
Chapter 9
Reducing Data Complexity

Marketing datasets often have many variables—many dimensions—and it is advantageous to reduce these to smaller sets of
variables to consider. For instance, we might have many questions (e.g. 9) on a consumer survey that reflect a smaller number
(such as 3) of underlying concepts such as customer satisfaction with a service, category leadership for a brand, or luxury for
a product. If we can reduce the data to its underlying dimensions, we can more clearly identify the underlying relationships
among concepts.

In this chapter we consider three common methods to reduce data complexity by reducing the number of dimensions in
the data. Principal component analysis (PCA) attempts to find uncorrelated linear dimensions that capture maximal variance
in the data. Exploratory factor analysis (EFA) also attempts to capture variance with a small number of dimensions while
seeking to make the dimensions interpretable in terms of the original variables. Multidimensional scaling (MDS) maps
similarities among observations in terms of a low-dimension space such as a two-dimensional plot. MDS can work with
metric data and with non-metric data such as categorical or ordinal data.

In marketing, PCA is often associated with perceptual maps, which are visualizations of respondents’ associations among
brands or products. In this chapter we demonstrate perceptual maps for brands using principal component analysis. We then
look at ways to draw similar perceptual inferences from factor analysis and multidimensional scaling.

9.1 Consumer Brand Rating Data

We investigate dimensionality using a simulated dataset that is typical of consumer brand perception surveys. These data
reflect consumer ratings of brands with regard to perceptual adjectives as expressed on survey items with the following form:

On a scale from 1 to 10 — where 1 is least and 10 is most — how [ADJECTIVE] is [BRAND A]?

In these data, an observation is one respondent’s rating of a brand on one of the adjectives. Two such items might be:

1. How trendy is Intelligentsia Coffee?
2. How much of a category leader is Blue Bottle Coffee?

Such ratings are collected for all the combinations of adjectives and brands of interest.
The data here comprise simulated ratings of 10 brands (“a” to “j”) on 9 adjectives (“performance,” “leader,” “latest,”

“fun,” and so forth), for N = 100 simulated respondents. The dataset is provided on this book’s web site. We start by loading
and checking the data:

In [1]: import pandas as pd
brand_ratings = pd.read_csv('http://bit.ly/PMR-ch9')
brand_ratings.head()

Out[1]: perform leader latest fun serious bargain value trendy \
0 2 4 8 8 2 9 7 4
1 1 1 4 7 1 1 1 2
2 2 3 5 9 2 9 5 1
3 1 6 10 8 3 4 5 2
4 1 1 5 8 1 9 9 1
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Fig. 9.1 Boxplots for the unscaled (left) and scaled (right) data offer a quick way to check the distribution of the dataset

rebuy brand
0 6 a
1 2 a
2 6 a
3 1 a
4 1 a

In [2]: brand_ratings.tail()# Not shown

Each of the 100 simulated respondents has provided ratings for each of the 10 brands, so there are 1000 total rows. We
inspect the describe() to check the data quality and structure:

In [3]: brand_ratings.describe().round(2)

Out[3]: perform leader latest fun serious bargain \
count 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00
mean 4.49 4.42 6.20 6.07 4.32 4.26
std 3.20 2.61 3.08 2.74 2.78 2.67
min 1.00 1.00 1.00 1.00 1.00 1.00
25% 1.00 2.00 4.00 4.00 2.00 2.00
50% 4.00 4.00 7.00 6.00 4.00 4.00
75% 7.00 6.00 9.00 8.00 6.00 6.00
max 10.00 10.00 10.00 10.00 10.00 10.00

value trendy rebuy
count 1000.00 1000.00 1000.00
mean 4.34 5.22 3.73
std 2.40 2.74 2.54
min 1.00 1.00 1.00
25% 2.00 3.00 1.00
50% 4.00 5.00 3.00
75% 6.00 7.00 5.00
max 10.00 10.00 10.00

We see in describe() that the ranges of the ratings for each adjective are 1–10. The data appear to be clean and formatted
appropriately.

We can also use a boxplot for another view of the distribution of each variable, as displayed in the left panel of Fig. 9.1:

In [4]: brand_ratings.plot.box()
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Table 9.1 Adjectives in the brand_ratings data and examples of survey text that might be used to collect rating data

Perceptual adjective (column name) Example survey text:

Perform Brand has strong performance

Leader Brand is a leader in the field

Latest Brand has the latest products

Fun Brand is fun

Serious Brand is serious

Bargain Brand products are a bargain

Value Brand products are a good value

Trendy Brand is trendy

Rebuy I would buy from Brand again

There are nine perceptual adjectives in this dataset. Table 9.1 lists the adjectives and the kind of survey text that they
might reflect.

9.1.1 Rescaling the Data

It is often good practice to rescale raw data. This makes data more comparable across individuals and samples. A common
procedure is to center each variable by subtracting its mean from every observation, and then rescaling those centered values
as units of standard deviation. This is commonly called standardizing, normalizing, or Z-scoring the data (Sect. 7.3.3). Note
that we use np.arange() here rather than range() because we want the output to be a NumPy array rather than a list
so we can do vectorized operations on it.

In Python, data could be standardized with a mathematical expression using mean() and sd():

In [5]: import numpy as np
x = np.arange(1000)
x_sc = (x - x.mean())/x.std()
print('mean: {}\nmedian: {}\nmax: {}\nmin: {}'.format(x_sc.mean(),

np.median(x_sc),
x_sc.max(),
x_sc.min()))

mean: 0.0
median: 0.0
max: 1.7303196219213355
min: -1.7303196219213355

As we saw in Sect. 7.3.3, a simpler way is to use sklearn.preprocessing.scale() to rescale all variables at once.
We never want to alter raw data, so we assign the raw values first to a new dataframe brand_ratings_sc and alter that:

In [6]: from sklearn.preprocessing import scale
brand_ratings_sc = brand_ratings.copy()
brand_ratings_sc.iloc[:, :-1] = scale(brand_ratings_sc.iloc[:, :-1])
brand_ratings_sc.plot.box()
brand_ratings_sc.describe().round(2)

Out[6]: perform leader latest fun serious bargain \
count 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00
mean -0.00 0.00 -0.00 0.00 -0.00 -0.00
std 1.00 1.00 1.00 1.00 1.00 1.00
min -1.09 -1.31 -1.69 -1.85 -1.20 -1.22
25% -1.09 -0.93 -0.71 -0.75 -0.84 -0.85
50% -0.15 -0.16 0.26 -0.02 -0.12 -0.10
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75% 0.78 0.61 0.91 0.70 0.60 0.65
max 1.72 2.14 1.24 1.43 2.04 2.15

value trendy rebuy
count 1000.00 1000.00 1000.00
mean -0.00 -0.00 0.00
std 1.00 1.00 1.00
min -1.39 -1.54 -1.07
25% -0.97 -0.81 -1.07
50% -0.14 -0.08 -0.29
75% 0.69 0.65 0.50
max 2.36 1.74 2.47

In this code we name the new dataframe with extension “_sc” to remind ourselves that observations have been scaled.
We operate on columns 1–9 because the tenth column is a string variable for brand. (This is accomplished by selecting those
columns using .iloc[:, :-1], which excludes the last column of the dataframe.) We see that the mean of each adjective
is correctly 0.00 across all brands because the data are rescaled. Observations on the adjectives have a spread (difference
between min and max) of roughly 3 standard deviation units. This means the distributions are platykurtic, flatter than a
standard normal distribution, because we would expect a range of more than 4 standard deviation units for a sample of this
size. (Platykurtosis is a common property of survey data, due to floor and ceiling effects.)

