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Abstract. This paper presents the results of experiments demonstrat-
ing novel black-box attacks via the speech interface. We demonstrate
two types of attack that use linguistically crafted adversarial input to
target vulnerabilities in the handling of speech input by a speech inter-
face. The first attack demonstrates the use of nonsensical word sounds to
gain covert access to voice-controlled systems. This attack exploits vul-
nerabilities at the speech recognition stage of handling of speech input.
The second attack demonstrates the use of crafted utterances that are
misinterpreted by a target system as a valid voice command. This attack
exploits vulnerabilities at the natural language understanding stage of
handling of speech input.
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1 Introduction

Speech interfaces as implemented in voice-controlled systems such as Google
Assistant and Amazon Alexa represent a new type of attack surface that can be
exploited by attackers seeking to gain unauthorised access to a system. Attacks
via a speech interface that are not easily detectable by human listeners are par-
ticularly pernicious in their potential effects. Various attacks of this nature have
been demonstrated in prior work. For example, Carlini et al. [1] have presented
results showing it is possible to hide malicious commands to voice-controlled
digital assistants in white noise, whereas Zhang et al. [2] have shown that it
is possible to hide commands in frequencies that are above the human-audible
range. In this paper, we present two new types of attacks via the speech interface
that are not detectable by legitimate users of voice-controlled devices. The first
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of these attack types is an attack using nonsensical word sounds to exploit unin-
tended functionality in speech recognition in a voice-controlled system. Specif-
ically, our experimental work demonstrates an attack on speech recognition in
Google Assistant using nonsensical word sounds to trigger a set of target com-
mands. The second attack type is an attack targeting unintended functionality
in natural language understanding in a voice-controlled system. Specifically, our
experimental work demonstrates that it is possible to mislead natural language
understanding functionality in Amazon Alexa Skills and in an open-source nat-
ural language understanding system to trigger a target action, using utterances
that appear to human listeners to have a meaning that is unrelated to the target
action. These adversarial utterances are crafted by embedding homophones of
target command words in a different sense context.

This paper is an extended version of an earlier paper that presented the
results of a pilot experiment and of a proof-of-concept study [3]. The pilot
experiment presented in the earlier paper represented initial results on attacks on
speech recognition in Google Assistant using nonsensical word sounds. The work
presented in the current paper builds on the results of the pilot experiment by
generating a new set of results on this type of attack using a refined methodology
that achieves a higher attack success rate. The proof-of-concept study presented
in the earlier paper represented feasibility tests that demonstrated the poten-
tial for attacking natural language understanding in Amazon Alexa Skills using
adversarially crafted utterances. The work presented in the current paper builds
on the results of the proof-of-concept study by generating a more substantial set
of results on this type of attack. The proof-of-concept study presented in the
earlier paper included both attacks based on word substitution, in which a word
in a target command is replaced with an unrelated word, as well as attacks based
on embedding alternate meanings of target command words in new utterances.
As stated above, the work presented in the current paper focusses solely on the
latter attack method, which we term a ‘word transplant’ attack. Word trans-
plant represents a novel method for attacking natural language understanding
that has to the best of our knowledge not been explored in prior work.

The remainder of the paper is structured as follows. Section 2 describes exper-
imental work demonstrating the feasibility of attacks using nonsensical word
sounds. Section 3 describes experimental work demonstrating the feasibility of
attacks using unrelated utterances. Section 4 makes some suggestions for future
work and concludes the paper.

2 Nonsense Attacks on Google Assistant

2.1 Description and Context

This section presents experimental work showing that it is possible to hide mali-
cious voice commands to the voice-controlled digital assistant Google Assistant
in word sounds that are perceived as meaningless by humans. We term this type
of attack a ‘nonsense’ attack, in accordance with a taxonomy published in a
previous paper [4], which categorises attacks via the speech interface according
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to human perceptual categories. The attack can also be characterised as a black-
box adversarial learning attack. The idea for this work was inspired by the use
of nonsense words to teach phonics to primary school children.1

In prior work, Papernot et al. [5] have shown that a sentiment analysis
method could be misled by input that was ‘nonsensical’ at the sentence level, i.e.
the input consisted of a nonsensical concatenation of real words. By contrast,
the work described here examines whether voice-controlled digital assistants can
be misled by input that consists of nonsensical word sounds. Whilst the attack
by Papernot et al. targeted a text-based natural language understanding func-
tionality, the attack based on nonsensical word sounds presented here targets the
automatic speech recognition component of a voice-controlled digital assistant.
The attacks described here represent the first example of an attack of this type
targeting speech recognition in a voice-controlled system.

Nonsensical word sounds as understood here are sounds that are composed
of the sound units that are used in a given language, but to which no meaning
is allocated within the current usage of that language. Sound units used to
form words in a given language are known as ‘phonemes’.2 English has around
44 phonemes.3 The line between phoneme combinations that carry meaning
within a language and phoneme combinations that are meaningless is subject
to change over time and place, as new words evolve and old words fall out of
use (see Nowak and Krakauer [6]). The space of meaningful word sounds within
a language at a given point in time is generally confirmed by the inclusion of
words in an established reference work, such as, in the case of English, the Oxford
English Dictionary.4 Word sounds that are outside this space can be described as
nonsense words. Nonsense words are a grey area between non-speech, i.e. noise,
and meaningful speech.

The aim of the experimental work was to develop a novel attack based on
nonsensical word sounds that have some phonetic similarity with the words of a
relevant target command, using a systematic methodology. Specifically, we tested
Google Assistant’s response to English word sounds that were outside the space
of meaningful word sounds in English, but that had a ‘rhyming’ relationship
with meaningful words recognised as commands by Google Assistant. The term
‘rhyme’ is used to refer to a number of different sound relationships between
words (see for example McCurdy et al. [7]), but it is most commonly used to
refer to a correspondence of word endings.5 For the purposes of the experimental
work, rhyme was defined according to this commonly understood sense as words
that share the same ending phoneme.

1 See The Telegraph, 1st May 2014, “Infants taught to read ‘nonsense words’ in English
lessons”.

2 See for example https://www.britannica.com/topic/phoneme.
3 See for example https://www.dyslexia-reading-well.com/44-phonemes-in-english.

html.
4 See for example https://blog.oxforddictionaries.com/press-releases/new-words-

added-oxforddictionaries-com-august-2014/.
5 See https://en.oxforddictionaries.com/definition/rhyme.

https://www.britannica.com/topic/phoneme
https://www.dyslexia-reading-well.com/44-phonemes-in-english.html
https://www.dyslexia-reading-well.com/44-phonemes-in-english.html
https://blog.oxforddictionaries.com/press-releases/new-words-added-oxforddictionaries-com-august-2014/
https://blog.oxforddictionaries.com/press-releases/new-words-added-oxforddictionaries-com-august-2014/
https://en.oxforddictionaries.com/definition/rhyme
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The hypothesis behind the experimental work was that nonsensical word
sounds represent a category of unexpected input for which current speech recog-
nition systems lack an appropriate handling mechanism, and that this is in con-
trast to the processing of such input by humans, who perceive such input as hav-
ing no meaning. Current speech recognition technologies are machine learning-
based classifiers that use Hidden Markov Models (HMMs) to map acoustic fea-
tures in a speech signal to a most likely sequence of words to have produced
them (see for example McTear [8]). It was hypothesised that some sequences of
nonsensical word sounds with sufficient similarity to a target command might
be accepted as that target command at a confidence level higher or equal to
the level required for recognition of speech input by the target system’s speech
recognition system as a legitimate command. It can be assumed that the con-
fidence level required for recognition of speech input will have been set during
training of a system such as Google Assistant to achieve optimal recall and pre-
cision measures on a test dataset. Setting a higher confidence threshold in order
to prevent acceptance of nonsensical word sequences as legitimate commands
might therefore lead to rejection by the system of legitimate input, implying an
inevitable trade-off between usability and security. The attacks demonstrated in
this experimental work thus exploit a vulnerability created by a focus on usabil-
ity in the implementation of current systems. The attack concept is illustrated
in Fig. 1, which shows the alignment of a dummy dataset of nonsense commands
and legitimate commands to a higher and to a lower confidence threshold. The
figure shows that as some of the nonsense commands are accepted by the sys-
tem as valid commands with a higher level of confidence than some legitimate
commands, it is not possible to prevent acceptance of all nonsense commands
whilst ensuring acceptance of all legitimate commands. Implementing the higher

0 0.2 0.4 0.6 0.8 1

Confidence Threshold

Nonsense Attack Concept

Fig. 1. x = nonsense commands; o = legitimate commands; dummy confidence thresh-
old for ensuring acceptance of legitimate input = 0.4; dummy confidence threshold for
ensuring rejection of nonsensical input = 0.6
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confidence threshold will result in rejection of some legitimate commands,
whereas implementing the lower threshold will result in acceptance of some non-
sense commands.

