Anoop Singhal
Jaideep Vaidya (Eds.)

Data and Applications
Security and Privacy XXXIV

34th Annual IFIP WG 11.3 Conference, DBSec 2020
Regensburg, Germany, June 25-26, 2020
Proceedings

LNCS 12122

@ Springer

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

12122

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Anoop Singhal - Jaideep Vaidya (Eds.)

Data and Applications
Security and Privacy XXXIV

34th Annual IFIP WG 11.3 Conference, DBSec 2020
Regensburg, Germany, June 25-26, 2020
Proceedings

@ Springer

Editors

Anoop Singhal Jaideep Vaidya
National Institute of Standards Rutgers University
and Technology Newark, NJ, USA

Gaithersburg, MD, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-49668-5 ISBN 978-3-030-49669-2 (eBook)

https://doi.org/10.1007/978-3-030-49669-2
LNCS Sublibrary: SL3 — Information Systems and Applications, incl. Internet/Web, and HCI

© IFIP International Federation for Information Processing 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7420-6947
https://doi.org/10.1007/978-3-030-49669-2

Preface

This volume contains the papers selected for presentation at the 34th Annual IFIP
WG11.3 Conference on Data and Applications Security and Privacy (DBSec 2020),
that was supposed to be during June 25-26, 2020, in Regensburg. While the conference
was held on the dates as scheduled, due to the COVID-19 situation it was held virtually
(for the first time in the history of DBSec), instead of physically in Regensburg.

In response to the call for papers of this edition, 41 submissions were received, and
all submissions were evaluated on the basis of their significance, novelty, and technical
quality. The Program Committee, comprising 40 members, performed an excellent job,
with the help of additional reviewers, of reviewing all submissions through a careful
anonymous process (three or more reviews per submission). The Program Committee’s
work was carried out electronically, yielding intensive discussions. Of the submitted
papers, 14 full papers and 8 short papers were selected for presentation at the
conference.

The success of DBSec 2020 depended on the volunteering effort of many indi-
viduals, and there is a long list of people who deserve special thanks. We would like to
thank all the members of the Program Committee and all the external reviewers, for all
their hard work in evaluating the papers and for their active participation in the dis-
cussion and selection process. We are very grateful to all people who readily assisted
and ensured a smooth organization process, in particular Giinther Pernul for his efforts
as DBSec 2020 general chair; Sara Foresti (IFIP WG11.3 chair) for her guidance and
support; Yuan Hong and Benedikt Putz (publicity chairs) for helping with publicity;
and Petra Sauer for helping with other arrangements for the conference. EasyChair
made the conference review and proceedings process run very smoothly.

Last but certainly not least, thanks to all the authors who submitted papers and all
the conference attendees. We hope you find the proceedings of DBSec 2020 inter-
esting, stimulating, and inspiring for your future research.

April 2020 Anoop Singhal
Jaideep Vaidya

Organization

Program Committee

Ayesha Afzal Air University, USA

Vijay Atluri Rutgers University, USA

Frédéric Cuppens Télécom Bretagne, France

Nora Cuppens-Boulahia IMT Atlantique, France

Sabrina De Capitani di Universita degli Studi di Milano, Italy
Vimercati

Giovanni Di Crescenzo Perspecta Labs, USA

Csilla Farkas USC, USA

Barbara Fila INSA Rennes, IRISA, France

Sara Foresti Universita degli Studi di Milano, Italy

Steven Furnell Plymouth University, UK

Ehud Gudes Ben-Gurion University, Israel

Yuan Hong Illinois Institute of Technology, USA

Sokratis Katsikas Open University of Cyprus, Cyprus

Costas Lambrinoudakis University of Piraeus, Greece

Adam J. Lee University of Pittsburgh, USA

Yingjiu Li University of Oregon, USA

Giovanni Livraga University of Milan, Italy

Javier Lopez UMA, Spain

Brad Malin Vanderbilt University, USA

Fabio Martinelli IIT-CNR, Italy

Sjouke Mauw University of Luxembourg, Luxembourg

Catherine Meadows NRL, USA

Charles Morisset Newcastle University, UK

Martin Olivier University of Pretoria, South Africa

Stefano Paraboschi Universita di Bergamo, Italy

Giinther Pernul Universitdt Regensburg, Germany

Silvio Ranise FBK-Irst, Italy

Indrajit Ray Colorado State University, USA

Indrakshi Ray Colorado State University, USA

Kui Ren State University of New York at Buffalo, USA

Pierangela Samarati Universita degli Studi di Milano, Italy

Andreas Schaad WIBU-Systems, Germany

Anoop Singhal NIST, USA

Scott Stoller Stony Brook University, USA

Shamik Sural IIT Kharagpur, India

Jaideep Vaidya Rutgers University, Australia

Vijay Varadharajan The University of Newcastle, Australia

viii Organization

Lingyu Wang
Wendy Hui Wang
Edgar Weippl
Attila A. Yavuz
Nicola Zannone

Additional Reviewers

Alcaraz, Cristina
Berlato, Stefano
Binder, Dominik
Bursuc, Sergiu
Chen, Xihui
Clark, Stanley
Derbeko, Philip
Georgiopoulou, Zafeiroula
Groll, Sebastian
Haefner, Kyle
Liu, Bingyu
Liu, Yongtai
Lyvas, Christos

Concordia University, Canada

Stevens Institute of Technology, USA

University of Vienna, Austria

University of South Florida, USA

Eindhoven University of Technology, The Netherlands

Mohamady, Meisam
Mykoniati, Maria
Nieto, Ana
Roman, Rodrigo
Sascha, Kern
Schlette, Daniel
Sciarretta, Giada
Shafiq, Basit
Thang, Hoang
Voloch, Nadav
Wan, Zhiyu
Wang, Han

Yan, Chao

Contents

Network and Cyber-Physical Systems Security

Modeling and Mitigating Security Threats in Network Functions
Virtualization (NFV) 3
Nawaf Alhebaishi, Lingyu Wang, and Sushil Jajodia

Managing Secure Inter-slice Communication in 5G Network Slice Chains . . . 24
Luis Sudrez, David Espes, Frédéric Cuppens, Cao-Thanh Phan,
Philippe Bertin, and Philippe Le Parc

Proactively Extracting IoT Device Capabilities: An Application
toSmart Homes 42
Andy Dolan, Indrakshi Ray, and Suryadipta Majumdar

Security Enumerations for Cyber-Physical Systems 64
Daniel Schlette, Florian Menges, Thomas Baumer, and Giinther Pernul

Information Flow and Access Control

Inference-Proof Monotonic Query Evaluation
and View Generation Reconsidered 79
Joachim Biskup

Network Functions Virtualization Access Control as a Service 100
Manel Smine, David Espes, Nora Cuppens-Boulahia,
and Frédéric Cuppens

Effective Access Control in Shared-Operator Multi-tenant Data Stream
Management SYSteIMSttt 118
Marian Zaki, Adam J. Lee, and Panos K. Chrysanthis

Information Flow Security Certification for SPARK Programs 137
Sandip Ghosal and R. K. Shyamasundar

Privacy-Preserving Computation

Provably Privacy-Preserving Distributed Data Aggregation in Smart Grids . . . 153
Marius Stiibs, Tobias Mueller, Kai Bavendiek, Manuel Loesch,
Sibylle Schupp, and Hannes Federrath

Non-interactive Private Decision Tree Evaluation 174
Anselme Tueno, Yordan Boev, and Florian Kerschbaum

X Contents

Privacy-Preserving Anomaly Detection Using Synthetic Data 195
Rudolf Mayer, Markus Hittmeir, and Andreas Ekelhart

Local Differentially Private Matrix Factorization
with MoG for Recommendations. 208
Jeyamohan Neera, Xiaomin Chen, Nauman Aslam, and Zhan Shu

Visualization and Analytics for Security

Designing a Decision-Support Visualization for Live Digital
Forensic Investigations. 223
Fabian Bohm, Ludwig Englbrecht, and Giinther Pernul

Predictive Analytics to Prevent Voice over IP International

Revenue Sharing Fraud 241
Yoram J. Meijaard, Bram C. M. Cappers, Josh G. M. Mengerink,
and Nicola Zannone

PUA Detection Based on Bundle Installer Characteristics. 261
Amir Lukach, Ehud Gudes, and Asaf Shabtai

ML-Supported Identification and Prioritization of Threats
in the OVVL Threat Modelling Tool. 274
Andreas Schaad and Dominik Binder

Spatial Systems and Crowdsourcing Security

Enhancing the Performance of Spatial Queries on Encrypted
Data Through Graph Embedding. 289
Sina Shaham, Gabriel Ghinita, and Cyrus Shahabi

Crowdsourcing Under Data Poisoning Attacks: A Comparative Study 310
Farnaz Tahmasebian, Li Xiong, Mani Sotoodeh, and Vaidy Sunderam

Self-enhancing GPS-Based Authentication Using Corresponding Address. . .. 333
Tran Phuong Thao, Mhd Irvan, Ryosuke Kobayashi,
Rie Shigetomi Yamaguchi, and Toshiyuki Nakata

Secure Outsourcing and Privacy

GOOSE: A Secure Framework for Graph Outsourcing
and SPARQL Evaluation 347

Radu Ciucanu and Pascal Lafourcade

SGX-IR: Secure Information Retrieval with Trusted Processors. 367
Fahad Shaon and Murat Kantarcioglu

Contents xi

Readability of Privacy Policies 388
Barbara Krumay and Jennifer Klar

Author Index e 401

Network and Cyber-physical Systems
Security

®

Check for
updates

Modeling and Mitigating Security
Threats in Network Functions
Virtualization (NFV)

Nawaf Alhebaishi’2®) | Lingyu Wang!, and Sushil Jajodia®

! Concordia Institute for Information Systems Engineering, Concordia University,
Montreal, Canada
{n-alheb,wang}@ciise.concordia.ca
2 Faculty of Computing and Information Technology, King Abdulaziz University,
Jeddah, Saudi Arabia
3 Center for Secure Information Systems, George Mason University, Fairfax, US
jajodia@gmu.edu

Abstract. By virtualizing proprietary hardware networking devices,
Network Functions Virtualization (NFV) allows agile and cost-effective
deployment of diverse network services for multiple tenants on top of the
same physical infrastructure. As NFV relies on virtualization, and as an
NFV stack typically involves several levels of abstraction and multiple
co-resident tenants, this new technology also unavoidably leads to new
security threats. In this paper, we take the first step toward modeling
and mitigating security threats unique to NFV. Specifically, we model
both cross-layer and co-residency attacks on the NFV stack. Addition-
ally, we mitigate such threats through optimizing the virtual machine
(VM) placement with respect to given constraints. The simulation results
demonstrate the effectiveness of our solution.

1 Introduction

As a cornerstone of cloud computing, virtualization has enabled providers to
deliver various cloud services to different tenants using shared resources in a
cost-efficient way. The trend of virtualization has also led to many innovations
in networking in and outside clouds. In particular, traditional networks heav-
ily rely on vendor specific hardware devices with integrated software, such as
routers, switches, firewalls, IDSs, etc., which lacks sufficient flexibility demanded
by today’s businesses. Consequently, the need for decoupling software from hard-
ware in network devices has led to Network Functions Virtualization (NFV) [14],
which basically virtualizes proprietary hardware networking devices. As a key
enabling technology of 5G, NFV has seen an increased adoption among cloud
service providers, especially in the telecommunication industry [22].

However, the reliance on virtualization and the increased complexity together
imply that NFV may unavoidably introduce new security concerns. First, as an
NFYV stack involves several abstraction levels covering the physical and virtual
© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020

A. Singhal and J. Vaidya (Eds.): DBSec 2020, LNCS 12122, pp. 3-23, 2020.
https://doi.org/10.1007/978-3-030-49669-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49669-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-49669-2_1

4 N. Alhebaishi et al.

infrastructures as well as the virtual network functions [14], it naturally has a
larger attack surface, opening doors to new security threats such as cross-layer
attacks. Second, as one of the main advantages of NFV is to provide diverse
network services to different tenants using the same hardware infrastructure,
NFV would also share similar cross-tenant attacks as those seen in clouds (e.g.,
[44]). Therefore, security threats introduced by the multi-layer and multi-tenant
nature of NFV need to be better understood and mitigated.

Attack modeling and mitigation in NFV has only received limited attention (a
more detailed review of related work will be given in Sect. 6). Existing works have
focused on specific vulnerabilities caused by orchestration and management com-
plexities [43] and vulnerabilities resulting from the lack of interoperability [15]
or the lack of proper synchronization between different abstraction levels [24].
There also exist works on dynamically managing security functions in NFV [41]
and verifying Service Function Chaining (SFC)-related properties [17,28,38,45].
Existing works on co-residency attacks mostly focus on clouds [4,6] instead of
NFV. To the best of our knowledge, there lack a general approach to modeling
and mitigating NFV attacks.

In this paper, we take the first step toward modeling and mitigating security
attacks in NFV. Our key ideas are threefold. First, we propose a multi-layer
resource graph model for NFV in order to capture the co-existence of network
services, VMs, and physical resources at different abstraction levels inside an
NFV stack, and how those could potentially be exploited by attackers. This
model allows us to capture not only attacks that target each layer of the NFV
stack, but also attacks that go across different layers by exploiting the inter-
dependencies between corresponding resources at those layers. Second, we also
model the insider threats posed by malicious or compromised users of co-resident
tenants inside the same NFV stack. The model allows us to captures how a co-
residency attack may allow insiders to satisfy certain initial security conditions,
such as privileges or connectivity, which are normally not accessible to exter-
nal attackers. Third, we propose a solution to mitigate security attacks in NFV
through VM placement and migration, which is a low cost option already avail-
able in NFV. The aforementioned model allows us to formulate the attack miti-
gation in NFV as an optimization problem and solve it using standard optimiza-
tion techniques. We evaluate our approach through simulations to demonstrate
its effectiveness under various situations. In summary, the main contribution of
this paper is twofold:

— To the best of our knowledge, this is the first study on the modeling of security
threats in an NFV stack. Our multi-layer resource graph model demonstrates
the possibility of novel security threats in NFV, such as cross-layer and co-
residency attacks, and also provides a systematic way to capture and quantify
such threats.

— By formulating the optimization problem of mitigating attacks on NFV
through optimal VM placement and migration, we provide an effective solu-
tion, as evidenced by our simulation results, for achieving a better trade-
off between security and other constraints using standard optimization tech-
niques.

Modeling and Mitigating Security Threats in NFV 5

The remainder of this paper is organized as follows; Sect.2 presents back-
ground information on NFV and co-residency in NFV, and provides a motivating
example. In Sect. 3, we present our multi-layer resource graph and insider attack
model, and describe the application of a security metric. Section 4 formulates the
optimization problem and discusses several use cases. Section 5 gives the simu-
lation results. Section 6 reviews related works. Section 7 concludes the paper.

2 Preliminaries

This section first provides background information on NFV and co-residency in
NFV, and then gives a motivating example.

2.1 Background on NFV

As a main technology pillar of network softwarization and 5G, NFV provides
network functions through software running on standard hardware. NFV enables
network service providers to deploy dynamic, agile and scalable Network Services
(NS). Such benefits come from the fact that an NFV deployment stack is usually
an integration of various virtualization technologies including cloud and SDN
together with various network orchestration and automation tools.

Specifically, the left side of Fig.1 shows the European Telecommunications
Standards Institute (ETSI) NFV reference architecture [14]. The architecture
builds on three main blocks, i.e., virtual network function (VNF), NFV infras-
tructure (NFVI), and NFV management and orchestration (MANO). First, the
VNF provides network functions, such as router, switch, firewall, and load bal-
ancer, running on top of VMs through software. Second, NFVI represents the
cloud infrastructure that provides basic computations, network, and storage
needs for the execution of VNFs. Lastly, MANO has three management com-
ponents, virtual infrastructure manager (VIM), virtual Network function man-
ager (VNFM), and network function virtualization orchestrator (NFVO), which
together manage and orchestrate the lifecycle of physical and virtual resources.

In addition, the right side of Fig.1 shows a multi-layer NFV deployment
model [24] which complements the aforementioned ETSI architecture with
deployment details, and divides an NF'V stack into four layers, i.e., service orches-
tration (layer 1), resource management (layer 2), virtual infrastructure (layer 3),
and physical infrastructure (layer 4).

2.2 Co-Residency in NFV

As an NFV stack is multi-layer and multi-tenant in nature, placing and migrat-
ing a VM or VNF can be a challenging task for the provider due to the issue
of co-residency. It is well known that co-residency may lead to various security
issues, such as side-channel attacks, and additionally the tenant may have spe-
cific requirements in terms of (the lack of) co-residency. Co-residency may occur
in an NFV environment when a new VM or VNF is first placed, or when an

6 N. Alhebaishi et al.

* OSSIBSS gy
N T T 11 | Orchestrator |
I il I B
I
HEMII lEle l EM 3 l‘} |
| H T I | \ \ D ——
V[vNFI] [VNF2] [WNF3 ||| e ! I I
I A 777! | Manager(s) [| — L2;\NFV Resource Layer-———-—-——---
NFV. ‘ ‘ —
| | {vouvou]
[Computing] [Storage | [Network ||| | I ’ ; <
I I
I I
- — | | Virtualised Y Y 3% Virtual A\
: yer—-\
[Vmualqugtlon Layer | } IInfrastructure } M 1 {a
Hardware resources } Manager(s) |- } -’
|/|{Computing| | Storage || Network ||| I C_vLan__>O
Hardware | | Hardware | | Hardware ||| - —————————- ! ™ |
NFV Management vNetworl
Exccution Reference and Orchestration ——————————— - L4: Physical Layer————————————-
reference points points

Fig. 1. ETSI reference architecture [14] (left) and multi-layer NFV model [24] (right)

existing VM or VNF is migrated. The tenant requirements may specify that
certain VNFs are to be placed on a dedicated host, or a VM needs to have the
auto-scaling feature such that its need for more space can be quickly fulfilled. In
terms of security, co-resident VMs or VNFs may belong to tenants with conflict-
ing interests, and the co-residency may enable an insider attack with increased
privileges and connectivity not available to regular attackers.

A unique aspect of co-residency in NFV is that, in an NFV stack, co-residency
can happen between more layers, such as between VNFs and physical hosts,
between VNFs and VMs, or between VMs and physical hosts. The co-residency
of VNFs or VMs on the same physical host can occur due to placement or
migration, which is known to lead to side-channel or resource depletion attacks
due to the shared physical resources such as CPU, memory, or cache. The co-
residency of VNFs on the same VM can also occur when different tenants employ
the same VM to run similar network functions, such as virtual firewall or virtual
IDS [21,23,32].

2.3 Motivating Example

In the following, we present a concrete example of NFV stack to demonstrate
the challenges in modeling and mitigating security threats for NFV. First of
all, as NFV is a relatively new concept, there lack public access to information
regarding the detailed hardware and software configurations used in real NFV
environments. As can be seen in Fig. 1, both the ETSI architecture [14] and the
multi-layer deployment model [24] are quite high level, and lack such details.
Most other existing works either focus on high-level frameworks and guidelines
for risk and impact assessment [26,29,33], or very specific vulnerabilities [25, 30,
31], with a clear gap in between.

To address such limitations, we design a concrete example of NFV stack, as
shown in Fig. 2, based on both the ETSI architecture [14] and the multi-layer

Modeling and Mitigating Security Threats in NFV 7

— WRouter | vFirewall H vDS fem — — — — — — |
|
|

_.—| VRouter IH vFirewall I:*-I vLB lh j
|y
_4 vRouter I |

Internet

Fig. 2. A concrete example of NFV stack (vFirewall: virtual firewall, LB: load balancer,
DB: database, VM: virtual machine, VDU: virtual deployment unit)

deployment model [24], as well as other public available information gathered
from various providers and vendors. As shown in Fig. 2, the NF'V stack is depicted
on three layers where the VNF layer shows three service function chains (SFCs),
and the VM and physical layers show the corresponding virtual and physical
infrastructures used to implement those SFCs, respectively. The dashed lines
between layers demonstrate the correspondence between the services and the
virtual or physical resources. We assume there are three tenants, shown in Fig. 2
through different colors, i.e., Alice (blue), Bob (green), and Mallory (red)), that
are hosted on this NFV stack.

In such a scenario, both the NFV provider and each tenant may want to
understand and mitigate potential security threats. While existing threat models
such as various attack trees and attack graphs may be applied, there are some
unique challenges and opportunities as follows.

— First, as can be seen in Fig. 2, the NFV stack is composed of different layers,
and the inter-dependencies between resources on those layers may lead to
novel cross-layer attacks. The NFV tenant and provider need to consider all
layers and the inter-dependencies between layers when analyzing potential
security threats because of the possibility of such cross-layer attacks.

8 N. Alhebaishi et al.

— Second, the fact that multiple tenants are sharing both virtual and physical
resources in the same NFV stack poses another challenge, i.e., co-residency
attacks. In contrast to clouds, NFV may have an increased attack surface in
terms of co-residency attacks. As demonstrated in Fig. 2, unlike in clouds, co-
residency in NFV may occur in terms of both shared physical resources and
shared virtual resources such as VMs, which must be considered in modeling
the threat of co-residency attacks.

— On the other hand, virtualization in NFV also provides an opportunity for
mitigating security threats through a unique hardening option, i.e., through
VM placement or migration. In contrast to other hardening options, such
as patching vulnerabilities, disabling services, or stricter firewall and access
control rules [8], VM placement or migration provides a lower cost option as
it is a built-in feature already employed by providers for other purposes such
as maintenance or resource consolidation.

More specifically, we consider concrete problems of threat modeling and
attack mitigation based on Fig. 2 as follows.

— First, we would like to model potential multi-step attacks that could occur
in this NFV stack (Fig.2), by assuming Mallory (whose resources are shown
in red color) is a malicious tenant, and the database VM belonging to Alice
(whose resources are shown in blue color) is the critical asset in question.
The modeling process must consider the multi-layer and multi-tenant nature
of NFV and its many security implications, e.g., an attacker’s VM placed
on the database server (node # 1) or on the http server (node # 3) would
certainly incur very different security threats, and an attacker co-residing with
the target tenant on the VM level could have a better chance of compromising
the target than one co-residing on the physical host level.

— Second, we would like to mitigate the modeled threats posed by Mallory
to Alice’s database VM, through optimal placement or migration of vir-
tual resources in this NFV stack. The solution must quantify the security
threats before and after the hardening process in order to show the amount of
improvement in terms of security, and the solution should be able to accom-
modate other considerations or constraints, e.g., limiting the scope to one
layer or multiple layers, supporting different VM placement policies (such as
those used in CloudSim [11]), and limiting the cost of placement or migration
(such as the maximum number of VM migrations).

To this end, we will present our threat modeling solution in Sect.3 and our
attack mitigation solution in Sect. 4.

3 Modeling Security Threats in NFV

This section presents our solutions for modeling potential multi-step attacks on
an NFV stack (Sect. 3.1), for modeling insider attacks from co-residing tenants
(Sect. 3.2), and for quantifying the threats using a security metric (Sect. 3.3).

Modeling and Mitigating Security Threats in NFV 9

3.1 Multi-layer Resource Graph

Threat Model: Our goal is to help the NFV provider or tenants to better under-
stand and mitigate the security threats from an external attacker, a dishonest
or compromised user or tenant, or a tenant administrator or cloud operator
with limited privileges. We assume the NFV provider and its administrators
are trusted and consequently the inputs to our threat modeling process are
intact. Our in-scope threats are security attacks used to escalate privileges or
gain remote accesses through exploiting known or zero day vulnerabilities in the
physical or virtual entities inside an NFV stack. Out-of-scope threats include
attacks which do not involve exploiting vulnerabilities (e.g., phishing or social
engineering attacks) or do not propagate through networks (e.g., flash drive-
based malware).

To model the security threats in an NFV stack, our key idea is to apply the
resource graph concept [34] (which is syntactically similar to attack graphs, but
focuses on modeling zero day attacks exploiting unknown vulnerabilities) while
considering the multi-layer nature of NFV (as explained in Sect.2.1). Specifi-
cally, based on a model of the NFV stack with three layers, i.e., the VNF layer,
VM layer, and physical layer, as previously demonstrated in Fig. 2, we propose
the concept of cross-layer resource graph to represent the causal relationships
between different resources both inside each layer, and across different layers, in
a given NFV stack.

We first illustrate the concept through an example, before giving the formal
definitions. Figure3 shows an example of a cross-layer resource graph for our
running example (only a portion of the cross-layer resource graph is shown here
due to space limitations). The VNF layer maps to layer 1 and layer 2 in the
multi-layer NFV deployment model [24], which depicts exploits of various vir-
tual network functions, such as virtual firewalls, load-balancers, switches, etc.
The VM layer corresponds to layer 3 in the NFV deployment model, which
includes exploits of the VMs that are used to implement the virtual network
functions in the cloud layer. Finally, the physical layer includes exploits of the
physical hosts. The left-hand side of Fig. 3 shows the cross-layer resource graph
for one tenant, whereas the right-hand side shows co-residency attacks from
other tenants (which will be explained in next section).

Each triple inside an oval indicates a potential zero day exploit (in which
case the unknown vulnerability is represented by the exploited service itself)
or an exploit of known vulnerabilities, in the form of <service or vulnerability,
source host, destination host>. For example, <Xen, 3, h3> indicates an exploit
of Xen coming from a VM on physical host 3 to that physical host itself, and
the plaintext pairs indicate the pre- or post-conditions of those exploits in the
form of <condition, host>, where a condition can be a privilege on the host,
e.g., <root,3> means that the root privilege on the VM runs on host 3, and
<user,vFW> means the user privilege is on the VNF layer for the virtual firewall.
Additionally, conditions may include the existence of a service on the host (e.g.,
<Xen,3>), or a connectivity (e.g., <0,3> means that attackers can connect to
a VM on host 3 from host 0, and <2,h2> means a local exploit is occurring

10 N. Alhebaishi et al.

<FW vFW> SLALD V“‘> <vLB,vSwitch>
B VFWs)’ <user,vFW> <LB VFW,vLB> <user,vLB>
<LBWLB>

<Switch,vSwitch> Other Tenants

<SCA,vSwitch>
<user,yIDS>

<user,vSwitch>
(/) ~
AN VNF Layer - <user.0>
- s U0 <EWFW>
p—— . <vswitch, 1> <M]MA,I>/ <VNFI> <DB,I>
<VEW, 1> e

<user,VFW>

<ssh,3> <FW,VM_FW=> <vFW,VM_FWw=>

<root,VM_FW>

<http.3> \
<user,0>

<03>

<SCA2> <user,2'> <h2 h2>

_—

ho- 32> <root3> <app.2>

\vntFW VNF>
<Xen,h2> b,y <user, VM-> \‘+‘/
<Xen VNF> Tapp 32>

<h2,h1>

<3,h3> —_——
—_—— — — — ‘_— L —_— <root,2>
@ T -
<user,h2>
e <h3,h2> <user,h1>
en,h: <Lhl> —> Same-layer edge
<ssh,h2>

<Xen,hl>

— —> Cross-layer edge

Physical Layer

Fig. 3. An example of cross-layer resource graph (FW: firewall, LB: load balancer, DB:
database, MIMA: man in the middle attack, SCA: side-channel attack)

on host 2). The edges point from pre-conditions to an exploit and then to its
post-conditions, which indicate that any exploit can be executed if and only
if all of its pre-conditions are satisfied, whereas executing an exploit is enough
to satisfy all of its post-conditions. The following provides formal definitions of
those concepts.

Definition 1 (Same-layer Resource Graph). Given a collection of hosts
(physical hosts or VMs) H and the set of resources HR (services or VNFs run-
ning on a physical host or a VM) with the resource mapping rm(.) : H — 2HE
and also given a set of zero day exploits E = {< r,hs,hq > |hs € H,hq €
H h, € rm(hq)} and the set of their pre- and post-condition C, a same-layer
resource graph is a directed graph G(EUC, HR,UHR;) where pre C C x E and
post C E x C are the pre- and post-condition relations, respectively.

Definition 2 (Cross-layer Resource Graph). Given the same-layer
resource graph for the three layers, G;(E;UC;, pre;Upost;)(1 < i < 3), and given
the cross-layer edges pre. C Ui’ C; x Ui’ E; and post, C U:f E; x Uzl)’ C;, a cross-
layer resource graph is a directed graph G(U? (E; UCy), Ui’(prei Upost;) Upre. U
post.).

Modeling and Mitigating Security Threats in NFV 11

3.2 Modeling Co-Residency Attacks

In modeling co-residency attacks, our main idea is to capture the consequences
of such attacks as satisfying certain conditions inside the cross-layer resource
graph of the targeted tenant. For example, in Fig. 3, the left-hand side shows
the cross-layer resource graph of the targeted tenant, which depicts what an
external attacker may do to compromise the critical asset <user, h1>. On the
other hand, the right-hand side of the figure depicts the insider threat coming
from potential co-residency attacks launched by other tenants. The (dashed) lines
pointing from the right to the left side of the figure show that, as the consequence
of the co-residency attacks (right), some conditions inside the targeted tenant’s
resource graph (left) may be satisfied, either within the same layer or across
different layers. The co-residency could occur w.r.t. the physical layer, which
is similar to the co-residency in clouds (when tenants share the same physical
host). The co-residency could also occur w.r.t. the VMs when tenants employ
the same VM to run their VNFs, which is unique to NFV.

For example, as shown on the right-hand side of Fig. 3, a malicious co-resident
tenant can potentially gain a user privilege on the vSwitch service of the targeted
tenant through a local exploit <SCA, VNF, VNF>, or he/she can gain a root
privilege on a VM on host 2 through a similar attack (<SCA, h3, h3>) (where
<user, 3’> means the privilege of the malicious tenant on a VM on host 3). A
malicious tenant who shares VNFs running on the same VM may attack the
virtual firewall VNF and subsequently the corresponding VM to eventually be
able to control the firewall (<root, VM_FW>) and modify its rules in order to
gain access to the critical asset. A malicious tenant can also exploit an application
running on VM 2 to gain control of that VM, and subsequently attack the co-
residing host h2. These examples show how our model can capture co-residency
attacks between different layers of the NFV stack.

3.3 Applying the Security Metric

Before we could mitigate the modeled security threats, we need to first quantify
them such that we could evaluate the level of threats before and after we apply
a hardening option. For this purpose, we apply the k-zero day safety security
metric [39,40] originally proposed for traditional networks. The metric basically
counts how many distinct unknown vulnerabilities must be exploited in order to
compromise a given critical asset. A larger k value will indicate a relatively more
secure network because the possibility of having more unknown vulnerabilities
occurring at the same time, inside the same network, and exploitable by the
same attacker would be significantly lower. The metric can be evaluated on the
resource graph of a network, which basically gives the length of the shortest
path (in terms of the number of distinct zero day exploits). The exploits of
known vulnerabilities can be either regarded as a shortcut (i.e., they do not
count toward k) or assigned with a significantly lower weight in the calculation
of k.

12 N. Alhebaishi et al.

On the basis of the cross-layer resource graph model introduced in previous
sections, the k-zero day safety metric (k0d) can be applied in several ways. First,
we could evaluate the metric on the cross-layer resource graph of the targeted
tenant, without considering others tenants, whose result provides an estimation
for the threat coming from external attackers. Second, we could also evaluate
the metric on the cross-layer resource graph including co-resident attacks from
others tenants, and we could consider one particular malicious tenant, or multiple
such tenants either separately (assuming they do not collude) or collectively (as
one, assuming they may collude). Third, we could evaluate the metric before,
and after applying a placement or migration-based hardening option, and the
difference in the results will indicate the effectiveness of such a hardening option
(which we will further investigate in next section).

For example, in Fig. 3, by considering a malicious tenant sharing the same
physical host with the targeted tenant (indicated by privilege <root, VM_FW>)
would yield a k0d value of 2 since two zero day exploits <Xen, vifFW, NFV >,
and <DB, VNF, 1> are needed to reach the critical asset. Whereas considering a
malicious tenant with privilege <user, 2> (here 2’ indicates the privilege belongs
to a tenant different from the targeted one) would yield a k value of 3 since three
zero day exploits, <SCA, h2, h2>, <DB, 2, 1>, and <Xen, 1, h1> are needed.

4 Attack Mitigation

In this section, we present the optimization-based mitigation through placement
and migration of VNFs and VMs, and demonstrate its applicability through
discussing several use cases.

4.1 Optimization-Based Mitigation

Based on our previous definition of cross-layer resource graph model and the dis-
cussions on modeling co-residency and applying the kOd metric, we can define
the problem of optimal placement and migration of VMs and VNFs. As shown
in Definition 3, hosts and resources are defined in a way such that the placement
and migration may apply to both VMs (on physical hosts) and VNFs (on VMs)
through the resource mapping function. The objective function is the applica-
tion of the kOd metric to the cross-layer resource graph (which can under a
value assignment of the resource mapping function. Note that the application of
the kOd metric could take several forms for different purposes, as discussed in
Sect. 3.3), which gives different variations of the optimization problem. Although
not specified in the definition, constraints may be given in terms of possible value
assignments to the resource mapping function, e.g., which VM (or VNF) may
be placed or migrated to which physical host (or VM), or a threshold for the
maximum number of migrated VMs.

Definition 3 (The optimal NFV co-residency problem). Given a col-
lection of hosts (physical hosts or VMs) H, the set of resources HR (services

Modeling and Mitigating Security Threats in NFV 13

or VNFs running on a physical host or a VM), and the collection of tenants
T with the tenant mapping function tm(.) : HR — T, the optimal NFV co-
residency problem is to find a resource mapping function rm(.) : H — 2H% to
mazimize k0d(G) where G is the cross-layer resource graph, and k0d(G) denotes
the application of the kOd metric to G.

The optimal NFV co-residency problem we have defined is intractable, since
it can be easily reduced to the NP-hard problem of network hardening through
diversity in traditional networks [7]. Specifically, the goal in the diversity problem
is to maximize the kOd metric by changing the instance of services (e.g., from
IIS to Apache for web service), assuming that different instances of the same
service along the shortest path would both count toward the k value (conversely,
two identical instances would only count as one). Our problem can be reduced
to this since, for any given resource graph G under the diversity problem, we can
construct a special case of our problem by regarding G as the VM-layer resource
graph, and regarding the instance of a service as the physical host on which that
service resides (such that identical instances of a service are always co-resident).
By further assuming that the attacker can always trivially exploit all co-resident
services as long as he/she can exploit one (i.e., co-resident services only count
as one toward the k value), the two problems then become equivalent.

In our study, we use the genetic algorithm (GA) [18] to optimize the VM
(VNF) placement and migration for maximizing k. Our choice of GA is inspired
by [13] and based on the fact that GA provides a simple way to encode can-
didate solutions and requires little information to search effectively in a large
search space [18]. Specifically, the cross-layer resource graph is taken as input
to the optimization algorithm, with & (averaged between tenants) as the fitness
function. We try to find the best VM placement within a reasonable number
of generations. The constraints we have considered include defining the resource
mapping function in the case that specific VMs can be assigned to each host (e.g.,
firewall only), enforcing a given placement policy (e.g., CloudSim [11] placement
policy), or satisfying a maximum number of migrating VMs. In our simulations,
we choose the probability of 0.8 for crossover and 0.2 for mutation based on our
experiences.

4.2 TUse Cases

We demonstrate the applicability of our solution through several use cases with
different types of attackers and while considering different layers. The first use
case contrasts an external attacker to an insider launching cross-tenant attacks.
The second use case compares a same-layer attack versus a cross-layer attack.
The last use case is based on the motivating example shown in Sect. 2.3.

— Use Case A: In this case, we have an external attacker using a victim tenant’s
resources, and an insider malicious tenant co-residing with the victim tenant.
Figure 4 shows the cross-layer resource graph for the external attacker (AE)
and the insider attacker (AI). The figure shows the shortest path (dashed

14 N. Alhebaishi et al.

<FW.VFW> RS <VLB,vSwitch>
<3 VFW> D <user,yFW> <LB VFW,VLB> <user,vLB>
<LB,vLB>

{ <usery§wnch> '*\
AN VNF Layer ~ 7

<Switch,vSwitch> Other Tenants

<SCA,vSwitch>

<DB,1>

<DB, 1> <vSwitch,1> <MIMA, 1>7 \’NF 1>

<VEW,1>
<user,VFW>

<ssh,3> <FW,VM_FW> <vFW,VM_FW>

g 4 N <root,VM_FW>

<http,3> \g

<user,0>

K=3 <SCA3> <user,3"> <h3 h3>
e

<2,h2> <unfFW.VNF> /--"‘ { / i g 3,2 <root,3> <app,2>
~~eXen VNF> /i 4 <app,3.2> >

} ~ T <h2hl> Al

<3,h3>
Gt i T T ——— : 1. sak
<h3,h2> <user,h2> b
i e il —> Same-layer edge
<ssh,h2>

<Xenhl>

— —>» Cross-layer edge

Physical Layer

Fig.4. Use Cases A and B (FW: firewall, LB: load balancer, DB: database, MIMA:
man in the middle attack, SCA: side-channel attack, AE: external attacker, Al: insider
attacker, BCL: cross-layer attack, BOL: one-layer attack)

lines) for calculating the k0d metric, and the critical asset is represented as
< wuser,hl >. After optimization, the value of k for the external attacker
(AE) is 4, and for the insider attacker (AI) is 3 (which means there is less
room to mitigate the insider threat).

— Use Case B: In this case, we compare a one-layer attack (BOL) to a cross-
layer attack (BCL) for an insider malicious tenant. The BOL and BCL dashed
lines shown in Fig.4 show the shortest paths for the malicious tenant using
his/her co-residency with the victim tenant to reach the target < root,1 >.
After optimization, the value k = 3 for BOL and k = 2 for BCL show that
there is less room to mitigate the insider threat when the attack may go across
layers.

— Use Case C: This case shows the optimal placement result for our motivating
example discussed in Sect.2.3. We consider three tenants (Alice (A), Bob
(B), and Mallory (M)) and three servers each of which can host four VMs.
We consider Mallory a malicious tenant and the database VM belonging
to Alice a target. Table1 shows three different placements. The upper left
table shows the placement before applying our optimization solution and
the value of & = 2. The right upper table and the bottom table show the
optimal placement after we apply our solution by the victim tenant (where
the migration is limited to the tenant’s resource) and the provider (where the

Modeling and Mitigating Security Threats in NFV 15

Table 1. The optimal solution to the motivating example (Sect. 2.3)

Host VM / VDU VM / VDU

1 app A app B DBA DBB app A app B DBA DBB
2 |LB A/Switch A Router A httpB http A [[LB A/Switch AFW A/IDS A http B http A
3 | FWA/IDSA FW B/IDS B http M Router B Router A FW B /IDS B http M Router B

Before mitigation k =2 After mitigation by tenant k = 4

Host VM / VDU

1 app A app B DB A FW A/IDS A

2 |LB A/SwitchA Router A httpB http A

3 DB B FWB/IDS B http M Router B

After mitigation by provider k =5

migration is applied to all resources), respectively. The value of k increases
to k = 4 and k = 5 for mitigation by the tenant and provider, respectively.
The result of mitigation by the provider is slightly better than by the tenant
because more VMs may be migrated.

5 Simulations

This section shows the simulation results of applying our mitigation solution
under various constraints. All VM placement in the simulations are based on
CloudSim [9,11,20]. We applied the three placement policies in CloudSim (i.e.,
the random, least, and most policies) to our NFV environment. We have 300
hosts and 7,000 VMs, and the following shows the default configurations for the
host and VMs from CloudSim.

— For the physical machine, we specify the capacity of the hosts as having 16
GB of RAM, 1000 GB of storage space and a 10,000 MB/s bandwidth

— The virtual machine’s resource requirements are 512 MB of RAM, 10 GB of
storage space and a 1,000 MB/s bandwidth

Moreover, we use a virtual machine equipped with a 3.4 GHz CPU and 8
GB RAM in the Python 2.7.10 environment under Ubuntu 12.04 LTS and the
MATLAB R2017b’s GA toolbox. To generate a large number of resource graphs
for simulations, we start with seed graphs with realistic configurations similar
to Fig. 2 and the cloud infrastructure configurations presented in [1,2], and then
generate random resource graphs by injecting new nodes and edges into those
seed graphs based on the VM placement results of CloudSim. Those resource
graphs were used as the input to the optimization toolbox where the fitness
function maximizes the average insider threat value k£ under various constraints.
The parameters and constraints used in our simulations include the VMs place-
ment policy, size of the network, type and number of attackers, and maximum
number of VMs migrating to malicious users. We repeat each simulation on 400
different resource graphs to obtain the average result.

16 N. Alhebaishi et al.

Cross-layer resource grapgh VS Original resource grapgh

Avrage of k

24 —r— Original Resource Grapgh without Malicious Tenant
—*— Original Resource Grapgh with Malicious Tenant

—d— Cross-layer Resource Grapgh

200 400 600 800 1000 1200 1400
of nodes

Fig. 5. Comparing the original resource graph and cross-layer resource graph

The objective of the first simulation is to study how cross-layer attacks may
affect the security of the NFV stack. We compare the £0d metric on the original
resource graph (without any cross-layer attacks), and cross-layer resource graphs.
In Fig. 5, the number of malicious users (external attackers or insider tenants) is
between 5 and 15, while the size of the network varies between 50 and 1,500 along
the X-axis. The Y-axis shows the average of k among all malicious users. The
red line represents the results of the original resource graph without considering
malicious tenants in this particular case. The green line represents the results
of the original resource graph while considering malicious tenants. The blue line
shows the result of cross-layer resource graph (with both malicious tenants and
cross-layer attacks considered).

Results and Implications: From the results, we can make the following observa-
tions. First, the value of k£ decreases in all cases almost linearly; this is expected
because, as the size of the network increases, there is a higher chance for the
length of the shortest path to decrease, which means attackers may require less
attack steps. Second, the value of k drops on the original resource graph (with-
out considering cross-layer attacks) after considering the presence of malicious
tenants (i.e., co-residency attacks), which is as expected. Third, the value of k
drops by approximately 55% between the original resource graph without con-
sidering the malicious tenant, and the cross-layer resource graph, which shows
the additional threat of cross-layer attacks.

In Fig. 6 the objective is to show how different placement policies can affect
the value of k. In this simulation, we employ the cross-layer resource graph to
measure the value of k for three types of attackers (external, malicious tenant,
and lower-layer provider who has access to all the hosts) under three different
placement policies used in CloudSim (i.e., the most, least, and random policies).
The three figures show how the three placement policies can slightly affect the
value of k. Each trend on the figure shows a different type of attackers, while the

Modeling and Mitigating Security Threats in NFV 17

Most Policy Random Policy
150> S
EX“’-.”?QI Attacker 1255 —— External Attacker
— — Malicious Tenant) T~ —— Malicious Tenant
o —~ —*— Lower Layer Provider 10.0 —*— Lower Layer Provider
210 - =
% - . s 75
g - g o
5 A 5 —
< 5 —~—— Z 50 T -
3 T e s o wrrw”""""'—w—77V,,
. B S B 25 1‘*4*7—7*——*7”1-—*——*”*, S
07200 400 600 00 1000 1200 1400 007560 400 600 800 1000 1200 1400
of nodes # of nodes
Least Policy
gl External Attacker
T~ . —— Malicious Tenant

-6 N —*— Lower Layer Provider

Gt S ”

5 - .

o SN—

o0 A

£4 - -

> 4 -

z . -

(&)

200 400 600 800 1000 1200 1400
of nodes

Fig. 6. Comparing the three placement policies in CloudSim

total number of attackers stays between 5 and 20. The X-axis depicts the size
of the network and the Y-axis shows the average value of k among all attackers.

Results and Implications: From the three figures, we can make the following
observations. First, similar as in previous results, the value of k in all trends
decreases almost linearly as the size of the network increases. Second, the trends
of external attackers and malicious tenants decrease faster than the lower-layer
provider. This is expected because the lower-layer provider already has access
to all the hosts, which enables him /her to either use his/her privileges to attack
higher layers, which means much lower k values and hence less room for further
decrease as the network size increases. Finally, the most placement policy has
the highest value of k both external attackers and malicious tenants and the
lowest k for lower layer provider. This is because, under the most policy, the
target tenant’s VMs tend to stay closer to each other, which renders them less
vulnerable to external attackers or malicious tenants, but more so to a lower-
layer provider managing the hosts of such VMs.

