
Chapter 11
Classification: Assigning Observations to Known Categories

In Chap. 10, we learned about using clustering methods to identify structure within a dataset. We learned about how the
most challenging part of clustering is not applying a model, but interpreting the output in a meaningful and useful way. In
this chapter, we will explore supervised learning methods. Unlike with clustering, generally, the value of a supervised model
output is inherent in the framing of the question. This makes interpretation easier, but it requires an outcome variable to have
a strong relationship with its indicator variables, and it benefits from data that are well structured and clean. With statistical
modeling, people often say “garbage in, garbage out,” meaning that even a very sophisticated model will not be able to
produce reliable results if the data are not high quality or there is no actual relationship between input and output variables.

11.1 Classification

Whereas clustering is the process of discovering group membership, classification is the prediction of membership. In this
section we look at two examples of classification: predicting segment membership, and predicting who is likely to subscribe
to a service.

Classification uses observations whose status is known to derive predictors, and then applies those predictors to new
observations. When working with a single dataset it is typically split into a training set that is used to develop the classification
model, and a test set that is used to determine performance. It is crucial not to assess performance on the same observations
that were used to develop the model.

A classification project typically includes the following steps at a minimum:

• A dataset is collected in which group membership for each observation is known or assigned (e.g., assigned by behavioral
observation, expert rating, or clustering procedures)

• The dataset is split into a training set and a test set. A common pattern is to select 50–80% of the observations for the
training set (70% seems to be particularly common), and to assign the remaining observations to the test set.

• A prediction model is built, with a goal to predict membership in the training data as well as possible.
• The resulting model is then assessed for performance using the test data. Performance is assessed to see that it exceeds

chance (base rate). Additionally one might assess whether the method performs better than a reasonable alternative (and
simpler or better-known) model.

Classification is an even more complex area than clustering, with hundreds of methods, thousands of academic papers each
year, and enormous interest with technology and data analytics firms. Our goal is not to cover all of that but to demonstrate the
common patterns, in Python generally and scikit-learn specifically, using two of the best-known and most useful classification
methods, the naive Bayes and random forest classifiers.

11.1.1 Naive Bayes Classification: GaussianNB()

A simple yet powerful classification method is the Naive Bayes (NB) classifier. Naive Bayes uses training data to learn
the probability of class membership as a function of each predictor variable considered independently (hence “naive”).
When applied to new data, class membership is assigned to the category considered to be most likely according to the joint

© Springer Nature Switzerland AG 2020
J. S. Schwarz et al., Python for Marketing Research and Analytics, https://doi.org/10.1007/978-3-030-49720-0_11

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49720-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-49720-0_11


244 11 Classification: Assigning Observations to Known Categories

probabilities assigned by the combination of predictors. We use the naive_bayes library from scikit-learn (Pedregosa
et al. 2011).

We will use the same data as in Chap. 10:

In [0]: import pandas as pd
seg_df = pd.read_csv('http://bit.ly/PMR-ch5')
seg_df['is_female'] = seg_df.gender == 'female'
seg_sub = seg_df.drop(['Segment', 'gender'], axis=1)
seg_sub.head()

The first step in training a classifier is to split the data into training and test data, which will allow one to check whether
the model works on the test data (or is instead overfitted to the training data). We select 70% of the data to use for training
and keep the unselected cases as holdout (test) data. Classification requires known segment assignments in order to learn how
to assign new values, which we will store in seg_labels. The convention is that the independent variables are assigned to
X, e.g. X_train and X_test, and the dependent variable (or label) to y, e.g. y_train and y_test.

In [1]: import numpy as np

seg_labels = seg_df.Segment
np.random.seed(537)
rand_idx = np.random.rand(seg_labels.shape[0])
train_idx = rand_idx <= 0.7
test_idx = rand_idx > 0.7

X_train = seg_sub.iloc[train_idx]
X_test = seg_sub.iloc[test_idx]

y_train = seg_labels.iloc[train_idx]
y_test = seg_labels.iloc[test_idx]

Why do we hold out a subset of the data in X_test and y_test? We do so to assess overfitting of the model. The model
might learn the training data incredibly well and be able to assign labels within the training dataset with 100% accuracy, but
we want the model to be generalizable, to be effective for data it has not observed. By training the model on one subset of
the data and then evaluating its performance on another subset, we can estimate its performance on unknown data.

We then use the training data to train a naive Bayes classifier to predict Segment membership from all other variables in
the training data. This is a very simple command:

In [2]: from sklearn import naive_bayes

nb = naive_bayes.GaussianNB()

nb.fit(X_train, y_train)

list(zip(nb.classes_, nb.class_prior_))

Out[2]: [(’moving up’, 0.27102803738317754),
(’suburb_mix’, 0.32242990654205606),
(’travelers’, 0.2523364485981308),
(’urban_hip’, 0.1542056074766355)]

Looking at the class_prior_ values offers some insight into how the model works. First, the a priori likelihood of
segment membership—i.e., the estimated odds of membership before any other information is added—is 27.1% for the
Moving up segment, 32.2% for the Suburb mix segment, and so forth. The model uses probabilities conditional on each
predictor.

The NB classifier starts with the observed probabilities of gender, age, etc., conditional on segment found in the training
data. It then uses Bayes’ Rules to compute the probability of segment, conditional on gender, age, etc. This can then be used
to estimate segment membership (i.e., assign a label or make a prediction) in new observations such as the test data. You
have likely seen a description of how Bayes’ Rule works, and we will not repeat it here. For details, refer to a general text on
Bayesian methods such as Kruschke (2016).



11.1 Classification 245

What does this look like in practice? We can generate predictions for the whole input dataset, including both training and
test data, and look at the true and predicted labels for a few users:

In [3]: predictions = nb.predict(seg_sub)
seg_sub_pred = seg_sub.copy()
seg_sub_pred['prediction'] = predictions
seg_sub_pred['true_segment'] = seg_df['Segment']
seg_sub_pred.sample(5)

Out[3]: age income kids own_home subscribe is_female \
183 32.806946 60752.625106 5 False False True
194 43.302666 71789.130948 1 False False False
201 34.294615 62236.114534 5 False False False
99 31.673893 75433.895743 3 True False False
10 79.650722 32013.086824 0 True False False

prediction true_segment
183 moving_up moving_up
194 suburb_mix moving_up
201 moving_up moving_up
99 suburb_mix suburb_mix
10 travelers travelers

What do we see here? First, comparing the prediction and true_segment columns, the model appears to be
performing well: only a single row does not match. The model has used those other fields, age, income, kids, etc., to generate
a reasonable prediction.

We see it performed fairly well on these few users, but how well did the model perform overall? Using the test data, we
can check the accuracy of the model using the score() method:

In [4]: nb.score(X_test, y_test)

Out[4]: 0.8488372093023255

This returns an accuracy score, the agreement between predicted and actual segment membership, which in this case is
about 85%.

