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Abstract. This paper presents two security models for document-based
databases which fulfill three security requirements that are confiden-
tiality, querying over encrypted data, and flexible access control. The
first model which we refer to as dynamic is based on a combination of
CryptDB [16] and PIRATTE [15] concepts. While CryptDB consists of
a proxy between one user and a database for encrypting and decrypt-
ing data according to user queries, PIRATTE refers to a proxy wherein
encrypted files are shared using a social network between the number
of users and the data owner with the files being decrypted using the
proxy key on the user side. The second model which we refer to as
static is based on CryptDB concepts as well as CP-ABE [6]. CP-ABE is
public key encryption which offers fine-grained access control regarding
encrypted data and set of attributes that describe the user who is able
to decrypt the data provided within the ciphertext. These two models
enhance CryptDB security while also helping with data sharing with
multi-users using CP-ABE or PIRATTE concept that helps in verifying
authentication on the database or application level.

Keywords: Fine-grained access control · Querying over encrypted
data · Document database · CryptDB · CP-ABE

1 Introduction

Databases tend to involve sensitive data including government and personal
information. For such data, the security must be able to handle threats that are
internal as well as external. Although external threats are reduced generally by
applying access control, external as well as internal (such as by curious adminis-
trators) data leaks can be prevented by encryption. It should be noted, however,
that using encryption has its own problems. For querying encrypted data, they
either should be decrypted making data leaks possible or special techniques
have to be implemented to query encrypted data which have limited querying
power and efficiency. According to the authors of [9], there are three require-
ments for securing databases which are (i) confidentiality, (ii) enforcement access
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control, and (iii) querying over encrypted data. There have been numerous sys-
tems that have been developed which satisfy one or more of these requirements.
Regarding relational databases, the confidentiality and querying over encrypted
data requirements are addressed by the CryptDB system [16], whereas all three
requirements are addressed by DBMask [18]. In the past few years, numerous
NoSQL data models and DBMSs have become popular [1] because they can effec-
tively store as well as process substantial amounts of unstructured and structured
information. NoSQL databases can be classified into four types which are key-
value store, document-based store, column-based store, and graph-based store.
Concerning NoSQL databases security, the first and third requirements are dealt
with for example, in [3] (Graph DB) and in [20] (document-based DB), whereas
[4](document-based DB) addresses all three requirements and proposes SDDB
design that adds more types of encryption methods to securely achieve more
queries operations over encrypted data than in [20].

In the paper [4], the dynamic SDDB design, (called there just SDDB) utilizes
the precise access control functionality provided by PIRATTE approach [15]
with a particular benefit of preventing re-encryption data cost in the case of
user revocation. This paper expands [4] as follows:

– We present the detailed description of the dynamic model from [4].
– We present novel Static Secure DataBases(S-SDDB) model. In short, in S-

SDDB, PIRATTE is replaced by CP-ABE and in that case, the access control
is achieved by using Attribute-Based Encryption in the layered encryption
onions. This allows decreasing computations cost when applied to fixed data
attributes which do not require users revocation feature.

– We compare dynamic and static SDDB models which provide flexible access
control at application and database levels, respectively.

– We describe sets of MongoDB queries supported by two models.
– We report on experiments with an initial prototype of S-SDDB utilizing one

layer of Attribute-Based Encryption.

The rest of the paper is organised as follows. Section 2 provides the back-
ground of CryptDB, PIRATTE, and CP-ABE systems. Sections 3 and 4 examine
the Secure Document Database (SDDB) scheme and SDDB workflow, respec-
tively. Sections 5 and 6 present comparisons between static and dynamic mod-
els, and security analysis, respectively. Section 7 defines a case study concerning
SDDB scheme application. Section 8 discusses performance and security regard-
ing the SDDB. Section 9 discusses a prototype implementation and Sect. 10
presents the related work. Section 11 provides the conclusion.

2 Background

This section provides the background regarding CryptDB, PIRATTE, and CP-
ABE concepts. CryptDB [16] can be considered as the first practical database
system supporting SQL queries over encrypted data. It is a proxy between the
user and the database as it rewrites a query so that it can execute it over
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encrypted data on DBMS while not revealing plaintext and passing on the
encrypted result it receives from DBMS to the user once decryption is done.
Various types of encryption techniques are used based on the type of data and
required operations. These include Deterministic (DET) and Random (RND)
types of encryption. Onion layers are used to compose these techniques as shown
in Fig. 1. CryptDB is unable to implement specific access control regarding
columns and cells. It can only use a proxy-based reference monitor to implement
row access because of encrypting every column data using one key. Moreover,
CryptDB users are unable to share their data with user groups.

Fig. 1. Onion encryption layers in CryptDB [16].

