
Data Flows Mapping in Fog Computing
Infrastructures Using Evolutionary

Inspired Heuristic

Claudia Canali and Riccardo Lancellotti(B)

Department of Engineering “Enzo Ferrari”,
University of Modena and Reggio Emilia, Modena, Italy
{claudia.canali,riccardo.lancellotti}@unimore.it

Abstract. The need for scalable and low-latency architectures that can
process large amount of data from geographically distributed sensors and
smart devices is a main driver for the popularity of the fog computing
paradigm. A typical scenario to explain the fog success is a smart city
where monitoring applications collect and process a huge amount of data
from a plethora of sensing devices located in streets and buildings. The
classical cloud paradigm may provide poor scalability as the amount of
data transferred risks the congestion on the data center links, while the
high latency, due to the distance of the data center from the sensors,
may create problems to latency critical applications (such as the sup-
port for autonomous driving). A fog node can act as an intermediary in
the sensor-to-cloud communications where pre-processing may be used
to reduce the amount of data transferred to the cloud data center and
to perform latency-sensitive operations.

In this book chapter we address the problem of mapping sensors over
the fog nodes with a twofold contribution. First, we introduce a formal
model for the mapping model that aims to minimize response time con-
sidering both network latency and processing time. Second, we present
an evolutionary-inspired heuristic (using Genetic Algorithms) for a fast
and accurate resolution of this problem. A thorough experimental eval-
uation, based on a realistic scenario, provides an insight on the nature
of the problem, confirms the viability of the GAs to solve the problem,
and evaluates the sensitivity of such heuristic with respect to its main
parameters.

Keywords: Fog computing · Optimization model · Evolutionary
programming · Genetic algorithms · Smart cities

1 Introduction

Cyber-physical systems are producing an ever-growing amount of data through
the presence of a large number of geographically-distributed sensors. This ever-
increasing amount of data needs to be filtered and processed to support advanced

c© Springer Nature Switzerland AG 2020
D. Ferguson et al. (Eds.): CLOSER 2019, CCIS 1218, pp. 177–198, 2020.
https://doi.org/10.1007/978-3-030-49432-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49432-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-49432-2_9

178 C. Canali and R. Lancellotti

applications that can monitor complex systems. However, as the data size grows,
the traditional cloud paradigm becomes inadequate and can result in poor per-
formance, due to the risk of high latency in the responses or due to the risk of
creating congestion on the network links of the cloud data centers.

An approach that can increase the scalability and can reduce the latency is
the fog computing paradigm. Fog computing moves some services from the cloud
data center (located on the network core) towards a set of fog nodes located
on the network edge, that is the location where the data sources connect to
the network. The services that are typically deployed on the fog layer involve
data filtering, validation, aggregation, alarm triggering and other pre-processing
tasks that can reduce latency and the amount of data transferred towards the
cloud data centers. This paradigm has been proposed in [11,13] as an enabling
architecture in different areas. Examples include:

– Applications such as gaming and videoconferencing that need very low and
predictable latency

– Geo-distributed monitoring applications like pipeline monitoring or environ-
mental sensing

– Fast mobile applications such as smart connected vehicles and connected rails
– Large-scale distributed control systems including smart grid, smart traffic

monitoring, and support for autonomous driving

In this book chapter, we focus mainly on an environmental monitoring appli-
cation for a smart city, where multiple sensors are deployed over a geographic
area to monitor air pollution and traffic. We assume that the infrastructure is
structured as in Fig. 1 and is composed of three layers: a first sensor layer that
produces data (the sensors are represented at the bottom of the figure as a set
of wireless devices), an intermediate fog layer that carries out the preliminary
processing of data from the sensors, and a cloud layer that is composed by one or
more data centers (at the top of the figure) and that is the final destination of the
data. Sensors collect information about the city status, such as traffic intensity
or air quality [16]. Such data should be collected at the level of a cloud infras-
tructure to provide value-added services such as traffic or pollution forecast. The
proposed fog layer intermediates the communication between the sensors and the
cloud to provide scalability and reliability in the smart city services.

Our problem is centered on the management of data flows in a fog infras-
tructure, that is, distributing the data from the sensors among the fog nodes
taking into account both the load balancing issues at the level of each fog node,
and the latency in the sensors-to-fog links. This problem is rather new, because
most literature on fog infrastructures takes the sensor-to-fog mapping as a fixed
parameter depending on the system topology [8], while we assume that, at least
on a city-scale scenario, there are degrees of freedom that can be leveraged. As
this problem is complex and may present scalability issues, we also introduce
an heuristic, based on Genetic Algorithms, to solve the problem. A preliminary
version of this research appeared in [5]; however, in this chapter we improve the
theoretical model, supporting a more detailed analysis of the problem, and we

Data Flows Mapping in Fog Computing Infrastructures 179

Fig. 1. Fog infrastructure.

introduce a more detailed experimental evaluation of our proposal to provide a
better insight on the problem and on its solution.

Specifically, our contribution can be summarized as follows: (1) we present
an innovative approach to model fog infrastructures, defining an optimization
problem for the sensor-to-fog mapping problem; (2) we introduce a GAs-based
heuristic to solve this new problem (other approaches based on this heuristics
were applied only to traditional cloud data centers [20] and/or to Web Ser-
vice composition [10]); (3) we provide a thorough experimental analysis of the
problem, with the aim to give insight on the nature of the problem and on the
performance of the proposed heuristic solution.

The book chapter is organized as follows. Section 2 discusses the related work,
while Sect. 3 formalizes as an optimization problem the model of the considered
application. Section 4 presents the heuristic algorithms proposed to solve the
problem. Section 5 introduces the experimental testbed and discusses the results
that confirms the viability of our approach. Finally, Sect. 6 concludes the paper
with some final remarks.

