
Human-Computer Systems for Decision
Support: From Cloud to Self-organizing

Environments

Alexander Smirnov, Nikolay Shilov, and Andrew Ponomarev(&)

SPIIRAS, 14th Line 39, 199178 St. Petersburg, Russian Federation
{smir,nick,ponomarev}@iias.spb.su

Abstract. The paper describes conceptual and technological principles of the
human-computer cloud, that allows to deploy and run human-based applica-
tions. It also presents two ways to build decision support services on top of the
proposed cloud environment for problems where workflows are not (or cannot
be) defined in advance. The first extension is represented by a decision support
service leveraging task ontology to build the missing workflow, the second
utilizes the idea of human-machine collective intelligence environment, where
the workflow is defined in the process of a (sometimes, guided) collaboration of
the participants.

Keywords: Human-computer cloud � Human-in-the-Loop � Crowdsourcing �
Crowd computing � Human factors

1 Introduction

The widespread of information and communication technologies that allow people to
access global networks from almost anywhere in the world brings joint and collective
initiatives to a new level, which leads to an upsurge in crowd computing and
crowdsourcing.

The applicability of systems that rely on human participation (including crowd-
based ones) is limited by the fact that they usually require large numbers of contrib-
utors, while collecting the required number may require significant effort and time. This
problem is partially alleviated by existing crowdsourcing platforms (like Amazon
Mechanical Turk, Yandex.Toloka etc.) accumulating the “online workforce” and
providing tools for requesters to post tasks and an interface for workers to accomplish
these tasks. Existing platforms, however, bear two main disadvantages: a) most of them
implement only ‘pull’ mode in distributing tasks, therefore not providing any guar-
antees to the requester that his/her tasks will be accomplished, b) they are usually
designed for simple activities (like image/audio annotation). This paper presents a
unified resource management environment, that could serve as a basis on which any
human-based application could be deployed similar to the way cloud computing is used
nowadays to decouple computing resource management issues from application
software.

© Springer Nature Switzerland AG 2020
D. Ferguson et al. (Eds.): CLOSER 2019, CCIS 1218, pp. 1–22, 2020.
https://doi.org/10.1007/978-3-030-49432-2_1

http://orcid.org/0000-0002-9380-5064
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49432-2_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49432-2_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49432-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-49432-2_1

This paper is an extended and revised version of [1]. In [1] a human-computer
cloud (HCC) architecture was described. The proposed HCC includes: 1) an applica-
tion platform, allowing to deploy and run in the cloud human-based applications
(HBA), and 2) an ontology-based decision support service providing task decompo-
sition mechanism in order to automatically build an execution plan for tasks in an ad
hoc way (for decision support tasks, algorithms for which are not described in
advance). However, historically attempts to build human-computer (crowd) informa-
tion processing systems for complex tasks came to conclusion that no workflow (or,
predefined coordination program) is able to account for all potential complications that
might arise when dealing with complex tasks [2]. Therefore, any collaborative envi-
ronment for dealing with complex tasks must support on the fly adaptation of the
workflow and (to some extent) leverage self-organization potential of human collec-
tives. The solution proposed earlier in [1] (the ontology-based DSS) only partly sat-
isfies this requirement, as it relies on a task ontology where all possible tasks have to be
described (but not algorithms for them). In this paper, we extend the earlier proposed
approach by describing a concept of collective intelligence environment built on top of
the HCC and supporting self-organization.

Together, the three proposed solutions allow to build human-computer decision
support systems for all the spectrum of problems (on a complexity scale). For the most
simple ones, where mere programming is enough, PaaS with HBA support should be
used, for more complex ones, but studied and structured enough to build a task
ontology, the ontology-based decision support service (René) is suitable, and finally,
the most complex and underdeveloped ones, should be dealt with the help of the self-
organization environment build on top of the cloud.

The rest of the paper is structured as follows. Section 2 briefly describes other
developments aimed on building human-computer cloud environments and research on
crowd support for complex tasks. Section 3 describes the organization of the platform
layer of the proposed HCC with a focus on the digital contract concept. Section 4
describes ontology-based decision support service. Section 5 describes the concept of
self-organization environment for human-machine collective intelligence. Sections 6
and 7 describe cloud platform implementation and evaluation respectively.

2 Related Work

2.1 Cloud with Humans

Generally, resources managed by cloud environments are hardware (CPU, storage) and
software (cloud applications, platforms). There are, however, a number of attempts to
extend the principles of cloud computing (first of all, on-demand elastic resource
provisioning) to a wider spectrum of resource types. These attempts can be classified
into two groups: 1) cloud sensing and actuation environments, and 2) cloud-managed
human resource environments.

A very representative (and one of the earliest) examples of human-based cloud
sensing and actuation environment was presented in papers [3] and [4]. Sensing
resource is regarded there as a service that can be allocated and used a unified way

2 A. Smirnov et al.

independently of the application that needs access to the resource. The cloud system
(called MCSaaS – Mobile CrowdSensing as a Service) provides an interface allowing
any smartphone user to become a part of a cloud and allow to use his/her smartphone
sensors for the benefit of cloud consumers.

The approach proposed in ClouT (Cloud+IoT) project [5] is aimed on providing
enhanced solutions for smart cities by using cloud computing in the IoT domain. Both
ClouT and MCSaaS approaches are highly relevant to the cloud environment presented
in this paper. However, these solutions are focused mostly on sensing and the role
played by human in these systems is very limited: human can provide an access to
his/her smartphone and make some operations (i.e. point camera lens to some object
and make a picture) requested by the application working on top of the infrastructure
layer.

Solutions of the second group, earlier referred to as cloud-managed human resource
environments, implement another perspective on managing member’s skills and
competencies in a standardized flexible way (e.g. [6, 7]). In these environments and
systems human is regarded as a specific resource that can be allocated from a pool for
performing some tasks (not necessary sensing). For example, in [6] the cloud consisting
of human-based services and software-based services is considered. On the infras-
tructure layer, they define a human-computing unit, which is a resource capable of
providing human-based services. Like hardware infrastructure is described in terms of
some characteristics (CPU, memory, network bandwidth), human-computing unit in
this model is described by the set of skills. The authors do not list the exact skills,
leaving it to the application domain.