The objective of the next three simulations is to study how the different
types of attackers behave under our attack mitigation solution. Figure 7 shows
the simulation of applying the mitigation solution on the least placement policy
for external attackers and malicious tenants, and the placement policy for the
lower-layer provider. The three simulations are based on similar X and Y axis
as in previous simulations. The solid lines represent the results after applying
our mitigation solution under the constraints of the maximum number of VMs
migration. The dashed lines represent the results before applying the mitigation
solution.

18 N. Alhebaishi et al.

Applying The Mitigation With Least Policy For External Attacker 10 Applying Mitigation With Least Policy For Malicious Tenant
125 FT —+— Migrating 20 VMs S —+— Migrating 20 VMs
T “— Migrating 10 VMs 8 R ~ Migrating 10 VMs
100 — R :
= § 56 .
=] —)
% 75 it §°
H > 4
< 50 <
55 — Migrating§ VMs] 2/ —— Migrating 5 VMs =
Before Mitigation Before Mitigation
007560 400 600 800 1000 1200 1400 0" 200 400 600 800 1000 1200 1400
of nodes # of nodes

4 Applying Mitigation With Least Policy For Lower Layer Provider
—*— Migrating 20 VMs
R ’:’1\\5\ —— Migrating 10 VMs

I
,//./,
¥

Avrage of k
8]

—— Migrating 5 VMs
Before Mitigation
0

200 400 600 800 1000 1200 1400
of nodes

Fig. 7. Applying mitigation solution with the maximum number of VMs migrating

Results and Implications: From the simulation results, we can make the following
observations. First, our solution is improving the value of k in all cases. Second,
all three simulations follow the same trend and the value of & improves when we
increase the maximum number of VMs that are allowed to migrate, i.e., the cost
of migration. Finally, improving the result for the lower-layer provider is difficult
to attain because the low-layer provider already is assumed to have the power
to access more than one host (based on the privilege he/she has) so migration
has less effect.

The objective of the last simulation is to study how the number of malicious
tenants can increase insider threat under different placement policies, and how
the mitigation solution may improve the value of k in each case. In Fig. 8, the
size of the network is fixed at 700 nodes, while the number of malicious tenants
is varied between 0 and 25 along the X-axis. The Y-axis shows the average
value of k among all malicious tenants. The solid lines represent the results after
applying the mitigation solution, and the dashed lines are for the corresponding
results before applying the solution.

Results and Implications: From the results, we can make the following obser-
vations. First, the mitigation solution successfully reduces the insider threat
(increasing the average of k values) in all cases. Second, the results before and
after applying the solution start with a sharp decrease prior to following similar
linear trends (meaning increased insider threat) as the number of malicious ten-
ants increase from zero. Finally, the result of the random placement policy after
applying the solution is slightly better than the result of the most placement
policy before applying the solution, which means that the mitigation solution
may improve the placement algorithm w.r.t. the co-residency attack.

Modeling and Mitigating Security Threats in NFV 19

700 nodes and maximum of 20 VMs migrating

== Most Policy Before Mitigation
—r— Most Policy After Mitigation

-~ Random Policy Before Mitigation
—*~— Random Policy After Mitigation

Avrage of k

24 —%- Least Policy Before Mitigation
—d— Least Policy After Mitigation

0 5 10 15 20 25
of Malicious Tenant

Fig. 8. The results of the mitigation solution under different placement policies

6 Related Work

To the best of our knowledge, this is the first work proposing a threat model
specifically for NF'V environments. On the other hand, many exists works focus
on clouds. In particular, our previous work applies different threat modeling
techniques to cloud data center infrastructures for different types of attackers [2].
Gruschka and Jensen devise a high level attack surface framework to show from
where the attack can start [19]. The NIST emphasizes the importance of security
measuring and metrics for cloud providers in [29]. A framework is propose by
Luna et al. for cloud security metrics using basic building blocks [26]. There
exist other works focusing on insider threats in clouds [1,10]. Chinchani et al.
proposed a graph-based model for insider attacks and measure the threat [10].
There are many works that focus on the co-residency attacks by improving the
placement policy. Han et al. introduces a new strategy to prevent attackers from
achieving co-residency by modifying the placement policy on CloudSim [20].
Madi et al. propose a quantitative model and security metric for multi-tenancy
in the cloud at different layers [27]. Atya et al. study co-residency in clouds
and suggest solutions for the victim tenant to avoid co-residency with malicious
users [4].

Unlike our work which focuses on the cross-layer and co-resident threats and
the application of threat models and security metric, existing studies on NFV
security [16,25,31,42] mostly focus on issues related to virtualization. Lal et
al. [25] propose to adapt several well-known best practices like VM separation,
hypervisor introspection, and remote attestation to NFV. Pattaranantakul et
al. [31] adapt best practices like access control to address virtualization-related
threats in NFV. Our cross-layer resource graph model is partially inspired by
existing works [35,36] in which Sun et al. use a cross-layer Bayesian network
to measure security threats for enterprise networks [35] and additionally they
employ a multi-layer attack graph to measure security in clouds [36].

20 N. Alhebaishi et al.

There also exist related works on other aspects of NFV security. Firoozjaei et
al. [16] show how multi-tenancy and live migration can affect the security on NFV
by using a side-channel and shared resource misuse attack. Alnaim et al. [3] uses
architectural modeling to analyze security threats and the possible mitigating
solution for NF'V; their model is relatively abstract and only considers a malicious
tenant to exploit vulnerability when he/she co-resides with the target VM on the
same physical machine. Tian et al. propose a framework that uses a hierarchical
attack and defense model which divides the 5G network to four layers (physical
layer, virtual layer, service layer, and application layer) [37]. Basile et al. [5]
propose to add a new policy manager component to enforce security policies
during deployment and configuration of security functions. Coughlin et al. [12]
integrate trusted computing solution based on Intel SGX to enforce privacy with
secure packet processing.

7 Conclusion

In this paper, we have modeled cross-level and co-residency attacks in the NFV
stack. We have also formulated the optimal VNF/VM placement problem to
mitigate the security threats through standard optimization algorithm. Further-
more, we conducted simulations whose results showed that our solution could
significantly reduce the level security threats in NF'V. Our future work will focus
on following directions. First, we will make our solution incremental and more
efficient in order to handle more dynamics in terms of VM placement and immi-
gration. Second, we will consider weighing different exploits and asset values to
optimally choose among those different options for a given NFV application.
Finally, we will study the integration of our solution with existing deployment
policies based on an NFV testbed.

Acknowledgements. The authors thank the anonymous reviewers for their valuable
comments. This work was partially supported by the National Science Foundation
under grant number IIP-1266147, by the Army Research Office grant W911NF-13-1-
042, and by the Natural Sciences and Engineering Research Council of Canada under
Discovery Grant N01035.

References

1. Alhebaishi, N., Wang, L., Jajodia, S., Singhal, A.: Mitigating the insider threat of
remote administrators in clouds through maintenance task assignments. J. Com-
put. Secur. 27(4), 427-458 (2019)

2. Alhebaishi, N., Wang, L., Singhal, A.: Threat modeling for cloud infrastructures.
ICST Trans. Secur. Saf. 5(17), e5 (2019)

3. Alnaim, A.K., Alwakeel, A.M., Fernandez, E.B.: Threats against the virtual
machine environment of NFV. In: 2019 2nd International Conference on Computer
Applications Information Security (ICCAIS), pp. 1-5, May 2019

4. Atya, A.O.F., Qian, Z., Krishnamurthy, S.V., Porta, T.F.L., McDaniel, P.D., Mar-
vel, L.M.: Catch me if you can: a closer look at malicious co-residency on the cloud.
IEEE/ACM Trans. Netw. 27(2), 560-576 (2019)

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

Modeling and Mitigating Security Threats in NFV 21

Basile, C., Lioy, A., Pitscheider, C., Valenza, F., Vallini, M.: A novel approach for
integrating security policy enforcement with dynamic network virtualization. In:
NetSoft 2015, pp. 1-5 (2015)

Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., Butler, K.: Detecting
co-residency with active traffic analysis techniques. In: Proceedings of the 2012
ACM Workshop on Cloud Computing Security Workshop, CCSW 2012, pp. 1-12,
Association for Computing Machinery, New York (2012)

Borbor, D., Wang, L., Jajodia, S., Singhal, A.: Diversifying network services under
cost constraints for better resilience against unknown attacks. In: Proceedings of
the 30th Annual IFTP WG 11.3 Conference on Data and Applications Security and
Privacy XXX, DBSec 2016, Trento, Italy, 18-20 July 2016, pp. 295-312 (2016).
https://doi.org/10.1007/978-3-319-41483-6_21

Borbor, D., Wang, L., Jajodia, S., Singhal, A.: Securing networks against unpatch-
able and unknown vulnerabilities using heterogeneous hardening options. In:
Livraga, G., Zhu, S. (eds.) DBSec 2017. LNCS, vol. 10359, pp. 509-528. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-61176-1_28

Calheiros, R.N., Ranjan, R., Beloglazov, A., Rose, C.A.F.D., Buyya, R.: CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23-50 (2011)
Chinchani, R., Iyer, A., Ngo, H.Q., Upadhyaya, S.: Towards a theory of insider
threat assessment. In: 2005 International Conference on Dependable Systems and
Networks (DSN 2005), pp. 108-117, June 2005

CloudSim. CloudSim: a framework for modeling and simulation of cloud computing
infrastructures and services (2020). http://www.cloudbus.org/cloudsim/. Accessed
27 Jan 2020

Coughlin, M., Keller, E., Wustrow, E.; Trusted click: overcoming security issues of
NFV in the cloud. In: SDN-NFVQCODASPY 2017, pp. 31-36 (2017)

Dewri, R., Poolsappasit, N., Ray, 1., Whitley, L.D.: Optimal security hardening
using multi-objective optimization on attack tree models of networks. In: Ning, P.,
di Vimercati, S.D.C., Syverson, P.F. (eds.) Proceedings of the 2007 ACM Confer-
ence on Computer and Communications Security, CCS 2007, Alexandria, Virginia,
USA, 28-31 October 2007, pp. 204-213. ACM (2007)

ETSI: ETSI-Welcome to the World of Standards. https://www.etsi.org
Fayazbakhsh, S.K., Reiter, M.K., Sekar, V.: Verifiable network function outsourc-
ing: requirements, challenges, and roadmap. In: Workshop on Hot Topics in Mid-
dleboxes and Network Function Virtualization (HotMiddlebox 2013), pp. 25-30
(2013)

Firoozjaei, M.D., Jeong, J.P., Ko, H., Kim, H.: Security challenges with network
functions virtualization. Future Gener. Comput. Syst. 67, 315-324 (2017)
Flittner, M., Scheuermann, J.M., Bauer, R.: ChainGuard: controller-independent
verification of service function chaining in cloud computing. In: NFV-SDN 2017,
pp. 1-7 (2017)

Golberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addion wesley, Boston (1989)

Gruschka, N., Jensen, M.: Attack surfaces: a taxonomy for attacks on cloud ser-
vices. In: 2010 IEEE 3rd International Conference on Cloud Computing, pp. 276—
279. IEEE (2010)

Han, Y., Chan, J., Alpcan, T., Leckie, C.: Virtual machine allocation policies
against co-resident attacks in cloud computing. In: IEEE International Conference
on Communications, ICC 2014, Sydney, Australia, 10-14 June 2014, pp. 786792
(2014)

https://doi.org/10.1007/978-3-319-41483-6_21
https://doi.org/10.1007/978-3-319-61176-1_28
http://www.cloudbus.org/cloudsim/
https://www.etsi.org

22

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

N. Alhebaishi et al.

Huang, W., Zhu, H., Qian, Z.: AutoVNF: an automatic resource sharing schema
for VNF requests. J. Internet Serv. Inf. Secur. 7(3), 34-47 (2017)

Intel. Realising the benefits of network functions virtualisation in telecoms
network. https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/benefits-network-functions-virtualization-telecoms-paper.pdf./

Ixia, A.K.B.: Network Function Virtualization (NFV): 5 Major Risks. https://
www.ixiacom.com/resources/network-function-virtualization-nfv-5-major-risks/
Lakshmanan, S., et al.: Modeling NF'V deployment to identify the cross-level incon-
sistency vulnerabilities. In: 2019 11th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 167-174, December 2019
Lal, S., Taleb, T., Dutta, A.: NFV: security threats and best practices. IEEE
Commun. Mag. 55(8), 211-217 (2017)

Luna, J., Ghani, H., Germanus, D., Suri, N.: A security metrics framework for
the cloud. In: 2011 Proceedings of the International Conference on Security and
Cryptography (SECRYPT), pp. 245-250, July 2011

Madi, T., et al.: QuantiC: distance metrics for evaluating multi-tenancy threats
in public cloud. In: 2018 IEEE International Conference on Cloud Computing
Technology and Science, CloudCom 2018, Nicosia, Cyprus, 10-13 December 2018,
pp. 163-170 (2018)

Marchetto, G., Sisto, R., Yusupov, J., Ksentini, A.: Virtual network embedding
with formal reachability assurance. In: CNSM 2018, pp. 368-372 (2018)

National Institute of Standards and Technology. Cloud Computing Ser-
vice Metrics Description. http://www.nist.gov/itl/cloud/upload /RATAX-
CloudServiceMetricsDescription-DRAFT-20141111.pdf

Pattaranantakul, M., He, R., Meddahi, A., Zhang, Z.: SecMANOQO: towards network
functions virtualization (NFV) based security management and orchestration. In:
2016 IEEE Trustcom/BigDataSE/ISPA, pp. 598-605, August 2016
Pattaranantakul, M., He, R., Song, Q., Zhang, Z., Meddahi, A.: NFV security
survey: from use case driven threat analysis to state-of-the-art countermeasures.
IEEE Commun. Surv. Tutor. 20(4), 3330-3368 (2018)

Rates Crippa, M., et al.: Resource sharing for a 5g multi-tenant and multi-service
architecture. In: 23th European Wireless Conference on European Wireless 2017,
pp. 1-6, May 2017

Saripalli, P., Walters, B.: QUIRC: a quantitative impact and risk assessment frame-
work for cloud security. In: 2010 IEEE 3rd International Conference on Cloud
Computing, pp. 280288, July 2010

Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Proceedings of the 2002 IEEE Symposium on
Security and Privacy 2002, pp. 273284 (2002)

Sun, X., Dai, J., Singhal, A., Liu, P.: Inferring the stealthy bridges between enter-
prise network islands in cloud using cross-layer bayesian networks. In: Tian, J.,
Jing, J., Srivatsa, M. (eds.) SecureComm 2014. LNICSSITE, vol. 152, pp. 3-23.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23829-6_1

Sun, X., Singhal, A., Liu, P.: Towards actionable mission impact assessment in the
context of cloud computing. In: Proceedings of the 31st Annual IFIP WG 11.3
Conference on Data and Applications Security and Privacy XXXI, DBSec 2017,
Philadelphia, PA, USA, 19-21 July 2017, pp. 259-274 (2017)

Tian, Z., Sun, Y., Su, S., Li, M., Du, X., Guizani, M.: Automated attack and defense
framework for 5G security on physical and logical layers. CoRR, abs/1902.04009
(2019)

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/benefits-network-functions-virtualization-telecoms-paper.pdf./
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/benefits-network-functions-virtualization-telecoms-paper.pdf./
https://www.ixiacom.com/resources/network-function-virtualization-nfv-5-major-risks/
https://www.ixiacom.com/resources/network-function-virtualization-nfv-5-major-risks/
http://www.nist.gov/itl/cloud/upload/RATAX-CloudServiceMetricsDescription-DRAFT-20141111.pdf
http://www.nist.gov/itl/cloud/upload/RATAX-CloudServiceMetricsDescription-DRAFT-20141111.pdf
https://doi.org/10.1007/978-3-319-23829-6_1

38.

39.

40.

41.

42.

43.

44.

45.

Modeling and Mitigating Security Threats in NFV 23

Tschaen, B., Zhang, Y., Benson, T., Banerjee, S., Lee, J., Kang, J.-M.: SFC-
checker: checking the correct forwarding behavior of service function chaining. In:
NFV-SDN 2016, pp. 134-140 (2016)

Wang, L., Jajodia, S., Singhal, A., Cheng, P., Noel, S.: k-zero day safety: a network
security metric for measuring the risk of unknown vulnerabilities. IEEE Trans.
Dependable Secure Comput. 11(1), 3044 (2014)

Wang, L., Jajodia, S., Singhal, A., Noel, S.: k-zero day safety: measuring the secu-
rity risk of networks against unknown attacks. In: Gritzalis, D., Preneel, B., Theo-
haridou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 573-587. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-15497-3_35

Wang, Y., Li, Z., Xie, G., Salamatian, K.: Enabling automatic composition and
verification of service function chain. In: IWQoS 2017, pp. 1-5 (2017)

Yang, W., Fung, C.: A survey on security in network functions virtualization. In:
NetSoft 2016, pp. 15-19 (2016)

Zhang, X., Li, Q., Wu, J., Yang, J.: Generic and agile service function chain veri-
fication on cloud. In: IWQoS 2017, pp. 1-10 (2017)

Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: HomeAlone: co-residency detection
in the cloud via side-channel analysis. In: 2011 IEEE Symposium on Security and
Privacy, pp. 313-328, May 2011

Zhang, Y., Wu, W., Banerjee, S., Kang, J.-M., Sanchez, M.A.: SLA-verifier: stateful
and quantitative verification for service chaining. In: INFOCOM 2017, pp. 1-9
(2017)

https://doi.org/10.1007/978-3-642-15497-3_35

l‘)

Check for
updates

Managing Secure Inter-slice
Communication in 5G Network Slice
Chains

Luis Sudrez®™)®, David Espes, Frédéric Cuppens, Cao-Thanh Phan,
Philippe Bertin, and Philippe Le Parc

IRT b<>com, Cesson-Sévigné, France
{Luis .Suarez,David.Espes,Frederic.Cuppens,Cao-Thanh.Phan,
Philippe.Bertin,Philippe.Le-Parc}@b-com.com

Abstract. Network Slicing is one of the cornerstones for network oper-
ators to provide communication services. It is envisioned that in order
to provide richer communication services, network slices need to be con-
nected to each other in an orderly fashion, interlacing their function-
alities. The challenge is to manage inter-slice communication securely,
leveraging on security attributes inherent to the communication service
and the constituting network slices.

To solve this inter-slice communication problem, we present a mathe-
matical model based on the concept of Network Slice Chains. This con-
cept helps to specify the end-to-end path of network slices that data
must follow for the achievement of the communication service. We pro-
pose basic attributes and properties that the Network Slice Chain must
comply with in order to be chosen as a valid path for the traffic to flow
through. This way, it respects security constraints and assures inter-slice
communication obeying the rules stated in the policy.

Keywords: Inter-slice communication - Network Slice Chain -
Security * 5G

1 Introduction

Network slicing is one of the key enablers for the use cases that are proposed
for 5G [16]. Along with Software Defined Network (SDN), Network Functions
Virtualization (NFV) and cloud computing, they provide a novel partitioning
scheme to instantiate a Communication Service (CS) on top of network slices.
They will use resources that belong to the same Communication Service Provider
(CSP) that offers the service or to different operators, organizations and stake-
holders [5].

Interactions between network slices will become commonplace, because the
CSP can provide common functions through a network slice that is accessible for
consumption by other dedicated slices. As network slice interconnection brings
© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020

A. Singhal and J. Vaidya (Eds.): DBSec 2020, LNCS 12122, pp. 24-41, 2020.
https://doi.org/10.1007/978-3-030-49669-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49669-2_2&domain=pdf
http://orcid.org/0000-0002-7831-9252
https://doi.org/10.1007/978-3-030-49669-2_2

Managing Secure Inter-slice Communication in 5G Network Slice Chains 25

the risk of exposure to threats from other players, a secure interaction should
be guaranteed to minimize security risks. In order to do so, the CSP has to set
up different rules and measures to guarantee secure inter-slice communication,
knowing beforehand that slices have different security levels, according to their
nature and purpose.

An interesting challenge is: how to manage the interactions between net-
work slices when each one has different security attributes and different security
requirements? How to bring this to a next level when a chain of slices is consid-
ered?

According to our research, as it will be presented in Sect.2, no work has
been made regarding the formal model of a communication service that uses
network slices, taking into account their inherent security attributes. Moreover,
there is no study about the evaluation of these attributes when inter-slice com-
munication is considered, specially in the case where successive network slices
need to be connected. The presented new concepts contribute to go beyond the
access control models that already exist (which are more focused on the user
or the resources), by adding an end-to-end view of the communication service
considering the security needs for its deployment.

Our contribution is three-fold: (i) model the network slicing structure math-
ematically using graph theory, leveraging on the definitions given by Standard
Developing Organizations; (ii) deduce a general concept called Network Slice
Chain, which describes the sequence of network slices that data must flow
through in order to provide a Communication Service; and (iii) provide proper-
ties and policy rules to validate whether the Network Slice Chain can be used,
according to the security constraints that are specified in the policy.

The document is organized as follows: Sect. 2 presents works related to inter-
slice communication. Section 3 presents an example of a common network slice
set-up from a CSP, who will experience challenges regarding the secure compo-
sition of a communication service. Section4 describes the mathematical model,
definitions and properties of a Network Slice and Network Slice Chain. Section 5
describes the different components used on the communication model. Section 6
describes the rules and policy validation steps that govern communication in the
Network Slice Chain, which are applied to a use case in Sect.7. After putting
into practice these ideas in Sect. 8, Sect.9 draws concluding remarks.

2 Related Work

Inter-slice access control has attracted few research works. In [4], the 5G-
ENSURE project focuses on the access control from end-users to the resources
offered by a network slice in a 5G network. They provide a set of countermea-
sures and enablers for this purpose. The inter-slice communication and access
control are not addressed.

In a different perspective, authors in [7] address the inter-slice communication
regarding the need to guarantee isolation. They point out that improper inter-
slice isolation leads to threats in network slicing. They include the suggestion
to use a fine-grained access control to limit access from a tenant to the entire
infrastructure.

26 L. Sudrez et al.

In [6] the 5G-Monarch project works on providing end-to-end slicing support
via enablers pertaining to inter-slice control and management, which are some of
the proposed innovations of their work in order to provide slice admission control.
The inter-slice management still resides into the Network Slice Management
Function (NSMF), as a way to assure that the resources assigned to the network
slice instance are optimal, used wisely, at the same time guaranteeing Service
Level Agreement (SLA). In the same fashion, authors in [8] propose an inter-
slice management mechanism to control events in a 5G network. Using queue
and graph theory, they create a reference model that captures events from the
network and according to their importance or impact on metrics, classifies the
events for resolution, avoiding network congestion. The projects do not provide
information about access control mechanisms.

Authors in [14] present how authentication and authorization was integrated
in the SONATA Service Platform, in order to manage the authentication, iden-
tity management and authorization of users and microservices in a 5G network.
Their approach is generic, supplying these security features for the users and
the networks functions inside 5G. The slice use case is not mentioned, neither
inter-slice communication management.

In [18] authors propose to enhance the Topology and Orchestration Specifica-
tion for Cloud Applications (TOSCA) modeling language with security param-
eters. They leverage on the SDN paradigm to use these parameters and, via an
access control model, deploy services on Virtual Network Function (VNF) with
embedded security countermeasures. In a similar fashion in [11] authors propose
an enhancement of the TOSCA language to model the protection of clouds,
represented as resources in unikernel system instantiated in virtual machines.
Both approaches provide a way to specify and build secured network functions,
nonetheless, their approach can be improved by considering a top layer approach
from a Communication Service point of view and considering a chain of those
VNF of kernels in order to build richer services.

Other authors address the interactions between network functions that are
inside a network slice. Leveraging of SDN capabilities, all the required VNF
are linked together in a chain in order to manage the traffic as desired. In [10],
authors apply this concept to map network slice attributes into the infrastructure
of datacenters. Their approach does not cover security attributes or a mathe-
matical modelization. A similar approach is proposed in [20], where a traffic
steering solution is implemented for various use cases, keeping in mind a con-
sisted throughput, packet loss, latency and jitter to guarantee quality of service.
No slicing consideration or security model is proposed. In [17] authors explore
the modelization of network slices considering the allocation of a service instance
to a slice instance, according to availability, resources, quality of service and iso-
lation. Even though their model work over the slice instance abstraction, does
not consider the interconnection of slices to provide a service.

These works point out challenges, focus on the isolation problem, on how
an end user or tenant access to resources, on resource assignment to guaran-
tee a performance rating, and how to perform the inter-slice management and

Managing Secure Inter-slice Communication in 5G Network Slice Chains 27

orchestration via a broker mechanism [5]. No formal model of the network slice
environment is provided, neither security considerations for inter-slice commu-
nication when several network slices need to be connected to provide composite
services. This is a central issue for a CSP that is deploying services via network
slices.

3 Motivating Example

In order to better understand the properties and different elements that are
inside the proposed model, a use-case scenario is presented. Even though it does
not depict a specific service, it is generic enough to fit into any communication
service offered by a CSP. The architecture is presented in Fig. 1, which contains
a set of Network Slices, connected arbitrarily according to the needs of the CSP.
Each Network Slice (NSlice) is configured according to a service type to perform a

Fig. 1. Topology of the network slices and corresponding types for a CSP. (Color figure
online)

specific function, as specified by 3rd Generation Partnership Project (3GPP) [1]:
Enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low Latency Com-
munications (URLLC), and Massive Machine Type Communications (mMTC).
These service types are represented by a different color: orange, yellow, green,
blue, red and grey.

For example, the orange NSlice could be an aggregation service slice for an
enterprise; the yellow slice an IoT slice; green and blue slices constitute added
value services (built from network functions to provide services such as traffic
filtering, IDS/IPS); the red slice a 5G network slice to provide final connectivity;
and the grey slice a data network that provides a concrete service. A more
concrete use case illustrating a similar setup is provided in Sect. 7.

All network slices are connected together in an ordered sequence to provide
a service. For example, assume the presence of a communication service that we
name CS;. It considers the orange, yellow, green, red and grey service types.
Similarly, another communication service named CSs has orange, yellow, blue,
red and grey service types.

Each Communication Service CS; and CSy can be set up according to the
needs from the CSP by connecting NSlices creating a Communication Service

28 L. Sudrez et al.

Graph (CSG). For example, regarding CSy, it can be considered as two CSG:
CSGy; (Fig.2a) and CSGyo (Fig.2b). The key message is that, even though
the nature of the CS is the same, each slice can have a different configuration
and different resources, enabling to provide options of deployment according to
the needs. The same approach can be made with CSs, in which two CSG are

(a) CSGU (b) CSG12

Fig. 2. Communication service graphs for CS; and CS». (Color figure online)

presented: CSGy; (Fig. 3a) and CSGas (Fig.3b). Other arrangements of CSG
can be made, enriching the exercise. The advantage of considering the service
as a CSG is that the operators can configure the routing of the system in order
to forward the traffic through the slices according to a certain policy. With
this, traffic can exploit the characteristics of the network topology and then be
treated according to the specification of each slice. The traffic will follow a chain
of slices that comply with a use-case for the customer. Concretely for CSGyy,

(a) CSG21 (b) CSG22

Fig. 3. Communication service graphs for CS2

the provider can set up two network slice chains specified by blue and red dotted
lines. As presented in Fig.4a, the blue Network Slice Chain (going through sy,
S2, S4, 83 and s11) covers a green slice with an IDS that detects a certain type
of traffic. Similarly, the red Network Slice Chain (going through sy, s, S5, Ss
and s11) can contain a green slice that has an IDS with a different detection
policy. The same approach can be made for CSGs2, as shown in Fig.4b. The
presented topology is complex even though the number of network slices is small.
As the number of network slices increase, their management becomes a challenge.
This manageability has to do with the way to connect the network slices (must
ensure the proper authentication and security between them) and how to keep
the guarantees of the service offerings to the customer. This implies that the
set-up and configuration of the communication service must follow certain rules

Managing Secure Inter-slice Communication in 5G Network Slice Chains 29

(b) CSGas

Fig. 4. Example of two CSG with two network slice chains. (Color figure online)

and constraints expressed in the policy, which specifies its security requirements
and the type of traffic that is allowed to flow. Moreover, as the network is a
dynamic entity, the topology can change, so the CSP must perform validation
that a path, represented by a Network Slice Chain, can be used for the service
required by the customer. Not addressing the needs regarding management and
security validation, makes difficult the secure deployment of rich communication
services using several connected network slices.

With this setup, the next section elaborates on the properties of Network Slice
and Network Slice Chains, whose specification constitutes the major contribution
of this work.

4 Network Slice and Network Slice Chain

This Section provides the mathematical background to describe the novel con-
cept called Network Slice Chains. To do so, it evolves from its basic building
blocks to then state its key properties.

4.1 Network Service (NS)

The network slicing model relies for its realization on the European Telecom-
munications Standards Institute (ETSI) NFV concept of Network Service (NS),
detailed in [12]. A NS is a composition of network functions arranged as a set
of functions with either unspecified connectivity between them or connectivity
specified according to one or more forwarding graphs [13]. It is deduced that
key components of a NS are Virtual Network Function (VNF), Virtual Link
(VL), and VNF Forwarding Graph (VNFFG). All these elements provide a spe-
cific functionality and resource requirements for network slices, which will be
presented in the next subsection.

4.2 Network Slice (NSlice)

3GPP [2] defines that a CS is offered by a set of Network Slices, being each NSlice
composed by an ordered set of NS. This notion of “interconnection” leads us to
represent the NSlice as a connected graph.

30 L. Sudrez et al.

Definition 1. The NSlice is a graph composed of: (i) a non-empty set of vertices
(V), which are the NS; and (ii) a set of edges (E), which are the VL. For a

Network Slice A: NSliceq = (NS(A), VL(A)). 0
Property 1. Let S be the set of NSlices that belong to a CSP. S = { sy, sa,
cety Siy ey Sm}. The CSP uses s; to provide a service to its customers and the
disposition of the NSlices obeys the CSP’s internal rules and policies. O

Property 2. Each Network Slice has one service type that describes its function.
The set of types is called 7s. |7s| represents the number of service types that
are provided by the CSP as defined by 3GPP [1]. O

Property 3. The function type is used to know the service type that the NSlice
has. A NSlice can have only one type. The function type is defined as type: S —
Ts. (]

Going back to the example in Sect. 3, Fig. 1 helps to represent a set S of NSlices
with its types, identified by a different color.

The CSP uses several interconnected Network Slices to provide a complete
service to the customer: this constitutes what is called a Communication Ser-
vice. Next subsection defines analytically this concept and the inference of the
Communication Service Graph.

4.3 Communication Service Graph (CSG)

A CS is defined as an ordered set of types of Network Slices, whose services
are offered to different market segments, obeying a business purpose [3]. These
Network Slices are connected via Network Slice Links (NSL).

Definition 2. A type of CS is defined as Tcs = (Ics,, Tesy, - 1es,,), i.e.,

the traffic of a CS is going to flow through an ordered set of NSlices. Tes =
(Tcs,sTesys - Tesy) | Vi€ [1k], Tes, € Ts. O

There can exist several NSlices deployed by a CSP for a type Z¢s,. In fact,
there exist a set Sz.5 = {s| type(s) = Zcs;} € S. The interconnection of
successive St , STes,,, Creates an ordered graph.

Definition 3. The CSG C is a directed weighted graph such as: C = (S§’, NSL)
where: §" = {s|s € S A type(s) € Tes} and NSL = {(u,v)|u,v € SAu#v}. O

Property 4. Each link (u,v) € NSL has a set of attributes {a, ag, ..., am }. (u, v)
inherits a quality from graph theory called weight W, .,y that is a function which,
using the values of the attributes, computes an unified metric for (u,v). Wy,
= F(a1, ag, ..., ay,). The definition of F and the presentation of the attributes
are explained in Sect.5.1. O

These aforementioned definitions and properties help to define a CSG, which
provides a way to deploy a concrete communication service and permit the flow
of data among a subset to those Network Slices. That is where the concept of
Network Slice Chain comes to play, as is shown in the next subsection.

Managing Secure Inter-slice Communication in 5G Network Slice Chains 31

4.4 Network Slice Chain

The Network Slice Chain (NSliceCh) is conceived as a concrete path in the CSG
that a flow of data follows, which complies with certain requirements related
to the Communication Service purpose, the nature of the traffic and security
attributes. The NSliceCh leverages on Definition 3, which defines the CSG as
a set of NSlices whose type respects Zcs over which the traffic will flow. For
readability of the definition, P represents a NSliceCh.

Definition 4. The CSG C = (S’, NSL) contains a set of Network Slice Chains
Pec, which comply with the sequence of types of Network slices Tcs and do not
form a loop.

Pe = {<S731, ..Sp,, "'SPm> ‘ Vi€ [1,m],87:i eS' A
type(Sp,) = Tes, N3 Sp, € (Sp,y1, - Sp,.)}

O

A security constraint refers to the factors that impose restrictions and limitations
on the system or actual limitations associated with the use of the system [19].
Applied to the subject under consideration, a security constraint refers to the
requirements that a system should comply with in relation to security parame-
ters. Examples could be the encryption level of a Virtual Private Network, or the
protocol that must be used in a communication. These requirements are stated
in the policy, which, as a system, makes sure it is enforced as needed.

In Fig. 4a two different NSliceCh are shown: one in red and the other in blue
dotted line. It is supposed that they comply with the demands from the CS and
its security constraints.

With all the previous definitions, all the elements are provided in order to
use the tools to assess inter-slice communication.

5 Operators and Elements Involved in Inter-slice
Communication

From the mathematical representations, definitions and properties shown in
Sect. 4, we define operators and elements needed to manage inter-slice com-
munication. These are the attributes of Network Slices and their corresponding
measurement using metrics.

5.1 Attributes

Attributes refer to a feature or property of an entity [15]. Since entities are diverse
in nature and functionality, it is difficult to have a complete list of attributes,
specially for security requirements. For this proposal, attributes that are con-
sidered important from a security perspective are Affinity (Af), Trust (T) and

32 L. Sudrez et al.

Security Level (SL). In this subsection, operations are proposed among them,
being these operations a particular case of the function F stated in Property 4.
Let C = (&', NSL). Each NSlice s € &’ has a set of attributes defined as
A(S) = {(ai,vi) | a; € {Af, T, SL}/UZ' S R/\Vj € []., |AH\{Z} a; 7é ai}.
Each attribute is defined and specified according to formulas and properties
as follows:

Affinity (Af): It is used to avoid conflicts regarding the nature of the offered
slices, helping to determine whether they can be connected or can coexist.

Affinity has a nominal type of data, specified by the network administrator.
Considered values are the basic service types for 5G established by 3GPP with
the addition of a common service type that contains regular functionality and
aids to connect dissimilar NSlices.

Property 5. Affinity for a link (s;,s;) € NSL is achieved if the (s;, s;) that make
it up have the same affinity parameter. We call Fa¢ the function that finds the
affinity for a link (s;, s;) € NSL.

Far:SxS—R
Vsi,s; € 8" NSL 3 (ai,,v,) € A(si) A (aj,,v5,) € A(s;) | ai, = aj, = Af =

fAf(SZ‘, Sj) = {

1, if Vip = VUjk
0, otherwise

This means that if the services belong to the same service type, their affinities
are the same and the function will have 1 as a result. a

Property 6. Affinity for a NSliceCh P:

Let C = (S/, NSL) VP= <81782, ...,8n> € Pc AV s; € S//\(si,SiJrl) € NSL:

Gar: Po — R with: Gag(P) = 172 Far(si, sis1)

This means that for a chain of network slices, the result for affinity is the
product of values of this attribute for each of the links that belongs to the
NSliceCh. O

Corollary 1. Affinity for a NSliceCh is achieved as a consequence of Property
5, since the NSliceCh is a subset of the CSG.

Trust (T): It denotes the confidence to establish a business relation, enabled
by the acknowledgement of the identity of the other party. Trust has an ordinal
type of data, enabling to have levels of trust, for example, {trusted, not-trusted},
or equivalently, {1, 0}.

Property 7. Intuitively, the trust level of the destination NSlice has to be at least
greater or equal to the trust level of the source NSlice.

Managing Secure Inter-slice Communication in 5G Network Slice Chains 33

We call Fr the function that finds the trust for a link s;,s; € NSL.

Fr:SxS—R
Vsl-,sj c S/,EI (aip,vl-p) c A(Sl) A (ajk,’ujk) S A(Sj) ‘ i, = Qg = T =

o]_7 if Vip > Vjk
Fr(si, 53) - {07otherwise

This means that if the trust of the links are at least the same, the function
will have 1 as a result. a

Property 8. Trust level for a NSliceCh P:

Let C = (S8',NSL). VP = (81,82, ..., $n) € Pc AV 8; € 8" A(84,8i+1) € NSL:

Gt : Pc — R with: QT(P) = H?;ll .7:'1“(81', Si+1)

This means that for a chain of network slices, the result for trust is the
product of values of this attribute for each of the links that belongs to the
NSliceCh. O

Corollary 2. The trust in a NSliceCh is obtained as an extension of the trust
value in the links which embed it.

Security Level (SL). It shows the rating of the slice in terms of security, for
example its confidentiality, integrity or other criteria that can be measured for
the slice internal components. SL has an ordinal type of data, making possible to
create, as its name implies, security levels to classify NSlices and manage their
communication. The quantity of levels depends on the use case and need, as
well as the criteria used to find its rating. For example, {high, medium, low}, or
equivalently {3, 2, 1}.

Property 9. The intuition is that the SL of the destination NSlice has to be at
least as high as the SL of origin NSlice:
We call Fgp, the function that finds the Security Level for a link s;,s; € NSL.

Fs, : SxS—R
VSi,S]‘ € S’,H (aip,vip) S .A(Sl) A (ajk,vjk) S .A(S]) | a;, = Qj, = SL =

Fsu(si,s5) = min(s;,s;)

The outcome of this function is the minimum value of SL for the considered
links. O

Property 10. Security Level for a NSliceCh P:
Let C = (8',NSL). VP = (81,82, ..., 8n) € Pc AV 8; € 8" A(8;,8i+1) € NSL:
Gst, : P — R with: Gg1,(P) = min?;ll Fsr(8i, Sit1)
This means that for the NSliceCh the minimum value is used as a way to
portray the lowest security level admitted on the path. O

34 L. Sudrez et al.

5.2 Metrics

According to [21], a metric is a standard of measurement that describes the
conditions and the rules for performing a measurement of a property and for
understanding the results of a measurement. A metric provides knowledge about
an entity via its properties and the measured values obtained for that property.
In our case, metrics are associated to links. For every link (s;,s;) € NSL, it
exists a metric vector m.

It is defined as: ms, s;) = {(Af, Far, . ,) (T, Fr,, .))s (SLs Forg, L) -

5.3 Final Remarks

After stating the attributes for Network Slices, the metrics and the functions to
perform operations on them, the set of tools needed to validate a Network Slice
Chain is complete. This compliance with a security policy is presented in the
next Section.

6 Policy Validation for Network Slice Chains

The inter-slice communication depends on the use case and the service type of
the NSliceCh. Somehow, the communication should be regulated according to
certain rules r; that are grouped in a policy I1. Specifically, rules are expressed
as a vector { Subject SU, Object O, Security Constraint SC, Permission) and
its components specify the conditions for communication. This Section presents
these components along with a compliance operator and the mechanisms to
validate the compliance with the policy.

6.1 Entities: Subjects and Objects

Entities indicate the name of the actors that interact in the topology. Specifically,
the entity called subject, denotes the active entity, refers to the NSlice that
requests a service. The passive entity, the object, refers to the NSlice that
receives the request. Subjects SU and objects O are represented as sets:

SU = {suq, suga, ..., sup }; O = {01,09,...,0n}.

6.2 Security Constraint

Security Constraint, denoted by SC, represents the security conditions that the
path has to comply with i.e., each link of the path must guarantee a security
attribute superior or equal to the one specified in the rule. It is defined as follows:

SC = {(aivvimm) | a; € {Af’ T, SL}7 Vimin € R /\Vj € [1’ |AH\{Z} aj; 7"é Q.

6.3 Permission

Describes the ability to perform an operation on a protected object or resource.
Considered actions for can be to allow or deny the operation after its evaluation.

Managing Secure Inter-slice Communication in 5G Network Slice Chains 35

6.4 Compliance Operator

Denoted by =, its purpose is to validate if the metrics of a link (s;,s;) € NSL
complies with the security constraints SC; of the rule r;. It is defined as:

V(ak, vk) € Ms,.s,),3 (ap,vp) € SC; | ap = ap Avg > vp) & myy, ;) = SC;

This means that for each set of attributes specified for a subject, it needs to
exist a pair of the same name of attributes for the object. Subject and object
refer to Network Slices, that is, the link between them that complies with the
security constraint.

The > symbol, the greater or equal to operator, provides a way to compare
quantitatively the values of the attributes. It specifies the preference to com-
municate with an object that has a security attribute having a greater or equal
value. This is clarified better with an example in Sect. 7.

6.5 Rule for Policy Validation

It is necessary to verify that at least one NSliceCh, represented by P, exists and
complies with the metric in the policy.

SC corresponds to the constraints that must be respected, that is to say, that
a path P € Pc in a CSG C matches the criteria if: Gag(P) > SCar A Gp(P) >
SCt A Gsp,(P) > SCgr,. This means that not only the evaluation of each one of
the attributes should be greater than the ones specified by the constraints in
SC, but also that all those evaluations should agree.

Property 11. A path P = (s, s, ..., $p) complies with a rule r; if each link of P
complies with the security constraints SC; of r; such as:

Px=SC,<Vjel,n—1], Mys;.8541) = SC;
O

Property 12. A CSG C complies with the policy if at least a path exists that
fulfils the constraints for each rule of the policy. O

Property 13. For an end-to-end NSliceCh, trust and affinity compliance are
enforced if the product of all the computed trust values of the NSL that consti-
tute the NSliceCh has a result of 1. This can be inferred from Property 7 and
Property 5 respectively.

Property 14. For an end-to-end NSliceCh, security level compliance is achieved
if the SL values of the NSL that conform the NSliceCh are superior to the
minimum value established by the policy.

Corollary 3. The compliance with the SL for a NSliceCh is guaranteed since
the NSliceCh is a subgraph of the CSG.

After this verification of the policy, the CSP can be warned about rules that
are not satisfied because the deployed Network Slices do not meet a security
criteria. In consequence, the CSP can either add other network slices that meet
the security constraints or soften the security policy.

36 L. Sudrez et al.

6.6 Discussion

The rules presented in this Section provide assurance that the components of a
NSliceCh comply with the constraints expressed in the policy. Moreover, they
enforce not only compliance but that the metric meets a certain level stated
in the policy. At the same time, special care has to be taken when including a
high number of attributes, which can render difficult the task to find a NSliceCh
due to the fact that the problem cannot be solved in polynomial time (it is
exponential). This approach gives way to think about a more complex scenario,
where there could be a possibility that two NSliceCh exist, and the policy helps
to choose the best one according to the security requirement. This will be shown
via a concrete use case in the following Section.

7 Use Case

This section describes with a use case the way in which the rules stated in Sect. 6
are applied. The topology is shown in Fig. 5, which leverages on the CSGq; from
Fig. 4a.

240.0.0.1/24

Fig. 5. Topology of a use-case scenario involving inter-slice interactions.

7.1 Description

The CSP has four network slices, one for a 5G network, another used by a
customer (a tenant) that is configured for an IoT service, and two intermediate
network slices that provide value-added services (VAS), such as analytics, traffic
filtering or monitoring.