2 Related Work

The significant increase in the amount of data generated by modern infrastruc-
tures, joined to the need of processing the same data to provide value-added
services, motivates the research community to explore the edge-based solutions
(such as the so-called fog computing) as an evolution of the traditional cloud-
based model. Indeed, when we have a large amount of data originated at the
border of a network, a centralized cloud model becomes inefficient, while an
approach that pushes some operation (such as filtering or aggregation of the
data) towards the network edge has been demonstrated to be viable alternative
in several papers [8,15,17,18].

180 C. Canali and R. Lancellotti

In [18], Yi et al. propose a survey with significant application scenarios (and
the corresponding design and implementation challenges) of fog computing. A
more wide- spread discussion of open issues, open research directions and chal-
lenges of fog computing for IoT services and smart cities is proposed in [17].
This vision is consistent with the reference scenario proposed in this chapter.
Indeed, we refer to a similar smart-city sensing application and we consider, as
the main challenge, the combined goal of reducing communication latency, while
preserving load balancing.

Some studies focus on the allocation of services that process data from the
fog nodes over a distributed cloud infrastructure. For example, Deng et al. [8]
investigate how power consumption and transmission delay can be balanced in
fog-to-cloud communication, proposing an optimization model. Another inter-
esting study [19] focuses on minimizing the service delay in a IoT-fog-cloud sce-
nario, where fog nodes implement a policy based on fog-to-fog load sharing. It is
noteworthy to consider that, in both these studies, the mapping of data sources
over the fog nodes is not taken into account. Indeed, [8] assumes single-hop wire-
less links between sensors and fog nodes, while communication in [19] is based
on application-specific domains. Our research is complementary with respect to
these issues, as we consider a network layer capable of multi-hop links so that
each sensor can communicate with each fog node, motivating our sensors-to-fog
mapping.

Another area that is close to our research is that of fog computing infras-
tructures supporting smart cities. For example, Tang et al. [15] propose a hier-
archical 4-layer fog computing system for smart cities. This layering leverages
the nature of a geographic distribution in a large set of sensors that carry out
latency-sensitive tasks, where a fast control loop is required to guarantee the
safety of critical infrastructure components. Moreover, unlike our research, also
this paper assumes that the sensors-to-fog nodes mapping is fixed so that a fog
node communicates only with a local set of sensors that are deployed in the
neighborhood.

A different research [6] is more focused on the vision of Data Stream Process-
ing (DSP) applications. In particular, the paper addresses the operator place-
ment problem: DSP operators must be mapped on the fog nodes with the goal
of maximizing the QoS. The problem is described as an Integer Linear Pro-
gramming (ILP) problem. However, the authors of [6] assume that the incoming
data flow can be split to support parallel processing. Our research considers a
more generic application scenario where this assumption may not be acceptable.
Research on genetic algorithms (GAs) have been proposed in the area of cloud
computing. In particular, Yusoh et al. [20] rely on GAs to propose a solution
of Software as a Service (SaaS) Placement Problem that is scalable. Another
significant example is [10] where a QoS-aware service composition problem in
cloud systems is solved using GAs.

Finally, this chapter extends a previous research [5], where a similar problem
is considered. However, in the present study improves both the model, with a
more effective and simplified presentation of the problem model, and the exper-

Data Flows Mapping in Fog Computing Infrastructures 181

imental section, introducing a thorough discussion of the parameters character-
izing the problem and their impact on the ability of commercial solvers and of
the proposed solution to reach a high quality solution for the problem.

3 Problem Definition

3.1 Problem Overview

The reference architecture in Fig. 1 is used as the basis of our problem modeling.
In particular, we consider a set of sensors S distributed over an area and we
assume that these sensors are producing data with a known intensity, such that
the generic sensor i ∈ S produces a packet of data with a frequency λi (the
reader may refer to Table 1 for a summary of the symbols used in the model).
In our model, we introduce some simplifying assumptions that is, we consider a
stationary scenario where the data rate of sensors remains stable over time and
where sensors do no move. Furthermore, we anticipate that, in the experiments
we will consider sensors to be homogeneous, that is λi is the same for every
sensor, even if the model is capable to capture an heterogeneous scenario as
well.

The fog layer is composed by a set of nodes F that collect the data from
the sensors and carry out tasks such as validation, filtering and aggregation on
them, to guarantee a fast and scalable processing of data even in the case where
data processing is computationally demanding. In our model we consider that
the generic fog node j ∈ F can process a data packet from a sensor with an
average service time equal to 1/μj . The fog nodes send their output to one or
more cloud data centers where additional processing and data storage is carried
out.

Since the problem of managing a cloud data center has been widely discussed
in literature [14], we do not consider the details of the internal management of
the cloud resources but we focus instead on the issue of mapping the sensors over
the fog nodes. In particular, we aim to model the QoS of the fog infrastructure
in terms of response time, taking into account the following two contributions
for the infrastructure performance:

– Network-based latency. This delay is due to the communication between the
sensors and the fog nodes. We denote the latency as δi,j where i is a sensor
and j is a fog node.

– Processing time. The processing time on the fog node can be modeled using
the queuing theory. It depends on 1/μj , the service time or a packet of data
from a sensor on fog node j, and on the incoming data rate λj that is the sum
of the data rates λi of the sensors i that are sending data to the fog node j.

The reader may refer to Table 1 where we summarize the symbols used in
the model.

182 C. Canali and R. Lancellotti

3.2 Optimization Model

In the considered fog scenario, we aim to map the data flows from the sensors on
the fog nodes. Hence, we introduce an optimization problem where the decision
variable represents this mapping as a matrix of boolean values X = {xi,j , i ∈
S, j ∈ F}. Considering the values on the matrix, xi,j = 1 if sensor i sends data to
fog node j, while xi,j = 0 if this data exchange does not occur. To support some
stateful pre-processing (even a simple moving window average function would
fall in this category), we assume that all the data of a sensor should be sent to
the same fog node. Hence, for a given value of i, there is only one value of j such
that xi,j = 1.