For reducing CryptoDB limitations as well as adopting for the case of the
document-based DB, implementing advanced cryptographic primitives includ-
ing cipher-policy attributed based encryption (CP-ABE) [6] is that we propose.
Attributes Based Encryption (ABE) is a public key cryptographic method in
which encryption as well as decryption are based on the attributes. Restrictions
on data access as per data owner imposed attributes are defined as access pol-
icy. ABE can be classified into Ciphertext-Policy AttributeBased Encryption
(CP-ABE) and Key-Policy Attribute-Based Encryption (KP-ABE).

KP-ABE refers to the access policy which is labelled in the private key and
the attributes are labelled in ciphertext whereas the reverse is true for CP-ABE.
It provides a feature particularly for users who are able to decrypt the data
specifically regarding the applications. Hence, it will be implemented in this
paper to ensure specific access control for data. CP-ABE refers to public key
encryption which offers fine-grained access control regarding encrypted data and
can be considered to be similar to Role-Based Access control. Further, it identifies
users who are authorized to decrypt data as per Access Policy including a set of
attributes provided within the ciphertext. A set of attributes describes the user
who is also issued a relevant private key. The user is able to decrypt the data
only when private key attributes fulfil access policy regarding the ciphertext.
Furthermore, there are four algorithms in CP-ABE as follows:

1. Setup: This algorithm includes only the implicit security parameter input
while outputting the public parameters PK as well as a master key MK.

2. Key Generation (MK, S): This algorithm includes the master key MK as
well as a set of attributes S describing the key as input while outputting a
private key SK.
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3. Encrypt (PK, A, M): This algorithm has the public parameters PK, an
access structure A, and a message M concerning the attributes as input. The
algorithm encrypts M while developing a ciphertext CT because of which
only a user who has a set of attributes fulfilling the access structure can
decrypt the message. It should be assumed that A is implicitly included in
the ciphertext.

4. Decrypt (PK, CT, SK): This algorithm includes the public parameters
PK, a ciphertext CT containing an access policy A, as well as a private key
SK that is a private key regarding a set S of attributes as input. In case of
the set S of attributes fulfilling the access structure A, the algorithm is able
to decrypt the ciphertext as well as return a message M.

Jahid and Borisov proposed the PIRATTE scheme [12] wherein CP-ABE and
user revocation mechanism are integrated through a proxy which takes care of
attributes as well as user revocation for enabling dynamic users. While a proxy
key and secret keys are issued by the data owner in PIRATTE, only the proxy
key regarding user revocation is updated.

3 SDDB Overview

This section provides SDDB’s overview concerning both dynamic and static vari-
ants, including system requirements, threat model, Entities, and SDDB Models.

As illustrated in Fig. 2, SDDB allows Document DB to perform the queries
over encrypted data regarding particular operations depending on access policy
restrictions that the data owner imposes. Using user secret key, proxy can decrypt
secret keys concerning encrypted data as well as determine encryption layers that
can be adjusted.

Fig. 2. SSDB design.
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There are two models included in SDDB which are a static model a dynamic
model [4]. Dynamic principle model is based on CryptDB concept including
PIRATTE concept and fulfils fine-grained access control regarding application
level that PIRATTE has on the proxy. On the other hand, static principle model
is based on CryptDB concept including CP-ABE and fulfils fine-grained access
control concerning database level as it encapsulates every onion into CryptDB
by CP-ABE. Figure 2 presents four entries whose interactions in both models
are as follows:

1. Data Owner (DO) refers to the authority that establishes access privileges
concerning her/his data which this paper will call access policy (AP). DO,
for example, can be a user sharing their data using applications. They may
also use various keys for encrypting diverse aspects of the data based on
the AP while uploading them to the DBMS server. This leads to the secret
keys being created for every AP which are then distributed to the users. The
authenticated user able to access the data is then verified using proxy in
dynamic model or using DBMS in static model.

2. User Applications refer to users requesting data sharing regarding the DO.
Here, the users’ attributes are sent to the DO and their secret keys are received
that helps in identifying themselves regarding the DBMS or proxy to gain
access to parts of the data and to conduct queries.

3. Proxy refers to the intermediate server existing between DBMS, user appli-
cation, and DO and helps verify the appropriate access regarding every user
when dynamic model as well as rewriting queries should be executed concern-
ing the encrypted data.

4. DBMS server concerns a server that offers database services including storage,
retrieval, or verification of access control regarding static model. This also
helps in storing encrypted data as well as conducting query while, if possible,
not showcasing the plaintext data.

In both models of SDDB, processing query is conducting in six steps. The
first step involves the user issuing the query as the data owner obtains the secret
key. The second step involves the proxy rewriting the query of the user and
replacing the anonymised fields, collection, and documents while encrypting the
constants as per the necessary operation. In the third step, the proxy verifies the
user query and determines whether it is able to execute regarding the current
layer, failing which the proxy issues the update query for decrypting the current
layer in case of the user being authorized for accessing such data. The fourth
step involves the query being sent by the proxy to MongoDB which then sends
the encrypted result to the proxy. In the fifth step, the results are decrypted by
the proxy and sent to the user. In the sixth step, proxy re-encrypts the previous
layer to ensure further security.

