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Preface

The present book includes extended and revised versions of a set of selected papers
from the 9th International Conference on Cloud Computing and Services Science
(CLOSER 2019), held in Heraklion, Crete, Greece, during May 2–4, 2019.

CLOSER 2019 received 102 paper submissions from 33 countries, of which 29%
were included in this book. The papers were selected by the event chairs and their
selection was based on a number of criteria that included the classifications and
comments provided by the Program Committee members, the session chairs’ assess-
ment, and also the program chairs’ global view of all papers included in the technical
program. The authors of selected papers were then invited to submit a revised and
extended version of their papers having at least 30% innovative material.

CLOSER focuses on the emerging area of Cloud Computing, inspired by some
latest advances that concern the infrastructure, operations, and available services
through the global network. Further, the conference considers as essential the link to
Services Science, acknowledging the service-orientation in most current IT-driven
collaborations. The conference is nevertheless not about the union of these two (already
broad) fields, but about Cloud Computing where we are also interested in how Services
Science can provide theory, methods, and techniques to design, analyze, manage,
market, and study various aspects of Cloud Computing.

The papers selected to be included in this book contribute to the understanding of
relevant trends of current research on Cloud Computing and Services Science. We can
observe the classical centralized cloud processing to distribute out to the edge, towards
fog, and Internet-of-Things applications. New platform and management solutions are
required, but we also need to better understand how data is processed in these plat-
forms. Even more fundamental concerns going deep into search and retrieval, security,
but also self-adaptation principles need to be investigated. Furthermore, the organi-
zation and architecting of systems at service-level through microservice and container
technologies is an open question. The papers presented here address these concerns,
providing solutions to some of the urgent problems in this field.

We would like to thank all the authors for their contributions and also the reviewers
who have helped to ensure the quality of this publication.

May 2019 Donald Ferguson
Víctor Méndez Muñoz

Claus Pahl
Markus Helfert
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Human-Computer Systems for Decision
Support: From Cloud to Self-organizing

Environments

Alexander Smirnov, Nikolay Shilov, and Andrew Ponomarev(&)

SPIIRAS, 14th Line 39, 199178 St. Petersburg, Russian Federation
{smir,nick,ponomarev}@iias.spb.su

Abstract. The paper describes conceptual and technological principles of the
human-computer cloud, that allows to deploy and run human-based applica-
tions. It also presents two ways to build decision support services on top of the
proposed cloud environment for problems where workflows are not (or cannot
be) defined in advance. The first extension is represented by a decision support
service leveraging task ontology to build the missing workflow, the second
utilizes the idea of human-machine collective intelligence environment, where
the workflow is defined in the process of a (sometimes, guided) collaboration of
the participants.

Keywords: Human-computer cloud � Human-in-the-Loop � Crowdsourcing �
Crowd computing � Human factors

1 Introduction

The widespread of information and communication technologies that allow people to
access global networks from almost anywhere in the world brings joint and collective
initiatives to a new level, which leads to an upsurge in crowd computing and
crowdsourcing.

The applicability of systems that rely on human participation (including crowd-
based ones) is limited by the fact that they usually require large numbers of contrib-
utors, while collecting the required number may require significant effort and time. This
problem is partially alleviated by existing crowdsourcing platforms (like Amazon
Mechanical Turk, Yandex.Toloka etc.) accumulating the “online workforce” and
providing tools for requesters to post tasks and an interface for workers to accomplish
these tasks. Existing platforms, however, bear two main disadvantages: a) most of them
implement only ‘pull’ mode in distributing tasks, therefore not providing any guar-
antees to the requester that his/her tasks will be accomplished, b) they are usually
designed for simple activities (like image/audio annotation). This paper presents a
unified resource management environment, that could serve as a basis on which any
human-based application could be deployed similar to the way cloud computing is used
nowadays to decouple computing resource management issues from application
software.

© Springer Nature Switzerland AG 2020
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This paper is an extended and revised version of [1]. In [1] a human-computer
cloud (HCC) architecture was described. The proposed HCC includes: 1) an applica-
tion platform, allowing to deploy and run in the cloud human-based applications
(HBA), and 2) an ontology-based decision support service providing task decompo-
sition mechanism in order to automatically build an execution plan for tasks in an ad
hoc way (for decision support tasks, algorithms for which are not described in
advance). However, historically attempts to build human-computer (crowd) informa-
tion processing systems for complex tasks came to conclusion that no workflow (or,
predefined coordination program) is able to account for all potential complications that
might arise when dealing with complex tasks [2]. Therefore, any collaborative envi-
ronment for dealing with complex tasks must support on the fly adaptation of the
workflow and (to some extent) leverage self-organization potential of human collec-
tives. The solution proposed earlier in [1] (the ontology-based DSS) only partly sat-
isfies this requirement, as it relies on a task ontology where all possible tasks have to be
described (but not algorithms for them). In this paper, we extend the earlier proposed
approach by describing a concept of collective intelligence environment built on top of
the HCC and supporting self-organization.

Together, the three proposed solutions allow to build human-computer decision
support systems for all the spectrum of problems (on a complexity scale). For the most
simple ones, where mere programming is enough, PaaS with HBA support should be
used, for more complex ones, but studied and structured enough to build a task
ontology, the ontology-based decision support service (René) is suitable, and finally,
the most complex and underdeveloped ones, should be dealt with the help of the self-
organization environment build on top of the cloud.

The rest of the paper is structured as follows. Section 2 briefly describes other
developments aimed on building human-computer cloud environments and research on
crowd support for complex tasks. Section 3 describes the organization of the platform
layer of the proposed HCC with a focus on the digital contract concept. Section 4
describes ontology-based decision support service. Section 5 describes the concept of
self-organization environment for human-machine collective intelligence. Sections 6
and 7 describe cloud platform implementation and evaluation respectively.

2 Related Work

2.1 Cloud with Humans

Generally, resources managed by cloud environments are hardware (CPU, storage) and
software (cloud applications, platforms). There are, however, a number of attempts to
extend the principles of cloud computing (first of all, on-demand elastic resource
provisioning) to a wider spectrum of resource types. These attempts can be classified
into two groups: 1) cloud sensing and actuation environments, and 2) cloud-managed
human resource environments.

A very representative (and one of the earliest) examples of human-based cloud
sensing and actuation environment was presented in papers [3] and [4]. Sensing
resource is regarded there as a service that can be allocated and used a unified way

2 A. Smirnov et al.



independently of the application that needs access to the resource. The cloud system
(called MCSaaS – Mobile CrowdSensing as a Service) provides an interface allowing
any smartphone user to become a part of a cloud and allow to use his/her smartphone
sensors for the benefit of cloud consumers.

The approach proposed in ClouT (Cloud+IoT) project [5] is aimed on providing
enhanced solutions for smart cities by using cloud computing in the IoT domain. Both
ClouT and MCSaaS approaches are highly relevant to the cloud environment presented
in this paper. However, these solutions are focused mostly on sensing and the role
played by human in these systems is very limited: human can provide an access to
his/her smartphone and make some operations (i.e. point camera lens to some object
and make a picture) requested by the application working on top of the infrastructure
layer.

Solutions of the second group, earlier referred to as cloud-managed human resource
environments, implement another perspective on managing member’s skills and
competencies in a standardized flexible way (e.g. [6, 7]). In these environments and
systems human is regarded as a specific resource that can be allocated from a pool for
performing some tasks (not necessary sensing). For example, in [6] the cloud consisting
of human-based services and software-based services is considered. On the infras-
tructure layer, they define a human-computing unit, which is a resource capable of
providing human-based services. Like hardware infrastructure is described in terms of
some characteristics (CPU, memory, network bandwidth), human-computing unit in
this model is described by the set of skills. The authors do not list the exact skills,
leaving it to the application domain.

The human-computer cloud environment described in this paper stands more clo-
sely to the cloud-managed human resource environments (like [6]). It extends the
existing works by an application platform based on a machine-processable specification
of obligations in a form of a digital contract and a decision support service that is
deployed on top of all resource-management services and can be used to solve ad hoc
problems in some domain.

2.2 Human–Computer Programs for Complex Tasks

The overwhelming part of research in the field of human-machine computing
(crowdsourcing, crowd computing) systems understands human participant as a special
type of “computing device” that can process requests of a certain type. During the
design time, the whole information processing workflow is build and operations
requiring human processing are identified. In the run time the function of a human
participant, is reduced to performing a specific task, proposed to him/her by the system,
interacting with it in a strictly limited manner [8–11].

Although such a rigid division of roles (designer vs. participant of the system) and
strict limitation of the participant’s capabilities pay back in a wide range of tasks
(mostly, simple ones like annotation, markup, etc.), the creative and organizational
abilities of a person in such systems are discarded. It is also shown, that fixed pre-
defined workflow is too limiting for complex tasks [2]. First attempts to build crowd
systems, where participants could refine the workflow appeared in 2012 [12], but the
problem is starting to receive the closest attention of the research community only

Human-Computer Systems for Decision Support 3



nowadays. In particular, in recent years several studies have appeared on the limitations
of systems based on the fixed flow of work [2] and proposing the formation of dynamic
organizations from members of the crowd community (the so-called flash organizations
[13]). We adopt main conclusions of these studies and integrate them with the earlier
proposed HCC.

3 Human-Computer Cloud: Platform-as-a-Service

This section introduces platform-as-a-service (PaaS) functionality of the HCC,
designed to enable development and deployment of human-based applications. The
section enumerates main actors, interacting with the platform, major requirements that
drive the design, information associated with applications and contributors, allowing to
fulfill the requirements. The section finishes with main use cases presenting a general
view of the platform.

All the actors of the proposed cloud platform can be divided into three main
categories:

End users (application/service developers), who leverage the features of the plat-
form to create and deploy applications requiring human effort.

Contributors, who may process requests issued by human-based applications
running in the human-computer cloud environment.

System Administrators and Infrastructure Providers, who own and maintain the
required computing infrastructure.

Primary requirements from the side of End users considered in the platform design
are following:

• The platform must provide tools to deploy, run, and monitor applications that
require human information processing.

• The platform must allow to specify what kind of human information processing is
required for an application (as some human-based services, like, e.g., image tag-
ging, require very common skills, while others, like tourism decision support,
require at least local expertise in certain location).

• The platform must allow estimating human resources available for the application.
This requirement, in particular, is different from conventional cloud infrastructures
where resources are considered inexhaustible. Human resources are always limited,
especially when it comes to people with some uncommon competencies and
knowledge. Besides, the rewarding scheme of the application may be not able to
collect the sufficient number of contributors. Therefore, having the information
about the resource availability, an application developer is know what capacity is
actually available to the application, and based on this information he/she may
change the rewarding scheme, set up his/her own SLA (for his/her consumers) etc.

3.1 Application Description

The ultimate goal of the PaaS cloud service model is to streamline the development and
deployment of the applications by providing specialized software libraries and tools
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that help developers to write code abstracting from many details of resource man-
agement. All the resource (and dependency) management operations are performed
automatically by PaaS environment according to some description (declarative con-
figuration) provided by the developer of the application being executed. The proposed
human-computer cloud environment supports similar approach, however, with inevi-
table modifications caused by the necessity of working with human resources. To
streamline the development of applications that require human actions (human-based
applications, HBA), the platform allows both a developer to describe what kind of
human resources are required for a particular application, and a contributor to describe
what kind of activities he/she can be involved in and what competencies he/she pos-
sesses. Existing declarative specification means used in cloud systems allow to specify
computing resource requirements and software dependencies of an application. How-
ever, they are insufficient for the purpose of human-computer cloud, first of all, because
of variety of possible human skills and competencies. While virtual machine can be
described with a very limited number of features (e.g. CPU, RAM, I/O capacity),
human contributor’s skills and abilities are highly multidimensional, they can be
described in different levels of detail and be connected to a wide range of particular
application areas. Moreover, the same skills can be described in different ways, and,
finally, most of the skill descriptions in real world are incomplete (however, there
might be a possibility to infer some skills that a human might possess from those that
he/she explicitly declared).

Therefore, application deployed in the human-computer cloud environment must
contain a descriptor that includes following components (we list all the components,
but focus on those, that are relevant to human part):

• configuration parameters (e.g. environment variables controlling the behavior of the
compiled code);

• software dependencies of the application (what platform services and/or other
applications it relies on, e.g., database service, messaging service, etc.);

• human resource requirements, specifying contributors with what skills and com-
petencies are needed for the application. Along with the software requirements,
these requirements are resolved during the service deployment. In contrast to the
software requirements, which are usually satisfied, these requirements may be
harder to satisfy (resolving these requirements employs ontology matching which
may result in some tradeoffs, besides, human resources are usually limited),
therefore, the status and details of the requirements resolution are available to the
developer and can be browsed via the management console. Human resource
requirements specification may describe several types of human resources with
different profiles of requirements. For example, an itinerary planning application
may require people with significant local expertise as well as people with shallow
local expertise but good language skills. These two categories of contributors may
be declared as two types of resources;

• digital contract template for each type of human resources. Digital contract defines
measurable and machine understandable/checkable specification of contributor’s
involvement, his/her obligations (e.g., number of requests, reaction time) and
rewarding.

Human-Computer Systems for Decision Support 5



For a formal specification of requirements the proposed environment leverages the
apparatus of formal ontologies. Specifically, arbitrary ontology concepts may be used
to describe skills or knowledge areas. Main benefit of using ontologies is that they
allow to discover resources described with related, similar but not exact terms. This is
done either by using existing public mappings between ontologies (stating equivalence
between concepts of different ontologies), or by ontology inference. We do not fix any
particular set of ontologies to describe competencies. It allows tourist applications
deployed on the platform to use public cultural, historical, and geographical ontologies,
whereas, e.g., applications, that employ human-based information processing in the
area of medicine or biology use the ontologies of the respective domain. The only
restriction is that these ontologies have to be encoded in OWL 2.

Another important feature of the approach is the concept of digital contract, rep-
resenting an agreement between contributor and platform about terms of work, quality
management principles and rewarding. Terms of the digital contract are essential for
estimating the amount of resources available for a service and its capacity (including
time perspective of the capacity). The necessity of this digital contract is caused by the
fact that human resources are limited. In case of ordinary hardware, the cloud infras-
tructure provider can buy as many computers as needed, human participation is less
controllable due to free will, therefore, attracting and retaining contributors can be a
complex task. As a result, the abstraction of inexhaustible resource pool that is
exploited in the provider-consumer relationship of current cloud environments turns
out to be inadequate for human-computer cloud. A consumer (end user) should be
informed about the human capacity available for his/her application to make an
informed decision about revising digital contracts (for example, making contribution to
this application more appealing), or updating their own service level agreements. This
creates a competition between consumers for the available resources and finally will
create a kind of job market where different digital contract statements will have its own
price.

3.2 Contributor Description

To support semantic human resource discovery and task allocation, human resources
have to be described with ontology terms. Besides, they have to specify their prefer-
ences about task types, availability time etc. Therefore, when a contributor joins the
cloud platform he/she provides two main types of information, that are very similar to
the respective pieces of application descriptor. Namely, the description of competencies
and working conditions. The competencies are described in terms of any ontology
familiar to the contributor. For the contributors who cannot use ontologies the
description is built iteratively via the analysis of contributors’ text description followed
by ontology-based term disambiguation. In any case, internally, each contributor is
described by skills, knowledge and attitude, associated with the concepts of some
shared ontology.

Moreover, the contributor’s competency description is multi-layered. The first layer
is provided by a contributor him-/herself, further layers are added by applications in
which the contributor takes part. For this purpose, a human resource management API
available for the application code allows to manage application-specific skills and
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qualifications, which can also be described in some ontology (application-specific or
not). Therefore, despite initial description of competencies may be rather short, during
the contributor’s participation in various applications running on the platform it
becomes richer. This facilitates further human resource discovery.

Working conditions include preferred skills, as well as payment threshold, reac-
tivity and availability limitations. These parameters are also similar to those included in
digital contract template in the application descriptor. During application enquiry and
application deployment its contract template is matched against contributors’ work
conditions. Moreover, this matching touches not only contributor’s declared work
conditions and one application contract (of the deployed application) but also other
applications which contracts this contributor has already accepted, controlling overall
responsibilities that are taken by the contributor and resolving possible conflicts.

3.3 Main Functions of the Platform

Each category of users (identified earlier as actors) has unique purpose of using the
environment. Main functions of the environment are the ones that allow users of each
category to accomplish their primary goal.

Main functions exposed to application/service developers are application deploy-
ment (which initiates advertisement process to identify human resources available to
this application), editing digital contracts, monitoring, and deleting applications.
Editing digital contracts is important, for example, when the developer of the appli-
cation competes for human resources with other application developers by offering
higher rewards. Changing the contract produces a new version of the deployed
application descriptor and leads to a new wave of advertisements. Application moni-
toring is a general name for a number of functions like reading usage statistics, logs,
that are necessary for application developer and are common to many current PaaS.
This also includes monitoring of the available human resources by each requirement
type as well its prediction.

Contributors can edit their competence profiles (providing an initial version and
updating it), browse application advertisements addressed to them (compatible with
his/her competence profile and work conditions) optionally accepting some of them by
signing digital contract and attaching to the respective application. Contributors can
also execute application-specific tasks and detach from application (possibility of
detachment in a particular moment and the effect of it might be affected by the digital
contract).

System administrators can monitor the status of the platform (usage of
hardware/human resources, communication channels throughput, platform services’
health) and tune the platform parameters (e.g., edit ontology mappings used by the
platform during identification of compatible resources (contributors) for advertising
applications).

3.4 Application Deployment

A newly registered contributor is not automatically available for requests of all human-
based applications running on the environment. However, he/she starts to receive the
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so-called advertisements from applications based on the similarity of a declared
competence profile (including additional layers created by applications a contributor
participates) and applications’ competence requests as well as the correspondence of
the declared working conditions and applications’ digital contract templates. These
advertisements describe the intent of the application, required kind of human
involvement, rewarding scheme etc. Based on the information contained in the ad-
vertisement, a contributor can decide to attach to the application, which means that
he/she will then receive tasks from this application. In other words, if a registered
contributor agrees to contribute to the particular application a digital contract is signed
specifying the intensity of task flow, the rewarding and penalty details and quality
measurement strategy. In general, there is many-to-many relation between applications
and platform contributors, i.e., one contributor may sign digital contracts with several
applications.

Upon signing of a digital contract with an application (via platform mechanisms),
the contributor starts to receive requests (tasks) from this application. The application
issues mostly non-personalized requests, and it is the platform that routes requests to
the contributors, ensuring that load of each contributor conforms the terms of the
contract. A contributor also can detach from an application (however, the mechanism
and terms of this detaching can also be a part of digital contract to ensure the appli-
cation provider can react to it accordingly).

4 Ontology-Based Decision Support Service

The decision support service (named René) is an application, running on top of the
human-computer cloud infrastructure, leveraging some features of the platform (e.g.,
resource management and provisioning), and provided to end users according to SaaS
model. Users of René are decision-makers who pass task specifications to the appli-
cation. The API of René accepts ontology-based structured representation of the task
specification. The problem of creating such specification (for example, as a result of
text analysis) is out of the scope both of this paper and of René functions. The core
principle behind René is that it builds an on-the-fly network of resources (human and
software) capable of performing the specified task.

In order to build the network, René decomposes the task into smaller tasks (sub-
tasks) using a problem-specific task ontology, where domain tasks and their input and
output parameters are described. After performing the decomposition René tries to
distribute the elementary subtasks among the available resources. The list of available
resources is retrieved via an API from underlying layers of the environment, which
monitor all the contributor’s connections and disconnections and software resource
registrations. The resource management service under the hood treats human and
software resources differently. Human resources (contributors) describe their compe-
tencies with a help of ontology and receive advertisements to join human-based
applications if their requirements are compatible to the declared competencies of the
user. René is basically one of human-based applications and may only distribute
subtasks among contributors who agreed to work with it (attached to it by signing a
digital contract). Software services are made available to René by their developers and
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maintainers by placing a special section into the application deployment descriptor.
Task assignment is also done with a help of interfaces of resource management layer,
aware of the status and load of the resources and terms of their digital contracts.

As contributors may go offline, René monitors the availability of the resources (via
the underlying resource management) during execution of the subtasks and rebuilds the
assignment if some of the resources fail or become unavailable to keep the bigger task
(received from the end user) accomplishable.

4.1 Task Decomposition

Task decomposition is the first step to building the resource network. The goal of this
process is to build a network of smaller (and simpler) tasks connected by input/output
parameters, such that this network is equivalent to the original task given by the user.
Therefore, in some sense, the process of task decomposition is actually driven by task
composition (particularly, to searching a composition, equivalent to the original task).
The proposed approach is based on the fact that there is an ontology of tasks. This task
ontology should consist of a set of tasks and subtasks, sets of input and output
parameters of task, set of valid values of parameters, as well as the set of restrictions
describing the relations between tasks/subtasks and parameters and between parameters
and their valid values:

O ¼ T; IP; OP; I; Eð Þ ð1Þ

where T is set of tasks and subtasks, IP – set of input task parameters, OP – set of
output task parameters, I – set of valid parameter values, E – restrictions on the
parameters of the task and parameter domain.

Unlike existing task ontologies (e.g., [14]) that usually contain relationships
between task and their subtasks in explicit form, in the proposed task composition
ontology these relationships are implicit. This allows, on the one hand, to specify tasks
and subtasks in the same axiomatic form and, on the other hand, to derive task com-
position structure by reasoning tools. Therefore, the proposed ontology opens the
possibility to describe a number of different tasks in the same form and dynamically
construct their possible compositions using appropriate criteria.

The task composition ontology is developed in OWL 2. The ontology is expressed
by ALC description logic, which is decidable and has PSpace-complete complexity of
concept satisfiability and ABox consistency [15] in the case when TBox is acyclic. In
addition, SWRL-rules are defined for deriving composition chains. The main concepts
of the ontology are “Task” and “Parameter”. The concept “Parameter” is used to
describe semantics of a task via its inputs and outputs. The main requirement for
TBox definition is that it shouldn’t contain cyclic and multiple definitions, and must
contain only concept definitions specified by class equivalence.

Each task should have at least one input and at least one output parameter. The
taxonomy of parameters is presented by a number of subclasses of the class “Param-
eter”. The type of parameters related to their input or output role are defined by
appropriate role construct. In the ontology, the appropriate object properties are
“hasInputParameter” and “hasOutputParameter”. The domain of the properties is
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“Task” and the range – “Parameter”. Thereby the parameter could be input parameter
of one task and output parameter of another. The task definition is expressed formally
as follows:

T � 9R:IP1 u 9R IP2 . . .u 9R:IPNð Þu
u 9R:OP1 u 9R :OP2 . . .u 9R:OPNð Þ ð2Þ

where T is the task, IPi – the input parameter subclass, OPi – the input parameter
subclass, R – the appropriate role. In other words, the task is defined solely by its input
and output parameters.

Task composition process is based on the fact that in a composition output
parameters of one task are input for another. This relationship is utilized (and for-
malized) by an SWRL rule that infers the order of tasks. The rule specifies input and
output parameter match condition in the antecedent and if the antecedent condition is
satisfied, infers the relationship “nextTask” between the respective tasks. This rela-
tionship means that one task can be done only after another. This relationship is
encoded as an object property binding two tasks (both domain and range of the
property are “Task” instances). The rule of task composition can be expressed as
follows:

hasInputParameter ?ta; ?pð ÞhasOutputParameter ?tb; ?pð Þ ! nextTask ?tb; ?tað Þ ð3Þ

where hasInputParameter, hasOutputParameter, nextTask are the mentioned object
properties, ta – the next task, tb – the previous task, p – the parameter.

The proposed rule (3) allows to derive all task connections by the object property
“nextTask”. The example of task composition is presented in Fig. 1. For example,
relationship “nextTask” is inferred between tasks “Task 1” and “Task 3” because
parameter p6 is input for “Task 3” and output for “Task 1”, meaning that “Task 3” can
only be executed after “Task 1”.

Task 1

Task 2

Task 3 Task 4

In Out
p2
p3 
p4 
p5

p6 

In Out
p1 p7

In Out
p6
p7 

p8
p9 

In Out
p8
p9 p10

nextTask

nextTask

nextTask

Fig. 1. Task composition structure (adopted from [1]).
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The advantages of the described approach is that it allows to simplify task
description (in comparison to the approaches where task/subtask relations are explicit)
and to derive task compositions dynamically. The shortcomings are the possible
deriving complexity and the lack of the support of alternative task compositions.

4.2 Subtask Distribution

In cloud computing systems, the number of interchangeable computing resources is
usually very high [16, 17]. The decision support service distributes the specialized tasks
that require certain competencies, therefore, a) the distribution algorithm has to take
into account the competencies, b) not all resources are interchangeable for the
assignment and the number of appropriate resources may be lower. Therefore, typical
algorithms used in cloud computing cannot be directly applied.

In the areas with similar task characteristics (e.g., distribution of tasks among the
robots or agents) the most common approach is instant distribution of tasks (instan-
taneous task allocation) [18, 19]. This approach involves assigning tasks to resources
that currently provide the maximum “benefit” according to the given priorities. It does
not take into account that at some point all resources with the required competencies
may be occupied. Thus, it is usually supplemented by some heuristics specific to a
particular application area.

Let, A – is a task, which contains several subtasks ai:

A ¼ aif g; i 2 1; . . .; nf g ð4Þ

Let, O – is the vocabulary of competencies:

O ¼ o1; o2; . . .; omf g ð5Þ

Thus, the matrix of competencies required to accomplish subtasks can be defined
as:

aoi;j 2 0; 1; . . .; 100f g� �
; i 2 1; . . .; nf g; j 2 1; . . .;mf g ð6Þ

The set of human-computer cloud resources R is defined as:

R ¼ r1; r2; . . .; rkf g ð7Þ

The set of resource characteristics (speed, cost, etc.) C is defined as:

C ¼ c1; c2; . . .; clf g ð8Þ
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Thus, each resource ri is described by the following pair of competencies and
characteristics vectors:

ri ¼ roi;1; . . .; roi;m
� �

; rci;1; . . .; rci;1
� �� � ð9Þ

where i 2 {1, …, n}, roi,j 2 {0, …, 100} – is the value of competency j of the resource
i, and rci,j is the value of the characteristic j of the resource i.

The solution of the task A describes the distribution of work among system
resources and is defined as:

SA ¼ si;j
� �

; i 2 1; . . .; nf g; j 2 1; . . .; kf g ð10Þ

where si,j = 1, if the resource j is used for solving subtask i, and si,j = 0 otherwise.
The objective function, which also performs normalization of various characteris-

tics, is defined as follows:

F SAð Þ ¼ f ðF1 s1;1; s2;1; . . .; sn;1
� �

;

F2 s1;2; s2;2; . . .; sn;2
� �

; . . .;

Fk s1;k; s2;k; . . .; sn;k
� �Þ ! min

ð11Þ

Specific formulas for calculating partial assignment efficiency (Fi) can use values of
resource characteristics (e.g., speed or cost) rci,j, as well as competence values of both
resources (roi,j) and subtasks (aoi,j).

The minimization must be performed with respect to the following constraints.
First, each subtask must be assigned to some resource:

8i =
Xk

j¼1
Si;j � 1 ð12Þ

Second, assignment can only be done if the competency values of the resource are
not less than the required competency values of the subtask:

8i; j; q : sij ¼ 1
� � ! roj;q � aoi;q

� �� � ð13Þ

Instantaneous Distribution of Tasks Algorithm
In general, the specified problem is NP-complete, therefore, it is not possible to solve it
by an exhaustive search method in a reasonable time (provided that a real-world
problem is solved). Based on the analysis of existing methods it is proposed to use the
approach of instantaneous task allocation. The algorithm based on the approach of
instantaneous distribution of tasks is defined as follows:

1. Take the first subtask from the existing ai, and exclude it from the set of subtasks A;
2. Select such resource j from the available resources to satisfy all conditions and

F(SA) ! min, where SA = (s1,1 = 0, …, s1,j = 1, …, s1,k = 0);
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3. If a suitable resource is not found, assume that the problem is unsolvable (the
system does not have a resource that meets the required competencies);

4. Repeat steps starting from step 4 until set A is empty (i.e. all tasks are assigned to
resources).

Multi-agent Distribution of Tasks
There are two types of agents that are used to perform multi-agent modeling: the
customer agent that is responsible for generating jobs and making the final decision,
and the execution agents that represent the resources of the cloud environment and
perform on-premises optimization for each resource. In the optimization process,
agents form coalitions that change from step to step to improve the values of the
objective function.

In the process of negotiations, an agent can play one of the following roles: a
coalition member (an agent belonging to the coalition), a coalition leader (an agent
negotiating on behalf of the coalition) and an applicant (an agent who can become a
member of the coalition).

First, each agent forms a separate coalition (SC, which has the structure of the SA
solution), and becomes its leader. Suggestions of agents (tabular representation F(s1,1,
s2,1,…, sn,1)) are published on the blackboard (information exchange entity available to
all agents). At each stage of the negotiations, the agents analyze the proposals of other
agents, and choose those whose proposals can improve the coalition: to solve a larger
number of subtasks or the same number of subtasks but with a better value of the
objective function (F(SC) > F(SC’), where SC is the current coalition, SC’ – possible
coalition). Coalition leaders make appropriate proposals to agents, and the latter decide
whether to stay in the current coalition or move to the proposed one. The transition to
the proposed coalition is considered if one of the above conditions is met: the proposed
coalition can solve more subtasks than the current one, or the same number of subtasks,
but with a better value of the objective function.

The negotiations process is terminated if one of the following conditions is met: a)
there are no changes in the composition of coalitions at some stage, b) timeout, and c)
the permissible value of the objective function is reached.

5 Self-organizing Environment

This section describes the concept of self-organization environment for human-
machine collective intelligence, which is built on top of the HCC (e.g., leveraging the
resource discovery and communication facilities of the cloud). In this way, the self-
organizing environment is another specific application that may be deployed on the
HCC.

The proposed environment aims at supporting the process of making complex
decisions and/or making decisions in complex problem domains. The complexity of
making such decisions generally stems from problem uncertainty in many levels and
the lack of relevant data at decision maker’s disposal. Hence, while in the upper level
the methodology of decision-making stays quite definite (identification of the alter-
natives, identification of the criteria, evaluation of the alternatives etc.), the exact steps
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required to collect all the needed data, analyze it and present to the decision maker may
be unclear. That is why decision support requires ad hoc planning of the low-level
activities and should leverage self-organizing capabilities of the participants of the
decision support process. Besides, currently most of the complex decisions are based
not only on human intuition or expertise, but also on the problem-relevant data of
various types and sources (starting from IoT-generated, to high-level Linked Data),
processed in different ways. In other words, decision support is in fact human-machine
activity, and the environment just offers a set mechanisms and tools to mitigate this
activity.

There are several typical roles in the decision support process. Decision-makers are
responsible for the analysis of a situation and making a decision. In some cases, where
the uncertainty associated with the situation is too high, the decision-maker requires
some additional expertise that may be provided by participants of a human-machine
collective intelligence environment. Bearing in mind, that using collective expertise is
usually rather expensive and can be justified only for important problems, the decision-
maker is usually a middle-to-top level manager in terms of typical business hierarchy.
After the decision-maker posts the problem to the collective intelligence, he/she may
oversee the process of solution and guide it in some way.

Experts possess problem-specific knowledge and may contribute into decision
support process in several ways. First, they can propose procedures of obtaining rel-
evant judgments, constructing in an ad hoc way elements of the whole workflow. This
can be done not only in a direct manner, but also indirectly, by posting various
incentives for other participants. Second, they can use their expertise by providing data
as well as processing it to come to some problem-related conclusions. In general, an
expert can be anyone – within or without the organization boundary, the difference is
mostly in the incentives important for the particular expert.

Service providers design and maintain various software tools, services and datasets
that can be used for decision support. Their goal is to receive remuneration for the use
of these tools, that is why they are interested in making these services available for
other participants of the environment.

The environment should provide means and mechanisms using which participants
of different nature (human and machine) could be able to communicate and decide on
the particular steps of decision support process, perform these steps and exchange
results, motivated by some external or internal mechanisms, making the whole envi-
ronment profitable for all parties.

The rest of the section introduces foundational technologies and enablers for the
proposed environment.

Meeting Collective Intelligence and Artificial Intelligence. Methods of collective
intelligence (construed as methods for making people to work together to solve
problems) and methods of artificial intelligence are two complementary (in some
industries even competing) methods of decision support. Mostly, these approaches are
considered as alternative (some tasks due to their nature turn out to be more “conve-
nient” for artificial intelligence methods, and others – for collective), however, the
scientists are currently tending to speak about possibility of their joint usage and the
potential that human-machine technologies have [20–22].
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In the proposed environment artificial and collective intelligence are meeting in the
following way. The environment itself provides possibility of communication and
coordination of agents while working on solving the problem (collective part). Soft-
ware services have to “understand” common goal and build their strategy (AI part).
Besides, some agents can provide application level AI methods.

There are four types of intelligent software services that take part in the functioning
of the environment (Fig. 2):

• Solver. A software code that can transform a task description in some way,
enriching it with some derived knowledge.

• Data/knowledge provider. Interface-wise similar to the previous type, however,
only provides some problem-specific information.

• Tool handler. A utility agent that manages human access to some software tools
(with GUI). In many cases, certain data processing routines required for decision-
making can be implemented with some software (or, SaaS). It is not practical to re-
implement it in a new way, however, granting an access to such tools might be
useful for all the involved parties.

• Representative. Allowing expert to communicate with other services.

Participant (agent)

Software 
service

Environment
uses

consists of

External
Software Tool

SolverRepresentative

Data/Knowledge  
provider

External
Data/Knowledge

Source

Tool
Handler 

is-a is-a
provides

represents
is-a

represents represents

Decision-maker

Expert
Service 

provider

Fig. 2. Main entities of the environment and their relationships.
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Self-organization Protocols Taking into Account both Human and Machine
Agents. One of the distinguishing features of the proposed approach is to overcome
the preprogrammed workflows that rigidly govern interaction of participants during
decision support and to allow the participants (human and machine agents) to
dynamically decide on the details of the workflow unleashing creative potential of
humans. Therefore, agents should be able to coordinate and decide on task distribution,
roles etc., in other words a group of agents should be able to self-organize.

The protocols of self-organization in such environment have to respect both
machine and human requirements. The latter means that widely used models of bio-
inspired self-organization turn out to have less potential to be applied, as they are taken
mostly from the analysis of primitive behaviors (e.g., of insects). On the other hand,
market (or, economics) based models best of all match the assumed business model (on
demand service provisioning). Another possible source are socio-inspired mechanisms
and protocols, which are totally natural for people, and there are already some attempts
to adapt them for artificial systems [23].

Interoperability of Agents. To sustain various coordination processes, as well as
information flow during decision-making multilevel interoperability has to be provided
inside the collaborative environment. This is especially acute in the case of mixed
collectives, consisting of human and machine agents.

To implement any self-organization protocols, the participants of the system have
to exchange several types of knowledge:

• Domain knowledge. What object and what relationships between objects are in the
problem area.

• Task knowledge. Both goal description, and possible conceptualization of the active
decision support task, e.g., mapping some concepts to alternatives, functions to
criteria.

• Protocol knowledge. Terms of interaction, incentives, roles etc.

It is proposed to use ontologies as the main means ensuring the interoperability.
The key role of the ontology model is in its ability to support semantic interoperability
as the information represented by ontology can be interpreted both by humans and
machines. Potentially, ontology-based information representation can provide the
interoperability for all kinds of possible interactions (human-human, human-machine,
machine-human). Taking into account the heterogeneity of the participants of the
human-machine collective intelligence systems and the multidimensionality of the
decision support activities, it is proposed to use multi-aspect ontologies. The multi-
aspect ontologies will avoid the need for standardization of all services of environment
through providing one aspect (some viewpoint on the domain) to services of one
collective (services of one producer, services that jointly solve a certain task, etc.) for
the service collaboration.

Soft Guidance in Collective Action. Though the execution process in the proposed
environment is self-orchestrated and driven by negotiation protocols, human partici-
pants, however, will need intelligent assistance when communicating with other agents
in the environment. The role of this assistance is to offer viable organization structures
and incentive mechanisms based on current goals. An important aspect during the soft
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guidance is mapping actions defined by decision-making methodologies to human-
computer collaboration scenarios. It means that the environment (or representative
service) uses the existing knowledge on decision making process to offer agents viable
collaboration structures.

6 Implementation

The implemented research prototype of the cloud environment contains two parts:
platform-as-a-service (PaaS) and software-as-a-service (SaaS). The platform provides
the developers of applications that require human knowledge and skills with a set of
tools for designing, deploying, executing and monitoring such applications. The SaaS
model is represented by an intelligent decision support service (referred to as René) that
organizes (human-computer) resource networks for on-the-fly tasks through ontology-
based task decomposition and subtasks distribution among the resources (human
participants and software services).

The prototype environment comprises several components: 1) a server-side code
that performs all the resource management activities and provides a set of application
program interfaces (APIs), 2) a set of command line utilities that run on the computers
of appropriate categories of users (platform administrator, developer, administrator of
IDSS) and by accessing the API, enable to implement the main scenarios necessary for
these users, 3) Web-applications for participants and decision makers. Also, it is
possible to implement the interface of the participant for an Android-based mobile
device.

To build and refine a participant competence profile the prototype environment
interacts with social networks (ResearchGate, LinkedIn). It also exposes several APIs
to the applications deployed on it, providing them basic services (for instance, request
human-participants, data warehouses, etc.).

To support the processes of scalable software deployment (which is necessary for
the PaaS, but peripheral to the main contributions of our work) the open source plat-
form Flynn1 is used. The capabilities of the platform has been extended by special
functions (registration of participants, an ontological-oriented search for participants,
and a mechanism for supporting digital contracts).

The intelligent decision support service (IDSS) is an application deployed in the
human-computer cloud environment and using the functions provided by the envi-
ronment (for instance, to organize interactions with participants). Main functions of the
IDSS are: 1) decomposition of the task that the decision maker deals with into subtasks
using the task ontology and inference engine that supports OWL ontology language
and SWRL-rules (for instance, Pellet, HermiT, etc.); 2) allocation of the subtasks to
participants based on coalition games. The IDSS provides REST API to interact with
the platform.

1 http://flynn.com.
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The architecture of IDSS (Fig. 3), in its turn, can be divided into several logical
layers:

• The Data Access Layer is a series of DAO abstractions that use the JPA standard for
object-relational mapping of data model classes (Domain model) that perform the
simplest CRUD operations using ORM Hibernate and implemented using Spring
Data.

• The Business Logic Layer of the application is represented by two main services:
the task decomposition service and the workflow distribution service. The task
decomposition service operates with an ontology, described using the ontology
description language OWL 2, which includes rules in SWRL and SQWRL.
Knowledge output (task decomposition) is carried out using inference engines
(Pellet, HermiT, and others). To extract data from ontology, Jena APIs are used for
ontologies recorded using OWL/RDF syntax using the SPARQL query language
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Fig. 3. IDSS implementation.
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and OWL API for other ontology scenarios (changing ontology structure, managing
individuals, logical inference). The workflow building service provides support for
the coalition game of agents of the human-machine computing platform agents.

• At the Client Layer, REST API services are implemented for interacting with the
platform, providing an interface for interacting with the platform and indirect user
interaction.

7 Evaluation

An experimental evaluation of the research prototype has been carried out. As the
functionality of the application of the problem-oriented IDSS built according to the
proposed approach is determined by the task ontology (namely, the basic tasks rep-
resented in this ontology and their input and output parameters), a task ontology for the
e-tourism domain has been developed (specifically, for building tourist itineraries). In
the experiments, dynamic task networks (for building tourist itineraries) did actually
organize, and their execution resulted in valid lists of itineraries.

The developed software was deployed at the computing nodes of the local network
of the research laboratory (an access to the server components from the Internet was
also provided). 34 people were registered as participants available for task assignment.
An ontology to describe the competences of resources (and the requirements for
competences of deployable applications requiring human participation) representing 46
basic competences was used. With the experimental parameters (performance of
hardware resources, number of participants, size of the competence ontology), the
application deployment time differed from the application deployment time in the
Flynn core cloud environment slightly (by 3–7%). The increase in time is inevitable,
because during the application deployment process, in addition to creating Docker
containers, compiling and launching an application (performed by Flynn), the semantic
search of participants and the comparison of digital contracts are carried out. However,
in exchange for this slight increase in application deployment time, the applications in
the implemented cloud environment receive an opportunity to access human resources.
In the future, most of the operations related to the resolution of application depen-
dencies on human resources can be performed in the background, which will save the
deployment time at the level of the cloud environment.

For testing the IDSS a task ontology of the electronic tourism domain, represented
in the OWL 2 language corresponding to the description logic of ALCR (D) and
containing 293 axioms and 40 classes, was used. The scenario for the load testing was
to build a network of resources for the task of building a tourist route (the network
assumes the fulfillment of 6 subtasks). The time of task decomposition and network
construction obtained as a result of averaging over 25 tests is, 1157 ms (994 ms takes
the task decomposition, 163 ms takes the allocation of the subtasks to resources). It
should be noted that this time only takes into account the task decomposition and the
resource network organization, and does not take into account the time spent by the
software services and participants on solving the subtasks assigned to them.
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8 Conclusions

The paper addresses the problem of building decision support systems, that leverage
not only computing power of modern hardware and software, but also rely on the
expertise of human participants (allocated from a big pool).

The paper describes a spectrum of solutions for this problem, tailored for slightly
different situations.

The first proposed solution is an application platform (or, Platform-as-a-Service) for
the development of human-based application. The platform is intended for the use
cases when a user can specify the exact information processing workflow and this
workflow includes operations that has to be performed by human experts. The platform
provides tools for deploying and running such application and manages human
resources based on semantic descriptions and digital contracts.

The second is a decision support service based on ontological task representation
and processing. This service is intended for the use cases where exact information
workflow cannot be specified in advance, but there are a number of information pro-
cessing tasks in the problem domain that can be used to automatically construct the
workflow required by the end user (decision-maker) in an ad hoc way. The service
decomposes the task into subtasks based on the task ontology and then distribute the
subtasks among resources (human and software).

Finally, the paper presents an extension of the human-computer cloud, allowing to
address complex problems for which it is hard to design a workflow in advance, and/or
there is no detailed task ontology. This extension is represented by the concept of
human-machine collective intelligence environment, created on top of the cloud
resource management facilities. The distinctive features of the proposed environment
are: a) support for human and software participants who can build coalitions in order to
solve problems and collectively decide on the required workflow, b) support for natural
self-organization processes in the community of participants.

Experiments with a research prototype have shown the viability of the proposed
models and methods.

Overall, the proposed set of tools allow to build human-machine decision support
systems for problems of varying complexity in variety of domains (e.g., smart city,
business management, e-tourism, etc.).

Acknowledgements. The research was funded by the Russian Science Foundation. The HCC
architecture, PaaS and ontology-based decision support service based on task decomposition
were developed as a part of project # 16-11-10253, the self-organizing environment for collective
human-machine intelligence is being developed as a part of project # 19-11-00126.
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Abstract. Cloud Computing and the Internet of Things (IoT) have
started to revolutionize traditional systems to be smart. Smart farming
is an example of this process, that aims to respond to predictions and
provisions of population growth by providing smart solutions in agricul-
ture to improve productivity and reduce waste. Plant phenotyping is an
important research field related to smart farming by providing means
for complex monitoring of development and stress responses of plants.
The current phenotyping platforms for greenhouses are very expensive
limiting their widepread use. The recent advances in ICT technologies
with the appearance of low cost sensors and computing solutions have
led to affordable phenotyping solutions, which can be applied in standard
greenhouse conditions. In this paper we propose a low cost plant phe-
notyping platform for small sized plants called the IoLT Smart Pot. It
is capable of monitoring environmental parameters by sensors connected
to a Raspberry Pi board of the smart pot. We developed an IoT-Cloud
gateway for receiving, storing and visualizing the monitored environmen-
tal parameters sent by the pot devices. It is also able to perform image
processing on the pictures of the plants to track plant growth. We have
performed a detailed evaluation of our proposed platform by means of
simulation, and exemplified real world utilization.
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1 Introduction

According to recent reports in the field of the Internet of Things (IoT) (e.g.
[1]), there will be 25 billion connected things by 2021. These estimations call for
smart solutions that provide means to connect, manage and control these devices
efficiently. IoT can be envisioned as a dynamic network with self-configuring
capabilities, in which devices (that are called as things) can interact and com-
municate among themselves and with the environment by exchanging sensor
data. Such systems can be utilized in many application areas, thus they may
have very different properties.

Smart farming is also a rapidly growing area within smart systems, that need
to respond to great challenges of the near future. By 2050, it is expected that
global population will grow to 9.6 billion as the United Nations Food and Agri-
culture Organisation predicts. A recent Beecham Research report [2] also states
that food production have to respond to this growth to increase it with 70% till
2050. This report also states that agriculture is responsible for a fifth of green-
house gas emissions and for 70% of the world’s fresh water usage, which strives
for a reform. IoT supported by cloud services has the potential to implement the
required changes [3].

Plant phenotyping [4] also evolves rapidly and provides high throughput
approaches for monitoring the growth, physiological parameters, and stress
responses of plants with high spatial and temporal resolution. Recent advances
use the combination of various remote sensing methods that can exploit IoT and
cloud technologies. In the past typical plant phenotyping platforms used very
expensive instrumentation to monitor several hundreds, even few thousands of
plants. Although these large infrastructures are very powerful, they have high
cost ranging to a few mEUR per platform, which limits their widespread, every-
day use. Due to recent ICT developments we can apply novel sensor and IoT
technologies to provide a promising alternative, called affordable phenotyping.
Our research goals also point to this direction, and in this paper we propose a
low cost plant phenotyping platform for small sized plants, which enables the
remote monitoring of plant growth in a standard greenhouse environment. In an
earlier work we introduced the first prototype of our IoLT Smart Pot [28]. In this
work we discuss its extension for leaf area calculations, and present a detailed
evaluation of it.

The main contributions of this paper are the design and implementation of
the IoLT Smart Pot Gateway for managing smart pot clusters by monitoring
their environmental parameters. This IoT-Cloud platform is capable of collect-
ing, storing and visualizing sensor data, as well as performing leaf area calcula-
tions with image processing to allow plant growth tracking. We also evaluate the
proposed solution with scalable simulations, and exemplify real world utilization.

The remainder of this paper is as follows: Sect. 2 introduces related
approaches for smart farming and plant monitoring, and Sect. 3 highlights our
research aims and discusses the proposed smart pot solution. Section 4 presents
a detailed evaluation of our gateway framework by means of simulation, and
Sect. 5 shows real world utilization. Finally, we conclude the paper in Sect. 6.
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2 Related Work

Smart system design and development have started to flourish. Smart farming
is also getting very popular, there are many commercial solutions and products
in household areas.

Concerning indoor plant monitoring, many tools are available for monitoring
temperature, humidity, light, water level and salt content of the plant soil, and
are able to communicate with nearby devices. Some advanced systems are capa-
ble of automatic watering or provide notifications or even remote control through
mobile applications. Table 1 shows a comparison of the available solutions, and
we briefly introduce them in the following.

Table 1. Comparison of commercial smart pot solutions.

Product Main features No. of plants Price (EUR)

Xiaomi Flora Indicator board, salt content mon 1 40

Parrot pot Self-watering system, 4 sensors 1 50

sPlant Light supplement 4 90

PlantRay Soil moisture, color change, beep 1 19

Tregren Control light, water and nutrients 3–6-12 90

Odyseed Automatic irrigation and lighting 2 70

Click & Grow Water plants automatically, LEDs 3–9 100–200

CitySens Self-watering, app 3–5 176

LeGrow Modular 1+ 40

AeroGarden LEDs, Amazon Echo 2–24 40–450

SmartPot Many sensor prototype 1 NA

Lua 15 different universal animated emotions 1 100

TOKQI Pet plant to play music, bluetooth speaker 1 12

HEXA AI robot moving to sunshine 1 950

PlantRay [8] is a really basic smart pot, it has a soil moisture sensor, and
it changes color and beeps if watering is required. The battery may last for a
year. AeroGarden [9] has many different size products, able to hold from two to
24 plants. They have LED lights, but only the bigger ones have automatic LED
control. The most advanced one can be connected with Amazon Echo.

Xiaomi Flora [5] has an indicator board for providing information coming
from the sensors, and it has a dedicated application for remote controlling the
management of the pot. It is able to monitor the moisture and salt content of the
soil. GAIAA [7] is a solution from sPlant, which is able to manage four plants
at a time. It also has a remote app control, and provides automatic watering,
light supplement, and WiFi communication with a cloud server. Tregren [11]
produces 3 different size products, they can handle 3, 6 or even 12 plants. The
watering and the light control are automatic, usually it can be leaved alone for
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21 days. The SmartPot [15] is just a prototype, but it has temperature, humidity,
light, soil moisture sensors and a water pump. It can be controlled by a mobile
application. The Parrot pot [6] includes a self-watering system and four built-in
sensors. Unfortunately, its production has been suspended. Click & Grow [12]
has two similar products, they only differ in size. The smaller one is for three
plants, the bigger one can handle 9 plants. CitySens [13] is a vertical pot system
with auto-watering and variable pot numbers with an option to communicate
with a mobile application via wifi. LeGrow [14] creates modules for a smart pot
system. Currently they sell lamp, humidifier, power and pot modules. Odyseed
[10] is a smart pot solution that uses time schedules for automatic irrigation and
lighting.

There are some other interesting products, like Lua [16] the flowerpot with
15 different animated emotions. The emotions representing the status of the
plant based on the moisture, light and temperature sensors. The Vincross [18]
company has an AI robot called HEXA, and it can move the plant to get enough
sunshine. The TOKQI [17] smart pot can detect if the user pets the plant and
starts playing music. It is a decorative item with RGB lighting and it can be
used as a regular bluetooth speaker too.

For professional usage, there are only very few commercially available plat-
forms for affordable phenotyping (e.g. PhenoBox [19]).

Concerning generic IoT gateways, Kang et al. [20] introduced the main types
and features of IoT gateways in a detailed study, which presents the state-of-
the-art and research directions in this field. This solution is also too generic for
our needs.

Focusing on the development of a smart farming environment, Dagar et al.
[21] proposed a model of a simple smart farming architecture of IoT sensors
capable of collecting information on environmental data and sending them to
a server using wireless connection. There are also generic solutions to monitor
agriculture applications using IoT systems, such as the Kaa IoT Platform [22].
It is a commercial product that is able to perform sensor-based field and remote
crop monitoring. It also has an open source version called the Kaa Community
Edition. Such generic toolkits are quite complex and heavy-weight, so they are
not well suited to specific needs.

In contrast to these solutions, our approach aims to provide a low-cost solu-
tion using the latest IoT and Cloud techniques to enable a robust and scalable
solution to be used for groups of plants with user friendly management.

3 The Design of a Smart Pot for the IoLT Project

The Internet of Living Things (IoLT) project was started in 2017 with the aims
to integrate IoT technological research with applied biological research, and
to develop IoT applications for three target fields: complex plant phenotyping,
actigraphy for psychosocial treatments, and Lab-on-a-chip systems for microflu-
idic diagnostics. IoLT is also forming a Network of Excellence of researchers of
corresponding disciplines working at the University of Szeged and the Biological
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Research Centre of the Hungarian Academy of Sciences. An opensource IoLT
platform is under development to enable the execution of applications on cheap,
low capacity IoT devices providing easy to use programming interfaces based on
Javascript.

In the research field of plant phenotyping we planned to design and develop a
scalable, low-cost automation system called IoLT Smart Pot using IoT and cloud
technologies, to monitor the effect of various stress factors of plants (drought,
nutrition, salt, heavy metals, etc.), as well as behavior of various mutant lines.
For the first prototype depicted in Fig. 1, the biologists designed a hardware for
hosting 12 small sized plant pots (for Arabidopsis plants) organized in a 4× 3
matrix. To monitor plant growth an RGB camera and a LED-based illumination
system for additional lighting are installed above the plant cluster. The relevant
environmental parameters are light intensity, air and leaf temperature, relative
air and soil humidity, which are monitored by sensors placed above and into
the pots. To govern the monitoring processes, a Raspberry Pi board is placed

Fig. 1. IoLT Smart Pot prototype (left), and one pot of the cluster (right).



28 T. Pflanzner et al.

beside the cluster. The monitored sensor data is stored locally on the board,
and accessible through a wired connection on the same network. The initial
configuration for performing periodical monitoring was set to 5 min concerning
the sensor readings, and 1 h to take pictures of the cluster of pots.