However, when the base rate of an outcome is high, then a high level of raw agreement is not meaningful on its own.
For example, if 98% of consumers do not purchase a product, then a prediction accuracy of 95% (off by 3%) is worse than
simply predicting 100% non-purchase (off by 2%). Instead of raw agreement, one should assess performance of the model
in terms of predictive power. A common metric used is the F1 score, which is the harmonic mean of precision and recall
(which we introduce in detail below).

In this case, we see that NB was able to recover the segments in the test data imperfectly but substantially better than
chance, the F1 score is also about 85%:

In [5]: from sklearn import metrics

y_pred = nb.predict(X_test)

metrics.f1_score(y_true=y_test, y_pred=y_pred, average='weighted')

Out[5]: 0.8532809445929236

The average parameter specifies how the performance for the four different segments (called classes in sklearn)
should be combined, in this case weighted. This means that the F1 score will be calculated for each class and the average
calculated, weighted by the class proportions in the population.

We compare performance for each category using what is known in machine learning as a confusion matrix:

In [6]: import seaborn as sns
import matplotlib.pyplot as plt



246 11 Classification: Assigning Observations to Known Categories

def confusion_matrix(y_true, y_pred, model):
conf_mat = metrics.confusion_matrix(y_true, y_pred)

sns.heatmap(conf_mat.T,
xticklabels=model.classes_, yticklabels=model.classes_,
annot=True, fmt='d')

plt.xlabel('true label')
plt.ylabel('predicted label')

In [7]: confusion_matrix(y_test, y_pred, nb)

The output can be seen in Fig. 11.1
Correct predictions are indicated on the diagonal. The NB prediction (shown in the rows) was correct for the vast majority

of observations in each segment, except moving_up. When we examine individual categories, we see that NB was correct
for every proposed member of the Urban hip segment (17 correct out of 17 proposed), and for over 96% of the Traveler
proposals (26 correct out of the proposed 27). However, it incorrectly classified 10 of the actual 31 Suburb mix respondents
into other segments, and similarly failed to identify 9 of the true Moving up segment.

This demonstrates the asymmetry of prediction: the model needs to correctly identify both true positives and true
negatives. There is tension between those requirements, which correspond to two important statistical concepts in machine
learning.

The first is precision, which is the proportion of the sample identified with a particular label that truly has that label, i.e.
the proportion of all labeled positives that are true positives:

precision = true positives

true positives + f alse positives
(11.1)

Precision can be read from the rows of the confusion matrix. In this case, the NB model demonstrated a precision of 100%
for the Urban hip segment (17/17), 96% for the travelers segment (26/27), 87.5% for the Suburban mix segment (21/24), and
only 50% for the Moving up segment (9/18).

The second important concept is recall or sensitivity, also called the true positive rate. It is the proportion of all positives
that were correctly identified:

recall = true positives

true positives + f alse negatives
(11.2)

Fig. 11.1 A confusion matrix exposes class-specific performance of the model. The NB model performed well on identifying travelers and
urban_hip, slightly less well on suburb_mix, and rather poorly on moving_up



11.1 Classification 247

Recall can be read from the columns of the confusion matrix. Here the NB model demonstrated a recall of 100% for the
Urban hip (17/17) and Travelers (26/26) segments, but only 68% for the Suburban mix segment (21/31), and 75% for the
Moving up segment (9/12).

If we return to our F1 score from earlier, the formula for that is:

F1 = 2 · precision · recall
precision+ recall

(11.3)

We can write a function to calculate these values:

In [8]: def return_precision_recall(y_true, y_pred, model):
conf_mat = metrics.confusion_matrix(y_true, y_pred)

precision = pd.Series(metrics.precision_score(y_test,
y_pred,
average=None),

index=model.classes_)
recall = pd.Series(metrics.recall_score(y_test,

y_pred,
average=None),

index=model.classes_)
f1 = pd.Series(2 * (precision * recall)/(precision + recall),

index=model.classes_)

return pd.DataFrame([precision, recall, f1], index=['precision',
'recall', 'f1'])

In [9]: return_precision_recall(y_test, y_pred, nb)

Out[9]: moving up suburb_mix travelers urban_hip
precision 0.50 0.875000 0.962963 1.0
recall 0.75 0.677419 1.000000 1.0
f1 0.60 0.763636 0.981132 1.0

There is likely to be a different business gain for identifying true positives and true negatives, versus the costs of false
positives and false negatives. If you have estimates of these costs, you can use the confusion matrix to compute a custom
metric for evaluating your classification results.

To better understand the model performance, we can visualize the decision boundaries in the PCA space, as show in
Fig. 11.2:

In [10]: from sklearn import clone, decomposition

def plot_decision_pca(model, X, y):
width, height = 500, 500

# Transform the X values using a PCA
p = decomposition.PCA(random_state=132, svd_solver='full')
X_transformed = p.fit_transform(X.iloc[:,:2])

# Pull the first two dimensions
x0 = X_transformed[:, 0]
x1 = X_transformed[:, 1]

# Get evenly spaced values between the min and max values
x0_g = np.linspace(x0.min(), x0.max(), width)
x1_g = np.linspace(x1.min(), x1.max(), height)

# Create a "grid" of those evenly spaced values from each vector



248 11 Classification: Assigning Observations to Known Categories

xx, yy = np.meshgrid(x0_g, x1_g)

# Stack together all of the sampled values
X_grid_transformed = np.vstack([xx.ravel(), yy.ravel()]).T

# Do the inverse transform to get the non-PCA transformed values
X_grid = p.inverse_transform(X_grid_transformed)

# Fit a clone of the model using use inverse transformed columns
# From the first two PCA dimensions.
# Predict values on the sampled values
model_c = clone(model)
model_c.fit(p.inverse_transform(np.vstack([x0, x1]).T), y)
X_grid_labels = model_c.predict(X_grid)

# Create a class mapper to map from class string to an integer
class_mapper = {class_:i for i,class_ in enumerate(model.classes_)}

plt.figure(figsize=(6,6))
# Plot the predicted values
a = plt.scatter(x0, x1,

c=[class_mapper[label] for label in y],
cmap=plt.cm.rainbow, edgecolor='k', vmin=0, vmax=3)

plt.contourf(xx, yy,
np.reshape([class_mapper[label]

for label in X_grid_labels],
(width, height)),

cmap=a.cmap, alpha=0.5, levels=3)
cb = plt.colorbar(ticks=[0.5, 1.2, 2, 2.8])
_ = cb.ax.set_yticklabels(model.classes_)
plt.title('Decision boundaries with true values overlaid')
plt.xlabel('First principal component')
plt.ylabel('Second principal component')

In [11]: plot_decision_pca(nb, X_test, y_test)

The code to generate Fig. 11.2 is somewhat complex. Briefly, what it does is sample evenly in a grid from within the first
two components of the PCA space, assessing the model prediction at each point. It then overlays the true values for the test
set, and we can see where they disagree from the model prediction.