The attacks presented here exploit three related features of speech recogni-
tion in voice-controlled systems. One of these features is the delineation of the
space of word sounds that the Assistant has been trained to recognise as mean-
ingful. The space of word sounds that a voice assistant such as Google Assistant
can transcribe is much larger than the number of words that it can ‘understand’
in the sense of being able to map them to an executable command. In order to
be able to perform tasks such as web searches by voice and note taking, a voice-
controlled digital assistant must be able to transcribe all words in current usage
within a language. It can therefore be assumed that the speech recognition func-
tionality in Google Assistant is trained to recognise all words in current English
usage. Whereas earlier speech recognition systems were vulnerable to potential
confusion between out-of-vocabulary words that they did not have a capacity to
recognise, on account of only a limited set of in-vocabulary words being included
in their phonetic dictionary (see for example Hazen and Bazzi [9]), the potential
for this type of confusion has been minimised in current systems. Earlier sys-
tems were also vulnerable to confusion between speech and non-speech sounds,
but potential for this type of confusion has also been minimised in systems used
for wake word detection that are trained using a noise model (see for example
Raju et al. [10]). However, whilst the problem of delineating out-of-vocabulary
words and non-speech sounds from in-scope words has been minimized in cur-
rent systems, nonsensical word sounds still represent a type of out-of-scope input
that speech recognition functionalities struggle to delineate from in-scope input.
The inability of the Assistant to distinguish meaningful from meaningless word
sounds is one of the features exploited in the attacks demonstrated here.

Another feature of speech recognition in voice assistants that is exploited in
an attack using nonsense syllables is the influence of the language model used
in speech recognition. Modern speech recognition technology combines acoustic
modelling and language modelling components as parts of HMM-based speech
recognition. The acoustic modelling component computes the likelihood of the
acoustic features within a segment of speech having been produced by a given
word. The language modelling component calculates the probability of one word
following another word or words within an utterance. The acoustic model is
typically based on Gaussian Mixture Models (GMMs) or deep neural networks
(DNNs), whereas the language model is typically based on n-grams or recurrent
neural networks (RNNs). Google’s speech recognition technology as incorpo-
rated in Google Assistant is based on neural networks.6 The words most likely
to have produced a sequence of speech sounds are determined by calculation of
the product of the acoustic model and the language model outputs. The lan-
guage model is intended to complement the acoustic model, in the sense that

6 See Google AI blog, 11th August 2015, ‘The neural networks behind Google Voice
transcription’, https://ai.googleblog.com/2015/08/the-neural-networks-behind-
google-voice.html.

https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
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it may correct ‘errors’ on the part of the acoustic model in matching a set of
acoustic features to words that are not linguistically valid in the context of the
preceding words. This assumption of complementary functionality is valid in a
cooperative context, where a user interacts via a speech interface in meaningful
language. However, the assumption of complementarity is not valid in an adver-
sarial context, where an attacker is seeking to engineer a mismatch between a
set of speech sounds as perceived by a human, such as the nonsensical speech
sounds generated here, and their transcription by a speech-controlled device. In
an adversarial context such as that investigated here, the language model may in
fact operate in the attacker’s favour, in that if one ‘nonsense’ word in an adver-
sarial command is misrecognised as a target command word, subsequent words
in the adversarial command will be more likely to be misrecognised as target
command words in turn, as the language model trained to recognise legitimate
commands will allocate a high probability to the target command words that
follow the initial one.

A third feature of speech recognition in voice assistants exploited in covert
attacks using this kind of input is the difference between machine and human
processing of meaningless speech sounds. Like speech recognition by machines,
speech recognition by humans is known also to reference an internal ‘lexicon’ to
match speech sounds to words (see for example Roberts et al. [11]). However,
unlike machines, humans also have an ability to categorise speech sounds as
nonsensical. This discrepancy between machine and human processing of word
sounds was the basis of the attack methodology for hiding malicious commands
to voice assistants in nonsense words. Outside of the context of attacks via the
speech interface, differences between human and machine abilities to recognise
nonsense syllables have been studied for example by Lippmann et al. [12] and
Scharenborg and Cooke [13]. Bailey and Hahn [14] examine the relationship
between theoretical measures of phoneme similarity based on phonological fea-
tures, such as might be used in automatic speech recognition, and empirically
determined measures of phoneme confusability based on human perception tests.
Machine speech recognition has reached parity with human abilities in terms of
the ability correctly to transcribe meaningful speech (see Xiong et al. [16]), but
not in terms of the ability to distinguish meaningful from meaningless sounds.
The inability of machines to identify nonsense sounds as meaningless is exploited
for security purposes by Meutzner et al. [15], who have developed a CAPTCHA
based on the insertion of random nonsense sounds in audio. This experimental
work explores the opposite scenario, i.e. the possible security problems associ-
ated with machine inability to distinguish sense from nonsense, and, conversely,
human inability to recognise nonsensical input as meaningful.

2.2 Methodology

The experimental work comprised three key stages. The first stage involved
generating, from a set of target commands, a set of potential adversarial com-
mands consisting of nonsensical word sequences. These potential adversarial
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commands were generated using a mangling process that involved replacing con-
sonant phonemes in target command words to create a rhyming word sound, and
then determining whether the resulting rhyming word sound was a meaningful
word in English or a ‘nonsense word’, using the Unix word list as a proxy for the
space of meaningful words in English. This was done so as to identify nonsensical
word sounds that had an acoustic relationship to target command words and thus
could be used to create potential adversarial commands. Word sounds identified
as rhyming nonsense words were concatenated to create potential adversarial
commands. Audio versions of these potential adversarial commands were cre-
ated using speech synthesis technology. The second stage of the experimental
work was to test the response of the target system to the potential adversarial
commands, i.e. to test machine ‘comprehension’. This was done both via audio
file input and via over-the-air input of potential adversarial commands. The
third stage of the experimental work was to test the human comprehensibility
of adversarial commands that were successful in triggering a target action in
the target system. The three key stages of the experimental work are shown in
Fig. 2.

Fig. 2. Nonsense Attacks Experimental Stages.

The target system for the experiment was the voice-controlled digital assis-
tant Google Assistant. The Google Assistant system was accessed via the Google
Assistant Software Development Kit (SDK).7 Target commands used in both
experiments were selected to represent the generic types of action that can be
performed by voice-controlled digital assistants. A voice-controlled digital assis-
tant such as Google Assistant typically performs three generic types of action,
namely information extraction, control of a cyber-physical action, and data
input. The data input category may overlap with the control of cyber-physical
action category where a particular device setting needs to be specified, eg. light
colour or thermostat temperature. For this experiment, six target commands
corresponding to the three types of action were used. The target commands
were:
– “What’s my name” (target action: retrieve username, action category: information extraction)
– “Who am I” (target action: retrieve username, action category: information extraction)
– “Turn on light” (target action: turn light on, action category: control of cyber-physical action)
– “Turn off light” (target action: turn light off, action category: control of cyber-physical action)
– “Turn light red” (target action: turn light to red, action category: data input)
– “Turn light blue” (target action: turn light to blue, action category: data input)

In addition to six specific target commands, a further command targeted
in the experiments was the wake phrase “Hey Google” used to activate the
Assistant.
7 See https://developers.google.com/assistant/sdk/.