3.1 Implementation of the IoLT Smart Pot Gateway

The architecture of our initially proposed IoLT Smart Pot Gateway [28] can be
seen in Fig. 2. It has a modular setup, it consists of three microservices, and
its source code can be found on GitHub [27]. The microservices are realized by
Docker containers [25], which are composed together to form the gateway appli-
cation deployable to a virtual machine (VM) of a cloud provider. Special moni-
toring scripts are used to track and log the resource utilization of the containers
for performance measurements. The users can access the gateway through a web
interface provided by a Node.js portal application. It can be used to group and
manage pots and users with projects created by administrators. Projects need
to have start and finish dates, associated users and a short description. Pots can
also be registered by them and linked to projects. In this way, registered and
connected smart pots can send sensor data to them, which can be visualized in
the portal. A sample view of such a portal web interface can be seen in Fig. 3.
It displays a project named Real BRC Smartpot test (1 week) managing a smart

Fig. 2. The architecture of the IoLT Smart Pot Gateway as shown in [28].
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Fig. 3. Historical sensor data visualization in the IoLT Smart Pot Gateway as shown
in [28].

Fig. 4. Real and segmented pictures of the Smart Pot cluster taken at 2019.01.01.

pot registered as BRC Smartpot 1. The chart depicts values (y axis) of seven
sensor types with timestamps (X axis) for a week of utilization. On the chart
interface a user can tick or untick certain sensors, and change the time interval
below the chart using a sliding bar. Once a setup is done, the depicted sensor
datasets can be downloaded (in CSV format) by clicking on the “Download”
button.

The Node.js portal application is built upon two other microservices. In the
middle of the architecture in Fig. 2 we can find the Mosquitto MQTT Broker
service, which is built on the open-source Mosquitto tool [23] to store the received
sensor values of the pots using a MongoDB [24] database. The monitored seven



30 T. Pflanzner et al.

sensor types of a pot are described by a JSON document (see later in Fig. 9),
which should be regularly updated and sent in a message by an MQTT client of
a smart pot to the MQTT broker running in this service. The sensor readings
on the Raspberry Pi board are performed by a python script using an MQTT
client package configured with a pot identifier, sensor value sampling frequencies
and picture taking frequencies. The third microservice on the bottom is called
the Apache Web Server, which is responsible to save the pictures of the plants
of the pots. The python scripts of the boards use SFTP file transfers to send the
pictures stored by this service.

3.2 A Solutions for Monitoring and Analyzing Plant
Growth over Time

After the initial version of the gateway portal was released, the biologists started
to use it for monitoring Arabidopsis plants. As mentioned in the previous section,
the gateway stores regularly updated sensor values, and periodically taken pic-
tures of the smart pot cluster. The portal can be used to query, visualize and
download a set of sensor values for a certain period, and the created pictures.

Besides viewing these monitored results, the biologists had to perform post-
processing tasks of the monitored data by downloading them from the gateway
portal. One of these tasks is to calculate the growth speed of the plants, which
is generally performed by calculating the projected leaf area visible on the taken
pictures, and filing them to a time series document, later depicting them in
diagrams. Such a task had to be done manually, taking valuable time from the
researchers.

By responding to their need, we extended the gateway with a new functional-
ity. After a new picture is uploaded to the gateway, a python script is triggered to
perform the segmentation of the picture. The segmented pictures are also stored
in the gateway server in a subfolder to allow verification from the researchers.
After segmentation the projected leaf area is calculated for all 12 plants visible
on the segmented picture (also with image-processing algorithms in a python
script), then saved to the database of the gateway in the format shown in Fig. 5
(in cm2).

Fig. 5. Projected leaf area values to be stored in the database of the gateway.
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Fig. 6. The gateway screen for querying detailed leaf area values.

Fig. 7. Selection of a pot from the cluster.

In order to access the results, a researcher should log in to the portal web
interface of the gateway, and select a registered project with a time interval, as
shown in Fig. 6. For the next step, one can select one of the plants (represented
with a slot id) of the smart pot cluster associated to the given project (as depicted
by Fig. 7). Finally, as Fig. 8 shows, we can see the chart of the calculated values
that represent a time course of the projected leaf area of the selected plant in a
pot of the cluster. The curve nicely reveals a cirkadian oscillation pattern due to
periodic leaf movement (flattening in the dark and erection in the light period).

4 Evaluation of the Smart Pot Gateway

In order to evaluate our proposed solution, we instantiated an IoLT Smart Pot
Gateway service in the MTA Cloud [26] with a small VM flavor with a single
virtual CPU core and two GB memory. The MTA Cloud is an OpenStack-based,
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Fig. 8. Detailed leaf area values over time for a pot.

national community cloud financed by the Hungarian Academy of Sciences for
providing cloud infrastructure services for scientists from the academy.

4.1 Simulations with a Python Tool

First, we performed a throughout evaluation by means of simulation. After exe-
cuting some initial measurements, we found out the exact, real data value ranges
for the installed sensors of the smart pot. Based on these values, we designed a
simulated smart pot represented by python scripts capable of sending generated
sensor data via the MQTT protocol. Figure 9 depicts a generated sample JSON
file for the revealed sensor types.

Fig. 9. Sample JSON message of seven sensor values of a pot as shown in [28].



Designing an IoT-Cloud Gateway for the Internet of Living Things 33

First, we created 250 simulated pots with scripts that sent generated sensor
data to our IoLT Smart Pot Gateway service (runing at MTA Cloud) for 30 min.
We divided the total experiment time-frame to the following periods:

– in the first 10 min we applied sensor data generation frequency of 30 s (which
means that each pot sent a message of 7 sensor values every 30 s);

– in the second 10 min we applied sensor data generation frequency of 10 s;
– in the following 5 min we applied sensor data generation frequency of 2 s;
– and in the last 5 min we applied sensor data generation frequency of 10 s,

again.

We also developed a special monitoring script for the gateway (as shown in
Fig. 2) to track its resource consumption. The resource usage sampling of the
script was set to 10 s. They queried CPU, memory, network and input/output
(I/O) resource utilization for all containers, and we summed these values to
get the total resource consumption of the composed service (running in a VM).
We can see the measurement results for this initial round simulating 250 pots
in Fig. 10 and Fig. 11. The x axis denotes the timestamps of resource usage
monitoring, while the y axis denotes the resource usage values (in percentage
or in kB or MB). We can see that there are some spikes in the resource usage
percentages after the first 10 min, when we start to send more messages, and from
the 20th minute the utilization has an increasing trend. Nevertheless, we have
to mention that the resource using sampling is less frequent than the arrival rate
of the messages, which results in an incomplete curve (the resource utilization
is not tracked between the sampling intervals). The network and I/O utilization
was visible only for the first 10 min, possibly due to the initialization phase of
the script.

Fig. 10. CPU and memory usage measurement results for 250 pots.
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Fig. 11. Network and I/O usage measurement results for 250 pots.

Next, we set the simulation parameters in a way to mimic future, real world
utilization. Our proposed IoLT Smart Pot is basically a cluster of 12 pots, as
shown in Fig. 1. To evaluate the scalability of our gateway solution, we performed
three simulation measurements with 50, 100 and 250 clusters (composed of 600,
1200 and 3000 pots respectively). In all cases we performed the measurements
for 30 min, and the simulated smart pot platform sent sensor values with the
following setup:

– in the first 10 min we applied sensor data generation frequency of 5 min (which
means that each pot sent a message of 7 sensor values every 5 min: resulting
2 messages in this period per pot);

– in the second 10 min we applied sensor data generation frequency of 1 min;
– and in the last 10 min we applied sensor data generation frequency of 5 min,

again.

In the first simulation for 50 clusters we set the sampling of resource usage
(processor and memory usage) in every 10 s, while for the second and the third
one (100 and 250 clusters) we set it to 2 s (to have a better resolution of resource
loads).

We can see the measurement results for the first round simulating 50 clusters
with 600 pots in Fig. 12 and Fig. 13 for 30 min. Here we can see that the average
CPU load varies between 1 and 2%, and the memory usage fluctuates between
15 and 19%. The network and I/O utilization are slowly, but constantly growing.
In this experiment we also observed that the time of an actual data processing
(receiving a message and writing its contents to the database) and the time of
the resource usage sampling are rarely matched. One matching example can be
seen right after the 3rd minute in Fig. 12, which shows a spike with almost 14%
of CPU utilization.

For the second round we doubled the number of clusters to 100, and per-
formed the simulation only for 5 min with detailed resource usage sampling of
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Fig. 12. CPU and memory usage measurement results for 50 pot clusters.

Fig. 13. Network and I/O usage measurement results for 50 pot clusters.

2 s. We can see the measurement results for this round simulating 100 clusters
with 1200 pots. In Fig. 14 we can see that the results reveal a periodic resource
usage fluctuation denoting the data processing activities. For the network and
I/O utilization shown in Fig. 15 we can still see a constant grow.

Finally, for the largest experiment we further increased the number of pot
clusters to 250 arriving to a total number of 3000 simulated pots. For this third
round, we performed the simulation for 30 min, again, with the same periods as
defined for the first round (of 50 clusters). We can see the measurement results
in Fig. 16 and Fig. 17. If we take a look at the middle 10 min period we can
see the periodic resource usage spikes for CPU and memory, as in the previous
round. And we can also observe the utilization growth in network and I/O data
transfers.

To summarize our investigations, Table 2 compares the average and maximum
resource utilization values measured during the experiments. We can see that
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Fig. 14. CPU and memory usage measurement results for 100 pot clusters.

Fig. 15. Network and I/O usage measurement results for 100 pot clusters.

by increasing the number of pots to be managed by the gateway service, the
utilization also increases. As expected, the CPU utilization was the highest in
the third round for managing 3000 pots at the same time with almost 40%. The
memory utilization is also the highest in this case with almost 25%. Table 3 shows
a detailed comparison for the longest experiments denoting the different phases
of the measurements. This table highlights that the CPU utilization generally
reaches its maximum in the first phase, then it generally drops, while memory
utilization shows a quite balanced load all over the three phases. Finally, we can
state that these results prove that we can easily serve numerous phenotyping
projects monitoring up to thousands of pots with a single gateway instance in a
Cloud.
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Fig. 16. CPU and memory usage measurement results for 250 pot clusters.

Fig. 17. Network and I/O usage measurement results for 250 pot clusters.

Table 2. Comparison of the four evaluation rounds.

No. of pots 250 600 1200 3000

CPU AVG 6.22 1.19 7.06 8.65

CPU MAX 26.64 13.42 30.91 39.29

MEM AVG 14.28 17.79 15.55 21.72

MEM MAX 16.14 18.94 15.95 24.73
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Table 3. Comparison of the 30 min. evaluation rounds.

No. of pots 600 3000

CPU AVG 0:00–0:10 1.37 6.65

0:10–0:20 1.09 14.11

0:20–0:30 1.11 5.01

CPU MAX 0:00–0:10 13.42 39.29

0:10–0:20 1.25 36.43

0:20–0:30 1.27 31.78

MEM AVG 0:00–0:10 17.44 22.67

0:10–0:20 17.88 22.60

0:20–0:30 18.05 19.81

MEM MAX 0:00–0:10 18.94 24.47

0:10–0:20 18.00 24.73

0:20–0:30 18.11 20.74

Fig. 18. Data visualization of a real world measurement in the IoLT Smart Pot Gate-
way.

5 Real World Measurements

We have seen in the previous section that our gateway service is scalable enough
to manage a few thousands of pots in a single cloud VM. To exemplify real world
utilization, we connected the gateway to the IoLT Smart Pot prototype. It is
able to hold 12 Arabidopsis plants in small pots organized to a cluster (as shown
in Fig. 1). We configured the python scripts of a Raspberry Pi board placed
beside the pot cluster to perform sensor readings periodically, and send the
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Fig. 19. Sensor data of a day in the IoLT Smart Pot Gateway.

environmental values to the IoT-Cloud gateway service. The wiring of the smart
pot cluster formed a single IoT device with a camera and 7 sensors (attached to
some of the 12 pots).

We performed the monitoring of the growth of Arabidopsis plants under
standard greenhouse conditions for several periods, taking up around 2–3 months
in total. RGB image taking was performed every hour, and the sensor sampling
frequency was set to 5 min (to generate a JSON message). Figure 18 depicts a
query at the gateway portal resulting in a chart of the sensor and leaf area values
for over a month of monitoring. As we can see from the chart, the smart pot
was disconnected for a certain period after around 20 days). If we zoom in by
using the bar below the chart, we can view detailed results. Figure 19 shows the
sensor values of a day of utilization of the smart pot cluster.

6 Conclusions

Smart farming approaches are meant to revolutionize agriculture to improve pro-
ductivity and reduce waste by exploiting the latest ICT technologies and trends.
Affordable phenotyping has the goal to provide low cost and easily scalable solu-
tions to create greenhouses of the future.

In this paper we aimed to contribute to this field by proposing the IoLT
Smart Pot Platform and Gateway that can be used to manage smart pot clusters
by monitoring environmental parameters. This solution is capable of collecting,
storing and visualizing sensor data, as well as performing leaf area calculations
with image processing to allow plant growth analysis. We also evaluated the pro-
posed solution with scalable simulations, and exemplified real world utilization
in standard greenhouse conditions.
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In our future work we plan to redesign the smart pot with a solar cell system
to enable portable installations and remote monitoring at outdoor location.

Software availability

Its source code of the proposed cloud gateway is open and available at the fol-
lowing website: https://github.com/sed-inf-u-szeged/IoLT-Smart-Pot-Gateway
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Abstract. Cloud resources can be dynamically provisioned according to
application-specific requirements and are payed on a per-use basis. This
gives rise to a new concept for parallel processing: Elastic parallel compu-
tations. However, it is still an open research question to which extent par-
allel applications can benefit from elastic scaling, which requires resource
adaptation at runtime and corresponding coordination mechanisms. In
this work, we analyze how to address these system-level challenges in the
context of developing and operating elastic parallel tree search applica-
tions. Based on our findings, we discuss the design and implementation
of TASKWORK, a cloud-aware runtime system specifically designed for
elastic parallel tree search, which enables the implementation of elastic
applications by means of higher-level development frameworks. We show
how to implement an elastic parallel branch-and-bound application based
on an exemplary development framework and report on our experimen-
tal evaluation that also considers several benchmarks for parallel tree
search.

Keywords: Cloud computing · Parallel computing · Task parallelism ·
Elasticity · Branch-and-bound

1 Introduction

Many cloud providers, including Amazon Web Services (AWS)1 and Microsoft
Azure2, introduced new cloud offerings optimized for High Performance Com-
puting (HPC) workloads. Whereas traditional HPC clusters are based on static
resource assignment and job scheduling, cloud environments provide attractive
benefits for parallel applications such as on-demand access to compute resources,
pay-per-use, and elasticity [12,31]. Specifically, elasticity, i.e., the ability to provi-
sion and decommission compute resources at runtime, introduces a new concept:
Fine-grained cost control per application run by means of elastic parallel compu-
tations [11,12,19,24,36]. This fundamentally new concept in parallel computing
1 https://aws.amazon.com.
2 https://azure.microsoft.com.
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leads to new opportunities and challenges thus stimulating new research efforts
and approaches. For instance, processing time and/or the quality of results can
be related to costs, allowing versatile optimizations at runtime [19,24,36].

During the last years, there has been a growing interest to make parallel
applications cloud-aware [11,15,17,27,37]. In particular, applications have to
cope with the effects of virtualization and resource pooling causing fluctuations
in processing times [17]. Existing research also studies how to employ elastic-
ity for applications with simple communication and coordination patterns (e.g.,
iterative-parallel workloads) [11,37]. In these cases, problems are decomposed
into a set of independent tasks, which can be farmed out for distributed com-
putation. However, it is still an open research question to which extent other
parallel application classes can benefit from cloud-specific properties, how to
leverage elasticity in these cases, and how to ensure cloud-aware coordination of
distributed compute resources.

In this work, we discuss how to tackle these challenges for parallel tree search
applications. These applications are less sensitive to heterogeneous processing
speeds when compared to data-parallel, tightly-coupled applications [15,16], but
comprise unstructured interaction patterns and complex coordination require-
ments. Prominent meta-algorithms based on the parallel tree search process-
ing technique include branch-and-bound and backtracking search with many
applications in biochemistry, electronic design automation, financial portfolio
optimization, production planning and scheduling, as well as fleet and vehi-
cle scheduling. We discuss the challenges that have to be addressed to make
these applications cloud-aware and present TASKWORK - a cloud-aware run-
time system that provides a comprehensive foundation for implementing and
operating elastic parallel tree search applications in cloud environments. In par-
ticular, we make the following contributions: (1) We discuss how to construct a
cloud-aware runtime system for parallel tree search applications. (2) We describe
the design and implementation of TASKWORK, an integrated runtime system
based on our findings and solve corresponding coordination problems based on
Apache ZooKeeper3. (3) We present a development framework for elastic parallel
branch-and-bound applications, which aims to minimize programming effort. (4)
We employ a canonical branch-and-bound application as well as several bench-
marks to evaluate the performance of TASKWORK in our OpenStack-based
private cloud environment.

This work is based on previous research contributions that have been pub-
lished in the paper TASKWORK: A Cloud-aware Runtime System for Elastic
Task-parallel HPC Applications [28], which has been presented at the 9 th Inter-
national Conference on Cloud Computing and Services Science. We extend our
former work by discussing the applicability of the presented concepts in the
context of parallel tree search applications. Moreover, we provide an extensive
evaluation of TASKWORK based on several benchmarks, which are commonly
employed to evaluate architectures designed for parallel tree search.

3 https://zookeeper.apache.org.

https://zookeeper.apache.org
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This work is structured as follows. In Sect. 2, we discuss the characteris-
tics of parallel tree search applications as well as ZooKeeper and related work.
Section 3 describes the conceptualization of a cloud-aware runtime system for
elastic parallel tree search in the cloud. In Sect. 4, we present TASKWORK -
our integrated runtime system for elastic parallel tree search applications. We
elaborate on an elastic branch-and-bound development framework and describe
its use in Sect. 5. The results of our extensive experimental evaluation are pre-
sented in Sect. 6. Section 7 concludes this work.

2 Fundamentals and Related Work

In this section, we examine the characteristics of parallel tree search applications,
describe ZooKeeper, and discuss existing research closely related to our work.

2.1 Parallel Tree Search

We specifically focus on parallel tree search processing technique. Commonly
employed meta-algorithms based on parallel tree search include branch-and-
bound and backtracking search. They are typically used to solve enumeration,
decision, and optimization problems - including boolean satisfiability, constraint
satisfaction, and graph search problems - with many applications in fields such
as biochemistry, electronic design automation, financial portfolio optimization,
production planning and scheduling, as well as fleet and vehicle scheduling.
These algorithms search solutions in very large state spaces and employ advanced
branching and pruning operations/backtracking mechanisms to make the search
procedure for problem instances of practical relevance efficient.

Parallel execution is most often accomplished by splitting the state space
tree into tasks that can be executed independently of each other by searching a
solution in the corresponding subtree. This approach is also called exploratory
parallelism (or space splitting [13]). However, because the shape and size of the
search tree (and its subtrees) are highly influenced by branching and pruning
operations, these applications exhibit a high degree of irregularity. Thus, to
exploit a large number of (potentially distributed) compute resources efficiently,
task generation has to be executed in a dynamic manner by creating new tasks
at runtime. Additionally, these newly generated tasks have to be distributed
among compute nodes to avoid idling processing units. This procedure is also
called dynamic task mapping (or task scheduling).

The high degree of irregularity constitutes the major source of parallel over-
head and thus affects the performance and scaling behavior of parallel tree
search applications. Moreover, additional communication requirements stem
from knowledge sharing mechanisms that are required to implement meta-
algorithms such as branch-and-bound and backtracking search. In this context,
knowledge sharing often means communicating bounds [13] or lemmas [38] across
tasks at runtime to make the search procedure more efficient by avoiding the
exploration of specific subtrees.
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Due to the dynamic exploration of the search space combined with problem-
specific branching and pruning operations/backtracking mechanisms, resource
requirements of parallel tree search applications are not known in advance. This
makes them an ideal candidate for cloud adoption as cloud environments pro-
vide on-demand access to resources and enable an application to scale elastically.
Moreover, they are less sensitive to heterogeneous processing speeds when com-
pared to data-parallel, tightly-coupled applications [15,16].

2.2 ZooKeeper

ZooKeeper has been designed to ease the implementation of coordination, data
distribution, synchronization, and meta data management in distributed systems
[20]. Many prominent software projects rely on ZooKeeper including the Apache
projects Hadoop4 and Kafka5. It provides an interface that enables clients to
read from and write to a tree-based data structure consisting of data registers
called znodes. Internally, data is replicated across a set of ZooKeeper servers.
Each ZooKeeper server accepts client connections and executes requests in FIFO
order per client session. A feature called watches enables clients to register for
notifications of changes without periodic polling. Each server answers read oper-
ations locally resulting in eventual consistency. On the other hand, ZooKeeper
guarantees writes to be atomic [20]. ZooKeeper’s design principles ensure both
high availability of stored data and high-performance data access by providing
a synchronous and an asynchronous API.

Specifically in cloud environments, coordination primitives such as leader
election and group membership are essentially required to deal with a vary-
ing number of compute nodes. Based on ZooKeeper, leader election and group
membership can be implemented in a straightforward manner [21]. However, spe-
cific challenges arise in the context of parallel tree search applications: Global
variables have to be synchronized across tasks, which imposes additional depen-
dencies, and as tasks can be generated at each node, a termination detection
mechanism is required to detect when the computation has been completed. We
show how to employ ZooKeeper to tackle these challenges.

2.3 Related Work

In the past, researchers mainly investigated how to make cloud environments
HPC-aware [30]. By exploiting HPC-aware cloud offerings, many parallel appli-
cations benefit from an on-demand provisioned execution environment that can
be payed on a per-use basis and individual configuration of compute resources,
without any modifications to the application itself. This is specifically attrac-
tive for applications implemented based on the Single Program Multiple Data
(SPMD) model (especially supported by MPI) [27]. However, we can also see
a growing interest to make parallel applications cloud-aware [11,15–17,37] with

4 http://hadoop.apache.org.
5 https://kafka.apache.org.

http://hadoop.apache.org
https://kafka.apache.org
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the motivation to exploit either low-cost standard cloud offerings or to make use
of advanced cloud features beyond a simple copy & paste migration approach
[27]. Existing research discusses how to adapt parallel applications and parallel
system architectures to make them cloud-aware. The authors of [12] propose
the development of new frameworks for building parallel applications optimized
for cloud environments and discuss the importance of application support with
respect to elasticity. We follow this approach by presenting a runtime system
that does most of the heavy lifting to implement elastic parallel applications.

The authors of [15] present an in-depth performance analysis of different
applications. Based on their measurements, the authors describe several strate-
gies to make both parallel applications cloud-aware and cloud environments
HPC-aware. A major issue to make parallel applications cloud-aware is the spec-
ification of the optimal task size to balance various sources of overhead. In [17],
the problem of fluctuations in processing times is addressed, which specifically
affects tightly-coupled parallel applications. The authors introduce a dynamic
load balancing mechanism that monitors the load of each vCPU and reacts to
a measured imbalance. Whereas this approach is based on task overdecompo-
sition to ensure dynamic load balancing, our runtime system actively controls
the logical parallelism of an application to minimize task management overhead.
However, it is still an open research question if applications without dynamic
task parallelism can benefit from such an approach.

The authors of [37] employ the Work Queue framework to develop elas-
tic parallel applications. The Work Queue framework is designed for scientific
ensemble applications and provides a master/worker architecture with an elastic
pool of workers. The presented case study considers a parallel application for
replica exchange molecular dynamics (REMD), which can be considered to be
iterative-parallel. The authors of [11] present an approach to enable elasticity for
iterative-parallel applications by employing a master/worker architecture. They
make use of an asynchronous elasticity mechanism, which employs non-blocking
scaling operations. Whereas we specifically consider parallel tree search applica-
tions, TASKWORK also makes use of asynchronous scaling operations that do
not block the computation.

Task-based parallelism was originally designed to exploit shared memory
architectures and used by systems such as Cilk [7]. A major characteristic of
task-parallel approaches is that tasks can be assigned dynamically to worker
threads, which ensures load balancing and thus effectively reduces idle time.
This approach also provides attractive advantages beyond shared memory archi-
tectures and has been adopted for different environments including compute
clusters [2,5,6] and grids [1]. As a result, the distributed task pool model has
attracted considerable research interest. The authors of [33] present a skeleton
for C++, which supports distributed memory parallelism for branch-and-bound
applications. Their skeleton uses MPI communication mechanisms and is not
designed to be cloud-aware. The authors of [9] present a distributed task pool
implementation based on the parallel programming language X10, which follows
the Partitioned Global Address Space (PGAS) programming model. COHE-
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SION is a microkernel-based platform for desktop grid computing [4,39]. It has
been designed with an emphasis on task-parallel problems that require dynamic
problem decomposition and also provides an abstraction layer for developers
based on its system core. Whereas COHESION supports similar applications, it
is designed to tackle the challenges of desktop grids such as limited connectiv-
ity and control as well as high resource volatility. In contrast to desktop grids,
cloud resources can be configured to consider application-specific requirements
and controlled by employing an elasticity controller [24]. Moreover, compute
resources are billed by a cloud provider, whereas desktop grids make use of
available resources donated by contributors.

3 Constructing a Cloud-Aware Runtime System

To particularly benefit from cloud-specific characteristics, developing elastic par-
allel applications is a fundamental problem that has to be solved [12]. At the core
of this problem lies the required dynamic adaptation of parallelism. At all times,
the degree of logical parallelism of the application has to fit the physical paral-
lelism given by the number of processing units to achieve maximum efficiency.
Traditionally, the number of processing units has been considered as static. In
cloud environments, however, the number of processing units can be scaled at
runtime by employing an elasticity controller. As a result, applications have
to dynamically adapt the degree of logical parallelism based on a dynamically
changing physical parallelism. At the same time, adapting the logical parallelism
and mapping the logical parallelism to the physical parallelism incurs overhead
(in form of excess computation, communication, and idle time). Consequently,
elastic parallel applications have to continuously consider a trade-off between
the perfect fit of logical and physical parallelism on the one side and minimizing
overhead resulting from the adaptation of logical parallelism and its mapping to
the physical parallelism on the other. Hence, enabling elastic parallel computa-
tions leads to many system-level challenges that have to be addressed to ensure
a high efficiency.

Because we specifically focus on parallel tree search applications, which
require dynamic task parallelism, the degree of logical parallelism can be defined
as the current number of tasks. We argue that a cloud-aware runtime system is
required that transparently controls the parallelism of an application to ensure
elastic scaling. Figure 1 shows our conceptualization of such a runtime system. It
allows developers to mark parallelism in the program, automatically adapts the
logical parallelism by generating tasks whenever required, and exploits avail-
able processing units with maximum efficiency by mapping the logical paral-
lelism to the physical parallelism. An application based on such a runtime sys-
tem is elastically scalable: Newly added compute nodes automatically receive
tasks by means of dynamic decomposition and load balancing. A task migration
mechanism releases compute nodes that have been selected for decommissioning
(cf. Fig. 1). Our approach is not limited to any specific cloud management app-
roach or tooling: An elasticity controller may comprise any kind of external
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Fig. 1. The described cloud-aware runtime system adapts the logical parallelism by
generating tasks dynamically, handles load balancing and task migration, and thus
enables elastic parallel computations [28].

decision making logic (e.g., based on execution time, the quality of results, or
monetary costs) that finally adapts the number of processing units (i.e., the
physical parallelism). An example for such an elasticity controller is given in
[19], where monetary costs are considered to control the physical parallelism. In
this work, we focus on elastic parallel computations and address related system-
level challenges.

Besides elasticity, the characteristics of cloud environments lead to new archi-
tectural requirements that have to be considered by parallel applications [25].
Due to virtualization and resource pooling (leading to CPU timesharing and
memory overcommitment), fluctuations in processing times of individual pro-
cessing units can often be observed [15]. Thus, in cloud environments, tasks
should be coupled in a loosely manner by employing asynchronous communi-
cation methods. Similarly, inter-node synchronization should be loosely coupled
while guaranteeing individual progress. A runtime system built for the cloud has
to provide such asynchronous communication and synchronization mechanisms
thus releasing developers from dealing with these low-level complexities.

4 Design and Implementation of TASKWORK

In this section, we describe the design and implementation of TASKWORK, a
cloud-aware runtime system specifically designed for parallel tree search appli-
cations according to the principles discussed in Sect. 3. TASKWORK comprises
several components that enable elastic parallel computations (cf. A , Fig. 2)
and solve coordination problems based on ZooKeeper (cf. B , Fig. 2). Based on
these system-level foundations, higher-level development frameworks and pro-
gramming models can be built (cf. C , Fig. 2), which facilitate the implementa-
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Fig. 2. The components of TASKWORK enable elastic parallel computations based on
the task pool execution model, solve coordination problems based on ZooKeeper, and
support the construction of higher-level development frameworks and programming
models [28].

tion of elastic parallel applications. TASKWORK enables distributed memory
parallelism by coordinating a set of distributed compute nodes based on the task
pool execution model. Our research prototype is implemented in Java.

In this section, we briefly describe the well-known task pool execution model
that we use to manage tasks, before the components of TASKWORK are
described in detail.

4.1 Task Pool Execution Model

The task pool execution model [14] decouples task generation and task processing
by providing a data structure that can be used to store dynamically generated
tasks and to fetch these tasks later for processing. It has been extensively used
in the context of parallel tree search applications [33,38,39]. We employ the task
pool execution model as a foundation to enable elastic parallel computations
according to the concepts depicted in Fig. 1: The task pool manages tasks gen-
erated at runtime (defining the logical parallelism) and provides an appropriate
interface for load balancing and task migration mechanisms that enable elastic
parallel computations.

The task pool execution model can be implemented in a centralized or a
distributed manner. The centralized task pool execution model refers to a task
pool located at a single compute node that is accessed by all other compute
nodes to store and fetch tasks. In the context of distributed memory parallelism,
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this means that tasks always have to be transferred over the network, e.g., for
load balancing purposes. The centralized task pool execution model is easy to
implement because the centralized instance has complete knowledge on the state
of the system, e.g., which compute node is executing which task. On the other
hand, the centralized task pool might become a sequential bottleneck for large
number of compute nodes accessing the task pool. The distributed task pool exe-
cution model, on the other hand, places a task pool instance at each compute
node. It thus decouples compute nodes from each other leading to a highly scal-
able system. On the contrary, coordination becomes a non-trivial task because
individual compute nodes only have partial knowledge. This specifically holds in
cloud environments, where compute nodes are provisioned and decommissioned
at runtime.

In this work, we employ the distributed task pool execution model, which
enables compute nodes to store generated tasks locally and, in general, provides
a better scalability [33]. Whereas the distributed task pool execution model
leads to an asynchronous system, thus matching the characteristics of cloud
environments, one has to deal with the aforementioned challenges. To deal with
these drawbacks, we enhance it with scalable coordination and synchronization
mechanisms based on ZooKeeper.

4.2 Leader Election

TASKWORK implements ZooKeeper-based leader election to designate a sin-
gle coordinator among the participating compute nodes. This coordinator takes
care of submitting jobs to the system, processes the final result, and controls
cloud-related coordination operations such as termination detection. ZooKeeper
renders leader election a rather trivial task [21]. Therefore, each node tries to
write its endpoint information to the/coordinator znode. If the write operation
succeeds, the node becomes the coordinator. Otherwise, if the/coordinator znode
exists, the node participates as compute node.

4.3 Group Membership

As compute nodes might be added or removed at runtime by means of elastic
scaling, cloud-based systems are highly dynamic. Thus, a group membership
component is required, which provides up-to-date views on the instance model,
i.e., the list of all currently available compute nodes. To this end, compute nodes
automatically register themselves during startup by creating an ephemeral child
znode under the/computeNodes znode containing their endpoint information.
The creation of the child znode makes use of ZooKeeper’s sequential flag that cre-
ates a unique name assignment [20]. Changes in group membership are obtained
by all other compute nodes by watching the/computeNodes znode.
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4.4 Load Balancing

Load balancing is a fundamental aspect in cloud environments to exploit newly
added compute resources efficiently. Moreover, it is a strong requirement of paral-
lel tree search applications due to dynamic problem decomposition. Load balanc-
ing can be accomplished by either sending tasks to other compute nodes (work
sharing) or by fetching tasks from other nodes (work stealing) [7]. Because send-
ing tasks leads to overhead, we favor work (task) stealing because communication
is only required when a compute node runs idle. Load balancing is accomplished
by observing changes in the local task pool. Whenever the local task pool is
empty and all worker threads are idle, task stealing is initiated. Task stealing is
an approach where idle nodes send work requests to other nodes in the cluster.
These nodes answer the request by sending a task from their local task pool to
the remote node.

Because the distributed task pool execution model lacks knowledge about
which compute nodes are busy and which are idling, we employ randomized task
stealing [8]. To deal with a changing number of compute nodes over time, up-
to-date information on the currently available compute nodes is required. This
information is provided by the group membership component (cf. Sect. 4.3).

4.5 Task Migration

To enable the decommissioning of compute resources at runtime, unfinished work
has to be sent to remaining compute nodes. This is ensured by TASKWORK’s
task migration component. Compute nodes that have been selected for decom-
missioning store the current state of tasks being executed, stop their worker
threads, and send all local tasks to remaining compute nodes. Technically, the
task migration component registers for the POSIX SIGTERM signal. This sig-
nal is triggered by Unix-like operating systems upon termination, which allows
TASKWORK to react to a requested termination without being bound to spe-
cific cloud management tooling but instead relying on operating system mecha-
nisms. Also note that POSIX signals are supported by state-of-the-art container
runtime environments such as Kubernetes6, where they are used to enable grace-
ful shutdown procedures. As a result, TASKWORK can be controlled by any
cloud management tool (provided by a specific cloud provider or open source)
and hence enables a best-of-breed tool selection. Furthermore, this approach
ensures that TASKWORK can be deployed on any operating system that sup-
ports POSIX signals and the Java Runtime Environment (JRE), thus ensuring
a high degree of portability.

Application developers simply have to specify an optimal interruption point
in their program to support task migration. The migrate operation can be used
to check if a task should be migrated (for an example see Sect. 5.2). TASKWORK
employs weak migration of tasks. This means that a serialized state generated

6 https://kubernetes.io.

https://kubernetes.io
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from a task object is transferred across the network. To facilitate the migra-
tion process, application-specific snapshotting mechanisms can be provided by
developers.

4.6 Termination Detection

Traditionally, distributed algorithms for termination detection (wave-based or
based on parental responsibility) have been preferred due to their superior scal-
ability characteristics [14]. However, maintaining a ring (wave-based) or tree
(parental responsibility) structure across compute nodes in the context of an
elastically scaled distributed system imposes significant overhead. To deal with
this issue, TASKWORK employs ZooKeeper-based termination detection, which
has been described in [28]. In summary, this approach maintains a tree-based
task dependency structure stored in ZooKeeper, which is dynamically updated
at runtime.

4.7 Synchronization of Global Variables

As discussed in Sect. 2.1, many meta-algorithms such as branch-and-bound rely
on knowledge sharing across tasks at runtime to make the search procedure more
efficient by avoiding the exploration of specific subtrees. TASKWORK supports
knowledge sharing in form of global variables that are automatically synchro-
nized across tasks. Global variables can be used to build application-specific
development frameworks or programming models. The process of synchroniza-
tion considers three hierarchy levels: (1) task-level variables, which are updated
for each task executed by a worker thread, (2) node-level variables, which are
updated on each compute node, and (3) global variables. Task-level variables are
typically updated by the implemented program and thus managed by the appli-
cation developer. To synchronize node-level variables, we provide two operations:
getVar for obtaining node-level variables and setVar for setting node-level vari-
ables. Whenever a node-level variable changes its value, we employ ZooKeeper
to update this variable globally, which enables synchronization across all dis-
tributed compute nodes. These generic operations allow developers to address
application-specific synchronization requirements, while TASKWORK handles
the process of synchronization.

By following this approach, small-sized variables can be synchronized across
the distributed system. However, frequent data synchronization leads to overhead
and should be used carefully and only for small data.

4.8 Development Frameworks and Programming Models

TASKWORK enables the construction of higher-level development frameworks
and programming models based on a generic task abstraction that allows the
specification of custom task definitions. The essential idea is that, as outlined
in Sect. 3, developers only mark program-level parallelism while task generation,
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load balancing, and task migration are handled automatically thus ensuring
elastic parallel computations. To define program-level parallelism, application
developers specify an application-specific split operation based on the generic
task abstraction to split work from an existing task. Afterwards, this split oper-
ation can be used for implementing any application program that dynamically
creates tasks (for an example see Sect. 5.2).

Two execution modes for the splitting mechanism are provided: Definite and
potential splitting. Whereas definite splitting directly creates new tasks by means
of the split operation, potential splitting adapts the logical parallelism (number
of tasks) in an automated manner. By following the second approach, applica-
tion developers also implement the split operation in an application-specific
manner, but only specify a potential splitting point in their application program
with the potentialSplit operation. In line with the conceptualization discussed
in Sect. 3, the potentialSplit operation is used to mark program-level paral-
lelism and TASKWORK decides at runtime whether to create new tasks or not
depending on the current system load. Thus, potential splitting automatically
adapts the number of tasks generated and thus controls the logical parallelism
of the application (cf. Fig. 1). As a result, TASKWORK manages the trade-off
between perfect fit of logical and physical parallelism and minimizing overhead
resulting from task generation and task mapping as discussed in Sect. 3. Different
policies can be supplied to configure how this trade-off is handled. For example,
tasks can be generated on-demand, i.e., when another compute node requests a
task by means of work stealing (cf. Sect. 4.4). Alternatively, tasks can be gener-
ated when the number of tasks in the local task pool drops below a configurable
threshold. By default, TASKWORK uses the on-demand task generation policy.
We recognized that on-demand task generation is, in many cases, more efficient
because formerly generated tasks might contain a subtree that has already been
proven to be obsolete. Thus, threshold-based task generation often results in
unnecessary transferal of tasks over the network, leading to additional overhead.

5 Elastic Branch-and-Bound Development Framework

In this section, we describe a development framework for elastic parallel branch-
and-bound applications based on TASKWORK’s generic task abstraction.
Branch-and-bound is a well-known meta-algorithm for search procedures. It is
considered to be one of the major computational patterns for parallel process-
ing [3]. In the following, we briefly explain the branch-and-bound approach and
show how to employ our framework to develop an example application.

5.1 Branch-and-Bound Applications

We explain the branch-and-bound approach by employing the Traveling Sales-
man Problem (TSP) as canonical example application. The TSP states that a
salesman has to make a tour visiting n cities exactly once while finishing at the
city he starts from. The problem can be modeled as a complete graph with n



54 S. Kehrer and W. Blochinger

Fig. 3. To enable parallel processing, the state space tree is cut into several tasks, each
capturing a subproblem of the initial problem. Note that tasks have to be created at
runtime to avoid load imbalance.

vertices, where each vertex represents a city and each edge a path between two
cities. A nonnegative cost c(i, j) occurs to travel from city i to city j. The opti-
mization goal is to find a tour whose total cost, i.e., the sum of individual costs
along the paths, is minimum [10].

All feasible tours can be explored systematically by employing a state space
tree that enumerates all states of the problem. The initial node (the root node
of the state space tree) represents the city the salesman starts from. From this
and all following cities, the salesman can follow any path to travel to one of the
unvisited cities, which is represented as a new node in the state space tree. At
some point, all cities have been visited thus leading to a leaf node in the state
space tree, which represents a tour. Each node can be evaluated with respect to
its cost by summing up the individual costs of all paths taken. This also holds
for leaf nodes in the state space tree representing a tour. A search procedure can
be applied that dynamically explores the complete state space tree and finally
finds a tour with minimum cost. However, brute force search cannot be applied
to large state space trees efficiently. Instead of enumerating all possible states,
branch-and-bound makes use of existing knowledge to search many paths in the
state space tree only implicitly. We describe the underlying principles, which
make the search procedure efficient, in the following.

If the current node is not a leaf node, the next level of child nodes is generated
by visiting all unvisited cities that are directly accessible. Each of these child
nodes leads to a set of disjoint tours. Generating new nodes is referred to as
branching. If the current node is a leaf node, we evaluate the tour represented
by this node with respect to its total cost.
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At runtime, the tour whose total cost is known to be minimum at a specific
point in time defines an upper bound for the ongoing search procedure. Any
intermediate node in the state space tree that evaluates to a higher cost can be
proven to lead to a tour with higher total costs and thus has not to be explored
any further. On the other hand, lower bounds can be calculated by solving a
relaxed version of the problem based on the current state [40]. We calculate the
lower bound by adding the weight of a minimum spanning tree (MST) of the
not-yet visited cities to the current path [2,40]. The MST itself is calculated
based on Prim’s algorithm [35]. We can prune parts of the state space tree if the
calculated lower bound of the current node is larger or equal to the current upper
bound (because the TSP is a minimization problem). The pruning operation is
essential to make branch-and-bound efficient.

Following the branch-and-bound approach, a problem is decomposed into
subproblems at runtime. Each of these subproblems captures a part of the state
space tree and can be solved in parallel. Technically, these subproblems are
described by a set of tasks, which can be distributed across available compute
nodes. However, several challenges arise when we map branch-and-bound appli-
cations to parallel architectures: Work anomalies are present, which means that
the amount of work differs between sequential and parallel processing as well
as across parallel application runs. Additionally, branch-and-bound applications
are highly irregular, i.e., task sizes are not known a priori and unpredictable by
nature. Consequently, solving the TSP requires the runtime system to cope with
dynamic problem decomposition and load balancing to avoid idling processing
units. Every task that captures a specific subproblem can produce new child
tasks (cf. Fig. 3). Thus, termination detection is another strong requirement to
detect if a computation has been completed. Additionally, updates on the upper
bound have to be distributed fast to enable efficient pruning for subproblems
processed simultaneously in the distributed system.

5.2 Design and Use of the Development Framework

In the following, we describe a development framework for elastic branch-and-
bound on top of TASKWORK. We employ the TSP as an example application to
show how to use the framework. Elastic parallel applications can be implemented
with this framework without considering low-level, technical details.

TASKWORK provides a generic task abstraction that can be used to build
new development frameworks and programming models. In the context of
branch-and-bound, we define a task as the traversal of the subtrees rooted at all
unvisited input nodes. Additionally, each task has access to the graph structure
describing the cities as vertices and the paths as edges. This graph structure
guides the exploratory construction of the state space tree. All visited cities are
marked in the graph. This representation allows to split the currently traversed
state space tree to generate new tasks.

New tasks have to be created at runtime to keep idling processing units
and newly added ones busy. Therefore, the branch-and-bound task definition
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Fig. 4. The elastic branch-and-bound development framework allows developers to
implement parallel search procedures without considering low-level details such as con-
currency, load balancing, synchronization, and task migration [28].

allows the specification of an application-specific split operation. This opera-
tion branches the state space tree by splitting off a new task from a currently
executed task. This split-off task can be processed by another worker thread
running on another compute node. To limit the amount of tasks generated, we
make use of TASKWORK’s potential splits, i.e, the split operation is only
triggered, when new tasks are actually required. As depicted in Fig. 4, here,
the potentialSplit operation is executed after a node has been evaluated.
TASKWORK decides if a split is required. If so, it executes the application-
specific split operation that takes nodes from the openNodes list to create a
new (disjoint) task. Otherwise it proceeds regularly, i.e., it evaluates the next
node. In the following, we describe how to implement task migration, bound
synchronization, and termination detection based on TASKWORK.

Task Migration. To enable task migration, developers check if migration is
required (cf. Fig. 4). In this case, a task simply stops its execution. The migration
process itself is handled by TASKWORK. This means that a compute node that
has been selected for decommissioning automatically stops all running worker
threads, pushes the affected tasks to the local task pool, and starts the migration
of these tasks to other compute nodes (cf. Sect. 4.5).

Bound Synchronization. Pruning is based on a global upper bound. In case
of the TSP, the total cost of the best tour currently known is used as the global
upper bound. The distribution of the current upper bound is essential to avoid
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excess computation (due to an outdated value). By employing the synchroniza-
tion component (cf. Sect. 4.7), we initiate an update of the global upper bound
whenever the local upper bound is better then the current global upper bound
observed. Technically, we specify an update rule that compares the total costs
of two tours. If a better upper bound has been detected, TASKWORK ensures
that the new upper bound is propagated through the hierarchy levels of the
parallel system. At the programming level, getUpperBound and setUpperBound
(cf. Fig. 4) are implemented based on the getVar and setVar operations (cf.
Sect. 4.7).

Termination Detection. Activating termination detection enables parallel
applications to register for a termination event, which can be also used to retrieve
the final result. In this case, the final result is a tour whose total cost is minimum
and thus solves the TSP.

6 Experimental Evaluation

In this section, we present and discuss several experiments to evaluate TASK-
WORK. First, we describe our experimental setup. Second, we introduce the
benchmark applications for parallel tree search that are used for the evalua-
tion. Third, we report on the parallel performance and scalability by measuring
speedups and efficiencies for both the TSP application implemented with the
elastic branch-and-bound development framework and the described benchmark
applications. Finally, we measure the effects of elastic scaling on the speedup
of an application to assess the inherent overheads of dynamically adapting the
number of compute nodes at runtime.

6.1 Experimental Setup

Compute nodes are operated on CentOS 7 virtual machines (VM) with 1 vCPU
clocked at 2.6 GHz, 2 GB RAM, and 40 GB disk. All VMs are deployed in our
OpenStack-based private cloud environment. The underlying hardware consists
of identical servers, each equipped with two Intel Xeon E5-2650v2 CPUs and
128 GB RAM. The virtual network connecting tenant VMs is operated on a
10 GBit/s physical ethernet network. Each compute node runs a single worker
thread to process tasks and is connected to one of three ZooKeeper servers
(forming a ZooKeeper cluster). Our experiments were performed during regular
multi-tenant operation.

6.2 Benchmark Applications

Because work anomalies occur in the context of our branch-and-bound applica-
tion, we additionally use two benchmarks for parallel tree search to rigorously
evaluate TASKWORK. Work anomalies result from the search procedure being
executed in parallel by different compute nodes on different subtrees of the search
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tree. As a result, the amount of work significantly differs between sequential and
parallel processing as well as across parallel application runs. We describe the
benchmark applications in the following.

Unbalanced Tree Search (UTS). Unbalanced Tree Search [32] is a bench-
mark designed to evaluate task pool architectures for parallel tree search. UTS
enables us to generate synthetic irregular workloads that are not affected by work
anomalies and thus support a systematic experimental evaluation. Different tree
shapes and sizes as well as imbalances can be constructed by means of a small set
of parameters, where each tree node is represented by a 20-byte descriptor. This
descriptor is used as a random variable based on which the number of children
is determined at runtime. A child node’s descriptor is generated by an SHA-1
hash function based on the parent descriptor and the child’s index. As a result,
the generation process is reproducible due to the determinism of the underlying
hash function.

We generate UTS problem instances of the geometric tree type, which mimics
iterative deepening depth-first search, a commonly applied technique to deal
with intractable search spaces, and has also been extensively used in related
work [9,32,34]. The 20-byte descriptor of the root node is initialized with a
random seed r. The geometric tree type’s branching factor follows a geometric
distribution with an expected value b. An additional parameter d specifies the
maximum depth, beyond which the tree is not expanded further. The problem
instances employed for our measurements are UTS1 (r= 19, b= 4, d= 16) and
UTS2 (r= 19, b= 4, d= 17).

WaitBenchmark. This benchmark was taken from [38], where it has been used
in the context of parallel satisfiability (SAT) solving to systematically evaluate
task pool architectures. The irregular nature of these applications is modeled
by the benchmark as follows. To simulate the execution of a task, a processing
unit has to wait T seconds. The computation is initialized with a single root
task with a wait time Tinit. At runtime, tasks can be dynamically generated by
splitting an existing task. Splitting a task Taskparent is done by subtracting a
random fraction Tchild of the remaining wait time TR and generating a new task
Taskchild with Tchild as input:

Taskparent{TR} → (Taskparent′{TR − Tchild}, Taskchild{Tchild}). (1)

6.3 Basic Parallel Performance

We report on the basic parallel performance of TASKWORK by measuring
speedups and efficiencies for the TSP application implemented with the elas-
tic branch-and-bound development framework. To evaluate the parallel perfor-
mance, we solved 5 randomly generated instances of the 35 city symmetric TSP.
Speedups and efficiencies are based on the execution time Tseq of a sequen-
tial implementation executed by a single thread on the same VM type. Table 1
shows the results of our measurements with three parallel program runs per TSP
instance. As we can see, the measured performance is highly problem-specific.
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Table 1. Performance measurements of TSP instances [28].

Problem
instance

Tseq [s] (1 VM) Tpar [s] (60 VMs) Speedup S
[#] (60 VMs)

Efficiency E
[%] (60 VMs)

TSP351 1195 32.9 ± 2.0 36.3 60.48

TSP352 1231 55.7 ± 4.0 22.1 36.87

TSP353 2483 103.5 ± 2.1 24.0 39.99

TSP354 3349 115.5 ± 6.3 29.0 48.31

TSP355 10286 167.4 ± 12.4 59.5 99.20

6.4 Scalability

To evaluate the scalability of a parallel system, one has to measure the stan-
dard metrics in parallel computing, i.e., the parallel execution time Tpar, the
speedup S, and the parallel efficiency E, for different numbers of processing
units. Tpar(I, p) is the parallel execution time for a given input I measured with
p processing units and Tseq(I) is the sequential execution time for a given input
I. The problem size W (I) is defined as the number of (basic) computational
steps in the best sequential algorithm to solve a problem described by I [14].
Under the assumption that it takes unit time to perform a single computational
step, the problem size is equivalent to the sequential execution time Tseq(I). To
evaluate the scalability of TASKWORK, we report on two different measure-
ment approaches: First, we measured the speedup with the UTS benchmark and
the WaitBenchmark for a fixed problem size. Second, we measured the so-called
scaled speedup with the WaitBenchmark. The scaled speedup of a parallel system
is obtained by increasing the problem size linearly with the number of processing
units [14]. We discuss the results in the following.

First, we report on the scalability of TASKWORK with a fixed problem size,
which is thus independent of the number of processing units contributing to the
computation. Figure 5 depicts the results of our measurements for three different
problem instances: Two problem instances of the UTS benchmark UTS1 (r= 19,
b= 4, d= 16) and UTS2 (r= 19, b= 4, d= 17) and a problem instance of the
WaitBenchmark with a fixed initial wait time of the root task of Tinit = 600 [s].

Second, we report on the scalability of TASKWORK with a problem size
that is increased linearly with the number of processing units. In the case of
the WaitBenchmark, the input is defined as the initial wait time of the root
task Tinit. The problem size can be defined as W (Tinit) = Tinit. Moreover, the
sequential execution time Tseq(Tinit) required by the best sequential algorithm
to solve a problem described by Tinit is Tseq(Tinit) = Tinit. This makes it easy to
create a fixed problem size per processing unit, which requires us to increase the
problem size W with the number of processing units p employed by the parallel
system. For our measurements, we defined an initial wait time of the root task
of Tinit(p) = p · 60 [s]. The speedups and efficiencies obtained are depicted in
Fig. 6. The results of our measurement show close to linear speedups. A parallel
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Fig. 5. The problem instances shown are UTS1 (r= 19, b= 4, d= 16), UTS2 (r= 19,
b= 4, d= 17), and the WaitBenchmark with an initial wait time of the root task of
Tinit = 600 [s]. Speedups and efficiencies given are arithmetic means based on 3 parallel
program runs for 6 setups leading to 54 measurements in total.

Fig. 6. The problem instances shown are the WaitBenchmark with an initial wait time
of the root task of Tinit(p) = p · 60 [s] and the WaitBenchmark with an initial wait
time of the root task of Tinit = 600 [s]. Speedups and efficiencies given are arithmetic
means based on 3 parallel program runs.

system is considered to be scalable when the scaled speedup curve is close to
linear [14]. As expected, the (scaled) speedup curve is much better compared to
the one obtained by our scalability measurements with Tinit = 600 [s], which are
also depicted in Fig. 6.
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Fig. 7. We adapt the number of compute nodes (physical parallelism) at times t1 and
t2 and measure the effects on the elastic speedup Selastic [28].

6.5 Elastic Scaling

In the cloud, compute resources can be provisioned or decommissioned at run-
time by means of an elasticity controller. To make use of newly provisioned
compute resources, the runtime system has to adapt to this change (cf. Sect. 3).
A fundamental question that arises in this context is: How fast can resources be
effectively employed by the application? This is a fundamentally new perspec-
tive on parallel system architectures that also has to be considered for evaluation
purposes.

