Chapter 11 )
Stock Market Forecasting by Using Gzt
Support Vector Machines

K. Liagkouras and K. Metaxiotis

Abstract Support Vector Machine (SVM) is a well established technique within
machine learning. Over the last years, Support Vector Machines have been used across
a wide range of applications. In this paper, we investigate stock prices forecasting
by using a support vector machine. Forecasting of stock prices is one of the most
challenging areas of research and practice in finance. As input parameters to the
SVM we utilize some well-known stock technical indicators and macroeconomic
variables. For evaluating the forecasting ability of SVM, we compare the results
obtained by the proposed model with the actual stocks movements for a number of
constituents of FTSE-100 in London.

Keywords Support vector machines * Stock price forecasting + Technical
indicators + Macroeconomic variables

11.1 Introduction

Forecasting is the process of utilizing historical data for predicting future changes.
Although managers and businesses around the world use forecasting to help them
take better decisions for future, one particular business domain has been benefited
the most from the development of different forecasting methods: the stock market
forecasting. Forecasting of stock prices has always been an important and challenging
topic in financial engineering, due to the dynamic, nonlinear, complicated and chaotic
in nature movement of stock prices.

The emergence of machine learning [10] and artificial intelligence techniques
has made it possible to tackle computationally demanding models for stock price
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forecasting [7]. Among the various techniques that have been developed over the last
years we distinguish approaches that stem from artificial neural networks (ANNs)
[9, 27] and support vector machines (SVMs) [21, 29], because they have gained
an increasing interest from academics and practitioners alike. ANN is a computing
model whose layered structure resembles the structure of neurons in the human brain
[2]. A number of studies examine the efficacy of ANN in stock price forecasting.
Below, we provide a concise presentation of recent research finding in the field.

Adhikari and Agrawal [1] propose a combination methodology in which the linear
part of a financial dataset is processed through the Random Walk (RW) model and the
remaining nonlinear residuals are processed using an ensemble of feedforward ANN
(FANN) and Elman ANN (EANN) models. The forecasting ability of the proposed
scheme is examined on four real-world financial time series in terms of three popular
error statistics. Pan et al. [25] presented a computational approach for predicting
the Australian stock market index using multi-layer feed-forward neural networks.
According to the authors their research is focused on discovering an optimal neural
network or a set of adaptive neural networks for predicting stock market prices.

According to Ou and Wang [23] an important difficulty that is related with stock
price forecasting is the inherent high volatility of stock market that results in large
regression errors. According to the authors [23] compared to the price prediction, the
stock direction prediction is less complex and more accurate. A drawback of ANNs
is that the efficiency of predicting unexplored samples decreases rapidly when the
neural network model is overfitted to the training data set. Especially this problem
is encountered when we are dealing with noisy stock data that may lead ANNs to
formulate complex models, which are more prone to the over-fitting problem.

Respectively, a considerable number of studies utilize approaches that are based on
SVM for stock price forecasting [34]. Rosillo et al. [26] use support vector machines
(SVMs) in order to forecast the weekly change in the S&P 500 index. The authors
perform a trading simulation with the assistance of technical trading rules that are
commonly used in the analysis of equity markets such as Relative Strength Index,
Moving Average Convergence Divergence, and the daily return of the S&P 500.
According to the authors the SVM identifies the best situations in which to buy or
sell in the market.

Thenmozhi and Chand [29] investigated the forecasting of stock prices using
support vector regression for six global markets, the Dow Jones and S&P500 from
the USA, the FTSE-100 from the UK, the NSE from India, the SGX from Singapore,
the Hang Seng from the Hong Kong and the Shanghai Stock Exchange from China
over the period 1999-2011. The study provides evidence that stock markets across
the globe are integrated and the information on price transmission across markets,
including emerging markets, can induce better returns in day trading.

Gavrishchaka and Banerjee [6] investigate the limitations of the existing models
for forecasting of stock market volatility. According to the authors [6] volatility
models that are based on the support vector machines (SVMs) are capable to
extract information from multiscale and high-dimensional market data. In partic-
ular, according to the authors the results for SP500 index suggest that SVM can
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efficiently work with high-dimensional inputs to account for volatility long-memory
and multiscale effects and is often superior to the main-stream volatility models.

Ozorhan et al. [24] examine the problem of predicting direction and magnitude
of movement of currency pairs in the foreign exchange market. The authors make
use of Support Vector Machine (SVM) with a novel approach for input data and
trading strategy. In particular, the input data contain technical indicators generated
from currency price data (i.e., open, high, low and close prices) and representation of
these technical indicators as trend deterministic signals. Finally, the input data are also
dynamically adapted to each trading day with genetic algorithm. The experimental
results suggest that using trend deterministic technical indicator signals mixed with
raw data improves overall performance and dynamically adapting the input data to
each trading period results in increased profits.

