Chapter 10 m
Segmentation: Unsupervised Clustering Methods for Exploring Shckrs
Subpopulations

In this chapter, we tackle a canonical marketing research problem: finding, assessing, and predicting customer segments. In
previous chapters we’ve seen how to assess relationships in data (Chap. 4), compare groups (Chap. 5), and assess models
(Chap. 7). In a real segmentation project, one would use those methods to ensure that data have appropriate multivariate
structure, and then begin segmentation analysis.

Segmentation is not a well-defined process and analysts vary in their definitions of segmentation as well as their
approaches and philosophies. This chapter demonstrates our approach using basic models in Python. As always, this should
be supplemented by readings we suggest at the end of the chapter.

We start with a warning: we have definite opinions about segmentation and what we believe are common misunderstand-
ings and poor practices. We hope you’ll be convinced by our views—but even if not, the methods here will be useful to
you.

10.1 Segmentation Philosophy

The general goal of market segmentation is to find groups of customers that differ in important ways that are associated with
product interest, market participation, or response to marketing efforts. By understanding the differences among groups, a
marketer can make better strategic choices about opportunities, product definition, and positioning, and can engage in more
effective promotion.

10.1.1 The Difficulty of Segmentation

The definition of segmentation above is a textbook description and does not reflect what is most difficult in a segmentation
project: finding actionable business outcomes. It is not particularly difficult to find groups within consumer data; indeed, in
this chapter we see several ways to do this, all of which “succeed” according to one statistical criterion or another. Rather,
the difficulty is to ensure that the outcome is meaningful for a particular business need.

It is outside the range of this book to address the question of business need in general. However, we suggest that you ask
a few questions along the following lines. If you were to find segments, what would you do about them? Would anyone in
your organization use them? Why and how? Are the differences between segments large enough to be meaningful for your
business? Among various solutions you might find, are there organizational efforts or politics that would make one solution
more or less influential than another?

There is no magic bullet to find the “right” answer. For segmentation this means that there is no all-purpose method or
algorithm that is a priori preferable to others. This does not mean that the choice of a method is irrelevant or arbitrary; rather,
one cannot necessarily determine in advance which approach will work best for a novel problem. As a form of optimization,
segmentation is likely to require an iterative approach that successively tests and improves its answer to a business need.

Segmentation is like slicing a pie, and any pie might be sliced in an infinite number of ways. Your task as an analyst is to
consider the infinity of possible data that might be gathered, the infinity of possible groupings of that data, and the infinity
of possible business questions that might be addressed. Your goal is to find a solution within those infinities that represents
real differences in the data and that informs and influences business decisions.
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Statistical methods are only part of the answer. It often happens that a “stronger” statistical solution poses complexity that
makes it impossible to implement in a business context while a slightly “weaker” solution illuminates the data with a clear
story and fits the business context so well that it can have broad influence.

To maximize chances of finding such a model, we recommend that an analyst expects—and prepares management
to understand—two things. First, a segmentation project is not a matter of “running a segmentation study” or “doing
segmentation analysis on the data.” Rather, and second, it is likely to take multiple rounds of data collection and analysis to
determine the important data that should be collected in the first place, to refine and test the solutions, and to conduct rounds
of interpretation with business stakeholders to ensure that the results are actionable.

10.1.2 Segmentation as Clustering and Classification

In this chapter and the next, we demonstrate several methods in Python that will get you started with segmentation analysis.
We explore two distinct yet related areas of statistics: clustering or cluster analysis (in this chapter) and classification (in
Chap. 11). These are the primary branches of what is sometimes called statistical learning or machine learning, i.e., learning
from data through statistical model fitting.

A key distinction in statistical learning is whether the method is supervised or unsupervised. In supervised learning,
a model is presented with observations whose outcome status (dependent variable) is known, with a goal to predict that
outcome status from the independent variables of novel observations. For example, we might use data from previous direct
marketing campaigns—with a known outcome of whether each target responded or not, plus other predictor variables—to fit
a model that predicts likelihood of response in a new campaign. We refer to this process as classification, which we discuss
in the next chapter, Chap. 11.

In unsupervised learning we do not know the outcome groupings but are attempting to discover them from structure in
the data. For instance, we might explore a direct marketing campaign and ask, “Are there groups that differ in how and when
they respond to offers? If so, what are the characteristics of those groups?” We use the term clustering for this approach.

Clustering and classification are both useful in segmentation projects. Stakeholders often view segmentation as
discovering groups in the data in order to derive new insight about customers. This obviously suggests clustering approaches
because the possible customer groups are unknown. Still, classification approaches are also useful in such projects for at
least two reasons: there may be outcome variables of interest that are known (such as observed in-market response) that one
wishes to predict from segment membership, and if you use clustering to discover groups you will probably want to predict
(i.e., classify) future responses into those groups. Thus, we view clustering and classification as complementary approaches.

A topic we do not address is how to determine what data to use for clustering, the observed basis variables that go into
the model. That is primarily a choice based on business need, strategy, and data availability. Still, you can use the methods
here to evaluate different sets of basis variables. If you have a large number of measures available and need to determine
which ones are most important, the variable importance assessment method we review in Sect. 11.1.3 might assist. Aside
from that, we assume in this chapter that the basis variables have been determined (and we use the customer relationship data
from Chap. 5).

There are hundreds of books, thousands of articles, and many Python packages for clustering and classification methods,
all of which propose hundreds of approaches with—as we noted above—no single “best” method. This chapter cannot cover
clustering or classification in a comprehensive way, but we can give an introduction that will get you started, teach you the
basics, accelerate your learning, and help you avoid some traps. As you will see, in most cases the process of fitting such
models in Python is extremely similar from model to model.