Looking at decision boundary plots can offer insight into the model’s performance, or lack thereof. In this case, we can
see that the Suburban mix and Moving up segments are interspersed, which is consistent with what we saw in the confusion
matrix. The question of how to deal with that becomes a business decision. We might, for example, decide that we don’t
need to distinguish between these two segments and collapse them. Or we might try to collect another type of data for which
these two segments do differ, perhaps education level or car ownership.

As we did for clustering, we check the predicted segments’ summary values using the summary function we wrote in
Chap. 10. However, because we now have labeled test data, we can also compare that to the summary values using the true
membership:

In [12]: !pip install python_marketing_research
from python_marketing_research_functions import chapter10
chapter10.check_clusters(seg_sub, nb.predict(seg_sub))

[(’moving up’, 75), (’suburb_mix’, 91), (’travelers’, 84), (’urban_hip’, 50)]

Out[12]: age income is_female kids own_home \
moving up 34.550570 49054.980474 0.760000 1.906667 0.400000



11.1 Classification 249

Fig. 11.2 Mapping the decision boundaries in PCA space exposes why the model discriminates poorly between the Suburban mix and Moving
up segments: they are interspersed in the first two principal components

suburb_mix 40.251478 57644.538964 0.461538 1.978022 0.461538
travelers 57.489784 62650.866954 0.345238 0.023810 0.642857
urban_hip 23.873716 20267.737317 0.320000 1.140000 0.140000

subscribe
moving up 0.213333
suburb_mix 0.054945
travelers 0.035714
urban_hip 0.220000

In [13]: chapter10.check_clusters(seg_sub, seg_labels)

[(’moving up’, 70), (’suburb_mix’, 100), (’travelers’, 80), (’urban_hip’, 50)]

Out[13]: age income is_female kids own_home \
Segment
moving up 36.216087 51763.552666 0.700 1.857143 0.357143
suburb_mix 39.284730 55552.282925 0.530 1.950000 0.480000
travelers 57.746500 62609.655328 0.325 0.000000 0.662500
urban_hip 23.873716 20267.737317 0.320 1.140000 0.140000

subscribe
Segment
moving up 0.214286
suburb_mix 0.070000
travelers 0.025000
urban_hip 0.220000

The summary of demographics for the proposed segments (the first summary above) is very similar to the values in the
true segments (the second summary). Thus, although NB assigned some observations to the wrong segments, its overall



250 11 Classification: Assigning Observations to Known Categories

model of the segment descriptive values—at least at the mean values—is similar for the proposed and true segments. By
making such a comparison using the test data, we gain confidence that although assignment is not perfect on a case by case
basis, the overall group definitions are quite similar.

For naive Bayes models, we can estimate not only the most likely segment but also the odds of membership in each
segment, using the predict_proba() method:

In [14]: pd.DataFrame(nb.predict_proba(seg_sub),
columns=nb.classes_).sample(5).round(4)

Out[14]: moving_up suburb_mix travelers urban_hip
26 0.0000 0.0065 0.9935 0.0
188 0.7116 0.2851 0.0033 0.0
263 0.0000 0.0000 0.0000 1.0
129 0.5240 0.4759 0.0001 0.0
192 0.5957 0.4043 0.0000 0.0

This tells us that Respondent 188 is estimated to be about 71% likely to be a member of Moving up, yet 29% likely to
be in Suburban mix. Respondent 26 is estimated nearly 100% likely to be in Travelers. This kind of individual-level detail
can suggest which individuals to target according to the difficulty of targeting and the degree of certainty. For high-cost
campaigns, we might target only those most certain to be in a segment; whereas for low-cost campaigns, we might target
people for second-best segment membership in addition to primary segment assignment. Because we are able to predict
membership for new cases that have not been assigned, we can score new customers or others in a database, as long as we
have the relevant predictor data used in the classification model.

We conclude that the naive Bayes model works well for the data analyzed here, with performance much better than chance,
overall 85% accuracy in segment assignment, and demographics that are similar between the proposed and actual segments.
It also provides interpretable individual-level estimation of membership likelihood.

Of course there are times when naive Bayes may not perform well, and it’s always a good idea to try multiple methods.
For an alternative, we next examine random forest models.

11.1.2 Random Forest Classification: RandomForestClassifier()

A random forest (RF) classifier does not attempt to fit a single model to data but instead builds an ensemble of models that
jointly classify the data (Breiman 2001; Liaw and Wiener 2002). RF does this by fitting a large number of classification trees.
In order to find an assortment of models, each tree is optimized to fit only some of the observations (in our case, customers)
using only some of the predictors. The ensemble of all trees is the forest.

When a new case is predicted, it is predicted by every tree and the final decision is awarded to the consensus value that
receives the most votes. In this way, a random forest avoids dependencies on precise model specification while remaining
resilient in the face of difficult data conditions, such as data that are collinear or wide (more columns than rows). Random
forest models perform well across a wide variety of datasets and problems (Fernández-Delgado et al. 2014).

In Python, a random forest may be created with code very similar to that for naive Bayes models. We use the same
X_train training data as in Sect. 11.1.1, and call RandomForestClassifier() from the scikit-learn ensemble
package to fit the classifier:

In [15]: from sklearn import ensemble

np.random.seed(23432)
rf = ensemble.RandomForestClassifier(n_estimators=50)

rf.fit(X_train, y_train)

There are two things to note about the call to RandomForestClassifier(). First, random forests are random to some
extent, as the name says. They select variables and subsets of data probabilistically. Thus, we use set.seed() before
modeling, so that we get the same model if we re-run the code later. Second, we used the argument n_estimators=50
to specify the number of trees to create in the forest.

Note that it’s common to use many more trees for a RF model, as there is little risk of overfitting. Many people will
start with 1000 trees, for example. In practice, this often does not improve the accuracy of the model relative to a model



11.1 Classification 251

Fig. 11.3 Like the NB model, the RF model performed well on identifying travelers and urban_hip, but less well on suburb_mix, and moving_up

with fewer trees. However, it often improves the precision of the model, providing higher resolution values for the predicted
class probabilities and variable importance (see Sect. 11.1.3). To determine the optimal number of trees, it’s common to use
hyperparameter tuning (see Sect. 11.2).

We can again check the F1 score of the model:

In [16]: rf.score(X_test, y_test)

Out[16]: 0.7558139534883721

In [17]: y_pred = rf.predict(X_test)

metrics.f1_score(y_test, y_pred, average='micro')

Out[17]: 0.7582299105153958

We see that the RF model performed a bit less well than the NB model, but is still a reasonably strong fit.
We can inspect the confusion matrix in Fig. 11.3 to better understand the class-level performance:

In [18]: confusion_matrix(y_test, y_pred, rf)

And look at class-specific precision and recall:

In [19]: return_precision_recall(y_test, y_pred, rf)

Out[19]: moving up suburb_mix travelers urban_hip
precision 0.294118 0.739130 0.928571 0.944444
recall 0.416667 0.548387 1.000000 1.000000
f1 0.344828 0.629630 0.962963 0.971429

Overall, the RF model performed similarly to—albeit slightly worse than—the NB model. It showed poor discrimination
of the Suburban mix and Moving up segments.