We now introduce a formal model for the previously-introduced optimization
problem. The basis is similar to the request allocation problem in a distributed
infrastructure, such as the allocation of VMs on a cloud data center [9,12,14].
As previously pointed out, we rely on a decision variable represented as a matrix
of boolean values X. The values in the matrix determine if a sensor i is sending
data to fog node j. Furthermore, we introduce an objective function and a set
of constraints as follows:

Table 1. Notation [5].

Symbol Meaning/role

Decision variables

xi,j Sending data flow from sensor i to fog node j

Model parameters

S Set of sensors

F Set of Fog nodes

λi Outcoming data rate from sensor i

λj Incoming data rate at fog node j

1/μj Service time at fog node j

δi,j Communication latency between sensor i to fog node j

Model variables

i Index of a sensor

j Index of a Fog node

min Obj(X) = Objnet(X) + Objproc(X) (1.1)
where:

Objnet(X) =
∑

i∈S

∑

j∈F
xi,j · δi,j (1.2)

Objproc(X) =
∑

i∈S

∑

j∈F
xi,j · 1

μj − λj
(1.3)

Data Flows Mapping in Fog Computing Infrastructures 183

λj =
∑

i∈S
xi,j · λi ∀j ∈ F , (1.4)

subject to:
∑

j∈F
xi,j = 1 ∀i ∈ S, (1.5)

λj < μj ∀j ∈ F , (1.6)
xi,j = {0, 1}, ∀i ∈ S, j ∈ F , (1.7)

In the problem formalization, the objective function 1.1 is composed by two
components (Objnet and Objproc, respectively) that represent the total (and
hence the average) latency and processing time, respectively. The computation
of the latency component is rather straightforward and aims to capture the
communication delay in a geographically distributed infrastructure based on the
latency values δi,j , as detailed in Eq. 1.2. The processing time used for the com-
ponent Objproc of the objective function is detailed in Eq. 1.3. The definition is
consistent with other papers that focus on a distributed cloud infrastructure such
as [3]. In particular, the processing time is derived from Little’s result applied to
a M/G/1 system and takes into account the average arrival frequency λj and the
processing rate μj of each fog node j. Equation 1.4 defines the incoming load λj

on each fog node j as a function of the mapping of sensors in the infrastructure.
The objective function is combined with a set of constraints. In particular,

constraint 1.5 means that, for each sensor i, its data is sent to one and only
one fog node. Constraint 1.6 guarantees that, for each fog node j, we avoid a
congestion situation, that is we need to avoid the case where, for a generic node
j, the load λj is higher than the processing capability μj . Finally, constraint 1.7
describes the boolean nature of the decision variables xi,j .

4 Heuristic Algorithm

To solve the optimization problem defined in the previous section we consider
an evolutionary inspired heuristic based on the Genetic Algorithms (GAs), with
the aim to evaluate its effectiveness in solving the problem by comparing the
heuristic performance with the one of commercial solvers.

The main idea behind GAs is to operate on a population of individuals,
where each individual represents a possible solution of the problem. The solution
is encoded in a chromosome that defines the individual and the chromosome
is composed by a fixed number of genes that represent the single parameters
characterizing a specific solution of the problem.

A population of individuals is typically initialized randomly. A fitness func-
tion, that describes the objective function of the optimization problem is applied
to each individual. The evolution of population through a set of generations aims
at improving the fitness of the population using the following main operators:

Mutation is a modification of a single or a group of genes in a chromosome
describing the individual of the population. Figure 2 presents an example of such

184 C. Canali and R. Lancellotti

operator where the ith gene of the rightmost individual in the Kth generation
undergoes a mutation. The main parameter of this operator is the probability
of selecting an individual to perform a mutation on one of its genes. In the
sensitivity analysis in Sect. 5.4, we will refer to this probability as Pmut.
Crossover is a merge of two individuals by exchanging part of their chromo-
somes. Figure 2, again, provides an example of this operator applied to the two
individuals composing the population at the Kth generation. In particular, in
Fig. 2 the child individual is characterized by a chromosome containing the genes
from c0 to ci−1 from the rightmost parent and the genes from ci to cS from the
leftmost parent. The main parameter of this operator concerns the selection of
the parents. In the sensitivity analysis in Sect. 5.4, we will refer to the probability
of selecting an individual for a crossover operation as Pcross.
Selection concerns the criteria used to decide if an individual is passed from
the Kth generation to the next. The typical approach in this case is to apply
the fitness function to every individual (including new individuals generated
through mutation and crossover) and to consider a probability of being selected
for the next generation that is proportional to the fitness value. The selection
mechanism ensures that the population size remains stable over the generations.

Fig. 2. Examples of genetic algorithms operators [5].

When applying a GAs approach to the problem of mapping sensors over
the fog nodes of a distributed architecture, we must encode a solution as a
gene. In particular, we aim to formalize the relationship between the model in
Sect. 3.2 and the GA chromosome encoding. Hence, we define a chromosome
as a set of S genes, where S = |S| is the number of sensors. Each gene is an
integer number from 1 to F , where F = |F| is the number of fog nodes in
our infrastructure. The generic ith gene in a chromosome ci can be defined as:
ci = {j : xi,j = 1}. Due to constraint 1.5 in the optimization model, we know that
only one fog node will receive data from sensor i, so we have a unique mapping
between a solution of the problem expressed using the decision variable xi,j and

Data Flows Mapping in Fog Computing Infrastructures 185

the GA-based representation of a solution. As we can map each chromosome
into a solution of the original optimization problem, we can use the objective
function 1.1 as the basis for fitness function of our problem. Constraints 1.5
and 1.7 are automatically satisfied by our encoding of the chromosomes. The
only constraint we have to explicitly take into account is constraint 1.6 about
the fog node overload. As embedding the notion of unacceptable solution in a
genetic algorithm may hinder the ability of the heuristic to converge towards a
solution, we prefer to insert this information into the fitness function, in such a
way that the individual providing a solution where one or more fog nodes are
overloaded is characterized by a high penalty and is unlikely to enter in the
subsequent generation.