10.2 Segmentation Data

We use the segmentation data (object seg_df) from Chap. 5. If you saved that data in Sect. 5.1.2, you can reload it (see
Sect. 2.6.2 for a review of importing data):

In [1]: from google.colab import files

f = files.upload()

Saving segment dataframe Python intro Ch5.csv to segment dataframe Python intro Ch5.csv
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In [2]: import pandas as pd

seg df = pd.read csv('segment dataframe Python intro Ch5.csv',
index col=0)

Otherwise, you could download the dataset from the book website:

In [3]: import pandas as pd
seg df = pd.read csv('http://bit.ly/PMR-ch5')

As you may recall from Chap. 5, these are simulated data with four identified segments of customers for a subscription
product, and contain a few variables that are similar to data from typical consumer surveys. Each observation has the
simulated respondent’s age, gender, household income, number of kids, home ownership, subscription status, and assigned
segment membership. In Chap. 5, we saw how to simulate this data and how to examine group differences within it. Other
data sources that are often used for segmentation are customer relationship management (CRM) records, attitudinal surveys,
product purchase and usage, and most generally, any dataset with observations about customers.

We check the data after loading:

In [4]: seg df.head()

out [4] : Segment age gender income kids own_home \

0 travelers 60.794945 male 57014 .537526 0 True

1 travelers 61.764535 female 43796.941252 0 False

2 travelers 47.493356 male 51095.344683 0 True

3 travelers 60.963694 male 56457.722237 0 True

4 travelers 60.594199 female 103020.070798 0 True
subscribe

0 False

1 False

2 False

3 True

4 False

We use the subscription segment data for two purposes: to examine clustering methods that find intrinsic groupings
(unsupervised learning, in this chapter), and to show how classification methods learn to predict group membership from
known cases (supervised learning, in Chap. 11).

10.3 Clustering

We examine three clustering procedures that are illustrative of the hundreds of available methods. You’ll see that the general
procedure for finding and evaluating clusters in Python is similar across the methods.

To begin, we review two distance-based clustering methods, hierarchical and k-means. Distance-based methods attempt
to find groups that minimize the distance between members within the group, while maximizing the distance of members
from other groups. Hierarchical clusters does this by modeling the data in a tree structure, while k-means uses group centroids
(central points).

Then we examine a model-based clustering method, a Gaussian mixture model. Model-based methods view the data as
a mixture of groups sampled from different distributions, but whose original distribution and group membership has been
“lost” (i.e., is unknown). The Gaussian mixture model method attempts to model the data such that the observed variance
can be best represented by a small number of Gaussian (normal) variables with specific distribution characteristics such as
different means and standard deviations.
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10.3.1 The Steps of Clustering

Clustering analysis requires two stages: finding a proposed cluster solution and evaluating that solution for one’s business
needs. For each method we go through the following steps:

* Transform the data if needed for a particular clustering method; for instance, some methods require all numeric data (e.g.,
k-means)

* Scale the data if there are large differences in the magnitudes between columns. Distance-based methods are sensitive to
those and can be dominated by a single dimension if it is much larger than the others (e.g., income in our data).

* Check for outliers in the data, which can dominate the clustering. Consider removing outlier data points. Note that we
skip this step in our analysis.

* Apply the clustering method and save its result to an object. For most methods this requires specifying the number (K') of
groups desired.

» For some methods, further parse the object to obtain a solution with K groups (e.g., fcluster () for extracting clusters
from a linkage matrix).

» Examine the solution in the model object with regards to the underlying data, and consider whether it answers a business
question.

As we’ve already argued, the most difficult part of that process is the last step: establishing whether a proposed statistical
solution answers a business need. Ultimately, a cluster solution is largely just a vector of purported group assignments for
each observation, such as “1, 1,4, 3,2,3,2,2,4, 1,4 ....” Itis up to you to figure out whether that tells a meaningful story
for your data.

Transforming and Scaling the Data

The original dataset seg df contains “known” segment assignments that have been provided for the data from some other
source (as might occur from some human coding process). Because our task here is to discover segments, we create a copy
seg_sub that omits those assignments, so we don’t accidentally include the known values when exploring segmentation
methods. (Later, in the chapter on classification, we will use the correct assignments because they are needed to train the
classification models.)

While some clustering models can make use of categorical variables, the approaches we describe in this chapter use
numerical data. In this dataset, all categorical variables are binary. subscribe and own home are already explicitly
binary, coded as booleans. Python functions that expect numeric values generally treat booleans as numeric values, 0 or
1 for False or True, respectively. We will convert gender to a boolean variable is female and drop the gender
column when we drop the Segment columns:

In [5]: seg df['is female'] = seg.gender == 'female'
seg _sub = seg.drop(['Segment', 'gender'], axis=1)
seg_sub.head()

Additionally, distance-based clustering approaches are sensitive to the scale of the variables. A change of 10 is relatively
insignificant in income, but quite significant in the number of children! However, the distance metric would treat those
equally. To address this we can scale the data as we have in past chapters:

In [6]: from sklearn import preprocessing

seg sc = pd.DataFrame (preprocessing.scale (seg sub),
columns=seg sub.columns)
seg_sc.head()

Out [6] : age income kids own home subscribe is female
.551729 0.328689 -0.902199 1.120553 -0.363422 -0.960769
.627442 -0.356010 -0.902199 -0.892416 -0.363422 1.040833
.513037 0.022062 -0.902199 1.120553 -0.363422 -0.960769
.564906 0.299844 -0.902199 1.120553 2.751623 -0.960769
.536053 2.711871 -0.902199 1.120553 -0.363422 1.040833
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The scaled data look appropriate. We have created two new dataframes. One, seg _sub, has all the columns that we need for
this analysis and no more. The other, seg_sc, has the same columns, but scaled such that columns are directly comparable.

