
Malware Attacks: A Survey on
Mitigation Measures

Anna V. James and S. Sabitha

1 Introduction

Malicious software or Malware can be defined as a software that “deliberately
fulfills the harmful intent of an attacker.” Terms, such as “worm,” “virus,” “Trojan
horse,” “ransomware,” etc., are the different classes of malware. Highlighting
security vulnerabilities in the software or showoff of technical ability was the
motivation for malware creators at the early times. Today, there is a flourishing
underground economy based on malware. Now, it is no longer the fun factor, but the
perspective of the money that can be made drives the development of such malware.

Introduction of new malware every day is a challenge to antivirus vendors. The
main challenge of antivirus writers is the growing stream of obfuscated malware
samples with several variations to avoid existing detection methodology. Very recent
type of malware named as “ransomware” that extorts money from the victims
became most popular with the cybercriminals. Compared to traditional malware,
the attack pattern of ransomware is different. Traditional malware uses sophisticated
coding techniques to steal the credential or to conduct any targeted attack. On the
other hand, ransomware is designed purposefully to ask money from the victims
by making the computer system unusable. In most of the cases, ransomware uses
cryptographic technology to encrypt the user data.

It is critical to identify these types of malware, due to the fact that they cause lots
of damage to large surface area. For detection, dynamic analysis is more popularly
used so as to overcome the limitations of static analysis. Nowadays, Machine
Learning techniques are also applied along with dynamic analysis [1, 2].

A. V. James (�) · S. Sabitha
College of Engineering Trivandrum, Thiruvananthapuram, India
e-mail: annavjames@cet.ac.in; sabitha@cet.ac.in

© Springer Nature Switzerland AG 2021
M. Palesi et al. (eds.), Second International Conference on Networks and Advances
in Computational Technologies, Transactions on Computational Science and
Computational Intelligence, https://doi.org/10.1007/978-3-030-49500-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49500-8_1&domain=pdf
mailto:annavjames@cet.ac.in
mailto:sabitha@cet.ac.in
https://doi.org/10.1007/978-3-030-49500-8_1


2 A. V. James and S. Sabitha

Fig. 1 Malware mitigation strategies

Antivirus (AV) vendors strive to keep the pace with sophisticated malware
variants. The malware mitigation strategies used for detecting other malware
variants can also be used in detection of ransomware. In this paper we tried
to cover various best approaches used in detection of malwares, starting from
traditional but effective signature (static) based approach to highly efficient hybrid
approach. We also discuss Honeypot based approach that has been successful in
detecting specific kinds of malwares like ransomwares. Figure 1 covers different
techniques used in each approach. In fact, when new variants are spread, signature
based mechanisms are easily deceived. Furthermore, very sophisticated packing
techniques implemented by current ransomwares to evade detection, e.g. obfuscated
API calls, delivering the static analysis useless.

Malware detection methods are fundamentally categorized into different cate-
gories from different points of view. They can be classified into four types as in
Fig. 1: Signature based approach, Dynamic approach, Honeypot based approach,
and Hybrid approach. The following sections discuss in detail about each of them.

The rest of the paper is organized as follows: In Sect. 2 we cover malware
detection methods; Sect. 3 illustrates a comparison table; and finally in Sect. 4 the
summary of the survey is discussed.

2 Mitigation Measures

2.1 Static Approach (Signature Based)

One of the traditional malware detection strategy is static approach. It examines the
malware binaries without executing them. It is one of the fast and safe technique
for malware detection. It mainly uses the hash signature, embedded strings, byte
code distribution, etc. present in the malicious binary. This technique does not work
well for sophisticated malware. Signatures are Short strings of bytes that are unique



Malware Mitigation Measures 3

for each program. However, this signature based method is not effective against
modified and unknown malicious executable.

Image Representation: Binary Texture Analysis Image Representation based
technique makes use of pattern based method in identification of malware signature
in an image. Image texture based features can be used for various applications such
as image classification, image search, etc. Image representation of the malware
binary is performed and texture based features are extracted from it as done by
L. Nataraj [3]. The 2D matrix of grey scale image is generated by first converting
malware binary into an array of 1D 8-bit integers as shown in Fig. 2. GIST, SIFT
features are extracted from the image for further processing.