The human-computer cloud environment described in this paper stands more clo-
sely to the cloud-managed human resource environments (like [6]). It extends the
existing works by an application platform based on a machine-processable specification
of obligations in a form of a digital contract and a decision support service that is
deployed on top of all resource-management services and can be used to solve ad hoc
problems in some domain.

2.2 Human–Computer Programs for Complex Tasks

The overwhelming part of research in the field of human-machine computing
(crowdsourcing, crowd computing) systems understands human participant as a special
type of “computing device” that can process requests of a certain type. During the
design time, the whole information processing workflow is build and operations
requiring human processing are identified. In the run time the function of a human
participant, is reduced to performing a specific task, proposed to him/her by the system,
interacting with it in a strictly limited manner [8–11].

Although such a rigid division of roles (designer vs. participant of the system) and
strict limitation of the participant’s capabilities pay back in a wide range of tasks
(mostly, simple ones like annotation, markup, etc.), the creative and organizational
abilities of a person in such systems are discarded. It is also shown, that fixed pre-
defined workflow is too limiting for complex tasks [2]. First attempts to build crowd
systems, where participants could refine the workflow appeared in 2012 [12], but the
problem is starting to receive the closest attention of the research community only

Human-Computer Systems for Decision Support 3

nowadays. In particular, in recent years several studies have appeared on the limitations
of systems based on the fixed flow of work [2] and proposing the formation of dynamic
organizations from members of the crowd community (the so-called flash organizations
[13]). We adopt main conclusions of these studies and integrate them with the earlier
proposed HCC.

3 Human-Computer Cloud: Platform-as-a-Service

This section introduces platform-as-a-service (PaaS) functionality of the HCC,
designed to enable development and deployment of human-based applications. The
section enumerates main actors, interacting with the platform, major requirements that
drive the design, information associated with applications and contributors, allowing to
fulfill the requirements. The section finishes with main use cases presenting a general
view of the platform.

All the actors of the proposed cloud platform can be divided into three main
categories:

End users (application/service developers), who leverage the features of the plat-
form to create and deploy applications requiring human effort.

Contributors, who may process requests issued by human-based applications
running in the human-computer cloud environment.

System Administrators and Infrastructure Providers, who own and maintain the
required computing infrastructure.

Primary requirements from the side of End users considered in the platform design
are following:

• The platform must provide tools to deploy, run, and monitor applications that
require human information processing.

• The platform must allow to specify what kind of human information processing is
required for an application (as some human-based services, like, e.g., image tag-
ging, require very common skills, while others, like tourism decision support,
require at least local expertise in certain location).

• The platform must allow estimating human resources available for the application.
This requirement, in particular, is different from conventional cloud infrastructures
where resources are considered inexhaustible. Human resources are always limited,
especially when it comes to people with some uncommon competencies and
knowledge. Besides, the rewarding scheme of the application may be not able to
collect the sufficient number of contributors. Therefore, having the information
about the resource availability, an application developer is know what capacity is
actually available to the application, and based on this information he/she may
change the rewarding scheme, set up his/her own SLA (for his/her consumers) etc.

3.1 Application Description

The ultimate goal of the PaaS cloud service model is to streamline the development and
deployment of the applications by providing specialized software libraries and tools

4 A. Smirnov et al.

that help developers to write code abstracting from many details of resource man-
agement. All the resource (and dependency) management operations are performed
automatically by PaaS environment according to some description (declarative con-
figuration) provided by the developer of the application being executed. The proposed
human-computer cloud environment supports similar approach, however, with inevi-
table modifications caused by the necessity of working with human resources. To
streamline the development of applications that require human actions (human-based
applications, HBA), the platform allows both a developer to describe what kind of
human resources are required for a particular application, and a contributor to describe
what kind of activities he/she can be involved in and what competencies he/she pos-
sesses. Existing declarative specification means used in cloud systems allow to specify
computing resource requirements and software dependencies of an application. How-
ever, they are insufficient for the purpose of human-computer cloud, first of all, because
of variety of possible human skills and competencies. While virtual machine can be
described with a very limited number of features (e.g. CPU, RAM, I/O capacity),
human contributor’s skills and abilities are highly multidimensional, they can be
described in different levels of detail and be connected to a wide range of particular
application areas. Moreover, the same skills can be described in different ways, and,
finally, most of the skill descriptions in real world are incomplete (however, there
might be a possibility to infer some skills that a human might possess from those that
he/she explicitly declared).

Therefore, application deployed in the human-computer cloud environment must
contain a descriptor that includes following components (we list all the components,
but focus on those, that are relevant to human part):

• configuration parameters (e.g. environment variables controlling the behavior of the
compiled code);

• software dependencies of the application (what platform services and/or other
applications it relies on, e.g., database service, messaging service, etc.);

• human resource requirements, specifying contributors with what skills and com-
petencies are needed for the application. Along with the software requirements,
these requirements are resolved during the service deployment. In contrast to the
software requirements, which are usually satisfied, these requirements may be
harder to satisfy (resolving these requirements employs ontology matching which
may result in some tradeoffs, besides, human resources are usually limited),
therefore, the status and details of the requirements resolution are available to the
developer and can be browsed via the management console. Human resource
requirements specification may describe several types of human resources with
different profiles of requirements. For example, an itinerary planning application
may require people with significant local expertise as well as people with shallow
local expertise but good language skills. These two categories of contributors may
be declared as two types of resources;

• digital contract template for each type of human resources. Digital contract defines
measurable and machine understandable/checkable specification of contributor’s
involvement, his/her obligations (e.g., number of requests, reaction time) and
rewarding.

Human-Computer Systems for Decision Support 5

For a formal specification of requirements the proposed environment leverages the
apparatus of formal ontologies. Specifically, arbitrary ontology concepts may be used
to describe skills or knowledge areas. Main benefit of using ontologies is that they
allow to discover resources described with related, similar but not exact terms. This is
done either by using existing public mappings between ontologies (stating equivalence
between concepts of different ontologies), or by ontology inference. We do not fix any
particular set of ontologies to describe competencies. It allows tourist applications
deployed on the platform to use public cultural, historical, and geographical ontologies,
whereas, e.g., applications, that employ human-based information processing in the
area of medicine or biology use the ontologies of the respective domain. The only
restriction is that these ontologies have to be encoded in OWL 2.

