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Abstract Proposed and studied in the mid-1960s, water-insoluble cyclodextrin- 
epichlorohydrin polymers are of continued interest to the scientific community, par-
ticularly for their environmental applications. The most characteristic feature of 
these materials is their ability to form inclusion complexes with various contami-
nants through host-guest interactions. This leads to many environmental applica-
tions, including water and wastewater treatment, soil remediation, air purification, 
and the concentration or elimination of target substances such as cholesterol.

In the early 1990s, our group began working on the synthesis of water-insoluble 
cyclodextrin-based materials, their structural characterization, and their application 
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in the removal of pollutants present in wastewater. One of the first results published 
in 1995 concerned the fact that this material was not a true polymer but a copolymer 
with a particular structure with two different molecular mobilities. In 1997, this was 
demonstrated for the first time by solid-state NMR spectroscopy. These materials 
were composed of a relatively dense, rigid, and hydrophobic cross-linked core and 
a more hydrophilic surface, less cross-linked containing long and highly mobile 
hydroxyalkylated polymer chains through the homopolymerization of the cross- 
linking agent. In 1998, cyclodextrin-based materials were used as adsorbents to 
efficiently remove organic contaminants from contaminated water. One year later, a 
more surprising result showed that a high proportion of cyclodextrin was not neces-
sary to have useful performance in terms of pollutant removal. In 2000, using cross- 
polarization magic angle spinning with dipolar decoupling and high-resolution 
magic angle spinning spectra, we concluded that the mechanism of adsorption can 
be explained by the presence of two main interactions: the formation of an inclusion 
complex due to the cyclodextrin molecules and the physical adsorption in the poly-
mer network. In 2005, a patent was filed on a process for the synthesis of cross- 
linked polysaccharides with ionic functional groups for the simultaneous removal 
of metals and organic contaminants present at low trace levels in polycontaminated 
effluents. At the end of the 2000s, we carried out the first pilot studies demonstrating 
that a single cyclodextrin material with amphoteric and ion-exchange properties 
could replace two conventional adsorbents to effectively treat multi-contaminated 
effluent. In the early 2010s, our group proposed for the first time biomonitoring tests 
using plants as bioindicators to determine and compare the toxicity of industrial 
effluent from wood, pulp and paper, textile, and surface treatment industries before 
and after treatment with a cyclodextrin material. In the mid-2010s, we confirmed 
the feasibility of implementing materials for the treatment of discharge waters from 
surface treatment industries on an industrial scale.

The purpose of this chapter is to summarize the research conducted over the past 
30  years by our research group on water-insoluble cyclodextrin-epichlorohydrin 
polymers used as complexing materials to remove contaminants present in aqueous 
solutions. It shows the progress of our work and our contribution to a better under-
standing of these materials. These years were devoted to the synthesis of a series of 
water-insoluble materials with different functionalities in the form of gels or beads, 
their characterization by innovative solid-state NMR techniques, the demonstration 
of their effectiveness as adsorbents in wastewater treatment, and the explanation of 
contaminant removal mechanisms according to the type of material used.

Keywords History · Cyclodextrin polymers · Synthesis · Characterization · 
Complexation · Adsorption · Industry

G. Crini



347

Abbreviations

CPMAS Cross-polarization magic angle spinning with dipolar decoupling
ECP Cyclodextrin-epichlorohydrin polymers
HRMAS High-resolution magic angle spinning
NMR Nuclear magnetic resonance

8.1  Introduction

In 1990, I was a young student in organic chemistry and macromolecular chemistry 
at the Laboratoire de Chimie Organique et Macromoléculaire (University of Lille 
1, France) under the supervision of Professor Michel Morcellet.

In the same year, a French company (Roquette Frères, Lestrem) asked Morcellet’s 
group to produce a series of cross-linked cyclodextrin gels using epichlorohydrin as 
cross-linking agent for applications in chromatography at industrial scale. The main 
objective was to verify if the polymer cyclodextrins were suitable chromatographic 
supports for gel inclusion chromatography, e.g., for the separation of caffeine, phe-
nylalanine, naphthols and derivatives, benzaldehyde, nucleic acids, etc. This project 
was also carried out in collaboration with Professor Yahya Lekchiri of the University 
of Mohamed 1st, Oujda (Morocco).

Our first approach was to review the literature, an activity that we have been 
doing continuously since then (Crini et al. 2001; Crini and Morcellet 2002; Crini 
2005a, 2006, 2014, 2015a, b; Badot et al. 2007; Sancey and Crini 2012; Morin- 
Crini and Crini 2013; Euvrard et al. 2015; Fourmentin et al. 2015; Crini et al. 2018a, 
b, 2019a; Morin-Crini et al. 2018a, b, 2019a). In 2002, we published a first compre-
hensive review on the synthesis, characterization, and applications of cross-linked 
cyclodextrin-based materials (Crini and Morcellet 2002). This review was updated 
11 years later (Morin-Crini and Crini 2013).

Then we started working on the synthesis of water-insoluble cyclodextrin-based 
materials, thanks to industrial and European grants. With the first results obtained, I 
supported a Master of Science in Organic Chemistry in 1990, a Master of Science 
in Macromolecular Chemistry in 1992, and then a PhD in Organic Chemistry and 
Macromolecular Chemistry in 1995 (Crini 1995).

In 1994, my interest extended to solid-state nuclear magnetic resonance (NMR) 
characterization of these cyclodextrin polymers with a 1-year visit to the NMR 
Department of the G. Ronzoni Institute for Chemical and Biochemical Research 
(Milan, Italy), invited by the Research Director Giangiacomo Torri. Interesting 
results have been obtained both from the point of view of synthesis and character-
ization and applications in chromatography and oil removal and petroleum industry 
(Crini et al. 1995a, b, 1996, 1998a, b; Shao et al. 1996; Vecchi et al. 1998). However, 
for several reasons, such as the variability of polymer characteristics, the difficulty 
of producing materials with the same cross-linking density, lack of porosity, lack of 
reproducibility of the chromatographic results, etc., the industrial project initiated in 
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the early 1990s on cyclodextrin-based polymers for chromatographic applications 
was abandoned 1 year later.

At the same period, Professor Gerhard Wenz asked Professor Morcellet and 
Professor Casu to participate in the implementation of a European project on cyclo-
dextrin polymers. In 1995, the project, focusing on the “Development from cyclo-
dextrin derivatives to polymeric materials for selective transport, separation and 
detection of active substances” (FAIR Program 1995–1999, European Commission 
DGXII, contract no. CT 95-0300), was accepted. This was my entrance to the world 
of oligosaccharides and polysaccharides for environmental applications. As part of 
this project, after obtaining my PhD in 1995, I spent 2 years as a postdoctoral fellow 
at the Chemical Unit of G. Ronzoni Institute, under the direction of Dr. Torri and 
Professor Benito Casu, to work on the synthesis and NMR characterization of 
cyclodextrin-epichlorohydrin polymers, two of the objectives of the FAIR Program. 
At that time, the Institute’s internationally recognized chemistry unit played a lead-
ing role in the pure and applied chemistry of carbohydrates and biopolymers. During 
the FAIR project, I had the opportunity to work with academics, including Dr. 
Anna-Maria Naggi, Dr. Carmen Vecchi, Dr. Marco Guerrini, Dr. Cesare Cosentino, 
Dr. Edwin Yates, Dr. Bernard Martel, Professor Wenz, Professor Wilfried König 
(Fig.  8.1), Dr. Bruno Perly, Professor Jacques Defaye, and Professor David 
Reinhoudt, and industrialists, e.g., Wacker Chemie, Bruker Italy, Chiesi 
Pharmaceutical, and Stazione Sperimentale per i Combustibili.

