylindrical waveguide with annular cross section a ≤
r ≤ b, inhomogeneous in radial direction. The internal boundary of the waveguide
is free from stresses; on the external boundary of the waveguide r = b, there is a
concentrated normal load μ0δ (z) exp (−iωt) periodic in time with the frequency
ω. We consider the steady-state mode of oscillations in the axisymmetric case,
assuming that the components of the physical fields do not depend on φ.

Let us introduce the following ratios of dimensional and dimensionless param-
eters and functions: ur = bX1, uz = ibX2 are displacement vector components,
σr = μ0X3, σrz = iμ0X4 are components of the Cauchy stress vector, λ = μ0g1,
μ = μ0g2 are the Lame parameters that depend on the radial coordinate, g1+2g2 =
G is auxiliary value, κ = √

ρ0ω2b2/μ0 is dimensionless frequency parameter, μ0,
ρ0 are characteristic values of shear modulus and density.

Now let us apply the Fourier integral transform along the axial coordinate to the
boundary value problem describing steady-state oscillations, entering dimensionless
coordinates r = xb, z = yb.

X̃n (x, α) =
∞∫

−∞
Xn (x, y) exp (iαy) dy, n = 1..4 (1)
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Then with respect to the transforms we have an operator sheaf with two spectral
parameters (κ, α) of the following form

X̃′ =
(

A0 − κ2A01 − αA1 + α2A2

)
X̃, where X̃ =

(
X̃1, X̃2, X̃3, X̃4

)
(2)

where the sheaf matrices have the following nonzero components

A0: a0
11 =

−g1

xG
, a0

13 =
1

G
a0

24 =
1

g2
, a0

31 =
G

x2 −
g2

1

x2G
, a0

33 = −2g2

xG
, a0

44 = −1

x
.

A01: a01
31 = a01

42 = 1.

A1: a1
12 =

g1

G
, a1

21 = −g2

g2
, a1

32 = −2g1g2

xG
, a1

34 = 1, a1
41 = −2g1g2

xG
, a1

43 = −g1

G
.

A2: a2
42 = G− g2

1

G
.

The boundary conditions will have the form

X̃k (ξ0) = 0, X̃k (1) = −δ3k (3)

where ξ0 = a/b, k = 3, 4.
The problem (2)–(3) has a solution for any (κ, α), except for the points of the

dispersion set, and can be solved by the shooting method. Note that construction of
analytical solution in the general case is impossible due to significant variability of
the matrix components A0, A1, A2. In Fig. 1, the first 4 branches of the real part of
the dispersion set are shown for two sets of parameters:

1: g1 =
{

1.4155, x < ξ1

0.44, x ≥ ξ1
, g2 =

{
1, x < ξ1

0.44, x ≥ ξ1
, ξ1 = 0.95;

2: g1 =
{

1.4155, x < ξ1

1.4155− 0.9755 (x − ξ1) (1− ξ1)−1, x ≥ ξ1

,

g2 =
{

1, x < ξ1

1− 0.56 (x − ξ1) (1− ξ1)−1, x ≥ ξ1

, ξ1 = 0.9.

Fig. 1 Dispersion curves for different laws of inhomogeneity
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Note that the inhomogeneity laws are chosen in such a way that their averaged
values in cross-section coincide; dispersion curves show a weak sensibility to the
inhomogeneity law in the low-frequency range and rather strong sensibility in the
high-frequency range.

To study wave fields, it only remains to find the inverse Fourier transform by the
formula

Xj (x, y) = 1

2π

∫

Γ

X̃j (x, α) exp (−iαy) dα, j = 1, 2, 3, 4 (4)

where the integration is carried out along the contour Γ , which coincides with
the real axis everywhere except for the real poles of the transform and envelopes
them in accordance with the limit absorption principle; in the normal dispersion
case (positive group velocity ∂κ

∂α
> 0), positive poles are enveloped below, and the

negative ones from above; in the abnormal dispersion case ∂κ
∂α

< 0, the poles are
enveloped in the opposite way.

We calculate the inverse Fourier integral transform for all the components of the
wave field assuming y > 0. The integrands X̃j (x, α) are meromorphic, possessing
singularities of the real and complex poles type, which are determined by the
dispersion equation, and can be found numerically with the aid of the scheme
described above. We also note that with the growth of α, the solution of the boundary
value problem (2)–(3) begins to possess a boundary layer structure, and the error of
the solution found by the Runge-Kutta method grows.

To find the originals (4), let us consider the following contour integral

1

2π

∫

L

X̃j (x, α) exp (−iαy) dα =

= 1

2π

∫

L0

X̃j (x, α) exp (−iαy) dα + 1

2π

∫

LR

X̃j (x, α) exp (−iαy) dα

(5)

Here, L is a closed contour in the complex plane of the parameter α consisting of
two parts L = L0 ∪ LR , where L0 is the arc of the semicircle Im α ≤ 0 with the
radius R and the centre at α = 0, LR is a part of the contour Γ , which is placed
inside a circle of the radius R.