Multiple optimization algorithms have been considered before adopting the
choice of a genetic algorithm. On one hand, greedy heuristics tend to provide
performance that heavily depends on the inherent nature of the problem. For
example, the non-linear objective function may hinder the application of some
greedy approaches, while the number of sensors that may be supported by each
fog node may have significant impact on the performance of branch and bound
heuristics. As we aim at providing a general and flexible approach to tackle this
problem, we prefer to focus on meta-heuristics that are supposed to be better
adaptable to a wider set of problem instances [4]. Among these solution, we focus
on evolutionary programming in general and on genetic algorithms in particular
as this class of heuristics has been proven a viable option in similar problems
such as the problem of allocating VMs on a cloud infrastructure [20].

5 Experimental Results

5.1 Experimental Testbed

To evaluate the performance of the proposed solution, we consider a realistic fog
computing scenario where geographically distributed sensors produce data flows
to be mapped over a set of fog nodes, which are nodes with limited computational
power and devoted to tasks such as aggregation and filtering of the received data;
then, the pre-processed data are sent to the cloud data center.

To evaluate our proposal in a realistic scenario, we modeled the geographic
distribution of all the components of the system according to the real topology
of the small city of Modena in Italy (counting almost 180.000 inhabitants). Our
reference use case is a traffic monitoring application where the wireless sensors
are located on the main streets of the city and collect data about the number
of cars passing on the street, their speed and other traffic related measures
together with environmental quality indicators (an example of this application
can be found in the Trafair Project [16]). Figure 3 shows the map of sensor nodes,
fog nodes and cloud data center for the considered smart city scenario. To build
the map of sensors, we collected a list of the main streets in Modena and we geo-
referenced them. We assume that in each main street we have at least one sensor
producing data. We selected a group of 6 buildings hosting the offices of the
municipality and we use them as the location of the fog nodes – this assumption

186 C. Canali and R. Lancellotti

is consistent with the current trend of interconnecting the main public building
of each city with high bandwidth links. Our final scenario is composed of 89
sensors and 6 fog nodes. The interconnection between fog nodes and sensors is
characterized by a delay that we model using the euclidean distance between
the nodes. The average delay is in the order of 10 ms, that is consistent with a
geographic network. Finally, we assume that the cloud data center is co-located
with the actual location of the municipality data center.

Fig. 3. Smart city scenario [5].

Concerning the traffic and processing models, we rely on two main parameters
to evaluate different conditions: the first metric ρ represents the average load of
the system; the second parameter δμ represents the ratio between the average
network delay (δ) and the service time (1/μ). Specifically, we define the two
parameters as:

ρ =
∑

i∈S λi∑
j∈F μj

(2)

δμ =

∑
i∈S

∑
j∈F δi,j

|F||S| ·
∑

j∈F μj

|F| (3)

In our experiments, we consider several scenarios corresponding to different
combinations of these parameters, in order to analyze the performance of the
GAs-based solution for the sensor mapping problem.

In order to solve the problem of mapping data flows over the sensor nodes,
we implemented the optimization model with the AMPL language [2] and then
we use the commercial solver K-NITRO [1]. Specifically, the AMPL definition is
directly based on the optimization problem discussed in Sect. 3. Due to the nature
of the problem, we were not able to let the solver run until the convergence.
Instead, we placed a walltime limit of 120 min, with a 16 core CPU and 16
concurrent threads. Due to this limitation, we also consider a case where we
remove the constraint 1.5, thus allowing each data flow to be split over more fog

Data Flows Mapping in Fog Computing Infrastructures 187

nodes: the best solution achieved in this case represents a theoretical optimal
bound for our problem.

The genetic algorithm is implemented using the Distributed Evolutionary
Algorithms in Python (DEAP) framework [7] based on the details provided in
Sect. 4. In the evaluation of the genetic algorithm approach, we run the experi-
ments 5 times and we average the main metrics. In particular, for each run of the
genetic algorithm, we consider the best achieved solution at each generation. The
algorithm maintains a population of 200 individuals and we force a stop of the
algorithm after 300 generations. Moreover, the genetic algorithm considers for
the main parameters the following default values, that have been selected after
some preliminary experiments: mutation probability Pmut = 0.8 and crossover
probability Pcross = 0.5.

In order to analyze the performance of the evolutionary inspired proposal
for the sensor mapping problem, we compare the best solution found by the GA
heuristic (ObjGA) with the best solution found by the solver for the walltime
limited AMPL problem (ObjAMPL) and with the theoretical optimal bound
(Obj∗), considering as the main performance metric the discrepancy ε between
the solutions, as it will be defined in the rest of the section. Furthermore, we eval-
uate the convergence speed of the GA algorithm, considering as the convergence
criteria the case of a fitness value within 2% of the theoretical optimal bound.
To this aim, we measure the number of generations needed by the GA heuristic
to converge. Finally, we consider also the computation time as a function of the
population size.

