
Chapter 5
Comparing Groups: Tables and Visualizations

Marketing analysts often investigate differences between groups of people. Do men or women subscribe to our service at
a higher rate? Which demographic segment can best afford our product? Does the product appeal more to homeowners
or renters? The answers help us to understand the market, to target customers effectively, and to evaluate the outcome of
marketing activities such as promotions.

Such questions are not confined to differences among people; similar questions are asked of many other kinds of groups.
One might be interested in grouping data geographically: does Region A perform better than Region B? Or by time period:
did same-store sales increase after a promotion such as a mailer or a sale? In all such cases, we are comparing one group of
data to another to identify an effect.

In this chapter, we examine the kinds of comparisons between groups that often arise in marketing, with data that illustrate
a consumer segmentation project. We review Python procedures to find descriptive summaries by groups, and then visualize
the data in several ways.

5.1 Simulating Consumer Segment Data

We begin by creating a dataset that exemplifies a consumer segmentation project. For this example, we are offering a
subscription-based service (such as cable television or membership in a warehouse club) and have collected data from
N = 300 respondents on age, gender, income, number of children, whether they own or rent their homes, and whether they
currently subscribe to the offered service or not. We use these data in later chapters as well.

Questions around customer segments are common in marketing research. These segments might be produced via a
clustering algorithm (which we look at in Chap. 10) or could be created by some other heuristic, such as geographic location
combined with age. In these data, we have assigned each respondent to one of four consumer segments: “Suburb mix,”
“Urban hip,” “Travelers,” or “Moving up.” In this chapter we do not address how such segments might be identified; we just
presume to know them. We will then look at how we might determine how to form these groups based on other factors, such
as age, gender, or subscription status. If you know the group assignments, as we presume here, the segments themselves may
be viewed as arbitrary; the same methods may be used to compare groups based on region or any another factor instead.

Segmentation data are moderately complex and we separate our code into three parts:

1. Definition of the data structure: the demographic variables (age, gender, and so forth) plus the segment names and sizes.
2. Parameters for the distributions of demographic variables, such as the mean and variance of each.
3. Code that iterates over the segments and variables to draw random values according to those definitions and parameters.

By organizing the code this way, it becomes easy to change some aspect of the simulation to draw data again. For instance, if
we wanted to add a segment or change the mean of one of the demographic variables, only minor change to the code would
be required. We also use this structure to teach new Python commands that appear in the third step to generate the data.

If you wish to load the data directly, it is available from the book’s web site:

In [1]: import pandas as pd
segment_data = pd.read_csv('http://bit.ly/PMR-ch5')
segment_data.head()

© Springer Nature Switzerland AG 2020
J. S. Schwarz et al., Python for Marketing Research and Analytics, https://doi.org/10.1007/978-3-030-49720-0_5

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49720-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-49720-0_5


104 5 Comparing Groups: Tables and Visualizations

Out[1]:
Segment age gender income kids own_home \

0 travelers 60.794945 male 57014.537526 0 True
1 travelers 61.764535 female 43796.941252 0 False
...
4 travelers 60.594199 female 103020.070798 0 True

subscribe
0 False
1 False
...
4 False

In [2]: segment_data.describe()

Out[2]:
age income kids

count 300.000000 300.000000 300.000000
mean 40.923350 50669.454237 1.273333
...
max 79.650722 108830.388732 7.000000

However, we recommend that you at least read the data generation sections. We demonstrate important Python language
skills on simulating a dataset given a few basic statistics we want the dataset to represent.

5.1.1 Segment Data Definition

Our first step is to define general characteristics of the dataset: the variable names and the type of distribution from which
they are drawn:

In [3]: segment_variables = ['age', 'gender', 'income', 'kids', 'own_home',
'subscribe']

segment_variables_distribution = dict(zip(segment_variables,
['normal', 'binomial',
'normal','poisson',
'binomial', 'binomial']))

segment_variables_distribution['age']

Out[3]: ’normal’

We have defined six variables: age, gender, income, kids, own_home, and subscribe, defined in segment_variables.
segment_variables_distribution defines what kind of data will be present in each of those variables: normal data
(continuous), binomial (yes/no), or Poisson (counts). segment_variables_
distribution is a dictionary keyed by the variable name. For example, we see that when we pass ’age’ into
segment_variables_distribution we get ’normal’, indicating that we want age drawn from a normal
distribution.

