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Abstract. The rise of knowledge graphs as a medium for storing and
organizing large amounts of data has spurred research interest in auto-
mated methods for reasoning with and extracting information from this
representation of data. One area which seems to receive less attention is
that of inducing a class taxonomy from such graphs. Ontologies, which
provide the axiomatic foundation on which knowledge graphs are built,
are often governed by a set of class subsumption axioms. These class sub-
sumptions form a class taxonomy which hierarchically organizes the type
classes present in the knowledge graph. Manually creating and curat-
ing these class taxonomies oftentimes requires expert knowledge and is
time costly, especially in large-scale knowledge graphs. Thus, methods
capable of inducing the class taxonomy from the knowledge graph data
automatically are an appealing solution to the problem. In this paper,
we propose a simple method for inducing class taxonomies from knowl-
edge graphs that is scalable to large datasets. Our method borrows ideas
from tag hierarchy induction methods, relying on class frequencies and
co-occurrences, such that it requires no information outside the knowl-
edge graph’s triple representation. We demonstrate the use of our method
on three real-world datasets and compare our results with existing tag
hierarchy induction methods. We show that our proposed method outper-
forms existing tag hierarchy induction methods, although both perform
well when applied to knowledge graphs.

Keywords: Knowledge graphs · Taxonomy induction · Ontologies

1 Introduction

Knowledge graphs are data storage structures that rely on principles from graph
theory to represent information. Specifically, facts are stored as triples which
bring together two entities through a relation. In a graphical context, these
entities are analogous to nodes, and the relations between them are analogous to
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edges. In recent years, knowledge graphs have garnered widespread attention as
a medium for storing data on the web. Public knowledge bases such as DBpedia
[13], YAGO [12], and WikiData [28] are all underpinned by large-scale knowledge
graphs containing upwards of one billion triples each. These knowledge bases
find uses in personal, academic, and commercial domains and are ubiquitous
in the research fields of the Semantic Web, artificial intelligence, and computer
science broadly. Furthermore, private companies are known to use proprietary
knowledge graphs as a component of their data stores. Google, for instance,
uses a knowledge graph derived from Freebase [6] to enhance their search engine
results by providing infoboxes which summarize facts about a user’s query [24].

Ontologies are often used in conjunction with knowledge graphs to provide
an axiomatic foundation on which knowledge graphs are built. In this view, an
ontology may be seen as a rule book that provides semantics to a knowledge
graph and governs how the information contained within it can be reasoned
with. One of the core components of an ontology is the class taxonomy: a set of
subsumption axioms between the type classes that may exists in the knowledge
graph. When put together, the subsumption axioms form a hierarchy of classes
where general concepts appear at the top and their subconcepts appear as their
descendants.

One of the challenges that arise when working with large knowledge graphs
is that of class taxonomy construction. Manual construction is time consuming
and requires curators knowledgeable in the area. DBpedia, for instance, relies
on its community to curate its class taxonomy. Similarly, YAGO relies on a
combination of information from Wikipedia1 and WordNet2, both of which are
manually curated. On the other hand, automated methods are not able to induce
class taxonomies of the quality necessary to reliably apply to complex knowledge
bases. Furthermore, they oftentimes rely on external information which may
itself be manually curated or may only be applicable to knowledge bases in a
particular domain. With this in mind, the impetus for automatically inducing
class taxonomies of high quality from large-scale knowledge graphs becomes
apparent.

In this paper, we propose a scalable method for inducing class taxonomies
from knowledge graphs without relying on information external to the knowledge
graph’s triples. Our approach applies methods used to solve the problem of tag
hierarchy induction, which involves inducing a hierarchy of tags from a collection
of documents and the tags that annotate them. Although extensively studied in
the field of natural language processing, these methods have yet to be applied to
knowledge graphs to the best of our knowledge. In order to use these methods, we
reshape the knowledge graph’s triple structure to a tuple structure, exploiting the
graph’s single dimensionality in assigning entities to type classes. Furthermore,
we propose a novel approach to inducing class taxonomies which outperforms
existing tag hierarchy induction methods both in terms scalability and quality
of induced taxonomies.

