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Abstract. Container-based virtualization has been investigated as an
attractive solution to achieve isolation, flexibility and efficiency in a wide
range of computational applications. In High Performance Computing,
many applications rely on clusters to run multiple communicating pro-
cesses using MPI (Message Passing Interface) communication protocol.
Container clusters based on Docker Swarm or Kubernetes may bring
benefits to HPC scenarios, but deploying MPI applications over such
platforms is a challenging task. In this work, we propose a self-content
Docker Swarm platform capable of supporting MPI applications, and
validate it though the performance characterization of a meteorological
scientific application.
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Computing · Performance evaluation · MPI

1 Introduction

1.1 Motivation

High performance computing (HPC) is a generic term for computationally or
data-intensive applications of a [25] nature. While most HPC platforms rely on
dedicated and expensive infrastructures such as clusters and grids, other tech-
nologies such as cloud computing are becoming attractive. Recent developments
on the virtualization domain have considerably reduced the performance over-
head of these new platforms. Furthermore, traditional HPC infrastructures must
often struggle with administration and development issues as the installation and
maintenance of HPC applications often leads to library incompatibilities, access
rights conflicts or simply dependencies problems for legacy software.
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The arrival of efficient virtualization techniques such as container-based vir-
tualization has set a new landmark towards the maintainability of computing
infrastructures. Concepts such as isolation and packaging of applications now
allow a user to create its own execution environment with all required libraries,
to distribute this environment and to reproduce the same install everywhere
with almost no effort.

When considering HPC applications, the MPI (Message Passing Interface)
protocol [21] is often used for data exchange and task coordination in a cluster.
Despite recent advances in its specification, the deployment of an MPI applica-
tion is still too rigid to be easily deployed on more dynamic environments such
as cloud or container clusters. Indeed, the starting point of an MPI execution is
the definition of a list of participant nodes, which requires a prior knowledge of
the runtime environment.

Deploying an MPI cluster on containers clusters is also difficult task because
the internal overlay network from popular environments such as Docker Swarm
is designed for load balancing and not for addressing specific nodes, as in the case
of MPI. As a consequence, only a few works in the literature try to offer support
MPI on Docker, and most fail to develop a simple and stand-alone solution that
does not require manual or external manipulation of the MPI configuration.

In this paper we address the lack of elegant deployment solutions for MPI over
a Docker Swarm cluster. We extend the preliminary results presented on [27],
demonstrating the interest of our platform through the deployment of a meteo-
rological simulation software and its evaluation thanks to execution benchmarks
and trace analysis on both cloud and container environments. In addition, we
expand the analysis by comparing the performance on traditional x86 processors
and ARM processors represented by clusters of Raspberry Pi machines.

1.2 Background

Considering all current virtualization technologies, we can highlight two of them:
hardware virtualization, which makes use of Virtual Machine Monitors (VMMs),
better known as hypervisors, and OS-level virtualization (containers).

Hardware virtualization can be classified as Type I or Type II. Each type
considers where the hypervisor is located in the system software stack. Type I
hypervisors (Fig. 1a) execute directly over hardware and manage the guest OSs.
This way, the access to the hardware (and the isolation between different host
OS) must be aware of the underlying VMM to access the hardware (both through
the hypervisor or through paravirtualization interfaces).

The Type II (Fig. 1b) virtualization, on the other hand, relies on a hypervisor
working inside the host OS, with the later one ensuring the access to the hard-
ware. Type II allows creating complete abstractions and total isolation from the
hardware by translating all guest OS instructions [18]. This type of virtualiza-
tion is also known as full virtualization. As drawback, it imposes a high overload
that penalizes most HPC applications [33]. While these performance penalties
can be mitigated by the use of hardware-assisted virtualization (a set of specific
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instructions present in most modern processors), other virtualization strategies
are often preferred when dealing with HPC applications.

As hypervisor-based solutions are considered heavy-weighted, the develop-
ment of OS-level virtualization is becoming much more popular (Fig. 1c). This
approach uses OS features that partition the physical machine resources, cre-
ating multiple isolated user-space instances (containers) on top of a single host
kernel. Another advantage of container-based virtualization is that it does not
need a hypervisor, incurring much less overhead [12]. Hence, popular OS-level
virtualization systems include Linux Containers (LXC), RKT and Docker.

Fig. 1. Main virtualization types.

In all those systems, the container shares the kernel with the host OS, so
its processes and file system are completely visible from the host, but thanks
to the OS isolation, the container only sees its file system and process space
[31]. The also use namespaces to isolate the containers and ensure that they
access only their subsets of resources. Namespaces are also used to control the
network and inter-process communication capabilities, and allow containers to
be checkpointed, resumed or even migrated.

