
True Service-Oriented Metamodeling
Architecture

Michael Sobolewski1,2(&)

1 Air Force Research Laboratory, WPAFB, Dayton, OH 45433, USA
sobol@sorcersoft.org

2 Polish Japanese Academy of IT, 02-008 Warsaw, Poland

Abstract. True service-oriented metamodeling architecture provides a set of
guidelines and the Service-oriented Mogramming Language (SML) for struc-
turing and expressing of service specifications. SML is an executable language
in the SORCER platform based on service abstraction (everything is a service)
and three pillars of service-orientation: contextion (context awareness), multi-
fidelity, and multityping. Contextion is related to parametric polymorphism,
multifidelity to ad hoc polymorphism, and multityping is a form of net-centric
type polymorphism. SML allows for defining complex polymorphic services
that can express, reconfigure, and morph service-oriented processes at runtime.
In this paper the metaprocess modeling architecture applicable to service-
orientation is presented with five types of service-oriented processes. Its runtime
environment is introduced with the focus on actualization of emergent service
processes expressed in SML with the corresponding Service Virtual Machine
(SVM).

Keywords: True service orientation � Contextion � Multifidelities �
Multityping � Service Mogramming Language (SML) � Emergent systems �
SORCER

1 Introduction

Service-oriented architecture (SOA) emerged as an approach to combat complexity and
challenges of large monolithic applications by offering cooperations of replaceable
functionalities by remote/local component services with one another at runtime, as long
as the semantics of the component service is the same. However, despite many efforts,
there is a lack of good consensus on semantics of a service and how to do true SOA
well. The true SOA architecture should provide the clear answer to the question: How a
service consumer can consume and combine some functionality from service providers,
while it doesn’t know where those service providers are or even how to communicate
with them?

In service-oriented mogramming - modeling or programming, or both - three types
of services are distinguished: operation services, and two types of request services. An
operation service, in short opservice, invokes a service provider operation. An ele-
mentary request service asks a service provider for output data given input data.
A combined request service asks cooperation of service providers for output data and

© Springer Nature Switzerland AG 2020
D. Ferguson et al. (Eds.): CLOSER 2019, CCIS 1218, pp. 101–132, 2020.
https://doi.org/10.1007/978-3-030-49432-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49432-2_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49432-2_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49432-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-49432-2_6

utilizes obtained from multiple service providers output data. A service consumer
utilizes output data of aggregated request services. The end user that creates request
services and utilizes the actualized service partnership becomes the coproducer and the
consumer of created service cooperation in the network. Software developers develop
service provider provisioned in the network and end users develop service partnerships.

A compute service is the work performed in which a service provider (one that
serves) exerts acquired abilities to execute a computation. The true compute service
needs the computation and net-centric service providers to be expressed and executed
under condition that service consumers should never communicate directly to service
providers. The combined request service realized by opservices represents the dynamic
partnership of service providers in the network. In contrast the elementary request
service represents the opservice of the selected provider in the network.

Many people think they are doing or talking about SOA, but most of the time they
are really doing point-to-point integration projects with APIs, web services, or even just
point-to-point XML (REST). The reason why this approach is deficient is because
service consumers should never communicate directly to service providers. First, the
main concept of SOA is that we want to deal with frequent and unpredictable change
by constructing service abstractions and an architecture that loosely-couples the pro-
viders of capability from the consumers of capability. It is not possible to have direct
reliable communication if variability exists in the network and provided service
capabilities evolve over time. Second, if we are relying on black-box middleware and
often proprietary technology to manage service communication differences, it simply
shifts all the complexity and work from the endpoints to an increasingly more complex,
expensive, and brittle middle point. Reworked middleware, what often is done and
named as SOA, is not the solution for a dynamic, net-centric communication and
architecture.

Multidisciplinary Analysis and Design Optimization (MADO) is a domain of
research that studies the application of numerical analysis and optimization techniques
for the design of engineering systems-of-systems involving multiple coupled domains
and multiple evolving disciplines. The formulation of MADO problems has become
increasingly complex as the number of engineering disciplines and design variables
included in typical studies has grown from a few dozen to thousands when applying
high-fidelity physics-based modeling early in the design process [6]. Therefore, MADO
is an appropriate domain for studying real-world service-oriented architectures and
systems.

This is achieved by the use of reference architectures and their ability to place
information views on multidisciplinary data and integration of heterogeneous tools,
applications, and utilities used frequently by distributed engineering teams. There are
several trends that are forcing system architectures to evolve due to complexity of
engineering problems being solved presently [14]. Users expect a rich, interactive and
dynamic user experience on a wide variety of friendly user agents and highly modular
and dynamic systems. Systems must be highly scalable, highly available and run
locally or in the network, or both. Organizations often want to frequently roll out
updates, even multiple times a day. Consequently, it’s no longer adequate to develop
simple, monolithic applications with statically connected modules. When the dynamic
system changes frequently the static user agent cannot catch-up with the backend

102 M. Sobolewski

changes, so it becomes obsolete in evolving and complex highly dynamic MADO
systems. In a dynamic system when its backend is morphing constantly to emergent
solution [1], the user agent has to support emergent nature of its backend. An emergent
system means net-centric to refer to continuously evolving complex community of
people, devices, information and services interconnected by a communication network
to achieve optimal benefit of resources and better synchronization of flowback events
and their consequences to the users. An emergent system means also service oriented
(SO) and scalable with multiple computational fidelities of underlying services so the
communication network of services can be scaled up and down dynamically, from a
single computer to a large number of computers with relevant computational fidelities
[15, 16].

Top-down and bottom-up problem solving describes two different methods of
reasoning: working at the top is considered strategic and declarative, while working at
the bottom is tactical and imperative. How a given situation is actually perceived and
processed will vary with the person, experience, process expression and actualization
chosen. However, the approach is to do whatever is best for managing complexity of
the solution by a combination of programming paradigms in designing processes.
There is no universal programming paradigm that works well for all situations. Dif-
ferent paradigms are more applicable to different classes of problems and solutions.
One should always carefully choose the right paradigm to match the particular sub-
problem, or component service at hand. Programming paradigms are not language-
specific; therefore, basic paradigms should be available in a service-oriented language
as well.

An algorithm is a process expression for solving a problem in the form of a self-
contained step-by-step set of statements to be performed with an explicit control flow
defined. Statements often refer to a subroutine as a sequence of instructions designed to
perform a frequently used task within an algorithm. The emphasis on an explicit control
flow distinguishes an imperative programming language [9] from a declarative pro-
gramming language.

In declarative programming a process is expressed by the logic of computation
without describing its control flow. In particular, the logic of computation in functional
programming is defined by a function composition. The result of execution of a
function composition depends only on inputs and the function composition. There is no
a shared state that the execution of function composition depends on. A functional
program is stateless but imperative programs usually take advantages of a shared state
in an executing algorithm.

Object-oriented programming is a convenience and ability to reason about imple-
mented object operations as subroutines, called methods, with a shared state repre-
sented by instance and class variables encapsulated in objects. Being able to hide
details of subroutines and their data structures can help reason about the logic of object
cooperation such that each object in cooperation manages its own state by own
implementation of its subroutines (methods).

Service semantics can be declarative, imperative, or object-oriented depending how
multi-machine subroutines, corresponding to executable codes, can be combined into
service providers in the network. Therefore, a blend of declarative, imperative, and
object-oriented programming should be supported by SO programming languages

True Service-Oriented Metamodeling Architecture 103

intended for solving complex
problems and building hetero-
geneous distributed SO systems.

Each programming para-
digm introduces distinguishing
principles of its programming
model but also depends on its
lower level paradigm. The pil-
lars of SO programming intro-
duced in this paper are layered
on pillars of object-orientated,
procedural, and functional pro-
gramming as illustrated in
Fig. 1. The pillars of SO pro-
gramming are focused on con-
text awareness of services,
management of service multifi-
delities, and multitype manage-
ment of services for registering,
looking up, and referencing
both a single service provider
and cooperation of service pro-
viders. Each paradigm abstrac-
tion based on: functions,
procedures, objects, and ser-
vices is the foundation of cor-
responding pillars. The ceilings:
FP, PP, OOP, and SOM corre-
spond to functional, procedural, object-oriented programming, and service-oriented
mogramming, respectively. SO mogramming is not a replacement for any program-
ming paradigm, it just inherits programming styles from the layers below and com-
plements them with higher-level service abstractions.

Mogramming [4] that combines multiple programming paradigms uniformly [12].
A service mogram is an expression of cooperation of routines and models as com-
ponent services that in turn comprise of operation services, all represented in the
Service Mogramming Language (SML). Mogram exhibit hierarchically organized net-
centric executable codes represented by its operation services, a of the net-centric
service processor.