We propose a novel experimental method that shows the capability of a par-
allel system to dynamically adapt to a changing number of compute resources.
Because parallel systems are designed with the ultimate goal to maximize paral-
lel performance, our method evaluates the effects of dynamic resource adaptation
on performance in terms of the speedup metric. Our experiment is described in
Fig. 7 and comprises three phases. We start our application with 10 compute
nodes (VMs) in Phase P1. At time t1, we scale out by adding more VMs to
the computation. To evaluate the elastic behavior without platform-specific VM
startup times, we employ VMs that are already running. At time t2, we decom-
mission the VMs added at t1. At phase transition 1 , TASKWORK ensures task
generation and efficient load balancing to exploit newly added compute nodes.
At phase transition 2 , the task migration component ensures graceful decom-
missioning of compute nodes (cf. Sect. 4.5). We can easily see if newly added
compute resources contribute to the computation by comparing the measured
elastic speedup Selastic (speedup with elastic scaling) with the baseline speedup
Sbaseline that we measured for a static setting with 10 VMs. To see how effec-
tively new compute resources are employed by TASKWORK, we tested several
durations for Phase P2 as well as different numbers of VMs added (cf. Fig. 7)
and calculated the percentage change in speedup Schange as follows:

Schange =
(Selastic − Sbaseline)

Sbaseline
· 100 (2)
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Fig. 8. The percentage change in speedup is calculated based on different durations of
Phase P2 and different numbers of compute nodes (VMs) added to the parallel com-
putation at runtime. The number of VMs shown is the total number of VMs employed
in Phase P2.

Schange allows us to quantify the relative speedup improvements based on
elastic scaling. Both Selastic and Sbaseline are arithmetic means calculated based
on three program runs.

For our measurements, we employ the TSP application implemented based on
the elastic branch-and-bound development framework. To avoid work anomalies,
we disabled pruning to evaluate elastic scaling. All measurements are based on
a TSP instance with 14 cities. The results of our measurements are depicted
in Fig. 8, which shows the percentage change in speedup achieved for different
durations of Phase P2 and different numbers of compute nodes (VMs) added to
the computation at runtime. 40 VMs added (leading to 50 VMs in total in Phase
P2) can be effectively employed in 15 s. Higher speedup improvements can be
achieved by increasing the duration of Phase P2. We also see that for a duration
of only 10 s, adding 40 VMs even leads to a decrease in speedup whereas adding
20 VMs leads to an increase in speedup (for the same duration). This effect
results from the higher overhead (in form of task generation, load balancing,
and task migration) related to adding a higher number of VMs. On the other
hand, as expected, for higher durations of Phase P2, employing a higher number
of VMs leads to better speedups. Note that the percentage of time spent in
Phase P2 (with respect to the total execution time) affects the actual percentage
change in speedup, but not the effects that we have described.
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7 Conclusion

In the presented work, we tackle the challenge of developing and operating elas-
tic parallel tree search applications. We discuss related system-level challenges
and show how to enable elastic parallel computations as well as cloud-aware
coordination of distributed compute resources for the application class consid-
ered. Based on our findings, we present a novel runtime system that manages
the low-level complexities related to elastic parallel applications to ease their
development. Elastic parallel computations are enabled by means of load bal-
ancing, task migration, and application-specific task generation, which requires
only minor effort at the programming level. Whereas the described development
framework is specifically designed for elastic parallel branch-and-bound appli-
cations, other application classes that generate tasks at runtime (e.g., n-body
simulations [18]) might also benefit from the design principles presented.

Many challenges are left on the path towards elastic parallel applications.
Our long-term goal is to understand how to design, develop, and manage elas-
tic parallel applications and systems. Therefore, we investigate design-level,
programming-level, and system-level aspects [25,28] as well as delivery and
deployment automation [22,23,26,29]. In this context, we are confident that
TASKWORK provides a solid foundation for future research activities.
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Abstract. Containers have to be secured in a multi-tenant environment.
To secure the use of containerized environments, the effectiveness of a
rule-based security monitoring approach have been investigated.

The approach of this paper can be used to detect a wide range of
potentially malicious behaviour of workloads in containerized environ-
ments. Additionally is able to monitor the actual container runtime for
misuse and misconfiguration. In order to evaluate the detection capabil-
ities of the open-source tools utilized in a container, various scenarios of
undesired behaviour are closely examined. In addition, the performance
overhead and functional limitations associated with workload monitoring
are discussed. The proposed approach is effective in many of the scenar-
ios examined and its performance overhead is adequate, if appropriate
event filtering is applied.

Keywords: Container virtualization · Docker · Security ·
Monitoring · Anomalous behaviour · System call tracing

1 Introduction

Virtualization at the operating system level using containers has gained pop-
ularity over the past few years, mainly driven by the success of Docker. As
all containers share the same kernel of the underlying Linux host system, a
lower resource overhead compared to virtual machines can be achieved with this
lightweight virtualization type [10]. This is particularly important when deploy-
ing an application and its dependencies independently of the underlying host
system is at the center of interest, as it is important with micro-service archi-
tectures, for example. Containers are often used to provide basic components,
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such as web servers, databases, service discovery services or message brokers.
In addition, containers offer the advantage that they can be easily integrated
into suitable Continuous Integration, Delivery and Deployment (CI/CD) tools
and pipelines and can be distributed to be run on different runtimes with the
help of several standards as specified by the Open Container Initiative (OCI)
[27,28]. Containers have also made their way into the domain of High Perfor-
mance Computing (HPC). Containerized HPC environment have the benefits of
deploying user-provided code, improving collaboration through simplified distri-
bution, allow simple reproducibility, and have nevertheless a low performance
overhead. For containers used in HPC, a number of solutions were developed,
which differ significantly in terms of isolation mechanisms, that are the focus of
this paper. These HPC specific solutions include Shifter [16], Charliecloud [31],
and above all Singularity [21].

Recent surveys [34] show, that Docker deployments are still most widespread,
with a share of 83% of the investigated systems. For this reason, the authors of
this paper focuse on the Docker container runtime, although, many aspects can
be applied to other solutions as well. However the development of general purpose
container runtimes is ongoing and alternatives to Docker are appearing, such as
Podman [7]. Approaches that focus strongly on security, but are characterized
by a much smaller deployment rate, are for example SCONE [3] and gVisor [39].
Besides of the great efforts of increasing the security of the technology, in partic-
ular Docker [6], is sometimes viewed critically. Most frequently it is listed as one
of the major challenges [30], when deploying container technology in production.
It should be noted that the situation has improved significantly in recent years
with the addition of complementary security options. However, these are often
disabled by default or being deactivated to ensure smooth operation in terms
of compatibility with a wide range of applications. However a current survey
indicates that 94% of the participants still have container security concerns and
fear a rise of container security incidents [37].

To further increase the security level of containerized environments, this
paper propose applying rule-based security monitoring to containerized envi-
ronments. This paper1 explores the suitability of the approach for detecting a)
various types of undesired behaviour that might indicate misuse and attacks of
workloads running inside a container, and b) misconfigurations and attempts
to extend privileges and reduce isolation mechanisms in place at the container
runtime level.

The rest of this paper is organized as follows: Sect. 2 provides a brief introduc-
tion to security mechanisms that can be applied to containerized environments.
Section 3 describes the special monitoring characteristics regarding containerized
workloads. Section 4 discusses related work concerning container virtualization.

1 Note: This paper is both a revised and extended version of a previous publication
[14]. The present version is characterized by an extension of the security monitoring
approach beyond the containerized workloads to the container runtime itself, in order
to recognize misconfigurations and attempts to weaken isolation settings or extend
privileges there.
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Section 5 introduces the rule-based security monitoring approach evaluated in
Sect. 6. Section 7 discusses limitations of the proposed approach and future work.
The paper concludes in Sect. 8.

2 Containers and Security

The Linux Kernel features Control Groups (cgroups) and Namespaces are used
to provide resource limiting (CPU, memory, IO) and process isolation and repre-
sent the basic components of containers. These mechanisms are used to protect
the host and other containers from resource starvation by one container and
to provide containerized processes a confined instance of the underlying global
system resources. Linux currently provides the seven namespaces cgroups, IPC,
Network, Mount, PID, User, UTS.

Meanwhile, most container runtimes provide support for already established
Linux security mechanisms that complement the essential mechanisms cgroups
and namespaces. To provide Mandatory Access Control (MAC) AppArmor and
SELinux can be utilized, which use the Linux Security Module (LSM) framework.
These technologies provide means to limit the privileges of a process and thus
mitigate harmful effects in the event of an attack.

Another Linux Kernel feature to decrease risks arising from undesired
behaviour is the Secure Computing Mode (seccomp), which makes it possible
to implement a very basic sandbox in which only a reduced number of system
calls are available. In that way, individual unneeded system calls can be specif-
ically denied. However, this requires a high degree of knowledge of the system
calls required in a specific containerized workload and must therefore be adapted
on a per-container basis. The default seccomp profile provided with Docker only
disables 44 of over 300 system calls [8] to maintain wide application compati-
bility while providing a somewhat higher level of protection. This includes sane
defaults that can be applied to all containers, such as blocking the reboot system
call, which denies that a reboot of the host system can be triggered from inside
a container.

There exist further preventive security measures to secure containerized envi-
ronments, described in greater detail in an overview paper [13],

These includes at the Linux Kernel level the possibility to remap the con-
tainer root user inside a container to a non-privileged user outside the container
(User Namespaces) or to use the Linux capabilities, which divide the privileges
of the superuser into distinct units, and can be activated or deactivated individ-
ually. However, capabilities are inferior to seccomp in terms of granularity. For
example, the capability SYS ADMIN bundles a very large set of functionalities,
which could be used to deactivate further security measures [38].

Another important role play tools that perform static analysis for vulnera-
bilities on container images (CVE scanner), since they can be used to prevent
images with vulnerable code from being available or launched in the container-
ized environment in the first place.

In general, the isolation provided by containers is still to considered to be
weaker than that of hypervisor-based approaches. While for instance Denial of
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Service (DoS) protection provided by cgroups is to be considered effective as long
as appropriate limits are defined, better protection against Information Leakage
is still in development.

Currently not all Linux subsystems are namespace-aware and in many loca-
tions more information about the host system can be collected than it would be
possible in a virtual machine. Above all the /proc file system should be mentioned
here, because it offers many possibilities for information leakage [15], which can
provide information for a tailor-made attack.

The risk of privilege escalation, allowing the modification of files on the host
system or a container breakout with full privileges on the host system, pose a
serious problem as well. This is often caused by misconfiguration, for example
when containers are started with elevated privileges or reduced isolation. For
example, starting a container with the –privileged flag causes the container to
behave like a process with elevated rights outside of a container as all capabilities
are granted to the container. This flag is required for special use cases, such as
running Docker inside Docker and should never be used in a regular scenario [33].

Therefore a complementing preventive security measures is proposed adopt-
ing a rule-based security monitoring, with the aim to detect misuse and common
attacks in containerized workloads, as well as misconfigurations and attempts to
weaken isolation or escalate privileges at the runtime level.

For the scope of this paper, we consider some widespread attack scenarios and
take advantage of containerization specific characteristics for monitoring. Use
cases at the containerized workload level include unauthorized file access as it can
precede information leakage, unexpected network connections and application
startup, and attempted privilege escalation. Use cases monitored at the runtime
level include exposure of the Docker REST API, various container lifecycle events
and modifications to security and performance isolation settings.

3 Containers and Monitoring

The monitoring of containerized workloads requires a new approach, since tra-
ditional agent-based approaches cannot be applied directly. Docker Containers
in particular follow the concept of application containers, which are made up
of exactly one process per container. This is in contrast to the operating sys-
tem containers used by LXC, which, while using the shared host kernel for all
containers, start them as almost full-fledged Linux systems that behave almost
like a VM and allow for several services. Adding a monitoring agent to a con-
tainer would break the single process per container model and moreover require
a modification of the container image. The need for image modification can be an
unacceptable condition in environments where users demand the integrity of the
images they provide. Therefore, adding a process to a container that performs
the monitoring functionality from within a container is usually not advisable.

Also less suitable is the approach of using sidecar containers, which are
started additionally and take over the monitoring function in a dedicated way.
These would have to be started with elevated privileges and would result in
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increased resource consumption if a dedicated sidecar container were started for
each container.

Therefore, this approach rely on one monitoring agent per host. Thus no
image adjustment has to be performed, the one process per container model can
be maintained and no additional overhead is caused by sidecar containers. In
addition, a feature of container virtualization is beneficial: containerized work-
loads are transparent to the host system as regular processes. This means that
a much more accurate view of the virtualized workload can be collected by the
host system with containers than would be possible with VMs. Also, the collected
state information can be directly assigned to the corresponding workload since
there are no concurrent activities in a container that could distort the picture,
as likely caused by the guest system in a VM.

As a data source, our approach relies on the system calls that are issued by
the monitored containers. These get enriched with further context by the tools
presented in Sect. 5. System calls have the advantage that they map exactly what
a process is currently performing. In principle, further traditional performance
metrics such as CPU load, memory usage, I/O throughput could be included in
the system described for additional insights, but is not implemented as of now.

4 Related Work

There are several projects available to increase the security in containerized envi-
ronments, that build up on top of the basic container security technologies briefly
introduced in Sect. 2. The use of the complementing Linux Kernel security fea-
tures Capabilities, Seccomp and MAC is being recommended by a measurement
study on Container Security [23]. According to the authors, these mechanisms
provide more effective measures in preventing privilege escalation than the basic
isolation mechanisms (i.e. Namespaces and Cgroups) that build the foundation
of containers.

The projects relying on the complementing Linux Kernel security features
include policy generators such as LicShield [25], which generates container-
specific AppArmor profiles based on a learning phase - or SPEAKER [22], which
divides the time a container is running into different phases and assigns opti-
mized custom seccomp profiles to them. This benefits from the fact that a service
usually requires significantly fewer unique system calls after the start and ini-
tialization phase.

The exclusive use of performance metrics collected at the hypervisor level
for security monitoring is discussed in approaches like [26]. His effort to detect
malicious behaviour in hypervisor-based environments can be transferred to con-
tainerized environments, but does not provide the accuracy system calls can
provide. Furthermore, an approach based on performance data only offers the
possibility to determine what is happening, but not why, unless additional data
sources can be analyzed.

The usage of system calls for detecting malicious behaviour dates back to
the seminal work of Forrest. She proposed the usage of system call sequences
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to distinguish between normal and anomalous behaviour [12]. Concurrent pro-
cesses such as background processes did however affect the detection accuracy.
This situation is improved by the use of containerized workloads, since the one
application per container approach significantly reduces concurrency that leads
to distortion of results.

Abed [1] investigates an approach where traces collected by strace are used
for anomaly detection without prior knowledge of the containerized application.
However, mimicry attacks [17] can be used to circumvent the utilized Bag of
System Calls approach.

Borhani [2] provides a paper that reports on the real-world feasibility of
Falco, but focuses less on its limitations but on the Incidence Response aspect.

The combination of system calls to detect anomalies with different approaches
from the field of Machine Learning has been investigated by a number of authors.
Among them Maggi [24], who used Markov models for system calls and their
arguments and [20] who extended them with system call specific context infor-
mation and domain knowledge. An approach with neural networks based on
convolutional and recurrent network layers is offered by Kolosnjaji [18]. His
approach increased the detection rate of malware. Focus on distributed data
collection and processing of large amounts of data is put by Dymshits [9], who
uses an LSTM-based architecture and sequences of system call count vectors.

To the best of our knowledge, we are not aware of literature that addresses
security monitoring of the container runtime interfaces.

5 Overview of Proposed System

Our approach is based on the Open Source tools Sysdig [36] and Falco [35],
which will be introduced in the following briefly. They differ from other options,
such as strace and eBPF [11], by native support for several container engines,
including Docker, LXC and rkt. This support enables filtering of collected data
based on individual containers, specific system calls, file name patterns, or net-
work connection endpoints. The ability to use filters also significantly reduces
collection and processing effort.

5.1 Sysdig

Sysdig uses two core components to implement its functionality. A kernel module
(sysdig probe) that uses the Linux Kernel facility tracepoints serves as a collec-
tion component to capture all system calls of a process (or containerized process)
as events. These traces are then passed to a daemon that serves as the processing
component.

Sysdig combines the functionality of a number of well-known analysis tools,
including strace, tcpdump and lsof and combines them with transaction tracing.
The combination of the individual functionality offers a considerably deeper view
of the system and individual processes than would be possible with a single tool.
Therefore, Sysdig is also well suited for error analysis on a system. As already
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mentioned, Sysdig offers various possibilities for filtering to reduce the amount
of data collected. In the context we utilized it, filtering for individual system
calls, arguments passed to them, such as file names, source of an event, like the
container or process name, were beneficial.

5.2 Falco

Falco is best described as a behavioural activity monitor that complements Sys-
dig’s system call capture functionality with the ability to detect anomalous activ-
ities based on rules. To do so it relies on the same sysdig probe kernel module
for system call capturing.

At the core of the applicable rules are Sysdig filter options, which are referred
to as conditions. If a condition is evaluated as true, meaning that an event
matched the given requirements, the event is flagged as anomalous behaviour.
This presupposes, however, that exact knowledge of the desired behaviour of a
container is available to be able to define the conditions that specify a violation.
An anomalous activity could include starting an unauthorized process, accessing
unusual paths in file systems, outgoing network connections, or attempts to
modify system binaries and configuration files.

However, Falco can only detect point anomalies, i.e. single events where the
described conditions are met, such as the usage of an undesired system call.
The rule set currently does not provide means to allow the detection of collec-
tive anomalies or contextual anomalies where multiple conditions or additional
preconditions have to be met. This limits the detection capabilities to a certain
extent, as the critical examination in the evaluation will show. In addition, Falco
only detects behavioural anomalies. A subsequent mitigation beyond logging and
notification derived therefrom is currently not provided.

5.3 Architecture

The architecture (see Fig. 1) is based on the corresponding figure from [14], but
has been adapted to reflect the extension of the rule-based monitoring approach
to the container runtime.

As already touched, both Sysdig and Falco use the same (sysdig probe) kernel
module for capturing system calls. System calls are the means by which user-level
processes interact with the operating system when they request services provided
by it, such as opening a file or initiating a network connection. As system calls
are the only entry point into the kernel to request such functionality, they are
of high value when it comes to capturing the behaviour of a process. The Sysdig
kernel module not only captures the identifiers of the system calls, but also
the call parameters used and the return values received, which provides further
possibilities for evaluation.

Sysdig is responsible for the display and processing of the recorded events. It
was primarily used to create and test the Sysdig filters to be used as Falco con-
ditions for classifying an event as anomalous behaviour. The actual classification
is carried out by Falco. Falco uses rules to be created in advance (Fig. 1, Rules)



Rule-Based Security Monitoring of Containerized Environments 73

Fig. 1. Proposed rule-based security monitoring architecture, based on [14].

to decide on deviant behaviour and can perform a basic notification (Fig. 1, Inci-
dent Notification) using logging frameworks, plain e-mail or messengers after a
rule matches.

We are currently investigating how the current Incident Notification can be
extended to Incident Mitigation based on the severity of an event. One feasible
and minimalistic approach would be to pause the workload, which is character-
ized by undesired behaviour, retrieve the full state for further analysis and to
restore it after analysis if appropriate.

6 Evaluation

In order to examine the applicability of the rule-based approach, security moni-
toring was applied to two relevant layers in a containerized environment: a) Con-
tainer Execution Level (Sect. 6.2), which concerns misuse and attacks occurring
inside of containerized workloads, and b) Container Runtime Level (Sect. 6.3),
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takes misconfigurations and attempts to weaken isolation or extend privileges at
the container runtime interface itself into consideration.

The investigation on the two layers is each divided into two phases. In the
initial phase it was investigated if and how Sysdig can be used to detect the
behaviour regarded as harmful. If the behaviour was detectable using a Sysdig
filter, a Falco rule was derived from this filter. In the second phase, the rule was
then tested for its suitability for automated detection of undesired behaviour.

We would like to point out that Sects. 6.1 Test Environment and 6.2 Studied
Misuse and Attacks at Container Execution Level were incorporated unmodified
from the paper [14], since both the test environment and the evaluated use cases
at container execution level remained unchanged for this extended version. The
same applies to Sect. 7.1 Performance Evaluation, as the section has remained
unmodified as well.

6.1 Test Environment

The evaluation was carried out in a virtualized test environment. This means,
referring to Fig. 1, that the host system is actually a virtual machine in our case.
However, this has no influence on the functionality of the described approach.
We used the following components in a VM with 1 Core and 4 GB of memory
and did not impose additional container resource limits, unless otherwise noted:

OS: Debian GNU/Linux 9.5 (stretch)
Kernel: 4.9.0-8-amd64
Docker: Docker version 18.06.1-ce, build e68fc7a
Sysdig: 0.24.1
Falco: 0.13.0

Unless otherwise specified Debian GNU/Linux 9.5 (stretch) as container image
has been used.

6.2 Studied Misuse and Attacks at Container Execution Level

In order to examine the rule-based security monitoring approach for its suitabil-
ity to detect common misuses and attacks as they may occur in containerized
workloads, a series of scenarios was defined and evaluated for their detectability.
In the following section, these scenarios are briefly presented and the creation of
the Sysdig filter and the Falco rule are presented on an exemplary basis.

Unauthorized File Access. For the test setup of the Unauthorized File Access
we used the deliberately insecure web application WebGoat [29]. We used the
already-available webgoat image on Dockerhub and evaluated the detectability
of the task Bypass a Path Based Access Control Scheme. This represents a direc-
tory traversal attack where the successful attacker can access files outside the
root directory of the web server. Such an attack is often used to gain access to
configuration files with passwords.
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The following code represents the Sysdig condition, which also serves as the
basis for a Falco rule set.

container.name=webgoat
and evt.type=open
and evt.dir="<"
and fd.type=file
and not (fd.directory contains "/webapp")

The condition is true if the container name2 is webgoat and the system call
open accesses a file outside a path containing the string /webapp.

The example shows that it can be easily generalized and can be used, in
addition to restricting a service to its corresponding root directory, to monitor
activity to access to non-namespaced resources or other resources that could lead
to information leakage. An attempted write access, for example to directories
containing system binaries, can also be detected in this way. Furthermore, the
condition itself can be extended by further event parameters that have to be
fulfilled, so that it is possible to detect when a process not approved for this
purpose tries to access a specific device.

Start of Unauthorized Application
A similarly well generalizable test case is the detection of the Start of Unautho-
rized Applications inside a container.

list: authorized_processes
items: [ps, hostname]
condition:
container.name=debian-test
and evt.type=execve
and evt.dir="<"
and not (proc.name in (authorized_processes))

The condition thus recognizes the execution of programs that are not ps or
hostname. This can be used to allow a container to start only its corresponding
service and to log, for example, if a crypto miner or a (remote) shell is started,
as might be the case in a successful remote attack. The list authorized processes
serves as a white list here.

Container Breakout (Using nsenter)
Another test case examined was the detection of certain processes that are
related to specific threats, i.e. are maintained on a black list if necessary. In
this example the command nsenter was used to run a process within the name
spaces of another process, which is detectable by filtering for the system call
setns. Although this mechanism is typically blocked from within a container by
other measures, there is still a risk of misconfiguration. In addition, it can be use-
ful to be able to log the access from the host into a container by this procedure
by adapting the container identifier to container.id = host.

2 The container name refers to the name of the running container instance as returned
by docker ps and not to the image name in general. The respective container ID
(container.id) could also be used as an alternative to the name.
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Unexpected Network Connection
In order to detect if a container establishes undesired connections to the internet,
for example to download malicious code for an exploit or to open a remote shell,
the detectability of Unexpected Network Connections was also examined. This
can be implemented by creating a white list with approved targets or limiting it
to specific TCP ports.

Loading of Kernel Module
Although it is not possible in the default configuration to load kernel modules on
the host from the container, the recent breakout from a Docker evaluation envi-
ronment Play with Docker [33] inspired us to consider this case. As described in
the referenced case, this can lead to a privilege escalation with full administrative
privileges on the host and thus control over additional containers.

Denial of Service (DoS)
Even though (if applied) cgroups can prevent a resource starvation of the host
and other containers in terms of CPU shares and memory, there is the possibility,
depending on the configuration, to fill up shared file systems, which is why this
test case had to be investigated.

Buffer Overflow
The last test case examined was whether it is in principle possible to detect buffer
overflows using our rule-based approach. Abusing a buffer overflow is a common
security exploit, so that memory areas with executable code are overwritten with
malicious code, which can be the basis for an attack.

6.3 Security Monitoring at Container Runtime Level

Inspired by attacks made possible by misconfigurations that expose the Docker
REST API to the Internet [5], the previous work of monitoring container-
ized workloads was extended to also monitor the container runtime/engine for
unwanted behaviour. This approach is also in line with the recommendations
of NIST, which recommends to examine the container runtime more closely for
risks [32]. The advantage of monitoring on this layer is that these activities
are independent of the workload in the containers, i.e. no prior knowledge is
required. Thus the rules can be activated directly on a large number of hosts in
a containerized environment.

We chose three areas of priority for the monitoring of the container runtime:
a) Monitoring the access to the Docker REST API, with the focus of detect-
ing misconfigurations that expose the API over network. Monitoring the Docker
command-line interface (CLI) (docker * commands) for b) container lifecycle
events and c) the modification of container security settings. Scenarios b) and
c) are particularly relevant for environments in which users, e.g. members of the
docker group, have direct access to the docker CLI without role-based access con-
trol (RBAC) mechanisms or restrictive wrappers around the CLI being in place.
In particular, c) can be misused in various ways to extend privileges on the host
to a level similar to root access and reduce security and performance isolation.
We have identified a number of misuse scenarios that are briefly presented below.
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Docker REST API
Since Docker 0.5.2 the REST API endpoint, which is used by the Docker CLI to
interact with the Docker Engine, switched from a (locally bound) TCP socket to
a UNIX socket, where access is controlled by the traditional UNIX permissions.
The configuration option to globally expose the REST API over HTTP(S) can
still be enabled. As this may lead to an attacker taking over the Docker Host,
the hosts that are able to connect should be restricted to trusted hosts only and
the API endpoints should be secured with HTTPS and certificates. We identified
the following undesired events:

Exposure of API. Since exposure of the Docker REST API endpoint over the
network can have high security implications, monitoring for such misconfigura-
tions should be performed. The indicator used herefore is a process binding to
port TCP/2375 (HTTP) or TCP/2376 (HTTPS).

Connection to API. In addition to monitoring for exposure, it should also be
monitored whether connections are established to these ports. This is important,
if the monitoring was started after the exposure of the API endpoints.

Container Lifecycle Events
The Container Lifecycle Events offer a variety of options that are well-suited to
be monitored. We have grouped the commands according to their functionality
and their potential for misuse, which we will describe briefly below.

Typical Lifecycle Events. Commands in this group represent typical lifecycle
commands (pull, run, exec, pause, unpause, start, stop, kill), which for instance
are used to download images or start a container. These commands usually have
no security-critical context, but should be logged for auditing reasons. Especially
if exec is used to execute commands inside an already running container, as this
indicates administrative intervention.

Circumvention of Registries. On a production system, it is unlikely if an image
is not downloaded from an image registry that might contain curated images,
but is loaded locally from the file system. In such a situation, this could mean
that an attacker is trying to launch an image that he has previously manually
downloaded.

Publication of Images. The same level of unlikelihood applies to saving, export-
ing or uploading an image. Such events appear out of place on a production
system and could indicate that an attacker tries to export container images and
extract them.

Exposure of Services. In an environment where containers provide network acces-
sible services, publishing a service from the container is a valid intent. In envi-
ronments where this is not the case, the event when container ports are exposed
to the host could indicate misuse, such as to provide access for third parties.
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Container Security Settings
Unrestricted access to the Docker CLI provides a variety of controls that may
allow a user to run a container with privileges very close to an administrative
account on the host system. Alternatively, restrictions can be modified to weaken
the default isolation of a container. We have identified a number of attack sce-
narios that should be monitored accordingly.

Usage of Additional Host Resources. It is possible to pass host resources into the
container. These can be local file system directories, complete devices, including
GPUs. While there are use cases where this can be a practical approach, such an
event can have far-reaching security implications, as this can provide privileged
access to the resource for the user starting a container this way.

Weakening of DoS Protection. When starting a container, a large number of
performance limits can be imposed, such as limits for CPU and memory con-
sumption. There are also additional settings that may be used to protect against
fork bombs (PID limit) or the Out of Memory (OOM) killer. According to [4],
the activation of these limits is a suitable mean to ward off the effects of an
attempted DoS through a container. Consequently, modifications to these set-
tings must be viewed critically. In the default setting, no resource limits are
active. However, in production operation such limits should be applied.

Modification of Namespaces. An adjustment of the namespace isolation can lead
to reduction of the default isolation, thus reduced security. Especially if a names-
pace is set to =host, as this results in a sharing of the corresponding host names-
pace with the container. Rare occasions where this would be acceptable include
monitoring containers that require an unrestricted system view.

Extension of Privileges. The strongest possibility to extend the privileges
through a container is the option of starting a container in privileged mode.
This results in the container receiving the full set of capabilities and also cgroups-
based limitations not being applied. This results in a containerized process that
has at least the same privileges as if run directly on host. As the security impli-
cations are severe (see [33]) this behaviour is only justified in very rare cases,
such as requiring Docker in Docker or as a temporary workaround.

Modification of Security Options. The –security-opt setting is one of the most
powerful controls as it allows to carry out adjustments on a variety of security
tools that were integrated later, This flag is used to modify SELinux settings,
specify the AppArmor profile to be applied, grant the gaining of new privileges
and also specify which seccomp profile to use or disable seccomp protection alto-
gether. Modifications made here should therefore be examined with particular
caution.
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Modification of Performance Restrictions. In addition to the DoS protection
settings, there are other settings to distribute the host’s capacity between mul-
tiple containers. These include measures to limit the IO throughput of devices.
Manual adjustments should be examined critically.

6.4 Results

Table 1 summarizes the detectability of the scenarios presented in Sect. 6.2
regarding Misuse and Attacks at Container Execution Level. For each scenario
it is shown whether a filter for general detection can be created with Sysdig,
whether a automated detection can be implemented with Falco, and what can
be used as an indicator of the undesired behaviour.

Table 1. Summary of the detectability of various misuse and attack scenarios using
Sysdig and Falco, based on [14].

Scenario Sysdig Falco Indicator

Unauthorized File Access Yes Yes Violation of white list with authorized
files and directories

Start of Unauthorized
Applications

Yes Yes Violation of white list with authorized
application names

Container Breakout Yes Yes Black list - nsenter called - or violation
of white list

Unexpected Network
Connection

Yes Yes Violation of white list with authorized
communication partners

Loading of Kernel Module Yes Yes Black list - insmod called - or violation
of white list

Denial of Service Yes No Frequency of occurrences

Buffer Overflow No No Not applicable

As the table shows, it is possible to create a rule for Falco in almost all of the
cases investigated, if the event can be detected by a Sysdig filter. Many of the
examined cases can be restricted in terms of examined objects through the use
of a white list or black list based approach. This is possible for example with the
detection of non-authorized file access, the start of a non-authorized application
- or similar, easily derivable scenarios. However, this requires an exact knowledge
of the workload to be examined and an adjustment of the lists on a per image
basis.

Since Falco does not currently provide support for the occurrence frequency
of an event, it is currently not possible to use Falco for the detection of DoS
attacks. One-time access to a service itself can be captured by Sysdig - and thus



80 H. Gantikow et al.

also converted into a Falco condition. However, the frequency of events cannot
be taken into account.

The recognition of a buffer overflow is also not feasible as intended, since
it can normally also not be recognized by static analysis. The execution of a
particular exploit that can trigger a buffer overflow could in principle be detected
by relying on the system calls and their respective order. However, Falco can
only detect anomalies based on a single system call, not on their sequence in
a particular order. In addition, the approach would not be generalizable and
remain tied to a specific exploit. Blocking the execution of an exploit using
the process identifier or binary name is not worth the effort, as this can be
circumvented by renaming it. The exclusive operation of approved applications
and the detection of unapproved network lines is more effective here.

Tables 2, 3, 4 present the results of the evaluation of Security Monitoring at
container runtime level, broken down into the three areas, as of Sect. 6.3. The
tables list in each case the title of the scenario, the feasibility of detection with
Sysdig and Falco, as well as the respective indicators for the occurrence of the
threat.

The results show a distinct picture. In all three areas it is possible to detect
the corresponding events through Sysdig filters with very little effort and to con-
vert them into corresponding Falco rules, which allow for an automated moni-
toring. In most cases it is sufficient to filter the call of the Docker CLI for the
corresponding sub command or command line parameters. The search terms
used are specified in the column of the respective scenario as indicator.

Table 2. Summary of the detectability of exposure of and connections to the Docker
REST API using Sysdig and Falco.

Scenario Sysdig Falco Indicator

Exposure of API Yes Yes bind() to TCP/2375 or TCP/2376

Connection to API Yes Yes Connection to TCP/2375 or TCP/2376

Table 3. Summary of the detectability of various Docker Lifecycle Events using Sysdig
and Falco.

Scenario Sysdig Falco Indicator

Typical Lifecycle Events Yes Yes pull, run, exec, pause,
unpause, start, stop, kill

Circumvention of Registries Yes Yes import, load
Publication of Images Yes Yes export, save, push
Exposure of Services Yes Yes --publish , -p,

--publish-all , -P
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Table 4. Summary of the detectability of modifications to Docker Security Settings
using Sysdig and Falco.

Scenario Sysdig Falco Indicator

Usage of Additional Host Resources Yes Yes --mount, -v, --volume,
--device, --gpu

Weakening of DoS Protection Yes Yes -m, --memory, -c, --cpu,
--blkio-, --device-,
--pids-limit, --ulimit
--oom-kill-disable

Modification of Namespaces Yes Yes --ipc, --network, --pid,
--userns, --uts

Extension of Privileges Yes Yes --privileged mode,
--cap-add

Modification of Security Options Yes Yes --security-opt
Modification of Performance Restric-
tions

Yes Yes *iops, *bps

The proposed approach for monitoring on the container runtime layer offers
the possibility to capture a wide range of potentially malicious behaviour with
limited effort. Even if the lifecycle commands are rather logged for audit pur-
poses, the method is useful to get an overview of events in the environment,
especially if users are granted interactive access to the Docker CLI. As men-
tioned before, it is possible to roll out identical rule sets to monitor the runtime
layer to a large number of container hosts in a containerized environment with-
out having to know about the workloads running inside the containers. However,
one should think about how to classify the severity of each event3, since pausing
a container is considered much less critical than starting a privileged container.

7 Discussion

Our research has shown that there are a number of limitations in the tools
used that should not go unmentioned. For example, Falco does not support DoS
detection because the rules used do not support the frequency of occurrence of
an event. Here one would wish for a threshold value to be adjustable in the rules,
so that notifications take place only if an event occurred n times during a specific
time interval.

Falco’s rules also do not allow the integration of load sensors, so that for
example a notification could be given when certain load thresholds have been
reached, or these could be used as a decision-making assistance for alleged false
positives.

3 Currently Falco provides the priority categories emergency, alert, critical, error,
warning, notice, informational, debug.
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It has been shown that profound knowledge about the properties and require-
ments of a containerized application is almost mandatory for the creation of
rules. Although there are certainly generalizable rules, the example of the web
application (see Sect. 6.2) shows that applications regularly have a different loca-
tions where they keep their data. Other individual properties include the name
of the service to be run in the container, so that all other applications can be
blocked, or which network connections are necessary. Depending on the envi-
ronment, this may not be a concern, for example, if an environment consists of
a large number of containers, all of which are started from the same image. In
this case, the appropriate rule set can be applied to all of the running containers
and be maintained on based on the shared image. In more individual environ-
ments, or environments in which users may use containers for interactive work,
the configuration effort is significantly higher.

The white/black list approach also has limitations, i.e. when an attacker
knows the content of the lists and can prepare himself accordingly. Especially
file name-based approaches can be bypassed by renaming files easily.

However, the tools used are characterized by the fact that they can also
be applied to other container runtimes. Although we have only tested the use
with Docker, rules for monitoring containers can be applied to containers started
with other runtimes. For the monitoring of the Runtime CLI a higher adaptation
effort is necessary, as the rules utilized where Docker CLI specific.

Table 5. Sysdig overhead for various statistics of sysbench-fileio benchmark in com-
parison to baseline run without Sysdig.

Sysbench-fileio statistic Sysdig with full capture Sysdig with filter

Operations performed (total) 1,81% 0,00%

Requests/sec executed 4,72% 2,97%

Total number of events 4,72% 2,97%

Total time taken by event execution 5,48% 0,67%

Per-request statistics: “avg” in ms 10,53% 3,51%

Average Overhead 5,45% 2,02%

7.1 Performance Evaluation

To determine the performance overhead caused by security monitoring, we made
use of a traditional benchmark tool: Sysbench [19], of which we created a con-
tainerized version. To exclude buffering effects when using the filesystem-level
benchmark fileio included with Sysbench, we used it with a test file four times
the amount of the available memory. During each 5 min run of the benchmark a
corresponding capture file was created with Sysdig and afterwards several per-
formance indicators of the sysbench-fileio run were evaluated.



Rule-Based Security Monitoring of Containerized Environments 83

In order to be able to rate how high the benefit of using filters is a) a full
capture and b) a capture with an active filter was created, which limited the
recording to the open() system call, as one would use if one only wanted to log
file accesses of a container. As baseline served measurements of the sysbench-
fileio without activated Sysdig capturing and all benchmark runs (deactivated
Sysdig, Sysdig with full capture, Sysdig with filter) were averaged over three runs
each. All runs were performed in the same virtual test environment described in
Sect. 6.1.

It was observed that over several measurements the average overhead in case
a) (full capture) was 5,45%, whereas the use of the filter reduced the overhead
in case b) to 2,02%. The use of the filter also affected the size of the capture
file. In b) only 270 events needed to be recorded, resulting in a 1,2 MB trace
file, whereas the unfiltered case a) logged 3.270.522 events in a 270 MB file on
average. This implies, that if possible, filters should be activated for data and
overhead reduction. The overhead, broken down by individual sysbench-fileio
statistic, is shown in Table 5.

8 Conclusions

The investigated approach has shown the general applicability of a rule-based
approach for monitoring containerized environments. The focus was on the mon-
itoring of workloads running in containers and of the interfaces of the Docker
Container Runtime. It has been shown that the approach can detect a variety of
undesired behaviour with a low performance overhead. In addition, the creation
of an appropriate set of rules, especially for the monitoring of commands sent
via the CLI, can be done with moderate effort.

However, when monitoring containerized workloads, automated rule creation
should be performed, since the requirements typically differ from workload to
workload, i.e. in most cases they can only be generalized on a per-image basis.
In cases where it is not possible to create a corresponding set of rules, one should
consider the use of a behaviour monitor that compares the current behaviour
against a stored reference model. However, this approach would also require
a certain amount of time for the creation of a behaviour model, so that this
approach cannot be applied directly as well.

Scenarios that are not yet covered should also be considered, e.g. if commands
such as nsenter or the associated system call setns) can be used to execute
commands within a running container by bypassing docker exec since its use is
monitored.

It is planned that future work will address security monitoring of distributed
workloads, where shared workloads strongly interact across host boundaries.
Sysdig and Falco already offer corresponding interfaces that cover container
schedulers like Kubernetes. We are also interested in further automating rule
generation and introducing incident mitigation beyond notification.
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Abstract. Data under open licenses and in reusable formats, often referred
to as “open data”, is increasingly being made accessible by both public and
private actors. Government institutions, municipalities, private companies and
entrepreneurs are among the stakeholders either having visions of new open data-
based services, or just looking for new ideas on potential innovations based on
open data. It is, however, in both cases, often unclear to the service developers
how the open data actually can be utilized. A main reason is that the data needs to
be retrieved from multiple sources, understood, quality checked and processed.
While gaining insights on possible services that can be created on the top of open
data, a service developer has to undergo an iterative “trying and failing” exercise
of service prototyping. In order to be practically feasible, such a process needs to
be agile and efficient. Open data from the transport sector is in this study particu-
larly focused on and used as a case. The open transport data are characterized by
many challenges common for open data in general, but also a few specific ones.
One of those challenges is the need for combining (often real-time) data from
rather many sources in order to create a new service. This paper is an extension
of our earlier research, which introduced a novel data-centric and agile approach
to early service prototyping based on open transport data. In particular, we present
a refinement of the initial approach and its evaluation in a significantly extended
trial and discussion about the lessons learned from it.

Keywords: Service prototyping · Open transport data · DevOps

1 Introduction

During the past several years, increasingly many private and public actors all over the
world have been actively releasing data under open licenses and often in reusable for-
mats [2]. The goal is to foster creation of new and innovative digital services. The
innovation and economic potential is becoming more and more visible, as documented
by a European study [4], thus attracting governments, municipalities, companies and
entrepreneurs to take part in the ecosystem of the data provision and creation of inno-
vations on the top of open data. Once the data are released and announced through a
public catalogue, a developer needs to understand its format and content, evaluate its
quality and then (at least partially) create a new service through several iterations. This
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process is necessary in order to try out the ideas and evaluate feasibility of the envi-
sioned service. Such a creative process of “trying and failing” to develop new services
needs to be highly agile and efficient. The process is however slowed down since the
data openly available online frequently consist of rather unstructured information [10],
which makes service prototyping difficult and expensive [16]. It is also a challenge that
the quality of the dataset descriptions and the meta data announced might not be good
enough to give the developer with the information needed [3,12].

This paper is an extension of our earlier research [6], which introduced a novel
data-centric and agile approach to early service prototyping based on open transport
data. In particular, we present a refinement of the initial approach and its evaluation in
a significantly extended trial and discussion about the lessons learned from it

The approach is novel in the sense that it is data-centric and focuses on how to
develop an idea into a prototype rather than how to implement a solution. The approach
is motivated by the identified challenges as well as experiences gained from the “Open
Transport Data”1 (OTD) research and innovation project, as well as from applying the
data which has been harvested into an open catalogue by the project. We exemplify our
approach on an open transport data service and discuss the lessons learned so far. We
also outline a roadmap for the forthcoming research towards a comprehensive approach
for agile prototyping of open transport data-based services.

Section 2 discusses the challenges related to the use of open data. Section 3 gives
an overview of the approach. Section 4 reports on trial of the approach conducted by
prototyping a service based on real-life open transport data, and Sect. 5 summarizes
the related works, the lessons learned in this trial, and discusses the threats to validity
of the results. We also propose the priorities for future work which aims to provide a
comprehensive approach for agile prototyping of open transport data-based services.

The work builds upon and is an extension of our earlier research [6]. Parts of this
paper are therefore re-used from the publication of the previous research, in order to
ensure completeness and readability of this publication. Main extensions of this paper
include: (i) a description of how we identified the main challenges that a method for
service prototyping based on open data should address (Sect. 2), (ii) an extension of
the state of the art (see Sect. 5), (iii) a refinement of the initial approach (see Sect. 3),
(iv) a significant extension of the trial (see Sect. 4), and (v) a detailed elaboration of the
experiences and lessons learned from the trial (see Sect. 5).

2 Challenges

We have through the above mentioned OTD project, which gathers some of the major
public and private actors from the transport sector in Norway, addressed service pro-
totyping in the context of open data from the transport domain. The project has con-
ducted several use cases, and the insights from those were used to design a survey and
semi-structured interviews, in order to identify the main challenges that a method for
service prototyping should address. The survey was distributed through several chan-
nels, the main of which were the network members of “Intelligent Transport Systems”

1 https://www.sintef.no/en/open-transport-data/.

https://www.sintef.no/en/open-transport-data/
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(ITS) Norway (gathering organisations and companies in the transport sector); a meetup
group on open data in Oslo region in Norway; participants at hackathons; and the net-
works of governmental organisations providing open data, among others the Norwegian
Public Road Administration and the Norwegian Mapping Authority. Google forms were
used for all channels except in interaction with the participants at hackathons. During
the hackatons, the respondents received a paper version of the survey.

To get more in-depth details on the use of open data and related challenges, the
overall questions asked that triggered the responses were:

1. What is your background with respect to education?
2. What is your experience with use of open data?
3. Which data have you used?
4. Which data have you searched for, but not been able to find?
5. What are the most important problems you have experienced regarding use of open

data?
6. How has the use of open data influenced product and functionality ideas?

In addition, the researchers also carried out semi structured interviews with partic-
ipants at the hackathons to enable the respondents to provide additional information.
During the interviews, one researcher asked the questions while another one observed,
recorded the interview and addressed missing issues. Some of the interviews were also
carried out via telephone upon agreements at the hackathons.

The following list includes the main challenges that have been identified, i.e., the
challenges that a developer faces when prototyping services on the top of open data:

• Discovery of relevant datasets through metadata search and visualisation of datasets
to better understand the data content. Public catalogues and data portals are still not
comprehensive and metadata for describing the contents are only to a limited degree
standardized and available.

• Understanding and using varying application programming interfaces (APIs) for
data retrieval. Even though API description standards exist (e.g., OpenAPI), they
are not commonly used, and APIs are not documented in a standardised way.

• Combining multiple sources of open data, in order to create value added services.
Travel planners will for example need information on addresses, stop points, route
plans and position data from several transport service operators, maps, etc.

• Accessing real-time data from IoT and sensors. The amount of such data will
increase, and new services will use real-time data streams on, for example, the con-
ditions at locations and the movement of people, vehicles and goods.

• Handling of large volumes of data, which is possibly unstructured.
• Handling proprietary data formats. For example, standards exist for data on public

transport, but for other transport types (e.g., car sharing, city bikes, ride sharing)
there are no standards, and proprietary data formats are used.

• Understanding the data. In many cases, domain knowledge is required in order to
sufficiently understand the data contents. This is a challenge due to lack of docu-
mentation and metadata, as described above.

Clearly, these characteristics impose requirements to the approach followed for pro-
totyping the services based on open transport data. Our goal is that a service developer
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(e.g., an entrepreneur with limited programming background) can incrementally explore
the possibilities and ideas while creating a service prototype. To that end, the approach
has to be highly iterative, comprehensible to non-expert developers and cost-efficient.
To the best of our knowledge regarding state of the art (summarized in Sect. 3), there
is currently no approach which sufficiently meets the above mentioned needs and chal-
lenges. In particular, the existing approaches fail to be sufficiently agile, scalable and
comprehensible in order to fit for gradual prototyping through consolidation of many
data sources through multiple iterations.

3 Overview of the Approach

In this section we introduce our approach for the iterative prototyping of services based
on open data. We propose a seven-step prototyping process for the development of
services based on open transport data, as depicted in Fig. 1.

Fig. 1. Data oriented early prototyping process [6].

In the following we describe the details of each of the steps depicted in Figure 1.
Some of the steps have been extended with additional information compared to [6].

1. Search Data: The developer needs to identify the data sources and datasets which
the forthcoming prototyping iteration will be based upon. Catalogue, data reposito-
ries, and search engines can help finding the relevant datasets. When datasets are
found, the developer wants to quickly judge the relevance of the dataset. However,
this task can be tedious as datasets typically lack proper description and meta-data
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and since open data is typically released with terminologies and structures dependent
on the domain they originate from. Due to its open nature, the data is not prepared
for a specific application and can be used in many different contexts which were
not necessarily anticipated at release time. In addition, as stated in [13]: “it can be
difficult to determine not only the source of the dataset that has the information that
you are looking for, but also the veracity or provenance of that information”.

2. Access and Understand Data: Once found, the data needs to be accessed and
understood by the developers. For this, they typically need to manipulate and test
the data. Indeed, in many cases, only looking at the documentation of the data (when
available) is not enough, as documentation typically fails to represent aspects such
as the missing data, data accuracy, etc. This process consists first in understand-
ing how the identified datasets or data streams can be accessed, second in actually
accessing the data, and finally in looking at different samples of the data in order
to properly understand its contents, structure, etc. These activities are often done
in an ad-hoc manner as the APIs to retrieve data are typically not following API
description standards.

3. Identify Added Value: From this stage, the developer can identify the potential
usage area for the data that will enable the creation of new added value services. This
step requires looking into the details of the data in order to understand its contents
and to identify which parts of it are relevant for our service. It is important at this
stage to evaluate several samples of data in order to establish the overall quality of
the data - e.g., data accuracy and the missing data.

4. Specify Capabilities: At this stage, the developer can start specifying the features
that will be offered by the prototype. This activity will be affected by the availability
of data and its identified added value.

5. Prepare Data: Once the capabilities of the service are identified, and before its
implementation, the developers need to manage and prepare the data for further anal-
ysis and processing as part of the service business logic. This includes the following
activities: data characterization, data organization, data filtering, restructuring and
compression. At the end of this stage, the data should be ready to be consumed by
the business logic of the service. In addition, it should fit its needs and requirements.

6. Prototype Service: This stage consists in the actual development, delivery and
deployment of a prototype that implements the business logic of the service specified
at step 4.

7. Identify Missing Data: At the end of a prototyping iteration, once a new set of
features have been added, the developer identifies which features should be added to
the prototype in the forthcoming iteration, as well as which data are required.

In case additional data is required to deliver the service with the desired capabilities,
developers can enter a new iteration of the prototyping process. If not, the prototype
can then be used in other stages of the product life cycle such as code and deployment
stages, for instance when part of its implementation needs to be re-developed to meet
the production requirements (e.g., specific framework needs to be used), or to the testing
stage.
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4 Trial of the Approach

We tried out our approach in the context of the OTD project, where we developed a
service aiming at (i) supporting user (the citizens) in planning public transport trips in
Oslo, as well as (ii) counting all the ongoing deviations within the public transport (e.g.,
tram delays, problems with a bus). More precisely, this service first loads a map of Oslo
and displays all the stops in the city. A user can then plan a travel by clicking on two
of these stops. A route, including details about the stops, is then proposed to the user
as a path on the map (see Fig. 2). In addition, the service displays statistics about the
number of deviations in the city. The scope of the trial were open data available for the
public transportation within the city of Oslo, Norway.

Fig. 2. A Simple Travel Planner as a trial of the approach.

During the trial we instantiated all the steps of the approach presented in Sect. 3. In
the following, as described in [6], we recall the activities we performed in each of the
steps.

Search Data. We first searched for data in the Open Transport Data CKAN catalogue2

(see Fig. 3) using “transport” and “Oslo” as keywords but we could not find relevant
data. By contrast, when using the “Ruter” keyword (Ruter is the public transport author-
ity for Oslo), we found the API of a “route planning” service.

Access and Understand Data. We first selected the Ruter Sirisx API3 which allowed
us to retrieve, for one stop (i.e., buses, tram, and subway stops), the list of ongoing

2 http://78.91.98.234:5000/.
3 https://sirisx.ruter.no.

http://78.91.98.234:5000/
https://sirisx.ruter.no
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Fig. 3. Open Transport Data CKAN [6].

deviations in all the lines using this stop. It is exposed as a REST API and can be
accessed using classical tools such as “curl” or a “REST console”. However, the API
is little documented and we identified that we could not use exactly this service as it
requires a JSON object containing the identifier of the stop of interest, as input. We
thus searched again in the catalogue for another API providing such information, and
we selected the Ruter Reise API4 as it provides details about all the public transportation
stops in Oslo, regardless of the transportation mode. We verified that the information
between the two services was matching semantically - i.e., we stored identifiers of a few
stops from the Ruter Reise API service and thereafter we called the Sirisx API using
these identifiers.

Identify Added Value and Specify Capabilities. We analyzed the data from both
the Ruter Reise and the Sirisx APIs. We could easily find the relevant information and
in general the data was accurate even though the textual description of a deviation was
sometimes incomplete or missing. Using these APIs we could retrieve and provide users
with live information about the deviations associated to one or several stops. We also
decided to retrieve and store this information on a regular basis to compute the average
number of deviations over a week in the whole city.

Prepare Data. We prepared the data in two ways. First, by filtering it to only manip-
ulate the part relevant for our service. Second, we prepared the data for further anal-
ysis. The data from the Reise API describing the stops was obtained in the form of a
JSON object stringified. Unfortunately, the JSON obtained was not properly format-
ted as it used single quotes instead of doubles. In addition, some Norwegian language

4 https://reisapi.ruter.no/help.

https://reisapi.ruter.no/help
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characters where not properly encoded. We thus implemented a mechanism to fix this
issue before transforming the string into a proper JSON object.

Prototype Service. We implemented our service using the Node-RED platform5, an
open source project by IBM that uses a visual dataflow programming model for building
applications and services. Using Node-RED, an application takes the form of a set of
nodes (i.e., software components) wired with links that are encapsulated in a flow. A
flow can easily be exposed as a service using specific Node-RED nodes. Thanks to the
large community behind Node-RED, a large set of nodes are available off-the-shelf and
for free, making it rather easy to implement new applications and services. We had to
implement specific nodes for accessing the two APIs and for computing the average
number of deviation over a week6. The final flow is depicted in Fig. 4.

Fig. 4. Data preparation using Node-RED [6].

Identify Missing Data. We did not find it necessary to implement this step in the trial,
as the prototype already covered the intended functionality.

5 Discussion and Related Work

This section briefly puts our work in the context of most essential related work in gen-
eral, namely Agile Software Development. This is followed by a detailed discussion of
the lessons learned from the trial, including how the specific steps relate to the related
work which is particularly relevant to them. Finally, an elaboration on threats to validity
and reliability, is provided.

