l‘)

Check for
updates

Gamal Elkoumy', Stephan A. Fahrenkrog-Petersen?, Marlon Dumas!

Secure Multi-party Computation for
Inter-organizational Process Mining

Peeter Laud?®, Alisa Pankova®, and Matthias Weidlich?

L University of Tartu, Tartu, Estonia
{gamal.elkoumy,marlon.dumas}Qut.ee
2 Humboldt-Universitit zu Berlin, Berlin, Germany
{fahrenks,weidlima}@hu-berlin.de
3 Cybernetica, Tartu, Estonia
{peeter.laud,alisa.pankova}@cyber.ee

Abstract. Process mining is a family of techniques for analyzing busi-
ness processes based on event logs extracted from information systems.
Mainstream process mining tools are designed for intra-organizational
settings, insofar as they assume that an event log is available for pro-
cessing as a whole. The use of such tools for inter-organizational process
analysis is hampered by the fact that such processes involve indepen-
dent parties who are unwilling to, or sometimes legally prevented from,
sharing detailed event logs with each other. In this setting, this paper pro-
poses an approach for constructing and querying a common artifact used
for process mining, namely the frequency and time-annotated Directly-
Follows Graph (DFG), over multiple event logs belonging to different
parties, in such a way that the parties do not share the event logs with
each other. The proposal leverages an existing platform for secure multi-
party computation, namely Sharemind. Since a direct implementation of
DFG construction in Sharemind suffers from scalability issues, we pro-
pose to rely on vectorization of event logs and to employ a divide-and-
conquer scheme for parallel processing of sub-logs. The paper reports
on experiments that evaluate the scalability of the approach on real-life
logs.

Keywords: Process mining + Privacy * Secure multi-party
computation

1 Introduction

Contemporary process mining techniques enable users to analyze business pro-
cesses based on event logs extracted from information systems [1]. The out-
puts of process mining techniques can be used, for example, to identify per-
formance bottlenecks, waste, or compliance violations. Existing process mining
techniques require access to the entire event log of a business process. Usu-
ally, this requirement can be fulfilled when the event log is collected from one
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or multiple systems within the same organization. In practice, though, many
business processes involve multiple independent organizations. We call such pro-
cesses inter-organizational business processes. An example of such process is the
process for ground handling of an aircraft, as illustrated in Fig. 1. This process
involves two parties: the airline and the ground handler (called “airport” in the
model).
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Fig. 1. Aircraft ground handling process.

Due to confidentiality concerns as well as privacy regulations, such as GDPR/!
and HIPAA?, it is not always possible for organizations to share process exe-
cution data with each other. Exchanging execution data may reveal personal
information of customers or it may expose business secrets. As a result, com-
mon techniques for process mining cannot be employed for inter-organizational
business processes. Yet, analyzing these processes is often crucial for improv-
ing operational performance. With reference to the above scenario, the effective
coordination of ground handling activities is crucial for both involved parties.
It determines the number of flights an airport can operate and the number of
flights an airline can offer. At the same time, each of the parties needs to protect
their confidential data.

In this paper, we focus on the question of how to enable process mining
for inter-organizational business processes without requiring the involved par-
ties to share their private event logs or trust a third party. To this end, we
propose an architecture for process mining based on secure multi-party compu-
tation (MPC) [25]. In essence, MPC aims at the realization of some computation
over data from multiple parties, while exposing only the result of the compu-
tation, but keeping the input data private. We consider the setting of an MPC
platform where the involved parties upload their event logs to a network of
compute nodes. Before the upload, secret sharing algorithms locally split each
single data value into different parts (i.e., shares) that are then stored at differ-
ent nodes. Since each share does not provide any information about the original

! https://eur-lex.curopa.cu/eli/reg/2016/679/0j.
2 https://www.hhs.gov /hipaa/.
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data, the uploaded event log is encrypted and exposed neither to the platform
operator nor other involved parties. Nonetheless, the MPC platform enables the
computation over the encrypted data through protocols for result sharing among
the nodes.