A Quick Check Function

We recommend that you think hard about how you would know whether a solution—assignments of observations to groups—
that is proposed by a clustering method is useful for your business problem. Just because some grouping is proposed by an
algorithm does not mean that it will help your business. One way we often approach this is to write a simple function that
summarizes the data and allows quick inspection of the high-level differences between groups.

A segment inspection function may be complex depending on the business need and might include plotting in addition to
data summarization. Pandas provides the pivot table () function that allows us to aggregate by any arbitrary index:

In [7]: pd.pivot table(seg sub, index=seg df.Segment)

Oout [7] : age income is_female kids own_home \

Segment

moving up 36.216087 51763.552666 0.700 1.857143 0.357143

suburb mix 39.284730 55552.282925 0.530 1.950000 0.480000

travelers 57.746500 62609.655328 0.325 0.000000 0.662500

urban _hip 23.873716 20267.737317 0.320 1.140000 0.140000
subscribe

Segment

moving up 0.214286

suburb mix 0.070000

travelers 0.025000

urban _hip 0.220000

The pivot table () function calculates the mean by default, but any suitable function or list of functions can be
passed to the aggfunc argument:

In [8]: import numpy as np

# Output not shown
pd.pivot table(seg sub, index=seg df.Segment,
aggfunc=[np.mean, np.std]) .unstack()
In [9]: pd.pivot table(seg sub, index=seg df.Segment,
aggfunc=lambda x: np.percentile(x, 95))

However, for purposes here we use a simple function that reports the mean by group. We use mean here instead of a more
robust metric such as median because we have several binary variables and mean () easily shows the mixture proportion
for them (i.e., 0.5 means a 50% mix of 0 and 1).

We create our own function to simplify calling it:

In [10]: def check clusters(data, labels):
return pd.pivot table(data,
index=1labels)

# Output not shown
check clusters(seg sub, seg df.Segment)

While making this a function isn’t really necessary in this case, there are several reasons to do so. Writing our own
function allows us to minimize typing by providing a short command. By providing a consistent and simple interface, it
reduces risk of error. And it is extensible; as an analysis proceeds, we might decide to add to the function, expanding it to
report variance metrics or to plot results, without needing to change how we invoke it (something we will do in this chapter,
see Sect. 10.3.4).

With a summary function of this kind we are easily able to answer the following questions related to the business value
of a proposed solution:
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* Are there obvious differences in group means?
* Does the differentiation point to some underlying story to tell?
* Do we see immediately odd results such as a mean equal to the value of one data level?

This simple function will help us to inspect cluster solutions efficiently. It is not intended to be a substitute for detailed
analysis—and it takes shortcuts such as treating categorical variables as numbers, which is inadvisable except for analysts
who understand what they’re doing—yet it provides a quick first check of whether there is something interesting (or
uninteresting) occurring in a solution.

10.3.2 Hierarchical Clustering
Pairwise Distances

The primary information in hierarchical clustering is the distance between observations. There are many ways to compute
distance, and we start by examining the best-known method, the Euclidean distance. For two observations (vectors) X and

Y, the Euclidean distance d is:
d= /Z (A — B)? (10.1)

For single pairs of observations, such as A = {1, 2, 3} and B = {2, 3, 2} we can compute the distance easily in Python using
numpy:

In [11]: # Vector of differences
np.array([1, 2, 3]) - np.array([2, 3, 2])

Out[11]: array([-1, -1, 11)

In [12]: # Sum of the squared distances
np.sum( (np.array ([1, 2, 3]) - np.array([2, 3, 2]))**2)

Out [12]: 3

In [13]: # Root sum of the squared distances
np.sgrt (np.sum( (np.array([1, 2, 3]) - np.array([2, 3, 2]))*x2))

Out [13]: 1.7320508075688772

When there are many pairs, this can be done with the pdist () function from the scipy distance module. Let’s check
it first for the simple X, Y example:

In [14]: from scipy.spatial import distance

distance.pdist ([np.array([1l, 2, 3]1), np.array([2, 3, 2]1)])
Oout [14]: array([1.73205081])

A limitation is that Euclidean distance is only defined when observations are numeric. In our data seg_df it is impossible
to compute the distance between male and female. This is why we transformed the gender column into a boolean column.
If we did not care about the factor variables, then we could compute Euclidean distance using only the numeric columns.

The scipy.spatial.distance module also includes the squareform function which computes a distance
matrix. We can observe how it works on the first three rows of the seg_sc dataframe:

In [15]: distance.squareform(distance.pdist (seg sc.iloc[:3]))

Out [15]: array([[O. , 2.92113022, 1.08300539],
[2.92113022, 0. , 3.07299428],
[1.08300539, 3.07299428, O. 11)
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To find the distance between the second and third variable, we can look at the second row, third column or the third row,

second column and see that the distance is 3.07. The distance matrix is symmetric and, as expected, the distance of an

observation from itself is 0. Notice that the square-form distance matrix has a lot of redundant information, which we can

remove to make it more memory efficient. This can be important when dealing with datasets with a large number of columns.
To get a more compact form, we use pdist () which returns a condensed, vector-form distance matrix:

In [16]: distance.pdist(seg sc.iloc[:3])
Oout [16]: array([2.92113022, 1.08300539, 3.07299428])

The condensed distance matrix is more memory efficient, but is harder for a human to inspect.
If we inspect the pairwise distances in our dataset, the importance of scaling the data becomes clear.