https://developers.google.com/assistant/sdk/
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Adversarial Command Generation. Potential adversarial wake phrases and
commands were created by replacing words in the original wake phrase or target
command with a rhyming nonsense word. A set of rhyming nonsensical word
sounds for each original word in the wake phrase and in each of the target
commands was generated using a word mangling process. This mangling process
was based on replacing consonant phonemes in the target command words to
generate nonsensical word sounds that rhymed with the original target command
word.8 The target commands were first translated to a phonetic representation
in the Kirshenbaum phonetic alphabet9 using the ‘espeak’ functionality in Linux.
The starting consonant phonemes of each word of the target command were then
replaced with a different starting consonant phoneme, using a Python script
and referring to a list of starting consonants and consonant blends.10 Where
the target command word began with a vowel phoneme, a starting consonant
phoneme was prefixed to the vowel. The word sounds resulting from the word
mangling process were checked for presence in a phonetic representation of the
Unix word list, also generated with espeak, to ascertain whether the word sound
represented a meaningful English word or not. If the sound did correspond to
a meaningful word, it was discarded. This process generated for each target
command word a number of rhyming nonsensical words to which no English
meaning was attached. In the case of the wake phrase ‘Hey Google’, in addition
to replacing the starting consonants ‘H’ and ‘G’, the second ‘g’ in ‘Google’ was
also replaced with one of the consonants that are found in combination with the
‘-le’ ending in English.11

For the audio file input tests, potential adversarial wake phrases and poten-
tial adversarial commands were generated separately. Original words in the wake
phrase and target commands were replaced with one of the rhyming nonsense
words for that word identified in the word-mangling process described above.
Audio of the potential adversarial wake phrases and commands was created
using Amazon Polly speech synthesis.12 The potential adversarial wake phrases
and commands generated for the audio file input tests included both potential
adversarial wake phrases and commands in which all of the original words were
replaced with nonsense words, as well as potential adversarial wake phrases and
commands in which only some words were replaced. Specifically, the experiment
included potential adversarial wake phrases and commands in which only one
of the original words was replaced, potential adversarial commands in which
only two of the three original words were replaced, and potential adversarial
wake phrases and commands in which all of the original words were replaced. As
the space of potential adversarial wake phrases and commands was quite large,

8 Our approach was inspired by an educational game in which a set of nonsense words
is generated by spinning lettered wooden cubes - see https://rainydaymum.co.uk/
spin-a-word-real-vs-nonsense-words/.

9 See http://espeak.sourceforge.net/phonemes.html.
10 See https://k-3teacherresources.com/teaching-resource/printable-phonics-charts/.
11 See https://howtospell.co.uk/.
12 See https://aws.amazon.com/polly/.

https://rainydaymum.co.uk/spin-a-word-real-vs-nonsense-words/
https://rainydaymum.co.uk/spin-a-word-real-vs-nonsense-words/
http://espeak.sourceforge.net/phonemes.html
https://k-3teacherresources.com/teaching-resource/printable-phonics-charts/
https://howtospell.co.uk/
https://aws.amazon.com/polly/
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a process of filtering and random sampling was used in generating potential
adversarial wake phrases and commands in which more than one of the origi-
nal words was replaced, as described in more detail below. Thus the potential
adversarial commands generated for testing covered only a subspace of the full
space of potential adversarial commands. The size of the full space of potential
adversarial commands in which all of the original words are replaced is shown
in Table 1.

Table 1. Space of potential adversarial commands for wake phrase and target com-
mands.

Target Command No. of Rhyming Nonsense Words Space of Potential
Adversarial Commands

Hey Google ‘Hey’: 17; ‘Google’: 395 6715

Who am I ‘Who’: 18; ‘am’: 27; ‘I’: 20 9720

What’s my name ‘What’s’: 27 ; ‘my’: 20 ; ‘name’: 35 18900

Turn on light ‘turn’: 40 ; ‘on’: 38 ; ‘light’: 28 42560

Turn off light ‘turn’: 40 ; ‘off’: 41 ; ‘light’: 28 45920

Turn light red ‘turn’: 40 ; ‘light’: 28 ; ‘red’: 25 28000

Turn light blue ‘turn’: 40 ; ‘light’: 28 ; ‘blue’: 18 20160

For the over-the-air and human comprehensibility tests, random samples of
adversarial wake phrases and adversarial commands that had been successful in
the audio file input tests were concatenated in different combinations to gener-
ate potential full adversarial commands, i.e. adversarial commands that would
both activate the Assistant and trigger a specific target command. Potential full
adversarial commands for each of the target commands were generated at dif-
ferent mangling levels. These levels were fully mangled commands, commands
in which four of the original words had been mangled (two in the wake phrase
and two in the specific target command, or one in the wake phrase and three in
the specific target command), commands in which three of the original words
had been mangled (one in the wake phrase and two in the specific target com-
mand, or two in the wake phrase and one in the specific target command), and
commands in which two of the original words had been mangled (one in the
wake phrase and one in the specific target command). Two potential adversarial
commands were generated at each of the partial mangling levels, one in which
the word ‘Google’ was one of mangled words, and one in which ‘Google’ was not
mangled. This was in order to test the effect of the presence of the unmangled
word ‘Google’ on machine and human comprehensibility of partially mangled
adversarial commands.

Machine Comprehensibility Tests. The Google Assistant SDK was inte-
grated in a Ubuntu virtual machine (version 18.04). The reason for accessing the
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Google Assistant system via the Google Assistant SDK was that, unlike in the
case of accessing Google Assistant using commercial devices such as the Google
Home device, this allowed the Assistant’s transcriptions of speech input to be
retrieved. The transcriptions that could be retrieved using the Google Assistant
SDK integrated in a virtual machine included both interim and final transcrip-
tions of speech input to the Assistant. Two separate versions of Google Assistant
SDK were integrated in the virtual machine; the Google Assistant Service, and
the Google Assistant Library. The Google Assistant Service is activated via key-
board stroke and thus does not require a wake phrase, and voice commands can
be inputted as audio files as well as over-the-air via a microphone. The Google
Assistant Library, on the other hand, does require a wake phrase for activation,
and receives commands via a microphone only. The Google Assistant Service
could therefore be used to test adversarial commands for target commands and
for the wake phrase separately via audio file input rather than via a microphone.
The Google Assistant Library could be used to test the activation of the Assis-
tant and the triggering of a target command by an adversarial wake phrase and
adversarial command in combination over the air, representing a more realistic
attack scenario. The Assistant’s response to plain-speech versions of each target
command was tested first to confirm that these target commands triggered the
relevant target action.

Audio File Input Tests. For the audio file input tests, the target system’s
responses to audio versions of potential adversarial wake phrases and commands
created using Amazon Polly were tested separately via command line input. The
audio file input tests were performed at different levels of mangling using a filter-
ing process for generating potential adversarial wake phrases and commands that
built on successes found at a previous level of mangling. The testing process was
automated using a Python script that first tested all possible potential adversar-
ial wake phrases and commands in which only one of the original words had been
mangled. Potential adversarial wake phrases and commands that were successful
at this first level were then combined with one another to create a second level of
potential adversarial wake phrases and commands in which two words had been
mangled, with potential adversarial wake phrases and commands that were not
successful at the first level being discarded. In the case of potential adversarial
commands, a third level was also tested consisting of combinations of successful
adversarial commands from the first level and successful adversarial commands
at the second to generate fully mangled adversarial commands. At the mangling
levels subsequent to the first level, the Python script tested up to a maximum
of 150 potential adversarial commands at each level using random sampling,
with a target of maximum 100 successes. This random sampling process was fol-
lowed due to the large space of potential adversarial commands. A target action
was considered to have been triggered if the Assistant’s final transcription of
adversarial input matched the target command.

Over-the-Air Tests. For the over-the-air tests, a random sample of adversar-
ial wake phrases and adversarial commands that had been successful in audio
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file input tests at different levels of mangling were concatenated to form full
potential adversarial commands for five of the six target commands (the target
command “turn light red” was not included due to a lack of successful adver-
sarial commands being identified in the audio file input tests at higher levels
of mangling). These potential full adversarial commands were tested via micro-
phone input using Google Assistant Library. Table 2 shows the concatenations
of randomly selected successful adversarial wake phrases and commands at dif-
ferent mangling levels for the target commands that were tested in over-the-air
tests.

Table 2. Samples of successful adversarial wake phrases and commands concatenated
for over-the-air and human comprehensibility tests.