Inspecting the decision boundary visualization in Fig. 11.4 (code omitted) also gives us insight into the difference between
the NB and RF models. Whereas the decision boundaries were smooth and convex for the NB model, the RF model gives
jagged and discontinuous boundaries. This reflects the fact that the NB model boundaries are defined by gaussian estimates
of feature distributions, whereas the RF model makes no assumptions about the underlying distribution of the features, but
can find different association patterns in different parts of the space.

What does a random forest look like? Figure 11.5 shows one trees from among those we fit above. The complete forest
comprises 50 such trees that differ in structure and the predictors used. When an observation is classified, it is assigned to
the group that is predicted by the greatest number of trees within the ensemble. This ensemble of trees are what enable the
“jagged” decision boundaries that are common in RF models. The tree in Fig. 11.5 is produced with this code:



252 11 Classification: Assigning Observations to Known Categories

Fig. 11.4 The decision boundaries of the RF model are much more “jagged” and discontinuous than the NB model. This is because the RF model
consists of decision trees that can learn disconnected boundaries, whereas the boundaries in the NB model are defined by smooth gaussians

In [20]: import graphviz
from sklearn import tree
from IPython.display import Image

tree_0 = rf.estimators_[0]
dot_data = tree.export_graphviz(tree_0, out_file=None,

feature_names=X_train.columns,
class_names=rf.classes_)

tree_graph = graphviz.Source(dot_data, format='png')
tree_graph.render('tmp', view=True)
Image('tmp.png', width=1000, height=1000)

Inspecting the decision space in PCA space can help us understand areas of model weakness, but it does not offer much
insight into what is driving model decisions based on actual features. We can also inspect the decision boundaries for pairs
of features, such as age and income. We can write a similar function to do this:

In [21]: def pairwise_decision_boundary(model, X_train, y_train,
X_test, y_test,
first_column, second_column,
jitter=False):

width, height = 1000, 1000
# Create a class mapper to map from class string to an integer
class_mapper = {c:i for i,c in enumerate(model.classes_)}

x0 = X_train[first_column]
x1 = X_train[second_column]
# Get evenly spaced values between the min and max values
x0_g = np.linspace(x0.min(), x0.max(), width)
x1_g = np.linspace(x1.min(), x1.max(), height)



11.1 Classification 253

in
co

m
e 

<
=

 2
4

9
5

2
.0

6
4

g
in

i 
=

 0
.7

3
9

sa
m

p
le

s 
=

 1
3

8
v

al
u

e 
=

 [
5

3
, 

6
9

, 
5

5
, 

3
7

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
8

v
al

u
e 

=
 [

0
, 

0
, 

0
, 

3
3

]
cl

as
s 

=
 u

rb
an

_
h

ip

T
ru

e

k
id

s 
<

=
 0

.5
g

in
i 

=
 0

.6
7

6
sa

m
p

le
s 

=
 1

2
0

v
al

u
e 

=
 [

5
3

, 
6

9
, 

5
5

, 
4

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

F
al

se

in
co

m
e 

<
=

 7
1

9
3

7
.3

8
3

g
in

i 
=

 0
.4

6
3

sa
m

p
le

s 
=

 4
8

v
al

u
e 

=
 [

1
2

, 
1

0
, 

5
5

, 
1

]
cl

as
s 

=
 t

ra
v

el
er

s

k
id

s 
<

=
 6

.5
g

in
i 

=
 0

.5
1

3
sa

m
p

le
s 

=
 7

2
v

al
u

e 
=

 [
4

1
, 

5
9

, 
0

, 
3

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

ag
e 

<
=

 4
3

.8
7

5
g

in
i 

=
 0

.5
5

2
sa

m
p

le
s 

=
 3

6
v

al
u

e 
=

 [
1

2
, 

1
0

, 
3

7
, 

1
]

cl
as

s 
=

 t
ra

v
el

er
s

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
2

v
al

u
e 

=
 [

0
, 

0
, 

1
8

, 
0

]
cl

as
s 

=
 t

ra
v

el
er

s

su
b

sc
ri

b
e 

<
=

 0
.5

g
in

i 
=

 0
.5

3
3

sa
m

p
le

s 
=

 1
5

v
al

u
e 

=
 [

1
2

, 
9

, 
0

, 
1

]
cl

as
s 

=
 m

o
v

in
g

 u
p

is
_

fe
m

al
e 

<
=

 0
.5

g
in

i 
=

 0
.0

5
1

sa
m

p
le

s 
=

 2
1

v
al

u
e 

=
 [

0
, 

1
, 

3
7

, 
0

]
cl

as
s 

=
 t

ra
v

el
er

s

is
_

fe
m

al
e 

<
=

 0
.5

g
in

i 
=

 0
.5

4
7

sa
m

p
le

s 
=

 1
2

v
al

u
e 

=
 [

7
, 

9
, 

0
, 

1
]

cl
as

s 
=

 s
u

b
u

rb
_

m
ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 3
v

al
u

e 
=

 [
5

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

o
w

n
_

h
o

m
e 

<
=

 0
.5

g
in

i 
=

 0
.3

2
sa

m
p

le
s 

=
 4

v
al

u
e 

=
 [

0
, 

4
, 

0
, 

1
]

cl
as

s 
=

 s
u

b
u

rb
_

m
ix

ag
e 

<
=

 3
6

.7
6

4
g

in
i 

=
 0

.4
8

6
sa

m
p

le
s 

=
 8

v
al

u
e 

=
 [

7
, 

5
, 

0
, 

0
]

cl
as

s 
=

 m
o

v
in

g
 u

p

in
co

m
e 

<
=

 3
5

2
6

6
.5

6
3

g
in

i 
=

 0
.4

4
4

sa
m

p
le

s 
=

 3
v

al
u

e 
=

 [
0

, 
2

, 
0

, 
1

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
0

, 
2

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
0

, 
0

, 
0

, 
1

]
cl

as
s 

=
 u

rb
an

_
h

ip

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 2
v

al
u

e 
=

 [
0

, 
2

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

o
w

n
_

h
o

m
e 

<
=

 0
.5

g
in

i 
=

 0
.2

7
8

sa
m

p
le

s 
=

 3
v

al
u

e 
=

 [
1

, 
5

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 5
v

al
u

e 
=

 [
6

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
1

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 2
v

al
u

e 
=

 [
0

, 
5

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
5

v
al

u
e 

=
 [

0
, 

0
, 

2
8

, 
0

]
cl

as
s 

=
 t

ra
v

el
er

s

ag
e 

<
=

 4
8

.7
8

g
in

i 
=

 0
.1

8
sa

m
p

le
s 

=
 6

v
al

u
e 

=
 [

0
, 

1
, 

9
, 

0
]