In [17]: import matplotlib.pyplot as plt
plt.style.use('seaborn-white')

plt.figure(figsize=(5,10))

plt.subplot(2,1,1)

plt.hist (distance.pdist (seg sub))
plt.title('Pairwise distances from unscaled data')
plt.xlabel ('Distance')

plt.ylabel ('Count')

plt.subplot(2,1,2)

plt.hist (distance.pdist (seg sc))
plt.title('Pairwise distances from scaled data')
plt.xlabel ('Distance')

plt.ylabel ('Count')

As we can see in the left panel of Fig. 10.1, the unscaled data produces a highly skewed distribution of distances, which
is dominated by differences in income between customers (rows in the data). Contrast that with the distribution of distances
from the scaled data in the right panel.

Pairwise distances from unscaled data Pairwise distances from scaled data
14000
12000
12000
10000
10000
8000
= 8000 =
=} >
3 8 6000
6000
4000 4000
2000 2000
0
0 20000 40000 60000 80000 100000 0 1 2 3 4 5 6 7
Distance Distance

Fig. 10.1 The distribution of pairwise distances from the unscaled data is very skewed (left panel), in contrast to the approximately normal
distribution from the scaled data (right panel)
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Hierarchical Clustering in Python

Hierarchical clustering is a popular method that groups observations according to their similarity. The 1inkage () function
from the scipy hierarchy module generates hierarchical clustering. The clusters are generated using a distance-based
algorithm that operates on a dissimilarity matrix, an N-by-N matrix that reports a metric for the distance between each pair
of observations.

The hierarchical clustering method begins with each observation in its own cluster. It then successively joins neighboring
observations or clusters one at a time according to their distances from one another, and continues this until all observations
are linked. This process of repeatedly joining observations and groups is known as an agglomerative method. Because it is
both very popular and exemplary of other methods, we present hierarchical clustering in more detail than the other clustering
algorithms.

We pass our data into the 1inkage () function, which calculates distances and runs the clustering algorithm, producing
a linkage matrix:

In [18]: from scipy.cluster import hierarchy

linkages = hierarchy.linkage(seg sc, method='ward')

We use the Ward linkage method, which forms groups that minimize the total within-cluster variance.
Passing the linkage matrix to the dendrogram () function will plot a tree representing the linkage matrix:

In [19]: hierarchy.dendrogram(linkages)
plt.show ()

The resulting tree for all N = 300 observations of seg_sub is shown in Fig. 10.2.

A hierarchical dendrogram is interpreted primarily by height and where observations are joined. The height represents the
dissimilarity between elements that are joined. At the lowest level of the tree in Fig. 10.2 we see that elements are combined
into small groups of 2—10 that are relatively similar, and then those groups are successively combined with less similar groups
moving up the tree. The horizontal ordering of branches is not important; branches could exchange places with no change in
interpretation.

Figure 10.2 is difficult to read. There are two ways in which we can make it simpler to read.

One is with the truncate_mode and p arguments to dendrogram (). If truncate modeissetto ' lastp’ or
to “level’, a condensed tree will be shown. The degree of truncation is set with the argument to p. In 1astp mode, only
p branches will be shown. For example, if we set p=20, we can see in Fig. 10.3 that the leaves are condensed.

25

20

Fig. 10.2 Complete dendrogram for the scaled segmentation data, using 1inkage () and dendrogram () from the scipy hierarchy module
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Fig. 10.3 A truncated tree, showing only 20 branches, each of which represents multiple leaves (the number of leaves are shown in parentheses)

In [20]: hierarchy.dendrogram(linkages, orientation='top',
truncate mode='lastp', p=20)
plt.show ()

The number of leaves that each branch represents are indicated in parentheses. If an individual leaf is present, its label
will not have parentheses.
It is also helpful to zoom in on one section of the chart. We can do so using the x1im () function:

In [21]: plt.subplot(1,2,1)
hierarchy.dendrogram(linkages, leaf rotation=0)
plt.x1lim((0,200))
plt.subplot(1,2,2)
hierarchy.dendrogram(linkages, leaf rotation=0)
plt.x1lim( (2800, 3000))
plt.show ()

The result is shown in Fig. 10.4, where we are now able to read the observation labels (which defaults to the row names—
usually the row numbers—of observations in the dataframe). Each node at the bottom represents one customer, and the tree
show how each has been grouped progressively with other customers. Here we can see the far left and right edges of the tree
and the observations present in those parts of the tree.

We can check the similarity of observations by selecting a few rows listed in Fig. 10.4. Observations 17 and 51 are
represented as being quite similar because they are linked at a very low height, as are observations 163 and 88. On the other
hand, observations 17 and 163 are only joined at the highest level of the tree and thus should be relatively dissimilar. We can
check those directly:

In [22]: # Similar
seg sub.loc[[17, 511]

out [22] : age income kids own home subscribe is female
17 73.266707 70157.058678 0 False False True
51 71.172291 75554.353842 0 False False True

In [23]: # Similar
seg sub.loc[[163, 88]]
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Fig. 10.4 A close up view of the left- and right-most branches from Fig. 10.2

Oout [23] : age income kids own home subscribe is female
163 39.653607 48996.400976 2 True False False
88 40.106702 41744.977842 2 True False False

In [24]: # Dissimilar
seg sub.loc[[17,163]]

Out [24] : age income kids own_home subscribe is female
17 73.266707 70157.058678 0 False False True
163 39.653607 48996.400976 2 True False False

The first two pairs—observations that are neighbors in the dendrogram—are similar on all variables (age, gender, income,
etc.). The third pair—observations taken from widely separated branches—differ substantially.