1 https://www.wikipedia.org/.
2 https://wordnet.princeton.edu/.

https://www.wikipedia.org/
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The remainder of this paper proceeds with Sect. 2 which provides an overview
of the existing work done on inducing class taxonomies and tag hierarchies. We
formalize the problem and introduce notation in Sect. 3. Our proposed method
is described in Sect. 4 and evaluated in Sect. 5. Section 6 concludes the paper.

2 Related Work

We divide our discussion of related work into two subsections: class taxonomy
induction methods and tag hierarchy induction methods. Both of these methods
are used to construct a hierarchy of concepts, however they differ in the type
of data they are applied to. Class taxonomy induction methods are used on
knowledge graphs and thus operate on data represented as triples. Tag hierarchy
induction methods operate on documents and the tags that annotate them. In
practice, these documents are often blog posts, images, and videos annotated
by users on social networking websites. We can view our proposed method as
a combination of the aforementioned categories as it takes the input structure
of documents and tags but is applied to knowledge graphs to induce a class
taxonomy.

2.1 Methods for Class Taxonomy Induction

Völker and Niepert [27] introduce Statistical Schema Induction which uses asso-
ciation rule mining on a knowledge graph’s transaction table to generate ontol-
ogy axioms. Each row in the transaction table corresponds to a subject in the
graph along with the classes it belongs to. Implication patterns which are con-
sistent with the table are mined from this table to create candidate ontology
axioms. The candidate axioms are then sorted in terms of descending certainty
values and added greedily to the ontology only if they are logically coherent with
axioms added before them. Nickel et al. [18] propose a method using hierarchical
clustering on a decomposed representation of the knowledge graph. Specifically,
they extend RESCAL [17], a method for factorizing a three-way tensor, to better
handle sparse large-scale data and apply OPTICS [3], a density based hierarchi-
cal clustering algorithm. Ristoski et al. [20] rely on entity and text embeddings
in their proposed method, TIEmb. The intuition behind this approach is that
entities of a subclass will be embedded within their parent class’s embeddings.
Thus if you calculate the centroid for each class’s embeddings, you can infer its
subclasses as those whose centroid falls within a certain radius. For instance, the
class centroids of Mammals and Reptiles will fall inside the radius of Animals
although the converse is not true since Mammals and Reptiles are more specific
classes and are expected to have a smaller radius.

2.2 Methods for Tag Hierarchy Induction

Heymann and Garcia-Molina [11] propose a frequency-based approach using
cosine similarity to calculate tag generality. In their approach, tags are assigned
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vectors based on the amount of times they annotate each document. The pair-
wise cosine similarity between tag vectors is used to build a tag similarity graph.
The closeness centrality of tags in this graph is used as the generality of tags. To
build the hierarchy, tags are greedily added – in order of descending generality –
as children to the tag in the hierarchy that has the highest degree of similarity.
This approach was extended by Benz et al. [4] to better handle synonyms and
homonyms in the dataset. Schmitz [23] proposed a method extending on the
work done by Sanderson and Croft [22] which uses subsumption rules to identify
the relations between parents and children in the hierarchy. The subsumption
rules are calculated by tag co-occurrence and filtered to control for “idiosyncratic
vocabulary”. These rules form a directed graph which is then pruned to create a
tree. Solskinnsbakk and Gulla [25] use the Aprioir algorithm [1] to mine a set of
association rules from the tags. Each of these rules has the relationship of premise
and consequence which the authors treat as that of class and subclass. This is
used to construct a tree which is then verified based on the semantics of each
tag. Tang et al. [26] use Latent Dirichlet Allocation (LDA) [5] to generate topics
comprised of tags. Generality can then be calculated following the reasoning that
tags with high frequencies across many topics are more general than ones that
have a high frequencies in a single topic. Relations between tags are induced
based on four divergence measures calculated on the LDA results. Agglomer-
ative Hierarchical Clustering for Taxonomy Construction [14] avoids explicitly
computing tag generality by employing agglomerative clustering and selecting
cluster medoids to be promoted upwards in the hierarchy. Cluster medoids are
chosen based on a similarity metric calculated as the divergence between a tag’s
topic distributions as learned by LDA. Wang et al. [29] propose a taxonomy
generation method based on repeated application of k-medoids clustering. As
the distance metric necessary for k-medoids clustering, they propose a similarity
score based on the weighted sum of document and textual similarities. Levels in
the hierarchy are created by repeated application of k-medoids clustering such
that for each cluster, the cluster medoid becomes the parent of all other tags
in the cluster. Dong et al. [8] propose a supervised learning approach wherein
binary classifiers are trained to predict a “broader-narrower” relation between
tags. LDA is used to generate topic distributions for tags which act as a basis
for three sets of features used to train the classifier. This approach does not
guarantee that the relations between tags will form a rooted tree.