In [4], L. Nataraj use a traditional approach for classification of grey scale image.
They use the idea that the variants of a malware have similar images and different
malware have different images. In [5] S. Choi et al. propose a deep learning based
method for malware classification by using the above method. The extracted feature
set from malware is used to train kNN classifier. Nataraj [4] uses GIST to compute
the mean value of magnitude of local feature and generate 320-dimensional GIST
feature vector. Gibert [6] uses the binary image as input to CNN.

Other approaches [7] make use of deep Convolutional models to classify image
based on LBP features. In addition to that, new variants of malware are created
by changing only limited part of code hence, images can be used to detect slight
changes by retaining the overall structure. Convolutional neural networks are found
to be the best model used for image classification problems.

Byte Code Sequence Byte level details in a malware binary can be used for finding
the relation with other binary files. Use of n-grams byte features for detecting
malware has been done by E. Raff et al. in [8]. They treat the malicious binary
as sequence of bytes and n consecutive bytes are considered as individual feature.
It looks for the unique combination of n byte grams. Different works check for
n = 1 to n = 8 bytes, while Tabish et al. [9] worked on byte level file content
in a block-wise manner. Finally, the block-wise classification results of a given file
are correlated to classify it as benign or malware. Byte code sequence requires no
knowledge of format of file and is harmless in nature.

Opcode Sequence Opcodes and byte sequences can be interchangeably used for
malware detection. But, the main advantage of opcode over byte code in malware

Fig. 2 Malware as 2D image



4 A. V. James and S. Sabitha

detection is that, opcode is efficient in detecting obfuscated and metamorphic
malware. Malware executable and benign executable have different frequency
distribution of opcodes (say mov, push). The similarity degree of two executable is
compared based on these features. By comparing opcode distribution in malicious
and non-malicious samples, detection and differentiation of advanced malware can
be done.

Akkas et al. [10] performed assembly analysis on the ransomware samples and
succeeded to figure out how the first files are created and how user’s files are
encrypted and also were able to identify the beginnings of the threads that encrypt
the data.

Bilar [11] does the most significant research on OpCodes. His works proved that
single OpCodes can be used as a feature in malware detection. For that, he analyzed
the capability of single OpCodes statistically and demonstrated their reliability to
determine the maliciousness of an executable. He also proved that OpCodes can be
used as a powerful representation for executable files.

In [12] I. Santos et al. proposed a method which relies on the frequency of
presence of opcode sequences. This approach is not effective for packed malware.

Runwal et al. [13] proposed another method that can be used for detecting
unknown as well as metamorphic malware families by comparing closeness of
simple graph. For that, they extracted OpCodes from malware and benign types, and
occurrence frequency is noted for each pair opcode. This value is used to construct
graph and is used to predict the maliciousness of a new executable by calculating
the closeness of graph. Frequency distribution and graph construction from opcodes
are two efficient approaches that can easily detect obfuscated malware samples.

Portable Executable Portable Executable (PE) is a file format of executable files
in Windows Operating System. Most of the virus reported so far belong to PE
type [14]. Viruses like CodeRed, Killonce, CIH, CodeBlue, Nimda, Sobig, Sircam,
and Love Gate aim at PE files. The essential information used to load a PE file is
contained in DOS MZ header and all PE files start with it. The PE file comprises of
multiple sections and each section contains data with common attributes. PE parser
extracts the APIs called by a PE file from the import table. For static extraction of
API execution calls, PE parser extracts a 32-bit unique global API ID.

Ye et al. [14] proposed a system resting on the analysis of Windows APIs invoked
by PE files, and using Objective-Oriented Association (OOA) mining developed an
Intelligent Malware Detection System (IMDS) for classification.

