
Keyword Search over RDF Using
Document-Centric Information Retrieval

Systems

Giorgos Kadilierakis1,2, Pavlos Fafalios1(B) , Panagiotis Papadakos1,2 ,
and Yannis Tzitzikas1,2

1 Information Systems Laboratory, FORTH-ICS, Heraklion, Greece
kadilier@csd.uoc.gr, {fafalios,papadako,tzitzik}@ics.forth.gr
2 Computer Science Department, University of Crete, Heraklion, Greece

Abstract. For ordinary users, the task of accessing knowledge graphs
through structured query languages like SPARQL is rather demanding.
As a result, various approaches exploit the simpler and widely used
keyword-based search paradigm, either by translating keyword queries
to structured queries, or by adopting classical information retrieval (IR)
techniques. In this paper, we study and adapt Elasticsearch, an out-of-
the-box document-centric IR system, for supporting keyword search over
RDF datasets. Contrary to other works that mainly retrieve entities, we
opt for retrieving triples, due to their expressiveness and informative-
ness. We specify the set of functional requirements and study the emerg-
ing questions related to the selection and weighting of the triple data to
index, and the structuring and ranking of the retrieved results. Finally,
we perform an extensive evaluation of the different factors that affect
the IR performance for four different query types. The reported results
are promising and offer useful insights on how different Elasticsearch

configurations affect the retrieval effectiveness and efficiency.

1 Introduction

The Web of Data currently contains thousands of RDF datasets available online
that includes cross-domain KBs like DBpedia and Wikidata, domain specific
repositories like DrugBank and MarineTLO, as well as Markup data through
schema.org (see [17] for a recent survey). These datasets are queried through
structured query languages (SPARQL), however this is quite complex for ordi-
nary users. Ordinary users are acquainted with keyword search due to the widely
used web search engines. Faceted search system is another popular paradigm for
interactive query formulation, however even such systems (see [24] for a survey)
need a keyword search engine as an entry point to the information space. We
conclude that an effective method for keyword search over RDF is indispensable.

c© Springer Nature Switzerland AG 2020
A. Harth et al. (Eds.): ESWC 2020, LNCS 12123, pp. 121–137, 2020.
https://doi.org/10.1007/978-3-030-49461-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49461-2_8&domain=pdf
http://orcid.org/0000-0003-2788-526X
http://orcid.org/0000-0001-8926-4229
http://orcid.org/0000-0001-8847-2130
http://schema.org
https://doi.org/10.1007/978-3-030-49461-2_8


122 G. Kadilierakis et al.

At the same time we observe a widespread use of out-of-the-box IR systems,
like Elasticsearch, in different contexts. To this end in this paper we investigate
how such existing document-centric Information Retrieval Systems (IRSs), can
be used for enabling keyword search over arbitrary RDF datasets, and how they
perform compared to dedicated keyword search systems for RDF. Towards this
aim, we study the following relevant questions: (a) how to index an RDF dataset,
(b) what data we should rank and how, and (c) how the search results should
be presented. In this work, we study and propose various methods for tackling
the above questions over the popular IR system Elasticsearch, and report
extensive evaluation results in terms of their effectiveness and efficiency.

The source code of our implementation is available on GitHub as an indexing
service1 and a search API2. We also provide a demo named Elas4RDF3 on top of
these services over the DBpedia dataset, where the services are configured based
on the most effective options reported in this work.

The rest of the paper is organized as follows: Sect. 2 describes the related
background, requirements and challenges, Sect. 3 discusses the related work, and
Sect. 4 details our adaptation of Elasticsearch for RDF. Finally, Sect. 5 dis-
cusses the evaluation results, while Sect. 6 concludes the paper and identifies
issues for further research.

2 Problem Statement and Requirements

Section 2.1 describes the background and the main objective, Sect. 2.2 discusses
the requirements, and Sect. 2.3 identifies the rising questions and challenges.

2.1 Background and Objective

We first define the notions of RDF triple and RDF dataset. Consider an infinite
set of URI references U , an infinite set of blank nodes B (anonymous resources),
and an infinite set of literals L. A triple 〈s, p, o〉 ∈ (U ∪ B) × U × (U ∪ L ∪ B) is
called an RDF triple, where s is the subject, p the predicate, and o the object
of the triple. An RDF dataset (or RDF graph) is a finite set of RDF triples.
These triples usually describe information for a set of entities E (subject or
object URIs), like persons, locations, etc. Figure 1 depicts an example of a small
RDF graph describing three albums of The Beatles band. It contains 16 triples,
involving 4 entity URIs (black nodes), 2 class URIs (white nodes), and 8 literals
(gray nodes). Among the 8 literals, 7 are strings (free text) and 1 is a number.

Our objective is to allow a user submit a free-text query q and get back the
most relevant data, for a given set of RDF triples T .

1 https://github.com/SemanticAccessAndRetrieval/Elas4RDF-index.
2 https://github.com/SemanticAccessAndRetrieval/Elas4RDF-search.
3 https://demos.isl.ics.forth.gr/elas4rdf.

https://github.com/SemanticAccessAndRetrieval/Elas4RDF-index
https://github.com/SemanticAccessAndRetrieval/Elas4RDF-search
https://demos.isl.ics.forth.gr/elas4rdf


Keyword Search over RDF 123

Fig. 1. An example of a small RDF graph.

2.2 Requirements

We consider the following three functional requirements:

– Unrestricted RDF datasets. A valid RDF dataset contains any set of valid
RDF triples. We do not presuppose knowledge of the ontology/schema for
describing the underlying data. Thus, triples describing the data schema may
not exist. In addition, the dataset might not contain human-friendly URIs.