Applying the theory of residues, on the boundary x = 1 of the waveguide we
obtain

1

2π

∫

L

X̃j (1, α) exp (−iαy) dα = −i

m∑
n=1

Res
(
X̃j (1, αn) exp (−iαny)

)
,

j = 1, 2, 3, 4, (6)
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where αn are poles of the first order inside the contour L, and m is their number.
In accordance with the Jordan lemma, as R →∞, the integral along the contour

L0 tends to zero, the integral in LR tends to the integral (4) on the contour Γ ,
m → ∞. Thus, in accordance with (6), in the regular case it is necessary to sum
the residues over all negative real poles and over all complex poles with negative
imaginary part.

X̃
(1)
1 (ξ0) = 1, X̃

(1)
2 (ξ0) = 0, X̃

(1)
3 (ξ0) = X̃

(1)
4 (ξ0) = 0 (7)

X̃
(2)
1 (ξ0) = 0, X̃

(2)
2 (ξ0) = 1, X̃

(2)
3 (ξ0) = X̃

(2)
4 (ξ0) = 0 (8)

To find the residue at the pole αn we use the following scheme. While searching
for the solution of the problem by the shooting method in the form X̃ = c1X̃(1) +
c2X̃(2) where X̃(1), X̃(2) are solutions (2)–(7) and (2)–(8), and satisfying the
boundary conditions for x = 1, we obtain

B (1, α) C (α) = F (9)

where B (1, α) =
(

X̃
(1)
3 (1, α) X̃

(2)
3 (1, α)

X̃
(1)
4 (1, α) X̃

(2)
4 (1, α)

)
, C (α) =

(
c1 (α)

c2 (α)

)
, F =

(
1
0

)

Let us decompose the vector function C (α) and the matrix-valued function
B (1, α) into the Laurent series in the neighborhood of the pole αn

C (α) = C−1
1

α − αn

+ C0 + . . .

B (1, α) = B0 (1, αn)+ B1 (1, αn) (α − αn)+ . . . , where B1 (1, αn) = ∂B
∂α

∣∣∣∣
α=αn

(10)

In accordance with the introduced expansions, the solution of the problem (2)–
(3) can also be represented as a Laurent series. The coefficient of the Laurent series

at (α − αn)−1:
[
c1−1X̃

(1)
j (1, αn)+ c2−1X̃

(2)
j (1, αn)

]
defines the residue at the first-

order pole and allows one to switch from (6) to the following formula:

Xj (1, y) = −i

∞∑
n=1

[
c1−1 (αn) X̃

(1)
j (1, αn)+ c2−1 (αn) X̃

(2)
j (1, αn)

]
exp (−iαny),

j = 1, 2, 3, 4
(11)

To find the coefficients used in (11), we apply the scheme described in [5].
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3 Problem for Inhomogeneous Waveguide with Annular
Delamination

Assume that the waveguide under consideration contains annular delamination
located on a cylindrical surface x = ξ1 ∈ (ξ0, 1), y ∈ [−l0, l0]. The delamination
edges do not interact with each other and therefore are free of stresses; hence, the
displacements take a jump. The external normal load causing the propagation of
waves in the waveguide is applied in the region x = 1, y ∈ [l1, l2], the rest of the
external boundary is free of stresses.

We perform the Fourier integral transform along the longitudinal co-
ordinate in regions S1 = {(x, y) , ξ0 ≤ x ≤ ξ1,−∞ < y < ∞}, S2 =
{(x, y) , ξ1 ≤ x ≤ 1,−∞ < y < ∞}, provided that the displacement field at the
conditional boundary x = ξ1 is known, and each region presents a cylindrical
waveguide with an annular cross section. The problem, similar the previous one,
is reduced to the vector equation (2). We introduce a number of auxiliary Cauchy
problems for the system (2), which differ in initial conditions, allowing to determine
the following vectors X̃(1), X̃(2), X̃(3), X̃(4).

X̃
(1)
1 (ξ0) = 1, X̃

(1)
2 (ξ0) = 0, X̃

(1)
3 (ξ0) = X̃

(1)
4 (ξ0) = 0 (12)

X̃
(2)
1 (ξ0) = 0, X̃

(2)
2 (ξ0) = 1, X̃

(2)
3 (ξ0) = X̃

(2)
4 (ξ0) = 0 (13)

X̃
(3)
1 (1) = 1, X̃

(3)
2 (1) = 0, X̃

(3)
3 (1) = X̃

(3)
4 (1) = 0 (14)

X̃
(4)
1 (1) = 0, X̃

(4)
2 (1) = 1, X̃

(4)
3 (1) = X̃

(4)
4 (1) = 0 (15)

The vectors X̃(1), X̃(2), X̃(3), X̃(4) are the solutions of Eq. (2) with the condi-
tions (12), (13), (14) and (15), respectively. For their numerical determination, the
Runge-Kutta schemes of the 4 order were used.