cl
as

s 
=

 t
ra

v
el

er
s

ag
e 

<
=

 4
5

.5
4

3
g

in
i 

=
 0

.4
4

4
sa

m
p

le
s 

=
 2

v
al

u
e 

=
 [

0
, 

1
, 

2
, 

0
]

cl
as

s 
=

 t
ra

v
el

er
s

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 4
v

al
u

e 
=

 [
0

, 
0

, 
7

, 
0

]
cl

as
s 

=
 t

ra
v

el
er

s

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
0

, 
0

, 
2

, 
0

]
cl

as
s 

=
 t

ra
v

el
er

s

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
0

, 
1

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

su
b

sc
ri

b
e 

<
=

 0
.5

g
in

i 
=

 0
.5

0
9

sa
m

p
le

s 
=

 7
1

v
al

u
e 

=
 [

3
9

, 
5

9
, 

0
, 

3
]

cl
as

s 
=

 s
u

b
u

rb
_

m
ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
2

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

o
w

n
_

h
o

m
e 

<
=

 0
.5

g
in

i 
=

 0
.4

9
7

sa
m

p
le

s 
=

 6
3

v
al

u
e 

=
 [

3
2

, 
5

6
, 

0
, 

3
]

cl
as

s 
=

 s
u

b
u

rb
_

m
ix

ag
e 

<
=

 4
0

.3
5

4
g

in
i 

=
 0

.4
2

sa
m

p
le

s 
=

 8
v

al
u

e 
=

 [
7

, 
3

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

ag
e 

<
=

 3
9

.7
6

2
g

in
i 

=
 0

.5
3

8
sa

m
p

le
s 

=
 3

8
v

al
u

e 
=

 [
2

4
, 

3
2

, 
0

, 
3

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

ag
e 

<
=

 3
1

.6
6

g
in

i 
=

 0
.3

7
5

sa
m

p
le

s 
=

 2
5

v
al

u
e 

=
 [

8
, 
2

4
, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

in
co

m
e 

<
=

 5
8

0
4

5
.9

0
6

g
in

i 
=

 0
.5

4
2

sa
m

p
le

s 
=

 2
5

v
al

u
e 

=
 [

2
2

, 
1

3
, 

0
, 

3
]

cl
as

s 
=

 m
o

v
in

g
 u

p

k
id

s 
<

=
 2

.5
g

in
i 

=
 0

.1
7

2
sa

m
p

le
s 

=
 1

3
v

al
u

e 
=

 [
2

, 
1

9
, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

k
id

s 
<

=
 1

.5
g

in
i 

=
 0

.3
8

2
sa

m
p

le
s 

=
 1

6
v

al
u

e 
=

 [
2

0
, 

3
, 

0
, 

3
]

cl
as

s 
=

 m
o

v
in

g
 u

p

k
id

s 
<

=
 4

.0
g

in
i 

=
 0

.2
7

8
sa

m
p

le
s 

=
 9

v
al

u
e 

=
 [

2
, 
1

0
, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

ag
e 

<
=

 2
7

.1
3

1
g

in
i 

=
 0

.4
8

6
sa

m
p

le
s 

=
 7

v
al

u
e 

=
 [

8
, 

1
, 

0
, 

3
]

cl
as

s 
=

 m
o

v
in

g
 u

p

in
co

m
e 

<
=

 4
7

2
3

5
.7

5
g

in
i 

=
 0

.2
4

5
sa

m
p

le
s 

=
 9

v
al

u
e 

=
 [

1
2

, 
2

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 2
v

al
u

e 
=

 [
0

, 
0

, 
0

, 
3

]
cl

as
s 

=
 u

rb
an

_
h

ip

ag
e 

<
=

 3
8

.6
6

2
g

in
i 

=
 0

.1
9

8
sa

m
p

le
s 

=
 5

v
al

u
e 

=
 [

8
, 

1
, 

0
, 

0
]

cl
as

s 
=

 m
o

v
in

g
 u

p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 4
v

al
u

e 
=

 [
8

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
0

, 
1

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ixg
in

i 
=

 0
.0

sa
m

p
le

s 
=

 5
v

al
u

e 
=

 [
8

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

is
_

fe
m

al
e 

<
=

 0
.5

g
in

i 
=

 0
.4

4
4

sa
m

p
le

s 
=

 4
v

al
u

e 
=

 [
4

, 
2

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

ag
e 

<
=

 3
8

.0
5

6
g

in
i 

=
 0

.3
7

5
sa

m
p

le
s 

=
 2

v
al

u
e 

=
 [

3
, 
1

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

ag
e 

<
=

 3
5

.3
1

2
g

in
i 

=
 0

.5
sa

m
p

le
s 

=
 2

v
al

u
e 

=
 [

1
, 
1

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
0

, 
1

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
3

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
0

, 
1

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
1

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 6
v

al
u

e 
=

 [
0

, 
9

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

is
_

fe
m

al
e 

<
=

 0
.5

g
in

i 
=

 0
.4

4
4

sa
m

p
le

s 
=

 3
v

al
u

e 
=

 [
2

, 
1

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
1

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

ag
e 

<
=

 3
4

.9
4

4
g

in
i 

=
 0

.5
sa

m
p

le
s 

=
 2

v
al

u
e 

=
 [

1
, 
1

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
1

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
0

, 
1

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

ag
e 

<
=

 4
1

.3
1

g
in

i 
=

 0
.3

4
6

sa
m

p
le

s 
=

 7
v

al
u

e 
=

 [
2

, 
7

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 6
v

al
u

e 
=

 [
0

, 
1

2
, 

0
, 

0
]

cl
as

s 
=

 s
u

b
u

rb
_

m
ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 2
v

al
u

e 
=

 [
2

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 5
v

al
u

e 
=

 [
0

, 
7

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

ag
e 

<
=

 3
1

.4
8

7
g

in
i 

=
 0

.3
7

5
sa

m
p

le
s 

=
 3

v
al

u
e 

=
 [

3
, 
1

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

k
id

s 
<

=
 3

.5
g

in
i 

=
 0

.2
9

3
sa

m
p

le
s 

=
 2

2
v

al
u

e 
=

 [
5

, 
2

3
, 

0
, 

0
]

cl
as

s 
=

 s
u

b
u

rb
_

m
ix

is
_

fe
m

al
e 

<
=

 0
.5

g
in

i 
=

 0
.5

sa
m

p
le

s 
=

 2
v

al
u

e 
=

 [
1

, 
1

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
2

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
1

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
0

, 
1

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

ag
e 

<
=

 3
6

.2
8

9
g

in
i 

=
 0

.3
1
1

sa
m

p
le

s 
=

 2
0

v
al

u
e 

=
 [

5
, 

2
1

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 2
v

al
u

e 
=

 [
0

, 
2

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 7
v

al
u

e 
=

 [
0

, 
1

0
, 

0
, 

0
]