– Unrestricted keyword-based/free-text queries. The only input is a free-text
query describing any type of information need (e.g., retrieving an entity,
attributes of an entity, etc.). We do not consider query operators like AND/OR,
wildcards, the ability to search in specific indexed fields, phrasal queries, or
any other input specified at query-time.

– Exploitation of an existing IR system. We do not aim at building a new IR
system. Instead we want to use an existing widely-used system, exploit its
functionalities, and tune it for retrieving RDF data. Whenever possible, we
should use its default settings. Any configuration should be made only if
this is required by the nature of the RDF data, but without considering any
information about the topic or domain of the indexed dataset.

2.3 Challenges

We can identify four basic challenges of keyword search over RDF data:

Challenge 1: Deciding on the Retrieval Unit. Contrary to the classic IR
task where the retrieval unit is an unstructured or semi-structured textual doc-
ument, an RDF dataset contains highly-structured data in the form of RDF
triples, where each triple consists of three elements: subject, predicate and object.
There are three main options to consider regarding the retrieval unit :

(i) An entity corresponding to a single URI. An RDF dataset usually
describes information for a set of resources (e.g., persons or locations). Such
a resource can be found either in the subject and/or the object of the triple,



124 G. Kadilierakis et al.

and satisfies entity search information needs, related to the retrieval of one
or more entities, like the query “The Beatles albums”.

(ii) A triple (subject-predicate-object). It provides more information
than single URIs, satisfying information needs related to attribute search.
In such tasks we want to find an attribute of an entity (e.g., “Bea-
tles formation year”), or general information of an entity as captured
by string literals. The triple can also help verify the correctness of
a result, e.g., (dbr:The Beatles, dbo:artist, dbr:Let It be) for the
query “Artist of Let It Be”, instead of returning the URI of an entity like
dbr:The Beatles.

(iii) A subgraph (of size l triples). It describes more complex informa-
tion than a single triple. Consider the query “Beatles studios”. The
answer consists of the two literals (“EMI Studios...”, “Abbey Road...”),
connected to the Beatles’ albums Revolver and Rubber Soul through
the property dbp:studio, which in turn are connected to The Beat-
les entity through the property dbo:artist. Thus, a correct candidate
answer consists of a path or subgraph of two triples: <dbr:The Beatles,
dbo:artist, dbr:Rubber Soul> and <dbr:Rubber Soul, dbp:studio,
"EMI Studios, London">.

Challenge 2: Selecting the Data to Index. An RDF dataset contains ele-
ments of different types: i) resource identifiers (URIs/URLs), ii) string literals,
iii) numerical and boolean literals, iv) date literals, and v) unnamed elements
(blank nodes) that are used for connecting other elements. Types ii–iv are all lit-
erals, so there is no need for any special preprocessing, while blank nodes (type v)
can be ignored. With respect to type i, the last part of a URI usually reveals
the name of the corresponding entity or resource, and is rather useful after some
pre-processing (e.g., replacing underscores with space). The domain of the URI
usually reveals the knowledge base it belongs to, e.g., DBpedia, and its middle
part can reveal the type of the resource (e.g., class, property, etc.), which can
be useful for more experienced users. If the retrieval unit is an entity, one can
index (parts of) its URI as well as all its outgoing properties that provide char-
acteristics and more information about the entity. If the retrieval unit is a triple,
one can just index all of its parts (subject, predicate, object), or choose to index
additional data about the subject and object of the triple, e.g., literal proper-
ties like the rdfs:label. Finally, if we consider a subgraph as the retrieval unit,
then the data to index depends on whether the subgraph has a constant size,
independently of the query, or its size is selected dynamically. For the former,
one storage-inefficient option is to index all possible subgraphs of size l. Thus, a
more flexible approach is to index single triples and select the l triples that form
a subgraph during the retrieval process.

Challenge 3: Weighting the Indexed Fields. Deciding on the importance of
each indexed field may be another thing to consider. By assigning weights, impor-
tant fields can affect more the final ranking. For example, we may assign higher
weights to URI’s containing certain properties (e.g., label, comment, etc.), or to



Keyword Search over RDF 125

literals over URIs. By allowing the adjustment of weights of the various fields
at query time, we can fine-tune the IRS’s query evaluator module at run-time,
offering better results for easily identifiable query types (e.g., Q&A queries).

Challenge 4: Structuring the Results. The final challenge is to decide on
how to structure and show the results page. One option is to follow a classical IR
approach and show a top-K ranked list of individual results (i.e., entities, triples
or subgraphs), and its metadata (e.g., relevance score) through a faceted search
UI. Another option is to show a top-K graph which depicts how the individual
results (entities, triples, or subgraphs), are connected to each other.

We study all these challenges as parameters of Elasticsearch (see Sect. 4).

3 Related Work

Keyword search over RDF data can be supported either by translating keyword
queries to structured (SPARQL) queries (like in [8,15,22,23]), or by building or
adapting a dedicated IRS using classical IR methods for indexing and retrieval.

Since our work falls under the second direction, below we report related
works and showcase the difference of our approach. Such systems construct the
required indexing structures either from scratch or by employing existing IR
engines (e.g., Lucene and Solr), and adapt the notion of a virtual document for
the structured RDF data. Usually, they rank the results (entities or subgraphs)
according to commonly used IR ranking functions. One of the first such systems
was Falcon [2], where each document corresponds to the textual description of the
maximum subset of connected RDF triples, while the ranking of the documents
is done by mapping keyword terms to documents through cosine similarity and
the popularity of each document. In the entity search track of SemSearch10
workshop4, a number of related systems were presented and evaluated [4,5,16].
Most of those systems are based on variations of the TD-IDF weighting adapted
for RDF data, and return a ranked list of entities (i.e., URIs). An approach that
uses inverted lists over terms that appear as predicates or objects of triples is
described in [3], where the keyword query is translated to a logical expression that
returns the ids of the matching entities. Another direction in the bibliography
is to return ranked subgraphs instead of relevant entity URIs. For example,
in [18] documents represent a literal or a resource, and external knowledge is
used to explore relations between the keywords and the dataset components,
while the returned subgraphs are ranked using a TF-based function. In [7] the
returned subgraphs are computed using statistical language models based on the
likelihood estimation of generating the query from each subgraph.