Next we start defining the statistics for each variable in each segment:

In [4]: segment_means = {'suburb_mix': [40, 0.5, 55000, 2, 0.5, 0.1],
'urban_hip': [24, 0.7, 21000, 1, 0.2, 0.2],
'travelers': [58, 0.5, 64000, 0, 0.7, 0.05],
'moving_up': [36, 0.3, 52000, 2, 0.3, 0.2]}

segment_means is a dictionary keyed by the segment names. Each segment name has the means associated with it in a
list. The list is ordered based on the segment_variables list we defined before. So the first value is the mean age for
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that segment, the second values is the mean gender (i.e. the gender ratio), the third value is the mean income, and so
forth. We used lists here because it makes it easy to compare the means to each other. We can quickly see that the mean age
of ‘suburb_mix’ is 40 whereas for travelers it is 58. When we draw the random data later in this section, our routine will look
up values in this matrix and sample data from distributions with those parameters.

In the case of binomial and Poisson variables, we only need to specify the mean. In these data, gender, own_home,
and subscribe will be simulated as binomial (yes/no) variables, which requires specifying the probability for each draw.
kids is represented as a Poisson (count) variable, whose distribution is specified by its mean. Note that we use these
distributions for simplicity and do not mean to imply that they are necessarily the best distributions to fit real observations of
these variables. For example, real observations of income are better represented with a skewed distribution.

However, for normal variables—in this case, age and income, the first and third variables—we additionally need to
specify the variance of the distribution, the degree of dispersion around the mean. So we create another dictionary that
defines the standard deviation for the variables that require it:

In [5]: # standard deviations for each segment
# None = not applicable for the variable)
segment_stddev = {'suburb_mix': [5, None, 12000, None, None, None],

'urban_hip': [2, None, 5000, None, None, None],
'travelers': [8, None, 21000, None, None, None],
'moving_up': [4, None, 10000, None, None, None]}

Our next step is somewhat optional, but is good practice. We now have nearly all we need to generate a simulated dataset.
But we can make our process cleaner by getting all values keyed by exactly what they are. What do we mean by that? We
used set the mean and standard deviation values in lists above, but those are keyed numerically, so if we changed the order
of our variables, we would use the wrong value. Instead, it’s best practice to key them by the variable name. So we will now
create a dictionary that contains all the statistics for each segment in a resilient structure from which we could create the
entire dataset without referencing any other variables.

There is one more statistic left to set, which is the segment sizes. Here, we set those, and then we iterate through all the
segments and all the variables and create a dictionary to hold everything:

In [6]: segment_names = ['suburb_mix', 'urban_hip', 'travelers', 'moving_up']
segment_sizes = dict(zip(segment_names,[100, 50, 80, 70]))

segment_statistics = {}
for name in segment_names:
segment_statistics[name] = {'size': segment_sizes[name]}
for i, variable in enumerate(segment_variables):
segment_statistics[name][variable] = {

'mean': segment_means[name][i],
'stddev': segment_stddev[name][i]

}

What does this give us? We can check the values we get for the moving_up segment:

In [7]: segment_statistics['moving_up']

Out[7]: {’age’: {’mean’: 36, ’stddev’: 4},
’gender’: {’mean’: 0.3, ’stddev’: None},
’income’: {’mean’: 52000, ’stddev’: 10000},
’kids’: {’mean’: 2, ’stddev’: None},
’own_home’: {’mean’: 0.3, ’stddev’: None},
’size’: 70,
’subscribe’: {’mean’: 0.2, ’stddev’: None}}

We see all the statistics for each variable defined explicitly. We can see that the mean income for moving_up is $52,000 with
a standard deviation of $10,000. And that the mean age is 36 and the segment will be 30% male. There is a similar dictionary
for each segment. With this dictionary (called a lookup table), we can create our simulated dataset.



106 5 Comparing Groups: Tables and Visualizations

5.1.2 Final Segment Data Generation

To generate the segment data, the logic we follow is to use nested for loops, one for the segments and another within that
for the set of variables.