One of the most popular container solutions is Docker1. In addition to man-
aging containers at the OS level, Docker allows the users to create personalized
images that can be saved and used as a base to the deployment of many con-
current containers. Docker also provides a registry-based service named Docker
Hub2, allowing users to share their images.

More recently, Docker provides a basic orchestrator service called Docker
Swarm, that enables the deployment of a cluster of Docker nodes. While Docker

1 https://www.docker.com/.
2 https://hub.docker.com/.

https://www.docker.com/
https://hub.docker.com/
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Swarm is not as modular as other orchestrators like Kubernetes [7], it is simple
to use, and Swarm services can be easily adapted to operate under Kubernetes.

It is also interesting to note that although Docker was initially developed for
x86 platforms, it now contemplates other processor architectures. For example,
the adaption to the ARM processors family started around 2014, with an ini-
tial work made by Hypriot3 for Raspberry Pi machines. More recently, Docker
started to officially support ARM, and several base images on Docker Hub are
now published with both x86 and ARM versions.

1.3 Related Work

HPC applications often search to solve problems that are hard to compute in
a single machine due to capacity (memory, storage) or performance limitations.
Distribute these applications on a cluster is often a way to increase the available
resources all while trying to divide the problems in small pieces that can be
processed in parallel.

Traditionally, the HPC community refuses virtualization due to the perfor-
mance overheads from Type II and Type I hypervisors. However, the recent
dissemination of container virtualization is changing this view. Several HPC
centers favor the use of containers to simplify the resources management and to
guarantee compatibility and reproducibility for the users’ applications [23]. For
example, the NVidia DGX servers4, dedicated to Deep Learning and Artificial
Intelligence applications, use Docker containers to deploy the user’s applications.

Several strategies can be used to distribute and coordinate HPC applications
over a cluster, and one of the most popular ones is the use of message passing
through the MPI (Message Passing Interface) communication protocol. Indeed,
MPI provides standard operations for data exchange and task coordination,
including single and multi-point communications, synchronous and asynchronous
primitives, parallel I/O, etc. While recent advances have improved several per-
formance aspects, the MPI specification is still based on “stable” HPC clusters,
which may hinder the deployment of an MPI application on new dynamic envi-
ronments such as clouds and virtualized clusters. Indeed, MPI requires a well-
known execution environment, characterized by a list of participating nodes
(often known as the hostfile). Please note that while some fault-tolerance has
been included in the last MPI specification (see [21]), it only serves to handle
nodes that go down, not to manage a dynamic list of nodes.

As a consequence, deploying MPI applications over a container cluster such as
Docker Swarm or Kubernetes is a challenging task. In the specific case of Docker
Swarm (which we consider in this work), the overlay network connecting the
containers is designed to perform replication and load balancing, not to manage
node lists as required by MPI. This problem can be found on the literature,
where most works trying to deploy MPI application over Docker require manual

3 https://blog.hypriot.com/.
4 https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-

rhel-centos-datasheet-update-r2.pdf.

https://blog.hypriot.com/
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or external manipulation of MPI elements to deploy applications. One of our
aims is therefore to propose a self-content Docker Swarm platform capable of
supporting MPI applications.

Among the related works, we can cite [5], which focus on the automation
of the deployment of the MPI application over a Docker Swarm cluster (i.e.,
scripts to copy and launch the application), but requires the user to provide
the list of available nodes at launch time. More often, the literature describes
an external management for the nodes in the container cluster. For example,
[32] suggests two architectural approaches to be used with Docker, all relying
on an external script that feeds information to the containers through SSH. The
same approach is used by [13], where the containers are launched separately by
PBS, a resource manager, and a set of scripts helps deploying and connecting
the containers together. The same strategy is used by [3], using Slurm. In both
cases, the authors connect isolated containers “by hand”, instead of relying on
the Docker Swarm orchestrator.

Not all solutions rely on scripts, but sometimes they depend on solutions
specifically tailored for MPI. This is the case of Singularity [16], a container
manager developed for HPC applications. As these applications often rely on
MPI, Singularity automatically sets up an MPI hostfile with the host names.

An extreme case of external dependency is that of [8], where even MPI tools
(mpirun, mpiexec) are absent from the containers. Instead, both the application,
data and libraries are imported from the host OS, with the containers playing
simply the role of isolated execution environments. Such approach makes the
execution totally dependent on the hosting platform, preventing the usage of
any generic platform such as the cloud.