We can check one of the goodness-of-fit metrics for a hierarchical cluster solution. One method is the cophenetic
correlation coefficient (CPCC), which assesses how well the dendrogram matches the distance metric (Sokal and Rohlf
1962). We use cophenet () to compare the distances from the linkages with the pdist () metrics:

In [25]: hierarchy.cophenet (linkages, distance.pdist(seg sc)) [0]
Out [25]: 0.5985290160084774

CPCC is interpreted similarly to Pearson’s r. In this case, CPCC is about 0.6, indicating a moderately strong fit, meaning
that the hierarchical tree represents the distances between customers well.

10.3.3 Hierarchical Clustering Continued: Groups from fcluster

How do we get specific segment assignments? A dendrogram can be cut into clusters at any height desired, resulting in
different numbers of groups. For instance, if Fig. 10.2 is cut at a height of 25 there are K = 2 groups (draw a horizontal line
at 25 and count how many branches it intersects; each cluster below is a group), while cutting at height of 9 defines K = 11
groups.
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Because a dendrogram might be cut at any point, an analyst must specify the number of groups desired. We can see the
clusters based on where the dendrogram would be cut by passing the color thresh argument, which will color only the
branches below that threshold. In Fig. 10.2, the default value selected 4 clusters, but we can manually set it to a different
value:

In [26]: # Not shown
hierarchy.dendrogram(linkages, color threshold=9)
plt.show ()

We obtain the assignment vector for observations using fcluster (). We specify a criterion type as ‘ maxclust’ and
a threshold of 4 (t=4), which tells fcluster () that we expect 4 clusters. There are other clustering criteria that you can
read about in the fcluster () documentation.

In [27]: labels = hierarchy.fcluster(linkages, t=4, criterion='maxclust')
list (zip (*np.unique (labels, return counts=True)))

Out [27]: [(1, 92), (2, 35), (3, 95), (4, 78)]

fcluster () returned the cluster label for each observation. We use np.unique (return counts=True) to
get the observation count for each cluster. We use list (zip(...)) just as a formatting trick. Here we use the
“x” operator to unpack the tuple of values returned by np.unique () and pass them to the zip () function. What
does “unpacking” mean in this context? Since the values are returned in a tuple, they cannot be directly passed as
arguments. We could have assigned the output to a variable, say unique label counts and then used the command
zip (unique label counts[0], unique label counts[1]) to achieve the same effect.

We see that groups 1, 3, and 4 are similar in size while group 2 is less than half the size of the others. Note that the class
labels (1, 2, 3, 4) are in arbitrary order and are not meaningful in themselves.

We use our custom summary function check clusters (), defined above, to inspect the variables in seg_sub with

reference to the four clusters:

In [28]: check clusters(seg sub, labels)

out [28] : age income is_ female kids own_home subscribe
1 54.474706 63219.658293 0.250000 0.152174 0.521739 0.0
2 34.523881 41685.199147 0.542857 1.514286 0.314286 1.0
3 38.204641 51578.802282 1.000000 1.873684 0.463158 0.0
4 31.122503 38790.506683 0.089744 1.756410 0.384615 0.0

We see that group 2 contains all of the subscribers. Group 1 is the oldest and has the highest income and home ownership.
Group 3 contains only women and has an intermediate level of income, age, and home ownership. Group 4 is predominately
male and younger, with the lowest income.

For comparison, we can run the same analysis with the unscaled data and see what we find:

In [29]: linkages unscaled = hierarchy.linkage(seg_sub, method='ward')
hierarchy.dendrogram(linkages unscaled)
plt.show ()

We see in Fig. 10.5 that 3 clusters are more appropriate than 4. Also, note that the distances (indicated on the y-axis) are
much larger the before: these clusters are dominated by income.
Using our check clusters () function, we see a slightly different pattern:

In [30]: labels unscaled = hierarchy.fcluster(linkages unscaled, t=
criterion='maxclust"')
check clusters(seg sub, labels unscaled)

31

Out [30] : age income is_ female kids own_home subscribe
1 26.238778 20026.508497 0.320755 1.113208 0.150943 0.207547
2 48.102952 74464.263260 0.394737 1.052632 0.500000 0.052632
3 42.283774 49591.504755 0.567251 1.421053 0.508772 0.116959

The three clusters are clearly very segregated by income, with group 1 being low, group 2 being high, and group 3 being
intermediate. But we see potentially interesting patterns beyond that. Group 1 is low in income, young, two-thirds male, with
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Fig. 10.5 Complete dendrogram for the unscaled segmentation data

few kids and low home-ownership, but a high subscription rate. Group 2 has the lowest subscription rate, but the highest
income. Group 3 has a similar home-ownership rate as group 2, but twice the subscription rate, the most women, and more
children.

It is interesting that, in this case, despite being defined by income, the clusters are well-differentiated in the other
dimensions as well. We would argue that these clusters are probably more actionable from a business perspective. This
goes to show that clustering is more about interpretability than about accuracy. In this case, the unscaled data outperformed
the scaled data because income is a good proxy for other demographics in our dataset, something that will not surprise
marketing researchers.