Another important feature of the approach is the concept of digital contract, rep-
resenting an agreement between contributor and platform about terms of work, quality
management principles and rewarding. Terms of the digital contract are essential for
estimating the amount of resources available for a service and its capacity (including
time perspective of the capacity). The necessity of this digital contract is caused by the
fact that human resources are limited. In case of ordinary hardware, the cloud infras-
tructure provider can buy as many computers as needed, human participation is less
controllable due to free will, therefore, attracting and retaining contributors can be a
complex task. As a result, the abstraction of inexhaustible resource pool that is
exploited in the provider-consumer relationship of current cloud environments turns
out to be inadequate for human-computer cloud. A consumer (end user) should be
informed about the human capacity available for his/her application to make an
informed decision about revising digital contracts (for example, making contribution to
this application more appealing), or updating their own service level agreements. This
creates a competition between consumers for the available resources and finally will
create a kind of job market where different digital contract statements will have its own
price.

3.2 Contributor Description

To support semantic human resource discovery and task allocation, human resources
have to be described with ontology terms. Besides, they have to specify their prefer-
ences about task types, availability time etc. Therefore, when a contributor joins the
cloud platform he/she provides two main types of information, that are very similar to
the respective pieces of application descriptor. Namely, the description of competencies
and working conditions. The competencies are described in terms of any ontology
familiar to the contributor. For the contributors who cannot use ontologies the
description is built iteratively via the analysis of contributors’ text description followed
by ontology-based term disambiguation. In any case, internally, each contributor is
described by skills, knowledge and attitude, associated with the concepts of some
shared ontology.

Moreover, the contributor’s competency description is multi-layered. The first layer
is provided by a contributor him-/herself, further layers are added by applications in
which the contributor takes part. For this purpose, a human resource management API
available for the application code allows to manage application-specific skills and

6 A. Smirnov et al.

qualifications, which can also be described in some ontology (application-specific or
not). Therefore, despite initial description of competencies may be rather short, during
the contributor’s participation in various applications running on the platform it
becomes richer. This facilitates further human resource discovery.

Working conditions include preferred skills, as well as payment threshold, reac-
tivity and availability limitations. These parameters are also similar to those included in
digital contract template in the application descriptor. During application enquiry and
application deployment its contract template is matched against contributors’ work
conditions. Moreover, this matching touches not only contributor’s declared work
conditions and one application contract (of the deployed application) but also other
applications which contracts this contributor has already accepted, controlling overall
responsibilities that are taken by the contributor and resolving possible conflicts.

3.3 Main Functions of the Platform

Each category of users (identified earlier as actors) has unique purpose of using the
environment. Main functions of the environment are the ones that allow users of each
category to accomplish their primary goal.

Main functions exposed to application/service developers are application deploy-
ment (which initiates advertisement process to identify human resources available to
this application), editing digital contracts, monitoring, and deleting applications.
Editing digital contracts is important, for example, when the developer of the appli-
cation competes for human resources with other application developers by offering
higher rewards. Changing the contract produces a new version of the deployed
application descriptor and leads to a new wave of advertisements. Application moni-
toring is a general name for a number of functions like reading usage statistics, logs,
that are necessary for application developer and are common to many current PaaS.
This also includes monitoring of the available human resources by each requirement
type as well its prediction.

Contributors can edit their competence profiles (providing an initial version and
updating it), browse application advertisements addressed to them (compatible with
his/her competence profile and work conditions) optionally accepting some of them by
signing digital contract and attaching to the respective application. Contributors can
also execute application-specific tasks and detach from application (possibility of
detachment in a particular moment and the effect of it might be affected by the digital
contract).

System administrators can monitor the status of the platform (usage of
hardware/human resources, communication channels throughput, platform services’
health) and tune the platform parameters (e.g., edit ontology mappings used by the
platform during identification of compatible resources (contributors) for advertising
applications).

3.4 Application Deployment

A newly registered contributor is not automatically available for requests of all human-
based applications running on the environment. However, he/she starts to receive the

Human-Computer Systems for Decision Support 7

so-called advertisements from applications based on the similarity of a declared
competence profile (including additional layers created by applications a contributor
participates) and applications’ competence requests as well as the correspondence of
the declared working conditions and applications’ digital contract templates. These
advertisements describe the intent of the application, required kind of human
involvement, rewarding scheme etc. Based on the information contained in the ad-
vertisement, a contributor can decide to attach to the application, which means that
he/she will then receive tasks from this application. In other words, if a registered
contributor agrees to contribute to the particular application a digital contract is signed
specifying the intensity of task flow, the rewarding and penalty details and quality
measurement strategy. In general, there is many-to-many relation between applications
and platform contributors, i.e., one contributor may sign digital contracts with several
applications.

Upon signing of a digital contract with an application (via platform mechanisms),
the contributor starts to receive requests (tasks) from this application. The application
issues mostly non-personalized requests, and it is the platform that routes requests to
the contributors, ensuring that load of each contributor conforms the terms of the
contract. A contributor also can detach from an application (however, the mechanism
and terms of this detaching can also be a part of digital contract to ensure the appli-
cation provider can react to it accordingly).

4 Ontology-Based Decision Support Service

The decision support service (named René) is an application, running on top of the
human-computer cloud infrastructure, leveraging some features of the platform (e.g.,
resource management and provisioning), and provided to end users according to SaaS
model. Users of René are decision-makers who pass task specifications to the appli-
cation. The API of René accepts ontology-based structured representation of the task
specification. The problem of creating such specification (for example, as a result of
text analysis) is out of the scope both of this paper and of René functions. The core
principle behind René is that it builds an on-the-fly network of resources (human and
software) capable of performing the specified task.