cl
as

s 
=

 s
u

b
u

rb
_

m
ix

ag
e 

<
=

 3
6

.7
2

3
g

in
i 

=
 0

.4
3

sa
m

p
le

s 
=

 1
3

v
al

u
e 

=
 [

5
, 
1
1
, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
1

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

ag
e 

<
=

 4
5

.4
9

6
g

in
i 

=
 0

.3
9

1
sa

m
p

le
s 

=
 1

2
v

al
u

e 
=

 [
4

, 
1
1

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

in
co

m
e 

<
=

 5
3

4
1

0
.8

7
9

g
in

i 
=

 0
.4

4
4

sa
m

p
le

s 
=

 9
v

al
u

e 
=

 [
4

, 
8

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 3
v

al
u

e 
=

 [
0

, 
3

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

ag
e 

<
=

 4
0

.4
4

4
g
in

i 
=

 0
.3

2
sa

m
p

le
s 

=
 7

v
al

u
e 

=
 [

2
, 
8

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 2
v

al
u

e 
=

 [
2

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 4
v

al
u

e 
=

 [
0

, 
6

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

in
co

m
e 

<
=

 4
1

0
1

0
.3

9
8

g
in

i 
=

 0
.5

sa
m

p
le

s 
=

 3
v

al
u

e 
=

 [
2

, 
2

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 2
v

al
u

e 
=

 [
0

, 
2

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 1
v

al
u

e 
=

 [
2

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 6
v

al
u

e 
=

 [
7

, 
0

, 
0

, 
0

]
cl

as
s 

=
 m

o
v

in
g

 u
p

g
in

i 
=

 0
.0

sa
m

p
le

s 
=

 2
v

al
u

e 
=

 [
0

, 
3

, 
0

, 
0

]
cl

as
s 

=
 s

u
b

u
rb

_
m

ix

F
ig

.1
1.

5
O

ne
ex

am
pl

e
am

on
g

th
e

50
tr

ee
s

in
th

e
en

se
m

bl
e

fo
un

d
by

R
a
n
d
o
m
F
o
r
e
s
t
C
l
a
s
s
i
f
i
e
r
(
)

fo
r

se
gm

en
t

pr
ed

ic
tio

n
in
s
e
g
_
s
u
b

.
T

he
tr

ee
s

di
ff

er
su

bs
ta

nt
ia

lly
in

st
ru

ct
ur

e
an

d
va

ri
ab

le
us

ag
e.

N
o

si
ng

le
tr

ee
is

ex
pe

ct
ed

to
be

a
pa

rt
ic

ul
ar

ly
go

od
pr

ed
ic

to
r

in
its

el
f,

ye
t

th
e

en
se

m
bl

e
of

al
l

tr
ee

s
m

ay
pr

ed
ic

t
w

el
l

in
ag

gr
eg

at
e

by
vo

tin
g

on
th

e
as

si
gn

m
en

t
of

ob
se

rv
at

io
ns

to
ou

tc
om

e
gr

ou
ps

.T
he

ov
er

al
ls

tr
uc

tu
re

of
th

e
tr

ee
ca

n
be

se
en

in
th

e
zo

om
ed

ou
tv

ie
w

(u
pp

er
pa

ne
l)

an
d

th
e

de
ta

ils
of

in
di

vi
du

al
no

te
s

in
a

su
bs

et
of

th
e

tr
ee

(l
ow

er
pa

ne
l)



254 11 Classification: Assigning Observations to Known Categories

# Create a "grid" of those evenly spaced values from each vector
xx, yy = np.meshgrid(x0_g, x1_g)
# Stack together all of the sampled values
X_grid = np.vstack([xx.ravel(), yy.ravel()]).T

model_c = clone(model)
model_c.fit(X_train.loc[:,[first_column, second_column]], y_train)
X_grid_labels = model_c.predict(X_grid)
# Plot the predicted values
j_x0, j_x1 = 0, 0
if jitter:

j_x0 = (np.random.random(X_test.shape[0])-0.5)/10.
j_x1 = (np.random.random(X_test.shape[0])-0.5)/10.

a = plt.scatter(X_test[first_column] + j_x0,
X_test[second_column] + j_x1,
c=[class_mapper[l] for l in y_test],
cmap=plt.cm.rainbow,
edgecolor='k', vmin=0, vmax=3)

plt.contourf(xx, yy,
np.reshape([class_mapper[l] for l in X_grid_labels],

(width, height)),
cmap=a.cmap, alpha=0.5, levels=3)

plt.title('Decision boundaries with true values overlaid')
plt.xlabel(first_column)
plt.ylabel(second_column)
cb = plt.colorbar(ticks=[0.5, 1.2, 2, 2.8])
cb.ax.set_yticklabels(model.classes_)

We can then look at the decision boundaries between age & income and between subscription status & number of children,
shown in Fig. 11.6. We have an optional jitter argument for when we are looking at discrete or boolean values, such as
subscription state (otherwise the points would all overlay each other).

In [22]: pairwise_decision_boundary(rf, X_train, y_train, X_test, y_test,
'age', 'income')

In [23]: pairwise_decision_boundary(rf, X_train, y_train, X_test, y_test,
'age', 'kids', jitter=True)

In Fig. 11.6, we see a few things of interest. From the left panel, we can see that the model has learned that individuals
above about 50 years old are very likely to be Travelers and those below that age and below about $32,000 in income are
likely to be from the Urban hip segment. Individuals who make more than Urban hip but are younger than Travelers belong to
either Suburban mix or Moving up, without a really clear pattern, although Suburban mix tends to be a bit older or wealthier.

In the right panel of Fig. 11.6, we can see that in the model the number of kids only differentiates the Travelers segment.
It is possible to inspect the distribution of predictions for individual cases, again using the predict_proba() method:

In [24]: pd.DataFrame(rf.predict_proba(X_test), columns=rf.classes_).sample(5)

Out[24]: moving up suburb_mix travelers urban_hip
76 0.00 0.00 0.00 1.0
19 0.02 0.06 0.92 0.0
39 0.24 0.76 0.00 0.0
73 0.00 0.00 0.00 1.0
56 0.10 0.76 0.14 0.0

These values reflect the number of trees the “voted” that a particular observation belonged in a particular class. As for
the NB model, we can then understand the model’s overall confidence in each assignment. For example, the model has
assigned 100% probability that samples 73 and 76 are in the Urban hip segment. Samples 39 and 56 each have a 76% chance



11.1 Classification 255

Fig. 11.6 Our pairwise_decision_boundary() function visualizes an estimation of the boundaries between classes that the model has
learned. In the left panel, we see that the model associates high age with the Travelers group and low age and low income with the Urban hip
group. The Suburb mix and Moving up groups are less well differentiated, but the Moving up tend to be either younger or have lower income than
the Suburb mix group. In the right panel, we see that having few children and high age is associated with Travelers, but that the number of kids is
not very predictive between the other groups

of being in the Suburban mix segment, but sample 39 is next most likely to be in Moving up, whereas for sample 56 its
second-most-likely class is Traveler.