The sensors operating under the IoT slice use the services provided by the
ToT network slice. Nonetheless, there could be some special devices that need to
have access to a specific server on the Internet. To this end, the idea is to allow
this specific connectivity using the 5G Core (5GC) slice as a bridge to reach
the server hosted in a Data Network (DN) in the Internet. The attributes and
corresponding metrics for the entities involved in this interaction are specified
in Table 1. Similarly, the policy IT states that communication is allowed only if
the proposed NSliceCh has a minimum SL of medium (numeric value 2). The
objective is to check the validity of coherence of policy: verify the existence of
the NSliceCh that complies with the policy, so the communication is authorized.

Managing Secure Inter-slice Communication in 5G Network Slice Chains 37

Table 1. Parameters for the elements in the example scenario

IoT slice | VAS; slice | VAS, slice | 5G slice
Af | mloT Common |Common |eMBB
SL | Medium:2 | Low:1 Medium:2 | High:3
T Y Y Y Y

7.2 Validation of Compliance of the NSliceCh

It is assumed that the topology represented in Fig.5 represents a CSG from a
CSP that provides a CS and it is possible to find a NSliceCh as a sequence of
NSlices and NSL. Considering the concept of connectivity and directed-graph
characteristics of the outbound traffic, there exist two NSliceCh:

NSliceCh; = (IoT, VAS;, 5G)

NSliceChy = (IoT, VAS,, 5G)

Compliance for Affinity. The need is to connect an IoT slice to a 5G Slice
(which are dissimilar) via an intermediary slice that has a common functional-
ity. Gag(NSliceCh;) =1, because IoT-VAS; and VAS;-5G have compliant affin-
ity values. Similarly, Gas(NSliceChy) =1, because IoT-VAS, and VAS,-5G have
compliant affinity values. Both Network Slice Chains are compliant with this
requirement.

Compliance for Trust. From Tablel, it is inferred that the CSP trusts its
tenant, its services and they have good business relationship. Gr(NSliceCh;) =
Gr(NSliceChs) = 1, because the trust level of the source and destination Network
Slices are equal.

Compliance for Security Level. This attribute obeys Property 9, 14 and
Corollary 3. Gsr,(NSliceCh;) = 1, since it is the lowest SL on this path.
Gsr.(NSliceChg) = 2, since it is the lowest SL on this path.

NSliceChy complies with the requirement by traversing two consecutive net-
work slices with medium security level to then go into a high security level
network slice. From the evaluation of the attributes, it can be concluded that
NSliceChy is the one that complies with what is stated in the policy II.

7.3 Discussion

The example depicts a use case that will become usual inside a CSP network.
The CSP can have an orchestrator that automatically chooses the NSliceCh that
complies with the policy. If there exists a NSliceCh that respects the constraint,
it will be selected. If it is not the case, the CSP will know and can adjust the
configuration of the NSlices or the policy to comply with the policy. This enables

38 L. Sudrez et al.

a CSP to have tools to compare different NSliceCh according to their security
characteristics and choose the best one. This approach is extensible to other type
of metrics such as latency, performance or cost.

8 Implementation

A test-bed was set up in order to verify the proposed approach to manage inter-
slice communication. It uses:

— TOSCA as a specification to describe service components, their relationships
and its orchestration, in order to create a Service Template that can be imple-
mented in diverse cloud environments [9].

— Tacker as Generic VNF Manager (VNFM) and an NFV Orchestrator (NFVO)
to deploy and operate Network Services and VNF on a NFV infrastructure
platform as Openstack.

— Openstack Heat as orchestration engine to launch multiple composite cloud
applications based on templates.

— Openstack Neutron and Nova as orchestrators for network connectivity and
compute capabilities towards the infrastructure.

The architecture is shown in Fig. 6, where the process to setup the CSP envi-
ronment is specified by six steps: (1) VNF, NS, VNFFG TOSCA templates are

TOSCA
Template

1

Y
Heat 42—{ Tacker <«—— VNFs

A
Openstack, Nova, 4 5 6
Neutron, Kuber-
netes

A A

sL—— NFVI

Fig. 6. Topology of a use-case scenario involving inter-slice interactions.

deployed into Tacker; (2) Tacker instructs Heat to perform VNF onboarding,
orchestration and LCM; (3) Openstack Nova and Neutron triggers deployment
into the NFVI; (4) the service is configured; (5) the VNFFG is installed on
Open vSwitch (OVS) via an SDN Controller; and (6) deploy the set-up of the
monitoring scheme for the service.

The architecture shown in Fig.6 is used to deploy CSG consisting of 20,
40, 60 and 100 network slices. Each one has connections with a security level

Managing Secure Inter-slice Communication in 5G Network Slice Chains 39

constraint (low, medium or high). A single policy is implemented, which dictates
that connectivity between slices is allowed only if the security level of the next
network slice is equal or higher than the origin network slice.

The algorithm proceeds to scan all possible paths from source to destination
slice, and evaluates whether the found paths comply with the policy. Figure7
shows with a blue line the results for the experiment, conceived to tell the time
spent to find the first valid path that complies with the policy. For instance, for
a CSG composed of 100 network slices, 1318 valid paths were found and only
0.22 ms were needed to find the first valid path.

0.25 1,400
—— First valid path
—o— Num. valid paths 1,200
0.2
1,000 =
i} B
8 5
g 015 800 =
— <
o Z
) S
g 600 =
& 0.1 2
El
400 E
51072
200
0
0 20 40 60 80 100

number of slices in CSG

Fig. 7. Time to obtain the first valid path according to policy (in blue) and the number
of valid paths (in red) for a CSG of 20, 40, 60 and 100 network slices (Color figure
online)

From Fig.7 it can also be inferred that as the number of network slices
increases, the time that is needed to calculate one valid path that satisfies the
policy increases as well. This is related with the increment in the number of valid
paths that are found, shown with a red line in the same Figure. Nonetheless, a
duration of up to 0.22 ms for the case with 100 network slices is valuable, because
it is low enough to be used in real-time to find a path that satisfies a policy.

9 Conclusions

The utilisation of network slices as a mechanism to provide communication ser-
vices to customers and tenants will become commonplace, as technology becomes
mature and adoption of enabling technologies such as NFV and SDN increases.
Since the nature of a network slice is conceived as a unit specially assembled

40 L. Sudrez et al.

for a certain use case, the creation of rich end-to-end communication services
necessarily involves the communication between several network slices. From a
security perspective, the interconnection of the slices must obey policies that
guarantee secure interactions and enable just the required traffic between them.
In this paper the concept of Network Slice Chain is defined, leveraging from the
definitions provided by ETSI and 3GPP and empowered by graph theory.

These elements are used in the communication model that (1) assures that
there is a Network Slice Chain connecting the required network slices; (2) that
the Network Slice Chain complies with the constraints expressed in the policy;
and (3) assures that beyond compliance, it has a minimum rating level com-
pared to what is needed in the policy. These three elements provide a secure
environment for the CSP and its tenants.

Regarding the experimental results, the execution time to find a compliant
path for a CSG is low, which permits to use our proposition to compute the
validation of a security policy in real-time. The objectives for the future will be
to find the best path among all the paths that respect the security policy.

The proposed inter-slice communication model is extensible for application in
any service and for the inclusion of other security attributes, so security require-
ments can be expressed more richly. It complies with any access control model,
ensuring a straightforward implementation.

References
1. 3GPP: Specification # 23.501 (2018)
2. 3GPP: Specification # 28.531 (2018)
3. 3GPP: Specification # 28.801 (2018)
4. 5G-ENSURE: Deliverable D2.7 - Security Architecture (2016)
5. 5G-PPP: View on 5G Architecture (Version 2.0) (2017)
6. 5G-PPP: D2.3, 5G Mobile Network Architecture, Final overall architecture (2019)
7. Americas, G.: The Evolution of Security in 5G (2019)
8. Bordel, B., Alcarria, R., Sdnchez-de-Rivera, D., Sdnchez, A.: An inter-slice man-

agement solution for future virtualization-based 5G systems. In: Barolli, L., Tak-
izawa, M., Xhafa, F., Enokido, T. (eds.) AINA 2019. AISC, vol. 926, pp. 1059-1070.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15032-7_89

9. Brogi, A.: TOSCA in a nutshell: promises and perspectives (2014)

10. Clayman, S., Tusa, F., Galis, A.: Extending slices into data centers: the VIM on-
demand model. In: 2018 9th International Conference on the Network of the Future
(NOF), pp. 31-38 (2018)

11. Compastié, M., Badonnel, R., Festor, O., He, R.: A TOSCA-oriented software-
defined security approach for unikernel-based protected clouds. In: 2019 IEEE
Conference on Network Softwarization (NetSoft) (2019)

12. ETSL: ETSI GR NFV-EVE 012 V3.1.1 (2017-12) (2017)

13. ETSI: ETSI GS NFV-IFA 014 V2.3.1 (2017-08) (2017)

14. Guija, D., Siddiqui, M.S.: Identity and access control for micro-services based 5G
NFV platforms. In: Proceedings of the 13th International Conference on Availabil-
ity, Reliability and Security. ACM (2018)

https://doi.org/10.1007/978-3-030-15032-7_89

15.

16.

17.

18.

19.

20.

21.

Managing Secure Inter-slice Communication in 5G Network Slice Chains 41

Herrmann, D.: Complete Guide to Security and Privacy Metrics: Measuring Reg-
ulatory Compliance, Operational Resilience, and ROI. CRC Press, Boca Raton
(2007)

Marsch, P., Bulakci, O., Queseth, O., Boldi, M.: 5G System Design: Architectural
and Functional Considerations and Long Term Research, 1st edn. Wiley, Hoboken
(2018)

Nowak, T.: Matematyczny model izolacji ustug w sieciach plastrowych. Przeglkad
Telekomunikacyjny + Wiadomosci Telekomunikacyjne (2017)

Pattaranantakul, M., He, R., Zhang, Z., Meddahi, A., Wang, P.: Leveraging net-
work functions virtualization orchestrators to achieve software-defined access con-
trol in the clouds. IEEE Trans. Dependable Secure Comput., 1 (2018)

Ross, R., McEvilley, M., Oren, J.: Systems Security Engineering: Considerations for
a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems.
Technical report, NIST Special Publication (SP) 800-160, vol. 1, National Institute
of Standards and Technology (2018)

Trajkovska, 1., et al.: SDN-based service function chaining mechanism and service
prototype implementation in NFV scenario. Comput. Stand. Interfaces 54, 247-265
(2017)

de Vaulx, F.J., Simmon, E.D., Bohn, R.B.: Cloud Computing Service Metrics
Description. Special Publication (NIST SP) - 500-307 (2018)

l‘)

Check for
updates

Proactively Extracting IoT Device
Capabilities: An Application to Smart
Homes

Andy Dolan', Indrakshi Ray', and Suryadipta Majumdar?®)
! Computer Science, Colorado State University, Fort Collins, USA
adolanb@rams.colostate.edu, Indrakshi.Ray@colostate.edu
2 Information Security and Digital Forensics, University at Albany, Albany, USA
smajumdar@albany.edu

Abstract. Internet of Things (IoT) device adoption is on the rise. Such
devices are mostly self-operated and require minimum user interventions.
This is achieved by abstracting away their design complexities and func-
tionalities from the users. However, this abstraction significantly limits
a user’s insights on evaluating the true capabilities (i.e., what actions a
device can perform) of a device and hence, its potential security and pri-
vacy threats. Most existing works evaluate the security of those devices
by analyzing the environment data (e.g., network traffic, sensor data,
etc.). However, such approaches entail collecting data from encrypted
traffic, relying on the quality of the collected data for their accuracy, and
facing difficulties in preserving both utility and privacy of the data. We
overcome the above-mentioned challenges and propose a proactive app-
roach to extract IoT device capabilities from their informational specifi-
cations to verify their potential threats, even before a device is installed.
We apply our approach to the context of a smart home and evaluate its
accuracy and efficiency on the devices from three different vendors.

1 Introduction

The popularity of IoT devices is gaining momentum (e.g., projections of 75.44
billion devices worldwide by 2025 [18]). This large ecosystem is comprised of a
variety of devices that are being used in diverse environments including health-
care, industrial control, and homes. Manufacturers emphasize certain features
and characteristics of the IoT devices and often abstract away their actual design
complexity and functionalities from the user. Many IoT devices are equipped
with an extended set of sensors and actuators which allows them to perform dif-
ferent functionalities. For example, a smart light with a microphone and motion
detector can possibly perform far more than just light sensing.

Such abstraction and extended (and in many cases hidden) functionalities
of an IoT device result in a blind spot for the consumers and leave an IoT
system vulnerable to various security and privacy threats. Installing the above-
mentioned smart light necessitates that the consumer understand its potential

© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

A. Singhal and J. Vaidya (Eds.): DBSec 2020, LNCS 12122, pp. 42-63, 2020.
https://doi.org/10.1007/978-3-030-49669-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49669-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-49669-2_3

Proactively Extracting IoT Device Capabilities 43

security and privacy consequences. This requires the consumer to study its design
specifications to find out what sensors it possess. Furthermore, she must have
the insights to realize the security and privacy consequences of having a micro-
phone and motion detector in a light, and determine if any of those consequences
violate the policies of the household or organization. Performing all these steps
is infeasible for most IoT users due to either their time constraints or lack of
knowledge. Therefore, IoT consumers need assistance to properly interpret the
underlying security and privacy threats from these devices. Our work aims to
fill this gap by providing consumers information on IoT device capabilities.

A comprehensive knowledge of device capabilities can be used in various secu-
rity applications, including security verification, monitoring, risk analysis, and
digital forensics. One example application is proactively verifying the security
and privacy of IoT devices in a smart home or in an organization. Specifically,
once we know the capabilities of a device, we can check if any of those capabilities
violate any of the security and privacy policies in an organization or a household.
We can also ensure that the deployment of an IoT device in some location or
under some configuration does not cause any security or privacy breaches and
can take adaptive measures to mitigate that risk.

Several works [12,14,21-25,33,35] that profile IoT devices and their behav-
iors to detect security breaches and/or monitor an IoT environment pose
two limitations: (i) Collecting and interpreting data from an IoT system is
extremely challenging. Existing solutions [12,35] either perform entropy analysis
of encrypted traffic or use only the unencrypted features of network traffic (e.g.,
TCP headers and flow metadata). Due to its great reliance on data inference,
false positives/negatives are a legitimate concern. Providing better accuracy in
these security solutions is a critical challenge. (ii) Such approaches may reveal
sensitive information (e.g., daily routines of smart home users [14]) about an IoT
system and its users, threatening their privacy. Preserving privacy while sharing
sensitive data for security analysis is another challenge.

We overcome these limitations and propose an approach to proactively
extract IoT device capabilities from their design specifications. We first define
the notion of device capability in the context of IoT. Second, we extract the
transducer (e.g., sensors and actuators) information for each device using vendor-
provided specification materials. Third, we identify the capabilities of a device by
deriving the capabilities of each sensor and actuator of that device. We discuss
our approach in the context of smart homes, an important IoT domain (with
projections of 505 million active smart home devices worldwide by this year [19])
and evaluate its efficiency and accuracy. The main contributions of this paper
are as follows.

— We propose a new approach to proactively extract the device capabilities from
design specifications. The key advantages of this approach over existing works
are: (i) this approach does not rely on environment data and is therefore not
directly affected by the difficulties of collecting and interpreting IoT data,
and further is free from the privacy concerns of data sharing; and (ii) this

44 A. Dolan et al.

approach enables proactive security verification of an IoT device even before
it is installed or deployed.

— We are the first to define this concept of device capability in IoT, which
can potentially be applied in the future security solutions for various IoT
applications (e.g., smart grid, autonomous vehicle, smart health, etc.) to offer
proactive security guarantee.

— As a proof of concept, we apply our approach in the context of smart homes.
We demonstrate the applicability of our approach by applying it to devices
from various vendors (e.g., Google, Ring, and Alro), and we evaluate it in
terms of its efficiency and accuracy.

The remainder of the paper is organized as follows. Section 2 summarizes
related work. Section3 provides background on vendor materials. Section4
presents our methodology. Section5 describes its implementation. Section 6
presents the evaluation results. Section 7 concludes the paper.

2 Related Work

Research on IoT security has gained significant interest. These studies [12,13,
16,17,21-25,27,28,33-36]) are categorized into device fingerprinting, application
monitoring, intrusion detection, and access control.

The existing device fingerprinting techniques [12,21-25,35] monitor and ana-
lyze network traffic in IoT. More specifically, [21,24] automatically discover and
profile device behaviors by building machine learning models trained on network
traffic according to their service (e.g., DNS, HTTP) and the semantic behaviors
of devices (e.g., detected motion), respectively. Similar analysis is performed
in Zhang et al. [35], where the fingerprints of a particular smart home device
are built using its network traffic. Other works (e.g., [12,22,23,25]) use simi-
lar techniques to automatically determine device identity or typical aggregate
behaviors (as opposed to specific behavior). Bezawada et al. [12] utilize machine
learning to build behavior profiles based on network traffic for devices using the
device category and device type. IoTSentinel [23], AuDI [22] and DeviceMien
[25] use unsupervised learning to build models for individual device-types based
on network traffic captured during a device connection.

There exist several other security solutions (e.g., [16,20,32,36]) for smart
homes. The existing application monitoring techniques (e.g., [20,32]) run on
source code of IoT applications and analyze these applications. More specifically,
ContextIoT [20] and SmartAuth [32] offer permission-based systems to monitor
an individual app. ProvThings [33] builds provenance graphs using security-
critical APIs for IoT forensics. Soteria [15] and IoTGuard [16] verify security
and safety policies by performing static and dynamic code analysis, respectively.
Zhang et al. [36] monitor isolation-related properties among IoT devices through
a virtual channel. Yang et al. [34] protect IoT devices from remote attacks by
hiding them inside onion gateways.

Limitations of Existing Work. First, most of the solutions above rely on a
great amount of inference, especially when considering encrypted network traffic.

Proactively Extracting IoT Device Capabilities 45

Many solutions either perform entropy analysis of encrypted traffic [12] or use
only the unencrypted features of network traffic such as TCP headers and other
packet and flow metadata [21-25,35]. Because of this inference, false positives
and false negatives are a legitimate concern of these solutions. Second, as most of
the existing works rely on the application of inferential models (machine learning
or otherwise), they are vulnerable to deceptive attacks, where an adversary may
craft an attack that conforms to the model’s expectation of legitimate traffic or
behavior, thereby circumventing the model. An attack at the other end of this
spectrum would be to simply conduct a denial-of-service attack by, for exam-
ple, inundating the system with purposefully malicious traffic to overwhelm the
model and prevent the processing of any legitimate traffic. Third, these related
works cannot detect/prevent the critical safety or privacy implications that are
not observable from the network traffic.

Our paper, on the other hand, is complementary to those existing works,
and targets a different threat model where we extract IoT device capabilities
from their design specifications that will facilitate evaluating potential security
threats even before a device is installed.

3 Vendor Materials

3.1 Vendor Material Description

We consider vendor materials including product webpages, technical specifica-
tions, and developer documentations which are publicly available and contain
aspects of the specifications (sensors, actuators, or related features) of a device.

Product Webpages. Product webpages are official marketing pages from which
a consumer can purchase the product, and contain the summary information
about a device. For instance, Google has an online store for its smart home
products (e.g., [4]). These pages can be an initial source of information about a
smart home device and its specifications.

Technical Specifications. Technical specification pages provide details about
a device and its hardware specifications. For instance, Google has a technical
specification page for its smart home products (e.g., [5]). This work considers
these technical specification pages as one of the most significant sources of infor-
mation about a device’s hardware components.

Developer Documentations. Developer documentations provide information
to developers who create applications for the smart home devices. Even though
these materials are intended for application developers, they can be used as a
source for the extraction of information about the hardware and capabilities of
a device.

3.2 Investigation on the Real-World Vendor Materials

Analysis of the Vendor Materials. We analyze the contents of several vendor
materials by leveraging natural language processing techniques. These analyses

46 A. Dolan et al.

result in insights on the challenges that come with the extraction of vendor
materials, which is illustrated through the following examples.

Figure 1a shows the term frequency distribution for the Google Nest Cam
Indoor’s vendor materials as a word cloud, where the larger terms appear more
frequently across the corpus. This particular corpus is constructed from the
Nest Cam Indoor main product page, technical specifications page, technical
specifications support page, and the Nest Cam Developer API documentation
[2,4,5,10]. The full corpus contains 4,175 words after pre-processing. The word
cloud suggests that terms that would intuitively be assumed to appear frequently,
such as “camera” and “nest” appear often, as these terms are directly related
to the primary functionality of the device. However, terms that are indicative of
other transducers and their capabilities appear less often, and even appear less
often than terms that are unrelated or potentially indicative of transducers that
the device does not have. Figure 1b illustrates the frequency distribution of only
a subset of notable terms.

Freq. Dist. of Nest Cam Terms (Subset)
eambient SEH2OT time == indoor ™ 2004 196

I Transducer-relevant terms
1751 I Trrelevant terms

=
=
Q)
0Q
(M
pé

stream low t‘quueg

1 z " q,

E.return avallablechanﬁ oihig

"V r e a
3 user i infrare
dmm soogle

Num. Occurrences in Corpus

>< aWare
°V4 bluetooth SUPPOI’tcam phighmoghos
g o3
=N S
motion bandWldthplatE g
EgLn e Sgne flg 33
o s d bl 5
o:NeS tiyris
; % o temperature @ snareoutdoor ST 4
S device’:
w " status b @ DO S OAL @O o
29 >, @ N WO 8@ 2@
O acgess.event...video R O b‘@ﬁ O
¢ & AT HTe®
& RO
(a) (b)

Fig. 1. (a) The term frequencies for the corpus of vendor materials on the Nest Cam
Indoor, visualized as a word cloud. (b) The term frequencies for a subset of terms from
vendor materials on the Nest Cam Indoor. Terms that are more directly related to the
transducer they refer to appear in blue, while other terms appear in red. (Color figure
online)

Additionally, term frequency-inverse document frequency (TF-IDF) calcula-
tions are also performed within individual corpora for a device. Specifically, each
separate vendor material for a device is treated as an article in the corpus, and
the TF-IDF metric is computed for an individual corpus. Overall, TF-IDF fails
to find terms that are most indicative of a device’s transducers and capabilities
due to their infrequent appearances. We also apply TF-IDF on each section of

Proactively Extracting IoT Device Capabilities 47

a vendor material as an individual document. However, this technique also does
not produce any conclusive results.

Challenges in Extracting Capabilities from Vendor Materials. Based
on the outcome of the analysis above, we enumerate the major challenges in
extracting capabilities from vendor materials as follows.

— No Standaridized Template. Each vendor follows different templates for their
materials and furthermore, different materials of the same vendor follow dif-
ferent formats. There is no standard template or specification for how to
describe different generic features or hardware components. This implies sig-
nificant effort to learn those different templates to enable their extraction.

— Brevity of the Materials. Vendor materials are usually expressed in a brief
manner and do not include all explicit specifications of a device. Therefore,
extracting device information from them requires more interpretation of the
contents. Additionally, terms that are indicative of particular hardware com-
ponents may only appear a limited number of times within the materials,
especially if they are not related to the primary function of the device.

— Vendor-Specific Jargons. Each vendor tends to use their own set of termi-
nologies for their devices. Mainly due to their business policy, vendors craft
languages around what information they believe is the most useful to or
well-received by the consumer, and include terminology that may be unique
to only their line of products. Accordingly, learning the vocabularies used for
various vendors and then normalizing them to infer their capabilities presents
additional challenges.

— Interpreting Visual Contents. Several contexts (e.g. device type) of a material
is visually represented and is therefore very difficult to encode automatically.
An interesting aspect of the marketing and technical specification pages for
IoT devices is the way that page layout and structure provide contextual
information in the form of visual cues and hierarchical organization. There-
fore, text processing alone becomes insufficient in those cases.

— Distributed Materials. The information about a device is distributed over var-
ious materials (e.g., product webpage, technical specifications, user manual,
and developer documentation), and it is essential to obtain information from
as many different materials as possible, normalize their formats, and extract
capabilities for the most thorough extraction.

4 Methodology

We first present our threat model and the assumptions of our approach, followed
by the overview, and finally the details.

4.1 Threat Model

We focus on smart homes, an IoT application, in this work. We assume that
the sensors and actuators in a smart home device may be used to conduct var-
ious security and privacy attacks. Our approach, therefore, builds the device

48 A. Dolan et al.

capabilities (i.e., the actions that a device can perform) which can later be used
to detect/prevent the adversaries that exploit these sensors or actuators. Our
approach does not consider the threats from a malicious or vulnerable trans-
ducer; which includes misbehavior and malfunction. Also, any network attack
that does not involve the transducers is beyond the scope of this paper. In this
work, we derive the device capabilities from the vendor-provided materials that
are publicly available. In this paper, the impact of negation in the language of
this materials is not considered in extracting capabilities. Therefore, any missing
information about a device in those materials may affect the effectiveness of our
approach.

2) Pre-Processing
Vendor Materials Extracted
Specifications.

1) Model Definitions

D g

—>

3) Building Device Capabilities

Normalized
Text

xq_ E

Enum. Algorithm

Ontology

N E
[c1, €2, €3, ...] [c1, €2, €3, ...]

Enumerated Transducers & Capabilities

Fig. 2. An overview of our methodology, including 1) development of the model, 2) pre-
processing of vendor materials, and 3) applying an ontology to extracted specifications
by way of an automatic enumeration function.

4.2 Overview

Figure 2 illustrates an overview of our approach to extract the capabilities of a
smart home device from its specifications. The three steps are described below,
and we provide the example of a motion-activated smart camera throughout.

[Step 1: Defining Capability Model for IoT Devices] We first define IoT
devices, then define their transducers (e.g., sensors and actuators), and finally

define the capability models that map transducers to their set of capabilities
(See Sect. 4.3).

Proactively Extracting IoT Device Capabilities 49

[Step 2: Normalizing Specifications from Vendor Materials] We first
extract the device specifications from various vendor materials, then prune
the extracted data to eliminate irrelevant contents (e.g., stop words and site
navigation links), and finally normalize the pruned contents to refer to the
transducer information (See Sect.4.4).

[Step 3: Building IoT Device Capabilities] We first build the ontology of the
device specifications, then derive an enumeration of transducers for a device
by applying this ontology on the processed vendor materials, and finally map
these transducers to their capabilities (See Sect. 4.5).

4.3 Defining Capability Models for IoT Devices

This work defines a transducer as a sensor or actuator (partly inspired by the
definitions in NIST 8228 [29]). A sensor holds the core functionality of sensing
or measuring various aspects of a physical environment and converting it to
a digital signal. For example, image sensors, motion sensors, and microphones
sense light, motion, and sound from a physical environment, respectively. An
actuator converts a digital signal to various physical actions (e.g., emitting light,
producing sound, actuating a lock to toggle its state).

The set of all transducers T is partitioned into two sets, where S is the set
of all sensors and A is the set of all actuators, where T'=SU A and SN A = (.
A capability of a sensor is denoted as cg; and the capability of an actuator is
denoted as c,j. Note that, Vi, j, cs; # cqj. However, for any two sensors s, and
Sn, Wwhere m # n and s,,, s, € S, their set of capabilities may overlap.

Definition 1. [Transducer]: A transducer ¢; is either a sensor s; or an actu-
ator a;. That s, if t; = s;, then t; # a;. Also, if t; = a;, then t; # s;. Each
sensor s; and each actuator a; consists of a mon-zero finite set of capabilities,
denoted as s; = {Cs1,Cs2, ..., Csp} and a; = {Ca1,Ca2;.-.,Caq}- Also s; # {} and

Definition 2. [Device:] A device is an embedded system that consists of a set
of transducers. A device D; consists of a set of sensors S; and actuators A;
where S; € S and A; C A and S; = {s1,82,...,8n} and A; = {a1,a2,...am}.
The number of transducers in D; equals n + m.

Multiple devices may have common sensors or actuators. For example, smart
cameras and smart video doorbells both have a camera sensor. Two devices D,.
and Dy shown below have common sensor sz and common actuator as.

D, = S1UA; = {s1,82,83,a1,a2}; Dy = S U Ay = {53,584, 02,a3}.

Definition 3. [Device Capability]|: A capability of device D; is a function
the device can perform. The set of capabilities for D; is computed as the union
of the set of capabilities of the transducers comprising the device.

Multiple devices can have common capabilities. For example, a smart camera
has an image sensor and therefore holds the capability of capturing an image.

50 A. Dolan et al.

On the other hand, a smart light has both light and motion sensors; therefore
it holds the capabilities of sensing lights and detecting motion. In the following,
the two devices D, and D, have common capabilities cs3 and cg2:

Dp = {Csl» Cs2, Cs3, Ca2, CaB}; Dq = {0537 Cs4,Cs5, Cals Ca2}~

4.4 Normalizing Specifications from Vendor Materials

To prepare the vendor materials for building device capabilities, we first extract
the device specifications from the vendor materials, then remove irrelevant infor-
mation (e.g., external navigation links or copyright information) from those
extracted specifications, and finally refine them into a more homogeneous, and
machine-friendly format.

Selective Extractions of Device Specifications. The initial extraction of
the device specification is a process that operates on the input vendor materials.
The vendor materials must be parsed for their contents, which can be defined
in terms of semantics as well as more abstract information such as document
structures and page layouts. This work extracts the vendor materials in HTML
and/or text formats.

For HTML documents, we first remove the non-HTML contents from each
web page, such as style and script blocks. We then extract the raw text from the
resulting HTML elements. We parameterize this step so that specific sections of a
page can be extracted. For example, the technical specifications page for a smart
camera may contain page elements unrelated to the device, such as navigation
links, or even additional specification information for similar products (e.g., video
doorbells). With our parameterized method, we are able to extract only the
specification information for the smart camera. We also tailor the parameters to
specific vendor pages; these parameters are often reusable, as web design under
a single vendor is often homogeneous.

Normalizing the Data. To ensure that the contents extracted from the ven-
dor materials are best suited for the transducer enumeration technique, our app-
roach normalizes those contents by removing elements that are not critical to the
enumeration process, including punctuation, non-alphanumeric, and non-white-
space characters, as well as “stop words” (i.e., common articles and prepositions
in English). The term case and plurality are also normalized through lemmatiza-
tion, a process of linguistics that simply involves homogenizing different inflec-
tions of the same term to the dictionary form of the term. The content output
by the normalization step contains a more homogeneous sequence of terms in
the original order that they appeared in the vendor materials.

For example, a motion activated camera’s marketing page may contain the
following text: “with the camera’s array of motion sensors, video will be recorded
automatically”. After this step, the same string will read “camera array motion
sensor video record automatically”.

Proactively Extracting IoT Device Capabilities 51

4.5 Building IoT Device Capabilities

We now describe how to derive the device capabilities after pre-processing.

Building the Ontology. Our approach understands the language and structure
of the vendor materials, and then builds an ontology. The ontology will contain
an understanding of the terminologies used to refer to specific components of a
device. It is possible to include other information as well that can be derived
from the vendor products.

Enumerating Transducers. To enumerate device transducers using the above-
mentioned ontology, we devise three algorithms, namely, ranked key term set
matching (rKTSM), unranked key term set matching (KTSM), and unguided
key term set matching, where key terms are one or more words related to a
transducer. These algorithms use two types of key terms: indicative terms and
related terms. The indicative terms are unambiguously indicative of the presence
of a transducer. The related terms are related to a transducer, but may be more
ambiguous, and hence are not sufficient in drawing conclusions about its pres-
ence. In the case of a motion-activated camera, the term “camera” is considered
indicative of an image sensor, while the term “video” is considered related to an
image sensor. We describe each algorithm below, in which the notation “x[y]”
indicates the mapping or membership of a field y in x.

— Ranked Key Term Set Matching (rKTSM) Algorithm: Algorithm 1 first filters
the key term sets for different abstract device types, and then performs key
term matching based on the most relevant set of indicative terms. Specifically,
Lines 1-11 outline the first matching step, which uses both indicative and
related terms to determine which abstract device type is most likely being
represented by the corpus of vendor materials. The “get_matches” function
extracts any matching key terms in the provided set that are contained within
the input corpus. The indicative terms of the device type that is ranked as
the best match candidate are considered to be the terms that refer to the
transducers of the device. A reverse-mapping step is then performed on Line
12, where only these indicative terms are used to determine which transducers
are present. Note that the output of the first matching step is a subset of
indicative terms for the selected abstract device type. The reverse mapping
step determines which transducer each indicative term refers to, where some
transducers may be referred to by more than one indicative term. The final
results contain an enumeration of transducer identifiers, which are returned
at Line 12.

52 A. Dolan et al.

Algorithm 1: Ranked Key Term Set Matching (rKTSM)

1 best_score < 0

2 best_indicative < null

3 for d in Ontology[/Devices] do

4 indicative_terms <« d[transducers][indicative_terms]
5 related_terms < d[transducers|[related _terms|

6 ind_matches < get_matches(indicative_terms, corpus)
7 rel_matches « get_matches(related_terms, corpus)
8 match_score < |rel_matches| 4+ |ind_matches|

9 if match_score > best_score then

10 best_score < match_score

11 L best_indicative « ind_matches

12 transducer_identifiers < reverse_map(best_indicative)

The rKTSM algorithm is able to better exploit context clues found in the
related terms while avoiding erroneous matches that can be introduced by
their ambiguity. Additionally, the approach accounts for the fact that terms
that are most directly indicative of the presence of a transducer may have
a frequency that is much lower than that of other terms. For example, even
if the indicative term “microphone” appears only twice within the entire
corpus, the presence of related terms such as “audio” or “voice” can help
bolster confidence when concluding that a microphone transducer is present.
— Unranked Key Term Set Matching (KTSM) Algorithm: Algorithm 2 uses only
the indicative terms without ranking term sets. Specifically, it evaluates the
corpus for any matching indicative terms of any transducer, and identifies the
transducers through the same reverse-mapping process (as in Algorithm 1).

Algorithm 2: Unranked Key Term Set Matching (KTSM)

1 all.indicative_terms «— U d[transducers][indicative_terms]

d
2 ind_matches «— get_matches(all_indicative_terms, corpus)
3 transducer_identifiers < reverse_map(ind_matches)

— Unguided Key Term Set Matching: Additionally, we consider a completely
unguided KTSM alrogithm, shown in Algorithm 3, that performs the same
matching as unranked KTSM, but also matches on the related terms. We
consider this algorithm to be the least focused and exact, as it attempts to
match using an entire vocabulary.

Proactively Extracting IoT Device Capabilities 53

Algorithm 3: Unguided Key Term Set Matching

1 all.indicative_terms «— U d[transducers][indicative_terms]
d
2 all related_terms «— U d[transducers][related _terms]

d
3 all_terms « all_indicative_terms + all_related_terms

4 all_matches «— get_matches(all_terms, corpus)
5 transducer_identifiers «— reverse_map(all_matches)

The transducers that are enumerated from the extraction step must be rep-
resented in a standardized way, (e.g., using the same identifier for the transducer
type), where each extracted transducer is completely decoupled from the device
instance it was extracted from. This is to ensure that the transducers fit into the
model that is described in Sect. 4.3.

Mapping to Device Capabilities. Capabilities of a device are enumerated
from its constituent transducers. This work assumes that transducers are asso-
ciated with a static, finite set of capabilities that are established during the
creation of the ontology. Each transducer can be directly mapped to its set of
capabilities as per Sect.4.3. The capabilities contained in the final output set
represent a device’s functionality unambiguously. Table 1 provides examples of
the outputs of our methodology.

5 Implementation

We build the ontology of vendor materials for seven smart home products: Arlo
Ultra Camera, Nest Cam Indoor, Nest Hello Doorbell, Nest Protect, Nest Learn-
ing Thermostat, Nest X Yale Lock, and Ring Indoor Camera [1,3,4,6-9].

Our pre-processing step is implemented (in Python) to fetch the product web
pages directly over the network via the requests library [26] by way of their URI,
or to read pages fetched previously and saved locally. To extract the textual con-
tent from those pages, we utilize the BeautifulSoup package [11] which allows us
to extract only specific sections of vendor material pages by providing parame-
ters with specific HTML tags and attributes used to identify page portions. Our
current implementation supports the static elements in web pages (i.e., HTML),
which is the current format for most vendor materials. However, if some vendor
materials only display the content dynamically, a simple workaround would be
to use a web engine to first internally render any dynamic content before pro-
cessing the resulting HTML. To normalize the text, a separate Python function
replaces stop words and non-alphanumeric characters via regular expressions.
For the normalization of term plurality, lemmatization is performed using the
Spacy natural language processing package [31].

The KTSM algorithms described in Sect. 4.5 are also implemented as Python
functions that take a corpus as input from which to enumerate transducers. To
encode the ontology created during the manual review process (as described

54 A. Dolan et al.
Table 1. An excerpt of outputs from our approach.
Device Category | Transducer Atomic capabilities
Arlo Sensors | Image sensor Capture image, Capture video, Detect
Ultra [1] light
Microphone Capture sound
Motion sensor Detect motion
Actuators | Speaker Produce sound
LED light Produce light
Infrared light Produce IR light (enabling night vision)
Siren Produce high-volume siren
Nest Sensors | Image sensor Capture image (take photo), Capture
Cam video, Detect light
Indoor [5]
Microphone Capture sound
Actuators | Speaker Produce sound
LED light Produce light
Infrared light Produce IR light (enabling night vision)
Nest Sensors | Smoke sensor Detect smoke
Protect
2nd
Gen [8]
Carbon Detect carbon monoxide
monoxide sensor
Temperature Measure temperature
sensor
Humidity sensor | Measure humidity, detect steam
Microphone Capture sound
Motion sensor Detect motion
Light sensor Detect light
Actuators | Speaker Produce sound
LED light Produce light
Nest X Sensors | Light sensor Detect light
Yale
Lock [9]
Touch sensor Detect (capacitive) contact
Actuators | Lock Lock and unlock door

Speaker

Produce sound

LED light

Produce light

Proactively Extracting IoT Device Capabilities 55

in Appendix A), a data model is created to represent abstract device types,
transducers, their capabilities, and key term sets. Each transducer is represented
in the data model as having a static set of capabilities, a set of indicative terms,
and a set of related terms. These data models act as additional parameters to
our KTSM functions. Given the corpus of a device’s vendor materials and the
data model, the implemented KTSM functions utilize the tree-based flashtext
algorithm [30] to perform key term matching. In the case of ranked KTSM,
the number of matches is used to determine the best abstract device type. In
unranked and unguided KTSM, only the matching step takes place with all
indicative terms, and with all indicative and related terms, respectively. Any
matches are mapped to their associated transducer’s identifier automatically
(enabled by the Python implementation of flashtext).

6 Evaluation

This section discusses the performance of our implemented solution, which is
used to extract enumerations of transducers for the seven devices. All extractions
are performed on a system with an Intel Core i7-8550U processor @ 1.80 GHz and
8 GB of memory. We evaluate the performance of our implementation in terms
of its efficiency, the enumeration accuracy for each device, and the proportion of
incorrect transducer matches for each device.

Mean Extraction Time by Input Size Mean Text Normalization Times
75 @ Nest Thermostat 067 @ Aarlo Ultra
17.5 Nest Doorbell s Nest Cam Indoor ¢
. V¥ Ring Indoor (‘amcr‘a = :g 0.5 V¥ Nest Doorbell
7 15.09 M Nest Protect 2nd Gen S U.07 M Nest Protect 2nd Gen
é ® Nest Yale Lock S ® Nest Thermostat
3 1 4 Ao Ultra 4 3 ¢ Nest Yale Lock
@ 12.5 Nest Cam Indoor \O/ 0.4 Ring Indoor Camera,
£ 10.0 ' &
= = 0.3
= 7.5 2
£ 5.0+ = 021 ')
]
2.5 % o1 n
0.04® Y
T T T T T T T T
0 1000 2000 3000 4000 2.5 5.0 7.5 10.0 12.5
Collection Size (KB) Total Number of Lemmas
(a) (b)

Fig. 3. (a) Average text extraction time of the vendor materials for different devices
by their size on disk, computed over 5 trials. (b) Average text normalization time by
the total number of lemmas in a corpus, computed over 5 trials.

Efficiency. The goal of the first set of our experiments is to measure the effi-
ciency of our approach. The efficiency of our implementation refers to the total

56 A. Dolan et al.

time required to perform the pre-processing step on the input vendor materials
for a particular device. Displayed in Fig. 3a, the extraction step is the most sig-
nificant source of processing time in our methodology, ranging from less than a
second to nearly 20s.

The time required for the extraction step depends on the size of the vendor
materials that are used as input. HTML files for devices may exhibit a large
range of sizes; for example, pages on Google Nest devices have the largest range
of sizes on disk, from 38 KB to 2.6 MB. The HTML extraction portion of the
pre-processing step takes the largest amount of time, between 15 and 18 s, for the
largest collections of web pages (over 4 MB total). Comparatively, smaller col-
lections of pages (totalling 200 KB or less) take less than a second for extraction.
Figure 3a indicates that extraction time scales with the size linearly.

For most evaluated devices, the times required to perform the text normal-
ization step, displayed in Fig. 3b, are negligible when compared to those of the
extraction step. Consistently, across all devices, the text normalization step is
performed in less than a second, increasing slightly with the total number of
lemmas extracted.

Enumeration Accuracy by Device % Incorrect Transducers by Device
60
100% Z . Arlo Ultra
" 5% B Nest Cam Indoor
& 3 B Nest Doorbell
5 Z 507 | mmm Nest Protect 2nd Gen
= 80%A 2 8 Nest Thermostat
é) = B Nest Yale Lock
& — 40% - "= Ring Indoor Camera
s 60% z
[

& £ 30% A
B g
= 40% A =
8 3 20% 1
5 20% o mm_Arlo Ultra MR Nost Thermostat, E 10% -
& e Nest Cam Indoor MBS Nest Yale Lock 2 ¢

B Nest Doarbell WOl Ring Indoor.Camera >

W Nest Protect 2nd Gen &

0% u u 0%
3\ M 3\
“3“‘&@(\ ‘K‘:Sg . anKe ced ‘KY\? e ded ‘K‘:S

TS\X Tg’\&
Ra(\k(‘d U xaﬁ“e\‘(e “‘ G Y\

(a) (b)

Fig. 4. For each device, grouped by KTSM algorithm (a) the proportion of ground
truth transducers that are correctly enumerated, and (b) the proportion of matching
transducers that are incorrectly identified.

We do not analyze the impact of the automatic enumeration of device trans-
ducers from normalized texts, due to the efficiency of the tree-based flashtext
algorithm for keyword extraction which we use. Additionally, we do not consider
the mapping from enumerated transducers to their capabilities as having any
impact on efficiency, due to the fact that this mapping is statically defined in
the ontology. That is, once the transducers have been enumerated, establishing
their corresponding capabilities requires a trivial lookup in the ontology.

Proactively Extracting IoT Device Capabilities 57

Nest Cam Indoor Term Proportions Nest Yale Lock Term Proportions
M Indicative Terms 1o | M Indicative Terms
14.0% 1 Related Terms 14.0% Related Terms
g 12.0% 1 § 12.0% 1
g g
& 10.0% 1 E’ 10.0%
5 8.0% 1 = 8.0%
g =
2 6.0% £ 6.0% -
2 2
£ 4.0% £ 40%
2.0% 1 2.0%
0.0% - L 0% -—_l
Pagd qpec® qpe® AV 298 oS ade
wio e o - 990\" %\P\Xcﬁ\ Ca nio ¥ e o) G
(a) (b)

Fig.5. A comparison of the proportions of indicative and related terms per document
for (a) the Nest Cam Indoor [5] and (b) the Nest X Yale Lock [9].

Enumeration Accuracy. For the purposes of evaluation, a sample set of trans-
ducers for the evaluated devices are enumerated manually as ground truth. Enu-
meration accuracy is computed as the ratio between the number of these ground
truth transducers that were correctly identified by an extraction approach to
the total number of ground truth transducers. Figure 4a displays the results of
our enumerations on the seven different devices from three different vendors,
grouped by the enumeration algorithms.

Figure 4a shows that both the ranked and unranked KTSM algorithms pro-
vide similar proportions of correctly identified transducers, averaging about 60%
and 62%, respectively, of ground truth transducers identified among all devices
with a standard deviation of 24% and 27%, respectively.