To outline how this will work, consider the following pseudocode (sentences organized like code):

Set up dictionary "segment_constructor" and pseudorandom number sequence
For each SEGMENT i in "segment_names" {
Set up a temporary dictionary "segment_data_subset" for this SEGMENT’s data
For each VARIABLE in "seg_variables" {

Check "segment_variable_distribution[variable]" to find distribution type for VARIABLE

Look up the segment size and variable mean and standard deviation in segment_statistics for
that SEGMENT and VARIABLE to
... Draw random data for VARIABLE (within SEGMENT) with
... "size" observations

}
Add this SEGMENT’s data ("segment_data_subset") to the overall data ("segment_constructor")

Create a DataFrame "segment_data" from "segment_constructor"
}

Pseudocode is a good way to outline and debug code conceptually before you actually write it. In this case, you can compare
the pseudocode to the actual Python code to see how we accomplish each step. Translating the outline into Python, we write:

In [8]: import numpy as np

np.random.seed(seed=2554)
segment_constructor = {}

# Iterate over segments to create data for each
for name in segment_names:
segment_data_subset = {}
print('segment: {0}'.format(name))
# Within each segment, iterate over the variables and generate data
for variable in segment_variables:
print('\tvariable: {0}'.format(variable))
if segment_variables_distribution[variable] == 'normal':

# Draw random normals
segment_data_subset[variable] = np.random.normal(

loc=segment_statistics[name][variable]['mean'],
scale=segment_statistics[name][variable]['stddev'],
size=segment_statistics[name]['size']

)
elif segment_variables_distribution[variable] == 'poisson':

# Draw counts
segment_data_subset[variable] = np.random.poisson(

lam=segment_statistics[name][variable]['mean'],
size=segment_statistics[name]['size']

)
elif segment_variables_distribution[variable] == 'binomial':

# Draw binomials
segment_data_subset[variable] = np.random.binomial(

n=1,
p=segment_statistics[name][variable]['mean'],
size=segment_statistics[name]['size']

)
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else:
# Data type unknown
print('Bad segment data type: {0}'.format(

segment_variables_distribution[j])
)

raise StopIteration
segment_data_subset['Segment'] = np.repeat(

name,
repeats=segment_statistics[name]['size']

)
segment_constructor[name] = pd.DataFrame(segment_data_subset)

segment_data = pd.concat(segment_constructor.values())

The core commands occur inside the if statements: according to the data type we want (“normal”, “poisson”, or “binomial”),
use the appropriate pseudorandom function to draw data (the function np.random.normal(loc, scale, size),
np.random.poisson(lam, size), or np.random.binomial(n, size, p), respectively). We draw all of the
values for a given variable within a given segment with a single command (drawing all the observations at once, with length
specified by segment_statistics[name][’size’]).

We can see an example of how this works by setting name = ’suburb_mix’ and variable = ’age’ and running
one of the commands from the loop. We set size=10 so we don’t get too many values:

In [9]:name = 'suburb_mix'
variable = 'age'
print(segment_statistics[name][variable]['mean'])
print(segment_statistics[name][variable]['stddev'])
np.random.normal(

loc=segment_statistics[name][variable]['mean'],
scale=segment_statistics[name][variable]['stddev'],
size=10

)

40
5

Out[9]: array([37.16950666, 45.23743976, 44.23421807, 41.62070249, 30.66891058,
44.86711234, 34.48936766, 42.63618686, 45.16799349, 42.61294136])

Note that the input code ends with the ). The numbers 40 and 5 are the result of the print statement, which will appear in
the output block in a Colab notebook or as printed here in a Jupyter notebook.

On the last two lines of output, we see that this output has ten values. Those values are distributed around 40 and a
standard deviation of 5 seems believable, although it is hard to really assess that with such a small sample.

For the Segment variable, we merely want a repetition of the segment name. To do this, we can use np.repeat(a,
repeats), which will repeat the input a repeats times:

In [10]: np.repeat(name, repeats=10)

Out[10]: array([’suburb_mix’, ’suburb_mix’, ’suburb_mix’, ’suburb_mix’,
’suburb_mix’, ’suburb_mix’, ’suburb_mix’, ’suburb_mix’,
’suburb_mix’, ’suburb_mix’], dtype=’|S10’)

Back to the main simulation code, there are a few things to note. To see that the code is working and to show progress, we
use print() to print out the segment and variable names as the loop iterates. That results in the following output as the
code runs:

segment: suburb_mix
variable: age
variable: gender
variable: income
variable: kids
variable: own_home
variable: subscribe
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segment: urban_hip
variable: age
variable: gender
variable: income
variable: kids
variable: own_home
variable: subscribe

segment: travelers
variable: age
variable: gender
variable: income
variable: kids
variable: own_home
variable: subscribe

segment: moving_up
variable: age
variable: gender
variable: income
variable: kids
variable: own_home
variable: subscribe

Inside the first loop (name loop), we define segment_data_subset as a dictionary. In vectorized programming
languages, such as R or Matlab, it would be advisable to preallocate the data structures as in those languages, whenever
an object grows in memory—such as adding a row—a copy is made of the object. This uses twice the memory and slows
things down. Preallocating avoids that problem.