We find the vectors X̃(1), X̃(2) in the region S = S1 ∪ S2, compose their linear
combination Z̃(0) = q1X̃(1)+q2X̃(2). Then Z̃(0) automatically satisfies the boundary
conditions at the boundary x = ξ0. We ensure that the following conditions are met
at the border x = 1: Z̃

(0)
3 (1) = 1, Z̃

(0)
4 (1) = 0. To do this, we solve the system

q1X̃
(1)
3 (1)+ q2X̃

(2)
3 (1) = 1

q1X̃
(1)
4 (1)+ q2X̃

(2)
4 (1) = 0

(16)

We compose the following linear combinations Z̃(1) = p1X̃(1) + p2X̃(2) +
p3X̃(3) + p4X̃(4), Z̃(2) = d1X̃(1) + d2X̃(2) + d3X̃(3) + d4X̃(4), and assume that
X̃(1) = X̃(2) ≡ 0 in S2/S1 and X̃(3) = X̃(4) ≡ 0 in S1/S2 . Then Z̃(1) and Z̃(2)

satisfy the boundary conditions in the absence of stresses at x = ξ0 and x = 1.
We provide a single jump in radial Z̃

(1)
1 and longitudinal Z̃

(2)
2 displacements at

the boundary of regions S1 and S2 for both solutions Z̃(1) and Z̃(2), respectively. For
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this, we solve the following algebraic systems

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p1X̃
(1)
1 (ξ1)+ p2X̃

(2)
1 (ξ1)− p3X̃

(3)
1 (ξ1)− p4X̃

(4)
1 (ξ1) = −1

p1X̃
(1)
2 (ξ1)+ p2X̃

(2)
2 (ξ1)− p3X̃

(3)
2 (ξ1)− p4X̃

(4)
2 (ξ1) = 0

p1X̃
(1)
3 (ξ1)+ p2X̃

(2)
3 (ξ1)− p3X̃

(3)
3 (ξ1)− p4X̃

(4)
3 (ξ1) = 0

p1X̃
(1)
4 (ξ1)+ p2X̃

(2)
4 (ξ1)− p3X̃

(3)
4 (ξ1)− p4X̃

(4)
4 (ξ1) = 0

(17)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d1X̃
(1)
1 (ξ1)+ d2X̃

(2)
1 (ξ1)− d3X̃

(3)
1 (ξ1)− d4X̃

(4)
1 (ξ1) = 0

d1X̃
(1)
2 (ξ1)+ d2X̃

(2)
2 (ξ1)− d3X̃

(3)
2 (ξ1)− d4X̃

(4)
2 (ξ1) = −1

d1X̃
(1)
3 (ξ1)+ d2X̃

(2)
3 (ξ1)− d3X̃

(3)
3 (ξ1)− d4X̃

(4)
3 (ξ1) = 0

d1X̃
(1)
4 (ξ1)+ d2X̃

(2)
4 (ξ1)− d3X̃

(3)
4 (ξ1)− d4X̃

(4)
4 (ξ1) = 0

(18)

The linear combinations formed above Z̃(0) (x, α), Z̃(1) (x, α), Z̃(2) (x, α) make
it possible to build a solution of the problem in the space of transforms for the
waveguide with delamination under the action of an external load of the following
form

Z̃ (x, α) = Q (α) Z̃(0) (x, α)+ χ̃1 (α) Z̃(1) (x, α)+ χ̃2 (α) Z̃(2) (x, α) (19)

where Q (α) =
l2∫
l1

q (y) eiαydy is the transform of the external normal load,

χ̃1 (α) and χ̃2 (α) are the Fourier transforms from unknown jumps of radial and
longitudinal displacements. A simple analysis showed that Z̃

(1)
3 (α) , Z̃

(2)
4 (α) are

even by α, Z̃
(1)
4 (α) , Z̃

(2)
3 (α) are odd by α.

Further, to fulfill the conditions of zero stress vector on the delamination edges,
it is necessary to find the fields in the actual space, carrying out the Fourier inverse
transform

Z (x, y) = 1

2π

∫

Γ

Q (α) Z̃(0) (x, α) e−iαydα + 1

2π

∫

Γ

χ̃1 (α) Z̃(1) (x, α) e−iαydα+

+ 1

2π

∫

Γ

χ̃2 (α) Z̃(2) (x, α) e−iαydα

(20)

where χ̃j (α) =
l0∫

−l0

χj (y) eiαydy, j = 1, 2 (21)
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In accordance with the boundary conditions, the components Z3, Z4 of the
solution (20) vanish on the delamination edges. This condition is used further to
formulate the operator equations allowing to find the unknown expansion functions
χ1 (y), χ2 (y).