In current state-of-the-art approaches though, RDF data are ranked based on
extensions of the BM25 model. For example, BM25F [1,19], takes into account
the various fields of a virtual document and computes the normalized term-
frequency using the field’s length instead of the document’s. Further, the recent
work described in [6] introduces the TSA + VDP keyword search system, where

4 http://km.aifb.kit.edu/ws/semsearch10/.

http://km.aifb.kit.edu/ws/semsearch10/


126 G. Kadilierakis et al.

initially, the system builds offline an index of documents over a set of subgraphs
via a breadth-first search method, while at query-time, it returns a ranked list
of these documents based on a BM25 model.

Regarding the retrieval unit, we have seen that most works return either
URIs or subgraphs. However, the concept of triple ranking has also emerged in
works that do not directly target the task of keyword search over RDF data.
For example, the TripleRank algorithm presented in [9] ranks authorities in the
Semantic Web, in the same manner as PageRank for the WWW. In [20], the
authors propose a learning to rank framework with relation-independent features
that aims at developing ranking models that measure triple significance. For a
given relation type as input (e.g., profession) the computed score of each triple
measures how well the triple captures the relevance of the statement that it
expresses, compared to other triples from the same relation.

With respect to works that make use of Elasticsearch, LOTUS [11,12] is a
text-based entry point to the Linked Data cloud. It makes use of Elasticsearch
for supporting keyword search, offering various approaches for matching and
ranking the relevant information. Its focus is on scalability and does not study
how the different matching and ranking methods affect the retrieval perfor-
mance. Elasticsearch has been also used for indexing and querying Linked
Bibliographic Data in JSON-LD format [14], while the ElasticSearch RDF River
Plugin5 uses it as a way to index URIs from various endpoints and enrich the
indexed documents with RDF data.6

Positioning. In our work, we make use of Elasticsearch for supporting
schema-agnostic keyword search over a set of RDF triples, in order to return
a ranked list of triples. We also provide ways of constructing a ranked list of
entities over this list of triples. Complementary to the approach followed by
LOTUS [11,12], which focuses on the scalability and efficiency of query evalu-
ation using Elasticsearch, we study in detail how the various configuration
options affect the retrieval accuracy. We aim at gaining a better understanding
on how Elasticsearch performs over RDF, so that anyone can use it out-of-the-
box over any RDF dataset. Our experimental evaluation (Sect. 5) showed that,
a proper (schema-agnostic) configuration in Elasticsearch provides a retrieval
accuracy similar to that of dataset-specific approaches built from scratch for the
task per se. To our knowledge, our work is the first that studies how the different
indexing and retrieval options in Elasticsearch affect the retrieval accuracy.

4 Adapting a Document-Centric IRS for RDF

Here, we describe the selected IRS (Sect. 4.1) and provide an overview of our
approach (Sect. 4.2). Then, we detail the various options we experimented with,
regarding indexing (Sect. 4.3), retrieval (Sect. 4.4) and ranking (Sect. 4.5).

5 https://github.com/eea/eea.elasticsearch.river.rdf#main-features.
6 https://www.opensemanticsearch.org/connector/rdf.

https://github.com/eea/eea.elasticsearch.river.rdf#main-features
https://www.opensemanticsearch.org/connector/rdf


Keyword Search over RDF 127

4.1 Considered IRS: Elasticsearch

Elasticsearch is a highly-scalable, open-source, full text search engine that
allows to store and search big volumes of data. It is based on Apache Lucene
and offers a distributed architecture of inverted indexes.

Basic Concepts. All data in Elasticsearch are stored in indices containing
different types of documents (units of search and index) that Elasticsearch
can store, update and search. Each document is a JSON object stored with a
unique ID that contains a set of fields. Each field is a key-value pair of various
datatypes (e.g., strings, JSON objects, etc.), organized by a mapping type for
each index. In our work, we create different mappings depending on the approach
we follow. For each field, we need to specify a type (e.g., text) and an analyzer,
and also define the used tokenizer, stemmer and stopword-list. Each index can
be split into multiple shards, and each shard can be replicated using replicas.
A node contains multiple shards/replicas and if the number of nodes is greater
than one, Elasticsearch balances the load equally. Finally, a single cluster may
contain one or more nodes that run in parallel and serve multiple requests.

Query Domain Specific Language (DSL). Elasticsearch has a powerful
Query DSL which supports advanced search features on top of Lucene’s query
syntax. There are two main types of query clauses: (a) filter-context which
answers whether a query matches a document (exact-match), and (b) query-
context which answers how well does a document matches a query using a rele-
vance score (best-match). Since we are interested in free-text search that provides
a ranked-list of results, we will solely be using query-context clauses. Queries can
be further categorised in match queries and multi-match queries. A match query
is executed over a single field, while a multi-match query allows searching upon
multiple fields. Depending on the way it is executed internally, a multi-match
query is categorized in: (i) best-fields, (ii) most-fields and (iii) cross-fields. Types
(i) and (ii) follow a field-centric approach, evaluating all query keywords on each
field before combining scores from each field. Type (i) assigns as document score
the score of the best-matched field, while for type (ii), the final score is the aver-
age score of all field scores. Field-centric approaches appear to be problematic
in cases where the query terms are scattered across multiple fields (e.g., across
the triple’s subject, predicate and object). A term-centric approach addresses
this issue by searching a query term-by-term on each field. This is implemented
in type (iii) where cross-fields searches each term across fields, favoring queries
whose answer is scattered across multiple fields.