In September 1995, “after a long evening of fruitful exchanges at the Galleria 
Vittorio Emanuelle II in the Centre of Milan” with Giangiacomo Torri on the prob-
lems of the textile and paper industries, I had the idea to use cyclodextrin-based 
materials to remove dyes from aqueous solutions. Back at the Ronzoni Institute, I 
started working on the subject under the supervision of Dr. Torri, Professor Casu, 
and Professor Morcellet. The first results were presented at the Eight International 
Cyclodextrin Symposium in Budapest, March 31–April 2, 1996 (Fig. 8.1). At this 
Symposium, we first introduced the term “cyclodextrin microsponges” and pro-
posed these materials as non-conventional adsorbents for the removal of target con-
taminants such as dyes and aromatic and phenolic compounds. However, this term 

Fig. 8.1 Left: An evening organized by Professor König (with the red sweater) in Hamburg in 
1996 during the FAIR project; Right: G. Crini with Professor M. Morcellet and Dr. G. Torri at the 
Eighth International Symposium on Cyclodextrins, Budapest, Hungary, March 31–April 2, 1996, 
where we introduced for the first time the term “cyclodextrin microsponges”
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has generated much negative debate and criticism, although Professor József Szejtli, 
one of the prestigious researchers who contributed to the development of cyclodex-
trins, accepted it and congratulated our work. At the time, we abandoned it and then 
used the terms cyclodextrin polymer, cyclodextrin material, or simply gel/hydrogel. 
A few years later, the term “microsponges” was adopted over by other researchers.

In 1996, my interest also extended to starch, cellulose, and chitosan biopolymers, 
after two fruitful meetings in Milano, the first with Dr. Torri, Dr. Carmen Vecchi, 
and Professor Piero Sozzani organized at the Stazione Sperimentale per i 
Combustibili and the second with Professor Casu, Professor Bonaventura Focher, 
and Professor Kjell Vårum at the Stazione Sperimentale per la Cellulosa, Carta e 
Fibre Tessili. A year later, I joined the University of Franche-Comté where, with 
Professor Joël Vebrel, I created a research group working on adsorption processes 
based on oligosaccharides and polysaccharides for pollutant removal. At that time, 
our work focused mainly on the use of cyclodextrin-epichlorohydrin polymers and 
chitosan-based materials used as adsorbents for the removal of dyes from industrial 
effluents. Our current research focuses on the design of new functionalized macro-
molecular networks based on oligosaccharides (linear or cyclic dextrins), polysac-
charides (starch, chitosan, cellulose), or agricultural fibers (hemp) for applied 
research for environmental purposes.

The purpose of this chapter is to present a review of some 30 years of research 
within my team as part of a scientific and industrial strategy. Our main area of 
research focused on the design and use of cyclodextrin-based materials for the 
removal of trace contaminants from polycontaminated industrial effluents from the 
textile, pulp and paper, wood, and surface treatment industries. The work involved 
the production of a series of water-insoluble cyclodextrin-epichlorohydrin polymers 
with different physical and textural properties, their chemical modification and 
solid-state NMR characterization, and their use as complexing agents in wastewater 
treatment. An important part of the work has also focused on explaining the con-
taminant removal mechanisms according to the type of cross-linked material used.

8.2  Synthesis of Water-Insoluble 
Cyclodextrin-Epichlorohydrin Polymers

8.2.1  Cross-Linking Reaction

Chemical cross-linking using epichlorohydrin as cross-linking agent is the most 
straightforward method to produce water-insoluble cyclodextrin-based polymers. 
These cyclodextrin-epichlorohydrin polymers known as ECP materials were first 
proposed in 1964 by the Swiss chemist Jürg Solms (Research Laboratory of the 
Nestlé Group, Vevey), who patented their chemical synthesis by block polymeriza-
tion and their analytical applications as “inclusion resins” in chromatography and 
separation science (Solms and Egli 1964, 1965; Solms 1966, 1967, 1969).
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The Dutch group of Niels Wiedenhof (Laboratory of General Chemistry, 
Eindhoven) at the end of the 1960s (Wiedenhof 1969; Wiedenhof et al. 1969, 1971; 
Wiedenhof and Trieling 1971), the American group of Jerald L. Hoffman (University 
of Louisville, Kentucky) in the early 1970s (Hoffman 1970, 1972, 1973), and the 
Hungarian group of József Szejtli (Chinoin Chemical and Pharmaceutical Works, 
Budapest) in the late 1970s (Szejtli et  al. 1978; Szejtli 1980, 1982, 1984, 1988; 
Szemán et al. 1987) are also known for their many contributions to the cross-linking 
of cyclodextrins with epichlorohydrin. In the late 1990s, our group also studied ECP 
polymers and contributed to a better understanding of their synthesis. We used the 
same the procedure as described by Solms and improved by Hoffman but with some 
modifications, in particular in the molar ratios of the reagents.

The reaction that leads to the cross-linking of cyclodextrin molecules by epichlo-
rohydrin, 1-chloro-2,3-epoxypropane (Fig.  8.2), is an easy method for preparing 
cyclodextrin-based materials (Solms and Egli 1964; Wiedenhof 1969; Hoffman 
1970). Their one-step synthesis in water is simple and easy to set up in a lab and 
only requires mild reaction conditions (water-based chemistry, mild temperatures 
between 50° and 80 °C, and at atmospheric pressure). However, to obtain beads 
with porosity, it is necessary to use organic solvents. Figure 8.3 shows the reactor 
used in our laboratory to prepare up to 50  kg of material in a single step. The 
reagents involved are easy to find and inexpensive. The only compounds are water, 
caustic soda, and epichlorohydrin.

Cyclodextrin molecules are cross-linked by direct reaction between their 
hydroxyl groups with epichlorohydrin (abbreviated ECH or EPI in the literature) in 
an alkaline medium to form polymeric structures or ECP materials. Depending on 
the experimental conditions, in particular the degree of cross-linking, the ECP mate-
rials may be cross-linked polymers that are soluble or insoluble in water (Shao et al. 
1996; Crini et  al. 1998a). Due to its high reactivity in basic medium, the cross- 
linking agent can form bonds with cyclodextrin molecules (cross-linking step)  and/

Fig. 8.2 Chemical reaction between a cyclodextrin molecule and epichlorohydrin (ECH) in basic 
medium to give a cyclodextrin-epichlorohydrin polymer
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or itself (polymerization step). A number of cyclodextrin rings are interconnected, 
and a three-dimensional polymer network is formed. In 2002, our group proposed 
the structure of an ECP material described in Fig. 8.4, inspired on the 1972 Hofmann 
structure.