For our initial exploration, we will use the unscaled data. It is generally a good idea to start with the unscaled data, as it’s
more interpretable. However differences in scale between the variables can complicate an analysis. In practice, we generally
run our full analysis on unscaled and then scaled data and evaluate both. Generally, scaled data are “safer” to work with, as
any effects from differences in scale between variables are eliminated. In this chapter we will start our exploration with the
unscaled data and then move to the scaled data when we start the dimensionality reduction analyses.

9.1.2 Correlation Between Attributes

We can generate the correlation matrix using corr() and visualize it using Seaborn for initial inspection of bivariate
relationships among the variables:

In [7]: import matplotlib.pyplot as plt
import seaborn as sns

sns.clustermap(brand_ratings.corr(), annot=True, fmt=".2f",
cmap=plt.cm.bwr)

Using clustermap() rather than heatmap(), reorders the rows and columns according to variables’ similarity in a
hierarchical cluster solution such that adjectives close to each other (such as rebuy, bargain, value) are plotted adjacent to
each other (see Sect. 10.3.2 for more on hierarchical clustering). The annot=True argument adds the value in each grid
cell and the fmt="0.2f" specifies the formatting as floats with two decimal places. The result is shown in Fig. 9.2, where
we see that the ratings seem to group into three clusters of similar variables, a hypothesis we examine in detail in this chapter.

9.1.3 Aggregate Mean Ratings by Brand

Perhaps the simplest business question in these data is: “What is the average (mean) position of the brand on each adjective?”
We can use groupby() (see Sects. 3.2.1 and 5.2) to find the mean of each variable by brand:

In [8]: brand_means = brand_ratings.groupby('brand').mean().round(3)
brand_means
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Fig. 9.2 Correlation plot for the simulated consumer brand ratings. This visualization of the basic data appears to show three general clusters that
comprise fun/latest/trendy, rebuy/bargain/value, and perform/leader/serious respectively

Out[8]: perform leader latest fun serious bargain value \
brand
a 1.65 3.04 7.46 7.87 1.77 4.83 4.78
b 7.47 7.21 8.43 3.40 7.61 4.37 4.70
c 6.57 7.45 5.88 3.75 7.72 2.64 3.28
d 2.31 2.87 7.28 6.58 2.40 1.91 2.10
e 2.68 4.92 7.60 6.88 4.44 5.73 5.34
f 4.30 5.12 2.31 5.47 5.96 6.59 6.79
g 7.43 3.98 2.24 4.65 2.84 6.65 7.35
h 4.44 3.64 7.74 8.03 3.93 2.29 2.46
i 5.56 3.58 7.29 7.20 3.91 3.58 2.41
j 2.47 2.36 5.72 6.85 2.65 4.00 4.16

trendy rebuy
brand
a 3.78 2.21
b 7.25 4.33
c 5.29 3.39
d 7.24 2.47
e 5.60 3.82
f 2.99 7.18



200 9 Reducing Data Complexity

Fig. 9.3 A heatmap (left) and clustermap (right) of the mean of each adjective by brand. Brands f and g are similar—with high ratings (in green)
for rebuy and value but low ratings for latest and fun. Other groups of similar brands are b/c, i/h/d, and a/j

g 1.72 7.19
h 7.59 2.19
i 6.84 3.21
j 3.90 1.28

A heatmap is a useful way to examine such results because it colors data points by the intensities of their values. We
use heatmap() from the seaborn package (Waskom et al. 2018). We specify the colormap using the cm module from
matplotlib.

In [9]: from matplotlib import cm

sns.heatmap(brand_means[['fun', 'latest', 'trendy', 'perform',
'leader', 'serious', 'rebuy', 'bargain',
'value']], cmap=cm.BrBG)

The resulting heatmap is shown in the left panel of Fig. 9.3. In this chart’s brown-to-blue-green ("BrBG") palette a brown
color indicates a low value and dark green indicates a high value; lighter colors are for values in the middle of the range.
The brands are clearly perceived differently with some brands rated high on performance and leadership (brands b and c)
and others rated high for value and intention to rebuy (brands f and g). We order the columns to match the correlation plot
above, but the rows are in alphabetical order, i.e. arbitrary order.

We can use clustermap(), which sorts the columns and rows in order to emphasize similarities and patterns in the
data, which can be seen in the right panel of Fig. 9.3:

In [10]: sns.clustermap(brand_means, cmap=cm.BrBG)

It does this using a form of hierarchical clustering (see Sect. 10.3.2). We should use some caution interpreting those
clusters, but it can be a helpful way to visualize groupings in the data, and is a good preliminary analysis to a more formal
cluster analysis. See Chap. 10 for an introduction to clustering.

Looking at Figs. 9.2 and 9.3 we could guess at the groupings and relationships of adjectives and brands. For example,
there is similarity in the color pattern across columns for the bargain/value/rebuy; a brand that is high on one tends to be
high on another. But it is better to formalize such insight, and the remainder of this chapter discusses how to do so.

9.2 Principal Component Analysis and Perceptual Maps

Principal Component Analysis (PCA) recomputes a set of variables in terms of linear equations, known as components, that
capture linear relationships in the data (Jolliffe 2002). The first component captures as much of the variance as possible from
all variables as a single linear function. The second component captures as much variance as possible that remains after
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the first component. This continues until there are as many components as there are variables. We can use this process to
reduce data complexity by then retaining and analyzing only a subset of those components—such as the first one or two
components—that explain a large proportion of the variation in the data.

By extracting components, one can derive a reduced set of variables that captures as much of the variance as desired, yet
where each of the measures is independent of the others, which can help us better interpret high-dimensional data.

9.2.1 PCA Example

We explore PCA first with a simple dataset to see and develop intuition about what is happening. We create highly correlated
data by copying a random vector xvar to a new vector yvar while replacing half of the data points. Then we repeat that
procedure to create zvar from yvar:

In [11]: np.random.seed(98286)
xvar = np.random.randint(low=0, high=10, size=100)
yvar = xvar.copy()
yvar[:50] = np.random.randint(low=0, high=10, size=50)
zvar = yvar.copy()
zvar[25:75] = np.random.randint(low=0, high=10, size=50)
myvars = np.array([xvar, yvar, zvar])

yvar will be correlated with xvar because 50 of the observations are identical while 50 are newly sampled ran-
dom values. Similarly, zvar keeps 50 values from yvar (and thus also inherits some from xvar, but fewer). We
compile those three vectors into a matrix. Note that we use these data only to have a simple demonstration; this
procedure is not a good way to generate formally correlated variables. If you want to generate correlated data, see
np.random.multivariate_normal().

We check one of the three possible bivariate plots along with the correlation matrix. If we simply plotted the raw data,
there would be many overlapping values because the responses are discrete (integers 1–10). To separate and visualize multiple
points with the same values, we use swarmplot(), which adjusts points so you can see how many points there are at the
same value (similar to jittering, see Sect. 4.6.1):

In [11]: sns.swarmplot(x=xvar, y=yvar, color='k')

The bivariate plot in Fig. 9.4 shows a clear linear trend for yvar vs. xvar on the diagonal.

Fig. 9.4 Scatterplot of correlated data with discrete values, using swarmplot() to separate the values slightly for greater visual impact of
overlapping points
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In [12]: np.corrcoef(myvars)

Out[12]: array([[1. , 0.5755755 , 0.23837089],
[0.5755755 , 1. , 0.48224687],
[0.23837089, 0.48224687, 1. ]])

In the correlation matrix, xvar correlates highly with yvar and less so with zvar, as expected, and yvar has strong
correlation with zvar (using the rules of thumb from Sect. 4.5).

Using intuition, what would we expect the components to be from these data? First, there is shared variance across all
three variables because they are positively correlated. So we expect to see one component that picks up that association of
all three variables. After that, we expect to see a component that shows that xvar and zvar are more differentiated from
one another than either is from yvar. That implies that yvar has a unique position in the dataset as the only variable to
correlate highly with both of the others, so we expect one of the components to reflect this uniqueness of yvar.