Gupta et al. [8] presents an integrated approach for portfolio selection in a multi-
criteria decision making framework. The authors use Support Vector Machines for
classifying financial assets in three pre-defined classes, based on their performance
on some key financial criteria. Next, they employ Real-Coded Genetic Algorithm to
solve the multi-criteria portfolio selection problem.

According to Cortes and Vapnik [4] the SVMs often achieves better generalization
performance and lower risk of overfitting than the ANNs. According to Kim [12] the
SVMs outperform the ANNS in predicting the future direction of a stock market and
yet reported that the best prediction performance that he could obtain with SVM was
57.8% in the experiment with the Korean composite stock price index 200 (KOSPI
200). Two other independent studies, the first by Huang et al. [11] and the second by
Tay and Cao [28] also verify the superiority of SVMs over other approaches when
it comes to the stock market direction prediction. Analytically, according to Huang
et al. [11] a SVM-based model achieved 75% hit ratio in predicting Nihon Keizai
Shimbun Index 225 (NIKKEI 225) movements.

A potential research limitation concerns the testing environment of the afore-
mentioned studies. In particular, for the majority of the examined studies the testing
was conducted within the in-sample datasets. Even in the cases that the testing was
conducted in an out-of-sample testing environment, the testing was performed on
small data sets which were unlikely to represent the full range of market volatility.
Another difficulty in stock price forecasting with the SVMs lies in a high-dimensional
space of the underlying problem. Indeed, the number of stock markets constituents
can range from as few as 3040 stocks for a small stock market, till several hundreds
of stocks for a big stock market, which leads to a high dimensional space [20].
Furthermore, the bigger the examined test instance the bigger the requirements in
terms of memory and computation time.

This paper is organized as follows. In Sect. 11.2, we provide an overview of the
SVMs and describe how they are integrated in our model. In Sect. 11.3, we identify
factors that influence the risk and volatility of stock prices. In Sect. 11.4, we present
the proposed model for forecasting stock prices with SVMs. Finally, in Sect. 11.5,
we discuss the experimental results and conclude the paper.
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11.2 Support Vector Machines

Support Vector Machines were originally developed by Vapnik [30]. In general SVMs
are specific learning algorithms characterized by the capacity control of the decision
function and the use of kernel functions [31]. In its simplest form a Support Vector
Machine is a supervised learning approach for discriminating between two separable
groups {(x; )}, where the scalar target variable y is equal to either +1 or —1. The
vector input variable X is arbitrary and it is commonly called “separating hyperplane”
or otherwise plane in x-space which separates positive and negative cases.

For the linearly separable case, a hyperplane separating the binary decision classes
in the three-attribute case is given by the following relationship:

Yy = Wwo + wix| + waxy + waxs, (11.1)

where y is the outcome, x; are the attribute values, and there are four weights w;.
The weights w; are determined by the learning algorithm. In Eq. (11.1), the weights
w; are parameters that determine the hyperplane. The maximum margin hyperplane
can be represented by the following equation in terms of the support vectors:

y=b+Y ayx(i)-x, (11.2)

where y; is the class value of training example x(i). The vector x represents a test
example and the vectors x(i) are the support vectors. In this equation, b and a; are
parameters that determine the hyperplane. Finally, for finding the support vectors and
determining the parameters b and a; a linearly constrained quadratic programming
problem is solved.

For the nonlinearly separable case, a high-dimensional version of Eq. (11.2) is
given by the following relationship:

y=b+Y ayKx(3).x), (11.3)

The SVM uses a kernel function K (x(7), X) to transform the inputs into the high-
dimensional feature space. There are some different kernels [32] for generating
the inner products to construct machines with different types of nonlinear deci-
sion surfaces in the input space. Choosing among different kernels the model that
minimizes the estimate, one chooses the best model. Figure 11.1 illustrates how a
kernel function works. In particular, with the use of a kernel function K, it is possible
to compute the separating hyperplane without explicitly carrying out the map into
the feature space [33].
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Fig. 11.1 Kernel functions in SVMs

11.3 Determinants of Risk and Volatility in Stock Prices

In stock prices there are two main sources of uncertainty. The first source of risk has
to do with the general economic conditions, such as interest rates, exchange rates,
inflation rate and the business cycle [ 14, 15]. None of the above stated macroeconomic
factors can be predicted with accuracy and all affect the rate of return of stocks
[13]. The second source of uncertainty is firm specific. Analytically, it has to do
with the prospects of the firm, the management, the results of the research and
development department of the firm, etc. In general, firm specific risk can be defined
as the uncertainty that affects a specific firm without noticeable effects on other firms.