Fig. 8.3 Pilot used for the 
synthesis of cyclodextrin- 
epichlorohydrin polymers 
in our lab

Fig. 8.4 Structure of a cyclodextrin-epichlorohydrin polymer known as ECP material in the 
literature
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To explain the cross-linking reaction (Fig.  8.2), Professor Szejtli adopted the 
mechanism described in Fig. 8.5, first proposed in the 1960s by Professor Hofmann, 
in the 1980s. This mechanism is divided into three main steps that take place simul-
taneously. The first step, cross-linking, consists in creating a three-dimensional 
structure using the bridging agent that binds the cyclodextrin molecules by strong 
covalent bonds. This is the main reaction and is responsible for creating a macromo-
lecular network with a variable proportion of cross-links. The second step is the 
polymerization of the cross-linking agent, due to the high reactivity of epichlorohy-
drin, which allows it to polymerize with itself in basic medium, particularly with an 
excessive concentration of epichlorohydrin. This results long hydroxyalkyl macro-
molecular chains that function both as bridges and as side chains in the network. 
This is why some authors consider these materials as copolymers with two distinct 
components. In the last reaction (hydrolysis in Fig. 8.5), glycerol monoether poly-
mer subunits are considered undesirable by-products. This reaction is not easy to 
control, which is why epichlorohydrin is often used in the synthesis in excess, usu-
ally 10 mol/mol cyclodextrin (Morin-Crini et al. 2013, 2018a).

A cyclodextrin-epichlorohydrin polymer, in water-insoluble or water-soluble 
form, is an O-alkylated polymeric resin. However, this is not a true polymer but a 
copolymer, first suggested in the 1970s by Professor Hoffman and taken up by 
Professor Szejtli in the 1980s. The concept is to consider cyclodextrin as a first 
monomer and epichlorohydrin as a second monomer in the synthesis. By modifying 
the molar ratio of the two monomers, the resulting copolymer is richer in one or the 
other of the monomers. In 1998, our group demonstrated that changes in the relative 
mole ratio of cyclodextrin (monomer A) to epichlorohydrin (monomer B) modify 
the repetitive structure of monomer units from an A-B-type copolymer to an 

Fig. 8.5 Possible reactions between a cyclodextrin molecule and epichlorohydrin: (a) cross- 
linking to form a polymer; (b) self-polymerization of the cross-linker, and (c) formation of a glyc-
erol monoether derivative by hydrolysis
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A-Bn-type copolymer; the latter type contains epichlorohydrin-rich domains that are 
hydrophilic by nature with an amorphous structure. This was demonstrated using 
NMR data (Crini et al. 1998b; Bertini et al. 1999) and later confirmed by the Spanish 
group of Professor José Ramon Isasi at Navarra University (Romo et al. 2004, 2006, 
2008; García-Zubiri et al. 2006; Vélaz et al. 2007).

At the time, in accordance with Szejtli’s results, our group also reported that it 
was important to select the optimal synthesis conditions to obtain the desired prod-
uct characteristics, such as the degree of swelling and cyclodextrin content (Shao 
et al. 1996; Vecchi et al. 1998; Crini et al. 1998a). By varying the synthesis condi-
tions, for example, the amounts of the different reagents, the molar ratio of cyclo-
dextrin to epichlorohydrin, the NaOH concentration, the reaction temperature, and 
the reaction time, it was possible to induce structural modifications in the hydrogel 
networks in terms of surface area and porosity and also to obtain gels or beads with 
different cyclodextrin contents (Crini et al. 1998a, b). We have reported that a high 
polymerization temperature promoted a high degree of polymer swelling. The intro-
duction of rigid structures into a material has been beneficial to create porosity and 
has increased the surface area, as well as the co-presence of an organic solvent dur-
ing synthesis. Later, similar conclusions were reported by Professor Isasi (Romo 
et al. 2004, 2006, 2008; García-Zubiri et al. 2006; Vélaz et al. 2007), by the Turkish 
group of Professor Mustafa Yilmaz at Selçuk University (Yilmaz Ozmen and Yilmaz 
2007, 2008), and by the Canadian group of Professor Lee D. Wilson at the University 
of Saskatchewan (Mohamed et al. 2010, 2012; Pratt et al. 2010; Wilson et al. 2010).

The cross-linking step has always been the subject of debate in the literature. 
Two “schools of thought” have been established (Crini 2005a; Morin-Crini and 
Crini 2013): one promoting a low cross-linking leading to hydrogel-type products 
and the other promoting a high cross-linking leading to organic bead-type products. 
However, as Professor Szejtli has pointed out, this distinction may result from dif-
ferent end uses. For wastewater treatment, gel-type systems are appropriate but not 
for use in high-pressure chromatography, as the particles must have some mechani-
cal resistance (Szejtli 1982, 1988).

8.2.2  NMR Characterization

The mechanism described in Fig. 8.5 was studied in detail by Professor Bernard 
Sébille (Université de Paris XII, France) in 1997 for water-soluble epichlorohydrin- 
cross- linked cyclodextrin polymers (Renard et al. 1997). The same year, our group 
demonstrated for the first time the structure of water-insoluble ECP polymers by 
NMR spectroscopy. These results were presented at the IXth European Carbohydrate 
Symposium at Utrecht (The Netherlands, 6–11 July 1997) and published 1 year later 
in the journal Carbohydrate Research (Crini et al. 1998b). Using cross- polarization 
magic angle spinning with dipolar decoupling (CPMAS) and high- resolution magic 
angle spinning (HRMAS) spectra, we demonstrated that, in the materials, two kinds 
of structures existed with different molecular mobility: cyclodextrin cross-linked by 
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epichlorohydrin due to the cross-linking reaction between the cyclodextrin mole-
cules and epoxide and polymerized epichlorohydrin due to the homopolymerization 
of epichlorohydrin with itself. These two components were analyzed in terms of 
relaxation parameters, i.e., 13C spin lattice relaxation and 1H spin lattice relaxation in 
the rotating frame (Crini et al. 1998a, b, 2000).

In spite of the facile synthetic conditions for the preparation of ECP-based poly-
mers, the polymer networks may adopt variable structural variability. Since cyclo-
dextrin molecules contain several glucose units and hydroxyalkyl groups present at 
positions 2, 3, and 6 in each glucose unit, the structure of the polymer network is 
complicated because, during synthesis, many units can be interconnected as shown 
in Fig. 8.2. This structure has been demonstrated by solid-state NMR experiments 
and relaxation time techniques (Crini et  al. 1998a, 2000). Figure  8.6 shows the 
CPMAS spectra of a β-cyclodextrin sample and a water-insoluble β-cyclodextrin- 
epichlorohydrin polymer. The CPMAS spectrum of a polymer is typical of a solid 
with an amorphous structure, but it resembles to a classical β-cyclodextrin spec-
trum. However, this spectrum permits only one well-defined signal, i.e., the reso-
nance at 100 ppm due to the anomeric C-1, to be assigned because there is a large 
degree of signal overlap in the range 55–85 ppm (Crini et al. 1998a). The signals of 
polymerized epichlorohydrin are completely hidden by the C-2, C-3, C-4, and C-5 
β-cyclodextrin peaks. Our group was the first to overcome this overlap problem with 
a comprehensive NMR study, including CPMAS, MAS, and HRMAS experiments 
and relaxation parameter measurements. These NMR data made it possible to assign 

Fig. 8.6 Comparison of CPMAS spectra of a β-cyclodextrin sample and a water-insoluble 
β-cyclodextrin-epichlorohydrin polymer recorded by our team in 1994 on a Bruker AC-300 spec-
trometer and CXP-300 NMR spectrometer, respectively
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the main 1H and 13C signals and to demonstrate the presence of two distinct compo-
nents in the materials with different mobility.