In order to build the network, René decomposes the task into smaller tasks (sub-
tasks) using a problem-specific task ontology, where domain tasks and their input and
output parameters are described. After performing the decomposition René tries to
distribute the elementary subtasks among the available resources. The list of available
resources is retrieved via an API from underlying layers of the environment, which
monitor all the contributor’s connections and disconnections and software resource
registrations. The resource management service under the hood treats human and
software resources differently. Human resources (contributors) describe their compe-
tencies with a help of ontology and receive advertisements to join human-based
applications if their requirements are compatible to the declared competencies of the
user. René is basically one of human-based applications and may only distribute
subtasks among contributors who agreed to work with it (attached to it by signing a
digital contract). Software services are made available to René by their developers and

8 A. Smirnov et al.

maintainers by placing a special section into the application deployment descriptor.
Task assignment is also done with a help of interfaces of resource management layer,
aware of the status and load of the resources and terms of their digital contracts.

As contributors may go offline, René monitors the availability of the resources (via
the underlying resource management) during execution of the subtasks and rebuilds the
assignment if some of the resources fail or become unavailable to keep the bigger task
(received from the end user) accomplishable.

4.1 Task Decomposition

Task decomposition is the first step to building the resource network. The goal of this
process is to build a network of smaller (and simpler) tasks connected by input/output
parameters, such that this network is equivalent to the original task given by the user.
Therefore, in some sense, the process of task decomposition is actually driven by task
composition (particularly, to searching a composition, equivalent to the original task).
The proposed approach is based on the fact that there is an ontology of tasks. This task
ontology should consist of a set of tasks and subtasks, sets of input and output
parameters of task, set of valid values of parameters, as well as the set of restrictions
describing the relations between tasks/subtasks and parameters and between parameters
and their valid values:

O ¼ T; IP; OP; I; Eð Þ ð1Þ

where T is set of tasks and subtasks, IP – set of input task parameters, OP – set of
output task parameters, I – set of valid parameter values, E – restrictions on the
parameters of the task and parameter domain.

Unlike existing task ontologies (e.g., [14]) that usually contain relationships
between task and their subtasks in explicit form, in the proposed task composition
ontology these relationships are implicit. This allows, on the one hand, to specify tasks
and subtasks in the same axiomatic form and, on the other hand, to derive task com-
position structure by reasoning tools. Therefore, the proposed ontology opens the
possibility to describe a number of different tasks in the same form and dynamically
construct their possible compositions using appropriate criteria.

The task composition ontology is developed in OWL 2. The ontology is expressed
by ALC description logic, which is decidable and has PSpace-complete complexity of
concept satisfiability and ABox consistency [15] in the case when TBox is acyclic. In
addition, SWRL-rules are defined for deriving composition chains. The main concepts
of the ontology are “Task” and “Parameter”. The concept “Parameter” is used to
describe semantics of a task via its inputs and outputs. The main requirement for
TBox definition is that it shouldn’t contain cyclic and multiple definitions, and must
contain only concept definitions specified by class equivalence.

Each task should have at least one input and at least one output parameter. The
taxonomy of parameters is presented by a number of subclasses of the class “Param-
eter”. The type of parameters related to their input or output role are defined by
appropriate role construct. In the ontology, the appropriate object properties are
“hasInputParameter” and “hasOutputParameter”. The domain of the properties is

Human-Computer Systems for Decision Support 9

“Task” and the range – “Parameter”. Thereby the parameter could be input parameter
of one task and output parameter of another. The task definition is expressed formally
as follows:

T � 9R:IP1 u 9R IP2 . . .u 9R:IPNð Þu
u 9R:OP1 u 9R :OP2 . . .u 9R:OPNð Þ ð2Þ

where T is the task, IPi – the input parameter subclass, OPi – the input parameter
subclass, R – the appropriate role. In other words, the task is defined solely by its input
and output parameters.

Task composition process is based on the fact that in a composition output
parameters of one task are input for another. This relationship is utilized (and for-
malized) by an SWRL rule that infers the order of tasks. The rule specifies input and
output parameter match condition in the antecedent and if the antecedent condition is
satisfied, infers the relationship “nextTask” between the respective tasks. This rela-
tionship means that one task can be done only after another. This relationship is
encoded as an object property binding two tasks (both domain and range of the
property are “Task” instances). The rule of task composition can be expressed as
follows:

hasInputParameter ?ta; ?pð ÞhasOutputParameter ?tb; ?pð Þ ! nextTask ?tb; ?tað Þ ð3Þ

where hasInputParameter, hasOutputParameter, nextTask are the mentioned object
properties, ta – the next task, tb – the previous task, p – the parameter.

The proposed rule (3) allows to derive all task connections by the object property
“nextTask”. The example of task composition is presented in Fig. 1. For example,
relationship “nextTask” is inferred between tasks “Task 1” and “Task 3” because
parameter p6 is input for “Task 3” and output for “Task 1”, meaning that “Task 3” can
only be executed after “Task 1”.

Task 1

Task 2

Task 3 Task 4

In Out
p2
p3
p4
p5

p6

In Out
p1 p7

In Out
p6
p7

p8
p9

In Out
p8
p9 p10

nextTask

nextTask

nextTask

Fig. 1. Task composition structure (adopted from [1]).

10 A. Smirnov et al.

The advantages of the described approach is that it allows to simplify task
description (in comparison to the approaches where task/subtask relations are explicit)
and to derive task compositions dynamically. The shortcomings are the possible
deriving complexity and the lack of the support of alternative task compositions.

4.2 Subtask Distribution

In cloud computing systems, the number of interchangeable computing resources is
usually very high [16, 17]. The decision support service distributes the specialized tasks
that require certain competencies, therefore, a) the distribution algorithm has to take
into account the competencies, b) not all resources are interchangeable for the
assignment and the number of appropriate resources may be lower. Therefore, typical
algorithms used in cloud computing cannot be directly applied.

In the areas with similar task characteristics (e.g., distribution of tasks among the
robots or agents) the most common approach is instant distribution of tasks (instan-
taneous task allocation) [18, 19]. This approach involves assigning tasks to resources
that currently provide the maximum “benefit” according to the given priorities. It does
not take into account that at some point all resources with the required competencies
may be occupied. Thus, it is usually supplemented by some heuristics specific to a
particular application area.