For each extraction approach, there is a large disparity between the trans-
ducer enumeration rate for the Nest Cam Indoor and the Nest Yale Lock. We
present a comparison of these two devices in Fig. 5, showing the proportion of
indicative and related terms for each document per device. An interesting prop-
erty that follows from this comparison is the correlation between this property
and the enumeration accuracy for each device. As can be seen in Fig. 6a, as the
proportion of indicative terms grows larger, the overall enumeration accuracy of
the rTKTSM algorithm generally does as well. This is fairly intuitive, in that a set
of vendor materials with a larger number of terms that more explicitly reference
a particular transducer will better inform a reader of the association of that
transducer with the device. This means that a more refined ontology will con-
tribute to an increased number of indicative terms and improve the enumeration
accuracy.

Similarly, Fig.6b displays the negative relationship between proportion of
lemmas that are related terms and the transducer enumeration rate. This rela-

58 A. Dolan et al.

Enumeration Accuracy by % Indicative Terms Enumeration Accuracy by % Related Terms
90% °
° N
80%
80% 4
. v
70% 1
. 70% v . n
g " g
E £ 6o 1
S 60% 1 R
= =
0% 1 =

® Atlo Ultra ® Ao Ultra
Z 40% 4 ¢ Nest Cam Indoor 2 Nest Cam Indoor ¢
A ¥ Nest Doorbell H ¥ Nest Doorbell
. B Nest Protect 2nd Gen oo B Nest Protect 2nd Gen
30% ® Nest Thermostat 30%1 @ Nest Thermostat
4 Nest Yale Lock 4 Nest Yale Lock
20% 4 Ring Indoor Camera 20% 4 Ring Indoor Camera
. Best Fit Best Fit
0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 0.0% 2.0% 4.0% 6.0% 8.0% 10.0%
Proportion of all Lemmas Proportion of all Lemmas
(a) By proportion of indicative terms (b) By proportion of related terms

Fig. 6. The proportion of corpus terms that are (a) indicative and (b) related correlated
with transducer enumeration rate of ranked KTSM.

tionship follows from that of indicative terms and transducer enumeration rate,
as a higher proportion of related terms in a corpus is likely accompanied by a
lower proportion of indicative terms in the corpus.

Proportion of Incorrect Transducer Matches. To evaluate the tendencies
of our algorithms to incorrectly identify transducers, we also measure the propor-
tion of matched transducers that are not within the ground truth set. In other
words, we measure the rates at which our algorithms enumerate transducers that
are not actually associated with the device.

Figure4b shows the proportion of incorrect matches. The unguided KTSM
approach suffers from the highest proportions of incorrect matches across all
devices, with an average of 36% of all transducer matches for each device.
Unranked KTSM, on the other hand, averages only 3% incorrect transducers,
and ranked KTSM does not incorrectly attribute any transducers to any of the
new evaluated devices.

The advantage that comes from applying ranked KTSM on texts extracted
from vendor materials is the fact that only the indicative terms that are asso-
ciated with certain devices as defined in the ontology are applied for matching.
This ensures that only the most relevant terms with the least ambiguity will
be used to draw conclusions about the device’s transducers. If ranked KTSM
behaves in a way that is too restrictive and fails to enumerate transducers that
unranked or unguided KTSM can enumerate, it may be the case that the term
sets used for matching are not thorough enough, or a sign that the ontology’s
representation of the device in question should be improved.

Proactively Extracting IoT Device Capabilities 59

7 Conclusion and Future Work

With the growing popularity of IoT, the necessity of ensuring its security
becomes important than ever. We proposed a proactive approach to extract
IoT device capabilities from their design specifications to verify their potential
threats even before a device is installed. More specifically, we defined the notion
of device capability in the context of IoT, extracted the transducer information
for each device using vendor-provided design specifications and finally identified
the capabilities of a device.

Our current work relies only on vendor provided materials that are pub-
licly available and may be missing some information. In future, we plan to aug-
ment our approach with information from software specifications, device con-
figurations, and firmware versions. Our future work also includes adapting our
methodology to other IoT applications including smart grid, smart health, and
autonomous vehicle.

Acknowledgement. The authors thank the anonymous reviewers for their comments.
This work was funded in part by NIST under Contract Number 60NANB18D204, by
funds from NSF under Award Number CNS 1650573, CNS 1822118, and funds from
AFRL, SecureNok, Furuno Electric Company, and CableLabs. We would also like to
thank Upakar Paudel for help with code development.

A Study on Vendor materials

Reviewing vendor materials manually is important for understanding any infer-
ences required in drawing conclusions about a device’s transducers and capabil-
ities. The goal of the manual review step is to enumerate the different hardware
components and capabilities of a device for a baseline of ground truth, and also
to enumerate and analyze the inferences and assumptions that are required for
the reader to draw these conclusions. These results are captured and become
the basis for the ontology that will be used as a parameter for the automated
enumeration process.

The process of manually reviewing vendor materials is the same for all
devices. This process involves reading through different documents that are asso-
ciated with each device and interpreting from them the set of transducers (and
capabilities) on the device. During this process, any insights, inferences, or con-
text clues that are used to make this interpretation are also captured. The most
important of these features that are key terms that act as indicators of the pres-
ence of a particular transducer or capability. In some cases, key terms are only
indicative of a transducer or capability when considered in conjunction with
another key term.

For example, during the manual review of the Nest Cam Indoor’s technical
specifications on the Google Nest support forums [10], simple terms such as
“camera” are indicative of the presence of an image sensor. On the other hand,
a term like “video” is more ambiguous, and could refer to the video captured
by the image sensor, or video displayed on some kind of screen. In this case, it

60 A. Dolan et al.

Table 2. Obtained ontology for the Nest Cam Indoor

Category | Transducer | Capabilities

Sensors Image sensor | Capture image, Capture video, Detect light

Microphone | Capture sound

Actuators | Speaker Produce sound
LED light Produce light
Infrared light | Produce infrared light

can be “inferred” that this term refers to an image sensor because of context
clues provided by additional related terms such as “1080p,” which refers to the
resolution of the video captured by the sensor, and “lens,” which refers to the lens
of the camera. On their own, these additional terms do not necessarily suggest
the presence of an image sensor, but they can provide context when considered in
conjunction with other camera-related terms to suggest with higher confidence
the presence of the sensor. The understanding of these terms as context clues
carries an assumed level of prerequisite knowledge of camera-related terminology.
A sample outcome for the Google Nest Cam Indoor is summarized in Table 2.

Warranty 2-year limited warranty >
Operation Ambient temperature:
32°to 104°F (0° to 40°C)

Ambient humidity:
10%-90% RH unpackaged and in use

Ambient pressure:

Up to 10,000 ft altitude
Storage Ambient temperature:

-4"t0 113°F (-20° to 45°C)

Ambient humidity:
Up to 80%RH in packaging

Ambient pressure:
Up to 15,000 ft altitude

Fig. 7. Different sections of the Nest Cam Indoor technical specifications page [10],
where the terms “temperature” and “humidity” can be seen multiple times, but only
in reference to the theoretical temperature range in which the device can regularly
operate and be stored.

The visual cues provided by page structure can also help a reader understand
the context around the terms. For the Nest family of products, it is common for

Proactively Extracting IoT Device Capabilities 61

the term “temperature” to appear on technical specification pages for devices
that have no sensors or actuators related to the measurement or alteration of
any temperature. Instead, these instances of the term are used to describe the
“operating” constraints of the device (the theoretical range of temperature in
which it can operate). The only real indicator of this difference is in the table
layout of the Nest Cam Indoor’s technical specifications page, where a reader
can see by way of the row’s label “operation” that the temperature in this case
refers to the device’s operating temperature and not any sensor. This part of the
page is illustrated in Fig. 7.

Perhaps the most abstract feature that is considered during manual review,
which is largely dependent on the individual reviewer, is the use of technical
background knowledge to infer, from a described concept, how a certain feature
of a device may be implemented. The term “motion detection,” for example,
could indicate the presence of a motion sensor or of software that enables an
image sensor to perform motion detection. Regardless, the ability for the reviewer
to conceive of these possibilities is dependent on their technical background
knowledge.

References

1. Arlo ultra — hd security camera — wireless camera system. https://www.arlo.
com/en-us/products/arlo-ultra/default.aspx

2. Camera API — nest developers. https://developers.nest.com/reference/api-
camera

3. Indoor cam — indoor security cameras — ring. https://shop.ring.com/products/
mini-indoor-security-camera

4. Nest cam indoor - home security camera - google store. https://store.google.com/
us/product /nest_cam

5. Nest cam indoor - installation and tech specs - google store. https://store.google.
com/us/product/nest_cam_specs

6. Nest hello video doorbell - know who’s knocking - google store. https://store.
google.com/us/product/nest_hello_doorbell

7. Nest learning thermostat - installation and tech specs - google store. https://store.
google.com/us/product /nest_learning_thermostat_3rd_gen_specs

8. Nest protect 2ng gen - installation and tech specs - google store. https://store.
google.com/us/product /nest_protect_2nd_gen_specs

9. Nest x yale lock - key-free smart deadbolt - google store. https://store.google.com/
us/product/nest_x_yale_lock

10. Technical specifications for nest cameras and video doorbells - google nest help.
https://support.google.com/googlenest /answer /9259110

11. beautifulsoup: beautifulsoup4 4.8.2. https://pypi.org/project/beautifulsoup4/

12. Bezawada, B., Bachani, M., Peterson, J., Shirazi, H., Ray, 1., Ray, I.: Behavioral
fingerprinting of IoT devices. In: Proceedings of ASHES, pp. 41-50 (2018)

13. Bhatt, S., Patwa, F., Sandhu, R.: An access control framework for cloud-enabled
wearable Internet of Things. In: CIC (2017)

14. Birnbach, S., Eberz, S., Martinovic, I.: Peeves: physical event verification in smart
homes. In: Proceedings of CCS, pp. 1455-1467. ACM (2019)

https://www.arlo.com/en-us/products/arlo-ultra/default.aspx
https://www.arlo.com/en-us/products/arlo-ultra/default.aspx
https://developers.nest.com/reference/api-camera
https://developers.nest.com/reference/api-camera
https://shop.ring.com/products/mini-indoor-security-camera
https://shop.ring.com/products/mini-indoor-security-camera
https://store.google.com/us/product/nest_cam
https://store.google.com/us/product/nest_cam
https://store.google.com/us/product/nest_cam_specs
https://store.google.com/us/product/nest_cam_specs
https://store.google.com/us/product/nest_hello_doorbell
https://store.google.com/us/product/nest_hello_doorbell
https://store.google.com/us/product/nest_learning_thermostat_3rd_gen_specs
https://store.google.com/us/product/nest_learning_thermostat_3rd_gen_specs
https://store.google.com/us/product/nest_protect_2nd_gen_specs
https://store.google.com/us/product/nest_protect_2nd_gen_specs
https://store.google.com/us/product/nest_x_yale_lock
https://store.google.com/us/product/nest_x_yale_lock
https://support.google.com/googlenest/answer/9259110
https://pypi.org/project/beautifulsoup4/

62

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

A. Dolan et al.

Celik, Z.B., McDaniel, P., Tan, G.: SOTERIA: automated IoT safety and security
analysis. In: USENIX ATC (2018)

Celik, Z.B., Tan, G., McDaniel, P.D.: [oTGuard: dynamic enforcement of security
and safety policy in commodity IoT. In: NDSS (2019)

Choi, J., et al.: Detecting and identifying faulty IoT devices in smart home with
context extraction. In: IEEE DSN (2018)

market forecast, S.: Internet of Things (IoT) connected devices installed base world-
wide from 2015 to 2025 (2016). https://www.statista.com/statistics/471264/iot-
number-of-connected-devices-worldwide/

market forecast, S.: Smart home - United States (2019). https://www.statista.com/
outlook/279/109/smart-home/united-states

Jia, Y.J., et al.: ContexloT: towards providing contextual integrity to appified iot
platforms. In: NDSS (2017)

Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Network traffic
classifier with convolutional and recurrent neural networks for Internet of Things.
IEEE Access 5, 18042-18050 (2017)

Marchal, S., Miettinen, M., Nguyen, T.D., Sadeghi, A., Asokan, N.: AuDI: toward
autonomous IoT device-type identification using periodic communication. IEEE J.
Sel. Areas Commun. 37(6), 14021412 (2019)

Miettinen, M., Marchal, S., Hafeez, 1., Asokan, N., Sadeghi, A., Tarkoma, S.: IoT
SENTINEL: automated device-type identification for security enforcement in IoT.
In: Proceedings of ICDCS, pp. 2177-2184, June 2017

OConnor, T., Mohamed, R., Miettinen, M., Enck, W., Reaves, B., Sadeghi, A.R.:
HomeSnitch: behavior transparency and control for smart home IoT devices. In:
Proceedings of WiSec, pp. 128-138 (2019)

Ortiz, J., Crawford, C., Le, F.: DeviceMien: network device behavior modeling for
identifying unknown IoT devices. In: Proceedings of IoTDI, pp. 106—-117. Montreal
(2019)

Requests: Requests: HTTP for humans. https://requests.readthedocs.io/en/
master/

Romaén-Castro, R., Lépez, J., Gritzalis, S.: Evolution and trends in IoT security.
Computer 51(7), 16-25 (2018)

Serror, M., Henze, M., Hack, S., Schuba, M., Wehrle, K.: Towards in-network
security for smart homes. In: ARES (2018)

Shen, V., Siderius, D., Krekelberg, W., Hatch, H.: Considerations for manag-
ing Internet of Things (IoT) cybersecurity and privacy risks. Technical Report,
National Institute of Standards and Technology, June 2019. https://doi.org/10.
6028 /NIST.IR.8228

Singh, V.: Replace or retrieve keywords in documents at scale. ArXiv e-prints
October 2017. http://adsabs.harvard.edu/abs/2017arXiv171100046S, provided by
the SAO/NASA Astrophysics Data System

spaCy: spaCy: Industrial-strength natural language processing in Python. https://
spacy.io/

Tian, Y., et al.: SmartAuth: user-centered authorization for the Internet of Things.
In: USENIX Security (2017)

Wang, Q., Hassan, W.U., Bates, A., Gunter, C.: Fear and logging in the Internet
of Things. In: NDSS (2018)

Yang, L., Seasholtz, C., Luo, B., Li, F.: Hide your hackable smart home from
remote attacks: the multipath onion IoT Gateways. In: ESORICS (2018)

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/outlook/279/109/smart-home/united-states
https://www.statista.com/outlook/279/109/smart-home/united-states
https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/
https://doi.org/10.6028/NIST.IR.8228
https://doi.org/10.6028/NIST.IR.8228
http://arxiv.org/abs/October
http://adsabs.harvard.edu/abs/2017arXiv171100046S
https://spacy.io/
https://spacy.io/

Proactively Extracting IoT Device Capabilities 63

35. Zhang, W., Meng, Y., Liu, Y., Zhang, X., Zhang, Y., Zhu, H.: HoMonit: monitoring
smart home apps from encrypted traffic. In: Proceedings of CCS, pp. 10741088
(2018)

36. Zhang, Y., Chen, J.l.: Modeling virtual channel to enforce runtime properties for
IoT services. In: ICC (2017)

l‘)

Check for
updates

Security Enumerations for Cyber-Physical
Systems

Daniel Schlette®™)@®, Florian Menges®, Thomas Baumer®,
and Giinther Pernul

University of Regensburg, 93053 Regensburg, Germany
{daniel.schlette,florian.menges,thomas.baumer,guenther.pernul }Qur.de

Abstract. Enumerations constitute a pivotal element of Cyber Threat
Intelligence (CTI). References to enumerated artifacts support a univer-
sal understanding and integrate threat information. While traditional
IT systems and vulnerabilities are covered by security enumerations,
this does not apply to Cyber-Physical Systems (CPS). In particular,
complexity and interdependencies of components within these systems
demand for an extension of current enumerations. Taking on a CPS secu-
rity management perspective this work identifies deficiencies within the
Common Platform Enumeration (CPE) and the Common Vulnerabilities
and Exposures (CVE) enumeration. Models for CPS are thus proposed
to cover comprehensiveness and usability. A prototype is used to evaluate
the feasibility by demonstrating key features of security enumerations for
CPS.

1 Motivation

At present we are experiencing an encompassing transition of our daily life and
environment caused by the availability of technology and the efficient processing
of information. Formerly separate domains such as physical processes and IT sys-
tems become interconnected and can now be remotely controlled. The resulting
Cyber-Physical Systems (CPS) allow for exciting new applications. Since this
development is accompanied by a continuous increase in complexity, it is also
an essential factor for the emergence of many vulnerabilities of CPS. Even for
security experts it is a challenging task to keep track of all vulnerabilities that
may cause an issue for their organization and require quick countermeasures.
It is evident that a reduction of the given complexity is necessary to solve
this issue. Security enumerations are suitable to make complexity manageable as
they cover various Cyber Threat Intelligence (CTI) artifacts such as platforms,
vulnerabilities or even natural hazards. In general, they are designed to enhance
the information flow between organizations by setting up a common and usable
reference for considered objects. CTIT makes use of security enumerations not
only to describe cyber attacks but also to share and collaboratively improve
valuable threat information via dedicated platforms and data formats [12,14].

© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

A. Singhal and J. Vaidya (Eds.): DBSec 2020, LNCS 12122, pp. 64-76, 2020.
https://doi.org/10.1007/978-3-030-49669-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49669-2_4&domain=pdf
http://orcid.org/0000-0002-4847-522X
http://orcid.org/0000-0003-3205-2027
http://orcid.org/0000-0003-0157-3057
https://doi.org/10.1007/978-3-030-49669-2_4

Security Enumerations for CPS 65

Two of the most notable enumerations are the Common Vulnerabilities and
Exposures (CVE) enumeration and the Common Platform Enumeration (CPE).
They are, for example, used to describe different properties of the TRITON
malware which we will use in our case study. More specifically, CVE-2018-7522
provides a standardized identifier, an additional description and further refer-
ences about the leveraged TRITON vulnerability found in Cyber-Physical Sys-
tems. Besides, the firmware component “Schneider Electric - Triconex Tricon
MP 3008” affected by the aforementioned CVE entry is encoded as CPE name
cpe:2.8:0:schneider-electric:triconez_tricon-mp_3008_firmware:10.0. This name
covers key characteristics of the platform including vendor, product and version.

While CVE and CPE provide guidance for communicating about vulnera-
bilities and platforms, the US National Vulnerability Database (NVD) goes one
step further. By collecting and linking entries of both security enumerations a
connected CPE and CVE search engine is realized. Ultimately, this search engine
allows to check whether a vulnerability affects a specific device or vice versa.

However, in appreciation for the NVD and its community there are still
improvements targeting complexity as well as the search engine possible. Focus-
ing on CPS, one issue while working with the NVD is the requirement imposed on
the user to know the CPE names of her own assets prior to searching for related
vulnerabilities. The complexity and heterogeneity of CPS make a comprehensive
overview of the deployed components already a challenging task [19,20]. Addi-
tionally, CPS introduce novel components for the enumerations such as Super-
visory Control And Data Acquisition (SCADA) systems, Programmable Logic
Controllers (PLC), actuators and sensors which need to be managed alongside
existing components. Security management of CPS also requires highly specific
knowledge about CPS as well as cyber security which combined may constitute
an obstacle to recognize vulnerabilities and to act quickly according to them.

This culminates in the three following research questions tackled in this paper
addressing the reduction of complexity within security management of CPS:

1. How can the overview of numerous and heterogeneous CPS components in a
given organization be improved?

2. How can novel classes of CPS components be added to CPE?

3. How can usability of CPE and CVE for users without specific domain knowl-
edge be enhanced?

The remainder of this paper proceeds as follows: First a review of background
information on CPS and security enumerations is given in Sect.2. We then
describe our conceptual approach and perform a detailed analysis of CPS char-
acteristics in Sect. 3. Deficiencies found in the two security enumerations CPE
and CVE lead towards extensions proposed in our concept. Our prototypical
implementation is demonstrated based on a use case in Sect.4. Subsequently,
we give an overview on related work in the areas of CPS and enumerations in
Sect. 5 and conclude the paper in Sect. 6.

66 D. Schlette et al.

2 Background

In this section we briefly introduce Cyber-Physical Systems, Common Platform
Enumeration (CPE) as well as Common Vulnerabilities and Exposures (CVE).

2.1 Cyber-Physical Systems (CPS)

Digital transformation has reached areas from industrial production to medical
applications and household sectors. Accordingly, the concept of CPS is applied
to describe the deep integration of physical elements into computing and control
processes of the cyber domain [10]. The cyber domain categorizes traditional
IT, such as servers or workstations, while the physical domain describes physical
entities, such as mechanical or chemical processes and components. CPS also
cover advanced functionalities and scenarios based on spatial proximity, such
as real-time data processing or feedback loops. While these characteristics are
desirable from a functionality perspective they introduce complexity as it is often
the case for highly connected systems containing multiple components [1].

2.2 Common Platform Enumeration (CPE)

In the context of cyber security, enumerations define a naming schema for stan-
dardization purposes. They provide unique names to cyber threat intelligence
(CTI) artifacts and support, for instance, the identification of IT assets, vulner-
abilities, attack patterns as well as quality aspects [21].

The Common Platform Enumeration (CPE) describes IT assets and is main-
tained by the National Institute of Standards and Technology (NIST). It fulfills
two main objectives. First, it allows to assign unique names to classes of applica-
tions, operating systems and hardware devices [3]. Secondly, it provides matching
mechanisms, including details on how to search and compare CPE names [18].

The naming specification includes three distinct naming methods. A given
CPE name is either described as well-formed CPE name (WFN), formatted
string (FS) or Uniform Resource Identifier (URI), allowing to define product
classes [3]. While WEN is an abstract set of attribute-value pairs, both FS and
URI names are machine-readable encodings [3]. Listing 1 shows the structure and
the individual components of a F'S encoding. The values for the listed attributes
are implemented as strings. In case values are unspecified (ANY) or there is no
meaningful value (NA) these are encoded respectively.

CPE:2.3:{PART }:{ VENDOR }: { PRODUCT }: { VERSION }:
{UPDATE }:{ EDITION }:{ LANGUAGE }: { SW_EDITION }:
{TARGET_SW } : { TARGET_HW } : { OTHER }

Listing 1. CPE — FS name structure
CPE is in particular useful to link classes of IT assets to vulnerabilities. It

is easy to infer that based on CPE entries, context relevant threat information
can be retrieved and information security workflows realized. As a result CPE

Security Enumerations for CPS 67

and CVE are oftentimes applied together [23]. Decision making, the creation of
information security policies adapted to the prevalent IT infrastructure and the
configuration of platforms are additional use case scenarios of CPE.

2.3 Common Vulnerabilities and Exposures (CVE)

Enumerations not only focus on platforms found in CPE but also target security
artifacts directly. The Common Vulnerabilities and Exposures (CVE) enumer-
ation describes vulnerabilities that may lead to exploitation of systems or vio-
lations of security policies!. Central element to the CVE enumeration are CVE
entries, which serve as unique, common identifiers for publicly known informa-
tion security vulnerabilities. Essentially, each CVE entry consists of the three
main components: CVE ID, description and references.

However, these only show an excerpt of the CVE data model capabilities. The
CVE automation working group maintains a repository? with the specification
of a CVE JavaScript Object Notation (JSON) schema with additional elements.
Figure 1 provides a simplified overview of the CVE JSON 4.0 data model. The
hierarchy of CVE JSON elements is thereby indicated by different tones of gray.

data_type data format data_version ID
(CVE) (MITRE) (4.0) (CVE-[0-9]{4}-[0-9]{4,})

descrlpt¥0n _I CVE I_ CVE data meta ASSIGNER
(array, min 1) = - (email address)
problemt.ype referenc.es affects STATE
(array, min 1) (array, min 1) (string)

1 1 1

description url vendor product

(array, min 1) ((ftp|http)s?://\\S+) (array, min 1) (array, min 1)

Fig. 1. CVE simplified JSON data schema

The CVE features are integrated in security products based on the CVE data
format. CVE entries are also enhanced by metrics like the Common Vulnerability
Scoring System (CVSS). Linking CVE entries to CPE entries can further be of
value to organizations trying to protect their I'T assets.

3 Conceptual Approach

To introduce essential characteristics of CPS into security enumerations our
work follows a conceptual approach. First, based on formal CPS specifications
we examine common characteristics to derive relevant requirements and deficien-
cies within existing security enumerations. Then, extensions to the data models

! https://cve.mitre.org/about/terminology.html.
2 https://github.com/CVEProject /automation-working-group.

https://cve.mitre.org/about/terminology.html
https://github.com/CVEProject/automation-working-group

68 D. Schlette et al.

of CPE and CVE are proposed. Here, the perspective of a domain expert is
incorporated to put focus on complexity and usability aspects. Finally, the app-
roach is implemented in a prototypical search engine to evaluate the previous
findings.

3.1 Requirements

Our twofold requirements analysis addresses CPS and security issues in CPS as
well as the two security enumerations CPE and CVE in the following.

Assumption 1 (Secure CPS). The security of CPS is a positive property.

Common characteristics of CPS go beyond of traditional IT systems. CPS
leverage reactive computation and concurrency. Feedback control via designated
controllers, real-time computation and utilization in safety-critical scenarios are
part of CPS [1]. The characteristics are realized with sensing, actuating and con-
trol components and lead to interdependencies [19]. However, this opens various
attack vectors. As prior analysis shows, attacks on nuclear facilities and other
critical infrastructures do occur and can have far-reaching consequences [13].

Besides that, most CPS include a multitude of different components like
sensors and actuators on the field level. Additionally, Programmable Logic Con-
trollers (PLC) are included as direct control elements. SCADA systems provide
another control layer. CPS are thus best described as systems of systems.

There are also diverse application areas for CPS, such as energy systems,
healthcare and transportation [9]. While security experts know about the appli-
cation scenarios of CPS, they have much less knowledge about procedures inside
CPS. In consequence, these CPS are black boxes from a security perspective.

CPS security must also consider different attack vectors due to various inter-
faces, operating systems and protocols [11]. Since security assessments and mea-
sures require a thorough understanding, formal attack detection, security testing
and threat modelling [2,6] have received the researchers’ attention. Although,
guidelines and tools for CPS security management exist [22], usability for com-
ponent and vulnerability identification can be improved.

Assumption 2 (Enumerations). Security enumerations support security
management through identification and searchability of artifacts.

In an organizational setting, information security workflows are aligned to
structured data formats. Security management based on CPE is of great impor-
tance in the asset management domain and permits risk analyses. CVE further
allows to pinpoint security flaws and vulnerabilities of managed IT assets.

Mapping CPS characteristics to the data models of CPE and CVE reveals
a number of deficiencies. While there are security products (e.g. NVD) that
combine and link CVE and CPE data there is no properly maintained direct
reference. This generic deficiency is further accompanied by deficiencies broadly
categorized as component-based and system-based.

Security Enumerations for CPS 69

Component-Based Deficiencies: Currently, CPE supports traditional IT
assets but CPS specifics are missing. This is mainly because CPS components
contain specific programming languages or protocols. With a focus on multi-
ple elements contained within CPS the CPE data model also neglects various
technical aspects. The embedded nature of components and their interfaces are
aspects left aside. As these properties implicate possible attack vectors and allow
the identification of CPS, integration into CPE is deemed necessary.

System-Based Deficiencies: From a system perspective CPS represent a
new concept of highly-connected components. Grouping multiple components
described by their CPE names and linking related vulnerabilities is not supported
by CPE and CVE data models. System-based deficiencies are thus related to the
usability of the enumerations by security analysts with minor CPS knowledge.
Combining the assumptions it can be concluded that there is a need to sup-
port a more comprehensive presentation of the CPS, as this is key to enable the
search for vulnerabilities. Our extensions to CPE and CVE aim to foster a better
understanding of CPS and a reduction of complexity. Integrating enumerations
and making security of CPS manageable is a first step towards secure CPS.

3.2 Conceptual Meta Model

Our proposed model is built upon the findings of the requirements phase and
describes a formal structure and relationships between entities of CPE and CVE.
In our enhancements we explicitly take into account compatibility with earlier
versions. To achieve this, new attributes are added while the existing ones remain
unchanged. Following the identified CPS characteristics as well as CPE and CVE
deficiencies we group extensions into four categories. The applied naming con-
vention of these categories documents central features that are addressed by our
proposal. Extensions relating to CPS characteristics missing in CPE are specified
within technically exhaustive security enumerations. Bundling CPS components
leads to recursive security enumerations. Application-oriented security enumera-
tions include extensions with usability focus. Last but not least, coupled security
enumerations address extensions connecting CPE and CVE directly.
Technically exhaustive security enumerations streamline represen-
tation of the various components within CPS. We include new elementary
attributes and change attribute values as shown in Table 1 to provide a detailed
technical description. In this context, the CPS architecture hints at the impor-
tance and embedded nature (inseparable software and hardware) of some CPS
components [11]. Thus, we introduce embedded as a new possible attribute value
that covers components within the part attribute of CPE names. Interdependen-
cies of CPS are targeted by the new attributes protocol and interface added to
CPE as these allow to express means of communication and connection. Appli-
cations used in CPS oftentimes rely on specific programming languages. CPE is
extended by a programming language attribute to cover this CPS property.
Recursive security enumerations address the system of systems concept
which is inherent to CPS. We therefore propose the extension of CPE with an

70

D. Schlette et al.

additional CPS Bundle entity type. As a result, multiple connected components
of a CPS can be referenced within the model and build a self-contained unit.
The attributes of a CPS Bundle reflect the recursive nature of CPS and are
specified as ID, description and references shown in Table1l. Due to the fact,
that CPS are different and contextually dependent we envision a customization
option to describe CPS with a CPS Bundle. It is thus possible to provide a
brief description of a CPS according to a given situation. The purpose of the
description attribute is to facilitate a first understanding of these systems on a
higher level of abstraction. Also, recursive reference to another CPS Bundle in
the references attribute is possible and supports hierarchical structuring.

Table 1. Conceptual meta model entity extensions

Attribute |Description Examples
part The part attribute shall have a new value: “e” |e
- embedded component
sector The sector attribute should capture areas|energy; healthcare;
- where systems are typically deployed transportation
'é capability The capability attribute should capture phys-|pressure; viscosity;
g ical functionalities acceleration
%
E protocol The protocol attribute should capture means|Profinet; OPC-UA;
o of communication DNP3; Modbus; 1P
O
programming |The programming language attribute should|Ladder Diagram; C;
language capture notations for computer programs Java; Instruction List
interface The interface attribute should capture means|USB; PCI; SCSI;
of connection SATA; RJ-45
Attribute |Description
% 1D The ID attribute should capture unique IDs for a CPS bundle
é description |The description attribute should capture essential CPS information
E references The reference attribute should capture CPE names of the CPS com-
O ponents and different CPS bundle IDs
|CVE_ID The CVE_ID attribute should capture assigned CVE IDs
e
<
A |description | The description attribute should capture vulnerability information
=
% references The references attribute should capture external data sources de-
scribing the given vulnerability as well as CPE name representations

Application-oriented security enumerations include requirements
imposed by security experts without detailed knowledge about CPS. Exten-
sions to CPE with focus on application areas of CPS are aimed to make their
security manageable regardless of technical background. Our approach captures

Security Enumerations for CPS 71

usability from a security management perspective through the new sector and
capability attributes shown in Table 1. We thereby assume that some knowledge
about CPS in the form of capabilities or application area is present at all times.
Coupled security enumerations introduce a closer tie between CVE and
CPE. Focusing on the JSON data schema for CVE we propose an extension for
the attribute values captured with the references attribute. Besides references to
external data sources documenting the vulnerability, the references attribute is
able to capture CPE names shown in Table 1. In consequence, CVE and CPE are
coupled and vulnerabilities affecting a given CPS can be retrieved more easily.
The meta model for our CPS security enumerations search engine is shown
in Fig. 2. First, to cover coupled security enumerations multiple vulnerabilities
(CVE) can be associated with an IT asset (CPE). In addition, Fig.2 describes
recursive security enumerations as CPE entities can be part of an individual

CPS Bundle entity. Any CPS bundle can also contain other CPS bundles.

(0,1

Fig. 2. Meta model of CPS security enumerations search engine

At last, note that migration of data previously described with either CPE or
CVE and integration with our model is feasible. Also, CPE entries do not need
to contain values for all (new) attributes. Our model is explicitly designed to
capture CPS, as these are currently neglected by security enumerations.

4 Use Case

In this section we outline a use case to evaluate our concept. A CPS security
enumerations search engine analogous to the generic NVD is central to secu-
rity management in an organizational setting. Related security processes and
common associations are schematically depicted in Fig.3. In general, a secu-
rity enumerations search engine proves viable by allowing vulnerabilities and
IT assets to be identified and eventually patched. The reduction of complexity
and improved usability for security management experts without detailed CPS
knowledge is the aim of our concept and prototype. Ultimately, if fulfilled this
can lead to a better security posture. In the following, the applied technology of
our CPS security enumerations search engine and a case study are presented.

72 D. Schlette et al.

uses ﬁnds I

I I p Sensor Server

% Security Search Engine 2 I
Management Organization I -

r ﬁ . PLC |

associated with uses e e e — =

Fig. 3. Simplified use case for a CPS security enumerations search engine

4.1 Case Study

To demonstrate our concept we refer to the TRITON malware used for attacks
on oil and gas production facilities in 2017. The malware manipulates Safety
Instrumented Systems (SIS) that aim to prevent incidents causing severe damage
to assets, environment or even humans. Instead of extreme and uncontrollable
events, SIS initiate a safe shut down of industrial processes as a last line of
automated defence [5]. Since the attackers behind TRITON were able to interact
with SIS controllers, there was a risk of unforeseeable disasters, which the SIS
was supposed to prevent. Although, TRITON has not yet destroyed physical
assets, it has halted production causing financial losses.

Considering the enumerations CPE and CVE, two aspects of the TRITON
malware are of relevance. First, it concerns both hardware and operating sys-
tems in multiple versions. A standardized description with CPE names is thus
an necessity to avoid miscommunication. Despite of its significance for indus-
trial facilities, relevant elements of the TRITON attacks are not yet properly
described by CPE and CVE. While NVD lists related CVE entries and men-
tions affected components®, CPE names cannot be found in the dictionary.

In our concept for CPS security enumerations we provide relevant extensions
to improve the representation of e.g. cyber attacks using the TRITON malware.
We allow the grouping of multiple CPS components within a CPS Bundle as
our concept includes recursive security enumerations. Despite the fact, that the
malware itself mainly targets the “Triconex Tricon MP 3008” controller and
its firmware, other CPS components are also affected. To conduct their attack,
the attackers leveraged further vulnerabilities of networks, operating systems
and workstations prior to infecting the SIS. A comprehensive representation
capturing these additional elements is supported by the CPS Bundle and part
of the recursive security enumerations we designed. Table 2 shows an exemplary
Petrochemical CPS Bundle related to TRITON with multiple components.

An extension to CPE names addressing technical details of CPS components
is part of our concept. We propose technical exhaustive security enumerations
that cover the “NCM” network modules of hardware affected by the TRITON
malware. Listing2 shows an exemplary CPE name adhering to the extended
model. Furthermore, our model can recognize embedded components like SIS.

3 https://nvd.nist.gov/vuln/detail/ CVE-2018-7522.

https://nvd.nist.gov/vuln/detail/CVE-2018-7522

Security Enumerations for CPS 73

Table 2. Exemplary CPS composed of multiple components

ID |Description References (abbreviated)

1 |Petrochemical CPS: cpe:2.3:h:schneider-electric:triconex_
Interconnected components tricon mp 3008 [...];
deployed in an industrial setting |cpe:2.3:e:weatherford:maximizer [...];
to refine oil and gas [...]

cpe:2.3:h:schneider-electric:triconex_tricon_mp_3008:*:*:k:k:xik:%:%
:0il_Gas_Production:Safety_Instrument:*:*:NCM

Listing 2. Exemplary extended CPE name

Application oriented security enumerations ensure complexity reduction and
usability through CPS properties known to security experts without detailed
CPS knowledge. This is achieved by capturing the “oil and gas production” sec-
tor as well as “safety instrument” capabilities within a CPE name as shown in
Listing 2. These rather generic CPS properties lead to further described infor-
mation about an entire petrochemical CPS and potential vulnerabilities.

When CPE and CVE are not properly linked it is an impediment for usabil-
ity and effective security workflows. Integration of both security enumerations
is the focal point of coupled security enumerations. Within our CPS security
enumerations search engine we provide the option to relate entries of CPE and
CVE. E.g., the missing link between the “Triconex Tricon MP 3008” firmware
and CVE-2018-7522 is established and persisted in the database.

4.2 Prototypical Implementation

In order to demonstrate the practical applicability of our concept, we have imple-
mented a prototypical CPS search engine for our enumeration concept. The
source code of the prototype is available online*. It consists of two main compo-
nents. The conceptual model is implemented using a MySQL database and the
application was created with JavaEE 6. The database contains CPE, CVE and
CPS Bundle as central entity tables. The references within the database and the
functional scope of the application are based on the NVD and extend it to the
components presented in this work. As this is a prototype application, additional
tools are available for editing the data inventory and creating new CPE, CVE
and CPS Bundle objects. The application also offers functionalities to search
for CPE and CVE entries and to display the available links between them. The
search for CPS bundles also displays the relationships within the bundles.

The data building the basis for our prototypical implementation reflects the
state of CPE and CVE from February 2020. In addition, we provide two small
sample CPS containing multiple components as exemplary data for CPS bundles.

4 https://github.com/tarnschaf/cyberphysical.

https://github.com/tarnschaf/cyberphysical

74 D. Schlette et al.

5 Related Work

Information security and CTI [8,12,14] use security enumerations to describe
relevant artifacts [15,25]. To the best of our knowledge, there is no academic
literature on extending security enumerations although security enumerations
evolved and raised their version numbers. It is therefore reasonable to assume,
that extensions to security enumerations are driven by dedicated communities.

A multitude of work focuses on CPS due to their prominent role in critical
infrastructures [1,10]. Related work on security of CPS approached the topic
through the Internet of Things [20]. From there on, the various different areas of
security are applied to CPS research. While a number of surveys and overview
articles aim to cover CPS security at large [7], attack detection [16], vulnerability
analysis [4,24] and formal approaches [6,26] are extensively considered.

Work about both, security enumerations and CPS, is rare. Closest to our
research is the work by Upadhyay and Sampalli [24]. It discusses vulnerabilities
within SCADA systems, highlighting the necessity of awareness about vulnera-
bilities within SCADA software and protocols. Here, a strong focus is placed on a
review of existing vulnerabilities partially described by CVE. Similar, Nicholson
et al. [17] point to unpatched software as a major flaw in SCADA systems.

Maidl et al. [11] provide interesting research results by defining a pattern
to structure CPS and classifying the individual components. In addition, the
authors outline security considerations about attack vectors for these systems.

McLaughlin et al. [13] present a methodology for security assessment of indus-
trial control systems. They are characterizing parts and features of these systems
as a starting point for a more comprehensive description with security enumera-
tions. In a more general perspective Takahashi et al. [23] show the use of security
enumerations for security management.

6 Conclusion and Future Work

With our work we aim to make security of CPS more accessible for security
experts. Our analysis showed that CPS and their interdependent components are
not yet completely covered by security enumerations. To remediate the identified
deficiencies, we propose an extension of CPE and CVE enabling a comprehensive
description of CPS. Effective security management also relies on the integration
of data from CPE and CVE to attribute vulnerabilities to the affected IT assets.

The meta model we propose extends the security enumerations and provides
an overview of the numerous and heterogenecous CPS components. Our search
engine realizes the adaptation of CPS to a organization setting and addresses
the 15t research question outlined in Sect.1 of this paper. Our work extends
the CPE data model with technical features to capture the embedded nature
of CPS components. This allows us to address the 2°¢ research question.
Comprehensiveness and usability aspects relevant for security management are
incorporated in our extended CPE. To respond to the 3¢ research question
we introduce sector and capability attributes lowering entry knowledge to CPS.
The concept is evaluated through a prototype using TRITON as use case.

Security Enumerations for CPS 75

Although, our work’s results are a first step towards security enumerations
for CPS several topics demanding further research remain.

First, future work should address the alignment with other standardization
efforts and products. While we propose a concept for a CPS security enumer-
ations search engine the usage may be within existing products such as NVD.
Other standards for IT asset identification and their integration or conversion
to CPE should also be considered. Moreover, management processes related to
an IT asset inventory and vulnerabilities will be future points of reference.

Second, further extensions to our proposed meta model might become nec-
essary due to additional user requirements and CPS development. It will be
favourable to conduct a user study to determine precise requirements of secu-
rity management experts beyond the ones described in academic literature. The
results can then be used to trigger further improvements and might either culmi-
nate in a stand-alone security product or lead towards additional modifications.

A third topic of interest is the collection of data for CPS Bundles. Gathering
and maintaining the data can include vendors and operators of CPS. The model
can also be complemented by predefined vocabularies for specific attributes to
avoid ambiguity and ease usability.