4.2 Overview of the Approach

In this section we describe how we cope with the challenges discussed in Sect. 2.3,
and provide an overview of our approach and implementation.

With respect to Challenge 1 (deciding on the retrieval unit), we opt for high
flexibility and thus consider triple as the retrieval unit. A triple is more infor-
mative than an entity, provides a means to verify the correctness of a piece



128 G. Kadilierakis et al.

of information, since it is closer to Q&A, and offers flexibility on how to struc-
ture and present the final results (Challenge 4). For example, one can use various
aggregation methods over a ranked list of retrieved triples, for providing a ranked
list of entities for entity search or showing graphs of connected entities. More-
over in RDF, a triple can be viewed as the simplest representation of a fact. This
property is one of the major reasons we chose triple as our virtual document.

Regarding Challenge 2 (selecting the data to index ), we experiment and
evaluate different approaches on what data to consider for each virtual docu-
ment. Our baseline approach, considers only data from the triple itself (i.e., text
extracted from the subject, object and predicate). This simple approach, may
appear problematic in a dataset where URI’s are IDs, and thus not descriptive
of the underlying resource. As a result, we also extend the baseline approach to
exploit information in the neighborhood of the triple’s elements. For example,
we consider important outgoing properties such as rdfs:label and rdfs:comment,
and evaluate how various extensions affect the results quality and the index size.

With respect to Challenge 3 (weighting the indexed fields), we do not apply
any predefined weights in the indexed fields, but instead, adjust the weights of
the various fields at query time. In this way, the IRS’s query module evaluator
can be fine-tuned at run-time for specific query types (e.g., Q&A queries).

Finally, for Challenge 4 (results structuring), we opt for a ranked-list of results
since this is the way that traditionally IRS present the results to the user. On
top of the ranked-list of triples, we propose a method for mapping the retrieved
triples into a ranked list of entities, based on the appearance of URIs either in
the subject or the object. Then, the entities are ranked based on a weighted
gain factor of the ranking order of the triples in which they appear, similar to
the discounted cumulative gain used in the nDCG metric [13]. The evaluation
of different visualization methods (e.g., list of resources, top-K graphs, etc.) and
the corresponding user experience go beyond the scope of this paper.

Below, we provide details of the different approaches we experimented with
for indexing, retrieval and ranking of RDF triples in Elasticsearch.

4.3 Indexing

We try variations of two different indexing approaches, the baseline index that
considers only the triple itself, and the extended index that extends the baseline
index with additional descriptive information about the triple components.

Baseline Index. This index uses only information that exists in the triple’s
three components (subject, predicate, object). In case the value of one of the
components is a URI, the URI is tokenized into keywords, based on a special
tokenizer that extracts the last part of the URI (i.e., the text after the last ‘/’
or ‘#’) that usually describes the underlying resource, and its namespace parts.

Extended Index. The extended index, includes additional information when
one of the triple components is a resource (URI). This is particularly useful when
the last part of the URIs are not descriptive of the corresponding resources, and
thus not useful for querying. We experiment with three different variations that



Keyword Search over RDF 129

include the value(s) of: i) the rdfs:label property, that usually contains the
name of the corresponding resource, ii) the rdfs:comment property, which is very
descriptive of the underlying resource, and provides much more information than
the rdfs:label, and iii) all the outgoing properties of the resource. The first
two approaches are useful when we are aware of the schema(s) used to describe
the data. The latter one, includes all the information that describes the resource.
However it can highly increase the size of the index and introduce noise.

4.4 Retrieval

We experimented with various query types, weighting methods and similarity
models offered by Elasticsearch.

Query Types. Since our indexes contain different sets of fields, we can use mul-
tiple types of Elasticsearch queries. We study the following two approaches:
(i) single-field : a single field is created containing the index data, e.g., a super-
field containing all keywords describing the subject, the predicate and the object,
and (ii) multi-field : multiple fields are created, each one containing a specific
piece of information, e.g., one field for the subject keywords, one for the predi-
cate keywords and one for the object keywords.

Weighting. Another factor for improving relevance at query retrieval time is
applying weights on the various fields. Boosting fields only makes sense upon
multi-field queries, for specifying the importance of a field over another. For
example, we may define that the field containing the object keywords is twice
more important than the fields containing the subject and predicate keywords.
We experimented with different weighting approaches, by weighting more either:
i) only the subject keywords; ii) only the object keywords; iii) both the subject
and the object keywords.

Similarity Models (and Parameterization). A similarity model defines how
matching documents are scored. In Elasticsearch the default model is Okapi
BM25, which is a TF/IDF based similarity measure. BM25 has an upper limit
in boosting terms with a high TF, meaning that it follows a nonlinear term
frequency saturation. Parameter k1 can control how quickly this saturation will
happen based on the TF value. The default value is 1.2 and higher values result
in slower saturation. In our case, since the text in our fields is generally short, k1
will probably perform better towards lower values. The other tuning option of
BM25 is the field-length normalization, that can be controlled with parameter
b which has a default value of 0.75. Shorter fields gain more weight than longer
fields by increasing b, and this can be used to boost a short descriptive resource
over a long literal inside an object field.

Another available similarity module in Elasticsearch is DFR, a probabilis-
tic model that measures the divergence from randomness. Parameters include
a basic randomness model definition, using inverse term frequency, and a two-
level normalization. Language models supported by Elasticsearch include the
LM-Dirichlet similarity, a bayesian smoothing that accepts the μ parameter,



130 G. Kadilierakis et al.

and the LM-Jelinek Mercer similarity, which can be parameterized with λ. We
experimented with all the above-mentioned similarity models.