Taking into account the representation (21), we change the integration order
in the second and third terms in (20) and obtain the following system of integral
equations for the jumps

l0∫

−l0

χj (η) kjs (η − y) dη = fs (y) , s = 3, 4, j = 1, 2, y ∈ [−l0, l0] (22)

where fs (y) = − 1
2π

∫
Γ

Q (α) Z̃
(0)
s (1, α) e−iαydα

We study the components of the introduced vector kjs (t) = 1
2π

∫
Γ

Z̃
(j)
s (ξ1, α)

eiαtdα, j = 1, 2, s = 3, 4. Due to the fact that Z̃
(j)
s (ξ1, α), j = 1, 2, s = 3, 4

are non-decreasing functions with the asymptotics Z̃
(j)
s (ξ1, α) = C+

js |α| +C−
jsα+

O (1) for α → ∞, the integrals in the representation of the kernels are divergent
and need to be given a meaning using the theory of generalized functions [13].
By isolating the principal components corresponding to the limiting values of the
functions at infinity, it can be shown that the kernels are hypersingular, and the
corresponding integrals are understood in the sense of the final Hadamard value
[13].

The system of integral equations (22) for finding the expansion functions can be
solved by the boundary element method similar to the scheme described in [14].
We divide the integrals over the interval [−l0, l0] into the sum of the integrals

over the elements [−l0, l0] =
N⋃

p=1
Δp, where Δp = [−l0 + (p − 1) h,−l0 + ph],

h = 2l0N
−1; we also introduce the coordinates of the elements ends ηp = −l0 +

(p − 1) h, and the collocation points yq = −l0 + (q − 1/2 ) h, taking p = 1..N ,
s = 1..N . We assume that the functions χ1 (ξ), χ2 (ξ) are constant on each element
and introduce the notation χj

∣∣
Δp

= χjp. Considering that equations (22) are

satisfied in a set of points
{
yq

}
, we get the following relations

l0∫

−l0

χj (ξ) kjs

(
η − yq

)
dη =

N∑
p=1

χjp

∫

Δp

kjs

(
η − yq

)
dη = fs

(
yq

)
(23)

which can be interpreted as an algebraic system with respect to the nodal values χjp

of the expansion functions

N∑
p=1

χjpH
(js)
pq = fsq, j = 1, 2, s = 3, 4, p = 1..N, q = 1..2N (24)
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where the following notation is introduced for the coefficients of the system

H
(js)
pq = 1

2π

⎛
⎝

∫

Γ

Z̃
(j)
s (α)

iα
eiα(η−yq)dα

⎞
⎠

∣∣∣∣∣∣
ηk+1

ηk

= 1

2πi

∫

Γ

Z̃
(j)
s (α)

α
Epq (α) dα,

Epq (α) =
[
eiα(ηp+1−yq) − eiα(ηp−yq)

]
, j = 1, 2, s = 3, 4.

The main difficulty in solving system (24) is to calculate its coefficients. To
calculate them, we will single out the main components corresponding to the limit
values of the symbols of the kernels at infinity, the remaining components are found
numerically based on quadrature formulas. The solution of system (24) allows one
to find the nodal values of the disclosure functions and eventually the displacement
fields on the surface of the waveguide.

In numerical calculations, the following values of the parameters and variables
were selected: κ = 0.5, y0 = 0.3, y1 = −1, y2 = −0.5, ξ0 = 0.75, ξ1 = 0.9,

g1 = 1.5g2 = 1.5

{
1, x < ξ1

10, x ≥ ξ1
. The selected frequency range corresponds to one

propagating wave.
In Fig. 2, the expansion functions are given: the real part of the function χ1 (y)

on the left and the imaginary part χ2 (y) on the right (N = 600). Under the
study of the system solutions with increasing number of elements, numerical
calculations showed the presence of internal convergence of the discretization
procedure. Computational experiments conducted for different number of elements
(N = 30, 60, 90, 270) indicate the convergence of the algorithm at N → ∞. The
results showed that the functions Im χ1 (y), Re χ2 (y) represent several orders of

Fig. 2 χ1 (y), χ2 (y) for N = 600
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magnitude smaller than Re χ1 (y), Im χ2 (y), and therefore their graphs are not
given. Both functions change the sign once in the selected frequency range. The
condition of zero opening functions at the delamination edges is quite accurate,
despite a fairly simple approximation of the disclosure functions. According to the
results of computational experiments, it is established that the laws of change in the
opening functions depend on the external load application area. In particular, for the
load located symmetrically relative to the centre of the delamination, the functions
χ1 (y), χ2 (y) also possess a certain symmetry.