3 Problem Description

A knowledge graph, K, is repository of information structured as a collection of
triples where each triple relates the subject, s, to the object, o, through a relation,
r. More formally, K = {〈s, r, o〉 ∈ E ×R×E} where 〈s, r, o〉 is a triple, E is the set
of entities in K, and R is the set of relations in K. K can therefore be viewed as a
directed graph with nodes representing entities and edges representing relations.

We can think of relation-object pairs, 〈r, o〉, as tags that describe the subject.
In this view, each entity that takes on the role of subject, si, is annotated by tags,
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tj ∈ Ai, where Ai is the set of tags that annotate si. We call these entities docu-
ments, di ∈ D, such that the set of all documents is a subset of all entities, D ⊆ E .
Tags are defined as relation-objects pairs, t := 〈r, o〉, and belong to the set of all
tags, the vocabulary, denoted as V, such that tj ∈ V. For a concrete example of
this notation consider DBpedia, wherein the entity dbr:Canada is annotated by
the tags 〈dbo:capital,dbr:Ottawa〉, 〈dbo:currency,dbr:Canadian dollar〉,
〈rdf:type,dbo:Location〉, and 〈rdf:type,dbo:Country〉 amongst others. In
this view, the knowledge base K may be represented as the set of document-tag
tuples K = {〈d, t〉 ∈ D × V}, where 〈d, t〉 is the tuple that relates document d
with tag t. We refer to this notation as the tuple structure for the remainder of
the paper.

Information in knowledge graphs is often structured using an ontology, which
provides semantics to the knowledge graph’s triples through an axiomatic foun-
dation which defines how entities and relations associate with one another. A
key component of most ontologies is the class taxonomy which organizes classes
through a set of class subsumption axioms. These subsumption axioms may
be thought of as is-a relations between classes. For instance, in the DBpe-
dia class hierarchy, the subsumption axioms {dbo:Person → dbo:Artist} and
{dbo:Artist → dbo:Painter} imply that dbo:Painter is a dbo:Artist and
that dbo:Artist is a dbo:Person. Furthermore, since class subsumption axioms
are transitive, dbo:Painter is a dbo:Person. This taxonomy oftentimes takes
the form of a rooted tree with a root class of which all other classes are considered
logical descendants of.

The problem of class taxonomy induction from knowledge graphs involves
generating subsumption axioms from triples to build the class taxonomy. We
notice that in most knowledge graphs, subjects are related to their class type by
one relation. This has the effect of reducing the knowledge graph’s class identi-
fying triples to a single dimension. The property can be exploited in the tuple
structure, since all class identifying relations are the same, they can be ignored
without loss of information. For instance, in DBpedia the relation which relates
subjects to their class is rdf:type. Thus, when compiling a dataset of class iden-
tifying tuples, we can treat the tags 〈rdf:type,dbo:Country〉 and dbo:Country
as equivalent. Therefore, the tuple 〈dbr:Canada, dbo:Country〉 preserves all
information required to induce a class taxonomy. This can be exploited by tag
hierarchy induction methods which take documents and their tags as input.