Python, however is extremely efficient at growing native iterable types, such as lists and dicts, in memory. For this
reason, we generate the data in a dict, and then convert it to a Pandas DataFrame for analysis.

Exceptions to this preallocation rule would be when using non-native, vectorized objects such as Numpy arrays and
Pandas DataFrames. Whenever there is a need to iteratively generate data in such types, rather than converting to them
from a native type, it is advisable to preallocate the data arrays. Another benefit of preallocating is that it adds a bit of error
checking: if a result doesn’t fit into the dataframe where it should fit, we will get a warning or error.

We finish the if blocks in our code with a StopIteration error that is raised in the case that a proposed data type
doesn’t match what we expect. There are three if tests for the expected data types, and a final else block in case none
of the ifs matches. This protects us in the case that we mistype a data type or if we try to use a distribution that hasn’t
been defined in the random draw code, such as a gamma distribution. This error condition would cause the code to exit
immediately and print an error string.

Notice that we are doing a lot of thinking ahead about how our code might change and potentially break in the future to
ensure that we would get a warning when something goes wrong. Our code also has another advantage that you may not
notice right away: we call each random data function such as np.random.normal in exactly one place. If we discover
that there was something wrong with that call—say we wanted to change one of the parameters of the call—we only need to
make the correction in one place. This sort of planning is a hallmark of good programming in Python or any other language.
While it might seem overly complex at first, many of these ideas will become habitual as you write more programs.

To finish up the dataset, we perform a few housekeeping tasks, converting each binomial variable to clearer values,
booleans or strings:

In [11]: segment_data['gender'] = segment_data['gender'].apply(
lambda x: 'male' if x else 'female'

)
segment_data['own_home'] = segment_data['own_home'].apply(

lambda x: True if x else False
)
segment_data['subscribe'] = segment_data['subscribe'].apply(

lambda x: True if x else False
)
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We may now inspect the data. As always, we recommend a data inspection plan as noted in Sect. 3.6, although we only show
one of those steps here:

In [12]: segment_data.describe(include='all')

Out[12]: Segment age gender income kids \
count 300 300.000000 300 300.000000 300.000000
unique 4 NaN 2 NaN NaN
top suburb_mix NaN male NaN NaN
freq 100 NaN 156 NaN NaN
mean NaN 40.923350 NaN 50669.454237 1.273333
std NaN 12.827494 NaN 19336.497748 1.413725
min NaN 18.388730 NaN 11297.309231 0.000000
25% NaN 32.870035 NaN 41075.804389 0.000000
50% NaN 38.896711 NaN 51560.344807 1.000000
75% NaN 47.987569 NaN 62172.668698 2.000000
max NaN 79.650722 NaN 108830.388732 7.000000

own_home subscribe
count 300 300
unique 2 2
top False False
freq 167 265
mean NaN NaN
std NaN NaN
min NaN NaN
25% NaN NaN
50% NaN NaN
75% NaN NaN
max NaN NaN

The dataframe is now suitable for exploration. And we have reusable code: we could create data with more observations,
different segment sizes, or segments with different distributions or means by simply adjusting the matrices that define the
segments and running the code again.

As a final step we save the dataframe as a backup and to use again in later chapters (Sects. 10.2 and 11.1.2). Change the
destination if you have created a folder for this book or prefer a different location:

In [13]: from google.colab import files
with open('segment_dataframe_Python_intro_Ch5.csv', 'w') as f:
segment_data.to_csv(f)

files.download('segment_dataframe_Python_intro_Ch5.csv')

Note that if you are running Python locally, the files.download() command is unnecessary, as is importing the files
module (which is Colab-specific).

5.2 Finding Descriptives by Group

For our consumer segmentation data, we are interested in how measures such as household income and gender vary for the
different segments. With this insight, a firm might develop tailored offerings for the segments or engage in different ways to
reach them.

An ad hoc way to do this is with dataframe indexing: find the rows that match some criterion, and then take the mean (or
some other statistic) for the matching observations on a variable of interest. For example, to find the mean income for the
“moving_up” segment:

In [14]: segment_data.loc[segment_data.Segment == 'moving_up']['income'].mean()

Out[14]: 51763.55266630597
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This says “from the income observations, take all cases where the Segment column is ‘moving_up’ and calculate their mean.”
We could further narrow the cases to “moving_up” respondents who also do not subscribe using Boolean logic:

In [15]: segment_data.loc[
(segment_data['Segment'] == 'moving_up') &
(segment_data['subscribe'] == False)

]['income'].mean()

Out[15]: 52495.6820839035

This quickly becomes tedious when you wish to find values for multiple groups.
As we saw briefly in Sect. 3.2.1, a more general way to do this is with data.groupby(INDICES)[COLUMN].