The Service-ORiented Computing EnviRonment (SORCER) [14, 19]) adheres to
the true SO architecture based on formalized service abstractions and the three pillars of
SO programming presented in Sect. 2. Evolution of the presented approach started with
the FIPER project [10] funded by NIST ($21.5 million) at the beginning of this mil-
lennium then continued at the SORCER/TTU Laboratory [19], and maturing for real
world aerospace applications at the Multidisciplinary Science and Technology Center,
AFRL/WPAFB [2, 4–7, 13].

Fig. 1. The service mogramming gate.

104 M. Sobolewski

The remainder of this paper is organized as follows: Sect. 2 relates to a service-
oriented conceptual framework called Meta-Service Facility (MSF); Sect. 3 describes
service semantics in SORCER; Sect. 4 gives introduction to SML; Sect. 5 illustrates
introduced concepts of SML with an example of multifidelity model; Sect. 6 describes
briefly the object-oriented platform of SORCER; then we conclude with the final
remarks and comments.

2 Meta-Service Facility (MSF)

The Meta-Object Facility (MOF) is the Object Management Group (OMG) standard for
object-oriented model-driven engineering [18]. Its purpose is to provide a type system
for entities in the CORBA (Common Object Request Broker Architecture) architecture
and a set of interfaces through which those types can be created and manipulated.
Similarly, the Meta-Service Facility (MSF) is a reference service-oriented methodology
that focuses on creating and exploiting service models, which are conceptual models of
all the topics related to specific structures of request services in SML. Hence, it
highlights and aims at abstract representations of the knowledge and activities that
govern a particular domain service, rather than the computing concepts in that domain.
Its purpose is to provide a type system and semantics for entities in the SORCER
(Service-Oriented Environment) architecture. MSF is a metamodel defined by the
Multifidelity Service System (MSS, defined in Sect. 2.1, 12) that specifies how the
SML model should conform to the conceptual MSF framework.

A computing service is the work performed in which a service provider (one that
serves) exerts acquired abilities to execute a computation. A service provider corre-
sponds to actualization of a request service. A single service provider actualizes ele-
mentary request service, but a combined request service is actualized by a cooperation
of service providers. Therefore, a request service may represent a process expression
realized by cooperation of service providers. In this Section, we assume that a math-
ematical function represents a request service to be actualized by a corresponding
actualization, executable code or a combination of executable codes. An elementary
request service is actualized by an executable code, but a combined request service
(function composition) is actualized by a combination of executable codes.

2.1 Multifidelity Function Systems

A function is a prescription that assigns to every entity of one set X an entity of another
(or the same) set Y what is declared by stating its domain X and codomain Y as follows:

f : X ! Y ð1Þ

such that exists a relation R � X � Y and each pair \x; f ðxÞ[2 R. A relation R is
called a realization of a function f. So, a function f is like a process f ¼ ðX; Y ;RÞ. Each
input x that is in the set X of inputs is paired with one output y in the set Y of outputs:

True Service-Oriented Metamodeling Architecture 105

y ¼ f ðxÞ ð2Þ

A function of two or more variables is considered to have a domain consisting of
ordered pairs or tuples of argument values. The arity of a relation R is the dimension of
the domain in the corresponding Cartesian product. A function of arity n thus has arity
nþ 1 considered as a relation.

A set F of interrelated multivariable functions is called a functional system FS

FS ¼ \X; Y ;F[ð3Þ

with domain X and codomain Y, such that for each function fi 2 F, there exist a
realization Ri � Xn � Y where Xn is the Cartesian power of a set X.

A multifidelity function f

f ¼ \X; Y ;Rf ;mFif[ð4Þ

is a mapping with multiple realizations mFif ¼ fRig; i ¼ 1; 2; . . .;m with a selected
realization Rf 2 mFif . A selected realization Rf is said to be a fidelity of function f .

Let’s denote a fidelity of a function f as fiðf Þ, then each input tuple x of X is paired
with one output tuple y of the set Y according to its fidelity fiðf Þ where n is the arity of
function f , provided ðx; f ðxÞÞ 2 fiðf Þ

y ¼ f ðx; fiðf ÞÞ ð5Þ

A multifidelity function f is a dynamic process f ¼ ðX; Y ; fiðf Þ;mFif Þ, with a sub-
stitutable fidelity fiðf Þ 2 mFif .

A fidelity substitution fp, called a projection in FS, is a mapping:

fp : F ! FR ð6Þ

where F is a set of multifidelity functions, FR is a set of all realizations of functions F
in FS, such that for each function f 2 F; fpðf Þ 2 mFif and fpðf Þ ¼ fiðf ÞÞ, for
mFif � FR � PðX � YÞ.

A fidelity morpher fm is a mapping that defines fidelities of functions in association
with the inputs and outputs of functions, as follows:

fm : F � X � Y ! FR ð7Þ

where for each f 2 F, and x 2 X and y 2 Y , fmðf ; x; f ðxÞÞ 2 mFif and mFif � FR.
A multifidelity function system is a triplet:

MFS ¼ \F;FP;FM[ð8Þ

where F is a set of interrelated functions with a related set of fidelity projections FP and
a set a fidelity morphers FM. Realizations of functions F under fidelity management
defined by FP and FM are called functional multifidelities. Note that a single projection
fp 2 FP defines a realization of multifidelity functions F in MFS while a set of

106 M. Sobolewski

multiple fidelity projections for the same F is a metasystem – a system of projected
systems. A set FP of projections allows for a reconfiguration of MFS. A set of mor-
phers FM defines self-morphing of MFS based on runtime inputs and outputs inter-
preted by morphers applying accordingly fidelity projections FP.

Multifidelity functions are polymorphic functions. Multifidelity is a kind of ad hoc
polymorphism in which a polymorphic function can denote a number of distinct and
potentially heterogeneous realization (implementations) depending on the type of
arguments to which it is applied. The term ad hoc in this context refers to the fact that
this type of polymorphism is not a fundamental feature of the type system.

A total fidelity R0 of a multifidelity function f is a fidelity such that R0 2 mFif and
for each Ri 2 mFif ;Ri \ R0 � R0. If Ri \ R0 � Rj \ R0 for Ri 2 mFif and
Rj 2 mFif , then Ri is said to be lower fidelity than Rj or Rj is higher fidelity than Ri.
A total fidelity of function f can be considered as a realization of a total function f and
any lower fidelity as a realization of a partial function of function f . Lower fidelities of
a function f 2 F are often used when the exact domains of its realizations in mFif , are
not known or they are proper subsets of the domain R0.

Note that a fidelity of a multifidelity function is not related directly to a fuzzy
concept (like in fuzzy sets or rough sets) of which the membership boundaries of a set
Ri 2 mFif can vary considerably according to current context or conditions. Here
boundaries of all sets Ri are fixed once and for all fidelities. It means we are not
concerned with a vague or imprecise definition of function; we might have a precise
(analytic) realization as well. We can consider lower fidelities as good approximations
of R0 under some conditions. In such situation, a lower fidelity can be more beneficial,
“cheaper” to compute than a higher fidelity, while a higher fidelity is also available but
considered not preferred all the time due to, for example, time-consuming realization.

Let’s specialize a multifidelity process f in MFS defined by a realization Rf (4) as a
multifidelity functionality or subroutine fi fð Þ ¼ Rf (function, procedure, method, ser-
vice). Let’s also specialize both a domain and a codomain to a set C of all tuples of
elements from sets X and Y. A tuple in C is called a tuple context of the set C of all tuple
contexts. If \x; f xð Þ[2 R; x 2 X; f ðxÞ 2 Y and X � C and Y � C then the function
f such that:

f : C ! C ð9Þ

is called context aware or contextion function (in short, contextion). Later we consider
all request services as contextions, unless otherwise stated.

Depending on the programming semantics of function f 2 F, defined by a pro-
gramming subroutine, the multifidelity function system MFS with the applied pillars of
programming (see Fig. 1) can be specialized as functional, procedural, object-oriented,
service-oriented, or a programming system with any combination of programming
paradigms needed. Despite many efforts, there is a lack of good consensus on what is
the proper semantic of true service and how to do true SOA well. In the following
Subsection a conceptual multifidelity service-oriented system is proposed with multi-
fidelities and context awareness as two pillars of service orientation. All pillars are
revisited later with the third one, multityping, defined in Sect. 3.

True Service-Oriented Metamodeling Architecture 107

2.2 Multifidelity Service Systems

Service-oriented architecture (SOA) is an architectural approach in which applications
make use of services available in the network. It emerged as the approach to combat
complexity and challenges of large monolithic applications by offering cooperation of
replaceable local/remote component services with one another at runtime, as long as the
semantics of the component service is the same. A service network is a structure that
brings together local/remote service providers to deliver service cooperation repre-
sented by the net-centric request services – expressions of the hierarchically organized
cooperations of service providers. The net-centricity of request services and replace-
ability of local/remote service providers is defined in SML using multitypes of provider
services also called operation services, in short opservices, as explained in Sect. 3. In a
conceptual multifidelity service system MSS, the semantics of local/remote service
providers (delivering executable codes) is generalized to replaceable multifidelity
realizations of service functions – service contextions. Semantically request services are
like cooperation activities but opservices like service provider actions.