5.2 Evaluation of Genetic Algorithm Performance

The first analysis in our experiments compares the difference between the solu-
tion found by the GA and the theoretical optimal bound obtained by the solver
in the case the constraint 1.5 is removed. To this aim, we consider as performance
metric the discrepancy εGA defined as follows:

εGA =
ObjGA − Obj∗

Obj∗ (4)

In this experiment, we consider several scenarios by varying the values of the
parameters ρ and δμ. Figure 4 shows as an heatmap the value of εGA for ρ ranging
from 0.2 to 0.9 and δμ ranging from 0.01 to 10. To better understand the results,
let us briefly discuss the impact of the considered parameters. For example, a
scenario where ρ = 0.9 and δμ = 0.01 (corresponding to the bottom right corner
of Fig. 4) represents a case where network delay is much lower than the average
job service time, while the processing demand on the system is high. This means
that the scenario is CPU-bound because managing the computational requests
is likely to be the main driver to optimize the objective function. On the other
hand, a scenario where ρ = 0.2 and δμ = 10 (top left corner of Fig. 4) is a scenario
characterized by a low workload intensity and a network delay comparable with
service time of a job, where it becomes important to optimize also the network
contribution to the objective function.

188 C. Canali and R. Lancellotti

Fig. 4. Performance of GA.

In the color coded representation of εGA in the figure, black hues refer to a
better performance of the genetic algorithm, while yellow hues correspond to a
worse performance. From this comparison, we observe that the value of ρ has
a major impact on the performance of the GA heuristic. Indeed, the heatmap
clearly shows good performance for low values of ρ (for ρ = 0.2, we have εGA

below 1% for all the values of δμ). On the other hand, when the average load
of the system is high (ρ = 0.9) the GA algorithm shows a higher discrepancy
with respect to the theoretical optimal bound: the risk of overloading the nodes
is higher and the value of the objective function is highly variant with respect to
the considered solution. In this case, the value of δμ shows its impact on the final
performance: indeed, until the ratio between the average network delay (δ) and
the service time (1/μ) is low (δμ = 0.01) the discrepancy still remains limited to
few percentage points, while for high values of this ratio (δμ = 10) it goes up to
almost 15%.

We now present an in-depth analysis where we separately measure the dis-
crepancy regarding the individual contributions of the two main components of
the objective function, related to the total network latency Objnet and to pro-
cessing time Objproc (defined in Eqs. 1.2 and 1.3, respectively) with respect to
the corresponding optimal values. To this aim, we define the discrepancies εGA

net

and εGA
proc defined as follows:

εGA
net =

ObjGA
net − Obj∗

net

Obj∗
net

(5)

εGA
proc =

ObjGA
proc − Obj∗

proc

Obj∗
proc

(6)

Figure 5 shows as heatmaps the values of εGA
net and εGA

proc for the considered
scenarios with varying ρ and δμ. Both the figures confirm that the difficulty
to achieve a solution close to the optimum for high values of ρ. Furthermore,

Data Flows Mapping in Fog Computing Infrastructures 189

Fig. 5. Components of the objective function.

we observe high discrepancies (between 30% and 35%) regarding the network
latency in the bottom right part of Fig. 5a. The reason of this result is that
the network latency contribution to the overall object function is very small
when δμ is low with respect to the processing time, hence the network latency
component is not optimized, thus showing high discrepancies with respect to the
corresponding optimal value.

To have a confirmation of the observed result, we directly measure the weight
of the contribution of the two main components (network latency and processing
time) to the overall value of the objective function in the case of the solution
corresponding to the theoretical optimal bound. To this aim, we define Wnet and
Wproc as follows:

Wnet =
Obj∗

net

Obj∗ (7)

Wproc =
Obj∗

proc

Obj∗ (8)

Figure 6 show as heatmaps the weight of the two components expressed as
percentages of the total value of the objective function, for varying values of ρ
and δμ. In the figures, black hues refer to a low percentage of the component,
while yellow hues correspond to a higher weight.

Figure 6a confirms the motivation of the previous result, showing how small
the contribution of the network latency can get with respect the overall objective
function for low values of δμ: as show in the lower part of the heatmap, for
δμ = 0.01 the weight of latency is close to 1% of the objective function. On the
other hand, Fig. 6b shows that the weight of the processing time contribution
always never decreases below the 30% in the considered scenarios, reaching values
between 90% and 100% in all the cases with δμ lower than 0.3.

We now evaluate the performance of the solution of the AMPL model
obtained by the solver (ObjAMPL) with respect to the theoretical optimal bound
(Obj∗) and to the GA heuristic (ObjGA). To this aim, we consider εAMPL and

190 C. Canali and R. Lancellotti

Fig. 6. Weight of components of objective function. (Color figure online)

εGA−AMPL defined as follows:

εAMPL =
ObjAMPL − Obj∗

Obj∗ (9)

εGA−AMPL =
ObjGA − ObjAMPL

ObjAMPL
(10)

Figure 7a compares the performance of the solver with the theoretical optimal
bound in the form of a heatmap. We observe that for the majority of the scenarios
identified by the considered values of ρ and δμ the discrepancy εAMPL is quite
low (below 7%), while it significantly increases up to almost 40% for very high
average system load (ρ = 0.9) and δμ ≤ 1. The high discrepancy is due to the
non-linear nature of the objective function, and in particular to the presence
of several local minima that the solver is not able to overcome within the time
limitation of 120 min. This clearly evidences that, in case of very high average
system load, also the solver is not able to guarantee good performance due to
the fact that the risk of overloading the fog nodes is high and the value of the
objective function is highly variant with respect to the considered solution.

On the other hand, Fig. 7b, comparing the performance of the solver and of
the proposed GA heuristic, shows that the GA achieves solutions very similar
to the solver (εGA−AMPL close to 0%) for the majority of the scenarios, while
differences can be observed for high values of average system load (ρ ≥ 0.8). In
these cases, the behavior of the GA heuristic shows significant differences. When
the system is processing bound (δμ ≤ 1) the GA algorithm tends to perform
much better that the solver, with the discrepancy εGA−AMPL reaching negative
values close to −25% for ρ = 0.9. This is an important result showing that the
GA is not only able to reach an efficient solution even in presence of a complex
problem with integer programming and a non-linear objective function, but can
also outperform the solver in a challenging case of highly loaded system. On the
other hand, in the top right part of the heatmap (ρ ≥ 0.8 and δμ = 10) the
GA shows worse performance than the solver, with a discrepancy εGA−AMPL

between 7% and 15%. In this case, where the system is network bounded and

Data Flows Mapping in Fog Computing Infrastructures 191

with a high average load, finding an optimal solution would require to explore
a wider space of solutions that the GA cannot explore being limited to 300
generations in our experiments.