FUNCTION. The result of groupby() is to divide data into groups for each of the unique values in INDICES and then
apply the FUNCTION function to the data in COLUMN for each group:

In [16]: segment_data.groupby('Segment')['income'].mean()

Out[16]: Segment
moving_up 51763.552666
suburb_mix 55552.282925
travelers 62609.655328
urban_hip 20267.737317
Name: income, dtype: float64

With groupby(), keep in mind that it is a method on data and the splitting factors INDICES are the argument. The
FUNCTION, mean() in this case, is applied to a single COLUMN, ‘income’ in this case. There are a subset of defined
methods that can be applied to the columns, such as mean() and sum(), but any method can be applied using the apply
method as described in Sect. 3.3.3.

You can break out the results by multiple factors if you supply factors in a list. For example, we can break out by
segment and subscription status:

In [17]: segment_data.groupby(['Segment', 'subscribe'])['income'].mean()

Out[17]: Segment subscribe
moving_up False 52495.682084

True 49079.078135
suburb_mix False 55332.038973

True 58478.381142
travelers False 62940.429960

True 49709.444658
urban_hip False 20496.375001

True 19457.112800
Name: income, dtype: float64

Here, we can use the unstack() method on the output to get a nicer formatting of the output:

In [18]: segment_data.groupby(
['Segment', 'subscribe']

)['income'].mean().unstack()

Out[18]: subscribe False True
Segment
moving_up 52495.682084 49079.078135
suburb_mix 55332.038973 58478.381142
travelers 62940.429960 49709.444658
urban_hip 20496.375001 19457.112800

What does unstack() do? Since we grouped by two different columns, we wound up with a hierarchical index. We can
“unstack,” or pivot, that hierarchy, making one dimension a column and the other a row using unstack(). This can make
the output easier to read and to work with.
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Suppose we wish to add a “segment mean” column to our dataset, a new observation for each respondent that contains
the mean income for their respective segment so we can compare respondents’ incomes to those typical for their segments.
We can do this by using groupby() to get the segment means, and then using join() to add the mean segment income
as a column income_seg. We generally do not like adding derived columns to primary data because we like to separate
data from subsequent computation, but we do so here for illustration:

In [19]: np.random.seed(4532)
segment_income = segment_data.groupby('Segment')['income'].mean()
segment_data = segment_data.join(segment_income,

on='Segment',
rsuffix='_segment')

segment_data.head(5)

Out[19]: age gender income kids own_home subscribe \
0 44.057078 female 54312.575694 3 False False
1 34.284213 female 67057.192182 1 False False
2 45.159484 female 56306.492991 3 True False
3 41.032557 male 66329.337521 1 False True
4 41.781819 female 56500.410372 2 False False

Segment income_segment
0 suburb_mix 55552.282925
1 suburb_mix 55552.282925
2 suburb_mix 55552.282925
3 suburb_mix 55552.282925
4 suburb_mix 55552.282925

When we check the data, we see that each row has an observation that matches its segment mean.
It is worth thinking about how this works. In a join(), two DataFrames, two Series, or a DataFrame and a

Series can be combined using a common column as an index, in this case Segment. Even though segment_income
only had 4 rows, one for each segment, a value was added to every row of seg based on the shared value of the Segment
column. The result is a dataframe in which each row of segment_mean occurs many times in the order requested.

Again, we don’t want a derived column in our primary data, so we now remove that column by using the drop()method:

In [20]: segment_data.drop(labels='income_segment', axis=1, inplace=True)
segment_data.head(5)

Out[20]: age gender income kids own_home subscribe \
0 44.057078 female 54312.575694 3 False False
...
4 41.781819 female 56500.410372 2 False False

Segment
0 suburb_mix
...
4 suburb_mix

As an aside, drop() removes an entire row or column from a dataframe. We specify whether we want it to be a row or
column with the axis argument: 0 for row and 1 for column. Which column or row to remove is specified with the label
argument, which can specify a single label or can be a list of labels to be removed. The inplace=True argument specifies
that this should be done on the object itself. The default value for inplace is False, in which case drop() will return a
copy of the input dataframe rather than modifying it.