We realize the above architecture to answer analysis queries that are common
in process mining. Specifically, we show how to construct a frequency and time-
annotated Directly-Follows Graph (DFG), which is a starting point for process
discovery algorithms and performance analysis. While keeping the computed
DFG private, we are revealing only the output of performance analysis queries
such as finding the top-k bottlenecks (i.e. activities with longer cycle time) or the
top-k most frequent hand-offs. We implement our proposed architecture using
the Sharemind platform [7]. In order to tackle scalability issues that would be
imposed by a naive implementation, we employ vectorization of event logs and
propose a divide-and-conquer scheme for parallel processing of sub-logs. We test
the effectiveness of these optimizations in experiments with real-world event logs.

The remainder of the paper is structured as follows. Section 2 lays out related
work and the background for this work. Section 3 introduces our architecture
for privacy-preserving inter-organizational process mining along with the opti-
mizations needed for efficient implementation. An experimental evaluation is
presented in Sect. 4, before Sect.5 concludes the paper.

2 Background and Related Work

In this section, we review work on privacy-preserving process mining, inter-
organizational process mining, and secure multi-party computation.

2.1 Privacy-Preserving Process Mining

The necessity of privacy-preserving process mining, due to legal developments
such as the GDPR, was recently discussed in [18,19]. In general, two approaches
have been established [11]: (i) anonymizing the event data to apply standard
techniques to it, and (ii) directly incorporating privacy considerations in pro-
cess mining techniques. The anonymization of event logs from one organiza-
tion may be done using algorithms, like PRETSA [12], that provide privacy
guarantees such as k-anonymity [23]. These notions, based on data similarity,
are widely adopted and offer protection against certain attacks like the disclo-
sure of the identity of individuals involved in the dataset. Approaches based
on cryptography [10,20] have also been proposed. Following the idea to incor-
porate privacy guarantees directly in process mining techniques, algorithms for
privacy-preserving process discovery [17,24] have been proposed. Recently, tech-
niques for privacy-preserving process mining, following either of the aforemen-
tioned paradigms, have been made available for a large audience with the tool
ELPaaS [5].

All of the above techniques, with the exception of [24], concern process mining
for a single organization and have not yet been adopted or evaluated for an
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inter-organizational setting. While the focus of [24] is on an inter-organizational
setting, the approach targets solely the creation of a process model, while we
aim at answering a wide range of analysis queries about business processes.

2.2 Inter-organizational Process Mining

The problem of automated discovery of process models in an inter-organizational
setting has been considered in [21,26]. However, these approaches do not address
privacy concerns. Similarly, another line of related research proposes techniques
to compare executions of the same process across multiple organizations [2,9],
but without considering privacy requirements.

The problem of ensuring privacy in inter-organizational process mining has
been addressed by Liu et al. [16]. They provide a process mining framework based
on the assumption that the parties in the process are willing to share confidential
information with a third (trusted) party. This assumption is unrealistic in many
situations. In this paper, we address the problem of inter-organizational process
mining in the context where the parties in the process are unwilling to share any
execution data with each other or with a third party. In one of the embodiments
of our proposal, a third party is involved for computation purposes, but this
third party does not get access to any information during this computation.

2.3 Secure Multi-party Computation

Secure Multi-party Computation (MPC) [13] is a cryptographic functionality
that allows n parties to cooperatively evaluate (yi,...,yn) = f(x1,...,2,) for
some function f, with the i-th party contributing the input z; and learning
the output y;, and no party or an allowed coalition of parties learning nothing
besides their own inputs and outputs. There exist a few approaches for con-
structing MPC protocols. Homomorphic secret sharing [22] is a common basis
for MPC protocols. In such protocols, the arithmetic or Boolean circuit repre-
senting f is evaluated gate-by-gate, constructing secret-shared outputs of gates
from their secret-shared inputs. Each evaluation requires some communication
between parties (except for addition gates), hence the depth of the circuit deter-
mines the round complexity of the protocol. On the other hand, there exist
protocols with low communication complexity [3], allowing the secure computa-
tion of quite complex functions f, as long as the circuit implementing it has a
low multiplicative depth.

