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Abstract. Cloud resources can be dynamically provisioned according to
application-specific requirements and are payed on a per-use basis. This
gives rise to a new concept for parallel processing: Elastic parallel compu-
tations. However, it is still an open research question to which extent par-
allel applications can benefit from elastic scaling, which requires resource
adaptation at runtime and corresponding coordination mechanisms. In
this work, we analyze how to address these system-level challenges in the
context of developing and operating elastic parallel tree search applica-
tions. Based on our findings, we discuss the design and implementation
of TASKWORK, a cloud-aware runtime system specifically designed for
elastic parallel tree search, which enables the implementation of elastic
applications by means of higher-level development frameworks. We show
how to implement an elastic parallel branch-and-bound application based
on an exemplary development framework and report on our experimen-
tal evaluation that also considers several benchmarks for parallel tree
search.

Keywords: Cloud computing · Parallel computing · Task parallelism ·
Elasticity · Branch-and-bound

1 Introduction

Many cloud providers, including Amazon Web Services (AWS)1 and Microsoft
Azure2, introduced new cloud offerings optimized for High Performance Com-
puting (HPC) workloads. Whereas traditional HPC clusters are based on static
resource assignment and job scheduling, cloud environments provide attractive
benefits for parallel applications such as on-demand access to compute resources,
pay-per-use, and elasticity [12,31]. Specifically, elasticity, i.e., the ability to provi-
sion and decommission compute resources at runtime, introduces a new concept:
Fine-grained cost control per application run by means of elastic parallel compu-
tations [11,12,19,24,36]. This fundamentally new concept in parallel computing
1 https://aws.amazon.com.
2 https://azure.microsoft.com.
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leads to new opportunities and challenges thus stimulating new research efforts
and approaches. For instance, processing time and/or the quality of results can
be related to costs, allowing versatile optimizations at runtime [19,24,36].

During the last years, there has been a growing interest to make parallel
applications cloud-aware [11,15,17,27,37]. In particular, applications have to
cope with the effects of virtualization and resource pooling causing fluctuations
in processing times [17]. Existing research also studies how to employ elastic-
ity for applications with simple communication and coordination patterns (e.g.,
iterative-parallel workloads) [11,37]. In these cases, problems are decomposed
into a set of independent tasks, which can be farmed out for distributed com-
putation. However, it is still an open research question to which extent other
parallel application classes can benefit from cloud-specific properties, how to
leverage elasticity in these cases, and how to ensure cloud-aware coordination of
distributed compute resources.

In this work, we discuss how to tackle these challenges for parallel tree search
applications. These applications are less sensitive to heterogeneous processing
speeds when compared to data-parallel, tightly-coupled applications [15,16], but
comprise unstructured interaction patterns and complex coordination require-
ments. Prominent meta-algorithms based on the parallel tree search process-
ing technique include branch-and-bound and backtracking search with many
applications in biochemistry, electronic design automation, financial portfolio
optimization, production planning and scheduling, as well as fleet and vehi-
cle scheduling. We discuss the challenges that have to be addressed to make
these applications cloud-aware and present TASKWORK - a cloud-aware run-
time system that provides a comprehensive foundation for implementing and
operating elastic parallel tree search applications in cloud environments. In par-
ticular, we make the following contributions: (1) We discuss how to construct a
cloud-aware runtime system for parallel tree search applications. (2) We describe
the design and implementation of TASKWORK, an integrated runtime system
based on our findings and solve corresponding coordination problems based on
Apache ZooKeeper3. (3) We present a development framework for elastic parallel
branch-and-bound applications, which aims to minimize programming effort. (4)
We employ a canonical branch-and-bound application as well as several bench-
marks to evaluate the performance of TASKWORK in our OpenStack-based
private cloud environment.

This work is based on previous research contributions that have been pub-
lished in the paper TASKWORK: A Cloud-aware Runtime System for Elastic
Task-parallel HPC Applications [28], which has been presented at the 9 th Inter-
national Conference on Cloud Computing and Services Science. We extend our
former work by discussing the applicability of the presented concepts in the
context of parallel tree search applications. Moreover, we provide an extensive
evaluation of TASKWORK based on several benchmarks, which are commonly
employed to evaluate architectures designed for parallel tree search.

3 https://zookeeper.apache.org.

https://zookeeper.apache.org
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This work is structured as follows. In Sect. 2, we discuss the characteris-
tics of parallel tree search applications as well as ZooKeeper and related work.
Section 3 describes the conceptualization of a cloud-aware runtime system for
elastic parallel tree search in the cloud. In Sect. 4, we present TASKWORK -
our integrated runtime system for elastic parallel tree search applications. We
elaborate on an elastic branch-and-bound development framework and describe
its use in Sect. 5. The results of our extensive experimental evaluation are pre-
sented in Sect. 6. Section 7 concludes this work.

2 Fundamentals and Related Work

In this section, we examine the characteristics of parallel tree search applications,
describe ZooKeeper, and discuss existing research closely related to our work.

2.1 Parallel Tree Search

We specifically focus on parallel tree search processing technique. Commonly
employed meta-algorithms based on parallel tree search include branch-and-
bound and backtracking search. They are typically used to solve enumeration,
decision, and optimization problems - including boolean satisfiability, constraint
satisfaction, and graph search problems - with many applications in fields such
as biochemistry, electronic design automation, financial portfolio optimization,
production planning and scheduling, as well as fleet and vehicle scheduling.
These algorithms search solutions in very large state spaces and employ advanced
branching and pruning operations/backtracking mechanisms to make the search
procedure for problem instances of practical relevance efficient.