5 https://nodered.org.
6 https://github.com/SINTEF-9012/OTD-components.

https://nodered.org
https://github.com/SINTEF-9012/OTD-components
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5.1 Related Work in General

The principle of iterative and incremental software development has already been advo-
cated for many years by the Agile Software Development (ASD) manifesto and its prin-
ciples. The ASD cycle [5] relies on the following six stages: plan, design, develop, test,
review and release. Our approach is inspired by the ASD methodology and aims to be
integrated as a part of the ASD process. It focuses on prototyping and aims to be used
in the plan stage where a prototype would be used to prove feasibility of the service
and to discuss future development activities. It could also be used in the design stage in
order to understand and discuss the features to be offered, as well as in the development
stage of the ASD process.

More recently, the DevOps principles are being widely adopted by the software
industry. DevOps advocates a set of software engineering best practices and tools, to
ensure Quality of Service whilst continuously evolving complex systems and foster
agility, rapid innovation cycles, and ease of use [8]. In particular, DevOps put a lot of
emphasis on automation and collaboration between development and operation activi-
ties with continuous feedback between Dev and Ops. The DevOps infinite loop consists
of the following stages: plan, code, test, deploy, operate, and monitor7. As for the Agile
methodology, our approach could take place as part of a DevOps process either in the
planning or coding stages.

In 2018, Gartner introduced DataOps in the Hype Cycle for Data Management8. At
the moment, DataOps, which is inspired by the DevOps movement, is still in its infancy.
It strives to speed the design, implementation, and production of data processing and
analytics applications. Similar to our approach, data is a first class concern in DataOps.
However, it is mainly focusing on big data applications.

5.2 Lessons Learned from the Trial

This section summarizes the challenges we faced during the trial and the lessons learned
with respect to each step of the approach.

Search Data. During our trial, we first observed that many catalogues of datasets (and
data sources) are available on the web through data portals, but it was difficult to make
sure that we were using the best candidate. Data portals leverage data catalogue systems
to store, publish and discover datasets. CKAN, DKAN, and Socrata are amongst the
most famous data catalogue systems used by data portals. CKAN9 is an open-source
data catalogue system that supports the publication, sharing, search and management of
datasets in a domain-independent way. CKAN exposes a powerful RESTful JSON API
to manage data catalogues. DKAN10 offers similar features but it is based on Drupal
whilst Socrata11 is a commercial platform. In the context of our Open Transport Data

7 Please note that the terminology and the number of stages change from one source to another.
8 https://www.gartner.com/en/newsroom/press-releases/2018-09-11-gartner-hype-cycle-for-

data-management-positions-three-technologies-in-the-innovation-trigger-phase-in-2018.
9 http://ckan.org.

10 https://getdkan.org.
11 http://socrata.com.

https://www.gartner.com/en/newsroom/press-releases/2018-09-11-gartner-hype-cycle-for-data-management-positions-three-technologies-in-the-innovation-trigger-phase-in-2018
https://www.gartner.com/en/newsroom/press-releases/2018-09-11-gartner-hype-cycle-for-data-management-positions-three-technologies-in-the-innovation-trigger-phase-in-2018
http://ckan.org
https://getdkan.org
http://socrata.com
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project, CKAN has been adopted, as it is the solution powering major data portals such
as the European data portal12. In terms of tooling, we observed that there may be a
need for a cross-catalogue search engine (i.e., an engine enabling searching on multiple
catalogues).

In addition, as already presented in Sect. 3, searching the most relevant datasets or
data sources for building a specific service is challenging due to the lack of metadata
about (i) the datasets (or data sources) and (ii) the semantic overlaps between different
datasets (or data sources). For example, it would be interesting to link datasets by means
of automatic annotations with keywords that would form a domain specific ontology [9].

Similarly, once we selected our datasets or data sources, it was impossible to assess
if these were the best candidates. However, in this case, it is worth noting that our agile
approach, where we can start over again after trying to use the dataset, helps assessing
the quality and value of different data sources.

Understand Data and Identify Value. Identifying the value of the datasets is also
challenging as it can be difficult to evaluate the quality of the data. For instance, when
dealing with large datasets or data streams, it is difficult to identify if some data is
missing. As an example, in a large dataset with data recorded every second for a few
months, it might be difficult to check if a few days or hours of recordings are miss-
ing. More generally, information about the reliability of a data source is typically not
provided.

Prepare Data. The preparation of the data does not necessarily involve complicated
tasks. Some tools and methods facilitating manipulation of open data do exist. For
instance, the Linked Data Stack [1] is a software stack consisting of a number of loosely
coupled tools, each capable of performing certain sets of operations on linked data, such
as data extraction, storage, querying, linking, classification, and search. The LinDA
project [7] developed a set of tools for linked data publishing, packaged into the LinDA
Workbench. In the cases of both Linked Data Stack and LinDA, the complexity of pro-
visioning resources and managing the web application rests on the service developer
who must install the tools and maintain the infrastructure. The COMSODE project [14]
provided a set of software tools and methodology for open data processing and publish-
ing. COSMODE is not available as an online service, but rather as a set of tools that
need to be individually managed, which implies additional burden on the developer.
Datalift [17] is a software framework for linked data publishing. It is considered as an
“expert tool” [17]. For example, it comes with no GUI to support data publishers in the
data publication process. The Linked Data AppStore [15] is a Software-as-a-Service
platform prototype for data integration on the web. Common for the mentioned tools
and approaches is that they either only partially cover the prototyping process, or that
they are too extensive and therefore unfit for a DevOps-driven agile approach. After
a few steps of manipulation, it can be difficult to actually understand the status of the
data being manipulated (i.e., structure, format, or even the actual content of the data).
In such a case, tools providing a means to visualize the data after each manipulation,
would be highly beneficial. This applies not only to datasets but also to data streams.
12 https://www.europeandataportal.eu.

https://www.europeandataportal.eu
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Prototype Service. Our approach is meant to be used during the prototyping phase of
the overall life-cycle management of a service. However, it appears that this prototyping
phase, by itself, would benefit from using classical tools for the continuous and agile
development and operation of services. For instance, once a prototype has been imple-
mented, it typically has to be deployed and tested in an sandbox environment. Similarly,
more advanced prototypes could undergo a canary testing - i.e., routing a subset of users
or requests to the prototype. A deep analysis of how our approach fits within the main
Agile and DevOps processes, is required.

Moreover, the migration from a prototype to a service in production is challenging.
In particular, the service will most likely need to be re-implemented using tools, lan-
guages, and frameworks adapted for production. For instance, a service that consumes
data streams will rely on a stream processing framework. Such frameworks are typically
designed for continuously processing data in real-time. The most prominent stream pro-
cessing frameworks such as Apache Storm13, Apache Flink14, Heron [11] and Apache
Spark15, usually rely on the concepts of: data sources (i.e., the entity producing the
data), events (i.e., the abstractions that encapsulate the data from the data source), data
streams (i.e., sequences of events), processing components (i.e., the entities responsible
for actually performing operations on the data streams), and data flows (i.e., orchestra-
tions/topologies of data streams and processing components). Even though prototyp-
ing platforms such as Node-RED, to some extent, share common concepts with these
frameworks, the migration from one to another is not straightforward. To the best of our
knowledge, there are no tools supporting such migration. This applies not only to the
implementation of the service itself but also to the deployment, installation and config-
uration of the framework. For instance, in order to parallelize and distribute the process-
ing activity, processing components and data streams are often executed on a cluster of
machines managed by a coordination platform such as Zookeeper16 or YARN17. This
also applies for classical batch processing frameworks such as Hadoop18.

5.3 Threats to Validity and Reliability

The validity of the results depends to a large extent on how well the threats to validity
and reliability have been handled. This section discusses the essential aspects of such
threats in our context. In the original study [6], we argued that several threats to valid-
ity and reliability were present. Majority of those threats also apply to this research,
although the evaluation has been more comprehensive. In fact, the refinement of the
approach and the extended evaluation have brought additional arguments regarding the
presence of the validity threats. However, our recent results and extensions of the pre-
vious research have also partially addressed some of the weaknesses which were iden-
tified during the original study.

13 http://storm.apache.org.
14 https://flink.apache.org.
15 https://spark.apache.org.
16 https://zookeeper.apache.org.
17 https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.
18 https://hadoop.apache.org.
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In terms of validity, our trial is only to a limited degree representative for the con-
texts intended to be within the scope of our approach. The service prototyped has a spe-
cific, rather limited, functionality based on few data sets and involving only fictitious
end-users. In a realistic setting, the functionality may have been far more comprehen-
sive, relying on several larger, more different and distributed data sets. The quality of
the data sets may also be at widely different levels. In addition, the number of the end
users and the frequency of their requests may be far higher then what was the case in
our trial – this may have impacted scalability and performance of the solution. None
of these properties of the context were present in our trial, hence they have not been
tested. A realistic setting would also involve prototyping and even integration of several
services, thus introducing additional complexity that we did not cover in our evaluation.

The trial has, however, given strong indications of feasibility of the approach. No
particular customizations of the approach (once the refined version was proposed and
ready for evaluation) were needed for the trial. Thus, we have reason to believe that it
should be possible to reapply our approach on new services.

Reliability is concerned with demonstrating that the empirical research can be
repeated with the same results. Of course, a trial like the one we have conducted can
not give solid repeatable evidence. There are several contextual factors influencing what
happens, particularly the choices made by the researchers during the service develop-
ment. As our main goal has been to propose a refined version of the approach and test
its feasibility through the trial, performance evaluation of the approach itself was not
addressed. Ideally, we should have exposes the method to several teams aiming to pro-
totype both the same service as well as other services, under comparable and controlled
conditions. Such a setting would provide more relevant evidence for reliability of the
results.

It is, in terms of evaluation with respect to reliability, also a weakness that the
researchers who tried out the approach also participated in design of the approach. As
such, it is also a threat to reliability of the evaluation results, as we cannot know to what
degree another service developer would have obtained the same results.

Hence, we do need to further evaluate the approach in more realistic settings. There
is also a need for a baseline for comparing this approach with the alternative ones, in
order to assess its characteristics such as usability, usefulness and cost-effectiveness.
It should be a part of the future work. Further empirical evaluation is also needed for
assessing scalability of our approach with respect to complexity and size of the services
to be developed.

Overall, we have drawn useful experiences from developing and instantiating the
approach in the example. Although the mentioned threats to validity and reliability are
present in the study, we argue that the results indicate feasibility and suggest strengths
and weaknesses of the approach.

6 Conclusions

This paper is an extension of our previous research [6] where an initial approach to early
and continuous service prototyping based on open data, was proposed. The approach
has been based on a the needs identified throughout the “Open Transport Data” research
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and innovation project, and in particular the challenges identified through a survey and
interviews. We have tried out feasibility of the approach on an open transport data ser-
vice, and elaborated in detail on the results and the experiences. Main contributions
of this paper include: refinement of the initial approach and refinement of the state of
the art. Moreover, the trial has been significantly extended and presented in detail. We
also provide a detailed elaboration of the experiences and lessons learned from the trial.
In this paper we present an agile and data-centric approach for the early prototyping
of services. The results of our feasibility study indicate the benefits and drawbacks of
the approach. In particular, as main benefit, we argue that it fosters a “try and fail”
development process where developers implementing services on top of open data can
play, test, and understand the data while implementing a service. In future stage we will
investigate how the approach could be seamlessly integrated in the overall development
and operation process of a service.

Acknowledgement. This work has been funded by the Open Transport Data Project under Nor-
wegian Research Council grant no. 257153, as well as by the H2020 programme under grant
agreement no 780351 (ENACT).
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14. Hanečák, P., Krchnavý, S.I.H.: COMSODE publication platform - open data node - final.
Technical report, July 2015

15. Roman, D., et al.: The linked data AppStore. In: Prasath, R., O’Reilly, P., Kathirvalavakumar,
T. (eds.) MIKE 2014. LNCS (LNAI), vol. 8891, pp. 382–396. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-13817-6_37

16. Rusu, O., et al.: Converting unstructured and semi-structured data into knowledge. In: 2013
11th Roedunet International Conference (RoEduNet), pp. 1–4. IEEE (2013)

17. Scharffe, F., et al.: Enabling linked data publication with the Datalift platform. In: AAAI
Workshop on Semantic Cities (2012)

https://ai.googleblog.com/2017/01/facilitating-discovery-of-public.html
https://ai.googleblog.com/2017/01/facilitating-discovery-of-public.html
https://doi.org/10.1007/978-3-319-13817-6_37
https://doi.org/10.1007/978-3-319-13817-6_37


True Service-Oriented Metamodeling
Architecture

Michael Sobolewski1,2(&)

1 Air Force Research Laboratory, WPAFB, Dayton, OH 45433, USA
sobol@sorcersoft.org

2 Polish Japanese Academy of IT, 02-008 Warsaw, Poland

Abstract. True service-oriented metamodeling architecture provides a set of
guidelines and the Service-oriented Mogramming Language (SML) for struc-
turing and expressing of service specifications. SML is an executable language
in the SORCER platform based on service abstraction (everything is a service)
and three pillars of service-orientation: contextion (context awareness), multi-
fidelity, and multityping. Contextion is related to parametric polymorphism,
multifidelity to ad hoc polymorphism, and multityping is a form of net-centric
type polymorphism. SML allows for defining complex polymorphic services
that can express, reconfigure, and morph service-oriented processes at runtime.
In this paper the metaprocess modeling architecture applicable to service-
orientation is presented with five types of service-oriented processes. Its runtime
environment is introduced with the focus on actualization of emergent service
processes expressed in SML with the corresponding Service Virtual Machine
(SVM).

Keywords: True service orientation � Contextion � Multifidelities �
Multityping � Service Mogramming Language (SML) � Emergent systems �
SORCER

1 Introduction

Service-oriented architecture (SOA) emerged as an approach to combat complexity and
challenges of large monolithic applications by offering cooperations of replaceable
functionalities by remote/local component services with one another at runtime, as long
as the semantics of the component service is the same. However, despite many efforts,
there is a lack of good consensus on semantics of a service and how to do true SOA
well. The true SOA architecture should provide the clear answer to the question: How a
service consumer can consume and combine some functionality from service providers,
while it doesn’t know where those service providers are or even how to communicate
with them?

In service-oriented mogramming - modeling or programming, or both - three types
of services are distinguished: operation services, and two types of request services. An
operation service, in short opservice, invokes a service provider operation. An ele-
mentary request service asks a service provider for output data given input data.
A combined request service asks cooperation of service providers for output data and
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D. Ferguson et al. (Eds.): CLOSER 2019, CCIS 1218, pp. 101–132, 2020.
https://doi.org/10.1007/978-3-030-49432-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49432-2_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49432-2_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49432-2_6&amp;domain=pdf
https://doi.org/10.1007/978-3-030-49432-2_6


utilizes obtained from multiple service providers output data. A service consumer
utilizes output data of aggregated request services. The end user that creates request
services and utilizes the actualized service partnership becomes the coproducer and the
consumer of created service cooperation in the network. Software developers develop
service provider provisioned in the network and end users develop service partnerships.

A compute service is the work performed in which a service provider (one that
serves) exerts acquired abilities to execute a computation. The true compute service
needs the computation and net-centric service providers to be expressed and executed
under condition that service consumers should never communicate directly to service
providers. The combined request service realized by opservices represents the dynamic
partnership of service providers in the network. In contrast the elementary request
service represents the opservice of the selected provider in the network.

Many people think they are doing or talking about SOA, but most of the time they
are really doing point-to-point integration projects with APIs, web services, or even just
point-to-point XML (REST). The reason why this approach is deficient is because
service consumers should never communicate directly to service providers. First, the
main concept of SOA is that we want to deal with frequent and unpredictable change
by constructing service abstractions and an architecture that loosely-couples the pro-
viders of capability from the consumers of capability. It is not possible to have direct
reliable communication if variability exists in the network and provided service
capabilities evolve over time. Second, if we are relying on black-box middleware and
often proprietary technology to manage service communication differences, it simply
shifts all the complexity and work from the endpoints to an increasingly more complex,
expensive, and brittle middle point. Reworked middleware, what often is done and
named as SOA, is not the solution for a dynamic, net-centric communication and
architecture.

Multidisciplinary Analysis and Design Optimization (MADO) is a domain of
research that studies the application of numerical analysis and optimization techniques
for the design of engineering systems-of-systems involving multiple coupled domains
and multiple evolving disciplines. The formulation of MADO problems has become
increasingly complex as the number of engineering disciplines and design variables
included in typical studies has grown from a few dozen to thousands when applying
high-fidelity physics-based modeling early in the design process [6]. Therefore, MADO
is an appropriate domain for studying real-world service-oriented architectures and
systems.

This is achieved by the use of reference architectures and their ability to place
information views on multidisciplinary data and integration of heterogeneous tools,
applications, and utilities used frequently by distributed engineering teams. There are
several trends that are forcing system architectures to evolve due to complexity of
engineering problems being solved presently [14]. Users expect a rich, interactive and
dynamic user experience on a wide variety of friendly user agents and highly modular
and dynamic systems. Systems must be highly scalable, highly available and run
locally or in the network, or both. Organizations often want to frequently roll out
updates, even multiple times a day. Consequently, it’s no longer adequate to develop
simple, monolithic applications with statically connected modules. When the dynamic
system changes frequently the static user agent cannot catch-up with the backend
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changes, so it becomes obsolete in evolving and complex highly dynamic MADO
systems. In a dynamic system when its backend is morphing constantly to emergent
solution [1], the user agent has to support emergent nature of its backend. An emergent
system means net-centric to refer to continuously evolving complex community of
people, devices, information and services interconnected by a communication network
to achieve optimal benefit of resources and better synchronization of flowback events
and their consequences to the users. An emergent system means also service oriented
(SO) and scalable with multiple computational fidelities of underlying services so the
communication network of services can be scaled up and down dynamically, from a
single computer to a large number of computers with relevant computational fidelities
[15, 16].

Top-down and bottom-up problem solving describes two different methods of
reasoning: working at the top is considered strategic and declarative, while working at
the bottom is tactical and imperative. How a given situation is actually perceived and
processed will vary with the person, experience, process expression and actualization
chosen. However, the approach is to do whatever is best for managing complexity of
the solution by a combination of programming paradigms in designing processes.
There is no universal programming paradigm that works well for all situations. Dif-
ferent paradigms are more applicable to different classes of problems and solutions.
One should always carefully choose the right paradigm to match the particular sub-
problem, or component service at hand. Programming paradigms are not language-
specific; therefore, basic paradigms should be available in a service-oriented language
as well.

An algorithm is a process expression for solving a problem in the form of a self-
contained step-by-step set of statements to be performed with an explicit control flow
defined. Statements often refer to a subroutine as a sequence of instructions designed to
perform a frequently used task within an algorithm. The emphasis on an explicit control
flow distinguishes an imperative programming language [9] from a declarative pro-
gramming language.

In declarative programming a process is expressed by the logic of computation
without describing its control flow. In particular, the logic of computation in functional
programming is defined by a function composition. The result of execution of a
function composition depends only on inputs and the function composition. There is no
a shared state that the execution of function composition depends on. A functional
program is stateless but imperative programs usually take advantages of a shared state
in an executing algorithm.

Object-oriented programming is a convenience and ability to reason about imple-
mented object operations as subroutines, called methods, with a shared state repre-
sented by instance and class variables encapsulated in objects. Being able to hide
details of subroutines and their data structures can help reason about the logic of object
cooperation such that each object in cooperation manages its own state by own
implementation of its subroutines (methods).

Service semantics can be declarative, imperative, or object-oriented depending how
multi-machine subroutines, corresponding to executable codes, can be combined into
service providers in the network. Therefore, a blend of declarative, imperative, and
object-oriented programming should be supported by SO programming languages
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intended for solving complex
problems and building hetero-
geneous distributed SO systems.

Each programming para-
digm introduces distinguishing
principles of its programming
model but also depends on its
lower level paradigm. The pil-
lars of SO programming intro-
duced in this paper are layered
on pillars of object-orientated,
procedural, and functional pro-
gramming as illustrated in
Fig. 1. The pillars of SO pro-
gramming are focused on con-
text awareness of services,
management of service multifi-
delities, and multitype manage-
ment of services for registering,
looking up, and referencing
both a single service provider
and cooperation of service pro-
viders. Each paradigm abstrac-
tion based on: functions,
procedures, objects, and ser-
vices is the foundation of cor-
responding pillars. The ceilings:
FP, PP, OOP, and SOM corre-
spond to functional, procedural, object-oriented programming, and service-oriented
mogramming, respectively. SO mogramming is not a replacement for any program-
ming paradigm, it just inherits programming styles from the layers below and com-
plements them with higher-level service abstractions.

Mogramming [4] that combines multiple programming paradigms uniformly [12].
A service mogram is an expression of cooperation of routines and models as com-
ponent services that in turn comprise of operation services, all represented in the
Service Mogramming Language (SML). Mogram exhibit hierarchically organized net-
centric executable codes represented by its operation services, a of the net-centric
service processor.

The Service-ORiented Computing EnviRonment (SORCER) [14, 19]) adheres to
the true SO architecture based on formalized service abstractions and the three pillars of
SO programming presented in Sect. 2. Evolution of the presented approach started with
the FIPER project [10] funded by NIST ($21.5 million) at the beginning of this mil-
lennium then continued at the SORCER/TTU Laboratory [19], and maturing for real
world aerospace applications at the Multidisciplinary Science and Technology Center,
AFRL/WPAFB [2, 4–7, 13].

Fig. 1. The service mogramming gate.
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The remainder of this paper is organized as follows: Sect. 2 relates to a service-
oriented conceptual framework called Meta-Service Facility (MSF); Sect. 3 describes
service semantics in SORCER; Sect. 4 gives introduction to SML; Sect. 5 illustrates
introduced concepts of SML with an example of multifidelity model; Sect. 6 describes
briefly the object-oriented platform of SORCER; then we conclude with the final
remarks and comments.

2 Meta-Service Facility (MSF)

The Meta-Object Facility (MOF) is the Object Management Group (OMG) standard for
object-oriented model-driven engineering [18]. Its purpose is to provide a type system
for entities in the CORBA (Common Object Request Broker Architecture) architecture
and a set of interfaces through which those types can be created and manipulated.
Similarly, the Meta-Service Facility (MSF) is a reference service-oriented methodology
that focuses on creating and exploiting service models, which are conceptual models of
all the topics related to specific structures of request services in SML. Hence, it
highlights and aims at abstract representations of the knowledge and activities that
govern a particular domain service, rather than the computing concepts in that domain.
Its purpose is to provide a type system and semantics for entities in the SORCER
(Service-Oriented Environment) architecture. MSF is a metamodel defined by the
Multifidelity Service System (MSS, defined in Sect. 2.1, 12) that specifies how the
SML model should conform to the conceptual MSF framework.

A computing service is the work performed in which a service provider (one that
serves) exerts acquired abilities to execute a computation. A service provider corre-
sponds to actualization of a request service. A single service provider actualizes ele-
mentary request service, but a combined request service is actualized by a cooperation
of service providers. Therefore, a request service may represent a process expression
realized by cooperation of service providers. In this Section, we assume that a math-
ematical function represents a request service to be actualized by a corresponding
actualization, executable code or a combination of executable codes. An elementary
request service is actualized by an executable code, but a combined request service
(function composition) is actualized by a combination of executable codes.

2.1 Multifidelity Function Systems

A function is a prescription that assigns to every entity of one set X an entity of another
(or the same) set Y what is declared by stating its domain X and codomain Y as follows:

f : X ! Y ð1Þ

such that exists a relation R � X � Y and each pair \x; f ðxÞ[ 2 R. A relation R is
called a realization of a function f. So, a function f is like a process f ¼ ðX; Y ;RÞ. Each
input x that is in the set X of inputs is paired with one output y in the set Y of outputs:
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y ¼ f ðxÞ ð2Þ

A function of two or more variables is considered to have a domain consisting of
ordered pairs or tuples of argument values. The arity of a relation R is the dimension of
the domain in the corresponding Cartesian product. A function of arity n thus has arity
nþ 1 considered as a relation.

A set F of interrelated multivariable functions is called a functional system FS

FS ¼ \X; Y ;F[ ð3Þ

with domain X and codomain Y, such that for each function fi 2 F, there exist a
realization Ri � Xn � Y where Xn is the Cartesian power of a set X.

A multifidelity function f

f ¼ \X; Y ;Rf ;mFif[ ð4Þ

is a mapping with multiple realizations mFif ¼ fRig; i ¼ 1; 2; . . .;m with a selected
realization Rf 2 mFif . A selected realization Rf is said to be a fidelity of function f .

Let’s denote a fidelity of a function f as fiðf Þ, then each input tuple x of X is paired
with one output tuple y of the set Y according to its fidelity fiðf Þ where n is the arity of
function f , provided ðx; f ðxÞÞ 2 fiðf Þ

y ¼ f ðx; fiðf ÞÞ ð5Þ

A multifidelity function f is a dynamic process f ¼ ðX; Y ; fiðf Þ;mFif Þ, with a sub-
stitutable fidelity fiðf Þ 2 mFif .

A fidelity substitution fp, called a projection in FS, is a mapping:

fp : F ! FR ð6Þ

where F is a set of multifidelity functions, FR is a set of all realizations of functions F
in FS, such that for each function f 2 F; fpðf Þ 2 mFif and fpðf Þ ¼ fiðf ÞÞ, for
mFif � FR � PðX � YÞ.

A fidelity morpher fm is a mapping that defines fidelities of functions in association
with the inputs and outputs of functions, as follows:

fm : F � X � Y ! FR ð7Þ

where for each f 2 F, and x 2 X and y 2 Y , fmðf ; x; f ðxÞÞ 2 mFif and mFif � FR.
A multifidelity function system is a triplet:

MFS ¼ \F;FP;FM[ ð8Þ

where F is a set of interrelated functions with a related set of fidelity projections FP and
a set a fidelity morphers FM. Realizations of functions F under fidelity management
defined by FP and FM are called functional multifidelities. Note that a single projection
fp 2 FP defines a realization of multifidelity functions F in MFS while a set of
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multiple fidelity projections for the same F is a metasystem – a system of projected
systems. A set FP of projections allows for a reconfiguration of MFS. A set of mor-
phers FM defines self-morphing of MFS based on runtime inputs and outputs inter-
preted by morphers applying accordingly fidelity projections FP.

Multifidelity functions are polymorphic functions. Multifidelity is a kind of ad hoc
polymorphism in which a polymorphic function can denote a number of distinct and
potentially heterogeneous realization (implementations) depending on the type of
arguments to which it is applied. The term ad hoc in this context refers to the fact that
this type of polymorphism is not a fundamental feature of the type system.

A total fidelity R0 of a multifidelity function f is a fidelity such that R0 2 mFif and
for each Ri 2 mFif ;Ri \ R0 � R0. If Ri \ R0 � Rj \ R0 for Ri 2 mFif and
Rj 2 mFif , then Ri is said to be lower fidelity than Rj or Rj is higher fidelity than Ri.
A total fidelity of function f can be considered as a realization of a total function f and
any lower fidelity as a realization of a partial function of function f . Lower fidelities of
a function f 2 F are often used when the exact domains of its realizations in mFif , are
not known or they are proper subsets of the domain R0.

Note that a fidelity of a multifidelity function is not related directly to a fuzzy
concept (like in fuzzy sets or rough sets) of which the membership boundaries of a set
Ri 2 mFif can vary considerably according to current context or conditions. Here
boundaries of all sets Ri are fixed once and for all fidelities. It means we are not
concerned with a vague or imprecise definition of function; we might have a precise
(analytic) realization as well. We can consider lower fidelities as good approximations
of R0 under some conditions. In such situation, a lower fidelity can be more beneficial,
“cheaper” to compute than a higher fidelity, while a higher fidelity is also available but
considered not preferred all the time due to, for example, time-consuming realization.

Let’s specialize a multifidelity process f in MFS defined by a realization Rf (4) as a
multifidelity functionality or subroutine fi fð Þ ¼ Rf (function, procedure, method, ser-
vice). Let’s also specialize both a domain and a codomain to a set C of all tuples of
elements from sets X and Y. A tuple in C is called a tuple context of the set C of all tuple
contexts. If \x; f xð Þ[ 2 R; x 2 X; f ðxÞ 2 Y and X � C and Y � C then the function
f such that:

f : C ! C ð9Þ

is called context aware or contextion function (in short, contextion). Later we consider
all request services as contextions, unless otherwise stated.

Depending on the programming semantics of function f 2 F, defined by a pro-
gramming subroutine, the multifidelity function system MFS with the applied pillars of
programming (see Fig. 1) can be specialized as functional, procedural, object-oriented,
service-oriented, or a programming system with any combination of programming
paradigms needed. Despite many efforts, there is a lack of good consensus on what is
the proper semantic of true service and how to do true SOA well. In the following
Subsection a conceptual multifidelity service-oriented system is proposed with multi-
fidelities and context awareness as two pillars of service orientation. All pillars are
revisited later with the third one, multityping, defined in Sect. 3.
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2.2 Multifidelity Service Systems

Service-oriented architecture (SOA) is an architectural approach in which applications
make use of services available in the network. It emerged as the approach to combat
complexity and challenges of large monolithic applications by offering cooperation of
replaceable local/remote component services with one another at runtime, as long as the
semantics of the component service is the same. A service network is a structure that
brings together local/remote service providers to deliver service cooperation repre-
sented by the net-centric request services – expressions of the hierarchically organized
cooperations of service providers. The net-centricity of request services and replace-
ability of local/remote service providers is defined in SML using multitypes of provider
services also called operation services, in short opservices, as explained in Sect. 3. In a
conceptual multifidelity service system MSS, the semantics of local/remote service
providers (delivering executable codes) is generalized to replaceable multifidelity
realizations of service functions – service contextions. Semantically request services are
like cooperation activities but opservices like service provider actions.

In a multifidelity function system MFS system defined in (8) both a domain and a
codomain of functions are abstracted to a set C of tuple contexts. However, in MSS data
used by request services is embedded in service contexts – collections of hierarchically
organized attributed tuples, a kind of service taxonomy or ontology. Combined request
services use an evolving shared context while executing cooperative problem solving
and return the result service context that contains outputs of all participating services.
The design principle for aggregating data into service contexts and processing shared
contexts by all cooperating services working in unison is called service context
awareness. Service context awareness, also called service contextion, is a form of
parametric polymorphism. In particular, a service contextion is a mapping from input
service context to output service context. Using contextion, a function or a data type
can be expressed generically so that it can handle inputs and outputs identically without
depending on their type. Request services (multifidelity service contextion) and service
context types (data types) are generic services and generic datatypes and form the basis
of generic service-oriented programming.

A service context is a collection of related named entries such that each name is
uniquely associated with a constant, calculated, or undefined value. Names of entries
create a namespace of the context in terms of domain attributes. A sequence of attri-
butes associated with a context value is called a path. Attributed paths of context
entries specify the semantics of context data. Note that a tuple context is an ordered
collection of input/output data while a service context is unordered semantic map
(ontology) that associates values with context paths shared in the network for coop-
erating service providers.

Given the set ES of all entries, the set of all service contexts CS is equal to P(ES),
the powerset of ES. Contexts with constant values are called data contexts or data
models and denoted by DC. Contexts that contain evaluated entries are called context
models and denoted by CM. Therefore, the set of contexts CS is the union
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CS ¼ DC [ CM ð10Þ

A request service, called a contextion function or simply contextion, is a mapping

c : DC ! DC ð11Þ

such that c dcinð Þ ¼ dcout for dcin 2 DC and dcout 2 DC. A context dcout is an output
context of the service request c 2 RS for an input context dcin.

A multifidelity function system MFS defined in (8) with a set F of functions
replaced by the set RS of multifidelity request services with the set CS of service
contexts is called a multifidelity service system defined as follows:

MSS ¼ \CS;RS; SP; SM[ ð12Þ

where SP is a set of service projections, SM is a set a service morphers. Realizations of
service requests RS under fidelity management defined by SP and SM are called service
multifidelities.

A multifidelity from the computing perspective refers to a computing environment
with multiple implementations for a given computing process, meaning there are dif-
ferent computing processes to choose from [15–17]. When selecting fidelities for a
complex computing process, it is important to appropriately balance the fundamental
tradeoff between cost and computability of total versus partial service realizations at
runtime. Such tradeoff in complex systems can be part of the computational process
itself with fidelity management based on analysis of intermediate input and output
service contexts at runtime with morph-fidelities, fidelities associated with service
morphers from SM. Morphers based on contextion inputs and outputs reconfigure
fidelities of contextions RS in MSS by applying corresponding projections from SP
[15].

In SML various types of request services are distinguished with two main cate-
gories: elementary and combined request services along with five types of contextions
described in Sect. 3. On the one hand, a multifidelity function system MFS, as defined
in (7), is a conceptual framework for multifidelities in SML. On the other hand, a
multifidelity service system MSS defines context awareness as parametric polymor-
phism for input/outputs of service contextions in MSS.

2.3 Multitypes of Provider Services

A service provider is a multifidelity realization of an elementary request service in the
multifidelity service system MSS (12). In contrast, an operation service, in short, an
opservice, is an expression of a direct service provider in SML, then request services
use opservices directly. This allows to distinguish service operations for service ac-
tualization from various combinations of request services for service cooperation.

A service type is an attribute of service provider which tells the request service how
its service consumer intends to use a required service provider. An association
\op; tp[ of a service type tp and its operation op that represents a contextion is called
a service signature. A service provider may implement multiple service types each with
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multiple operations. Therefore, a signature type can be generalized to a multitype that
serves as a classifier of service providers in the network. A multitype signature
\op; tp1; tp2; . . .; tpn[ is an association of a service operation op and a multitype in
the form of the list of service types tp1; tp2; . . .; tpn implemented by a service provider.
The service type of a multitype associated with an operation is called a primary service
type, usually the first service type in the list of service types of the signature. If all
service types of a signature are of interface type, then such signature is called remote. If
a primary type of a signature is a class type, then a signature is called local.

An instance of a service provider actualized by a signature is called a providlet.
Note that binding to a service provider in the network is dynamic, so the identity of a
service provider instance is undetermined in a request service. Service signatures in
request services are free variables to be bound to providlets - redundant service pro-
vider instances available or provisionable in the network.

Multityping is a form of subtype polymorphism in which a service provider mul-
titype (subtype) is related to another multitype (supertype) by dynamic binding the
service multitype to local/remote service provider instances, meaning that service
signatures of request services can also operate on subtypes of service providers. Net-
centric multityping leads to multitype management - coordination of the service
activities: registration, discovery, provisioning, and lookup - all based on a service
multitype implemented by service providers. However, multi-multitype management is
the organization and coordination of provisioning and binding a combined request
service with multiple service signatures, using its multi-multitypes, to a group of service
providlets. A multi-multitype of a combined request service is the classifier of a service
providlet group in the network as the instruction set of the dynamic service processor
for the request service. Net-centric multi-multitype grouping for combined service
requests is oblivious of implementation, location, and invocation protocols of partici-
pating self-contained service providlets.

Multityping defines the inheritance hierarchy of service providers in the network.
A multitype N is assignable from a multitype M, if N and M are the same, or each
service type of N is assignable from a service type of multitype M. If N is assignable
from M, then N is said to be a supermultitype of M. If M is a submultitype of N, then
multityping relation is defined, as N is assignable from M, to mean that any signature of
type M can be safely used in a context where a signature of type N is expected.
Therefore, if a providlet of multitype N is required while in the network exists a
providlet of type M and N is assignable from M, then the signature of multitype N can
be bound to the providlet of multitype M. The same applies to multi-multitypes that
define the inheritance of service providlet groups in the network.

3 Service Semantics in SORCER

Service semantics can be either declarative, imperative, OO, SO, or a blend of them.
A blend of relevant combinations of request services should be supported by SO
languages intended for solving complex problems and building distributed heteroge-
neous SO systems. Therefore, elementary and combined services should be expressed
in a programming language with adequate semantics and syntax. Each programming
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paradigm introduces distinguishing principles of its programming model but also
depends on its lower level-supporting paradigm. Therefore, the pillars of SO pro-
gramming introduced in this paper are layered on pillars of OO, procedural, and
functional programming (see Fig. 1). The pillars of true SO programming: contexting,
multifidelity, and multityping describe the basic traits of request services as described
in Sect. 2. The presented metafidelity service system MSS (12), is a metamodel for the
SML service semantics described in this Section, the SML syntax (Sect. 4) and the
reference SORCER architecture (Sect. 6). The term semantics reflects the need to not
only model something in the real world, but to model the meaning that this something
has for the purpose of the metamodel – service-oriented computing. SML expressions
are executed with a Service Virtual Machine (SVM) presented in Sect. 6.

A service consumer is a combination of request services, but a service provider
delivers executable codes (as executable applications, tools, or utilities) to be actualized
via operation services (of Signature and Evaluator types, called exec-opservices) used by
elementary request services (of Task and Entry types), see Fig. 2. SML request services
say what to do, but service providers run executable codes that are expressed by opser-
vices. Combined request services represent SO processes by hierarchically organized
elementary and other request services that in turn run cooperations of executable codes
expressed by opservices. In other words, in SML exec-opservices are provider services –
service specifications or contracts, but service providers are implementations of them.
A set of opservices of a combined request service binds at runtimes to the collection of
service providers called the service provider partnership. The executable codes of the
partnership form the instruction set of the dynamic net-centric service processor.

A pipeline service is a set of opservices connected in series, where the output of one
opservice is the input of the next one. The opservices of a pipeline can be executed
sequentially or in parallel. A pipeline is a combined opservice of Evaluator type that
can be used with looping and branching evaluators to form structured algorithms. Exec-
opservices can be concatenated with cxt-opservices that preprocess/postprocess service
contexts used by exec-opservices and request services.

A domain service, in programming dialect called a mogram [4], is either a routine
(imperative domain) or model (declarative domain), or both. It provides for
declarative/imperative transitions within a model across both component models and
routines (transmodel) and for transitions within a routine across both component rou-
tines and models (transroutine). The Transroutine and Transdomain types are subtypes
of the Transdomain type along with the Collaboration type as shown in Fig. 2.

A domain service is either declarative – a model, or imperative – a routine. Models
are collections of functional compositions of entries, but routines are either structured
blocks of routines or workflow jobs comprised of component routines and elementary
routines called tasks. In principle, a model is a hierarchically composed domain of
entries, but a routine is a domain of a hierarchically structured tasks.

Subordinated domain of a transroutine or a transmodel contribute directly to its
transdomain responses - the output context of the transdomain. However, a service
collaboration is the transdomain focused on cooperation of subordinated domains
toward collaboration driven by an explorer/optimizer. It means that direct results of
component domains are used by the exploration/optimization process returning an
indirect result.
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The Domain type is the direct supertype of Context and the subtype of Contextion.
Subtypes relationships of the Domain type are shown in Fig. 2 by the same color with
its subtypes: Routine and Model and direct generalizations as well. The coloring
convention applies to the color of Transdomain and its subtypes (Collaboration,
Transmodel, Transroutine) as well.

A discipline service is a triplet: a <context, contextion, dispatcher> (CCD), such
that a context is the input data, a contextion is the process expression (request service),
and a dispatcher is the controller (routine service) of the discipline. A dispatcher
configures and dispatches its contextion to be executed in the network then returns the
proper result. CCD is the architectural service pattern for developing and deploying
disciplinary services as self-contained services with multifidelity components (contexts,
contextions, and dispatchers) for constructing runtime triplets to be used in federated
service with centralized governance. Therefore, any contextion can be used to create a
discipline fidelity of multifidelity disciplines. Next, multiple heterogeneous
local/remote disciplines can be combined into a multidisciplinary service under control
of the shared central governance.

A governance service is a specification of transdisciplinary supervised cooperation
of federated disciplines. Federated disciplines can be seen as a cooperation of
heterogeneous contextions (states) unified under common governance to be realized by
a supervisor (governor).

Service provider partnerships are runtime collections of service providers that
realize service cooperations expressed by request services. From the service actual-
ization point of view, a pipeline depends on the Chain of service providers bound to the
concatenation of opservices, but a combined request service depends hierarchically on
actualization of component elementary request services, which in turn depend on
actualization of opservices executing corresponding executable codes of corresponding
service providers. Partnerships represent dynamic cooperations of Chain, Assemblage,

Fig. 2. The service relationships in SML for process expression and actualization. By the same
color of Domain its subtypes Routine and Model are indicated. The same coloring convention
applies to color of Transdomain and its subtypes Collaboration, Transroutine, and Transmodel.
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Aggregate, and Federation type – see Fig. 2. An assemblage refers to grouping pro-
viders of elementary request services used in domains as routines or models. An
aggregate refers to grouping assemblages for transdomains as transroutines, trans-
models, and collaborations. Finally, the federation refers to governing of discipline
services, that in turn federate partnerships of discipline contextions specified by the
governance service as shown in Fig. 2.

To illustrate the structure of service federalism with five types of combined request
services, let us consider governance service A depicted in Fig. 3. It is the functional
cooperation A(B(E, F(I, J)), C, D(G(K), H)) of three disciplines (two with collabora-
tions B and D and one with a pipeline C), two additional collaborations (F and G), and
five assemblies (E, I, J, K, H). The governance A binds hierarchically to service
federation FS of three disciplines at runtime with 23 service providers by 21 elementary
services and 2 opservices.

SO federalism is a model of net-centric governance – a federal (central) contextion
with federated contextions of disciplines (like states), and an opservices corresponding
to providlets (citizens). The rules of governance are realized by the service operating
system (SOS – a kind of federal government). SOS coordinates execution of federated
disciplines downstream from the governance via request services to opservices. It does
so by hierarchically executing service providers referenced by multitypes of opservices
at runtime. The main purpose of SOS is to satisfy interests of service consumers and to
fulfill their needs using capabilities of hierarchical service partnerships for request
services - from federations, aggregates, assemblages, chains, and opservices down to
service providers of executable codes.

Fig. 3. Governance service – multidisciplinary service as a cooperation of seven types of
services.
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Entries and tasks depend on operation services: evaluators and signatures,
respectively. Entries use various types of multifidelity evaluators, to invoke executable
codes. A signature is a multitype provider service (a net-centric handle) to be bound at
runtime to the remote/local service providlet to execute a signature operation. The
unique signature-based architecture allows for configuration and execution of dis-
tributed dependencies of combined request services by uniform handling of local and
remote service providers at various levels of granularity and fidelity. When dealing
with net-centric complexities, you have a case to distribute services, otherwise create a
modular monolith with locally executable services. Later, when complexity of the
system becomes unmanageable you can deploy almost instantly the existing local
providers as network providers on as-needed basis, and then run updated services of the
original monolith in the network. In SORCER it is done by changing the primary
service type of signatures from the class type to the interface type, or just selecting the
remote service fidelity. When using the signature-based approach, service providers
never communicate directly with each other. The signature with the primary service
type as an interface type is called a remote signature and with a class type is called an
local signature. When executing a combined request service, SOS creates the hierar-
chical service partnership with the relevant network connectivity at runtime and exe-
cutes the exec codes of the partnering providers.

Governance request services allow for creating large scale multidisciplinary fed-
erated systems. However, most discipline processes (contextions) are expressed by
mograms required for constructing effective heterogenous discipline service to be
federated. A domain is a contextion composition expressing a service combination by
one of the five design patterns:

1. entry model – is a declarative expression of interrelated higher-order entries (con-
tentions) in a context model.

2. service block – is an expression of concatenated subroutines with branching and
looping tasks as a block-structured subroutine.

3. service job – is an object-oriented composite (workflow) of subroutines with a
control strategy for each component job to be executed sequentially or in parallel,
synchronously or asynchronously, with context pipes between component
subroutines.

4. service transroutine – is a service block or service job (transroutine) comprised of
both subroutines and service models

5. service transmodel – is context model comprised of both models and subroutines.

The presented above mogramming abstractions reduce representational complexity
of typical SO processes, so it makes easer to comprehend a computing paradigm of
each service design pattern: functional (1), procedural (2), and object composite (3 and
4). Therefore, each mogram abstraction exposes the details which really matter to the
domain-specific users from the perspective of preferred programming paradigm and
hide the other details (service types, exec codes of evaluators, providlets implementing
multitypes) regarding development and deployment of service providers implemented
with lower level programming abstractions and languages used by software developers.
The above four service design patterns reflect corresponding programming styles
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shown in Fig. 1. The mogram design patterns allow to blend multiple programming
styles within a single combined requested service.

The presented service semantics of request service in SORCER allows to sum-
marize the three SO pillars (see Fig. 1) as follows:

1. Contextion allows for a mogram to be specified generically, so it can handle context
data uniformly with required data types of context entries to be consistent with
ontologies of service providers. Contextion as the form of parametric polymorphism
is a way to make a SO language more expressive with one generic type for inputs
and outputs of all request services.

2. Morphing a request service is affected by the initial fidelities selected by the user
and morphers of morph-fidelities. Morphers associated with morph-fidelities use
heuristics provided by the end user that dependent on the input service contexts, and
subsequent intermediate results obtained from service providers. Multifidelity
management is a dispatch mechanism, a kind of ad hoc polymorphism, in which
fidelities of request services are reconfigured or morphed with fidelity projection at
runtime.

3. Service multityping as applied to service signatures and providers is a form of
subtype polymorphism with the goal to find a remote instance (providlet) of the
service provider by the range of service types that a service provider implements
and registers for lookup. It also allows a multifidelity opservice to call an operation
of a primary service type implemented by the service provider as a different service
fidelity. With respect to service providers to be provisioned for service signatures of
a request service – multi-multityping of the request service specifies which service
providers have to be additionally provisioned to complement existing service
providers in the network.

4 Introduction to SML

A language can be specified by its metamodel with a great flexibility [4], as shown in
Fig. 4. A language can be also specified by a grammar, for example the Java language
in EBNF. The primary responsibility of the metamodel layer is to define languages that
describe semantic domains to allow users to model a wide variety of different problem
domains. The presented approach to true service-oriented metamodeling architecture is
based on three abstract service categories: operation services (signatures and evalua-
tors), elementary request services (task and entries) and combined request services
(domain, discipline, transdomain, and transdiscipline) used with three pillars of service-
orientation: contextion, multifidelity, and multityping described in Sect. 2.

Therefore, MSF for SML, is like MOF [18] for UML. It is a metamodel defined by
the multifidelity service system MSS (12) that specifies how the SML model should
conform to the conceptual MSS system. The SML metamodeling hierarchy along with
the UML metamodeling hierarchy is depicted in Fig. 4 to explain the relationship of
SML (MSF/M2) to the object-oriented SORCER runtime (MOF/M0). The SORCER
operating system manages request services that comprise of hierarchically structured
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operation services and runs the corresponding net centric service provider partnership
(MSF/M0) bound to operation services, that serve as the instruction set (MOF/M1-) of
the service processor at MSF/M1-.

A request service, called a context model CM in SML conceptually corresponds to
a multifidelity service system MSS (12) with a collection RS of interrelated request
services as functional entries in CM used as its domain and codomain. A multifidelity
contextion f = (CM, fi(f), mFif) in CM is declared in SML as a service entry as follows:

func f = ent(“f”, mFif, args(“f1”, “f2”, …, “fk”))

where “f” is a name (a path in CM) of the function f declared by the operator ent;
“f1”, “f2”, …, “fk” are argument paths of function f in CM, and mFif is the multifidelity
of function f. By default, a fidelity of function f, fi fð Þ – an entry evaluator, is the first
realization in the ordered set mFif . The argument paths “f1”, “f2”, …, “fk” in CM bind
to values of corresponding entries in CM to create a subcontext of CM as the argument
of contextion f.

The ent operator defines a generic functional expression declared in a context
model CM. Functional entry form higher-order functions – responses of the model. If
ent declares a constant function, then a model with all such entries is called a data
model or data context.

Fig. 4. The UML/SML specific five-layer MOF-MSF metamodel hierarchy.
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A service signature in SML is an operation service representing either the local or
remote operation of a service provider. It declares a service type of provider tp with its
operation op, to be invoked in the scope of its service context. A signature association
<op, tp> is denoted in SML by sig(op, tp). A functional request service f defined by an
operation op to be executed by the service provider implementing a service type tp is
declared as follows:

func f = ent(“f”, sig(op, tp, inPaths(“x1”, “x2”, …, “xs”), 
outPaths(“y1”, “y2”, …, “yt”)))

or as a multifidelity service entry with multiple signatures:

func f = ent(“f”, entFi(sig(op1, tp1), …, sig(opn, tpn)))

where the operator entFi declares a multifidelity of entry f and the operators inPaths
and outPaths specify subcontexts determined by input and output paths in CM as the
argument and return values of the operation op.

A service provider may implement multiple service types used to classify its
instances in the network by its multitype. In that case a service provider multitype, as a
list of implemented service types tp1; . . .; tps, is the service provider’s net-centric
identity. Optionally a service provider name with additional attributes can be used as
well. Thus, a signature s with a multitype tp1; tp2; . . .; tpsð Þ, an operation op1 of a type
tp1, and an optional service provider name myService takes the following expanded
form:

sig s = sig(op1, tp1, tp2, …, tps, prvName(“myService”))

Note that a signature does not refer to a particular instance of a service provider; its
multitype is used for binding to an available instance (providlet) at runtime. Multi-
typing is used to manage unpredictability of the unreliable network comprised of
replaceable remote service providlets with one another at runtime, as long as the
multitype semantics of the service providlets is the same. The local/remote semantics of
a service in SML is based on the concept of multityping. If the primary type tp1 is a
class type then the signature works as a service provider constructor – creates an
instance at runtime when the service provider needs to be executed, otherwise SOS
finds in the network a remote proxy of the service providlet implementing the required
multitype.

A value entry x (constant function) equal to y, is declared in CM as follows:

val x = val(“x”, y),  for value y ∊ Y 

or a multifidelity variable x
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val x = val(“x”, entFi(val(“x1”, y1), …, val(“xk”, yk)))

A data context dc (of cxt type) is an unordered collection of value entries defined as
follows:

cxt dc ¼ context val . . .ð Þ; . . .; val . . .ð Þð Þ

and valuation of the entry x in dc as follows:

Object y = val(dc, “x”)

where “x” is a name of variable (a path) in a data context dc.
A value of an entry x in cxt can be set to v as follows:

setValue(dc, “x”, v)

A context model mdl (of mog type) as an unordered collection of value entries and
functional entries is declared as follows:

mogmdl ¼ model val . . .ð Þ; . . .; ent . . .ð Þ; . . .ð Þ

Note that multivariable functional entries of a context model may take other
functional entries as arguments to create higher-order functions while function multi-
variability is bound to the corresponding subcontext of the underlying model.

Execution of an entry f in a model mdl is declared as follows:

Object y = exec(mdl, “f”)

or
Object y = exec(mdl, “f”, cin) 

where y �Y is an output value and cin is a context used for substitution of entries in
mdl.

Evaluation of a model mdl for its responses is declared as follows:

cxt cout ¼ eval mdlð Þ

or

cxt cout ¼ eval mdl; cinð Þ

where cout is a data context - the result of evaluation of responses for an input context
cin. Model evaluations are defined by function compositions of response entries with no
explicit strategy for altering the function compositions of the model. However, function
compositions can be altered by execution dependencies specified for entries that
depend on execution of other entries in the model.
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A subset of responses of a model (paths of response entries in the model) can be
part of the model declaration by inlining responses “f1”, “f2”, …, “fk” as follows:

response(“f1”, “f2”, …, “fk”) 

Alternatively, responses can be updated as required. To increase responses:

responseUp(mdl, “f1”, “f2”,…, “fk”)

and to decrease responses:

responseDown(mdl, “f1”, “f2”,…, “fk”)

No paths provided for responseDown removes all responses and responseUp may
append new responses of the model.

So far, we have defined in SML, an operational service of sig and evaluator types,
elementary services of ent and val types, and request services of context and model
types. The following statement executes any service sr:

Object out ¼ exec sr; arg1; . . .; argnð Þ

where argi is an SML argument of the Arg type. For example, signatures, fidelities,
contexts, and models are of Arg type.

The statement executing the operation add of service type Adder takes the form:

exec(sig(“add”, Adder.class),
context(val(“x1”, 3.0), val(“x2”, 1.0), val(“x3”, 7.0))

and returns 11.0 by an instance of a service provider found in the network that
implements the service type (interface) Adder. Here, the signature sig(“add”, Adder.-
class) binds to an instance of service provider - providlet - implementing the service
type Adder. If the class AdderImpl implements the interface Adder, then the execution:

exec(sig(“add”, AdderImpl.class),
context(val(“x1”, 3.0), val(“x2”, 1.0), val(“x3”, 7.0))

creates an instance of AdderImpl at runtime and calls the method add for a given
context on the locally created instance. Therefore, a change of the primary type of
signature from interface type to a class type changes a remote call to a local one and
vice versa.
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A service task is an elementary request service defined by a signature with an input
context as follows:

mog y = task(“y”,  sig(op, tp), context(…))

where “y” is a name of the task y with a given signature and an input context.
A multifidelity task is declared in SML as follows:

task(“y”, sigFi(sig(“fi1” , op1, tp1),…, sig(“fin”, opn, tpn)), context(…))

where the operator sigFi declares a multifidelity of task y with the first signature as
a default fidelity. A selected fidelity can be preselected or declared as an argument
when executing a task or set by the fidelity manager of its containing mogram at
runtime.