4 Inverse Problem

Now we state the inverse problem when it is required to find the complete vector
of the unknowns (X1, X2, X3, X4), the transforms of which satisfy the boundary
value problem (2)–(3) and functions g1 (x), g2 (x) according to the information on
the radial displacement field at the outer boundary of the waveguide in a bounded
region y ∈ [y1, y2] far from the oscillation source

X1 (1, y) = Ω (y) , y ∈ [y1, y2] , y1 > 0 (25)

We introduce the residual functional

J = max |X1 (1, y)−Ω (y)| , y ∈ [y1, y2] (26)

where in order to calculate X1 (1, y) we use formula (11)
As additional information Ω (y), we calculate the field of radial displacements

for functions describing a homogeneous inner layer and an inhomogeneous outer
one

g1 =
{

1.5, x < ξ1

1.5+ 1.5 (x − ξ1) (1− ξ1)−1, x ≥ ξ1

,

g2 =
{

1, x < ξ1

1+ 2 (x − ξ1) (1− ξ1)−1, x ≥ ξ1

, ξ1 = 0.975, ξ0 = 0.75

Let us minimize the residual functional in a fairly simple class of piecewise
constant functions in the framework of the following parameterization containing
two parameters F1, F2:

g1 =
{

1.5, x < ξ1

F1, x ≥ ξ1
, g2 =

{
1, x < ξ1

F2, x ≥ ξ1
.
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These functions describe the laws of inhomogeneity variation in a two-layer
waveguide: the inner and outer layers are considered to be homogeneous.

As a result of minimization of the functional J , one minimum was found that
corresponds to the following parameter values F1 = 2.65, F2 = 2.08.

In the calculations, the following parameter values c = 0.1, d = 1, κ = 15 were
used. The selected frequency parameter corresponds to three propagating modes.

5 Conclusion

A problem of steady-state forced oscillations for a hollow cylindrical inhomo-
geneous waveguide in the radial direction is solved on the basis of the integral
Fourier transform and numerical analysis of auxiliary boundary value problems
using the shooting method. The comparative calculations of the dispersion curves
for a variety of different inhomogeneity laws of a waveguide are conducted. For
a waveguide with an annular delamination, a system of integral equations for
radial and longitudinal displacement jumps is formulated. The system is reduced
to a linear algebraic system on the basis of ideology of the boundary element
method. The opening displacement functions are constructed; the accuracy of their
determination depending on the number of boundary elements used is analyzed. A
simple inverse problem on reconstruction of two parameters characterizing laws of
material inhomogeneity in a two-layer waveguide is solved.

Acknowledgement This work is supported by the Russian Science Foundation, project # 18-11-
00069.
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Solution of a Class of First-Order
Quasilinear Partial Differential
Equations

M. Yu. Zhukov and E. V. Shiryaeva

Abstract A method for constructing a solution for some systems of first-order
quasilinear partial differential equations is presented. The type of equations can
either be hyperbolic or elliptic. The method is based on the application of the
generalized hodograph method, which allows us to write the solution in an implicit
form. There is a system of first-order linear partial differential equations that is used
for commuting flows in the generalized hodograph method. We discover an analogy
between the commuting flows and divided differences for the Hermite polynomial.
This analogy allows us to obtain an explicit representation for commuting flows.
The introduction of new (Lagrangian) variables, which are conserved on the
characteristics of the original system, suggests a way to transform the solution of
the Cauchy problem for first-order quasilinear partial differential equations to the
solution of the Cauchy problem for ordinary differential equations. Numerical, and
in some cases analytical, integration of the Cauchy problem makes it possible to
construct explicit solutions of the problem on the level lines (isochrons) of the
implicit solution. The method proposed is significantly different from the grid
method, finite element method, finite volume method, and, in fact, is more precise.
The error of the solution can arise only at the last stage in the numerical integration
of the Cauchy problem for ordinary differential equations. Moreover, the method
allows us to obtain multivalued solutions, in particular, to study the process of
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wave breaking in hyperbolic systems. Particular cases of the equations considered
here describe diffusion-free approximation in a wide range of mass transport
processes in multicomponent mixtures, such as electrophoresis, chromatography,
centrifugation. As a simple example, the solution of the electrophoresis problem
(separation multicomponent mixture to individual component) is presented.

Keywords Generalized hodograph method · Commuting flows · Divided
difference

Mathematical Subject Classification (2000) 35L45, 35L40, 35L65

1 Introduction

PhD thesis [1], in particular, developed the theory of solutions of the Cauchy
problem for ε-systems, some class of the hydrodynamic type systems (first-order
quasilinear equations). For such systems the implicit solution is constructed with
the help of the generalized hodograph method (see, for example, [2]). In partic-
ular, the class of ε-systems includes equations written in the Riemann invariants
(diagonalized) which have the form

∂tR
k + λk(R)∂xRk = 0, R = (R1, . . . , Rn), k = 1, . . . , n.

λk = Rk

(
n∏

i=1

Ri

)ε

.