2.2 Dynamic Approach (Behavior Based)

As static approach captures only the information available in the malware exe-
cutable, it can be easily evaded using simple obfuscation techniques. Hence,
Dynamic approach which analyses the malware at run time can be used to analyze
the specific behavior of malware [1, 15]. Behavior based analysis can be efficiently



Malware Mitigation Measures 5

used to detect several families of malware by inspecting what it does rather than
what it says. It involves more complex tasks in acquiring and extraction of dynamic
features from malware logs. But still dynamic approach is efficient in detection.
These mechanisms help in detecting the program that generates new mutants
continuously.

API Call Graph API, Application Programming Interface, is used by almost all
programs to send requests to operating system. One of the most attractive way that
represents the malware behavior is by API calls. Hofmeyr et al. were the first to
use sequences of API call for constructing feature set of malware [16]. They used
system call sequences for performing anomaly based detection. Short system call
sequences were used to make the behavior profile of normal behavior. Hamming
distance values above user-specified threshold are reported as anomalies. Afterward,
an extensive research was made on using API calls by Bergeron et al. [17], Sekar
et al. [18], and Sung et al. [19], etc. Even though it performed well in malware
detection, there have been two main problems such as Handling of large set of
rules for constructing the classifier and Finding effective rules to classify new file
samples. By using post processing techniques of associative classification the above
two problems were overcome by, Ye et al. [20]. In [21], Chi-squared testing and
insignificant rule pruning are applied initially, followed by database coverage by
rule ranking mechanism based on the Chi-square measure and Pessimistic error
estimation. The best first rule is used for final prediction. CIDCPF is in-cooperated
into existing IMDS system and generates CIMDS [20]. Post processing is used for
the first time in malware detection for associative classification.

Code graph called topological graph is built from malicious and benign executa-
bles by Jeong and Lee [22] from API calls. The main drawback of this approach is
that the code graph tends to be too large. Hence, the size of code graph is reduced
by Lee et al. [23] by classifying API calls into 128 groups.

Control Flow Graph If a graph can be drawn representing the control flow of a
program, it can be used for analyzing the behavior of the program. A directed graph
called Control Flow Graph is used for the same. Each node in the graph represents
the statement of the program and the edge between the nodes represents control
flow between the statements. The statements can be either assignment statement
in the program, copy statement, branches, etc. J. Lee et al. in [23] represent the
malware detection as sub-graph isomorphism problem. A set of normalization
operation is performed on the executable after disassembling it. It can reduce the
effect of mutation techniques and can unveil the flow connections between malicious
and benign code. As shown in Fig. 3 the corresponding CFG is generated. Newly
generated CFG is compared against the CFG of a normalized malware to check the
presence of sub-graph which is isomorphic to CFG of the normalized one.

Bonfante et al. [24] use CFG as signature for detecting malware. Each assembler
is composed of four types of instructions, namely conditional jumps (jcc), function
calls (call), non-conditional jumps (jmp), and function returns (ret). Any contiguous
sequence of instructions is abstracted between nodes named “inst” and “end.” So,
they defined six types of node: inst, call, jmp, ret, jcc, and end. The CFG based on



6 A. V. James and S. Sabitha

Fig. 3 CFG Extraction
proposed by Bonfante et al.
[24]

these types is constructed as illustrated in Fig. 3. Then, these nodes are reduced and
are used as a signature for each file.

Network Analysis Dynamic malware analysis also monitors the network level
activity of the malware. It tries to observe and capture the messages and packets send
between the network and malware. Malware from ransomware families tends to
communicate with the command and control server for its operation like encryption.
This malicious traffic can be obtained using network analysis of malware. Network
analysis operates over different OSI protocols like TCP/IP, HTTP, UDP, etc.
Network analysis tools like Wireshark are used for this purpose. Some programs
try to send and receive data requests from different IPs. These IPs would be TOR
exists usually used in case of ransomwares. As specified in [25] malware analysis of
ransomware includes this technique. They try to connect to several websites which
are unsuccessful to connect from normal browsers. These anomalous behavior can
be used to distinguish between the malware activities. Vigneswaran et al. [25]
Several other intrusion detection systems try to find the anomalous behavior by
using KDD data set for normal network operations and current values of these
variables are used for classification.

2.3 Honeypot Based Approach

Honeyfiles are trap files employed in the deception environment in order to track
and trap the malware with specific behavior.