Parallel execution is most often accomplished by splitting the state space
tree into tasks that can be executed independently of each other by searching a
solution in the corresponding subtree. This approach is also called exploratory
parallelism (or space splitting [13]). However, because the shape and size of the
search tree (and its subtrees) are highly influenced by branching and pruning
operations, these applications exhibit a high degree of irregularity. Thus, to
exploit a large number of (potentially distributed) compute resources efficiently,
task generation has to be executed in a dynamic manner by creating new tasks
at runtime. Additionally, these newly generated tasks have to be distributed
among compute nodes to avoid idling processing units. This procedure is also
called dynamic task mapping (or task scheduling).

The high degree of irregularity constitutes the major source of parallel over-
head and thus affects the performance and scaling behavior of parallel tree
search applications. Moreover, additional communication requirements stem
from knowledge sharing mechanisms that are required to implement meta-
algorithms such as branch-and-bound and backtracking search. In this context,
knowledge sharing often means communicating bounds [13] or lemmas [38] across
tasks at runtime to make the search procedure more efficient by avoiding the
exploration of specific subtrees.
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Due to the dynamic exploration of the search space combined with problem-
specific branching and pruning operations/backtracking mechanisms, resource
requirements of parallel tree search applications are not known in advance. This
makes them an ideal candidate for cloud adoption as cloud environments pro-
vide on-demand access to resources and enable an application to scale elastically.
Moreover, they are less sensitive to heterogeneous processing speeds when com-
pared to data-parallel, tightly-coupled applications [15,16].

2.2 ZooKeeper

ZooKeeper has been designed to ease the implementation of coordination, data
distribution, synchronization, and meta data management in distributed systems
[20]. Many prominent software projects rely on ZooKeeper including the Apache
projects Hadoop4 and Kafka5. It provides an interface that enables clients to
read from and write to a tree-based data structure consisting of data registers
called znodes. Internally, data is replicated across a set of ZooKeeper servers.
Each ZooKeeper server accepts client connections and executes requests in FIFO
order per client session. A feature called watches enables clients to register for
notifications of changes without periodic polling. Each server answers read oper-
ations locally resulting in eventual consistency. On the other hand, ZooKeeper
guarantees writes to be atomic [20]. ZooKeeper’s design principles ensure both
high availability of stored data and high-performance data access by providing
a synchronous and an asynchronous API.

Specifically in cloud environments, coordination primitives such as leader
election and group membership are essentially required to deal with a vary-
ing number of compute nodes. Based on ZooKeeper, leader election and group
membership can be implemented in a straightforward manner [21]. However, spe-
cific challenges arise in the context of parallel tree search applications: Global
variables have to be synchronized across tasks, which imposes additional depen-
dencies, and as tasks can be generated at each node, a termination detection
mechanism is required to detect when the computation has been completed. We
show how to employ ZooKeeper to tackle these challenges.

2.3 Related Work

In the past, researchers mainly investigated how to make cloud environments
HPC-aware [30]. By exploiting HPC-aware cloud offerings, many parallel appli-
cations benefit from an on-demand provisioned execution environment that can
be payed on a per-use basis and individual configuration of compute resources,
without any modifications to the application itself. This is specifically attrac-
tive for applications implemented based on the Single Program Multiple Data
(SPMD) model (especially supported by MPI) [27]. However, we can also see
a growing interest to make parallel applications cloud-aware [11,15–17,37] with

4 http://hadoop.apache.org.
5 https://kafka.apache.org.

http://hadoop.apache.org
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the motivation to exploit either low-cost standard cloud offerings or to make use
of advanced cloud features beyond a simple copy & paste migration approach
[27]. Existing research discusses how to adapt parallel applications and parallel
system architectures to make them cloud-aware. The authors of [12] propose
the development of new frameworks for building parallel applications optimized
for cloud environments and discuss the importance of application support with
respect to elasticity. We follow this approach by presenting a runtime system
that does most of the heavy lifting to implement elastic parallel applications.

The authors of [15] present an in-depth performance analysis of different
applications. Based on their measurements, the authors describe several strate-
gies to make both parallel applications cloud-aware and cloud environments
HPC-aware. A major issue to make parallel applications cloud-aware is the spec-
ification of the optimal task size to balance various sources of overhead. In [17],
the problem of fluctuations in processing times is addressed, which specifically
affects tightly-coupled parallel applications. The authors introduce a dynamic
load balancing mechanism that monitors the load of each vCPU and reacts to
a measured imbalance. Whereas this approach is based on task overdecompo-
sition to ensure dynamic load balancing, our runtime system actively controls
the logical parallelism of an application to minimize task management overhead.
However, it is still an open research question if applications without dynamic
task parallelism can benefit from such an approach.

The authors of [37] employ the Work Queue framework to develop elas-
tic parallel applications. The Work Queue framework is designed for scientific
ensemble applications and provides a master/worker architecture with an elastic
pool of workers. The presented case study considers a parallel application for
replica exchange molecular dynamics (REMD), which can be considered to be
iterative-parallel. The authors of [11] present an approach to enable elasticity for
iterative-parallel applications by employing a master/worker architecture. They
make use of an asynchronous elasticity mechanism, which employs non-blocking
scaling operations. Whereas we specifically consider parallel tree search applica-
tions, TASKWORK also makes use of asynchronous scaling operations that do
not block the computation.