At its heart, service-orientation is the act of uniform decomposition into self-
contained local and/or remote executable codes, represented by exec-operations ser-
vices, interconnected and replaceable at runtime. In SML interconnections of functional
entries and service tasks (see Fig. 2) are declared by a combined request service
(models and subroutines) that binds operation services (evaluators and signatures) to
remote/local executable codes at runtime.

In SML a service subroutine is a request for a procedural (block) or workflow
(job) service type. A service task is an elementary subroutine used in combined sub-
routine. A combined subroutine is a collection of subroutines and/or mograms grouped
together within the scope of SML operators, either block or job. A subroutine block is a
concatenation of component mograms along with flow-control tasks: conditional (opt,
alt) and loop (loop) tasks. The SML semantics of opt, alt, and loop is the same as the
corresponding UML operators used with interaction frames (combined fragments) in
sequence diagrams. A subroutine job (service workflow) is an object-oriented com-
posite of component subroutines and/or mograms, optionally with an explicit control
strategy and service pipes for interprocess communication between components of the
workflow.

Subroutines can be used as evaluators of entries in context models, but responses of
evaluated context models can be used as data contexts in subroutines. That way, either
a subroutine blended with models, or a model blended with subroutines, creates a
service combination of models and/or subroutines – a service mogram. The SML ent
operator, in most obvious cases, declares a service entry of the type according to its
evaluator type. However, specialized SML entry operators, for example: val, prc, lmb,
snr, and srv correspond to entry subtypes: value, procedure, lambda, service neuron,
and service, respectively; can be used to indicate directly requested entry subtypes.

A mogram min to be executed by exerting cooperating service providers is declared
as follows:

mogmout ¼ exert minð Þ
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An exerted mogram mout contains the result of execution and all net-centric
information regarding providlets and execution of their tasks. The result operator
returns the output context of the exerted mogram mogout as follows:

cxt cout ¼ result moutð Þ

The value y of variable x in cout is specified by the value operator as follows:

Object y = value(cout , “x”)

or from the exerted mogram directly:

Object y = exec(mogout, “x”)

An evaluation result cout of a mogram min is a data context declared as follows:

cxt cout ¼ eval minð Þ

Note, that the eval operator returns an output context cout but the exert operator an
executed mogram mout.

A mogram is a collection of interacting request services (entries, tasks, models, and
subroutines) that bind at runtime to a cooperation of service providers via mogram
opservices. Multifidelity mograms can morph during execution under control of the
fidelity mangers and related morphers with the goal to return the emerged result of the
evolving net-centric cooperation of service providers - a morphing system of systems.
A mogram, is also called an exertion [11] due to exert operator applied to mograms.

To illustrate SML in action we refer the reader to the examples, in the open source
SORCER project [20], in the module examples, in particular multifidelity test cases: at
sml/src/test/main/java/mograms/ModelMultiFidelities.

5 An Example of a Multifidelity Model in SML

To illustrate the introductory SML syntax presented above in action, a simple context
model is declared in SML with four multifidelity entries (mFi1, mFi2, mFi3 and mFi4),
four metafidelities (sysFi2, sysFi3. sysFi4, sysFi5), four morphers (morpher1, mor-
pher2, morpher3, morpher4) as lambda expressions, and five provider services used in
entries and tasks of the model mdl below. Signatures in entries are remote and in tasks
local.
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// multifidelity model with four morph-fidelities
// (mphFi) and corresponding morphers
mog mdl = model(inVal("arg/x1", 90.0),

inVal("arg/x2", 10.0), inVal("morpher3", 100.0),
ent("mFi1", mphFi(morpher1, add, multiply)),
ent("mFi2", mphFi(entFi(ent("ph2", morpher2),
ent("ph4", morpher4)), average, divide, subtract)),

ent("mFi3", mphFi(average, divide, multiply)),
ent("mFi4", mphFi(morpher3, t5, t4)),
fi2, fi3, fi4, fi5,
response("mFi1", "mFi2", "mFi3", "mFi4", "arg/x1",
"arg/x2", "morpher3"));

// signatures used in multifidelity entries in mdl above
sig add = sig("add", Adder.class, 

result("y1", inPaths("arg/x1", "arg/x2")));
sig subtract = sig("subtract", Subtractor.class, 

result("y2", inPaths("arg/x1", "arg/x2")));
sig average = sig("average", Averager.class, 

result("y3", inPaths("arg/x1", "arg/x2")));
sig multiply = sig("multiply", Multiplier.class, 

result("y4", inPaths("arg/x1", "arg/x2")));
sig divide = sig("divide", Divider.class, 

result("y5", inPaths("arg/x1", "arg/x2")));
// two service tasks used as fidelities of mFi4 in mdl
mog t4 = task("t4", sig("multiply", MultiplierImpl.class,

result("result/y",
inPaths("arg/x1","arg/x2"))));

mog t5 = task("t5", sig("add", AdderImpl.class, 
result("result/y",

inPaths("arg/x1", "arg/x2"))));
// four morphers used with morph-fidelities
Morpher morpher1 = (mgr, mFi, value) -> {

Fidelity<Signature> fi = mFi.getFidelity();
if (fi.getSelectName().equals("add")) {

if (((Double) value) <= 200.0) {
mgr.morph("sysFi2");

} else { 
mgr.morph("sysFi3");
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} 
} else if (fi.getPath().equals("mFi1")

&& fi.getSelectName().equals("multiply")) {
mgr.morph("sysFi3");

} 
};

Morpher morpher2 = (mgr, mFi, value) -> {
Fidelity<Signature> fi = mFi.getFidelity();
if (fi.getSelectName().equals("divide")) {

if (((Double) value) <= 9.0) {
mgr.morph("sysFi4");

} else { 
mgr.morph("sysFi3");

} 
} 

};

Morpher morpher3 = (mgr, mFi, value) -> {
Fidelity<Signature> fi = mFi.getFidelity();
Double val = (Double) value;
if (fi.getSelectName().equals("t5")) {

if (val <= 200.0) {
((EntModel)mgr.getMogram())
.putValue("morpher3", val + 10.0);

mgr.reconfigure(fi("t4", "mFi4"));
} 

} else if (fi.getSelectName().equals("t4")) {
// t4 is a mutiply task
((EntModel)mgr.getMogram())

.putValue("morpher3", val + 20.0);
} 

};

Morpher morpher4 = (mgr, mFi, value) -> {
Fidelity<Signature> fi = mFi.getFidelity();
if (fi.getSelectName().equals("divide")) {

if (((Double) value) <= 9.0) {
mgr.morph("sysFi5");

} else { 
mgr.morph("sysFi3");

} 
} 

};
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// metafidelities used by morphers
fi fi2 = metaFi("sysFi2", mphFi("ph4", "mFi2"),
fi("divide", "mFi2"), fi("multiply", "mFi3"));

fi fi3 = metaFi("sysFi3", fi("average", "mFi2"),
fi("divide", "mFi3"));

fi fi4 = metaFi("sysFi4", fi("average", "mFi3"));
fi fi5 = metaFi("sysFi5", fi("t4", "mFi4"));

Let’s evaluate mdl subsequently with specified multifidelities and morphers with
default fidelities and later with the requested fidelity fi(“mFi1”, “multiply”).

// evaluate mdl with default fidelities
cxt out = eval(mdl);
assertTrue(value(out, "mFi1").equals(100.0));
assertTrue(value (out, "mFi2").equals(9.0));
assertTrue(value (out, "mFi3").equals(900.0));
assertTrue(value (out, "mFi4").equals(110.0));
// evaluate mdl the fidelity mFi1
out = eval(mdl, fi("mFi1", "multiply"));
assertTrue(value (out, "mFi1").equals(900.0));
assertTrue(value (out, "mFi2").equals(50.0));
assertTrue(value (out, "mFi3").equals(9.0));
assertTrue(value (out, "mFi4").equals(920.0));

Let’s restrict morphing of the multifidelity model mdl until the value of entry
“morpher3” in mdl is less than 900.0. It is implemented with a service block mdlBlock
executing a loop with the condition in the form of lambda expression where cxt is the
current context of mdlBlock. The morph fidelity of the entry mFi1 in mdl is selected to
multiply when exerting mdlBlock.

Block mdlBlock = block(
loop(condition(cxt ->

 (double) value(cxt, "morpher3") < 900.0),
mdl));

mdlBlock = exert(mdlBlock, fi("multiply", "mFi1"));
assertTrue(value(context(mdlBlock),

"morpher3").equals(920.0));
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The above examples can be found in the SORCER-multiFi project [20] in the
module examples at sml/src/test/java/sorcer/sml/mograms/ModelMultiFidelities, test
cases morphingFidelities and morphingFidelitiesLoop.

6 The SORCER Platform

Computing requires a platform (runtime system) to operate. Computing platforms that
allow programs to run require a processor, operating system, and programming envi-
ronment with supporting tools to create and run programs. SORCER is the platform
driven by the three pillars of SO: contextion, multifidelity, and multityping.
The SORCER programming environment is based on SML and Java APIs with its
unique service-oriented operating system (SOS) that manages the net-centric service
processor for executing request services. Technically, the service processor comprises
of local/remote objects implementing evaluators and service types of signatures.
SORCER remote objects (providlets) are deployed with dynamic small-footprint
dynamic service containers called service exerters. A service exerter can run concur-
rently multiple providlets in the network.

The relationship of the basic SORCER types required to implement multifidelity
services is depicted in the diagram in Fig. 2 with UML relationships. Services of the
Request type are instances of two elementary subtypes: Entry and Task, and the basic
request service type Contextion with five subtypes: Pipeline, Domain, Discipline,
Collaboration, and Governance. All request services are instances of the common
Service type with uniform execution of local and remote services at runtime. Top-level
interfaces of the SORCER system that refer to the SO concepts: Fi<T>, Signature,
Evaluator, Request, Entry, Task, Contextion, Context, Model, and Provider, all are
subtypes of the common Service type.

From the SO point of view creation of user-centric request services – mogramming
– is the primary objective assuming that service providers implement multitypes and
their operations can be incorporated into net-centric service processor managed by
SOS. Note, that multifidelities are used in request services only. A combined request
service hierarchically combines elementary requests (entries and tasks) that bind
dynamically to executable subroutines of evaluators and service providers,
respectively.

Each service provider implements a multitype of service types. Each service type
may have multiple implementations in the network. SOS does not know location of
service provider instances in the network; it requires only their service types to be
implemented in the network. The question is, how to find a required implementation in
the network. The answer is, by matching a multitype of the service signature to the
multitype of the implementation available in the network. To differentiate from each
other, service providers may implement complementary service types, for example, tag
interfaces corresponding to implementation details. Complementary types can be

True Service-Oriented Metamodeling Architecture 125



registered with primary service types, then both used in signatures when looking up a
service provider. Multityping of signatures is the concept of finding providers of the
same multitype from redundant instances (providlets) available in the network.

In systems theory emergence is a process whereby larger entities and regularities
arise through interactions among smaller or simpler entities that themselves do not
exhibit such properties. An emergent SO behavior can appear when a number of simple
services operate in an environment, forming more complex behaviors as a service
collective (partnership). It can commonly be identified by patterns of accumulating
change used by morphers. Emergent behavior is hard to predict since the number of
interactions between components of a system increases exponentially with the number
of components, thus potentially allowing for many new and subtle types of behavior to
emerge. Emergence is often a product of particular patterns of interaction. Negative
feedback introduces constraints that serve to fix structures or behaviors. In contrast,
positive feedback promotes change, allowing local variations to grow into global
patterns. Multifidelity services can be observable and observed. Therefore, the positive
or negative feedback received by morphers regarding applied system fidelities from
observable multifidelity services can be used to update fidelities, upstream to the
metamodel level and downstream for new projected and created instances of the
metamodel. The projected and new instances are created by the fidelity management
system to form emergent properties of the morphing multifidelity model as illustrated
in Fig. 5.

An emergent modeling platform requires the ability to express a SO system with a
given fidelity projection as the instance of the metasystem with multiple fidelity pro-
jections. In SML a projected contextion is an instance of a multifidelity contextion – a
metasystem. Also, the computing platform requires the ability to execute and morph the
evolving system with updated projections managed by the metasystem. SOS enables
quick and effective SO communication with net-centric services and allows for
evolving updates such that each new instance of the multifidelity system is a new
projection of the metasystem.

Fig. 5. Morphing and reconfiguring multifidelity service mograms expressed in SML
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SML defines two types of multifidelities in contextions: select-fidelities and morph-
fidelities. Select-fidelities allow for system reconfiguration, but morph-fidelities allow
for self-morphing the structure of the multifidelity request service. Morph-fidelities are
observed by a fidelity manager of contextion. Therefore, the positive or negative
feedback received from computed fidelities can be used to update fidelities, upstream of
already executed services and downstream for new looked up services. The fidelity
manager, as the observer of morph-fidelities, updates associated morphers to recon-
figure a contextion fidelity projection. Morphers associated with morph-fidelities form
emergent properties in the morphing multifidelity system.

A projected contextion, that defines the service cooperation actualized and man-
aged by SOS, is an instance of the metasystem expressed by a multifidelity contextion.
To reconfigure or morph a multifidelity contextion its fidelity manager uses projection
functions and morphers. Both reconfiguration and morphing allow for adaptivity of
system and metasystem respectively, when updates of fidelities and metafidelities are
under control of the fidelity manager at runtime. Morphers of morph-fidelities in
request services managed by fidelity managers may reconfigure the current contextion
or morph to a new projected contextion as shown in Fig. 5.

Adaptive SO systems with morph-fidelities are emergent systems. This type of
systems exhibits three types of adaptivities called system-of-system, system, and ser-
vice agility [15]. Metasystem agility refers to system reinstantiation with metafidelities,
system agility refers to updating system fidelity projections, and service agility refers to
updating fidelities of elementary request services at runtime.

Virtual machines are based on computer architectures and provide functionality of a
physical computer. Service Virtual Machine (SVM) is a network process virtual
machine designed to run cooperating executable codes in in the network expressed by
combined request services presented in Sect. 3. SVM serves as an abstraction layer for
SML in SORCER. Thus, it becomes a multifidelity processor architecture for SML
with basic operations corresponding to six categories of opservices: evaluator, signa-
ture, getter (filter), setter, appender, and connector. The first two opservices run exe-
cutable codes locally/remotely (exec-opservices) and the remaining ones (context
opservices in short cxt-opservices) preprocess service contexts used as inputs and
outputs by request services. With two exec-opservices request services may executed
unlimited number of executable codes in the network. Therefore, the network of
providlets becomes the native processor for SVM with custom instruction set for
request services.

The architecture of SVM with the basic internal components: the thread stack for
executing request services, multifidelity projection area, combined request service area,
elementary request service area, and opservice area is shown in Fig. 6. The opservice
area comprises of two categories of exec-opservices (signatures, evaluators), and four
categories of cxt-opservices (setters, getters, connectors, and appenders). Each thread
has its own stack that holds a frame for each request service executing on that thread.
A new frame is created and added to the top of stack for each component request
services to be executed. The frame is removed when the request service returns nor-
mally or if an uncaught exception is thrown during the service execution. SVM sup-
ports Java methods that call back from JVM into SVM and invoke a request service.
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Each frame contains: multiFi projection, input context with context return, operand
context, and a request service reference. The operand context is used during the exe-
cution of services in a similar way the general-purpose registers are used in a native
CPU. While combined request services comprise of request services, only elementary
request services comprise of exec-opservices. Most SVM exec-opservice spends its
time manipulating the operand context by operations that produce or consume context
values by calling remote/local providlets or executable codes of evaluators.

JVM used by SVM is a kind of native processor for SVM but opservices specify
the instruction set of the SVM processor. Remote exec-opservices of SVM may call
providlets in the network to execute request service as well. Therefore, via propagation
of remote signatures originated from an SVM, the SVM expands itself into the network
of cooperating SVMs executing opservices on multiple machines in the network on
behave of the originating SVM. Such distributed SVM executing concurrently opser-
vices in the network forms the instruction set of the network multiprocessor. The
network multiprocessor becomes a collection of remote and local executable codes
bound at runtime to signatures and evaluators executed concurrently by multiple SVNs.

In comparison to an object-oriented virtual machine, for example JVM, SVM
request services and opservices correspond to methods and opcodes (bytecodes),
respectively. In JVM two types of methods, instance and class methods, are distin-
guished but in SVM two types of request services, elementary and combined service.
Opcodes used by elementary services specify the machine internal operations only,
however opservices may execute locally (local signatures) and remotely (remote sig-
natures). The fact that SVM can execute machine instructions in the network at runtime
is the primary distinction between SVM and JVM. This essential service-oriented
computational feature makes SVM a network-centric virtual machine.

Fig. 6. SML Service virtual machine (SVM).
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The opservice that is assigned to the runtime data area of the SVM via a request
service is executed by the SVM execution engine. The execution engine executes the
SVM opcode in the unit of service instruction. It is like a CPU executing the machine
command one by one. Each command of the opservice consists of an operand context.
The execution engine gets one exec-opservice and execute the executable code,
associated either with the evaluator or the providlet, with the operand context, and then
executes the next opservice. An SVM request service is written in SML that a human
can understand as service-oriented cooperation (pipeline, domain, discipline, collabo-
ration, and governance), rather than in the programming language used to implement
the execution engine. The SOS uses the SVM execution engine and manages local and
remote service providers for opcodes to be executed and provides common function-
alities for handling request and provider services, fidelity management, and context
management for SVM.

7 Conclusions

Markov tried to consolidate all work of others on effective computability. He has
introduced the term of algorithm in his 1954 book Teoriya Algorifmov [8]. The term
was not used by any mathematician before him and reflects a limiting definition of what
constitutes a computational process: a mathematical mapping from various initial data
to the desired result. The mathematical view of process expression has limited com-
puting science to the class of processes expressed by algorithms. From experience in
the past decades it becomes obvious that in computing science the common thread in
all computing disciplines is process expression; that is not limited to algorithm or
actualization of process expression by a single computer.

A service is the work performed in which a service provider (one that serves) exerts
acquired abilities to execute a computation. To be the true service resulted from the
performed computation, both the computation and the service providers have to be
expressed then realized under condition that service consumers should never com-
municate directly to service providers. Asserted cooperations of service providers
represented by operation services are called request services. This way, in SML
everything is a service. Request services represent cooperations of opservices bound at
runtime to service providers to execute computations. In this paper, service-orientation
is proposed as the approach with five types of emergent net-centric multifidelity request
service representing the following service request services: pipelines, assemblies,
collaborations, disciplines, governances.

The “everything is a service” semantics of SML is introduced for request services
to be actualized by dynamic cooperations of service providers in the network. A mul-
tifidelity request service is considered as a dynamic representation of a net-centric
emergent process defined by the end user. In SORCER, a rectified contextion – a
service request embedded into a service provider container, becomes a service providlet
– a process expression becomes an executable service provider.

To express emergent processes consistently and flexibly, the actualization of SML
by SOS is based on three pillars of services orientation (contextion, multifidelity,
and multityping) and on generalization of the pillars of functional, procedural, and

True Service-Oriented Metamodeling Architecture 129



object-orient programming (see Fig. 1). Generalization of the existing programming
paradigms leads to five types of service combinations (pipeline, domain, discipline,
collaboration, and governance). Request services are multifidelity services, but provi-
der services are multitype services. By multitypes of service signatures used in con-
textions a multi-multitype of service cooperation is determined. Therefore, multitype of
a signature and a multi-multitype of contextions are classifiers of instances of service
providers (providlets) and cooperations of service providers in the network, respec-
tively. To the best of our knowledge there is no comparable true service-oriented
system, programming language based the three pillars of service-orientation and its
SVM.

Emergent systems exhibit three types of adaptivities called system-of-systems
(metasystem), system, and service agilities. Metasystem agility refers to updating
metafidelities (system reinstantiation), system agility refers to updating fidelities of a
mogram (system projection), and service agility refers to selecting fidelity of request
and opservices [15].

The SORCER architectural approach represents five types of net-centric multifi-
delity service cooperations expressed by request services created by the end users and
executable codes of service providers by software developers. It elevates combination
of contextions into the first-class elements of the SO federated process expression. The
essence of the approach is that by making specific choices in grouping hierarchically
provider services for contextions, we can obtain desirable dynamic properties from the
SO systems we create with SML.

Thinking more explicitly about SO languages, as domain specific languages for
humans than software languages for computers, may be our best tool for dealing with
real world complexity. Understanding the principles that run across process expressions
in SML and appreciating which language features and service virtual machines (SVMs)
are best suited for which type of processes, bring these process expressions (request
services in SML) to useful life. No matter how complex and polished the individual
process operations are, it is often the quality of the operating system (SORCER) that
determines the power of the computing system. The ability of presented metamodeling
architecture with SML and SVM with its execution engine to leverage network
resources as services is significant to real-world applications in two ways. First, it
supports multi machine executable codes via opservices that may be required by SO
applications; second, it enables cooperation of variety of computing resources repre-
sented by request services that comprise of opservices actualized by the multi machine
network at runtime.

The software as a service (SaaS) approach spreads rapidly because it makes end
users more productive. However, lack of service-oriented integration frameworks,
forces end users to go back and forth endlessly between the component services
(applications) they need and like, is disruptive because it corrodes productivity of
complex service-oriented systems. The more services you have, the trickier it gets to
move swiftly and meaningfully between them and integrate reliably into large dis-
tributed systems.

Embedded service integration in the form of combined request services in SML
solves a problem for both system developers and end users. Embedded service inte-
gration is a transformative development that resolves the stand-off between system
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developers who need to innovate service integrations and end users who want their
services to be productive in their integrated systems, not hold them back. Service
integration is key to this, but neither system developers nor end-users want to be
distracted by time-consuming integration projects.

The first rule of service-orientation in SORCER: do not morph and do not distribute
your system until you have an observable reason to do so. First develop the system with
no fidelities and no remote services. Later introduce must-have distribution and mul-
tifidelities. Doing so step-by-step you will avoid the complexity of modeling with
multifidelities and distribution all at the same time.

The SORCER platform with SML and SVM supports the two-way convergence of
modeling (top-down problem solving with context models) and programming (bottom-
up problem solving with service pipelines and routines) – mogramming. The platform
has been successfully deployed and tested for design space exploration, parametric, and
optimization mogramming in multiple projects at the Multidisciplinary Science and
Technology Center AFRL/WPAFB [2, 4–7, 13].
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TASE - Tampere Software Engineering Research Group,
Tampere University, Tampere, Finland
{davide.taibi,kari.systa}@tuni.fi

Abstract. Migrating from monolithic systems into microservice is a
very complex task. Companies are commonly decomposing the mono-
lithic system manually, analyzing dependencies of the monolith and then
assessing different decomposition options. The goal of our work is two-
folded: 1) we provide a microservice measurement framework to objec-
tively evaluate and compare the quality of microservices-based systems;
2) we propose a decomposition system based on business process mining.
The microservice measurement framework can be applied independently
from the decomposition process adopted, but is also useful to continu-
ously evaluate the architectural evolution of a system. Results show that
the decomposition framework helps companies to easily identify the dif-
ferent decomposition options. The measurement framework can help to
decrease the subjectivity of the decision between different decomposition
options and to evaluate architectural erosion in existing systems.

Keywords: Microservices · Cloud-native · Microservice slicing ·
Microservice decomposition · Microservice migration

1 Introduction

Software evolves through its life-time, and often a large part the effort and costs
is spent on software maintenance [14]. Furthermore, the incremental develop-
ment practices in modern software development makes the nature of all the
development processes to resemble a maintenance one [18]. A major obstacle
to efficient maintenance is the tight coupling between the internal components
of the software. In monolithic systems, most changes require modifications to
several parts of the systems, and often size and complexity of the modification
is hard to estimate in advance.

One approach to tackle the maintenance problem is to decompose the system
into small and independent modules [20,25]. Often, at the same time, companies
want to utilize benefits of service-oriented architectures and even microservices,
such as independent development, scaling and deployment [31].

Microservices are an adaptation service-oriented architecture but focuses on
of relatively small and independently deployed services, with a single and clearly
c© Springer Nature Switzerland AG 2020
D. Ferguson et al. (Eds.): CLOSER 2019, CCIS 1218, pp. 133–149, 2020.
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defined purpose [7]. The independent development and deployment bring several
advantages. Different microservices can be developed in different programming
languages, they can scale independently from other services, and each microser-
vice can be deployed on the most suitable the hardware. Moreover, small ser-
vices are easier to maintain and the split to independent responsibilities increases
fault-tolerant since a failure of one service will not break the whole system. From
the architectural perspective a well-designed microservice encapsulates its data
and design choices. Thus, the internal logic of a microservice can be changed
without affecting the external interface. This reduces the need for interaction
between the teams [29,30].

However, decomposing a monolithic system into a set of independent
microservices is a very difficult and complex tasks [31,35]. Decomposition of
a system into separately maintained services is difficult as such, but microser-
vice architecture adds further challenges related to performance. Calls inside a
microservice are significantly lighter than calls between microservices. Still, the
quality of the decomposition – the optimal slicing of the monolith to services –
is critical for gaining the assumed benefits of using microservices. The software
architects usually perform the decomposition manually but the practitioners
have claimed that a tool to support identification different possible slicing solu-
tions [25,31,32] would greatly help the task. Typically, the only helping tools for
the software architects have been based on the static analysis of dependencies
such as Structure 1011. The actual discovery of slicing options has still been
done by experienced software architects. In microservices, the dynamic behavior
of the system is important too since it affects the performance and maintainabil-
ity. Since static dependency analysis tools are not able to capture the dynamic
behavior we decided to explore slicing based on runtime behavior instead of only
considering static dependencies.

In our previous work, we proposed a microservice decomposition framework
[36] based on process-mining to ease the identification of splitting candidates for
decomposing a monolithic system into separate microservices. The framework is
based on logs produced by process mining of the original monolithic system. The
decomposition framework has been also validated in our previous study [36] in
collaboration with an SME. The results of [36] shows that dynamic call history
can be effectively used in the decomposition of microservices. This approach can
also identify architectural issues in monolithic systems. The approach can be used
by companies to proposed different slicing options to the software architects and
to provide additional analysis of the software asset. This would reduce the risk
of wrong slicing solutions.

In this paper, we extend the previous decomposition framework [36] propos-
ing a new measurement framework to objectively compare two decomposition
options. The measurement framework can be used independently from the
decomposition strategy adopted.

The remainder of this paper is structured as follows. Section 2 presents
the background on processes for migrating and splitting monolithic systems

1 Structure101 Software Architecture Environment - http://www.structure101.com.

http://www.structure101.com
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into microservices. Section 3 presents the measurement framework. Section 4
describes our proposed decomposition approach. Section 5 discusses the results.
Section 6 presents related works while, finally Sect. 7 draws conclusions.

2 Background and Assumptions

Decomposing a system into independent subsystems is a task that has been per-
formed for years in software engineering. Parnas [20] proposed the first approach
for modularizing systems in 1972. After Parnas’s proposal, several works pro-
posed different approaches [15]. Recently, the decomposition of systems took on
another dimension thanks to cloud-native systems and especially microservices.
In microservices, every module is developed as an independent and self-contained
service.

2.1 Microservices

Microservices are small and autonomous services deployed independently, with
a single and clearly defined purpose [7,19]. In microservices each service can be
developed using different languages and frameworks. Each service is deployed to
their dedicated environment whatever efficient for them.

The communication between the services can be based on either REST or
message queue. So, whenever there is a change in business logic in any of the
services, the others are not affected as long as the communication endpoint is
not changed. As a result if any of the components of the system fails, the failure
will not affect the other components or services, which is a big drawback of
monolithic system [7].

As we can see in Fig. 1, components in monolithic systems are tightly coupled
with each other so that failure of one component will affect the whole system.
Also if there is any architectural changes in a monolithic system it will also
affect other components. Due to these advantages, microservice architecture is
way more effective and efficient than monolithic systems.

Fig. 1. Architectures of microservices and monolithic systems.
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2.2 The Microservice Decomposition Process

Taibi et al. [31] conducted a survey among 21 practitioners who adopted
microservices at least two years ago. The aim of the survey was to collect their
motivation for, as well as the evolution, benefits, and issues of the adoption of
microservices. Based on the results, they proposed a migration process frame-
work composed of two processes for the redevelopment of the whole system from
scratch and one process for creating new features with a microservice architec-
ture on top of the existing system. They identified three different processes for
migrating from a monolithic system to a microservices-based one. The goal of
the first two processes is to support companies that need to migrate an existing
monolithic system to microservices by re-implementing the system from scratch.
The aim of the third approach is to implement new features only as microservices,
to replace external services provided by third parties, or to develop features that
need important changes and therefore can be considered as new features, thus
gradually eliminating the existing system. All three of the identified processes
are based on four common steps but differ in the details.

– Analysis of the System Structure. All processes start by analyzing dependen-
cies mainly with the support of tools (Structure101, SchemaSpy2, or others)

– Definition of the New System Architecture. Architectural guidelines or prin-
ciples, and proposal of a decomposition solution into small microservices are
defined. The decomposition is always done manually.

– Prioritization of feature/service development. In this step, all three processes
identify and prioritize the next microservices to be implemented. Some pro-
cesses prioritize microservices based on customer value; others according to
components with more bugs; and yet others prioritize the development of new
features as microservices, expecting that, in the long run, the new ecosystem
of microservices will gradually replace each feature of the existing monolith.

– Coding and Testing are then carried out like any other software development
project. Developers adopt the testing strategy they prefer. However, in some
cases, testing of the different microservices is performed by doing unit testing
at the microservices level and black-box testing at the integration level.

In this work, we focus mainly on the first two steps, supporting companies
in the analysis of the system structure and in the identification of decomposi-
tion alternatives. The architectural guidelines should be defined by the company
based on their internal policies.

2 http://schemaspy.sourceforge.net/.

http://schemaspy.sourceforge.net/


A Decomposition and Metric-Based Evaluation Framework for Microservices 137

2.3 Architectural Goals

The microservices should be as cohesive and decoupled as possible [7]. The moti-
vation of such architectural characteristics is to keep the maintenance as local
as possible. In other words, the changes to the source code should be local to
one microservice. Such decoupled architecture also supports independent devel-
opment and deployment of the microservices. Sam Newman [19] describe loose
coupling as follows: “a loosely coupled service knows as little as it needs to about
the services with which it collaborates”.

Cohesion is related to decoupling and measures the degree to which the
elements of a certain class belong together. Cohesion measures how weakly the
functionalities of different modules are related to each other [6]. High cohesion
often relates to low coupling [10,13]. If the components of the software have high
cohesion, the reasoning of the system is easier [13]. Thus, high cohesion supports
efficient development and maintenance of the system.

In the design of microservice-based systems the developers target at high
cohesion and low coupling by grouping the functionality and components accord-
ing to the business processes. Then, changes to a functionality should lead
changes to one microservice only [19].

Because cohesion and decoupling are key qualities of microservices, the
dependency information is needed in the decomposition process. The commonly
used dependency analysis tools, such as Structure 101, are based on static anal-
ysis of dependencies. They do not know which inter-component calls are really
made and they do not recognize the full call paths. Our approach uses the
dynamic dependency information that a process mining can provide. The min-
ing provides recommendations, and analysis can then be used for reasoning. At
this point, we do not aim at completely automated decomposition. In the next
Subsection we report the underlying assumptions of our approach and details of
the decomposition process.

2.4 Decomposition Framework Assumptions

The core assumption of our approach is existence of an extended log trace that
has been collected at runtime. This means that the whole chain of operations
after any external trigger can be traced from the log files. Examples of such
external events include any user operations (e.g., clicking on a button) and calls
from other applications (e.g., APIs or command line). The log file must include
information about all methods and classes involved in serving of the request. The
complete execution path must be completely traceable from the entry point to
the access to the database (if any) and to the results returned to the client. The
log must also include the start and end events. A hypothetical example of the
data reported in the log file is shown in Table 1. A trace in Table 1 is identified
by a session ID. That ID distinguishes the trace from other sessions.
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Table 1. Example of log traces (timestamps are shortened for reasons of space).

Start time End time Sess. ID Class Method

00:00 00:36 S1 Form.jsp btnClick()

01:00 01:39 S1 A.java a()

01:40 01:45 S1 A.java b()

01:45 01:55 S1 B.java b()

01:56 02:05 S1 B.java c()

02:05 02:13 S1 DB.java query()

02:14 02:21 S1 DB TABLE A

02:22 03:28 S1 DB TABLE B

02:29 02:36 S1 B.java c()

02:36 02:45 S1 B.java b()

02:46 02:55 S1 A.java b()

02:56 03:03 S1 A.java c()

03:04 03:16 S1 Results.jsp render()

There are several ways to collect the traces. One possible method is to instru-
ment the source code, but using Aspect-Oriented Programming (AOP) can be
done too, like in the work done by Suonsyrjä [26]. For some runtime systems it
is also possible to instrument the executable file with tools like Elastic APM3.
For Java programs our current recommendation is to use Elastic APM since the
instrumentation with it requires a minimal effort. Depending on the language
and on the technology adopted, other tools such as Dynatrace4 or Datadog5

could be also used.

3 The Microservice Measurement Framework

In this Section, we propose our microservice measurement framework. The frame-
work has the goal of supporting companies to compare different microservices-
based solutions, but also to understand the high-level architectural quality of
their current system.

The measurement framework is based on availability of log files from real
execution and is composed of four measures: coupling (CBM), number of classes
per microservice (CLA), number of duplicated classes (DUP), and frequency of
external calls (FEC).

This measurement framework is used on the decomposition framework pre-
sented in Sect. 4.

3 The Elastic APM Libraries. https://www.elastic.co/solutions/apm.
4 Dynatrace https://www.dynatrace.com.
5 Datadog https://www.datadoghq.com.

https://www.elastic.co/solutions/apm
https://www.dynatrace.com
https://www.datadoghq.com
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3.1 Coupling (CBM)

As reported in Sect. 2.3, in successful decompositions the coupling between
microservices should be minimized and cohesion should be maximized. A com-
prehensive calculation of these measures would require knowledge of information
beyond the log traces – for instance knowledge about access to local variables.
Thus, we need to rely on approximation. One way to approximate coupling is
to estimate it as an inverse to cohesion. Coupling can be considered as inversely
proportional to cohesion and therefore, a system with low coupling will have a
high likelihood of having high cohesion [10].

In our framework we adopt the metric “Coupling Between Microservice”
(CBM) [36], a coupling measure inspired by the well-known Coupling Between
Object (CBO) metric proposed by Chidamber and Kemerer [3]. CBO counts the
number of classes coupled with a given class. Classes can be coupled through sev-
eral mechanisms, including method calls, field accesses, inheritance, arguments,
return types, and exceptions.

In [36] we calculate the relative CBM for each microservice as follows:

CBMMSj
=

Number of external Links
Number of Classes in the Microservice

In this formula “Number Of External Links” represents the number of call
paths to external services. So, external services that are called several times,
even by different classes of the microservice, are only counted once. The external
services could be other microservices or services external to the whole system.
The call frequency of external calls should also be take into account, but we have
separate measure presented in Subsect. 3.4 for that.

3.2 Number of Classes per Microservice (CLA)

This measure is an abstraction of the size of the microservice, and allows the
developer to discover services that are either two big or too small compared with
other microservices. In general, smaller microservices are easier to maintain and
thus large microservices should be avoided.

In some cases optimizing for CLA measure leads to compromises to other
measurements. For instance, larger number smaller microservices may lead to
stronger coupling (CBM) and higher frequency of external calls (FEC).

3.3 Number of Duplicated Classes (DUP)

The execution traces often have common sub-paths, i.e., some classes and meth-
ods are common for several execution traces. If traces should be implemented in
different microservices, one way to increase independence is to is duplicate part
of the code to several microservices. For example, method j of class E (Fig. 4)
is used by two execution traces. In that example the decomposition option 1
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has one duplicated class, while option 2 requires no classes to be duplicated.
Duplicated classes increases size of the system and complicates the maintenance
process.

3.4 Frequency of External Calls (FEC)

Calls between microservices are computationally substantially heavier than calls
within a microservice. Thus, reducing of the frequency of external calls optimizes
the performance and delays. Since our approach is based on log-file analysis, we
have the frequency information available.

We use the call frequency presented in Table 3 as an input to a measure
relative Frequency of External Calls (FEC):

FECMSj
=

Number of Call Instances
Number of Classes in the Microservice

As an example consider execution paths and decomposition options in Fig. 4.
For the sake of the example we assume that

– Path A.a() → A.b() → B.c() → B.d() is called 200 times
– Path C.e() → C.f() → D.g() → D.h() is called 200 times.
– Path C.e() → C.f() → F.j() → D.g() → D.h() is called 50 times
– Path E.i() → E.j() → F.k() → F.l() is called 100 times.

With the input data we can calculate the number of internal calls, external
calls, and FEC per each microservice. In Table 2 we also show the total number of
internal in microservices (internal C), total number of calls between microservices
(external C) and relative computational load (load). In this example we assume
that an external call is 1000 times heavier than an internal call.

Table 2. Example analysis of call frequencies between microservices.

MS split internal c external c load FECMS1 FECMS2 FECMS3

0: A+B, C+D, E+F 1150 100 101550 0 25 25

1: A+B, C+D+E.j, E+F 1650 0 1650 0 0 0

2: A+B, C+D+E+F 1650 0 1650 0 0

4 The Decomposition Framework

In this Section, we describe a decomposition framework that uses the data from
the execution path analysis to discover the optimal split to micro services. A
top-level description of the framework is given Fig. 2.

When the log files are available, the decomposition process defined in (Fig. 2)
can be started. The process consists of six steps that are outlined in the following
subsections.
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Fig. 2. The decomposition process (from [36]).

4.1 Step 1: Execution Path Analysis

As our approach aims to optimize the system for the often used call sequences,
the first step of our approach is to identify the most frequently executed call
paths from the log files. One way to do that is use of a process-mining tool. In
our case, we used DISCO6 to graphically represent the business processes found
in the log files. Other similar tools can be used instead. The outcome of step 1
is a graphical representation of the processes and call graphs. One example of
such graphical diagram is presented in Fig. 3. The diagram shows the call paths
between classes, methods and data bases with arrows. This figure provides the
user with the following information:

– The actually executed call paths in the system. Possible but never executed
paths are not shown in this figure.

– Inter-class dependencies in the system. The dependencies are visualized with
arrows between methods and classes. The external dependencies to libraries
or web-services are also visualized.

– The usage frequency of each path. Process mining tools may present the
frequency with thickness of the arrows or in a separate table as in Table 3.

– Branches and circular dependencies. If the system has circular dependencies
or branches in the call path, those can easily be found from the visualization.

The call paths, shown with chains of arrows in Fig. 3, form candidates for
business processes that are later used in the decomposition to microservices.
For example, the path documented in Table 1 is visualized in a business process
shown in Fig. 3.

Table 3. Frequency analysis of each execution path (from [36]).

Path Freq.

A.a(); A.b(), B.b(), C.c(), DB.query, Table A, Table B, . . . 1000

A.b(); A.c(), B.a(), C.c(), DB.query, Table A, Table B, . . . 150

4.2 Step 2: Frequency Analysis of the Execution Paths

In our approach, the call frequency is a major contributor for the produced rec-
ommendations. Thus the frequency should be studied and analyzed. For visual
6 https://fluxicon.com/disco/.

https://fluxicon.com/disco/
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Fig. 3. Simplified process example (from [36]).

Fig. 4. Microservice decomposition example.

inspection, the process analysis tools can provide help. For instance, in the
DISCO tool, the thickness of the arrows reflect the call frequency. In addition
to visual inspection, we use concrete numeric data for all execution paths with
their usage frequency. So, the output of this step is a table similar to Table 3.

The Frequency Analysis step helps the architect to select the potential decom-
position options. The numbers are used to calculate the measures presented in
Sect. 3 and used in step 6 (see Subsect. 4.5).

4.3 Step 3: Removal of Circular Dependencies

In this step, we first find circular dependencies by analyzing the execution paths
reported in the table generated in the first Step (e.g. Table 3). This can be done
with a simple algorithm to discover cycles in the execution paths. In the case of
circular dependencies, software architects should discuss with the development
team how to break these cycles. One example of the patterns that can be applied
to break the cycles is Inversion of Control [17]. However, every cyclic dependency
could need a different breaking solution that must be analyzed carefully. The
result is a refined version of the execution path table (see Table 3 as example).
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Although this step is not part of the decomposition, it is important to con-
sider cyclic dependencies to avoid possible deadlocks, and to better architect the
system.

4.4 Step 4: Identification of Decomposition Options

In this step the execution paths from Step 3 are used to identity different decom-
position opportunities. Visual inspection of the call graphs like those shown in
Fig. 4 is used. We have relied on manual expert-based decomposition, but an
algorithm to create different decompositions could be developed.

The execution paths may merge to common sub-paths or split into several
branches. This leads to alternative decomposition solutions. This is demon-
strated in Fig. 4. If the six source files each providing implementation of a class
are assigned to three different microservices as A.java+B.java, C.java+D.java
and E.java+F.java, the calls form C.f() to E.j() and E.j() to D.g() are inter-
service calls. These calls are heavier operations than local calls and expand the
external interfaces of the microservices. If use of external calls is not feasible,
there are two other alternatives that can be proposed. The first option is to use
three microservices so that class E (or at least function j() of it) is duplicated in
two microservices. The other option is to decompose into two microservices as
shown in the rightmost part of Fig. 4. Obviously, there is also the alternative to
allow external calls and have three microservices with no duplications.

All these options have their advances and disadvantages, and the team should
discuss the alternatives is from multiple view points. The consideration could
include both functionality of the software – if the paths belong logically together,
and development process – what are the consequences of duplication to the devel-
opment team(s). In addition, the call frequency has to be taken into account. For
example in above split and merge case, the team has to consider both the devel-
opment effort and run-time cost of making the two call external. The metrics
discussed Sect. 3 help in analysing the run-time costs.

4.5 Step 5: Metric-Based Ranking of the Decomposition Options

In this step, we apply the measures identified in the Measurement Framework
(Sect. 3), to help software architects to assess the quality of the decomposition
options.

Sometimes optimization of the measures contradict with each other. Cur-
rently, we propose use of judgment of the team, but in the future approaches
like Pareto [5] optimization could be used.

4.6 Step 6: Selection of the Decomposition Solution

In final step, the decomposition alternatives identified in Step 4 and the measures
collected in Step 5 are used by the software architects to decide which solution
to take.
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Our approach does not automatically rank the solutions to any order. The
software architects should consider the provided recommendations and measure-
ments before selecting the solution. The team should discuss the relevance of the
differences in their case.

5 Discussion

In this work we proposed a microservice measurement framework and we applied
in our previously proposed decomposition process [36].

The measurement framework is based both on static and dynamic mea-
sures collected at runtime. The main benefit of analyzing runtime information
is the availability of the data on the usage of each component, together with the
dynamic analysis of dependencies. The dynamic measures allow to better under-
stand the behavior of the system, and to analyze the dynamic coupling. More-
over, thanks to the dynamic measures collected, such as the frequency of usage
of each method, the software architects can better understood which features
is used more, we prioritized the development and the slicing of the monolithic
system differently.

Companies could benefit from our lessons learned, by applying our pro-
posed frameworks to decompose their monolithic system, but also to evaluation
and monitoring the runtime behaviors or existing microservices to continuously
understand possible issues. Moreover, the microservice measurement framework
will allow software architects to clearly evaluate different decomposition options,
with the usage of repeatable and objective measures.

Despite this approach being very beneficial in our case company, the results
could have a different impact on other companies. Researchers can benefit from
this approach and extend it further. New optimization metrics could be defined,
and in theory, it would be possible to propose an automated decomposition
approach that would identify the slices by maximizing the metrics identified.
Genetic algorithms could be a possible solution for this idea.

6 Related Work

Fritzsch et al. [8] present a classification for the refactoring approaches. Our
approach should be categorized as Workload-Data aided in this classification
since we use operational data, i.e., dynamic data, in decomposition and analysis.

Bogner et al. have conducted a literature review of maintenance metrics
of microservices [1]. The report summarizes several metrics that specialize in
service-based systems instead of metrics designed for object-oriented systems.
Although that research assume use of static info only, these metrics should be
interesting for us in future research.

One case of refactoring a legacy system to a service based system has been
reported buy Khadka et al. [12]. Their case has substantial similarities to our
approach and case. They also stress the importance and difficulty of finding
the right set of services. They also analyze the call paths to find hotspots in
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the code. However, they do not present a systematic and repeatable process for
decomposition. Actually, only a limited set of research works propose systematic
approaches for developers in decomposing their systems into an optimal set of
microservices.

Chris Richardson [24] put scalability into focus and propose a decomposition
approach based on the “scalability cube” where applications can be scaled based
on the X, Y or Z axis. The X-axis and Z-axis scaling consists of running multiple
copies of an application behind a load balancer. The Y-axis axis scaling is the real
microservice decomposition approach, that propose to split the application into
multiple, different services. Each service is responsible for one or more closely
related functions. The decomposition is then based on two approaches: decom-
posing based on verbs used into the description of the service or decomposing by
noun creating services responsible for all operations related to a particular entity
such as customer management. Richardson also recommend to use combination
of verb-based and noun-based decomposition when needed.

Richardson [23] also mention this approach in his two decomposition strate-
gies:

– “Decompose by business capability and define services corresponding to busi-
ness capabilities”;

– “Decompose by domain-driven design sub-domain”;

In an older version of this page [23] (2017), Richardson proposed other two
patterns:

– “Decompose by verb or use ‘cases’ and define services that are responsible for
particular actions”;

– “Decompose by nouns or resources by defining a service that is responsible
for all operations on entities/resources of a given type”.

Kecskemeti et al. [11] proposed a decomposition approach based on container
optimization. The goal is to increase the elasticity of large-scale applications and
the possibility to obtain more flexible compositions with other services.

Another decomposition possibility is to start from a monolithic system and
progressively move towards a microservices-based architecture [39] or deliver-
ing separate microservices by splitting a development team into smaller ones
responsible for a limited group of microservices.

Vresk et al. [38] defined an IoT concept and platform based on the orches-
tration of different IoT system components, such as devices, data sources, data
processors, and storage. They recommend an approach similar to the one pro-
posed by Richardson’s Scalability Cube [24] combining verb-based and noun-
based decomposition approaches. The proposed approach hides the complexity
stemming from the variation of end-device properties thanks to the application
of a uniform approach for modeling both physical and logical IoT devices and
services. Moreover, it can foster interoperability and extensibility using diverse
communication protocols into proxy microservice components.
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Gysel et al. [9] proposed a clustering algorithm approach based on 16 coupling
criteria derived from literature analysis and industry experience. This approach
is an extensible tool framework for service decomposition as a combination of a
criteria-driven methods. It integrates graph clustering algorithms and features
priority scoring and nine types of analysis and design specifications. Moreover,
this approach introduces the concept of coupling criteria cards using 16 different
instances grouped into four categories: Cohesiveness, Compatibility, Constraints,
and Communications. The approach was evaluated by integrating two existing
graph clustering algorithms, combining actions research and case study investi-
gations, and load tests. The results showed potential benefits to the practitioners,
also confirmed by user feedback.

Chen et al. [2] proposed a data-driven microservices-oriented decomposition
approach based on data flow diagrams from business logic. Their approach could
deliver more rational, objective, and easy-to-understand results thanks to objec-
tive operations and data extracted from real-world business logic. Similarly, we
adopt process mining to analyze the business processes of a monolithic system.

Alwis et al. [4] proposed a heuristic to slice a monolithic system into microser-
vices based on object subtypes (i.e., the lowest granularity of software based on
structural properties) and functional splitting based on common execution frag-
ments across software (i.e., the lowest granularity of software based on behavioral
properties). This approach is the closer to our work. However, they analyzed the
system by means of static analysis without capturing the dynamic behavior of
the system and they did not propose measures to evaluate the quality of the
slicing solution proposed.

Taibi et al. [28,33,34], proposed a set of patterns and anti-patterns that
should be carefully considered during the microservice decomposition [28,33]
recommending to avoid a set of harmful practices such as cyclic dependencies
and hard-coded endpoints but also to consider critical anti-patterns and code
smells [27] that can be generated into the monolithic system.

7 Conclusions

The decomposition of monolithic systems into microservices is a very complex
and error-prone task, commonly performed manually by the software architect.

In this work, we first proposed a new microservice measurement framework
based on 4 measures: coupling, number of classes per microservices, number of
duplicated classes and frequency of external calls. The goal of our framework is
to support software architects to compare different microservice decompositions,
by means of a set of objective and repeatable measures.

We instantiated our measurement framework in the context of the previously
proposed process-mining decomposition approach [36].

Our goal is not the automated slicing of monolithic systems but to provide
extra support to software architect, to help them in identifying different slicing
options reducing the subjectivity and to measure and compare the different
solutions objectively.
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The microservice measurement framework can be adopted independently
from the decomposition process used. As example, software architect might man-
ually identify two decomposition options for a monolithic system. The measure-
ment framework will support them in the comparison of their decomposition
options.

We recommend companies to apply periodically our measurement framework
also in case of existing microservices-based systems. The historical analysis of
the evolution of the system might provide useful information on the quality of
the system and also be a trigger for future refactorings.

Future works include the validation of the framework, both in the context
of manual decompositions and when using process-mining based approaches.
Moreover, we want to evaluate the application of our approach in development
of a tool to facilitate the identification of the process, the automatic calculation
of the metrics, and identification of other measures for evaluating the quality of
the decomposition. We already started to develop a tool to automatically identify
dependencies between microservices [21] and we published a dataset containing
the analysis of 20 projects [22].

We are also planning to further empirically validate this approach with other
companies and to include dynamic measures for evaluating the quality of the
system at runtime [16,37]. In the future, we are also planning to adopt mining
software repositories techniques to identify the areas that changed simultane-
ously in the past, to help developers to understand pieces of code connected to
each other.

Another possible future work is to include identification of partial migration,
i.e., migration of a limited set of processes from a monolithic system. Finally,
we are also considering to extend this work by proposing not only different
decomposition options but also a set of patterns for connecting microservices
based on existing common microservices patterns [19,32] and anti-patterns [28,
33,34].
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26. Suonsyrjä, S., Mikkonen, T.: Designing an unobtrusive analytics framework
for monitoring Java applications. In: Kobyliński, A., Czarnacka-Chrobot, B.,
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Abstract. Internet of Things (IoT) devices produce large volumes of
data, which creates challenges for the supporting, often centralised cloud
infrastructure that needs to process and store the data. We consider
here an alternative, more centralised approach, based on the edge cloud
computing model. Here, filtering and processing of data happens locally
before transferring it to a central cloud infrastructure. In our work, we
use a low-power and low-cost cluster of single board computers (SBC) to
apply common models and technologies from the big data domain. The
benefit is reducing the volume of data that is transferred.

We implement the system using a cluster of Raspberry Pis and Docker
to containerize and deploy an Apache Hadoop and Apache Spark data
streaming processing cluster. We evaluate the performance, but of trust
support of the system, showing that by using containerization increased
fault tolerance and ease of maintenance can be achieved. The analysis of
the performance takes into account the resource usage of the proposed
solution with regards to the constraints imposed by the devices. Our
trust management solution relies on blockchain technologies.

Keywords: Edge cloud · IoT · Container · Cluster architecture ·
Raspberry Pi · Docker · Big data · Data streaming · Performance ·
Trust

1 Introduction

Devices that produce data are ubiquitous by now. Connected to the Internet
of Things (IoT) a major part of this data is stored or processed in a cloud
environment. This data volume is growing exponentially [44].

In order to reduce data volume in transfer, local (pre-)processing of data
is a more resource-efficient alternative to the currently used centralised cloud
processing model. We present here a lightweight infrastructure following the
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edge computing model. We specifically aim to provide affordable, low-energy
local clusters at the outer edge of the cloud that are partly composed of IoT
devices themselves. In more concrete terms, we have build a small low-power,
low-cost cluster of single board computers in a local network, which alows us to
process generated data at the outer edge closer to producers and often consumers
of the data. This solution addresses critical performance, but also trust concerns.
We also look at cost concerns, important for the industrial application.

Single-board devices (SBD) such as Raspberry Pis have already been investi-
gated for IoT and edge settings [25,33,43,47], but performance and trust for an
industry-relevant setting still need to be better investigated. We introduce here
an edge cloud architecture on SBDs [32] that builds on technologies commonly
used in big data processing like Apache Hadoop and Apache Spark, which are
characterised by high speed, high variety, and high volume. The software plat-
form builds on Docker as the containerization technology. Docker Swarm is used
as the mechanism of orchestrating application services on a device cluster.