Cryptostalker, a real time detection tool based on file system activity for windows
and linux [26], when more than a specific number of files are within a time interval, it
generates an advertisement. For earlier detection Pingree [27] proposes a technique.
Another variant of this technique relies on the admission of the cyber kill-chain
model by Hutchins et al. [28], in which an attack can occur if each step of the chain
is executed sequentially.



Malware Mitigation Measures 7

In particular, the use of honeyfiles is an advisable mechanism in the phases of
“permanence-exfiltration” and “lateral movement” in case of Ransomwares as in
[29]. A real tool developed called Anti Ransom for Windows platforms [30]. In
order to prevent data from ransomware and other malicious apps in Windows 10,
Microsoft introduced a control folder access in [31]. R-Locker by Gomez-Hernndez
et al. in [32] proposes a novel approach which in addition to detection it also thwarts
the malicious activity and is specific for Unix platform. It deploys a FIFO like
structure rather than normal file and can completely block the program accessing
it. The cost and complexity of this solution is really low and does not impede with
the normal operation of the environment. It does not require previous knowledge or
training, and is efficient in fighting against unknown, zero-day attacks.

2.4 Hybrid Approach

Hybrid approach as the name suggests contains combination of several traditional
approaches such as static, dynamic, etc. There are many works done on the grounds
of ransomware with hybrid features in cooperating static and dynamic approaches.
There have been several works done by using static and dynamic feature set.
Ahmadian and Shahriari [33] in 2entFOX capture static and dynamic features of
highly survivable ransomwares and designed a detection system using Bayesian
belief network which uses statistical possibilities of the extracted features. The
feature sets used in this system can be increased or decreased according to the
security countermeasures and every module of this framework can be used in other
driven systems too.

RansHunt proposed by Hasan and Rahman [34] is an Analysis Framework based
on Support Vector Machines uses integrated feature set by integrating static and
dynamic features. Another efficient layered approach developed by Shaukat and
Ribeiro [2] is RansomWall, a Layered Defense System against Ransomware Attacks
using Machine Learning. It employs a layered defense system which incorporates
static analysis engine in the initial layers followed by honeyfiles and then dynamic
analysis engine. It has a file backup layer to replace the modified files. It is one of
the promising approaches for the early detection of ransomware.

3 Comparison

Tables 1 and 2 compare between different approaches in Static Malware analysis,
Dynamic Analysis, Mitigation using Honeypot and Hybrid Approach. The compari-
son table is splitted as it does not fit on a single page. It also discusses the advantages
and disadvantages associated with each methodology. Signature based solutions
which uses opcodes, byte codes, PE headers, etc. can be used to detect malware.
They are easy to implement with minimum cost and time but cannot overcome



8 A. V. James and S. Sabitha

Table 1 Comparison of different static approaches

Methodology Refs. Advantages Disadvantages

Image
representation

[3–7] – Fast and Easy detection
– Easily finds polymorphic code
– Techniques like SIFT enable to

efficiently find malware signa-
ture

– Obtains large number of feature
set

– Malware binary has to be con-
verted to fixed sized images

– Some portion of image would
be pruned due to large size

– Increases computational com-
plexity

Byte code
sequence

[8, 9] – Easily obtained from malware
executable

– Feature set generation is also
easy task

– Not efficient for obfuscated
byte code

– Large number of features

Opcode
sequence

[10–13] – Efficient than Byte code
– Ability to detect obfuscated and

metamorphic malwares
– Different frequency distribution

of opcodes enables detection
easier

– Reduces the false positive rate

– Takes into account only the
opcode frequency

– Information regarding malware
behavior is not considered

– It is difficult to evaluate.
– Imbalance datasets

Portable
executable

[14] – PE contains implementation
information of the executable

– Can keep track of the API calls
– Detects malware before their

execution
– Detects previously undetectable

malicious executable
– Detects borderline binaries

– Applicable only for windows
executable

obfuscated malwares. In response to this, dynamic approaches were proposed,
which analyze the program behavior during execution. They require a large amount
of resources and have a substantial overhead on the system. Honeyfiles can be
easily deployed and are cost efficient but can be applied to malware of specific
types. Hybrid methodology combines the advantages of both static and dynamic
approaches. Even though there are overhead on the system, the efficiency of these
systems is very high.