Target command

w. condition

fully mangled

command

Level 4 Level 3 Level 2

Hey Google who

am I (Google

unmangled first)

Z’eI l’Uk@L

spl’u: bl’am str’aI

(“zhay lookle

sploo blam

strai”)

v’eI g’u:g@L spl’u:

bl’am str’aI (“vay

Google sploo blam

strai”)

v’eI g’u:g@L v’u:

T’am ’aI (“vay

Google voo tham I”)

v’eI g’u:g@L h’u:

T’am ’aI (“vay

Google who tham I”)

as above (Google

unmangled last)

as above Z’eI l’Uk@L v’u:

T’am ’aI (“zhay

lookle voo tham I”)

Z’eI l’Uk@L h’u:

T’am ’aI (“zhay

lookle who tham I”)

h’eI g’Ud@L h’u:

T’am ’aI (“Hey

goodle who tham I”)

Hey Google

what’s my name

(Google

unmangled first)

T’eI gl’u:s@L

D’0ts sn’aI z’eIm

(“thay gloosle

thots snai zame”)

Z’eI g’u:g@L D’0ts

sn’aI z’eIm (“zhay

Google thots snai

zame”)

Z’eI g’u:g@L w’0ts

gr’aI Z’eIm (“zhay

Google what’s grai

zhame”)

Z’eI g’u:g@L w’0ts

bl’aI n’eIm (“zhay

Google what’s blai

name”)

as above (Google

unmangled last)

as above h’eI w’u:b@L D’0ts

sn’aI z’eIm (“Hey

wooble thots snai

zame”)

h’eI w’u:b@L w’0ts

gr’aI Z’eIm (“Hey

wooble what’s grai

zhame”)

h’eI w’u:b@L w’0ts

bl’aI n’eIm (“Hey

wooble what’s blai

name”)

Hey Google turn

on light (Google

unmangled first)

Z’eI fl’Uk@L

D’3:n f’0n D’aIt

(“zhay flookle

thurn fon

thight”)

Z’eI g’u:g@L D’3:n

f’0n D’aIt (“zhay

Google thurn fon

thight”)

Z’eI g’u:g@L t’3:n

tr’0n p’aIt (“zhay

Google turn tron

pight”)

Z’eI g’u:g@L br’3:n

’0n l’aIt (“zhay

Google brurn on

light”)

as above (Google

unmangled last)

as above h’eI k’u:s@L D’3:n

f’0n D’aIt (“Hey

koosle thurn fon

thight”)

Z’eI fl’Uk@L br’3:n

’0n l’aIt (“zhay

flookle brurn on

light”)

h’eI k’u:s@L br’3:n

’0n l’aIt (“Hey

koosle brurn on

light”)

Hey Google turn

off light (Google

unmangled first)

v’eI g’u:t@L g’3:n

bl’0f j’aIt (“vay

gootle gurn blof

yight”)

v’eI g’u:g@L g’3:n

bl’0f j’aIt (“vay

Google gurn blof

yight”)

v’eI g’u:g@L pr’3:n

b’0f l’aIt (“vay

Google prurn bof

light”)

v’eI g’u:g@L tr’3:n

’0f l’aIt (“vay Google

trurn off light”)

as above (Google

unmangled last)

as above h’eI k’u:z@L g’3:n

bl’0f j’aIt (“Hey

koozle gurn blof

yight”)

v’eI g’u:t@L tr’3:n

’0f l’aIt (“vay gootle

trurn off light”)

h’eI k’u:z@L tr’3:n

’0f l’aIt (“Hey koozle

trurn off light”)

Hey Google turn

light blue

(Google

unmangled first)

Z’eI gl’u:p@L

pl’3:n g’aIt v’u:

(“zhay gloople

plurn gight voo”)

T’eI g’u:g@L pl’3:n

g’aIt v’u: (“thay

Google plurn gight

voo”)

T’eI g’u:g@L fl’3:n

v’aIt bl’u: (“thay

Google flurn vight

blue”)

T’eI g’u:g@L t’3:n

Z’aIt bl’u: (“thay

Google turn zhight

blue”)

as above (Google

unmangled last)

as above Z’eI gl’u:p@L fl’3:n

v’aIt bl’u: (“zhay

gloople flurn vight

blue”)

h’eI bl’Uk@L fl’3:n

v’aIt bl’u: (“Hey

blookle flurn vight

blue”)

h’eI bl’Uk@L t’3:n

Z’aIt bl’u: (“Hey

blookle turn zhight

blue”)
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Human Comprehensibility Tests. The human comprehensibility tests used
the same concatenations of adversarial wake phrases and adversarial commands
as were used in the over-the-air tests shown in Table 2. Participants in the human
comprehensibility tests were presented with potential full adversarial commands
in descending order of mangling on a spectrum from fully mangled adversarial
commands to adversarial commands in which only one word in the wake phrase
and one word in the target command had been mangled. This approach was taken
so as to provide an indication of how many words would need to be mangled in an
adversarial over-the-air command in order to escape human comprehensibility.
Subjects were asked to indicate whether they had identified any meaning in
the audio. If they had identified meaning, they were asked to indicate what
meaning they heard. After hearing all of the potential adversarial commands,
participants were also presented with a plain-speech version of the full target
command, which provided a baseline for the comprehensibility tests, and also
served as an attention test.

The potential full adversarial commands were separated into two sets for each
target command. In the first set, “Google” was the first word to be revealed to the
listener in plain-speech, whereas in the second set, “Google” was the final word
to be revealed. The separation of these two conditions enabled an assessment of
whether the presence of the specific word “Google” affected listeners’ ability to
detect the presence of a voice command, and to realise its possible content. Each
set of five wake phrase and command combinations for each target command
under each of the two conditions was played to six different participants.

Participants were recruited using the survey website Prolific Academic.13 The
experiments with human subjects received ethics clearance through the Depart-
mental Research Ethics Committee of the Department of Computer Science at
the University of Oxford. All subjects were native speakers of English.

2.3 Results

Machine Comprehensibility Tests

Audio File Input Tests. Table 3 shows the overall ratio of successes to failures in
the audio file input tests, as well as the number of successes for adversarial wake
phrases and commands at each level of mangling. The differences between success
rates of potential adversarial wake phrases and commands at different levels of
mangling are shown to be not very significant. This suggests that the approach
of limiting the pool of potential adversarial wake phrases and commands tested
at each mangling level to combinations of adversarial wake phrases commands
successful at the previous level is effective in maximising the success rates of
attacks at each level. With the exception of the “turn light red” target command,
successful adversarial commands could be generated for all target commands at
all mangling levels, as was also the case for the target wake phrase. Overall
success rates for target commands apart from the “turn light red” command

13 See https://prolific.ac/.

https://prolific.ac/
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ranged from 29.9% to 63.8%. The “turn light red” target command appeared to
be an outlier in terms of success rates for potential adversarial commands, with
a success rate of only 3.2%; no clear reason for this was apparent. The overall
success rate for the adversarial wake phrase was 14.4%.

Figure 3 shows an example of the output to the command line produced by a
successful fully mangled wake phrase and two successful fully mangled adversar-
ial commands, showing both interim and final transcriptions of the adversarial
input by the Assistant.

Table 3. Success rates of adversarial commands in audio file input tests.

Target command Overall
success rate

Level 1
successes

Level 2
successes

Level 3
successes

Hey Google 14.4% 52 18 n.a.

Who am I 29.9% 46 21 18

What’s my name 55.4% 56 52 57

Turn on light 49.2% 44 46 65

Turn off light 56.7% 52 50 83

Turn light red 3.2% 3 none none

Turn light blue 63.8% 41 62 63

ADVERSARIAL WAKE PHRASE FOR "Hey Google": v’eI g’u:t@L ("vay gootle")

WARNING:root:Transcript of user request: "V".
WARNING:root:Transcript of user request: "wake".
WARNING:root:Transcript of user request: "Virgo".
WARNING:root:Transcript of user request: "very good".
WARNING:root:Transcript of user request: "viagogo".
WARNING:root:Transcript of user request: "hey Google".
WARNING:root:Transcript of user request: "hey Google".
WARNING:root:Transcript of user request: "hey Google".
WARNING:root:Playing assistant response.
WARNING:root:Expecting follow-on query from user.
WARNING:root:Finished playing assistant response.
RESPONSE TRANSCRIPTION: hi what can I do for you

ADVERSARIAL COMMAND FOR "who am I": f’u: D’am z’aI ("foo tham zai")

WARNING:root:Transcript of user request: "true".
WARNING:root:Transcript of user request: "through the".
WARNING:root:Transcript of user request: "who am".
WARNING:root:Transcript of user request: "fu Fareham".
WARNING:root:Transcript of user request: "who am I".
WARNING:root:Transcript of user request: "who am I".
WARNING:root:Transcript of user request: "who am I".
WARNING:root:Playing assistant response.
WARNING:root:Finished playing assistant response.