Task-based parallelism was originally designed to exploit shared memory
architectures and used by systems such as Cilk [7]. A major characteristic of
task-parallel approaches is that tasks can be assigned dynamically to worker
threads, which ensures load balancing and thus effectively reduces idle time.
This approach also provides attractive advantages beyond shared memory archi-
tectures and has been adopted for different environments including compute
clusters [2,5,6] and grids [1]. As a result, the distributed task pool model has
attracted considerable research interest. The authors of [33] present a skeleton
for C++, which supports distributed memory parallelism for branch-and-bound
applications. Their skeleton uses MPI communication mechanisms and is not
designed to be cloud-aware. The authors of [9] present a distributed task pool
implementation based on the parallel programming language X10, which follows
the Partitioned Global Address Space (PGAS) programming model. COHE-
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SION is a microkernel-based platform for desktop grid computing [4,39]. It has
been designed with an emphasis on task-parallel problems that require dynamic
problem decomposition and also provides an abstraction layer for developers
based on its system core. Whereas COHESION supports similar applications, it
is designed to tackle the challenges of desktop grids such as limited connectiv-
ity and control as well as high resource volatility. In contrast to desktop grids,
cloud resources can be configured to consider application-specific requirements
and controlled by employing an elasticity controller [24]. Moreover, compute
resources are billed by a cloud provider, whereas desktop grids make use of
available resources donated by contributors.

3 Constructing a Cloud-Aware Runtime System

To particularly benefit from cloud-specific characteristics, developing elastic par-
allel applications is a fundamental problem that has to be solved [12]. At the core
of this problem lies the required dynamic adaptation of parallelism. At all times,
the degree of logical parallelism of the application has to fit the physical paral-
lelism given by the number of processing units to achieve maximum efficiency.
Traditionally, the number of processing units has been considered as static. In
cloud environments, however, the number of processing units can be scaled at
runtime by employing an elasticity controller. As a result, applications have
to dynamically adapt the degree of logical parallelism based on a dynamically
changing physical parallelism. At the same time, adapting the logical parallelism
and mapping the logical parallelism to the physical parallelism incurs overhead
(in form of excess computation, communication, and idle time). Consequently,
elastic parallel applications have to continuously consider a trade-off between
the perfect fit of logical and physical parallelism on the one side and minimizing
overhead resulting from the adaptation of logical parallelism and its mapping to
the physical parallelism on the other. Hence, enabling elastic parallel computa-
tions leads to many system-level challenges that have to be addressed to ensure
a high efficiency.

Because we specifically focus on parallel tree search applications, which
require dynamic task parallelism, the degree of logical parallelism can be defined
as the current number of tasks. We argue that a cloud-aware runtime system is
required that transparently controls the parallelism of an application to ensure
elastic scaling. Figure 1 shows our conceptualization of such a runtime system. It
allows developers to mark parallelism in the program, automatically adapts the
logical parallelism by generating tasks whenever required, and exploits avail-
able processing units with maximum efficiency by mapping the logical paral-
lelism to the physical parallelism. An application based on such a runtime sys-
tem is elastically scalable: Newly added compute nodes automatically receive
tasks by means of dynamic decomposition and load balancing. A task migration
mechanism releases compute nodes that have been selected for decommissioning
(cf. Fig. 1). Our approach is not limited to any specific cloud management app-
roach or tooling: An elasticity controller may comprise any kind of external
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Fig. 1. The described cloud-aware runtime system adapts the logical parallelism by
generating tasks dynamically, handles load balancing and task migration, and thus
enables elastic parallel computations [28].

decision making logic (e.g., based on execution time, the quality of results, or
monetary costs) that finally adapts the number of processing units (i.e., the
physical parallelism). An example for such an elasticity controller is given in
[19], where monetary costs are considered to control the physical parallelism. In
this work, we focus on elastic parallel computations and address related system-
level challenges.

Besides elasticity, the characteristics of cloud environments lead to new archi-
tectural requirements that have to be considered by parallel applications [25].
Due to virtualization and resource pooling (leading to CPU timesharing and
memory overcommitment), fluctuations in processing times of individual pro-
cessing units can often be observed [15]. Thus, in cloud environments, tasks
should be coupled in a loosely manner by employing asynchronous communi-
cation methods. Similarly, inter-node synchronization should be loosely coupled
while guaranteeing individual progress. A runtime system built for the cloud has
to provide such asynchronous communication and synchronization mechanisms
thus releasing developers from dealing with these low-level complexities.

4 Design and Implementation of TASKWORK

In this section, we describe the design and implementation of TASKWORK, a
cloud-aware runtime system specifically designed for parallel tree search appli-
cations according to the principles discussed in Sect. 3. TASKWORK comprises
several components that enable elastic parallel computations (cf. A , Fig. 2)
and solve coordination problems based on ZooKeeper (cf. B , Fig. 2). Based on
these system-level foundations, higher-level development frameworks and pro-
gramming models can be built (cf. C , Fig. 2), which facilitate the implementa-
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Fig. 2. The components of TASKWORK enable elastic parallel computations based on
the task pool execution model, solve coordination problems based on ZooKeeper, and
support the construction of higher-level development frameworks and programming
models [28].

tion of elastic parallel applications. TASKWORK enables distributed memory
parallelism by coordinating a set of distributed compute nodes based on the task
pool execution model. Our research prototype is implemented in Java.

In this section, we briefly describe the well-known task pool execution model
that we use to manage tasks, before the components of TASKWORK are
described in detail.

4.1 Task Pool Execution Model

The task pool execution model [14] decouples task generation and task processing
by providing a data structure that can be used to store dynamically generated
tasks and to fetch these tasks later for processing. It has been extensively used
in the context of parallel tree search applications [33,38,39]. We employ the task
pool execution model as a foundation to enable elastic parallel computations
according to the concepts depicted in Fig. 1: The task pool manages tasks gen-
erated at runtime (defining the logical parallelism) and provides an appropriate
interface for load balancing and task migration mechanisms that enable elastic
parallel computations.