Suppose that a risky portfolio consists of only one stock (let say for example
stock 1). If now we decide to add another stock to our portfolio (let say for example
stock 2), what will be the effect to the portfolio risk? The answer to this question
depends on the relation between sfock 1 and stock 2. If the firm specific risk of the
two stocks differs (statistically speaking stock 1 and stock 2 are independent) then
the portfolio risk will be reduced [16]. Practically, the two opposite effects offset
each other, which have as a result the stabilization of the portfolio return.

The relation between stock 1 and stock 2 in statistics is called correlation. Corre-
lation describes how the returns of two assets move relative to each other through
time [17]. The most well known way of measuring the correlation is the correla-
tion coefficient (r). The correlation coefficient can range from —1 to 1. Figure 11.2,
illustrates two extremes situations: Perfect Positive correlation (» = 1) and Perfect
Negative correlation (r = —1).

Another well-known way to measure the relation between any two stocks is the
covariance [18]. The covariance is calculated according to the following formula:

- . _
oxr =5 > (X = X)(Y, - Y) (11.4)
t=1

There is a relation between the correlation coefficient that we presented above,
and the covariance. This relation is illustrated through the following formula:
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The correlation coefficient is the same as the covariance, the only difference is that
the correlation coefficient has been formulated in such way that it takes values from
—1to 1. Values of the correlation coefficient close to 1 mean that the returns of the two
stocks move in the same direction, and values of the correlation coefficient close to
—1 mean that the returns of the two stocks move in opposite directions. A correlation
coefficient rx y = 0 means that the returns of the two stocks are independent. We
make the assumption that our portfolio consists 50% of stock 1 and 50% of stock 2.
On the left part of the Fig. 11.2 because the returns of the two stocks are perfectly
positively correlated the portfolio return is as volatile as if we owned either stock 1 or
stock 2 alone. On the right part of the Fig. 11.2 the stock 3 and stock 4 are perfectly
negatively correlated. This way the volatility of return of stock 3 is cancelled out by
the volatility of the return of stock 4. In this case, through diversification we achieve
risk reduction.

The importance of the correlation coefficient is indicated by the following formula:

o[% = w%(rl2 + w%oz2 + 2w1w2r12720102 (11.6)

Equation 11.6 give us the portfolio variance for a portfolio of two stocks 1 and 2.
Where w are the weights for each stock and 7 , is the correlation coefficient for the
two stocks [19]. The standard deviation of a two—stocks portfolio is given by the
formula:

op = (wfal2 + w%az2 + 2w1wzr12.20102)1/2 (11.7)
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From Eq. 11.7, it is obvious that the lower the correlation coefficient r| , between
the stocks, the lower the risk of the portfolio will be.

Obviously, if we continue to add stocks that are negatively correlated into the
portfolio the firm-specific risk will continue to reduce. Eventually, however even
with a large number of negatively correlated stocks in the portfolio it is not possible
to eliminate risk [20]. This happens because all stocks are subject to macroeco-
nomic factors such as inflation rate, interest rates, business cycle, exchange rates,
etc. Consequently, no matter how well we manage to diversify the portfolio [22] it
is still exposed to the general economic risk.

In Fig. 11.3 we can see that the firm specific risk can be eliminated if we add a
large number of negatively correlated stocks into the portfolio. The risk that can be
eliminated by diversification except from firm specific risk is called non systematic
risk or diversifiable risk.

In Fig. 11.4 we can see that no matter how well diversified is the portfolio there is
no way to get rid of the exposure of the portfolio to the macroeconomic factors. These
factors related to the general economic risk are called market risk or systematic risk
or non diversifiable risk.

11.4 Predictions of Stock Market Movements by Using
SVM

11.4.1 Data Processing

The forecasting process requires the following steps: input of selected data, data
pre-processing, training and solving support vectors, using test data to calculate
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Fig. 11.5 The Forecasting process with SVM

forecasting values, data after-processing, and results analysis. Figure 11.5 illuminates
the entire process.

For the purposes of this study, we used a dynamic training pool as proposed by
Zhang [35]. Essentially, the training window will always be of the same constant size
and 1, 5, 10, 15, 20, 25 and 30 days ahead predictions will be performed by using
rolling windows to ensure that the predictions are made by using all the available
information at that time, while not incorporating old data. Figure 11.6 illustrates how
the dynamic training pool is implemented for the purposes of this study.