ADVERSARIAL COMMAND FOR "turn off light": n’3:n T’0f j’aIt ("nurn thoff yight")

WARNING:root:Transcript of user request: "no".
WARNING:root:Transcript of user request: "9".
WARNING:root:Transcript of user request: "turn off".
WARNING:root:Transcript of user request: "turn off the".
WARNING:root:Transcript of user request: "turn off the".
WARNING:root:Transcript of user request: "turn off my".
WARNING:root:Transcript of user request: "turn off light".
WARNING:root:Transcript of user request: "turn off light".
WARNING:root:Transcript of user request: "turn off light".
WARNING:root:Playing assistant response.
WARNING:root:Finished playing assistant response.

Fig. 3. Audio File Input Tests - Successes.
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Figure 4 shows some examples of the output to the command line produced
by an unsuccessful fully mangled wake phrase and two unsuccessful fully man-
gled adversarial commands, showing both interim and final transcriptions of
the adversarial input by the Assistant. The unsuccessful examples share one
nonsensical word sound with the corresponding successful example in Fig. 3,
demonstrating that the success or failure of adversarial wake phrases and target
commands in triggering a target action was influenced not only by the proba-
bilities allocated to individual word sounds by the acoustic model used in the
Assistant’s speech recognition, but also by the probabilities allocated to utter-
ances as a whole by the Assistant’s language model.

Over-the-Air Tests. Table 4 shows the results of tests of the Assistant’s response
to input via microphone of audio versions of the partially mangled and fully
mangled adversarial commands listed in Table 2. Specifically, the complete tar-
get action was activated by the adversarial commands for the ‘what’s my name’
target command at the fourth, third and second levels of mangling under the con-
dition of the word Google being revealed last, and by the adversarial command
for ‘turn on light’ at the second level of mangling under the condition of the
word Google being revealed last. There were also instances where although the
target command itself was not triggered, the adversarial command did activate
the Assistant by triggering the wake phrase.

Human Comprehensibility Tests. Table 5 shows the results of tests of
human comprehensibility of audio versions of the partially mangled and fully
mangled full adversarial commands listed in Table 2. The results are summarised
according to whether a simple majority of participants identified no meaning,
part of the target command meaning, or the full target command meaning in
the adversarial audio input. Where different results are identified by an equal
number of participants, this is indicated in the table. There were four instances
where participants returned a blank test result. In these cases, results are given
out of five participants instead of six, as detailed in the table.

A consistent result across all the tests was that, with one sole exception, none
of the participants identified any meaning in the fully mangled adversarial wake
phrase and target command combinations. Otherwise the results from this small-
scale test represent a more mixed picture. Some participants did not hear any
meaning in the audio clips prior to hearing the plain-speech command, whereas
others picked up some of the adversarial wake phrase and target command words
at the lower levels of mangling prior to hearing the plain-speech command. Some
participants identified words in adversarial commands that were not actually
present in the wake phrase or target command. A few participants believed
that they had heard a different language, or tried to transcribe some of the
nonsensical word sounds. A couple of participants identified the entire meaning
of a target command prior to hearing the plain-speech version in some instances.
The condition as to whether the word ‘Google’ was revealed first or last did not
appear to significantly affect the participants’ ability to detect the content of the
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ADVERSARIAL WAKE PHRASE FOR "Hey Google": v’eI gl’u:f@L ("vay gloofle")

WARNING:root:Transcript of user request: "V".
WARNING:root:Transcript of user request: "wake".
WARNING:root:Transcript of user request: "vehicle".
WARNING:root:Transcript of user request: "fake love".
WARNING:root:Transcript of user request: "The Gruffalo".
WARNING:root:Transcript of user request: "The Gruffalo".
WARNING:root:Transcript of user request: "The Gruffalo".
WARNING:root:Playing assistant response.
WARNING:root:Finished playing assistant response.

ADVERSARIAL COMMAND FOR "who am I": spl’u: bl’am z’aI ("sploo blam zai")

WARNING:root:Transcript of user request: "screw".
WARNING:root:Transcript of user request: "play".
WARNING:root:Transcript of user request: "volume".
WARNING:root:Transcript of user request: "who do I am sorry".
WARNING:root:Transcript of user request: "who do I am sorry".
WARNING:root:Transcript of user request: "volume three".
WARNING:root:Finished playing assistant response.

ADVERSARIAL COMMAND FOR "turn off light": n’3:n v’0f tS’aIt ("nurn voff chight")

WARNING:root:Transcript of user request: "no".
WARNING:root:Transcript of user request: "Night by".
WARNING:root:Transcript of user request: "new bar".
WARNING:root:Transcript of user request: "new bath".
WARNING:root:Transcript of user request: "buy a".
WARNING:root:Transcript of user request: "bye bye".
WARNING:root:Transcript of user request: "turn both tried".
WARNING:root:Transcript of user request: "9 Bath Street".
WARNING:root:Playing assistant response.
WARNING:root:Finished playing assistant response.

Fig. 4. Audio File Input Tests - Losses.

Table 4. Results of Over-the-Air Tests.

Condition fully

mangled

command

Level 4 Level 3 Level 2 Target

command

Google unmangled first wake phrase

activated

unsuccessful unsuccessful unsuccessful Hey

Google

who am I

Google unmangled last as above wake phrase activated unsuccessful unsuccessful as above

Google unmangled first unsuccessful unsuccessful unsuccessful unsuccessful Hey

Google

what’s my

name

Google unmangled last as above successful successful successful as above

Google unmangled first unsuccessful unsuccessful unsuccessful unsuccessful Hey

Google

turn on

light

Google unmangled last as above unsuccessful unsuccessful successful as above

Google unmangled first unsuccessful unsuccessful unsuccessful unsuccessful Hey

Google

turn off

light

Google unmangled last as above unsuccessful unsuccessful unsuccessful as above

Google unmangled first unsuccessful unsuccessful unsuccessful unsuccessful Hey

Google

turn light

blue

Google unmangled last as above unsuccessful unsuccessful unsuccessful as above
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entire command. A notable result was that the adversarial commands for the
‘what’s my name’ target command at the fourth and third levels of mangling
under the condition of the word ‘Google’ being revealed last that had been
effective in triggering the target action in the over-the-air tests were identified
as also being successful in evading human comprehensibility. Thus these two
partially mangled adversarial commands represent fully effective covert attacks
on the target system.

As regards transcription of the plain-speech target commands, these were
transcribed correctly by a large majority of participants. There were three
instances where transcription of the plain-speech command was incomplete, one
where it was incorrect, and one where transcription of the plain-speech was
missing.

Table 5. Results of Human Comprehensibility Tests.

Condition fully mangled

command

Level 4 Level 3 Level 2 Target

command

Google

unmangled

first

no meaning

(5/6

participants)

no meaning

(5/6

participants)

no

meaning/partial

meaning (3/6

participants)

partial meaning

(4/6 participants)

Hey Google

who am I

Google

unmangled

last

as above no meaning

(4/6

participants)

no meaning (4/6

participants)

partial meaning

(4/6 participants)

as above

Google

unmangled

first

no meaning

(6/6

participants)

no meaning

(4/6

participants)

partial meaning

(4/6 participants)

partial meaning

(5/6 participants)

Hey Google

what’s my

name

Google

unmangled

last

as above partial

meaning (4/6

participants)

no

meaning/partial

meaning (3/6

participants)

partial/full

meaning (2/5)

as above

Google

unmangled

first

no meaning

(6/6

participants)

no meaning

(5/6

participants)

no

meaning/partial

meaning (3/6

participants)

partial meaning

(5/6)

Hey Google

turn on light

Google

unmangled

last

as above no meaning

(4/6

participants)

partial meaning

(4/6 participants)

partial meaning

(4/6 participants)

as above

Google

unmangled

first

no meaning

(6/6

participants)

no meaning

(4/6

participants)

no

meaning/partial

meaning (3/6

participants)

partial meaning

(5/6 participants)

Hey Google

turn off light

Google

unmangled

last

as above no meaning

(5/6

participants)

no

meaning/partial

meaning (3/6

participants)

partial meaning

(5/6 participants)

as above

Google

unmangled

first

no meaning

(6/6

participants)

no meaning

(5/5

participants)

no meaning (3/5

participants)

partial meaning

(6/6 participants)