4 Approach

Our proposed method uses class frequencies and co-occurrences to calculate
similarity between tags. This approach, inspired by the method proposed by
Schmitz, relies on the intuition that subclasses will co-occur in documents with
their superclasses more often than with classes they are not logical descendants
of. Unlike Schmitz’s method which uses this assumption to generate candidate
subsumption axioms, our method uses similarity to choose a parent tag which
already exists in the taxonomy. In this step, which draws inspiration from Hey-
mann and Garcia-Molina, tags are greedily added to the taxonomy in order of
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descending generality. Thus, subsumption axioms induced by our method have
to abide by the following rules: (1) the parent tag has a higher generality than
the child tag; (2) the parent tag is the tag with the highest similarity to the child
tag from the tags that exist in the taxonomy when the child tag is being added.

As previously mentioned, our approach leverages the tuple structure of a
knowledge graph to induce a class taxonomy in the form of a rooted tree. As
such, the first step is data preprocessing wherein all of a knowledge graph’s class
identifying triples are converted to tuple structure.

4.1 Class Taxonomy Induction Procedure

Before describing the taxonomy induction procedure for our method, we define
measures which are calculated on the knowledge graph as required input for our
algorithm.

– The number of documents annotated by tag ta is denoted as Dta .
– The number of documents annotated by both tags ta and tb is denoted as

Dta,tb . We note that this measure is symmetrical, i.e. Dta,tb = Dtb,ta .
– The generality of tag ta, denoted as Gta , measures how general the concept

described by the tag is and how high it belongs in the taxonomy. The gener-
ality is defined as:

Gta =
∑

tb∈V−ta

Dta,tb

Dtb

(1)

Where V−ta is the set of all tags excluding tag ta.

Having calculated the aforementioned measures, we proceed by sorting tags
in the order of descending generality and store them as Vsorted. The first element
of this list, Vsorted[0], is semantically the most general of all tags and becomes the
root tag of the taxonomy. The taxonomy, T , is represented as a set of subsump-
tion axioms between parent and child tags. Formally, each subsumption between
parent tag, tparent, and child tag, tchild, is represented by {tparent → tchild} such
that {tparent → tchild} ∈ T . The taxonomy is therefore initialized with the root
tag as T = {{∅ → Vsorted[0]}} where ∅ represents a null value, i.e. no parent.

Following initialization, the remaining tags are added to the taxonomy in
terms of descending generality by calculating the similarity between the tag
being added, tb, and all the tags already in the taxonomy, T ∗. The tag ta ∈ T ∗
that has the highest similarity with tag tb becomes the parent of tb and {ta → tb}
is added to T . The similarity between tags ta and tb, denoted as Sta→tb , measures
the degree to which tag tb is the direct descendant of tag ta. It is calculated as
the degree to which tag tb is compatible with tag ta and all the ancestors of ta:

Sta→tb =
∑

tc∈Pta

αla−lc
Dtb,tc

Dtb

(2)

Where Pta is the path in the taxonomy from the root tag Vsorted[0] to tag ta.
la and lc denote the levels in the hierarchy of tags ta and tc, respectively. The
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levels are counted from the root tag starting at zero. Thus, the level of Vsorted[0],
denoted as lVsorted[0], is equal to zero, the levels of its children are equal to one,
and so on. The decay factor, α, is a hyperparameter that controls the effect
ancestors of tag ta have on its similarity when calculating Sta→tb . By setting
the value of α such that 0 < α < 1, we ensure that the effect is lower the
more distant an ancestor tag is. The cases were α = 0 and α = 1 correspond
to ancestors having no effect and equal effect on the similarity, respectively.
We explore the effect various α values have on the induced class taxonomy in
the following section. The full details of our method’s procedure are outlined in
Algorithm 1.