In a multifidelity function system MFS system defined in (8) both a domain and a
codomain of functions are abstracted to a set C of tuple contexts. However, in MSS data
used by request services is embedded in service contexts – collections of hierarchically
organized attributed tuples, a kind of service taxonomy or ontology. Combined request
services use an evolving shared context while executing cooperative problem solving
and return the result service context that contains outputs of all participating services.
The design principle for aggregating data into service contexts and processing shared
contexts by all cooperating services working in unison is called service context
awareness. Service context awareness, also called service contextion, is a form of
parametric polymorphism. In particular, a service contextion is a mapping from input
service context to output service context. Using contextion, a function or a data type
can be expressed generically so that it can handle inputs and outputs identically without
depending on their type. Request services (multifidelity service contextion) and service
context types (data types) are generic services and generic datatypes and form the basis
of generic service-oriented programming.

A service context is a collection of related named entries such that each name is
uniquely associated with a constant, calculated, or undefined value. Names of entries
create a namespace of the context in terms of domain attributes. A sequence of attri-
butes associated with a context value is called a path. Attributed paths of context
entries specify the semantics of context data. Note that a tuple context is an ordered
collection of input/output data while a service context is unordered semantic map
(ontology) that associates values with context paths shared in the network for coop-
erating service providers.

Given the set ES of all entries, the set of all service contexts CS is equal to P(ES),
the powerset of ES. Contexts with constant values are called data contexts or data
models and denoted by DC. Contexts that contain evaluated entries are called context
models and denoted by CM. Therefore, the set of contexts CS is the union

108 M. Sobolewski

CS ¼ DC [CM ð10Þ

A request service, called a contextion function or simply contextion, is a mapping

c : DC ! DC ð11Þ

such that c dcinð Þ ¼ dcout for dcin 2 DC and dcout 2 DC. A context dcout is an output
context of the service request c 2 RS for an input context dcin.

A multifidelity function system MFS defined in (8) with a set F of functions
replaced by the set RS of multifidelity request services with the set CS of service
contexts is called a multifidelity service system defined as follows:

MSS ¼ \CS;RS; SP; SM[ð12Þ

where SP is a set of service projections, SM is a set a service morphers. Realizations of
service requests RS under fidelity management defined by SP and SM are called service
multifidelities.

A multifidelity from the computing perspective refers to a computing environment
with multiple implementations for a given computing process, meaning there are dif-
ferent computing processes to choose from [15–17]. When selecting fidelities for a
complex computing process, it is important to appropriately balance the fundamental
tradeoff between cost and computability of total versus partial service realizations at
runtime. Such tradeoff in complex systems can be part of the computational process
itself with fidelity management based on analysis of intermediate input and output
service contexts at runtime with morph-fidelities, fidelities associated with service
morphers from SM. Morphers based on contextion inputs and outputs reconfigure
fidelities of contextions RS in MSS by applying corresponding projections from SP
[15].

In SML various types of request services are distinguished with two main cate-
gories: elementary and combined request services along with five types of contextions
described in Sect. 3. On the one hand, a multifidelity function system MFS, as defined
in (7), is a conceptual framework for multifidelities in SML. On the other hand, a
multifidelity service system MSS defines context awareness as parametric polymor-
phism for input/outputs of service contextions in MSS.

2.3 Multitypes of Provider Services

A service provider is a multifidelity realization of an elementary request service in the
multifidelity service system MSS (12). In contrast, an operation service, in short, an
opservice, is an expression of a direct service provider in SML, then request services
use opservices directly. This allows to distinguish service operations for service ac-
tualization from various combinations of request services for service cooperation.

A service type is an attribute of service provider which tells the request service how
its service consumer intends to use a required service provider. An association
\op; tp[of a service type tp and its operation op that represents a contextion is called
a service signature. A service provider may implement multiple service types each with

True Service-Oriented Metamodeling Architecture 109

multiple operations. Therefore, a signature type can be generalized to a multitype that
serves as a classifier of service providers in the network. A multitype signature
\op; tp1; tp2; . . .; tpn[is an association of a service operation op and a multitype in
the form of the list of service types tp1; tp2; . . .; tpn implemented by a service provider.
The service type of a multitype associated with an operation is called a primary service
type, usually the first service type in the list of service types of the signature. If all
service types of a signature are of interface type, then such signature is called remote. If
a primary type of a signature is a class type, then a signature is called local.

An instance of a service provider actualized by a signature is called a providlet.
Note that binding to a service provider in the network is dynamic, so the identity of a
service provider instance is undetermined in a request service. Service signatures in
request services are free variables to be bound to providlets - redundant service pro-
vider instances available or provisionable in the network.

Multityping is a form of subtype polymorphism in which a service provider mul-
titype (subtype) is related to another multitype (supertype) by dynamic binding the
service multitype to local/remote service provider instances, meaning that service
signatures of request services can also operate on subtypes of service providers. Net-
centric multityping leads to multitype management - coordination of the service
activities: registration, discovery, provisioning, and lookup - all based on a service
multitype implemented by service providers. However, multi-multitype management is
the organization and coordination of provisioning and binding a combined request
service with multiple service signatures, using its multi-multitypes, to a group of service
providlets. A multi-multitype of a combined request service is the classifier of a service
providlet group in the network as the instruction set of the dynamic service processor
for the request service. Net-centric multi-multitype grouping for combined service
requests is oblivious of implementation, location, and invocation protocols of partici-
pating self-contained service providlets.

Multityping defines the inheritance hierarchy of service providers in the network.
A multitype N is assignable from a multitype M, if N and M are the same, or each
service type of N is assignable from a service type of multitype M. If N is assignable
from M, then N is said to be a supermultitype of M. If M is a submultitype of N, then
multityping relation is defined, as N is assignable from M, to mean that any signature of
type M can be safely used in a context where a signature of type N is expected.
Therefore, if a providlet of multitype N is required while in the network exists a
providlet of type M and N is assignable from M, then the signature of multitype N can
be bound to the providlet of multitype M. The same applies to multi-multitypes that
define the inheritance of service providlet groups in the network.

3 Service Semantics in SORCER

Service semantics can be either declarative, imperative, OO, SO, or a blend of them.
A blend of relevant combinations of request services should be supported by SO
languages intended for solving complex problems and building distributed heteroge-
neous SO systems. Therefore, elementary and combined services should be expressed
in a programming language with adequate semantics and syntax. Each programming

110 M. Sobolewski

paradigm introduces distinguishing principles of its programming model but also
depends on its lower level-supporting paradigm. Therefore, the pillars of SO pro-
gramming introduced in this paper are layered on pillars of OO, procedural, and
functional programming (see Fig. 1). The pillars of true SO programming: contexting,
multifidelity, and multityping describe the basic traits of request services as described
in Sect. 2. The presented metafidelity service system MSS (12), is a metamodel for the
SML service semantics described in this Section, the SML syntax (Sect. 4) and the
reference SORCER architecture (Sect. 6). The term semantics reflects the need to not
only model something in the real world, but to model the meaning that this something
has for the purpose of the metamodel – service-oriented computing. SML expressions
are executed with a Service Virtual Machine (SVM) presented in Sect. 6.

A service consumer is a combination of request services, but a service provider
delivers executable codes (as executable applications, tools, or utilities) to be actualized
via operation services (of Signature and Evaluator types, called exec-opservices) used by
elementary request services (of Task and Entry types), see Fig. 2. SML request services
say what to do, but service providers run executable codes that are expressed by opser-
vices. Combined request services represent SO processes by hierarchically organized
elementary and other request services that in turn run cooperations of executable codes
expressed by opservices. In other words, in SML exec-opservices are provider services –
service specifications or contracts, but service providers are implementations of them.
A set of opservices of a combined request service binds at runtimes to the collection of
service providers called the service provider partnership. The executable codes of the
partnership form the instruction set of the dynamic net-centric service processor.

A pipeline service is a set of opservices connected in series, where the output of one
opservice is the input of the next one. The opservices of a pipeline can be executed
sequentially or in parallel. A pipeline is a combined opservice of Evaluator type that
can be used with looping and branching evaluators to form structured algorithms. Exec-
opservices can be concatenated with cxt-opservices that preprocess/postprocess service
contexts used by exec-opservices and request services.

A domain service, in programming dialect called a mogram [4], is either a routine
(imperative domain) or model (declarative domain), or both. It provides for
declarative/imperative transitions within a model across both component models and
routines (transmodel) and for transitions within a routine across both component rou-
tines and models (transroutine). The Transroutine and Transdomain types are subtypes
of the Transdomain type along with the Collaboration type as shown in Fig. 2.

A domain service is either declarative – a model, or imperative – a routine. Models
are collections of functional compositions of entries, but routines are either structured
blocks of routines or workflow jobs comprised of component routines and elementary
routines called tasks. In principle, a model is a hierarchically composed domain of
entries, but a routine is a domain of a hierarchically structured tasks.