The complexity of MPC protocols is dependent on the number of parties
jointly performing the computations. Hence the typical deployment of MPC
has a small number of compute nodes, also known as computation parties, which
execute the protocols for evaluating gates, while an unbounded number of parties
may contribute the inputs and/or receive the outputs of the computation. Several
frameworks support such deployments of MPC and provide APIs to simplify
the development of privacy-preserving applications [4]. One of such frameworks
is Sharemind [7], whose main protocol set is based on secret-sharing among
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three computing parties. In this paper, we build on top of Sharemind, but our
techniques are also applicable to other secret sharing-based MPC systems.

In Sharemind, a party can play different roles: an input party, a computation
party, and/or an output party. In the case where only two parties are involved in
an inter-organizational process, these two parties play the role of input parties
and also that of computing parties. To fulfill the requirements of Sharemind,
they need to enroll a third computing node, which merely performs computations
using secret shares from which it can infer no information.3

The Sharemind framework provides its own programming language, namely
the SecreC language [6], for programming privacy-preserving applications.
SecreC allows us to abstract away certain details of cryptographic protocols.

3 Multi-party Computation Based Process Mining

This section introduces our techniques for process mining based on secure multi-
party computation. Section 3.1 first clarifies our model for inter-organizational
process mining including the required input data and the obtained analysis
results. We then introduce our architecture for realizing the respective analy-
sis using secure multi-party computation in Sect. 3.2. In Sect. 3.3, we elaborate
on vectorization and parallelization to improve the efficiency of our approach.

3.1 Model for Inter-organizational Process Mining

We consider a model in which an event log L = {ey,...,e,} is defined as a set
of events e = (i, a,ts), each capturing a single execution of an activity a at time
ts, as part of a single instance ¢ of the business process. Grouping events by the
latter and ordering them according to their timestamp enables the construction
of traces t = (e1,...,em), i.e., single executions of the process, so that we refer
to ¢ also as the trace identifier.

For an inter-organizational business process, an event log that records the
process execution from start to end is commonly not available. Rather, different
parties record sub-logs, built of events that denote activity executions at the
respective party. To keep the notation concise, we consider a setting in which
two parties, I, and I, execute an inter-organizational process, e.g., the airport
and the airline in our motivating example. Then, each of the two parties records
an event log, denoted by L, and L;. Each of these logs is the projection of L
on the events that denote activity executions at the respective parties I, and
I,. We assume that each activity can only be executed by one of the parties, so
that this projection is defined unambiguously.

For the above setting, we consider the scenario that the parties I, and I,
want to answer some analysis queries () over the inter-organizational event log
L, yet without sharing their logs L, and L; with each other. More specifically, we
focus on analysis queries that can be answered on a frequency or time-annotated

3 When three or more parties are involved in a process, no external party is required.
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DFG of the inter-organizational process. The basic DFG captures the frequencies
with which the executions of two activities have been observed to directly follow
each other in a trace. Moreover, we consider temporal annotations of the directly-
follows dependencies in terms of time between the respective activity executions.
Queries over the frequency and time-annotated DFGs allow us to analyze the
main paths of the process, the rarely executed paths, as well as the activities
that most contribute to delays in a process. Note though that only query answers
are to be revealed whereas the actual DFG shall be kept private.

Formally, the time-annotated DFG is captured by an |A| x |A| matrix, where
A is the set of all possible activities of the process. Each cell contains a tuple
(¢, A). The counter ¢ represents the frequency with which a directly-follows
dependency has been observed in L, i.e., for the cell (a,as) it is the num-
ber of times that two events e; = (i1, a1,ts1) and ea = (ig, as, tse) follow each
other directly in some trace (i.e., i1 = i) of L. Also, A is the total sum of the
time passed by between all occurrences of the respective events, i.e., tso — ts;
for the above events.