3.1 SDDB Requirements

SDDB design fulfils the requirements [4] given below such that both models fulfil
c1–c4 while only the dynamic model fulfils c5–c7.
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– C1: Querying Over Encrypted Data: This scheme can conduct opera-
tions as well as queries over encrypted data while not revealing the data.

– C2: Flexible Access Control: This grants users access to data parts as
per data owner’s policy which can be altered if required.

– C3: Multi-user Sharing Support: Depending on the policy of the data
owner, numerous users can access data.

– C4: Security and Performance Trade-off: This scheme enables better
security or performance to be developed.

– C5: User Revocation Support: This scheme can, as per requests by data
owners, revoke the users and restrict them from accessing data.

– C6: No Re-encryption Data: There is no need for data re-encryption when
user revocation has occured.

– C7: No Re-distributed Key: There is no need for keys to be re-distributed
when user revocation takes place.

3.2 Threat Model

– DO: This is trusted and is offline following encryption and uploading of the
encrypted data. It then distributes the keys to users except when a new user
asks for permission or when the owner removes user access rights.

– User Applications: This is untrusted, and hence, the proxy has to verify
them prior to allowing access and querying data. DO and Proxy and user
applications do not share decryption keys.

– Proxy: This is semi-trusted and gains encrypted keys as well as is unable to
decrypt data by itself.

– DBMS Server: This is semi-trusted and hence is unable to gain the keys
for decrypting inner layer.

3.3 Document-Aware Encryption

This section examines encryption techniques that layers, security level, and
onions use along with their work concept.

1. Access Control (AC): Here, encrypted value includes access policy which
identifies which users have been authorized for accessing the data in which
CP-ABE algorithm is implemented [6]. This does not provide any computa-
tion operations regarding the encrypted value. Further, as it does not reveal
data information, it ensures optimum security as per Decision Bilinear Diffie-
Hellam (DBDH).

2. Random (RND): Here, Blowfish-CBC or AES-CBC encrypt the same val-
ues regarding various values for numeric or string data, respectively, using
a random initialization vector (IV). It appears to be similar to Access con-
trol layer which does not provide any computation operations or reveals any
information. Further, it grants optimum security as per indistinguishability
concerning adaptive chosen-plaintext (IND-CPA) [5].
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3. Deterministic (DET): Here, AES-CBC and Blowfish-CMC [11] encrypt
two equal values as the same value by concerning string and number data,
respectively, with zero-IV. It results in leaking equivalent values, and hence,
one is able to conduct equality operations on the encrypted data including
equality predicate, Count, and Group. Moreover, it grants reduced security
compared to AC while being effectively secure.

4. Order-preserving Encryption (OPE): Here, data encryption is done an
OPE algorithm, such as Boldyreva’ algorithm [7], and hence, it leaks data
order as well as enables comparisons predicates including Order by, Min, and
Max. It also offers less security compared to DET.

5. Homomorphic Encryption (HOM): Here, encryption of two same values
is done to two different values and is able to conduct arithmetic operations
concerning numeric data using Fully Homomorphic Encryption while being
expensive and ineffective. On the other hand, partially Homomorphic encryp-
tion can support particular operations, such as summation or multiplication,
that is less expensive and more effective. For instance, Pailier’s algorithm
[14] is implemented for supporting summation operations using Further, it
provides similar security regarding AC layer.

6. Word Search (WS): Here, data encryption is done using Song’s proto-
col [19] which supports LIKE Operator. Song’s protocol is used to encrypt
keyword in the user’s query by proxy, while MongoDB searches aspects of
encrypted data which includes the same encrypted keyword. Moreover, it does
not leak information to a server, and hence ensures close security concerning
AC.

3.4 Adjustable Query-Based Encryption

Every technique can support particular operations that include RND and AC
regarding queries with no computations, OPE concerning comparison operations,
DET concerning equality operations, WS concerning LIKE operator on string
data, and HOM concerning summation (and other arithmetical operations) on
numeric data. Every technique can offer different level of security. Hence, such
techniques are arranged in the form of layers and onions as per types of data
and operations. Further, the outmost layers provide optimum security while
inner layers reduced security. For supporting data access restrictions as well as
encrypting data using diverse keys using every technique as per who has access
to data, AC technique is used to encapsulate the onions in the static model, as
shown in Fig. 3(A), or to maintain CryptDB onions in the dynamic model, as
shown in Fig. 3(B), while implementing PIRATTE on an application level.