References

1. Alur, R.: Principles of Cyber-Physical Systems. The MIT Press, Cambridge (2015)
2. Caselli, M., Kargl, F.: A security assessment methodology for critical infrastruc-
tures. In: Panayiotou, C.G.G., Ellinas, G., Kyriakides, E., Polycarpou, M.M.M.
(eds.) CRITIS 2014. LNCS, vol. 8985, pp. 332-343. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31664-2_34
3. Cheikes, B.A., Waltermire, D., Scarfone, K.: Common Platform Enumeration:
Naming Specification Version 2.3. NIST, Maryland, USA (2011)
4. Coffey, K., Smith, R., Maglaras, L., Janicke, H.: Vulnerability analysis of network
scanning on SCADA systems. Secur. Commun. Netw. 2018, 1-21 (2018)
5. Di Pinto, A.A., Dragoni, Y., Carcano, A.: TRITON: the first ICS cyber attack on
safety instrument systems. In: Proceedings of the Black Hat USA, pp. 1-26 (2018)
6. Fernandez, E.B.: Threat modeling in cyber-physical systems. In: 2016 IEEE 14th
International Conference on Dependable, Autonomic and Secure Computing, pp.
448-453 (2016)
7. Humayed, A., Lin, J., Li, F., Luo, B.: Cyber-physical systems security—a survey.
IEEE Internet of Things J. 4(6), 1802-1831 (2017)
8. Kampanakis, P.: Security automation and threat information-sharing options.
IEEE Secur. Priv. 12(5), 42-51 (2014)
9. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical
systems: a survey. IEEE Syst. J. 9(2), 350-365 (2014)
10. Lee, E.A.: Cyber-physical systems-are computing foundations adequate. In: Posi-
tion Paper for NSF Workshop on Cyber-Physical Systems, vol. 2, pp. 1-9 (2006)
11. Maidl, M., Wirtz, R., Zhao, T., Heisel, M., Wagner, M.: Pattern-based modeling of
cyber-physical systems for analyzing security. In: Proceedings of the 24th European
Conference on Pattern Languages of Programs, pp. 1-10 (2019)

https://doi.org/10.1007/978-3-319-31664-2_34

76

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

D. Schlette et al.

Mavroeidis, V., Bromander, S.: Cyber threat intelligence model: an evaluation of
taxonomies, sharing standards, and ontologies within cyber threat intelligence.
In: European Intelligence and Security Informatics Conference (EISIC), pp. 91-98
(2017)

McLaughlin, S., et al.: The cybersecurity landscape in industrial control systems.
Proc. IEEE 104(5), 1039-1057 (2016)

Menges, F., Pernul, G.: A comparative analysis of incident reporting formats. Com-
put. Secur. 73, 87-101 (2018)

Menges, F., Sperl, C., Pernul, G.: Unifying cyber threat intelligence. In: Gritzalis,
S., Weippl, E.R., Katsikas, S.K., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.)
TrustBus 2019. LNCS, vol. 11711, pp. 161-175. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-27813-7_11

Mitchell, R., Chen, I.LR.: A survey of intrusion detection techniques for cyber-
physical systems. ACM Comput. Surv. 46(4), 1-29 (2014)

Nicholson, A., Webber, S., Dyer, S., Patel, T., Janicke, H.: Scada security in the
light of cyber-warfare. Comput. Secur. 31(4), 418-436 (2012)

Parmelee, M.C., Booth, H., Waltermire, D., Scarfone, K.: Common Platform Enu-
meration: Name Matching Specification Version 2.3. NIST, Maryland, USA (2011)
Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identifying, understanding, and ana-
lyzing critical infrastructure interdependencies. IEEE Control Syst. 21(6), 11-25
(2001)

Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and
privacy in distributed internet of things. Comput. Netw. 57(10), 2266-2279 (2013)
Schlette, D., Bohm, F., Caselli, M., Giinther, P.: Measuring and visualizing cyber-
threat intelligence quality. Int. J. Inf. Secur. 19(2), 1-18 (2020)

Stouffer, K., Falco, J., Scarfone, K.: Guide to industrial control systems (ICS)
security. NIST Spec. Publ. 800(82), 16 (2014)

Takahashi, T., Miyamoto, D., Nakao, K.: Toward automated vulnerability mon-
itoring using open information and standardized tools. In: 2016 IEEE Interna-
tional Conference on Pervasive Computer and Communications Workshops (Per-
Com Workshops). IEEE (2016)

Upadhyay, D., Sampalli, S.: SCADA (supervisory control and data acquisition)
systems: vulnerability assessment and security recommendations. Comput. Secur.
89, 101666 (2020)

Vielberth, M.: Human-as-a-security-sensor for harvesting threat intelligence.
Cybersecurity 2(1), 1-15 (2019). https://doi.org/10.1186/s42400-019-0040-0
Yampolskiy, M., Horvédth, P., Koutsoukos, X.D., Xue, Y., Sztipanovits, J.: A lan-
guage for describing attacks on cyber-physical systems. Int. J. Crit. Infrastruct.
Prot. 8, 40-52 (2015)

https://doi.org/10.1007/978-3-030-27813-7_11
https://doi.org/10.1007/978-3-030-27813-7_11
https://doi.org/10.1186/s42400-019-0040-0

Information Flow and Access Control

®

Check for
updates

Inference-Proof Monotonic Query
Evaluation and View Generation
Reconsidered

Joachim Biskup®

Fakultét fiir Informatik, Technische Universitdt Dortmund, Dortmund, Germany
joachim.biskup@cs.tu-dortmund.de

Abstract. The concept of inference-proofness has been introduced
for capturing strong confidentiality requirements—including privacy
concerns—of an information owner, communicating with a semi-honest
partner by means of their message exchanging computing agents accord-
ing to some agreed interaction protocols. Such protocols include closed-
query evaluation and view generation by the information system agent
under the control of the information owner, and the corresponding
request preparation by the client agent. The information owner employs
a security mechanism for controlled interactions, shielding the epistemic
state of the information system agent and suitably altering messages sent
to the client agent. The alterings provably guarantee that the partner
cannot infer the validity of any piece of information that the information
owner has declared as being prohibited. Based on selected previous work,
we carefully describe and inspect the underlying function and attack sce-
nario and summarize and analyze basic approaches for controlled inter-
actions within an abstract framework for epistemic states.

Keywords: Abstract data source - A priori knowledge - Best current
view - Closed-query evaluation - Confidentiality + Epistemic state -
Inference-proofness - Interaction protocol - Lying * Prohibition -
Security invariant - Simulated current view - View generation

1 Introduction

High level security requirements like availability, integrity and confidentiality
have been refined in sophisticated guidelines for constructing and evaluating
secure computing systems of various kinds and, correspondingly, a rich variety
of specific security mechanisms have been developed. Accordingly, for each con-
crete class of applications, in the spirit of computing engineering in general, a
comprehensive range of considerations is due, from a precise specification of the
wanted system functionality and the explicit description of the in most cases con-
flicting security interests of the expected user as well as of further “attackers”
over mathematical models and their formal verification to final actual implemen-
tations and their ongoing multi-literal inspections.

© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

A. Singhal and J. Vaidya (Eds.): DBSec 2020, LNCS 12122, pp. 79-99, 2020.
https://doi.org/10.1007/978-3-030-49669-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49669-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-49669-2_5

80 J. Biskup

This work is devoted to contribute to such a comprehensive view of security
by reconsidering a specific kind of security mechanisms proposed to support the
confidentiality interests as exceptions of the availability interests of an informa-
tion owner while using an information system for query evaluation and view
generation to communicate with some cooperation partner. Clearly, within this
short article we again have to focus on aspects held to be particularly important,
including the followings ones. What precisely is the object of protection? Who
precisely is seen as an attacker and which precise means are exploited by him
for violations? How to formally model the wanted kind of confidentiality? What
kind of enforcing security mechanisms have been designed? How to mathemat-
ically verify their actual achievements? More concretely, we treat these concern
by reconsidering a specific fraction of the in the meantime highly ramified line of
research about confidentiality-preserving query-response interactions of a logic-
oriented information system like a suitably restricted relational database system.

Even more specifically, our contributions can be summarized as follows, while
the overall achievements and limitations are discussed in the conclusions:

— On the layer of social cooperation mediated by computing agents, in Sect. 2,
we identify the “epistemic state of an information system agent” as the actual
object in need of protection against a class of most powerful attackers.

— On the layer of computing agents, in Sect. 3, we further elaborate a formal
model of abstract data sources, which captures the relevant features of mono-
tonic and complete information systems.

— On the layer of security specification, in Sect. 4, we adapt inference-proofness
as strong confidentiality to the model of abstract data sources.

— On the layer of security enforcement, in Sect. 5, we present unified expositions
and verification of security mechanisms in terms of that model.

These contributions are—unifying and partly extending—extracted from the
seminal work [7,13] and further specific refinements [2—6], which are part of larger
efforts [1]. Moreover, we note that our treatment of confidentiality is in the spirit
of various other work, e.g., already early ones on statistical database security [§]
and about non-interference of general program execution [9], together with the
rich elaborations of follow-up studies, which for example are concisely surveyed
in [10]. In contrast to some other work, we do not aim at “total confidentiality”
but see confidentiality as an exception from availability and, thus, allow specif-
ically declared information flows like for declassification [11] and, additionally,
we want to construct enforcing mechanism in the sense of [12].

2 Function and Attack Scenario

Since ever, among many other activities, and in a closely intertwined manner,
people reason as individuals by acquiring, structuring, keeping and exploiting
information to make up their respective minds and behave as social creatures by
communicating with others. With the advent of computing technologies, both
individually dealing with information and socially communicating have been

Inference-Proof Monotonic Query Evaluation 81

partly delegated to computing agents. On the one hand, the delegation should
facilitate routine task or even enhance human capabilities. On the other hand,
depending on the context, as delegators, individuals at their discretion or groups
of them according to some socially accepted norm aim to still control the com-
puting agents executing protocols as their delegatees, or at least the human
delegators should appropriately configure the computing delegatees.

Being aware of the resulting reduction, we can simplifying map concepts of
human reasoning and communication to the inference protocols and interaction
protocols of their computing agents and, correspondingly, actually performed
human activities to protocol-complying computing process executions. Under
such a reduction, and even more simplifying, a group of human individuals is
modeled to be complemented by a multi-agent computing configuration. In this
model, each human individual controls a dedicated computing agent that, at
least partly and by means of protocol executions, both deals with the information
owned by that individual, in particular by internally deriving an epistemic state
from a chosen information representation, and mediates the communications of
that individual, in particular by sending and receiving messages according to
one or more agreed interaction protocols.

Though, in principle, each individual can act in diverse roles and, corre-
spondingly, each controlled computing agent can execute diverse protocols, we
further specialize the model sketched above in focusing on only two individuals
with their computing agents. One individual is seen as an information owner
controlling an information system agent, and the other individual is treated as
a cooperating communication partner employing a client agent. Moreover, to
enable cooperation, in principle the information owner is willing to share infor-
mation with the communication partner. However, complying with privacy issues
or pursuing other confidentiality requirements, as an exception from sharing, the
information owner might want to hide some specific pieces of information.

Summarizing the simplified model, we assume an overall framework with the
eight features outlined in the following and visualized in Fig. 1.

1. [Epistemic state of information system agent as single object of protection.|
The human information owner does not deal with information processing and
reasoning by himself but only provides the inputs to the information system
agent under his control. At each point in time, that agent is internally deriving
a formally defined epistemic state.

2. [Mediation of human communications by interacting computing agents.|
Once having agreed on cooperation, the human information owner and his
human communication partner do not communicate directly with each other,
but only mediated by the computing agents under their respective control.

3. [Dedicated access permissions for information sharing.]

As a normally initial input to his information system agent, independently
of the actual epistemic state, the information owner has granted dedicated
access permissions to his communication partner. That permissions declare
that over the time the client agent of the partner may interact with the infor-
mation system agent of the owner following some explicitly chosen interaction

82 J. Biskup

information owner communication partner
as defender as semi-honest attacker

- = =~ unlimited reasoning

’) . %

N , about the defender's

N, £ epistemic state

inputs for mediation mediation mtemc(zve
inferences reasoning
no direct
: communication
inference agreed security agreed a priori
rotocol interaction i X . i i .,
p ! mecl}amsm, sending and receiving interaction| |and
protocol altering P protocol background
l - L4
based on of messages knowledge
attacker simulation:
(derived) dedicated X unlimited computalm.na]
internal access - 11{11 awareness ressources fO‘l 1cas?mng
epistemic permissions of history ab9tlll th_e c{ftender s
state: o epistemic state
with - assumed a priori
valid knowledge
pieces of prohibition
information| | declaration - postulated
background
knowledge
information system agent client agent

Fig. 1. The framework of a defending information owner with his information system
agent and an attacking communication partner with his client agent

protocols that exclusively refer to the internal epistemic state of the informa-
tion system agent (but, e.g., not to the physical mind of the information
owner or any “real world” besides the multi-agent model).

4. [Exceptions by explicit prohibitions designating pieces of information.]
However, as a further normally initial input to his information system agent,
also independently of the actual epistemic state, the information owner explic-
itly declares exceptions from the dedicated access permissions in the form of
prohibitions. Each prohibition specifies a piece of information that the com-
munication partner should not be able to learn. More precisely, each pro-
hibition being expressed in terms of the information system agent and thus
referring to possible epistemic states, the communication partner should never
be able to become sure about the actual validity in the epistemic state of the
information system agent. In other words, from the partner’s point of view it
should always appear to be possible that the prohibited piece of information
is not valid in the epistemic state of the information system.

5. [Partner suspected to reason about validity of prohibitions.]

Though the client agent is restricted to exactly follow the interaction proto-
cols mentioned in the dedicated access permissions, the human communica-
tion partner can choose any sequence of permitted commands. Moreover, the
communication partner is assumed to have unlimited computational resources
when rationally reasoning about the validity or non-validity of a prohibited
piece of information, whether employing the client agent under his control or
any other means.

Inference-Proof Monotonic Query Evaluation 83

6. [Security mechanism implanted in owner’s information system agent.]

To enforce the confidentiality requirements of the information owner, the
information system agent is enhanced by some security mechanism that
should shield the underlying information processing from a direct contact
with the client agent. That security mechanism first inspects each message to
be sent by the information system agent to the client agent according to the
pertinent interaction protocol whether a violation of the information owner’s
confidentiality requirements would be enabled on the side of the communi-
cation partner. If this is the case, the security mechanism then alters the
message such that the message is still as informative as possible on the one
hand but all options for a violation are blocked on the other hand.

7. [Reasoning supported by a priori knowledge and background knowledge.]
First of all, the communication partner’s rational reasoning about the inter-
nal epistemic state of the information system agent is based on the messages
exchanged by the respective computing agents and, thus, completely known
to both agents. Additionally, the partner’s rational reasoning is presumed to
be supported by some a priori knowledge about the application dealt with
in the cooperation between the two individuals involved and additional back-
ground knowledge comprising both a complete specification of the interaction
semantics and the full awareness of the security mechanism (possibly even
including the prohibition declaration) and, most notably, nothing else.

8. [Principle inaccessibility of the partner.]

The internals of both the human communication partner and his client agent
are considered to be principally inaccessible for the information owner and
his system agent. This implies that the latter ones can only rely on assump-
tions about the details of the a priori knowledge and a postulation about the
background knowledge available to the former ones.

We follow a somehow martial but common terminology of security in computing,
which ignores that in many scenarios an individual involved as communication
partner will primarily treated as cooperating in a friendly manner.

— Partially trusted for consciously sharing information in principle and correctly
executing the agreed interaction protocols, the communication partner with
the client agent is denoted as a semi-honest attacker, suspected to potentially
aiming to maliciously infer the actual validity of pieces of information that
the information owner has declared to be kept confidential.

— Accordingly, the information owner—together with the information system
agent controlled by him—is denoted as the defender.

The security mechanism implanted in the defending information system agent
has to invariantly enforce a suitable version of the following still informally
expressed security policy of inference-proofness, which also specifies the attacker
model: For each prohibited piece of information), the information content
of messages sent to the attacking client agent will never enable the attacking
receiver to rationally infer that v is valid in the epistemic state, even when

84 J. Biskup

— inspecting the complete history of preceding interactions,

— considering some a priori knowledge about the possible epistemic states,

— applying the semantics of the agreed interaction protocols and

— being aware of the functionality of the security mechanism (possibly even
including the prohibition declaration).

The concept of rationality on the side of the attacker is then captured by
the following rephrasement of the still to be suitably versioned security policy
of inference-proofness in terms of indistinguishability:

For each prohibited piece of information), for each epistemic state d
satisfying the a priori knowledge, for each sequence of messages exchanged
during an interaction history and complying with the agreed interaction
protocols but potentially altered by the security mechanism, there exists
an “alternative” epistemic state d’ such that (i) the same sequence of
messages would be generated, in compliance with the agreed interaction
protocols and subjected to the alterations by the security mechanism, but
(ii) % is not valid in d’.

The epistemic state d is thought as actually be derived (or “stored”) by the
information system agent and might satisfy the prohibited piece of information
1 or not. The former case implies that the alternative state d’ required to exist is
different from d; in the latter case, the actually stored state d and the alternative
state d’ might be the same. Accordingly, declaring v as a prohibition does not
intent to block any option to infer the non-validity of .

Confidentiality as inference-proofness could be trivially achieved by granting
no access permissions at all or altering the information content of all messages
sent to the attacker to nothing, violating any conflicting availability requirements
and, thus, making the whole thing useless. Accordingly, confidentiality require-
ments and availability requirements always have to be suitably balanced. We
focus on the following three-level conflict resolution strategy, which leads to a
combination of a constraint solving problem and an optimization problem:

1. As a general rule, for the sake of availability, some dedicated access permis-
sions are granted, as far as not conflicting with level 2 of the strategy.

2. As exceptions, for the sake of confidentiality specific prohibitions are declared
that have to be enforced by alterations made by the security mechanism, but
to comply with level 3 of the strategy only as far as definitely necessary.

3. Again for the sake of awailability, as limitation for the effect of exceptions,
the alterations made have to be minimal.

3 Abstract Data Sources as Epistemic States

The notion of an abstract information system is intended to capture common
important features of information contents like at least semi-structured and logic-
oriented knowledge bases, including relational databases under suitable restric-
tions, and as far as they are complete regarding query answering under mono-
tonic reasoning. A possibly occurring information content of such an abstract

Inference-Proof Monotonic Query Evaluation 85

information system is seen as an epistemic state, though it is formally just an
element of a pertinent finite or countably infinite set. We call such an element
an “abstract data source”, not assuming any internal properties.

However, we impose a set-algebraic structure with natural properties on the
considered universe of all abstract data sources. These properties should reflect
the model-theoretic approach of various monotonic logics to define semantics for
the underlying syntax of a formal language by assigning truth-values to atomic
sentences and then, by induction, to all sentences. In fact, if on the syntactic side
the language provides means to express negation, conjunction and disjunction,
then on the semantic side the corresponding sets of satisfying truth-value assign-
ments (models, interpretations) are treated by (set) complement, (set) intersec-
tion and (set) union, respectively. So, using sentences to syntactically express
closed queries whose semantics are the respective sets of satisfying truth-value
assignments, we may identify a syntactic query expression with its semantic eval-
uation. Accordingly, totally refraining from any syntax for abstract information
systems, we define queries as a particular sort of subsets of the universe.

For the case of an infinite universe with countably infinitely many queries,
to deal with iteratively determined fixpoints, we even consider countably infinite
intersections which, however, do not need to generate a query. Instead, we require
compactness of the set of queries, which captures a straightforward corollary to
the existence of a correct and complete proof system for classical first-order
logic, roughly saying that any (possibly infinite) logical entailment implies a
finite entailment (since formal proofs are finite by definition). Note that for the
finite case this property trivially holds.

A (set) inclusion of the form ¢; € g2 corresponds to a logical entailment in
the logics that motivated our abstract settings. In fact, thinking of ¢; and ¢o
as the satisfying sets of truth-value assignments for some sentences y; and ya,
respectively, then ¢ S g2 says that each truth-value assignment that makes x1
true also does so for yo; this is just the classical definition of logical entailment.

Definition 1 (abstract data sources and closed queries).
A universe of data sources is a (finite or infinite) set U.
A query set @ for a universe U satisfies the following properties:

1. {o,U} € Q € pU with Q being finite or countably infinite;
2. @ is closed under complement, finite intersection and finite union;
3. @ is compact, i.e., for all Q' < Q, for all g € Q,

if Q" <€ q, then there exists a finite Q" < Q' such that [Q" < q.

Moreover, Seq(Q) is the set of all (possibly) infinite sequences of queries and
Int(Q) is the set of all (possibly) infinite intersections of queries.

Following the explanations and the common intuitive understanding, query
evaluation could be defined for a query ¢ € @ and a data source d € U by the
expression IF d € ¢ THEN true ELSE [IF d € U \ ¢| false. However, for our formal
investigations the following equivalent definition is more convenient.

86 J. Biskup

Definition 2 (abstract (stepwise) query evaluation). Let @ be a query
set for a universe U. Then the query evaluation function is defined by

quer : @ x U — @ with quer(q,d) = IFde€ qTHEN ¢ ELSE U \¢q. (1)
The stepwise extension quer : Seq(Q) x U — Seq(Q) is defined by

quer({q1, 4o, - ..),d) = (quer(q1,d), quer(gz,d), ...). (2)

Equation (1) immediately implies that for all data sources d € U and d’ € U,
for all queries ¢ € @ and ¢ € @ the following assertions hold:

d € quer(q,d), 3)
d" € quer(q,d) iff quer(q,d’) = quer(q,d), (4)
if deq and d' € q ,then q < quer(q,d) iff ¢ < quer(q,d). (5)

Besides being an element of the universe, the properties of a data source d € U
are only determined by its query evaluations. In particular, two data sources
are indistinguishable if they are contained in exactly the same queries. Hence,
imagining an enumeration ¢, gs, ..., of all queries in), we can characterize a
data source d as being in the intersection of its query evaluations. In this sense,
the best view of d “from outside” is just this intersection, which always includes
d itself but might also contain many further “indistinguishable” data sources. If
the best view of d is a singleton, then it represents complete knowledge of d.

Definition 3 (abstract best view generation). Let Q be a query set for a
universe U. Then the view generation function is defined by

view : U — Int(Q) with view(d) = ﬂ quer(q,d). (6)
qeQ

4 Inference-Proofness for Known Prohibition Declaration

As explained and motivated in Sect. 2 we imagine an owner of the abstract infor-
mation system who implants a security mechanism into the defending informa-
tion system agent under his control, aiming to enforce inference-proofness of
interactions as a sophisticated kind of confidentiality regarding the message-
based interactions with an attacking client agent operated by some only semi-
honest communication partner. We study two interactions:

— closed-query evaluation with response preparation: we see the queries as
request messages sent from the attacking client agent and the correspond-
ing responses as reaction messages returned by the defending system agent;

— wiew generation: we image a (formally not represented) request message from
the attacking client agent to obtain a best view and we see the generation
result as the respond message returned by the defending system agent.

Inference-Proof Monotonic Query Evaluation 87

Besides the request messages and the respond messages, the formal notions
of inference-proofness depend on two further parameters, to be declared by the
information system owner specifically for the attacking client agent: (i) a set
of prohibitions, i.e., pieces of information that the rationally reasoning attacker
should not be able to learn; (ii) the a priori knowledge held by the attacker
about the actually stored abstract data source, as assumed by the defender. The
attacker is also implicitly postulated to be fully aware of the security mech-
anism employed by the defender and to even know the declared prohibitions.
The notion of the attacker’s rationality is implicitly related to the semantics of
query evaluation and view generation. Finally, our notions of inference-proofness
include the following natural security preconditions:

— The stored data source complies with the (assumed) a priori knowledge.
— The (assumed) a priori knowledge does not violate the pertinent confidential-
ity requirement expressed by the prohibition declaration.

Definition 4 (abstract prohibitions and abstract a priori knowledge).

1. A prohibition is a query p € Q, and a set of enforceable' prohibitions is
denoted by P < . A prohibition declaration is a finite set proh < P.

2. An assumed a priori knowledge is a query prior € Q, and a set of tolerable!
(pieces of) assumed a priori knowledge is denoted by A < Q.

The following four versions of inference-proofness formally reflect the intu-
itive assumption that the attacker knows the prohibition declaration by treating
it being invariant under alternative data sources. Regarding controlled query
evaluation, the wanted security mechanisms are naturally intended to operate
stepwise and history-dependent but without a look-ahead.

Definition 5 (inference-proofness for closed-query evaluation).

1. con_quer : Seq(Q) x U x A x pP — Seq(Q) is a stepwise controlled
query evaluation function iff for each (point in time) t = 1,2,... the result
value con_quer({q1, qa, . ..), dst, prior, proh), depends in addition to ds, prior
and proh only on the finite prefix qi1,qz,...,q of the argument sequence and,
thus, implicitly, also on the finite prefix ri,7r2,...,7:—1 of the result sequence
with r; = con_quer({q1,4qz2,...),dst, prior, proh);, such that we can define
con_quer({q1,qa, - - -, Gt), dst, prior, proh) = (r1,re, ..., 7¢).

2. The function is inference-proof iff for each prohibition declaration proh € P,
for each a priori knowledge prior € A such that prior & p for all p € proh,
for each prohibition p € proh, for each (“stored”) data source dgs; € prior, for
each sequence {q1,qa,...) of closed queries q; € Q,
there exists an (“alternative”) data source d¥, € prior such that

~ indistinguishability of ds and d~, (w.r.t. the prohibition p): con_quer
(g1, 92, --.),dst, prior, proh) = con_quer({(q1, gz, - - .), d~,, prior, proh);

! For each practical framework, the notions of “enforceable” and “tolerable” have to
be appropriately defined to capture application needs and complexity issues.

88 J. Biskup

— harmlessness of dq; (w.r.t. the prohibition p): dv, & p.
8. The function is strongly inference-proof iff it is inference-proof for proh sub-
stituted by {{J proh}.

Definition 6 (inference-proofness for view generation).

1. con_view : U x A x pP — Int(Q) is a controlled view generation function.

2. The function is inference-proof or strongly inference-proof, respectively, iff
the corresponding condition, but without the clause for the sequence of queries,
of Definition 5, part 2 or part 3, respectively, holds.

5 Controlled Interactions

We study three fundamental approaches to provably achieve inference-proofness
for interaction sequences of unlimited length only consisting of closed-query
evaluations together with the respective response preparations for the case of
abstract data sources as epistemic states. The achievement of inference-proofness
for sequences of stepwise closed-query evaluations will be based on enforcing a
pertinent security invariant for all points in time ¢, starting with some perti-
nent security precondition. In the definitions of inference-proofness, the latter
assertions are already formally stated and the former assertions are suggested
by requiring the existence of a harmless data source. In fact, the attacker’s best
current view bestcv on the defender’s actual data source dg; always consists of all
those data sources d’ that are indistinguishable from the actual one and, thus,
constitutes the least uncertainty left to the attacker so far. Accordingly, the
harmless data source d,; required to exist has to be an element of the attacker’s
best current view.

Conceptually, at each point in time ¢, the best current view is determined
as a kind of an inverse image of the interaction history performed so far,

i.e., of the submitted queries q1,qs2,-..,q under the a priori knowledge prior
and the prohibition declaration proh together with the returned responses
con_quer({q1,qa, - -, G),dst, prior, proh) = (ri,ra,...,r¢). More formally, for

the best current view we have the following:

bestcvy ={d|d € U n prior, and con_quer({qi1,qz, ..., q:),dst, prior, proh)
= con_quer({q1,qz, - - -, qt), d, prior, proh) }

=con_quer™‘[con_quer({q1,qz, - .., q:), dst, prior, proh)] N prior;

bestcvy, ={d|d e U n prior, and con_quer({qi1,qs, ...), dst, prior, proh)
= COH,q’LLET’(<ql, qz2, - - - >a da p’l‘iOT’, pTOh) }

=con_quer'[con_quer({q1,qa, . ..), dst, prior, proh)] n prior.

As a technical means, however, a security mechanism might only maintain a
simulated current view simco still invariantly containing a harmless data source,

Inference-Proof Monotonic Query Evaluation 89

which is employed for checking tentative updates of the attacker’s uncertainty for
violations of the security invariant. For studying abstract information systems
refraining from representing syntax at all, we will use such a simulated current
view directly as a kind of log file to keep the essence of the interaction history.

Though we are literally speaking about technical means having machine-
executable programs in mind, we deal with abstract information systems as
purely mathematical objects and, accordingly, do not actually care about com-
putability. Nevertheless, by abuse of language, we will denote purely mathemat-
ical methods for controlled interactions as algorithms, since we have come up
with even efficiently computable procedures for suitable refinements based on
appropriate syntactic representations of the mathematical items.

5.1 Controlled Query Evaluation by Refusing

For the approach to alterations of a harmful query evaluation by refusing, the
existence of an “alternative” harmless data source will explicitly be monitored
by inspecting the assertion “for all p € proh: simcv & p” as part of the security
invariant enforced for each response to a submitted query. In fact, if a (previously
unknown) correct response is returned to the attacker, then the invariance of the
assertion after updating simcv accordingly has been confirmed explicitly by a
tentative update before.

However, to additionally enforce the indistinguishability property to avoid
meta-inferences from the fact of observing a refusal, we have to strengthen the
invariant such that it becomes independent of the actual results of the query
evaluations. In fact, if a (previously unknown) correct response is returned and
the simulated current view simcv has actually been updated accordingly, then
not only the tentative update with that response but also with its complement
has been inspected for harmlessness explicitly before. Consequently, if at least
one alternative has been found to be harmful, the resulting refusal might be
caused by the correct response or its complement, such that the attacker cannot
find out which alternative has actually occurred. For convenience, here refusing
is signified be returning the universe U, which provides no new information, and,
accordingly, no update of the simulated current view simcv is necessary.

As a special case, the correct response might already be known from the a
priori knowledge together with the responses to previously inspected queries,
as summarized in the value of the simulated current view simcv. To avoid an
unnecessary refusal, this case is dealt with separately, by just confirming the
correct query evaluation and, consequently, leaving simcv unchanged.

Theorem 1 (inference-proofness by refusing). The stepwise controlled
query evaluation function with alterations by refusing for a known prohibi-
tion declaration, as computed by Algorithm 1, is inference-proof (and strongly
inference-proof under the substitution of proh by {|J proh}).

90 J. Biskup

Input: {(q1,q2,...) queue of closed queries, submitted by attacker
dst stored abstract data source
prior a priori knowledge as query
proh prohibition declaration as finite set of queries
Output: (ri,72,...) list of (possibly) altered responses, returned to attacker
1 time <0 //initialize counter for discrete points in time;
2 simcv < prior //initialize simulated current view;
3 repeat
4 time «— time + 1;
5 query < receive next query ¢ime from input queue;
6 correct «— quer(query, dst) //determine correct query evaluation;
7 if simcv € correct then
8 return correct to output list
//confirm correct response; leave simcv unchanged
9 else
10 if for all p € proh: simcv N query € p and simcv n (U \ query) & p
then
11 return correct to output list //respond correctly;
12 stmev «— simcv N correct
//update simulated current view accordingly
13 else
14 return U to output list
//signify refusing; leave simcv unchanged
15 end
16 end
17 until input queue has externally been closed, if ever;

Algorithm 1: Stepwise controlled query evaluation with alterations by
refusing for a known prohibition declaration

Proof. A full proof is given in the appendix. Here we only sketch the overall
structure of the proof. An execution of Algorithm 1 determines a sequence of
values for the simulated current view simcv with a fixpoint, such that

Prior = StMCcvg 2 SIMCV] 2 SIMCvg 2 ... with simcvy, = ﬂ SIMCU;.
t=0,1,2,...

By the construction and by assertion (3), ds; € simcvy. By an inductive argu-
ment based on the compactness, and because of the explicit check of the security
invariant in step 10, we have simcv,, & p for all p € proh. Thus, for each p € proh
there exists a data source d¥, € simcv, \ p, which satisfies the precondition and
is harmless by the construction.

Moreover, d¥, is also indistinguishable (of the “stored” data source dy;), as is
even any data source d € simcv.. Basically, this claim follows from the inductive
procedure to decide whether the value of simcv should be changed, based on the
instance independent security invariant enforced by step 10. g

Inference-Proof Monotonic Query Evaluation 91

Theorem 2 (refusing provides best current view directly). Algorithm 1
executed for inputs (q1,q2, ...), dst, prior and proh satisfying the preconditions
dsi € prior and prior € p for all p € proh for inference-proofness provides the
best current view bestcv,, by the fixpoint simcvy, of the simulated current view
stmcv, i.e., we have bestcv, = simcvy.

Proof. In the proof of Theorem 1 we show that bestcv, 2 simcv,,. Conversely,
assume d € prior but d ¢ simcvy. Then executing the Algorithm 1 for dg; and d,
respectively, yields the same value for simcv at time 0 according to step 2 but
different values for some later point in time. Consider the point in time min > 0
such that for the first time the executions differ for the value simcv. Accordingly,
at time min for at least one of the data sources there was no refusing and, by the
independence of the guarding expression in step 10, for both of them there was
no refusing. Moreover, by the minimality of min, the query evaluations have been
different, i.e., quer(query,,;,,ds:) + quer(query,,;,,d), such that the executions
can be distinguished. Hence d ¢ bestcvy,. O

5.2 Controlled Query Evaluation by Lying

For alterations by lying, the existence of an “alternative” harmless data source
has to be ensured regarding a strengthen version of harmlessness that requires
non-elementship in the wunion over the prohibition declaration. This version
avoids the hopeless situation arising from lies on both that union and all its
contributing prohibitions. The existence of such a data source will only partly
explicitly be monitored, aiming to make the assertion “simcv & J proh” part of
the security invariant. In fact, if a correct response is returned to the attacker,
then the invariance of the assertion after updating simcv accordingly has been
checked explicitly by a tentative update before. Otherwise, if a lied response
is returned to the attacker, then no explicit additional inspection is necessary.
Moreover, the indistinguishability property is also already implicitly be enforced,
since a data source that satisfies each of the responses generated for the actual
data source—whether correct or lied—turns out to generate the same reactions.

Theorem 3 (strong inference-proofness by lying). The stepwise con-
trolled query evaluation function with alterations by lying, as computed by Algo-
rithm 2, is strongly inference-proof.

Proof. Structurally as for refusing, by an inductive argument that the correct
response and the lied response are not both harmful for a single prohibition. O

92 J. Biskup

Input: {q1,q2,...) queue of queries, submitted by attacker

dst stored abstract data source

prior a priori knowledge as query

proh prohibition declaration as finite set of queries
Output: (r1,72,...) list of (possibly) altered responses, returned to attacker

time «— 0 //initialize counter for discrete points in time;
stmcv <« prior //initialize simulated current view;
repeat
time «— time + 1;
query < receive next query gume from input queue;
correct «— quer(query, dst) //determine correct query evaluation;
lied <« U\correct //prepare the lie;
if simcv N correct & | proh then
return correct to output list //respond correctly;
stmcv < stmcv N correct
//update simulated current view accordingly

© W N DA W N

[
o

11 else

12 return lied to output list //respond by the lie;
13 stmecv «— sitmecv N lied

//update simulated current view accordingly

14 end
15 until input queue has externally been closed, if ever;

Algorithm 2: Stepwise controlled query evaluation with alterations by
lying for a known prohibition declaration

5.3 Controlled Query Evaluation by Combination

For alterations by a combination of refusing and lying, the existence of an “alter-
native” harmless data source will explicitly be monitored by inspecting the asser-
tion “for all p € proh: simcv ¢ p”’ as the security invariant. In fact, first the
correct response is explicitly inspected for harmlessness by a tentative update
of simcv, and only in case of a failure, subsequently the lied response is also
explicitly inspected for harmlessness. If both inspections fails, i.e., both the cor-
rect response and the lied response are harmful, then refusing is due. No further
means are necessary to achieve the indistinguishability property as well.

Theorem 4 (inference-proofness by combination). The stepwise con-
trolled query evaluation function with alterations by a combination of refus-
ing and lying, as computed by Algorithm 3, is inference-proof (and strongly
inference-proof under the substitution of proh by {|J proh}).

Proof. Similar as for the proof of Theorem 1, following its overall structure. 0O

Inference-Proof Monotonic Query Evaluation 93

Input: {(g1,q2,...) queue of queries, submitted by attacker
dst stored abstract data source
prior a priori knowledge as query
proh prohibition declaration as finite set of queries
Output: (ri,72,...) list of (possibly) altered responses, returned to attacker
1 time <+ 1 //initialize counter for discrete points in time;
2 simcv < prior //initialize simulated current view;
3 repeat
4 time «— time + 1;
5 query < receive next query ¢iime from input queue;
6 correct — quer(query, ds:) //determine correct query evaluation;
7 lied — U \ correct //prepare the lie;
8 if for all p € proh: simcv N correct & p then
9 return correct to output list //respond correctly;
10 SIMcv <— stmcv N correct
//update simulated current view accordingly
11 else
12 if for all p € proh: simcv N lied & p then
13 return lied to output list ~ //respond by the lie;
14 stmcv «— simcv N lied
//update simulated current view accordingly
15 else
16 return U to output list
//signify refusing and leave simcv unchanged
17 end
18 end
19 until input queue has externally been closed, if ever;

Algorithm 3: Stepwise controlled query evaluation with alterations by a
combination of refusing and lying for a known prohibition declaration

5.4 Controlled View Generation

So far, we have studied stepwise controlled query evaluation functions for
abstract data sources as epistemic states, employing refusing or lying or the
combination of refusing and lying, respectively, as alterations of a harmful query
evaluation. These functions are proven to be inference-proof for any sequence of
closed-query evaluation with response preparation. Each proof has been based
on investigating the properties of the sequence of the simulated current views
maintained by the pertinent algorithm to keep track of the interaction history
and to enforce a suitable security invariant, together with the fictitious fixpoint
of that sequence. Essentially, this fixpoint is the intersection of the (possibly)
altered query responses.

We further exploit the three fundamental approaches for such an algorithm to
deal with the interaction of view generation. A best view is abstractly defined as
the intersection of the query evaluations of all queries in the considered query set.
Then, roughly outlined, we can form a queue of all such queries, or a suitably

94 J. Biskup

exhaustive part of it, submit it to the pertinent algorithm, and will (at least
conceptually) obtain the fixpoint as a (possibly) altered inference-proof view.
In an interaction of controlled view generation, that fixpoint can be returned to
the communication partner suspected to be only semi-honest and attacking the
dedicated prohibition declaration.

Theorem 5 (inference-proofness by refusing, lying and the combina-
tion). The controlled view generation functions with alterations by refusing or
lying or the combination of refusing and lying, respectively, for a known prohibi-
tion declaration, as computed by Algorithm 4, are weakly or strongly or weakly
inference-proof, respectively.

Proof. The claim straightforwardly follows from the inference-proofness of the

imported algorithms. O
Input: ds stored abstract data source
prior a priori knowledge as query
proh prohibition declaration as finite set of queries
Output: view returned to attacker as controlled view

1 Import: Algorithm i for
either 7 = 1: refusing or ¢ = 2: lying or ¢ = 3: combination

2 form ezhaustive queue (qi,qz,...) of closed queries;

3 apply Algorithm i to {q1, gz, ...) and the inputs, using local variable simcuv;
4 on exit from the repeat-loop (actually or fictitiously) do

5 view <« [simcv;

6 return view as output

Algorithm 4: Controlled view generation with alterations by refusing,
lying or the combination of refusing and lying based on Algorithm 1, Algo-
rithm 2 or Algorithm 3, respectively, for a known prohibition declaration

5.5 Some Comparisons

For refusing, we have dg; € simcv and simcv = bestcv. Basically, this intuitively
means that the literal claims of returned controlled responses are a correct and
complete disjunctive weakening of the best view. In contrast, for lying and the
combination, whenever a lied response has actually occurred, we have dy; ¢ simcv
and, consequently, simcv + bestcv, in particular saying that literal claims do
not directly reflect the actual situation. The following theorem shows that this
difference disappears under the substitution of proh by {{J proh}, since then the
occurrence of a refusal corresponds to a potential lie.

Theorem 6 (best current views for aggregated policy declaration).
Under the substitution of proh by {|{Jproh}, the inverse functions of the con-
trolled view generation functions with alterations by refusing or lying or the com-
bination of refusing and lying, respectively, as computed by Algorithm 4, yield the
same best current views.

Inference-Proof Monotonic Query Evaluation 95

Proof. The full proof, given in the appendix, shows that for the single aggregated
prohibition in {{J proh}, the effect of the instance-independent check for harm-
fulness by refusing corresponds to the effect of instance-independently always
returning a harmless response by lying. a

6 Conclusions

Enforcing inference-proofness as a sophisticated version of confidentiality relies
on crucial assumptions about the a priori knowledge of the specific attacker and
further postulations about the overall attack scenario. Furthermore, the notion of
a defender or an attacker, respectively, refers to both human individuals and the
computing agents under their control. Accordingly, for coming up with formally
provable assertions about confidentiality the precise specification of the object
to be protected by a security mechanism on the defender side as well as a precise
specification of the capabilities on the attacker side are mandatory.

Our main contributions are complying with these requirements. On the
defender side the epistemic state of the information system agent is identified as
the basic protection object, independently of the actual syntactic representation
and of any additional knowledge held by the human information owner. On the
attacker side, our characterization of the attacker as a rational reasoner about
message observations, a priori knowledge, the semantics of the agreed interac-
tions and the functionality of the security mechanism refers to both the client
agent and the human communication partner. Accordingly, the defender side is
restricted by the possibilities of efficient algorithms, whereas the attacker side
might employ unlimited resources. However, as far as the attacker relies on the
computing resources of the client agent, refusing and lying essentially differ in
determining the best current view: while for refusing the best current view is
directly delivered by the returned accumulated information represented by the
simulated current view, for lying the best current view has to be generated by a
sophisticated function inversion procedure.

We have focused on conceptual and computational foundations rather than
on specific applications. Regarding usability, our foundational results suggest
that in each concrete practical situation we might be forced to admit relaxations
and approximations. Regarding computational complexity, view generation as an
off-line procedure might be preferred to closed-query evaluations as a dynamic
and often time-constrained protocol. Moreover, in practice we are faced with
structured epistemic states which allow more sophisticated interactions, e.g.,
open (SQL-like) queries and update transactions for relational databases. Inter-
actions might also refer to non-monotonic operations regarding a structured
epistemic state seen as “belief”, e.g., a revision under suitable postulates. So
far, these and further issues have already been preliminarily studied for spe-
cific frameworks, as discussed in [1]. It would be worthwhile to unify and further
elaborate all these studies as an enhancement and extension of the present work.

Acknowledgements. I would like to sincerely thank Piero Bonatti very much for
fruitful cooperation on the works underlying this article.

96 J. Biskup

Appendix 1: Proof of Theorem 1

Consider the execution of Algorithm 1 for some inputs (g1, g2, . . .), dst, prior and
proh satisfying the preconditions dg € prior and prior & p for all p € proh. Let
(simcug, simcvy, simcvs, . ..) be the sequence of values obtained by the simulated
current view simcv, with simcvg = prior according to step 2, and with simcvme
being the updated value at the end of the time-th iteration of the repeat-loop
for time > 0, according to either step 12, 14 or 8, respectively. Then we have

simcvg 2 simcvy 2 simcvg 2 (7)

Define the fixpoint of this chain as

SIMCV = ﬂ STMCV time - (8)
time=0,1,2,...

This fixpoint has the following properties:

1. simcvy, € Int(Q), according to Definition 1.

2. dg € simcvy, by the construction during the execution of Algorithm 1, since
for each time = 0,1,2,... one of the following alternatives apply: ds; € prior
in step 2; dg € correct in step 8 or 12 by assertion (3); ds; € U in step 14.

3. simcvy, § p for all p € proh, based on the compactness of the query set @
according to Definition 1, as verified below.

Let p € proh. Assume indirectly that simcv, < p. Then, by the com-
pactness of the query set (), there would exist a finite set F of values in
the sequence (7) having a minimal element simcvp (with maximum index of
time) such that simcvp = (| F € p. Let then min be the first time such that
SIMCVYmin S p. By the precondition, min > 0. Then, depending on the eval-
uation of the guarding expressions in step 7 and step 10, respectively, either
SIMCVmin = SIMCU pin—1 O COTTECt iy, according to step 12 in the inner if-branch
Or SIMCUmin = SIMCUmin —1 according to step 14 in the inner else-branch or
SIMCVmin = SIMCUmin —1 according to step 8 in the outer if-branch. However, the
first case contradicts the value of the inner guarding expression and the second
case and third case contradict the definition of min.

So, by simcv,, & p there exists a data source d7, € simcvy, \ p. We claim that

d”, is the “alternative” data source required to exist:

4. dP satisfies the a priori knowledge, since d°, € simcvy, \ p S simcv, S
SIMcvg = pPrior.

5. db, is harmless (w.r.t. the prohibition p), i.e., d”, ¢ p, by the construction.

6. d, is indistinguishable (of the “stored” data source d), since below we can
show by induction that for each time = 1,2, ... the repeat-loop of Algorithm 1
takes the same actions, in fact not only for d?, but even for all data sources

d € simcvy,.

Inference-Proof Monotonic Query Evaluation 97

So, consider any d € simev., and suppose inductively that the value simcvgme—1
of the simulated current view simcv is the same for the stored data source dg
and the considered data source d.

Case 1: simcViime—1 S quer(query e, dst)-
Then, the outer guarding expression at step 7 is true for dg and, thus, the
response quer(queryym.,dst) is returned in step 8. Then we have

d € simcvy, S $IMCVime—1 S quer(Qiime, dst)

and thus, by assertion (4), quer(qime, J) = quer(qtime, dst). This equality implies
that also simcvime—1 S quer(querytme,cz) and, accordingly, that the outer
guarding expression at step 7 is also true for d such that quer(querytme,d)
is returned in step 8 as the same response.

Case 2: simcvime—1 E quer(query e, dst)-
Case 2.1: For all p’ € proh: simcvyme—1 O qUETY e € P° and $iMcvime—1 N

(U \ querytime) $ p/-

Then quer(query me,dst) is returned in step 11 and simcv is updated accord-
ingly in step 12, and we have

d € $imcvy S SIMCUime = SIMCVtime—1 O qQUeT(Qtime, dst) S quer(Qtime, dst)

and thus, by assertion (4), quer(qime, CZ) = quer(qtime, dst). This equality implies
that also simcviime—1 € quer(queryyme, dN) and, accordingly, that the outer
guarding expression at step 7 is also false for d and the inner guarding expression
is checked in line 10. Being independent of the query evaluation, this expression
is also true for d by the assumption of Case 2.1, such that quer(query,;,,.,d) is
returned in step 11 as the same response and the same update of simcv occurs
in step 12.