In inter-organizational process mining, the above time-annotated DFG can-
not be computed directly, as this would require the parties to share their sub-logs.

3.2 MPC Architecture for Process Mining

To enable inter-organizational process mining without requiring parties to share
their event logs with each other, we propose an architecture based on secure
multi-party computation (MPC). As outlined in Fig. 2, we rely on a platform for
MPC (in our case Sharemind [7]) that takes the event logs of the participating
parties, i.e., L, and L, as secret-shared input. Inside the MPC platform, the
respective data is processed in a privacy-preserving way in order to answer anal-
ysis queries over the time-annotated DFG computed from that data. In Fig. 3,
we present a running example of the processing steps of the system.
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Fig. 2. Overview of the proposed approach
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Below we summarize the functionality enbodied in the proposed MPC plat-
form for inter-organizational process mining.

Preprocessing. Each party performs the preparation of its log at its own site. The
parties share the number of unique activities and the maximum number of events
per trace. In Fig. 3a, we show an example with two traces. In the preprocessing
step, all traces are padded to the same length, as illustrated with the blue event
in Fig.3a. The activities are transformed into a one-hot encoding that is used
for masking at the DFG calculation step, as will be explained later. The logs are
sorted by traces.

Combination. The parties upload their event logs L, and L; to the MPC
platform in a secret-shared manner. That is, the values (i, a,ts) of each event
(encoded as integers) are split into shares, which do not provide any information
on the original values and are stored at different nodes of the platform. This way,
each party can only see the total number of records uploaded by each party, but
not the particular data. Subsequently, the logs are unified, creating a single log
of events L. The combination is performed in a manner to divide the logs into
processing chunks. As long as we are making the number of events per trace is
fixed, that is possible by dividing the index by the number of traces for each
event and assigning data from the same trace to the same chunk. In Fig. 3a, the
system processes one trace with its own chunk.

Sorting. To calculate the annotated DFG, we have to determine which events
follow each other in a trace by grouping the events by their trace identifier and
ordering them by their timestamp. Since the trace identifier is secret-shared,
we cannot group events directly. Instead, we use a privacy-preserving quicksort
algorithm [14] as implemented in Sharemind to sort the events by their trace
identifier. Applying the same algorithm also to the secret-shared timestamps
ensures that the events of the same trace follow each other in the order of their
timestamps, which is illustrated as the last step in Fig. 3a.

DFG Matrixz Calculation. Next, we construct the DFG matrix inside the MPC
platform, keeping it secret. Since the information on the activity of an event is
secret-shared, we cannot simply process the events of traces sequentially as the
matrix cell to update would not be known. Hence, we adopt a one-hot encoding
for activities, so that each possible activity is represented by a binary vector of
length |A|. To mask the actual number of possible activities, the set over which
the vector is defined may further include some padding, i.e., the vector length
can be chosen to be larger than | A|. Now, if we compute the outer product of such
vectors for activities a; and ag, we get a mask matrix M such that Maq, as] = 1,
while all other entries are 0. An example of such masks is given in Fig. 3b. The
first mask represents the directly-follows dependency from activity A to B of
our running example. The second mask encodes the directly-follows dependency
from activity A to C. For all sequential pairs of events in the sorted log, we sum
up these matrices to get the frequency count c of the directly-follows dependency
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Fig. 3. Example of two event logs and their processing steps inside the system

for (a1, a2). Multiplying M by the duration between two events further enables
us to derive the total sum duration passed, i.e., A, of the directly-follows-relation.
The duration operation is performed between every two consecutive events of
the same trace. We can perform the duration calculation by using an element-
wise vector subtraction by duplicating the dataset and then shifting its events
by one as in Fig. 3c. Technically, the outer product is a function that is realized
as a protocol over secret-shared data in Sharemind, and its runtime complexity
is linear in |A| [15].