Algorithm 1. Procedure for Class Taxonomy Induction
Input: Knowledge graph in tuple structure, K; Document counts annotated by tag,
D; Generality of tags, G; Decay factor, α
Output: Induced class taxonomy, T
1: Sort tags in order of descending generality, Vsorted

2: Initialize taxonomy with root tag equal to the tag with highest generality, T =
{{∅ → Vsorted[0]}}

3: Initialize the set of tags that have already been added to the taxonomy, T ∗ =
{Vsorted[0]}

4: for b = 1, 2, ..., |Vsorted| do
5: maxSimTag = Vsorted[0]
6: maxSimV alue = 0
7: for ta ∈ T ∗ do
8: Calculate Sta→tb using Equation 2
9: if Sta→tb > maxSimV alue then

10: maxSimTag = ta
11: maxSimV alue = Sta→tb

12: end if
13: end for
14: T = {maxSimTag → tb} ∪ T
15: T ∗ = tb ∪ T ∗
16: end for

5 Evaluation

Evaluation of class taxonomy induction methods is difficult as there may be sev-
eral equally valid taxonomies for a dataset. Previous works such as Gu et al. [10]
and Wang et al. (2009) [30] have opted for human evaluation, wherein domain
experts assess the correctness of relations between classes. Wang et al. (2012)
[29] used domain experts to rank entire paths on a three point scale. Others,
such as Liu et al. [15] and Almoqhim et al. [2], compare class relations against
a gold standard taxonomy. In this approach, a confusion matrix between class
subsumption axioms is calculated between the induced and gold standard tax-
onomies. When a gold standard taxonomy can be established, it is the preferred
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evaluation method as it provides an objective measurement; as such, it is the
one we use in our work. We use the confusion matrix to derive the harmonic
mean between precision and recall, the F1 score [7], as our evaluation metric:

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

F1 = 2 ∗ precision ∗ recall

precision + recall
(5)

where TP , FP , and FN are the number of true positives, false positives, and
false negatives, respectively.

For the remainder of this section, we first evaluate the effect of our method’s
hyperparameter, α, on each of the three datasets and provide suggestions for
selecting the α value when applying our method to other datasets. This is fol-
lowed by a comparing our method to the aforementioned Heymann and Garcia-
Molina method, Schmitz method, as well as results from the literature. We also
provide visualizations of excerpts from the class taxonomies induced by our
method on the Life and DBpedia datasets. Finally, our method’s computational
complexity and the effect of dataset size on induced taxonomies are evaluated.
The method was implemented using Python and has been made public alongside
our datasets for reproducibility on Github3.

5.1 Datasets

We evaluate the method on three real-world datasets generated from public
online knowledge bases: Life, DBpedia, and WordNet. All three datasets as well
as their respective gold standard class taxonomies were generated during the
month of November 2019.

The Life Dataset was generated by querying the Catalogue of Life: 2019
Annual Checklist (CoL) [21], an online database that indexes living organisms
by their taxonomic classification. One hundred thousand living organisms were
randomly selected from the GBIF Type Specimen Names [9], an online checklist
of 1,226,904 organisms, and queried on CoL at each of their taxonomic ranks
to generate the document-tag tuples. The resulting dataset takes the form such
that each organism is a document and its membership at each taxonomic rank is
a tag related by is-a. For instance, the document Canis latrans (coyote) will
have the tags 〈is-a, Mammalia〉 and 〈is-a, Canidae〉. Furthermore, to anchor
the class taxonomy to a root tag, we added the tag 〈is-a, LivingOrganism〉
to every document. We note that even though the number of taxonomic ranks
is fixed, most organisms in the database are not defined on all of them. As such,

3 https://github.com/mpietrasik/smict.

https://github.com/mpietrasik/smict
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the number of tags per document varies from two to ten. In total, there are
100,000 documents and 37,368 unique tags. Since the dataset itself is classified
in the correct taxonomic order, the Life gold standard taxonomy could simply
be obtained by querying for subsumption axioms from the dataset.