Malware Mitigation Measures 9

Table 2 Comparison of dynamic, honeypot and hybrid approach

Methodology Refs. Advantages Disadvantages

API call graph [16–23] – Detects polymorphic and
unknown malware

– Fewer false positives than
other scanners

– Outperforms other classifica-
tion approaches in both detec-
tion ratio and accuracy

– Detects metamorphic malware
– Outperforms other classifica-

tion methods in terms of per-
formance and efficiency

– Generates semantic signature

– Large set of generated rules
for building classifier

– Only provides binary predic-
tions

– Large size of graph for com-
parison

Control flow
graph

[23, 24] – Detects metamorphic
malwares

– High detection ratio
– Low false positive rate

– Did not compare the effi-
ciency of its algorithm with
other techniques

– Did not evaluate false nega-
tives

Network
analysis

[25, 25] – Real time detection of net-
work flow

– Able to obtain specific mali-
cious behavior

– Enable to prevent malware
propagation

– Cannot obtain information if
highly sophisticated networks
are used

– Difficult in handling data of
different formats

Honeypot
method

[26–32] – Simple implementation
– Reduces time and space com-

plexity
– Requires no training
– Detects and prevent malware

– Can only be used for specific
malware types

Hybrid method [2, 33, 34] – Improves the accuracy of mal-
ware detection effectively

– Low false positive ratio

– Increased time complexity

4 Conclusion

In this survey we discussed about several malware detection techniques employed
so far especially for ransomware and proposed a unique classification scheme
for malware detection techniques. The objective of the survey is to provide a
procedure, which could be suitable for further studies and to develop malware
detection techniques. Since there are traditional approaches that are employed still
for malware detection, this survey focused on various other heuristic methods



10 A. V. James and S. Sabitha

that are successfully applied for malware detection. It also provides an insight of
different detection techniques that can be employed based on the application and
behavior of malware under consideration.

References

1. Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S., Khayami, R.: Know
abnormal, find evil: frequent pattern mining for ransomware threat hunting and intelligence.
IEEE Trans. Emer. Topics Comput. 8(2), 341–351 (2017). https://doi.org/10.1109/TETC.2017.
2756908

2. Shaukat, S.K., Ribeiro, V.J.: RansomWall: a layered defense system against cryptographic
ransomware attacks using machine learning. In: IEEE 10th International Conference on Com-
munication Systems Networks (2018). https://doi.org/10.1109/COMSNETS.2018.8328219

3. Nataraj, L., Yegneswaran, V., Porras, P., Zhang, J.: A comparative assessment of malware
classification using binary texture analysis and dynamic analysis. In: Proceedings of the
4th ACM Workshop on Security and Artificial Intelligence (2011). https://doi.org/10.1145/
2046684.2046689

4. Nataraj, L.: Malware Images: Visualization and Automatic Classification. Vision Research
Lab, University of California, Santa Barbara (2011). https://doi.org/10.1145/2016904.2016908

5. Choi, S., Jang, S., Kim, Y., Kim, J.: Malware detection using malware image and deep
learning. In: 2017 International Conference on Information and Communication Technology
Convergence (ICTC), pp. 1193–1195 (2017). https://doi.org/10.1109/ICTC.2017.8190895

6. Gibert, D.: Convolutional Neural Networks for Malware Classification. A thesis presented for
the degree of Master in Artificial Intelligence, Universitat de Barcelona (UB) (2016)

7. Luo, J.-S., Lo, D.C.-T.: Binary malware image classification using machine learning with local
binary pattern. In: IEEE International Conference on Big Data (BIGDATA) (2017). https://doi.
org/10.1109/BigData.2017.8258512

8. Raff, E., Zak, R., Cox R., Sylvester, J., Yacci, P., Ward, R., Tracy, A., McLean, M., Nicholas, C.:
An investigation of byte n-gram features for malware classification. J. Comput. Virol. Hacking
Tech. 14, 1–20 (2018). https://doi.org/10.1007/s11416-016-0283-1