However, the above approach could mix up events of different traces. We
therefore also compute a flag b that is 1, if the trace identifiers of two events
are equivalent, and 0 otherwise, which is illustrated as the “Same Trace Flag”
column in Fig.3c. Then, we multiply the mask matrix M by b, so that the
values of M are ignored, if b = 0. Again, the functionality for comparison and
multiplication can be traced back to predefined protocols in Sharemind. We show
the DFG matrix with counts of our running example in Fig. 3d.

Algorithm 1 summarizes the computation of the annotated DFG from the
sorted, combined log L, where [-] denotes a secret-shared data value.

Query Answering. A query @ defines a subset S of the annotated DFG, which
is generated by the MPC platform and revealed to the participating parties.
Through sharing the S solely, but not the complete annotated DFG, we are able
to limit the amount of information each party can learn about the process. As
an example, consider the query to derive the average waiting time between the
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Algorithm 1. Calculating the combined, annotated DFG([L])

INPUT: The sorted, combined event log [L] of length n.
OUTPUT: Annotated DFG comprising a count matrix [G] and a time matrix [W].

1: Initialize [G] =0, [W] =0
2: for all j € {1,...,n—1} do

3: [6] < ([L[j — 1].¢] = [L)-4]); //compute the flag for traces
4: [M] < [o] - ([L]7 — 1).a] ® [L[j]-a]); //compute the outer product
5: [G] < [G] + [M]; //incorporate the current dependency
6: W] — W]+ [M] - ([L[j]-ts] — [L[j — 1]-ts]); //Incorporate the time lag
7: return [G], [W]

handover events between the two parties. Based on the secret-shared DFG, the
respective activities may be identified through grouping and sorting the events,
similar to the procedure outlined above, which is again based on the predefined
protocols of an MPC platform such as Sharemind.

3.3 Performance Optimizations

Inter-organizational process mining using the above general architecture might
suffer from scalability issues. The reason is that privacy-preserving computa-
tion through protocols over secret-shared data is inevitably less efficient than
plain computation. Hence, even for functions that have a generally low runtime
complexity (O(n) for the combination, O(nlog(n)) for the sorting, O(nm?) for
the calculation of the annotated DFG, where n is the log length and m is the
number of activities), there is a non-negligible overhead induced by MPC. For
instance, a naive realization of the quicksort algorithm to sort events would
require O(nlog(n)) rounds of communication between the nodes and O(n log(n))
value comparisons per round [14]. We therefore consider two angles to improve
the efficiency of the analysis, namely vectorization and parallelization.

Vectorization. A computation that adopts a single-instruction multiple-data
(SIMD) approach is highly recommended in MPC applications. Since MPC
assumes continuous interaction between distributed nodes, the number of com-
munication rounds shall be reduced as much as possible. For instance, while
computing n multiplications sequentially would result in n rounds of commu-
nication, one may alternatively multiply element-wise two vectors of length n,
for which one round of network communication is sufficient. Sharemind offers
efficient protocols for such vector-based functions [15].

Parallelization. Further runtime improvements are obtained by parallelizing the
algorithm itself. Again, our goal is to reduce the number of rounds of commu-
nication among the nodes of the MPC platform. We, therefore, split the input
data into chunks, such that all chunks can be processed independently from each
other. In our scenario, this is done by grouping the party logs by trace, or by a
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group of traces, generating an annotated DFG per group, and finally integrating
the different DFGs. Since events of the same trace will never occur in different
chunks, instead of sorting one log of length n, we will need to sort ¢ chunks of
length n/c each. Since the communication complexity of a privacy-preserving
quicksort is O(n - logn) [14], this improves efficiency.

The above approach raises the question of determining the size of the chunks.
Separating each trace reveals the total number of events of that trace provided
by a party, which may be critical from a privacy perspective. On the other hand,
a small chunk size reduces the overhead of sorting. This leads to a trade-off
between runtime performance and privacy considerations.