Fig. 7. Performance of AMPL model.

5.3 Convergence Analysis of GAs

A critical analysis concerns the impact of the number of generations on the
performance of the GA heuristic, in particular on its capability to reach con-
vergence. To carry out this analysis (and the following sensitivity analysis), we
select two specific intermediate scenarios corresponding to points of interest: the
first scenario, characterized by ρ = 0.5 and δμ = 1, represents a case of inter-
mediate average system load and where the two main contributions (network
latency and processing time) of the objective function have a similar weight; the
second scenario, characterized by ρ = 0.8 and δμ = 0.3, represents a processing
bound case with a high average system load where finding a good solution for
mapping data flows over the fog nodes reveals more challenging, as shown by the
previous results. The motivation of this choice can be supported by the graph in
Fig. 8, showing the behavior of the Objproc component of the objective function
for different values of ρ. Specifically, we consider the theoretical curve of Objproc
for the case of one fog node and 1/μ = 1. The graph confirms how the value of
ρ = 0.8 represents a point where the problem is ill-conditioned: due to the high
risk of overload in the fog nodes, little variations in ρ can cause significant oscil-
lations of the objective function. On the other hand, for ρ = 0.5 this risk is low,
as shown by the slopes of the tangents to the load curve in the corresponding
points.

In the following convergence analysis we consider the previously introduced
discrepancy εGA between the GA and the theoretical optimal bound. The value
of εGA is measured at every generation for the GA (and compared with the final
optimal bound). This allows us to evaluate whether the population is converging
over the generations to an optimum.

192 C. Canali and R. Lancellotti

Fig. 8. Load curve of Objproc.

Fig. 9. Convergence analysis.

Figure 9 presents the results of the analysis. Specifically, we consider the
evolution of εGA for the two considered scenarios through 300 generations of the
GA. The graph shows also an horizontal line at the value of 2%: we consider that
the GA has reached convergence when ε ≤ 2% and we consider the generation
when this condition is verified as a metric to measure how fast the algorithm is
able to find a suitable solution.

Comparing the two curves we observe a different behavior. On one hand, for
the curve characterized by δμ = 1 we have a clear descending trend. On the other
hand, for the δμ = 0.3, the value of εGA is very low even with few generations
and remains quite stable over the generations. The reason for this behavior can
be explained considering the nature of the problem, where the objective function
depends on two main contributions: the processing time (that depends mainly on
the ability of the algorithm to distribute fairly the sensors among the fog nodes)
and the network latency (that depends on the ability of the algorithm to map
the sensors on the closest fog node). When δμ = 0.3, the impact of the second
contribution is quite low, so, any solution that provides a good level of load
sharing will be very close to the optimum. As the genetic algorithm initializes the

Data Flows Mapping in Fog Computing Infrastructures 193

chromosomes with a random solution, it is likely to have one or more individuals
right from the first generation that provides good performance: this explains
the more stable values of εGA over the generations. On the other hand, when
δμ = 1 the two contributions to the objective function are similar: hence, the
genetic algorithm must explore a wider space of solutions before finding good
individuals, and this requires more generations before reaching convergence.

As a final observation, we note that for both the scenarios, convergence is
quite fast, with the objective function almost reaching the optimal value in little
more than 75 generations. This result is interesting because it means that the
genetic algorithm is able to explore the solution space in a small amount of time,
reaching the proximity of the optimum (even if the actual optimum value may
require more generations to be found). In terms of execution time, the time for
the genetic algorithm to reach a value within 2% of the optimum is in the order
of 15 s.

5.4 Sensitivity to Mutation and Crossover Probability

As a further important analysis, we carry out a sensitivity of the genetic algo-
rithm with respect to the two probabilities that define the evolution of the pop-
ulation (the mutation probability Pmut and the crossover probability Pcross) to
understand whether the capability of the genetic algorithm to rapidly reach opti-
mal solutions just occurs for a properly tuned algorithm or if the property of
fast convergence is stable.

Fig. 10. Sensitivity to mutation probability.

The first analysis evaluates the impact of the mutation probability Pmut in
the two considered scenarios. The results are shown in Fig. 10, reporting the
value of the discrepancy εGA between the GA best fitness and the theoretical
optimal bound as a function of the mutation probability. The graph also shows
the number of generations necessary to reach the convergence, that means a value
of εGA below 2%, represented through the horizontal line. For both scenarios, we
observe U-shaped curves, where both low values and high values of Pmut result in

194 C. Canali and R. Lancellotti

the algorithm reaching higher value of εGA. In particular, the major challenges
are encountered for high values of Pmut, when the GA is not able to reach
convergence. On the other hand, values in the range 0.4% ≤ Pmut ≤ 0.8% provide
good performance. This behavior is explained considering the two-fold impact
of mutations. On one hand, a low value of Pmut hinders the ability to explore
the solutions space by creating variations in the genetic pool. On the other
hand, an higher mutation rate may simply reduce the ability of the algorithm
to converge, because the population keeps changing too rapidly and good genes
cannot be passed through the generations. If we now compare the results for
the two different scenarios, we observe that they lead to a similar message, with
the only difference of having a smaller range of intermediate Pmut values giving
good performance. However, this is consistent with the major challenges posed
by the scenario with high system load (ρ = 0.8).