The proposed and actual segments are quite similar in the mean values of the variables in our summary function:

In [25]: chapter10.check_clusters(seg_sub, rf.predict(seg_sub))

[(’moving up’, 75), (’suburb_mix’, 92), (’travelers’, 82), (’urban_hip’, 51)]

Out[25]: age income is_female kids own_home \
moving up 35.983633 51603.477437 0.640000 1.933333 0.386667
suburb_mix 39.465911 56134.885424 0.554348 1.923913 0.467391
travelers 57.522142 62472.064488 0.341463 0.000000 0.658537
urban_hip 24.128490 20459.935615 0.333333 1.176471 0.137255

subscribe
moving up 0.253333
suburb_mix 0.032609
travelers 0.024390
urban_hip 0.215686

In [26]: chapter10.check_clusters(seg_sub, seg_labels)

[(’moving up’, 70), (’suburb_mix’, 100), (’travelers’, 80), (’urban_hip’, 50)]

Out[26]: age income is_female kids own_home \
Segment
moving up 36.216087 51763.552666 0.700 1.857143 0.357143
suburb_mix 39.284730 55552.282925 0.530 1.950000 0.480000
travelers 57.746500 62609.655328 0.325 0.000000 0.662500
urban_hip 23.873716 20267.737317 0.320 1.140000 0.140000

subscribe
Segment
moving up 0.214286
suburb_mix 0.070000
travelers 0.025000
urban_hip 0.220000



256 11 Classification: Assigning Observations to Known Categories

11.1.3 Random Forest Variable Importance

Random forest models are particularly good for one common marketing problem: estimating the importance of classification
variables. Remember that RF fits many trees, where each tree is optimized for a portion of the data. It uses the remainder of
the data—known as “out of bag” or OOB data—to assess the tree’s performance more generally. Because each tree uses only
a subset of variables, RF models are able to handle very wide data where there are more—even many, many more—predictor
variables than there are observations.

An RF model assesses the importance of a variable in a simple yet powerful way: for one variable at a time, it randomly
permutes (alters) the variable’s values, computes the model accuracy in OOB data using the permuted values, and compares
that to the accuracy with the real data. If the variable is important, then its performance will degrade when its observed values
are randomly permuted. If, however, the model remains just as accurate as it is with real data, then the variable in question
is not very important (Breiman 2001). As noted before, it is common to use more trees when the goal of the model is to
determine variable importance, as the overall model will have more coverage of the variable space and variable importance
values will have higher precision.

We can view the calculated importance of each feature in the feature _importances_ parameter on the RF model:

In [27]: pd.Series(rf.feature_importances_,
index=seg_sub.columns).sort_values(ascending=False)

Out[27]: age 0.437028
income 0.313560
kids 0.150136
is_female 0.035421
own_home 0.032164
subscribe 0.031691
dtype: float64

Age and income are the most useful variables, which is consistent with the decision boundaries visualizations.
Understanding variable importance can enable a deeper understanding of the features that define differences between classes,
enabling more intelligent business decisions.

Variable or feature selection is often the first step for developing more advanced machine learning models, such as deep
neural networks. Random forests unique properties make them invaluable tools in the process of feature engineering. In this
case, we would expect to observe a similar degree of fit by removing the gender, home ownership, and subscription variables,
which have minimal predictive power. Eliminating uninformative features is extremely important in other classifier models,
many of which are very sensitive to the presence of noise from uninformative features.

11.2 Prediction: Identifying Potential Customers*

We now turn to another use for classification: to predict potential customers. An important business question—especially in
high-churn categories such as mobile subscriptions—is how to reach new customers. If we have data on past prospects that
includes potential predictors such as demographics, and an outcome such as purchase, we can develop a model to identify
customers for whom the outcome is most likely among new prospects. In this section, we use a random forest model and
attempt to predict subscription status from our dataset seg_sub.

As usual with classification problems, we split the data into a training sample and a test sample:

In [28]: subscribe_label = seg_sub.subscribe

seg_sub_nosub = seg_sub.drop('subscribe', axis=1)

np.random.seed(7885)
rand_idx = np.random.rand(subscribe_label.shape[0])
train_idx = rand_idx <= 0.65
test_idx = rand_idx > 0.65

X_train = seg_sub_nosub.iloc[train_idx]
X_test = seg_sub_nosub.iloc[test_idx]



11.2 Prediction: Identifying Potential Customers* 257

Fig. 11.7 Cluster plot for the subscribers and non-subscribers. The two groups show little differentiation on the principal components, which
suggests that classifying respondents into the groups and predicting subscribers could be difficult

y_train = subscribe_label.iloc[train_idx]
y_test = subscribe_label.iloc[test_idx]

Next, we wonder how difficult it will be to identify potential subscribers. Are subscribers in the training set well-
differentiated from non-subscribers? We use cluster_plot() from Chap. 10 to check the differentiation:

In [29]: chapter10.cluster_plot(seg_sub_nosub, subscribe_label)

The result in Fig. 11.7 shows that the subscribers and non-subscribers are not well differentiated when plotted against
principal components (which reflect about 59% of the variance in the data). This suggests that the problem will be difficult!

We fit an initial RF model to predict subscribe:

In [30]: rf_sub = ensemble.RandomForestClassifier(n_estimators=100,
random_state=86,
class_weight=\
'balanced_subsample')

rf_sub.fit(X_train, y_train)

y_pred = rf_sub.predict(X_test)

In [31]: rf_sub.score(X_test, y_test)

Out[31]: 0.9072164948453608

An accuracy of 90% looks good. But lets check the confusion matrix:

In [32]: confusion_matrix(y_test, y_pred, rf_sub)

The results in Fig. 11.8 are not encouraging. Although the error rate might initially sound good at 90.3% overall, we have
a recall of only 10%.

This is expected given the interspersion of the classes in the cluster plot. But it is also exacerbated by the class imbalance
problem in machine learning. When one category dominates the data, it is very difficult to learn to predict other groups. This
frequently arises with small-proportion problems, such as predicting the comparatively rare individuals who will purchase a
product, who have a medical condition, who are security threats, and so forth.



258 11 Classification: Assigning Observations to Known Categories

Fig. 11.8 The random forest model did not perform well a predicting the subscription state, achieving a recall of only 10% (1/10)

A general solution is to balance the classes by sampling more from the small group. In RF models, this can be
accomplished by telling the classifier to use a balanced group when it samples data to fit each tree, which we did with
the class_weight=’balanced_subsample’. However it was not sufficient to overcome the poor predictive power
of the variables themselves.