However, in our current implementation, all chunks must have the same
length, as Sharemind allows parallel sorting only for equal-length vectors. There-
fore, we apply padding to the traces in the log, adding dummy events (for which
an empty vector in the one-hot encoding represents the activity so that the
events are ignored for the DFG calculation) until the number of events of the
longest trace is reached. Such padding may be employed locally, by each party,
and also has the benefit that the length of individual traces is not revealed.

4 Evaluation

We implemented the proposed approach on top of the Sharemind multi-party
computation platform.* The source code of our implementation is available at
https://github.com/Elkoumy /shareprom. The implementation is written using
the SecreC programming language supported by Sharemind.

Using this implementation, we conducted feasibility and scalability experi-
ments, specifically to address the following research questions:

RQ1: How do the characteristics of the input event logs influence the perfor-
mance of the secure multi-party computation of the DFG?

RQ2: What is the effect of increasing the number of parallel chunks on the
performance of the multi-party computation of the DFG?

4.1 Datasets

The proposed approach is designed to compute the DFG of an inter-
organizational process where the event log is distributed across multiple parties,
and each party is responsible for executing a subset of the activities (i.e. event
types) of the process. We are not aware of publicly available real-life datasets
with this property. We identified a collection of synthetic inter-organizational
business process event logs [8]. However, these logs are too small to allow us
to conduct performance experiments (a few dozen traces per log). On the other
hand, there is a collection of real-life event logs of intra-organizational processes
comprising logs of varying sizes and characteristics®. From this collection, we
selected three logs with different size and complexity (cf. Table 1):

* https://sharemind-sdk.github.io.
5 https://data.4tu.nl/repository/collection:event_logs_real.
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BPIC 2013 This event log captures incident and problem management process
at an IT department of a car production company.

Credit Requirement This event log comes from a process for background
checking for the purpose of granting credit at a Dutch bank. It has a simple
control-flow structure: All traces follow the same sequence of activities.

Traffic Fines This event log comes from a process to collect payment of fines
from traffic law violations at a local police office in Italy.

Table 1. Event logs for evaluation

Event Log # Events | # Cases | # Activities | # Events in Case
Avg | Max | Min
BPIC 2013 6,660 1,432 | 6 4.478 | 35 1
Credit Requirement | 50,525 10,034 | 8 15 15 15
Traffic Fines 561,470 | 150,370 |11 3.73 |20 2

To simulate an inter-organizational setting, we use a round-robin approach
to assign each event type (activity) in the log to one of two parties. Hence, each
party executes half of the event types.

4.2 Experimental Setup
To answer the above questions, we use the following performance measures:

o Runtime. We define runtime as the amount of time needed to transform the
event logs of the two parties securely into an annotated DFG. We also report
the throughput, the number of events processed by the system per second, to
provide a complementary perspective.

o Communication Overhead. We define the communication overhead as the
amount of data transferred between the computing parties during the multi-
party computation. We measure this overhead as the volume of the data sent
and received. The communication overhead gives insights into how much the
performance of the multi-party computation would degrade if the computing
nodes of the parties were distributed across a wide-area network.

We performed five runs per dataset per experiment. We report the average
maximum values for latency and the average value for both throughput and
communication overhead, across the five runs. We used Nethogs® to measure the
communication overhead, and we report the average value per compute node.
The experiments were run in an environment with three physical servers as com-
pute nodes with Sharemind installed on them. Each server has an AMD Proces-
sor 6276 and 192 GB RAM. The servers are connected using a 1GB Ethernet
switch.

5 https://github.com/raboof /nethogs.
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The experiments focus on the time needed to construct the annotated DFG,
since it is the most sophisticated and time-consuming portion of the proposed
analysis pipeline, due to the communication required between the compute
nodes. Once the annotated DFG is available, stored in a secret-shared manner,
the calculation of the actual queries has a lower complexity.