Let, A – is a task, which contains several subtasks ai:

A ¼ aif g; i 2 1; . . .; nf g ð4Þ

Let, O – is the vocabulary of competencies:

O ¼ o1; o2; . . .; omf g ð5Þ

Thus, the matrix of competencies required to accomplish subtasks can be defined
as:

aoi;j 2 0; 1; . . .; 100f g� �
; i 2 1; . . .; nf g; j 2 1; . . .;mf g ð6Þ

The set of human-computer cloud resources R is defined as:

R ¼ r1; r2; . . .; rkf g ð7Þ

The set of resource characteristics (speed, cost, etc.) C is defined as:

C ¼ c1; c2; . . .; clf g ð8Þ

Human-Computer Systems for Decision Support 11

Thus, each resource ri is described by the following pair of competencies and
characteristics vectors:

ri ¼ roi;1; . . .; roi;m
� �

; rci;1; . . .; rci;1
� �� � ð9Þ

where i 2 {1, …, n}, roi,j 2 {0, …, 100} – is the value of competency j of the resource
i, and rci,j is the value of the characteristic j of the resource i.

The solution of the task A describes the distribution of work among system
resources and is defined as:

SA ¼ si;j
� �

; i 2 1; . . .; nf g; j 2 1; . . .; kf g ð10Þ

where si,j = 1, if the resource j is used for solving subtask i, and si,j = 0 otherwise.
The objective function, which also performs normalization of various characteris-

tics, is defined as follows:

F SAð Þ ¼ f ðF1 s1;1; s2;1; . . .; sn;1
� �

;

F2 s1;2; s2;2; . . .; sn;2
� �

; . . .;

Fk s1;k; s2;k; . . .; sn;k
� �Þ ! min

ð11Þ

Specific formulas for calculating partial assignment efficiency (Fi) can use values of
resource characteristics (e.g., speed or cost) rci,j, as well as competence values of both
resources (roi,j) and subtasks (aoi,j).

The minimization must be performed with respect to the following constraints.
First, each subtask must be assigned to some resource:

8i =
Xk

j¼1
Si;j � 1 ð12Þ

Second, assignment can only be done if the competency values of the resource are
not less than the required competency values of the subtask:

8i; j; q : sij ¼ 1
� � ! roj;q � aoi;q

� �� � ð13Þ

Instantaneous Distribution of Tasks Algorithm
In general, the specified problem is NP-complete, therefore, it is not possible to solve it
by an exhaustive search method in a reasonable time (provided that a real-world
problem is solved). Based on the analysis of existing methods it is proposed to use the
approach of instantaneous task allocation. The algorithm based on the approach of
instantaneous distribution of tasks is defined as follows:

1. Take the first subtask from the existing ai, and exclude it from the set of subtasks A;
2. Select such resource j from the available resources to satisfy all conditions and

F(SA) ! min, where SA = (s1,1 = 0, …, s1,j = 1, …, s1,k = 0);

12 A. Smirnov et al.

3. If a suitable resource is not found, assume that the problem is unsolvable (the
system does not have a resource that meets the required competencies);

4. Repeat steps starting from step 4 until set A is empty (i.e. all tasks are assigned to
resources).

Multi-agent Distribution of Tasks
There are two types of agents that are used to perform multi-agent modeling: the
customer agent that is responsible for generating jobs and making the final decision,
and the execution agents that represent the resources of the cloud environment and
perform on-premises optimization for each resource. In the optimization process,
agents form coalitions that change from step to step to improve the values of the
objective function.

In the process of negotiations, an agent can play one of the following roles: a
coalition member (an agent belonging to the coalition), a coalition leader (an agent
negotiating on behalf of the coalition) and an applicant (an agent who can become a
member of the coalition).

First, each agent forms a separate coalition (SC, which has the structure of the SA
solution), and becomes its leader. Suggestions of agents (tabular representation F(s1,1,
s2,1,…, sn,1)) are published on the blackboard (information exchange entity available to
all agents). At each stage of the negotiations, the agents analyze the proposals of other
agents, and choose those whose proposals can improve the coalition: to solve a larger
number of subtasks or the same number of subtasks but with a better value of the
objective function (F(SC) > F(SC’), where SC is the current coalition, SC’ – possible
coalition). Coalition leaders make appropriate proposals to agents, and the latter decide
whether to stay in the current coalition or move to the proposed one. The transition to
the proposed coalition is considered if one of the above conditions is met: the proposed
coalition can solve more subtasks than the current one, or the same number of subtasks,
but with a better value of the objective function.

The negotiations process is terminated if one of the following conditions is met: a)
there are no changes in the composition of coalitions at some stage, b) timeout, and c)
the permissible value of the objective function is reached.

5 Self-organizing Environment

This section describes the concept of self-organization environment for human-
machine collective intelligence, which is built on top of the HCC (e.g., leveraging the
resource discovery and communication facilities of the cloud). In this way, the self-
organizing environment is another specific application that may be deployed on the
HCC.

The proposed environment aims at supporting the process of making complex
decisions and/or making decisions in complex problem domains. The complexity of
making such decisions generally stems from problem uncertainty in many levels and
the lack of relevant data at decision maker’s disposal. Hence, while in the upper level
the methodology of decision-making stays quite definite (identification of the alter-
natives, identification of the criteria, evaluation of the alternatives etc.), the exact steps

Human-Computer Systems for Decision Support 13

required to collect all the needed data, analyze it and present to the decision maker may
be unclear. That is why decision support requires ad hoc planning of the low-level
activities and should leverage self-organizing capabilities of the participants of the
decision support process. Besides, currently most of the complex decisions are based
not only on human intuition or expertise, but also on the problem-relevant data of
various types and sources (starting from IoT-generated, to high-level Linked Data),
processed in different ways. In other words, decision support is in fact human-machine
activity, and the environment just offers a set mechanisms and tools to mitigate this
activity.

There are several typical roles in the decision support process. Decision-makers are
responsible for the analysis of a situation and making a decision. In some cases, where
the uncertainty associated with the situation is too high, the decision-maker requires
some additional expertise that may be provided by participants of a human-machine
collective intelligence environment. Bearing in mind, that using collective expertise is
usually rather expensive and can be justified only for important problems, the decision-
maker is usually a middle-to-top level manager in terms of typical business hierarchy.
After the decision-maker posts the problem to the collective intelligence, he/she may
oversee the process of solution and guide it in some way.