Subordinated domain of a transroutine or a transmodel contribute directly to its
transdomain responses - the output context of the transdomain. However, a service
collaboration is the transdomain focused on cooperation of subordinated domains
toward collaboration driven by an explorer/optimizer. It means that direct results of
component domains are used by the exploration/optimization process returning an
indirect result.

True Service-Oriented Metamodeling Architecture 111

The Domain type is the direct supertype of Context and the subtype of Contextion.
Subtypes relationships of the Domain type are shown in Fig. 2 by the same color with
its subtypes: Routine and Model and direct generalizations as well. The coloring
convention applies to the color of Transdomain and its subtypes (Collaboration,
Transmodel, Transroutine) as well.

A discipline service is a triplet: a <context, contextion, dispatcher> (CCD), such
that a context is the input data, a contextion is the process expression (request service),
and a dispatcher is the controller (routine service) of the discipline. A dispatcher
configures and dispatches its contextion to be executed in the network then returns the
proper result. CCD is the architectural service pattern for developing and deploying
disciplinary services as self-contained services with multifidelity components (contexts,
contextions, and dispatchers) for constructing runtime triplets to be used in federated
service with centralized governance. Therefore, any contextion can be used to create a
discipline fidelity of multifidelity disciplines. Next, multiple heterogeneous
local/remote disciplines can be combined into a multidisciplinary service under control
of the shared central governance.

A governance service is a specification of transdisciplinary supervised cooperation
of federated disciplines. Federated disciplines can be seen as a cooperation of
heterogeneous contextions (states) unified under common governance to be realized by
a supervisor (governor).

Service provider partnerships are runtime collections of service providers that
realize service cooperations expressed by request services. From the service actual-
ization point of view, a pipeline depends on the Chain of service providers bound to the
concatenation of opservices, but a combined request service depends hierarchically on
actualization of component elementary request services, which in turn depend on
actualization of opservices executing corresponding executable codes of corresponding
service providers. Partnerships represent dynamic cooperations of Chain, Assemblage,

Fig. 2. The service relationships in SML for process expression and actualization. By the same
color of Domain its subtypes Routine and Model are indicated. The same coloring convention
applies to color of Transdomain and its subtypes Collaboration, Transroutine, and Transmodel.

112 M. Sobolewski

Aggregate, and Federation type – see Fig. 2. An assemblage refers to grouping pro-
viders of elementary request services used in domains as routines or models. An
aggregate refers to grouping assemblages for transdomains as transroutines, trans-
models, and collaborations. Finally, the federation refers to governing of discipline
services, that in turn federate partnerships of discipline contextions specified by the
governance service as shown in Fig. 2.

To illustrate the structure of service federalism with five types of combined request
services, let us consider governance service A depicted in Fig. 3. It is the functional
cooperation A(B(E, F(I, J)), C, D(G(K), H)) of three disciplines (two with collabora-
tions B and D and one with a pipeline C), two additional collaborations (F and G), and
five assemblies (E, I, J, K, H). The governance A binds hierarchically to service
federation FS of three disciplines at runtime with 23 service providers by 21 elementary
services and 2 opservices.

SO federalism is a model of net-centric governance – a federal (central) contextion
with federated contextions of disciplines (like states), and an opservices corresponding
to providlets (citizens). The rules of governance are realized by the service operating
system (SOS – a kind of federal government). SOS coordinates execution of federated
disciplines downstream from the governance via request services to opservices. It does
so by hierarchically executing service providers referenced by multitypes of opservices
at runtime. The main purpose of SOS is to satisfy interests of service consumers and to
fulfill their needs using capabilities of hierarchical service partnerships for request
services - from federations, aggregates, assemblages, chains, and opservices down to
service providers of executable codes.

Fig. 3. Governance service – multidisciplinary service as a cooperation of seven types of
services.

True Service-Oriented Metamodeling Architecture 113

Entries and tasks depend on operation services: evaluators and signatures,
respectively. Entries use various types of multifidelity evaluators, to invoke executable
codes. A signature is a multitype provider service (a net-centric handle) to be bound at
runtime to the remote/local service providlet to execute a signature operation. The
unique signature-based architecture allows for configuration and execution of dis-
tributed dependencies of combined request services by uniform handling of local and
remote service providers at various levels of granularity and fidelity. When dealing
with net-centric complexities, you have a case to distribute services, otherwise create a
modular monolith with locally executable services. Later, when complexity of the
system becomes unmanageable you can deploy almost instantly the existing local
providers as network providers on as-needed basis, and then run updated services of the
original monolith in the network. In SORCER it is done by changing the primary
service type of signatures from the class type to the interface type, or just selecting the
remote service fidelity. When using the signature-based approach, service providers
never communicate directly with each other. The signature with the primary service
type as an interface type is called a remote signature and with a class type is called an
local signature. When executing a combined request service, SOS creates the hierar-
chical service partnership with the relevant network connectivity at runtime and exe-
cutes the exec codes of the partnering providers.

Governance request services allow for creating large scale multidisciplinary fed-
erated systems. However, most discipline processes (contextions) are expressed by
mograms required for constructing effective heterogenous discipline service to be
federated. A domain is a contextion composition expressing a service combination by
one of the five design patterns:

1. entry model – is a declarative expression of interrelated higher-order entries (con-
tentions) in a context model.

2. service block – is an expression of concatenated subroutines with branching and
looping tasks as a block-structured subroutine.

3. service job – is an object-oriented composite (workflow) of subroutines with a
control strategy for each component job to be executed sequentially or in parallel,
synchronously or asynchronously, with context pipes between component
subroutines.

4. service transroutine – is a service block or service job (transroutine) comprised of
both subroutines and service models

5. service transmodel – is context model comprised of both models and subroutines.

The presented above mogramming abstractions reduce representational complexity
of typical SO processes, so it makes easer to comprehend a computing paradigm of
each service design pattern: functional (1), procedural (2), and object composite (3 and
4). Therefore, each mogram abstraction exposes the details which really matter to the
domain-specific users from the perspective of preferred programming paradigm and
hide the other details (service types, exec codes of evaluators, providlets implementing
multitypes) regarding development and deployment of service providers implemented
with lower level programming abstractions and languages used by software developers.
The above four service design patterns reflect corresponding programming styles

114 M. Sobolewski

shown in Fig. 1. The mogram design patterns allow to blend multiple programming
styles within a single combined requested service.

The presented service semantics of request service in SORCER allows to sum-
marize the three SO pillars (see Fig. 1) as follows:

1. Contextion allows for a mogram to be specified generically, so it can handle context
data uniformly with required data types of context entries to be consistent with
ontologies of service providers. Contextion as the form of parametric polymorphism
is a way to make a SO language more expressive with one generic type for inputs
and outputs of all request services.

2. Morphing a request service is affected by the initial fidelities selected by the user
and morphers of morph-fidelities. Morphers associated with morph-fidelities use
heuristics provided by the end user that dependent on the input service contexts, and
subsequent intermediate results obtained from service providers. Multifidelity
management is a dispatch mechanism, a kind of ad hoc polymorphism, in which
fidelities of request services are reconfigured or morphed with fidelity projection at
runtime.

3. Service multityping as applied to service signatures and providers is a form of
subtype polymorphism with the goal to find a remote instance (providlet) of the
service provider by the range of service types that a service provider implements
and registers for lookup. It also allows a multifidelity opservice to call an operation
of a primary service type implemented by the service provider as a different service
fidelity. With respect to service providers to be provisioned for service signatures of
a request service – multi-multityping of the request service specifies which service
providers have to be additionally provisioned to complement existing service
providers in the network.

4 Introduction to SML

A language can be specified by its metamodel with a great flexibility [4], as shown in
Fig. 4. A language can be also specified by a grammar, for example the Java language
in EBNF. The primary responsibility of the metamodel layer is to define languages that
describe semantic domains to allow users to model a wide variety of different problem
domains. The presented approach to true service-oriented metamodeling architecture is
based on three abstract service categories: operation services (signatures and evalua-
tors), elementary request services (task and entries) and combined request services
(domain, discipline, transdomain, and transdiscipline) used with three pillars of service-
orientation: contextion, multifidelity, and multityping described in Sect. 2.

Therefore, MSF for SML, is like MOF [18] for UML. It is a metamodel defined by
the multifidelity service system MSS (12) that specifies how the SML model should
conform to the conceptual MSS system. The SML metamodeling hierarchy along with
the UML metamodeling hierarchy is depicted in Fig. 4 to explain the relationship of
SML (MSF/M2) to the object-oriented SORCER runtime (MOF/M0). The SORCER
operating system manages request services that comprise of hierarchically structured

True Service-Oriented Metamodeling Architecture 115

operation services and runs the corresponding net centric service provider partnership
(MSF/M0) bound to operation services, that serve as the instruction set (MOF/M1-) of
the service processor at MSF/M1-.