4.5 Grouping and Final Ranking

At this point we have performed a keyword query and have retrieved a ranked
list of triples (1st-level results). Now, we need to decide on how we will present
the results to the user. One approach is to group the retrieved triples based on
entities (i.e. subject and object URIs), and return a ranked list of entities (2nd-
level results) to the user, where each entity is associated with a ranked list of
triples. Such an approach offers flexibility on how to display the results to the
user, and allows to evaluate the different configurations we experimented with
using as ground truth existing datasets for entity search [10] (more below).

For ranking the derived entities, we exploit the ranking order of the triples
based on a weighted factor. Thereby, the gain that each entity accumulates works
in a logarithmic reduction manner, as in the widely used Discounted Cumulative
Gain (DCG) metric [13]. Specifically, each entity collects the discounted gain of
each triple based on the ranking position that it appeared on the 1st-level results
ranking. The final score of an entity e for a keyword-query q is given by the
formula:

score(e, q) =
tn∑

ti

2(n scorei) − 1
log2(i + 1)

(1)

where t is the ranked list of triples that the entity e appears in, and n scorei is
the normalized score of triple i in that list for the query q. Since Elasticsearch
deliberately scores documents with any number > 0, we use minmax normaliza-
tion for the results in list t.

Table 1. Query categories in the ‘DBpedia Entity’ test collection for entity search.

Category Description Example # queries

SemSearch ES Named entity queries “brooklyn bridge” 113

INEX-LD IR-style keyword queries “electronic music genres” 99

QALD2 Natural language questions “Who is the mayor of Berlin?” 115

ListSearch Entity-list queries “Professional sports teams in New York” 140

5 Evaluation

In Sect. 5.1 we describe the setup and the dataset of the evaluation, while
Sect. 5.2 and Sect. 5.3 report retrieval effectiveness, and space and time efficiency,
respectively. Finally, Sect. 5.4 summarizes the key findings.



Keyword Search over RDF 131

5.1 Test Collection and Setup

For our experiments we used the DBpedia-Entity test collection for entity search
[10], which is based on a DBpedia dump of 2015–10. The collection contains a set
of heterogeneous keyword queries along with relevance judgments obtained using
crowdsourcing. There are four categories of queries: i) named-entity queries,
ii) IR-style keyword queries, iii) natural language questions, and iv) entity-list
queries. Table 1 provides an example and the total number of queries for each
query category. In total, over 49K query-entity pairs are labeled using a three-
point scale (0: irrelevant, 1: relevant, and 2: highly relevant).

After following the instructions in [10] for building the RDF dataset and remov-
ing duplicates, we end up with a collection of approximately 400M triples. In addi-
tion to this full-collection, we also generated a subset of 15million triples that forms
our mini-collection by extracting all judged entity-based triples (≈6M) and ran-
domly adding an extra of 9M unjudged triples. The mini-collection allows us to
run a large number of experiments and study how the different factors discussed
in the previous section affect the quality of the retrieved results.

We deployed Elasticsearch 6.4 as a single node with max heap size set at
32 GB and 6 physical cores running on Debian 9.6. Using Python’s multiprocess-
ing pool we initiate 12 indexing instances with a bulk-size of 3,500 documents
each. These numbers were assigned empirically based on the collection and our
hardware. The number of shards is also assigned empirically and it alters between
the baseline and the extended index. For the baseline we select 2 shards while
depending on the extended approach we alter between 3 and 4 shards.

5.2 Quality of Retrieval

Our objective is to measure how the following parameters affect the quality of
search results: i) the various decisions regarding the indexed triple data, ii) the
used Elasticsearch query type, iii) the weighting of the fields, iv) the addi-
tional indexed data for each triple, and iv) the available similarity models in
Elasticsearch. We first study the effect of all these parameters using the mini-
collection and then evaluate the best performing methods on the full-collection.
For measuring the quality, we make use of the evaluation metric nDCG in posi-
tions 100 and 10, as in [10].

Examining Field Separation and Query Type (Baseline-Index). We
start by examining how each part of the triple (subject, predicate, object) and the
different query types (single field, multi-field) affect the quality of the retrieved
results using the baseline index, i.e., without considering additional information
about the triple subject, predicate or object. Specifically, we examine the fol-
lowing cases: i) baseline (s): only the keywords of the subject are indexed, ii)
baseline (p): only the keywords of the predicate are indexed, iii) baseline (o):
only the keywords of the object are indexed, iv) baseline (spo): the keywords of
all triple’s elements are indexed as a single field, v) baseline (s)(p)(o): the key-
words of all triple’s elements are indexed as different fields. Single-field queries
are executed using the match query retrieval method while multi-fields using
multi-match query and cross-fields.



132 G. Kadilierakis et al.

Table 2 shows the results. As expected, better results are obtained when all
triple elements are indexed. The use of a super-field (spo) seems to perform
slightly better in average than using distinct fields, mostly for the query types of
SemSearch & INEX-LD. However, the ListSearch type has the best performance
when using only the object field, while the Q&A type when the three fields are
distinguished. Recall that, as described in Sect. 4.1, the cross-fields query eval-
uation type of Elasticsearch favors queries whose answer is scattered across
multiple fields. This means that in the Q&A query type, the best results come
from more than one fields. With respect to the distinct triple elements, we see
that considering only the object provides the best results, outperforming the
case where we consider only the subject, by more than 14%. This means that
the answer usually exists in the object part of the triple. It is interesting also
that considering only the object provides better results than considering all the
triple elements for the ListSearch queries. Finally, considering only the predi-
cate provides a very poor performance, being relevant mostly to the Q&A and
ListSearch query types.

