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Abstract. The Internet of Things (IoT) is leading to a smartification
of our society: we are surrounded by many smart devices that automat-
ically collect and exchange data of various kinds and provenance. Many
of these data are critical because they are used to train learning algo-
rithms, to control cyber-physical systems or to guide administrators to
take decisions. Since the collected data are so important, many devices
can be the targets of security attacks. Consequently, it is crucial to be
able to trace data and to identify their paths inside a network of smart
devices to detect possible threats. To help designers in this threat rea-
soning, we start from the modelling language IoT-LySa, and propose a
Control Flow Analysis, a static analysis technique, for predicting the pos-
sible trajectories of data in an IoT system. Trajectories can be used as the
basis for checking at design time whether sensitive data can pass through
possibly dangerous nodes, and for selecting suitable security mechanisms
that guarantee a reliable transport of data from sensors to servers using
them. The computed paths are also interesting from an architectural
point of view for deciding in which nodes data are collected, processed,
communicated and stored.

1 Introduction

We are living the Internet of Things (IoT) revolution: we are surrounded by many
interconnected devices (smart objects) equipped with sensors and actuators that
automatically collect and transmit huge amounts of data over the net. Actually,
a typical IoT system is a production chain that starts from raw data collected by
sensors, continues with intermediate devices that perform data aggregation and
ends with servers that store and process these data using learning algorithms.
The results of the computation made on servers are used to take decisions or to
trigger actuator actions in some part of the system.
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Secure transmission of data becomes even more crucial in IoT systems where
devices can be physically attacked and data can be eavesdropped or altered dur-
ing their communication. Therefore it is important that designers and adminis-
trators of such systems are aware of the provenance and the trajectories of data,
especially when they are sensitive or when they impact on critical decisions.

Usually, formal methods offer designers tools to support the development
of systems. In practice, designers build a mathematical model that describes
the system we want to implement at a certain level of abstraction and they
use formal verification techniques to reason about properties of the model, and
consequently of the system it represents.

In this paper, we follow this approach to enable designers reasoning on data
trajectories in IoT systems. Technically, we start from the formal specification
language IoT-LySa, a process calculus recently proposed for IoT systems [5,9].
IoT-LySa allows designers to define a model of a system and fosters them to
adopt a Security by Design development model. Indeed, designers can exploit
the language to describe the network architecture of the system and how its
components (smart objects or nodes) interact with each other. Furthermore, they
can reason about the system correctness and robustness by using the Control
Flow Analysis (CFA) of IoT-LySa.

This static analysis without running the system predicts (safely approxi-
mates) how data from sensors may spread across the system and how objects
may interact. Technically, it “mimics” the behaviour of the system, by using
abstract values in place of concrete ones and by modeling the consequences
of each possible action. By inspecting the results of this “abstract simulation”,
designers can detect possible security vulnerabilities and intervene as early as
possible during the design phase.

Here, we extend the original IoT-LySa CFA [5] for performing a data path
analysis. The goal of this analysis is to predict how data travel across the net-
work from specific data source nodes to data consumer nodes, computing all
possible paths. Using the analysis results, a designer can investigate whether
the trajectories taken from a particular piece of information include nodes that
are considered potentially dangerous or that do not have an adequate security
clearance for the information they are receiving.

Moreover, the trajectories can be used to make decisions on the architecture
of the system by detecting critical nodes where data are collected and stored.
Consequently, the information computed by our analysis may help designers in
making educated decisions, on the exposure of both raw and aggregated data.
Since the CFA over-approximates the behaviour of a given system, if the pre-
dicted trajectories do not show dangerous situations, we can be sure that at run
time they will never happen. If instead they do, this means that there is a (even
small) possibility of these situations to happen, and it can be worthwhile for the
designer to carry out further investigations.

A short and preliminary version of the above results have been previously
presented in [11]. As new contributions, in this paper, we systematise the full
formal development of our data path analysis by presenting all its inference rules
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together with the formal proofs of its correctness. In addition, we introduce
the notion of scored trajectories that enriches the previous notion of simple
trajectories with quantitative information. Finally, we apply our analysis on a
completely new example, a Closed Circuit Television system, based on a visual
sensor network.

Structure of the Paper. The paper is organised as follows. We introduce our
approach, in Sect. 2, with an illustrative example that we use as case study. We
briefly recall the process algebra IoT-LySa, in Sect. 3. Section 4 defines the CFA
for the data path analysis and we show how to compute the data trajectories
from the analysis result. In Sect. 5 we enrich the trajectories with the security
scores on the involved nodes. Conclusions are in Sect. 6.

2 A Visual Sensor Network

In this section, we illustrate our methodology through a simple yet realistic
scenario similar to the ones introduced in [12,13], where we model the problem
of tracking some targets moving in the sensing space in the visual sensor network
of a building for surveillance aims.

2.1 The Scenario

A Visual Sensor Network (VSN) consists of a large number of interconnected
sensor nodes endowed with an imager (photo or video camera) and an embedded
processor that communicate via wireless interfaces. Nodes can be different in
computing power, amount of memory and energy consumption. Each node (or
camera) can directly communicate to the nodes lying in its radio range, here
called physical neighbours. Moreover, since each camera covers a part of the 3-D
space by its conic field of view (FOV), there is a further notion of proximity for
nodes: two nodes can collaborate and work on the same data when their FOVs
intersect, i.e. the corresponding cameras monitor a common part of the space.
Note that they can also be distant from each other. They are here called logical
neighbours. Many applications of VSN address event detection and estimation of
some metrics, based on the combination of different sensor readings, such as light
and temperature sensors, or microphones. Since information is more valuable
when close to its source and sending it is expensive, distributed approaches are
preferable to centralised ones, where visual surveillance tasks are performed by
collaborative groups of one or more camera nodes.

We suppose to have, as illustrated in Fig. 1 and as in [12], a Closed Circuit
Television system in a building like a university department, with 14 corridor
nodes, called of type 1 and 4 room nodes, called of type 2, in the room considered
more sensible. Both kinds of nodes are equipped with cameras and, for the
sake of simplicity, with just one sensor. Moreover, nodes of type 2 have also
alarm buzzers as actuators. According to the given topology both physical and
logical neighbours are statically known. In particular, only two corridor nodes
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with cameras with intersecting FOVs are not physical neighbour, c0 and c13 and
cannot communicate directly. In our model we choose w.l.o.g. that the camera
nodes 2 and 1 serve as forwarder between the two nodes. Furthermore there are
5 aggregator nodes that collect information on a specific area of the building.

Fig. 1. The organisation of nodes in our Visual Sensor Network (modification of the
Fig. 3 in [12]): little rectangles are the nodes with cameras of type 1, having each its
FOV rooted in it and represented as a gray triangle, little diamonds are the nodes with
cameras of type 2 and alarm actuators. Small orange rectangles are the aggregator
nodes. Big rectangles are obstacles, the light green one is Room 1 and little circles are
point of interest. (Color figure online)

In this application, corridor nodes detect intruders, in particular close to the
sensible room Room 1. If one of the corridor nodes detects an intruder and
checks that this one is close to one of the doors of the room, the corridor agent
sends a warning message to the closest camera node inside the room.

2.2 The IoT-LySa Model

Here, we show how the scenario above can be easily modelled in IoT-LySa and
what kind of information our CFA may provide to designers. In our model, the
overall behavior of the network depends on the local processing at each node
and on the inter-node communication, because the duty cycle of each camera
involves only local computations and the exchange of partial approximations
with logical and/or physical neighbors. Furthermore, we abstract away from the
actual tracking algorithm used to reach a consistent view across nodes, and we
model it as collaboration among nodes that exchange information (for further
details see e.g. [12]).