Thus, when adjustable query-based encryption is used, the layers of encryp-
tion protecting the data has to be adjusted to allow to perform the required
operations. For sharing data as well as restricting data access, the data owner
provides a unique encryption key to every layer and onion regarding every access
policy. The proxy verifies the access rights as well as clause within the query for
identifying the suitable layer, onion, as well as field for encryption. Then, it issues
the updated query which includes user-defined functions (UDFs) that should be
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Fig. 3. Layers of onions in models.

executed on document DB. The user, for example, issues the query that includes
equality operation, including checking ID = 23. The user also holds access rights
with no regard to the query type. Regarding adjustable query-based encryption,
the process in both models is as follows. Execution of this query is not possible if
the outermost layer RND or AC. To decrypt the ID field’s outermost layer con-
cerning Onion Eq, the update query that must be on DET layer is issued. Proxy
then rewrites user query which is executed on document DB. Proxy issues the
update query to return to the outermost layer such as RND or AC to maintain
further security.

3.5 Data Format and Query Language

It is possible to implement SDDB scheme for different document-based DBs,
MongoDB environment is regarded as the major target. The data storage for-
mat [4] is defined along with the query language concerning MongoDB but we
will define it here again with more details to understand the remainder of the
paper. A binary coded format known as BSON is used for the representation of
MongoDB data. BSON can be regarded as a form of JSON that has further data
types, including binary and date, as well as embedding feature. It offers efficient
encoding as well as decoding using various languages, further information for
which can be found at http://bsonspec.org. Further, a particular data query
language is not used by MongoDB although it adhered to simple query syntax
which is appropriate for data representation by JSON which will be referred to
as MongoDB Query. MongoDB Query syntax consists of calling database db fol-
lowed by Collection-name and then operators such as find(), insert() and may be
followed by any data condition in the case of request a representative in JSON
and maybe also followed by functions such as sort() or count(). An example for
this is given below:

db . c o l l e c t i o n −name . f i nd ( ’ name ’ : 1 ) . s o r t ( ) ;

http://bsonspec.org
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Table 1 presents MongoDB queries’ common forms as per MongoDB docu-
mentation while ensuring the execution on this model’s layers and the layers
which are possible to adjust to ensure execution.

As shown in Table 1, there are three categories of MongoDB queries that
possible in both models.

1. Executing query on the encrypted data while not including adjustable layers.
Such as 1, 2 that be executed on the AC layer directly Following is how this
group is executed:
(a) The query is sent by the user to the proxy which is written on the Mon-

goDB query.
(b) The proxy encrypts the collection name because it is known in the upload-

ing phase and then transfers it to Query router server.
(c) If there is a find, the encrypted results are sent by the Query router server

to the proxy, which then decrypts numerous times as per the number of
onions or layers, such as first decrypting RND or AC layer and then the
DET layer and providing the user with the result.

Insertion Example:

(a) The user issues I query

db . mycol . i n s e r t ({ ’ t i t l e ’ : ’MongoDB ’ } ) . . . ( I )

(b) The proxy encrypts ’MongoDB’ on onion equal as well as onion order and
sends II query to Query router server.

db . mycol . i n s e r t ({ t i t l e −eq : ’ ghftygdyubnbc ’} ,
{ t i t l e −ord : ’ tyuui iowosak ’} ,
t i l t e −search : ’ xcbvbmnswe ’ ) . . . ( I I )

(c) The query is executed by the query router by adding a new document
which includes three fields as there is a string type title field.

Finding Example without Any Operations:

(a) The user issues I query

db . mycol . f i nd ( { } ) . . . ( I )

(b) The query is sent by proxy to Query router server.
(c) Query router server sends fields-eq and Id such as id:7df78ad8902c and

title-eq:’ghftygdyubnbc’.
(d) Proxy decrypts the result by first peeling off RND or AC layer followed

by DET layer for gaining ’MongoDB’ value and forwarding it to user.

2. Query is executed over encrypted data using adjustable layers, including 3,
4, 7, 8, and 9 which are executed on inner layers. Following is how this group
is executed:
(a) The query is sent by the user to the proxy which is written on a MongoDB

query.



412 M. Almarwani et al.

(b) Proxy peels off RND or AC layer through issuing update query regard-
ing operation field only and then sending to the Query router server for
updating this field to make a comparison with the user’s query value.

(c) The user query is then rewritten by the proxy and is sent to Query router
server.

(d) Encrypted results are sent by the query router server to the proxy which
then decrypts numerous times as per the number of onions or layers, and
the results are sent to the user.

Finding Example with Equal Operation:

(a) The user issues I query

db . mycol . f i nd ({ ’ t i t t l e ’ : ’ MongoDB ’ } ) . . . ( I )

(b) This query cannot be executed on the current layer (AC), and thus, proxy
issues update query (II) for peeling off AC layer.

db . mycol . updateMany ({} ,{\ $ s e t :{ ’ t i t t l e −eq ’
: decrypt−AC(K, t i t t l e −eq ,Ksw))}} in s t a t i c model . . . ( I I )

or

db . mycol . updateMany ({} ,{\ $ s e t :{ ’ t i t t l e −eq ’
: decrypt−RND( t i t t l e −eq , IV ))}} in dynamic model . . . ( I I )

This query includes the comparing field as well as key which was used on
encrypting value for decrypting this field on DET layer.