Examining Field Weighting (Baseline-Index). Multiple-field queries allow
specifying custom weights, enabling us to boost the importance of specific fields.
We examine the following cases: i) baseline (s)2(p)(o): doubling the weight of
subject, ii) baseline (s)(p)(o)2: doubling the weight of object, and iii) baseline
(s)2(p)(o)2: doubling the weight of both subject and object. Table 3 shows the
results. We see that doubling the weight of the object keywords provides the
best results on average, slightly outperforming both baseline (spo) and baseline
(s)(p)(o) @100 (cf. Table 2). On the contrary, we notice that doubling the impor-
tance of the subject keywords drops the performance by around 10%. Thus, we
can conclude that, for this collection, object keywords are more useful for key-
word searching than subject keywords.

Table 2. nDCG@100 (@10) for different field separation and query type approaches.

Method SemSearch ES INEX-LD QALD2 ListSearch AVG

Baseline (s) 0.48 (0.46) 0.28 (0.26) 0.30 (0.20) 0.30 (0.30) 0.340 (0.270)

Baseline (p) 0.02 (0.00) 0.04 (0.01) 0.06 (0.03) 0.07 (0.03) 0.04 (0.01)

Baseline (o) 0.63 (0.50) 0.43 (0.30) 0.42 (0.26) 0.47 (0.26) 0.485 (0.330)

Baseline (spo) 0.70 (0.61) 0.45 (0.33) 0.43 (0.30) 0.44 (0.26) 0.505 (0.372)

Baseline (s)(p)(o) 0.65 (0.55) 0.44 (0.32) 0.45 (0.31) 0.46 (0.28) 0.500 (0.358)

Extending the Index. We now study the case where we extend the index
with additional information about the triple’s elements. We consider the best
performing weighting method, i.e. (s)(p)(o)2, and examine the cases described
in Sect. 4.3: i) extended-label, that includes the rdfs:label property value of
the subject and object URIs as two different fields, ii) extended-comment, that
includes the rdfs:comment property value of the subject and object URIs as
two different fields, and iii) extended-outgoing, that includes the values of all the



Keyword Search over RDF 133

Table 3. nDCG@100 (@10) for different field weighting approaches.

Method SemSearch ES INEX-LD QALD2 ListSearch AVG

Baseline (s)2 (p)(o) 0.54 (0.50) 0.36 (0.31) 0.36 (0.28) 0.36 (0.23) 0.405 (0.330)

Baseline (s)(p)(o)2 0.67 (0.55) 0.45 (0.31) 0.44 (0.28) 0.48 (0.28) 0.509 (0.355)

Baseline (s)2(p)(o)2 0.64 (0.54) 0.44 (0.32) 0.44 (0.29) 0.46 (0.26) 0.495 (0.355)

Table 4. nDCG@100 (@10) for different approaches to extend the index.

Method SemSearch ES INEX-LD QALD2 ListSearch AVG

Extended-label (s)(p)(o)2 0.67 (0.56) 0.45 (0.31) 0.44 (0.28) 0.48 (0.28) 0.510 (0.358)

Extended-comment (s)(p)(o)2 0.68 (0.56) 0.53 (0.37) 0.50 (0.34) 0.54 (0.34) 0.562 (0.403)

Extended-outgoing (s)(p)(o)2 0.61 (0.52) 0.45 (0.34) 0.43 (0.32) 0.49 (0.33) 0.495 (0.378)

Table 5. nDCG@100 (@10) for different similarity models.

Module SemSearch ES INEX-LD QALD2 ListSearch AVG

BM25 0.68 (0.56) 0.53 (0.37) 0.50 (0.34) 0.54 (0.34) 0.562 (0.403)

DFR 0.72 (0.61) 0.55 (0.38) 0.50 (0.33) 0.53 (0.33) 0.575 (0.412)

LM Dirichlet 0.42 (0.38) 0.31 (0.26) 0.29 (0.23) 0.31 (0.23) 0.333 (0.275)

LM Jelinek-Mercer 0.71 (0.59) 0.55 (0.39) 0.50 (0.34) 0.55 (0.35) 0.578 (0.417)

outgoing properties of the subject and object URIs as two different fields. The
object is enriched only if it is a URI. We do not enrich the predicate because the
used collection does not include triples that describe the property URIs.

Table 4 shows the results. We see that including the comment property
improves performance by more than 5%. On the contrary, including all out-
going properties drops the performance from 0.510 to 0.495, which means that
this extension method introduces noise. With respect to the label property, we
see that performance is almost the same. This is an expected result given that,
in the DBpedia collection, for the majority of resources the last part of the URI
is similar to the value of the rdfs:label property.

Examining Different Similarity Models. We now study the effect of the
different similarity models offered by Elasticsearch (on their default setting),
as described in Sect. 4.4: BM25 (k1 = 1.2, b = 0.75), DFR (basic model: g, after
effect: l, normalization: z ), LM Dirichlet (μ = 2, 000), and LM Jelinek-Mercer
(λ = 0.1). Since the performance of a similarity model is highly affected by the
indexed data, we consider the best performing extended method of our previous
experiments, i.e., extended-comment (s)(p)(o)2.

Table 5 shows the results. We notice that three of the models (BM25, DFR,
and LM Jelinek-Mercer) have a very similar performance, with LM Jelinek-
Mercer outperforming the other two in all query categories apart from Sem-
Search ES, the simplest category, for which DFR provides the best results.

Comparative Results on the Full Collection. We now examine the perfor-
mance of our approach on the full collection and compare it to a set of other
available approaches in the bibliography that focus on entity search in DBpedia.