The IoT-LySa model, described in Table 1, consists of a finite number of
nodes running in parallel (this is the meaning of the parallel composition oper-
ator | for nodes). Some of the terms are equipped with annotations (variables
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Table 1. Visual Network System N .

Whole Network
N = N1

1 | ...| N1
n | N2

1 | ...| N2
s | G1 | ...| Gk|

Node of type 1 with i, r1, ..., rt ∈ [1, n]

N1
i = �1i : [P 1

i ‖ C1
i ‖ S1

i ‖ B1
i ]

P 1
i = ∗[(zvi1

i1 := 1ai1).(zvi2
i2 := 2ai2).〈〈p(zvi1

i1 , zvi2
i2 )pi〉〉 � {L1

i } ‖
(; xvr1

ir1 )
Xr1

i . ...(;xvrt
irt )

Xrt
i .P̂ 1

i

detectionv1i
1i = d(zvi1

i1 , zvi2
i2 , xvr1

ir1 , ..., xvrt
irt )

d1i .

detectionv1i
1i ?〈〈detectionv1i

1i 〉〉 � {�2f}]∗
P̂ 1
10 = (;x′

13)

P̂ 1
1 = 〈〈fw(x0

1)
fw11〉〉 � {�113}

P̂ 1
2 = 〈〈fw(x13

2 )fw12〉〉 � {�10}
P̂ 1
13 = (;x′

0)

P̂ 1
i = τ for i �= 0, 1, 2, 13

C1
i = ∗[(τ.11i := k1

i ).τ ]∗
S1

i = ∗[(τ.21i := v1
i ).τ ]∗

Node of type 2 with j, f ∈ [1, s]

N2
j = �2j : [Q2

j ‖ C2
j ‖ S2

j ‖ A2
j ‖ B2

j ]

Q2
j = ∗[(;wv2j

j )W
2
j .(wv2j1

2j1 := 1d2j1).(wv2j2
2j2 := 2d2j2).

confirmw2j
2j = check(wv2j

det , wv2j1, wv2j2)c2j .

confirmw2j
2j ?〈j, Alarm〉.〈〈2j, confirmw2j

2j 〉〉 � {�l}]∗
C2

j = ∗[(τ.12j := k2
j ).τ ]∗

S2
j = ∗[(τ.22j := v2

j ).τ ]∗
A2

j = ∗[(|j, {Alarm}).τ ]∗
Aggregator l with l ∈ [1, k]

Gl = �l : ∗[Rl ‖ Bl]∗
Rl = (21; yvl1

l1 )Y
l
1 .R21

l | · · · | (2s; yvls
ls )Y

l
s .R2s

l

and function applications) and tags (input prefixes) that support the Control
Flow Analysis in a way that will be clarified in the next section. Each node,
uniquely identified by a label �, consists of control processes and, possibly of
camera, a sensor, and an actuator. Communication is multi-party: each node
can send information to a set of nodes, provided that they are in the same trans-
mission range. The communication patterns in the described scenario are not too
complicate, so the example can serve the aim of illustrating our framework. Out-
puts and inputs must match to allow communication. In more detail, the output
〈〈E1, · · · , Ek〉〉 � L. P represents that the tuple E1, · · · , Ek is sent to the nodes
with labels in L. The input is instead modelled as (E1, · · · , Ej ;xj+1, · · · , xk)XP
and embeds pattern matching. In receiving an output tuple E′

1, · · · , E′
k of

the same size (arity), the communication succeeds provided that the first j
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elements of the output match the corresponding first elements of the input
(i.e. E1 = E′

1, · · · , Ej = E′
j), and then the variables occurring in the input

are bound to the corresponding terms in the output. Suppose e.g. to have a
process P waiting a message that P knows to include the value v, together with
a datum that is not known from P . The input pattern tuple would be: (v;x). If
P receives the matching tuple 〈v, d〉, the variable x can be bound to v, since the
first component of the tuple matches with the corresponding value.

We first examine the camera nodes N1i of type 1:

N1
i = �1i : [P 1

i ‖ C1
i ‖ S1

i ‖ B1
i ],

where �1i is the label that uniquely identifies the node, and B1
i abstracts other

components we are not interested in, among which its store Σ1
i . Each of these

nodes is managed by a control process P 1
i , connected to a camera C1

i that covers
a given FV O1

i and to a sensor S1
i that senses the environment in the area close

to the node. They run in parallel (this is the meaning of the parallel composition
operator ‖ for processes). The node N1

i collects the data of its camera and its
sensor, elaborates them with the help of a filter and pre-processing function p and
then transmits its local result to its physical neighbours in L1

i . In the meanwhile,
the node collects all the local results of its neighbours and analyses them in
order to detect a possible intruder in the observed corridors. If this is the case
the node sends the camera node of type 2 closest to the intruder a warning
message to inform that the intruder may enter the room. In the IoT-LySa
jargon, the camera communicates the picture/video to the node by storing it in
its reserved location 11i of the shared store, while the sensor stores the sensed
data in the location 21i . The action τ denotes internal actions of the sensor we
are not interested in modelling, e.g. adjusting the camera focus. The construct
∗[...]∗ denotes the iterative behaviour of processes and of sensors.

The control process P 1
i : (i) stores in the variables zvi1

i1 and zvi2
i2 (where vi1

and vi2 are the variable annotations) the data collected by the camera and the
sensor, by means of the two assignments: (zvi1

i1 := 1ai1) and (zvi2
i2 := 2ai2); (ii)

elaborates them with the help of a filter and pre-processing function p and (iii)
then transmits its local result to its physical neighbours in L1i, with the output
〈〈p(zvi1

i1 , zvi2
i2 )pi〉〉 � {L1

i }, where pi is the label of the application of the function
p. In the meanwhile the node collects all the local results of its neighbours, with
the inputs (;xvr1

ir1 )
Xr1

i ...(;xvrt
irt )

Xrt
i (where inputs are enriched with tags Xr1

i , ...,
Xrt

i ) and analyses them in order to detect a possible intruder in the observed
corridors, with the detection function d(zvi1

i1 , zvi2
i2 , xr1

1i , ..., x
rt
1i)

d1i . If this is the
case (if detectionv1i

1i is true) the node sends the value to the camera node of
type 2 closest to the intruder to inform that the intruder may enter the room:
〈〈detectionv1i

1i 〉〉 � {�2f}. The part in blue in the pdf describes the communication
for the special nodes N10 and N1

13 that cannot communicate directly and that
rely on the intermediation of the nodes N1

1 and N1
2 . In particular, N1

1 forwards
the data received from N1

0 to N1
13, while N1

2 forwards the data received from
N1

13 to 1
0.
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In the node N2
j , the process Q2

j waits for possible warning messages from
corridor nodes. In case such a message arrives and its is bound to wv2j

j , it collects
the data wv2j1

2j1 and wv2j2
2j2 of its camera and its sensor, processes them with the

help of the function check in order to verify the possible presence of intruder
inside the room. In case the presence is confirmed, the node activates an alarm
buzzer and sends an alarm to its aggregator node, with a label recalling its name.
Each aggregator node Gl controls a subset of the camera nodes of both types.
Again B2

j and Bl abstract other components we are not interested in, among
which their stores Σ2

j and Σl. Some nodes can be attacked and therefore may
alter or tamper data passing from there, thus potentially impacting on the whole
system and making the building vulnerable.

Since our analysis identifies the possible trajectories of data in the system, we
can analyse these trajectories in order to check which are more risky w.r.t. the
involved nodes. To this aim we suppose that operators can provide a security
score for each node that measures its risk of being attacked. Reasoning on the for-
mal model of the system and on the possible trajectories of data can be exploited
to determine possible countermeasures such as redundancy, by introducing some
new components that can mitigate the impact of attacks.