(c) The proxy rewrites the existing user query for executing on encrypted
data by encrypting [’tittle’:’MongoDB’] as per the encrypted data on DET
layer as III query.

db . mycol . f i nd ({ ’ t i t t l e −eq ’ : ’ werwdgdjhhkjiu ’ } ) . . . ( I I I )

(d) Query router server compare the value (‘werwdgdjhhkjiu’) on tilttle-eq
fields and send all field on these documents contain this value to proxy.

(e) The result is decrypted by proxy by first peeling off the RND layer using
field-IV or the AC layer using after which the DET layer is peeled off to
gain plaintext value which is forwarded to user.

3. Querying is not supported over encrypted data. As existing encryption tech-
niques are unable to support such queries, two solutions are recommended.
Following is how this group is executed:
(a) Executing a part of the query that provides support to the existing

encryption techniques and eliminates parts which cannot be executed,
after which when the results are received by proxy and decrypted, user’s
queries are executed as per the result to gain the necessary results.
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4 SDDB Workflow

This section examined how access control can be verified and a query can be
executed on SDDB regarding both models. PIRATTE concepts are used by the
dynamic [4], model concerning Proxy and DO for verifying access control by
allowing decrypting keys which are stored on the proxy. Hence, in case of the
user’s inability to obtain keys, user query is rejected. CP-ABE as encapsulation
is used by the static model on every onion on DBMS. Thus, if the user does not
hold right to access, the proxy rejects query. The two models are similar as given
below apart from minor differences.

– DO-DocumentDB Connection:
1. DO develops Policy Access (PA) including ((Doctor and L hospital) or

Administer).
2. DO conducts setup function for every encryption technique for gaining

symmetric key concerning every policy. This key differs from other access
policies.

3. Regarding the Static Model, DO executes CP-ABE-Setup for gaining
public key(pk) as well as master key(mk) for policy access. Regarding
Dynamic Model, DO executes PIRATTE-Setup for gaining public key(pk)
as well as master key(mk) along with Proxy Key-setup for developing
proxy key to ensure policy access.

4. DO conducts Enc-Layer for encrypting value for every document field
through key from step 2.

5. For Static Model, DO executes Enc-CP-ABE algorithms for encrypting
value from step 3 through pk and PA.

6. DO uploads encrypted documents in DBMS.
– DO-Proxy Connection:

1. DO sends the keys(pk,mk, symmetric keys for encryption techniques,
Proxy Key (Dynamic Model)) regarding every policy to proxy which
encrypts them using Enc-CP-ABE (Static Model) or Enc-PIRATTE
(Dynamic Model) as in case of a proxy attack, the adversary will fail
to gain access to data on DBMs.

– User-DO Connection:
1. User sends user attributes to DO.
2. DO verifies which user attributes belongs to which policy access AP.
3. DO executes CP-ABE-KeyGen (Static Model) or PIRATTE-KeyGen

(Dynamic Model) for gaining secret key (skw) using master key.
4. Do sends secret key to user.

– User-Proxy Connection:
1. User sends attributes (skw) and Query (Q).
2. Proxy verifies which attributes belong to which policy access and exe-

cutes Dec-CP-ABE(Static Model) or Dec-PIRATTE(Dynamic Model) for
decrypting keys through skw for gaining secret keys for policy access.

– Proxy-DocumentDB Connection:
1. Proxy verifies whether operation on query is able to be executed on CP-

ABE or RND layer. If it can, step 2 is done, and if it cannot, step 3.
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2. Proxy alters the outermost layer through issuing update query by skw
concerning the intended Onion.

3. Proxy rewrites Q and then replaces the constant with encryption using
existing layer for sending query to DocumentDB.

4. DocumentDB forwards encrypted result to proxy.
5. Proxy decrypts the result by conducting Enc-ourmost-layer and then

decrypts it again through Enc-inner-layer and forwards the result to user.

5 Static Model VS Dynamic Model

This section focuses on the crucial differences between dynamic and static mod-
els. Concerning the static model, every onion’s top layer includes Access control
technique using CP-ABE, as illustrated in Fig. 3A. For allowing data sharing,
diverse keys are provided to inner layers as per the top layer, and only the user
who holds the access right can decrypt the data. Hence, if the user does not
have access, the user query is rejected. Thus, this model is unable to allow user
revocation, in which case re-encryption of data or keys distribution is needed.
Regarding the Dynamic model [4], layers and onions regarding CryptDB, as
shown in Fig. 3B, are used, and PIRATTE is used for allowing data sharing
as well as access enforcement for enabling data encryption using various keys.
Hence, data can only be accessed by the user who is from that group. Access
control fulfils the application level between the user and proxy with no need for
Database sharing. In case the user is not given access, the query is refused by
proxy. This model allows user revocation with no need for re-encryption data or
keys distribution. The two models are compared in Table 2.