As the degree of cross-linking increases, the resolution decreases in the CPMAS 
spectra as shown in Fig. 8.7; however, the resolution increases in the 13C NMR spec-
tra recorded in solution as revealed by the number of resonances. This highlights the 
mobility of the polymerized epichlorohydrin grafted onto the surface of the cross- 
linked polymer (Crini et al. 1998a). When the degree of cross-linking is high, the 

Fig. 8.7 Influence of the degree of cross-linking on CPMAS and 13C NMR spectra of a water- 
insoluble β-cyclodextrin-epichlorohydrin polymer. (a) cross-linked polymer. (b) highly cross- 
linked polymer
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sample is mostly amorphous, and cross-linking is not homogeneous. The amor-
phous character is caused by the loss of cyclodextrin crystallinity during the cross- 
linking reaction. The structure is heterogeneous and presents different regions with 
different mobility properties. For the first time, NMR studies have shown cyclodex-
trin gels are composed of a relatively dense, rigid, and hydrophobic cross-linked 
core and a more hydrophilic surface, less cross-linked containing long and highly 
mobile hydroxyalkylated polymer chains through the homopolymerization of the 
cross-linking agent (Crini et  al. 1998a). Two years later, these conclusions were 
confirmed by HRMAS experiments (Crini et  al. 2000). In 2012, Wilson’s group 
reported similar interpretations using NMR experiments (Mohamed et al. 2012).

8.2.3  Swelling Properties of Cyclodextrin-Epichlorohydrin  
Polymers

Various types of materials can be obtained with physical textures and mechanical 
properties that can be varied by giving different shapes, such as gels/hydrogels or 
“small balls” (beads, resins). At the end of the 1960s, Professor Wiedenhof was the 
first to demonstrate that materials can easily be prepared as irregularly shaped par-
ticles or regular “balls” and that they had a remarkably high swelling capacity in 
water, depending on the conditions of synthesis, especially the degree of cross- 
linking. Under particular synthesis conditions, such as heterogeneous two-phase 
synthesis in the presence of a blowing agent, it is possible to obtain a well-defined 
spherical size and shape and a uniform and controlled distribution (Bertini et al. 
1999; Vecchi et al. 1998). Other forms of such sponges or foams insoluble in water 
and in many other solvents can also be obtained, depending on the intended applica-
tion (Crini and Morcellet 2002; Crini 2005a).

Among the most studied materials are gel polymers that can swell in water and 
absorb up to several times their weight. They simultaneously have properties char-
acteristic of both liquids and solids. Their swelling properties become useful for the 
complexation of contaminants because they promote diffusion processes in the 
polymer network (Crini et al. 1998a). The macromolecular network also has a struc-
ture that is mainly amorphous with very few or complete absence of crystalline zone 
(Crini et al. 1998b, 2000; Vecchi et al. 1998). This amorphous character represents 
an additional advantage in wastewater treatment as it favors adsorption processes 
(Crini 2005a). Indeed, it is also important to note that the flexibility of the molecular 
chains makes them easily entangled with each other, resulting in a non-porous struc-
ture with a very low specific surface area (Crini and Morcellet 2002; Crini 2005a). 
Professor Szejtli was the first to study in detail the precise role of the solvent (water, 
organic solvents, or a mixture of both) in the formation of non-porous or porous gels 
and beads (Szejtli 1982). Since then, all highly porous cyclodextrin polymers have 
been synthetized in organic phase using customized cross-linkers, including epi-
chlorohydrin (Morin-Crini et  al. 2013, 2018a). Literature methods to produce 

G. Crini



357

porous cyclodextrins polymers can require long reaction times, and the type of 
cross-linking agent strongly influences the pore diameter. Nevertheless, synthesis in 
aqueous media is generally preferred because of their simplicity and their more 
ecological nature (Crini and Morcellet 2002; Crini 2005a; Morin-Crini et al. 2013, 
2018a). Xu et al. (2019) recently proposed for the first time the synthesis of an ultra- 
porous polymer in aqueous phase.

Nowadays, several materials with different characteristics in terms of cross-link 
density, surface area, pore structure, and physical and chemical properties can be 
obtained. They can be precisely tailored to have desired architectures and function-
alities. This explains the fact that, although the cross-linking of cyclodextrin mole-
cules with epichlorohydrin has been known for more than half a century, it continues 
to be of interest to the scientific community (Euvrard et al. 2017; Crini et al. 2018a, 
b; Morin-Crini et al. 2018a). Ongoing work is proposing innovative macromolecu-
lar architectures in the form of foams, nanoparticles, nanosponges, fibers (nanofi-
bers/nanowebs), felts, membranes/nanomembranes, “intelligent” hydrogels, 
composites, or film-based products. These materials are developed for various 
applications not only in the environmental field, for example, the elimination of the 
so-called emergent pollutants (pesticides, drugs, endocrine disruptors, etc.) present 
in polluted water or soil and air filtration, but also in the pharmaceutical or medical 
fields (drug delivery, biomedicine) or in innovative fields (medical textiles, compos-
ites for packaging, encapsulation of essential oils and volatiles, nanocatalysis, nano-
electronics) (Crini et al. 2019a).

8.2.4  Chemical Modification of Cyclodextrin-Epichlorohydrin  
Polymers

The chemical modification of a cyclodextrin-based material is an interesting step to 
introduce specific properties in order to broaden the scope of its potential applica-
tions. This was first suggested by Professor French in the 1950s and then studied by 
Professor Casu in the 1960s (Crini 2014). In general, the objectives are to improve 
pollutant adsorption properties, to increase selectivity for target pollutants, and to 
prepare amphoteric polymers. For example, the functionalization of ECP materials 
can modify characteristics of this class of gel such as selectivity when forming 
inclusion complexes. By replacing one or more OH groups at a “desired” position 
and with an appositely designed substitution group, multisite recognition systems 
can be obtained (Crini and Morcellet 2002). The preparation of homogeneous, 
selectively derivatized ECP is, however, not an easy task, as reported by Professor 
Szejtli in the 1980s.

The literature suggests two main methods for modifying ECP materials. The first 
method was introduced by Professor French in the 1950s and adopted by Professor 
Wiedenhof in the 1960s and Professor Szejtli in the 1980s (Crini 2014; Morin-Crini 
et  al. 2018a). It consists in grafting specific moieties onto the materials after 
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cross-linking using conventional modification reactions such as carboxymethyl-
ation and aminoalkylation. The main aim is to modify the surface chemistry of 
cross-linked materials by grafting ionic ligands (cationic and/or anionic) or neutral 
ligands (amine functions). These new ligands will then also behave as active bind-
ing sites and participate in the adsorption process (Crini and Morcellet 2002; Crini 
2005b). These grafting reactions, which occur in heterogeneous media, are derived 
from the chemistry of polysaccharides such as cellulose. The second uses polymers 
such as carboxymethylcellulose or neutral or ionic reagents such as ammonia, gly-
cidyl trimethylammonium chloride, etc. at the same time as epichlorohydrin in the 
cross-linking step of the same synthesis reactor. In this approach, the main objective 
is to control the structure of the materials (porosity, specific surface area, mechani-
cal properties, etc.) while modifying the surface chemistry of the material (Crini and 
Morcellet 2002; Crini 2005b). Figure 8.8 shows that NMR techniques are also an 
interesting tool for demonstrating chemical grafting of carboxylic groups on an 
ECP material.