Fig. 11. Sensitivity to crossover probability.

The second analysis shown in Fig. 11 evaluates the impact of the probabil-
ity of selecting an individual for a crossover operation Pcross. Again we show
both εGA and the number of generations to reach convergence as a function of
this parameter. Since we change the crossover probability over a large range of
values (from 0.1% to 20%), we use a logarithmic scale for the x-axis. First of
all, we observe that also the crossover probability has a major impact on the
performance of the GA. However, in this case the results show two very different
behaviors for the considered scenarios. In the scenario with ρ = 0.5 (Fig. 11b)
the algorithm reaches convergence quite fast showing very low values of εGA for
every value of Pcross. On the other hand, in the scenario with ρ = 0.8 (Fig. 11a)
the crossover probability has a very significant impact on the GA performance,
hindering the capability to converge for high values of Pcross. This is due to the
fact that with a high value of ρ, little variations in the solutions can cause sig-
nificant oscillations of the objective function due to the high risk of overload in
the fog nodes, as already pointed out in the comment of Fig. 8. Hence, the high
crossover probability, that is likely to increase fast changes in the population,
may lead to oscillations that hinder the convergence capability. To underline

Data Flows Mapping in Fog Computing Infrastructures 195

this effect, we analyze the convergence of the GA heuristic in the case with for
ρ = 0.8 and δμ = 0.3 for different values of the crossover probability. The results
are shown in Fig. 12. We can clearly observe as different values of Pcross lead to
completely different behaviors: while for Pcross = 0.8 the continuous oscillations
in the solutions do not allow to converge, for Pcross = 0.5 the behavior is quite
stable and stable to reach convergence, as already noticed in Fig. 9.

Fig. 12. Convergence analysis for different values of crossover probability.

This sensitivity analysis confirms that, when the average system load is very
high, reaching an optimal solution is challenging both for the GA heuristic and
the solver. Anyway, the GA approach is in many cases able to achieve perfor-
mance close, or even better, compared to the solver, even in this challenging sce-
nario. However, we need to take into account that in this case the GA heuristic
becomes more sensible to its main parameters, such as the crossover probabil-
ity. Hence, in the most challenging scenarios, an approach based on specifically
designed ad-hoc heuristics can be worth to investigate.

5.5 Sensitivity to Population Size

As a final analysis, we evaluate how the population size affects the performance of
the genetic algorithm. To this aim, we change the population size from 50 to 500
individuals and we measure the execution time, the difference in the objective
function εGA, and the number of generations required to reach the convergence.

The first significant result, shown in Fig. 13, shows the execution time of the
genetic algorithm for 300 generations. Specifically, we observe a linear growth in
the execution time with respect to the population size for both considered sce-
narios. This result is expected, as the core of the genetic algorithm iterates, for
every generation, over the whole population to evaluate the individuals and for
every operation, such as crossover, mutation, and selection for the next genera-
tion. The message from these experiments is that every benefit from an increase
of the population should be weighted against the additional computational cost
we may incur in.

196 C. Canali and R. Lancellotti

Fig. 13. GA execution time vs. population size.

Fig. 14. Sensitivity to population size.

Another interesting result comes from the evolution of εGA and of the number
of generations required to reach convergence in the considered scenarios, shown
in Figs. 14a and 14b. The two scenarios show similar behaviors, even if for the
more challenging case of ρ = 0.8 we observe higher discrepancy and number of
generations needed for convergence, as expected. In general, the results show that
increasing the population provides a benefit as it can both reduce the minimum
value of εGA and reduce the number of generations required for the convergence.
This can be explained considering that increasing the population allows the
algorithm to explore a larger portion of solution space with each generation,
thus accelerating the convergence. Furthermore, it is worth to note that the
benefit from increasing the population decreases as the population grows, while
the execution time grows linearly, as previously discussed. For this reason, in
our experiments we choose a population of 200 individuals, that is a value close
to the knee where the benefit form a larger population decreases rapidly.

Data Flows Mapping in Fog Computing Infrastructures 197

6 Conclusions

In the present chapter we discussed the design of a typical sensing application
in a smart city scenario. We consider a set of sensors or other smart devices
that are distributed in a geographic area and produce a significant amount of
data. A traditional cloud-based scenario would send all these data on a central-
ized data center, with the risk of network congestion and high latency. This is
clearly unacceptable for several classes of applications, that require a fast and
scalable management of data packets (critical examples are the support for auto-
matic traffic management and autonomous driving or the data collection in a
widespread array of sensors). Hence, it is common to move the tasks of data
aggregation, filtering and, in general, pre-processing towards the edge of the
network, where a layer of computing nodes called fog nodes is placed.

The introduction of the fog layer in an infrastructure motivates our study,
that concerns the mapping of data flows from the sensors to the fog nodes. We
tackle this problem, providing a formal model as an optimization problem that
aims to minimize the average response time experienced in the system taking
into account both network latency and processing time. Furthermore, we present
an heuristic approach that leverages the evolutionary programming paradigm to
solve the problem.

Using a smart city scenario based on a realistic testbed, we validate our
proposal. First, we analyze the problem using a solver to explore the impact
of the parameters that affect the problem solution. Next, we demonstrate the
ability of the proposed heuristic to solve the problem in a fast and scalable way.
Finally, we provide a sensitivity analysis to the main parameters of the genetic
algorithm to explore the limits of its stability.

References

1. Knitro Website. https://www.artelys.com/solvers/knitro/. Accessed 10 July 2019
2. AMPL: Streamlined modeling for real optimization (2018). https://ampl.com/.