Table 2. Static model VS dynamic model.

Dynamic model Static model

AC technique PIRATTE CP-ABE

AC level Application Database

Onion and layers As CryptDB AC technique as outermost layer for onions

Unauthorized user Rejecting query Rejecting query

User revocation YES NO

6 Security Analysis

Regarding the proposal design, as shown in Fig. 2, as well as the encryption
techniques types, the design offers protection against two types of threats:

1. DBMS Threats: DBMS threats are intended here ADB curious and external
threats against full access and data leaks:
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(a) Full access is hindered as encryption keys are not shared with ADB.
(b) On the encrypted data, query is executed for offering confidentiality so

that data leaking can be prevented, whereas the leakage level is based on
the encryption techniques that are used, as depicted in Table 3. OPE, for
example, is the weakest security as it leaks order as well as duplicates
and can be part of the plaintext along with DET providing more security
which only leaks duplicates. Then are AC, RND, HOM, and WS which
have no leakage.

Table 3. Leakage information level for encryption techniques.

Encryption technique Leakage

AC or RND None

DET Duplicates

OPE Order, duplicates + partial plain-text

HOM None

WS None

2. Arbitrary Threats: Arbitrary Threats are intended here any attacks on
users, proxy and DBMS. If there is an attack on the proxy, the keys will be
accessible to the attacker for detecting the stored data while also gaining full
access to database. This can be prevented using CP-ABE so that full access to
data can be prevented because of various keys being used for data encryption
as well as keys encrypted on proxy as per access policy. This, however, does
not prevent data leakage of a group which is part of the logged-in user if there
is an attack. It also helps in preventing collision resistance threat if users or
entities collide.

7 Case Study

This section assumed that the DO includes a data set that has a collection which
includes two documents, both of which have two fields, ID and Name, which are
integer and string data type, respectively. The execution of Q1 is done using
MongoDB querying language to execute query through SDDB model and not
using SDDB [4].

Q1 : ( db . c o l l e c t i o n −1. f i nd ({ ID :23} ,
{name : 1 } ) )

7.1 Without SDDB

This scenario is implemented when the system fails to offer data encryption or
access verification. The data is uploaded by DO in DBMS as Plaintext, while
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it is assumed that access privilege is provided to users by providing them with
password (PW). Hence, the Q1 and PW is used by the user through user appli-
cation which sends it to the DBMS server for execution, the results of which are
sent to the user and Name = Alice is matched to ID = 23 [4].

7.2 With SDDB

This scheme can be classified into cases as per computation classes needed by
the application’s queries. In this case study, for example, because the application
needs queries (insert, delete, update, select) that have equality operation, the
encryption of data is done using onion equality (DET), as depicted in Fig. 4, in
the dynamic model or between DET and AC, as depicted in Fig. 5, in the static
model.

Fig. 4. Dynamic model [4].

There are two major processing stages:

1. Encrypt and upload data
(a) DO chooses AP for these two documents: AP: (Doctor AND Surgery

Department).
(b) DO runs Setup functions to obtain PK, MK, LK-RND (dynamic model),

LK-AC (static model), LK-DET, PXYK (dynamic model).
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Fig. 5. Static model.

(c) In dynamic, DO encrypts data by LK-RND and LK-DET. While, in
static, DO encrypts data by PK, LK-DET.

(d) DO uploads data on DBMS.
(e) DO sends encrypted keys by PK to proxy.

2. Verify access control and execute the query
(a) User sends attributes(Doctor and surgery department) to DO.
(b) Do sends secret key(ski)
(c) User sends ski and attributes and query Q1 to proxy.
(d) in case of dynamic model, Proxy check attributes and decrypt keys if ski

is correct, go to next steps, if it is incorrect the query rejects. In case of
static model, proxy does to next setps.

(e) Proxy check operation of query in this example is equality operation there-
fore, outermost layer adjust by LK-RND for dynamic or ski for static
model by update query Q2.

Q2−dyanimc : ( db . c o l l e c t i o n −1.updateMany (
$ {} ,{ $ s e t=F1−Eq =DECRYPT RND(
k , F1−Eq , F1−IV } ) )
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Q2−s t a t i c : ( db . c o l l e c t i o n −1.updateMany (
$ {} ,{ $ s e t=F1−Eq =DECRYPT AC(
sk i , F1−Eq} ) )

(f) Proxy rewrites query Q1 to Q3 and sends to DBMS:

Q3−dynimc : db . c o l l e c t i o n −1. f i nd ({F1−Eq=
xe243 } ,{F2−IV : 1 , F2−Eq : 1} )

Q3−s t a t i c : db . c o l l e c t i o n −1. f i nd ({F1−Eq=
xe243 } ,{F2−Eq : 1} )

(g) DBMS sends result to proxy which is in dynamic (F2-IV=x82d1,
F2,x52d8) or in static (y37f2).