Case 2.2: For some p’ € proh: $imcviime—1 O QUETY ime S P’ OT SIMCVUtime—1 N
(U \ querytime) = [4]p/

Then the universe U is returned in step 14, signifying a refusal for dy;. Regarding
J, since both dg; € simcvime—1 and de SIMCV time—1, We have simcvime—1 E
quer(query,;,..,d) by the assumption of Case 2 and assertion (5). So, the outer
guarding expression in step 7 is also false for d and the inner guarding expression
is checked in line 10. Being independent of the query evaluation, this expression
is also false for d by the assumption of Case 2.2, such that the universe U is
returned in step 14, signifying a refusal as the same response. a

Appendix 2: Proof of Theorem 6

By Theorem 2, we already know that for refusing with suitable inputs the simu-
lated current view simcv., equals the best current view bestcv,,. Thus it suffices
to show the following claim by induction:

98 J. Biskup

For a single aggregated prohibition |Jproh, the simulated current view
SIMCVme Of refusing equals the best current views bestcv i of lying and
the combination, respectively.

At time = 0, for all of the three approaches we have simcvg = bestcvg.
At time > 0, assume inductively that simcvgme—1 for refusing equals
bestcvime—1 for lying and the combination, respectively.

Case 1: Refusing returns the correct response quer(query e, dst)-

Case 1.1: $imcvime—1 S quer(query ime, dst), i.€., refusing confirms the cor-
rect response. This response is harmless, for otherwise simcvjm._1 would already
be harmful, contradicting the security invariant. Then, for refusing,

SIMCU ime = SIMCVtime—1 = SIMCVtime—1 O qUET(QUETY i At) (9)

Case 1.2: Otherwise, we have for all p € proh: simcv N query € p and
simev n (U \ query) € p and, again, for refusing,

SIMCV ime = SIMCVtime—1 O quer(qUery ., dst)- (10)

In both subcases, regarding lying, the correct response quer(query,;,.,dst) is
returned for dg, as exactly for all d’' € quer(query,;,.,dst), for each of which
we quer(query e, d) = quer(query ..., dst) by (4). The same reasoning applies
for the combination. Accordingly, we have for both lying and the combination

bestcv time = bestcv ime—1 N quer(qUETY e, dst), (11)

together with (9), (10) and the induction assumption implying the claim.

Case 2: Refusing returns U to signify a refusal and, thus, for refusing,
SIMCV time = SIMCVtime—1 N U = SIMCV time—1 - (12)

Then, according to the instance-independent guarding expression for refus-
ing, there exists p’ € {|Jproh} such that simcvyme—1 N query,,. < p' or
simcvyme—1 O (U \ query) S p'. This implies that we have

either simcvyime—1 N query,;. < U proh
or $imcviime—1 0 (U\ queryyip,.) < U proh
but not both.

For assume otherwise that both inclusions hold, then

SIMCV time—1

SIMCV time—1 N U

= SimCUtime 1 O (0T ime U (U \ qUery ime))

= ($IMCUime—1 N QUETY o) U (8IMCVtime—1 O (U \ queryime))
c |J proh,

contradicting that the security invariant for refusing has been enforced at time
time — 1.

Inference-Proof Monotonic Query Evaluation 99

Now, regarding lying, the strict alternative given above means that for all d’ €
U the uniquely determined harmless version in the set { query ., U\ query ime
is returned, independently of whether it is correct or lied. The same observation
applies for the combination. Accordingly, for both approaches we have

bestcv gime = bestcviime—1 N U = bestcv gime—1, (13)

together with (12) and the induction assumption implying the claim. O

References

1. Biskup, J.: Selected results and related issues of confidentiality-preserving con-
trolled interaction execution. In: Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS,
vol. 9616, pp. 211-234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
30024-5_12

2. Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data
Knowl. Eng. 38(2), 199-222 (2001)

3. Biskup, J., Bonatti, P.: Controlled query evaluation for enforcing confidentiality in
complete information systems. Int. J. Inf. Secur. 3(1), 14-27 (2004). https://doi.
org/10.1007/s10207-004-0032-1

4. Biskup, J., Bonatti, P.A.: Controlled query evaluation for known policies by com-
bining lying and refusal. Ann. Math. Artif. Intell. 40(1-2), 37-62 (2004). https://
doi.org/10.1023/A:1026106029043

5. Biskup, J., Bonatti, P.A., Galdi, C., Sauro, L.: Optimality and complexity of
inference-proof data filtering and CQE. In: Kutylowski, M., Vaidya, J. (eds.)
ESORICS 2014. LNCS, vol. 8713, pp. 165-181. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11212-1_10

6. Biskup, J., Bonatti, P.A., Galdi, C., Sauro, L.: Inference-proof data filtering for
a probabilistic setting. In: Brewster, C., Cheatham, M., d’Aquin, M., Decker, S.,
Kirrane, S. (eds.) 5th Workshop on Society, Privacy and the Semantic Web - Policy
and Technology, PrivOn 2017. CEUR Workshop Proceedings, vol. 1951. CEUR-
WS.org (2017). http://ceur-ws.org/Vol-1951 /PrivOn2017_paper_2.pdf

7. Bonatti, P.A., Kraus, S., Subrahmanian, V.S.: Foundations of secure deductive
databases. IEEE Trans. Knowl. Data Eng. 7(3), 406-422 (1995)

8. Denning, D.E.: Cryptography and Data Security. Addison-Wesley, Reading (1982)

9. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: IEEE Symposium
on Security and Privacy, pp. 75-87 (1984)

10. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1), 5.1-5.47 (2008)

11. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17(5), 517-548 (2009)

12. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30-50 (2000)

13. Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without
revealing secrets. ACM Trans. Database Syst. 8(1), 41-59 (1983)

https://doi.org/10.1007/978-3-319-30024-5_12
https://doi.org/10.1007/978-3-319-30024-5_12
https://doi.org/10.1007/s10207-004-0032-1
https://doi.org/10.1007/s10207-004-0032-1
https://doi.org/10.1023/A:1026106029043
https://doi.org/10.1023/A:1026106029043
https://doi.org/10.1007/978-3-319-11212-1_10
https://doi.org/10.1007/978-3-319-11212-1_10
http://ceur-ws.org/Vol-1951/PrivOn2017_paper_2.pdf

l‘)

Check for
updates

Network Functions Virtualization Access
Control as a Service

Manel Smine!®™) David Espes?, Nora Cuppens-Boulahia!3,
and Frédéric Cuppens'3

1 IMT Atlantique, Rennes, France
manel.smine@imt-atlantique.fr, {nora.cuppens,frederic.cuppens}@polymtl.ca
2 University of Western Brittany, Brest, France
david.espesQuniv-brest.fr
3 Polytechnique Montréal, Montreal, Canada

Abstract. NFV is an important innovation in networking. It has many
advantages such as saving investment cost, optimizing resource con-
sumption, improving operational efficiency and simplifying network ser-
vice lifecycle management. NFV environments introduce new security
challenges and issues since new types of threats and vulnerabilities are
inevitably introduced (e.g. security policy and regular compliance failure,
vulnerabilities in VNF softwares, malicious insiders, etc.). The impact
of these threats can be mitigated by enforcing security policies over
deployed network services. In this paper, we introduce an access control
as a service model for NFV services. The proposed approach can deploy
several kinds of access control model policies (e.g. RBAC, ORBAC,
ABAC, etc.) for NFV services and can be easily scaled.

Keywords: Network Functions Virtualization (NFV) - Access
control + Policy enforcement + Domain type enforcement (DTE)

1 Introduction

Network Functions Virtualization (NFV) is a network architecture concept which
virtualises network functions (firewalling, DNS, intrusion detection, etc.). It cre-
ates a Virtualized Network Function (VNF) instance that is deployed over a
Virtualized infrastructure. Usually, a Virtualized infrastructure is able to host
many VNFs of different types. These VNFs can be chained to provide virtual
network services. NFV promises a number of advantages to network operators
such as reducing hardware costs, deployment in fast time and scalability. Despite
advantages, security concerns are an important obstacle for a wide adoption of
NFV. New threats and vulnerabilities are inevitably introduced such as security
policy violation [12], VNF softwares vulnerable to different kinds of software
flaws [18], and malicious insiders that can be a serious threat for user privacy
and can lead to data confidentiality exposure [12]. Solutions to enhance the
security of VNF network services are (1) to control the access to the different

© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

A. Singhal and J. Vaidya (Eds.): DBSec 2020, LNCS 12122, pp. 100-117, 2020.
https://doi.org/10.1007/978-3-030-49669-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49669-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-49669-2_6

Network Functions Virtualization Access Control as a Service 101

components of the VNF network service and (2) to control what information
is authorized to be transferred between the different components of the VNF
network service.

In this paper we propose a formal model that provides a software-defined
access control as a service capability for network services. First, it allows to
specify high-level access control requirements to be enforced over network ser-
vices. Second, it uses a provably correct method for transforming the high-level
access control requirement towards a domain type enforcement (DTE) specifica-
tion. Finally, our model defines an efficient enforcement method, as illustrated by
the different conducted experimental evaluations in Sect.5. Compared to exist-
ing models, our model is: (1) generic since it takes into consideration any type of
access control policy such as RBAC [20], ORBAC [11], ABAC [9], etc., (2) com-
pliant with the ETSI-NFV infrastructure in the sense that it does not require
any modification of the latter for policy deployment, (3) and scalable thanks
to our enforcement method that allows to add as many enforcement points as
needed (e.g., for load balancing purposes) without impacting the functioning of
the network services.

The paper is organized as follows. Section 2 reviews previous related research
on existing security orchestrators and access control models for NFV infras-
tructure. Section 3 provides some background knowledge for understanding the
proposed architecture. Section 4 defines our proposed model. Section 5 provides
an overview of the implementation of our model and presents the evaluation
results. Finally, Sect. 6 concludes the paper and outlines future work.

2 Related Work

Policy management and deployment in NFV architecture have recently been the
topic of several researches. Many approaches have been proposed to define and
enforce security policies over NFV architecture to ensure their security. Basile et
al. propose in [4] an approach aiming to provide specific security properties over
Virtualized networks. This approach relies on a new software component called
Policy Manager to handle high-level security policies specified by the users and
refine them into configurations for specific VNF. Unfortunately, this approach
does not specify what kind of properties can be handled and how these required
security property are refined to deployable configurations. In [14], Montero et
al. propose a user-centric model named SECURED, allowing to express and
deploy security policies to protect users’ security in NF'V. Due to its user-centric
characteristic, the proposed model is completely oriented to protect users’ secu-
rity when interacting with NFV network services and cannot be used to secure
NFV network services themselves. In FlowlIdentity [24], a Virtualized network
access control function using OpenFlow protocol is proposed. It is a solution
for network access control in SDN architectures with policy enforcement over
a stateful role-based firewall on OpenFlow switches. Unfortunately, the pro-
posed approach is deeply dependent on the SDN architecture and thus cannot
be directly used in an NFV architecture. To overcome the previous limitations,

102 M. Smine et al.

Leopoldo, et al. propose ACLFLOW [13] that is a Network Functions Virtual-
ization (NFV)/Software-Defined Networking (SDN) security framework allowing
to translate regular ACL rules into OpenFlow filter rules. ACLFLOW optimizes
the evaluation of ACL rules by prioritizing the most popular rules to acceler-
ate switching operations. Unfortunately, ACLFLOW cannot be used to enforce
more advanced access control policy models such as Role Based Access Con-
trol (RBAC), Organization-Based Access Control (ORBAC), Attribute-Based
Access Control (ABAC), etc.

To solve multi-propagation problems of the concept of NFV such as ver-
ification and authorisation issues, Guija and Siddiqui [7] use the NFV-based
SONATA Service Platform for authentication and authorisation mechanisms,
specifically for Identity and Access control of micro-services in 5G platforms
for services Virtualization, orchestration and management. This solution relies
mainly on OAuth 2 [8] and OpenID Connect [19] to form the implementation of
the user management module allowing Role Based Access Control and Identity
management to follow the centralized authorization approach. However, This
dependency on OAuth 2 and OpenID Connect makes this solution applicable
only on services where a HT'TP-based communication is used between their dif-
ferent components.

The model proposed in the standard ETSI-NFV [6] describes the NFV Secu-
rity Monitoring and Management architecture. The proposed architecture intro-
duces two components: The NFV Security Controller that orchestrates system
wide security policies and acts as a trusted third party and the NFV Security
Monitoring Analytics System which performs secure Telemetry acquisition from
the NFV system and can derive threats and anomalies from the telemetry. How-
ever, only the model is defined and no specification of how all this work is done. In
addition, several interfaces that the architecture defines are not specified (e.g. the
connection between the controller and the Operating Support System/Business
Support System (OSS/BSS).

In the literature, several security orchestrators have been defined to control
the access in NFV infrastructure. In [10], Jaeger et al. propose an SDN based
security orchestrator which improves the ETSI NF'V reference architecture with
an extensive management of trust and offer a global view for fast and efficient
topology validation. Unfortunately, no concrete use case and implementation of
the provided security requirements are given. The authors of [23] present an
architecture for NFV environments focusing on the automation of access con-
trol management deployment. Unfortunately, the authors do not provide any
information about how access control policies are deployed in a VNF network
service. In [15], Montida et al. develop a security orchestrator as an extension
of the MANO NFV orchestrator to manage the security properties of network
services in their entire lifecycles. They extend the Topology and Orchestration
Specification for Cloud Applications (TOSCA) model [5] with particular security
attributes that are required to create access control policies and finally enforced
in the cloud infrastructure. They instantiate the proposed security orchestrator
in [16,17] through the implementation of an access control model which con-
sists of deploying an access control policy over a network service. However, the

Network Functions Virtualization Access Control as a Service 103

proposed approach suffers from several limitations. First, it requires the modifi-
cation of the NFV infrastructure since specific agents has to be deployed on the
NFYV that compose the considered network service to enforce the access control
policy. Second, the proposed access control model is not generic enough since it
can only handle policies specified using the RBAC model. Finally, it is not clear
how the high level access control policy is transformed into a concrete deployable
policy.

Compared to existing access control models, our model offers several advan-
tages. First, it is a generic model as it can handle most kind of access control
policy models such as RBAC, ORBAC, ABAC, etc. Second, it offers formal and
efficient methods for deploying access control policies at the concrete level. Third,
the deployment method proposed in our model does not require any modification
at the NFV infrastructure level.

3 Background

This section provides background material about all main technologies to enable
the deployment of our security policy.

VNF Forwarding Graph: ETSI defined the notion of a VNF forwarding graph
(VNFFG) [3] known also as Service Function Chaining (SFC). It is used to
manage a traffic through a sequence of network functions (NF) that should be
traversed in an order list of VNFs. VNFFG are described by VNF Forwarding
Graph Descriptors (VNFFGD). Each forwarding graph is composed of a set of
forwarding paths.

Network Service: A VNF service is composed of a set of VNF's that are repre-
sented using a deployment template VNF descriptor (VNEFD) which define their
properties and a set of forwarding graphs that are defined using a deployment
template VNF FG Descriptor (VNFFGD).

Domain and Type enforcement (DTE): The technique Domain and Type
Enforcement (DTE) protects the integrity of military computer systems. It was
designed to be used in combination with other access control techniques. As with
many access control schemes, DTE views a system as a collection of active enti-
ties (subjects) accessing a collection of passive entities (objects) based on rules
defined in an attached security context and groups processes into domains, files
into types and restricts access from domains to types as well as from domains
to other domains.

4 The Proposed Model

4.1 Adversary Model

To understand the scope of the problem and assess the risks, we have to develop
an adversary model. The adversary model considered in this paper is composed

104 M. Smine et al.

of an attacker, a NFV infrastructure hosting the multiple VNF's that compose
the network services to be deployed, and an access control engine that is used
to deploy the access control policy. In our model, the objective is to allow users
including the likely attacker to perform operations that a normal VNF infras-
tructure user can do. It means that the attacker can generate and modify a flow,
attack to try to compromise a VNF. We suppose that the adversary will be able
to interact with the VNF composing the deployed network service but he cannot
control or modify the behavior of the access control engine as well as the VNF
that will be used to enforce the access control policy. This later is supposed to be
hardened, i.e., keeping the operating system up to date, minimising the installed
packages to minimize vulnerabilities, enable and correctly configure a firewall,
etc.

4.2 New Enforcement Model

In this section, a formal modelization of the security policy to be deployed is
proposed. The proposed model defines what is an access query and how it can
be evaluated. Since DTE has made its evidence for the enforcement of access
control policies at operating system level, a method for transforming an access
control policy towards a DTE specification is proposed. The proposed transfor-
mation allows us to benefit from the advantages of DTE. In particular, it allows
entities having the same access requirements to be collected into domains and
types which allows to find an appropriate balance between security and policy
deployment complexity. We prove that the proposed transformation method is
correct and we show how the DTE policy is enforced.

Security Policy Specification

Definition 1 (Security Policy). A security policy SP is composed of a set of
access control rules {r1,--- ,r;}. Each rule r; comprises:

— A subject S; that represents one or many entities that want to access

the object, these entities are characterized by a set of properties ”Pis =

— An action A; that represents the operation that is going to be performed by S;
on O;, each action is characterized by a set of properties PZA ={p%,---,pf}.

— An object O; represents one or many resources over which the action A; is
going to be performed. O; are characterized using two types of properties: (1)
a set of properties PE that characterises the entities (e.g., VNF) and (2) a
set of properties P that characterises the resources inside those entities and
over which the action A; will be performed.

— A context C; under which the rule can be invoked.

— A decision D; indicating whether it is a permission or denial rule.

In our model, each rule r; in the security policy will be represented as follows:

Ty = <Si>Ai7 Oia C’ia D2>

Network Functions Virtualization Access Control as a Service 105

We note that the properties that characterize the entities representing the sub-
ject S; (resp. the object O;) may include: attributes of S; (resp. O;) in the consid-
ered system (e.g., the IP address of a network to which the subject belongs, etc.),
functional attributes representing the provided functionalities (e.g., routing, deep
packet inspection, firewalling, etc.), and security attributes that represent the
security properties that is associated to S; (resp. O;) (e.g., the security level,
trust level, etc.). These properties are to be retrieved from the VNF descriptors
that compose the service to be deployed. For instance, the rule saying that any
VNF providing web client functionalities and having a high security level can
read the content of any web page on a VNF providing a web server functionality
and having a high security level if the client is using hitps, can be specified using
the following notation:

(S = {func : web_client, sec_level : high}, A = Action : read, proto = https, O =
{PE = {func : web_server, sec_level : high}, P = file_name : any?},

C = {between 8am and 8pm}, D = allow)

Our specification of the security policy represented in Definition1 can be
used to represent many access control model policies such as RBAC and ABAC.
First, RBAC is based on the notion of subject, permission that is represented by
a relation between an action and an object, and a specific attribute representing
a role. The first three notions (i.e., subject, object and action) can be straight-
forwardly translated to our model. The notion of role can be seen in our model
as a specific property of the subject. Similarly, the attributes used in the ABAC
model can be translated in our model to properties that characterize a subject,
an object, a context, or an action.

Definition 2 (Access Query). An access query AQ is represented by the
quadruplet (S7,0%, A1, C?) where ST represents the subject performing the query,
01 the object over which the query is performed, A? the action performed by the
query, and C? the request context under which the query is performed. Given a
security policy SP, AQ is allowed by SP if and only if the following condition
holds:

(i) 3r; € SP such that S € S;,07 € O;,A? € A;, C? satisfies C;, and D; =
allow.

AQ is denied by SP if and only if one of the following conditions hold:
(ii) Br; € SP such that ST € S;,07 € 0;, A € A;, C9 satisfies C;, and

D; = allow.
(#ii) Ir; € SP such that ST € S;,01 € 0;, A1 € A;, C? satisfies C;, and
D; = deny.

Policy Transformation. In this section, we propose a method for transforming
an access control policy as defined in Definition 3 towards a DTE specification.
Then, we prove that the transformation we propose is correct.

106 M. Smine et al.

Definition 3. Given a security policy SP composed of n rulesry,--- ,1,. SP is
transformed to a DTE policy by performing, for each rule r; € SP the following
steps:

— step 1: If there exist no j < i such that PY = PJS, define the domain s_PS_d
which will contain all entities of the considered system (i.e., the network ser-
vice to be deployed) that have the set of properties Pis used to characterize the
subject S;. Otherwise, use the same domain s _Pj _d (i.e., s P d = s Pj_d)
defined for the subject S; of the rule r;.

— step 2: If there exist no k < © such that C; = Cy, define new type c;_t.
Otherwise, use the same type ci_t defined for the context of the rule ry
(i.e.,cit = cp-t).

— step 3: If there exist no | < i such that PF = PlR define new type o Pt
which will be associated to all resources of the considered system that have the
set of properties PE. Otherwise, use the same type 0,’PlR,t (i.e., O,PlR,t =
o PE_t). In addition, if there exist no ' < i such that PP = PE, define new
domain o_P¥_d that will contain all entities of the considered system that
have the set of properties PE. Otherwise, use the same domain O,Pﬁ,d (i.e.,
0 PF_d = 0_PE_d) defined for the object of the rule r;.

— Step 4: When associated to the request context C? of an access query AQ
(i.e., the context of the rule r; is satisfied by the context C? of AQ), allow
the type c;_t to be an entry point allowing to transit AQ from domain S,Pf,d
to the domain 0P _d.

— Step 5: Authorize access queries that transit from s P? _d to o_P¥ _d to per-
form the actions A; on any objects having the type o PF t.

Finally, we denote C to be the set containing the set of DTE type c;_t and their
respective context of the rule C; created in step 2 (C = {(c;-t, C;)}).

We note here that only the rules having an allow decision are considered in the
previous definition. This choice is due to the fact that DTE is using by default
closed policies.

In our model, when an access query is created by the system, the query
inherits all the types associated to the subject S? and belongs to the DTE
domains of S?. In addition, we suppose that the system associates types to C?
as follows. V(c¢;t, C;) € C : if C; is satisfied in C'?, then associate the type c;-t to
the request context C? of the access query.

Ezxample 1. This example illustrate the security policy transformation method
we defined in Definition 3. Let us consider that we have a security policy SP
that is composed of three rules 1,79 and r3 such that:

— ry = (81 = {func : web_server, sec_level : high}, Ay = read,0; = {PE =
{func : ftp_server,seclevel : high}, PE = {filename : any}},C; =
{between 8am and 8pm}, D; = allow)

— 1o = (So = {func : web_server, sec_level : high}, Ay = write, Oy = {P¥ =
func : database_server, sec_level : low,Pf = db_name : service.db},Cy =
{between 8am and 8pm}, Dy = allow)

Network Functions Virtualization Access Control as a Service 107

— r3 = (S5 = {func : web_client, sec_level : high}, A3 = access, O3 = {P¥ =
func : ftp_server, sec_level : high, P = file.name : web_config},Cs =
{between 8am and 8pm}, D3 = allow)

According to Definition 3, the transformation of the policy SP to a DTE
specification is illustrated using the schema in Fig.1. Subjects S, .52, of rules
r1,T9 are respectively represented in the transformation by the DTE domain
s_web_server_high_d while the subject S3 of r3 is represented by the domain
s_web_client_high_d. The entities of objects O1 and Oz of r1 and r3 (described
using the set of properties PF and PF) are represented in the DTE trans-
formation by the DTE domain o_ftp_server_high_d and the resources of the
objects O; and Oz (described using the set of properties Pf and PJf). In
the case of Oq, the entities described using the set of properties P¥ and the
resources are described using the set of properties Pff. The DTE domains
o_ftp_server_high_d and o_db_server_low_d are respectively created by the trans-
formation of the rules r; and r3. After the transformation, o_ftp_server_high_d
contains the ftp server having the security level high while o_db_server_low_d
contains the database servers having the security level low. Finally, c_t is a
DTE type that will be associated to any access query satisfying the context Cf,
Cs, and Cj5 of the rules 71, ro, and r3. Let us consider the access query AQ
{(S? = web_client,01 = ftp_server, A? = read,C? = {query time=12 am})
to be evaluated and performed on the considered system. According to our

Web servers Database servers
with high with low
security level security level

———

Time between <__ \)

8am and 8pm < - -

. FTP servers
Web clients with high
with high security level
security level

> DTE type O

DTEdomain transition

Contains —|'> DTE type entrypoint(:‘)
Associated to —-| =>
. DTE domain |:|
Allow action ~ —3

Fig. 1. Transformation from a specific policy to a DTE policy

108 M. Smine et al.

transformation method, AQ will inherit the domain of its subject, so it will
initially belongs to the domain s_web_client_high_d. Moreover, the context C'¢
of AQ satisfies the contexts C1,Co and C3 of the three rules ri, 79, and
r3. Hence, the type ct will be associated to the query AQ. According to
the step 4 of our transformation method, the DTE type c_t will allow the
access query AQ to transit from the domain s_web_client_high_d to the domain
o_ftp_server_high_d. Furthermore, according to the transformation shown in
Fig. 1, the action access is authorized to be performed by access queries belong-
ing to the domain o_ftp_server_high_d over objects associated to the DTE type
o_ftp_server_high_t. So, we conclude that the query .AQ is to be authorized by
the transformation of SP.

Policy Transformation Correctness. A security policy transformation
method is correct if, for any access query, no rule in the transformed security
policy is violated when the transformation resulting policy is deployed. This is
formalized using the following definition.

Definition 4. Given a security policy SP = {r1,--- ,rn} and its corresponding
DTE transformation SPprE (as described in Definition 3). The transformation
from SP to SPprg is correct if and only if for any access query AQ: if AQ is
allowed (resp. denied) by SP, then it is allowed (resp. denied) by SPprE.

Theorem 1. The policy transformation method proposed in Definition 3 is
correct.

Proof. We prove the previous theorem by contradiction. Let us denote by SP the
transformed policy and SPprg the transformation resulting policy. According
to Definition 4, the policy transformation method is not correct if one of the
following cases hold:

— case 1: There exists an access query AQ such that it is allowed by SP and
denied by SPDTE-

— case 2: There exists an access query AQ such that it is denied by SP and
allowed by SPprE.

For both cases, a contradiction is shown in the following.

Case 1: Formally, this case implies that 3r; € SP,3AQ such that: S? € S;, 09 €
0;,A? € A;, C; is satisfied in C?, and D; = allow. S? € S; means that SY
will belong to the same domain as S; (s_P% _d) and that the query itself will
belong to s_P%: _d. According to the step 3 of our policy transformation method
(Definition 3), O? € O; implies that the object O? will have the type o P t.
In addition, according to the query initialization rules, C; is satisfied in C?
means that the type ¢;_t will be assigned to C'?. Then, according the step 4 of
Definition 3, when executed, AQ will transit from the domain s_P% _d to the
domain o_PFi_d. Subsequently, and according to the step 5 of Definition 3, since
AQ transited to o_PFi_d, it will have the permission to perform the set of actions

Network Functions Virtualization Access Control as a Service 109

Aj; on all entities having the type o P%i_t. Finally, since O € O; and A7 € A;,
then AQ will have the permission to perform the action A? on the object O4
which contradicts the hypothesis of the case 1.

Case 2: This case happens if one of the following conditions hold:

case 2.1: Given the access query AQ, there exists no rule in the policy SP
that allow AQ. Formally, #r; € SP such that S? € S;,07 € 0;, A9 € A;, C4
satisfies C;, and D; = allow. Let us suppose that the AQ is allowed by SPprE.
According to the transformation method, action permission is only specified
in step 5 of Definition 3. This step means that if AQ is allowed by SPprE,
then there exist a domain s_P% _d and a type o-P%i_t such that AQ belongs
to s_P%i_d and O has the type o_P%i_t. This means that there exists r; € SP
such that A, € A; and O € O;. In addition, according to step 3 of Definition
3, o-Pfi_d (i € [1,n]) does not contain any access query when created. These
domains are only accessible for access queries thought the transformation rule
defined in step 4 of Definition 3. Since we already showed that AQ belongs to
s_PSi_d, then there exits an entrypoint type c;_t that allow AQ to transit to the
domain o PFi_d which allow us to deduce that C; is satisfied in C'? and that
both S; and S? belongs to the same domain s_P%_d (since S9 € S;). Then, we
deduce that Jr; € SP such that S? € S;, O? € O;, A? € A;, C; satisfied in C1
and D; = allow which contradicts the case 2.1.

case 2.2: This case implies that given the access query AQ, in one hand 3r; €
SP,AAQ such that: S?7 € S;,07 € O;,A? € A;, C; is satisfied in CY, and
D, = deny and in the other hand AQ is allowed by SPprg. S? € S; means
that S? will belong to the same domain as S; (s_P_d) and that the query itself
will belongs to s_P%i_d, since AQ inherit the domain of its subject then AQ
belongs also to s_P% _d. Since the rule r; is transformed using our transformation
method, then there exists the type c;_t that represents an entrypoint to the
domain o_PFi_d. Since C; is satisfied in C9, the type c¢;t will be associated
to the C? of AQ, as a result, when executed, AQ will transit from s_P% _d to
o_PF¥i_d. However, based on the transformation of r;, the domain o P¥i_d will
be denied to perform the action A; on the type o_Pfi_t. Finally, since O? € O;
and A? € A; then the query AQ will be denied by the SP prg which contradicts
the case 2.2.

Service Requirements Specification

In our model, a security policy is going to be deployed on a VNF service. A
VNF service S is composed of a set of VNFs {vnfi,--- ,onf,} and a set of
forwarding graphs {fg1,-- -, fgm}. Each forwarding graph fg; is composed of a
set of forwarding paths {fp1,---, fpa}, each fp; can be represented using the
following couple ((vnfi, vnfi,--- ,vnf,i), fp-m;), where vnf} is the VNF that
is forwarding the traffic, vnf{ is the VNF to which the traffic is forwarded, and
fp-m; is the match policy that will be used to distinguish which traffic should
traverse the path.

110 M. Smine et al.

In our model, a traffic 7 is used to represent each exchange between two con-
secutive VNF's in the considered forwarding path. It is modeled as the quadruple
(vnf_sre,onf_dst,t_context,t_content) where vnf_src, vnf_dst, t_context, and
t_content represent respectively, the VNF that is sending the traffic, the VNF
destination of the traffic, the context and the content of the traffic. Formally, a
forwarding path fp = ((vnfi,vnfa, -, vnfy,), fp-m) is represented using n — 1
traffics 7; = (vnf;, vnfir1, fom,t_content), 1 < i < n.

It is worth highlighting that the action involved in the security policy to be
deployed can be implemented in the content of a traffic. For example, the “write”
action can be implemented according to the protocol that is used. If the FTP
protocol is used, a traffic containing the “post” ftp command implements the
action “writ” used in the security policy. Thanks to the previous observation, a
traffic can be modelled as an access query as defined in the following.

Definition 5. A traffic T = (vnf_src,vnf_dst,t_context,t_content) will be
modeled as an access query AQ = (51,07, A1, C?) where vnf_src equals to S,
unf_dst equals to O, A? are the actions that can be implemented by the traffic
content t_content, and C? = t_context.

To ensure a proper functioning of the VNF service to be deployed, the traf-
fics that represent each forwarding path should be allowed to flow according to
the latter. To meet the previous objective, for each traffic 7; = (vnf;, onfii1,
t;_context, t;_content) that is modeled as the access query AQ; = (vnf;, onfii1,
Al CT), we define the following policy rule:

rr, = (S =wvnf;,0 =vnfiz1, A=Al C =C! D = allow)

The previous rule states that vnf; is allowed to perform the action AY (imple-
mented by the content of the traffic 7;) over vnf;1; if the context CY is satisfied
in the considered system. Finally, The previous rule is transformed to a DTE
specification as described in Definition 1.

DTE Policy Enforcement. The DTE policy obtained from the transforma-
tion of the access control policy to be enforced and the network service to be
deployed is enforced using a special VNF that we called VNF _Filter. VNF _Filter
will basically analyze the traffics exchanged between the different VNF that com-
pose the deployed network service to evaluate the authorization of each access
query. In order to allow this, we should modify (as described in Definition 6)
the forwarding graphs used to orchestrate and manage traffic through the VNF's
that compose the deployed network service to make sure that these traffics pass
certainly through the VNF _Filter.

Definition 6 (Forwarding graph modification). Given a network service
S composed of a set of forwarding graphs {fg1,- -+ , fgm}. Each forwarding graph
fgi is composed of a set of forwarding paths {fp1,--- , fpa}, and each fp; is rep-
resented by a sequence sq; = (vnfi,onfs - mnffli} of the VNF that represents

Network Functions Virtualization Access Control as a Service 111

the path that should be traversed by a traffic. Each sq; = (vnfi,onfs, - ,vnff”>
of a forwarding path fp; will be modified as following:

sq; = (onf{, vnf_filter, onfi vnf_filter, -, vnf_filter, Unf,’L>

To illustrate, let us consider a forwarding path fp composed of a sequence of
three VNFs (vnf1,onf2,vnf3). The modification of fp according to Definition
6 makes sure that the traffic managed by fp will pass through the VNF _Filter
as shown in Fig. 2.

T [—VNFl]

1 VNF2]

Initial network service FG ————————- »

Modified network service FG —— »

Fig. 2. Network Service forwarding graph modification

The observation of all traffics exchanged between the VNF that compose the
considered network service gives VNF _Filter the ability to analyze those traffics
and authorize only the ones that are allowed by the considered DTE policy. The
pseudo-code in Algorithm 1 outlines the procedure used by the VNF Filter to
authorize a traffic exchanged between two VINF. It takes as inputs the traffic to
be authorized, the sets C of types and their respective contexts created in the
policy transformation process (Definition 3). It outputs a value (allow_traffic or
deny_traffic) indicating whether or not the traffic is allowed by the DTE policy.
The function parse_traffic allow to model the traffic 7 into an access query as
defined in Definition 5. The functions get_domains, get_types, get_transition_src,
and get_transition_dst are used to retrieve respectively, the set of domains to
which the subject of the access query belong, the set of types associated with
the object of the access query, the source domain of the domain transition, and
the destination domain of the transition. The function assign_types assigns to
the access query AQ the types used in C if their respective context matches
the context of AQ. Finally, the function check_permission check whether a DTE
domain is allowed or denied to perform the actions in A% on a given DTE type.

112

M. Smine et al.

Input: 7 /* the traffic to be authorized */
C={(cr;t,C;)}) /* Definition 3 (step 2) */

AQ (57,01, A1, C7) = parse_traffic(7)
subject_domains = get_domains(S?)
object_types = get_types(0O?)
AQ _types = assign_types(AQ, C)
possible_domains = ()
foreach AQ _type € AQ_ types do
if AQ_type is not a DTE entrypoint then continue ;
if get_transition_src(AQ_type) ¢ subject_domains then
continue ;
possible_domains = possible_domains U
get_transition_dst(AQ_ type)
end
is_allowed = false
foreach type € object_types do
foreach domain € possible_.domains do

if check_permission(domain,type, A1) = allow then
| is_allowed = true;
else if check_permission(domain,type, AY) = deny then
| return deny_traffic;
end
end

if is_allowed then return allow_traffic ;

5

Th

are

Algorithm 1: Access query authorization

Implementation and Experimental Evaluations

is section presents the implementation details of a prototype of our proposed
access control model. The design architecture of the prototype implementing
the proposed model is illustrated in Fig.3. The major functional components

described in the following.

OpenStack Tacker [22]: it is an official OpenStack project that orchestrates
and manages infrastructure resources and maintain the lifecycle management
of network services and VNF instances over the OpenStack infrastructure.

Access control engine (ACE): it works together with the VNF orchestra-
tor (Taker) security policy enforcement to the deployed VNF service compo-

nents (e.g., VMs, VNFs.)

OpenFlow Manager of OpenDaylight (ODL) [1] is an open-source appli-
cation development and delivery platform. OpenFlow Manager (OFM) [2]
is an application that runs on top of ODL allowing to visualize OpenFlow
topologies, program network traffic flow paths and gather network traffic

stats.

Network Functions Virtualization Access Control as a Service 113

— OpenStack Infrastructure: OpenStack as a virtual infrastructure manager
(VIM) layer is used to give a standardized interface for managing, monitoring
and assessing all resources within VNF infrastructure.

Inputs

VNF Network Service
descriptor(VNF and
VNFFG descriptors)

security . .
‘ attributes ’ Security policy

1) Onboard 3) Parse \ Access Control engine
the service inputs “ R
o tack Tack 4) Transform security policy rules and
enstack lacker VNF i i ts to DTE poli
P service requirements to policy) sy
5) Get the list of resources used by VNF service refinement

. 8) Load the
2) Deploy the VNF service 7) Deploy VNF filter DTE policy

9) Update Service VNFFG

[VNF1] [VNF2] [VNF3]

[\

10) Update network
flows

VM4 VM5 VM_filter

[
1_Virtual

(i Opendaylight
: K/ OpenFlow Manager
1_Virtual Network]

OpensStack Infrastructure

Fig. 3. Design architecture of the implementation of the proposed model and the oper-
ational flow of an access control policy deployment

In addition, Fig. 3 illustrates the different steps that are implemented in order
to deploy an access control policy on a VNF network service. In the following,
more details on each step are given.

— Onboard and deploy the network service (Steps 1 and 2): In these steps,
Tacker uses the network service descriptor provided as an input to onboard
and deploy the network service on the OpenStack infrastructure.

— Access control policy parsing and transformation (Steps 3 and 4): In these
steps, the access policy engine parses the VNF service descriptor, the secu-
rity properties associated which the different VNF that compose the network
service (e.g., security level, trust level, etc.), and the access control policy to
be deployed. Then, it transforms the access control policy to a DTE policy
as described in Definition 3.

— DTE policy refinement (Steps 5 and 6): The ACE engine queries Tacker to
get the set of resources (e.g., VMs, Connection points, networks, etc.) that are
used to deploy the different VNF that compose the deployed service. Then it
refines the DTE-policy at the resources level of the VNF service.

114 M. Smine et al.

— Policy enforcement (Steps 7, 8, 9 and 10): To enforce the DTE policy, the ACE
first uses Tacker to deploy VNF Filter which is a special VNF that imple-
ments a DTE engine we developed in python [21]. Second, it loads the refined
DTE policy to be enforced over the deployed VNF service on VNF _Filter.
Third, ACE updates the forwarding graphs of the deployed network service
(as illustrated in Fig.2) and uses OpenFlow Manager of ODL to make sure
that all network flows exchanged between the VNF that compose the deployed
network service will transit through VNF _Filter. Once VNF _Filter receives a
network traffic, it starts by parsing the traffic to extract its source and its
destination as well as the actions that are implemented by its content. Finally
it uses the DTE engine to check whether the traffic is allowed to transit from
its source to its destination i.e., the actions that are implemented by the con-
tent of the traffic are allowed to be performed by the traffic source component
over the traffic destination component.

We experimentally evaluate the performance of our approach. Our access
control engine prototype is hosted in a server running Linux with an Intel Xeon
E5-2680 v4 Processor with 8 vCPU and 16 GB of RAM while our implementa-
tion of the VNF filter including the implementation of the DTE engine is hosted
in a virtual machine running Linux having a processor with 2 vCPU and 2 GB of
RAM. In our empirical evaluation, we aim to quantify the following characteris-
tics of our approach. First, the time needed to transform an access control policy
to a DTE specification as a function of the number of rules of the considered
access control policy is quantified. The obtained results are depicted in Fig. 4.

time(s)

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
number of rules in the considered policy

Fig. 4. Policy transformation time

They show that transformation method we are proposing is quite efficient
since it takes around 230 ms to transform an access control policy composed
of 10* rules to a DTE specification. The time needed to transform a security
policy to a DTE specification grows linearly in function of the number of rules
in policy. Second, we quantify the round-trip time (RTT) required for a packet
as a function of the activation of our VNF _Filter (i.e., we aim to compare the

Network Functions Virtualization Access Control as a Service 115

RTT when our VNF filter is used and when it is not) and the number of rules
in the considered access control policy.

Figure5 reports a linear growth of the measured RTT in function of the
number of rules in the policy to be deployed. It shows that our implementation
introduces less than 2 ms delay when a policy composed of 500 rules is considered.

—— RTT (VNF _filter enabled)
—©O— RTT (VNF filter disabled)

g
':8.//_‘/*_—-74-—/)”‘
4

2
0 50 100 150 200 250 300 350 400 450 500
Number of rules

Fig. 5. RTT as a function of the number of rules in the access policy to be deployed

6 Conclusion

This paper proposes an access control as a service model to improve security
management in the context of NFV. We firstly investigated several existing NFV
orchestrators and several existing access control model in NFV infrastructure
and observed that (1) none of them provides a generic model and (2) they are
often not fully compliant with the ETSI NFV infrastructure in the sense that
the deployment of the access control policies requires often the modification of
the NFVI infrastructure. The previous observations motivate us to define a new
software-defined access control as a service model. Compared to existing models,
our proposition offers several advantages to VNF users. First, it is generic in the
sense that they can deploy most types of access control policy such as RBAC,
ORBAC, ABAC, etc. Second, it complies with the ETSI-NFV infrastructure
because it does not require any modification of the latter for policy deployment.
The conducted experimentations show that the implementation of the proposed
model is quite efficient. The deployment of a security policy composed of 500
rules introduces less than 2 ms delay for the round-trip time of a network packet.
As a future work, we aim to extend our proposed model to allow to check whether
a given network service deployment satisfies the requirements of a given security

policy.
References

1. The OpenDaylight Platform. https://www.opendaylight.org/. Accessed 30 Jan
2019

https://www.opendaylight.org/

116

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Smine et al.

Openflow Manager. https://github.com/CiscoDevNet/OpenDaylight-Openflow-
App. Accessed 30 Jan 2019

VNFFG. https://docs.openstack.org/tacker /latest /user/vnffg_usage_guide.html.
Accessed 1 Jan 2019

. Basile, C., Lioy, A., Pitscheider, C., Valenza, F., Vallini, M.: A novel approach for

integrating security policy enforcement with dynamic network Virtualization. In:
Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft),
pp. 1-5. IEEE (2015)

. Binz, T., Breitenbiicher, U., Kopp, O., Leymann, F.: TOSCA: portable automated

deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q., Daniel, F. (eds.) Advanced Web Services, pp. 527-549. Springer, New York
(2014). https://doi.org/10.1007/978-1-4614-7535-4_22

. ETSI NFV: Management and orchestration; VNF packaging specification. Techni-

cal report, DGS/NFV-IFA011

Guija, D., Siddiqui, M.S.: Identity and access control for micro-services based 5G
NFV platforms. In: Proceedings of the 13th International Conference on Availabil-
ity, Reliability and Security, pp. 1-10 (2018)

Hardt, D.: The OAuth 2.0 Authorization Framework. RFC 6749, October 2012.
https://doi.org/10.17487/RFC6749. https://ric-editor.org/rfc/rfc6749.txt

Hu, V.C., Kuhn, D.R., Ferraiolo, D.F., Voas, J.: Attribute-based access control.
Computer 48(2), 85-88 (2015)

Jaeger, B.: Security orchestrator: introducing a security orchestrator in the
context of the ETSI NFV reference architecture. In: 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 1, pp. 1255-1260. IEEE (2015)

Kalam, A.A.E.; et al.: Organization based access control. In: Proceedings of the
IEEE 4th International Workshop on Policies for Distributed Systems and Net-
works, POLICY 2003, pp. 120-131. IEEE (2003)

Lal, S., Taleb, T., Dutta, A.: NFV: security threats and best practices. IEEE
Commun. Mag. 55(8), 211-217 (2017)

Mauricio, L.A., Rubinstein, M.G., Duarte, O.C.M.: ACLFLOW: an NFV/SDN
security framework for provisioning and managing access control lists. In: 2018 9th
International Conference on the Network of the Future (NOF), pp. 44-51. IEEE
(2018)

Montero, D., et al.: Virtualized security at the network edge: a user-centric app-
roach. IEEE Commun. Mag. 53(4), 176-186 (2015)

Pattaranantakul, M., He, R., Meddahi, A., Zhang, Z.: SecMANO: towards Network
Functions Virtualization (NFV) based security management and orchestration. In:
2016 IEEE Trustcom/BigDataSE/ISPA, pp. 598-605. IEEE (2016)
Pattaranantakul, M., He, R., Zhang, Z., Meddahi, A., Wang, P.: Leveraging Net-
work Functions Virtualization orchestrators to achieve software-defined access con-
trol in the clouds. IEEE Trans. Depend. Secure Comput. (2018)
Pattaranantakul, M., Tseng, Y., He, R., Zhang, Z., Meddahi, A.: A first step
towards security extension for NF'V orchestrator. In: Proceedings of the ACM Inter-
national Workshop on Security in Software Defined Networks & Network Function
Virtualization, pp. 25-30 (2017)

Reynaud, F., Aguessy, F.X., Bettan, O., Bouet, M., Conan, V.: Attacks against
Network Functions Virtualization and software-defined networking: state-of-the-
art. In: 2016 IEEE NetSoft Conference and Workshops (NetSoft), pp. 471-476.
IEEE (2016)

Sakimura, N., Bradley, J., Jones, M.B., de Medeiros, B., Mortimore, C.: OpenlID
connect core 1.0. https://openid.net/specs/openid-connect-core-1_0.html

https://github.com/CiscoDevNet/OpenDaylight-Openflow-App
https://github.com/CiscoDevNet/OpenDaylight-Openflow-App
https://docs.openstack.org/tacker/latest/user/vnffg_usage_guide.html
https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.17487/RFC6749
https://rfc-editor.org/rfc/rfc6749.txt
https://openid.net/specs/openid-connect-core-1_0.html

20.
21.
22.
23.