Experts possess problem-specific knowledge and may contribute into decision
support process in several ways. First, they can propose procedures of obtaining rel-
evant judgments, constructing in an ad hoc way elements of the whole workflow. This
can be done not only in a direct manner, but also indirectly, by posting various
incentives for other participants. Second, they can use their expertise by providing data
as well as processing it to come to some problem-related conclusions. In general, an
expert can be anyone – within or without the organization boundary, the difference is
mostly in the incentives important for the particular expert.

Service providers design and maintain various software tools, services and datasets
that can be used for decision support. Their goal is to receive remuneration for the use
of these tools, that is why they are interested in making these services available for
other participants of the environment.

The environment should provide means and mechanisms using which participants
of different nature (human and machine) could be able to communicate and decide on
the particular steps of decision support process, perform these steps and exchange
results, motivated by some external or internal mechanisms, making the whole envi-
ronment profitable for all parties.

The rest of the section introduces foundational technologies and enablers for the
proposed environment.

Meeting Collective Intelligence and Artificial Intelligence. Methods of collective
intelligence (construed as methods for making people to work together to solve
problems) and methods of artificial intelligence are two complementary (in some
industries even competing) methods of decision support. Mostly, these approaches are
considered as alternative (some tasks due to their nature turn out to be more “conve-
nient” for artificial intelligence methods, and others – for collective), however, the
scientists are currently tending to speak about possibility of their joint usage and the
potential that human-machine technologies have [20–22].

14 A. Smirnov et al.

In the proposed environment artificial and collective intelligence are meeting in the
following way. The environment itself provides possibility of communication and
coordination of agents while working on solving the problem (collective part). Soft-
ware services have to “understand” common goal and build their strategy (AI part).
Besides, some agents can provide application level AI methods.

There are four types of intelligent software services that take part in the functioning
of the environment (Fig. 2):

• Solver. A software code that can transform a task description in some way,
enriching it with some derived knowledge.

• Data/knowledge provider. Interface-wise similar to the previous type, however,
only provides some problem-specific information.

• Tool handler. A utility agent that manages human access to some software tools
(with GUI). In many cases, certain data processing routines required for decision-
making can be implemented with some software (or, SaaS). It is not practical to re-
implement it in a new way, however, granting an access to such tools might be
useful for all the involved parties.

• Representative. Allowing expert to communicate with other services.

Participant (agent)

Software
service

Environment
uses

consists of

External
Software Tool

SolverRepresentative

Data/Knowledge
provider

External
Data/Knowledge

Source

Tool
Handler

is-a is-a
provides

represents
is-a

represents represents

Decision-maker

Expert
Service

provider

Fig. 2. Main entities of the environment and their relationships.

Human-Computer Systems for Decision Support 15

Self-organization Protocols Taking into Account both Human and Machine
Agents. One of the distinguishing features of the proposed approach is to overcome
the preprogrammed workflows that rigidly govern interaction of participants during
decision support and to allow the participants (human and machine agents) to
dynamically decide on the details of the workflow unleashing creative potential of
humans. Therefore, agents should be able to coordinate and decide on task distribution,
roles etc., in other words a group of agents should be able to self-organize.

The protocols of self-organization in such environment have to respect both
machine and human requirements. The latter means that widely used models of bio-
inspired self-organization turn out to have less potential to be applied, as they are taken
mostly from the analysis of primitive behaviors (e.g., of insects). On the other hand,
market (or, economics) based models best of all match the assumed business model (on
demand service provisioning). Another possible source are socio-inspired mechanisms
and protocols, which are totally natural for people, and there are already some attempts
to adapt them for artificial systems [23].

Interoperability of Agents. To sustain various coordination processes, as well as
information flow during decision-making multilevel interoperability has to be provided
inside the collaborative environment. This is especially acute in the case of mixed
collectives, consisting of human and machine agents.

To implement any self-organization protocols, the participants of the system have
to exchange several types of knowledge:

• Domain knowledge. What object and what relationships between objects are in the
problem area.

• Task knowledge. Both goal description, and possible conceptualization of the active
decision support task, e.g., mapping some concepts to alternatives, functions to
criteria.

• Protocol knowledge. Terms of interaction, incentives, roles etc.

It is proposed to use ontologies as the main means ensuring the interoperability.
The key role of the ontology model is in its ability to support semantic interoperability
as the information represented by ontology can be interpreted both by humans and
machines. Potentially, ontology-based information representation can provide the
interoperability for all kinds of possible interactions (human-human, human-machine,
machine-human). Taking into account the heterogeneity of the participants of the
human-machine collective intelligence systems and the multidimensionality of the
decision support activities, it is proposed to use multi-aspect ontologies. The multi-
aspect ontologies will avoid the need for standardization of all services of environment
through providing one aspect (some viewpoint on the domain) to services of one
collective (services of one producer, services that jointly solve a certain task, etc.) for
the service collaboration.

Soft Guidance in Collective Action. Though the execution process in the proposed
environment is self-orchestrated and driven by negotiation protocols, human partici-
pants, however, will need intelligent assistance when communicating with other agents
in the environment. The role of this assistance is to offer viable organization structures
and incentive mechanisms based on current goals. An important aspect during the soft

16 A. Smirnov et al.

guidance is mapping actions defined by decision-making methodologies to human-
computer collaboration scenarios. It means that the environment (or representative
service) uses the existing knowledge on decision making process to offer agents viable
collaboration structures.

6 Implementation

The implemented research prototype of the cloud environment contains two parts:
platform-as-a-service (PaaS) and software-as-a-service (SaaS). The platform provides
the developers of applications that require human knowledge and skills with a set of
tools for designing, deploying, executing and monitoring such applications. The SaaS
model is represented by an intelligent decision support service (referred to as René) that
organizes (human-computer) resource networks for on-the-fly tasks through ontology-
based task decomposition and subtasks distribution among the resources (human
participants and software services).

The prototype environment comprises several components: 1) a server-side code
that performs all the resource management activities and provides a set of application
program interfaces (APIs), 2) a set of command line utilities that run on the computers
of appropriate categories of users (platform administrator, developer, administrator of
IDSS) and by accessing the API, enable to implement the main scenarios necessary for
these users, 3) Web-applications for participants and decision makers. Also, it is
possible to implement the interface of the participant for an Android-based mobile
device.