Let’s check the intuition. We use PCA() from the sklearn.decomposition library to perform PCA:

In [13]: from sklearn import decomposition
my_pca = decomposition.PCA().fit(myvars.T)

We create a helper function to print some relevant statistics from the PCA:

In [14]: def pca_summary(pca, round_dig=3):
'''Print a summary of the PCA fit'''
return pd.DataFrame(

[pca.explained_variance_,
pca.explained_variance_ratio_,
np.cumsum(pca.explained_variance_ratio_)],
columns=['pc{}'.format(i) for i in

range(1, 1+len(pca.explained_variance_))],
index=['variance', 'proportion of variance explained',

'cumulative proportion']
).round(round_dig)

pca_summary(my_pca)

Out[14]: pc1 pc2 pc3
variance 16.473 7.050 3.042
proportion of variance explained 0.620 0.265 0.114
cumulative proportion 0.620 0.886 1.000

There are three components because we have three variables. The first component accounts for 62% of the explainable linear
variance, while the second accounts for 27%, leaving 11% for the third component. How are those components related to the
variables? We check the rotation matrix, using another helper function to format the output:

In [15]: def pca_components(pca, variable_names):
'''Return loading of variables on specific components in the PCA'''
return pd.DataFrame(pca.components_,

index=['pc{}'.format(i+1)
for i in range(len(pca.components_))],

columns=variable_names).T
my_pca_components = pca_components(my_pca, ['xvar', 'yvar', 'zvar'])
my_pca_components.round(3)

Out[15]: pc1 pc2 pc3
xvar -0.544 0.637 0.545
yvar -0.622 0.129 -0.772
zvar -0.563 -0.760 0.326

Interpreting PCA rotation loadings is difficult because of the multivariate nature—factor analysis is a better procedure for
interpretation, as we will see later in this chapter—but we examine the loadings here for illustration and comparison to our
expectations. In component 1 (PC1) we see loading on all three variables as expected from their overall shared variance (the
negative direction is not important; the key is that they are all in the same direction).
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In component 2, we see that xvar and zvar are differentiated from one another as expected, with loadings in opposite
directions. Finally, in component 3, we see residual variance that differentiates yvar from the other two variables and is
consistent with our intuition about yvar being unique.

In addition to the loading matrix, we can use the PCA to compute scores for each of the principal components that express
the underlying data in terms of its loadings on those components using the transform() method on the PCA object. The
columns ([:, 0], [:, 1], and so forth) may be used to obtain the values of the components for each observation. We
can use a small number of those columns in place of the original data to obtain a set of observations that captures much of
the variation in the data.

A less obvious feature of PCA, but implicit in the definition, is that extracted PCA components are uncorrelated with
one another, because otherwise there would be more linear variance that could have been captured. We see this in the
transformed values returned for observations in a PCA model, where the correlations (off-diagonal values) are effectively
zero (approximately 10−16 as shown in scientific notation):

In [16]: myvars_transformed = my_pca.transform(myvars.T)
np.corrcoef(myvars_transformed.T)

Out[16]: array([[1.00000000e+00, 1.36938301e-16, 3.98753086e-16],
[1.36938301e-16, 1.00000000e+00, 7.27332599e-17],
[3.98753086e-16, 7.27332599e-17, 1.00000000e+00]])

9.2.2 Visualizing PCA

A good way to examine the results of PCA is to map the first few components, which allows us to visualize the data in
a lower-dimensional space. A common visualization is a biplot, a two-dimensional plot of data points with respect to the
first two PCA components, overlaid with a projection of the variables on the components. We can produce a biplot by first
plotting the data points in a scatter plot:

In [17]: import matplotlib.pyplot as plt
plt.scatter(x=myvars_transformed[:,0],

y=myvars_transformed[:,1],
color='k')

plt.xlabel('PC1')
plt.ylabel('PC2')

The result is Fig. 9.5. To that we add the vectors representing the loading of each variable, shown in Fig. 9.6.

Fig. 9.5 A scatterplot showing data points plotted on the first two components
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Fig. 9.6 A simple biplot() of a principal component analysis solution for the simple, constructed example, showing data points plotted on the first
two components

In [18]: def plot_arrow_component(pca_components, variable, scale=1):
'''Plot an arrow of component dimensions in PCA space'''
plt.arrow(x=0, y=0,

dx=pca_components.loc[variable]['pc1'] * scale,
dy=pca_components.loc[variable]['pc2'] * scale,
color='r',
head_width=.5, overhang=1)

plt.text(x=pca_components.loc[variable]['pc1'] * scale,
y=pca_components.loc[variable]['pc2'] * scale,
s=variable,
color='r',
fontsize=16)

plt.scatter(x=myvars_transformed[:,0],
y=myvars_transformed[:,1],
color='k')

for v in my_pca_components.index:
plot_arrow_component(my_pca_components, v, 8)

Finally, we produce a function biplot(), which plots the datapoints and the vectors and additionally labels each data
point with its index, as in Fig. 9.7. Such plots are especially helpful when there are a smaller number of points (as we will
see below for brands) or when there are clusters (as we see in Chap. 10).

In [19]: def biplot(values_transformed, pca_components, label=[]):
'''Create a biplot, a scatterplot of points in PCA space with arrows
representing the loadings of each variable.
Points can optionally be labelled'''
scale = 1.2* np.max(values_transformed[:,1])
plt.figure(figsize=(10, 10))
for v in pca_components.index:
plot_arrow_component(pca_components, v, scale)

plt.scatter(x=values_transformed[:,0],
y=values_transformed[:,1],
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color='gray', s=4)
if len(label) == values_transformed.shape[0]:
for i, txt in enumerate(label):

plt.text(s=txt,
x=values_transformed[i,0]+.01*scale,
y=values_transformed[i,1]+.01*scale,
fontsize=14)

plt.xlabel('PC1')
plt.ylabel('PC2')

In [20]: biplot(myvars_transformed, my_pca_components,
label=range(myvars.shape[1]))

In Fig. 9.7, there are arrows that show the best fit of each of the variables on the principal components—a projection of
the variables onto the 2-dimensional space of the first two PCA components, which explain a large part of the variation in
the data. These are useful to inspect because the direction and angle of the arrows reflect the relationship of the variables; a
closer angle indicates higher positive association, while the relative direction indicates positive or negative association of the
variables.

In the present case, we see in the variable projections (arrows) that yvar is closely aligned with the first component (X
axis). In the relationships among the variables themselves, we see that xvar and zvar are more associated with yvar,
relative to the principal components, than either is with the other. Thus, this visually matches our interpretation of the
correlation matrix and loadings above.

By plotting against principal components, a biplot benefits from the fact that components are uncorrelated; this helps to
disperse data on the chart because the x- and y-axes are independent. When there are several components that account for
substantial variance, it is also useful to plot components beyond the first and second.