However, if the variable with the longest range had not been informative, the unscaled data would have likely done a
better job revealing structure within the dataset.

We can visualize cluster membership based on values to get a better understanding. We create a helper function to produce
a scatterplot of two of the columns and then color each point based on cluster membership. We can then investigate, for
example, cluster membership based on age and income:

In [31]: def cluster plot raw(x, y, labels):
for 1 in np.unique (labels) :

idx = labels == 1

plt.scatter (x[idx],
y[idx],
label=1)

plt.legend ()
plt.xlabel (x.name)
plt.ylabel (y.name)

In [32]: cluster plot raw(seg sub.age, seg sub.income, labels unscaled)

This visualization (Fig. 10.6) confirms what we suspected: income dominates the clustering. Whether this is interesting or
uninteresting depends on your objective. Overall, this demonstrates why you should expect to try several methods and iterate
in order to find something useful.
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Fig. 10.6 Plotting the 3-segment hierarchical solution from the unscaled segmentation data by age and income, with color representing segment
membership. We see that the clustering appears to be defined primarily by income

10.3.4 Mean-Based Clustering: k_means ()

K-means clustering attempts to find groups that are most compact, in terms of the mean sum-of-squares deviation of each
observation from the multivariate center (centroid) of its assigned group. Like hierarchical clustering, k-means is a very
popular approach.

How does the basic algorithm work? It starts with an initial set of means, which may be random or nonrandom. The
number of means is a parameter that must be specified. The algorithm then alternates between two steps:

* Assign: Each observation is assigned to the cluster represented by the nearest mean, nearness being defined by the least
squared Euclidean distance
» Update: Calculate the centroid of each cluster, which collectively become the new means

This alteration repeats until the assignment of observations is stable.

Because it explicitly computes a mean deviation, k-means clustering relies on Euclidean distance. Thus it is only
appropriate for numeric data or data that can be reasonably coerced to numeric, unlike hierarchical clustering which can
utilize different distance metrics and thus be applied to categorical data as well.

We will extend our check clusters () function by adding a line to determine cluster sizes:

In [33]: def check clusters(data, labels):
print (list (zip (+np.unique (labels, return counts=True))))

return pd.pivot table(data,
index=1labels)

We can run the k_means () function from the cluster module of sci-kit learn. K-means requires specification of the
number of clusters to find. We ask for four clusters withn clusters=4. We will first run this on our scaled data:

In [34]: import numpy as np

from sklearn import cluster

np.random. seed (536)
centroids, labels, inertia = cluster.k means(seg sc, n_clusters=4)
check clusters(seg sub, labels)

(o, 73), (1, 101), (2, 91), (3, 35)]
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Out [34] : age income 1is female kids own home subscribe
0 31.672851 39921.012710 0.000000 1.821918 0.315068 0.0
1 37.043120 49285.905471 1.000000 1.811881 0.405941 0.0
2 55.112042 64282.900228 0.263736 0.142857 0.637363 0.0
3 34.523881 41685.199147 0.542857 1.514286 0.314286 1.0

Note that the line beginning [ (0, 73),is output from the function check_ clusters () and will appear in the output
block in a Colab notebook or in between the input and output blocks in a Jupyter notebook.

We also ran our check function check_clusters () to do a quick check of the data by proposed group, where cluster
assignments are found in the 1abels vector.

These clusters superficially look a lot like the clusters we found in the hierarchical clustering of our scaled data. We have
a group containing all of our subscribers (group 4). We now have a group that contains only women (group 1) and a group
that contains only men (group 0). These are unlikely to prove useful. Telling stakeholders that there are two really important
groups uncovered by our segmentation analysis, men and women, is unlikely to receive accolades!

What about if we use the unscaled data? We can check with four groups and also with three:

In [35]: centroids, k labels unscaled4, inertia = cluster.k means(seg sub,
n clusters=4)
check clusters(seg sub, k labels unscaled4)

((o, 9e), (1, 55), (2, 42), (3, 107)]

Out [35] : age income is_female kids own_home subscribe
0 42.346106 60157.505981 0.541667 1.625000 0.447917 0.093750
1 27.809087 20457.938690 0.327273 1.072727 0.163636 0.200000
2 52.117381 81545.927332 0.309524 0.476190 0.571429 0.023810
3 41.993915 45566.356272 0.570093 1.373832 0.532710 0.130841

In [36]: centroids, k labels unscaled3, inertia = cluster.k means(seg sub,

n clusters=3)
check clusters(seg sub, k_labels unscaled3)

[(o, 64), (1, 65), (2, 171)]

Out [36] : age income 1is female kids own home subscribe
0 29.635597 22520.530838 0.343750 1.109375 0.171875 0.187500
1 49.494653 76393.497749 0.384615 0.923077 0.507692 0.046154
2 41.889908 51426.578619 0.567251 1.467836 0.520468 0.116959

These groups, again, look rather like the hierarchical clusters we found with the unscaled data. Similar to those, they
look potentially interesting. In each grouping, we have a young, lower-income group that is predominately male, with low
home-ownership and a high subscription rate. We also have an older, higher-income group with a low subscription rate. In
the four-segment model, both of those groups are better differentiated.

In the four-segment model, the intermediate group is split in two. This could be of interest or not. One might, for example,
try to understand what is underlying the substantial difference in subscription rates between these otherwise undifferentiated
groups.

Note that in clustering models, the group labels are in arbitrary order, so don’t worry if your solution shows the same
pattern with different labels.