We describe the implementation of the solution using a cluster of Raspberry
Pis, a single board computer (SBC). We use Docker to deploy and orchestrate
lightweight containers [35] in which we run an Apache Hadoop and Apache Spark
cluster. In order to analyze the performance of the system [16] considering the
resource constraints of the Raspberry Pi, system metrics are collected through
a monitoring stack based on Prometheus, a monitoring and alerting tool, that
we deployed on the cluster. Performance is evaluated experimentally, using a
test application to process data. Furthermore, we demonstrate how the cluster
can be used as test bed for such applications. We also look into trust, which we
validate using a use case analysis.

2 State-of-the-Art Discussion

Many IoT-cloud integrations monitor and collect data at the IoT edge, but send
this data directly to a centralized cloud where sufficient storage space and com-
putational power is available. However, as a consequence of increasing numbers
of IoT device and volume of data that is being generated, such centralised cloud
infrastructures are not ideal from a latency, cost and reliability perspective [13].

The IoT domain gives rise to a number of use cases, where large amounts of
data are generated and have to be processed. The ability to process data locally
with a low-cost and low-power system opens up use cases in environments with-
out large amounts of processing power at disposal on premise, which would
benefit from a decreased traffic, like systems in remote areas. Also autonomous
monitoring and automation systems, like remote localised power grids are sample
applications. Possible application scenarios include autonomous power genera-
tion and distribution plants, such as smaller local energy grids. In smart city
contexts, mobility applications need to support vehicles moving around that
themselves have limited computational power.

Edge computing aims at migrating storage and computation to the remote
layer close to the data producers and consumers [22]. Specifically low-cost and
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lightweight approaches based on the fog or edge cloud computing model are
needed if the edge devices are somewhat resource-constrained or the need to
use affordable devices exists. Functionally, the main requirement is to collect,
process, and aggregate data locally. Quality-wise, the aim is reducing the overall
amount of traffic and the need for a backing cloud infrastructure. The costs for
acquisition, maintenance and operation of such a system and its suitability in
an industrial setting will also need to be considered as well as the overall perfor-
mance of the system with regards to the limited resource constraints. Another
requirement is that a suitable platform needs to reflect a industry-relevant set-
ting in terms of software deployment or big data processing. Yet another problem
arises from the often cross-organisation setting. Often, no prior trust relationship
exists between providers and consumers of devices, software and data.

Constrained edge systems benefit from the use of single board computers
like the Raspberry Pi [24] to address cost or other constraints. The possibility of
connecting sensors to the device’s GPIO paired with the capability to perform
more complex computations, thus creating a network of smart sensors capable
of recording, filtering, and processing data is enabled here. The nodes can be
joined together to a cluster to distribute the workload in the form of containers,
having separate nodes responsible for different steps of the data pipeline from
data generation and collection to evaluation for big data streaming and analytics.

Lightweight cluster infrastructure (Raspberry Pis), lightweight container-
based software deployment and orchestration platform (Docker swarm) that
hosts a big data streaming application architecture are introduced in the next
section. This would lead towards a microservices-style architecture [19,42] allow-
ing for flexible software deployment and management to be enabled. In this
paper, we built on [1] by adding trust to the previous performance concern
for evaluation. Furthermore, we better demonstrate the utility of our results
by developing an automated vehicle and mobility use case and show how the
proposed architecture can be utilised in this context.

3 Literature Review

Lightweight devices such as single-board devices and lightweight virtualization
based on containers have continuously gained popularity. Lightweightness is a
benefit for computing at the outer edge, where limited resources are available,
but still data originating from the IoT layer needs to be processed. Lightweight
devices result in lower costs and lower energy consumption.

We review literature in terms of three criteria: overhead, edge applicability
and big data feasibility. Firstly, overhead: in comparison to native processes,
according to [26,36] Docker container virtualization has been shown to not add
significant overhead by leveraging kernel technologies like namespaces and con-
trol groups, allowing the isolation of processes from each other and an optimal
allocation of resources such as CPU, memory and I/O device access. Secondly,
IoT/Edge Applicability: according to [27,30], Docker is highly suitable as a plat-
form for both IoT and Edge Computing. Here as a consequence of constraints
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imposed by low-power devices, it allows lightweight virtualization and facili-
tates the creation of distributed architectures. Thirdly, Big Data: [29] shows
that Docker is suitable for provisioning Big Data platforms, for instance Hadoop
and Pachyderm, thus helping overcome difficulties in installation, management,
and usage of large data processing systems. Systems like Hadoop have been
demonstrated in [12] to be a suitable platform for pre-processing large amounts
of data even on small clouds with limited networking and computing resources.

In [46], it is pointed out that the recent development of low-cost SBDs allows
the creation of low-power affordable IoT and edge clusters that offer the capa-
bility of pre-processing sensor data, while also reducing acquisition and main-
tenance costs [46]. SBDs such as the Raspberry Pi are particularly interesting
for any system which gathers, processes, and reacts to environment data of
some form. They allow technically to attach sensors and actuators to its GPIO
pins. Their architecture enables smart infrastructures and smart sensor net-
works, see e.g.,[25,43] that describe the University of Glasgow Smart Campus
project. HypriotOS [37,38] is a Linux-based operating system that makes the
Docker platform available for ARM processor and thus for IoT networks. The
Hypriot developers have demonstrated that container orchestration tools like
Docker Swarm and Kubernetes can be run on Raspberry Pis to facilitate highly
available and scalable clusters despite the given resource limits of SBDs. Trust is
another open concern. While trust architectures exist [11] that address identity
and integrity concerns for instance through distributed ledger technologies, their
application to edge context is not sufficiently analysed.

Despite some acknowledgement of the principle suitability, an exploration of
the performance limits resulting from a containerised big data streaming appli-
cation on a lightweight cluster architecture is still lacking. Furthermore, trust
platforms exist, but need to be better investigated regarding their edge suit-
ability. Thus, we have built such an architecture and evaluated it in terms of
cost, configuration, performance and trust concerns in the context of an industry-
relevant choice of technologies such as container management (Docker), monitor-
ing (Prometheus), stream process (Spark) and blockchain (Hyperledger Fabric).

Nowadays, the utilization of SBDs such as a Raspberry Pi with different
techniques of lightweight virtualization attracts researchers from an industrial
projects such as Carberry1 and ODB-Pi2 to academical research. In [28], a
Docker container-based platform has been proposed as a lightweight virtualiza-
tion solution for enabling a customized smart car application. According to the
result, container-based virtualization is not an only a viable approach, although
is more flexible and effective in terms of management of several parallel pro-
cesses running on On-Board-Unit (OBU). In [40], a scaled validation of Con-
nected and Automated Vehicles (CAV) has been studied for vehicle-to-vehicle
and vehicle-to-infrastructure communications. Furthermore, the development of
robotic devices such as Pololu Zumo3 that combined with an on-board Raspberry

1 http://www.carberry.it.
2 http://www.instructables.com/id/OBD-Pi/.
3 https://www.pololu.com/product/2506.

http://www.carberry.it
http://www.instructables.com/id/OBD-Pi/
https://www.pololu.com/product/2506
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Pi 3 supports researchers to provide shorter gaps between theory and practical
implementation scenarios to reduce the overall cost of the project. The possi-
bility of cooperative automation through the cloud for distributed computing
has been studied in [14,41] in the project CARMA (Cloud-Assisted Real-Time
Methods for Autonomy). CARMA combines a 3-tier architecture, includes of
Vehicle, Edge, and Cloud to address on-board and off-board computation as
important necessities of cooperative automated driving technology. All 3 tiers are
logically divided into CARMA Core Cloud, CARMA Edge and CARMA Vehi-
cle, which have a possibility to work independently, therefore, they could enable
ultra-Reliability and Low-Latency Communication (uRLLC) for 5G. Low-cost
connected devices for measuring acceleration and assessing road surface friction
during vehicle braking performance-wise have been studied in [2]. As reported
in the study the measurements which obtained from the proposed prototype
during some tests are comparable to their benchmark regarding all measure-
ment parameters including sample frequency, acceleration values and triggering
thresholds, on the other hand with 10 to 15-times fewer values for the material
cost. Another implementation of an inexpensive Raspberry Pi for a real-time
traffic jam on the road has been studied in [7]. An innovative prototype for
control and management of a connected car is modeled in [45] which can be a
remotely controlled connected car based on YANG/RESTCONF and cloud com-
puting. In this demonstration, a RESTCONF server was installed on a Rasp-
berry Pi, responsible for the sensors and actuators of the car and allowing for its
remote control using SDN/NFV technology from a user terminal and through
the cloud. In terms of safe driving system, [15] proposes a new model based on
the plural sensors inside a car and on a driver’s body which uses multiple edge
computing nodes. This prototype consists of three edge computing nodes; first
one is for monitoring the car and the driver. The second one acts as a controller
and the last node is learning server for training a model for more sophisticated
risk assessment. All these 3 distributed cooperative edge nodes are implemented
based on the Raspberry Pi.

4 Platform Technologies

We propose a layered architecture of three platform technologies, with Raspberry
Pis as the device layer, Docker containers and the software platform and Apache
Hadoop/Spark as the data processing layer.

The Raspberry Pi (RPi) is a single-board computer, which was initially devel-
oped as an educational device, but soon attracted attention from developers due
to the small size and relatively low price [39]. There have been multiple updates
of the platform. The specifications are shown in Table 1. In this project, the
Raspberry Pi 2 Model B, released in 2015, is used.

Docker is an open source software project that allows to run container-
ized applications [9]. A container is a runnable instance of a Docker image,
a layered template with instructions to create such a container. A container
holds everything the application needs to run, like system tools, libraries and



A Containerized Edge Cloud Architecture for Data Stream Processing 155

Table 1. Specification of the Raspberry Pi 2, Model B – see [1].

Architecture ARMv7

SoC Broadcom BCM2836

CPU 900 MHz quad-core 32-bit ARMCortex-A7

Memory 1 GB

Ethernet 10/100Mbit/s

resources, while keeping it in isolation from the infrastructure on which the
container is running, thus forming a kind of virtualisation layer. Figure 1 illus-
trates Docker’s architecture. Containers interact with their environment. Access
to system resources can be configured for each container to access storage, or,
in the case of the RPis, to the general-purpose input/output pins (GPIO) for
interaction with its environment, e.g., for using sensors or actuators.

Technically, containers compartmentalize the container process and its chil-
dren using Linux containers (LXC) and libcontainer technology provided by the
Linux kernel via kernel namespacing and control groups (cgroups), in fact iso-
lating the process from all other processes on the system, while using the hosts
kernel and resources. The major difference between containers and VMs is that
containers, sharing the hosts kernel, do not necessitate a separate operating sys-
tem, resulting in less overhead and minimizing the needed resources.

Fig. 1. Docker container architecture – see [1].
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Fig. 2. Docker swarm configuration sample – see [1].

A central component is the Docker Engine4. The Docker daemon is the server
that manages all Docker objects, i.e., images, containers, volumes and networks.
The client, a command line interface (CLI), communicates with the daemon
using a REST API. The Docker Swarm mode5 allows natively to manage a clus-
ter/swarm of Docker engines. Docker Swarm allows to use the Docker CLI to
create and manage a swarm, and to deploy application services to it, without
having to resort to additional orchestration software. A Docker swarm (clus-
ter) is made up of multiple Docker hosts that run in swarm mode and act as
either manager or worker nodes. A host can run as manager, worker, or both.
When a service is created, the number of replicas, available network and storage
resources, exposed ports, and other configurations are defined.

The state of a service is actively maintained by Docker. For example, if a
worker node becomes unavailable, the tasks assigned to that node are scheduled
on other nodes. This enables fault-tolerance. A task here refers to a running
container that is run and managed by the swarm, as opposed to a standalone
container. In Fig. 2, we illustrate a schematic Docker swarm configuration.

At the core is MapReduce, which is a programming model allowing to pro-
cess big data sets. It is build on a distributed, parallel algorithm on clustered
devices [8]. The name indicates that a MapReduce program contains (1) a map
method for performing filtering/sorting of data and (2) also a Reduce method,
to execute some associative operation. While being inspired by map and reduce
methods common in functional programming, the main aim of MapReduce is
the optimization of the underlying engine, thus achieving scalability and fault
tolerance. The MapReduce process can be illustrated as follows:

4 Docker Engine, https://docs.docker.com/engine.
5 Docker Swarm, https://docs.docker.com/engine/swarm/.

https://docs.docker.com/engine
https://docs.docker.com/engine/swarm/
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Both the Map and Reduce operation are run on structured data in the form
of (key, value) pairs. The Map function is applied to all pairs (k1, v1) of the
input in parallel, producing a list of pairs (k2, v2). After this first step, all pairs
with the same key k2 are collected by the framework, producing one group (k2,
list(v2)) for each key. Then, the Reduce function is applied to each group in
parallel, producing a list of values v3.

Apache Hadoop is an open source software library based on the MapReduce
programming model [3] to process large datasets in a distributed way. The aim
is to scale from single nodes to clusters with multiple thousands of machines [6].
The following modules are part of the Apache Hadoop core:

– Hadoop Common – common libraries & utilities;
– Hadoop Distributed File System (HDFS) – distributed file system to store

data on cluster nodes;
– Hadoop YARN – manage/schedule computing resources and applications;
– Hadoop MapReduce – large scale MapReduce data processing.

Figure 3 illustrates a small cluster with a single master node and multiple worker
nodes. The master node acts as a task and job tracker, NameNode (data index),
and DataNode (data store). Worker nodes act as task tracker and DataNode.

At the core of the Hadoop architecture is the Hadoop Distributed File Sys-
tem (HDFS) together with the MapReduce processing component. Since the
nodes manipulate the data they have access to, Hadoop allows for faster and
more efficient processing of the dataset than more traditional supercomputer
architectures [48]. Files are split into blocks of data and distributed across the
DataNodes. Transferring a packaged application on the same nodes, Hadoop
takes advantage of the principle of data locality.

Finally, Apache Spark is a distributed computing framework as an extension
to the MapReduce paradigm that provides an interface for executing applications
on clusters [4]. Based on resilient distributed datasets (RDD), a distributed
and fault-tolerant set of read-only data items is processed. RDDs provide a
limited form of Apache Spark generally reduces the latency, compared to an
Apache Hadoop implementation by several orders of magnitude. Hadoop has
a distributed shared memory for distributed programs, allowing a less forced
dataflow compared to the MapReduce paradigm. Apache Spark requires a cluster
manager – supported implementations are Spark native, Apache Hadoop YARN,
and Apache Mesos clusters – and a distributed storage system. In extension to
Apache Hadoop’s batch processing model, Apache Spark provides an interface
to perform streaming analytics.



158 R. Scolati et al.

Fig. 3. Small Hadoop cluster – see [1].

Fig. 4. Stream processing system architecture – see [1].

Spark supports distributed storage systems, TCP/IP sockets, and a variety
of data feed providers such as Kafka and Twitter as streaming sources, thus
making it interoperate well with common platforms.

5 A Lightweight Platform for Edge Data Processing

Our architecture builds on a Raspberry Pi cluster that hosts a Docker swarm to
leverage the ease of container orchestration on multiple devices. Other applica-
tions, i.e., Apache Hadoop and Spark cluster, the Prometheus monitoring stack
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Fig. 5. Overview of the distribution of the service containers on the nodes – see [1].

and the applications used to simulate data collection, are executed inside Docker
containers. In order to have a data producer, data is provided by a Nodejs6 appli-
cation that writes files to the HDFS via its API. The Hadoop distributed file
system (HDFS) serves as data source for an Apache Spark streaming applica-
tion. This simplifies the deployment and management of these applications. For
instance, even partial hardware failure can be managed by Docker.

Our lightweight edge architecture is shown in Figs. 4 and 5. Figure 4 shows the
processing in the architecture and the data flow during the experiments, while
Fig. 5 shows an overview of the distribution of the services on the Raspberry Pis
in the configuration that reflects our experimental setting.

5.1 Hardware Architecture

The Raspberry Pi cluster is made up of eight RPi 2 Model B, fitted with an 8 GB
micro SDcard for the installation of the OS. The Raspberry Pis are connected
6 Nodejs, https://nodejs.org.

https://nodejs.org
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to a Veracity Camswitch 8 Mobile switch7. This serves also to power the devices
through Power over Ethernet (POE). The switch features ten 10/100Mbit/s
ports, eight of which are 802.3 POE outputs. POE has the advantage of the
setup being cleaner, since a separate power supply is not needed for the Rasp-
berry Pis and as such less cables run across the system, although this is neither
necessary nor cost efficient. Since the Raspberry Pi does not provide the neces-
sary connectivity for POE, the devices need to be outfitted with an additional
POE module, connected to the Raspberry Pis through the GPIO pins. The RPis
are connected to the switch using category 5E SFTP cables.

5.2 Software Architecture

Hypriot - Operating System. Hypriot OS8 is a specialized Debian distribu-
tion suitable for RPis. The distribution comes with Docker pre-installed, and is
a minimal operating system optimized to run Docker on ARM devices. Hypriot
OS is available as an image which can be flashed onto a micro SD card. The OS
comes with a pre-installed SSH service, accessible through the configured cre-
dentials. Since password authentication is not secure, all nodes are set up to use
public key authentication. In order to automate the setup of the nodes, the con-
figuration management tool Ansible9, is used to define the hosts and automate
configuration tasks via SSH.

Docker Swarm - Container Setup and Management. In order to initialize
and setup a Docker swarm, the Docker engine CLI is used, starting with a single
node swarm created on one of the RPI nodes, which becomes the manager for the
newly created swarm. The manager stores join tokens for manager and worker
nodes, which can be used to join other machines to the swarm. In addition,
different tags can be set through the Docker CLI on each node that can be
used to constrain the deployment of services to specific nodes. For other swarm
management tasks such as promotions, demotions and manage the membership
of nodes, Docker engine commands can be issued to any define manager.

Application Services - Deployment. Docker stack deployment is used to
deploy services to the swarm. To describe the stack, Docker uses a stack descrip-
tion in form of a Compose file, where multiple services can be defined. For each
service part of the stack, the origin registry, ports and networks, mounted vol-
umes, service name and replicas as well as deployment constraints, for example
Docker node tags, can be specified. When deployed on a manager node, Docker
will deploy each service in the stack to the nodes of the swarm, according to the
constraints and definition, balancing out the containers on the available nodes.

7 Veracity Global Camswitch 8, http://www.veracityglobal.com/products/networked-
video-integration-devices/camswitch-mobile.aspx.

8 Hypriot OS, https://blog.hypriot.com/about/.
9 Ansible, https://www.ansible.com/.

http://www.veracityglobal.com/products/networked-video-integration-devices/camswitch-mobile.aspx
http://www.veracityglobal.com/products/networked-video-integration-devices/camswitch-mobile.aspx
https://blog.hypriot.com/about/
https://www.ansible.com/
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To deploy the compose file to the swarm manager and to set up the nodes,
e.g., for the preparation of configuration files and mounted directories, Ansible
scripts can be used (or alternatively these actions can be performed manually).
The table below describes the allocation of services to nodes10, see also Fig. 5.

Node Container

Node 0 Data collection, Prometheus exporters

Node 1 Data collection, Prometheus exporters

Node 2 Data collection, Prometheus exporters

Node 3 Spark worker 2, Prometheus exporters

Node 4 Spark worker 1, Prometheus exporters

Node 5 Spark master, Prometheus exporters, Prometheus, Grafana

Node 6 Spark worker 3, Prometheus exporters

Node 7 Spark worker 4, Prometheus exporters

Hadoop and Apache Spark - Deployment. Hadoop and Apache Spark
are deployed to the cluster, together with the data collection application used
to evaluate the implementation, through a Docker Compose file. Hadoop can
be natively used to create clusters of computers, but Hadoop and also Apache
Spark can also be deployed inside Docker containers. We chose the latter option
to streamline the deployment process and avoid a tedious per-device installation
of the software and the management of required dependencies.

We used a Docker image to install Hadoop and Apache Spark inside a con-
tainer and also for the set-up of the environment. In the final set-up, one master
node and four separate worker nodes are deployed. Since the worker nodes act as
DataNodes for the cluster, each worker node container is provided with sufficient
storage space, by means of a standard 3.5 inch. 1TB hard disk, mounted as a
volume. Note that the three remaining cluster nodes act as data producers.

6 Data Processing and Monitoring at the Edge

The process of data production, collection and analysis is at the core and support
by Hadoop/Spark. Additionally, monitoring is critical.

6.1 Edge Data Collection and Analysis

For the experimental evaluation of the architecture, we use two applications, one
for simulating data production and collection on three nodes and a second one
is deployed to the Apache Spark cluster to process the collected data. The appli-
cations are also used to gather data related to the performance of the system.
Here, we focus on the data processing time.
10 Prometheus exporters: Armexporter, Node exporter, cAdvisor.
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– Data Collection. In order to simulate data collection, a Nodejs application
sends a HTTP PUT request with the data content to the HDFS API creating
a file in a specified interval of time. The data collection application is deployed
on three cluster nodes. The experiment data are sample files exposed to and
read by the application over the network allowing to change the size and the
contents without having to modify the application and re-deploy it.

– Data Analysis. For collected data analysis, a Python application polls for
newly created files every second and performs a count of single occurrences of
words in the files. The application is derived, with some minor changes, from a
sample application provided with the Apache Spark engine11 in order to use a
common benchmark. Our implementation follows the MapReduce model, i.e.,
creating a list of (key, value) pairs of the form (word, 1) for each occurrence of
a word. This list is then grouped by keys (here words) and the Reduce step is
then applied on each group, generating the sum of occurrences of each word.
These last two steps are performed by one function, reduceByKey. The listing
below illustrates the algorithm in pseudocode with the sample MapReduce
implementation used as the test application.

Finally, the deployment of the application to the Spark cluster is done using
the Spark CLI tool sparksubmit to send it to the master node, which then
distributes the application to the workers.

6.2 Edge Monitoring

We deployed a Prometheus12-based monitoring stack to the cluster. Prometheus
is an open source monitoring and alerting system, which uses a time series
database and supports the integration with other software such as HAProxy,
the ELK stack (Elasticsearch, Logstash and Kibana) or Docker. Since the task
of Prometheus is to pull data from services, the stack uses a number of so-called
exporters to collect data for different metrics and expose them to be collected by
Prometheus. The Docker-related exporters that we used are cAdvisor13, a dae-
mon which collects and exposes container resource usage, and Node exporter14,
which exports hardware and system metrics exposed by the Linux kernel.

11 Spark sample applications, https://github.com/apache/spark/tree/master/examples.
12 Prometheus, https://prometheus.io/.
13 Google cAdvisor, https://github.com/google/cadvisor.
14 Node exporter, https://github.com/prometheus/node exporter.

https://github.com/apache/spark/tree/master/examples
https://prometheus.io/
https://github.com/google/cadvisor
https://github.com/prometheus/ node_exporter
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In order to visualize and analyse the collected data, we used Grafana15.
Grafana allows to monitor and analyze metrics by creating dashboards exposed
via a web user interface (UI). Grafana could be integrated with little configura-
tion for monitoring of Docker containers on multiple Linux machines. The stack
is deployed to the Docker cluster using a custom Compose file.

One instance each of the cAdvisor and Node exporter is deployed on every
RPi. Prometheus and Grafana are both deployed on one of the node.

7 Trusted Orchestration Management for Edge Clouds

Besides performance, trust management is another key concern of edge architec-
tures where often devices and software from different providers and consumers
meet. In order to provide trust management, we propose here in this section
a trust management component, the so-called Trusted Orchestration Manage-
ment TOM, that we integrate with the container cluster architecture. Blockchain
technologies shall be utilised here.

7.1 Blockchain Principles

Blockchains are shared distributed databases where the users can add to or read
transactions with no one having full control, thus avoiding fraudulent manipula-
tion. Thus, they form a distributed ledger and are also referred to as Distributed
Ledger Technology DLT.

New transactions are signed digitally and timestamped, allowing operations
to be traced, thus determining their provenance. Blockchains enhance security in
untrusted environments. Often, security concerns can be remedied if autonomy
and trust capabilities of decentralised blockchains are used to provide security
functions that can operate without a central authority in unreliable networks.

Blockchains operate as follows. Blocks that represent transactions are added
to the blockchain. An added transaction is cryptographically hashed and signed
to ensure integrity and support non-repudiation. Smart contracts such as orches-
tration actions can also be attached to a blockchain. A problem with blockchains
in general is massive data replication, requiring scalability and performance con-
cerns to be addressed, specifically in constrained environment.

7.2 Blockchain-Based Trusted Orchestration

Orchestration is the key activity in clustered edge clouds that looks after the
lifecycle management (create, run, delete) of data, software and hardware. In
Fig. 6, we show the principles of a TOM architecture.

15 Grafana, https://grafana.com/.

https://grafana.com/
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Fig. 6. Trusted orchestration management.

– the key entities to be looked after are data, service and device. Devices like
RPis host software services. These software services are in our case container-
ised. The containers process the data from the IoT layer, e.g., sensors.

– All entities need to be processed, which here means that the orchestrator
needs to identify, place and orchestrate them (manage their lifecycle). Data
is continuously produced, but needs to be identified when it enter the system
at least in terms of its source. In dynamic environments, also software and
device can join (or leave) the system and need to be identified, possibly more
strictly in security terms. All need to be placed, i.e., transfered/connected to
suitable host. These are containers for data processing or network nodes for
hosting containers. Their lifecycle is then subsequently managed.

– In order to formalise this, our reference architecture builds on the W3C Prove-
nance standard PROV. This standard introduces entities (here data, services,
devices), agents (the orchestrator) and actions (identify, place, orchestrate in
our case). The PROV standard then defines relationships between them: uses,
is generated by, is followed by.

Trust management is a function added to the functional orchestration actions.
We aim to improve the trustworthiness of edge systems by recording identity,

provenance and the actually executed orchestration actions in a tamper-proof,
trustworthy infrastructure – the blockchain. We reflect the PROV relationships
such as ‘is generated by’ or ‘uses’ in the records we enter into the blockchain.

The TOM Orchestrator is in our case placed in the Master node of the RPi
cluster network as an additional function. Figure 7 shows the TOM reference
architecture applied to the clustered edge cloud setting, with data, containers
and devices as entities. The TOM orchestrator looks after the identification,
placement and orchestration of these. Three types of information are entered
in to the blockchain: 1) identity of the entity, 2) provenance data using the
define relationships, and 3) orchestration action as a smart contract.
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8 Evaluation and Discussion

We cover different aspects in our evaluation. We start with some operation con-
cerns. Then, we look at performance in the following experimental performance
evaluation. Subsequently, we discuss the trust management approach. Finally,
we look at a use case to further demonstrate applicability.

8.1 Maintainability, Fault-Tolerance and Build Times

We can make some observations on some operations-oriented evaluation criteria:

– Maintainability and Ease of Operation. Using containerized services on a
Docker swarm contributes significantly to achieving maintainability and ease
of operation of the implementation.

– Fault-Tolerance. Using Docker requires only minimal overhead, but increases
the overall fault tolerance of the system, since containers that have failed due
to hardware or software problems can be restarted on any other node. This
is managed by the cluster itself. Thus, Docker achieves high availability and
increased fault tolerance.

– Image Building and Build Times. IA general limitation can be the lack of RPi
(SBD) specific Docker images (for ARM architectures) that include applica-
tions such as Apache Hadoop and Apache Spark. Continuous integration and
continuous delivery (CI/CD) services such as provided by Gitlab16 can be

Fig. 7. TOM-enabled edge cluster architecture.

16 Gitlab, https://about.gitlab.com/.

https://about.gitlab.com/
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used to build necessary images. Since the containers used to build the images
run on a different instruction set than the Raspberry Pis, we used a system
emulator, QEMU17 inside the Dockerfiles to cross-build images. Despite some
problems due to the Java Virtual Machine (JVM) displaying bugs during the
builds, requiring to run some preparatory commands manually on the already
deployed services, we preferred this over building the images on one of the
cluster nodes due to the longer build times. The table below shows the build
times of one of the used images on a common notebook18, compared to build
times of the same image on a RPi used in the cluster, to which the time to
distribute the image on the nodes has to be added.

Target architecture Build architecture Build time

armv7 x86 64 6 m 1 s

armv7 armv7 14 m 33 s

The pull of the image from the Gitlab registry took about 6 min. While these
build times seem high, this is an activity that is not frequently needed and
can generally be tolerated.

8.2 Experimental Performance Evaluation

A critical factor for small devices is to deliver the required performance in a
constrained environment. The performance evaluation focus shall be on exper-
imentally evaluating data processing time and resource consumption. Running
the test applications required some fine tuning of the resources allocated to
the Spark executors, influenced by the constraints imposed by the Raspberry
Pis. The only relevant results were achieved by allocating 500 MB of memory to
each executor, since the Spark process would generate out-of-memory exceptions
when using less, while on the other hand, if given more memory, the processes
would starve one of the components necessary for the Hadoop/Spark cluster.
This memory allocation can be set during the submission of a job.

The main aspects are now file processing time and resource consumption,
which we discuss separately before ending with a discussion of results.

File Processing Times. We based this on input data file sizes that reflect
common IoT scenarios with common small-to-midsize data producers. The delay
between the submission of a new file and the end of the analysis process was
measured using time stamps by comparing the submission time with the time
the output was printed to the standard output stream (stdout) of the submission
shell. In both cases, the data analysis application was polling for new files every
second, and files were submitted at a rate of one per second.
17 QEMU, https://www.qemu.org/.
18 The model used is a HP 355 G2, with AMD A8-6410 2 GHz CPU and 12 GB memory.

https://www.qemu.org/
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File size Polling time Delay

1.04 KB 1 s 236 s

532 B 1 s 61 s

The results in the table above shows the measurements for files with around
500 B and 1 KB, respectively, that were submitted once per second. This reflects,
as already said, a common small-to-midsize data production volume. The test
cases aimed at exploring the limits of the RPi-based container cluster architec-
ture for certain IoT and edge computing settings. The delays shown above can
be considered too high for some real-time processing requirements, e.g., for any
application which relies on short times for immediate actuation, and are unex-
pectedly high considering the file size and the submission rates used during the
test runs. However, if only storage and analysis without immediate reaction is
required or the sensors produce a limited volume of data (such as temperature
sensors), then the setting we outlines is adequate.

Resource Consumption. In our implementation, we had various services were
distributed among the nodes of the cluster, see Fig. 5. The data recorded by the
Prometheus monitoring stack deployed shows no increase of the used resources
during file submission and analysis by the respective services. We detail this now
for CPU and memory.

Fig. 8. Container CPU time, by node – see [1].

– CPU. In Fig. 8 we show the CPU time use (by node) during the execution of
the test application, while Fig. 9 shows the same data, divided by container.
The shown records are for the 532 Bytes test file.
As expected, the graphs show an increase of CPU workload on all Apache
Spark nodes, in particular on the worker nodes of the cluster. The analysis
application was submitted from node 3 (Spark worker 2), which explains the
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Fig. 9. Container CPU time, by container – see [1].

higher CPU use compared to the other nodes at point 0 in the graphs, while
data collection was started two minutes in, at the 120 s mark, as can be seen
by an increased CPU utilization by the Spark master node. Data collection
and data analysis were stopped at 420 and 480 s, resp.

– Memory. Figures 10 and 11 show, similar to CPU, the memory use of the
containers in Spark and the monitoring stack during the experiment divided
by node and by container, respectively.
As expected, we observe that memory usage by the Spark node is higher than
on the other nodes, as it is used to submit the application and therefore acts
as controller for the execution and collects the results from all other nodes.

Note that the resource usage by the remaining system is not shown (e.g., the
Docker daemons and system processes), which were constant during the test,
with CPU time below 2% and memory use around 120 MB on each node stable.

Fig. 10. Container memory use, by node – see [1].
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Fig. 11. Container memory use, by container – see [1].

Performance Analysis and Discussion. The experimental results demon-
strate that the system resources are not used optimally, with capacities both at
the CPU and in particular for the memory of the devices. The results suggest that
the delay is due to how the distribution and replication of small files is performed
by HDFS (a typical block size used to split files by HDFS is 64 MB), causing
a non-optimal use of system resources as well as Spark streaming capabilities.
Besides the rather high delays and suboptimal resource usage, the recorded data
shows an uneven CPU utilization by the Spark master container, reaching 0%
around the 250 s mark, which was consistently irregular throughout all the test
runs. This might be due to the file system, or rather HDFS, starving the process
due to high I/O times. Here, further experiments with alternative sources might
be better able to confirm reasons.

Raspberry Pi 2 has now been replaced by RPi 3, which would allow some
performance improvements. While in comparison the CPU only gains 300 MHz,
it also updates its architecture from a Cortex-A7 set to a Cortex-A53, i.e., an
architecture improvement from 32-bit to 64-bit. This should result in much better
performance of a factor 2 to 319. In terms of RAM and tact rate, where the
Raspberry Pi 2 has 450 MHz, the Pi 3 has 900 MHz RAM.

In order to summarise, the objective here was to determine some of the
limits of the proposed infrastructure. Depending on the concrete application in
question, our configuration could however still be sufficient, or could otherwise
be improved through better hardware or software configuration.

In order to utilise resources better, a controller allowing self-adaptation [20]
to address performance and resource utilisation anomalies of the platform config-
uration [17,18] is a solution that could address suboptimal resource utilisation.

19 https://www.jeffgeerling.com/blog/2018/raspberry-pi-3-b-review-and-performance
-comparison.

https://www.jeffgeerling.com/blog/2018/raspberry-pi-3-b-review-and-performance-comparison
https://www.jeffgeerling.com/blog/2018/raspberry-pi-3-b-review-and-performance-comparison
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8.3 Trust Management Review

As such, containers can provide a degree of security through the in-build process
isolation. However, in an open and often cross-organisation setting, more is need
to secure the infrastructure and provide an additional degree of trust, particu-
larly between partners that need to cooperate. For this situation, we introduced
and applied the TOM reference model earlier on.

The application of the TOM principles in a blockchain-supported architecture
demonstrates that a degree of trust can be achieved. In more concrete terms,
we mapped the PROV-based TOM model to Hyperledger Fabric [11]. Hyper-
ledger Fabric is an open-source implementation of a permissioned distributed,
decentralized ledger. It relies on a modular architecture, which enables pluggable
components and implementations of different functionality (e.g., consensus and
encryption mechanisms). Differently from many widely used blockchain plat-
forms where all nodes of the network can carry all the operations, fabric distin-
guishes between two types of nodes: worker nodes and peer nodes. Peer nodes are
responsible for coordinating the consensus mechanism, validating transactions
and committing transactions to the blockchain. Each peer maintains a copy of
the blockchain.

In our architecture a Hyperledger fabric is used as the PROV chain storing all
the three block types (identity, provenance, orchestration). Each block contains
thus transactions specifying the identity, provenance records, smart orchestration
contracts of the interactions taking place in the network.

– Identity: Hyperledger fabric relies on public key infrastructures (PKI), which
provide verifiable identities through a chain of trust to identify each entity
(i.e., device, container and data).

– Provenance: One of the main features of the proposed architecture is the
implementation of the W3C-PROV standard. Being able to track the origin
of every piece of data in the system is at the core of blockchain technology.
In the proposed architecture each asset has an attribute (i.e., derivedFrom)
that connects it with its origin. Once the system is in place, starting from a
data object, a recursive call would provide the complete chain of provenance.

– Orchestration: To support the orchestration requirements of the reference sce-
nario, a high degree of nodes management is required. The proposed architec-
ture takes advantage of Docker Swarm to dispatch services on remote nodes
as well as start containers to run different services.

8.4 Cooperative, Connected and Automated Mobility Use Case

In order to validate the usefulness of our architecture for concrete application
settings, we discuss in this section its application to a use case.

Cooperative, Connected and Automated Mobility (CCAM) is a context in
which for instance vehicles are connected using a network. Often, compute and
storage capabilities in this application area are limited and largely similar to
the capabilities of RPis, see [26,27]. These compute capabilities are often spread
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Fig. 12. CCAM scenario: 5G-enable MEC-to-vehicle coordination.

between in-vehicle and road-side computation and edge clouds. Often the term
MEC is used here, standing for Mobile Edge Computing or Multi-Access Edge
Computing (in 2017, the ETSI standardisation body officially changed the name
from Mobile Edge Computing to Multi-Access Edge Computing). MEC often
refers to communication using mobile phone networks. Lightweight MECs pro-
vide computational and storage services close to the vehicles.

Figure 12 shows a MEC architecture that supports direct vehicular coordi-
nation. Here, the cars are data producers (providing position or car status data)
and the MEC nodes are data consumers that provide e.g. lane change support
(or other coordinated, cooperative maneouvres). The orchestrator for this coor-
dination between vehicles and road-side devices is a dedicated MEC node.

In Fig. 13, we detail further how the orchestrator enables virtualised network
functions or application services, e.g., for the lane change scenario. Other services
for similar CCAM usage scenarios could be video streaming, where different
MEC nodes will buffer video content close to the position of the vehicle.

As a consequence of the dynamic nature here, vehicles move and might con-
nect differently over time. The different services such as lane changing or video
streaming have different quality requirements (lane changing is latency critical,
but not high volume in data, whereas video streaming is more of the opposite).
An important function here is the placement engine that assigns suitable nodes
for virtual functions (in container format) to cluster nodes depending on their
capabilities and capacities. Figure 14 shows a layered orchestration and manage-
ment stack for this, which includes placement, lifecycle management (LCM) and
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Fig. 13. CCAM architecture: lightweight MEC cluster.

quality management engines as central orchestration functions. We refer here to
TOSCA as the service specification and orchestration format, but other semantic
description notations [23,34] for description and matching are possible.

What this short use case discussion shows is that our containerised RPi clus-
ter architecture is a typical architecture for common edge computing scenarios.

Fig. 14. CCAM layered light management and orchestration stack for MEC.

9 Conclusions

Leveraging the lightweight containerization and orchestration capabilities offered
by Docker, allows for an edge computing architecture that is simple to manage
and has high fault-tolerance. A lightweight containerised cluster platform can be
suitable for a common range of IoT data processing applications at the edge.

Due to the Docker swarm actively maintaining the state of the services,
we gain high availability of services, making the cluster self-healing, while also
making scaling simple. In practical terms, for our platform configuration, most
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of the images used were created from scratch, or at least heavily customized
from similar implementations to meet the requirements. Nonetheless, the number
of projects targeting ARM devices are growing in popularity. The monitoring
stack, which we used in a performance test bed for the implementation and
applications, was available as a ready-to-use Docker compose file.

Further benefits apply. Low energy and cost are properties of single board
devices, that are still able to run complex infrastructures by means of clustering,
are promising with regards to the overall reduction of infrastructure costs even
in the presence of high volumes of data. We have shown that it is possible to
implement a data streaming processing system on device clusters with strict
constraints on networking and computing resources like the Raspberry Pis to
create a low-cost and low-power cluster capable of processing large amounts of
data. Though, the actual performance of our prototype system has limits. For
instance, a performance limitation of the prototype implementation was caused
by the choice of the Hadoop distributed file system (HDFS) as source for data
streams of small files, indicating that not all components are suitable for the
constained environment. Trust [10,31] has been an equally important aspect
that we included in our discussion.

The presented lightweight edge architectures are important for many new
application areas. Autonomous driving is an example where mobile edge clouds
are required. Vehicles need to coordinate their behaviour, often using mod-
ern telecommunications technologies such as 5G mobile networks. This requires
onboard computing capability as well as local edge clouds in addition to cen-
tralised clouds in order to guarantee the low latency requirements. SBC clusters
are an example of computational infrastructure close the outer edge that can
support these scenarios as our use case analysis has shown.

In the future, we will explore different configuration options of Apache Spark,
e.g., using the network as a data source. This would allow the use of IoT data
transmission protocols like MQTT, while Hadoop and HDFS might be used on
pre-processed and aggregated data. Furthermore, the model used to evaluate the
implementation could be extended in order to verify the actual performance of
the system in more scenarios. Here, alternative data stream sources could also
be considered as part of future work. In this work, we only looked at identi-
fying performance problems. An opportunity is using machine learning [21] to
implement autonomous configuration and resource management [5].
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Abstract. The need for scalable and low-latency architectures that can
process large amount of data from geographically distributed sensors and
smart devices is a main driver for the popularity of the fog computing
paradigm. A typical scenario to explain the fog success is a smart city
where monitoring applications collect and process a huge amount of data
from a plethora of sensing devices located in streets and buildings. The
classical cloud paradigm may provide poor scalability as the amount of
data transferred risks the congestion on the data center links, while the
high latency, due to the distance of the data center from the sensors,
may create problems to latency critical applications (such as the sup-
port for autonomous driving). A fog node can act as an intermediary in
the sensor-to-cloud communications where pre-processing may be used
to reduce the amount of data transferred to the cloud data center and
to perform latency-sensitive operations.

In this book chapter we address the problem of mapping sensors over
the fog nodes with a twofold contribution. First, we introduce a formal
model for the mapping model that aims to minimize response time con-
sidering both network latency and processing time. Second, we present
an evolutionary-inspired heuristic (using Genetic Algorithms) for a fast
and accurate resolution of this problem. A thorough experimental eval-
uation, based on a realistic scenario, provides an insight on the nature
of the problem, confirms the viability of the GAs to solve the problem,
and evaluates the sensitivity of such heuristic with respect to its main
parameters.

Keywords: Fog computing · Optimization model · Evolutionary
programming · Genetic algorithms · Smart cities

1 Introduction

Cyber-physical systems are producing an ever-growing amount of data through
the presence of a large number of geographically-distributed sensors. This ever-
increasing amount of data needs to be filtered and processed to support advanced
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applications that can monitor complex systems. However, as the data size grows,
the traditional cloud paradigm becomes inadequate and can result in poor per-
formance, due to the risk of high latency in the responses or due to the risk of
creating congestion on the network links of the cloud data centers.

An approach that can increase the scalability and can reduce the latency is
the fog computing paradigm. Fog computing moves some services from the cloud
data center (located on the network core) towards a set of fog nodes located
on the network edge, that is the location where the data sources connect to
the network. The services that are typically deployed on the fog layer involve
data filtering, validation, aggregation, alarm triggering and other pre-processing
tasks that can reduce latency and the amount of data transferred towards the
cloud data centers. This paradigm has been proposed in [11,13] as an enabling
architecture in different areas. Examples include:

– Applications such as gaming and videoconferencing that need very low and
predictable latency

– Geo-distributed monitoring applications like pipeline monitoring or environ-
mental sensing

– Fast mobile applications such as smart connected vehicles and connected rails
– Large-scale distributed control systems including smart grid, smart traffic

monitoring, and support for autonomous driving

In this book chapter, we focus mainly on an environmental monitoring appli-
cation for a smart city, where multiple sensors are deployed over a geographic
area to monitor air pollution and traffic. We assume that the infrastructure is
structured as in Fig. 1 and is composed of three layers: a first sensor layer that
produces data (the sensors are represented at the bottom of the figure as a set
of wireless devices), an intermediate fog layer that carries out the preliminary
processing of data from the sensors, and a cloud layer that is composed by one or
more data centers (at the top of the figure) and that is the final destination of the
data. Sensors collect information about the city status, such as traffic intensity
or air quality [16]. Such data should be collected at the level of a cloud infras-
tructure to provide value-added services such as traffic or pollution forecast. The
proposed fog layer intermediates the communication between the sensors and the
cloud to provide scalability and reliability in the smart city services.

Our problem is centered on the management of data flows in a fog infras-
tructure, that is, distributing the data from the sensors among the fog nodes
taking into account both the load balancing issues at the level of each fog node,
and the latency in the sensors-to-fog links. This problem is rather new, because
most literature on fog infrastructures takes the sensor-to-fog mapping as a fixed
parameter depending on the system topology [8], while we assume that, at least
on a city-scale scenario, there are degrees of freedom that can be leveraged. As
this problem is complex and may present scalability issues, we also introduce
an heuristic, based on Genetic Algorithms, to solve the problem. A preliminary
version of this research appeared in [5]; however, in this chapter we improve the
theoretical model, supporting a more detailed analysis of the problem, and we
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Fig. 1. Fog infrastructure.

introduce a more detailed experimental evaluation of our proposal to provide a
better insight on the problem and on its solution.

Specifically, our contribution can be summarized as follows: (1) we present
an innovative approach to model fog infrastructures, defining an optimization
problem for the sensor-to-fog mapping problem; (2) we introduce a GAs-based
heuristic to solve this new problem (other approaches based on this heuristics
were applied only to traditional cloud data centers [20] and/or to Web Ser-
vice composition [10]); (3) we provide a thorough experimental analysis of the
problem, with the aim to give insight on the nature of the problem and on the
performance of the proposed heuristic solution.

The book chapter is organized as follows. Section 2 discusses the related work,
while Sect. 3 formalizes as an optimization problem the model of the considered
application. Section 4 presents the heuristic algorithms proposed to solve the
problem. Section 5 introduces the experimental testbed and discusses the results
that confirms the viability of our approach. Finally, Sect. 6 concludes the paper
with some final remarks.

2 Related Work

The significant increase in the amount of data generated by modern infrastruc-
tures, joined to the need of processing the same data to provide value-added
services, motivates the research community to explore the edge-based solutions
(such as the so-called fog computing) as an evolution of the traditional cloud-
based model. Indeed, when we have a large amount of data originated at the
border of a network, a centralized cloud model becomes inefficient, while an
approach that pushes some operation (such as filtering or aggregation of the
data) towards the network edge has been demonstrated to be viable alternative
in several papers [8,15,17,18].
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In [18], Yi et al. propose a survey with significant application scenarios (and
the corresponding design and implementation challenges) of fog computing. A
more wide- spread discussion of open issues, open research directions and chal-
lenges of fog computing for IoT services and smart cities is proposed in [17].
This vision is consistent with the reference scenario proposed in this chapter.
Indeed, we refer to a similar smart-city sensing application and we consider, as
the main challenge, the combined goal of reducing communication latency, while
preserving load balancing.

Some studies focus on the allocation of services that process data from the
fog nodes over a distributed cloud infrastructure. For example, Deng et al. [8]
investigate how power consumption and transmission delay can be balanced in
fog-to-cloud communication, proposing an optimization model. Another inter-
esting study [19] focuses on minimizing the service delay in a IoT-fog-cloud sce-
nario, where fog nodes implement a policy based on fog-to-fog load sharing. It is
noteworthy to consider that, in both these studies, the mapping of data sources
over the fog nodes is not taken into account. Indeed, [8] assumes single-hop wire-
less links between sensors and fog nodes, while communication in [19] is based
on application-specific domains. Our research is complementary with respect to
these issues, as we consider a network layer capable of multi-hop links so that
each sensor can communicate with each fog node, motivating our sensors-to-fog
mapping.

Another area that is close to our research is that of fog computing infras-
tructures supporting smart cities. For example, Tang et al. [15] propose a hier-
archical 4-layer fog computing system for smart cities. This layering leverages
the nature of a geographic distribution in a large set of sensors that carry out
latency-sensitive tasks, where a fast control loop is required to guarantee the
safety of critical infrastructure components. Moreover, unlike our research, also
this paper assumes that the sensors-to-fog nodes mapping is fixed so that a fog
node communicates only with a local set of sensors that are deployed in the
neighborhood.

A different research [6] is more focused on the vision of Data Stream Process-
ing (DSP) applications. In particular, the paper addresses the operator place-
ment problem: DSP operators must be mapped on the fog nodes with the goal
of maximizing the QoS. The problem is described as an Integer Linear Pro-
gramming (ILP) problem. However, the authors of [6] assume that the incoming
data flow can be split to support parallel processing. Our research considers a
more generic application scenario where this assumption may not be acceptable.
Research on genetic algorithms (GAs) have been proposed in the area of cloud
computing. In particular, Yusoh et al. [20] rely on GAs to propose a solution
of Software as a Service (SaaS) Placement Problem that is scalable. Another
significant example is [10] where a QoS-aware service composition problem in
cloud systems is solved using GAs.

Finally, this chapter extends a previous research [5], where a similar problem
is considered. However, in the present study improves both the model, with a
more effective and simplified presentation of the problem model, and the exper-
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imental section, introducing a thorough discussion of the parameters character-
izing the problem and their impact on the ability of commercial solvers and of
the proposed solution to reach a high quality solution for the problem.

3 Problem Definition

3.1 Problem Overview

The reference architecture in Fig. 1 is used as the basis of our problem modeling.
In particular, we consider a set of sensors S distributed over an area and we
assume that these sensors are producing data with a known intensity, such that
the generic sensor i ∈ S produces a packet of data with a frequency λi (the
reader may refer to Table 1 for a summary of the symbols used in the model).
In our model, we introduce some simplifying assumptions that is, we consider a
stationary scenario where the data rate of sensors remains stable over time and
where sensors do no move. Furthermore, we anticipate that, in the experiments
we will consider sensors to be homogeneous, that is λi is the same for every
sensor, even if the model is capable to capture an heterogeneous scenario as
well.

The fog layer is composed by a set of nodes F that collect the data from
the sensors and carry out tasks such as validation, filtering and aggregation on
them, to guarantee a fast and scalable processing of data even in the case where
data processing is computationally demanding. In our model we consider that
the generic fog node j ∈ F can process a data packet from a sensor with an
average service time equal to 1/μj . The fog nodes send their output to one or
more cloud data centers where additional processing and data storage is carried
out.

Since the problem of managing a cloud data center has been widely discussed
in literature [14], we do not consider the details of the internal management of
the cloud resources but we focus instead on the issue of mapping the sensors over
the fog nodes. In particular, we aim to model the QoS of the fog infrastructure
in terms of response time, taking into account the following two contributions
for the infrastructure performance:

– Network-based latency. This delay is due to the communication between the
sensors and the fog nodes. We denote the latency as δi,j where i is a sensor
and j is a fog node.

– Processing time. The processing time on the fog node can be modeled using
the queuing theory. It depends on 1/μj , the service time or a packet of data
from a sensor on fog node j, and on the incoming data rate λj that is the sum
of the data rates λi of the sensors i that are sending data to the fog node j.

The reader may refer to Table 1 where we summarize the symbols used in
the model.
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3.2 Optimization Model

In the considered fog scenario, we aim to map the data flows from the sensors on
the fog nodes. Hence, we introduce an optimization problem where the decision
variable represents this mapping as a matrix of boolean values X = {xi,j , i ∈
S, j ∈ F}. Considering the values on the matrix, xi,j = 1 if sensor i sends data to
fog node j, while xi,j = 0 if this data exchange does not occur. To support some
stateful pre-processing (even a simple moving window average function would
fall in this category), we assume that all the data of a sensor should be sent to
the same fog node. Hence, for a given value of i, there is only one value of j such
that xi,j = 1.

We now introduce a formal model for the previously-introduced optimization
problem. The basis is similar to the request allocation problem in a distributed
infrastructure, such as the allocation of VMs on a cloud data center [9,12,14].
As previously pointed out, we rely on a decision variable represented as a matrix
of boolean values X. The values in the matrix determine if a sensor i is sending
data to fog node j. Furthermore, we introduce an objective function and a set
of constraints as follows:

Table 1. Notation [5].

Symbol Meaning/role

Decision variables

xi,j Sending data flow from sensor i to fog node j

Model parameters

S Set of sensors

F Set of Fog nodes

λi Outcoming data rate from sensor i

λj Incoming data rate at fog node j

1/μj Service time at fog node j

δi,j Communication latency between sensor i to fog node j

Model variables

i Index of a sensor

j Index of a Fog node

min Obj(X) = Objnet(X) + Objproc(X) (1.1)
where:

Objnet(X) =
∑

i∈S

∑

j∈F
xi,j · δi,j (1.2)

Objproc(X) =
∑

i∈S

∑

j∈F
xi,j · 1

μj − λj
(1.3)
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λj =
∑

i∈S
xi,j · λi ∀j ∈ F , (1.4)

subject to:
∑

j∈F
xi,j = 1 ∀i ∈ S, (1.5)

λj < μj ∀j ∈ F , (1.6)
xi,j = {0, 1}, ∀i ∈ S, j ∈ F , (1.7)

In the problem formalization, the objective function 1.1 is composed by two
components (Objnet and Objproc, respectively) that represent the total (and
hence the average) latency and processing time, respectively. The computation
of the latency component is rather straightforward and aims to capture the
communication delay in a geographically distributed infrastructure based on the
latency values δi,j , as detailed in Eq. 1.2. The processing time used for the com-
ponent Objproc of the objective function is detailed in Eq. 1.3. The definition is
consistent with other papers that focus on a distributed cloud infrastructure such
as [3]. In particular, the processing time is derived from Little’s result applied to
a M/G/1 system and takes into account the average arrival frequency λj and the
processing rate μj of each fog node j. Equation 1.4 defines the incoming load λj

on each fog node j as a function of the mapping of sensors in the infrastructure.
The objective function is combined with a set of constraints. In particular,

constraint 1.5 means that, for each sensor i, its data is sent to one and only
one fog node. Constraint 1.6 guarantees that, for each fog node j, we avoid a
congestion situation, that is we need to avoid the case where, for a generic node
j, the load λj is higher than the processing capability μj . Finally, constraint 1.7
describes the boolean nature of the decision variables xi,j .