To our knowledge, only the work from [22] approaches the minimal require-
ments for the automatic deployment of MPI applications on a Docker Swarm
cluster. This platform includes scripts for the deployment of the Docker Swarm
service and creates list of nodes for the hostfile by inspecting active network
connections (using netstat). Nonetheless, the use of netstat proved to be too
unstable, and recent patches to the code try to correct this issue.

1.4 Our Contributions

In this paper, we consider the problem of developing a container environment
capable of supporting MPI applications in both server and cluster configurations.
As expressed before, we search to propose a self-content solution based on Docker
Swarm, a well known tool that adds clustering capabilities to Docker containers,
including distribution, load balance and overlay networking.

When regarding the solutions presented in the literature, we consider that
they are too dependent on external scripts, making them inelegant and unreli-
able. Instead, we propose a simpler solutions that integrate well to the deploy-
ment of a Docker Swarm cluster.

The second contribution of this work is an extensive performance evaluation
of a real application in both cloud and container environments. We selected the
WRF (Weather Research and Forecast) model as it is both an application that



204 L. A. Steffenel et al.

relies on MPI for distributed computing, but also because it has several install
issues that favorize its distribution as a container image. The benchmarks and
execution traces performed on this work allow us to better understand the impact
of the container environment and the Docker Swarm overlay network, but also to
identify performance bottlenecks from the WRF software that may be addressed
in a future work. This extensive analysis is also an addition to the preliminary
results we presented in [27].

Our final contribution is the adaption of the environment to support the
execution on ARM processors, and another set of benchmarks and analysis in a
cluster of Raspberry Pi. The main interest of supporting this family of processors
lies on its potential and relative low cost. We performed new experiments in a
Raspberry Pi 3 cluster, experimentally demonstrating that applications such as
WRF can be deployed over ARM processors and produce results within accept-
able time intervals and for a fraction of the cost of a traditional HPC platform.

2 Supporting MPI on a Docker Swarm Cluster

As we indicated before, most works aiming at supporting MPI on Docker rely on
the users to complete the information in the hostfile, or require external tools
to reach such objective. Only the work from [22] tries to create an automated
process, but it does not works reliably enough.

Such difficulty is due to the fact that Docker Swarm was not conceived as an
HPC environment, but rather as a self balancing/fault tolerant environment to
deploy applications. This can be observed if we analyze the different execution
modes Docker support: in the “individual” mode (i.e., the “original” mode that
does not depend on Docker Swarm), a container is launched as a standalone
application. In this mode, no additional interconnections to other instances is
required, even if this can be made possible. In the “service” mode, which is part
of the Docker Swarm configuration, instances are interconnected by a routing
overlay. This overlay includes a naming service that allows services to locate
each other easily (instead of using hard-coded IP addresses), but it also includes
a load balance mechanism to redirect messages among instance replicas or to
restart faulting instances.

As the own Docker Swarm documentation illustrates (see Fig. 2), replicas of a
service instance, even if located in different nodes, can be addressed by the same
name, with messages being rerouted by the “Ingress” overlay network. In this
example, two my-web instances exist, and they can be contacted through any of
the nodes from the service. This naming service simplifies the development of
applications (the code only needs to indicate a my-web address), and the overlay
performs the redirection of the messages and the eventual load balancing among
the instances of a service.
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Fig. 2. Docker routing mesh [11].

In the case of MPI applications, the “replication and redirection” approach
from Docker does not apply conveniently, as the MPI hostfile requires the
list of the computing servers. The hostfile can be composed by hostnames
or IP addresses, but obtaining the hostnames is not an easy task in Docker
Swarm because the overlay hides the instances under the same “umbrella” name
(for example, my-web in the previous example). For this reason, we need to
discover the instances’ IP addresses inside the overlay network. As the app-
roach used by [22] is not reliable as it depends on open network connections
between the instances (which may be transient or even non existent), we chose
to query the naming service of Docker with the dig DNS lookup tool. More
exactly, Docker Swarm allow us to contact all instances of the same service
under the tasks.XXXX nickname, where XXXX is the name of the service. By
using dig, we can obtain detailed information sent by the DNS server and, in
the case of umbrella names, get the list of the IP addresses from all instances
associated with that name.

The hostfile also allows the users to indicate a few more information about
the computing resources, like the number of processes (or slots) a node can run
simultaneously. As most recent processors have multiple computing cores, we
can consider that each machine in a Swarm cluster is able to run more than one
process. To obtain this extra information, we call the nproc application on each
machine, obtaining therefore the number of available processing cores.