Accessed 10 July 2019
3. Ardagna, D., Ciavotta, M., Lancellotti, R., Guerriero, M.: A hierarchical receding

horizon algorithm for QoS-driven control of multi-IaaS applications. IEEE Trans.
Cloud Comput. 1 (2018). https://doi.org/10.1109/TCC.2018.2875443

4. Binitha, S., Sathya, S.S., et al.: A survey of bio inspired optimization algorithms.
Int. J. Soft Comput. Eng. 2(2), 137–151 (2012)

5. Muñoz, V.M., Ferguson, D., Helfert, M., Pahl, C. (eds.): CLOSER 2018. CCIS,
vol. 1073. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29193-8

6. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Optimal operator placement
for distributed stream processing applications. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems, DEBS 2016,
pp. 69–80. ACM, New York (2016). https://doi.org/10.1145/2933267.2933312

7. DEAP: Distributed Evolutionary Algorithms in Pyton (2018). https://deap.
readthedocs.io

8. Deng, R., Lu, R., Lai, C., Luan, T.H., Liang, H.: Optimal workload allocation in
fog-cloud computing toward balanced delay and power consumption. IEEE Internet
Things J. 3(6), 1171–1181 (2016)

https://www.artelys.com/solvers/knitro/
https://ampl.com/
https://doi.org/10.1109/TCC.2018.2875443
https://doi.org/10.1007/978-3-030-29193-8
https://doi.org/10.1145/2933267.2933312
https://deap.readthedocs.io
https://deap.readthedocs.io

198 C. Canali and R. Lancellotti

9. Duan, H., Chen, C., Min, G., Wu, Y.: Energy-aware scheduling of virtual
machines in heterogeneous cloud computing systems. Future Gen. Comput. Syst.
74, 142–150 (2017). https://doi.org/10.1016/j.future.2016.02.016. http://www.
sciencedirect.com/science/article/pii/S0167739X16300292

10. Karimi, M.B., Isazadeh, A., Rahmani, A.M.: QoS-aware service composition in
cloud computing using data mining techniques and genetic algorithm. J. Super-
comput. 73(4), 1387–1415 (2017). https://doi.org/10.1007/s11227-016-1814-8

11. Liu, J., et al.: Secure intelligent traffic light control using fog computing. Future
Gen. Comput. Syst. 78, 817–824 (2018). https://doi.org/10.1016/j.future.2017.02.
017. http://www.sciencedirect.com/science/article/pii/S0167739X17302157

12. Noshy, M., Ibrahim, A., Ali, H.: Optimization of live virtual machine migration
in cloud computing: a survey and future directions. J. Netw. Comput. Appl. 110,
1–10 (2018). https://doi.org/10.1016/j.jnca.2018.03.002

13. Sasaki, K., Suzuki, N., Makido, S., Nakao, A.: Vehicle control system coordinated
between cloud and mobile edge computing. In: 2016 55th Annual Conference of
the Society of Instrument and Control Engineers of Japan (SICE), pp. 1122–1127,
September 2016

14. Helfert, M., Ferguson, D., Méndez Muñoz, V., Cardoso, J. (eds.): CLOSER 2016.
CCIS, vol. 740. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62594-
2

15. Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., Yang, Q.: A hierarchical dis-
tributed fog computing architecture for big data analysis in smart cities. In: Pro-
ceedings of the ASE BigData & Social Informatics 2015, ASE BD&SI 2015, pp.
28:1–28:6. ACM, New York (2015). https://doi.org/10.1145/2818869.2818898

16. Trafair Project Staff: Forecast of the impact by local emissions at an urban micro
scale by the combination of Lagrangian modelling and low cost sensing technology:
the trafair project. In: Proceedings of 19th International Conference on Harmioni-
sation within Atmospheric Dispersion Modelling for Regulatory Purposes. Bruges,
Belgium, June 2019

17. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., Rovatsos, M.: Fog orchestration
for internet of things services. IEEE Internet Comput. 21(2), 16–24 (2017). https://
doi.org/10.1109/MIC.2017.36

18. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues.
In: Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata 2015, pp.
37–42. ACM, New York (2015). https://doi.org/10.1145/2757384.2757397

19. Yousefpour, A., Ishigaki, G., Jue, J.P.: Fog computing: towards minimizing delay in
the internet of things. In: 2017 IEEE International Conference on Edge Computing
(EDGE), pp. 17–24, June 2017. https://doi.org/10.1109/IEEE.EDGE.2017.12

20. Yusoh, Z.I.M., Tang, M.: A penalty-based genetic algorithm for the composite SaaS
placement problem in the cloud. In: IEEE Congress on Evolutionary Computation,
pp. 1–8, July 2010. https://doi.org/10.1109/CEC.2010.5586151

https://doi.org/10.1016/j.future.2016.02.016
http://www.sciencedirect.com/science/article/pii/S0167739X16300292
http://www.sciencedirect.com/science/article/pii/S0167739X16300292
https://doi.org/10.1007/s11227-016-1814-8
https://doi.org/10.1016/j.future.2017.02.017
https://doi.org/10.1016/j.future.2017.02.017
http://www.sciencedirect.com/science/article/pii/S0167739X17302157
https://doi.org/10.1016/j.jnca.2018.03.002
https://doi.org/10.1007/978-3-319-62594-2
https://doi.org/10.1007/978-3-319-62594-2
https://doi.org/10.1145/2818869.2818898
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1109/IEEE.EDGE.2017.12
https://doi.org/10.1109/CEC.2010.5586151

	Data Flows Mapping in Fog Computing Infrastructures Using Evolutionary Inspired Heuristic
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Problem Overview
	3.2 Optimization Model

	4 Heuristic Algorithm
	5 Experimental Results
	5.1 Experimental Testbed
	5.2 Evaluation of Genetic Algorithm Performance
	5.3 Convergence Analysis of GAs
	5.4 Sensitivity to Mutation and Crossover Probability
	5.5 Sensitivity to Population Size

	6 Conclusions
	References