A request service, called a context model CM in SML conceptually corresponds to
a multifidelity service system MSS (12) with a collection RS of interrelated request
services as functional entries in CM used as its domain and codomain. A multifidelity
contextion f = (CM, fi(f), mFif) in CM is declared in SML as a service entry as follows:

func f = ent(“f”, mFif, args(“f1”, “f2”, …, “fk”))

where “f” is a name (a path in CM) of the function f declared by the operator ent;
“f1”, “f2”, …, “fk” are argument paths of function f in CM, and mFif is the multifidelity
of function f. By default, a fidelity of function f, fi fð Þ – an entry evaluator, is the first
realization in the ordered set mFif . The argument paths “f1”, “f2”, …, “fk” in CM bind
to values of corresponding entries in CM to create a subcontext of CM as the argument
of contextion f.

The ent operator defines a generic functional expression declared in a context
model CM. Functional entry form higher-order functions – responses of the model. If
ent declares a constant function, then a model with all such entries is called a data
model or data context.

Fig. 4. The UML/SML specific five-layer MOF-MSF metamodel hierarchy.

116 M. Sobolewski

A service signature in SML is an operation service representing either the local or
remote operation of a service provider. It declares a service type of provider tp with its
operation op, to be invoked in the scope of its service context. A signature association
<op, tp> is denoted in SML by sig(op, tp). A functional request service f defined by an
operation op to be executed by the service provider implementing a service type tp is
declared as follows:

func f = ent(“f”, sig(op, tp, inPaths(“x1”, “x2”, …, “xs”),
outPaths(“y1”, “y2”, …, “yt”)))

or as a multifidelity service entry with multiple signatures:

func f = ent(“f”, entFi(sig(op1, tp1), …, sig(opn, tpn)))

where the operator entFi declares a multifidelity of entry f and the operators inPaths
and outPaths specify subcontexts determined by input and output paths in CM as the
argument and return values of the operation op.

A service provider may implement multiple service types used to classify its
instances in the network by its multitype. In that case a service provider multitype, as a
list of implemented service types tp1; . . .; tps, is the service provider’s net-centric
identity. Optionally a service provider name with additional attributes can be used as
well. Thus, a signature s with a multitype tp1; tp2; . . .; tpsð Þ, an operation op1 of a type
tp1, and an optional service provider name myService takes the following expanded
form:

sig s = sig(op1, tp1, tp2, …, tps, prvName(“myService”))

Note that a signature does not refer to a particular instance of a service provider; its
multitype is used for binding to an available instance (providlet) at runtime. Multi-
typing is used to manage unpredictability of the unreliable network comprised of
replaceable remote service providlets with one another at runtime, as long as the
multitype semantics of the service providlets is the same. The local/remote semantics of
a service in SML is based on the concept of multityping. If the primary type tp1 is a
class type then the signature works as a service provider constructor – creates an
instance at runtime when the service provider needs to be executed, otherwise SOS
finds in the network a remote proxy of the service providlet implementing the required
multitype.

A value entry x (constant function) equal to y, is declared in CM as follows:

val x = val(“x”, y), for value y ∊ Y

or a multifidelity variable x

True Service-Oriented Metamodeling Architecture 117

val x = val(“x”, entFi(val(“x1”, y1), …, val(“xk”, yk)))

A data context dc (of cxt type) is an unordered collection of value entries defined as
follows:

cxt dc ¼ context val . . .ð Þ; . . .; val . . .ð Þð Þ

and valuation of the entry x in dc as follows:

Object y = val(dc, “x”)

where “x” is a name of variable (a path) in a data context dc.
A value of an entry x in cxt can be set to v as follows:

setValue(dc, “x”, v)

A context model mdl (of mog type) as an unordered collection of value entries and
functional entries is declared as follows:

mogmdl ¼ model val . . .ð Þ; . . .; ent . . .ð Þ; . . .ð Þ

Note that multivariable functional entries of a context model may take other
functional entries as arguments to create higher-order functions while function multi-
variability is bound to the corresponding subcontext of the underlying model.

Execution of an entry f in a model mdl is declared as follows:

Object y = exec(mdl, “f”)

or
Object y = exec(mdl, “f”, cin)

where y �Y is an output value and cin is a context used for substitution of entries in
mdl.

Evaluation of a model mdl for its responses is declared as follows:

cxt cout ¼ eval mdlð Þ

or

cxt cout ¼ eval mdl; cinð Þ

where cout is a data context - the result of evaluation of responses for an input context
cin. Model evaluations are defined by function compositions of response entries with no
explicit strategy for altering the function compositions of the model. However, function
compositions can be altered by execution dependencies specified for entries that
depend on execution of other entries in the model.

118 M. Sobolewski

A subset of responses of a model (paths of response entries in the model) can be
part of the model declaration by inlining responses “f1”, “f2”, …, “fk” as follows:

response(“f1”, “f2”, …, “fk”)

Alternatively, responses can be updated as required. To increase responses:

responseUp(mdl, “f1”, “f2”,…, “fk”)

and to decrease responses:

responseDown(mdl, “f1”, “f2”,…, “fk”)

No paths provided for responseDown removes all responses and responseUp may
append new responses of the model.

So far, we have defined in SML, an operational service of sig and evaluator types,
elementary services of ent and val types, and request services of context and model
types. The following statement executes any service sr:

Object out ¼ exec sr; arg1; . . .; argnð Þ

where argi is an SML argument of the Arg type. For example, signatures, fidelities,
contexts, and models are of Arg type.

The statement executing the operation add of service type Adder takes the form:

exec(sig(“add”, Adder.class),
context(val(“x1”, 3.0), val(“x2”, 1.0), val(“x3”, 7.0))

and returns 11.0 by an instance of a service provider found in the network that
implements the service type (interface) Adder. Here, the signature sig(“add”, Adder.-
class) binds to an instance of service provider - providlet - implementing the service
type Adder. If the class AdderImpl implements the interface Adder, then the execution:

exec(sig(“add”, AdderImpl.class),
context(val(“x1”, 3.0), val(“x2”, 1.0), val(“x3”, 7.0))

creates an instance of AdderImpl at runtime and calls the method add for a given
context on the locally created instance. Therefore, a change of the primary type of
signature from interface type to a class type changes a remote call to a local one and
vice versa.

True Service-Oriented Metamodeling Architecture 119

A service task is an elementary request service defined by a signature with an input
context as follows:

mog y = task(“y”, sig(op, tp), context(…))

where “y” is a name of the task y with a given signature and an input context.
A multifidelity task is declared in SML as follows:

task(“y”, sigFi(sig(“fi1” , op1, tp1),…, sig(“fin”, opn, tpn)), context(…))

where the operator sigFi declares a multifidelity of task y with the first signature as
a default fidelity. A selected fidelity can be preselected or declared as an argument
when executing a task or set by the fidelity manager of its containing mogram at
runtime.

At its heart, service-orientation is the act of uniform decomposition into self-
contained local and/or remote executable codes, represented by exec-operations ser-
vices, interconnected and replaceable at runtime. In SML interconnections of functional
entries and service tasks (see Fig. 2) are declared by a combined request service
(models and subroutines) that binds operation services (evaluators and signatures) to
remote/local executable codes at runtime.

In SML a service subroutine is a request for a procedural (block) or workflow
(job) service type. A service task is an elementary subroutine used in combined sub-
routine. A combined subroutine is a collection of subroutines and/or mograms grouped
together within the scope of SML operators, either block or job. A subroutine block is a
concatenation of component mograms along with flow-control tasks: conditional (opt,
alt) and loop (loop) tasks. The SML semantics of opt, alt, and loop is the same as the
corresponding UML operators used with interaction frames (combined fragments) in
sequence diagrams. A subroutine job (service workflow) is an object-oriented com-
posite of component subroutines and/or mograms, optionally with an explicit control
strategy and service pipes for interprocess communication between components of the
workflow.

Subroutines can be used as evaluators of entries in context models, but responses of
evaluated context models can be used as data contexts in subroutines. That way, either
a subroutine blended with models, or a model blended with subroutines, creates a
service combination of models and/or subroutines – a service mogram. The SML ent
operator, in most obvious cases, declares a service entry of the type according to its
evaluator type. However, specialized SML entry operators, for example: val, prc, lmb,
snr, and srv correspond to entry subtypes: value, procedure, lambda, service neuron,
and service, respectively; can be used to indicate directly requested entry subtypes.

A mogram min to be executed by exerting cooperating service providers is declared
as follows:

mogmout ¼ exert minð Þ

120 M. Sobolewski

An exerted mogram mout contains the result of execution and all net-centric
information regarding providlets and execution of their tasks. The result operator
returns the output context of the exerted mogram mogout as follows:

cxt cout ¼ result moutð Þ

The value y of variable x in cout is specified by the value operator as follows:

Object y = value(cout , “x”)

or from the exerted mogram directly:

Object y = exec(mogout, “x”)

An evaluation result cout of a mogram min is a data context declared as follows:

cxt cout ¼ eval minð Þ

Note, that the eval operator returns an output context cout but the exert operator an
executed mogram mout.