3 Overview of IoT-LySa

We now present a briefly overview of IoT-LySa [5,9], a specification language
recently proposed for designing IoT systems. It is an adaption of LySa [3], a
process calculus introduced to specify and analyse cryptographic protocols and
checking their security properties (see e.g. [16,17]).

Differently from other process algebraic approaches introduced to model IoT
systems, e.g. [19–22], IoT-LySa provides a design framework that includes a
static semantics to support verification techniques and tools for certifying prop-
erties of IoT applications.

3.1 Syntax

Systems in IoT-LySa consist of a pool of nodes (things), each of which hosts
a store for internal communication, sensors and actuators, and a finite number
of control processes that detail how data are to be processed and exchanged
among the node. We assume that each sensor (actuator) in a node with label
� is uniquely identified by an index i ∈ I� (j ∈ J�, resp). A sensor is an active
entity that reads data from the physical environment at its own fixed rate, and
deposits them in the local store of. Actuators instead are passive: they just
wait for a command to become active and operate on the environment. Data
are represented by terms. Annotations a, a′, ai, ..., ranged over by A, identify
the occurrences of terms. They are used in the analysis and do not affect the
dynamic semantics in Table 3. The set of nodes and all the node components are
defined by the syntax in Table 2, that completes the one in [11].
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Table 2. Syntax.

E � E ::= annotated terms M � M ::= terms

Ma annotated term v value (v ∈ V)

with a ∈ A i sensor location (i ∈ I�)

x

{E1, · · · , Er}k0 encryption with key k0 ∈ K
f(E1, · · · , Er) function on data

N � N ::= systems of nodes B � B ::= node components

0 empty system Σ� node store

� : [B] single node (� ∈ L) P process

N1 | N2 par. composition S sensor (label i ∈ I�)

A actuator (label j ∈ J�)

B ‖ B par. composition

S � S ::= sensors A � A ::= actuators

0 inactive sensor 0 inactive actuator

τ.S internal action τ.A internal action

i := v. S store of v ∈ V (|j, Γ |). A command for actuator j

by the ith sensor γ.A triggered action (γ ∈ Γ )

h iteration var. h iteration var.

μ h . S tail iteration μ h . S tail iteration

P ::= control processes

0 inactive process

〈〈E1, · · · , Er〉〉 � L. P asynchronous multi-output L ⊆ L
(E1, · · · , Ej ; xj+1, · · · , xr)

X . P input (with matching and tag)

decrypt E as {E1, · · · , Ej ; xj+1, · · · , xr}k0
in P decryption with key k0 (with match.)

E?P : Q conditional statement

h iteration variable

μh. P tail iteration

xa := E. P assignment to x ∈ X
〈j, γ〉. P output of action γ to actuator j

We assume as given a finite set K of secret keys owned by nodes, exchanged
at deployment time in a secure way, as it is often the case [26]. Terms come with
annotations a ∈ A. The encryption function {E1, · · · , Er}k0 returns the result
of encrypting values Ei for i ∈ [1, r] under the shared key k0. We assume to
have perfect cryptography. The term f(E1, · · · , Er) is the application of function
f to r arguments; we assume given a set of primitive functions, typically for
aggregating or comparing values. We assume the sets V, I�, J�, Kbe pairwise
disjoint.

Each node � : [B] is uniquely identified by a label � ∈ L that may represent
further information on the node (e.g. node location). Sets of nodes are described
through the (associative and commutative) operator | for parallel composition.
The system 0 has no nodes. Inside a node � : [B] there is a finite set of components
combined by means of the parallel operator ‖. We impose that there is a single
store Σ� : X ∪ I� → V, where X ,V are the sets of variables and of values
(integers, booleans, ...), resp.
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The store is essentially an array whose indexes are variables and sensors
identifiers i ∈ I� (no need of α-conversions). We assume that store accesses
are atomic, e.g. through CAS instructions [18]. The other node components are
control processes P , and sensors S (less than #(I�)), and actuators A (less than
#(J�)) the actions of which are in Act.

The prefix 〈〈E1, · · · , Er〉〉 � L implements a simple form of multi-party com-
munication: the tuple obtained by evaluating E1, . . . , Er is asynchronously
sent to the nodes with labels in L that are “compatible” (according,
among other attributes, to a proximity-based notion). The input prefix
(E1,· · ·, Ej ;xj+1,· · ·, xr)X receives a r-tuple, provided that its first j elements
match the corresponding input ones, and then assigns the variables (after “;”) to
the received values. Otherwise, the r-tuple is not accepted. As in [2], each input
in the syntax of processes P has a tag X ∈ X, which is exploited to support
the analysis and does not affect the dynamic semantics. A process repeats its
behaviour, when defined through the tail iteration construct μh.P (h is the iter-
ation variable), intuitively rendered with ∗[...]∗ in the motivating example. The
processdecrypt E as {E1, · · · , Ej ; xj+1, · · · , xr}k0

inP tries to decrypt the result
of the expression E with the shared key k0 ∈ K. Also in this case, if the pattern
matching succeeds, the process continues as P and the variables xj+1, . . . , xr are
suitably assigned.

A sensor can perform an internal action τ or put the value v, gathered from
the environment, into its store location i. An actuator can perform an internal
action τ or execute one of its actions γ, received from its controlling process.
Sensors and actuators can iterate. For simplicity, here we neither provide an
explicit operation to read data from the environment, nor to describe the impact
of actuator actions on the environment.

Operational Semantics

Our reduction semantics is based on the following Structural congruence ≡ on
nodes and node components. It is standard except for rule (4) that equates a
multi-output with no receivers and the inactive process, and for the fact that
inactive components of a node are all coalesced.

(1) (N/≡, |, 0) is a commutative monoid
(2) (B/≡, ‖, 0) is a commutative monoid
(3) μh .X ≡ X{μh .X/h} for X ∈ {P,A, S}
(4) 〈〈E1, · · · , Er〉〉 : ∅. 0 ≡ 0

The two-level reduction relation → is defined as the least relation on nodes
and its components satisfying the set of inference rules in Table 3. For the sake
of simplicity, we use one relation. We assume the standard denotational inter-
pretation [[E]]Σ for evaluating terms.
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Table 3. Reduction semantics (the upper part on node components, the lower one on
nodes), where X ∈ {S, A} and Y ∈ {N, B}.

(S-store)

Σ ‖ ia := va′
. Si ‖ B → Σ{v/i} ‖ Si ‖ B

(Asgm)
[[E]]Σ = v

Σ ‖ xa := E. P ‖ B → Σ{v/x} ‖ P ‖ B

(Cond1)
[[E]]Σ = true

Σ ‖ E? P1 : P2 ‖ B → Σ ‖ P1 ‖ B

(Cond2)
[[E]]Σ = false

Σ ‖ E? P1 : P2 ‖ B → Σ ‖ P2 ‖ B

(A-com)
γ ∈ Γ

〈j, γ〉. P ‖ (|j, Γ |). A ‖ B → P ‖ γ. A ‖ B

(Act)

γ.A → A

(Int)

τ. X → X

(Decr)

[[E]]Σ = {v1, · · · , vr}k0 ∧ ∧j
i=1 vi = [[E′

i]]Σ

Σ ‖decrypt E as {E′
1, · · · , E′

j ; x
aj+1
j+1 , · · · , xar

r }k0
in P ‖ B → Σ{vj+1/xj+1, · · · , vr/xr}‖ P ‖ B

(Ev-out) ∧r
i=1 vi = [[Ei]]Σ

Σ ‖ 〈〈E1, · · · , Er〉〉 � L. P ‖ B → Σ ‖ 〈〈v1, · · · , vr〉〉 � L.0 ‖ P ‖ B

(Multi-com)