We have reported ECP materials with both cationic and anionic groups (Fig. 8.9), 
synthetized in two steps: cross-linking with epichlorohydrin in the presence of 
2,3-epoxypropyltrimethylammonium chloride and carboxymethylation reaction 
(Crini 2005b). The degree of substitution (number of substituents in a cyclodextrin 
unit, DS) of hydroxyl groups by ionic functions was relatively low (DS < 0.2) but 
sufficient to exhibit chemisorption properties to remove pollutants from real poly-
contaminated effluents (Euvrard et al. 2015, 2017). When the cross-linked polymer 

Fig. 8.8 13C NMR and DEPT spectra in D2O showing the grafting of carboxylic groups onto the 
surface of a cross-linked polymer. The presence of two additional peaks at 48 and 180 ppm dem-
onstrates carboxymethylation reaction
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is modified or the cross-linking and modification are carried out simultaneously, the 
ionic substituents can then be located both on the rims of the cyclodextrins and on 
the network. This can be explained by the fact that the hydroxyl groups on the glyc-
eryl bridges and on the side chains of the glyceryl monoether polymer are reactive 
(Szejtli 1982, 1988). Therefore, instead of degree of substitution, it is better to char-
acterize the polymer by the concentration of substituents (mM)/g of the polymer 
adsorbent (Morin-Crini and Crini 2013). Modification by charged functional units 
can improve the binding affinity of cyclodextrin molecules for oppositely charged 
guests. This can be explained by the fact that, because one of the main driving forces 
for the formation of inclusion complexes by the cyclodextrin molecule in solution is 
hydrophobic interaction (Szejtli 1982, 1988), a more hydrophobic guest is apt to be 
accommodated in the cyclodextrin cavity and any hydrophobic functional groups on 
the guests tend to reduce the binding affinity (Crini and Morcellet 2002; Crini 
2003). Other approaches proposed by our group focused on the reaction of epichlo-
rohydrin in the presence of a chemical such as NH4OH: this method is a convenient 
and inexpensive way to introduce weakly basic anion-exchange groups into the 
polymer network (Delval et al. 2005).

The main problem of epichlorohydrin is its toxicity. Other more environmentally 
and health-friendly cross-linking agents have been proposed. Recently, in collabo-
ration with Professor Martel (University of Lille, France), we have demonstrated 
that polycarboxylic acids (cross-linking agents considered safe and environmentally 
friendly) can also be used to prepare bifunctionalized cyclodextrin-based materials, 
even if their performance is lower than polymers obtained with epichlorohydrin 
(Euvrard et al. 2016, 2017).

Fig. 8.9 A possible structure of a water-insoluble cyclodextrin-epichlorohydrin polymer contain-
ing both cationic and anionic groups
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8.3  A Brief History of Water-Insoluble 
Cyclodextrin- Epichlorohydrin Polymers 
for Environmental Applications

The idea of preparing ECP materials for analytical purposes, such as gel chromatog-
raphy, inclusion chromatography, and target substance complexation, has been the 
focus of attention of scientists worldwide for the past 60 years, but the most inten-
sive studies on their use as adsorbents in wastewater treatment to remove toxic 
contaminants have only begun in the past two decades.

In the mid-1960s, Professor Solms was the first to demonstrate that α-, β-, and 
γ-cyclodextrin molecules have the ability to easily form cross-linked networks that 
could have industrial applications in the field of separation sciences such as chroma-
tography (Solms 1966, 1967, 1969; Solms and Egli 1964, 1965). He has shown that 
cyclodextrin polymers exhibited strong adsorptive properties as inclusion resins for 
the separation of various molecules such as aniline, nitrophenols, benzaldehyde, 
pyridine, iodine, Congo red, and methylene blue and as chromatographic supports 
for the separation of phenylalanine, tryptophan, vitamins, and perfumes. To demon-
strate the fundamental role of cyclodextrin cavities in the performance of ECP 
materials, Professor Solms compared the results with those obtained with a com-
mercial cross-linking epichlorohydrin-dextran polymer, SEPHADEX®, which did 
not have inclusion properties. The results were interpreted in terms of the formation 
of inclusion complex or more simply complexation. Professor Solms also used the 
concept of “molecular encapsulation,” introduced by Professor Cramer about 
12 years earlier.

Professor Wiedenhof showed that α-cyclodextrin and β-cyclodextrin gels had a 
chromatographic behavior comparable to that of SEPHADEX G-25 resin in terms 
of swelling characteristics and heat resistance but with more interesting perfor-
mances in terms of complexation. The results confirmed that ECP materials were 
suitable chromatographic supports for gel inclusion chromatography. Different 
separations using phenol, benzoic acid, aniline, chlorobenzoic acids, and tyrosine 
were obtained, and again the results were mainly interpreted using the complexation 
phenomenon. Professor Wiedenhof pointed out the fact that the ability of the 
cyclodextrin- based resins to separate different molecules was due to the fact that 
“each resin contained cyclodextrin voids which were able to form inclusion com-
pounds.” He introduced the term “inclusion isotherm” instead of adsorption 
isotherm.

Professor Wiedenhof was also the first to characterize ECP materials using infra-
red and NMR data (Wiedenhof 1969; Wiedenhof et al. 1969, 1971; Wiedenhof and 
Trieling 1971). Figure 8.10 shows the infrared spectrum of an ECP material with the 
following main bands: OH stretching, 3444 cm−1; CH stretching, 2928 cm−1; CH 
stretching, 2865  cm−1; CH deformations, 1360  cm−1; OH bending (water), 
1629 cm−1; OH bending, 1223 cm−1; bending of COH group/CO stretching glyco-
sidic bond, 1070–1150  cm−1; CO/CC stretching, 1026  cm−1; anomeric CH 
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Fig. 8.10 Infrared spectra of a β-cyclodextrin sample and a water-insoluble β-cyclodextrin- 
epichlorohydrin polymer (above) recorded by our team in 1991 on a Perkin-Elmer spectrophotom-
eter (powder sample using KBr pellet method) and the main assignments for the polymer 
spectrum (below)
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deformation, 850 cm−1; and pyranose ring vibrations, 755 cm−1. This assignment of 
bands was in accordance with that of Professor Wiedenhof.

In 1970, Professor Hoffman proposed materials with high cyclodextrin contents 
in bead form for column chromatography. The materials were suitable chromato-
graphic supports for the separation of nucleic acids, nucleotides, nucleosides, and 
oligonucleotides. Professor Hoffman also demonstrated that ECP materials were 
useful for separating various positional and optical isomers. The results were inter-
preted not only in terms of inclusion complexation but also by the presence of 
anion-exchange interactions, depending on the polymer structure (Hoffman 1970, 
1972, 1973).