Therefore, these two discovery steps (IP addresses and computing capabili-
ties) can be elegantly arranged in a few lines of scripts as presented in the snippet
from Fig. 3, where we compose the hostfile with the list of all worker nodes
(i.e., instances of the “worker” service on Swarm) and the number of computing
cores from each node.
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Fig. 3. Script to create the hostfile with the IP addresses and number of cores for
Docker Swarm instances.

A final detail concerns the nodes’ ranks. Most HPC applications rely on a
node or process rank to perform specific tasks or to segment data to be processed,
and MPI is not an exception. In MPI, the node launching the MPI application
uses the order of the nodes in the hostfile to set the ranks and to launch the
application on the other nodes. This “master” node, known as “rank 0”, is often
used as a frontend node for the cluster, where the user can execute preprocessing
steps, setup the application parameters or simply run the code before deploying
it over the cluster. Because of this, it is important to allow users to access this
node using SSH, for example. Even if most of the MPI application deployment
can be automated through scripts, we believe that this improves the usability
of our environment. In addition, we must consider that a Docker Swarm cluster
remains an isolated environment, and accessing it via SSH is a simple way to
import and export data.

Because of the load balancer in the Docker network, we cannot simply add an
SSH server to each worker replica as the connection will not always be directed
to the same node. Therefore, we have to create a “master” service that can be
correctly identified and accessed from the outside. As the SSH port must be
published, the master node cannot simply use the Ingress routing network, but
needs to be executed under the special global deployment mode. Some other
attributes in the service definition file (docker-compose.yaml) ensure that the
master will be easy to contact (by deploying it on the manager node from the
Swarm cluster), open the ports for SSH and also mount correctly all external
volumes required for the application. Therefore, Fig. 4 presents the main ele-
ments of the docker-compose.yaml file used to define and deploy the Swarm
service for our application. All these files are available at our Github repository5

and the images are available on Docker Hub.

5 https://github.com/lsteffenel/swarm mpi basic.

https://github.com/lsteffenel/swarm_mpi_basic
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Fig. 4. Excerpt of the Swarm service definition.

3 Profiling and Tunning an Application

In order to assess the performance our virtualized, container-based cluster plat-
form, we decided to benchmark Weather Research and Forecasting (WRF) model
[24], a well-known numerical weather prediction model. In the next sections we
will describe the WRF suite in greater details, and conduct several performance
measurements and analysis to identify performance overheads and bottlenecks
on both virtual cluster and application levels.
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3.1 WRF - Weather Research and Forecasting

The Weather Research and Forecasting (WRF) Model [24] is a state-of-the-art
numerical weather prediction software widely used for both operations, research
and education. It is one of the most known meteorological forecast tools, with
users numbering in the tens of thousands. Indeed, it is one of the main tools used
in our MESO project6, an international collaboration to explore stratospheric
events that affect the Ozone layer.

In spite of its popularity, WRF developers still do not offer it in binary pack-
ages ready to be installed, but instead the user needs to configure and compile
the software, which may be a challenge for beginners or for users that do not have
administration rights on their computing infrastructures. Today, WRF has more
than 1.5 million lines of code in C and Fortran, and presents many dependencies
on external software packages for input/output (I/O), parallel communications,
and data compression. Many of these external libraries are becoming obsolete or
unsupported by recent Linux distributions, forcing the users to download and
compile these libraires too.

We believe that running WRF on containers is a way to mitigate many of the
problems cited above, simplifying its deployment for both education and research
usages. Indeed, containers allow the packaging of a working WRF install, ready
to be used in local machines but also on the cloud.

Execution Steps. In addition to the configuration complexity, running the
WRF model requires several steps to preprocess, compute and visualize the
results. Indeed, the typical workflow to execute the WRF model is made of 5
phases, represented in Fig. 5 and detailed in the list below:

1. Geogrid - creates terrestrial data from static geographic data (external files
with around 60 GB of data);

2. Ungrib - unpacks GRIB meteorological data obtained from an external source
and packs it into an intermediate working format;

3. Metgrid - horizontally interpolates the meteorological data onto the model
domain;

4. Real - vertically interpolates the data onto the model coordinates, creates
boundary and initial condition files, and performs consistency checks;

5. WRF - generates the model forecast.

The three first steps belong to the WRF Preprocessing System (WPS), a sub-
set of applications that is configured and compiled separately from the remainder
of the tool. During its configuration, WPS allows two execution modes: serial
or dmpar, the later one providing distributed memory parallelism through the
use of MPI.