9. Tabish, S.M., Shafiq, M.Z., Farooq, M.: Malware Detection using statistical analysis of byte-
level file content. In: Conference Proceedings of the ACM SIGKDD Workshop on Cyber
Security and Intelligence Informatics, Paris (2009). https://doi.org/10.1145/1599272.1599278

10. Akkas, A., Chachamis, C.N., Fetahu, L.: Malware Analysis of WanaCry Ransomware. https://
courses.csail.mit.edu/6.857/2017/project/20.pdf

11. Bilar, D: Opcodes as predictor for malware. Int. J. Electron. Secur. Digit. Forensics 1(2), 156–
168 (2007). https://doi.org/10.1504/IJESDF.2007.016865

12. Santos, I., Brezo, F., Nieves, J., Penya, Y.K., Sanz, B., Laorden, C., Bringas, P.G.: Idea: opcode-
sequence-based malware detection. In: International Symposium on Engineering Secure
Software and Systems, pp. 35–43 (2010). https://doi.org/10.1007/978-3-642-11747-3_3

13. Runwal, N., Low, R.M., Stamp, M.: OpCode graph similarity and metamorphic detection. J.
Comput. Virol. 8(1–2), 37–52,(2012). https://doi.org/10.1007/s11416-012-0160-5

14. Ye, Y., Wang, D., Li, T., Ye, D., Jiang, Q.: An intelligent PE-malware detection system based on
association mining. J. Comput. Virol. 4(4), 323–334 (2008). https://doi.org/10.1007/s11416-
008-0082-4

15. KALPA, Introduction to Malware. http://securityresearch.in/index.php/projects/malware_lab/
introduction-to-malware/8/

16. Hofmeyr, S., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls.
ACM J. Comput. Secur. 6(3), 151–180 (1998)

https://doi.org/10.1109/TETC.2017.2756908
https://doi.org/10.1109/TETC.2017.2756908
https://doi.org/10.1109/COMSNETS.2018.8328219
https://doi.org/10.1145/2046684.2046689
https://doi.org/10.1145/2046684.2046689
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1109/ICTC.2017.8190895
https://doi.org/10.1109/BigData.2017.8258512
https://doi.org/10.1109/BigData.2017.8258512
https://doi.org/10.1007/s11416-016-0283-1
https://doi.org/10.1145/1599272.1599278
https://courses.csail.mit.edu/6.857/2017/project/20.pdf
https://courses.csail.mit.edu/6.857/2017/project/20.pdf
https://doi.org/10.1504/IJESDF.2007.016865
https://doi.org/10.1007/978-3-642-11747-3_3
https://doi.org/10.1007/s11416-012-0160-5
https://doi.org/10.1007/s11416-008-0082-4
https://doi.org/10.1007/s11416-008-0082-4
http://securityresearch.in/index.php/projects/malware_lab/introduction-to-malware/8/
http://securityresearch.in/index.php/projects/malware_lab/introduction-to-malware/8/


Malware Mitigation Measures 11

17. Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M.M., Tawbi, N.: Static detection of
malicious code in executable programs. Int. J. Req. Eng. 2001(184–189), 79 (2001)

18. Sekar, R., Bendre, M., Bollineni, P., Dhurjati, D.: A fast automaton-based approach for
detecting anomalous program behaviors. In: Proceedings 2001 IEEE Symposium on Security
and Privacy (2001). https://doi.org/10.1109/SECPRI.2001.924295

19. Sung, A.H., Xu, J., Chavez, P., Mukkamala, S.: Static analyzer of vicious executables. In: IEEE
20th Annual Computer Security Applications Conference, pp. 326–334 (2004). https://doi.org/
10.1109/CSAC.2004.37

20. Ye, Y., Li, T., Jiang, Q., Wang, Y.: CIMDS: adapting postprocessing techniques of associative
classification for malware detection. IEEE Trans. Syst. Man Cybern. C 40(3), 298–307 (2010).
https://doi.org/10.1109/TSMCC.2009.2037978