Fig. 9.7 A biplot() with point labels, generated from our biplot() function
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9.2.3 PCA for Brand Ratings

Let’s look at the principal components for the brand rating data (refer to Sect. 9.1 above if you need to load the data).
We find the components with PCA.fit(), selecting just the rating columns, for which we will make two new variables,
brand_rating_names for the rating names and brand_rating_sc_vals for the values (as we will be using these
several more times):

In [21]: brand_rating_names = brand_ratings_sc.columns[:-1]
brand_ratings_sc_vals = brand_ratings_sc[brand_rating_names]
brand_pca = decomposition.PCA().fit(brand_ratings_sc_vals)

We can use our pca_summary() function defined in the previous section to see the variance covered by each component:

In [22]: pca_summary(brand_pca)

Out[22]: pc1 pc2 pc3 pc4 pc5 \
variance 2.982 2.099 1.080 0.728 0.638
proportion of variance explained 0.331 0.233 0.120 0.081 0.071
cumulative proportion 0.331 0.564 0.684 0.765 0.836

pc6 pc7 pc8 pc9
variance 0.535 0.390 0.312 0.243
proportion of variance explained 0.059 0.043 0.035 0.027
cumulative proportion 0.895 0.938 0.973 1.000

An important plot when analyzing a PCA is a scree plot, which shows the successive proportion of additional variance that
each component adds. This corresponds to the PCA.explained_variance_ parameter, which we can plot:

In [23]: plt.plot(1+np.arange(len(brand_pca.explained_variance_)),
brand_pca.explained_variance_, 'o-')

plt.xlabel('Component')
plt.ylabel('Variance')

The result is Fig. 9.8. A scree plot is often interpreted as indicating where additional components are not worth the
complexity; this occurs where the line has an elbow, a kink in the angle of bending, a somewhat subjective determination.

Fig. 9.8 A scree plot of a PCA solution shows the successive variance accounted by each component. For the brand rating data, the proportion
largely levels out after the third component
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Fig. 9.9 A biplot of an initial attempt at principal component analysis for consumer brand ratings. Although we see adjective groupings on the
variable loading arrows in red, and gain some insight into the areas where ratings cluster (as dense areas of observation points), the chart would be
more useful if the data were first aggregated by brand

In Fig. 9.8, the elbow occurs at either component 3 or 4, depending on interpretation; and this suggests that the first two or
three components explain most of the variation in the observed brand ratings.

We can use several of our helper functions from the previous section to plot a biplot of the first two principal components
reveals how the rating adjectives are associated:

In [24]: brand_ratings_sc_trans = brand_pca.transform(brand_ratings_sc_vals)
brand_pca_components = pca_components(brand_pca, brand_rating_names)
biplot(brand_ratings_sc_trans, brand_pca_components)

We see the result in Fig. 9.9, where adjectives map in four regions: category leadership (“serious,” “leader,” and “perform”
in the upper right), value (“rebuy,” “value,” and “bargain”), trendiness (“trendy” and “latest”), and finally “fun” on its own.

But there is a problem: the plot of individual respondents’ ratings is too dense and it does not tell us about the brand
positions! A better solution is to construct a biplot that shows the aggregated ratings by brand.

9.2.4 Perceptual Map of the Brands

First we compile the mean scaled rating of each adjective by brand as we found above using groupby() (see Sect. 9.1).

In [25]: brand_means_sc = brand_ratings_sc.groupby('brand').mean()
brand_means_sc.head()

Out[25]: perform leader latest fun serious bargain \
brand
a -0.886362 -0.528168 0.411179 0.656974 -0.919400 0.214203
b 0.931336 1.071294 0.726470 -0.972701 1.183733 0.041640
c 0.650249 1.163350 -0.102388 -0.845098 1.223346 -0.607347
d -0.680231 -0.593373 0.352671 0.186665 -0.692521 -0.881197
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e -0.564673 0.192933 0.456685 0.296039 0.042135 0.551826

value trendy rebuy
brand
a 0.184785 -0.525407 -0.596465
b 0.151415 0.740679 0.237092
c -0.440898 0.025541 -0.132504
d -0.933102 0.737030 -0.494236
e 0.418373 0.138649 0.036566

Prior to creating the biplot, we rescale the data; even though the raw data were already rescaled, the aggregated means
have a somewhat different scale than the standardized data itself.

Note, that we manually scaled the data using mean() and std(). Since the data were held in a dataframe with a relevant
index, this simplified the process. Using sklearn.preprocessing.scalewould have returned a NumPy matrix, from
which we could have created a dataframe, but by doing it manually we maintained those labels.

A biplot of the PCA-transformed mean ratings gives an interpretable perceptual map, showing where the brands are
placed with respect to the first two principal components:

In [26]: brand_means_sc = (
((brand_means_sc - brand_means_sc.mean()) / brand_means_sc.std()))

brand_means_sc_transformed = brand_pca.transform(brand_means_sc)
biplot(brand_means_sc_transformed, brand_pca_components,

label=brand_means.index)

The result is Fig. 9.10.
What does the map tell us? First we interpret the adjective clusters and relationships and see four areas with well-

differentiated sets of adjectives and brands that are positioned in proximity. Brands f and g are high on “value,” for instance,
while a and j are relatively high on “fun,” which is opposite in direction from leadership adjectives (“leader” and “serious”).

Fig. 9.10 A perceptual map of consumer brands with biplot() for aggregate mean rating by brand. This shows components almost identical
to those in Fig. 9.9 but the mean brand positions are clear
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With such a map, one might form questions and then refer to the underlying data to answer them. For instance, suppose
that you are the brand manager for brand e. What does the map tell you? For one thing, your brand is in the center and thus
appears not to be well-differentiated on any of the dimensions. That could be good or bad, depending on your strategic goals.
If your goal is to be a safe brand that appeals to many consumers, then a relatively undifferentiated position like e could
be desirable. On the other hand, if you wish your brand to have a strong, differentiated perception, this finding would be
unwanted (but important to know).

What should you do about the position of your brand e? Again, it depends on the strategic goals. If you wish to increase
differentiation, one possibility would be to take action to shift your brand in some direction on the map. Suppose you wanted
to move in the direction of brand c. You could look at the specific differences from c in the data:

In [27]: brand_means_sc.loc['c'] - brand_means_sc.loc['e']

Out[27]: perform 1.775362
leader 1.440484
latest -0.774450
fun -1.886670
serious 1.544750
bargain -1.811159
value -1.131735
trendy -0.151604
rebuy -0.212361
dtype: float64

This shows you that e is relatively stronger than c on “bargain” and “fun”, which suggests dialing down messaging or other
attributes that reinforce those (assuming, of course, that you truly want to move in the direction of c). Similarly, c is stronger
on “perform” and “serious,” so those could be aspects of the product or message for e to strengthen.

Another option would be not to follow another brand but to aim for differentiated space where no brand is positioned. In
Fig. 9.10, there is a large gap between the group b and c on the bottom of the chart, versus f and g on the upper right. This
area might be described as the “value leader” area or similar.

How do we find out how to position there? Let’s assume that the gap reflects approximately the average of those four
brands (see Sect. 9.2.5 for some of the risks with this assumption). We can find that average as the mean of the brands’ rows,
and then take the difference of e from that average:

In [28]: brand_means_sc.loc[['b','c','f','g']].mean(axis=0) - brand_means_sc.loc['e']

Out[28]: perform 1.717172
leader 0.580749
latest -1.299004
fun -1.544598
serious 0.750005
bargain -0.391245
value 0.104383
trendy -0.629646
rebuy 0.840802
dtype: float64

This suggests that brand e could target the gap by increasing its emphasis on performance while reducing emphasis on
“latest” and “fun.”

To summarize, when you wish to compare several brands across many dimensions, it can be helpful to focus on just the
first two or three principal components that explain variation in the data. You can select how many components to focus on
using a scree plot, which shows how much variation in the data is explained by each principal component. A perceptual map
plots the brands on the first two principal components, revealing how the observations related to the underlying dimensions
(the components).

PCA may be performed using survey ratings of the brands (as we have done here) or with objective data such as price and
physical measurements, or with a combination of the two. In any case, when you are confronted with multidimensional data
on brands or products, PCA visualization is a useful tool for understanding how they differ from one another in the market.
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9.2.5 Cautions with Perceptual Maps

There are three important caveats in interpreting perceptual maps. First, you must choose the level and type of aggregation
carefully. We demonstrated the maps using mean rating by brand, but depending on the data and question at hand, it might
be more suitable to use median (for ordinal data) or even modal response (for categorical data). You should check that the
dimensions are similar for the full data and aggregated data before interpreting aggregate maps. You can do this by examining
the variable positions and relationships in biplots of both aggregated data (such as means) and raw data (or a random subset
of it), as we did above.