A mogram is a collection of interacting request services (entries, tasks, models, and
subroutines) that bind at runtime to a cooperation of service providers via mogram
opservices. Multifidelity mograms can morph during execution under control of the
fidelity mangers and related morphers with the goal to return the emerged result of the
evolving net-centric cooperation of service providers - a morphing system of systems.
A mogram, is also called an exertion [11] due to exert operator applied to mograms.

To illustrate SML in action we refer the reader to the examples, in the open source
SORCER project [20], in the module examples, in particular multifidelity test cases: at
sml/src/test/main/java/mograms/ModelMultiFidelities.

5 An Example of a Multifidelity Model in SML

To illustrate the introductory SML syntax presented above in action, a simple context
model is declared in SML with four multifidelity entries (mFi1, mFi2, mFi3 and mFi4),
four metafidelities (sysFi2, sysFi3. sysFi4, sysFi5), four morphers (morpher1, mor-
pher2, morpher3, morpher4) as lambda expressions, and five provider services used in
entries and tasks of the model mdl below. Signatures in entries are remote and in tasks
local.

True Service-Oriented Metamodeling Architecture 121

// multifidelity model with four morph-fidelities
// (mphFi) and corresponding morphers
mog mdl = model(inVal("arg/x1", 90.0),

inVal("arg/x2", 10.0), inVal("morpher3", 100.0),
ent("mFi1", mphFi(morpher1, add, multiply)),
ent("mFi2", mphFi(entFi(ent("ph2", morpher2),
ent("ph4", morpher4)), average, divide, subtract)),

ent("mFi3", mphFi(average, divide, multiply)),
ent("mFi4", mphFi(morpher3, t5, t4)),
fi2, fi3, fi4, fi5,
response("mFi1", "mFi2", "mFi3", "mFi4", "arg/x1",
"arg/x2", "morpher3"));

// signatures used in multifidelity entries in mdl above
sig add = sig("add", Adder.class,

result("y1", inPaths("arg/x1", "arg/x2")));
sig subtract = sig("subtract", Subtractor.class,

result("y2", inPaths("arg/x1", "arg/x2")));
sig average = sig("average", Averager.class,

result("y3", inPaths("arg/x1", "arg/x2")));
sig multiply = sig("multiply", Multiplier.class,

result("y4", inPaths("arg/x1", "arg/x2")));
sig divide = sig("divide", Divider.class,

result("y5", inPaths("arg/x1", "arg/x2")));
// two service tasks used as fidelities of mFi4 in mdl
mog t4 = task("t4", sig("multiply", MultiplierImpl.class,

result("result/y",
inPaths("arg/x1","arg/x2"))));

mog t5 = task("t5", sig("add", AdderImpl.class,
result("result/y",

inPaths("arg/x1", "arg/x2"))));
// four morphers used with morph-fidelities
Morpher morpher1 = (mgr, mFi, value) -> {

Fidelity<Signature> fi = mFi.getFidelity();
if (fi.getSelectName().equals("add")) {

if (((Double) value) <= 200.0) {
mgr.morph("sysFi2");

} else {
mgr.morph("sysFi3");

122 M. Sobolewski

}
} else if (fi.getPath().equals("mFi1")

&& fi.getSelectName().equals("multiply")) {
mgr.morph("sysFi3");

}
};

Morpher morpher2 = (mgr, mFi, value) -> {
Fidelity<Signature> fi = mFi.getFidelity();
if (fi.getSelectName().equals("divide")) {

if (((Double) value) <= 9.0) {
mgr.morph("sysFi4");

} else {
mgr.morph("sysFi3");

}
}

};

Morpher morpher3 = (mgr, mFi, value) -> {
Fidelity<Signature> fi = mFi.getFidelity();
Double val = (Double) value;
if (fi.getSelectName().equals("t5")) {

if (val <= 200.0) {
((EntModel)mgr.getMogram())
.putValue("morpher3", val + 10.0);

mgr.reconfigure(fi("t4", "mFi4"));
}

} else if (fi.getSelectName().equals("t4")) {
// t4 is a mutiply task
((EntModel)mgr.getMogram())

.putValue("morpher3", val + 20.0);
}

};

Morpher morpher4 = (mgr, mFi, value) -> {
Fidelity<Signature> fi = mFi.getFidelity();
if (fi.getSelectName().equals("divide")) {

if (((Double) value) <= 9.0) {
mgr.morph("sysFi5");

} else {
mgr.morph("sysFi3");

}
}

};

True Service-Oriented Metamodeling Architecture 123

// metafidelities used by morphers
fi fi2 = metaFi("sysFi2", mphFi("ph4", "mFi2"),
fi("divide", "mFi2"), fi("multiply", "mFi3"));

fi fi3 = metaFi("sysFi3", fi("average", "mFi2"),
fi("divide", "mFi3"));

fi fi4 = metaFi("sysFi4", fi("average", "mFi3"));
fi fi5 = metaFi("sysFi5", fi("t4", "mFi4"));

Let’s evaluate mdl subsequently with specified multifidelities and morphers with
default fidelities and later with the requested fidelity fi(“mFi1”, “multiply”).

// evaluate mdl with default fidelities
cxt out = eval(mdl);
assertTrue(value(out, "mFi1").equals(100.0));
assertTrue(value (out, "mFi2").equals(9.0));
assertTrue(value (out, "mFi3").equals(900.0));
assertTrue(value (out, "mFi4").equals(110.0));
// evaluate mdl the fidelity mFi1
out = eval(mdl, fi("mFi1", "multiply"));
assertTrue(value (out, "mFi1").equals(900.0));
assertTrue(value (out, "mFi2").equals(50.0));
assertTrue(value (out, "mFi3").equals(9.0));
assertTrue(value (out, "mFi4").equals(920.0));

Let’s restrict morphing of the multifidelity model mdl until the value of entry
“morpher3” in mdl is less than 900.0. It is implemented with a service block mdlBlock
executing a loop with the condition in the form of lambda expression where cxt is the
current context of mdlBlock. The morph fidelity of the entry mFi1 in mdl is selected to
multiply when exerting mdlBlock.

Block mdlBlock = block(
loop(condition(cxt ->

 (double) value(cxt, "morpher3") < 900.0),
mdl));

mdlBlock = exert(mdlBlock, fi("multiply", "mFi1"));
assertTrue(value(context(mdlBlock),

"morpher3").equals(920.0));

124 M. Sobolewski

The above examples can be found in the SORCER-multiFi project [20] in the
module examples at sml/src/test/java/sorcer/sml/mograms/ModelMultiFidelities, test
cases morphingFidelities and morphingFidelitiesLoop.

6 The SORCER Platform

Computing requires a platform (runtime system) to operate. Computing platforms that
allow programs to run require a processor, operating system, and programming envi-
ronment with supporting tools to create and run programs. SORCER is the platform
driven by the three pillars of SO: contextion, multifidelity, and multityping.
The SORCER programming environment is based on SML and Java APIs with its
unique service-oriented operating system (SOS) that manages the net-centric service
processor for executing request services. Technically, the service processor comprises
of local/remote objects implementing evaluators and service types of signatures.
SORCER remote objects (providlets) are deployed with dynamic small-footprint
dynamic service containers called service exerters. A service exerter can run concur-
rently multiple providlets in the network.

The relationship of the basic SORCER types required to implement multifidelity
services is depicted in the diagram in Fig. 2 with UML relationships. Services of the
Request type are instances of two elementary subtypes: Entry and Task, and the basic
request service type Contextion with five subtypes: Pipeline, Domain, Discipline,
Collaboration, and Governance. All request services are instances of the common
Service type with uniform execution of local and remote services at runtime. Top-level
interfaces of the SORCER system that refer to the SO concepts: Fi<T>, Signature,
Evaluator, Request, Entry, Task, Contextion, Context, Model, and Provider, all are
subtypes of the common Service type.

From the SO point of view creation of user-centric request services – mogramming
– is the primary objective assuming that service providers implement multitypes and
their operations can be incorporated into net-centric service processor managed by
SOS. Note, that multifidelities are used in request services only. A combined request
service hierarchically combines elementary requests (entries and tasks) that bind
dynamically to executable subroutines of evaluators and service providers,
respectively.

Each service provider implements a multitype of service types. Each service type
may have multiple implementations in the network. SOS does not know location of
service provider instances in the network; it requires only their service types to be
implemented in the network. The question is, how to find a required implementation in
the network. The answer is, by matching a multitype of the service signature to the
multitype of the implementation available in the network. To differentiate from each
other, service providers may implement complementary service types, for example, tag
interfaces corresponding to implementation details. Complementary types can be

True Service-Oriented Metamodeling Architecture 125

registered with primary service types, then both used in signatures when looking up a
service provider. Multityping of signatures is the concept of finding providers of the
same multitype from redundant instances (providlets) available in the network.