24.

Network Functions Virtualization Access Control as a Service 117

Sandhu, R.S., Coyne, E.J., Feinstein, H.L.., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38-47 (1996)

Smine, M.: DTE engine. https://github.com/msmine/vnf-access-control-as-a-
service

Tacker, O.: Tacker-openstack NFV orchestration (2017)

Thanh, T.Q., Covaci, S., Corici, M., Magedanz, T.: Access control management and
orchestration in NFV environment. In: 2017 IFIP Networking Conference (IFIP
Networking) and Workshops, pp. 1-2. IEEE (2017)

Yakasai, S.T., Guy, C.G.: Flowldentity: software-defined network access control. In:
2015 IEEE Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN), pp. 115-120. IEEE (2015)

https://github.com/msmine/vnf-access-control-as-a-service
https://github.com/msmine/vnf-access-control-as-a-service

q

Check for
updates

Effective Access Control
in Shared-Operator Multi-tenant Data
Stream Management Systems

Marian Zaki'®™ Adam J. Lee?, and Panos K. Chrysanthis?

! College of Science and Engineering, Computer Science,
Houston Baptist University, Houston, TX, USA
mzaki@hbu.edu
2 Department of Computer Science,
University of Pittsburgh, Pittsburgh, PA, USA
{adamlee,panos}@cs.pitt.edu

Abstract. The proliferation of stream-based applications has led to the
widespread use of Data Stream Management Systems (DSMSs), which
can support the real-time requirements of these applications. DSMSs
were developed to efficiently execute continuous queries (CQs) over
incoming data. Multiple CQs can be optimized together to form a query
network by sharing operators across CQs. DSMSs are also required to
enforce access controls over operators according to data providers’ poli-
cies. In this paper, we propose the first solution to satisfy access control
policies at run-time in shared-operator networks in an non-disruptive,
efficient manner. Specifically, we propose a new set of low overhead
streaming operators, coined as Privacy Switches (PrSs), which are strate-
gically placed in the operator network to dynamically allow or deny the
flow of data in certain branches of the network based upon the current
state of access control permissions. Our experimental evaluation confirms
that our approach introduces low overheads in the shared operator net-
works while achieving high savings in the overall network performance.

Keywords: Access control - Operator networks * Stream processing
engines

1 Introduction

Nowadays, an increasing amount of data is produced in the form of high veloc-
ity data streams. This has led to the proliferation of stream-based applications
such as sensor-based monitoring (surveillance, car traffic, air quality), finan-
cial applications (stock markets, fraud detection), and health care applications.
At the same time, it has led to the widespread use of Data Stream Manage-
ment Systems (DSMSs) [1,4,5,8,10,15], developed to efficiently execute contin-
uous queries (CQs) over streaming data to support these classes of applications.
© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

A. Singhal and J. Vaidya (Eds.): DBSec 2020, LNCS 12122, pp. 118-136, 2020.
https://doi.org/10.1007/978-3-030-49669-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49669-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-49669-2_7

Access Control in Shared-Operator Networks for DSMSs 119

DSMSs are also referred to as Stream Processing Engines (SPEs) and stream
processing systems.

CQs are stored queries that execute continuously over data streams as data
arrives, on the fly. Since CQs are long-running, multiple CQs can be optimized
together to form a query (operator) network, in which multiple queries may share
one or more physical operators. The intermediate tuples produced by a shared
operator are placed in a shared input queue for the downstream operators of
the individual queries involved in the sharing. These optimizations increase the
throughput of processing multiple CQs simultaneously and minimize the memory
usage and computation times.

In DSMSs that host sensitive data, e.g., patient monitoring data, financial
data, etc., data providers restrict data accesses via access control policies that
describe the conditions under which users are permitted access to specific data
streams. Accordingly, the CQs registered by the system users may be granted or
denied access to specific data streams during the execution of these queries.

The most commonly used ways of applying access control over operators
in query networks enforce access control either before (pre-filtering) or after
(post-filtering) the execution of the network [17]. In both techniques, the fixed
placement of the access control filters may considerably limit query performance.
Pre-filtering means cutting off the streams in case any of the users lose access,
which will affect the input streams feeding into downstream shared-operator
networks. Post-filtering on the other hand, causes all operators to execute until
the end and then denying access to the query results for the users who lost access.
This wastes resources by processing query results that are never accessed.

An alternative solution is to isolate the queries that have temporarily lost
access from the rest of the shared-operator network. This requires modifying
the shared-operator network at runtime whenever access control changes are
encountered. This can cause extensive overheads on the system that can poten-
tially affect the system throughput and overall performance.

Under these challenges, it is vital for DSMSs to satisfy the access control
policies at run-time in shared-operator networks in a non-disruptive and efficient
manner, reinforcing both the need to share and need to protect design models.
To balance these properties, we propose a cost-effective way for shared-operator
networks to enforce access control within the network, thereby eliminating the
need to perform any changes to the structure of the shared-operator networks
in case of intermittent changes in the access control.

Specifically, in this paper we make the following contributions:

— We propose a new set of low overhead streaming operators that we refer to
as Privacy Switches (PrSs). These switches dynamically allow or deny the
flow of data streams in shared-operator networks based upon the current
state of the access control permissions. Accordingly, certain branches of the
query operator networks can be halted and spared execution to accommodate
intermittent loss of access to different users.

— We propose a placement algorithm to identify the best placement points for
PrSs in an optimized shared-operator network. The strategic placement of

120 M. Zaki et al.

the switches ensures seamless execution of CQs and reduces overheads in the
networks while honoring all changes in access permissions.

— We experimentally evaluate our approach by generating shared-operator net-
works with a controlled set of generation rules and input parameters. Our
experiments show that PrSs introduce low overheads in shared-operator net-
works and achieving high savings in overall network performance.

The remainder of the paper is organized as follows. Section 3 describes prior
work on access control in DSMSs and introduces the concept of security punc-
tuations. Section4 presents our system model, assumptions, and preliminaries.
Section 5 describes our proposed approach, which is evaluated in Sect. 6. Section 7
concludes the paper.

2 DMotivating Example

In the smart healthcare industry [9,13], wearable smart devices are equipped
with various bio sensors that are used to measure and monitor diverse health data
of individuals such as blood glucose levels, blood pressure, oxygen saturation,
heart rate, etc. This data makes it possible for different health care applications
to continuously query these data stream and provide an alarm service, notifying
in the risk of health issues based on individual activities of daily living.

Even though a large collection of health data is a valuable asset to the smart
healthcare field, serious concerns of data privacy are being raised. That is, indis-
criminate collection of personal health data can cause significant privacy issues.
Hence, most users do not agree to their health data being collected for the pur-
poses of data analysis which presents a major obstacle for the development of
smart healthcare services.

The following listing demonstrates three different data streams and Fig.1
illustrates two example CQs that can be used in smart healthcare applications.

Streaml: streamid, location, heartRate, timestamp
Stream?2: streamid, location , speed
Stream3: streamid, location , screentime, category

Listing 1.1. Data streams generated by smart devices

SELECT sl.streamid, sl.heartRate

FROM Streaml as sl [RANGE 10 min, SLIDE 1 min],
Stream2 as s2 [RANGE 10 min, SLIDE 1 min]
Stream3 as s3 [RANGE 10 min, SLIDE 1 min]

WHERE sl.location = s2.location

AND s2.location = s3.location

AND sl.timestamp > 8:00am

AND sl.timestamp < 7:00pm

AND s2.speed < 0

AND s3.screentime > 5h;

SELECT sl.streamid, sl.heartRate
FROM Streaml as sl [RANGE 5 min, SLIDE 1 min]
Stream2 as s2 [RANGE 5 min, SLIDE 1 min]
WHERE sl.location = s2.location
AND sl.timestamp > 6:00am
AND sl.timestamp < 7:00pm
AND s2.speed < 30;

Fig. 1. Continuous queries CQ1 and C'Q2

When executing these CQs in DSMSs, the queries optimizer will be able to
identify the common sub-expressions (both SELECT timestamps within the same

Access Control in Shared-Operator Networks for DSMSs 121

7 o
77777777777 A

-
‘:"CommOWPFEﬂX" tmp; «— (tmp,.location = tmp,.location)

s, strean::‘ll @

tmp, <—:r (s, timestamp #16:00am * tmp, | « (tmp,.timestamp
i s,.timestamp & 7:00pm > 8:00 am)

streal.ln2

Sy

tmp, 4_:1 (s,.speed < 30) tmp,, « (tmp,.spged = 0)

s, stream3

© X
tmp; < (sy.screentime > 4) tmp,, < tmps.location tmps, < (tmp,;.location
= tmp;, location = tmpj,.location)

Fig. 2. Shared-operators network for Q1 and Q2

interval and have the same JOIN conditions on the input streams) found in the
queries and accordingly construct a shared-operator network as shown in Fig. 2.
The figure excludes the window specifications, for clarity since they are the same
for all three data streams. Furthermore, in the figure, the highlighted vertices
are annotated as “common-prefix” operators since those are the shared operators
between both queries CQ; and CQ2 (i.e., the output of these operators feed into
two different operators belonging to the two queries).

3 Related Work

Prior work on access control enforcement in DSMSs can be divided into two dif-
ferent categories: cryptographic solutions and non-cryptographic solutions. Cryp-
tographic solutions such as those presented in Streamforce [2], utilize Attribute-
Based Encryption (ABE) to enforce access control which requires the data
provider to be directly involved in the querying process. PolyStream [21] allows
untrusted third-party infrastructure to compute on encrypted data, allowing
in-network query processing and access control enforcement. PolyStream uses
a combination of security punctuations, ABE, and hybrid cryptography to
enable flexible (ABAC) access control policy management. Sanctuary [20] uses
Intel’s SGX as a trusted computing base for executing streaming operations on
untrusted cloud providers.

Non-cryptographic solutions such as those presented by Carminati et al. [6,7],
provide access control via enforcing Role Based Access Control (RBAC) and
replacing the operators with secure versions which determine whether a client
can access a stream by referencing an RBAC policy. Lindner et al. [14] utilize
limited disclosure by using filtering operators and applying them to the stream
query processing results to filter the output based on relevant access control
policies. Ng et al. [18] also use the principles of limited disclosure to limit who

122 M. Zaki et al.

can access and operate on data streams, requiring queries to be rewritten to
match the level at which they can access the data.

Most non-cryptographic solutions require changing the underlying DSMS
either by modifying the traditional operators to become security aware or by
rewriting the queries, and therefore they are not globally applicable. Limited
disclosure applies basic filtering to the query outputs which means that query
operators execute at all times regardless of whether the output is used or not.

Unfortunately, all the cryptographic and non-cryptographic solutions that
have been proposed to maintain privacy through access control focused mainly
on independently executing queries. There has been no research to date that
allows access control policies on the input data streams and queries to be applied
over shared-operator networks to maintain both privacy and high performance.
Our proposed privacy switches approach is the first work in this context.

4 Preliminaries and System Model

In this section we will introduce our system model, assumptions and the prelim-
inaries used in our proposed solution.

4.1 System Model

The system consists of the following four main classes (entities) as shown in
Fig. 3):

— Data Providers generate and distribute data streams to DSMSs. They have
the choice of creating and updating the access control policies for the data
streams that they emit.

— Data Consumers can be individuals or applications who submit CQs to the
DSMSs Data consumers must submit credentials to satisfy the policies pro-
tecting access to their registered queries.

— DSMSs handle all the incoming data streams and submitted queries. They
execute query optimizers to generate shared-operator networks for the inter-
leaved execution of queries and schedule the operators’ execution. They
enforce the access control policies on the data streams and the corresponding
query results.

— Authorization Servers can be separate entities or an integral part of the
DSMSs. They validate users’ credentials to check authorizations, and inject
relevant SPs into the incoming data streams. They keep track of system state
changes such as new data consumers signing up, changes in access control poli-
cies, and changes in the users’ credentials (e.g., revoked or expired). These
changes can trigger the injection of new SPs into impacted data streams to
alter which users are able to see the results of CQs.

Access Control in Shared-Operator Networks for DSMSs 123

Data consumers

Access control 3 i
oo Data COI’\SU.IT\ETS Continuous
0 |C|e\s / credentials queries

1 1
1 1
! Query !
! Optimizer !

..SPs...
Data

providers

—_

Input data streams

Fig. 3. DSMS system model

4.2 Operators and Operator Networks

The following are the main defining elements of data streams, CQs, and operator
networks that will be used throughout the remainder of this paper:

— DSMSs are capable of processing long running set of continuous queries
CQOs =q1,q,-..,qy executing over data streams in the system.

— &S denotes the set of all input data streams in the system, while a continuous
data stream s € S is a potentially unbounded sequence of tuples that arrive
over time.

— Tuples in a data stream are of the form ¢ = [sid, tid, A], where sid is the
stream identifier, tid is the tuple identifier, and A is the set of attribute
values of the tuple.

— Queries are comprised of a set of relational query operators 01,09, ..., 0,.

A relational operator o; is presented as operatorpredicate With an associated
predicate. This may be a SELECT operator ¢ over one data stream, a JOIN oper-
ator X between multiple data streams, a PROJECT operator II that reduces the
number of attributes included in a single data stream, or a GROUP AGGREGATE
operator with predicate over a single attribute of a data stream to perform some
algebraic aggregate function (e.g., MAX, COUNT, SUM, etc.).

For example, the following are valid query operators
ETPTr1: 01 = Osy.5peed<30
ETPT2: 02 = Mg, location=s3.location & s1.timestamp>6:00am & s1.timestamp<7:00pm

The query optimizer takes as input a set of continuous queries CQ and identi-
fies groups of queries that share sub-expressions. The optimizer then generates a
shared-operator network, arranged in a Directed Acyclic Graph (DAG) format,
for each group of queries.

124 M. Zaki et al.

Definition 1. An interleaved execution plan for a group of queries is a DAG
network N' = (V,E,L). V, E, and L being the set of vertices, edges and set of
labels, respectively, and are defined as follows:

— A wvertex v; is introduced for every operator o; in query q;. If the results of o;
are used by more than one operator belonging to different queries, then the
vertex v; will be annotated as “Common-prefiz”

— If the results of o; are used in o, an edge (v; — v;) is introduced

— The label L(v;) is the processing done by the corresponding operator o; (i.e.,
Operatorpredicate) .

4.3 Access Control

We assume that DSMSs can enforce query-based access restrictions that can be
specified by both the data stream providers and/or the DSMSs over the entire
data stream. For example, if a user does not renew his subscription to access
certain query results in a DSMS, then this user could be temporarily denied
access to any of his registered queries—by denying access to their corresponding
data streams—until the subscription is renewed. Similarly, stream data providers
can define policies to identify the different data consumers who are allowed to
query those data streams. The work presented in this paper is very generic in
that it can accommodate a wide range of access control models (e.g., RBAC [11],
ABAC [12], or DAC [19)).

In general, let P denote the set of all authorization policies, each authoriza-
tion policy P : P € P enforced by a DSMS is defined as: P C CQ x U, where
U is the set of users or user roles/attributes. Let function m be a mapping such
that m : CQ — S, that is, m identifies the set of data streams that are being
accessed by a continuous query.

For each policy P, the authorization server will perform the following:

1. evaluate the proofs of authorization for each (g;,u;) pair in P

2. execute the mapping function m to identify the set of streams S that are
involved in each query ¢; in the case of query-based policies

3. construct the necessary SPs to identify the access privileges of each user or
group of users and inject them in the corresponding streams

According to the outcome of the proofs of authorizations, the Sign field in
the SP will be set to Sign = ‘4, if a user may access the data stream tuples for
a given query at any time tsgccess = ts or Sign = ‘=’ if a user is denied access
to the data stream at any time tSgccess > ts. Accordingly, the injected SPs are

used by our proposed algorithms to trigger the PrSs to turn on or off in the
shared-operator networks to enforce access control.

4.4 Security Punctuations

We adopt the notion of Security Punctuations (SPs) [16,17] proposed to enforce
access control in operator networks. SPs are considered meta-data in the form of

SP, overrides SP, for the new
incoming tuples of stream s

. tuple t,,,tuple t;, tuple t, SP2

Access Control in Shared-Operator Networks for DSMSs

SP, applicability

F_A_\

tuple t,, tuple t,, tuple t, SP,

Stream Data flow "

Query | Data Description| Security Restriction Sign Timestamp)
ID Part Part
(QID) (DDP) (SRP) SIGN TS
Access Control Model | +
ts
ai stream Type and user ids -

Fig. 4. Security Punctuations injected in a data stream

INSERT {SECURITY PUNCTUATION | SP}
[[AS] sp_name]

INTO STREAM [stream_name | stream_id] LET
[sp_name.] QID = <query_id>

[sp_name.] DDP = <ddp_expr>,

[sp_name.] SRP = <srp_expr>,

[sp_name.] SIGN ={ + |-},

[sp_name.] TS = <time>

INSERT SP AS spl
INTO STREAM s1 LET
[spL]QID =q1,

[sp1.] DDP = sl:all,
[spl.] SRP = RBAC: ul,
[sp1.]SIGN = { +},
[spl.] TS = <tsl1>

INSERT SP AS sp2
INTO STREAM s2 LET
[sp2.] QID =q1,

[sp2.] DDP = sl:all,
[sp2.] SRP = ABAC: u2,
[sp2.] SIGN ={ -},
[sp2.] TS = <ts2>

125

Fig. 5. SP syntax (right) and sample SPs injected in two separate data streams (left)

predicates that are injected into data streams in the order of their timestamps
and describe the access control privileges of each query. SPs are comprised of
the following fields (see Fig. 4):

Query ID: the identifier of the query that the SP is defining access for.

— Data Description Part: indicates the schema fields of a data stream tuple
that are protected by the policy. This can be at the granularity of an entire
stream, or specific tuples or attributes within the tuples.

— Security Restriction Part: defines the access control model type and the data
user(s) authorized by the policy.

— Sign: specifies if the authorization is positive (4) or negative (—).

— Timestamp: the time at which the SP is generated.

Figure 4 shows an example input data stream with two SPs. Figure5 shows
an extension to the CQL syntax [3] to support the specification of SPs in data
streams. The figure illustrates the syntax of an SP as well as an example of two
SPs injected into two data streams. Each SP indicates the access privileges of a
separate user over the tuples of the input data stream.

126 M. Zaki et al.

5 Privacy-Aware Shared Operator Networks

We now present the details of our proposed approach to achieve a cost-effective
way of handling access control in shared-operator networks. As mentioned earlier
in Sect. 1, the naive approaches of applying pre- or post-filtering may consider-
ably limit the shared-operator network performance. The alternative approaches
of constantly changing the interleaved shared-operator networks to isolate the
queries that are no longer accessible by any of the users, or even maintain-
ing different copies of shared-operator networks are both considered very costly
approaches for handling access control.

To overcome these limitations, our proposed solution involves embedding a
new set of operators called Privacy Switches(PrSs) in the networks. At a high
level, the main idea is to strategically place these switches in the network to
shut off branches of operators in the case of total access loss to certain query
outputs or by filtering out the query results in the case of partial access loss to
queries. By doing so, the shared-operator networks can execute disruptively and
efficiently.

5.1 Privacy Switches

Privacy Switches (PrSs) are the novel set of operators that will be integrated
within the shared-operator networks. These switches allow shared-operator net-
works to execute the queries impeccably while performing access control-based
filtering. For this purpose, three different types of PrSs are introduced:

— initial-switches: placed at some of the input streams to each operator net-
work and perform the traditional pre-filtering operations.

— in-network switches: embedded within the operator network and are capa-
ble of temporarily shutting off certain branches in the network to save the
unnecessary execution of some operators in certain access permission cases.

— terminal-switches: placed at the query outputs and they act as multiplexers
that can selectively filter query output to multiple users.

All three types of PrSs operate just like any other conditional query operator.
They are similar to SELECT or PROJECT operators’ that filters data input streams
based on the security predicates determined by the SPs injected in the streams.

To better understand how the PrSs operate, assume there is a shared-operator
network that interleaves the execution of multiple queries and each query could
possibly be shared by multiple users in the DSMS. The three different types of
the PrSs cover the following access scenarios:

— Case I: partial loss of access: In this case, only a subset of users lose access
to the data streams processed by one or more of the interleaved queries in
the shared-operator network. In this case, terminal switches will be in charge
of granting access of the query results to the subset of users who did not lose
their access privileges.

Access Control in Shared-Operator Networks for DSMSs 127

Algorithm 1: PrS execution algorithm

input: Stream

1 set PrS.AccessCounter = 0;

2 new SPs_batch arrives;

3 foreach SP € SPs_batch do

4 if SP.TS < tsgccess then

5 | discard SP;

6 else

7 if PrS.Type = “in-network” OR “initial” then

8 if SP.Sign = ‘+> AND PrS.QuerylD = SP.QID then

9 ‘ increment PrS.AccessCounter;

10 if SP.Sign = > AND PrS.QuerylD = SP.QID AND PrS.AccessCounter
!= 0 then

11 ‘ decrement PrS.AccessCounter;

12 if PrS.AccessCounter >0 then

13 ‘ send stream to PrS output;

14 else

15 ‘ discard stream;

16 else

17 if PrS.Type = “terminal” then

18 if SP.Sign = ‘“+> AND PrS.QuerylD = SP.QID then

19 add SP.SRP.u.id to PrS.U;

20 discard SP;

21 send stream to output of SP.SRP.u_id;

22 else

23 if SP.Sign = -7 AND PrS.QuerylD = SP.QID then

24 remove SP.SRP.u.id from PrS.U;

25 discard stream;

— Case II: total loss of access: In this case, all users lose access to one or more of
the interleaved queries in the shared-operator network. Accordingly, instead
of operating terminal switches and having possibly unnecessary operators exe-
cuting, both initial and in-network switches will shut off the isolated branches
of operators in the network that are not shared by any other queries. In this
case, a considerable amount of unnecessary work will be saved and perfor-
mance gains will be achieved.

Initial and in-network PrSs are defined as: PrS = <Type, QuerylD,
AccessCounter>, where Type defines whether this is an initial or in-network
PrS, QueryID is the query that the PrS is governing access to, and
AccessCounter is a counter that changes during the execution of the PrS to
identify the number of users who have access to that particular query. The
counter will have a value greater than zero in the case of partial loss of access,
and will be set to zero in the case of total loss. Terminal switches are defined
as: PrS = <Type, QueryID, U>, where U is the set of users that have access to the
query QuerylD governed by this switch.

Algorithm 1 shows the pseudocode for executing the different types of PrSs.
The input to each PrS is a data stream with embedded SPs. The PrSs execute
this algorithm only when new SPs arrive in the data streams. The algorithm
shows how the PrSs will allow or prevent the data streams from flowing through
the network based on the output of the authorization predicates indicated by
the Sign value in each SP.

128 M. Zaki et al.

Both initial and in-network PrSs operate in a similar manner. Each of these
PrSs increment their AccessCounter whenever an SP with a matching QuerylD
and a ‘+’ sign is encountered in the input stream and decremented each time
a matching SP with a ‘=’ sign shows up. In the case of partial access loss, the
AccessCounter will be greater than zero (i.e., there is at least one SP in a stream
that grants access to any user). In this case, the PrS will be switched on and
the data stream tuples will flow normally through the network (lines 14 and
15). Note that the assumption made here is that the authorization server will
re-inject SPs for the same user or set of users only if there are changes in the
access control permissions for those users.

In the case of total loss of access, the AccessCounter will decrement down to
zero (i.e., the last user who had access to the query lost that access). Accordingly,
the PrS will be switched off and the flow of the tuples will halt temporarily (lines
16 and 17) until new SPs show up with positive access signs.

Terminal switches operate slightly different. They multiplex the final query
output tuples to the users that have positive access as defined by their SPs
(lines 20-24). Note that for privacy preservation, the default setup of terminal
switches is deny the output to all users and only grant access when explicitly
granted by an SP (i.e., they start by an empty set of users U). Similarly, initial
and in-network switches have their AccessCounter initialized to zeros, which by
default will deny any access to the query outputs.

The operation of the PrSs is very similar to the well known notion of count-
ing semaphores that are typically used by many systems to coordinate access
to different resources. By looking at the status and counter of each PrS, the
DSMSs can collect statistics about how many users in the system are currently
allowed access to a certain query output. The PrSs present an effective and sim-
ple solution for enforcing access control in shared-operator networks. They allow
the on-the-fly adjustment of the network status as changes in access control take
place without the need to re-direct the input streams to different networks or
the need to restructure the operator network.

5.2 Placement of Privacy Switches

Algorithm 2 shows the pseudo-code for the PrSs placement algorithm. This algo-
rithm extends the query optimizer, i.e., after a query optimizer constructs a
shared-operator network strategically embedding the switches in the network.

The input to the algorithm is a shared-operator network pre-computed by the
queries optimizer in the DSMSs. The placement of terminal switches is straight-
forward, at the end of each query output a terminal-switch will be inserted (line
2). In-network switches placement requires some analysis of the network graph.
The main idea is to find the operators that are shared by multiple queries. Those
shared-operators annotated are the ones annotated as “Common-Prefixes”. The
in-network switches will be placed along the outgoing edges of the last set of oper-
ators that belong to the common-prefixes (line 15). Finally, the initial-switches
are placed at the input streams (lines 7 and 8) to apply pre-filtering of the input
streams in the case of total access loss.

Access Control in Shared-Operator Networks for DSMSs 129

Algorithm 2: PrSs placement algorithm

input: A shared-operator network N = (V, E, L)
Data: s defines a stack

1 foreach query q; output traverse N backwards (DFS-search) do

2 insert PrS = < Type = “terminal”, Queryl D = q;, U = null > at the output of
qi;
3 s.push(v);
4 while s is not empty do
5 v = s.pop();
6 if v is NOT annotated “Common-prefiz” then
7 if N.adjacentEdges(v)==¢ then
8 insert PrS =
< Type = “inital”, Queryl D = q;, AccessCounter = 0 > at the
input stream;
9 else
10 foreach edge from v to w € N.adjacentEdges(v) do
11 | s.push(w);
12 else
13 insert PrS =
< Type = “in — network”, Queryl D = q;, AccessCounter = 0 > at
outgoing edge from wvj;

Lo

.

‘Common-prefix 1;.;) tmps «— (tmp,.location = tmp,.location)
i o
[)

tmp; «(s,.timestamp #6:00am * tmp,, « (tmp,.timestamp

stream2 | S-timestamp > 8:00 am)
‘

stream] |

TN
Sgi" l/\‘lA

|
\ i

tmp, ei(szAspeed <30 tmp,, < (tmp,.speed = 0)

stream3

PO >
tmp; < (sy.sereentime >4) tmpy,; « tmp.location tmpy, « (tmp,;.location
= tmp;, location = tmps,.location)

Fig. 6. Example of a privacy-aware shared-operators network

5.3 Example Execution of Privacy Switches

Figure 6 shows the same shared-operator network as that of the motivating exam-
ple from Sect.4 with the PrSs embedded in the network according to the pro-
posed placement algorithm.

Assume that this shared-operator network is being executed by multiple
users who initially have access granted to all three data streams, hence all users
can view the output of both queries. From the figure, the dotted box high-
lights the “Common-prefix” zone of the operators shared by both executing
queries. According to the switches placement Algorithm 2, the in-network pri-
vacy switches are placed right after those operators. Also at the output of both
queries, terminal switches are placed, and at the front of the streams initial PrSs
are placed.

130 M. Zaki et al.

In this particular example, if all users accessing Q)2 lose access to the input
streams feeding into this query, the PrSs will shut off six out of the ten operators
in the network saving unnecessary processing and bandwidth. When any of these
users gain their access back, the PrSs will resume operating all the nodes. This
shows that the different switches orchestrated together are capable of enforcing
the access control policies in shared-operator networks in a cost-effective way.

6 Evaluation

In the following sections we will present the details of the shared-operator net-
works simulator we implemented to evaluate the performance of our proposed
privacy-aware shared-operator networks, as well as the experimental results.

6.1 Configurations and Experimental Setup

Generating synthetic shared-operator networks gave us control over the input
parameters and the different scenarios of access control. The simulator takes as
input the following parameters: number of input streams, number of interleaved
queries, number of users executing those queries, number of query operators,
and degree of sharing. The degree of sharing input parameter indicates the per-
centage of the query operators that will be included in the “common-prefix” of
the network (i.e., how many query operators will be shared across the execut-
ing queries). An assumption is made that all shared operators are defined over
the same window specifications which are omitted for simplicity of the analy-
sis. Given these parameters the simulator generates shared-operator networks
arranged as DAGs.

Some heuristics were enforced to assure the correctness and validity of the
generated networks. For example, the “join-push-down” approach of operators
was enforced (i.e., SELECT and shared SELECT nodes appear before JOIN and
shared JOIN nodes). This is a common practice for queries optimizer to execute
the SELECT operators first to filter out the tuples as early as possible and improve
queries processing times. SELECT and PROJECT operators take one input stream
and produce a filtered output stream, while JOIN operators take two different
input streams and produce a single joined output stream.

After the random shared-operator networks are generated, our placement
Algorithm 2 executes to identify the locations of the PrSs. The number of PrSs
is dependent on the topology of the generated network. Finally, the users are
randomly assigned to the query outputs of each generated graph. Figure 7 illus-
trates two randomly generated shared-operator networks by the simulator. Note
that the final total number of query operators generated could be slightly higher
than the initial input parameter.

In the experiments, the average processing time per tuple for each SELECT and
PROJECT operator in the network was set to 0.1ms, and the average processing
time per SP for each PrS to 0.1 ms as well. JOIN operators average processing
time per tuple was set to 0.3 ms. Since these simulations are intended to compare

Access Control in Shared-Operator Networks for DSMSs 131

(a) Degree of sharing = 20% (b) Degree of sharing = 80%

Fig. 7. Samples of randomly generated shared-operator networks [input streams=3,
queries = 3, total operators =12]

and contrast the performance of different operator networks, these values were
chosen as rough estimates and defined as constants throughout the execution
of the networks. In reality, the processing times of operators would be different
from one another. The upper bound on the processing time of each network
to process 1000 input tuples was computed. Note that the reported times are
upper bound since not every single operator in the network will process all 1000
tuples, as the input tuples get filtered by the SELECT operators, fewer tuples will
be processed in the network. The arrival rate of SPs was set to be 100 tuples
(i.e., for every 100 tuples, new SPs will show up in the input streams for each
user in the system). The PrSs will process all SPs but will only take action for
those SPs that match with the SP.QID = PrS.QuerylD.

To better understand the security enforcement overheads in different shared-
operator networks, the upper bound of the network execution times were com-
pared for the following three cases: i) mo-sharing — each user is executing a
separate operator network for each submitted query (base case), ii) shared with-
out PrSs — shared-operator network with only post-filtering applied, iii) shared
with PrSs — shared-operator network with security enforcement using PrSs.

6.2 Experiment 1: Varying Degree of Sharing

These set of experiments attempt to answer the following question: Q1: what
are the security enforcement overheads in the shared-operator networks induced
by the PrSs?

To answer this question, the experiments computed the average processing
times of 1000 input tuples for different degrees of sharing. Two different exper-
iment settings were used, once for 3 interleaved queries with 15 operators and
another for 5 interleaved queries with 25 operators. For each degree of shar-
ing the network execution times were averaged for 10,000 randomly generated
operator networks.

132 M. Zaki et al.

s
e
o2
1o
E o
Eom
§ w
.
!

dgree= 204 —— deree= 0%

Mroshang msharngwiboutPss mshaing PSS

(a) Execution time for a network with 15 (b) Execution time for a network with 25
operators operators

Fig. 8. Experiment 1 results

Figures 8a and 8b show the reported execution times (in logs ms) of the
networks. The figures show that the average execution time of shared-operator
network outperforms the non-shared networks with approximately 92%. This
validates the benefits of executing shared-operator networks in DSMSs. The
experiments show that the PrSs add negligible overheads to the network per-
formance (an average of 0.5% increase in the execution time). This behavior is
justified by the fact that PrSs execute infrequently (only when they encounter a
new SPs in the streams that match the query id). The experiments also show that
both the number of PrSs inserted in the networks by the placement algorithm
and the execution times were insensitive to the degree of sharing.

6.3 Experiment 2: Varying Access Control

These experiments were designed to answer the following two questions: Q2: how
much cost savings in the networks can be achieved as users start losing access to
queries? and Q3: how much does the overlap between queries affect the execution
times as users start losing access to queries?

To answer both questions, the experiments measured the execution times of
the networks as users start losing access to query outputs. To cover all cases, all
different possible combinations of access loss were examined. For each degree of
sharing examined, the network execution times were averaged for 10,000 ran-
domly generated shared-operator networks. For each generated network, the
execution times were measured in the following scenarios: shared network with-
out PrSs and only post-filtering, shared network with PrSs and full access to
all queries and all possible combinations of queries’ losses. Figure9 shows the
results for networks generated with 3 input streams and 3 interleaved queries
with an average total of 20 operators. On average 11 PrSs were inserted in the
generated graphs.

From Fig.9, and consistent with the previous experiments, the difference
in execution times between shared networks with and without PrSs was mini-
mal. As the queries start losing access, the savings in the execution times were
noticeable when compared to the cases of shared with only post-filtering of query

Access Control in Shared-Operator Networks for DSMSs 133

| |I | ‘I | |I|%”}

degree = 20% degree = 40% degree = 60% degree = 80%

3000

2500

2000

“

1500

Time (ms)

1000

m sharing no PrSs Sharing with PrSs B Access Loss (queries 1 & 2) Access Loss (queries 1 & 3)

1 Access Loss (queries 2 & 3) Access Loss (query 1) O Access Loss (query 2) Access Loss (query 3)

Fig. 9. Network execution time for varying degrees of sharing and access loss patterns

outputs and shared with PrSs and full access. The average execution time sav-
ings between the shared with PrSs and shared without PrSs was approximately
38% in the case of two out of three queries lose access, and 19% in the case of
one query access loss.

Another observation is that PrSs improve the network performance when
the queries have lower degrees of sharing (i.e., less common subexpressions).
The reason is, with fewer shared-operators, the in-network switches can shut off
more isolated (unshared) query operators in the case of total users loss of some
query outputs. This behavior of the privacy-aware shared operator networks
show that even with low degrees of sharing, the performance benefits would be
even bigger when intermittent total access control loss is encountered.

7 Conclusions

In this paper we presented a novel solution for enforcing access control over
shared-operator networks in DSMSs. The solution presented allows DSMSs to
interleave the execution of multiple overlapping queries shared by multiple users
while applying access control restrictions on a per user or group of users basis
without disrupting the operation of the shared-operator networks. The solution
introduces a new set of operators, Privacy Switches (PrS), that are capable
of seamlessly configuring the network to allow or deny access to certain query
results complying with the access control policies defined in the system. The
experimental evaluations showed that the proposed technique induces minimal
overheads on the shared-operator networks while achieving great gains in the
network performance in the cases of intermittent access loss to some streams
and queries. The technique proved to perform better in the case of total access
loss with queries that have less common subexpressions, which shows greater
benefits of the privacy-aware shared-operator networks even in lower degrees

134 M. Zaki et al.

of sharing. A dynamically configurable shared-operator network saves not only
time, but also bandwidth consumption, and several consequential monetary costs
associated with configuring and executing shared-operator networks in DSMSs
that could possibly be operating in cloud environments.

Acknowledgments. This work was produced while the first author was a PhD stu-
dent at the University of Pittsburgh. This work was supported in part by the NSF award
CNS-1253204 and the NIH award U01HL137159. The content is solely the responsibil-
ity of the authors and does not necessarily represent the official views of the NSF and
NIH.

Appendix A Correctness of Privacy Switches

In this appendix we will present proof of correctness of the PrSs operation to
ensure that the data streams privacy are enforced at all times. The proof will
show that the PrSs will only allow tuples of a particular stream to be accessed
by the users that are specified in the SPs, otherwise they will enforce denial-by-
default.

Theorem 1 (PrSs Correctness). During the execution of the PrSs as
described by Algorithm 1, for any tuple t, PrS will allow the flow of t only if
its preceding SP has a ‘+’ access sign, otherwise PrS will block the flow of t.

Proof. To prove this claim, the following must be asserted:

(i) terminal PrSs will only allow users specified by the SPs to access the tuples.
(ii) in-network and initial PrSs only allow tuples to flow through the network if
there is at least one user that has access granted.

Note that the terminal PrSs are the switches that have the ultimate control
of which users can access the tuples of a particular data stream, even if the initial
and in-network PrSs allow all the tuples to flow through the network. As such,
proving the privacy of a shared-operators network is only dependent on proving
that assertion (i) is true. Yet, to prove that a shared-operators network not only
denies access to the data streams to those users who are not allowed access, but
also ensures that access is granted to those users who are allowed access, then
both assertions (i) and (ii) need to be true.

For the base case, assume that 3 authorization policy P that specifies that
uy can access g1 and SP is used to encode this policy and is injected in all data
streams used in processing ¢q;. Let ¢ € T, where T is a set of tuples, be a tuple
that belongs to the data stream used in processing ¢;. There are two cases to be
considered to assert both (i) and (ii):

1. SP arrives prior to tuple t,
2. tuple t arrives prior to SP.

Access Control in Shared-Operator Networks for DSMSs 135

Case 1: if SP.q; is ‘4, then all initial and in-network PrSs processing this SP
will increment their PrS.AccessCounter and allow the following data tuple ¢
and SP.q; to reach to the terminal switches. Terminal switches will in turn add
SP.SRP.u;q to the list PrS.U and open up the access channel for this user to
allow tuple t to flow into query output.

If SP.q; is ‘—’, then all initial and in-network PrSs will decrement their
counters. If the counter value goes down to zero, this means this user was the
last user to have access and the PrSs will not allow the tuples to flow to the
output (total loss case). If the counter is greater than zero, then the tuples will
flow to the terminal switches. For each terminal switch, if SP.SRP.u;q € PrS.U,
then this user will be removed from the list, and the access channel to this user
will be blocked.

Case 2: tuple ¢ will only flow to the channel assigned to user u; iff u; € PrS.U.
Since users are only added to the PrS users list and given access if an explicit
SP with a ‘+’ sign is encountered at time SP.T'S < tSqccess, then if t arrives
prior to the SP, the denial-by-default will be enforced.

The above cases account for the possible scenarios of a set of tuples 7" and
their equivalent SPs showing up in the data streams. By proving that both
assertions (i) and (ii) are true, it is shown that Theorem 1 holds in the base case.

Observe that an argument similar to that used in the base case shows that
the same behavior of PrSs would apply to all policies. Furthermore, the inductive
hypothesis can be used to prove that the value of the SP.Sign is in charge of
activating or deactivating the users channels of the terminal PrSs. As such, only
those tuples that are preceded with a positive SP sign will flow to the users
specified by the SPs, and Theorem 1 holds for all policies.

References

1. Abadi, D.J., et al.: Aurora: a new model and architecture for data stream manage-
ment. VLDB J. 12, 120-139 (2003). https://doi.org/10.1007/s00778-003-0095-z

2. Anh, D.T.T., Datta, A.: StreamForce: outsourcing access control enforcement for
stream data to the clouds. In: Proceedings of the 4th ACM Conference on Data
and Application Security and Privacy, CODASPY 2014, pp. 13-24. ACM, New
York (2014)

3. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15, 121-142 (2006). https://doi.org/
10.1007/s00778-004-0147-z

4. Cangialosi, F.J., et al.: The design of the Borealis stream processing engine. In:
Second Biennial Conference on Innovative Data Systems Research, CIDR 2005,
January 2005

5. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flink™: stream and batch processing in a single engine. IEEE Data Eng.
Bull. 38, 28-38 (2015)

6. Carminati, B., Ferrari, E., Tan, K.: Enforcing access control over data streams. In:
Proceedings of the 12th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT 2007, pp. 21-30. ACM, New York (2007)

https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1007/s00778-004-0147-z

136

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Zaki et al.

Carminati, B., Ferrari, E., Tan, K.L.: Specifying access control policies on data
streams. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E.
(eds.) DASFAA 2007. LNCS, vol. 4443, pp. 410-421. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71703-4_36

Cetintemel, U., et al.: The Aurora and Borealis stream processing engines. In:
Garofalakis, M., Gehrke, J., Rastogi, R. (eds.) Data Stream Management. DSA; pp.
337-359. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-540-28608-
0-17

Chen, C.M., Agrawal, H., Cochinwala, M., Rosenbluth, D.: Stream query pro-
cessing for healthcare bio-sensor applications. In: Proceedings. 20th International
Conference on Data Engineering, pp. 791-794, April 2004

Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: a scalable continuous
query system for internet databases. In: Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, pp. 379-390. SIGMOD, ACM
(2000)

Ferraiolo, D.F., Barkley, J.F., Kuhn, D.R.: A role-based access control model and
reference implementation within a corporate intranet. ACM Trans. Inf. Syst. Secur.
2, 34-64 (1999)

Hu, V.C., Kuhn, R., Ferraiolo, D.F., Voas, J.: Attribute-based access control. Com-
puter 48, 85-88 (2015)

Kim, J.W., Jang, B., Yoo, H.: Privacy-preserving aggregation of personal health
data streams. PLOS ONE 13, 1-15 (2018)

Lindner, W., Meier, J.: Securing the borealis data stream engine. In: 2006 10th
International Database Engineering and Applications Symposium, IDEAS 2006,
pp. 137-147, December 2006

Liu, X., Buyya, R.: D-Storm: dynamic resource-efficient scheduling of stream pro-
cessing applications. In: 2017 IEEE 23rd International Conference on Parallel and
Distributed Systems (ICPADS), pp. 485-492, December 2017

Nehme, R.V., Lim, H.S., Bertino, E.: Fence: continuous access control enforcement
in dynamic data stream environments. In: Proceedings of the Third ACM Confer-
ence on Data and Application Security and Privacy, CODASPY 2013, pp. 243-254.
ACM, New York (2013)

Nehme, R.V., Rundensteiner, E.A., Bertino, E.: A security punctuation framework
for enforcing access control on streaming data. In: Proceedings of the 2008 IEEE
24th International Conference on Data Engineering, ICDE 2008, pp. 406—415. IEEE
Computer Society, Washington, DC (2008). https://doi.org/10.1109/ICDE.2008.
4497449

Ng, W.S., Wu, H., Wu, W., Xiang, S., Tan, K.L.: Privacy preservation in stream-
ing data collection. In: 2012 IEEE 18th International Conference on Parallel and
Distributed Systems, pp. 810-815, December 2012

Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commun.
Mag. 32(9), 40-48 (1994)

Thoma, C., Lee, A., Labrinidis, A.: Behind enemy lines: exploring trusted data
stream processing on untrusted systems. In: Proceedings of the Ninth ACM Confer-
ence on Data and Application Security and Privacy, CODASPY 2019, pp. 243-254.
ACM, New York (2019)

Thoma, C., Lee, A.J., Labrinidis, A.: PolyStream: cryptographically enforced
access controls for outsourced data stream processing. In: Proceedings of the 21st
ACM on Symposium on Access Control Models and Technologies, SACMAT 2016,
pp. 227-238. ACM, New York (2016)

https://doi.org/10.1007/978-3-540-71703-4_36
https://doi.org/10.1007/978-3-540-28608-0_17
https://doi.org/10.1007/978-3-540-28608-0_17
https://doi.org/10.1109/ICDE.2008.4497449
https://doi.org/10.1109/ICDE.2008.4497449

®

Check for
updates

Information Flow Security Certification
for SPARK Programs

Sandip Ghosal and R. K. Shyamasundar(®)

Department of Computer Science and Engineering, Indian Institute of Technology,
Bombay, Mumbai 400076, India
sandipsmit@gmail.com, shyamasundar@gmail.com

Abstract. SPARK 2014 (SPARK hereafter) is a programming language
designed for building highly-reliable applications where safety and secu-
rity are key requirements. SPARK platform performs a rigorous data/in-
formation flow analysis to ensure the safety and reliability of a program.
However, the flow analysis is oriented towards establishing functional
correctness and does not analyze for flow security of the program. Thus,
there is a need to augment the analysis that would enable us to cer-
tify SPARK programs for security. In this paper, we propose an analysis
to find information flow leaks in a SPARK program using a Dynamic
Labelling (DL) approach for multi-level security (MLS) programs and
describe an effective algorithm for detecting information leaks in SPARK
programs, including classes of termination/progress-sensitive computa-
tions. Further, we illustrate the application of our approach for overcom-
ing information leaks through unsanitized sensitive data. We also show
how SPARK can be extended for realizing MLS systems that invariably
need declassification through the illustration of an application of the
method for security analysis of Needham-Schroeder public-key protocol.