To build and refine a participant competence profile the prototype environment
interacts with social networks (ResearchGate, LinkedIn). It also exposes several APIs
to the applications deployed on it, providing them basic services (for instance, request
human-participants, data warehouses, etc.).

To support the processes of scalable software deployment (which is necessary for
the PaaS, but peripheral to the main contributions of our work) the open source plat-
form Flynn1 is used. The capabilities of the platform has been extended by special
functions (registration of participants, an ontological-oriented search for participants,
and a mechanism for supporting digital contracts).

The intelligent decision support service (IDSS) is an application deployed in the
human-computer cloud environment and using the functions provided by the envi-
ronment (for instance, to organize interactions with participants). Main functions of the
IDSS are: 1) decomposition of the task that the decision maker deals with into subtasks
using the task ontology and inference engine that supports OWL ontology language
and SWRL-rules (for instance, Pellet, HermiT, etc.); 2) allocation of the subtasks to
participants based on coalition games. The IDSS provides REST API to interact with
the platform.

1 http://flynn.com.

Human-Computer Systems for Decision Support 17

http://flynn.com

The architecture of IDSS (Fig. 3), in its turn, can be divided into several logical
layers:

• The Data Access Layer is a series of DAO abstractions that use the JPA standard for
object-relational mapping of data model classes (Domain model) that perform the
simplest CRUD operations using ORM Hibernate and implemented using Spring
Data.

• The Business Logic Layer of the application is represented by two main services:
the task decomposition service and the workflow distribution service. The task
decomposition service operates with an ontology, described using the ontology
description language OWL 2, which includes rules in SWRL and SQWRL.
Knowledge output (task decomposition) is carried out using inference engines
(Pellet, HermiT, and others). To extract data from ontology, Jena APIs are used for
ontologies recorded using OWL/RDF syntax using the SPARQL query language

Platform

REST API
Spring MVC

Spring Boot

Client Layer

Task decom-
position

Workflow
distribution

OWL 2

SWRL

OWL API

SQWRL

Business Logic Layer

ORM
framework

Repository
interfaces

JPA

Spring Data

Hibernate

Liquibase

Data Access Layer

DTOs
(data transfer

objects)

Domain
model

Database

Fig. 3. IDSS implementation.

18 A. Smirnov et al.

and OWL API for other ontology scenarios (changing ontology structure, managing
individuals, logical inference). The workflow building service provides support for
the coalition game of agents of the human-machine computing platform agents.

• At the Client Layer, REST API services are implemented for interacting with the
platform, providing an interface for interacting with the platform and indirect user
interaction.

7 Evaluation

An experimental evaluation of the research prototype has been carried out. As the
functionality of the application of the problem-oriented IDSS built according to the
proposed approach is determined by the task ontology (namely, the basic tasks rep-
resented in this ontology and their input and output parameters), a task ontology for the
e-tourism domain has been developed (specifically, for building tourist itineraries). In
the experiments, dynamic task networks (for building tourist itineraries) did actually
organize, and their execution resulted in valid lists of itineraries.

The developed software was deployed at the computing nodes of the local network
of the research laboratory (an access to the server components from the Internet was
also provided). 34 people were registered as participants available for task assignment.
An ontology to describe the competences of resources (and the requirements for
competences of deployable applications requiring human participation) representing 46
basic competences was used. With the experimental parameters (performance of
hardware resources, number of participants, size of the competence ontology), the
application deployment time differed from the application deployment time in the
Flynn core cloud environment slightly (by 3–7%). The increase in time is inevitable,
because during the application deployment process, in addition to creating Docker
containers, compiling and launching an application (performed by Flynn), the semantic
search of participants and the comparison of digital contracts are carried out. However,
in exchange for this slight increase in application deployment time, the applications in
the implemented cloud environment receive an opportunity to access human resources.
In the future, most of the operations related to the resolution of application depen-
dencies on human resources can be performed in the background, which will save the
deployment time at the level of the cloud environment.

For testing the IDSS a task ontology of the electronic tourism domain, represented
in the OWL 2 language corresponding to the description logic of ALCR (D) and
containing 293 axioms and 40 classes, was used. The scenario for the load testing was
to build a network of resources for the task of building a tourist route (the network
assumes the fulfillment of 6 subtasks). The time of task decomposition and network
construction obtained as a result of averaging over 25 tests is, 1157 ms (994 ms takes
the task decomposition, 163 ms takes the allocation of the subtasks to resources). It
should be noted that this time only takes into account the task decomposition and the
resource network organization, and does not take into account the time spent by the
software services and participants on solving the subtasks assigned to them.

Human-Computer Systems for Decision Support 19

8 Conclusions

The paper addresses the problem of building decision support systems, that leverage
not only computing power of modern hardware and software, but also rely on the
expertise of human participants (allocated from a big pool).

The paper describes a spectrum of solutions for this problem, tailored for slightly
different situations.

The first proposed solution is an application platform (or, Platform-as-a-Service) for
the development of human-based application. The platform is intended for the use
cases when a user can specify the exact information processing workflow and this
workflow includes operations that has to be performed by human experts. The platform
provides tools for deploying and running such application and manages human
resources based on semantic descriptions and digital contracts.

The second is a decision support service based on ontological task representation
and processing. This service is intended for the use cases where exact information
workflow cannot be specified in advance, but there are a number of information pro-
cessing tasks in the problem domain that can be used to automatically construct the
workflow required by the end user (decision-maker) in an ad hoc way. The service
decomposes the task into subtasks based on the task ontology and then distribute the
subtasks among resources (human and software).

Finally, the paper presents an extension of the human-computer cloud, allowing to
address complex problems for which it is hard to design a workflow in advance, and/or
there is no detailed task ontology. This extension is represented by the concept of
human-machine collective intelligence environment, created on top of the cloud
resource management facilities. The distinctive features of the proposed environment
are: a) support for human and software participants who can build coalitions in order to
solve problems and collectively decide on the required workflow, b) support for natural
self-organization processes in the community of participants.