21. Snedecor, W., Cochran, W.: Statistical Methods, 8th edn. Iowa State University Press, Iowa
City (1989)

22. Jeong, K., Lee, H.: Code graph for malware detection. In: Information Networking. ICOIN.
International Conference, pp. 1–5 (2008). https://doi.org/10.1109/ICOIN.2008.4472801

23. Lee, J., Jeong, K., Lee, H.: Detecting metamorphic malwares using code graphs. In: Proceed-
ings of the ACM Symposium on Applied Computing, pp. 1970–1977. ACM, New York (2010).
https://doi.org/10.1145/1774088.1774505

24. Bonfante, G., Kaczmarek, M., Marion, J.Y.: Control Flow Graphs as Malware Signatures.
WTCV (2007)

25. Vigneswaran, K.R., Vinayakumar, R., Soman, K.P., Poornachandran, P.: Evaluating shallow
and deep neural networks for network intrusion detection systems in cyber security. In:
Ninth International Conference on Computing, Communication and Networking Technologies
(ICCCNT), Bengaluru (2018). https://doi.org/10.1109/ICCCNT.2018.8494096

26. Cryptostalker. https://github.com/unixist/randumb#cryptostalker-example
27. Pingree, L.: Emerging Technology Analysis: Deception Techniques and Technologies Cre-

ate Security Technology Business Opportunities. https://www.gartner.com/doc/reprints?id=1-
2LSQOX3&ct=150824&st=sb&aliId=87768

28. Hutchins, E.M., Cloppert, M.J., Amin, R.M.: Intelligence-driven computer network defense
informed by analysis of adversary campaigns and intrusion kill chains. Lead Issues Inf Warf
Secur. Res 1, 1–14 (2011)

29. Moore, C.: Detecting ransomware with honeypot techniques. In: Cybersecurity and Cyber-
forensics Conference, pp. 77–81 (2016)

30. Yago, J.: Security Projects: Anti Ransom (2017). http://www.security-projects.com/?Anti_
Ransom

31. GBH: Microsoft introduced a control folder access to prevent data from ransomware and other
malicious apps and threats in Windows 10 insider release

32. J.A. Gmez-Hernndez, Alvarez-Gonzlez, L., Garca-Teodoro, P.: R-locker: thwarting ran-
somware action through a honeyfile-based approach. Comput. Secur. 73, 389–398 (2018)

33. Ahmadian, M.M., Shahriari, H.R.: 2entFOX: a framework for high survivable ransomwares
detection. In: 13th International ISC Conference on Information Security and Cryptology
(2016). https://doi.org/10.1109/ISCISC.2016.7736455

34. Hasan, M.M., Rahman, M.M. A support vector machines based ransomware analysis
framework with integrated feature set. In: 20th International Conference of Computer and
Information Technology (ICCIT) (2017). https://doi.org/10.1109/ICCITECHN.2017.8281835

https://doi.org/10.1109/SECPRI.2001.924295
https://doi.org/10.1109/CSAC.2004.37
https://doi.org/10.1109/CSAC.2004.37
https://doi.org/10.1109/TSMCC.2009.2037978
https://doi.org/10.1109/ICOIN.2008.4472801
https://doi.org/10.1145/1774088.1774505
https://doi.org/10.1109/ICCCNT.2018.8494096
https://github.com/unixist/randumb#cryptostalker-example
https://www.gartner.com/doc/reprints?id=1-2LSQOX3&ct=150824&st=sb&aliId=87768
https://www.gartner.com/doc/reprints?id=1-2LSQOX3&ct=150824&st=sb&aliId=87768
http://www.security-projects.com/?Anti_Ransom
http://www.security-projects.com/?Anti_Ransom
https://doi.org/10.1109/ISCISC.2016.7736455
https://doi.org/10.1109/ICCITECHN.2017.8281835

	Malware Attacks: A Survey on Mitigation Measures
	1 Introduction
	2 Mitigation Measures
	2.1 Static Approach (Signature Based)
	2.2 Dynamic Approach (Behavior Based)
	2.3 Honeypot Based Approach
	2.4 Hybrid Approach

	3 Comparison
	4 Conclusion
	References