134 G. Kadilierakis et al.

Specifically, we consider the best performing methods for baseline and extended
approaches: baseline (s)(p)(o)2 and extended-comment (s)(p)(o)2 respectively,
with both BM25 and LM Jelinek-Mercer similarity models.

Since the proposed methods do not require training, we compare them with
the unsupervised methods of [10] (BM25, PRMS, MLM-all, LM, SDM). Note also
that all the methods in [10] have been particularly designed for entity search in
DBpedia and, as described in the dataset’s github repository7, a set of more
than 25 DBpedia-specific properties was collected for representing an entity and
creating the index. On the contrary, we provide general methods that consider
an existing IRS (using triple as the retrieval unit), that do not require special
dataset-specific information for building the indexes, apart from the use of a
very common property, like rdfs:comment.

Table 6. nDCG@100 (nDCG@10) results on full collection.

Method SemSearch ES INEX-LD QALD2 ListSearch AVG

Elas4RDFBL BM25 0.67

(0.57)

0.45

(0.34)

0.32

(0.23)

0.37

(0.27)

0.455

(0.352)

Elas4RDFEXT

BM25

0.68

(0.59)

0.48

(0.38)

0.41

(0.29)

0.43

(0.30)

0.500

(0.390)

Elas4RDFBL LM

Jelinek-Mercer

0.67

(0.56)

0.44

(0.32)

0.37

(0.25)

0.37

(0.25)

0.463

(0.345)

Elas4RDFEXT LM

Jelinek-Mercer

0.68

(0.59)

0.46

(0.36)

0.41

(0.29)

0.41

(0.29)

0.490

(0.382)

DBpedia-Entity-v2

BM25

0.41

(0.24)

0.36

(0.27)

0.33

(0.27)

0.33

(0.21)

0.358

(0.255)

DBpedia-Entity-v2

PRMS

0.61

(0.53)

0.43

(0.36)

0.40

(0.32)

0.44

(0.37)

0.469

(0.391)

DBpedia-Entity-v2

MLM-all

0.62

(0.55)

0.45

(0.38)

0.42

(0.32)

0.46

(0.37)

0.485

(0.402)

DBpedia-Entity-v2

LM

0.65

(0.56)

0.47

(0.40)

0.43

(0.34)

0.47

(0.39)

0.504

(0.418)

DBpedia-Entity-v2

SDM

0.67

(0.55)

0.49

(0.40)

0.43

(0.34)

0.49

(0.40)

0.514

(0.419)

Table 6 shows the results. We see that, on average, Elas4RDF achieves the
highest performance when using the extended index and BM25. Compared to
the DBpedia-Entity-v2 methods, we notice that the performance of our approach
is very close to the top-performing SDM method (the difference is 0.014 for
nDCG@100 and 0.029 for nDCG@10). SDM performs better on average mainly
because of its high performance on the ListSearch query type. This is a rather
promising result, given that the DBpedia-Entity-v2 methods are tailored to the
DBpedia dataset and the task per se (entity search).

7 https://iai-group.github.io/DBpedia-Entity/index details.html.

https://iai-group.github.io/DBpedia-Entity/index_details.html


Keyword Search over RDF 135

5.3 Space and Efficiency

We report the space requirements and the average query execution time of our
best models for baseline and extended indexes considering the full DBpedia col-
lection (57 GB uncompressed). The number of virtual documents in both cases
is 395,569,688. The size of the baseline index is around 72 GB and that of the
extended (with rdfs:comment) around 160 GB. We see that, as expected, the
extended index requires more than 2 times the size of the baseline index. The
average query execution time is around 0.7 s for the baseline method and 1.6 s for
the extended and depends on the query type. We see that extending the index
improves performance, however it affects the space requirements.

5.4 Executive Summary

The key findings of the aforementioned experiments are: i) all triple compo-
nents contribute on achieving the highest performance; ii) object keywords seem
to be more important than subject keywords, thus giving higher weight to the
object fields can improve performance; iii) extending the index with additional
(descriptive) information about the triple URIs improves performance; how-
ever, including all available information about the URIs (all outgoing properties)
can introduce noise and drop performance; iv) the default similarity model of
Elasticsearch (BM25) achieves a satisfactory performance; v) a proper config-
uration of Elasticsearch can provide a performance very close to that of task-
and dataset-specific systems built from scratch.

6 Conclusion

The objective of this work was to investigate the use of a classic document-
centric IR system, for enabling keyword search over arbitrary RDF datasets.
For this study, we decided to use one of the most widely used IR systems,
namely Elasticsearch. To this end, we specified the requirements and identified
the main rising questions and issues, related to the selection of the retrieval
unit and the data to index. We selected triple as our retrieval unit due to its
expressiveness and informativeness, and developed a mapping of a ranked list of
triples to a ranked list of entities. Then we experimented with a large number of
implementation approaches, including different indexing structures, query types,
field-weighting methods and similarity models offered by Elasticsearch. We
evaluated the performance of the approaches against the DBpedia-Entity v2 test
collection. The results show that Elasticsearch can effectively support keyword
search over RDF data if configured properly. The most effective configuration,
that weights higher the object part of the triple, performs similarly to systems
specifically built for retrieving entities over the DBpedia dataset. This approach
is demonstrated in the publicly available Elas4RDF demo8.

8 https://demos.isl.ics.forth.gr/elas4rdf/.

https://demos.isl.ics.forth.gr/elas4rdf/


136 G. Kadilierakis et al.

One direction that is worth investigating, is the provision of good answers
for entity-relation queries, i.e., queries that involve entities that are not directly
connected in the indexed RDF graph but they are connected through one or
more long paths of triples. In that case, different sets of unconnected triples
might be retrieved, each one corresponding to an entity appearing in the query.
Thus, in future we plan to study how our approach can be extended for providing
answers to such type of queries. Another interesting direction for future work is
the automatic detection of the query category and the application of different
configuration parameters for each case. Finally, we plan to apply and evaluate
our approach in domain-specific RDF datasets, e.g., ClaimsKG [21].