In the early 1980s, the Hungarian group of Professor Szejtli became very active 
in the field of ECP polymers for extraction, concentration, and purification of sub-
stances. Many significant results on chromatographic, environmental, and pharma-
ceutical applications have also been obtained (Szejtli 1980, 1982, 1984, 1988). 
Professor Szejtli has clearly demonstrated that cyclodextrin cavities retain their 
complexing properties despite the cross-linking reaction. In polymerized form, 
cyclodextrin molecules are enclosed in a network with loss of mobility, which, to 
some extent, “exacerbated steric hindrance at the entrance to cavities” (Szejtli 
1988). However, this steric effect was “less important when the guest molecule was 
too large to be fully inserted into a single cavity because a second cyclodextrin mol-
ecule in the polymer network can then encapsulate its other extremity.” This was the 
first time that this concept had appeared in the literature (Crini 2014). Professor 
Szejtli demonstrated that porous polymers had a high adsorption capacity due to 
their adsorption strength and large high surface area. The introduction of micro- and 
mesopores offered both abundant adsorption sites and open diffusion pathways for 
pollutants and thus contributed to improving the adsorption rate. Professor Szejtli 
was also the first to demonstrate that the presence of unreacted free epichlorohydrin 
(this cross-linking agent is toxic and far from being “green”) in the materials was 
unlikely because epichlorohydrin was a highly reactive substance and underwent 
hydrolysis under alkaline reaction conditions. This was important for potential 
applications in the pharmaceutical field (Szemán et al. 1987; Fenyvesi 1988).

At the end of the 1980s, the main applications of the cyclodextrin polymers con-
sisted of their use in low-pressure liquid chromatography to separate proteins, 
nucleic acids, mandelic acid derivatives, aromatic amino acids, vitamins, and per-
fumes (Szejtli 1980, 1982, 1988; Zsadon et  al. 1981; Smolkova-Keulemansova 
1982), in gas chromatography (Cserháti et  al. 1983), in food industry to remove 
bitter substances from filtered orange and grapefruit juices using batch and column 
debittering procedures (Shaw and Wilson 1983, 1985; Wagner et al. 1988; Shaw 
1990), and also in pharmacy (Szejtli et  al. 1978; Szemán et  al. 1987; Fenyvesi 
1988). From the late 1990s onward, many patents and publications on environmen-
tal applications began to appear (Friedman and West 1988; Vanzo 1991; Cserháti 
and Forgács 1994). Over the past two decades, cyclodextrin polymers have gained 
considerable attention for their performance in environmental remediation-based 
applications. In an industry dominated by activated carbons and organic resins, in 
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which the main barrier of their use lies in the difficulty associated with their regen-
eration and rapid saturation, respectively, a large interdisciplinary effort has been 
devoted to the study of new materials including cyclodextrin-based products with 
unique adsorption and desorption mechanisms. In 2013, we published a historical 
review of this subject covering the last 50 years (Morin-Crini and Crini 2013).

8.4  Elimination of Environmental Contaminants Using 
Cross-Linked Cyclodextrin Polymers as Adsorbents

8.4.1  Early Works

As already mentioned, in the mid-1990s, thanks to a collaboration between the 
University of Lille (Professor Morcellet and Dr. Martel) and the G. Ronzoni Institute 
(Dr. Torri, Dr. Vecchi and Dr. Crini), our group has begun to focus on ECP materi-
als. This Franco-Italian research program has been supported by several French and 
Italian industrialists. The objectives were to produce a series of ECP materials with 
the desired characteristics (e.g., a well-defined spherical size and shape, degree of 
swelling, cyclodextrin content) and to find applications in gel inclusion chromatog-
raphy (separation of various natural products), the oil industry (complexation of 
aromatic pollutants), and textile (complexation of dyes), paper (incorporation in the 
pulp), tobacco (incorporation in the filters), and personal care and hygiene (super- 
absorbent polymers to treat odors) sectors (Shao et al. 1996; Crini et al. 1998a, b, 
2000; Vecchi et al. 1998; Bertini et al. 1999). At the end of the 1990s, this work was 
continued at the University of Besançon (France) by Dr. Crini, and a friendly and 
fruitful collaboration was then established between the three research groups. In the 
mid-2000s, our research focused on the use of ECP materials in water treatment.

8.4.2  Organics and Dye Removal

For nearly 30 years, our group has been studying the use of ECP materials as adsor-
bents for the elimination of target contaminants (e.g., aromatic and phenolic sub-
stances, dye molecules, metals, anions, pesticides) from synthetic solutions or real 
effluents, for the treatment of multi-contaminated waters produced by industries 
such as textile, paper, wood, and surface finishing treatment and more recently for 
the cleanup of domestic waters and groundwater contaminated by so-called emerg-
ing chemicals such as endocrine disruptors.

Our first paper was published in 1996 (Shao et al. 1996) and presented the same 
year at the Eight International Cyclodextrin Symposium in Budapest. This work 
was the result of a collaboration between the G. Ronzoni Institute, the University of 
Lille, and the Textile Technology Center (Canada). We have shown that ECP 
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materials, mainly in the form of weakly cross-linked gels, can be used as complex-
ing agents to interact with many dyes, e.g., acid, direct, mordant, and reactive dye 
molecules. The performance in terms of adsorption capacity, evaluated using batch 
experiments, depended mainly on the range of dye concentrations used in the exper-
iments. Hydroxypropyl-β-cyclodextrin gels had a lower adsorption capacity than 
β-cyclodextrin gels. No correlation was observed between the performance of the 
gels and their respective degree of cross-linking. The presence of additives such as 
NaCl could improve the complexation of the dye, while sodium dodecyl sulfate had 
the opposite effect. Like Professors Solms and Wiedenhof, we explained these early 
results mainly by the formation of inclusion complexes and thus by the presence in 
the materials of cyclodextrin molecules’ cavities. We used the notion of complex-
ation by chemisorption and assumed that, in this mechanism, no covalent bonding 
occurred between the cyclodextrin and the dye. The reaction was a dissociation- 
association equilibrium, as in the case of the formation of inclusion complexes 
involving native cyclodextrin molecules in solution, in accordance with the conclu-
sions published by Professor Szejtli (1982, 1988). The cross-linking did not change 
this property (Shao et al. 1996).

Two years later, in collaboration with an Italian institute, Stazione Sperimentale 
per i Combustibili, we proposed several materials with different cyclodextrin con-
tents, ranging from 20% to 80% w/w (Crini et al. 1998a, b; Vecchi et al. 1998). We 
have modified the protocol of Professor Solms by increasing the amount of epichlo-
rohydrin to obtain mechanically stable materials but with different mobility in terms 
of swelling properties and cyclodextrin content. The results demonstrated that ECP 
materials (particles of irregular shape or regular beads) could also be used as adsor-
bents to efficiently remove organic contaminants from contaminated water, what-
ever the quantity of cyclodextrin present in the gels (Crini et al. 1998b; Vecchi et al. 
1998). ECP materials were able to interact with contaminants such as chlorophe-
nols, nitrophenols, naphthols, and benzoic acids, in complex solutions, particularly 
those with hydrophilic properties. They were effective not only at trace levels of 
contaminants but also at high concentrations. Kinetics of contaminant adsorption 
were rapid: 2 h was sufficient for reaching the maximum adsorption capacity. The 
adsorption was much greater in the case of organic molecules which presented com-
patible size, steric arrangement, and hydrophobicity with the β-cyclodextrin mole-
cules such as β-naphthol, p-nitrophenol, and 4-tert-butylbenzoic acid. However, 
small molecules such as phenol, known to be too small for the cyclodextrin cavity, 
were also complexed by the materials (Crini et al. 1998b; Vecchi et al. 1998; Bertini 
et al. 1999). Comparison with conventional adsorbents such as activated carbons 
and organic resins showed that ECP gels and beads were more selective and led to 
better results in terms of elimination, especially at trace levels. A more surprising 
and interesting result also showed that a high proportion of cyclodextrin was not 
necessary to have useful performance in terms of pollutant removal (Bertini et al. 
1999). In the mid-2000s, Professor Isasi and Professor Christopher H.  Evans 
(Ryerson University, Ontario) reported similar conclusions (Orprecio and Evans 
2003; Romo et  al. 2004, 2006; Zohrehvand and Evans 2005; García-Zubiri 
et al. 2006).