Hey Google

turn light blue

Google

unmangled

last

as above no meaning

(5/6

participants)

partial meaning

(5/6 participants)

partial meaning

(5/6 participants)

as above
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2.4 Discussion

The combined results from the machine response and human comprehensibility
tests confirm the hypothesis that voice-controlled digital assistants are poten-
tially vulnerable to covert attacks using nonsensical word sounds. The key finding
is that voice commands to voice-controlled digital assistant Google Assistant can
be triggered by nonsensical word sounds in some instances, whereby the same
nonsensical word sounds are perceived by humans as either not having any mean-
ing at all, or as having a meaning only partially related to the voice commands to
the Assistant. This supports the hypothesis that adversarial input consisting of
nonsensical word sounds having an acoustic relationship with target command
words may be recognised as legitimate commands at a confidence level equal
to or higher than that required for speech recognition by the Google Assistant
target system as trained for optimal performance in recognition of legitimate
commands. The findings further show that it is not always necessary to replace
all of the original words in a target command in order to generate an adversar-
ial command that is successful in triggering a target action in a target system.
Particularly with regard to over-the-air attacks, replacing only some rather than
all of the target command words with nonsense words may increase the success
rate of adversarial commands, whilst still preserving the covert nature of the
attacks in terms of being hidden from human understanding. This is based on
the finding that partially mangled adversarial commands were successful both
in triggering a target action over-the-air and in hiding from human recognition
in some instances.

The results confirm the influence of the three features of speech recognition
in current voice-controlled systems in enabling this type of attack via the speech
interface, as discussed above. These three features were thus shown to repre-
sent security vulnerabilities in the current generation of voice-controlled digital
assistants.

The first of these features was the target system’s inability to recognise the
true nature of nonsensical word sounds. As envisaged, the attacks demonstrated
in this experimental work exploit a vulnerability in the speech recognition func-
tionality of the Google Assistant target system of being unable to recognise non-
sensical word sounds as meaningless. In the results of the experimental work,
the Google Assistant target system always either indicated incomprehension or
attempted to match the nonsensical sounds to real words, rather than transcrib-
ing the nonsense word sound. This confirms that the Assistant is vulnerable to
being fooled by word sounds that are perceived by humans as obviously nonsen-
sical. The findings are in accord with the hypothesis behind these experiments
that as a grey area between speech and non-speech, nonsensical word sounds
represent a part of the input space to a voice-controlled system that the current
generation of voice-controlled digital assistants struggles to handle appropriately.
Whilst the Assistant does reject some of the input from this grey area as incom-
prehensible, in other instances input from this grey area is treated as meaningful
input.
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The second of these features was the influence of the language model in
enabling the success of some of the attacks. The examples found in the experi-
ment of the same nonsensical word sounds being present in both successful and
unsuccessful adversarial wake phrases and commands confirms that the trigger-
ing of a target action by adversarial input may be influenced by probabilities
allocated by the language model used in speech recognition to an utterance
as a whole, as well as by probabilities allocated to individual word sounds by
the acoustic model. Thus the aim of language modelling of ‘correcting’ possible
incorrect word recognitions may have the opposite effect in an adversarial con-
text of enabling the success of attacks based on nonsensical word sounds in some
instances.

The third feature shown to be exploited in the attacks was discrepancy in
human and machine processing of nonsensical input. The machine and human
responses to nonsensical word sounds in general were comparable, in that both
machine and humans frequently indicated incomprehension of the sounds, or else
attempted to fit them to meaningful words. However, in the specific instances of
nonsensical word sound sequences that triggered a target command in Google
Assistant, human listeners did not hear a Google Assistant voice command in
the nonsensical word sounds that had triggered a target command in the major-
ity of instances. In addition to either indicating incomprehension or transcribing
the nonsensical sounds as real words, human subjects on occasion attempted to
transcribe the nonsensical word sounds phonetically as nonsense syllables. This
superior ability of humans to recognise nonsensical word sounds as meaning-
less paradoxically prevented human listeners from detecting the presence of a
malicious voice command, thus enabling the covert attacks.

A notable feature of the results of human comprehensibility tests is their
variability between individual experimental subjects. Thus the covert nature
of these attacks depends to some extent on individual human perception, i.e.
whereas some individuals may hear target command words in an adversarial
command based on nonsensical word sounds, others may not. This was seen
in the variable results of the human comprehensibility tests described above.
Human perception of word sounds is known to be unstable in some instances,
seen for example in a widely shared audio recording in which some listeners
heard the word “Yanny” whereas others heard the word “Laurel”.14

3 Missense Attacks on Amazon Alexa and RASA NLU

3.1 Description and Context

This section presents experimental work demonstrating that it is possible to
gain unauthorised access to a voice-controlled system using utterances that are

14 See for example The Guardian, “Laurel or Yanny explained: why do some people
hear a different word?”, 17th May 2018, https://www.theguardian.com/technology/
2018/may/16/yanny-or-laurel-sound-illusion-sets-off-ear-splitting-arguments.

https://www.theguardian.com/technology/2018/may/16/yanny-or-laurel-sound-illusion-sets-off-ear-splitting-arguments
https://www.theguardian.com/technology/2018/may/16/yanny-or-laurel-sound-illusion-sets-off-ear-splitting-arguments
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accepted by the system as a target command despite having a different mean-
ing to the target command in terms of human understanding. We term this
type of attack a ‘missense’ attack, in accordance with a taxonomy of attacks via
the speech interface published in a previous paper [4], which categorises attacks
via the speech interface according to human perceptual categories. The attack
can also be characterised as a black-box adversarial learning attack. The aim
of the attacks of generating adversarial utterances that trigger a target com-
mand but that are unrecognisable as such to humans was realised by embedding
alternate meanings of target command words in an unrelated utterance to cre-
ate an adversarial utterance. As stated above, these attacks are termed ‘word
transplant’ attacks.

In prior work, Carlini and Wagner [17] have used crafted audio recordings
of speech that is unrelated to voice commands to attack a speech transcription
system. Whereas the attacks by Carlini and Wagner target speech recognition
functionality, the attacks presented here target natural language understanding.
There have been no comparable attacks targeting natural language understand-
ing in voice-controlled systems reported in prior work. There have been some
examples of attacks on natural language understanding in related areas, such as
sentiment analysis (see for example Kuleshov et al. [18]). However, these attacks
have used different attack methods based on word substitution. Word trans-
plant attacks have not been demonstrated in any prior work, and thus represent
a novel attack concept.

Linguistically plausible adversarial examples that trigger an action in a
voice-controlled system with an utterance of apparently unrelated meaning are
difficult to generate using automated, mathematical approaches. As noted by
Papernot et al. [5], adversarial learning in the context of natural language under-
standing technologies that take as input a sequence of words is not a differen-
tiable problem. Papernot et al. concede that their own work on fooling a sen-
timent classifier with ‘nonsensical’ sentences generated using a mathematical
method has some limitations, in that the nonsensical nature of the adversarial
sentences is easily noticeable by humans. They point to the need in future work
to address grammar and semantics in adversarial sentence generation, in order
to make sentences indistinguishable from innocent utterances by humans. The
attacks demonstrated here attempt to do this using a manual, non-mathematical
approach for generating adversarial voice commands by manipulating linguistic
parameters such as syntactic structures and word meanings, rather than math-
ematical parameters such as acoustic features or word embedding vector values.

Natural language understanding in voice-controlled systems involves a pro-
cess of semantic parsing for mapping transcriptions of spoken utterances to a
formal representation of the utterances’ meaning that the system can use to
trigger an action. This usually involves some form of machine learning such as
Conditional Random Fields (CRFs) or RNNs (see for example Mesnil et al. [19]).
The process of semantic parsing may take into account the syntactical structure
of an utterance as well as the presence of individual words to determine the most
appropriate action to take in response to a natural language command (see for
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example McTear [8]). The state-of-the-art in machine natural language under-
standing is known to fall far short of human abilities (see for example Cambria
and White [20]).