The DBpedia Dataset was generated by randomly querying for 50,000 unique
subjects in DBpedia for which there exists a triple where the subject is related
to a DBpedia class object (an object having the prefix dbo:) via the relation
rdf:type. These 50,000 subjects become the documents in the tuple struc-
ture. Following this step, all the triples for each document having the tag form
〈rdf:type, dbo:*〉 were queried to make the document-tag tuples. (dbo:* rep-
resents any object with the prefix dbo.) In total, 205,793 triples were used to
create the dataset with 418 unique tags. The DBpedia gold standard taxonomy
was generated from the DBpedia ontology class mappings which can be found
on the DBpedia website4. At the time of querying, the ontology had 765 classes,
418 of which were present in the dataset. This difference made it necessary to
include only those subsumption axioms for which parent and child tags exist in
the dataset when computing the confusion matrix. This is similar to the dataset
generated in Ristoski et al. where the number of classes present in their dataset
was 415.

The WordNet Dataset was generated by querying DBpedia for subjects of
types that exist in WordNet [16], an English language lexical database. Fifty
thousand subjects having a WordNet class object related by rdf:type were
queried. In DBpedia, WordNet class objects use the yago: prefix, giving the tag
format 〈rdf:type, yago:*〉. This process yielded a dataset comprised of 50,000
documents and 1752 unique tags generated from 392,846 triples. To generate
the WordNet gold standard taxonomy, DBpedia was queried to learn the rela-
tions between WordNet classes through the rdfs:subClassOf relation. In this
process, yago:PhysicalEntity100001930 is set as the root class and the tax-
onomy is built by recursively querying for subclasses using rdfs:subClassOf as
the relation. This process builds a taxonomy of 30722 tags. To fit the 1752 tags
present in the dataset, it was necessary to collapse the gold standard taxonomy.
This was done by removing tags in the gold standard taxonomy that are missing
in the dataset and adopting orphaned tags with the nearest ancestor existing in
the dataset.

5.2 Hyperparameter Sensitivity

We evaluate our method’s sensitivity to the decay factor, α, by performing a
hyperparameter sweep on each of the three datasets. In this process, our method
is applied five times on each dataset for α values starting at α = 0 and increasing
by increments of 0.05 up until α = 1. This process is analogous to increasing

4 http://mappings.dbpedia.org/server/ontology/classes/.

http://mappings.dbpedia.org/server/ontology/classes/
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Fig. 1. Comparison of mean test F1 Scores at varying α values on the Life, DBpedia,
and WordNet datasets.

the relative importance of ancestor tags when calculating tag similarity. Fur-
thermore, since similarity is calculated as a summation, increasing α will favour
tags lower in the taxonomy. The F1 scores are calculated and their means at
each α value are displayed graphically in Fig. 1. For clarity, we omit graphing
the mean F1 scores at α = 0 as the values are disproportionately low for all three
datasets (F1 < 0.1). This is because when α = 0, the similarity gets reduced to
Sta→tb = Dta,tb/Dtb which has the effect of inducing shallow taxonomies with
most tags as children of the root tag.

Upon cursory inspection of the F1 scores, we notice that there is no clear
behaviour that α exhibits which is constant across datasets. This is also apparent
when comparing the optimal α values: 0.95, 0.70, and 0.35 for Life, DBpedia, and
WordNet datasets, respectively. Furthermore, we notice that as α increases, the
trend follows three different patterns: stable, generally increasing, and generally
decreasing. A possible reason for the relative stability of α on the Life dataset is
its consistency. Due to the strict requirements for source datasets to be included
in CoL, all entries are well scrutinised. As such, tags will always appear with
their ancestors in the same documents. For example, all 893 instances of the tag
Mammalia co-occur with the tag’s ancestors Animalia, Chordata, and LivingOr-
ganism. In this scenario, there is less information to be gained by incorporating
information from higher up in the taxonomy. On the other hand, the DBpedia
dataset shows improvement with increasing α values until a peak is reached and
F1 declines. The increase in induced taxonomy quality with increasing α values
in consistent with the assumption that taking into account a potential parent’s
path is advantageous when selecting a parent. The decline in F1 after α = 0.8 can
be explained by distant ancestor tags having too strong an influence in assigning
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parent tags to children. One possible explanation for better F1 scores of lower
α values on WordNet is our method’s overall lower F1 scores on this dataset.
Errors in the induced taxonomy propagate downwards and their effect increases
with the value of α. Thus, in a taxonomy with many errors, it is advantageous
to place a relatively higher value on the similarity between the direct parent tag
and its child, as is done with lower α values.