The second part of the configuration, which compiles and install the WRF
model, offers four execution modes: serial, smpar (shared memory parallelism),
dmpar (distributed memory parallelism) and sm+dmpar. The smpar option is
6 http://meso.univ-reims.fr.

http://meso.univ-reims.fr
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based on OpenMP, while the dmpar uses MPI as communication overlay. The
last option (sm+dmpar) combines OpenMP and MPI, but several user reports
point out that dmpar usually outperforms the mixed option [9,17] and should be
preferred.

Fig. 5. WRF workflow [27].

3.2 Performance Evaluation

Computer researchers have been dedicated to investigating the impact of con-
tainers on HPC applications. The use of containers facilitates dependency man-
agement by providing a solid environment for running applications. [12,15] have
shown that the use of containers generates negligible performance payloads in
a single server. In the case of Docker Swarm, however, the overlay network is
created with the help of VXLAN tunnels, and this encapsulation has a pay-
load that may represent about 6% of the transmitted data [14] and therefore
a potential performance issue. Hence, in order to test the impact generated by
Docker Swarm, we designed two scenarios to compare the performance of the
WRF application.

To perform the tests, we used three machines configured as c4.large
instances in the Amazon AWS service. Each machine featured a 2.9 GHz Intel
Xeon E5-2666 v3 processor, 2 cores, 3.75 GiB of RAM and a network connection
with moderate performance (300 Mb/s). Two scenarios were considered. In sce-
nario (a), WRF was run on baremetal with the number of processes varying as
follows: 1 (1 machine), 2 (2 machines), 4 (2 machines), 6 (3 machines). In scenario
(b) the same test was performed, however, using containers with an Ubuntu OS
image and with WRF installed and configured. For the execution of scenario (b),
a Docker overlay network was also created so that instances could communicate,
sending and receiving TCP packets used by MPI for synchronization and execu-
tion of distributed tasks. The tests on both scenarios were performed 10 times,
with the average of the times presented below.
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The benchmarks used a dataset concerning an area covering Uruguay and the
south of Brazil and allowing a 12-h forecasting from October 18, 2016. This small
dataset is used as training example for meteorology students at Universidade
Federal de Santa Maria, who can modify the parameters and compare the results
to the real observations. The entire dataset is accessible at the Github repository
we created for the WRF container images7.

From the Fig. 6 chart it is possible to see that as the number of processes
grows, the impact on performance from Docker is higher. This difference can
be caused by the overhead generated by the overlay network, so that containers
on different hosts can communicate. Nevertheless, the overall impact on perfor-
mance is still reduced, reaching 7.8% when 6 processes were used. Therefore,
the use of containers remains interesting, facilitating the deployment of a given
application or tool. The next section conducts a detailed analysis on the execu-
tion traces of WRF, allowing us to better understand the reasons for the reduced
speedup observed in both baremetal and container environments.

Fig. 6. WRF performance on AWS: baremetal versus Docker.

3.3 Going Deeper: Tracing MPI Communications

Parallel applications have their own circumstances when it comes to analyzing
its execution behavior. Beyond the individual flow of each process, it is essen-
tial to monitor how the processes communicate with each other and how this
communication affects the overall performance. The tracing tools and its out-
come enables this evaluation to be done, as the traces are valuable resources to
find unexpected behaviors or bottlenecks during the execution. Along with this
investigation, trace visualization tools will also be helpful. These tools are cru-
cial when it comes to realizing the post-mortem analysis, facilitating to identify

7 https://github.com/lsteffenel/wrf-container-armv7l-RaspberryPi.

https://github.com/lsteffenel/wrf-container-armv7l-RaspberryPi
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events that might be affecting the performance. Lastly, it is desirable to connect
these events with the code to implement improvements.

Currently, there is a variety of tracing tools available, along with a variety
of trace visualization tools. Among the existent tracing tools, EZTrace appears
as a tool designed for providing a generic way to analyze an application without
impacting its execution [28]. Besides that, EZTrace was commonly adopted in
previous works and provides runtime instrumentation. Since these characteristics
fit our needs, EZTrace was chosen to trace the executions of the case study
application, described in Sect. 3. The version chosen for EZTrace was version 1.1-
6, that is compatible with the binutils-dev package, version 2.26.1-1, available
on Ubuntu 16.04. This package is a requirement and its version impacts which
EZTrace version to choose. To the current case study, it was necessary to include
the MPI module, as we are meant to collect data in this context during the
execution.