Going back to our main point, which was being quickly able to compare an individual response to the segment mean, we
see that groupby() exemplifies the power of Python and pandas to extract and manipulate data with simple and concise
commands.
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5.2.1 Descriptives for Two-way Groups

A common task in marketing is cross-tabulating, separating customers into groups according to two (or more) factors. We
can use groupby() to aggregate across multiple factors. For example:

In [21]: segment_data.groupby(['Segment', 'own_home'])['income'].mean()

Out[21]: Segment own_home
moving_up False 51430.222115

True 52363.547659
suburb_mix False 56764.508540

True 54239.038508
travelers False 62923.233941

True 62449.907732
urban_hip False 20139.092369

True 21057.984851
Name: income, dtype: float64

We now have a separate group for each combination of Segment and own_home and can begin to see how income is
related to both the Segment and the own_home variables.

The grouping can be extended to include as many grouping variables as needed:

In [22]: segment_data.groupby(
['Segment', 'own_home', 'subscribe']

)['income'].mean()

Out[22]: Segment own_home subscribe
moving_up False False 52380.092911

True 47630.738931
True False 52714.693149

True 51251.586942
suburb_mix False False 56478.645027

True 59451.625569
True False 54160.506701

True 56045.270075
travelers False False 62923.233941

True False 62949.533735
True 49709.444658

urban_hip False False 20171.798013
True 20031.163747

True False 22281.548438
True 13716.603325

Name: income, dtype: float64

And, again, we can use unstack() to make it more readable:

In [23]: segment_data.groupby(
['Segment', 'own_home', 'subscribe']

)['income'].mean().unstack()

Out[23]: subscribe False True
Segment own_home
moving_up False 52380.092911 47630.738931

True 52714.693149 51251.586942
suburb_mix False 56478.645027 59451.625569

True 54160.506701 56045.270075
travelers False 62923.233941 NaN

True 62949.533735 49709.444658
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urban_hip False 20171.798013 20031.163747
True 22281.548438 13716.603325

The groupbymethod allows us to compute functions of continuous variables, such as the mean of income or age, for any
combination of factors (Segment, own_home and so forth). This is such a common task in marketing research that there
used to be entire companies who specialize in producing cross tabs. As we’ve just seen, these are not difficult to compute in
Python.

We might also want to know the frequency with which different combinations of Segment and own_home occur. We
can compute frequencies using groupby() along with the count() method to obtain one-way or multi-way counts:

In [24]: segment_data.groupby(
['Segment', 'own_home']

)['subscribe'].count().unstack()

Out[24]: own_home False True
Segment
moving_up 45 25
suburb_mix 52 48
travelers 27 53
urban_hip 43 7

There are 7 observed customers in the “Urban hip” segment who own their own homes, and 53 in the “Travelers” segment.
Suppose we want a breakdown of the number of kids in each household (kids) by segment:

In [25]: segment_data.groupby(
['kids', 'Segment']

).subscribe.count().unstack(level=1)

Out[25]: Segment moving_up suburb_mix travelers urban_hip
kids
0 13.0 15.0 80.0 14.0
1 18.0 27.0 NaN 21.0
2 21.0 21.0 NaN 12.0
3 9.0 29.0 NaN 1.0
4 5.0 3.0 NaN 1.0
5 2.0 3.0 NaN 1.0
6 1.0 2.0 NaN NaN
7 1.0 NaN NaN NaN

This tells us that we have 14 “Urban hip” respondents with 0 kids, 21 “Suburb mix” respondents with 2 kids, and so forth. It
represents purely the count of incidence for each crossing point between the two factors, kids and Segment. In this case
we are treating kids as a factor and not a number. Note that NaN indicates that there were no values for that combination
of factors, i.e., the count is zero.

We can also use the crosstabs() function to get the same result:

In [26]: pd.crosstab(segment_data['kids'], segment_data['Segment'])

Out[26]: Segment moving_up suburb_mix travelers urban_hip
kids
0 13 15 80 14
1 18 27 0 21
2 21 21 0 12
3 9 29 0 1
4 5 3 0 1
5 2 3 0 1
6 1 2 0 0
7 1 0 0 0

However, kids is actually a count variable; if a respondent reported 3 kids, that is a count of 3 and we could add together
the counts to get the total number of children reported in each segment.:
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In [27]: segment_data.groupby('Segment')['kids'].sum()

Out[27]: Segment
moving_up 130
suburb_mix 195
travelers 0
urban_hip 57
Name: kids, dtype: int64

Python typically has many ways to arrive at the same result. This may seem overly complex yet it is a good thing. One reason
is that there are multiple options to match your style and situation. Each method produces results in a different format, and
one format might work better in some situation than another. Another reason is that you can do the same thing in two different
ways and compare the answers, thus testing your analyses and uncovering potential errors.