G. Crini



365

The performance of materials in terms of their ability to complex contaminants 
was strongly related to their structure and swelling properties and therefore to the 
experimental conditions used during cross-linking, notably the reaction tempera-
ture, the amount of caustic soda added, the epichlorohydrin dosage, the volume of 
water, and the use of a blowing agent or not. The stronger the cross-linking, the 
lower the swelling properties, and the less interesting the adsorption performance, 
whatever the quantity of cyclodextrin present in the gels. We also observed in our 
experiments that performance was independent of the concentration of the pollutant 
present in the solutions, as well as, more surprisingly, of the amount of cyclodextrin. 
As ECP did not alter the pH of the solutions to be depolluted (no variation during 
adsorption), it was not necessary to maintain the initial pH of the solutions during 
batch tests. However, performance depended on the pH used. Results obtained at 
pH 2 and pH 6 were similar but were different from those obtained at pH 11, sug-
gesting that the inclusion complexes with cyclodextrin and aromatic and phenolic 
guests were less stable in basic than in neutral or acidic medium. The results were 
explained by the different ionization degree of the guest upon the various pH used 
(Crini et al. 1998b; Vecchi et al. 1998).

One of our objectives was to highlight a correlation between the structure of 
polymers and their adsorption properties. To do this, we used solid-state 13C NMR 
spectroscopy techniques such as cross-polarization magic angle spinning with dipo-
lar decoupling (CPMAS), magic angle spinning both with and without dipolar 
decoupling (DD-MAS and MAS, respectively) and CPMAS with dipolar dephasing 
(dd-CPMAS), and relaxation parameter measurements. Two components have been 
found, cross-linked cyclodextrin molecules and polymerized epichlorohydrin. We 
demonstrated that solid-state NMR techniques were useful to characterize insoluble 
cross-linked gels with a limited mobility (Crini et al. 1998a). Two years later, we 
confirmed these results by using high-resolution magic angle spinning with gradi-
ents (HRMAS) spectroscopy (Crini et al. 2000). 1H spectra, 13C CPMAS spectra at 
high temperature, and NOESY, TOCSY, HOHAHA, and 1H/13C HSQC spectra are 
published for the first time. The HRMAS experiments clearly demonstrated the 
presence of two types of structures in ECP materials, in accordance with the results 
obtained by CPMAS techniques. The NOESY experiments also demonstrated the 
interaction between the β-cyclodextrin molecules present in an ECP material and 
the pollutant adsorbed.

Adsorption results were then explained by taking into account just two important 
parameters: the presence of cyclodextrin molecules and their degree of cross- 
linking. The formation of inclusion complexes played the most important role in the 
mechanism. HRMAS experiments demonstrated not only the presence of two types 
of structures in ECP materials but also the adsorption mechanism by complexation 
due to the β-cyclodextrin molecules. NOESY and HOHAHA experiments clearly 
demonstrated the interaction between the β-cyclodextrin molecules present in an 
ECP material and the contaminant adsorbed. Our results also highlighted the impor-
tance of the structure of the 3D network (Crini et  al. 1998b; Vecchi et  al. 1998; 
Bertini et al. 1999). Using solid-state NMR data, we concluded that the mechanism 
of adsorption can be explained by the presence of two main interactions: the 
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formation of an inclusion complex due to the β-cyclodextrin molecules and the 
physical adsorption in the polymer network. In the mid-2000s, Professor Isasi’s 
work also confirmed that the presence of cyclodextrin cavities cannot alone explain 
the adsorption results and stressed the importance of the polymer network structure 
and thus of the degree of cross-linking (Romo et  al. 2004, 2006, 2008; García- 
Zubiri et al. 2006; Vélaz et al. 2007).

As the materials were relatively highly cross-linked, they could be used both in 
batch and column studies (Crini et al. 1998b; Vecchi et al. 1998; Bertini et al. 1999). 
The method proposed extended the potential applications of these materials because 
the use of cyclodextrin cross-linked gels in adsorption columns in general had limi-
tations due to hydrodynamic problems and column fouling. Another advantage that 
has been mentioned was the regeneration of adsorbents after use (Vecchi et al. 1998; 
Janus et al. 1999). In the 1980s, Professor Szejtli stressed that the reversible nature 
of complex formation was essential in the case of water treatment (Szejtli et  al. 
1978; Szejtli 1980, 1982) since it enabled the ECP materials to be regenerated after 
use as first suggested by Professors Solms, Wiedenhof, and Hoffman. Our group has 
also confirmed this subsequently (Crini 2003; Crini and Peindy 2006; Crini et al. 
2007). The ECP polymers could be easily regenerated, and column adsorption and 
desorption tests showed that the contaminants adsorbed on cross-linked polymers 
were successfully released by different types of aqueous alcohol solutions. Unlike 
for active carbons, the regeneration of these systems is simple and straightforward, 
which makes them more attractive (Crini et al. 2007, 2019b).

8.4.3  Pollutant Removal Using Modified 
Cyclodextrin Polymers

It is known that ECP polymers without modification had a low affinity for cationic 
dyes. An improvement can be obtained by introducing groups such as carboxyl or 
amino groups onto ECP materials able to complex target dyes. Some materials were 
prepared by reticulation in the presence of carboxymethyl cellulose. Due to the –
OH and –COOH groups in the polymer network, the material was hydrophilic and 
easily swollen by water, but above all it had ion-exchange properties. Indeed, the 
gels exhibited more specific and higher adsorption of contaminants from water sam-
ples than other traditional ECP materials (Crini et al. 2002, 2003; Crini 2003). The 
presence of carboxymethyl cellulose also enhanced both accessibility and mobility 
of the cyclodextrin in the polymer by promoting the swelling of the material in 
water. However, the results confirmed that, despite identical experimental condi-
tions, as for the performance of unmodified materials, the performances of two 
batches of modified ECP material may be different, mainly due to the exothermic 
nature of the cross-linking reaction, which makes it difficult to maintain the tem-
perature in the reaction medium during the synthesis of the material. This last con-
clusion had previously been reported by Professor Szejtli (Szejtli et al. 1978; Szejtli 
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1980, 1982). To explain the adsorption results, the mechanisms integrated not only 
the presence of inclusion due to cyclodextrin cavities but also the effects of electro-
static interactions and van der Waals forces due to the presence of new reactive 
groups on the surface particles. We have also introduced the presence of pollutant- 
pollutant hydrophobic interactions that could explain the adsorption properties. 
However, depending on the experimental conditions used in the batch method, the 
mechanisms are more complex because other interactions such as ion exchange and 
chemical microprecipitation may also play a role (Crini 2005a, 2006). All these 
interactions have been discussed in two comprehensive reviews published in the 
journal Progress in Polymer Science (Morin-Crini and Crini 2013; Morin-Crini 
et al. 2018a).