In general, it is difficult to predict the optimal α value a priori, however there
are a few rules of thumb to guide this process when applying our method. When
there is no prior information about a nature of the dataset or its expected class
taxonomy, we suggest using α values around 0.5 as these values perform well
(although not optimally) in our experiments. Datasets which are complex, or
have low co-occurence rates between ancestor and descendent tags will favour
lower α values as these ensure errors will propagate less through the taxonomy.
On the other hand, well structured datasets will be less affected by varying α
values.

5.3 Results

In our experiments, we applied our proposed method to each of the aforemen-
tioned datasets at the α values determined optimal in the previous subsection.
Each dataset was applied five times to account for the stochasticity in sort-
ing tags of equal generality. The results of our method as well as those of the
comparison methods are summarized in Table 1. We implemented Heymann and
Garcia-Molina, and Schmitz methods to the best of our understanding and per-
formed hyperparameter exploration for their respective hyperparameters on each
dataset. After obtaining the optimal hyperparameters, we ran the methods five
times on each dataset and collected the results. We note that Heymann and
Garcia-Molina was not able to terminate sufficiently fast enough for us to obtain
results on the Life dataset. In the table we also included the results reported in
previous work applied on the DBpedia dataset. Although the DBpedia dataset
was derived similarly to our own, conclusions in comparing this method to our
proposed method should be drawn cautiously. We indicate these entries in the
table with a footnote.

In general, our method outperforms the other two tag hierarchy induction
methods as shown by the mean F1 scores. We notice similarly high precision
and recall values which suggests that it’s both capable of inducing subsump-
tion axioms (recall) while ensuring these axioms are correct (precision). Fur-
thermore, closer inspection of the results reveals that many of the errors can
be categorized by two types, which we illustrate by using results from the
DBpedia dataset. In the first, the order between parent and child tags are
reversed as in the induced {dbo:Guitarist → dbo:Instrumentalist} when
the correct order is {dbo:Instrumentalist → dbo:Guitarist}. In the second,
a tag is misplaced as the child of its sibling, for instance, the gold standard
classification of educational institutions is {{dbo:EducationalInstitution →
dbo:University}, {dbo:EducationalInstitution → dbo:College}} while
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our induced taxonomy gives the following: {{dbo:EducationalInstitution →
dbo:University}, {dbo:University → dbo:College}}. Finally, our induced
taxonomy includes subsumption axioms which are considered incorrect as per
the gold standard but may not be to a human evaluator. An example of this
is that our method induced the subsumption axiom {dbo:SportFacility →
dbo:Stadium} while the gold standard considers {dbo:Venue → dbo:Stadium}
to be the correct parent for dbo:Stadium. We provide an excerpt of our induced
class taxonomies on the Life and DBpedia datasets in Fig. 2.

Table 1. Method results (mean ± standard deviation) on the Life, DBpedia, and
WordNet datasets.

Method Life DBpedia WordNet

Precision Recall F1 Precision Recall F1 Precision Recall F1

Heymann and – – – .7944 .8021 .7982 .6027 .5814 .5918

Garcia-Molina – – – ±.0148 ±.0150 ±.0149 ±.0116 ±.0112 ±.0114

Schmitz .8936 .7966 .8423 .8063 .7962 .8013 .8140 .7756 .7943

±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0

Paulheim and – – – .1040 .2190 .1410 – – –

Fümkranza [19,20] – – – – – – – – –

Ristoski – – – .5940 .4650 .5210 – – –

et al. [20] a – – – – – – – – –

Völker and – – – .9920 .9970 .9950 – – –

Niepert [27] a – – – – – – – – –

Our method .8740 .8513 .8625 .8781 .8867 .8824 .7275 .7018 .7144

±.0041 ±.0040 ±.0040 ±.0051 ±.0052 ±.0052 ±.0070 ±.0068 ±.0069
aThe result for this method was obtained from the literature.