5.2.2 Visualization by Group: Frequencies and Proportions

Tables are very valuable for exploring data and interactions between various factors. However, visualizations can rapidly
reveal associations that may be less obvious when observed within a table.

The most commonly used plotting library in Python, and default pandas plotting library is matplotlib (Hunter 2007).
Its integration with pandas makes plotting DataFrames straightforward.

Suppose we plot the count of subscribers for each segment to understand better which segments use the subscription
service, as in Fig. 5.1:

In [28]: import matplotlib.pyplot as plt

segments_groupby_segments = segment_data.groupby(['Segment'])
segments_groupby_segments['subscribe'].value_counts().unstack().plot(

kind='barh',
figsize=(8, 8)

)
plt.xlabel('counts')

Fig. 5.1 Conditional histogram for count of subscribers within each segment
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Fig. 5.2 Conditional histogram for proportion of subscribers within each segment

Here, we used the value_counts() function introduced in 3.2.2. unstack() unstacks the indices, turning the series
object in to a dataframe that we can easily plot.

By passing normalize=True to value_counts() we can get proportions within each segment that subscribe, as
in Fig. 5.2:

In [29]: segments_groupby_segments['subscribe'].value_counts(
normalize=True

).unstack().plot(
kind='barh',
figsize=(8, 8)

)
plt.xlabel('proportion of segment')

And by aggregating by subscribe and running value_count() on Segment we can see breakdown of subscribers
and non-subscribers by segment (Fig. 5.3):

In [30]: segment_data.groupby(['subscribe'])['Segment'].value_counts(
normalize=True

).unstack().plot(kind='barh', figsize=(8, 8))
plt.xlabel('proportion of subscribers')

Another popular packages is seaborn, which simplifies some of the aggregation steps and makes attractive figures with
the default options. We can easily create something similar to Fig. 5.2 (not shown):

In [31]: import seaborn as sns
sns.barplot(y='Segment', x='subscribe', data=segment_data,

orient='h', ci=None)

Seaborn also includes the facetgrid() function which allows the creation of multipanel figures, as in Fig. 5.4:

In [32]: g = sns.FacetGrid(segment_data, col='Segment')
g.map(sns.barplot, 'subscribe', orient='v', ci=None)

This particular usage is not very interesting, but we can now separate out another factor, such as home ownership and
have the respective bars in separate rows (Fig. 5.5):
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Fig. 5.3 Conditional histogram for proportion of segments within each subscription state

Fig. 5.4 Conditional histogram for proportion of segments within each subscription state generate using Seaborn facetgrid()

In [33]: g = sns.FacetGrid(segment_data, col='Segment', row='own_home')
g.map(sns.barplot, 'subscribe', orient='v', ci=None)

5.2.3 Visualization by Group: Continuous Data

In the previous section we saw how to plot counts and proportions. What about continuous data? How would we plot
income by segment in our data? A simple way is to use groupby() to find the mean income, and then use the
plot(kind=’bar’) method to plot the computed values:

In [34]: segment_data.groupby(['Segment'])['income'].mean().plot.bar()

The result is in the left panel of Fig. 5.6. We can also use seaborn barplot() to produce a similar plot, shown in the
right panel of Fig. 5.6:

In [35]: sns.barplot(x='Segment', y='income', data=segment_data, color='.6',
estimator=np.mean, ci=95)
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Fig. 5.5 Conditional histogram for proportion of segments within each subscription state generate using Seaborn facetgrid()

Fig. 5.6 Average income by segment using groupby() and plot() in the left panel and seaborn barplot() in the right panel

Note that the two plotting functions order the segments differently. Seaborn does more processing of the data and does things
like sorting the columns. In general, Seaborn figures work better out of the box, but can be more difficult to customize.