4 Heuristic Algorithm

To solve the optimization problem defined in the previous section we consider
an evolutionary inspired heuristic based on the Genetic Algorithms (GAs), with
the aim to evaluate its effectiveness in solving the problem by comparing the
heuristic performance with the one of commercial solvers.

The main idea behind GAs is to operate on a population of individuals,
where each individual represents a possible solution of the problem. The solution
is encoded in a chromosome that defines the individual and the chromosome
is composed by a fixed number of genes that represent the single parameters
characterizing a specific solution of the problem.

A population of individuals is typically initialized randomly. A fitness func-
tion, that describes the objective function of the optimization problem is applied
to each individual. The evolution of population through a set of generations aims
at improving the fitness of the population using the following main operators:

Mutation is a modification of a single or a group of genes in a chromosome
describing the individual of the population. Figure 2 presents an example of such
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operator where the ith gene of the rightmost individual in the Kth generation
undergoes a mutation. The main parameter of this operator is the probability
of selecting an individual to perform a mutation on one of its genes. In the
sensitivity analysis in Sect. 5.4, we will refer to this probability as Pmut.
Crossover is a merge of two individuals by exchanging part of their chromo-
somes. Figure 2, again, provides an example of this operator applied to the two
individuals composing the population at the Kth generation. In particular, in
Fig. 2 the child individual is characterized by a chromosome containing the genes
from c0 to ci−1 from the rightmost parent and the genes from ci to cS from the
leftmost parent. The main parameter of this operator concerns the selection of
the parents. In the sensitivity analysis in Sect. 5.4, we will refer to the probability
of selecting an individual for a crossover operation as Pcross.
Selection concerns the criteria used to decide if an individual is passed from
the Kth generation to the next. The typical approach in this case is to apply
the fitness function to every individual (including new individuals generated
through mutation and crossover) and to consider a probability of being selected
for the next generation that is proportional to the fitness value. The selection
mechanism ensures that the population size remains stable over the generations.

Fig. 2. Examples of genetic algorithms operators [5].

When applying a GAs approach to the problem of mapping sensors over
the fog nodes of a distributed architecture, we must encode a solution as a
gene. In particular, we aim to formalize the relationship between the model in
Sect. 3.2 and the GA chromosome encoding. Hence, we define a chromosome
as a set of S genes, where S = |S| is the number of sensors. Each gene is an
integer number from 1 to F , where F = |F| is the number of fog nodes in
our infrastructure. The generic ith gene in a chromosome ci can be defined as:
ci = {j : xi,j = 1}. Due to constraint 1.5 in the optimization model, we know that
only one fog node will receive data from sensor i, so we have a unique mapping
between a solution of the problem expressed using the decision variable xi,j and
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the GA-based representation of a solution. As we can map each chromosome
into a solution of the original optimization problem, we can use the objective
function 1.1 as the basis for fitness function of our problem. Constraints 1.5
and 1.7 are automatically satisfied by our encoding of the chromosomes. The
only constraint we have to explicitly take into account is constraint 1.6 about
the fog node overload. As embedding the notion of unacceptable solution in a
genetic algorithm may hinder the ability of the heuristic to converge towards a
solution, we prefer to insert this information into the fitness function, in such a
way that the individual providing a solution where one or more fog nodes are
overloaded is characterized by a high penalty and is unlikely to enter in the
subsequent generation.

Multiple optimization algorithms have been considered before adopting the
choice of a genetic algorithm. On one hand, greedy heuristics tend to provide
performance that heavily depends on the inherent nature of the problem. For
example, the non-linear objective function may hinder the application of some
greedy approaches, while the number of sensors that may be supported by each
fog node may have significant impact on the performance of branch and bound
heuristics. As we aim at providing a general and flexible approach to tackle this
problem, we prefer to focus on meta-heuristics that are supposed to be better
adaptable to a wider set of problem instances [4]. Among these solution, we focus
on evolutionary programming in general and on genetic algorithms in particular
as this class of heuristics has been proven a viable option in similar problems
such as the problem of allocating VMs on a cloud infrastructure [20].

5 Experimental Results

5.1 Experimental Testbed

To evaluate the performance of the proposed solution, we consider a realistic fog
computing scenario where geographically distributed sensors produce data flows
to be mapped over a set of fog nodes, which are nodes with limited computational
power and devoted to tasks such as aggregation and filtering of the received data;
then, the pre-processed data are sent to the cloud data center.

To evaluate our proposal in a realistic scenario, we modeled the geographic
distribution of all the components of the system according to the real topology
of the small city of Modena in Italy (counting almost 180.000 inhabitants). Our
reference use case is a traffic monitoring application where the wireless sensors
are located on the main streets of the city and collect data about the number
of cars passing on the street, their speed and other traffic related measures
together with environmental quality indicators (an example of this application
can be found in the Trafair Project [16]). Figure 3 shows the map of sensor nodes,
fog nodes and cloud data center for the considered smart city scenario. To build
the map of sensors, we collected a list of the main streets in Modena and we geo-
referenced them. We assume that in each main street we have at least one sensor
producing data. We selected a group of 6 buildings hosting the offices of the
municipality and we use them as the location of the fog nodes – this assumption
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is consistent with the current trend of interconnecting the main public building
of each city with high bandwidth links. Our final scenario is composed of 89
sensors and 6 fog nodes. The interconnection between fog nodes and sensors is
characterized by a delay that we model using the euclidean distance between
the nodes. The average delay is in the order of 10 ms, that is consistent with a
geographic network. Finally, we assume that the cloud data center is co-located
with the actual location of the municipality data center.

Fig. 3. Smart city scenario [5].

Concerning the traffic and processing models, we rely on two main parameters
to evaluate different conditions: the first metric ρ represents the average load of
the system; the second parameter δμ represents the ratio between the average
network delay (δ) and the service time (1/μ). Specifically, we define the two
parameters as:

ρ =
∑

i∈S λi∑
j∈F μj

(2)

δμ =

∑
i∈S

∑
j∈F δi,j

|F||S| ·
∑

j∈F μj

|F| (3)

In our experiments, we consider several scenarios corresponding to different
combinations of these parameters, in order to analyze the performance of the
GAs-based solution for the sensor mapping problem.

In order to solve the problem of mapping data flows over the sensor nodes,
we implemented the optimization model with the AMPL language [2] and then
we use the commercial solver K-NITRO [1]. Specifically, the AMPL definition is
directly based on the optimization problem discussed in Sect. 3. Due to the nature
of the problem, we were not able to let the solver run until the convergence.
Instead, we placed a walltime limit of 120 min, with a 16 core CPU and 16
concurrent threads. Due to this limitation, we also consider a case where we
remove the constraint 1.5, thus allowing each data flow to be split over more fog
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nodes: the best solution achieved in this case represents a theoretical optimal
bound for our problem.

The genetic algorithm is implemented using the Distributed Evolutionary
Algorithms in Python (DEAP) framework [7] based on the details provided in
Sect. 4. In the evaluation of the genetic algorithm approach, we run the experi-
ments 5 times and we average the main metrics. In particular, for each run of the
genetic algorithm, we consider the best achieved solution at each generation. The
algorithm maintains a population of 200 individuals and we force a stop of the
algorithm after 300 generations. Moreover, the genetic algorithm considers for
the main parameters the following default values, that have been selected after
some preliminary experiments: mutation probability Pmut = 0.8 and crossover
probability Pcross = 0.5.

In order to analyze the performance of the evolutionary inspired proposal
for the sensor mapping problem, we compare the best solution found by the GA
heuristic (ObjGA) with the best solution found by the solver for the walltime
limited AMPL problem (ObjAMPL) and with the theoretical optimal bound
(Obj∗), considering as the main performance metric the discrepancy ε between
the solutions, as it will be defined in the rest of the section. Furthermore, we eval-
uate the convergence speed of the GA algorithm, considering as the convergence
criteria the case of a fitness value within 2% of the theoretical optimal bound.
To this aim, we measure the number of generations needed by the GA heuristic
to converge. Finally, we consider also the computation time as a function of the
population size.

5.2 Evaluation of Genetic Algorithm Performance

The first analysis in our experiments compares the difference between the solu-
tion found by the GA and the theoretical optimal bound obtained by the solver
in the case the constraint 1.5 is removed. To this aim, we consider as performance
metric the discrepancy εGA defined as follows:

εGA =
ObjGA − Obj∗

Obj∗ (4)

In this experiment, we consider several scenarios by varying the values of the
parameters ρ and δμ. Figure 4 shows as an heatmap the value of εGA for ρ ranging
from 0.2 to 0.9 and δμ ranging from 0.01 to 10. To better understand the results,
let us briefly discuss the impact of the considered parameters. For example, a
scenario where ρ = 0.9 and δμ = 0.01 (corresponding to the bottom right corner
of Fig. 4) represents a case where network delay is much lower than the average
job service time, while the processing demand on the system is high. This means
that the scenario is CPU-bound because managing the computational requests
is likely to be the main driver to optimize the objective function. On the other
hand, a scenario where ρ = 0.2 and δμ = 10 (top left corner of Fig. 4) is a scenario
characterized by a low workload intensity and a network delay comparable with
service time of a job, where it becomes important to optimize also the network
contribution to the objective function.
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Fig. 4. Performance of GA.

In the color coded representation of εGA in the figure, black hues refer to a
better performance of the genetic algorithm, while yellow hues correspond to a
worse performance. From this comparison, we observe that the value of ρ has
a major impact on the performance of the GA heuristic. Indeed, the heatmap
clearly shows good performance for low values of ρ (for ρ = 0.2, we have εGA

below 1% for all the values of δμ). On the other hand, when the average load
of the system is high (ρ = 0.9) the GA algorithm shows a higher discrepancy
with respect to the theoretical optimal bound: the risk of overloading the nodes
is higher and the value of the objective function is highly variant with respect to
the considered solution. In this case, the value of δμ shows its impact on the final
performance: indeed, until the ratio between the average network delay (δ) and
the service time (1/μ) is low (δμ = 0.01) the discrepancy still remains limited to
few percentage points, while for high values of this ratio (δμ = 10) it goes up to
almost 15%.

We now present an in-depth analysis where we separately measure the dis-
crepancy regarding the individual contributions of the two main components of
the objective function, related to the total network latency Objnet and to pro-
cessing time Objproc (defined in Eqs. 1.2 and 1.3, respectively) with respect to
the corresponding optimal values. To this aim, we define the discrepancies εGA

net

and εGA
proc defined as follows:

εGA
net =

ObjGA
net − Obj∗

net

Obj∗
net

(5)

εGA
proc =

ObjGA
proc − Obj∗

proc

Obj∗
proc

(6)

Figure 5 shows as heatmaps the values of εGA
net and εGA

proc for the considered
scenarios with varying ρ and δμ. Both the figures confirm that the difficulty
to achieve a solution close to the optimum for high values of ρ. Furthermore,
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Fig. 5. Components of the objective function.

we observe high discrepancies (between 30% and 35%) regarding the network
latency in the bottom right part of Fig. 5a. The reason of this result is that
the network latency contribution to the overall object function is very small
when δμ is low with respect to the processing time, hence the network latency
component is not optimized, thus showing high discrepancies with respect to the
corresponding optimal value.

To have a confirmation of the observed result, we directly measure the weight
of the contribution of the two main components (network latency and processing
time) to the overall value of the objective function in the case of the solution
corresponding to the theoretical optimal bound. To this aim, we define Wnet and
Wproc as follows:

Wnet =
Obj∗

net

Obj∗ (7)

Wproc =
Obj∗

proc

Obj∗ (8)

Figure 6 show as heatmaps the weight of the two components expressed as
percentages of the total value of the objective function, for varying values of ρ
and δμ. In the figures, black hues refer to a low percentage of the component,
while yellow hues correspond to a higher weight.

Figure 6a confirms the motivation of the previous result, showing how small
the contribution of the network latency can get with respect the overall objective
function for low values of δμ: as show in the lower part of the heatmap, for
δμ = 0.01 the weight of latency is close to 1% of the objective function. On the
other hand, Fig. 6b shows that the weight of the processing time contribution
always never decreases below the 30% in the considered scenarios, reaching values
between 90% and 100% in all the cases with δμ lower than 0.3.

We now evaluate the performance of the solution of the AMPL model
obtained by the solver (ObjAMPL) with respect to the theoretical optimal bound
(Obj∗) and to the GA heuristic (ObjGA). To this aim, we consider εAMPL and
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Fig. 6. Weight of components of objective function. (Color figure online)

εGA−AMPL defined as follows:

εAMPL =
ObjAMPL − Obj∗

Obj∗ (9)

εGA−AMPL =
ObjGA − ObjAMPL

ObjAMPL
(10)

Figure 7a compares the performance of the solver with the theoretical optimal
bound in the form of a heatmap. We observe that for the majority of the scenarios
identified by the considered values of ρ and δμ the discrepancy εAMPL is quite
low (below 7%), while it significantly increases up to almost 40% for very high
average system load (ρ = 0.9) and δμ ≤ 1. The high discrepancy is due to the
non-linear nature of the objective function, and in particular to the presence
of several local minima that the solver is not able to overcome within the time
limitation of 120 min. This clearly evidences that, in case of very high average
system load, also the solver is not able to guarantee good performance due to
the fact that the risk of overloading the fog nodes is high and the value of the
objective function is highly variant with respect to the considered solution.

On the other hand, Fig. 7b, comparing the performance of the solver and of
the proposed GA heuristic, shows that the GA achieves solutions very similar
to the solver (εGA−AMPL close to 0%) for the majority of the scenarios, while
differences can be observed for high values of average system load (ρ ≥ 0.8). In
these cases, the behavior of the GA heuristic shows significant differences. When
the system is processing bound (δμ ≤ 1) the GA algorithm tends to perform
much better that the solver, with the discrepancy εGA−AMPL reaching negative
values close to −25% for ρ = 0.9. This is an important result showing that the
GA is not only able to reach an efficient solution even in presence of a complex
problem with integer programming and a non-linear objective function, but can
also outperform the solver in a challenging case of highly loaded system. On the
other hand, in the top right part of the heatmap (ρ ≥ 0.8 and δμ = 10) the
GA shows worse performance than the solver, with a discrepancy εGA−AMPL

between 7% and 15%. In this case, where the system is network bounded and
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with a high average load, finding an optimal solution would require to explore
a wider space of solutions that the GA cannot explore being limited to 300
generations in our experiments.

Fig. 7. Performance of AMPL model.

5.3 Convergence Analysis of GAs

A critical analysis concerns the impact of the number of generations on the
performance of the GA heuristic, in particular on its capability to reach con-
vergence. To carry out this analysis (and the following sensitivity analysis), we
select two specific intermediate scenarios corresponding to points of interest: the
first scenario, characterized by ρ = 0.5 and δμ = 1, represents a case of inter-
mediate average system load and where the two main contributions (network
latency and processing time) of the objective function have a similar weight; the
second scenario, characterized by ρ = 0.8 and δμ = 0.3, represents a processing
bound case with a high average system load where finding a good solution for
mapping data flows over the fog nodes reveals more challenging, as shown by the
previous results. The motivation of this choice can be supported by the graph in
Fig. 8, showing the behavior of the Objproc component of the objective function
for different values of ρ. Specifically, we consider the theoretical curve of Objproc
for the case of one fog node and 1/μ = 1. The graph confirms how the value of
ρ = 0.8 represents a point where the problem is ill-conditioned: due to the high
risk of overload in the fog nodes, little variations in ρ can cause significant oscil-
lations of the objective function. On the other hand, for ρ = 0.5 this risk is low,
as shown by the slopes of the tangents to the load curve in the corresponding
points.

In the following convergence analysis we consider the previously introduced
discrepancy εGA between the GA and the theoretical optimal bound. The value
of εGA is measured at every generation for the GA (and compared with the final
optimal bound). This allows us to evaluate whether the population is converging
over the generations to an optimum.
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Fig. 8. Load curve of Objproc.

Fig. 9. Convergence analysis.

Figure 9 presents the results of the analysis. Specifically, we consider the
evolution of εGA for the two considered scenarios through 300 generations of the
GA. The graph shows also an horizontal line at the value of 2%: we consider that
the GA has reached convergence when ε ≤ 2% and we consider the generation
when this condition is verified as a metric to measure how fast the algorithm is
able to find a suitable solution.

Comparing the two curves we observe a different behavior. On one hand, for
the curve characterized by δμ = 1 we have a clear descending trend. On the other
hand, for the δμ = 0.3, the value of εGA is very low even with few generations
and remains quite stable over the generations. The reason for this behavior can
be explained considering the nature of the problem, where the objective function
depends on two main contributions: the processing time (that depends mainly on
the ability of the algorithm to distribute fairly the sensors among the fog nodes)
and the network latency (that depends on the ability of the algorithm to map
the sensors on the closest fog node). When δμ = 0.3, the impact of the second
contribution is quite low, so, any solution that provides a good level of load
sharing will be very close to the optimum. As the genetic algorithm initializes the
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chromosomes with a random solution, it is likely to have one or more individuals
right from the first generation that provides good performance: this explains
the more stable values of εGA over the generations. On the other hand, when
δμ = 1 the two contributions to the objective function are similar: hence, the
genetic algorithm must explore a wider space of solutions before finding good
individuals, and this requires more generations before reaching convergence.

As a final observation, we note that for both the scenarios, convergence is
quite fast, with the objective function almost reaching the optimal value in little
more than 75 generations. This result is interesting because it means that the
genetic algorithm is able to explore the solution space in a small amount of time,
reaching the proximity of the optimum (even if the actual optimum value may
require more generations to be found). In terms of execution time, the time for
the genetic algorithm to reach a value within 2% of the optimum is in the order
of 15 s.

5.4 Sensitivity to Mutation and Crossover Probability

As a further important analysis, we carry out a sensitivity of the genetic algo-
rithm with respect to the two probabilities that define the evolution of the pop-
ulation (the mutation probability Pmut and the crossover probability Pcross) to
understand whether the capability of the genetic algorithm to rapidly reach opti-
mal solutions just occurs for a properly tuned algorithm or if the property of
fast convergence is stable.

Fig. 10. Sensitivity to mutation probability.

The first analysis evaluates the impact of the mutation probability Pmut in
the two considered scenarios. The results are shown in Fig. 10, reporting the
value of the discrepancy εGA between the GA best fitness and the theoretical
optimal bound as a function of the mutation probability. The graph also shows
the number of generations necessary to reach the convergence, that means a value
of εGA below 2%, represented through the horizontal line. For both scenarios, we
observe U-shaped curves, where both low values and high values of Pmut result in
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the algorithm reaching higher value of εGA. In particular, the major challenges
are encountered for high values of Pmut, when the GA is not able to reach
convergence. On the other hand, values in the range 0.4% ≤ Pmut ≤ 0.8% provide
good performance. This behavior is explained considering the two-fold impact
of mutations. On one hand, a low value of Pmut hinders the ability to explore
the solutions space by creating variations in the genetic pool. On the other
hand, an higher mutation rate may simply reduce the ability of the algorithm
to converge, because the population keeps changing too rapidly and good genes
cannot be passed through the generations. If we now compare the results for
the two different scenarios, we observe that they lead to a similar message, with
the only difference of having a smaller range of intermediate Pmut values giving
good performance. However, this is consistent with the major challenges posed
by the scenario with high system load (ρ = 0.8).

Fig. 11. Sensitivity to crossover probability.

The second analysis shown in Fig. 11 evaluates the impact of the probabil-
ity of selecting an individual for a crossover operation Pcross. Again we show
both εGA and the number of generations to reach convergence as a function of
this parameter. Since we change the crossover probability over a large range of
values (from 0.1% to 20%), we use a logarithmic scale for the x-axis. First of
all, we observe that also the crossover probability has a major impact on the
performance of the GA. However, in this case the results show two very different
behaviors for the considered scenarios. In the scenario with ρ = 0.5 (Fig. 11b)
the algorithm reaches convergence quite fast showing very low values of εGA for
every value of Pcross. On the other hand, in the scenario with ρ = 0.8 (Fig. 11a)
the crossover probability has a very significant impact on the GA performance,
hindering the capability to converge for high values of Pcross. This is due to the
fact that with a high value of ρ, little variations in the solutions can cause sig-
nificant oscillations of the objective function due to the high risk of overload in
the fog nodes, as already pointed out in the comment of Fig. 8. Hence, the high
crossover probability, that is likely to increase fast changes in the population,
may lead to oscillations that hinder the convergence capability. To underline
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this effect, we analyze the convergence of the GA heuristic in the case with for
ρ = 0.8 and δμ = 0.3 for different values of the crossover probability. The results
are shown in Fig. 12. We can clearly observe as different values of Pcross lead to
completely different behaviors: while for Pcross = 0.8 the continuous oscillations
in the solutions do not allow to converge, for Pcross = 0.5 the behavior is quite
stable and stable to reach convergence, as already noticed in Fig. 9.

Fig. 12. Convergence analysis for different values of crossover probability.

This sensitivity analysis confirms that, when the average system load is very
high, reaching an optimal solution is challenging both for the GA heuristic and
the solver. Anyway, the GA approach is in many cases able to achieve perfor-
mance close, or even better, compared to the solver, even in this challenging sce-
nario. However, we need to take into account that in this case the GA heuristic
becomes more sensible to its main parameters, such as the crossover probabil-
ity. Hence, in the most challenging scenarios, an approach based on specifically
designed ad-hoc heuristics can be worth to investigate.

5.5 Sensitivity to Population Size

As a final analysis, we evaluate how the population size affects the performance of
the genetic algorithm. To this aim, we change the population size from 50 to 500
individuals and we measure the execution time, the difference in the objective
function εGA, and the number of generations required to reach the convergence.

The first significant result, shown in Fig. 13, shows the execution time of the
genetic algorithm for 300 generations. Specifically, we observe a linear growth in
the execution time with respect to the population size for both considered sce-
narios. This result is expected, as the core of the genetic algorithm iterates, for
every generation, over the whole population to evaluate the individuals and for
every operation, such as crossover, mutation, and selection for the next genera-
tion. The message from these experiments is that every benefit from an increase
of the population should be weighted against the additional computational cost
we may incur in.
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Fig. 13. GA execution time vs. population size.

Fig. 14. Sensitivity to population size.

Another interesting result comes from the evolution of εGA and of the number
of generations required to reach convergence in the considered scenarios, shown
in Figs. 14a and 14b. The two scenarios show similar behaviors, even if for the
more challenging case of ρ = 0.8 we observe higher discrepancy and number of
generations needed for convergence, as expected. In general, the results show that
increasing the population provides a benefit as it can both reduce the minimum
value of εGA and reduce the number of generations required for the convergence.
This can be explained considering that increasing the population allows the
algorithm to explore a larger portion of solution space with each generation,
thus accelerating the convergence. Furthermore, it is worth to note that the
benefit from increasing the population decreases as the population grows, while
the execution time grows linearly, as previously discussed. For this reason, in
our experiments we choose a population of 200 individuals, that is a value close
to the knee where the benefit form a larger population decreases rapidly.



Data Flows Mapping in Fog Computing Infrastructures 197

6 Conclusions

In the present chapter we discussed the design of a typical sensing application
in a smart city scenario. We consider a set of sensors or other smart devices
that are distributed in a geographic area and produce a significant amount of
data. A traditional cloud-based scenario would send all these data on a central-
ized data center, with the risk of network congestion and high latency. This is
clearly unacceptable for several classes of applications, that require a fast and
scalable management of data packets (critical examples are the support for auto-
matic traffic management and autonomous driving or the data collection in a
widespread array of sensors). Hence, it is common to move the tasks of data
aggregation, filtering and, in general, pre-processing towards the edge of the
network, where a layer of computing nodes called fog nodes is placed.

The introduction of the fog layer in an infrastructure motivates our study,
that concerns the mapping of data flows from the sensors to the fog nodes. We
tackle this problem, providing a formal model as an optimization problem that
aims to minimize the average response time experienced in the system taking
into account both network latency and processing time. Furthermore, we present
an heuristic approach that leverages the evolutionary programming paradigm to
solve the problem.

Using a smart city scenario based on a realistic testbed, we validate our
proposal. First, we analyze the problem using a solver to explore the impact
of the parameters that affect the problem solution. Next, we demonstrate the
ability of the proposed heuristic to solve the problem in a fast and scalable way.
Finally, we provide a sensitivity analysis to the main parameters of the genetic
algorithm to explore the limits of its stability.
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Abstract. Container-based virtualization has been investigated as an
attractive solution to achieve isolation, flexibility and efficiency in a wide
range of computational applications. In High Performance Computing,
many applications rely on clusters to run multiple communicating pro-
cesses using MPI (Message Passing Interface) communication protocol.
Container clusters based on Docker Swarm or Kubernetes may bring
benefits to HPC scenarios, but deploying MPI applications over such
platforms is a challenging task. In this work, we propose a self-content
Docker Swarm platform capable of supporting MPI applications, and
validate it though the performance characterization of a meteorological
scientific application.
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1 Introduction

1.1 Motivation

High performance computing (HPC) is a generic term for computationally or
data-intensive applications of a [25] nature. While most HPC platforms rely on
dedicated and expensive infrastructures such as clusters and grids, other tech-
nologies such as cloud computing are becoming attractive. Recent developments
on the virtualization domain have considerably reduced the performance over-
head of these new platforms. Furthermore, traditional HPC infrastructures must
often struggle with administration and development issues as the installation and
maintenance of HPC applications often leads to library incompatibilities, access
rights conflicts or simply dependencies problems for legacy software.
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The arrival of efficient virtualization techniques such as container-based vir-
tualization has set a new landmark towards the maintainability of computing
infrastructures. Concepts such as isolation and packaging of applications now
allow a user to create its own execution environment with all required libraries,
to distribute this environment and to reproduce the same install everywhere
with almost no effort.

When considering HPC applications, the MPI (Message Passing Interface)
protocol [21] is often used for data exchange and task coordination in a cluster.
Despite recent advances in its specification, the deployment of an MPI applica-
tion is still too rigid to be easily deployed on more dynamic environments such
as cloud or container clusters. Indeed, the starting point of an MPI execution is
the definition of a list of participant nodes, which requires a prior knowledge of
the runtime environment.

Deploying an MPI cluster on containers clusters is also difficult task because
the internal overlay network from popular environments such as Docker Swarm
is designed for load balancing and not for addressing specific nodes, as in the case
of MPI. As a consequence, only a few works in the literature try to offer support
MPI on Docker, and most fail to develop a simple and stand-alone solution that
does not require manual or external manipulation of the MPI configuration.

In this paper we address the lack of elegant deployment solutions for MPI over
a Docker Swarm cluster. We extend the preliminary results presented on [27],
demonstrating the interest of our platform through the deployment of a meteo-
rological simulation software and its evaluation thanks to execution benchmarks
and trace analysis on both cloud and container environments. In addition, we
expand the analysis by comparing the performance on traditional x86 processors
and ARM processors represented by clusters of Raspberry Pi machines.

1.2 Background

Considering all current virtualization technologies, we can highlight two of them:
hardware virtualization, which makes use of Virtual Machine Monitors (VMMs),
better known as hypervisors, and OS-level virtualization (containers).

Hardware virtualization can be classified as Type I or Type II. Each type
considers where the hypervisor is located in the system software stack. Type I
hypervisors (Fig. 1a) execute directly over hardware and manage the guest OSs.
This way, the access to the hardware (and the isolation between different host
OS) must be aware of the underlying VMM to access the hardware (both through
the hypervisor or through paravirtualization interfaces).

The Type II (Fig. 1b) virtualization, on the other hand, relies on a hypervisor
working inside the host OS, with the later one ensuring the access to the hard-
ware. Type II allows creating complete abstractions and total isolation from the
hardware by translating all guest OS instructions [18]. This type of virtualiza-
tion is also known as full virtualization. As drawback, it imposes a high overload
that penalizes most HPC applications [33]. While these performance penalties
can be mitigated by the use of hardware-assisted virtualization (a set of specific
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instructions present in most modern processors), other virtualization strategies
are often preferred when dealing with HPC applications.

As hypervisor-based solutions are considered heavy-weighted, the develop-
ment of OS-level virtualization is becoming much more popular (Fig. 1c). This
approach uses OS features that partition the physical machine resources, cre-
ating multiple isolated user-space instances (containers) on top of a single host
kernel. Another advantage of container-based virtualization is that it does not
need a hypervisor, incurring much less overhead [12]. Hence, popular OS-level
virtualization systems include Linux Containers (LXC), RKT and Docker.

Fig. 1. Main virtualization types.

In all those systems, the container shares the kernel with the host OS, so
its processes and file system are completely visible from the host, but thanks
to the OS isolation, the container only sees its file system and process space
[31]. The also use namespaces to isolate the containers and ensure that they
access only their subsets of resources. Namespaces are also used to control the
network and inter-process communication capabilities, and allow containers to
be checkpointed, resumed or even migrated.

One of the most popular container solutions is Docker1. In addition to man-
aging containers at the OS level, Docker allows the users to create personalized
images that can be saved and used as a base to the deployment of many con-
current containers. Docker also provides a registry-based service named Docker
Hub2, allowing users to share their images.

More recently, Docker provides a basic orchestrator service called Docker
Swarm, that enables the deployment of a cluster of Docker nodes. While Docker

1 https://www.docker.com/.
2 https://hub.docker.com/.

https://www.docker.com/
https://hub.docker.com/
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Swarm is not as modular as other orchestrators like Kubernetes [7], it is simple
to use, and Swarm services can be easily adapted to operate under Kubernetes.

It is also interesting to note that although Docker was initially developed for
x86 platforms, it now contemplates other processor architectures. For example,
the adaption to the ARM processors family started around 2014, with an ini-
tial work made by Hypriot3 for Raspberry Pi machines. More recently, Docker
started to officially support ARM, and several base images on Docker Hub are
now published with both x86 and ARM versions.

1.3 Related Work

HPC applications often search to solve problems that are hard to compute in
a single machine due to capacity (memory, storage) or performance limitations.
Distribute these applications on a cluster is often a way to increase the available
resources all while trying to divide the problems in small pieces that can be
processed in parallel.

Traditionally, the HPC community refuses virtualization due to the perfor-
mance overheads from Type II and Type I hypervisors. However, the recent
dissemination of container virtualization is changing this view. Several HPC
centers favor the use of containers to simplify the resources management and to
guarantee compatibility and reproducibility for the users’ applications [23]. For
example, the NVidia DGX servers4, dedicated to Deep Learning and Artificial
Intelligence applications, use Docker containers to deploy the user’s applications.

Several strategies can be used to distribute and coordinate HPC applications
over a cluster, and one of the most popular ones is the use of message passing
through the MPI (Message Passing Interface) communication protocol. Indeed,
MPI provides standard operations for data exchange and task coordination,
including single and multi-point communications, synchronous and asynchronous
primitives, parallel I/O, etc. While recent advances have improved several per-
formance aspects, the MPI specification is still based on “stable” HPC clusters,
which may hinder the deployment of an MPI application on new dynamic envi-
ronments such as clouds and virtualized clusters. Indeed, MPI requires a well-
known execution environment, characterized by a list of participating nodes
(often known as the hostfile). Please note that while some fault-tolerance has
been included in the last MPI specification (see [21]), it only serves to handle
nodes that go down, not to manage a dynamic list of nodes.

As a consequence, deploying MPI applications over a container cluster such as
Docker Swarm or Kubernetes is a challenging task. In the specific case of Docker
Swarm (which we consider in this work), the overlay network connecting the
containers is designed to perform replication and load balancing, not to manage
node lists as required by MPI. This problem can be found on the literature,
where most works trying to deploy MPI application over Docker require manual

3 https://blog.hypriot.com/.
4 https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-

rhel-centos-datasheet-update-r2.pdf.
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or external manipulation of MPI elements to deploy applications. One of our
aims is therefore to propose a self-content Docker Swarm platform capable of
supporting MPI applications.

Among the related works, we can cite [5], which focus on the automation
of the deployment of the MPI application over a Docker Swarm cluster (i.e.,
scripts to copy and launch the application), but requires the user to provide
the list of available nodes at launch time. More often, the literature describes
an external management for the nodes in the container cluster. For example,
[32] suggests two architectural approaches to be used with Docker, all relying
on an external script that feeds information to the containers through SSH. The
same approach is used by [13], where the containers are launched separately by
PBS, a resource manager, and a set of scripts helps deploying and connecting
the containers together. The same strategy is used by [3], using Slurm. In both
cases, the authors connect isolated containers “by hand”, instead of relying on
the Docker Swarm orchestrator.

Not all solutions rely on scripts, but sometimes they depend on solutions
specifically tailored for MPI. This is the case of Singularity [16], a container
manager developed for HPC applications. As these applications often rely on
MPI, Singularity automatically sets up an MPI hostfile with the host names.

An extreme case of external dependency is that of [8], where even MPI tools
(mpirun, mpiexec) are absent from the containers. Instead, both the application,
data and libraries are imported from the host OS, with the containers playing
simply the role of isolated execution environments. Such approach makes the
execution totally dependent on the hosting platform, preventing the usage of
any generic platform such as the cloud.

To our knowledge, only the work from [22] approaches the minimal require-
ments for the automatic deployment of MPI applications on a Docker Swarm
cluster. This platform includes scripts for the deployment of the Docker Swarm
service and creates list of nodes for the hostfile by inspecting active network
connections (using netstat). Nonetheless, the use of netstat proved to be too
unstable, and recent patches to the code try to correct this issue.

1.4 Our Contributions

In this paper, we consider the problem of developing a container environment
capable of supporting MPI applications in both server and cluster configurations.
As expressed before, we search to propose a self-content solution based on Docker
Swarm, a well known tool that adds clustering capabilities to Docker containers,
including distribution, load balance and overlay networking.

When regarding the solutions presented in the literature, we consider that
they are too dependent on external scripts, making them inelegant and unreli-
able. Instead, we propose a simpler solutions that integrate well to the deploy-
ment of a Docker Swarm cluster.

The second contribution of this work is an extensive performance evaluation
of a real application in both cloud and container environments. We selected the
WRF (Weather Research and Forecast) model as it is both an application that
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relies on MPI for distributed computing, but also because it has several install
issues that favorize its distribution as a container image. The benchmarks and
execution traces performed on this work allow us to better understand the impact
of the container environment and the Docker Swarm overlay network, but also to
identify performance bottlenecks from the WRF software that may be addressed
in a future work. This extensive analysis is also an addition to the preliminary
results we presented in [27].

Our final contribution is the adaption of the environment to support the
execution on ARM processors, and another set of benchmarks and analysis in a
cluster of Raspberry Pi. The main interest of supporting this family of processors
lies on its potential and relative low cost. We performed new experiments in a
Raspberry Pi 3 cluster, experimentally demonstrating that applications such as
WRF can be deployed over ARM processors and produce results within accept-
able time intervals and for a fraction of the cost of a traditional HPC platform.

2 Supporting MPI on a Docker Swarm Cluster

As we indicated before, most works aiming at supporting MPI on Docker rely on
the users to complete the information in the hostfile, or require external tools
to reach such objective. Only the work from [22] tries to create an automated
process, but it does not works reliably enough.

Such difficulty is due to the fact that Docker Swarm was not conceived as an
HPC environment, but rather as a self balancing/fault tolerant environment to
deploy applications. This can be observed if we analyze the different execution
modes Docker support: in the “individual” mode (i.e., the “original” mode that
does not depend on Docker Swarm), a container is launched as a standalone
application. In this mode, no additional interconnections to other instances is
required, even if this can be made possible. In the “service” mode, which is part
of the Docker Swarm configuration, instances are interconnected by a routing
overlay. This overlay includes a naming service that allows services to locate
each other easily (instead of using hard-coded IP addresses), but it also includes
a load balance mechanism to redirect messages among instance replicas or to
restart faulting instances.

As the own Docker Swarm documentation illustrates (see Fig. 2), replicas of a
service instance, even if located in different nodes, can be addressed by the same
name, with messages being rerouted by the “Ingress” overlay network. In this
example, two my-web instances exist, and they can be contacted through any of
the nodes from the service. This naming service simplifies the development of
applications (the code only needs to indicate a my-web address), and the overlay
performs the redirection of the messages and the eventual load balancing among
the instances of a service.
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Fig. 2. Docker routing mesh [11].

In the case of MPI applications, the “replication and redirection” approach
from Docker does not apply conveniently, as the MPI hostfile requires the
list of the computing servers. The hostfile can be composed by hostnames
or IP addresses, but obtaining the hostnames is not an easy task in Docker
Swarm because the overlay hides the instances under the same “umbrella” name
(for example, my-web in the previous example). For this reason, we need to
discover the instances’ IP addresses inside the overlay network. As the app-
roach used by [22] is not reliable as it depends on open network connections
between the instances (which may be transient or even non existent), we chose
to query the naming service of Docker with the dig DNS lookup tool. More
exactly, Docker Swarm allow us to contact all instances of the same service
under the tasks.XXXX nickname, where XXXX is the name of the service. By
using dig, we can obtain detailed information sent by the DNS server and, in
the case of umbrella names, get the list of the IP addresses from all instances
associated with that name.

The hostfile also allows the users to indicate a few more information about
the computing resources, like the number of processes (or slots) a node can run
simultaneously. As most recent processors have multiple computing cores, we
can consider that each machine in a Swarm cluster is able to run more than one
process. To obtain this extra information, we call the nproc application on each
machine, obtaining therefore the number of available processing cores.

Therefore, these two discovery steps (IP addresses and computing capabili-
ties) can be elegantly arranged in a few lines of scripts as presented in the snippet
from Fig. 3, where we compose the hostfile with the list of all worker nodes
(i.e., instances of the “worker” service on Swarm) and the number of computing
cores from each node.
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Fig. 3. Script to create the hostfile with the IP addresses and number of cores for
Docker Swarm instances.

A final detail concerns the nodes’ ranks. Most HPC applications rely on a
node or process rank to perform specific tasks or to segment data to be processed,
and MPI is not an exception. In MPI, the node launching the MPI application
uses the order of the nodes in the hostfile to set the ranks and to launch the
application on the other nodes. This “master” node, known as “rank 0”, is often
used as a frontend node for the cluster, where the user can execute preprocessing
steps, setup the application parameters or simply run the code before deploying
it over the cluster. Because of this, it is important to allow users to access this
node using SSH, for example. Even if most of the MPI application deployment
can be automated through scripts, we believe that this improves the usability
of our environment. In addition, we must consider that a Docker Swarm cluster
remains an isolated environment, and accessing it via SSH is a simple way to
import and export data.

Because of the load balancer in the Docker network, we cannot simply add an
SSH server to each worker replica as the connection will not always be directed
to the same node. Therefore, we have to create a “master” service that can be
correctly identified and accessed from the outside. As the SSH port must be
published, the master node cannot simply use the Ingress routing network, but
needs to be executed under the special global deployment mode. Some other
attributes in the service definition file (docker-compose.yaml) ensure that the
master will be easy to contact (by deploying it on the manager node from the
Swarm cluster), open the ports for SSH and also mount correctly all external
volumes required for the application. Therefore, Fig. 4 presents the main ele-
ments of the docker-compose.yaml file used to define and deploy the Swarm
service for our application. All these files are available at our Github repository5

and the images are available on Docker Hub.

5 https://github.com/lsteffenel/swarm mpi basic.

https://github.com/lsteffenel/swarm_mpi_basic
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Fig. 4. Excerpt of the Swarm service definition.

3 Profiling and Tunning an Application

In order to assess the performance our virtualized, container-based cluster plat-
form, we decided to benchmark Weather Research and Forecasting (WRF) model
[24], a well-known numerical weather prediction model. In the next sections we
will describe the WRF suite in greater details, and conduct several performance
measurements and analysis to identify performance overheads and bottlenecks
on both virtual cluster and application levels.
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3.1 WRF - Weather Research and Forecasting

The Weather Research and Forecasting (WRF) Model [24] is a state-of-the-art
numerical weather prediction software widely used for both operations, research
and education. It is one of the most known meteorological forecast tools, with
users numbering in the tens of thousands. Indeed, it is one of the main tools used
in our MESO project6, an international collaboration to explore stratospheric
events that affect the Ozone layer.

In spite of its popularity, WRF developers still do not offer it in binary pack-
ages ready to be installed, but instead the user needs to configure and compile
the software, which may be a challenge for beginners or for users that do not have
administration rights on their computing infrastructures. Today, WRF has more
than 1.5 million lines of code in C and Fortran, and presents many dependencies
on external software packages for input/output (I/O), parallel communications,
and data compression. Many of these external libraries are becoming obsolete or
unsupported by recent Linux distributions, forcing the users to download and
compile these libraires too.

We believe that running WRF on containers is a way to mitigate many of the
problems cited above, simplifying its deployment for both education and research
usages. Indeed, containers allow the packaging of a working WRF install, ready
to be used in local machines but also on the cloud.

Execution Steps. In addition to the configuration complexity, running the
WRF model requires several steps to preprocess, compute and visualize the
results. Indeed, the typical workflow to execute the WRF model is made of 5
phases, represented in Fig. 5 and detailed in the list below:

1. Geogrid - creates terrestrial data from static geographic data (external files
with around 60 GB of data);

2. Ungrib - unpacks GRIB meteorological data obtained from an external source
and packs it into an intermediate working format;

3. Metgrid - horizontally interpolates the meteorological data onto the model
domain;

4. Real - vertically interpolates the data onto the model coordinates, creates
boundary and initial condition files, and performs consistency checks;

5. WRF - generates the model forecast.

The three first steps belong to the WRF Preprocessing System (WPS), a sub-
set of applications that is configured and compiled separately from the remainder
of the tool. During its configuration, WPS allows two execution modes: serial
or dmpar, the later one providing distributed memory parallelism through the
use of MPI.

The second part of the configuration, which compiles and install the WRF
model, offers four execution modes: serial, smpar (shared memory parallelism),
dmpar (distributed memory parallelism) and sm+dmpar. The smpar option is
6 http://meso.univ-reims.fr.

http://meso.univ-reims.fr
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based on OpenMP, while the dmpar uses MPI as communication overlay. The
last option (sm+dmpar) combines OpenMP and MPI, but several user reports
point out that dmpar usually outperforms the mixed option [9,17] and should be
preferred.

Fig. 5. WRF workflow [27].

3.2 Performance Evaluation

Computer researchers have been dedicated to investigating the impact of con-
tainers on HPC applications. The use of containers facilitates dependency man-
agement by providing a solid environment for running applications. [12,15] have
shown that the use of containers generates negligible performance payloads in
a single server. In the case of Docker Swarm, however, the overlay network is
created with the help of VXLAN tunnels, and this encapsulation has a pay-
load that may represent about 6% of the transmitted data [14] and therefore
a potential performance issue. Hence, in order to test the impact generated by
Docker Swarm, we designed two scenarios to compare the performance of the
WRF application.

To perform the tests, we used three machines configured as c4.large
instances in the Amazon AWS service. Each machine featured a 2.9 GHz Intel
Xeon E5-2666 v3 processor, 2 cores, 3.75 GiB of RAM and a network connection
with moderate performance (300 Mb/s). Two scenarios were considered. In sce-
nario (a), WRF was run on baremetal with the number of processes varying as
follows: 1 (1 machine), 2 (2 machines), 4 (2 machines), 6 (3 machines). In scenario
(b) the same test was performed, however, using containers with an Ubuntu OS
image and with WRF installed and configured. For the execution of scenario (b),
a Docker overlay network was also created so that instances could communicate,
sending and receiving TCP packets used by MPI for synchronization and execu-
tion of distributed tasks. The tests on both scenarios were performed 10 times,
with the average of the times presented below.
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The benchmarks used a dataset concerning an area covering Uruguay and the
south of Brazil and allowing a 12-h forecasting from October 18, 2016. This small
dataset is used as training example for meteorology students at Universidade
Federal de Santa Maria, who can modify the parameters and compare the results
to the real observations. The entire dataset is accessible at the Github repository
we created for the WRF container images7.

From the Fig. 6 chart it is possible to see that as the number of processes
grows, the impact on performance from Docker is higher. This difference can
be caused by the overhead generated by the overlay network, so that containers
on different hosts can communicate. Nevertheless, the overall impact on perfor-
mance is still reduced, reaching 7.8% when 6 processes were used. Therefore,
the use of containers remains interesting, facilitating the deployment of a given
application or tool. The next section conducts a detailed analysis on the execu-
tion traces of WRF, allowing us to better understand the reasons for the reduced
speedup observed in both baremetal and container environments.

Fig. 6. WRF performance on AWS: baremetal versus Docker.

3.3 Going Deeper: Tracing MPI Communications

Parallel applications have their own circumstances when it comes to analyzing
its execution behavior. Beyond the individual flow of each process, it is essen-
tial to monitor how the processes communicate with each other and how this
communication affects the overall performance. The tracing tools and its out-
come enables this evaluation to be done, as the traces are valuable resources to
find unexpected behaviors or bottlenecks during the execution. Along with this
investigation, trace visualization tools will also be helpful. These tools are cru-
cial when it comes to realizing the post-mortem analysis, facilitating to identify

7 https://github.com/lsteffenel/wrf-container-armv7l-RaspberryPi.

https://github.com/lsteffenel/wrf-container-armv7l-RaspberryPi
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events that might be affecting the performance. Lastly, it is desirable to connect
these events with the code to implement improvements.

Currently, there is a variety of tracing tools available, along with a variety
of trace visualization tools. Among the existent tracing tools, EZTrace appears
as a tool designed for providing a generic way to analyze an application without
impacting its execution [28]. Besides that, EZTrace was commonly adopted in
previous works and provides runtime instrumentation. Since these characteristics
fit our needs, EZTrace was chosen to trace the executions of the case study
application, described in Sect. 3. The version chosen for EZTrace was version 1.1-
6, that is compatible with the binutils-dev package, version 2.26.1-1, available
on Ubuntu 16.04. This package is a requirement and its version impacts which
EZTrace version to choose. To the current case study, it was necessary to include
the MPI module, as we are meant to collect data in this context during the
execution.

The tracing analysis was performed on the same cloud environment as the
previous performance tests, using three c4.large on Amazon Web Services
(AWS). Two cases were executed to generate traces, the first with 4 WRF pro-
cesses distributed over two nodes, and the second with 6 processes distributed
over three nodes, just like in Sect. 3.2. Were realized five executions for each
case, and EZTrace was instrumented to collect MPI related events (eztrace -t
mpi).

As the executions finished and the data was collected, we converted it into
two trace formats: Pajé and OTF. To visualize these trace formats, ViTE8 (Pajé)
and Vampir9 (OTF) were the visualization tools utilized. Each one of these tools
provides specific resources to explore the traces and its data.

Fig. 7. ViTE tool interface.

8 http://vite.gforge.inria.fr/.
9 https://vampir.eu/.

http://vite.gforge.inria.fr/
https://vampir.eu/
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Fig. 8. ViTE zoom on communications.

Fig. 9. Communication matrices.

Firstly, the view on ViTE tool is presented in Fig. 7, illustrating the com-
munications between 6 WRF processes. The ViTE interface allows us to zoom
in and see the messages’ flow along with more details about a specific event or
arrow, as the user double clicks it (Fig. 8). The tool also has a statistical plugin
that presents the data collected in charts shape.

Another visualization tool utilized was Vampir. Its interface provides multi-
ple resources to investigate the trace. These resources include most of what is
available on ViTE and some extra. For instance, in Fig. 9, a function summary is
shown. With this resource, it is possible to view how much utilized is each MPI
function, in general, and for each process. Another resource presented, shown
in Fig. 10 is a communication matrix. It enables to visualize how many times
a process has sent and received messages from another process. It also shows
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Fig. 10. Resources available on Vampir tool.

the shortest, longest, and average transfer time for each specific combination of
sender and receiver process.

Looking these traces, we see that MPI Wait events represent an important
part of the execution time. MPI Wait is a primitive used when non-blocking
functions as MPI Isend and MPI Irecv, are called. Indeed, it indicates that a
process is waiting for the arrival of a message, evidencing a lack of synchro-
nization between processes. Even though the time spent during this invocation
is inconvenient, non-blocking messages are usually an improvement over block-
ing messages, since non-blocking calls are used to overlap communication and
computation. This behavior allows processing between the time that the pro-
cess sends the message and the MPI Wait instance but, in the case of the WRF
application, it seems too important and therefore affect the overall performance.

(a) 4 MPI processes (b) 6 MPI processes

Fig. 11. Performance statistics.

Hence, the time occupied by MPI Wait increases with the number of pro-
cesses, as we observe in the statistical details obtained with 4 and 6 processes
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on Fig. 11. Also, the time expended in MPI Wait is not equally distributed,
evidencing a load balance issue inside WRF.

While this analysis does not uncovers any special problem with the container
environment, it helps concluding that scalability issues observed in Sect. 3.2 are
due to the own WRF code, whose solution is beyond the scope of this work.

4 Supporting Different Processor Architectures

4.1 WRF on ARM Architectures

In the previous sections we described the design of a Docker Swarm platform sup-
porting MPI applications, and we perform benchmarks using the WRF meteoro-
logical model as a testing subject. Those benchmarks were performed in classical
x86 processors, which are popular among the HPC community.

In recent years, however, we have seen the arrival of computing platforms
based on ARM processors. Most ARM computers are based in the Sytem-on-
a-Chip (SoC) model that encapsulates CPU, GPU, RAM memory and other
components on the same chip [30], including the popular single-board computers
like Raspberry Pi, but also cellular phones and tablets.

ARM processors are currently used for a large range of applications, from
Computer Science teaching [1] to Internet of Things [19]. They have an active
role in Fog and Edge computing [26], bringing computation closer to the user and
therefore offering proximity services that otherwise would be entirely deployed
on a distant infrastructure. All naturally, many cloud providers such as Amazon
and Google start to propose servers running on ARM processors.

The HPC community has demonstrated an increasing interest in this archi-
tecture, with many projects on the way. If the choice for ARM processors was
initially driven by energy and cost requirement, nowadays this family of pro-
cessors presents several improvements that allow the construction of computing
infrastructures with a good computing power and a cost way inferior to tradi-
tional HPC platforms [10,20,29]. Furthermore, a SoC cluster can substitute a
traditional HPC cluster in some situations, as SoC are relatively inexpensive
and have low maintenance and environmental requirements (cooling, etc.). Of
course, this is only valid as long as the SoC infrastructure provides sufficient
Quality of Service (QoS) to the final users.

The use of Docker on SoCs represent also an interesting solution to deploy
scientific applications for educational purposes [2]. Indeed, if virtualization (and
especially container-based virtualization) contributes to simplify the admin-
istrative tasks related to the installation and maintenance of scientific applica-
tions, it also enables a rich experimental learning for students, which can test
different software and perform hands-on exercises without having to struggle
with compilers, operating systems, and DevOps tasks. Furthermore, by devel-
oping solutions for both x86 and ARM architectures, we try to simplify the
deployment of applications on personal computers, classrooms, dedicated infras-
tructures or even the cloud, seamlessly. While the MPI support is almost iden-
tical in both architectures, we faced some additional difficulties when adapting
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WRF. When we started to configure WRF for the ARM platform, we had to
address a few additional issues besides the availability of some libraries, a prob-
lem already observed during the configuration on x86. Indeed, the configuration
of WRF supports several compilers (gcc, Intel, Portland, etc.) and architectures,
but ARM processors are not listed among the supported ones. Fortunately, some
researched had the same problem before and documented their experiences, like
for example the work from [4]. While the adaption requires the editing of the
configuration files in order to find a match to the ARM platform, the configu-
ration differences for both ARM or x86 are minimal, and most of the process is
simple and straightforward.

In addition, we have changed how to access input data, from a fixed Docker
volume to a mounted file system. This gives more flexibility to develop workflows
to execute the application regularly, like for example in a daily forecast schedule.
This also helps to fix the problems due to the storage of the geogrid geographical
database. As the full database reaches 60 GB when uncompressed, the users can
attach an external storage drives to their nodes instead of having all the database
in the Docker image.

In order to assess the interest running meteorological simulations on ARM
processors, we conducted a series of experiments to evaluate the performance of
each step of the WRF application. The next sessions describe the experiments
and present our first insights.

4.2 Environment Description

In these benchmarks we deployed our virtual cluster over a network of three
Raspberry Pi 3 model B (Broadcom BCM2837 processor, ARM Cortex-A53,
4 cores, 1.2 GHz, 1 GB RAM). The interconnection between devices is by a Fast
Ethernet switch (100 Mbps). As the goal of the cluster is to run an application
that demands considerable computing resource, for reduce the effects of limited
RAM memory, to provide a Swap memory, a USB drive (1.8 GB) has been con-
nected to each device. The WRF dataset is the same used on the experiments
from Sect. 3.2.

All measures presented in this section correspond to the average of at least 5
runs. Furthermore, as the WRF workflow is composed by 5 steps, we computed
the execution time of each step individually, in order to determine the best
deployment strategy. Therefore, the next sections present the separate analysis
of the preprocessing steps (all three steps from WPS and the real step from
WRF) and the forecast step (WRF).