The tracing analysis was performed on the same cloud environment as the
previous performance tests, using three c4.large on Amazon Web Services
(AWS). Two cases were executed to generate traces, the first with 4 WRF pro-
cesses distributed over two nodes, and the second with 6 processes distributed
over three nodes, just like in Sect. 3.2. Were realized five executions for each
case, and EZTrace was instrumented to collect MPI related events (eztrace -t
mpi).

As the executions finished and the data was collected, we converted it into
two trace formats: Pajé and OTF. To visualize these trace formats, ViTE8 (Pajé)
and Vampir9 (OTF) were the visualization tools utilized. Each one of these tools
provides specific resources to explore the traces and its data.

Fig. 7. ViTE tool interface.

8 http://vite.gforge.inria.fr/.
9 https://vampir.eu/.

http://vite.gforge.inria.fr/
https://vampir.eu/
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Fig. 8. ViTE zoom on communications.

Fig. 9. Communication matrices.

Firstly, the view on ViTE tool is presented in Fig. 7, illustrating the com-
munications between 6 WRF processes. The ViTE interface allows us to zoom
in and see the messages’ flow along with more details about a specific event or
arrow, as the user double clicks it (Fig. 8). The tool also has a statistical plugin
that presents the data collected in charts shape.

Another visualization tool utilized was Vampir. Its interface provides multi-
ple resources to investigate the trace. These resources include most of what is
available on ViTE and some extra. For instance, in Fig. 9, a function summary is
shown. With this resource, it is possible to view how much utilized is each MPI
function, in general, and for each process. Another resource presented, shown
in Fig. 10 is a communication matrix. It enables to visualize how many times
a process has sent and received messages from another process. It also shows
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Fig. 10. Resources available on Vampir tool.

the shortest, longest, and average transfer time for each specific combination of
sender and receiver process.

Looking these traces, we see that MPI Wait events represent an important
part of the execution time. MPI Wait is a primitive used when non-blocking
functions as MPI Isend and MPI Irecv, are called. Indeed, it indicates that a
process is waiting for the arrival of a message, evidencing a lack of synchro-
nization between processes. Even though the time spent during this invocation
is inconvenient, non-blocking messages are usually an improvement over block-
ing messages, since non-blocking calls are used to overlap communication and
computation. This behavior allows processing between the time that the pro-
cess sends the message and the MPI Wait instance but, in the case of the WRF
application, it seems too important and therefore affect the overall performance.

(a) 4 MPI processes (b) 6 MPI processes

Fig. 11. Performance statistics.

Hence, the time occupied by MPI Wait increases with the number of pro-
cesses, as we observe in the statistical details obtained with 4 and 6 processes
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on Fig. 11. Also, the time expended in MPI Wait is not equally distributed,
evidencing a load balance issue inside WRF.

While this analysis does not uncovers any special problem with the container
environment, it helps concluding that scalability issues observed in Sect. 3.2 are
due to the own WRF code, whose solution is beyond the scope of this work.

4 Supporting Different Processor Architectures

4.1 WRF on ARM Architectures

In the previous sections we described the design of a Docker Swarm platform sup-
porting MPI applications, and we perform benchmarks using the WRF meteoro-
logical model as a testing subject. Those benchmarks were performed in classical
x86 processors, which are popular among the HPC community.

In recent years, however, we have seen the arrival of computing platforms
based on ARM processors. Most ARM computers are based in the Sytem-on-
a-Chip (SoC) model that encapsulates CPU, GPU, RAM memory and other
components on the same chip [30], including the popular single-board computers
like Raspberry Pi, but also cellular phones and tablets.

ARM processors are currently used for a large range of applications, from
Computer Science teaching [1] to Internet of Things [19]. They have an active
role in Fog and Edge computing [26], bringing computation closer to the user and
therefore offering proximity services that otherwise would be entirely deployed
on a distant infrastructure. All naturally, many cloud providers such as Amazon
and Google start to propose servers running on ARM processors.

The HPC community has demonstrated an increasing interest in this archi-
tecture, with many projects on the way. If the choice for ARM processors was
initially driven by energy and cost requirement, nowadays this family of pro-
cessors presents several improvements that allow the construction of computing
infrastructures with a good computing power and a cost way inferior to tradi-
tional HPC platforms [10,20,29]. Furthermore, a SoC cluster can substitute a
traditional HPC cluster in some situations, as SoC are relatively inexpensive
and have low maintenance and environmental requirements (cooling, etc.). Of
course, this is only valid as long as the SoC infrastructure provides sufficient
Quality of Service (QoS) to the final users.