The task pool execution model can be implemented in a centralized or a
distributed manner. The centralized task pool execution model refers to a task
pool located at a single compute node that is accessed by all other compute
nodes to store and fetch tasks. In the context of distributed memory parallelism,
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this means that tasks always have to be transferred over the network, e.g., for
load balancing purposes. The centralized task pool execution model is easy to
implement because the centralized instance has complete knowledge on the state
of the system, e.g., which compute node is executing which task. On the other
hand, the centralized task pool might become a sequential bottleneck for large
number of compute nodes accessing the task pool. The distributed task pool exe-
cution model, on the other hand, places a task pool instance at each compute
node. It thus decouples compute nodes from each other leading to a highly scal-
able system. On the contrary, coordination becomes a non-trivial task because
individual compute nodes only have partial knowledge. This specifically holds in
cloud environments, where compute nodes are provisioned and decommissioned
at runtime.

In this work, we employ the distributed task pool execution model, which
enables compute nodes to store generated tasks locally and, in general, provides
a better scalability [33]. Whereas the distributed task pool execution model
leads to an asynchronous system, thus matching the characteristics of cloud
environments, one has to deal with the aforementioned challenges. To deal with
these drawbacks, we enhance it with scalable coordination and synchronization
mechanisms based on ZooKeeper.

4.2 Leader Election

TASKWORK implements ZooKeeper-based leader election to designate a sin-
gle coordinator among the participating compute nodes. This coordinator takes
care of submitting jobs to the system, processes the final result, and controls
cloud-related coordination operations such as termination detection. ZooKeeper
renders leader election a rather trivial task [21]. Therefore, each node tries to
write its endpoint information to the/coordinator znode. If the write operation
succeeds, the node becomes the coordinator. Otherwise, if the/coordinator znode
exists, the node participates as compute node.

4.3 Group Membership

As compute nodes might be added or removed at runtime by means of elastic
scaling, cloud-based systems are highly dynamic. Thus, a group membership
component is required, which provides up-to-date views on the instance model,
i.e., the list of all currently available compute nodes. To this end, compute nodes
automatically register themselves during startup by creating an ephemeral child
znode under the/computeNodes znode containing their endpoint information.
The creation of the child znode makes use of ZooKeeper’s sequential flag that cre-
ates a unique name assignment [20]. Changes in group membership are obtained
by all other compute nodes by watching the/computeNodes znode.
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4.4 Load Balancing

Load balancing is a fundamental aspect in cloud environments to exploit newly
added compute resources efficiently. Moreover, it is a strong requirement of paral-
lel tree search applications due to dynamic problem decomposition. Load balanc-
ing can be accomplished by either sending tasks to other compute nodes (work
sharing) or by fetching tasks from other nodes (work stealing) [7]. Because send-
ing tasks leads to overhead, we favor work (task) stealing because communication
is only required when a compute node runs idle. Load balancing is accomplished
by observing changes in the local task pool. Whenever the local task pool is
empty and all worker threads are idle, task stealing is initiated. Task stealing is
an approach where idle nodes send work requests to other nodes in the cluster.
These nodes answer the request by sending a task from their local task pool to
the remote node.

Because the distributed task pool execution model lacks knowledge about
which compute nodes are busy and which are idling, we employ randomized task
stealing [8]. To deal with a changing number of compute nodes over time, up-
to-date information on the currently available compute nodes is required. This
information is provided by the group membership component (cf. Sect. 4.3).

4.5 Task Migration

To enable the decommissioning of compute resources at runtime, unfinished work
has to be sent to remaining compute nodes. This is ensured by TASKWORK’s
task migration component. Compute nodes that have been selected for decom-
missioning store the current state of tasks being executed, stop their worker
threads, and send all local tasks to remaining compute nodes. Technically, the
task migration component registers for the POSIX SIGTERM signal. This sig-
nal is triggered by Unix-like operating systems upon termination, which allows
TASKWORK to react to a requested termination without being bound to spe-
cific cloud management tooling but instead relying on operating system mecha-
nisms. Also note that POSIX signals are supported by state-of-the-art container
runtime environments such as Kubernetes6, where they are used to enable grace-
ful shutdown procedures. As a result, TASKWORK can be controlled by any
cloud management tool (provided by a specific cloud provider or open source)
and hence enables a best-of-breed tool selection. Furthermore, this approach
ensures that TASKWORK can be deployed on any operating system that sup-
ports POSIX signals and the Java Runtime Environment (JRE), thus ensuring
a high degree of portability.

Application developers simply have to specify an optimal interruption point
in their program to support task migration. The migrate operation can be used
to check if a task should be migrated (for an example see Sect. 5.2). TASKWORK
employs weak migration of tasks. This means that a serialized state generated

6 https://kubernetes.io.

https://kubernetes.io
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from a task object is transferred across the network. To facilitate the migra-
tion process, application-specific snapshotting mechanisms can be provided by
developers.

4.6 Termination Detection

Traditionally, distributed algorithms for termination detection (wave-based or
based on parental responsibility) have been preferred due to their superior scal-
ability characteristics [14]. However, maintaining a ring (wave-based) or tree
(parental responsibility) structure across compute nodes in the context of an
elastically scaled distributed system imposes significant overhead. To deal with
this issue, TASKWORK employs ZooKeeper-based termination detection, which
has been described in [28]. In summary, this approach maintains a tree-based
task dependency structure stored in ZooKeeper, which is dynamically updated
at runtime.