In systems theory emergence is a process whereby larger entities and regularities
arise through interactions among smaller or simpler entities that themselves do not
exhibit such properties. An emergent SO behavior can appear when a number of simple
services operate in an environment, forming more complex behaviors as a service
collective (partnership). It can commonly be identified by patterns of accumulating
change used by morphers. Emergent behavior is hard to predict since the number of
interactions between components of a system increases exponentially with the number
of components, thus potentially allowing for many new and subtle types of behavior to
emerge. Emergence is often a product of particular patterns of interaction. Negative
feedback introduces constraints that serve to fix structures or behaviors. In contrast,
positive feedback promotes change, allowing local variations to grow into global
patterns. Multifidelity services can be observable and observed. Therefore, the positive
or negative feedback received by morphers regarding applied system fidelities from
observable multifidelity services can be used to update fidelities, upstream to the
metamodel level and downstream for new projected and created instances of the
metamodel. The projected and new instances are created by the fidelity management
system to form emergent properties of the morphing multifidelity model as illustrated
in Fig. 5.

An emergent modeling platform requires the ability to express a SO system with a
given fidelity projection as the instance of the metasystem with multiple fidelity pro-
jections. In SML a projected contextion is an instance of a multifidelity contextion – a
metasystem. Also, the computing platform requires the ability to execute and morph the
evolving system with updated projections managed by the metasystem. SOS enables
quick and effective SO communication with net-centric services and allows for
evolving updates such that each new instance of the multifidelity system is a new
projection of the metasystem.

Fig. 5. Morphing and reconfiguring multifidelity service mograms expressed in SML

126 M. Sobolewski

SML defines two types of multifidelities in contextions: select-fidelities and morph-
fidelities. Select-fidelities allow for system reconfiguration, but morph-fidelities allow
for self-morphing the structure of the multifidelity request service. Morph-fidelities are
observed by a fidelity manager of contextion. Therefore, the positive or negative
feedback received from computed fidelities can be used to update fidelities, upstream of
already executed services and downstream for new looked up services. The fidelity
manager, as the observer of morph-fidelities, updates associated morphers to recon-
figure a contextion fidelity projection. Morphers associated with morph-fidelities form
emergent properties in the morphing multifidelity system.

A projected contextion, that defines the service cooperation actualized and man-
aged by SOS, is an instance of the metasystem expressed by a multifidelity contextion.
To reconfigure or morph a multifidelity contextion its fidelity manager uses projection
functions and morphers. Both reconfiguration and morphing allow for adaptivity of
system and metasystem respectively, when updates of fidelities and metafidelities are
under control of the fidelity manager at runtime. Morphers of morph-fidelities in
request services managed by fidelity managers may reconfigure the current contextion
or morph to a new projected contextion as shown in Fig. 5.

Adaptive SO systems with morph-fidelities are emergent systems. This type of
systems exhibits three types of adaptivities called system-of-system, system, and ser-
vice agility [15]. Metasystem agility refers to system reinstantiation with metafidelities,
system agility refers to updating system fidelity projections, and service agility refers to
updating fidelities of elementary request services at runtime.

Virtual machines are based on computer architectures and provide functionality of a
physical computer. Service Virtual Machine (SVM) is a network process virtual
machine designed to run cooperating executable codes in in the network expressed by
combined request services presented in Sect. 3. SVM serves as an abstraction layer for
SML in SORCER. Thus, it becomes a multifidelity processor architecture for SML
with basic operations corresponding to six categories of opservices: evaluator, signa-
ture, getter (filter), setter, appender, and connector. The first two opservices run exe-
cutable codes locally/remotely (exec-opservices) and the remaining ones (context
opservices in short cxt-opservices) preprocess service contexts used as inputs and
outputs by request services. With two exec-opservices request services may executed
unlimited number of executable codes in the network. Therefore, the network of
providlets becomes the native processor for SVM with custom instruction set for
request services.

The architecture of SVM with the basic internal components: the thread stack for
executing request services, multifidelity projection area, combined request service area,
elementary request service area, and opservice area is shown in Fig. 6. The opservice
area comprises of two categories of exec-opservices (signatures, evaluators), and four
categories of cxt-opservices (setters, getters, connectors, and appenders). Each thread
has its own stack that holds a frame for each request service executing on that thread.
A new frame is created and added to the top of stack for each component request
services to be executed. The frame is removed when the request service returns nor-
mally or if an uncaught exception is thrown during the service execution. SVM sup-
ports Java methods that call back from JVM into SVM and invoke a request service.

True Service-Oriented Metamodeling Architecture 127

Each frame contains: multiFi projection, input context with context return, operand
context, and a request service reference. The operand context is used during the exe-
cution of services in a similar way the general-purpose registers are used in a native
CPU. While combined request services comprise of request services, only elementary
request services comprise of exec-opservices. Most SVM exec-opservice spends its
time manipulating the operand context by operations that produce or consume context
values by calling remote/local providlets or executable codes of evaluators.

JVM used by SVM is a kind of native processor for SVM but opservices specify
the instruction set of the SVM processor. Remote exec-opservices of SVM may call
providlets in the network to execute request service as well. Therefore, via propagation
of remote signatures originated from an SVM, the SVM expands itself into the network
of cooperating SVMs executing opservices on multiple machines in the network on
behave of the originating SVM. Such distributed SVM executing concurrently opser-
vices in the network forms the instruction set of the network multiprocessor. The
network multiprocessor becomes a collection of remote and local executable codes
bound at runtime to signatures and evaluators executed concurrently by multiple SVNs.

In comparison to an object-oriented virtual machine, for example JVM, SVM
request services and opservices correspond to methods and opcodes (bytecodes),
respectively. In JVM two types of methods, instance and class methods, are distin-
guished but in SVM two types of request services, elementary and combined service.
Opcodes used by elementary services specify the machine internal operations only,
however opservices may execute locally (local signatures) and remotely (remote sig-
natures). The fact that SVM can execute machine instructions in the network at runtime
is the primary distinction between SVM and JVM. This essential service-oriented
computational feature makes SVM a network-centric virtual machine.

Fig. 6. SML Service virtual machine (SVM).

128 M. Sobolewski

The opservice that is assigned to the runtime data area of the SVM via a request
service is executed by the SVM execution engine. The execution engine executes the
SVM opcode in the unit of service instruction. It is like a CPU executing the machine
command one by one. Each command of the opservice consists of an operand context.
The execution engine gets one exec-opservice and execute the executable code,
associated either with the evaluator or the providlet, with the operand context, and then
executes the next opservice. An SVM request service is written in SML that a human
can understand as service-oriented cooperation (pipeline, domain, discipline, collabo-
ration, and governance), rather than in the programming language used to implement
the execution engine. The SOS uses the SVM execution engine and manages local and
remote service providers for opcodes to be executed and provides common function-
alities for handling request and provider services, fidelity management, and context
management for SVM.

7 Conclusions

Markov tried to consolidate all work of others on effective computability. He has
introduced the term of algorithm in his 1954 book Teoriya Algorifmov [8]. The term
was not used by any mathematician before him and reflects a limiting definition of what
constitutes a computational process: a mathematical mapping from various initial data
to the desired result. The mathematical view of process expression has limited com-
puting science to the class of processes expressed by algorithms. From experience in
the past decades it becomes obvious that in computing science the common thread in
all computing disciplines is process expression; that is not limited to algorithm or
actualization of process expression by a single computer.

A service is the work performed in which a service provider (one that serves) exerts
acquired abilities to execute a computation. To be the true service resulted from the
performed computation, both the computation and the service providers have to be
expressed then realized under condition that service consumers should never com-
municate directly to service providers. Asserted cooperations of service providers
represented by operation services are called request services. This way, in SML
everything is a service. Request services represent cooperations of opservices bound at
runtime to service providers to execute computations. In this paper, service-orientation
is proposed as the approach with five types of emergent net-centric multifidelity request
service representing the following service request services: pipelines, assemblies,
collaborations, disciplines, governances.

The “everything is a service” semantics of SML is introduced for request services
to be actualized by dynamic cooperations of service providers in the network. A mul-
tifidelity request service is considered as a dynamic representation of a net-centric
emergent process defined by the end user. In SORCER, a rectified contextion – a
service request embedded into a service provider container, becomes a service providlet
– a process expression becomes an executable service provider.

To express emergent processes consistently and flexibly, the actualization of SML
by SOS is based on three pillars of services orientation (contextion, multifidelity,
and multityping) and on generalization of the pillars of functional, procedural, and

True Service-Oriented Metamodeling Architecture 129

object-orient programming (see Fig. 1). Generalization of the existing programming
paradigms leads to five types of service combinations (pipeline, domain, discipline,
collaboration, and governance). Request services are multifidelity services, but provi-
der services are multitype services. By multitypes of service signatures used in con-
textions a multi-multitype of service cooperation is determined. Therefore, multitype of
a signature and a multi-multitype of contextions are classifiers of instances of service
providers (providlets) and cooperations of service providers in the network, respec-
tively. To the best of our knowledge there is no comparable true service-oriented
system, programming language based the three pillars of service-orientation and its
SVM.