�2 ∈ L ∧ Comp(�1, �2) ∧ ∧j
i=1 vi = [[Ei]]Σ2

�1 : [〈〈v1, · · · , vr〉〉 � L. 0 ‖ B1] | �2 : [Σ2 ‖ (E1, · · · , Ej ; x
aj+1
j+1 , · · · , xar

r )X .Q ‖ B2] →
�1 : [〈〈v1, · · · , vr〉〉 � L \ {�2}. 0 ‖ B1] | �2 : [Σ2{vj+1/xj+1, · · · , vr/xr} ‖ Q ‖ B2]

(Node)
B → B′

� : [B] → � : [B′]

(ParN)
N1 → N′

1

N1|N2 → N′
1|N2

(ParB)
B1 → B′

1

B1‖B2 → B′
1‖B2

(CongrY)
Y ′
1 ≡ Y1 → Y2 ≡ Y ′

2

Y ′
1 → Y ′

2

The first two semantic rules implement the (atomic) asynchronous update of
shared variables inside nodes, by using the standard notation Σ{−/−}. Accord-
ing to (S-store), the ith sensor uploads the value v, gathered from the environ-
ment, into its store location i. According to (Asgm), a control process updates
the variable x with the value of E. The rules for conditional (Cond1) and (Cond2)
are as expected. In the rule (A-com) a process with prefix 〈j, γ〉 commands the
jth actuator to perform the action γ, if it is one of its actions. The rule (Act) says
that the actuator performs the action γ. Similarly, for the rules (Int) for internal
actions for representing activities we are not interested in. The rules (Ev-out)
and (Multi-com) drive asynchronous IoT-LySa multi-communications and are
explained as follows. In the first rule, to send a message 〈〈v1, ..., vr〉〉 obtained by
the evaluation of 〈〈E1, ..., Er〉〉, a node with label � spawns a new process, running
in parallel with the continuation P ; this new process offers the evaluated tuple
to all the receivers with labels in L. In the second rule, the message coming from
�1 is received by a node labelled �2, provided that: (i) �2 belongs to the set L
of possible receivers, (ii) the two nodes satisfy a compatibility predicate Comp
(e.g. when they are in the same transmission range), and (iii) that the first j
values match with the evaluations of the first j terms in the input. Moreover, the
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label �2 is removed by the set of receivers L of the tuple. The spawned process
terminates when all the receivers have received the message (L is empty).

The rule (Decr) tries to decrypt the result {v1, · · · , vr}k of the evaluation of E
with the key k0, and matches it against the pattern {E′

1, · · · , E′
j ;xj+1, · · · , xr}k0 .

Concerning communication, when this match succeeds the variables after the
semicolon “;” are assigned to values resulting from the decryption. The last rules
propagate reductions across parallel composition ((ParN) and (ParB)) and nodes
(Node), while (CongrY) is the standard reduction rule for congruence for nodes
and node components.

4 Control Flow Analysis

Here we present a CFA for approximating the abstract behaviour of a system
of nodes and for tracking the trajectories of data. This CFA follows the same
schema of the one in [5] and in particular of the one in [8] for IoT-LySa. However,
here we use different abstract values. Intuitively, abstract values “symbolically”
represent runtime data so as to encode where these data have been introduced.
Finally, we show how to use the CFA results to check which are the possible
trajectories of these data.

Abstract Values. Abstract values correspond to concrete values for sensors, data,
functions, and encryptions, and also record the annotations. Since the dynamic
semantics may introduce encrypted terms with an arbitrarily nesting level, we
have the special abstract values �a that denote all the terms with a depth greater
than a given threshold d. During the analysis, to cut these values, we will use the
function �−d. Its definition is quite intuitive because we recursively visit the
abstract value and cut it when we reach the relevant depth. Formally, abstract
values are defined as follows, where a ∈ A.

V̂ � v̂:: = abstract terms
(�, a) value denoting cut
(v, a) value for clear data
(f(v̂1, · · · , v̂n), a) value for aggregated data
({v̂1, · · · , v̂n}k0 , a) value for encrypted data

For simplicity, hereafter we write them as �a, νa, {v̂1, · · · , v̂n}a
k0

, and indicate
with ↓i

the projection function on the ith component of the pair. We naturally
extend the projection to sets, i.e. V̂↓i

= {v̂↓i
|v̂ ∈ V̂ }, where V̂ ⊆ V̂. In the

abstract value va, v abstracts the concrete value from sensors or computed by a
function in the concrete semantics, while the first value of the pair {v̂1, · · · , v̂n}a

k0

abstracts encrypted data. The second component records the annotation asso-
ciated to the corresponding term. Note that once given the set of encryption
functions occurring in a node N , the abstract values are finitely many.

To extract all the annotations of an abstract value, included the ones possibly
nested in it, we use the following auxiliary function.
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Definition 1. Give an abstract value v̂ ∈ V̂, we define the set of labels A(v̂)
inductively as follows.

– A(�, a) = A(v, a) = {a}
– A(f(v̂1, · · · , v̂n), a) = {a} ∪ ⋃n

i=1 A(v̂i)
– A({v̂1, · · · , v̂n}k0 , a) = {a} ∪ ⋃n

i=1 A(v̂i)

Trajectories. We now introduce the notion of trajectories of data, in turn com-
posed by micro-trajectories representing a single hop in the communication.

Definition 2. Given a set of labels L, a set of input tags X, we define a micro-
trajectory μ as a pair ((�, �′),X) ∈ (L × L) × X. A trajectory τ is a list of
micro-trajectories [μ1, ..., μn], such that ∀μi, μi+1 with μi = ((�i, �

′
i),Xi) and

μi+1 = ((�i+1, �
′
i+1),Xi+1), �′

i = �i+1.

In our analysis, trajectories can be obtained, starting from a set of micro-
trajectories and by suitably composing them in order. Trajectories can be com-
posed if the head of the second trajectory is equal to tail of the first. In this
case the two trajectories can be merged. Technically, we use a closure of a set of
micro-trajectories, the inductive definition of which follows.

Definition 3. Given a set of micro-trajectories S ∈ ((L × L) × X)

– ∀((�, �′),X) ∈ S. [((�, �′),X)] ∈ ClosX(S);
– ∀[L, ((�, �′),X)], [((�′, �′′),X ′), L′′] ∈ S. [L, ((�, �′),X), ((�′, �′′),X ′), L′′] ∈

ClosX(S).

CFA Validation and Correctness. We now have all the ingredients to define
our CFA to approximate communications and data stored and exchanged and,
in particular, the micro-trajectories. We specify our analysis in a logical form
through a set of inference rules expressing the validity of the analysis results.
The analysis result is a tuple (Σ̂, κ,Θ, T, ρ) (a pair (Σ̂, Θ) when analysing a
term), called estimate for N (for E), where Σ̂, κ,Θ, T , and ρ are the following
abstract domains:

– the union Σ̂ =
⋃

�∈L Σ̂� of the sets Σ̂� : X ∪I� → 2V̂ of abstract values that
may possibly be associated to a given location in I� or a given variable in X ,

– a set κ : L → L×⋃k
i=1 V̂i of the messages that may be received by the node

�, and
– a set Θ : L → A → 2V̂ of the information of the actual values computed by

each labelled term Ma in a given node �, at run time.
– a set ρ : X → L × ⋃k

i=1 V̂i is the sets of output tuples that may be accepted
by the input variables X.

– a set T = A → (L × L) × T of possible micro-trajectories related to the
abstract values.
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Note that the component T is new, and also the combined use of these five
components is new and allows us to potentially integrate the present CFA with
the previous analyses of IoT-LySa.

An available estimate has to be validated correct. This requires that it satis-
fies the judgements defined according to the syntax of nodes, node components
and terms. They are defined by the set of clauses presented in Tables 4 and 5.