5.4 Computational Complexity Evaluation

One of the most salient issues that arises when applying class taxonomy induc-
tion methods to real-world knowledge graphs is that of scalability. As mentioned
previously, DBpedia, Yago, and WikiData have upwards of one billion triples
each, thus for a method to operate on these datasets, it has to be computation-
ally efficient. It is important to note, however, that in inducing a class taxonomy,
it is not necessary to use all the triples available in the knowledge graph but
rather to only use as many as is required to achieve an acceptable result. We
discuss this idea in the following subsection.

The most computationally taxing procedure in our method is that of cal-
culating the number of documents annotated by two tags, Dta,tb , which has a
worst case time complexity of O(|D||V|2), where |D| and |V| are the number
of documents and tags, respectively. It is important to note, however, that the
worst case only occurs when all documents are annotated by all tags. In this
scenario, every subject in a knowledge graph is of every class type in the ontol-
ogy. The average computation complexity of our algorithm is O(|D||A|2) where
|A| is the average number of tags that annotate a document. In our experiments
our method was faster to terminate than both the Heymann and Garcia-Molina
and Schmitz methods on all three datasets.
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Fig. 2. Excerpts of the induced class taxonomies for the Life (left) and DBpedia (right)
datasets. Ellipses denote addition child classes omitted for brevity.
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5.5 Effect of Dataset Size on Induced Taxonomy

As mentioned previously, although a method’s scalability to large knowledge
graphs is important in the context of the Semantic Web, it’s not the case that
larger datasets will produce better taxonomies. To demonstrate this, we applied
our method as described in the Results subsection to DBpedia datasets at dif-
fering document counts. Each dataset was derived the same way as described in
the Datasets subsection, such that all of the smaller DBpedia datasets are strict
subsets of the larger ones. A summary of the results is displayed in Table 2. We
note that runtime measures the execution of our method without including time
for input and output. We notice that although larger datasets obtain higher F1

scores, the incremental increase in F1 diminishes, and the scores plateau after
20,000 documents. However, relying on F1 score as the sole comparison metric
may be misguiding since it is calculated on the tags which exist in the dataset.
Thus since there are 211 unique tags in the DBpedia 1,000 dataset and 428
unique tags in the DBpedia 100,000 dataset, the induced taxonomy of the latter
will be over twice as large as the former.

Table 2. Summary of our method’s results on DBpedia datasets at various document
counts, |D|.

|D| |V| # of Triples Optimal α Runtime (sec) F1

100000 428 422860 0.65 1.6311 0.8810

90000 427 379444 0.65 1.5131 0.8808

80000 425 336084 0.45 1.3340 0.8826

70000 424 292791 0.55 1.1248 0.8847

60000 423 249383 0.70 0.9767 0.8783

50000 418 205793 0.70 0.8556 0.8824

40000 414 164470 0.70 0.6545 0.8783

30000 408 123408 0.55 0.5564 0.8716

20000 392 82381 0.65 0.3652 0.8791

10000 365 41081 0.65 0.2001 0.8425

5000 326 20481 0.70 0.1161 0.8354

2500 284 10330 0.60 0.0670 0.8372

1000 211 4097 0.35 0.0280 0.7632

6 Conclusions

In this paper, we described the problem of inducing class hierarchies from knowl-
edge graphs and its significance to the Semantic Web community. In our con-
tribution to this research area, we proposed an approach to the problem by
marrying the fields of class taxonomy induction from knowledge graphs with
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tag hierarchy induction from documents and tags. To this end, we reshaped the
knowledge graph to a tuple structure and applied two existing tag hierarchy
induction methods to show the viability of such an approach. Furthermore, we
proposed a novel method for inducing class taxonomies that relies solely on class
frequencies and co-occurrences and can thus be applied on knowledge graphs
irrespective of their content. We showed our method’s ability to induce class
hierarchies by applying it on three real-world datasets and evaluating it against
their respective gold standard taxonomies. Results demonstrate that our method
induces better taxonomies than other tag hierarchy induction methods and can
be reliably applied to large-scale knowledge graphs.
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