4.7 Synchronization of Global Variables

As discussed in Sect. 2.1, many meta-algorithms such as branch-and-bound rely
on knowledge sharing across tasks at runtime to make the search procedure more
efficient by avoiding the exploration of specific subtrees. TASKWORK supports
knowledge sharing in form of global variables that are automatically synchro-
nized across tasks. Global variables can be used to build application-specific
development frameworks or programming models. The process of synchroniza-
tion considers three hierarchy levels: (1) task-level variables, which are updated
for each task executed by a worker thread, (2) node-level variables, which are
updated on each compute node, and (3) global variables. Task-level variables are
typically updated by the implemented program and thus managed by the appli-
cation developer. To synchronize node-level variables, we provide two operations:
getVar for obtaining node-level variables and setVar for setting node-level vari-
ables. Whenever a node-level variable changes its value, we employ ZooKeeper
to update this variable globally, which enables synchronization across all dis-
tributed compute nodes. These generic operations allow developers to address
application-specific synchronization requirements, while TASKWORK handles
the process of synchronization.

By following this approach, small-sized variables can be synchronized across
the distributed system. However, frequent data synchronization leads to overhead
and should be used carefully and only for small data.

4.8 Development Frameworks and Programming Models

TASKWORK enables the construction of higher-level development frameworks
and programming models based on a generic task abstraction that allows the
specification of custom task definitions. The essential idea is that, as outlined
in Sect. 3, developers only mark program-level parallelism while task generation,
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load balancing, and task migration are handled automatically thus ensuring
elastic parallel computations. To define program-level parallelism, application
developers specify an application-specific split operation based on the generic
task abstraction to split work from an existing task. Afterwards, this split oper-
ation can be used for implementing any application program that dynamically
creates tasks (for an example see Sect. 5.2).

Two execution modes for the splitting mechanism are provided: Definite and
potential splitting. Whereas definite splitting directly creates new tasks by means
of the split operation, potential splitting adapts the logical parallelism (number
of tasks) in an automated manner. By following the second approach, applica-
tion developers also implement the split operation in an application-specific
manner, but only specify a potential splitting point in their application program
with the potentialSplit operation. In line with the conceptualization discussed
in Sect. 3, the potentialSplit operation is used to mark program-level paral-
lelism and TASKWORK decides at runtime whether to create new tasks or not
depending on the current system load. Thus, potential splitting automatically
adapts the number of tasks generated and thus controls the logical parallelism
of the application (cf. Fig. 1). As a result, TASKWORK manages the trade-off
between perfect fit of logical and physical parallelism and minimizing overhead
resulting from task generation and task mapping as discussed in Sect. 3. Different
policies can be supplied to configure how this trade-off is handled. For example,
tasks can be generated on-demand, i.e., when another compute node requests a
task by means of work stealing (cf. Sect. 4.4). Alternatively, tasks can be gener-
ated when the number of tasks in the local task pool drops below a configurable
threshold. By default, TASKWORK uses the on-demand task generation policy.
We recognized that on-demand task generation is, in many cases, more efficient
because formerly generated tasks might contain a subtree that has already been
proven to be obsolete. Thus, threshold-based task generation often results in
unnecessary transferal of tasks over the network, leading to additional overhead.

5 Elastic Branch-and-Bound Development Framework

In this section, we describe a development framework for elastic parallel branch-
and-bound applications based on TASKWORK’s generic task abstraction.
Branch-and-bound is a well-known meta-algorithm for search procedures. It is
considered to be one of the major computational patterns for parallel process-
ing [3]. In the following, we briefly explain the branch-and-bound approach and
show how to employ our framework to develop an example application.

5.1 Branch-and-Bound Applications

We explain the branch-and-bound approach by employing the Traveling Sales-
man Problem (TSP) as canonical example application. The TSP states that a
salesman has to make a tour visiting n cities exactly once while finishing at the
city he starts from. The problem can be modeled as a complete graph with n
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Fig. 3. To enable parallel processing, the state space tree is cut into several tasks, each
capturing a subproblem of the initial problem. Note that tasks have to be created at
runtime to avoid load imbalance.

vertices, where each vertex represents a city and each edge a path between two
cities. A nonnegative cost c(i, j) occurs to travel from city i to city j. The opti-
mization goal is to find a tour whose total cost, i.e., the sum of individual costs
along the paths, is minimum [10].

All feasible tours can be explored systematically by employing a state space
tree that enumerates all states of the problem. The initial node (the root node
of the state space tree) represents the city the salesman starts from. From this
and all following cities, the salesman can follow any path to travel to one of the
unvisited cities, which is represented as a new node in the state space tree. At
some point, all cities have been visited thus leading to a leaf node in the state
space tree, which represents a tour. Each node can be evaluated with respect to
its cost by summing up the individual costs of all paths taken. This also holds
for leaf nodes in the state space tree representing a tour. A search procedure can
be applied that dynamically explores the complete state space tree and finally
finds a tour with minimum cost. However, brute force search cannot be applied
to large state space trees efficiently. Instead of enumerating all possible states,
branch-and-bound makes use of existing knowledge to search many paths in the
state space tree only implicitly. We describe the underlying principles, which
make the search procedure efficient, in the following.