The hypothesis behind the attacks presented here is that the deficiencies
of natural language functionality in the current generation of voice-controlled
digital assistants may render such systems vulnerable to being misled by adver-
sarially crafted input that triggers a target action in the system, whilst being
perceived by humans as unrelated to that target action. Specifically, it is hypoth-
esised that word transplant attacks will exploit deficiencies in out-of-domain
detection, that is the ability to reliably distinguish between relevant and irrel-
evant speech input (see for example Tür et al. [21]), as well as deficiencies in
word-sense disambiguation, that is the ability to reliably determine the correct
meaning of a word in context (see for example Stolk et al. [22]). Current sys-
tems identify speech input as in-domain or out-of-domain based the presence or
absence of a combination of linguistic features, with word sense disambiguation
being performed as part of this process based on co-occurrence of words in a
given context. Such methods may be misled by crafted adversarial commands
that retain some elements of a target command, as is the case in the word
transplant attacks demonstrated here that reuse content words from a target
command in a different sense context. Crafted adversarial input of this type is
likely to thwart the system’s ability to understand the intent of an utterance
based on combinations of features, and to determine the intended meaning of
individual words based on the context of neighbouring words. Given the crudity
of current methods in natural language understanding for distinguishing valid
from invalid input, as in the case of the attacks on speech recognition using non-
sensical word sounds described above, applying higher confidence levels for the
determination of user intent in natural language understanding to thwart such
attacks may result in non-acceptance by the system of legitimate input and thus
damage usability of the system.

The deficiencies in the current state-of-the-art in natural language under-
standing in distinguishing relevant from irrelevant input necessitate an assump-
tion in the design principles for systems such as voice-controlled digital assistants
of a genuine intent between user and device to communicate as conversation
partners. In other words, such systems have no choice but to assume that any
speaker interacting with them intends to communicate a relevant meaning. The
guidelines for developing Google Conversation Actions, for example, recommend
applying a set of conversation rules known as ‘Grice’s Maxims’, the first of which
is “only say things which are true”.15 In an adversarial setting, the assumption
of shared context does not hold, and thus puts the system at risk of being misled
by malicious input in missense attacks.

The covert nature of the attacks depends on unrelated utterances being used
for adversarial purposes not being detected as a trigger for a voice-controlled
action by human listeners. It is in fact unlikely that human listeners will detect
unrelated utterances as covert voice commands, as humans are for the most part

15 See https://developers.google.com/actions/downloads/be-cooperative.pdf.

https://developers.google.com/actions/downloads/be-cooperative.pdf
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so proficient at the language comprehension task that a large part of human
natural language interpretation is performed automatically without conscious
consideration. Miller [23] states that the alternative meanings of a word of which
the meaning in context is clear will not even occur to a human listener, claiming
the humans hearing the sentence “He nailed the board across the window”,
for example, will not even notice that “board” has more than one meaning:
“Only one sense of “board” (or of “nail”) reaches conscious awareness.” This
suggests that the very proficiency of humans in natural language understanding
may hinder victims in identifying attacks that seek to exploit the limitations of
automated systems in performing the same task.

The attacks described here were demonstrated on two specific natural lan-
guage understanding functionalities. The first of these was the natural language
understanding functionality behind Amazon Alexa Skills. Skills are third-party
applications that can be incorporated in the Alexa digital assistant. Develop-
ers of Amazon Alexa Skills can make use of generic templates for actions to be
performed by the Skill that are made available in the Amazon Developer Con-
sole, the so-called Built-in Intents, and/or create their own Custom Intents using
the tools provided in the developer environment (see Kumar et al. [24]). Alexa
Skills share speech recognition and natural language understanding functional-
ities with the core Alexa digital assistant. The natural language understand-
ing functionality in Amazon Alexa uses as a meaning representation structure
the so-called Alexa Meaning Representation Language (AMRL), which consists
of graph-based structures representing the actions that can be performed by
Alexa on different types of entities (see Kollar et al. [25]). Built-In Intents for
Alexa Skills are based on pre-existing AMRL structures. Custom Intents in Alexa
Skills do not make use of pre-existing AMRL structures as such, however, they
do make use of the same natural language understanding models for mapping
natural language utterances to meaning representation made available in the
developer environment for Alexa Skills, as explained by Kumar et al. As stated
by Kumar et al., Alexa’s natural language understanding functionality will gen-
erate a semantic representation of the Custom Intent based on the sample utter-
ances provided by the user. Various models are used to map natural language
utterances to meaning representation in Amazon Alexa Skills, including CRFs
and neural networks (see Kumar et al.). Kumar et al. explain that the process
of mapping natural language utterances to the semantic representation of an
intent, i.e. semantic parsing, has both a deterministic and stochastic element.
The deterministic element ensures that all of the sample utterances provided by
the user will be reliably mapped to the intent, whereas the stochastic element
ensures some flexibility in the parsing of previously unheard utterances.

The second target system used in the experiment was an open source natu-
ral language understanding functionality named RASA NLU. RASA NLU is a
natural language understanding library made available for use by non-specialist
developers.16 The RASA NLU target system was implemented using the ‘spacy
sklearn’ pipeline option, which incorporates pre-existing generic word embed-

16 https://rasa.com/docs/nlu/.
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dings, which are used in combination with training data provided by the user to
train a classifier to recognise the intents specified by the developer (as detailed
by Bocklisch et al. [26]). This enables users to create bots using a relatively small
amount of training data.

The specific setting of the envisaged attacks is a voice assistant used for
personal banking. The use of digital assistants in financial services is becoming
more common, with some suggestion that such systems are seen as providing
better customer service than human agents (as reported by Qi and Xiao [27]). In
his book entitled ‘Bank 4.0’, Brett King claims that voice assistants will assume
great signficance in banking and financial advice services in future development
of the industry [28].

3.2 Experiment

Methodology. Two target systems were created for the purposes of the exper-
iment. These were an Alexa Skill and a bot based on RASA NLU. Both systems
were dummy banking assistants that mimic the capabilities of a real Alexa Skill
made available by Capital One bank to its customers.17 The Capital One Skill
enables three types of intents that can be expressed by their customers via voice
command, namely Check Your Balance, Track Your Spending, and Pay Your Bill.
The dummy assistants created for the purposes of the experiment included mock
versions of these three intents, as well as mock versions of two further intents,
namely to reset a password that a user had forgotten, and to block a credit
card that had been lost or stolen.The dummy Alexa Skill also implemented the
pre-built FallBackIntent available in the Amazon Developer Console, which rep-
resents a confidence threshold for acceptance of valid input by the Skill. Without
implementation of a confidence threshold via the FallbackIntent, an Alexa Skill
will treat any utterance as relevant and match the utterance to one of its actions.
The RASA NLU target system implemented the same five target intents as the
dummy Alexa Skill, and also implemented five generic intents, namely a greeting
intent, a thanks intent, a goodbye intent, an affirmation intent, and an intent to
provide a name. The generic intents were implemented to improve robustness of
the RASA NLU target system. The RASA NLU system further implemented a
‘nonsense’ intent that was intended to be representative of out-of-scope input,
performing a similar function to the FallBackIntent in the Amazon Alexa Skill.

Training data for the five target intents was the same for both the dummy
Alexa Skill and for the RASA NLU bot. The training utterances represented
a combination of example commands publicised by Capital One for their real
Alexa Skill, publicly available training data examples for a third-party banking
assistant bot18, and self-generated training data. The training datasets contained
30 utterances for the account balance, recent transactions and pay bill intents,
and 15 utterances for the reset password and block card intents. The five generic

17 https://www.capitalone.com/applications/alexa/.
18 This was a template for a banking assistant bot made available by IBM at https://

github.com/IBM/watson-banking-chatbot.
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intents in the RASA NLU target system were trained with sample utterances
made available to developers by RASA NLU. The nonsense intent in the RASA
NLU target system was trained with a large set of unrelated utterances made
available by a third-party developer of another banking bot.19

Table 6. Target systems’ response to target commands.

Test/Target Intent Test/Target Command RASA NLU Test Result Alexa Skill Test Result

get account balance tell me the current balance target intent triggered target intent triggered

get recent transactions show me all my transactions target intent triggered target intent triggered

pay bill pay a bill for electricity target intent triggered target intent triggered

reset password can’t recall my password target intent triggered target intent triggered

block card think my card is stolen target intent triggered target intent triggered

Table 7. Target systems’ response to out-of-scope commands.