Second, the relationships are strictly relative to the product category and the brands and adjectives that are tested. In
a different product category, or with different brands, adjectives such as “fun” and “leader” could have a very different
relationship. Sometimes simply adding or dropping a brand can change the resulting map significantly because the positions
are relative. In other words, if a new brand enters the market (or one’s analysis), the other positions may change substantially.
One must also be confident that all of the key perceptions (adjectives, in this example) have been assessed. One way to assess
sensitivity here is to run PCA and biplot on a few different samples from your data, such as 80% of your observations, and
perhaps dropping an adjective each time. If the maps are similar across those samples, you may feel more confident in their
stability.

Third, it is frequently misunderstood that the positions of brands in such a map depend on their relative positioning in
terms of the principal components, which are constructed composites of all dimensions. This means that the strength of a
brand on a single adjective cannot be read directly from the chart. For instance, in Fig. 9.10, it might appear that brands b and
c are weaker than d, h, and i on “latest” but are similar to one another. In fact, b is the single strongest brand on “latest” while
c is weak on that adjective. Overall, b and c are quite similar to one another in terms of their scores on the two components
that aggregate all of the variables (adjectives), but they are not necessarily similar on any single variable. When we use PCA
to focus on the first one or two dimensions in the data, we are looking at the largest-magnitude similarities, and that may
obscure smaller differences that do not show up strongly in the first one or two dimensions.

This last point is a common area of confusion with analysts and stakeholders who want to read adjective positions directly
from a biplot. We recommend to explain that positions are not absolute but are relative. We often explain positions with
language such as, “compared to its position on other attributes, brand X is relatively differentiated by perceptions of strength
(or weakness) on such-and-such attribute.”

Despite these caveats, perceptual maps can be a valuable tool. We use them primarily to form hypotheses and to provide
material to inform strategic analyses of brand and product positioning. If they are used in that way—rather than as absolute
assessments of position—they can contribute to engaging discussions about position and potential strategy.

Although we illustrated PCA with brand position, the same kind of analysis could be performed for product ratings,
position of consumer segments, ratings of political candidates, evaluations of advertisements, or any other area where you
have metric data on multiple dimensions that is aggregated for a modest number of discrete entities of interest.

9.3 Exploratory Factor Analysis

Exploratory factor analysis (EFA) is a family of techniques to assess the relationship of constructs (concepts) in surveys
and psychological assessments. Factors are regarded as latent variables that cannot be observed directly, but are imperfectly
assessed through their relationship to other variables.

In psychometrics, canonical examples of factors occur in psychological and educational testing. For example, “intelli-
gence,” “knowledge of mathematics,” and “anxiety” are all abstract concepts (constructs) that are not directly observable in
themselves. Instead, they are observed empirically through multiple behaviors, each one of which is an imperfect indicator
of the presumed underlying latent variable. These observed values are known as manifest variables and include indicators
such as test scores, survey responses, and other empirical behaviors. Exploratory factor analysis attempts to find the degree
to which latent, composite factors account for the observed variance of those manifest variables.

In marketing, we often observe a large number of variables that we believe should be related to a smaller set of underlying
constructs. For example, we cannot directly observe customer satisfaction but we might observe responses on a survey that
asks about different aspects of a customer’s experience, jointly representing different facets of the underlying construct
satisfaction. Similarly, we cannot directly observe purchase intent, price sensitivity, or category involvement but we can
observe multiple behaviors that are related to them.
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In this section, we use EFA to examine respondents’ attitudes about brands, using the brand rating data from above
(Sect. 9.1) and to uncover the latent dimensions in the data. Then we assess the brands in terms of those estimated latent
factors.

9.3.1 Basic EFA Concepts

The result of EFA is similar to PCA: a matrix of factors (similar to PCA components) and their relationship to the
original variables (loadings of the factors on the variables). Unlike PCA, EFA attempts to find solutions that are maximally
interpretable in terms of the manifest variables. In general, it attempts to find solutions in which a small number of loadings
for each factor are very high, while other loadings for that factor are low. When this is possible, that factor can be interpreted
in terms of that small set of variables.

To accomplish this, EFA uses rotations that start with an uncorrelated (orthogonal) mathematical solution and then
mathematically alter the solution to explain an identical amount of variance but with different loadings on the original
variables. There are many such rotations available, and they typically share the goals of maximizing the loadings on a few
variables while making factors as distinct as possible from one another.

Instead of reviewing that mathematically (see Mulaik 2009), let’s consider a loose analogy. One might think about EFA
in terms of a pizza topped with large items such as tomato slices and mushrooms that will be cut into a certain number of
slices. The pizza could be rotated and cut in an infinite number of ways that are all mathematically equivalent insofar as they
divide up the same underlying structure.

However, some rotations are more useful than others because they fall in-between the large items rather than dividing
them. When this occurs, one might have a “tomato slice,” a “mushroom slice,” a “half-and-half tomato and mushroom slice,”
and so forth. By rotating and cutting differently, one makes the underlying substance more interpretable relative to one’s
goals (such as having differentiated pizza slices). No rotation is inherently better or worse, but some are more useful than
others. Similarly, the manifest variables in EFA can be sliced in many ways according to one’s goals for interpreting the latent
factors. For example, in our dataset, a rotation that associates “value” and “bargain” together might be more interpretable
than one that placed them apart, as we can imagine that they both represent a similar underlying concept. We will see how
this works in Sect. 9.3.3.

Because EFA produces results that are interpretable in terms of the original variables, an analyst may be able to interpret
and act on the results in ways that would be difficult with PCA. For instance, EFA can be used to refine a survey by keeping
items with high loading on factors of interest while cutting items that do not load highly. EFA is also useful to investigate
whether a survey’s items actually go together in a way that is consistent with expectations.

For example, if we have a 10-item survey that is supposed to assess the single construct customer satisfaction, it is
important to know whether those items in fact go together in a way that can be interpreted as a single factor, or whether
they instead reflect multiple dimensions that we might not have considered. Before interpreting multiple items as assessing a
single concept, one might wish to test that it is appropriate to do so. In this chapter, we use EFA to investigate such structure.

EFA serves as a data reduction technique in three broad senses:

1. In the technical sense of dimensional reduction, we can use factor scores instead of a larger set of items. For instance, if
we are assessing satisfaction, we could use a single satisfaction score instead of several separate items. (In Sect. 8.1.2 we
review how this is also useful when observations are correlated.)

2. We can reduce uncertainty. If we believe satisfaction is imperfectly manifest in several measures, the combination of
those will have less noise than the set of individual items.

3. We might also reduce data collection by focusing on items that are known to have high contribution to factors of interest.
If we discover that some items are not important for a factor of interest, we can discard them from data collection efforts.

In this chapter we use the brand rating data to ask the following questions: How many latent factors are there? How do
the survey items map to the factors? How are the brands positioned on the factors? What are the respondents’ factor scores?

9.3.2 Finding an EFA Solution

The first step in exploratory factor analysis is to determine the number of factors to estimate. There are various ways to do
this, and two traditional methods are to use a scree plot (Sect. 9.2.3), and to retain factors where the eigenvalue (a metric
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for proportion of variance explained) is greater than 1.0. An eigenvalue of 1.0 corresponds to the amount of variance that
might be attributed to a single independent variable; a factor that captures less variance than such an item may be considered
relatively uninteresting.