Table 4. Analysis of labelled terms ( ̂Σ, Θ) |=� Ma.

(i, a) ∈ Θ(�)(a)

( ̂Σ, Θ) |=� ia

(v, a) ∈ Θ(�)(a)

( ̂Σ, Θ) |=� va

Σ̂�(x) ⊆ Θ(�)(a)

( ̂Σ, Θ) |=� xa

∧k
i=1 (

̂Σ, Θ) |=� Mai
i ∧

∀ v̂1, .., v̂r :
∧r

i=1 v̂i ∈ Θ(�)(ai) ⇒ (�{v̂1, .., v̂r}k0d, a) ∈ Θ(�)(a)

( ̂Σ, Θ) |=� {Ma1
1 , .., Mar

r }a
k0

∧k
i=1 (

̂Σ, Θ) |=� Mi ∧
∀ v̂1, .., v̂r :

∧r
i=1 v̂i ∈ Θ(�)(ai) ⇒ (f(v̂1, .., v̂r), a) ∈ Θ(�)(a)

( ̂Σ, Θ) |=� f(Ma1
1 , .., Mar

r )a

The judgement (Σ̂, Θ) |=
�

Ma, defined by the rules in Table 4, requires that
Θ(�)(a) includes all the abstract values v̂ associated to Ma. In the case of sensor
identifiers, ia and values va must be included in Θ(�)(a). According to the clause
for the variable xa, an estimate is valid if Θ(�)(a) includes the abstract values
bound to x collected in Σ̂�.

The rule for analysing compound terms requires that the components
are in turn analysed. The penultimate rule deals with the application of an
r-ary encryption. To do that (i) it analyses each term Mai

i , and (ii) for each
r-tuple of values (v̂1, · · · , v̂r) in Θ(�)(a1) × · · · × Θ(�)(ar), it requires that the
abstract structured value {v̂1, · · · , v̂r}a

k0
, cut at depth d, belongs to Θ(�)(a).

The special abstract value �a will end up in Θ(�)(a) if the depth of the term
exceeds d. The last rule is for the application of an r-ary function f . Also
in this case, (i) it analyses each term Mai

i , and (ii) for all r-tuples of values
(v̂1, · · · , v̂r) in Θ(�)(a1)× · · · × Θ(�)(ar), it requires that the composed abstract
value f(v̂1, · · · , v̂r)a belongs to Θ(�)(a).

The judgements for nodes with the form (Σ̂, κ,Θ, T, ρ) |= N are defined by
the rules in Table 5. The rules for the inactive node and for parallel composi-
tion are standard. The rule for a single node � : [B] requires that its internal
components B are in turn analysed; in this case we the use rules with judge-
ments (Σ̂, κ,Θ, T, ρ) |=

�
B, where � is the label of the enclosing node. The rule

connecting actual stores Σ with abstract ones Σ̂ requires the locations of sen-
sors to contain the corresponding abstract values. The rule for sensors is trivial,
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because we are only interested in the users of their values. The rule for actuators
is equally trivial, because we model actuators as passive entities. The rules for
processes require analysing the immediate sub-processes.

Table 5. Analysis of nodes ( ̂Σ, κ, Θ, T, ρ) |= N , and of node components
( ̂Σ, κ, Θ, T, ρ) |=� B.

(Σ̂, κ, Θ, T, ρ) |= 0

(Σ̂, κ, Θ, T, ρ) |=
�

B

(Σ̂, κ, Θ, T, ρ) |= � : [B]

(Σ̂, κ, Θ, T, ρ) |= N1 ∧ (Σ̂, κ, Θ, T, ρ) |= N2

(Σ̂, κ, Θ, T, ρ) |= N1 | N2

∀ i ∈ I�.i� ∈ Σ̂�(i)

(Σ̂, κ, Θ, T, ρ) |=
�

Σ (Σ̂, κ, Θ, T, ρ) |=
�

S (Σ̂, κ, Θ, T, ρ) |=
�

A

∧k
i=1 (Σ̂, Θ) |=

�
M

ai
i

∧ (Σ̂, κ, Θ, T, ρ) |=
�

P ∧
∀v̂1, · · · , v̂r :

∧r
i=1 v̂i ∈ Θ(�)(ai) ⇒ ∀�′ ∈ L : (�, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(�′)

(Σ̂, κ, Θ, T, ρ) |=
�

〈〈M
a1
1 , · · · , Mar

r 〉〉 � L. P

∧j
i=1 (Σ̂, Θ) |=

�
M

ai
i

∧
∀(�′, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(�) : Comp(�′, �) ⇒

(
∧r

i=j+1 v̂i ∈ Σ̂�(xi) ∧
(�′, 〈〈(v̂1, · · · , v̂r〉〉) ∈ ρ(X) ∧ ∀a ∈ A(v̂i).((�, �′), X) ∈ T (a)

∧(Σ̂, κ, Θ, T, ρ) |=
�

P )

(Σ̂, κ, Θ, T, ρ) |=
�

(M
a1
1 , · · · , M

aj
j

; x
aj+1
j+1 , · · · , xar

r )X . P

(Σ̂, Θ) |=
�

Ma ∧ ∧j
i=1 (Σ̂, Θ) |=

�
M

ai
i

∧
∀{v̂1, · · · , v̂r}b

k0
∈ Θ(�)(a) ⇒

(∧r
i=j+1 v̂i ∈ Σ̂�(xi) ∧ (Σ̂, κ, Θ, T, ρ) |=

�
P

)

(Σ̂, κ, Θ, T, ρ) |=
�
decrypt Ma as {M

a1
1 , · · · , M

aj
j

; x
aj+1
j+1 , · · · , xar

r }k0
in P

(Σ̂, Θ) |=
�

Ma ∧
∀ v̂ ∈ Θ(�)(a) ⇒ v̂ ∈ Σ̂

�
(x) ∧ (Σ̂, κ, Θ, T, ρ) |=

�
P

(Σ̂, κ, Θ, T, ρ) |=
�

xax := Ma. P

(Σ̂, κ, Θ, T, ρ) |=
n�

P

(Σ̂, κ, Θ, T, ρ) |=
�

〈j, γ〉. P

(Σ̂, Θ) |=
�

Ma ∧
(Σ̂, κ, Θ, T, ρ) |=

�
P1 ∧ (Σ̂, κ, Θ, T, ρ) |=

�
P2

(Σ̂, κ, Θ, T, ρ) |=
�

Ma?P1 : P2

(Σ̂, κ, Θ, T, ρ) |=
�

B1 ∧ (Σ̂, κ, Θ, T, ρ) |=
�

B2

(Σ̂, κ, Θ, T, ρ) |=
�

B1‖ B2

(Σ̂, κ, Θ, T, ρ) |=
�

0

(Σ̂, κ, Θ, T, ρ) |=
�

P

(Σ̂, κ, Θ, T, ρ) |=
�

μh. P (Σ̂, κ, Θ, T, ρ) |=
�

h

An estimate is valid for multi-output, if it is valid for the continuation of P and
the set of messages communicated by the node � to each node �′ in L, includes
all the messages obtained by the evaluation of the r-tuple 〈〈Ma1

1 , · · · ,Mar
r 〉〉.