Experiments with a research prototype have shown the viability of the proposed
models and methods.

Overall, the proposed set of tools allow to build human-machine decision support
systems for problems of varying complexity in variety of domains (e.g., smart city,
business management, e-tourism, etc.).

Acknowledgements. The research was funded by the Russian Science Foundation. The HCC
architecture, PaaS and ontology-based decision support service based on task decomposition
were developed as a part of project # 16-11-10253, the self-organizing environment for collective
human-machine intelligence is being developed as a part of project # 19-11-00126.

20 A. Smirnov et al.

References

1. Smirnov, A., Shilov, N., Ponomarev, A., Schekotov, M.: Human-computer cloud:
application platform and dynamic decision support. In: Proceedings of the 9th International
Conference on Cloud Computing and Services Science - Volume 1: CLOSER, pp. 120–131
(2019)

2. Retelny, D., Bernstein, M.S., Valentine, M.A.: No workflow can ever be enough: how
crowdsourcing workflows constrain complex work. Proc. ACM Hum.-Comput. Interact. 1,
Article 89 (2017)

3. Distefano, S., Merlino, G., Puliafito, A.: SAaaS: a framework for volunteer-based sensing
clouds. Parallel Cloud Comput. 1(2), 21–33 (2012)

4. Merlino, G., Arkoulis, S., Distefano, S., Papagianni, C., Puliafito, A., Papavassiliou, S.:
Mobile crowdsensing as a service: a platform for applications on top of sensing clouds.
Future Gen. Comput. Syst. 56, 623–639 (2016)

5. Formisano, C., Pavia, D., Gurgen, L., et al.: The advantages of IoT and cloud applied to
smart cities. In: 3rd International Conference Future Internet of Things and Cloud, Rome,
pp. 325–332 (2015)

6. Dustdar, S., Bhattacharya, K.: The social compute unit. IEEE Internet Comput. 15(3), 64–69
(2011)

7. Sengupta, B., Jain, A., Bhattacharya, K., Truong, H.-L., Dustdar, S.: Collective problem
solving using social compute units. Int. J. Coop. Inf. Syst. 22(4), 1341002 (2013

8. Kulkarni, A.P., Can, M., Hartmann, B.: Turkomatic: automatic recursive task and workflow
design for mechanical turk. In: CHI 2011 Extended Abstracts on Human Factors in
Computing Systems. CHI EA 2011, pp. 2053–2058. ACM (2011)

9. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming
environment for structured social computing. In: Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology (UIST 2011), pp. 53–64. ACM
(2011)

10. Minder, P., Bernstein, A.: CrowdLang: a programming language for the systematic
exploration of human computation systems. In: Aberer, K., Flache, A., Jager, W., Liu, L.,
Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 124–137. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35386-4_10

11. Tranquillini, S., Daniel, F., Kucherbaev, P., Casati, F.: Modeling, enacting, and integrating
custom crowdsourcing processes. ACM Trans. Web 9(2), 7:1–7:43 (2015)

12. Kulkarni, A., Can, M., Hartmann, B.: Collaboratively crowdsourcing workflows with
turkomatic. In: Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work. Seattle, Washington, USA (2012)

13. Valentine, M.A., et al.: Flash organizations. In: 2017 CHI Conference on Human Factors in
Computing Systems – CHI 2017, pp. 3523–3537. ACM Press, New York (2017)

14. Ko, R.K.L., Lee, E.W., Lee, S.G.: BusinessOWL (BOWL) - a hierarchical task network
ontology for dynamic business process decomposition and formulation. IEEE Trans. Serv.
Comput. 5(2), 246–259 (2012)

15. Baader, F., Milicic, M., Lutz, C., Sattler, U., Wolter, F.: Integrating description logics and
action formalisms for reasoning about web services, LTCS-Report 05-02, Chair for
Automata Theory, Institute for Theoretical Computer Science, Dresden University of
Technology, Germany (2005). http://lat.inf.tu-dresden.de/research/reports.html

16. Ergu, D., et al.: The analytic hierarchy process: task scheduling and resource allocation in
cloud computing environment. J. Supercomputing 64(3), 835–848 (2013)

Human-Computer Systems for Decision Support 21

https://doi.org/10.1007/978-3-642-35386-4_10
http://lat.inf.tu-dresden.de/research/reports.html

17. Kong, Y., Zhang, M., Ye, D.: A belief propagation-based method for task allocation in open
and dynamic cloud environments. Knowl.-Based Syst. 115, 123–132 (2017)

18. Sujit, P., George, G., Beard, R.: Multiple UAV coalition formation. In: Proceedings of the
American Control Conference, pp. 2010–2015 (2008)

19. Kim, M.H., Baik, H., Lee, S.: Resource welfare based task allocation for UAV team with
resource constraints. J. Intell. Robot. Syst. 77(3-4), 611–627 (2015)

20. Kamar, E.: Directions in hybrid intelligence: complementing AI systems with human
intelligence. IJCAI Invited Talk: Early Career Spotlight Track. (2016)

21. Nushi, B., Kamar, E., Horvitz, E., Kossmann, D.: On human intellect and machine failures:
troubleshooting integrative machine learning systems. In: 31st AAAI Conference on
Artificial Intelligence, pp. 1017–1025 (2017)

22. Verhulst, S.G.: AI Soc. 33(2), 293–297 (2018)
23. Smirnov, A., Shilov, N.: Service-based socio-cyberphysical network modeling for guided

self-organization. Procedia Comput. Sci. 64, 290–297 (2015)

22 A. Smirnov et al.

	Human-Computer Systems for Decision Support: From Cloud to Self-organizing Environments
	Abstract
	1 Introduction
	2 Related Work
	2.1 Cloud with Humans
	2.2 Human–Computer Programs for Complex Tasks

	3 Human-Computer Cloud: Platform-as-a-Service
	3.1 Application Description
	3.2 Contributor Description
	3.3 Main Functions of the Platform
	3.4 Application Deployment

	4 Ontology-Based Decision Support Service
	4.1 Task Decomposition
	4.2 Subtask Distribution

	5 Self-organizing Environment
	6 Implementation
	7 Evaluation
	8 Conclusions
	Acknowledgements
	References