As we saw in Sect. 9.2, a scree plot of the brand rating data suggests two or three components. We can also examine the
eigenvalues using numpy.linalg.eig() on a correlation matrix:

In [29]: np.linalg.eig(np.corrcoef(brand_ratings_sc_vals.T))[0]

Out[29]: array([2.97929556, 2.09655168, 1.07925487, 0.72721099, 0.63754592,
0.53484323, 0.39010444, 0.24314689, 0.31204642])

The first three eigenvalues are greater than 1.0, although barely so for the third value. This again suggests three or possibly
two factors.

The final choice of a model depends on whether it is useful. For EFA, a best practice is to check a few factor solutions,
including the ones suggested by the scree and eigenvalue results. Thus, we test a 3-factor solution and a 2-factor solution to
see which one is more useful.

sklearn has a factor analysis module sklearn.decomposition.FactorAnalysis(). However, it is a bit
limited in functionality, so we will use the factor_analyzer package (Biggs 2017), which we can install using pip if
necessary:

In [30]: !pip install factor_analyzer

We can then instantiate a FactorAnalyzer() object and analyze the scaled brand ratings:

In [31]: import factor_analyzer

fa = factor_analyzer.FactorAnalyzer(n_factors=2, rotation='varimax')
fa.fit(brand_ratings_sc_vals)
pd.DataFrame(fa.loadings_, index=brand_rating_names).round(2)

Out[31]: 0 1
perform 0.09 0.60
leader -0.02 0.81
latest -0.59 -0.04
fun -0.19 -0.39
serious -0.07 0.68
bargain 0.69 0.05
value 0.78 0.11
trendy -0.65 0.10
rebuy 0.60 0.33

In the 2-factor solution, factor 0 loads strongly on “bargain” and “value,” and therefore might be interpreted as a “value”
factor while factor 1 loads on “leader” and “serious” and thus might be regarded as a “category leader” factor.

This is not a bad interpretation, but let’s compare it to a 3-factor solution:

In [32]: fa = factor_analyzer.FactorAnalyzer(n_factors=3, rotation='varimax')
fa.fit(brand_ratings_sc_vals)
pd.DataFrame(fa.loadings_, index=brand_rating_names).round(2)

Out[32]: 0 1 2
perform 0.07 0.60 -0.06
leader 0.06 0.80 0.10
latest -0.16 -0.08 0.98
fun -0.07 -0.41 0.21
serious -0.01 0.68 0.08
bargain 0.84 -0.00 -0.11
value 0.85 0.08 -0.21
trendy -0.35 0.08 0.59
rebuy 0.50 0.32 -0.30
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The 3-factor solution retains the “value” and “leader” factors (factors 0 and 1 in the output) and adds a clear “latest” factor
(factor 2) that loads strongly on “latest” and “trendy.” This adds an easily interpretable concept to our understanding of the
data. It also aligns with the bulk of suggestions from the scree and eigen tests, and fits well with the perceptual maps we
saw in Sect. 9.2.4, where those adjectives were in a differentiated space. So we regard the 3-factor model as superior to the
2-factor model because the factors are more interpretable. Solutions may be formally compared using confirmatory factor
analysis (CFA), which we do not cover in this book (see Chapman and Feit 2019, Chap. 10).

9.3.3 EFA Rotations

As we described earlier, a factor analysis solution can be rotated to have new loadings that account for the same proportion
of variance. Although a full consideration of rotations is out of scope for this book, there is one issue worth considering in
any EFA: do you wish to allow the factors to be correlated with one another or not?

You might think that one should let the data decide. However, the question of whether to allow correlated factors is less
a question about the data than it is about your concept of the underlying latent factors. Do you think the factors should be
conceptually independent, or does it make more sense to consider them to be related? (To return to the pizza analogy, we
could choose to slice our pizza such that mushrooms tend to appear alongside tomatoes, or we could cut it such that the two
tend to be separated.) An EFA rotation can be obtained under either assumption.

The default in general is to find factors that have zero correlation (using a varimax rotation). In case you’re wondering
how this differs from PCA, it differs mathematically because EFA finds latent variables that may be observed with error (see
Mulaik 2009) whereas PCA simply recomputes transformations of the observed data. In other words, EFA focuses on the
underlying latent dimensions, whereas PCA focuses on transforming the dimensionality of the data.

Returning to our present data, we might judge that value and leader are reasonably expected to be related; in many
categories, the leader can command a price premium, and thus we might expect those two latent constructs to be negatively
correlated rather than independent of one another. This suggests that we could allow correlated factors in our solution. This is
known as an oblique rotation (“oblique” because the dimensional axes are not perpendicular but are skewed by the correlation
between factors).

A common oblique rotation is the “oblimin” rotation. We add that to our 3-factor model with rotation="oblimin":

In [33]: fa = factor_analyzer.FactorAnalyzer(n_factors=3, rotation='oblimin')
fa.fit(brand_ratings_sc_vals)
fa_loadings_df = pd.DataFrame(fa.loadings_,

index=brand_rating_names)
fa_loadings_df.round(2)

Out[33]: 0 1 2
perform 0.01 0.60 -0.09
leader 0.02 0.81 0.07
latest 0.03 -0.00 1.01
fun 0.00 -0.39 0.24
serious -0.05 0.68 0.03
bargain 0.88 -0.05 0.07
value 0.86 0.03 -0.04
trendy -0.26 0.14 0.54
rebuy 0.45 0.28 -0.22

When we compare this oblimin result to the default varimax rotation above, we see the loadings are slightly different
for the relationships of the factors to the adjectives. However, the loadings are similar enough in this case that there is no
substantial change in how we would interpret the factors. There are still factors for “value,” “leader,” and “latest.”

We can check the factor correlation matrix showing the relationships between the estimated latent factors:

In [34]: np.corrcoef(fa.transform(brand_ratings_sc_vals).T)

Out[34]: array([[ 1. , 0.12904599, -0.41410012],
[ 0.12904599, 1. , -0.04888392],
[-0.41410012, -0.04888392, 1. ]])
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Fig. 9.11 A clustermap of item-factor loadings

Factor 1 (value) is negatively correlated with Factor 3 (latest), r = −0.41, and is essentially uncorrelated with Factor 2
(leader), r = 0.13.

The negative correlation between factors 1 and 3 is consistent with our theory that brands that are value brands are less
likely to be trendy, and thus we think this is a more interpretable result. However, in other cases a correlated rotation may or
may not be a better solution than an orthogonal one; that is largely an issue to be decided on the basis of domain knowledge
and interpretive utility rather than statistics.

In the output above, the item-to-factor loadings are displayed. In the returned model object, those are present as the
loadings parameter. We can then visualize item-factor relationships with a clustermap of loadings:

In [35]: sns.clustermap(fa_loadings_df, cmap=cm.BrBG, center=0)

The result is Fig. 9.11, which shows a distinct separation of items into three factors, which are roughly interpretable as value,
leader, and latest. Note that the item rebuy, which reflects stated intention to repurchase, loads on both Factor1 (value)
and Factor2 (leader). This suggests that in our simulated data, consumers say they would rebuy a brand for either reason,
because it is a good value or because it is a leader.

Overall, the result of the EFA for this dataset is that instead of using nine distinct variables, we might instead represent
the data with three underlying latent factors. We have seen that each factor maps to 2–4 of the manifest variables. However,
this only tells us about the relationships of the rating variables among themselves in our data; in the next section, we use the
estimated factor scores to learn about the brands.

9.3.4 Using Factor Scores for Brands

In addition to estimating the factor structure, EFA will also estimate latent factor scores for each observation. In the present
case, this gives us the best estimates of each respondent’s latent ratings for the “value,” “leader,” and “latest” factors. We
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can then use the factor scores to determine brands’ positions on the factors. Interpreting factors eliminates the separate
dimensions associated with the manifest variables, allowing us to concentrate on a smaller, more reliable set of dimensions
that map to theoretical constructs instead of individual items.