More precisely, the rule (i) finds the sets Θ(�)(ai) for each term Mai
i , and (ii)

for all tuples of values (v̂1, · · · , v̂r) in Θ(�)(a1)×· · ·×Θ(�)(ar) it checks whether
they belong to κ(�′) for each �′ ∈ L. Symmetrically, the rule for input requires
that the values inside messages that can be sent to the node �, passing the pat-
tern matching, are included in the estimates of the variables xj+1, · · · , xr. More
in detail, the rule analyses each term Mai

i , and requires that for any message
that the node with label � can receive, i.e. (�′, 〈〈v̂1, · · · , v̂j , v̂j+1, . . . , v̂r〉〉) in κ(�),
provided that the two nodes can communicate (i.e. Comp(�′, �)), the abstract
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values v̂j+1, . . . , v̂r are included in the estimates of xj+1, · · · , xr. Furthermore,
the micro-trajectory ((�, �′),X) is recorded in the T component for each anno-
tation related (via A) to the abstract value v̂i, to record that the abstract value
v̂i coming from the node � can reach the node labelled �′, in the input with tag
X. For instance, if v̂i = (f((vi1, ai1), (vi2, ai2)), ai), then the micro-trajectory is
recorded in T (ai), T (ai1) and T (ai2). Finally, the ρ component records the sets
of output tuples that can be bound in the input with tag X.

The rule for decryption is similar to the one for communication: it also
requires that the keys coincide. The rule for assignment requires that all the
values v̂ in the estimate Θ(�)(a) for Ma belong to Σ̂

�
(x). The rules for the inac-

tive process, for parallel composition, and for iteration are standard (we assume
that each iteration variable h is uniquely bound to the body P ).

Given a term E annotated by a, the over-approximation of its possible trajec-
tories is obtained by computing the trajectory closure of the set composed by all
the possibly enriched micro-trajectories ((�, �′),X) or ((�i, �

′
i), (φ(�i), φ(�′

i)),Xi)
in T (a).

Trajectories(Ea) = ClosX(T (a))

Therefore, our analysis enables traceability of data. For every exchanged
message 〈〈v1, . . . , vr〉〉, the CFA keeps track of the possible paths of each of its
components vi and, in turn, for each vi it keeps recursively track of the paths of
the possible data used to compose it.

Example 1. To better understand how our analysis works, we apply it to the
following simple system, where P ′

i and Bi (with i = 1, 2, 3) abstract other com-
ponents we are not interested in.

�1 : [〈〈va1〉〉��2. P
′
1 ‖ B1] | �2 : [(;xb2

2 )X2 .〈〈f(xbx
2 )m〉〉��3.P

′
2 ‖ B2] | �3 : [(; yc3

3 )Y3 .P ′
3 ‖ B3]

Every valid estimate (Σ̂, κ,Θ, T, ρ) must include at least the following entries,
with d = 4.

Θ(�1)(a1) ⊇ {va1}
κ(�2) ⊇ {(�1, 〈〈va1〉〉}
ρ(X2) ⊇ {(�1, 〈〈va1〉〉}
Σ̂�2(x

b2) ⊇ {va1}
T (a1) ⊇ {((�1, �2), X2)}
Θ(�2)(b2) ⊇ {f(va1)m}
κ(�3) ⊇ {(�3, 〈〈f(va1〉〉)m}
ρ(Y3) ⊇ {(�2, 〈〈va1〉〉}
Σ̂�3(y

c3) ⊇ {f(va1)m}
T (a1) ⊇ {((�2, �3), Y3)}
T (m) ⊇ {((�2, �3), Y3)}

Indeed, an estimate must satisfy the checks of the CFA rules. The validation
of the system requires the validation of each node, i.e. (Σ̂, κ,Θ, T, ρ) |= Ni and
of the processes there included, i.e. (Σ̂, κ,Θ, T, ρ) |=

�i
Pi, with i = 1, 2, 3. In

particular, the validation of the process included in N1, i.e. 〈〈va1〉〉 � {�2} holds
because the checks required by CFA clause for output succeed. We can indeed
verify that (Σ̂, Θ) |=

�
va1 holds because va1 ∈ Θ(�1)(a1), according to the CFA
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clause for names. Furthermore (�1, 〈〈va1〉〉) ∈ κ(�2). This suffices to validate the
output, by assuming that the continuation P ′

1 is validated as well. We have the
following instantiation of the clause for output.

va1 ∈ Θ(�1)(a1)

(Σ̂, Θ) |=
�

va1
∧ (Σ̂, κ,Θ, T, ρ) |=

�
P ′
1 ∧

va1 ∈ Θ(�1)(a1) ⇒ (�1, 〈〈va1〉〉) ∈ κ(�2)

(Σ̂, κ,Θ, T, ρ) |=
�1

〈〈va1〉〉 � {�2}. P ′
1

Instead (Σ̂, κ,Θ, T, ρ) |=
�1

(;xb2
2 )X2 .〈〈f(xbx

2 )m〉〉 � �3.P
′
2 holds because the checks

for the CFA clause for input succeed. From (�1, 〈〈va1〉〉) ∈ κ(�2), we can indeed
obtain that ρ(X2) ⊇ {(�1, 〈〈va1〉〉}, Σ̂�2(x

b2) ⊇ {va1}, and that T (a1) ⊇
{((�1, �2),X2)}. The other entries can be similarly validated as well. Finally note
that from T (a1) ⊇ {((�1, �2),X2) and T (a1) ⊇ {((�2, �3), Y3)}, we can obtain the
trajectory [((�1, �2),X2), ((�2, �3), Y3)], by applying ̂ClosX to (T (a1)). Note that
the second component of each micro-trajectory records the input in which the
communication of the value may take place and can help in statically backtrack-
ing the data path. Given the score of each node, the cost of the corresponding
scored trajectory amounts to φ(�1) + φ(�2) + φ(�3).

Example 2. Consider now our running example on the visual sensor network in
Sect. 2. Every valid estimate (Σ̂, κ,Θ, T, ρ) must include at least the following
entries, assuming d = 4, and m �= i, with m and i indexes of nodes that are
neighbours.

Θ(�1i )(ai1) ⊇ {1ai1}, Θ(�1i)(ai2) ⊇ {2ai2}
Σ̂�1i

(zvi1) ⊇ {1ai1}, Σ̂�1i
(zvi2) ⊇ {2ai2}

κ(�1m) ⊇ {(�1i , 〈〈p(1ai1 , 2ai2)pi〉〉}
ρ(Xi

m) ⊇ {(�1i , 〈〈p(1ai1 , 2ai2)pi〉〉}
Σ̂�1m

(xi
m) ⊇ {p(1ai1 , 2ai2)pi}

Σ̂�2j
(confirmw2j

2j ) =

check(d(1ai1 , 1ai2 , p(1ar11 , 2ar12)pr1 , ..., p(1art1 , 2art2)prt)d1i , 1d2j1 , 1d2j2)c2j

T (pi) � ((�1i , �
1
m), Xm

i ), ((�1m, �2j ), W
2
j ), ((�

2
j , �l), A

l
j)

T (d1i) � ((�1i , �
2
j ), W

2
j ), ((�

2
j , �l), A

l
j)

Our analysis respects the operational semantics of IoT-LySa, as witnessed
by the following subject reduction result. It is also possible to prove the existence
of a (minimal) estimate, as in [5]. The proofs follow the usual schema and benefit
from an instrumented denotational semantics for expressions, the values of which
are pairs 〈v, v̂〉, where v is a concrete value and v̂ is the corresponding abstract
value. The store (Σi

� with an undefined ⊥ value) is accordingly extended. The
semantics used in Table 3 just uses the projection on the first component.

The following subject reduction theorem establishes the correctness of our
CFA, by relying on the agreement relation � between the concrete and the
abstract stores. Its definition is immediate, since the analysis only considers
the second component of the extended store, i.e. the abstract one: Σi

� � Σ̂� iff
w ∈ X ∪ I� such that Σi

�(w) �= ⊥ implies (Σi
�(w))↓2 ∈ Σ̂�(w).
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Theorem 1 (Subject reduction). If (Σ̂, κ,Θ, T, ρ) |= N and N → N ′ and
∀Σi

� in N it is Σi
� � Σ̂�, then (Σ̂, κ,Θ, T, ρ) |= N ′ and ∀Σi

�
′ in N ′ it is Σi

�
′
�

Σ̂�.