Control Intent Control Command RASA NLU Test Result Alexa Skill Test Result

be back I’ll get back to you in a moment nonsense intent triggered FallBackIntent triggered

be back be back in 5min nonsense intent triggered FallBackIntent triggered

be back I’ll be back nonsense intent triggered FallBackIntent triggered

be back I promise to come back nonsense intent triggered FallBackIntent triggered

be back I’ll be back in a few minutes nonsense intent triggered FallBackIntent triggered

After training of the target systems, the systems’ responses to utterances
not seen in training were tested with respect to both in-scope and out-of-scope
utterances. Input to the target systems was text-based. A test utterance for each
of the specific intents for triggering the five target actions was inputted. The test
utterances were utterances that had not been used in training, but that were
clearly within the scope of the given intent. In order to test the systems’ ability
to reject non-malicious out-of-scope input, the tests also assessed the systems’
responses to five other utterances that were unrelated to any of the actions within
the scope of the Alexa Skill target system or the RASA NLU target system
(these were five training utterances for a ‘be back’ intent that was part of the
sample training data made available to developers by RASA NLU). Details of the
tests of the systems’ responses to in-scope and non-malicious out-of-scope input
are shown in Tables 6 and 7 respectively. The tests confirmed that the target
systems were robust in their handling of in-scope input not seen in training and
non-malicious out-of-scope input, with all of the test utterances triggering the
appropriate intent in both systems, and all of the control utterances triggering
the nonsense intent in the RASA NLU target system and the FallBackIntent in
the Alexa Skill. The test utterances were thus used as target commands for the
missense attacks. Testing of the dummy Alexa Skill was performed in a sand-
box environment in the Amazon Developer Console only and was not deployed
in the Alexa cloud. Testing of the RASA NLU system was performed locally via
a terminal.
19 https://github.com/Twanawebtech/bank-chatbot.
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Potential adversarial utterances were generated using the following process.
First, a list of content words from the sample utterances for each Custom Intent
was extracted (content words are words that give meaning to a sentence or
utterance, as distinguished from function words that contribute to the syntacti-
cal structure of the sentence or utterance rather to its meaning, examples being
prepositions such as ‘of’, determiners such as ‘the’, pronouns such as ‘he’ etc.).
This was done automatically using a Python script implementing the Natural
Language Toolkit (NLTK).20 Second, a dictionary API21 was used to automati-
cally retrieve different word meanings and usage examples for the content words
in the target commands. This enabled the identification and use of unusual and
outdated word meanings for the target command words, which might be expected
to increase the probabilities of successfully misleading natural language under-
standing systems such as that implemented in an Alexa Skill or RASA NLU
bot, which are likely to have been trained to handle only common and cur-
rent meanings of words. Following the extraction of content words and alternate
word meanings, potential adversarial utterances for each Custom Intent were
then generated manually, by embedding alternate meanings of words from the
target command in new utterances, using as few new content words as possible,
to create a potential adversarial command with a different meaning to the tar-
get command. The response of both target systems to each potential adversarial
utterance was then tested.

Results. Table 8 shows the results of the word transplant attacks. The Amazon
Alexa Skill target system was seen to be more vulnerable that the RASA NLU
system. All but one of the word transplant attacks on the Alexa Skill target sys-
tem were successful. On the RASA NLU target system, word transplant attacks
were successful in only two out of five instances.

Table 8. Target systems’ response adversarial commands generated by word trans-
plant.

Target

Intent

Target

Command

Adversarial

Command (Word

Transplant)

RASA NLU Test

Result

Alexa Skill Test

Result

original content

words / total

content words

get account

balance

tell me the

current

balance

I kept my balance

in the current

target intent

triggered

target intent

triggered

2 out of 3

get recent

transactions

show me all

my

transactions

the transactions

were for show

nonsense intent

triggered

target intent

triggered

2 out of 2

pay bill pay a bill for

electricity

bill of an anchor nonsense intent

triggered

target intent

triggered

1 out of 2

reset

password

can’t recall my

password

we can’t recall our

product

nonsense intent

triggered

FallBackIntent

triggered

1 out of 3

block card think my card

is stolen

your card is an

ace

target intent

triggered

target intent

triggered

1 out of 2

20 https://www.nltk.org/.
21 https://developer.oxforddictionaries.com/.
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3.3 Discussion

The results of the experiment confirm the hypothesis that natural language
understanding functionality in systems such as Amazon Alexa Skills and RASA
NLU is vulnerable to being misled by malicious actors using utterances that
are accepted by the system as a valid action trigger, but are unrelated to the
relevant target command in terms of their meaning as understood by humans.
The results of the experiment support concerns surrounding the implementation
of voice control in sensitive areas such as banking.22

The results confirm that, whilst measures for enabling voice-controlled sys-
tems to reject irrelevant input, such as the FallbackIntent in Alexa Skills or the
nonsense intent in the RASA NLU banking bot, do prevent such systems from
simply accepting any utterance directed towards them as valid commands, this
is not sufficient to prevent voice-controlled systems from accepting irrelevant
utterances that have been crafted maliciously so as to mislead natural language
understanding functionality. In the case of the Alexa Skill target system, some
adversarial commands were identified as the target command with a sufficiently
high level of confidence to avoid triggering of the FallBackIntent, whereas in the
case of the RASA NLU target system, some adversarial commands were identi-
fied as the target command with a higher confidence level than the confidence
level assigned to the nonsense intent. The success of some adversarial commands
in triggering the target command indicates that the capacities of natural lan-
guage understanding functionality in current voice-controlled systems to distin-
guish valid from invalid input and to identify the correct meaning of words in a
given context can be easily undermined. These issues represent significant secu-
rity vulnerabilities, in that they may enable a malicious actor to gain control
of a system using utterances that are unlikely to be recognised by the system’s
human users as a voice command to their system. A notable characteristic of
these attacks is that they have the potential to be plausibly deniable, in that a
target system’s execution of a target action in response to an unrelated utterance
vocalised in its environment might be easily explained as being due to an error
on the part of the target system, rather than to malicious intent on the part of
the source of the utterance.

A clear limitation of the attacks demonstrated here with respect to the Alexa
Skill target system is that they do not take into account the need for an attacker
to activate the Alexa assistant and the target Skill using a wake-word or activa-
tion phrase. However, this limitation should not be viewed as one which cannot
be overcome in future work. Due to the known presence of false positives with
respect to wake-word recognition, it might be possible to trigger activation of the
wake-word by using a single natural language word, other than the wake-word
itself, as part of an unrelated utterance, in order to subsequently be able to exe-
cute an adversarial learning attack targeting natural language understanding to
trigger a specific target command. This possibility was in fact demonstrated in
22 See for example phys.org, 20th June 2018, ‘Banking by smart speaker arrives, but

security issues exist’, https://phys.org/news/2018-06-banking-smart-speaker-issues.
html.
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an incident in which an Amazon Alexa device misinterpreted a word spoken in a
private conversation as the wake-word ‘Alexa’, and subsequently misinterpreted
other words in the conversation as commands to send a message to a contact,
resulting in a recording of a couple’s private conversation in their home being
sent to a colleague.23 Whilst this transmission of private information occurred
as a result of error rather than malicious intent, it highlights the potential for
spoofing of wake-word recognition and the inadequacy of wake-word recognition
as a security measure.

4 Future Work and Conclusions

The experimental results presented here consolidate initial results presented in
our earlier paper, confirming that speech recognition in voice-controlled sys-
tems is vulnerable to being misled by adversarial input consisting of nonsensical
word sounds that are perceived by legitimate users of voice-controlled systems
as having no meaning, and that natural language understanding functionality in
voice-controlled systems can be manipulated using crafted utterances that retain
elements of a target command, but that are perceived by naive listeners as being
unrelated to the action that an attacker is seeking to trigger.

Future work should seek to demonstrate the types of attacks investigated here
on different systems and on a broader set of target commands. With respect to
the ‘nonsense’ attacks targeting speech recognition, whilst the target commands
used in the experiment performed here were real commands actually executable
by Google Assistant, the methodology applied in the experiment described here
of assessing the target system’s response based on transcription of audio input,
rather than an actual performed action, potentially expands the range of target
commands beyond actions that are within the scope of a target system’s actual
capabilities to actions that are currently hypothetical. Therefore it would be
possible to investigate the vulnerability of hypothetical target actions to attacks
of this type before the actions are actually implemented as part of a live system.
The ultimate focus of future work should be to develop defence mechanisms that
can make voice-controlled systems more robust to nonsense and missense attacks
at a general level.
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