If the current node is not a leaf node, the next level of child nodes is generated
by visiting all unvisited cities that are directly accessible. Each of these child
nodes leads to a set of disjoint tours. Generating new nodes is referred to as
branching. If the current node is a leaf node, we evaluate the tour represented
by this node with respect to its total cost.
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At runtime, the tour whose total cost is known to be minimum at a specific
point in time defines an upper bound for the ongoing search procedure. Any
intermediate node in the state space tree that evaluates to a higher cost can be
proven to lead to a tour with higher total costs and thus has not to be explored
any further. On the other hand, lower bounds can be calculated by solving a
relaxed version of the problem based on the current state [40]. We calculate the
lower bound by adding the weight of a minimum spanning tree (MST) of the
not-yet visited cities to the current path [2,40]. The MST itself is calculated
based on Prim’s algorithm [35]. We can prune parts of the state space tree if the
calculated lower bound of the current node is larger or equal to the current upper
bound (because the TSP is a minimization problem). The pruning operation is
essential to make branch-and-bound efficient.

Following the branch-and-bound approach, a problem is decomposed into
subproblems at runtime. Each of these subproblems captures a part of the state
space tree and can be solved in parallel. Technically, these subproblems are
described by a set of tasks, which can be distributed across available compute
nodes. However, several challenges arise when we map branch-and-bound appli-
cations to parallel architectures: Work anomalies are present, which means that
the amount of work differs between sequential and parallel processing as well
as across parallel application runs. Additionally, branch-and-bound applications
are highly irregular, i.e., task sizes are not known a priori and unpredictable by
nature. Consequently, solving the TSP requires the runtime system to cope with
dynamic problem decomposition and load balancing to avoid idling processing
units. Every task that captures a specific subproblem can produce new child
tasks (cf. Fig. 3). Thus, termination detection is another strong requirement to
detect if a computation has been completed. Additionally, updates on the upper
bound have to be distributed fast to enable efficient pruning for subproblems
processed simultaneously in the distributed system.

5.2 Design and Use of the Development Framework

In the following, we describe a development framework for elastic branch-and-
bound on top of TASKWORK. We employ the TSP as an example application to
show how to use the framework. Elastic parallel applications can be implemented
with this framework without considering low-level, technical details.

TASKWORK provides a generic task abstraction that can be used to build
new development frameworks and programming models. In the context of
branch-and-bound, we define a task as the traversal of the subtrees rooted at all
unvisited input nodes. Additionally, each task has access to the graph structure
describing the cities as vertices and the paths as edges. This graph structure
guides the exploratory construction of the state space tree. All visited cities are
marked in the graph. This representation allows to split the currently traversed
state space tree to generate new tasks.

New tasks have to be created at runtime to keep idling processing units
and newly added ones busy. Therefore, the branch-and-bound task definition



56 S. Kehrer and W. Blochinger

Fig. 4. The elastic branch-and-bound development framework allows developers to
implement parallel search procedures without considering low-level details such as con-
currency, load balancing, synchronization, and task migration [28].

allows the specification of an application-specific split operation. This opera-
tion branches the state space tree by splitting off a new task from a currently
executed task. This split-off task can be processed by another worker thread
running on another compute node. To limit the amount of tasks generated, we
make use of TASKWORK’s potential splits, i.e, the split operation is only
triggered, when new tasks are actually required. As depicted in Fig. 4, here,
the potentialSplit operation is executed after a node has been evaluated.
TASKWORK decides if a split is required. If so, it executes the application-
specific split operation that takes nodes from the openNodes list to create a
new (disjoint) task. Otherwise it proceeds regularly, i.e., it evaluates the next
node. In the following, we describe how to implement task migration, bound
synchronization, and termination detection based on TASKWORK.

Task Migration. To enable task migration, developers check if migration is
required (cf. Fig. 4). In this case, a task simply stops its execution. The migration
process itself is handled by TASKWORK. This means that a compute node that
has been selected for decommissioning automatically stops all running worker
threads, pushes the affected tasks to the local task pool, and starts the migration
of these tasks to other compute nodes (cf. Sect. 4.5).

Bound Synchronization. Pruning is based on a global upper bound. In case
of the TSP, the total cost of the best tour currently known is used as the global
upper bound. The distribution of the current upper bound is essential to avoid
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excess computation (due to an outdated value). By employing the synchroniza-
tion component (cf. Sect. 4.7), we initiate an update of the global upper bound
whenever the local upper bound is better then the current global upper bound
observed. Technically, we specify an update rule that compares the total costs
of two tours. If a better upper bound has been detected, TASKWORK ensures
that the new upper bound is propagated through the hierarchy levels of the
parallel system. At the programming level, getUpperBound and setUpperBound
(cf. Fig. 4) are implemented based on the getVar and setVar operations (cf.
Sect. 4.7).

Termination Detection. Activating termination detection enables parallel
applications to register for a termination event, which can be also used to retrieve
the final result. In this case, the final result is a tour whose total cost is minimum
and thus solves the TSP.

6 Experimental Evaluation

In this section, we present and discuss several experiments to evaluate TASK-
WORK. First, we describe our experimental setup. Second, we introduce the
benchmark applications for parallel tree search that are used for the evalua-
tion. Third, we report on the parallel performance and scalability by measuring
speedups and efficiencies for both the TSP application implemented with the
elastic branch-and-bound development framework and the described benchmark
applications. Finally, we measure the effects of elastic scaling on the speedup
of an application to assess the inherent overheads of dynamically adapting the
number of compute nodes at runtime.

6.1 Experimental Setup

Compute nodes are operated on CentOS 7 virtual machines (VM) with 1 vCPU
clocked at 2.6 GHz, 2 GB RAM, and 40 GB disk. All VMs are deployed in our
OpenStack-based private cloud environment. The underlying hardware consists
of identical servers, each equipped with two Intel Xeon E5-2650v2 CPUs and
128 GB RAM. The virtual network connecting tenant VMs is operated on a
10 GBit/s physical ethernet network. Each compute node runs a single worker
thread to process tasks and is connected to one of three ZooKeeper servers
(forming a ZooKeeper cluster). Our experiments were performed during regular
multi-tenant operation.