4.3 Results

Runtime Experiment. In Fig. 4a, we illustrate the observed execution time when
varying the number of chunks used in the parallelization. We plot a bar for
each chunk size. Each bar represents the runtime of the parallel sort in blue
and the run time of the DFG calculation in orange. From Fig.4a, we conclude
that the runtime decreases with an increasing number of chunks, due to the
parallel sorting of chunks. We also note that the runtime for the DFG calculation
stays constant. In Fig. 4b, we report the number of processed events per second
when varying the number of chunks. We find a consistent improvement for the
throughput across all event logs.

Regarding RQ1, we summarise that the proportion of runtime between sort-
ing and DFG calculation differs based on the event log characteristics. For the
log with the largest number of event types, the DFG calculation makes up the
most substantial proportion of the total runtime. In contrast, the proportion is
significantly lower for the logs with a smaller number of event types. A possible
explanation for this finding is the increasing size of the vectors required to rep-
resent each activity due to our bit-vector representation. Such increase results in
more computational heavy calculations. Regarding RQ2, we conclude that the
runtime decreases for event logs with an increasing number of chunks.

Communication Overhead. In Fig. 4c, we present the amount of data transferred
to each server, again also varying the number of chunks. We observe that the
communication overhead decreases with an increase in the number of chunks.
These findings confirm our earlier findings regarding RQ2. In summary, a higher
number of chunks leads to improved performance across all three measures.

Threats to Validity. The evaluation reported above has two limitations. First, the
event logs used in the evaluation, while coming from real-life systems, are intra-
organizational event logs, which we have split into separate logs to simulate an
inter-organizational setting. It is possible that these logs do not capture the com-
munication patterns found in inter-organizational processes. Second, the number
of event logs is reduced, which limits the generalizability of the conclusions. The
results suggest that the proposed technique can handle small-to-medium-sized
logs, with relatively short traces, but there may be other characteristics of event
logs that affect the performance of the proposed approach.
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Fig. 4. Experimental evaluation of the proposed approach

5 Conclusion

This paper introduced a framework for inter-organizational process mining based
on secure multi-party computation. The framework enables two or more parties
to perform basic process mining operations over the partial logs of an inter-
organizational process held by each party, without any information being shared
besides: (i) the output of the queries that the parties opt to disclose; and (ii)
three high-level log statistics: the number of traces per log, the number of event
types, and the maximum trace length. The paper specifically focuses on the com-
putation of the DFG, annotated with frequency and temporal information. This
is a basic structure used by process mining tools to perform various operations,
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including automated process discovery and various performance analysis queries
(e.g. top-k bottlenecks and least-frequent and most-frequent flow dependencies).

To mitigate the high-performance overhead commonly observed for secure
multi-party computation, we introduced two optimizations over the basic DFG
computation algorithm: one based on vectorization of the event log and the other
based on a divide-and-conquer strategy, where the log is processed in chunks.

An evaluation using real world event logs shows that with these optimiza-
tions, it is possible to compute the DFG of real-life logs with execution times that
make this technique usable in practice. The divide-and-conquer approach pro-
vides opportunities to scale up the proposed technique by using a map-reduce
execution-style, however not to a sufficient level to enable interactive process
mining (which requires execution times in the order of seconds). Also, the app-
roach is not able to handle logs with thousands of traces.

In future work, we will explore further optimizations to address these limi-
tations, for example, by taking into account metadata about the event types in
the event log where hand-offs occur between participants. Usually, such event
types are known as they correspond to message exchange. Therefore, it becomes
possible to split the logs into a “private” part and a “public” part (the latter
being the points where hand-offs occur), and to process them separately using
different approaches.

Another avenue for future work is to combine the proposed approach with
approaches that provide complementary guarantees such as differential privacy
techniques. The latter techniques allow us to noisify the DFG or the outputs
from the queries of the DFG to limit the information leaked by these outputs.
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