Adding Another Factor

How do we split this out further by home ownership? Using matplotlib, we can add another groupby factor, own_home,
shown in Fig. 5.7 left panel:

In [36]: segment_data.groupby(
['Segment', 'own_home']

)['income'].mean().unstack().plot.bar()

Using Seaborn, an additional factor may be added in the form of a facet grid, as in Fig. 5.6, or by setting the hue parameter,
as shown in the right panel of Fig. 5.7:

In [37]: sns.barplot(x='Segment', y='income', hue='own_home',
data=segment_data, estimator=np.mean, ci=95)
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Fig. 5.7 Average income by segment and home ownership using plot() (left) or Seaborn barplot() (right)

Fig. 5.8 Box-and-whiskers plot for income by segment using matplotlib (left) Seaborn (right) boxplot() functions

Box Plot

A more informative plot for comparing values of continuous data, like income for different groups is a box-and-whiskers
plot (also known simply as a “boxplot”), which we first encountered in Sect. 3.4.2. A boxplot is better than a barchart because
it shows more about the distributions of values.

We can create a boxplot using the matplotib boxplot() function:

In [38]: x = segment_data.groupby('Segment')['income'].apply(list)
_ = plt.boxplot(x=x.values, labels=x.index)

Seaborn boxplot() works with a DataFrame and two factors (at least one of which must be numeric):

In [39]: sns.boxplot(x='Segment', y='income', data=segment_data,
color='0.7', orient='v')

Figure 5.8 shows that the income for “Travelers” is higher and also has a greater range, with a few “Travelers” reporting
very low incomes. The range of income for “Urban hip” is much lower and tighter. Although box-and-whisker plots are not
common in business reporting, we think they should be. They encode a lot more information than the averages shown in
Fig. 5.6.

To break this down by more factors, we may add a hue argument. The Seaborn facetgrid() method allows us to
condition on more factors. However, for two factors, such as comparing income by segment and home ownership, we might
use hue:

In [40]: sns.boxplot(y='Segment', x='income', hue='own_home',
data=segment_data, color='0.7', orient='h')

In Fig. 5.9, it is clear that within segments there is no consistent relationship between income and home ownership.
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Fig. 5.9 Box-and-whiskers plot for income by segment and home ownership using boxplot

5.2.4 Bringing It All Together

We have learned how to approach comparing groups. How might we use this? As analysts, we explore data in order to learn
new information that we can share and to inform marketing and product decisions. So how might we interpret what we have
seen so far?

We have not yet done any statistical analysis, which we introduce in Chap. 6, so any conclusions must be tempered. But,
directionally, we observe that the segments differ in several ways that may affect how we should market our subscription
product. If our subscription is an expensive, luxury product, we might want to target only the wealthier segments. Perhaps
those without children are more likely to have disposable income, and they may be members of the “travelers segment,”
which has a very low rate of subscription. On the other hand, if our product is intended for young urbanites (i.e., “urban
hip”), who show a high subscription rate, we might take more care with pricing, as the average income is lower in that group.

The exact interpretation depends on what problem we are trying to solve. Are we trying to understand our current
customers so we can get more similar customers? Or are we trying to expand our customer base into different groups?

The way we approach an analysis is driven by the questions we want to answer, not by the data we have. Sometimes our
ability to answer those questions is hampered by the data we have available. In that case, we might think about new data
sources, or apply cautious interpretation.

5.3 Learning More*

The topics in this chapter are foundational both for programming skills in Python and for applied statistics.
For categorical data analysis, the best starting place is—although not specific to Python—is Agresti’s An Introduction to

Categorical Data Analysis (Agresti 2012).
In Chap. 6 we continue our investigation with methods that formalize group comparisons and estimate the statistical

strength of differences between groups.

5.4 Key Points

This was a crucial chapter for doing everyday analytics with Python. Here are some of the key points.

• We generated a very complicated dataset; to do so, we defined each segment variable, its distribution type, and the
parameters of those distributions. We used those initializations in a set of for loops to generate the dataset (Sect. 5.1)
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• The groupby() command can split up data and automatically apply functions such as mean() and count()
(Sect. 5.2)

• Frequency of occurrence can be found with groupby() and the count() function or using the pandas crosstabs()
function (Sect. 5.2.1)

• matplotlib and Seaborn both offer valuable plotting functions. Seaborn plots tend to look better in default settings, but are
more complex to customize than matplotlib plots (Sect. 5.2.2)

• Charts of proportions and occurrence by a factor can be generated using groupby() along with the plot() method or
by using the Seaborn barplot() function (Sect. 5.2.2)

• The Seaborn FacetGrid() class extends such plots to multiple factors (Sect. 5.2.2)
• Plots for continuous data by factor can also use groupby() along with plot() or the Seaborn barplot() function,

or even better, box-and-whiskers plots with boxplot(), from either matplotlib or Seaborn. (Sect. 5.2.3)
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