We can visually check the differences in income between the groups using a boxplot:

In [37]: import matplotlib.pyplot as plt
seg_sub.boxplot (column="'income', by=k labels unscaled4)
plt.xlabel ('Cluster')
plt.ylabel ('Income')
plt.suptitle('') # Remove cluster id subtitle

The result is Fig. 10.7, which shows substantial differences in income by segment.

We may also visualize the clusters by plotting them against a dimensional plot. We write a function to perform dimensional
reduction with principal components and then plot the observations with cluster membership identified (see Chap. 9 to review
principal component analysis and plotting):
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Fig. 10.7 Boxplot of income by cluster as found with k_means ()
In [38]: from sklearn import decomposition

from matplotlib import cm

def cluster plot(data_df, labels):
p = decomposition.PCA(random state=132, svd solver='full')
scaled transformed = p.fit transform(preprocessing.scale(data df))
for 1 in np.unique (labels) :
idx = np.where(labels == 1) [0]
plt.scatter(scaled transformed[idx, 0],
scaled transformed[idx, 17,
label=1)
plt.legend()
plt.title('First two components explain {}% of the variance'
.format (round (100xp.explained variance ratio [:2] .sum())))
plt.xlabel ('First principal component')
plt.ylabel ('Second principal component')

cluster plot (seg sub, k labels unscaled4)

This produces Fig. 10.8, which plots cluster assignment by color against the first two principal components of the
predictors (see Sect. 9.2.2). Groups 1 and 2 are largely overlapping (in this dimensional reduction) while groups 0 and 3
are more differentiated. This is consistent with what we observed using the output from check clusters().

Overall, this is an interesting cluster solution for our segmentation data. The groups here are clearly differentiated on key
variables such as age and income. With this information, an analyst might cross-reference the group membership with key
variables (as we did using our check clusters ()) function and then look at the relative differentiation of the groups
(as in Fig. 10.8).

This may suggest a business strategy. In the present case, for instance, we see that group 3 is modestly well-differentiated,
and has the highest average income. That may make it a good target for a potential campaign. Or we might focus on group
0 as our segment with the highest subscription rate and understand how to grow our market there. Many other strategies are
possible, too; the key point is that the analysis provides interesting options to consider.
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Fig. 10.8 Cluster plot created for the four group solution from k_means () . This shows the observations on a multidimensional scaling plot with
group membership identified by the color

10.3.5 Model-Based Clustering: GaussianMixture ()

The key idea for model-based clustering is that observations come from groups with different statistical distributions (such as
different means and variances). The algorithms try to find the best set of such underlying distributions to explain the observed
data. We use the mixture module from scikit-learn to demonstrate this.

Such models are also known as “mixture models” because it is assumed that the data reflect a mixture of observations
drawn from different groups called components, although we don’t know which component each observation was drawn
from. GaussianMixture () models assume the observations are drawn from a mixture of normal (also known as
Gaussian) distributions. We are trying to estimate the underlying component parameters and the mixture proportions.

How does this work? The most common approach is called the expectation maximization (EM) algorithm, which is
analogous to that used for k-means, but rather than iteratively estimating centroids and using distances from those centroids
to it estimates the probability of each point belonging to each Gaussian component (which is defined by its mean and
variance). So, starting with random parameters for each model, the algorithm repeats these steps:

* Assign: Each observation is assigned to the component that it is most likely to belong to
» Update: The parameters for each component are updated given the points assigned to it

As you might guess, because GaussianMixture () models data with normal distributions, it uses only numeric
data. The model is estimated with the £it () method on the GaussianMixture () and labels are generated with the
predict () method:

In [39]: from sklearn import mixture

gmm4 = mixture.GaussianMixture (n components=4,

covariance type='full',

random state=323) .fit (seg sub)
gmm4 labels = gmm4.predict (seg sub)
gmm4 .bic (seg_sub)

Out [39]: 7892.76042330893

GaussianMixture () requires as input the number of model components and the covariance structure within each
component. Above, we fit the model with four components, i.e. four groups or clusters, which each have a full covariance
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Fig. 10.9 BIC values of GaussianMixture () models as a function of the number of components. Model fit does not improve beyond five
components until we get to ten components, which is likely too many to interpret effectively

structure. Note that since this is a probability model, we have available metrics on the model goodness of fit, such as the
Bayesian Information Criterion (BIC) (Raftery 1995). This gives us an objective function on which to optimize the model,
for instance, by optimizing the number of components. Additionally, since the cluster assignments are probabilistic, we can
inspect the model confidence for each individual point.

First, let’s determine what the best number of clusters is. We can do so by fitting models with different numbers of
components and comparing the BIC values:

In [40]: gmm n test = [mixture.GaussianMixture(n components=n,
covariance type='full"',
random_state=323)

.fit (seg _sub) for n in range(1l,14)]
plt.plot (range(1l, 14), [g.bic(seg sub) for g in gmm n testl])

Lower BIC values mean a better model fit. We can see in Fig. 10.9 that four components is not optimal, but beyond five
components the BIC values do not continue to drop until we get to ten components. Note that BIC values for good fits would
be expected to be negative, suggesting that these model fits are not very robust.

Another feature we must choose for the Gaussian mixture models is the covariance type. We can vary both the covariance
type and the number of components to improve our model further. Note that here we are using dictionary comprehension
as well as list comprehension. Dictionary comprehension is analogous to list comprehension, but generates a dict object
rather than a 1ist. See Sect. 2.4.10 for a refresher on list comprehension.