Checking Trajectories. We now show that by inspecting the results of our CFA,
we detect all the possible micro-trajectories of the data produced in the system
of nodes that, put together, provide the overall trajectories.

The following corollary of subject reduction shows that we do track the tra-
jectories of IoT data. The first item guarantees that κ and ρ predict all the
possible inter-node communications, while the second item shows that our anal-
ysis records the micro-trajectory in the T component of each abstract value
possibly involved in the communication.

Corollary 1. Let N
〈〈v1,...,vr〉〉−−−−−−−→�1,�2,X N ′ denote a reduction in which the

message sent by node �1 is received by node �2 with an input tagged X. If

(Σ̂, κ,Θ, T, ρ) |= N and N
〈〈v1,...,vr〉〉−−−−−−−→�1,�2 N ′ then it holds:

– (�1, 〈〈v̂1, . . . , v̂r〉〉) ∈ κ(�2) ∧ (�1, 〈〈v̂1, · · · , v̂r〉〉) ∈ ρ(X), where v̂i = vi↓2 .
– ((�1, �2),X) ∈ T (a), for all a ∈ A(v̂i), for all i ∈ [j + 1, r].

4.1 Proofs

In this subsection, we provide the formal proofs of the results presented above.
The reader not interested in the technical details of this formalisation, can safely
skip this subsection without compromising the comprehension of the rest of the
paper.

We recall that for the proofs, we resort to an instrumented denotational
semantics for expressions, the values of which are pairs 〈v, v̂〉 where v is a concrete
value and v̂ is the corresponding abstract value, and that the store and its
updates are accordingly extended.

Lemma 1 (Congruence). If N ≡ N ′ then (Σ̂, κ,Θ, T, ρ) |= N iff
(Σ̂, κ,Θ, T, ρ) |= N ′.

Proof. It suffices to inspect the rules for ≡, since associativity and commutativity
of ∧ reflects the same properties of both | and ‖, and to recall that any triple is a
valid estimate for 0. Note that for the case of iteration, the following definition of
limited unfolding suffices �μh. P 0 = P{0/h} and �μh. P d = P{�μh. P d−1/h}.

Theorem 1 (Subject reduction). If (Σ̂, κ,Θ, T, ρ) |= N and N → N ′ and
∀Σi

� in N it is Σi
� � Σ̂�, then (Σ̂, κ,Θ, T, ρ) |= N ′ and ∀Σi

�
′ in N ′ it is Σi

�
′
�

Σ̂�.

Proof. Our proof is by induction on the shape of the derivation of N → N ′

and by cases on the last rule used. In all the cases below we will have that (*)
(Σ̂, κ,Θ, T, ρ) |=

�
Σi, as well as that (**) (Σ̂, κ,Θ, T, ρ) |=

�
B1 and B2, so we

will omit mentioning these judgements.
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– Case (Multi-com). We assume

(Σ̂, κ,Θ, T, ρ) |= �1 : [〈〈v1,· · ·, vk〉〉 � L. 0 ‖ B1] |
�2 : [Σi

2 ‖ (E1,· · ·, Ej ;xj+1,· · ·, , xk)X .Q ‖ B2]

that is implied by

( ̂Σ, κ, Θ, T, ρ) |=�1
[〈〈v1, · · · , vk〉〉 � L. 0 ‖ B1] and by

( ̂Σ, κ, Θ, T, ρ) |=�2
[Σi

2 ‖ (E′
1, · · · ;xj+1, · · · )X .Q ‖ B2]

that have been proved because the following conditions hold:

Comp(�1, �2) (1)
∧k

i=1
( ̂Σ, Θ) |=�1

vi (2)

∀v̂1, · · · , v̂k :
∧k

i=1
v̂i ∈ ϑi ⇒

∀�′ ∈ L : (�1, 〈〈v̂1, · · · , v̂k〉〉) ∈ κ(�′) (3)
( ̂Σ, κ, Θ) |=�1

0 (4)
∧j

i=1
( ̂Σ, Θ) |=�2

Ei (5)

∀(�′, 〈〈v̂1, · · · , v̂k〉〉) ∈ κ(�2) :
∧j

i=1
v̂i ∈ ϑ′

i ⇒ (6)
∧k

i=j+1
v̂i ∈ Σ̂�2(xi) (7)

∀(�′, 〈〈v̂1, · · · , v̂k〉〉) ∈ ρ(X) (8)
∀a ∈ A(v̂i).((�, �

′), X, w) ∈ T (a) (9)
( ̂Σ, κ, Θ, T, ρ) |=�2

Q (10)

Note that ∀i (Σ̂, Θ) |=
�1

vi implies v̂i ∈ ϑi, where v̂i = ([[vi]]iΣi
�2

)↓2 , and that

�2 ∈ L because N → N ′. We have to prove that

(Σ̂, κ,Θ, T, ρ) |= ,�1 : [〈〈v1, · · · , vk〉〉 � L′.0‖B1]
| �2 : [Σi

2{vj+1/xj+1, · · · , vk/xk}‖Q‖B2]

where L′ = L \ {�2} that, in turn, amounts to prove that

(a) (Σ̂, κ,Θ, T, ρ) |=
�1

〈〈v1, · · · , vk〉〉 � L \ {�2}. 0 ‖ B1

(b) (Σ̂, κ,Θ, T, ρ) |=
�2

Σi
2{(vj+1, v̂j+1)/xj+1, · · · } ‖ Q ‖ B2

We have that (a) holds trivially because of (2–4) (of course L \ {�2} ⊆ L),
while (b) holds because of (8). We are left to prove that Σi

�2

′
� Σ̂�2 . Now,

we know that Σi
�2

′(y) = Σi
�2
(y) for all y ∈ X�2 ∪ I�2 such that y �= xi. The

condition (Σi
�2
(xi))↓2 ∈ Σ̂�2(xi) for all xi holds because of (7).

– The cases (ParN), (StructN), and (Node) directly follow from the induction
hypothesis, and the case (CongrN) from Lemma 1.
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Corollary 1. Let N
〈〈v1,...,vr〉〉−−−−−−−→�1,�2,X N ′ denote a reduction in which the

message sent by node �1 is received by node �2 with an input tagged X. If

(Σ̂, κ,Θ, T, ρ) |= N and N
〈〈v1,...,vr〉〉−−−−−−−→�1,�2 N ′ then it holds:

– (�1, 〈〈v̂1, . . . , v̂r〉〉) ∈ κ(�2) ∧ (�1, 〈〈v̂1, · · · , v̂r〉〉) ∈ ρ(X), where v̂i = vi↓2 .
– ((�1, �2),X) ∈ T (a), for all a ∈ A(v̂i), for all i ∈ [j + 1, r].

Proof. By Theorem 1, we have that (Σ̂, κ,Θ) |= N ′, so we proceed by induction
on the shape of the derivation of N → N ′ and by cases on the last rule used.

– Case (Multi-com). If this rule is applied, than N is in the form

(Σ̂, κ,Θ, T, ρ) |= �1 : [〈〈v1,· · ·, vk〉〉 � L. 0 ‖ B1] |
�2 : [Σi

2 ‖ (E1,· · ·, Ej ;xj+1,· · ·, , xk)X .Q ‖ B2]

with �2 ∈ L. Since (Σ̂, κ,Θ, T, ρ) |= N we have (Σ̂, κ,Θ, T, ρ) |=
�1〈〈v1,· · ·, vk〉〉 � L. 0 and the required (�1, 〈〈v̂1, · · · , v̂k〉〉) ∈ κ(�2).