(h) proxy decrypts the result twice in RND and DET (dynamic) or in AC
and DET (static) and sends to user.

(i) Proxy come back to outermost layer to more security by issue opposite
query in step (e).

Q4−dyanimc : ( db . c o l l e c t i o n −1.updateMany (
$ {} ,{ $ s e t=F1−Eq =Encrypt RND(
k , F1−Eq , F1−IV } ) )

Q4−s t a t i c : ( db . c o l l e c t i o n −1.updateMany (
$ {} ,{ $ s e t=F1−Eq =Encrypt AC (
sk i , F1−Eq} ) )

8 Discussion

This section will examine the security as well as performance of the two models
in this case study along with the studies that it inspired [4]. This scheme will
also be compared with existing works.

Regarding security, in case of the without-SDDB model, in case of the DBMS
server’s exposure to curiosity or compromise, it will show plaintext data as it
is not encrypted. Further, the adversary may also gain the password as well as
impersonate the data owner so that they can manipulate the data. Hence, a
secure channel is necessary for exchanging it [4].

Concerning the with-SDDB, the information is revealed by the DBMS server
only if it is identified as per the encryption algorithm in the existing layer used,
including equal in DET. Thus, the decryption layer is sent back to high-security
layers except CryptDB. Concerning SDDB, encryption keys also do not need to
be shared as various keys are used for user authentication as well as data encryp-
tion, as per access privileges except CryptDB. For the user, PIRATTE executes
data decryption and cannot be trusted. Hence, this permission is provided to the
proxy in the dynamic model, while for the proxy or DBMS, CP-ABE executes
data decryption in the static model. If the adversary can gain the keys, they
will be unable to impersonate the data owner by connecting the keys with the
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Table 4. Comparison of our scheme with some existing work [4].

[16] [20] [3] [18] [9] [15] Dynamic

model [4]

Static model

C1 � � � � � X � �
C2 � � X � � � � �
C3 X � � � � � � �
C4 � X � X X � � �
C5 � � � � � � � X

C6 � � � Only

users

group

belong

� � � X

C7 � � � Only

users

group

belong

� � � X

DB Relational

DB

Document

DB

Graph

DB

Relational

DB

Relational

DB

� Document

DB

Document

DB

PS � � � � X � In the future In the future

Notes: Satisfies (�), Does not satisfy (X), Out of scope (�).

user attributes or with the Proxy Key. In addition, if the proxy is compromised
or is exposed, data leakage will not occur as it is unable to decrypt keys in the
dynamic model or gain accurate results in the static model.

Regarding performance, the without-SDDB model is able to execute any
query type or computations at a high speed. The with-SDDB model, on the other
hand, offers necessary queries as per the algorithm type because of decreased
number of layers in CryptDB for attaining the sensitivity level of the data
owner as well as the application requirements. Moreover, concerning the dynamic
model, the encrypted data size remains constant compared to PIRATTE which
increases dependence on AP. In this scheme, the PIRATTE concept is used to
verify access and not for data encryption. In the static model, there will be a
decrease in the communication cost between the DO and proxy as it will not
need a connection for updating the keys which occurs in the dynamic model.
Thus, SDDB grants a trade-off between performance and security.

Table 4 [4] depicts the scheme’s properties compared to existing works which
Section examines in detail. In the reported properties, C1-C7 the database type
(DB) as well as practical status (PS) are included which depicts scheme being
implemented and evaluated.

9 Implementation

The prototype of the simplified static variant of SDDB has been implemented.
It includes a simplified model for data encryption using one layer (CP-ABE) so
that flexible access control, querying over encrypted data as well as confiden-
tiality could be ensured and tested in the Document Database. Further, this
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implementation is written in Java as a monolithic code (no separation between
user and data owner components, as yet) and executes on Windows 10. It allows
experimenting with the proposed design and assumed workflows. In particular
a scenario is implemented in which document fields(name, salary and Credit
Card number) and the user name as well as password are first checked, following
which user attributes are verified so that they satisfy policy access. Once access
is granted, the following list of queries is executed:

– Q1- Insert 100 documents (No computation)
– Q2- Find 100 documents (No computation)
– Q3- Delete 100 documents (No computation)
– Q4- Enter one document (Equality computation)
– Q5-Insert one document (Equality computation)
– Q6- Delete one document (Equality computation)
– Q7- Update one document (Equality computation)

In the query Q4–Q7, the user is asked to enter the value for a particular field
to compare encrypted value for it by CP-ABE by data stored then find or delete
or update documents in the case of equality. The exeperiments were conducted
using Local MongoDB server and a client, implementing user and data owner
functionality. Each case was executed 15 times. Then, average execution time
is taken as shown in Table 4. As shown in Fig. 6, a significant time increase is
observed in Q1, Q2, and Q5, with minimal increase in the remainder of the
queries. This performance sacrifice, however, provides enhanced security which
will be explored and further verified in the future work (Table 5).