4.3 Performance of WPS and Real Steps

In traditional x86 environments, the execution of the WRF workflow is dom-
inated by the WRF model: all WPS preprocessing steps (geogrid, ungrib,
metgrid) and the real steps represent only a small fraction of the comput-
ing time. On ARM processors (and especially on SoCs) this is not necessarily
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true, and we need to identify the constraints we can face during the usage of
those machines.

One of the first issues concern the access to the geographical database
required by the geogrid step. As indicated in Sect. 3.1, this database has more
than 60 GB, which is a potential problem for the internal storage of a typical SoC
that relies on SD cards. Indeed, in our experiments, we had to attach an external
USB storage device to a Raspberry Pi node to accommodate this WPS GEOG
database.

As the ARM processors used in our experiments are less powerful than x86
processors, we decided to study the performance of each workflow step separately,
trying to identify whether the use of MPI would benefit each one of the WPS
steps (as well as the real step). For such, we measured the execution time of
each step when varying the number of computing cores (using the mpirun -np
option).

Fig. 12. Performance of WPS steps when varying the number of cores [27].

Table 1. Relative performance of WPS steps on a single machine (in seconds) [27].

Cores 1 2 3 4

Geogrid 173.81 119.59 111.56 88.54

Ungrib 188.78 196.15 212.97 241.57

Metgrid 151.42 120.47 123.56 119.26

Real 16.437 16.54 16.59 16.69

The result of this benchmark, illustrated in Fig. 12 and detailed in Table 1,
indicates that only the Geogrid step effectively benefits from a multi-core exe-
cution. Even though, the acceleration is under-optimal (we need 4x cores to
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obtain only a 50% performance improvement). Associated with the storage lim-
itations cited before and its relatively small impact to the overall execution time
(when comparing with the forecast step, see Sect. 4.4), we advise against running
Geogrid cluster-wide. Instead, we suggest assigning a single node (the master)
who can preprocess the data for the forecast model.

For all the other steps, a parallel execution is not an interesting option.
The Metgrid step shows a small performance gain when parallelizing but the
execution time stabilizes for 2 or more cores, and the Real step shows no evidence
of improvements. In the case of Ungrib, the parallel execution even penalizes the
algorithm. Additional benchmarks on the network performance, such as those
conducted by [32], may also help tuning the different steps.

From these results, we suggest organizing the deployment of the preprocessing
steps as follows:

– Geogrid - parallel execution with mpirun, preferentially only in the machine
hosting the WPS GEOG database (the master node);

– Ungrib - serial execution in a single core;
– Metgrid - serial execution or at most parallel execution with mpirun in a

single machine;
– Real - serial execution in a single core.

4.4 WRF Execution

Even in an ARM processor, the preprocessing steps listed before represent only a
small part of the execution. This is not the case of the WRF forecast step, which
can have a much larger duration, especially inn “production” environments with
larger datasets and more than a simple 12-h forecast to be computed.

As expected, the forecasting step of WRF does benefit from multicore and
cluster scenarios. Figure 13 shows the average execution time of this step when
running on one, two or three nodes in the Raspberry Pi cluster.

Fig. 13. Performance of WRF in multicore and Swarm cluster mode.



218 L. A. Steffenel et al.

Fig. 14. Speedup of WRF execution in multicore and Swarm cluster mode.

If the multicore execution allows an important performance gain, the Swarm
cluster execution shows more mitigated results. Indeed, the performance gain
when passing from one to two nodes (4 to 8 process) is only 25%, and when
passing from two to three nodes (8 to 12 process) it is barely 12%. As shown in
Fig. 14, this is really far from a linear speedup, but can be explained both by
the poor performance of WRF on dmpar mode (MPI) identified in Sect. 3.3. In
addition, we suspect that the network performance on the Raspberry Pis also
play a role. Indeed, as observed by [6], the access to the communication bus in
the Raspberry Pi is known by its “low” speed interconnection card (10/100 Mbps
only) that penalizes all communication interfaces.

Tables 2 and 3 detail these results, and also present a performance comparison
with a the x86 processors from the AWS cloud used in Sect. 3.2. Please note that
the x86 column is limited to a single c4.large instance from AWS as it has only
two available vCPUs. Without surprise, the x86 processors are faster, but the
execution time on the Raspberry Pis is still acceptable. Indeed, the processing
time is fair enough for education and training. Even a production environment
can be considered, if we expect WRF to deliver daily or even hourly forecasts.
Furthermore, if we consider the material and environmental cost of the SoC
solution, it is clearly an interesting alternative.

Table 2. WRF relative performance on a single machine (in seconds).

Cores R Pi 3 AWS c4.large

1 4469.8374 539.05

2 2503.3624 314.69

3 2194.1872 –

4 1823.8314 –
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Table 3. Performance on a Raspberry Pi 3 swarm cluster (in seconds).

Machines Cores Pi Swarm

1×Pi 3 1 4469.8374

2 2503.3624

4 1823.8314

2×Pi 3 6 1401.0106

8 1352.72

3×Pi 3 10 1218.7158

12 1183.2734

5 Conclusions and Future Work

This work focuses on the design of a container-based platform for HPC appli-
cations based on MPI. Indeed, container virtualization enables the packaging of
complex applications and their seamless deployment. As most traditional scien-
tific applications rely on MPI for scalability, we were surprised by the lack of
a proper support for MPI, neither on popular container managers like Docker,
nor on other works from the literature. We therefore propose, in a first moment,
a service specification to deploy a Docker Swarm cluster that is ready for MPI
applications.

Later, we evaluate the proposed platform through the performance analysis
of the WRF meteorological forecast model. Through performance benchmarks
on both baremetal and container environments, we were able to separate per-
formance overheads related to the use of the container environment from those
related to the own application. For instance, the analysis of the execution traces
from WRF allowed us to identify performance bottlenecks that affect the scala-
bility of the application.

Finally, we conducted a few more experiences to evaluate the performance
and the interest of using containers over SoC (System-on-Chip) clusters. These
results indicate that if popular the ARM processors in SoCs such as Raspberry
Pi cannot compete in performance with x86 processors, they still are able to
deliver results within an acceptable delay.

Future improvements to this work include the execution of additional bench-
marks to validate the scalability of the platform with other MPI-based appli-
cations. Also, the bottlenecks we identified during the analysis of the execution
traces of WRF will be the subject of a performance tuning project that we shall
conduct in the next months.
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Abstract. Cloud computing is the most prevailing computing paradigm
as it has led to a proliferation of cloud-based applications, either through
the migration of existing legacy or the development of novel ones from
scratch. In fact, nowadays, there is also a move towards adopting multi-
clouds due to the main benefits they introduce, including vendor lock-in
avoidance and optimal application design and provisioning via different
cloud services. Unfortunately, multi-cloud applications face the challenge
that even a single cloud environment exhibits a certain level of dynam-
icity and uncertainty. As such, a suitable service level cannot be handed
over to their customers, which leads to SLA penalty costs and applica-
tion provider reputation reduction. To address this challenge, we have
previously proposed a cross-level and multi-cloud application adaptation
architecture. Towards realising such an architecture, this paper focuses
on supporting cross-level application adaptation through the modelling
of adaptation rules that enact adaptation workflows but also on evolving
such an adaptation to address both the application and exploited cloud
services evolution as well as the provisioning environment’s dynamicity.
The modelling of such rules and their execution history is accommodated
through corresponding extensions to a state-of-the-art cloud modelling
language called CAMEL. Further, a specific selection algorithm for those
alternative adaptation rules able to address the current problematic sit-
uation is suggested which takes into account their execution history and
especially their performance.

Keywords: Adaptation · Evolution · Execution · Selection · History ·
Rule performance · Meta-model · DSL

1 Introduction

The way applications are developed, deployed and provisioned has been revolu-
tionised through the advent of cloud computing. In fact, the wide adoption of
this computing paradigm has led to a proliferation of cloud applications and ser-
vices. These applications were either migrated from on-premise to public cloud
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environments or developed from scratch by adopting existing or new, cloud-
based software engineering technologies. Cloud computing paradigm’s success
relies on the benefits it delivers, which include cost reduction, flexible resource
management and resource elasticity allowing applications to infinitely scale on
demand.

Traditional web service, e-commerce and infrastructure providers as well as
new ones have rushed to offer cloud services at different abstraction levels. From
those providers, the biggest also have attempted to lock-in their customers by
offering particular added-value secondary services as well as related technolo-
gies and platforms to assist the development and provisioning of cloud-based
applications. To avoid this vendor lock-in, the academia and nowadays also the
industry seems to endorse multi-cloud computing. Apart from dealing with the
aforementioned issue, deployment at multi-clouds is quite promising as it deliv-
ers extra benefits, which include selecting the best possible cloud services to
optimally realise an application based on its requirements, increasing the appli-
cation security level by adopting different security services as well as bypassing
scaling hurdles in single-cloud environments.

However, multi-cloud applications face now the challenge of increased dynam-
icity and uncertainty, which is inherent even in a single cloud. This challenge
jeopardises their ability to keep up with their promises through the delivery of
the right service level to their customers. It is further hardened by the fact that
real-world applications span multiple levels which depend on each other and
involve the use of different cloud service types. As such, multi-cloud applica-
tions are negatively affected by the variation exhibited in the quality of all these
services which propagates from lower to higher abstraction levels. In addition,
both services and applications can evolve over time, e.g., due to market compe-
tition and advent of new technologies. Thus, even if multi-cloud applications are
optimally realised through suitable cloud services, this realisation will be surely
invalidated over time due to this dynamicity.

The aforementioned gap can be closed through our already proposed archi-
tecture [13] of an advanced, cross-level and multi-cloud application adaptation
framework. This framework will feature the following capabilities, which are
currently being implemented: (a) semi-automatically infer new adaptation rules
[24] by considering the application structure and the dependencies at the dif-
ferent abstraction levels; (b) dynamically transform such rules into adaptation
workflows to be enacted via workflow execution engines; (c) dynamically evolve
adaptation rules based on their execution history, performance and successability
to completely address an actual event (“problematic situation”) that has caused
their triggering.

This paper provides support to the realisation of the aforementioned capa-
bilities through three main contributions where the first focuses on the third
capability and the rest cross all capabilities. Our first contribution, by con-
sidering the existence of multiple adaptation rules that can confront the same
event, attempts to dynamically select the best possible one by considering all
these rules’ execution history, especially in terms of their performance, cost and
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successability. Such a dynamic selection relies on the fact that one adaptation
rule might not always be successful in addressing a certain event, especially also
in case that application requirements and cloud service capabilities evolve over
time. As such, all adaptation rules addressing the same event need to be con-
tinuously assessed over time in order to always promote the one which has the
best current quality. In this way, the adaptation behaviour of the application
concerned is continuously evolved to always select the right adaptation rules
that best confront all possible problematic events as well as the increased levels
of dynamicity and uncertainty.

The second and third paper contributions concentrate on the modelling side.
In particular, this paper suggests two meta-model extensions to a state-of-the-
art cloud modelling language [20] called CAMEL. The first extension specialises
in the modelling of advanced adaptation rules. This modelling is quite rich as
it re-uses elements from Complex Event Pattern (CEP) languages (e.g., the
Esper’s1 one), to specify complex event patterns via the logical or time-based
composition of simpler events. To also complete the adaptation rule specification,
this extension enables associating such events patterns with workflow-language-
independent adaptation workflows, including actions at any possible abstrac-
tion level (infrastructure, platform, software and workflow). To the best of our
knowledge, such adaptation rules cannot be specified by any other meta-model
or language [4,16,17,23]. This modelling contribution benefits the first two capa-
bilities of the envisioned adaptation framework. In particular, workflow language
independence leads to implementation flexibility as our adaptation framework
could re-use any workflow engine, which might specialise in using only a certain
workflow language.

Our last contribution focuses on extending CAMEL’s execution meta-model
to capture not only the application execution but also its adaptation history by
specifying: (a) which adaptation rules and their respective adaptation actions
were enacted and (b) how well these rules addressed the respective problem-
atic event according to which quality level. This extension benefits the third
capability of the envisioned adaptation framework as follows. First, it enables
analysing the appropriateness of both single and composite adaptation actions
(i.e., workflows), so as to allow their prospective substitution when the respective
need arises. It can also determine those places where the application adaptation
behaviour needs to be improved through the detection of situations where all
automatically-generated alternative adaptation workflows for the same event do
not exhibit the right quality level any more. To this end, this extension provides
support to our first contribution as it assists in the automatic evolution of the
application adaptation behaviour over time through the assessment of the qual-
ity of adaptation actions and subsequently of the adaptation rules that include
them. To the best of our knowledge, this third paper contribution is also novel
as no other approach seems to exist that is able to record the cloud application
adaptation history.

1 www.espertech.com/esper/.

www.espertech.com/esper/


226 K. Kritikos et al.

This paper enhances the one in [14] as follows: (a) first, it includes the con-
tribution of the automatic selection of the right adaptation rule for the handling
of the respective problematic event; (b) second, it supplies a more complete use
case example on which our work is applied to showcase its suitability; (c) third,
it reviews the related work on both adaptation rule modelling and evolution;
(d) it supplies some interesting directions for further improving the proposed
work; (e) it slightly extends the analysis of the proposed application adaptation
framework architecture while it also unveils its current realisation level.

The rest of the paper is structured as follows. The next section shortly details
our envisioned adaptation framework architecture. Sections 3 and 4 elaborate on
the modelling extensions conducted on CAMEL. Section 5 explicates our propo-
sition towards the evolution of adaptation rules at runtime. Section 6 showcases
the application of the proposed work on an example use case. Section 7 reviews
the related work. Finally, the last section concludes the paper and draws direc-
tions for further research.

2 Multi-cloud Application Adaptation Framework

Our suggested, holistic multi-cloud application adaptation framework is depicted
in Fig. 1. This framework will feature the following capabilities: (a) infer new
from existing adaptation rules; (b) transform such rules into adaptation work-
flows able to be executed by workflow engines; (c) dynamically change the adap-
tation workflows associated with problematic events to better address them and
thus evolve the application’s adaptive behaviour; (d) edit adaptation rules, which
is a suitable capability when automatically generated rules must be adjusted or
so as to rapidly deal with cases not covered by the existing adaptation rule set;
(e) browse the adaptation history to check the successfulness and performance
of adaptation rules. As already indicated, all these five capabilities are enabled
by the paper’s main contributions.

We now shortly explain the adaptation framework architecture and especially
the components its encloses as well as their interactions. The Adaptation UI
enables experts to edit adaptation rules as well as to enact them (e.g., manually
specified rules to rapidly react to unanticipated situations) while it is able to
visualise both the application adaptation history and the results of its analysis.
The expert could then approve the analysis results so as to evolve the application
adaptation behaviour, if needed.

Edited or automatically generated rules are passed to the Transformer who
transforms them from CAMEL into the format expected by the Rule Engine.
Further, enacted rules pass through this component in order to transform their
workflow part into the workflow language expected by the Adaptation Engine.

The Rule Engine is the component responsible to trigger the enactment path
of rules. In particular, it is responsible to select those rules that must be triggered
due to the occurrence of input monitoring events, which are retrieved from the
Monitoring Framework. The selected rules are then passed to the Transformer
so as to enact their adaptation workflows. This component internally utilises a
Rule Base to support adaptation rule storage.
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Fig. 1. The envisioned adaptation framework architecture [14].

The Rule Engine is also responsible for realising our first contribution. In
particular, it continuously assesses all adaptation rules able to confront a cer-
tain event and selects the best possible one according to its current quality level.
As such, the engine’s rule base incorporates both selected rules for events as well
as alternative, back up ones for the same events which might be promoted in
the next assessment iteration. The assessment is facilitated through the content
of the Model Repository (a placeholder for all CAMEL models produced and
manipulated) and especially the execution history being recorded for the adap-
tation rules. The selection is carried out by executing a certain algorithm per
each event of interest which is detailed in Sect. 5.

The enacted rule’s workflow part is transformed into an abstract workflow
representation that must be concretised. Such a concretisation is required due
to the fact that the adaptation framework capabilities can be enriched over time
such that a certain adaptation task could be realised by two or more alter-
natives. To this end, there is a need for a component, the Concretiser, which
should construct and solve a constraint optimisation problem so as to select the
best possible adaptation task alternative according to the user requirements and
preferences.

The Adaptation Engine takes the form of a workflow execution engine able
to execute the concretised adaptation workflows. It is also responsible for storing
information related to the adaptation workflow execution in the Model Reposi-
tory by exploiting the proposed CAMEL’s execution meta-model extension. The
actual workflow execution incorporates the invocation of level-specific services
(e.g., a WfaaS/SaaS adaptation service) that represent service-based realisations
of adaptation tasks.
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New adaptation rules are generated while existing ones are adapted via the
Adapter component. In the first case, the generation is semi-automatically con-
ducted according to our previous work [24], which associates the patterns of
events being discovered with all possible combinations of adaptation tasks able
to address them.

Realisation Level. Our envisioned adaptation framework is not yet complete as
the implementation level of its component varies while all of them have not been
yet integrated into a coherent whole. The Adaptation UI is able to edit adapta-
tion rules but does not yet offer the other two capabilities. The Transformer and
Concretiser have not been realised yet. The Rule Engine is almost complete but
it cannot yet promote rules based on the rule evaluation results. The Adaptation
Engine and the Adapter are those components which have been fully realised.
Finally, the two higher abstraction levels (WfaaS and SaaS) have been already
mapped to the respective adaptation functionality while for the other two lower
levels, the facilities of an existing cloud orchestration engine will be exploited.

3 CAMEL Adaptation Meta-model Extension

3.1 Background

CAMEL originally included a scalability meta-model dedicated to the modelling
of scalability rules in form of mappings from events to scaling actions. The event
modelling part of CAMEL was already quite rich and was not enhanced in any
way. However, as we will see in the sequel, the scaling part was greatly adapted.
In the following, we explicate the original way scalability rules were modelled
via CAMEL before we enter into the details of such adaptation.

Events (see Fig. 2) in CAMEL can be simple or composite. Metric conditions
are mainly used to specify simple events. On the other hand, composite events are
specified as patterns of events by applying time-based (e.g., PRECEDES) and
logical operators (e.g., AND) over simpler events. Thus, event patterns actually
represent event trees or hierarchies.

Both vertical and horizontal scaling actions can be modelled in CAMEL.
Horizontal scaling actions are specified by indicating the number of instances
to be added or removed for an application component. Vertical scaling actions
specify the VM to be scaled as well as the update in the size or number of certain
VM features like the number of cores.

3.2 Extension

CAMEL has been extended in the context of this work (see Fig. 3) to transform
its scalability meta-model to an adaptation one so as to cover the whole adap-
tation possibilities of a multi-cloud application at different levels of abstraction.
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Fig. 2. The representation of events in CAMEL [14].
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Fig. 3. The adaptation meta-model in CAMEL [14].

Adaptation Rules and Strategies. CAMEL’s adaptation meta-model incor-
porates the topmost AdaptationModel element, which acts as a container for all
adaptation-related elements. It also includes the key concept of an Adaptation-
Rule, which enables to associate events with adaptation actions.

As it has been already stated, a problematic situation, i.e., an event can be
alternatively confronted by multiple adaptation rules. As such, an adaptation
system must choose the best from these rules. In particular, the rule with high-
est priority, i.e., a dynamically-modifiable attribute, should be selected. This
could mean that an already selected rule might be unsuitable for selection in the
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near future as it might not have a sufficient successability level, such that its pri-
ority is reduced, or a better rule is discovered that more completely addresses the
respective event, having a higher priority than the existing ones. The collection
of all these rules that confront such an event is represented by the Adaptation-
Strategy concept. As such, the application’s current adaptive behaviour as well
as the way such a behaviour can evolve over time can be represented then by
the collection of all adaptation strategies.

Adaptation Tasks. Adaptation tasks represent the way problematic events can
be addressed. They can be classified as either simple or composite. A simple task
represents a single, level-specific action (e.g., a scaling action), while a composite
task represents an adaptation workflow, i.e., a composition of adaptation tasks
controlled by well-known control flow constructs.

Composite Adaptation Tasks. A composite task can be regarded as a tree incor-
porating tasks with lower complexity. As any kind of workflow can be constructed
by four main types of basic control flows, we have created respective sub-concepts
of CompositeAdaptationTask to represent them.

A sequential and parallel execution of adaptation tasks is represented by
SequentialAdaptationTask and ParallelAdaptationTask, respectively. A condi-
tional construct predicated over a certain referenced event is represented by
ConditionalAdaptationTask. If that event occurs, then the first task associated
with this composite task must be executed; otherwise, the second associated task
must be executed. On the other hand, to cover a conditional branch with multiple
alternatives, the SwitchAdaptationTask has been modelled, which is associated
with a certain MetricFormulaParameter, i.e., a metric or a metric formula. As
multiple values can be produced by monitoring this metric or computing this
formula, these values can be mapped (see ValueToTask concept) to respective
adaptation tasks that need to be executed.

Simple Adaptation Tasks. Various abstract sub-classes of simple adaptation task
have been created to cover adaptation actions in different abstraction levels, with
the exception of the Cross-Cutting abstract concept, representing cross-cutting
adaptation actions.

The abstract class of IaaSAction covers all possible actions (startup, shut-
down and restart) at the IaaS level by referring to the VM to be adapted and
the action type to be performed on it (see IaaSActionType enumeration).

At the SaaS level, we have modelled two adaptation tasks covering the
replacement of SaaS services and their reconfiguration. In the former case, we
need to specify the SaaS to be replaced as well as the replacement SaaS. In the
latter case, an abstract concept has been modelled (ComponentConfiguration)
which can be further distinguished into more concrete reconfiguration actions:

– ComponentDeployment : references the SaaS components that must be
deployed in a PaaS or IaaS component. As such, it could be useful in the
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context of deploying components, such as load balancers, only after the sec-
ond instance of an application component is created.

– ComponentUnDeployment : references the components that need to be unde-
ployed from their hosting component, which is also referenced. This could be
handy in hybrid cloud bursting, where the public VMs for a certain applica-
tion component are not needed any more.

– ComponentReDeployment : references those components that must be rede-
ployed. This could facilitate migrating the components to a new version, e.g.,
to address certain permanent bugs.

– ComponentReconfiguration: references those components that must be recon-
figured by either stopping, starting (e.g., to bypass the potential transient
error occurred) or redeploying them (e.g., when the error is not transient).

At the workflow/WfaaS level, all possible adaptation tasks are encapsulated
by the WorkflowAdaptationTask. These can be further distinguished into Work-
flowRecomposition and TaskModication ones.

WorkflowRecomposition expresses the need to recompose a workflow, from
the current execution point until the final workflow task, by replacing the remain-
ing workflow content with another (sub-)workflow description. On the other
hand, a TaskModification task expresses a single, low-level workflow modifica-
tion at the task level by pointing to the respective workflow part (i.e., workflow
task) to be modified. Such an adaptation task can be further distinguished into:

– TaskAddition: represents the addition of a workflow task (represented by an
ApplicationTask encapsulating the respective task description) at the point
referenced.

– TaskDeletion: signifies the deletion of the workflow task pointed.
– TaskReplacement : expresses the replacement of the workflow task pointed by

another one also referenced.

Workflow level changes can be permanent or temporary. The level attribute in
WorkflowAdaptationTask signifies this by covering 3 possible cases: (a) Class:
the change is permanent – case of workflow evolution; (b) InstancePermanent :
the change is permanent for the current instance but does not impact the other
workflow instances; (c) InstanceNonPermanent : this special kind of an instance-
level change needs to be modelled when a task instance in a workflow loop must
be adapted only once in the context of the current loop repetition.

Cross-cutting adaptation tasks are either level-independent tasks or tasks
that can be realised in different or across levels. These can be further distin-
guished into:

– EventCreation: enables creating an event that can be consumed by the adap-
tation system and possibly lead to an adaptation rule triggering. This nice
mechanism facilitates, e.g., dealing with the uncertainty in executing an adap-
tation rule. In particular, the failure of a rule to address the current event
could lead to the creation of a new event that signifies this failure. This allows
formulating more advanced adaptation rules, accounting for the possibility of
adaptation-related exceptions.
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– Reporting : in some cases, it is possible that a particular critical event is raised
which potentially also causes the triggering of an adaptation rule. Such event
should then be notified to particular kinds of users, like admins. This could
be handy for, e.g, enabling the admin to complete the partial addressing of
the current problem by the adaptation rule.

– Scaling : this adaptation task can be alternatively performed in different levels
(IaaS or PaaS) and is already covered by the original version of CAMEL.

– Migration: signifies the migration of one or more components into a differ-
ent hosting component of the same or different cloud provider. The hosting
components can be certain PaaSes or IaaSes. This means that we can cover
different possible migration cases (e.g., from PaaS to IaaS or IaaS to PaaS).
We can also indicate via this task whether all instances of the component(s)
to be adapted must be migrated or only the affected one. The former could
be suitable in case the current hosting could be deemed problematic for all
the component(s) instances and not just a single one.

4 CAMEL Execution Meta-model Extension

4.1 Background

CAMEL’s execution meta-model captures historical information related to exe-
cuting a multi-cloud application. Such information is partitioned into groups
called ExecutionContexts, representing different deployment episodes for the
same application, where a deployment episode covers the overall provisioning
session that involves the application initial deployment, its continuous reconfig-
uration and its final decommissioning. The collection of all these deployment
episodes over time for this application is then called an ExecutionModel, which
also represents the top-level container for execution history-oriented elements.

The coverage of execution history information can be considered as quite
important for various reasons. First, it enables to explore an application’s per-
formance capabilities over time. Second, it can support reasoning over the best
deployments of an application or its components. The respective facts inferred
can enable accelerating the application deployment reasoning time [11] as certain
application components can be directly as- signed to particular cloud offerings.
Third, it can be exploited by, e.g., a Reinforcement Learning deployment reason-
ing algorithm [8] to avoid inspecting deployments which have failed in the past
(either leading to errors or SLO violations). Fourth, it can support traceability
analysis for identifying those requirements that have led to not only producing
particular application deployment models but also transiting from one to the
other at the instance level.

To accommodate for achieving the above benefits, CAMEL has been designed
to capture all necessary information that can enable deriving the aforementioned
knowledge types. In this respect, the execution context encapsulates information
associated with: (a) what was the application’s overall execution period during
the deployment episode; (b) its overall provisioning cost in that period; (c) which
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deployment and requirement models drove the application deployment and adap-
tive provisioning. Further, all other execution history-related elements which can
be modelled via CAMEL should be bound to a specific execution context. These
elements will be now shorty explained.

A Measurement is an abstract class that represents a measurement that has
been produced by a metric instance. Such a measurement is associated with its
respective value as well as the point in time it was generated. Further, it can be
associated with those SLOs that can be assessed based on it. Depending on the
type of object that this measurement concerns, measurements can be further dis-
tinguished into application, internal component, VM, PaaS and communication
measurements. The latter measurement kinds refers to network-based measure-
ments produced for metrics related to a couple of components that communicate
with each other.

The concept of SLOAssessment represents an assessment of a certain SLO,
i.e., a hard, non-functional application requirement. Such an assessment is asso-
ciated with a certain outcome (SLO was violated or not) as well as the point
in time where this outcome has been produced. The SLO assessments not only
enable to track over time which SLOs have been violated but also to trigger the
respective adaptation of the affected application.

Finally, a scalability rule’s enactment is represented by the RuleTrigger class,
which is associated with the point in time this enactment was conducted as well
as the respective instances of events that have caused it.

4.2 CAMEL Enhancements

While CAMEL captured well the execution history of applications, it did not
enable to completely cover information related to an application’s actual adap-
tive behaviour. Thus, CAMEL was decided to be extended with the ability to
cover both adaptation rule triggering as well as measurability and successabil-
ity aspects related to this triggering. As already stated, this extension aimed to
facilitate the assessment of adaptation rules within a certain adaptation strategy
and the dynamic modification of their priority according to the information that
has been recorded.

As such, we have enhanced CAMEL’s execution meta-model (see Fig. 4)
according to the following three ways. First, RuleTriggering was extended to
cover all information relevant to the triggering of adaptation rules, i.e., the
generic replacement of scalability rules, including the realisation of adaptation
tasks that took place in this triggering. The latter gave rise to the modelling of
a new concept called TaskRealisation.

Through this new concept, we cover the following details about how an adap-
tation task was realised in the context of an adaptation rule: (a) when the task
execution started and ended so as to compute the task’s execution time, (b) the
task’s unit cost and its respective currency unit; (c) the task execution result.
The latter maps to the following AdaptationResult enumeration members:

– SUCCESSFUL: the adaptation task was able to achieve its main adaptation
goal
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Fig. 4. The extended execution meta-model in CAMEL [14].

– UNSUCCESSFUL: the task, while successfully executed, was unable to
achieve its adaptation goal

– FAILED : a certain error or failure occurred when executing the adaptation
task

– UNAVAILABLE : the adaptation task was not available or accessible when it
was attempted to execute it

The first two enumeration members enable evaluating the successability of an
adaptation task, which could be, e.g., measured by the percentage of times the
task was able to attain its goal. The third member facilitates evaluating the
task reliability, while the last member enables evaluating task availability. As
such, it becomes clear that through just two time-based and two cost-based
attributes as well as a single enumeration one, we are able to assess various
quality parameters for an adaptation task. Further details about the exact way
these quality parameters can be computed and how they could be utilised to
dynamically calculate the priority of an adaptation task will be supplied in the
next section.

A task’s realisation also refers to the realisation of its parent task. This could
be useful for traceability reasons as it enables to assess how many times one or
more sub-tasks can be blamed for the failure of a parent task. This could facilitate
discovering those parent adaptation tasks which are doomed to fail in addressing
a “problematic” event due to the “bad” combination of included sub-tasks. For
instance, it could be possible that the component tasks combination is either
overlapping or wrong, thus always leading to the parent task’s unsuccessfulness.

The adaptation task realisation specification is completed through a refer-
ence to the event being coped with. This also guarantees the correct aggregation
of measurements for the current task realisation at hand in the context of the
same adaptation strategy. This is also necessary in case an adaptation task can
be used to deal with more than one event (which could be the overall event or
a component of such an overall event) in the context of the same or different
adaptation strategies. This will offer an additional insight of, e.g., an adapta-
tion task’s successability across the multiple adaptation strategies in which it is
potentially re-used.
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5 Adaptation Rule Selection

In order to enable evolving the adaptive behaviour of a cloud application, we
have devised a specific algorithm which is able to compute the priority of all
adaptation rules that formulate a certain adaptation strategy (and thus confront
the same ‘problematic’ event). Such a computation is conducted by evaluating a
certain mathematical formula. Before going into the details of this formula and
of the respective algorithm that computes it, we present the main components
of this formula, which map to certain parameters that correspond to the quality
of the composite adaptation task at hand.

5.1 Quality Parameters and Their Computation

We consider that the quality of an adaptation task comprises certain well-
known, domain-independent non-functional parameters. Such parameters have
been selected not only due to their wide recognition and application but also due
to the ease of their computation in terms of respective metrics. In the following,
we explain all these parameters and how they can be actually computed from
the information stored in the respective application’s execution model.

Execution Time. The execution time of an adaptation task can be considered
as an important factor that can influence its selection due to the timeliness in
the way an application can be adopted. In particular, as it has been already
highlighted in the literature, the higher is the delay introduced in the adapta-
tion process, the more difficult it is to properly address the current problematic
situation and the more costlier this addressing can become. As such, it is always
preferred to select adaptation actions that are fast enough as well as suitable to
confront such a situation.

By considering the current information stored for a certain adaptation task’s
realisation in CAMEL’s execution model for a specific event, the raw execution
time raw rtij of this task i can be computed easily from the two time-based
fields as follows: raw rtij = endT imeij − startT imeij , where startT imeij and
endT imeij are the starting and ending time points for the j-th recorded execu-
tion of this task in the context of the same event addressing, respectively.

However, the raw execution time metric offers just an insight about one task
realisation. Thus, a more meaningful metric maps to the statistical handling of
the former metric. In particular, we should compute the mean execution time
mean eti of an adaptation task i in the context of the same event by averaging
all the raw execution time recordings of this task for that event as follows:

mean eti =
∑N

j=1 raw rtij

N , where N is the number of recordings/realisations of
this task for the same event.

Availability. We take the position that a certain adaptation action is realised in
the form of a service. In this respect, the availability of such a service should
be high in order to be eligible for selection for application adaptation. This is
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especially true in the context of applying that service across multiple adaptation
strategies for one or even more cloud applications.

Due to the information recorded for an adaptation task realisation, the com-
putation of availability can be easily performed as the percentage of times
the task was available. This can be easily mapped to the following formula:

availi = 1 −
∑N

j=1(adaptationResultij==UNAVAILABLE)

N , where adaptationResultij
is the adaptation outcome of task i with respect to its j-th recording/task real-
isation for the same ‘problematic’ event. In other words, we subtract from one
(ideal availability) the percentage of times the adaptation task was unavailable
in order to compute this metric.

Reliability. An adaptation workflow should always comprise tasks which are
quite reliable, i.e., they do not fail and deliver an expected outcome. Oth-
erwise, the successability of such a workflow cannot be actually guaranteed.
Fortunately, in the context of the execution meta-model proposed, there is
a certain way an adaptation task’s reliability can be measured. This maps
to the success rate metric which assesses the percentage of times the respec-
tive task execution did not end up to a certain kind of failure. As such, the
following formula has been utilised for computing this metric: succRatei =

1−
∑N

j=1(adaptationResultij==FAILED)

N , which is quite similar to the one concerning
availability with the sole exception that we now count the number of times the
task failed and not that it was unavailable.

Successability. This is one of the most important factors for selecting an
adaptation task which affects directly the main task’s goal, which is to com-
pletely address the current problematic situation. In this sense, it is always
critical to select adaptation tasks which are as much successful as possible.
In the context of the extended CAMEL execution model, the successability
succi of an adaptation task i can be computed by the following formula:

succi =
∑N

j=1(adaptationResultij==SUCCESSFUL)

N .

Cost. Cost represents an important business factor that always influences any
kind of selection that relates to the management of a cloud application. More
importantly, in the context of application provisioning, by considering a certain
budget for a particular reference time period that can be afforded by the appli-
cation provider, we should always attempt to adapt the respective application
in such a way that the corresponding budget is never surpassed, (i.e., the sum of
actual provisioning and adaptation cost should be less than this budget). This
highlights the need for selecting adaptation tasks which are less costly but still
effective enough to completely address the current problematic situation.

As stated before, adaptation actions can be considered as services which could
be launched and executed on-demand (see new serverless computing paradigm)
or continuously offered in a micro-service form. As such, there will be always a
certain (time-)unit cost associated to their realisation and such a cost is covered
by the proposed CAMEL execution meta-model enhancement. By considering
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that an adaptation task takes a certain time period to execute, its respective
overall execution cost costi for a certain adaptation scenario can be computed
as follows: costi = unit costi∗mean rti., where unit costi is the (time-)unit cost
of the adaptation task. To be noted here that the above formula is simplified
as it assumes that the unit cost for an adaptation task does not change for
each realisation of it. However, it could be possible that this cost could vary.
For instance, an adaptation task could migrate to a new IaaS service host or
we could utilise a different adaptation service to realise the adaptation task at
hand. To cover such cases and thus be generic enough, the above formula could be
modified as follows: costi =

∑
i=1 Nunit costij

N ∗mean rti, where unit costij is the
task’s (time-)unit cost for the j-th realisation in terms of the same ‘problematic’
event.

5.2 Priority Computation Formula

The main idea for computing the priority pri of a certain adaptation task i is
that such a priority should be an aggregation of the current measurements for
the quality metrics of this task. To support an aggregation over measurements
of different scales and value types, there is a need to conduct first normalisation.
Depending on the preferred direction of values of the involved metrics, different
mathematical expressions can be utilised for the respective utilify/normalisation
function which can be unified by the following formula:

ufmetr (x) =

{
x−metrmin

metrmax−metrmin ,metr ↑
metrmax−x

metrmax−metrmin ,metr ↓
In this formula, ufmetr represents the utility function of metric metr while
metrmax and metrmin represent the maximum and minimum value that a cer-
tain metric takes across all adaptation tasks that are assessed and which are
able to confront the same ‘problematic’ event. Further, the upper and down
arrow signify the corresponding metric’s positive and negative direction of val-
ues, respectively.

Once all metric measurements are normalised, the overall task priority can be
computed by following the simple additive weighting (SAW) approach [9] as the
weighted sum of these measurements. The respective formula below underlines
the respective computation that should be performed.

pri = wmean rt ∗ ufmean rt (mean rti) + wavail ∗ ufavail (availi)
+ wsuccRate ∗ ufsuccRate (succRatei) + wsucc ∗ ufsucc (succi)
+ wcost ∗ ufcost (costi)

In this formula, the weight given to each metric (e.g., wmean rt for the
mean rt metric) represents its relative importance with respect to the other
metrics. The sum of all these weights should then be equal to 1. In other words:
wmean rt+wavail+wsuccRate+wsucc+wcost = 1. All these weights can be derived
by following the Analytic Hierarchy Process (AHP) [22].
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Cold Start Problem. In case that no recording exists for a certain adaptation
task/rule, then its respective priority could be computed by considering values
for the 5 selected quality metrics that might have been generated via testing or
offline monitoring. This could enable to: (a) solve the initial situation where no
adaptation task/rule has respective execution history recordings such that we
can select the one that seems to be the most processing based on its stated/ad-
vertised quality values; (b) move from one adaptation task to another one (for
which no recordings are yet available) when the respective need arises making
the selection of adaptation tasks fairer.

5.3 Adaptation Rule Selection Algorithm

The adaptation rule selection algorithm that is proposed in this paper is quite
simple but yet effective. In essence, it attempts to first compute each measure-
ment per each metric and adaptation task/rule. Then, it concurrently computes
the priority of each adaptation rule of an adaptation strategy (after normalising
the measurements of each metric) as well as maintains the highest priority and
the adaptation rule that exhibits it. In the end, either the latter two information
pieces are returned or also the whole array of adaptation rules (which include
their priority), if required by the user. Depending on the user preferences, the
respective array can be sorted before being returned. This could be handy in
the context of exception handling during adaptation enactment: instead of re-
executing the current adaptation workflow that might have failed according to a
certain aspect, we might choose to execute the next adaptation rule and respec-
tive workflow in order. The pseudocode of this algorithm is shown in the listing
below.

f unc t i on se l e c tTask ( Adaptat ionStrategy st , Pre f s p){
AdaptationRule [ ] r u l e s = s t . r u l e s ;
i n i t ( params [ 5 ] [ 2 ] ) ;
//1 s t Phase − Measurement Computation
f o r ( AdaptationRule r : r u l e s ){

computeMetrics ( r ) ; //Computes a l l met r i c s f o r r
update ( params , r ) ; //Updates min , max va lue s

}
//2nd Phase − Pr i o r i t y Computation
maxPrior = 0 . 0 ;
maxRule = nu l l ;
f o r ( AdaptationRule r : r u l e s ){

// Normalise & compute p r i o r i t y
double p = computePr ior i ty ( r , params , p ) ;
//Check i f maximum p r i o r i t y was obtained
i f (p > maxPrior ){

maxPrior = p ;
maxRule = r ;

}
}
//3 rd Phase − Sor t ing r u l e s array i f needed &
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// re turn r e s u l t s
Vector v = {maxPrior , maxRule } ;
//Only best r u l e must be returned
i f (p . onlyRule ) re turn v ;
e l s e {
i f (p . s o r t ) s o r t ( r u l e s ) ;
v . add ( r u l e s ) ;
r e turn v ;

}
}

Concerning the time complexity analysis of this algorithm, this depends on
whether the array of adaptation rules is sorted or not. In any case, the first
phase (measurement computation) takes O (M ∗ N) to execute where M is the
number of adaptation rules and respective (composite) adaptation tasks in the
current adaptation strategy at hand while N is the number of recordings per
each task. In case the array sorting is not needed, then the time complexity
becomes O (M + M ∗ N), which can be reduced to O (M ∗ N). Otherwise, it
is O (M ∗ N + M ∗ logM), where O (M ∗ logM) is the time needed to sort the
adaptation rules array.

6 Running Example

To demonstrate our work’s capability to dynamically compute the priority of
adaptation rules of the same strategy and thus select the most suitable one over
time, we rely on a city traffic management use case. This use case bases on a
sequential workflow, which is repeatedly executed over time and comprises the
following tasks:

– monitor : it monitors traffic and environment conditions over a certain city
area and collects information concerning special events (e.g., concerts) that
will take place in the city

– analyse: it analyses the current situation of a certain city area, as sensed by
monitor, and produces a traffic regulation plan for it

– execute: it enacts the regulation plan derived (by, e.g., controlling the traffic
lights frequency in a problematic sub-area).

The use case follows a micro-service architecture such that the above three tasks
have been mapped to respective micro-services, which are called as S1, S2, S3 for
short, respectively. Service S1 has been deployed in VM VM1, which also hosts
a time series data base (TSDB) for the storage of this service’s measurements.
Service S2 has been deployed in VM VM2, which also hosts a NoSQL database
used to store important knowledge for supporting traffic analysis. Finally, service
S3 has been deployed in VM VM3. All VMs reside in the city’s private cloud
and have a different size (e.g., VM2 is wider than the other two both in terms
of computation and storage). Figure 5 depicts the overall system architecture of
this use case.
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Fig. 5. The architecture of the use-case system [14].

To cover the adaptation behaviour of micro-service S2 that realises the anal-
ysis functionality, the next (2) adaptation rules have been modelled:

down(S2) −→ restart(S2) (1)
down(S2) −→ reconfigure (S2) (2)

The first rule is utilised to overcome transient errors by restarting micro-
service S2. On the other hand, the second rule is employed to overcome perma-
nent errors by redeploying S2 (which can be considered as a SaaS component) on
the same VM. Via this reconfiguration, it might be possible that such permanent
errors are corrected by a new version of the micro-service’s code.

As both rules address the same event (micro-service S2 is down), we need
to select the best possible one. Initially, no execution history recordings are
available for them. To this end, we need to resort to their stated quality (e.g.,
produced via testing) in order to solve this cold start problem. Suppose that the
priority of the first rule (1.0) is much higher than of the second (0.6) essentially
as the former is much faster than the latter (which is also reflected on their
cost). Thus, the first rule will be originally selected. This rule seems to operate
well initially, as evidenced by Table 1 (indicating instances of the TaskRealisation
class). This highlights that potentially only transient errors occur in S2’s code.
However, after a certain time point, this rule is not successful at all, as permanent
errors have occurred in S2’s code. As such, after two unsuccessful attempts to
restart S2, the dynamic priority of the first rule becomes lower than the original
priority of the second. Thus, the second rule is selected and successfully solves
the permanent errors by reconfiguring S2 to its new, error-free version.

The overall adaptation execution history is covered through the information
conveyed by Tables 1 and 2. The first table covers the raw information that is
captured by the use case’s execution model. The second table covers aggregated
information which enables to dynamically compute the priority of the two adap-
tation rules, also shown in its content. In overall, these two tables showcase
that the right information and knowledge is captured in our framework and the
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Table 1. Instance information for TaskRealisation class.

Name Task startTime endTime adaptationResult

TR1 T1 1566454178 1566454200 SUCCESSFUL

TR2 T1 1566454320 1566454344 SUCCESSFUL

TR3 T1 1566454440 1566454464 UNSUCCESSFUL

TR4 T1 1566454500 1566454522 UNSUCCESSFUL

TR5 CT1 1566454600 1566454680 SUCCESSFUL

Table 2. Aggregated information for the use case’s adaptation rules.

Task Mean RT Avail. Rel. Succ. Cost Priority

T1 22 1.0 1.0 1.0 0.11 1.0

T1 23 1.0 1.0 1.0 0.115 0.998

T1 23.33 1.0 1.0 0.666 0.116 0.9978

T1 23 1.0 1.0 0.5 0.115 0.598

CT1 80 1.0 1.0 1.0 0.4 0.9

right decisions are made with respect to which adaptation rule is more suitable
according to the current situation. As such, our work is indeed able to correctly
evolve the adaptation behaviour of the use case considered.

Please note that in Table 1, the first column maps to the name of the task
realisation (a kind of identifier), the second to the name of the respective task
involved, while the next three columns map to the three main attributes of the
task realisation. On the other hand, Table 1 depicts the priority computation that
has been performed each time a respective execution history record was captured
for the two main adaptation tasks/rules at hand. In particular, it depicts the
name of the task for which the computation is performed, the values that it takes
for the 5 main quality parameters and its final priority value. The computation
of priority is conducted by considering that the successfulness quality parameter
is the most important and critical one. As such, it is weighed in a much higher
degree (0.8) than the other four parameters (0.05 each). Finally, it is assumed
that the unit cost for the adaptation tasks is the same as they map to methods
of the same adaptation service.

7 Related Work

This section reviews related work on adaptation and scalability (rule) modelling
for cloud applications as well as on application adaptation and its evolvability.
It must be noted that we consider scalability rule modelling in the sense that
scalability rules can be considered as a subclass of adaptation rules.
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Most approaches in the adaptation of cloud applications do not consider the
application execution history. As such, no execution DSLs have been suggested.
In some cases, some execution-related information can be directly or indirectly
collected in model-based approaches. However, full execution as well as adapta-
tion histories are not captured yet. Which disables the respective approaches in
evolving over time to incorporate new adaptation patterns as well as improve
existing ones.

7.1 Scalability Rule Modelling

The adaptation meta-model we have proposed evolves the scalability meta-model
of CAMEL [12]. In this respect, it is more expressive than most scalability rule
languages offered as the latter are quite simplistic by associating single metric
conditions to just one scaling action. Many of these latter languages were devel-
oped in the context of European projects, such as Reservoir [5] and Optimis
[21].

[18] proposed a cloud elasticity language, capable of expressing simple scal-
ability rules, including elements like the scope, the metric condition and sliding
window, the scalability limit as well as scaling action details (e.g., scale type).
Such a language has a moderate level of metric expressiveness as it comple-
ments a metric’s name with additional details inside the scalability rule. Fur-
ther, it relies on bad design choices, such as mixing scalability policies and rules.
Its adaptation model expressiveness is also limited, as it is not able to specify
complex metric conditions while it associates only one scaling action to each
adaptation rule.

The SYBL rule language [3] attains a good expressiveness level by accounting
(3) main layers: (a) application, (b) component and (c) programming, while
it also enables specifying logical combinations of constraints on metric values.
However, it is not as expressive as CAMEL’s metric and adaptation meta-models
in terms of specifying more complex conditions and complete metric definitions.
Further, it does not cover unit modelling. Finally, SYBL just references via an
ID the object to be adapted, while our adaptation meta-model introduces a full
reference, from which all appropriate information can be fetched for this object,
due to the full integration of CAMEL meta-models into a coherent whole.

Amazon’s CloudFormation2 is exploited for modelling horizontal scalabil-
ity policies. Such policies specify conditions only on resource metrics, while
their scaling actions concern a pre-configured VM image that must be manu-
ally mapped to the appropriate application component. Thus, compared to the
proposed adaptation meta-model, CloudFormation has limited expressiveness in
defining scalability rules.

2 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.
html.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
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7.2 Adaptation Rule Modelling

Most cloud application adaptation approaches restrain themselves at the
resource level and attempt to derive resource-related adaptation actions by iden-
tifying the difference between the current and future application model. Only
few approaches were devoted to cloud application adaptation modelling. Some
of them do not even explicitly model adaptation rules but only parts of them.
The rest are not rich enough to specify adaptation actions at all possible layers
while they do not also enable modelling more advanced adaptation workflows. In
this respect, our proposition is currently quite ahead from the state-of-the-art.

A modelling approach for cross-layer monitoring and adaptation was pro-
posed in [23], supplying languages for system experts to specify the layers, their
interrelations, as well as the constraints on each layer. For each individual layer,
a run-time model depicts the current system state. Whenever the monitoring
system detects a violation of a layer’s constraints, a manual or semi-automatic
adaptation takes places which may also affect the model of other layers, accord-
ing to their interrelations.

A model-based approach to adapt cloud application topologies was proposed
in [4]. Two Open Cloud Computing Interface (OCCI) models were utilized to
derive the necessary adaptation steps to be implemented. The first is used to
represent the current state of the cloud application topology, whereas the second
the desired state. A comparison of the two OCCI models identifies the model
mismatches and calculates the adaptation steps, required from transiting from
the first to the second model, to be performed in the final step. As such, this
approach does not directly model adaptation rules.

[17] introduces a conceptual model comprising the key entities related to
adaptation inside a cloud environment. Two broader adaptation types are con-
sidered: (i) cloud application-specific adaptations; (ii) cloud resource-specific
adaptations. This model’s main contribution is the identification of direct and
indirect relations among cloud entities, and of dependencies among adaptation
actions. The main difference with our approach is that it does not account the
dependencies in a cross-cloud environment. Further, it does not allow the explicit
modelling of adaptation rules.

[16] presents an evolution of the models@runtime [2] pattern, providing the
specification of adaptation plans, as well as a runtime environment to enact
them. The adaptation plan specification relies on a novel DSL which enables
designing adaptation plans as workflows. In contrast to our meta-model, this
DSL is not rich enough to cover the necessary actions in all possible layers while
it does not capture all basic (adaptation) workflow control constructs as in our
work.

7.3 Application Adaptation and Its Evolvability

Only few approaches have focused on the adaptation of cloud applications. In
fact, most of them concentrate mainly on scaling such applications, thus covering
just one abstraction level, while the evolution of the cloud application adaptive
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behaviour is something that has not been researched before. Concerning cloud
application scaling, the respective approaches can be separated into local or
global reconfiguration ones, where in some cases, some approaches are able to
exhibit both reconfiguration kinds [1,6,10]. Local reconfiguration is supported
through the execution of scaling rules in the context of one cloud provider. On
the other hand, global reconfiguration approaches are able to scale an applica-
tion across multiple cloud providers. In this case, the scaling is performed by
constructing and solving a constraint optimisation problem which attempts to
assign each application component to one cloud offering from those matching it
in such a way that particular user optimisation and SLO-based requirements are
concurrently satisfied.

In the past, extensive research on service-based application (SBA) adaptation
was conducted. The main outcomes were quite interesting, taking the form of
cross-level research prototypes [7,19,25]. However, in most of the cases, these
prototypes were not able to cover all possible abstraction levels and were not
applied in the context of cloud computing, thus they do not have the ability
to adapt an SBA by exploiting different kinds of level-specific cloud services.
Further, they do not possess the ability to generate new adaptation rules. Some
research work on SBA adaptation also focused on the adaptation evolvability
[15]. However, that work focused mainly on just one abstraction level and not
multiple ones to also account for their respective dependencies.

8 Conclusions and Future Work

This paper presented three unique contributions towards the modelling and evo-
lution of the adaptive behaviour of multi-cloud applications. Concerning adap-
tation modelling, the paper has suggested two extensions to the state-of-the-art
cloud application modelling language called CAMEL. The first extension con-
cerns evolving CAMEL’s scalability meta-model towards the capability to specify
sophisticated adaptation rules as mappings from events (patterns) to adaptation
workflows. The latter workflows are expressed in a language-independent man-
ner. This enables their transformation to any workflow language which could be
adopted by the workflow engine utilised to execute them in the context of the
cloud application adaptation framework at hand.

The second modelling extension was performed over CAMEL’s execution
meta-model, originally designed to capture the execution history of multi-cloud
applications. This meta-model was enhanced with the capability to record a
multi-cloud application’s adaptation history, covering information related to the
respective adaptation actions performed, including their outcome as well as their
start and end time.

The aforementioned information can be exploited for deriving quality metric
measurements for adaptation actions related to their performance, availability,
reliability, cost and successability. Such measurements can then be dynamically
aggregated into a single, priority value which can enable to select one adaptation
rule from those alternatives that can address the same problematic situation
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(i.e., event) that has occurred. This is the subject of the priority computation
formula and the respective algorithm that applies this formula, both proposed
in this paper, over all adaptation rules of the same adaptation strategy.

All these contributions provide support and realise part of the functionality
of our envisioned multi-cloud, cross-level application adaptation framework. In
essence, they facilitate the three main capabilities of that framework. The first
contribution, apart from facilitating the modelling of adaptation rules, it allows
to support any workflow execution engine that could be injected into our adap-
tation framework in order to enact the workflow part of these rules. The second
contribution enables to record the adaptive behaviour of a multi-cloud applica-
tion over time and constitutes the basis for the third contribution which is able
to evolve this adaptive behaviour to be able to address the continuously changing
application context and requirements. The appropriateness of our contributions
was demonstrated via the use of a certain use case.

Currently, the following research directions are planned. First, the two
CAMEL extensions will be validated via different use cases and a user study.
Second, the proposed priority computation algorithm will be evaluated while it
will be investigated whether it could be expanded to cover additional quality
metrics. Third, the adaptation framework implementation will be finalised by
filling in the missing gaps as stated in Sect. 2. Fourth, this framework will be
thoroughly evaluated to assess its performance and suitability.
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