The use of Docker on SoCs represent also an interesting solution to deploy
scientific applications for educational purposes [2]. Indeed, if virtualization (and
especially container-based virtualization) contributes to simplify the admin-
istrative tasks related to the installation and maintenance of scientific applica-
tions, it also enables a rich experimental learning for students, which can test
different software and perform hands-on exercises without having to struggle
with compilers, operating systems, and DevOps tasks. Furthermore, by devel-
oping solutions for both x86 and ARM architectures, we try to simplify the
deployment of applications on personal computers, classrooms, dedicated infras-
tructures or even the cloud, seamlessly. While the MPI support is almost iden-
tical in both architectures, we faced some additional difficulties when adapting
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WRF. When we started to configure WRF for the ARM platform, we had to
address a few additional issues besides the availability of some libraries, a prob-
lem already observed during the configuration on x86. Indeed, the configuration
of WRF supports several compilers (gcc, Intel, Portland, etc.) and architectures,
but ARM processors are not listed among the supported ones. Fortunately, some
researched had the same problem before and documented their experiences, like
for example the work from [4]. While the adaption requires the editing of the
configuration files in order to find a match to the ARM platform, the configu-
ration differences for both ARM or x86 are minimal, and most of the process is
simple and straightforward.

In addition, we have changed how to access input data, from a fixed Docker
volume to a mounted file system. This gives more flexibility to develop workflows
to execute the application regularly, like for example in a daily forecast schedule.
This also helps to fix the problems due to the storage of the geogrid geographical
database. As the full database reaches 60 GB when uncompressed, the users can
attach an external storage drives to their nodes instead of having all the database
in the Docker image.

In order to assess the interest running meteorological simulations on ARM
processors, we conducted a series of experiments to evaluate the performance of
each step of the WRF application. The next sessions describe the experiments
and present our first insights.

4.2 Environment Description

In these benchmarks we deployed our virtual cluster over a network of three
Raspberry Pi 3 model B (Broadcom BCM2837 processor, ARM Cortex-A53,
4 cores, 1.2 GHz, 1 GB RAM). The interconnection between devices is by a Fast
Ethernet switch (100 Mbps). As the goal of the cluster is to run an application
that demands considerable computing resource, for reduce the effects of limited
RAM memory, to provide a Swap memory, a USB drive (1.8 GB) has been con-
nected to each device. The WRF dataset is the same used on the experiments
from Sect. 3.2.

All measures presented in this section correspond to the average of at least 5
runs. Furthermore, as the WRF workflow is composed by 5 steps, we computed
the execution time of each step individually, in order to determine the best
deployment strategy. Therefore, the next sections present the separate analysis
of the preprocessing steps (all three steps from WPS and the real step from
WRF) and the forecast step (WRF).

4.3 Performance of WPS and Real Steps

In traditional x86 environments, the execution of the WRF workflow is dom-
inated by the WRF model: all WPS preprocessing steps (geogrid, ungrib,
metgrid) and the real steps represent only a small fraction of the comput-
ing time. On ARM processors (and especially on SoCs) this is not necessarily
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true, and we need to identify the constraints we can face during the usage of
those machines.

One of the first issues concern the access to the geographical database
required by the geogrid step. As indicated in Sect. 3.1, this database has more
than 60 GB, which is a potential problem for the internal storage of a typical SoC
that relies on SD cards. Indeed, in our experiments, we had to attach an external
USB storage device to a Raspberry Pi node to accommodate this WPS GEOG
database.

As the ARM processors used in our experiments are less powerful than x86
processors, we decided to study the performance of each workflow step separately,
trying to identify whether the use of MPI would benefit each one of the WPS
steps (as well as the real step). For such, we measured the execution time of
each step when varying the number of computing cores (using the mpirun -np
option).

Fig. 12. Performance of WPS steps when varying the number of cores [27].

Table 1. Relative performance of WPS steps on a single machine (in seconds) [27].

Cores 1 2 3 4

Geogrid 173.81 119.59 111.56 88.54

Ungrib 188.78 196.15 212.97 241.57

Metgrid 151.42 120.47 123.56 119.26

Real 16.437 16.54 16.59 16.69

The result of this benchmark, illustrated in Fig. 12 and detailed in Table 1,
indicates that only the Geogrid step effectively benefits from a multi-core exe-
cution. Even though, the acceleration is under-optimal (we need 4x cores to
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obtain only a 50% performance improvement). Associated with the storage lim-
itations cited before and its relatively small impact to the overall execution time
(when comparing with the forecast step, see Sect. 4.4), we advise against running
Geogrid cluster-wide. Instead, we suggest assigning a single node (the master)
who can preprocess the data for the forecast model.