For the purposes of the present study we used the daily closing prices of 20
randomly selected constituents of FT'SE-100 in London between, Jan. 2, 2018 and
Dec. 31, 2018. There are totally 252 data points in this period of time. During the pre-
processed phase the data are divided into 2 groups: training group and testing group.
The 200 data points belong to training data and the remaining 52 data points are
testing data. As shown in Fig. 11.6 we apply a dynamic training pool, which means
that the training window will always be of the same constant size (i.e. 200 data points)
and one-day-ahead predictions will be performed by using rolling windows.
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Fig. 11.6 The dynamic training pool for the case of 1-day ahead prediction

In this paper we treat the problem of stock price forecasting as a classification
problem. The feature set of a stock’s recent price volatility, index volatility, mean
absolute error (MAE), along with some macroeconomic variables such as Gross
National Product (GNP), interest rate, and inflation rate, are used to predict whether
or not the stock’s price 1, 5, 10, 15, 20, 25 and 30 days in the future will be higher
(+1) or lower (—1) than the current day’s price.

11.4.2 The Proposed SVM Model

For the purposes of this study we use the following radial kernel function:

1 n
K (x;, xp) = exp —8—22()@, —x)° (11.8)
j=1

where § is known as the bandwidth of the kernel function [12]. This function classifies
test examples based on the example’s Euclidean distance to the training points, and
weights closer training points more heavily.

11.4.3 Feature Selection

In this study we use six features to predict stock price direction. Three of these features
are coming from the field of macroeconomics and the other three are coming from
the field of technical analysis. We opted to include three variables from the field of
macroeconomics as it is well-known that macroeconomic variables have an influence
on stock prices. For the purposes of this study we use the following macroeconomic
variables: (a) Gross National Product (GNP), (b) interest rate, and (c) inflation rate.
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Table 11.1 Features used in SVM

Feature name

Description

Formula

Os

The stock price volatility is calculated as an average over
the past n days of percent change in a given stock’s price
per day

Z{ Gi—Ciy
i=t—n+1

Cio1
n

Oi

The index volatility is calculated as an average over the
past n days of percent change in the index’s price per day

Li-Tiy

Z;:l—xﬂ»l
n

Ti1

MAE

The mean absolute error (MAE) measures the average
magnitude of the errors in a set of forecasts, without

‘Yi *Xi‘

1
n

-

1

considering their direction

GNP; —GNP;_|

GNP% GNP;_;

Gross national Product (GNP). The formula for x 100

calculating the percent change in GNP rate looks like this

IR —IR;_

RNl x 100

Interest rate% | Interest rate is the cost of borrowing money. The formula
for calculating the percent change is interest rate is given

by the following relationship

CPI;—CPJ;_

ot x 100

Inflation rate% | Inflation rate is the percentage increase in general level of
prices over a period. The formula for calculating the

inflation rate is given by the following relationship

@Where C;j is the stock’s closing price at time i. Respectively, Ij is the index’s closing price at time
i. In MAE y; is the prediction and x; the realized value. IR; stands for interest rate at time i. Finally,

CPJ; stands for Consumer Price Index at time i. We use these features to predict the direction of
price change 1, 5, 10, 15, 20, 25 and 30 days ahead

According to a study by Al-Qenae et al. [3] it is found that an increase in inflation
and interest rates have negative impact on stock prices, whereas an increase in GNP
has positive effect on stock prices.

Respectively, we use the following three technical analysis indicators: (a) price
volatility, (b) sector volatility and (c) mean absolute error (MAE). More details about
the selected features are provided in Table 11.1.

11.5 Results and Conclusions

Figure 11.7 illustrates the mean forecasting accuracy of the proposed model in
predicting stock price direction 1, 5, 10, 15, 20, 25 and 30 days ahead.

By observing Fig. 11.7, it is evident that the best mean forecasting accuracy of
the proposed model is obtained for predicting stock price direction 1-day ahead.
Furthermore, the forecasting accuracy falls drastically when the horizon increases.
Indeed, the mean forecasting accuracy of the proposed model is slightly better than
simple random guessing when it comes to predicting stock price direction 30-days
ahead. This latest finding comes in support of the Efficient Markets Hypothesis [5],
which posits that stock prices already reflect all available information and therefore
technical analysis cannot be used successfully to forecast future prices. According
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Fig. 11.7 Mean forecasting accuracy of the proposed model in predicting stock price direction

to the Efficient Markets Hypothesis, stock prices will only respond to new informa-
tion and since new information cannot be predicted in advance, stock price direction
cannot be reliably forecasted. Therefore, according to the Efficient Markets Hypoth-
esis, stock prices behave like a random walk. To conclude the proposed model can be
helpful in forecasting stock price direction 1-5-days ahead. For longer horizons, the
forecasting accuracy of the proposed model falls drastically and it is slightly better
than simple random guessing.
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