Fig. 6. Result analysis.
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Table 5. average execution time of seven queries.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

With-CP-ABE 350.8 40.9333 60.2667 173.4 40.1333 3.6667 4.5333

Without-CP-ABE 157.8667 0.4667 58.4 157.8667 3.9333 3.1333 4.3333

10 Related Work

CryptDB [16] refers to a secure system that is executed as per relational database
concerning SQL queries over encrypted data. Regarding its security, for a proxy
attack, only that data is at risk of being leaked which belongs to users logged in
then.

Concerning NoSql, CryptMDB [20] refers to a practical encryption system
regarding MongoDB using an additive homomorphic asymmetric cryptosystem
for data encryption. It implements the proxy concept at MongoDB’s top so
that it only perform an additive operation concerning encrypted data. Crypt-
GraphDB [3] refers to a system which conducts queries over encrypted data
that are stored within a graph store, such as Neo4j database, using CryptDB-
like technique. Further, it uses dynamically adjusting encryption layers to offer
traversal-aware encryption adjustment which is coordinated with the query exe-
cution, thus providing enhanced security [2].

Previous studies have examined confidentiality as well as querying concerning
encrypted data whereas [9] and [18] emphasise access control regarding relational
database. The study by [9] shows that the data owners use SQL-aware encryption
regarding CryptDB for data encryption while not requiring a proxy which is then
stored as relational database over a cloud. The encryption keys are provided to
Database administrator authorised for accessing all the data over the cloud while
also passing the keys to users as per legitimate access.

Further, DBmask [18] refers to a system which provides fine-grained access
control based on Attribute-Based Group Key Management (AB-GKM) scheme
wherein users’ attributes fulfil data policies for providing access as well as exe-
cuting SQL queries over encrypted data according to user permissions. The
architecture of the system is based on CryptDB while implementing the proxy
which refines clause queries which are unable to execute over encrypted data
rather than executing on in-memory concerning the proxy. Two schemas have
been used for conducting the DBmask system which are DBmask-SEC provid-
ing maximum security and DBmask-PER providing optimum performance. Here,
the restriction concerns the access policy groups belonging to every cell being
revealed to DBMS. An additional column is added by AB-GKM corresponding
to every column in the table for identifying the group which belongs to a cell.
For this, a fixed data structure format is needed because relational database
and an adversary for database attack helps in determining the cells that are
part of the same group. Hence, determining a suitable mechanism is important
regarding non-relational database as it offers property for not revealing access



Fine-grained Access Control for Querying 423

control concerning the database. In 2005, however, an attribute-based encryp-
tion (ABE) [17] was suggested by Sahai and Waters referring to a form of public
key encryption in which user identity is used for data encryption and decryption
concerning access control of document data. Moreover, ABE can be classified
into ciphertext-policy-ABE (CP-ABE) and key-policy-ABE (KP-ABE). Goyal
created KP-ABE [10] in 2006 and noted that there is an association between the
ciphertext and a set of attributes that have secret key related to AP. It is possi-
ble for a user to decrypt data in case of the ciphertext’s corresponding attributes
fulfilling the user key AP. Here, the limitation concerning such type of ABE con-
cerns the Data Owner being unable to identify which users are able to decrypt
the data. Hence, KP-ABE is inapplicable regarding applications in which data
is shared. In 2007, however, Bethencourt created CP-ABE [6] and noted that
there is a relationship between cipher-text and AP and the secret key concerns a
set of attributes for surpassing the limitations of KP-ABE and further suitable
for applications. KP-ABE as well as CP-ABE do not include user revocation
mechanism. Although existing studies including [8,13,15] note that revocation
mechanism is added to CP-ABE, data re-encryption or key re-distribution is nec-
essary. Moreover, in 2012, the PIRATTE scheme [12] was suggested by Jahid and
Borisov concerning the limitations previously stated in the background section.

11 Conclusion

This paper examines the primary idea regarding the Secure Document Database
(SDDB) scheme which fulfils three major security database requirements that are
flexible access control, confidentiality, and querying over encrypted data regard-
ing a document-based store. The dynamic and static models are used for pre-
senting SDDB. The dynamic model fits dynamic applications which can need
changing users’ attributes who are able to access data while not re-encrypting
data as well as distributing keys. On the other hand, the static model is suitable
in static applications which do not alter users’ attributes necessary for accessing
data. We reported also on the experiments with the simplified prototype imple-
mentation of the static model. In future work, we are going to implement both
models using MongoDB as a document store, and evaluate trade-offs between
performance and security.
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