References

1. Blanco, R., Mika, P., Vigna, S.: Effective and efficient entity search in RDF data.
In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 83–97. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6 6

2. Cheng, G., Qu, Y.: Searching linked objects with Falcons: approach, implementa-
tion and evaluation. Int. J. Semant. Web Inf. Syst. (IJSWIS) 5(3), 49–70 (2009)

3. Delbru, R., Campinas, S., Tummarello, G.: Searching web data: an entity retrieval
and high-performance indexing model. J. Web Semant. 10, 33–58 (2012)

4. Delbru, R., Rakhmawati, N.A., Tummarello, G.: Sindice at SemSearch 2010. In:
WWW. Citeseer (2010)

5. Demartini, G., Kärger, P., Papadakis, G., Fankhauser, P.: L3S research center at
the SemSearch 2010 evaluation for entity search track. In: Proceedings of the 3rd
International Semantic Search Workshop (2010)

6. Dosso, D., Silvello, G.: A scalable virtual document-based keyword search system
for RDF datasets. In: Proceedings of the 42nd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp. 965–968 (2019)

7. Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: International
Conference on Information and knowledge management, pp. 237–242. ACM (2011)

8. Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Searching RDF graphs
with SPARQL and keywords. IEEE Data Eng. Bull. 33(1), 16–24 (2010)

9. Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: ranking semantic web
data by tensor decomposition. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS,
vol. 5823, pp. 213–228. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04930-9 14

10. Hasibi, F., et al.: DBpedia-Entity V2: a test collection for entity search. In: SIGIR,
pp. 1265–1268. ACM (2017)

11. Ilievski, F., Beek, W., van Erp, M., Rietveld, L., Schlobach, S.: LOTUS: adaptive
text search for big linked data. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini,
C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 470–485.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3 29

12. Ilievski, F., Beek, W., Van Erp, M., Rietveld, L., Schlobach, S.: LOTUS: linked
open text unleashed. In: COLD (2015)

13. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)

14. Johnson, T.: Indexing linked bibliographic data with JSON-LD, BibJSON and
elasticsearch. Code4lib J. 19, 1–11 (2013)

https://doi.org/10.1007/978-3-642-25073-6_6
https://doi.org/10.1007/978-3-642-04930-9_14
https://doi.org/10.1007/978-3-642-04930-9_14
https://doi.org/10.1007/978-3-319-34129-3_29


Keyword Search over RDF 137

15. Lin, X., Zhang, F., Wang, D.: RDF keyword search using multiple indexes. Filomat
32(5), 1861–1873 (2018). https://doi.org/10.2298/FIL1805861L

16. Liu, X., Fang, H.: A study of entity search in semantic search workshop. In: Pro-
ceedings of the 3rd International Semantic Search Workshop (2010)

17. Mountantonakis, M., Tzitzikas, Y.: Large-scale semantic integration of linked data:
a survey. ACM Comput. Surv. (CSUR) 52(5), 103 (2019)

18. Ouksili, H., Kedad, Z., Lopes, S., Nugier, S.: Using patterns for keyword search in
RDF graphs. In: EDBT/ICDT Workshops (2017)

19. Pérez-Agüera, J.R., Arroyo, J., Greenberg, J., Iglesias, J.P., Fresno, V.: Using
BM25F for semantic search. In: Proceedings of the 3rd International Semantic
Search Workshop, p. 2. ACM (2010)

20. Shahshahani, M.S., Hasibi, F., Zamani, H., Shakery, A.: Towards a unified super-
vised approach for ranking triples of type-like relations. In: Pasi, G., Piwowarski,
B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 707–714.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7 66

21. Tchechmedjiev, A., et al.: ClaimsKG: a knowledge graph of fact-checked claims.
In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 309–324. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30796-7 20

22. Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-based interpretation of
keywords for semantic search. In: Aberer, K., et al. (eds.) ASWC/ISWC 2007.
LNCS, vol. 4825, pp. 523–536. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 38

23. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query can-
didates for efficient keyword search on graph-shaped (RDF) data. In: 2009 IEEE
International Conference on Data Engineering, ICDE 2009, pp. 405–416. IEEE
(2009)

24. Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of RDF/S datasets: a
survey. J. Intell. Inf. Syst. 48(2), 329–364 (2016). https://doi.org/10.1007/s10844-
016-0413-8

https://doi.org/10.2298/FIL1805861L
https://doi.org/10.1007/978-3-319-76941-7_66
https://doi.org/10.1007/978-3-030-30796-7_20
https://doi.org/10.1007/978-3-540-76298-0_38
https://doi.org/10.1007/978-3-540-76298-0_38
https://doi.org/10.1007/s10844-016-0413-8
https://doi.org/10.1007/s10844-016-0413-8

	Keyword Search over RDF Using Document-Centric Information Retrieval Systems
	1 Introduction
	2 Problem Statement and Requirements
	2.1 Background and Objective
	2.2 Requirements
	2.3 Challenges

	3 Related Work
	4 Adapting a Document-Centric IRS for RDF
	4.1 Considered IRS: Elasticsearch
	4.2 Overview of the Approach
	4.3 Indexing
	4.4 Retrieval
	4.5 Grouping and Final Ranking

	5 Evaluation
	5.1 Test Collection and Setup
	5.2 Quality of Retrieval
	5.3 Space and Efficiency
	5.4 Executive Summary

	6 Conclusion
	References