1 Introduction

SPARK [1] is a programming language built on Ada 2012. While the SPARK
data flow analysis [4,5] primarily emphasizes on establishing functional correct-
ness, the flow security aspect remains neglected. Thus, certifying a program for
flow security [8] is crucial for building reliable and secure applications.

A security property, often referred to as information-flow policy (IFP), gov-
erns the flow security certification mechanisms. One of the widely used poli-
cies for security certification first advocated in [8] says: if there is informa-
tion flow from object x to y, denoted by x — y, then the flow is secure if
A(z) can-flow-to A(y), where X is a labelling function that maps subjects (stake-
holders of a program in execution) and objects (variables, files) of a program
to the respective security label or class which describe the confidentiality and
integrity of program values. The security labels together form a security lattice.
In this paper, we are concerned with algorithmic techniques for security certifi-
cations of SPARK programs that comply with the IFP over a security lattice.

© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

A. Singhal and J. Vaidya (Eds.): DBSec 2020, LNCS 12122, pp. 137-150, 2020.
https://doi.org/10.1007/978-3-030-49669-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49669-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-49669-2_8

138 S. Ghosal and R. K. Shyamasundar

First, we highlight the security aspects of information flow and sanitization of
sensitive data in SPARK programs following an assessment of proposed solutions
in the literature.

1. Role of Implicit Flows: Two principle flows of information in a program
are direct and indirect or implicit flows. A typical example of direct information
flow is an explicit assignment of a secret value. Implicit flows arise when the
control flow of a program is affected by secret values. Note that often secret
information could be encoded in terms of differences in side effects of control
flow. Such a property leads to various further classifications, such as termination-
sensitive/insensitive or progress-sensitive/insensitive.

The work by Rafnsson et al. [17] was the first exploration towards the
flow security in SPARK programs with the focus on termination-and progress-
sensitive information leaks. We shall briefly describe the evidence of information
leaks as shown in [17].

a. Termination-insensitive flow analysis in SPARK [17]:

A termination-sensitive flow analysis can track an instance that depends on
the program termination. However, it is evident from the example shown in
Table 1 that SPARK follows a termination-insensitive flow analysis. Note that
the program outputs a character ‘I’ depending on the termination of if block,
which eventually terminates if the variable H is an odd number. If H is secret,
then the program leaks one bit of sensitive information.

Table 1. SPARK program leaking Table 2. SPARK program leaking

information through a non-terminating information progressively.
loop.
procedure Leak (H:in out Byte) is
procedure Leak (H:in out Byte) is K: Byte := 0;
begin begin
H:=H; H:=H;
if H mod 2 =0 then while True loop
while True loop Write(Standard Output, K);
H . =H; if K >= H then
end loop; while True loop
end if; H:=H;
Write(Standard_Output, end loop;
Character’Pos(’!7)); end if;
end Leak; K: =K+ 1;
end loop;
end Leak;

b. Progress-insensitive flow analysis in SPARK [17]:

A progress-sensitive analysis can track the completion of an instance through
the continuous progress of a program. The program shown in Table2 outputs
all the numbers up to H through an intermediate variable K, thus progressively

Information Flow Security Certification for SPARK Programs 139

reveals the sensitive information in H. The program passes through the SPARK
examiner, proving the flow analysis is progress-insensitive.

The solution proposed in [17] identifies the terminating loops using termina-
tion oracles [14] and performs a graph transformation by introducing additional
edges going out from potentially infinite loops to the end of the program. There-
fore, it extends the dependency in the program and lets SPARK to perform
dependency analysis on control flow graphs. While the approach avoids explicit
exceptions, it needs to instrument the code from a global understanding, and fur-
ther, there is no concrete feedback on the reasons for insecurity to the program-
mer. The main shortcomings of the above solutions are: (i) the transformations
are not algorithmic (automatic), (ii) difficult to detect the issues of information
leak. Nonetheless, the source-to-source transformation approach of [17] connects
the theory of progress-sensitive non-interference with the practice, the SPARK
data flow analysis together with the above approach is insufficient to enforce the
classic notion of non-interference [6,11,20] while building MLS systems. Thus, it
would be nice if an algorithmic strategy could be established that would enable
us to overcome the above problems.

2. Sanitizing Data: Another aspect of security in SPARK, as highlighted by
Chapman [7], concerns sanitizing sensitive local data in Ada-SPARK programs
for building secure applications. The author elaborates potential leaks due to
access to “unsanitized” sensitive temporary data, e.g., OS page files or core dump
of a running process. For instance, in the simple decryption program shown in
Table 3, the local variables N and D become sensitive and, if not sanitized, could
leak secret information in S. Chapman demonstrates the issue of Ada language,
where an attempt to sanitize sensitive data is suppressed by the compiler while
performing optimization. In SPARK, the sanitization step is ineffective as it
does not influence the final exported value. The discussion arises questions like:

How do we define ‘sensitive’? What objects in the program are ‘sensitive’?
How are they identified?

The author prescribes one

possible solution, i.e., adopt- Table 3. A simple decryption program written in
ing coding policies to san- SPARK.

itize sensitive local data in procedure Decrypt(C: in Integer; S: in
the Ada-SPARK project, e.g., Private Key; M: out Integer) is
use of pragma Inspection_ N,D:Integer;

Point. Further, following the begin

naming convention for the N :=Get_N(S);

sensitive data, e.g., adding D := Get_D(95);

prefixes “Sensitive_”, “_.SAN” M = (C *xD) mod N;
to the names of types, vari- — — Sanitize N and D
ables, would aid the program- N :=0;
mer to handle it appropri- D :=0;

ately. Thus, it must be evi- end Decrypt;
dent that there is a need to

140 S. Ghosal and R. K. Shyamasundar

build a succinct definition of “sensitive” data and provide an algorithmic anal-
ysis for the compiler /runtime monitor for appropriate treatment.

In this paper, we propose a single alternative solution to the above problems
using a dynamic labelling algorithm [9,10] that not only helps to identify the
sensitive local objects but also detects potential information leaks in SPARK pro-
grams, thus alleviate the burden of manual intervention in the source program.
The automation receives a list of immutable security labels of global variables as
input and generates mutable labels for the local variables while following the TFP
throughout the computation. Primarily, objects sensitive to the outside world
are considered as global, but the programmer may use her discretion to choose
any variable as a global object.

Further, developing a secure application that involves objects with security
labels from a multi-point general lattice often demands the need for declassifi-
cation. We introduce the construct Declassify borrowing the notion of declas-
sification from the security model RWFM [12,13] as briefed in the later section.

The main contributions of our work are summarized below:

1. Propose an algorithmic solution for SPARK statements using information
flow policies and establish its capability to detect program points that could
plausibly leak information.

2. Illustrate the efficacy of our approach in detecting information leaks primarily
through termination channels [19] or progress channels [3] and discuss the
advantages, such as localizing possible leaking points, identifying sensitive
objects automatically.

3. Introduce “Declassify” construct for SPARK programming language based on
the model proposed in [12] and illustrated its usage through an application
on a cryptographic protocol.

The rest of the paper is organized as follows. Section2 provides the neces-
sary background for dynamic labelling algorithm and RWFM flow security model.
Section 3 presents a single alternative solution to overcome the shortcoming
of SPARK flow analysis using security labels and dynamic labelling algo-
rithm. Section4 discusses the necessity of declassification as an extension in
the SPARK language and illustrate the Declassify construct with an applica-
tion of Needham-Schroeder (NS) public key protocol. Finally, implementation
highlights are given in Sect. 5 followed by conclusions in Sect. 6.

2 Background

In this section, we briefly discuss the dynamic labelling algorithm and provide
an overview of a recently proposed flow security model RWFM that is used for
labelling subjects and objects and governing information flow transitions while
developing an MLS system in SPARK.

Information Flow Security Certification for SPARK Programs 141

2.1 Dynamic Labelling Algorithm (DL) [9,10]

Let G and L be the sets of global and local variables of a program, and A is
a projection from subjects, objects, and program counter pc to its’ respective
security label from the lattice. Function var returns the set of variables appear-
ing in expression e and SV, TV provide the set of source and target variables
respectively for a given statement S. The algorithm DL takes three parameters
as inputs: basic SPARK statements such as assignment, selection, iteration, or
sequence denoted by S; the highest security label ¢l of the executing subject
referred to as clearance; and a labelling function A where the global variables
are mapped to their given immutable labels. If all the local variables are suc-
cessfully labelled, the algorithm returns a new map A otherwise flags a message

Table 4. Description of Algorithm DL for basic SPARK statements such as assignment,
selection, iteration and sequence

1. S : null:: SV(S)={0}; TV(S)={0}; DL(S,cl, \) : return A
2. S: x:= e SV(S)=var(e); TV(S)={x};|3. S:if e then Si[else Sz| end if::
DL(S, cl, \): SV(S)=SV(S1) USV(S2) U var(e);
tmp = D, cvar(e)ng AV) TV(S)=TV(51) UTV(S2)
if (tmp ¥ cl) then DL(S, cl, \):
exit ‘UNABLE TO LABEL’ tmp = @, cyar(eync A©)

A=A if (tmp % cl) then
A1(pe) = A(pe) @ tmp exit ‘UNABLE TO LABEL’
ifxel: A=A
A1(z) = A(z) ® A(pc) @ tmp N (pc) = A(pc) @ tmp
return \p A1 = DL(Sq,cl, \)
ifreG: A2 = DL(S2, cl, \')
if ([A(pc) ® tmp @ cl] < A(z)) then As(pc) = A1(pe) ® A2 (pe)
return A\q Vz € L: A3(z) = Ai(z) @ A2(z)

else exit ‘UNABLE TO LABEL’

return A3

5.S:S1;S2;:

4. S : while e then S; end loop::
SV(S)=SV(S1) U var(e);
TV(S)=TV(S1);

DL(S, cl, \):

SV(S)=SV(S1) USV(S2);
TV(S)=TV(S1) UTV(S2);
DL(S, cl, A):

tmp = @vEVar(e)ﬁG A(’U)
if (tmp % cl) then
exit ‘'UNABLE TO LABEL’
A1 = A
A1(pe) = A(pc) @ tmp
)\2 = DL(Sl,CL)\1)
if (A2 # A1)
A1 = Ao
A2 = DL(while e then Si end loop,
Cl, /\1)

return A

return DL(S2, cl, DL(S1, cl, \));

Here, problem of “insecurity” will be
indicated by one of the recursive calls.

Note that “UNABLE TO LABEL” yields the control point where a certain object

fails to satisfy the information flow policy.

142 S. Ghosal and R. K. Shyamasundar

“UNABLE TO LABEL” on detecting a possible flow leak. Note that, initially,
the mutable labels of all the local variables, including pc are labelled as pub-
lic (1). The algorithm DL for basic control statements of SPARK language is
described in Table 4.

2.2 Readers-Writers Flow Model (RWFM) [12,13,15]: An overview

We provide a brief overview of the Readers-Writers Flow Model (RWFM) for
information flow control.

Definition 1 (RWFM Label). A RWFM label is a three-tuple (s,R,W)
(s, R,W € set of principals/subjects P), where s represents the owner of the
information and policy, R denotes the set of readers allowed to read the infor-
mation, and W identifies the set of writers who have influenced the information
so far.

Definition 2 (can-flow-to relation (<)). Given any two RWFM labels L1 =
(s1, R1,W1) and Lo = (s2, Ra, W), the can-flow-to relation is defined as:

RiDRy Wi CWy
L <Ly

Definition 3 (Join and meet for RWFM Labels). The join (®) and meet
(®) of any two RWFM labels L1 = (s1, R1,W1) and Lo = (s2, Ra, Wa) are respec-
tively defined as

Li®Ly=(—,RiNRy, Wi UW3) Ly ® Ly =(—,R1URp, W1 NW>)

The set of RWFM labels SC = P x 2P x 2P forms a bounded lattice (SC,
<,®,®, T, L), where (SC, <) is a partially ordered set and T = (—,), P), and
1 = (—, P,()) are respectively the maximum and minimum elements.

Definition 4 (Declassification in RWFM). The declassification of an object
o from its current label (s, Ro, Wa) to (s3, R, W3) as performed by the subject
s with label (s1, Ry, W) is defined as
SERy s1=8,=83 Ri =Ry Wy =Wy=W3 Ry CRj3
(Wl = {81} V (R3 — Ry C Wg))
(82, Ra, W5) may be declassified to (s3, Rz, W3)

This says, the owner of an object can declassify the content to a subject(s) only if
the owner is the sole writer of the information or that subject(s) had influenced
the information earlier.

3 Our Approach Using Dynamic Labelling Algorithm

Our approach relies on the application of dynamic labelling for the SPARK
program. We first extend the set of rules given earlier with the labelling rules
for the SPARK procedures as described below.

Information Flow Security Certification for SPARK Programs 143

Extended Labelling Algorithm (DL") for SPARK Procedure:

Consider a procedure call, say p(ai, ..., am;b1,...,b,) where, ai,...,a,, are the
actual input arguments and by, ..., b, are the actual input/output arguments
corresponding to the formal input parameters (mode IN) z1,...,2,, and for-

mal input/output parameters (mode QUT or IN QUT) y1,..., Y. The dynamic
labelling algorithm for SPARK procedure call is shown in Table5. Once given
a procedure call, the DL algorithm first computes the procedure body before
returning the control to the caller. The algorithm adheres to the parameters
passing mechanisms while transferring the control. Following are the operations
the algorithm performs at entry & exit points of the procedure: (i) at the entry
point it initializes the labels of formal input parameters with the corresponding
labels of the actual input arguments; (ii) creates an instance pc local to the pro-
cedure; (iii) initializes the pc and local variables with the mutable label L; (iv)
evaluates the procedure body; and (v) finally resets the pc label on exiting from
the procedure and returns the final labels to the caller.
Note that, the intrinsic prop-
erty of the labelling algorithm Table 5. DL algorithm for a procedure call.

automatically enforces the required 6 Siplar, ... am;bi, ... by) =
security constraints for a proce- DL(S, cl, A):
dure call given in [18]. //Initialize the label of the parameters

With the extended dynamic N =)‘.init /
labelling algorithm for SPARK forall i € 1...m, X' (z;) = Aay)

statements are in place (Tables4, // Evaluate the body of the procedure
/

5), certifying information flow A1 =DL(p — body, cl, X')

security for a given SPARK pro- return Aq

gram consists of the following steps:

1. Initialize the labels of global variables for the given SPARK program.
2. Apply the labelling algorithm DL, for the SPARK program.
3. If the labelling succeeds, then the program has no information leak; if the

labelling algorithm outputs the message “UNABLE TO LABEL” it implies
there is a possibility of information leak.

Illustration:

First, we apply the algorithm to the programs shown in Table1, 2, and demon-
strate solutions to issues 1(a)—(b) of Sect. 1. Consider H and Standard_Output
are the global objects initialized with the immutable labels H and L (i.e., pub-
lic) respectively, such that information cannot flow from H to Standard Output,
Le., A(H) = H & A(Standard_Output) = L. Also, we assume that the executing
subject has the clearance label H. Then the derived labels of local variables as
well as program counter (pc) are shown in the Tables6, 7.

(i) Detecting termination-sensitive information leaks:

In Table6, it can be observed that since pc reads the variable H its label is
raised to H. Now execution of the procedure call Write(Standard Output,
Character’Pos(‘!’)) causes a flow from pc to Standard Output, therefore,
the label of Standard _Output must be at least equal to the label of pc. Since the

144 S. Ghosal and R. K. Shyamasundar

Table 6. SPARK program leaking information through a non-terminating loop. Clear-
ance: ¢/ = H. Initial labels of global objects: A\(H) = H, A(Standard_Output) = L.

Program pc Label
procedure Leak (H:in out Byte) is
begin 4
H:=H; H

if H mod 2 =0 then
while True loop
H:=H;
end loop;
end if; H
Write(Standard Output,
Character’Pos(’!’)); UNABLE TO LABEL
end Leak;

Table 7. SPARK program leaking information progressively. Clearance: ¢l = H. Initial
labels of global objects: A(H) = H, A(Standard_Output) = L.

Program Derived Labels
procedure Leak (H:in out Byte) is
K: Byte := 0; K=1
begin pc=_1
H:=H; pe=H
while True loop o
Write(Standard Output, K); UNABLE TO LABEL

if K >= H then
while True loop
H:=H;
end loop;
end if;
K :=K+1,
end loop;
end Leak;

label of Standard Output is immutable, the algorithm fails to update the label,
hence exits by throwing the message “UNABLE TO LABEL”. The point of failure
detects the location and objects responsible for flow policy violation.

(ii) Detecting progress-sensitive information leaks:

Similarly, since the procedure Write(Standard Output, K) causes information
flow from both K and pc to Standard Output it needs to satisfy the constraint
AK) ® MPC) < A(Standard_Output). But, the algorithm fails to continue as

Alpe) £ L.

Information Flow Security Certification for SPARK Programs 145

(iii) Identifying sensitive data for sanitization:

Here, we shall address the questions and solution related to handling “sensitive”
data discussed in Sect.1. Note that the labelling algorithm takes the initial
classification of sensitive/non-sensitive data and transfer the sensitivity to local
variables automatically during computation. Since the algorithm generates the
labels of local variables from the given set of sensitive global variables, any
attempt to access unsanitized sensitive local objects must satisfy the IFP, thus
restrict access as required.

Consider the program shown in Table3 where global objects C, S and M
are sensitive data with the label given H. Then applying the dynamic labelling
algorithm would compute the labels of local variables NV and D as H transferring
the sensitivity label of global variables. Thus any attempt to read the sensitive
data by a less-sensitive user (or process) would indicate misuse of information
flow.

Remarks: One can write statements like H = H followed by L = L (H and L
are global and denote a high and low variables respectively) somewhere in the
program. In such cases, the platform would indicate “UNABLE TO LABEL” as
it fails to satisfy the constraint H & pc < L. We ignore such corner cases and
leave the onus of correcting the code on the programmer.

3.1 Comparison with Rafnsson et al. [17] and SPARK Analysis

Table 8 provides a comparison of DL* with the SPARK analysis and approach
proposed in [17] in terms of common objectives that are generally sought in
the information flow analysis tools. From the comparison it is evident that our
approach subsumes the advantages of other two approaches.

Table 8. Comparison of DL with SPARK analysis and approach proposed in [17]

Objectives SPARK flow analysis | Approach by [17] | DL algorithm
Termination-and progress-sensitive X v v
flow analysis
Recurring backward information flow v X v

analysis in loop statements

Precisely localize the program point X X v
violating flow policy

Identify unauthorized access to X X v
unsanitized sensitive data

146 S. Ghosal and R. K. Shyamasundar

4 Need of Declassification in MLS Systems

Quite often, in a decentralized labelling environment, it is required to relax the
confidentiality level and reveal some level of information to specific stakeholders
for the successful completion of the transaction. For this purpose, the notion
of Declassification or Downgrading needs to be captured either implicitly or
explicitly. We shall understand the context from the classic password update
problem shown in Table9.

Consider a function Password_Update that updates password database by a
new password (new_pwd) only if the guess password (guess_pwd) provided by
the user matches with the old password and updates the result accordingly. Note
that there is a need to convey the result as an acceptance of the new password
so that the user can use it further.

Table 9 shows that the result becomes sensitive data by the time the function
returns its value. In the context of the MLS system, passing this sensitive data
(i.e., result) to a less-sensitive entity (i.e., user) may violate the information flow
policy. Therefore, it demands controlled declassification. There are two possibil-
ities for introducing declassification at the point of returning the value: (i) Have
an assertion that ensures declassification explicitly, or (ii) Perform declassifica-
tion implicitly at the function return.

Table 9. Labelling password update program using DL. Initial labels of global vari-
ables: pwd-db = a @ b, guess_pwd = new_pwd = b. result is a local variable and
cd=a®b

Program Derived Labels
function Password_Update (pwd_db, guess_pwd,new_pwd: Boolean)
return Boolean is
begin pc= 1
if pwd_db = guess_pwd then pc=a®b
pwd_db := new_pwd; pc=a®b
result := True; result =a®b
else
result :== False;
end if;
return result; result =a®b
end Password_Update;

Declassification in SPARK: We adopt an explicit declassification mecha-
nism for SPARK. The programmer may localize the program point that needs
a declassification and place the construct Declassify to add specific readers.
However, the addition needs to be robust as otherwise, the declassification may
appear to be a mere discretionary that would have serious consequences in a
decentralized model. For this reason, we shall borrow the “Declassification” rule
from the RWFM model [12] as briefed in the Sect. 2.2.

Information Flow Security Certification for SPARK Programs 147

Consider p, p1, ... range over the set of principals P, and x ranges over the
set of objects/variables. Functions A, R and W have the form f : L — P
which map to owner, readers and writers fields respectively for a given security
label in the lattice L. Now let us assume principal p executes the statement
Declassify(x,{p1,...,pn}) to add p1,...,p, into the readers set of a variable
x. Then we define the algorithm DL for the Declassify statement as below:

S : DL(Declassify(x, {p1,-.-,Pn}),cl, \) i
DL(S,cl, A) :
if (A(z) £ cl) then
exit ‘'UNABLE TO LABEL’
if z € G and A(pc) £ A(z):
exit ‘'UNABLE TO LABEL’

A=A
tmp = A(pc) © \(z)
A1 (pe) = tmp

if A(A(tmp)) = {p} and (W(A(tmp)) = {p} or {p1,...,pn} C W(A(tmp))):
R(Ai(z)) = R(A(tmp)) U{p1,...,pn}
return Ap

else
exit ‘UNABLE TO LABEL’

A Look at the Fragment of N-S Public-Key Protocol [16]:

Table 10 shows an abstract program in SPARK demonstrating the N-S public-
key protocol. The global variables are as follows: Aid represents the identity of
the subject A; Na and Nb denote the fresh nonces created by the subject A
and B respectively; Pub_a and Pub_b represent individual public-key of subjects
A and B; Pri.a and Pri_b denote the private-key of A and B respectively.
Initially, the local variables are readable by all the stakeholders (denoted by
“) and nobody has influenced at this point. The functions Encrypt, Decrypt
are executed by each of the subject A and B with the clearance level a and b
respectively. Note that the program is self-explanatory, with the step numbers
given in the comments depict the execution flow. Further, the generated labels
for each variable are shown in the superscript.

A creates Pri_a that is accessible to A only, therefore labelled as
(A, {A},{A}). Similarly, Pri_b obtains a label (B,{B},{B}). Further, A and
B create the nonces Na, Nb respectively, that are readable by both the sub-
jects, hence labelled as (4, {4, B},{A4}), (B,{A, B},{B}). The public keys and
identities of A and B are given identical labels as Na and Nb respectively.
The clearance labels of the subjects A, B executing the programs are given as
a=(A,{A},{A4,B,S}) and b = (B,{B},{4, B, S}) respectively.

Note that the encrypted message, at step 2.2 obtains a label inaccessible to
A, therefore, explicitly declassified by B so that A can decrypt the message for
further use. Similarly, A also performs a declassification at step 3.3 so that B
can access the data.

148 S. Ghosal and R. K. Shyamasundar

Table 10. A prototype of a program for N-S public-key protocol [16]

Program Derived Labels
procedure NS_Protocol A(- - list of parameters) is
- - Declarations of local objects Ma Mg b
begin pelS A5
- - 1) A encrypts Na, Aid using B’s key Pub.b pctS 1A BHAAB.SH
Ma:=Encrypt (Aid, Na, Pub_b) ; Mg AAABHAAB,SH
- - 3.1) A decrypts Mb using A’s key Pri_a pcS{ALAB,SH
Ma:=Decrypt (Mb, Pri_a) ; MW AAH{AB.SH
- - 3.2) A encrypts Na, Nb using B’s key Pub.b pctSAANLAB.SH
Ma:=Encrypt(Na,Nb, Pub.b) ; Ma(A{AH{AB.SH)
- - 3.3) A declassifies Ma pc<s"{A}’{A’B’S}>
Declassify(Ma,{B}) MaAAABHAABSH

end NS_Protocol_A;

procedure NS_Protocol B(- - list of parameters) is

- - Declarations of local objects Mb MpEL3AD

begin peSh{sh)

- - 2.1) B decrypts Ma using B’s key Pri b pcSABHAAB.S]H
Mb:=Decrypt(Ma, Pri_b) ; MpBABHAAB, S

- - 2.2) B encrypts Na, Nb using A’s key Pub_a pclSABH{AB. S}
Mb:=Encrypt (Na,Nb, Pub_a) ; MyPAB{AB.S))

- - 2.3) B declassifies Mb pc(s’{B}’{A’B’S})
Declassify(Mb,{A}) MpBAABL{AB, S}

- - 4) B decrypts Ma using B’s key Prib pctSABH{AB.SY

Mb:=Decrypt(Ma, Pri_b) ; MyB{B}{A,B.5})

end NS_Protocol_B;
Readers & Writers RWEFM Label RWFM Labels of)
of Global Variables >\ “Generator Global Variables DL+ Algorithm
+
Found possjble flow leak

SPARK Program
(Source Code)

Labelled Local
Variables

UNABLE TO LABEL
Fig. 1. A schematic diagram of our implementation.
It follows from the above illustrations that declassification for MLS is essen-

tial, and the DL algorithm, along with the RWFM model, ensures appropriate
automatic labelling to ensure security properties.

5 Implementation of DLT for SPARK

The implementation of our approach first generates RWFM labels for the global
variables of a SPARK program from the given readers and writers set of respec-

Information Flow Security Certification for SPARK Programs 149

tive variables. Once the labels are generated, the set of global variables anno-
tated with the corresponding RWFM labels and the SPARK program are given
as input to the dynamic labelling algorithm. The algorithm either outputs the
labels of all the intermediate variables or throws the message “UNABLE TO
LABEL” in the presence of possible flow leaks. Figurel presents a schematic
diagram of the implementation. We have analyzed the programs discussed in
this paper and tested in a security workbench for Python language under devel-
opment using the dynamic labelling approach.

6 Conclusions

In this paper, we have illustrated how an extended form of dynamic labelling
algorithm integrated with RWFM provides an effective platform for flow security
certification of SPARK programs, including termination- and progress-sensitive
flows. The approach enables us to use an automatic compile-time labelling algo-
rithm for data that aids in detecting information leaks due to termination and
progress sensitivity, and unsanitized data. Also, the programmer gets feedback on
the reasons for the misuse of information at the specific program point, enables
him to refine the program only to realize flow security. These features add to the
usability of the program. The approach provides a natural stepping stone for
direct/implicit introduction of declassification for programming MLS systems
in SPARK, thus preserve end-to-end confidentiality properties. So far, we have
experimented on these aspects on our security workbench developed for Python
programs. One can further develop an axiomatic proof system that follows nat-
urally on similar lines as proposed in [2,18]. One of the distinct advantages of
our approach is keeping the SPARK analysis and security analysis orthogonal —
thus, enabling technology adaptation easily to the SPARK platform.

References

1. Spark 2014. http://www.spark-2014.org/about

2. Andrews, G.R., Reitman, R.P.: An axiomatic approach to information flow in
programs. ACM Trans. Program. Lang. Syst. (TOPLAS) 2(1), 56-76 (1980)

3. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008.
LNCS, vol. 5283, pp. 333-348. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88313-5_22

4. Barnes, J.G.P.: High Integrity Software: The Spark Approach to Safety and Secu-
rity. Pearson Education, London (2003)

5. Bergeretti, J.F., Carré, B.A.: Information-flow and data-flow analysis of while-
programs. ACM Trans. Program. Lang. Syst. (TOPLAS) 7(1), 37-61 (1985)

6. Boudol, G.: On typing information flow. In: Van Hung, D., Wirsing, M. (eds.)
ICTAC 2005. LNCS, vol. 3722, pp. 366-380. Springer, Heidelberg (2005). https://
doi.org/10.1007/11560647_24

7. Chapman, R.: Sanitizing sensitive data: how to get it right (or at least less
wrong...). In: Blieberger, J., Bader, M. (eds.) Ada-Europe 2017. LNCS, vol. 10300,
pp. 37-52. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60588-3_3

http://www.spark-2014.org/about
https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.1007/11560647_24
https://doi.org/10.1007/11560647_24
https://doi.org/10.1007/978-3-319-60588-3_3

150

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

S. Ghosal and R. K. Shyamasundar

Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. CACM 20(7), 504-513 (1977)

Ghosal, S., Shyamasundar, R.K., Kumar, N.V.N.: Static security certification of
programs via dynamic labelling. In: Proceedings of the 15th International Joint
Conference on e-Business and Telecommunications, ICETE 2018 - Volume 2:
SECRYPT, Porto, Portugal, 26-28 July 2018, pp. 400-411 (2018)

Ghosal, S., Shyamasundar, R.K., Narendra Kumar, N.V.: Compile-time security
certification of imperative programming languages. In: Obaidat, M.S. (ed.) ICETE
2018. CCIS, vol. 1118, pp. 159-182. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34866-3_8

Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on SP, p. 11 (1982)

Kumar, N.V.N.,; Shyamasundar, R.K.: Realizing purpose-based privacy policies
succinctly via information-flow labels. In: IEEE 4th International Conference on
Big Data and Cloud Computing (BdCloud), pp. 753-760 (2014)

Kumar, N.V.N.; Shyamasundar, R.K.: A complete generative label model for
lattice-based access control models. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017.
LNCS, vol. 10469, pp. 35-53. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-66197-1_3

Moore, S., Askarov, A., Chong, S.: Precise enforcement of progress-sensitive secu-
rity. In: Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security, pp. 881-893. ACM (2012)

Narendra Kumar, N., Shyamasundar, R.: Poster: dynamic labelling for analyz-
ing security protocols. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 1665-1667. ACM (2015)

Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993-999 (1978)

Rafnsson, W., Garg, D., Sabelfeld, A.: Progress-sensitive security for SPARK. In:
Caballero, J., Bodden, E., Athanasopoulos, E. (eds.) ESSoS 2016. LNCS, vol. 9639,
pp. 20-37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30806-7_2
Robling Denning, D.E.: Cryptography and Data Security. Addison-Wesley Long-
man Publishing Co., Boston (1982)

Volpano, D., Smith, G.: Eliminating covert flows with minimum typings. In:
Proceedings 10th Computer Security Foundations Workshop. pp. 156-168. IEEE
(1997)

Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. J. Comput. Secur. 4(2/3), 167-188 (1996)

https://doi.org/10.1007/978-3-030-34866-3_8
https://doi.org/10.1007/978-3-030-34866-3_8
https://doi.org/10.1007/978-3-319-66197-1_3
https://doi.org/10.1007/978-3-319-66197-1_3
https://doi.org/10.1007/978-3-319-30806-7_2

Privacy-Preserving Computation

®

Check for
updates

Provably Privacy-Preserving Distributed
Data Aggregation in Smart Grids

Marius Stiibs!®), Tobias Mueller!', Kai Bavendiek?, Manuel Loesch?,
Sibylle Schupp?, and Hannes Federrath!

1 University of Hamburg, Hamburg, Germany
{stuebs,mueller,federrath}@informatik.uni-hamburg.de
2 Hamburg University of Technology, Hamburg, Germany
{kai.bavendiek, schupp}@tuhh.de
3 FZI Research Center for Information Technology, Karlsruhe, Germany
loesch@fzi.de

Abstract. The digitalization of power systems leads to a significant
increase of energy consumers and generators with communication capa-
bilities. Using data of such devices allows for a more efficient grid opera-
tion, e.g., by improving the balancing of power demand and supply. Fog
Computing is a paradigm that enables efficient aggregation and process-
ing of the measurements provided by energy consumers and generators.
However, the introduction of these techniques is hindered by missing
trust in the data protection, especially for personal-related data such
as electric consumption. To resolve this conflict, we propose a privacy-
preserving concept for the hierarchical aggregation of distributed data
based on additive secret-sharing. To increase the trust towards the sys-
tem, we model the concept and provide a formal proof of its confiden-
tiality properties. We discuss the attacker models of colluding and non-
colluding adversaries on the data flow and show how our scheme mitigates
these attacks.

Keywords: Smart grid security - Smart metering - Formal model -
Automated proof - Additive secret sharing - Distributed and
decentralized security

1 Introduction

The electricity consumption of private households is usually not monitored nor
managed in real-time. Traditionally, the power meter aggregates the electricity
flow over the year and the aggregated value is only read for billing. However,
the continuing increase in the share of renewable energies will require small-scale
consumers and producers to actively participate in the demand-supply matching
process. In order to gain more insight in the power flows within their grids, grid
operators have strong interests in obtaining additional measurements from their
customers. Power suppliers also want to allow their customers to benefit from
© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

A. Singhal and J. Vaidya (Eds.): DBSec 2020, LNCS 12122, pp. 153-173, 2020.
https://doi.org/10.1007/978-3-030-49669-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49669-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-49669-2_9

154 M. Stiibs et al.

price fluctuations at wholesale electricity markets. The roll-out of smart meters
sets the foundation for Smart Grid services such as selective data aggregation and
distributed power balancing [48]. For the grid operators, an important use case
is power system state estimation, where measurements from different sources
are aggregated to provide a more precise overview of the respective distribution
grid.

In the context of Smart Grid, privacy is a major concern for consumers and
prosumers [37]. Depending on the precision of the measurement data, researchers
were even able to distinguish between TV channels and thereby identify the
movie that was being displayed on a specific type of home TV screens [1]. This
can also reveal other personal information and daily routines, such as how many
inhabitants are home and when they leave or return. In Europe, the legisla-
tor demands data to be processed in ways that have been designed to respect
the privacy of the users (“Privacy by Design and Default”) [24, §25]. Whether
households agree to participate in local market schemes or choose to demand
cloud-based Smart Grid services therefore heavily depends on the perception
of these services as serious and trustworthy. One way to increase the plausi-
bility and transparency of cloud-based applications is to incorporate security
measures already in an early stage and explain as well as verify these measures.
This is where formal modeling and automated proofs come into play to back the
security-related claims of the service providers.

1.1 Fog Computing in Power Grids

In power grids, the control of consumers and generators can be hierarchically
aggregated for provisioning of smart grid services at different grid levels. Smart
grid services are, e.g., power adjustments required in the demand-supply match-
ing process. Technically, they are realized by Energy Management Systems
(EMSs). The aggregation of control options and data allows for improved deci-
sions as further information such as the grid structure can be considered at
higher aggregation levels.

At the lowest aggregation level, Nano Grids can be recognized. Examples
for Nano Grids are buildings with an EMS that locally processes data and bal-
ances power demand and supply within the building. They also may provide
grid services and data to external Smart Grid Service Providers or higher-level
aggregators. Nano Grids are always dependent on the connection to the main
grid [39]. At a higher aggregation level Micro Grids can be recognized. Micro
Grids are often defined to be self-sufficient in the sense that they can support
islanding and that they, in case of emergency, can encapsulate themselves from
the higher-level distribution grid. Examples for Micro Grids are districts with an
EMS that processes data of multiple buildings for balancing the district’s power
demand and supply. Control options and data provided by multiple Micro Grids
can be aggregated by an EMS at the level of the corresponding distribution grid
which is operated by a Distribution System Operator (DSO). Finally, control
options and data of multiple distribution grids can be aggregated by an EMS on
the level of the transmission grid which is operated by a Transmission System

Provably Privacy-Preserving Distributed Data Aggregation in Smart Grids 155

Operator (TSO). EMSs at different aggregation levels allow for different smart
grid services. In particular DSOs and TSOs are highly regulated regarding the
smart grid services they have to provide. DSOs are responsible for voltage control
and TSOs are responsible for frequency control.

The hierarchical structure of Fog Computing is visualized in Fig. 1. It fits
well to the structure of electric grids, especially when extending the fog node
layer to a multi-layer architecture. In this paper we propose to extend previous
approaches that aggregate values in Fog nodes and to implement a hierarchical
aggregation scheme for sensor data that resembles the structure of the power
lines. Aggregated sensor data (such as aggregated power values of multiple dis-
tricts within a distribution grid) set the foundation for the realization of Smart
Grid services that are ensuring grid stability.

Core

-~ (BmeR
/ \
@

|
W+@ﬁ§

Renewable Smart Smart
Energy Stanon Home Building

e

Locations

1111

1111

11
)

Edge

Fig. 1. The edge computing schematic.

1.2 Smart Metering and Data Security

In order to facilitate the integration of fluctuating renewable energy resources
and to improve the demand-supply matching, the European Union directive
2009/72/EG requires member states to install smart metering infrastructures.
As a consequence, it can be expected that a large share of households will deploy
EMSs in the near future [48]. In this context, Smart Meter Gateways (SMGWs)
provide a communication link between Nano Grids such as Smart Buildings and
external parties. This communication link offers access to smart meter data and
hence sets the foundation for the provisioning of grid services to Smart Grid
Service Providers or higher-level aggregators.

The aggregation of data is a security critical function that needs to maintain
the users’ privacy by keeping the data as confidential as possible. Data about

156 M. Stiibs et al.

electricity consumption contains information about the user’s habits. The more
fine-grained the data, the better can the attacker infer details about the subject.
Not only has it been shown that it is possible to detect the appliances a con-
sumer is using [33], it is also possible to infer what TV program the consumer is
watching [25]. The aggregation of data must thus be private in that the parties
involved learn as little as possible.

1.3 Data Flow Modeling and Automated Proofs

Several approaches exist to show that a system works as intended. Testing is
a well known technique, which, however, cannot demonstrate the absence but
only the presence of errors. Formal methods on the other hand follow another
approach by formalizing the system in way such that certain properties can be
proven. One example of a formal method is model checking where a formal model
is verified to follow a certain specification. The specification can be expressed
using formal properties. To actually verify formal properties of a system, one has
to make a formal description of the system. The complexity of real-life systems
might be neither beneficial nor necessary for the verification of certain properties.
Therefore, a formal model can be a good abstraction of, for instance, the data
flow of a system.

1.4 Structure of the Paper

Section 2 comprises a comparative review of related work. In Sect. 3 the funda-
mental design decisions and goals are elaborated. The general data flow privacy
validation scheme is described in Sect. 4. The concept of hierarchical data aggre-
gation is elaborated in Sect. 5 and is then evaluated in the security discussion in
Sect. 6. We conclude the paper with a short summary in Sect. 7.

2 Related Work

The proposed concept combines two areas of research, namely Fog Computing
based privacy-preserving data aggregation and modeling of privacy-respecting
data flows. In this section, we present the work related to each field.

The transition to smart metering and the Smart Grid evoked a lively sci-
entific discussion about the impacts on privacy the transition entails [5,41,47].
With the discussion, several approaches, mitigations, and solutions have been
proposed ranging from adding noise to the actual usage pattern to make analy-
sis harder [31] to privacy-preserving data aggregation techniques to be used in
Smart Grids [19,20]. A different approach on private data protection is using
batteries to add noise to hide usage pattern [31]. Over the course of the last
decade, the use of secret-sharing, additive or otherwise, for aggregating smart
meter readings has been proposed [12,15,35], as have other privacy preserving
mechanisms [21,29], such as ensuring e-differential private aggregation [8,18].

Provably Privacy-Preserving Distributed Data Aggregation in Smart Grids 157

Due to the recent interest on Cloud and Fog Computing, several publications
(e.g. [4,16,42-44]) that apply cloud-based solutions to deal with the data explo-
sion challenge in a Smart Grid. Especially when it comes to reducing the com-
munication bandwidth between the smart meter and cloud in cloud computing,
regional [45] or hierarchical [46] aggregation schemes based on Fog Computing
are still not fully researched. Moreover, data security and privacy are also critical
issues when sensitive smart meter data is aggregated in only partially trusted
environments such as Fog nodes and cloud applications.

In the field of privacy-respecting data flow verification different approaches
exist to model data flow and verify privacy properties. A survey paper by Giirses,
Troncoso, and Diaz shows different privacy properties and case studies includ-
ing homomorphic encryption in an automated toll pricing system [26]. A Smart
Grid case study with focus on smart metering is described in [17]. It has the
same research question but makes a distinction between accountable and pri-
vate readings. Application-specific approaches range from e-government [28,30]
over e-healthcare [32,36] and medical registers [10] to cloud computing [11,49].
Approaches based on the applied pi-calculus [6,13,34] are popular for protocol-
oriented applications with focus on data integrity (often in e-voting systems).
ProVerif is one of the few tools in this field, which implements a typed version
of the applied pi-calculus. Another category of formal methods are approaches
based on type systems [22,23,38]. These papers usually aim at achieving dif-
ferential privacy by using typing rules. Other approaches, like this paper, base
their modeling on software architectures. Some of these employ modal logics like
modified epistemic logic [2,3,9,27] or temporal logic for reasoning about data
minimization [7]. Of the former ones CAPRIV [2] and CAPVerDE [9] are tools
that support the modeling and verification of data minimization properties in
software architectures. However, to the best of our knowledge, the tool CAPRIV
and its source are not openly accessible. The open source tool CAPVerDE is a
very similar tool that operates on software architectures and a modified epistemic
logic with focus on data minimization and access control.

3 Models and Design Goals

We consider the electricity supply and demand in a Micro Grid. We assume
that the Micro Grid is properly designed such that a portion of the electricity
demand related to basic living usage (e.g., lighting) from the residents, termed
basic usage, can be guaranteed by the minimum capacity of the Micro Grid.
There is randomness in both electricity supply (due to, e.g., weather change) and
demand (e.g., entertainment usage in weekends). To cope with the randomness,
the Micro Grid works in the grid-connected mode and is equipped with energy
storage systems (ESSs), such as an electrochemical battery, superconducting
magnetic energy storage, flywheel energy storage, etc. The ESSs store excess
electricity for future use.

158 M. Stiibs et al.

3.1 Modeling of Privacy-Respecting Data Flows

For this paper we make use of a logic and tool called CAPVerDE [9]. The logic
consists of a formal description language for software architectures, a data flow
property language, and a rule-based verification system. With these building
blocks we can describe the data flow of a software system, express properties
like “Actor A should have access to Data d’, and verify whether the specified
model satisfies said properties. The tool aids us by automatically solving the
inference-rule based satisfaction problem.

The process of using this technique is to first identify the relevant data flow,
actors, and data dependencies of the system. Then use a formal description
language to describe the data flow. Setting up a formal model is already a big
step because one decides which details are important and where to abstract.
Once the system is modeled, one has to formalize the design goals for the system.
This is done using a logic that allows for