We used default values for all the model parameters. An important concept in machine learning is hyperparameter tuning,
where we explore the model parameter space to identify the parameters that lead to the best fit. We can perform a grid search,
where we sample many combinations of parameters to find an optimum.

This requires a scoring function. The F1 score is useful because it balances precision and recall. We can run the grid
search easily:

In [33]: from sklearn import model_selection

rf_sub_cv = ensemble.RandomForestClassifier(random_state=34,
class_weight=\
'balanced_subsample')

parameters = {'n_estimators': [10, 100, 500],
'max_depth': [5, 10, 30],
'min_samples_split': [2,5],
'min_samples_leaf': [1,2,5]}

clf = model_selection.GridSearchCV(rf_sub_cv, parameters,
cv=5, scoring='f1_weighted')

clf.fit(X_train, y_train)

We can inspect the best scoring parameters using the best_params_ parameter:

In [34]: clf.best_params_

Out[34]: {’max_depth’: 10,
’min_samples_leaf’: 1,
’min_samples_split’: 2,
’n_estimators’: 100}

Looking at the confusion matrix in Fig. 11.9, we see that this model did not perform any better:



11.2 Prediction: Identifying Potential Customers* 259

Fig. 11.9 The hyperparameter tuned model did not perform any better

In [35]: y_pred_be = clf.best_estimator_.predict(X_test)

confusion_matrix(y_test, y_pred_be, clf.best_estimator_)

What if we try a different scoring function? Let’s imagine we want to optimize for recall, that is we want to find as many
potential positives as possible, accepting that many will be false positives. We can use recall as the scoring function:

In [36]: rf_sub_cv = ensemble.RandomForestClassifier(random_state=34,
class_weight=\
'balanced_subsample')

parameters = {'n_estimators': [10, 100, 500],
'max_depth': [5, 10, 30],
'min_samples_split': [2,5],
'min_samples_leaf': [1,2,5]}

clf = model_selection.GridSearchCV(rf_sub_cv, parameters,
cv=5, scoring='recall')

clf.fit(X_train, y_train)

In [37]: clf.best_params_

Out[37]: {’max_depth’: 5,
’min_samples_leaf’: 2,
’min_samples_split’: 2,
’n_estimators’: 10}

In [38]: y_pred_be = clf.best_estimator_.predict(X_test)

confusion_matrix(y_test, y_pred_be, clf.best_estimator_)

The confusion matrix in Fig. 11.10 is still not great, but it is at least different! Our precision went from 100% (1/1) to
15% (2/13), but our recall went from 10% (1/10) to 20% (2/10).

Another knob we can turn is the sample weighting. We used a balanced subsample weighting, which accounts for some
of the imbalance in the frequency of each class, but we can further oversample the rarer class with the class_weight
parameter. This will push the model toward recall. One risk with this approach is overfitting: the model becomes so tuned to
oversampled rare class that it is not generalizable.



260 11 Classification: Assigning Observations to Known Categories

Fig. 11.10 Optimizing the hyperparameter tuning for recall improved the recall at the expense of precision

In [39]:rf_sub = ensemble.RandomForestClassifier(n_estimators=10,
random_state=86,
max_depth=5,
min_samples_leaf=2,
min_samples_split=2,
class_weight=\
{False: 1, True:50})

rf_sub.fit(X_train, y_train)

y_pred = rf_sub.predict(X_test)
confusion_matrix(y_test, y_pred, rf_sub)

We can see in Fig. 11.11 that this had a large effect. We have boosted our recall to 70% (7/10), but at a substantial cost to
precision: only 17.5% (7/40) of the observations that the model labeled as True are true positives; 33 were false positives.

Despite the fact that the variables here have poor predictive power, we can clearly see that optimizing our hyperparameter
tuning for a different score led to a differently tuned model with different tradeoffs. This is an important concept in machine
learning. An analyst should consider the business outcome carefully and tune a model appropriately. This often differs from
a generic or abstract “accuracy” metric.

It’s also worth nothing that machine learning is not magic, it is statistics. If there is no strong signal in the data, you cannot
build a good prediction. What should one do in that circumstance? The most obvious option would be to find other features
that might be more predictive.

11.3 Learning More*

We covered the basics of classification in this chapter. Many of the resources we recommended in Sect. 10.4 for clustering
are also relevant for understanding classification. A recommended introduction to the field of statistical learning is James
et al., An Introduction to Statistical Learning (ISL) (James et al. 2013). A more advanced treatment of the topics in ISL is
Hastie et al., The Elements of Statistical Learning (Hastie et al. 2016).



11.4 Key Points 261

Fig. 11.11 Changing the sample weighting is another means to adjust precision/recall. Here by oversampling the True class, we improved the
recall at the expense of precision

For classification and especially prediction, in addition to ISL noted above, an applied, practitioner-friendly text is Kuhn
and Johnson’s Applied Predictive Modeling. Scikit-learn has many supervised learning modules (scikit-learn developers
2019b), many of which include classification methods. Overall these packages represent many of the most common methods
in machine learning.

11.4 Key Points

In this chapter, we examined the basic structure of classification methods that may be used to predict group membership for
new observations. In addition, we saw how classifier visualization techniques may be used to understand model performance.
Following are key points to keep in mind when working on classification and prediction models.

• With classification models, data should be split into training and test groups, and models validated on the test (holdout)
data (Sect. 11.1).

• We examined naive Bayes models (sklearn.naive_bayes.GaussianNB(), Sect. 11.1.1) and random forest mod-
els (sklearn.ensemble.RandomForest Classifier(), Sect. 11.1.2). These—and many other classification
methods—have quite similar syntax, making it easy to try and compare models.

• Precision, or the proportion of all predicted positives that are truly positive, and recall, the proportion of all true positives
that were correctly labeled as positive are important concepts in tuning classifiers, are at odds with each other: improving
one tends to worsen the other.

• We learned how to explore decision boundary visualizations to better understand the limitations of the model and of the
underlying variables.

• A useful feature of random forest models is their ability to determine variable importance for prediction, even when there
are a large number of variables (Sect. 11.1.3).

• A common problem in classification is class imbalance, where one group dominates the observations and makes it difficult
to predict the other group. We saw how to correct this for random forest models with the class_weight argument,
resulting in a more successful predictive model (Sect. 11.2).

• We saw how to run a grid search using sklearn.model_selection. GridSearchCV() for hyperparameter
tuning of the model, enabling us to find an optimal model under different scoring metrics. We also saw that hyperparameter
tuning cannot overcome uninformative variables!


	11 Classification: Assigning Observations to Known Categories
	11.1 Classification
	11.1.1 Naive Bayes Classification: GaussianNB()
	11.1.2 Random Forest Classification: RandomForestClassifier()
	11.1.3 Random Forest Variable Importance

	11.2 Prediction: Identifying Potential Customers*
	11.3 Learning More*
	11.4 Key Points