Here, Rk are the Riemann invariants (the superscript corresponds to the number
of the invariant, not to its degree), λk are the characteristic directions.

The generalized hodograph method allows us to write the solution in an implicit
form

x − λi(R)t = wi(R), i = 1, . . . , n,

where wi(R) are the commuting flows which satisfy to some system of the linear
partial differential equations [2]

∂iw
k

wi −wk
= ∂jλk

λj − λk
, i �= j �= k, ∂i = ∂

∂Ri
.

In general case, the solution of this system is impossible to obtain. However, if the
relations

∂kλi

λk − λi
= ε

Ri − Rk
, i �= k,
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which are the definition of ε-system, are satisfied, then in the case of integers ε =
1, 2 . . . the commuting flows wk have the form

wk = λk ∂H

∂Rk
,

H(R) = 1

(m− 1)!
n∑

j=1

∂m−1

∂(Rj )m−1

Aj(Rj )
n∏

s=1,s �=j

(Rj − Rs)m

, m = ε.

where Aj(Rj ) are the arbitrary functions defined by initial conditions of the original
equations.

The main objective of the paper is to obtain the explicit formulas for functions
Aj(Rj ) in the case m � 1. This result generalizes the relations obtained in [3, 4]
when m = 1. In addition, a method for solving the Cauchy problem which allows
us to construct an explicit solution, at least for isolines of the implicit solution, is
presented. For the electrophoresis problem (m = 1) this algorithm was proposed
in [4]. Note that systems of quasilinear equations can be of both hyperbolic and
elliptic types. For the elliptic type equations the method of constructing solutions
for the case m = 2, m = 1 is presented in [5].

The paper is organized as follows. In Sect. 2 the Cauchy problem for the
quasilinear equations is formulated. In Sect. 3 for constructing the function H(R)

we use an analogy between function H(R) and divided difference for some
Hermite polynomial. On the basis of initial data for Cauchy problem we obtain
functions Ak(Rk). In fact, in Sect. 3 an implicit solution of the original Cauchy
problem is presented. In Sect. 4 we introduce the Lagrangian variables and present
the analytical-numerical method for constructing explicit solutions of the original
problem. Section 5 contains an example of the solution for the problem of the mass
transfer by an electric field.

2 Cauchy Problem

We consider the Cauchy problem for a system of quasilinear equations

∂tR
k + λk(R)∂xRk = 0, (1)

λk = Rk

⎛
⎝ n∏

j=1

Rj

⎞
⎠

m

, k = 1, . . . , n, m = 1, 2, . . .

Rk(x, 0) = Rk
0(x), k = 1, . . . , n, (2)

where Rk
0(x) are given functions.
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Implicit solution of the system (1) can be written as [2]

x − λi(R)t = wi(R), i = 1, . . . , n, (3)

where wi(R) are commuting flows which have the form [1]

wk = λk ∂H

∂Rk
, (4)

H(R) = 1

(m− 1)!
n∑

j=1

∂m−1

∂(Rj )m−1

Aj(Rj )
n∏

s=1
s �=j

(Rj − Rs)m

. (5)

Here, Aj(Rj ) are the arbitrary functions.
To determine the functions Ak(rk) we assume t = 0 in (3). Taking into

account (4), (5) we obtain the first-order linear partial differential equation system

x

rk
n∏

s=1
(rs)m

= ∂H

∂rk
, k = 1, . . . , n, (6)

H = 1

(m− 1)!
n∑

k=1

∂m−1

∂(rk)m−1

Ak(rk)
n∏

s=1
s �=k

(rk − rs)m

.

Here,

rk = Rk
0(x),

∂

∂rk
= ∂

∂Rk

∣∣∣∣
t=0

.

Multiplying each equation (6) by drk(x)/dx, summing and integrating we get

n∑
k=1

x

rk
n∏

s=1
(rs)m

drk

dx
= dH

dx
, (7)

H = − x

m
n∏

s=1
(rs(x))m

+ 1

m

x∫

0

dτ
n∏

s=1
(rs(τ ))m

.
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3 Analogy Between Solution and Divided Difference

To solve the system (6) we use the analogy between the function H and divided
differences for Hermite polynomial with multiple points. We recall the formula for
divided difference (see, e.g., [6, formula (57)])

F(z1, . . . , z1︸ ︷︷ ︸
α1

, . . . , zk, . . . , zk︸ ︷︷ ︸
αk

, . . . , zn, . . . , zn︸ ︷︷ ︸
αn

) = (8)

=
n∑

i=1

αi−1∑
j=1

1

(αi − 1)!
dαj−1

dzαj−1

⎡
⎢⎣ F(z)∏

s �=i

(z− zs)m

⎤
⎥⎦

z=zi

.