In [41]: gmm n v test = {v: [mixture.GaussianMixture (n components=n,
covariance type=v,
random_state=323)

.fit (seg sub) for n in range(1,14)]
for v in ['full', 'tied', 'diag', 'spherical']}
gmm n v _test bic = {v: [g.bic(seg sub) for g in m]
for v, m in gmm n v test.items()}
pd.DataFrame (gmm n v_test bic) .plot()

We can see in Fig. 10.10 that the full covariance that we tried initially does a reasonable job, but diagonal covariance gives
the best fit, and six components is an appropriate number.
Let’s next inspect the clusters we find with six components:

In [42]: gmm5 = mixture.GaussianMixture (n_ components=5,
covariance type='diag',
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Fig. 10.10 BIC values of GaussianMixture () models as a function of the number of components and covariance type. Diagonal and full
covariance provide the best fits

random_state=323) .fit (seg_sub)
gmm5_ labels = gmm5.predict (seg_sub)

In [43]: check clusters(seg sub, gmm5 labels)

((o, 129), (1, 32), (2, 21), (3, 4), (4, 114)]

Out [43]: age income is_ female kids own_home subscribe
0 37.366073 52743.873543 0.581395 2.248062 0.465116 0.0000
1 23.630276 20251.707688 0.375000 1.593750 0.000000 0.3125
2 36.492245 51554.737478 0.619048 1.857143 0.333333 1.0000
3 52.523755 44005.211404 0.000000 0.500000 1.000000 1.0000
4 50.212110 56931.154434 0.385965 0.000000 0.543860 0.0000

These clusters do not look to be very actionable. Nearly all observations fall in either group O or group 4, which include
all non-subscribers. Those two groups are differentiated on a few measures, most notably children: individuals in group
4 have no children whereas those in group O have, on average, 2.24 children. Again, the idea that individuals with and
without children might be important segments very well may be accurate and business-relevant, but it wouldn’t really take a
sophisticated clustering analysis to find that!

10.3.6 Recap of Clustering

We’ve covered three methods to identify potential groups of observations in a dataset. In the next section we examine the
problem of how to predict (classify) observations into groups after those groups have been defined. Before we move to that
problem, there are two points that are crucial for success in segmentation projects:

 Different methods are likely to yield different solutions, and in general there is no absolute “right” answer. We recommend
trying multiple clustering methods with different potential numbers of clusters.

* The results of segmentation are primarily about business value, and solutions should be evaluated in terms of both model
fit (e.g., using BIC) and business utility. Although model fit is an important criterion and should not be overlooked, it is
ultimately necessary that an answer can be communicated to and used by stakeholders.
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10.4 Learning More*

We covered the basics of clustering . There are many places to learn more about those methods and related statistical models.
A recommended introduction to the field of statistical learning is James et al., An Introduction to Statistical Learning (ISL)
(James et al. 2013). A more advanced treatment of the topics in ISL is Hastie et al., The Elements of Statistical Learning
(Hastie et al. 2016).

For cluster analysis, a readable text is Everitt et al., Cluster Analysis (Everitt et al. 2011). An introduction to latent class
analysis is Collins and Lanza, Latent Class and Latent Transition Analysis (Collins and Lanza 2010).

Python has support for a vast number of clustering algorithms that we cannot cover here, but a few are worth mentioning.
Exploring the scikit-learn cluster module (scikit-learn developers 2019a) and reading the associated references is a great
place to learn more.

Marketing segmentation has developed approaches and nuances that differ from the typical description in statistics texts.
For instance, in addition to the static, cross-sectional models considered in this chapter (where segmentation examines data
at just one point in time), one might wish to consider dynamic models that take into account customer lifestyle changes
over time. An overview of diverse approaches in marketing is Wedel and Kamakura, Market Segmentation: Conceptual and
Methodological Foundations (Wedel and Kamakura 2000).

There are various ways to model changes in class membership over time. One approach is latent transition analysis (LTA),
described in Collins and Lanza (2010). At the time of writing, LTA was not supported by a specific package in Python.
Another approach is a finite state model such as Markov chain model (cf. Ross 2019). An alternative when change over time
is metric (i.e., is conceptualized as change in a dimension rather than change between groups) is to use longitudinal structural
equation modeling or latent growth curve models.

10.5 Key Points

We addressed segmentation through the lens of clustering. We examined several varieties of clustering methods and compared
them. Once segments or groups are identified, classification methods can help to predict group membership status for new
observations.

* The most crucial question in a segmentation project is the business aspect: will the results be useful for the purpose at
hand? Will they inspire new strategies for marketing to customers? It is important to try multiple methods and evaluate
the utility of their results (cf. Sect. 10.1.1).

» Distance-based clustering methods attempt to group similar observations. We examined scipy.cluster.hierarchy ()

for hierarchical clustering (Sect. 10.3.2) and sklearn.cluster.k means () for k-means grouping (Sect. 10.3.4).
Distance-based measures rely on having a way to express metric distance, which is a challenge for categorical data.

* Model-based clustering methods attempt to model an underlying distribution that the data express. We examined
sklearn.mixture.GaussianMixture for model-based clustering of data assumed to be a mix of normal
distributions (Sect. 10.3.5).

* Model-based methods enable calculation of Bayesian Information Criterion (BIC), which allows us to identify models
with the best statistical fit (Sect. 10.3.5). We recommend that the ultimate decision to use a model’s solution be made on
the grounds of both statistics (i.e., excellent fit) and the business applicability of the solution (i.e., actionable implications).
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