From (Σ̂, κ,Θ, T, ρ) |=
�2

(E1,· · ·, Ej ;xj+1,· · ·, , xk)X .Q, we can obtain instead
the required (�1, 〈〈v̂1, · · · , v̂k〉〉) ∈ ρ(X), and ∀a ∈ A(v̂i).((�1, �2),X,w) ∈
T (a).

– Cases (ParN), (StructN), and (Node) directly follow from the induction
hypothesis, and for the other rules the premise is false.

5 Scored Trajectories

We now extend the notion of trajectories by associating a score φ(�) to each
node with label �, representing some quantitative and logical information: in our
case with a measure of the risk of node, in a style reminiscent of [1].

Trajectories can be compared on the basis of their overall score.
We assume that a table of scores is known that associates a score φ(�i) to

each node label �i. As a consequence we can decorate micro-trajectories with the
scores of the nodes involved:

((�i, �
′
i), (φ(�i), φ(�j)),Xi),

resulting in scored micro-trajectories. The corresponding scored trajectories can
be obtained as follows, by using the suitable extended closure function ̂ClosX .

Definition 4.

– ∀((�, �′), (φ(�), φ(�′)),X) ∈ M . [((�, �′), (φ(�), φ(�′),X)] ∈ ̂ClosX(M);
– ∀[L, ((�, �′), (φ(�), φ(�′),X)], [((�′, �′′), (φ(�′), φ(�′′),X ′), L′′] ∈ M .

[L, ((�, �′), (φ(�), φ(�′),X), ((�′, �′′), (φ(�′), φ(�′′),X ′), L′′] ∈ ̂ClosX(M).

We now need a function to extract the overall cost of each trajectory, given
the sequence of crossed nodes.
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Definition 5.

– Cost([((�, �′), (φ(�), φ(�′)),X)]) = φ(�) + φ(�′);
– Cost([L, ((�, �′), (φ(�), φ(�′)),X), ((�′, �′′), (φ(�′), φ(�′′)),X ′), L′′]) =

Cost(L) + φ(�) + φ(�′) + Cost(L′′).

We can now using the enriched trajectories to reason on which of them are
more risky.

Example 3. Back to our example, by using the analysis, we can determine some
of the possible trajectories of data, e.g. the ones of the term annotated with d1i,
i.e. Trajectories(d1i) that includes [(�1i , �

2
j ),W

2
j ), ((�

2
j , �l), Al

j)].
This allows us to check which are the nodes the data may pass from, in this

case and which are the corresponding inputs. The communication pattern here
is admittedly simple in order to illustrate our approach. It is easy to verify that
the above CFA results reflect the dynamic behaviour.

Now, given a security score for each node, we can analyse the trajectories of
each piece of data of the analysed system, in order to determine the more vulnera-
ble ones. We can also inspect the paths possibly followed by sensible data and also
be suspicious about data produced or passed by unreliable nodes. For the sake
of simplicity, we can use only two values for φ, by partitioning nodes in less (0)
or more (1) secure. The less secure nodes are the ones put in an open and public
area of the building, whereas the more secure nodes are the ones placed in areas
with restricted access. In our scenario, suppose that all the nodes are secure apart
from the node N1 13 that is in an open area. Under these hypotheses, our analy-
sis points out that the data that arrive to alert the node of type 2 in Room1 use
a possibly vulnerable trajectory, i.e. [(�1m, �1i ),X

m
i ), ((�1i , �

2
j ),W

2
j ), ((�

2
j , �l), Al

j)]
with i = 13 has a cost 1 whereas with i �= 13 the cost is 0. As a consequence, it
could be the case to use a videocamera more difficult to tamper, or, alternatively,
to add a new video camera in the restricted area.

We could instead classify links and making a similar reasoning, by associ-
ating weights to each of them in micro-trajectories, as in ((�1, �2),X,w). Given
a classification of the “dangerous” links, we can analyse the trajectories of each
piece of data and the way they are transmitted. This is particularly crucial in
a setting where encryption and other security mechanisms can be costly and
power consuming.

Another possibility to exploit our analysis is to detect possible illegal or bad
flows from one point to another based on security levels, by investigating our
trajectories, along the lines of [4]. Suppose for instance that nodes are classified
according to a hierarchy of clearance levels for nodes (encoded in a value), and
that a no read-up/no write-down policy is required. A node classified at a high
level cannot send (write) any value to a node at a lower level, while the converse
is allowed. The constraint can be restricted to least sensible data. In any case,
by inspecting the possible trajectories, we can check for the presence or not
of micro-trajectories (�1, �2), where the corresponding nodes do not respect the
policy.
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Note that each kind of enrichment of trajectories with quantitative infor-
mation can be added after the analysis, making its results useful for different
purposes.

6 Conclusions

We proposed a data path analysis, based on the CFA of IoT-LySa specification
language, for tracking the propagation of data and for identifying their possible
trajectories.

The results of CFA can be exploited in an early phase of system design, as a
supporting technique. The analysis is quite general because the underlying idea
is that its results can be used as a starting point for many different investigations
on a given system behaviour. On the one hand, a designer can answer whether
the provenance of the data that are processed or stored in a particular node
offers sufficient security guarantees, e.g. these data traveled only along nodes
that are considered robust. Furthermore, we can also check whether a system
respects policies that rule information flows among nodes, by allowing some
flows and forbidding others, e.g. data traveled only across nodes with a certain
level of clearance. Answering to these questions can give some confidence to
designers about the quality of the data managed by the considered system and
how much secure are the data which are essential to take critical decisions. By
using this information designers can detect the potential vulnerabilities related
to the presence of dangerous nodes, and can determine possible solutions and
mitigation.

On the other hand, analysing the trajectories may allow discovering patterns
in data, e.g. there are pieces of data that always move together or in a similar
way, thus, allowing designers to determine possible emerging features of the
system behaviour. Furthermore, we can find which are the paths or segments of
paths that are more used, and therefore may need special attention and suitable
security mechanisms.

An approach close to the present one is that of [10], where Control Flow
Analysis is used to over-approximate the behaviour of KLAIM processes and to
track how tuple data can move in the network.

Our approach is quite flexible and can be adapted to different purposes, just
by enriching the trajectories obtained from the analysis’ results with different
kinks of quantitative information. We would like to resort to other possible met-
rics. An interesting option is the one introduced in [1,23], where each node is
associated to a value that quantitatively represents the effort (in terms of cost)
required by an attacker to compromise the node. This allows the authors to rea-
son on the dependencies among nodes and to identify the minimal set of nodes
that must be compromised in order to impair the functionalities of a given target
node. In the same paper, further metrics are proposed. In the first case, they
suppose that the edge (or perimeter) nodes are easier to be compromised, and
the effort becomes higher while moving to inner nodes of the graph. As a con-
sequence, they assign costs to the nodes based on their depth in a given graph.
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The second proposed security metric associates as a priority to the nodes that
require utmost attention. In the third one, the metrics includes budget consider-
ations, in order to provide a balance between the efforts required by an attacker
to compromise critical nodes and the cost required to fix them.

Another future direction of investigation consists in integrating our present
analysis with the taint analysis of [8]. In that analysis, data are marked as tainted
when sensitive, and are marked as tamperable when coming from places where
they can be tampered. The analysis statically predicts how marked data spread
across an IoT system.

We further plan to study how to ensure a certain level of quality service of
a system even when in the presence of not completely reliable data, by linking
our approach to that used in [24,25]. In those paper authors introduce the Qual-
ity Calculus that allows defining and reasoning on software components that
have a sort of backup plan in case the ideal behaviour fails due to unreliable
communication or data.

Finally, since in many IoT system the behaviour of node adapts to their
computational context, we aim at extending IoT-LySa with constructs for rep-
resenting contexts along the lines of [14,15], and to study their security follow-
ing [6,7].
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