We construct the Hermite interpolation polynomial for function F(r) using m-fold
points rk , k = 1, . . . , n, and 1-fold point rn+1 = 0. We assume that at each point rk

the values of the function rA(r) and its derivatives are given as

diF (r)

d(r)i

∣∣∣∣
r=rk

= di(rA(r))

d(r)i

∣∣∣∣
r=rk

, k = 1, . . . , n, i = 1, . . . , m. (9)

Then the divided difference constructed on all points rk , k = 1, . . . , n + 1 can
be written in the following form

F(r1, . . . , r1, . . . , rn, . . . , rn, rn+1) = (10)

= m

(m− 1)!
n∑

k=1

∂m−1

∂(rk)m−1

Ak(rk)∏
s �=i

(rk − rs)m
+ (−1)n F (0)

n∏
s=1

(rs)m

.

The first summand in the right part of (10) coincides with the function H defined by
the formula (6). If we select F(0) as

F(0) = (−1)nx, (11)

then the divided difference (10) coincides with (7).
Hence, we have

F(r1, . . . , r1, . . . , rn, . . . , rn, rn+1) =
x∫

0

dτ
n∏

s=1
(rs(τ ))m

. (12)
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Next, we assume that the function F(z) is a polynomial which naturally coincides
with the interpolation Hermite polynomial

F(z) = · · · + F(r1, . . . , r1, . . . , rn, . . . , rn, rn+1)

n∏
s=1

(z− rs)m =

=
nm∑
k=0

(−1)k+nFk(x)zk.

Here Fk are the polynomial coefficients.
In particular, taking into account (12) we get

Fnm(x) =
x∫

0

dτ
n∏

s=1
(rs(τ ))m

, F0 = F(0) = (−1)nx.

All the other polynomial coefficients can be written with the help of the
formula (8) (see for example [4], where the coefficients are given in the case m = 1).

Thus, there is a polynomial F(z), which due to the choice of its values in
the interpolation points (9) is associated with system (6) for the determination
of Ak(rk). The relations (6) can be interpreted as the definition of the function
x = x(r1, . . . , rn).

To obtain the functions Ak(rk) we use formula (9)

rkAk(rk) = F(rk) =
nm∑
i=0

(−1)i+nFi(x(r1, . . . , rn))(rk)i .

However, Ak depends only on rk . In other words, the explicit dependence on the
variable x for functions Ak(rk) must be absent, i.e. partial derivative of x must be
zero

∂

∂x

(
rkAk(rk)

)
=

nm∑
i=0

(−1)i+n dFi(x)

dx
(rk(x))i ≡ 0, k = 1, . . . , n. (13)

If we interpret rk as polynomial roots, then the relation (13) is valid only in the case
when the polynomial coefficients are its invariants which depends on roots of the
polynomial

dFk(x)

dx
= Ik(x), k = 0, . . . , nm,
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where

I0(x) = 1, I1(x) = m

n∑
k=1

1

rk(x)
, . . .

Inm−1(x) =
m

n∑
k=1

rk(x)

n∏
s=1

(rs(x))m

, Inm(x) = 1
n∏

s=1
(rs(x))m

.

Note that for the convenience of computing polynomial invariants with m-fold roots
one can use ‘splitting’ of the roots rk, rk + θ , . . . rk + (m− 1)θ , compute the usual
invariants of the polynomial, and then pass to the limit at θ → 0.

Finally, the relations for Ak(rk) have the following form

Ak(rk(x)) = 1

rk(x)

nm∑
s=0

(−1)s+n(rk(x))s

x∫

0

Is(τ ) dτ. (14)

We obtain the solution of the Cauchy problem (1), (2) in the implicit
form (3), (4), (5) using the changes of variables rk(x) = Rk

0(x), x = (rk(x))−1 in
the formulas (14).

Ak(Rk
0(x)) = 1

Rk
0(x)

nm∑
s=0

(−1)s+n(Rk
0(x))s

(Rk
0 (x))−1∫

0

Is(τ ) dτ.

Here, (Rk
0(x))−1 is the inverse function.

Certainly, the presence of the inverse function imposes significant restrictions on
the initial data of the Cauchy problem.

4 Lagrangian Variables

To remove restrictions on the initial data (the existence of inverse functions) we look
for an explicit solution of the Cauchy problem (1), (2) in the following form (see
[3])

Rk = Rk
0(ak) ≡ rk ≡ rk(ak), k = 1, . . . , n,

where ak are the Lagrangian variables which satisfy the equations

ak
t + λk(a)ak

x = 0, a = (a1, . . . , an), ak(x, 0) = x, k = 1, . . . , n.
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For new variables the characteristic directions λk and the hodograph method
relations (3) have the following form

λk(a) = λk(r(a)), x − λk(r(a))t = wk(r(a)), k = 1, . . . , n. (15)

Taking into account (15), (4), (5) we construct functions tk(a)

tk(a) ≡ wk+1 −wk

λk − λk+1
, k = 1, . . . , n− 1.