Emergent systems exhibit three types of adaptivities called system-of-systems
(metasystem), system, and service agilities. Metasystem agility refers to updating
metafidelities (system reinstantiation), system agility refers to updating fidelities of a
mogram (system projection), and service agility refers to selecting fidelity of request
and opservices [15].

The SORCER architectural approach represents five types of net-centric multifi-
delity service cooperations expressed by request services created by the end users and
executable codes of service providers by software developers. It elevates combination
of contextions into the first-class elements of the SO federated process expression. The
essence of the approach is that by making specific choices in grouping hierarchically
provider services for contextions, we can obtain desirable dynamic properties from the
SO systems we create with SML.

Thinking more explicitly about SO languages, as domain specific languages for
humans than software languages for computers, may be our best tool for dealing with
real world complexity. Understanding the principles that run across process expressions
in SML and appreciating which language features and service virtual machines (SVMs)
are best suited for which type of processes, bring these process expressions (request
services in SML) to useful life. No matter how complex and polished the individual
process operations are, it is often the quality of the operating system (SORCER) that
determines the power of the computing system. The ability of presented metamodeling
architecture with SML and SVM with its execution engine to leverage network
resources as services is significant to real-world applications in two ways. First, it
supports multi machine executable codes via opservices that may be required by SO
applications; second, it enables cooperation of variety of computing resources repre-
sented by request services that comprise of opservices actualized by the multi machine
network at runtime.

The software as a service (SaaS) approach spreads rapidly because it makes end
users more productive. However, lack of service-oriented integration frameworks,
forces end users to go back and forth endlessly between the component services
(applications) they need and like, is disruptive because it corrodes productivity of
complex service-oriented systems. The more services you have, the trickier it gets to
move swiftly and meaningfully between them and integrate reliably into large dis-
tributed systems.

Embedded service integration in the form of combined request services in SML
solves a problem for both system developers and end users. Embedded service inte-
gration is a transformative development that resolves the stand-off between system

130 M. Sobolewski

developers who need to innovate service integrations and end users who want their
services to be productive in their integrated systems, not hold them back. Service
integration is key to this, but neither system developers nor end-users want to be
distracted by time-consuming integration projects.

The first rule of service-orientation in SORCER: do not morph and do not distribute
your system until you have an observable reason to do so. First develop the system with
no fidelities and no remote services. Later introduce must-have distribution and mul-
tifidelities. Doing so step-by-step you will avoid the complexity of modeling with
multifidelities and distribution all at the same time.

The SORCER platform with SML and SVM supports the two-way convergence of
modeling (top-down problem solving with context models) and programming (bottom-
up problem solving with service pipelines and routines) – mogramming. The platform
has been successfully deployed and tested for design space exploration, parametric, and
optimization mogramming in multiple projects at the Multidisciplinary Science and
Technology Center AFRL/WPAFB [2, 4–7, 13].

Acknowledgments. This effort was sponsored by the Air Force Research Laboratory’s Mul-
tidisciplinary Science and Technology Center (MSTC), under the Collaborative Research and
Development for Innovative Aerospace Leadership (CRDInAL) - Thrust 2 prime contract
(FA8650-16-C-2641) to the University of Dayton Research Institute (UDRI). This paper has
been approved for public release, case number: 88ABW-2019-4488. The effort is also partially
supported by the Polish Japanese Academy of Information Technology.

References

1. Aziz-Alaoui, M., Cyrille Bertelle, C. (eds.): Emergent Properties in Natural and Artificial
Dynamical Systems (Understanding Complex Systems). Springer, Heidelberg (2006).
https://doi.org/10.1007/3-540-34824-7

2. Burton, S.A., Alyanak, E.J., Kolonay, R.M.: Efficient supersonic air vehicle analysis and
optimization implementation using SORCER. In: 12th AIAA Aviation Technology,
Integration, and Operations (ATIO) Conference and 14th AIAA/ISSM AIAA 2012-5520
(2012)

3. Kao, J.Y., White, T., Reich, G., Burton, S.: A multidisciplinary approach to the design of a
low-cost attritable aircraft. In: 18th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, AIAA Aviation Forum 2017, Denver, Colorado (2017)

4. Kleppe A.: Software Language Engineering, Pearson Education (2009). ISBN: 978-0-321-
55345-4

5. Kolonay, R.M., Sobolewski M.: Service ORiented Computing EnviRonment (SORCER) for
large scale, distributed, dynamic fidelity aeroelastic analysis & optimization. In: International
Forum on Aeroelasticity and Structural Dynamics, IFASD 2011, Paris, France, 26–30 June
2011 (2011)

6. Kolonay, R.M.: A physics-based distributed collaborative design process for military
aerospace vehicle development and technology assessment. Int. J. Agile Syst. Manag. 7(3/4),
242–260 (2014)

7. Kolonay, R.M.: MSTC Engineering - A distributed and adaptive collaborative design
computational environment for military aerospace vehicle development and technology
assessment. In: AIAA 2019-2992, AIAA Aviation Forum 2019, Dallas, Texas (2019)

True Service-Oriented Metamodeling Architecture 131

https://doi.org/10.1007/3-540-34824-7

8. Markov, A.A.: Theory of Algorithms. Keter Press (1971). (trans. by Schorr-Kon, J.J.)
9. O’Hearn, P.W., Tennent, R.D. (eds.): Algol-Like Languages (Progress in Theoretical

Computer Science), vol. 1. Birkhäuser (1997). ISBN-10: 0817638806
10. Sobolewski, M.: Federated P2P services in CE environments. In: Advances in Concurrent

Engineering, pp. 13–22. A.A. Balkema Publishers (2002)
11. Sobolewski, M.: Object-oriented meta-computing with exertions. In: Gunasekaran, A.,

Sandhu, M. (eds.), Handbook on Business Information Systems. World Scientific (2010).
https://doi.org/10.1142/9789812836069_0035

12. Sobolewski, M., Kolonay, R.: Unified mogramming with var-oriented modeling and
exertion-oriented programming languages. Int. J. Commun. Netw. Syst. Sci. 5(9) (2012).
http://www.scirp.org/journal/PaperInformation.aspx?paperID=22393(2012). Accessed 28
Oct 2019

13. Sobolewski, M.: Service oriented computing platform: an architectural case study. In:
Ramanathan, R., Raja, K. (eds.) Handbook of Research on Architectural Trends in Service-
Driven Computing, pp. 220–255. IGI Global, Hershey (2014)

14. Sobolewski, M.: Technology foundations. In: Stjepandić, J., Wognum, N., Verhagen, W.J.C.
(eds.) Concurrent Engineering in the 21st Century, pp. 67–99. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-13776-6_4

15. Sobolewski, M.: Amorphous transdisciplinary service systems. Int. J. Agile Syst. Manag. 10
(2), 93–114 (2017)

16. Sobolewski, M.: Service-oriented mogramming with SML and SORCER. In: Proceedings of
9th International Conference on Cloud Computing and Services Science, Greece, 2–4
May, pp. 331–338. SCITEPRESS (2019). ISBN 978-989-758-365-0

17. Stults, I.C.: A multifidelity analysis selection method using a constrained discrete
optimization formulation, School of Aerospace Engineering, Georgia Institute of Technol-
ogy, Dissertation (2009). https://smartech.gatech.edu/handle/1853/31706. Accessed 28 Oct
2019

18. The MetaObject Facility Specification. https://www.omg.org/mof/. Accessed 28 Oct 2019
19. SORCER/TTU Projects. http://sorcersoft.org/theses/index.html. Accessed 28 Oct 2019
20. SORCER Project. https://github.com/mwsobol/SORCER-multiFi. Accessed 28 Oct 2019

132 M. Sobolewski

https://doi.org/10.1142/9789812836069_0035
http://www.scirp.org/journal/PaperInformation.aspx%3fpaperID%3d22393(2012)
https://doi.org/10.1007/978-3-319-13776-6_4
https://smartech.gatech.edu/handle/1853/31706
https://www.omg.org/mof/
http://sorcersoft.org/theses/index.html
https://github.com/mwsobol/SORCER-multiFi

	True Service-Oriented Metamodeling Architecture
	Abstract
	1 Introduction
	2 Meta-Service Facility (MSF)
	2.1 Multifidelity Function Systems
	2.2 Multifidelity Service Systems
	2.3 Multitypes of Provider Services

	3 Service Semantics in SORCER
	4 Introduction to SML
	5 An Example of a Multifidelity Model in SML
	6 The SORCER Platform
	7 Conclusions
	Acknowledgments
	References