6.2 Benchmark Applications

Because work anomalies occur in the context of our branch-and-bound applica-
tion, we additionally use two benchmarks for parallel tree search to rigorously
evaluate TASKWORK. Work anomalies result from the search procedure being
executed in parallel by different compute nodes on different subtrees of the search
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tree. As a result, the amount of work significantly differs between sequential and
parallel processing as well as across parallel application runs. We describe the
benchmark applications in the following.

Unbalanced Tree Search (UTS). Unbalanced Tree Search [32] is a bench-
mark designed to evaluate task pool architectures for parallel tree search. UTS
enables us to generate synthetic irregular workloads that are not affected by work
anomalies and thus support a systematic experimental evaluation. Different tree
shapes and sizes as well as imbalances can be constructed by means of a small set
of parameters, where each tree node is represented by a 20-byte descriptor. This
descriptor is used as a random variable based on which the number of children
is determined at runtime. A child node’s descriptor is generated by an SHA-1
hash function based on the parent descriptor and the child’s index. As a result,
the generation process is reproducible due to the determinism of the underlying
hash function.

We generate UTS problem instances of the geometric tree type, which mimics
iterative deepening depth-first search, a commonly applied technique to deal
with intractable search spaces, and has also been extensively used in related
work [9,32,34]. The 20-byte descriptor of the root node is initialized with a
random seed r. The geometric tree type’s branching factor follows a geometric
distribution with an expected value b. An additional parameter d specifies the
maximum depth, beyond which the tree is not expanded further. The problem
instances employed for our measurements are UTS1 (r= 19, b= 4, d= 16) and
UTS2 (r= 19, b= 4, d= 17).

WaitBenchmark. This benchmark was taken from [38], where it has been used
in the context of parallel satisfiability (SAT) solving to systematically evaluate
task pool architectures. The irregular nature of these applications is modeled
by the benchmark as follows. To simulate the execution of a task, a processing
unit has to wait T seconds. The computation is initialized with a single root
task with a wait time Tinit. At runtime, tasks can be dynamically generated by
splitting an existing task. Splitting a task Taskparent is done by subtracting a
random fraction Tchild of the remaining wait time TR and generating a new task
Taskchild with Tchild as input:

Taskparent{TR} → (Taskparent′{TR − Tchild}, Taskchild{Tchild}). (1)

6.3 Basic Parallel Performance

We report on the basic parallel performance of TASKWORK by measuring
speedups and efficiencies for the TSP application implemented with the elas-
tic branch-and-bound development framework. To evaluate the parallel perfor-
mance, we solved 5 randomly generated instances of the 35 city symmetric TSP.
Speedups and efficiencies are based on the execution time Tseq of a sequen-
tial implementation executed by a single thread on the same VM type. Table 1
shows the results of our measurements with three parallel program runs per TSP
instance. As we can see, the measured performance is highly problem-specific.
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Table 1. Performance measurements of TSP instances [28].

Problem
instance

Tseq [s] (1 VM) Tpar [s] (60 VMs) Speedup S
[#] (60 VMs)

Efficiency E
[%] (60 VMs)

TSP351 1195 32.9 ± 2.0 36.3 60.48

TSP352 1231 55.7 ± 4.0 22.1 36.87

TSP353 2483 103.5 ± 2.1 24.0 39.99

TSP354 3349 115.5 ± 6.3 29.0 48.31

TSP355 10286 167.4 ± 12.4 59.5 99.20

6.4 Scalability

To evaluate the scalability of a parallel system, one has to measure the stan-
dard metrics in parallel computing, i.e., the parallel execution time Tpar, the
speedup S, and the parallel efficiency E, for different numbers of processing
units. Tpar(I, p) is the parallel execution time for a given input I measured with
p processing units and Tseq(I) is the sequential execution time for a given input
I. The problem size W (I) is defined as the number of (basic) computational
steps in the best sequential algorithm to solve a problem described by I [14].
Under the assumption that it takes unit time to perform a single computational
step, the problem size is equivalent to the sequential execution time Tseq(I). To
evaluate the scalability of TASKWORK, we report on two different measure-
ment approaches: First, we measured the speedup with the UTS benchmark and
the WaitBenchmark for a fixed problem size. Second, we measured the so-called
scaled speedup with the WaitBenchmark. The scaled speedup of a parallel system
is obtained by increasing the problem size linearly with the number of processing
units [14]. We discuss the results in the following.

First, we report on the scalability of TASKWORK with a fixed problem size,
which is thus independent of the number of processing units contributing to the
computation. Figure 5 depicts the results of our measurements for three different
problem instances: Two problem instances of the UTS benchmark UTS1 (r= 19,
b= 4, d= 16) and UTS2 (r= 19, b= 4, d= 17) and a problem instance of the
WaitBenchmark with a fixed initial wait time of the root task of Tinit = 600 [s].