Factor scores are calculated from the FactorAnalyzer() object using the transform() method, which we can
store as a separate dataframe:

In [36]: fa = factor_analyzer.FactorAnalyzer(n_factors=3, rotation='oblimin')
brand_ratings_fa_trans = fa.fit_transform(brand_ratings_sc_vals)
brand_rating_fa_scores = pd.DataFrame(brand_ratings_fa_trans)
brand_rating_fa_scores['brand'] = brand_ratings_sc.brand
brand_rating_fa_scores.head()

Out[36]: 0 1 2 brand
0 1.388590 -0.491354 0.531693 a
1 -1.188916 -1.352280 -0.658905 a
2 1.038597 -0.801256 -0.372207 a
3 0.037803 -0.318029 1.190962 a
4 1.688281 -1.525753 -0.453958 a

The result is an estimated score for each respondent on each factor and brand. If we wish to investigate individual-level
correlates of the factors, such as their relationship to demographics or purchase behavior, we could use these estimates
of factor scores. This can be very helpful in analyses such as regression and segmentation because it reduces the model
complexity (number of dimensions) and uses more reliable estimates (factor scores that reflect several manifest variables).
Instead of nine items, we have three factors.

To find the overall position for a brand, we aggregate the individual scores by brand as usual using groupby():

In [37]: brand_rating_fa_mean = brand_rating_fa_scores.groupby('brand').mean()
brand_rating_fa_mean.columns = ['Value', 'Leader', 'Latest']
brand_rating_fa_mean.round(3)

Out[37]: Value Leader Latest
brand
a 0.147 -0.863 0.388
b 0.067 1.205 0.710
c -0.492 1.120 -0.077
d -0.921 -0.625 0.368
e 0.416 -0.035 0.437
f 1.048 0.406 -1.265
g 1.236 0.086 -1.326
h -0.804 -0.271 0.528
i -0.555 -0.169 0.388
j -0.142 -0.854 -0.150

Finally, a clustermap graphs the scores by brand:

In [38]: sns.clustermap(brand_rating_fa_mean, cmap=cm.BrBG, center=0)

The result is Fig. 9.12. When we compare this to the chart of brand by adjective in Fig. 9.3, we see that the chart of factor
scores is significantly simpler than the full adjective matrix. The brand similarities are evident again in the factor scores, for
instance that f and g are similar, as are b and c, and so forth.

We conclude that EFA is a valuable way to examine the underlying structure and relationship of variables. When items are
related to underlying constructs, EFA reduces data complexity by aggregating variables to create simpler, more interpretable
latent variables.

In this exposition, we have only explored a small number of the possibilities for factor analysis; to learn more, see Sect. 9.5.
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Fig. 9.12 A heatmap of the latent factor scores for consumer brand ratings, by brand

9.4 Multidimensional Scaling

Multidimensional scaling (MDS) is a family of procedures that can also be used to find lower-dimensional representations of
data. Instead of extracting underlying components or latent factors, MDS works instead with a distance matrix (also known as
a similarity matrix). MDS attempts to find a lower-dimensional map that best preserves all the observed similarities between
items.

The sklearn.manifold.MDS module works with vectors directly: it calculates pairwise Euclidean distances and
then looks for lower-dimensional representations:

In [39]: from sklearn import manifold

np.random.seed(889783)
brand_mds = manifold.MDS().fit_transform(brand_means)
brand_mds

Out[39]: array([[ 0.59217926, 5.19146726],
[-2.74412002, -6.30675543],
[-0.51645595, -5.64921129],
[-4.33444294, 3.51765049],
[ 0.69182752, 0.80286252],
[ 6.14100233, -2.84581818],
[ 8.40903503, -0.33459353],
[-4.67731306, 1.14429619],
[-3.16204417, 0.12390567],
[-0.399668 , 4.35619632]])
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Fig. 9.13 A metric multidimensional scaling chart for mean brand rating, using sklearn.manifold.MDS(). The brand positions are quite
similar to those seen in the biplot() in Fig. 9.10

The result of MDS.fit_transform() is a list of X and Y dimensions indicating 2-dimensional estimated plot
coordinates for entities (in this case, brands). We see the plot locations for brands a and b in the output above. Given
those coordinates, we can simply scatter() the values and label them:

In [40]: plt.scatter(x=brand_mds[:,0],
y=brand_mds[:,1],
color='grey')

for i,p in enumerate(brand_mds):
plt.annotate(s=brand_means.index[i], xy=p+.1)

In this code, plot(plt.annotate()) adds the text brand annotation to each point (as before in our biplot() code.
The result is Fig. 9.13. The relative brand positions are grouped nearly identically to what we saw in the perceptual map in
Fig. 9.10.

9.4.1 Non-metric MDS

For non-metric data such as rankings or categorical variables, you simply pass the metric=False argument to the
sklearn.manifold.MDS() instantiation.

For purposes of illustration, let’s convert the mean ratings to rankings instead of raw values; this will be non-metric,
ordinal data. We apply argsort() to the columns using apply() which codes each resulting column as its rank rather
than overall rating:

In [41]: brand_ranks = brand_means.apply(lambda col: col.argsort().argsort())
brand_ranks

Out[41]: perform leader latest fun serious bargain value \
brand
a 0 2 6 8 0 6 6
b 9 8 9 0 8 5 5
c 7 9 3 1 9 2 3
d 1 1 4 4 1 0 0
e 3 6 7 6 6 7 7
f 4 7 1 3 7 8 8
g 8 5 0 2 3 9 9
h 5 4 8 9 5 1 2
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i 6 3 5 7 4 3 1
j 2 0 2 5 2 4 4

trendy rebuy
brand
a 2 2
b 8 7
c 4 5
d 7 3
e 5 6
f 1 8
g 0 9
h 9 1
i 6 4
j 3 0

We then pass that brand rank matrix to MDS() and plot the result:

In [42]: brand_mds_nonmetric = manifold.MDS(metric=False).fit_transform(brand_ranks)

In [43]: plt.scatter(x=brand_mds_nonmetric[:,0],
y=brand_mds_nonmetric[:,1],
color='grey')

for i,p in enumerate(brand_mds_nonmetric):
plt.annotate(s=brand_means.index[i], xy=p+.01)

The resulting chart is shown in Fig. 9.14. Compared to Fig. 9.13, we see that brand positions in the non-metric solution are
considerably different, but most of the nearest neighbors of brands are largely consistent with the exception of brands b and
c, which are separated quite a bit more than in the metric solution. (This occurs because the rank-order procedure loses some
of the information that is present in the original metric data solution, resulting in a slightly different map.)

We generally recommend principal component analysis as a more informative procedure than multidimensional scaling
for typical metric or near-metric (e.g., survey Likert scale) data. However, PCA will not work with non-metric data. In those
cases, multidimensional scaling is a valuable alternative.

MDS may be of particular interest when handling text data such as consumers’ feedback, comments, and online product
reviews, where text frequencies can be converted to distance scores. For example, if you are interested in similarities between
brands in online reviews, you could count how many times various pairs of brands occur together in consumers’ postings.

Fig. 9.14 A non-metric multidimensional scaling chart for mean brand ratings expressed as ordinal ranks. The brand groupings are similar to but
more diffuse than those in Fig. 9.13
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The co-occurrence matrix of counts—brand A mentioned with brand B, with brand C, and so forth—could be used as a
measure of similarity between the two brands and serve as the distance metric in MDS (see Netzer et al. 2012).