For all the other steps, a parallel execution is not an interesting option.
The Metgrid step shows a small performance gain when parallelizing but the
execution time stabilizes for 2 or more cores, and the Real step shows no evidence
of improvements. In the case of Ungrib, the parallel execution even penalizes the
algorithm. Additional benchmarks on the network performance, such as those
conducted by [32], may also help tuning the different steps.

From these results, we suggest organizing the deployment of the preprocessing
steps as follows:

– Geogrid - parallel execution with mpirun, preferentially only in the machine
hosting the WPS GEOG database (the master node);

– Ungrib - serial execution in a single core;
– Metgrid - serial execution or at most parallel execution with mpirun in a

single machine;
– Real - serial execution in a single core.

4.4 WRF Execution

Even in an ARM processor, the preprocessing steps listed before represent only a
small part of the execution. This is not the case of the WRF forecast step, which
can have a much larger duration, especially inn “production” environments with
larger datasets and more than a simple 12-h forecast to be computed.

As expected, the forecasting step of WRF does benefit from multicore and
cluster scenarios. Figure 13 shows the average execution time of this step when
running on one, two or three nodes in the Raspberry Pi cluster.

Fig. 13. Performance of WRF in multicore and Swarm cluster mode.
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Fig. 14. Speedup of WRF execution in multicore and Swarm cluster mode.

If the multicore execution allows an important performance gain, the Swarm
cluster execution shows more mitigated results. Indeed, the performance gain
when passing from one to two nodes (4 to 8 process) is only 25%, and when
passing from two to three nodes (8 to 12 process) it is barely 12%. As shown in
Fig. 14, this is really far from a linear speedup, but can be explained both by
the poor performance of WRF on dmpar mode (MPI) identified in Sect. 3.3. In
addition, we suspect that the network performance on the Raspberry Pis also
play a role. Indeed, as observed by [6], the access to the communication bus in
the Raspberry Pi is known by its “low” speed interconnection card (10/100 Mbps
only) that penalizes all communication interfaces.

Tables 2 and 3 detail these results, and also present a performance comparison
with a the x86 processors from the AWS cloud used in Sect. 3.2. Please note that
the x86 column is limited to a single c4.large instance from AWS as it has only
two available vCPUs. Without surprise, the x86 processors are faster, but the
execution time on the Raspberry Pis is still acceptable. Indeed, the processing
time is fair enough for education and training. Even a production environment
can be considered, if we expect WRF to deliver daily or even hourly forecasts.
Furthermore, if we consider the material and environmental cost of the SoC
solution, it is clearly an interesting alternative.

Table 2. WRF relative performance on a single machine (in seconds).

Cores R Pi 3 AWS c4.large

1 4469.8374 539.05

2 2503.3624 314.69

3 2194.1872 –

4 1823.8314 –
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Table 3. Performance on a Raspberry Pi 3 swarm cluster (in seconds).

Machines Cores Pi Swarm

1×Pi 3 1 4469.8374

2 2503.3624

4 1823.8314

2×Pi 3 6 1401.0106

8 1352.72

3×Pi 3 10 1218.7158

12 1183.2734

5 Conclusions and Future Work

This work focuses on the design of a container-based platform for HPC appli-
cations based on MPI. Indeed, container virtualization enables the packaging of
complex applications and their seamless deployment. As most traditional scien-
tific applications rely on MPI for scalability, we were surprised by the lack of
a proper support for MPI, neither on popular container managers like Docker,
nor on other works from the literature. We therefore propose, in a first moment,
a service specification to deploy a Docker Swarm cluster that is ready for MPI
applications.

Later, we evaluate the proposed platform through the performance analysis
of the WRF meteorological forecast model. Through performance benchmarks
on both baremetal and container environments, we were able to separate per-
formance overheads related to the use of the container environment from those
related to the own application. For instance, the analysis of the execution traces
from WRF allowed us to identify performance bottlenecks that affect the scala-
bility of the application.

Finally, we conducted a few more experiences to evaluate the performance
and the interest of using containers over SoC (System-on-Chip) clusters. These
results indicate that if popular the ARM processors in SoCs such as Raspberry
Pi cannot compete in performance with x86 processors, they still are able to
deliver results within an acceptable delay.

Future improvements to this work include the execution of additional bench-
marks to validate the scalability of the platform with other MPI-based appli-
cations. Also, the bottlenecks we identified during the analysis of the execution
traces of WRF will be the subject of a performance tuning project that we shall
conduct in the next months.
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