Second, we report on the scalability of TASKWORK with a problem size
that is increased linearly with the number of processing units. In the case of
the WaitBenchmark, the input is defined as the initial wait time of the root
task Tinit. The problem size can be defined as W (Tinit) = Tinit. Moreover, the
sequential execution time Tseq(Tinit) required by the best sequential algorithm
to solve a problem described by Tinit is Tseq(Tinit) = Tinit. This makes it easy to
create a fixed problem size per processing unit, which requires us to increase the
problem size W with the number of processing units p employed by the parallel
system. For our measurements, we defined an initial wait time of the root task
of Tinit(p) = p · 60 [s]. The speedups and efficiencies obtained are depicted in
Fig. 6. The results of our measurement show close to linear speedups. A parallel
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Fig. 5. The problem instances shown are UTS1 (r= 19, b= 4, d= 16), UTS2 (r= 19,
b= 4, d= 17), and the WaitBenchmark with an initial wait time of the root task of
Tinit = 600 [s]. Speedups and efficiencies given are arithmetic means based on 3 parallel
program runs for 6 setups leading to 54 measurements in total.

Fig. 6. The problem instances shown are the WaitBenchmark with an initial wait time
of the root task of Tinit(p) = p · 60 [s] and the WaitBenchmark with an initial wait
time of the root task of Tinit = 600 [s]. Speedups and efficiencies given are arithmetic
means based on 3 parallel program runs.

system is considered to be scalable when the scaled speedup curve is close to
linear [14]. As expected, the (scaled) speedup curve is much better compared to
the one obtained by our scalability measurements with Tinit = 600 [s], which are
also depicted in Fig. 6.
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Fig. 7. We adapt the number of compute nodes (physical parallelism) at times t1 and
t2 and measure the effects on the elastic speedup Selastic [28].

6.5 Elastic Scaling

In the cloud, compute resources can be provisioned or decommissioned at run-
time by means of an elasticity controller. To make use of newly provisioned
compute resources, the runtime system has to adapt to this change (cf. Sect. 3).
A fundamental question that arises in this context is: How fast can resources be
effectively employed by the application? This is a fundamentally new perspec-
tive on parallel system architectures that also has to be considered for evaluation
purposes.

We propose a novel experimental method that shows the capability of a par-
allel system to dynamically adapt to a changing number of compute resources.
Because parallel systems are designed with the ultimate goal to maximize paral-
lel performance, our method evaluates the effects of dynamic resource adaptation
on performance in terms of the speedup metric. Our experiment is described in
Fig. 7 and comprises three phases. We start our application with 10 compute
nodes (VMs) in Phase P1. At time t1, we scale out by adding more VMs to
the computation. To evaluate the elastic behavior without platform-specific VM
startup times, we employ VMs that are already running. At time t2, we decom-
mission the VMs added at t1. At phase transition 1 , TASKWORK ensures task
generation and efficient load balancing to exploit newly added compute nodes.
At phase transition 2 , the task migration component ensures graceful decom-
missioning of compute nodes (cf. Sect. 4.5). We can easily see if newly added
compute resources contribute to the computation by comparing the measured
elastic speedup Selastic (speedup with elastic scaling) with the baseline speedup
Sbaseline that we measured for a static setting with 10 VMs. To see how effec-
tively new compute resources are employed by TASKWORK, we tested several
durations for Phase P2 as well as different numbers of VMs added (cf. Fig. 7)
and calculated the percentage change in speedup Schange as follows:

Schange =
(Selastic − Sbaseline)

Sbaseline
· 100 (2)
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Fig. 8. The percentage change in speedup is calculated based on different durations of
Phase P2 and different numbers of compute nodes (VMs) added to the parallel com-
putation at runtime. The number of VMs shown is the total number of VMs employed
in Phase P2.

Schange allows us to quantify the relative speedup improvements based on
elastic scaling. Both Selastic and Sbaseline are arithmetic means calculated based
on three program runs.

For our measurements, we employ the TSP application implemented based on
the elastic branch-and-bound development framework. To avoid work anomalies,
we disabled pruning to evaluate elastic scaling. All measurements are based on
a TSP instance with 14 cities. The results of our measurements are depicted
in Fig. 8, which shows the percentage change in speedup achieved for different
durations of Phase P2 and different numbers of compute nodes (VMs) added to
the computation at runtime. 40 VMs added (leading to 50 VMs in total in Phase
P2) can be effectively employed in 15 s. Higher speedup improvements can be
achieved by increasing the duration of Phase P2. We also see that for a duration
of only 10 s, adding 40 VMs even leads to a decrease in speedup whereas adding
20 VMs leads to an increase in speedup (for the same duration). This effect
results from the higher overhead (in form of task generation, load balancing,
and task migration) related to adding a higher number of VMs. On the other
hand, as expected, for higher durations of Phase P2, employing a higher number
of VMs leads to better speedups. Note that the percentage of time spent in
Phase P2 (with respect to the total execution time) affects the actual percentage
change in speedup, but not the effects that we have described.
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7 Conclusion

In the presented work, we tackle the challenge of developing and operating elas-
tic parallel tree search applications. We discuss related system-level challenges
and show how to enable elastic parallel computations as well as cloud-aware
coordination of distributed compute resources for the application class consid-
ered. Based on our findings, we present a novel runtime system that manages
the low-level complexities related to elastic parallel applications to ease their
development. Elastic parallel computations are enabled by means of load bal-
ancing, task migration, and application-specific task generation, which requires
only minor effort at the programming level. Whereas the described development
framework is specifically designed for elastic parallel branch-and-bound appli-
cations, other application classes that generate tasks at runtime (e.g., n-body
simulations [18]) might also benefit from the design principles presented.

Many challenges are left on the path towards elastic parallel applications.
Our long-term goal is to understand how to design, develop, and manage elas-
tic parallel applications and systems. Therefore, we investigate design-level,
programming-level, and system-level aspects [25,28] as well as delivery and
deployment automation [22,23,26,29]. In this context, we are confident that
TASKWORK provides a solid foundation for future research activities.
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