We parametrize the level lines of functions tk(a) (isochron tk(a) = t∗). Assuming
that ak = ak(μ) holds on these lines we obtain the equation system

t∗ = tk(a(μ)), k = 1, . . . , N − 1.

Differentiation of these equations by the parameter μ allows us to obtain the Cauchy
problem for the system of ordinary differential equations

dai

dμ
= ϕi(a), ai(μ∗) = ai∗, i = 1, . . . , n, (16)

where a∗i is the value of ai at some point of isochron μ = μ∗, ϕi(a) is
the eigenvector of the matrix ∂tk/∂ai (an arbitrary multiplier that arises in the
determination of eigenvectors can be included in the parameter μ).

Integrating the Cauchy problem (16) allows us to get the solution of the problem
on isochron

Rk(x, t∗) = Rk
0(ak(μ)), k = 1, . . . , n.

Integrating the Cauchy problem we choose the function Ak(rk) in the form (cf.
with (14), see also [3])

Ak(rk(ak)) = 1

rk(ak)

nm∑
s=0

(−1)s+n(rk(ak))s

ak∫

0

Is(τ ) dτ.

Thus, the introduction of Lagrangian variables allows us to remove restrictions
for initial data of the Cauchy problem. In particular, one can construct solutions
described by the multivalued functions.
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5 Mass Transport by an Electric Field

An example of an applied problem, for which the theory developed in the work is
applicable, is the description of mass transport by an electric field, in particular,
by electrophoresis. The system of the first-order quasilinear hyperbolic equations
(hyperbolic conservation laws), describing diffusion-less approximation of mass
transport in multicomponent mixtures, such as electrophoresis, chromatography,
centrifugation, sedimentation, in dimensionless variables in the spatially one-
dimensional case has the form (see, e.g. [5, 7])

∂tu
k + ∂x(μkukE) = 0, k = 1, . . . , n, (17)

where uk(x, t) are the concentrations of mixture components, μk are the component
velocities, E(u1, . . . , un) is the intensity of the external field.

A characteristic feature of the system (17) is the dependence of the external field
intensity E on the ‘collective’ interaction component

E = 1

1+ s
, s =

n∑
k=1

uk. (18)

System (17), (18) can by written in the Riemann invariants Rk

∂tR
k + λk(R)∂xRk = 0, R = (R1, . . . , Rn), (19)

λk = Rk
n∏

i=1

Ri, k = 1, . . . , n.

The dependence Rk(u1, . . . , un) and the inverse dependence uk(R1, . . . , Rn) are
defined by the roots of the polynomial L(R) and relations [5, 7, 8]

L(R) ≡
n∏

k=1

(μk − R)− R

n∑
j=1

uj
n∏

k=1
k �=j

(μk − R),

us =

n∏
k=1

μk
n∏

k=1
(μs − Rk)

μs
n∏

k=1
Rk

n∏
k=1
k �=s

(μs − μk)

.

It is obvious that system (19) coincides with (1) at m = 1. For a detailed
study of this case with arbitrary n, see in [4]. At n = 2 quasilinear system of
equations (17), (18) (including the case of elliptic type equations) are studied in [5].
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To illustrate the method proposed we consider the simplest version of the
separation problem for a binary mixture. To calculate the function t1(a) and
commuting flows w1, w2 we have the following relations

t1(a1, a2) = w1(r)−w2(r)

(r2 − r1)r1r2 , r = (r1, r2).

For convenience we introduce the notation

P1 = 1

r2 − r1
, P2 = 1

r1 − r2
.

Fk0(ak) =
ak∫

ak∗

(
1

R1
0(z)

+ 1

R2
0(z)

)
dz, k = 1, 2.

Fk1(ak) =
ak∫

ak∗

dz

R1
0(z)R2

0(z)
, k = 1, 2.

Then, the functions A1, A2 and their derivatives can be written as

Ak(ak) = −ak

rk
+ Fk0 − rkFk1, k = 1, 2,

dAk(ak)

drk
= ak

(rk)2 − Fk1, k = 1, 2.

Calculating the derivatives of the function H we obtain

∂H

∂r1 = P1

(
dA1

dr1 + A1

r2 − r1

)
− A2

r1 − r2 P2,

∂H

∂r2 = P2

(
dA2

dr2 + A2

r1 − r2

)
− A1

r2 − r1 P1.

Commuting flows have the following form

wk = rkr1r2 ∂H

∂rk
, k = 1, 2.

In case n = 2 the Cauchy problem (16) can be written as

da1

dμ
= ∂t1

∂a2 ,
da2

dμ
= − ∂t1

∂a1 , a1(μ∗) = a1∗, a2(μ∗) = a2∗.
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Calculating functions a1(μ), a2(μ) we get an explicit solution of the original
problem on isochron

R1(x, t∗) = R1
0(a1(μ)), R2(x, t∗) = R2

0(a2(μ)).
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