9.4.2 Visualization Using Low-Dimensional Embeddings

Visualizing high-dimensional data is difficult, as we are effectively limited to two dimensions. PCA can be used to reduce
dimensionality to two dimensions, but the resulting scatterplots are often very difficult to interpret. There are several non-
linear dimensionality reduction tools that are explicitly tailored to visualization, representing high-dimensional structure in
two dimensions.

t-SNE

t-SNE, t-distributed Stochastic Neighbor Embedding (McInnes et al. 2008), is a nonlinear dimensionality technique that is
primarily used for visualizing high-dimensional systems, such as the high-level representations learned by a neural network
architecture. It is sensitive to the specific parameters, and is stochastic, so each time it is run the representation will be
different. But it does an excellent job at highlighting high-dimensional structure in the data.

A t-SNE method is included in sklearn in the manifold library:

In [44]: brand_tsne = manifold.TSNE().fit_transform(brand_ratings_sc_vals)
brand_tsne_df = pd.DataFrame(brand_tsne, columns=['x', 'y'])
brand_tsne_df['brand'] = brand_ratings_sc.brand

We get each response transformed into the t-SNE fitted space. If we overlay the brand on a scatterplot of all the points,
we can see the relative position of the different brands in the t-SNE space in the upper-left panel of Fig. 9.15:

In [45]: sns.pairplot(brand_tsne_df, x_vars=['x'], y_vars=['y'],
hue='brand', size=10,
palette=sns.color_palette('Paired', n_colors=10))

UMAP

We can also use a similar technique, Uniform Manifold Approximation and Projection (McInnes et al. 2018), or UMAP,
another dimensionality reduction technique for visualizing high-dimensional structure in two dimensions. The mechanics of
training a UMAP model and visualizing the transformed data are similar to t-SNE:

In [46]: import umap

brand_embedding = umap.UMAP().fit_transform(brand_ratings_sc_vals)
brand_umap_df = pd.DataFrame(brand_embedding, columns=['x', 'y'])
brand_umap_df['brand'] = brand_ratings_sc.brand

In [47]: sns.pairplot(brand_umap_df, x_vars=['x'], y_vars=['y'],
hue='brand', size=10,
palette=sns.color_palette('Paired', n_colors=10))

The UMAP-transformed data can be seen in the upper-right panel of Fig. 9.15.
The results between the models are similar. UMAP is faster and tends to “collapse” the clusters more. Unlike t-SNE, the

trained model can also be saved and applied to new (but similar) data, which can be useful.
Comparing the t-SNE and UMAP representations to the PCA, EFA and MDS in Fig. 9.15, the additional structure provided

by the non-linear dimensionality reduction algorithms is clear.
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Fig. 9.15 t-SNE (upper-left), UMAP (upper-right), PCA (lower-left), EFA (lower-right), and MDS (bottom) representations of the brand ratings.
The similarities between brands b and c as well as brands f and g are very evident, but the structure is far more apparent in the t-SNE and UMAP
representations than in the others
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9.5 Learning More*

Principal Component Analysis There is a large literature describing many procedures, options, and applications for each
of the analyses in this chapter. With perceptual mapping, a valuable resource is Gower et al. (2010) which describes common
problems and best practices for perceptual maps. Jolliffe (2002) provides a comprehensive text on the mathematics and
applications of principal component analysis.

Factor Analysis A good conceptual overview of exploratory factor analysis with procedural notes is Fabrigar and Wegener,
Exploratory Factor Analysis (Fabrigar and Wegener 2011). A modestly more technical volume that covers exploratory and
confirmatory models together, with a social science (psychology) point of view, is Thompson, Exploratory and Confirmatory
Factor Analysis (Thompson 2004). For examination of the mathematical bases and procedures of factor analysis, a standard
text is Mulaik, Foundations of Factor Analysis (Mulaik 2009).

A companion to exploratory factor analysis is confirmatory factor analysis. Whereas EFA infers factor structure from a
dataset, CFA tests a proposed model to see whether it corresponds well to observed data. A common use of EFA is to select
items that load highly on underlying dimensions of interest. CFA allows you to confirm that the relationships between items
and factors are maintained in new datasets. An introduction to CFA is given in this book’s companion text, Chapman and
Feit (2019), Chap. 10.

Multidimensional Scaling There are many uses and options for multidimensional scaling beyond those considered in this
chapter. A readable introduction to the methods and applications is Borg, Groenen, and Mair, Applied Multidimensional Scal-
ing (Borg et al. 2018). The statistical foundations and methods are detailed in Borg and Groenen, Modern Multidimensional
Scaling (Borg and Groenen 2005).

Visualization Visualizing high-dimensional data is always a challenge. Embedding algorithms, such as t-SNE and UMAP,
enable visualization through non-linear transforms of the data that maximize local structure and topography, often generating
more interpretable visualizations than a PCA. See McInnes et al. (2008) and McInnes et al. (2018) for more information.

9.6 Key Points

Investigation of data complexity has several benefits. It allows inspection of the underlying dimensional relationships among
variables, investigation of how observations such as brands or people vary on those dimensions, and estimation of a smaller
number of more reliable dimensional scores. The following key points will assist you to investigate the underlying dimensions
of your data.

Principal Component Analysis

• Principal component analysis (PCA) finds linear functions that explain maximal variance in observed data. A key concept
is that such components are orthogonal (uncorrelated). A basic Python module is sklearn.decomposition.PCA
(Sect. 9.2.1).

• A common use for PCA is a biplot of aggregate scores for brands or people to visualize relationships. When this is done
for attitudinal data such as brand ratings it is called a perceptual map. This is created by aggregating the statistic of interest
by entity and charting a biplot (Sect. 9.2.2).

• Because PCA components often load on many variables, the results must be inspected cautiously and in terms of relative
position. It is particularly difficult to read the status of individual items from a PCA biplot (Sect. 9.2.5).

Exploratory Factor Analysis

• Exploratory factor analysis (EFA) models latent variables (factors) that are not observed directly but appear indirectly as
observed manifest variables. A valuable library is factor_analysis (Sect. 9.3.1).

• A fundamental decision in EFA is the number of factors to extract. Common criteria involve inspection of a scree plot and
extraction of factors such that all eigenvalues are greater than 1.0. The final determination depends on one’s theory and
the utility of results (Sect. 9.3.2).

• EFA uses rotation to adjust an initial solution to one that is mathematically equivalent but more interpretable according to
one’s aims. Another key decision in EFA is whether one believes the underlying latent variables should be uncorrelated
(calling for an orthogonal rotation such as varimax) or correlated (calling for an oblique rotation such as oblimin)
(Sect. 9.3.3).
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• After performing EFA, you can extract factor scores that are the best estimates for each observation (respondent) on each
factor. These can be extracted from the FactorAnalysis() object using the get_scores() method (Sect. 9.3.4).

Multidimensional Scaling

• Multidimensional scaling (MDS) is similar to principal component analysis but is able to work with both metric and
non-metric data. MDS scaling can be performed using sklearn.manifold.MDS() for (Sect. 9.4).

• One advantage of MDS is that the dimensionality is constrained: you can limit it to two dimensions, in which case 100%
of the variance will be represented in those dimensions

• Another advantage of MDS is that the relationship between variables is preserved, so if there is clear structure in the data,
it is less likely to be lost

• However, the MDS model itself is generally less useful for subsequent analysis, unlike for the PCA or EFA

Low-Dimensional Embedding Visualization

• Like MDS, t-SNE and UMAP represent two algorithms for projecting high-dimensional structure into two dimensions
(or an arbitrary number), which can be a way to understand a single observation’s position within the environment of all
other observations as well as visualizing overall structure within the system (Sect. 9.4.2)

• Unlike MDS, t-SNE and UMAP do not maintain relationships between observations, but rather make apparent topography
present in higher dimensions. This means that clusters stand out more clearly in these representations than in the others
discussed in the chapter
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