In 2005, our group patented a process for the synthesis of cross-linked polysac-
charides with ionic functional groups for the simultaneous removal of metals and 
organic contaminants present at low trace levels in polycontaminated effluents 
(Crini 2005b). The oligomer (cyclodextrin, linear dextrin) or polymer (starch) was 
mixed with an epoxy cross-linking agent (1,4-butanediol diglycidyle ether) and 
2,3-epoxypropyltrimethylammonium chloride in the presence of NH4OH at moder-
ate temperature. During the cross-linking step with 1,4-butanediol diglycidyl ether, 
polymer chains were cationized with 2,3-epoxypropyltrimethylammonium chlo-
ride. The cross-linked polymer had both hydroxyl, tertiary amino, and quaternary 
ammonium groups with different degrees of substitution. The procedure gave beads 
with excellent physical (e.g., high surface area, 100–150 m2 g−1) and chemical prop-
erties (amphoteric in nature) and uniform and regular shape. The beads were easily 
wettable, insoluble in water and in organic solvents, and stable in aqueous alkaline 
or acidic solution. The modified materials possessed a remarkably high swelling 
capacity in water due to the hydrophilic nature of its cross-linked units. Some 
porous polymers were capable of swelling in both acidic and basic media, without 
requiring modification of the pH. All these features were interesting for environ-
mental applications (Crini 2005a, b; Delval et al. 2005; Renault et al. 2008; Charles 
et al. 2010; Sancey et al. 2010).

The aminoethylation and carboxymethylation of cationic cross-linked materials 
also enabled the preparation of amphoteric derivatives for possible use in the treat-
ment of wastewater containing metals from surface treatment industries, dyes from 
textile industries, or organic matter from the paper industry (Renault et al. 2008; 
Charles et  al. 2010; Sancey et  al. 2010). The gels possessed typical amphoteric 
characteristics, due to the protonation and deprotonation of the backbone tertiary 
amine and pendant carboxyl groups in the polymer network. We proposed these 
new amphiphilic polymers as complexing resins for the removal of organic matter, 
turbidity, metals, and boron and fluoride ions from industrial wastewater. The gels 
could be used over a wide pH range due to their particular electrical character. The 
comparison with similarly prepared starch-based materials demonstrated the higher 
capacity for organic compound adsorption, due to the formation of inclusion com-
plexes between cyclodextrins and pollutants.
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8.4.4  Treatment of Organic Substances and Metals Present 
in Industrial Discharge Waters

It is extremely difficult to remove pollutants present at low concentrations in indus-
trial discharge waters (Badot et al. 2007; Crini and Badot 2008). For this purpose, a 
sequential dual approach can be considered: firstly, adsorption onto commercial 
activated carbon to remove organics, e.g., oils, solvents, and organic load, combined 
with ion exchange by means of commercial organic resins to remove inorganic pol-
lutants, e.g., metals and anions such as fluorides (Sancey et al. 2010, 2012; Crini 
2015a). At the industrial scale, this type of sequence is acknowledged for its effi-
ciency. However, it is an approach to water treatment that combines two methods of 
separation using two distinct commercial materials. Materials capable of combining 
the two functions are not yet available (Morin-Crini et al. 2019b).

With the exception of a few works, studies of real applications using cyclodex-
trin polymers are rare (Vélaz et al. 2007; Romo et al. 2008; Jurecska et al. 2014; 
Nagy et  al. 2014; Crini et  al. 2019b; Fenyvesi et  al. 2020). Thanks to industrial 
grants and a French-Romanian research program, at the end of the 2000s, our group 
carried out the first pilot studies demonstrating that a single ECP with amphoteric 
and ion-exchange properties material could replace two conventional adsorbents 
(activated carbon and resins) to effectively treat multi-contaminated effluent (Sancey 
et al. 2010, 2011a, b, 2012; Sancey and Crini 2012). Coupled with an advanced 
oxidation preliminary step, adsorption on ECP materials was efficient for the treat-
ment of water with multiple inorganic (e.g., metals, boron, fluoride) and organic 
(e.g., polycyclic aromatic hydrocarbons, volatile organic compounds, chlorophe-
nols, and alkylphenols) contaminants both from a chemical and from an environ-
mental point of view. The proposed process combined the advantages of oxidation 
(i.e., mineralization and/or degradation of part of the organic substances) with those 
of adsorption (i.e., physisorption and chemisorption of the pollutants by the cross- 
linked framework of the cyclodextrins). After use, the materials could be eliminated 
by incineration, thus avoiding the need for fastidious and expensive regeneration. 
This is the first time that such systems were able to treat both so-called emerging 
pollutants such as chlorophenols and alkylphenols and conventional pollutants such 
as metals, present in trace amounts in industrial effluents. We were talking about 
two-in-one materials (Sancey and Crini 2012), a term coined by Professor French in 
the 1950s and taken up by Professors Casu and Szejtli in the 1960s and 1980s, 
respectively (Crini 2014).

In the early 2010s, our group proposed biomonitoring tests with plants or ani-
mals used as bioindicators to determine and compare the toxicity of industrial efflu-
ent from wood, pulp and paper, textile, and surface treatment industries before and 
after treatment with an ECP material (Sancey et al. 2010, 2011a, b, c, 2012; Charles 
et al. 2010). For example, to evaluate the usefulness of this process, bioassays based 
on lettuce seed germination (Lactuca sativa L.) were proposed for the first time. The 
results showed that, after treatment, the impact on lettuce germination was signifi-
cantly reduced, thanks to the reduction in effluent toxicity. These phytotoxicty tests 
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using plants such as Lactuca sativa were indeed good indicators of contaminant 
concentrations in wastewater before and after treatment. They were simple, quick, 
and reliable, being inexpensive and not requiring major equipment (Sancey et al. 
2010, 2011a). Later, we also used another short-term bioassay based on the immo-
bilization of a freshwater crustacean, Daphnia magna, for the ecotoxicological 
assessment of industrial discharge waters untreated or treated with ECP materials 
(Euvrard et  al. 2015, 2017; Morin-Crini et  al. 2019b). The two bioindicators, 
Lactuca sativa and Daphnia magna, were proved to be pertinent to assess the eco-
toxicity of polycontaminated discharge waters.

In the mid-2010s, two European and international projects involving French, 
Italian, Romanian, and Canadian colleagues began on the possibility of using cyclo-
dextrin polymers in water treatment on a semi-industrial scale. In a series of pilot- 
scale experiments, we confirmed the possible feasibility of its implementation on an 
industrial scale for the treatment of discharge waters from surface treatment indus-
tries (Charles et al. 2014, 2016; Euvrard et al. 2015, 2016, 2017). Chemical results 
in terms of pollutant abatement have confirmed that the combined use of oxidation 
and adsorption on a single bifunctionalized ECP material can achieve high levels of 
pollutant removal, well below regulatory values. Biological tests also demonstrated 
the efficiency of the adsorption process to radically decrease the effluent toxicity. 
From all these studies, we concluded that the removal of trace pollutants by an ECP 
polymer was an efficient tool to significantly decrease pollutant concentrations and 
water toxicity (Crini et al. 2019b).

Fenyvesi et al. (2020) recently reported a similar conclusion. Their study demon-
strates the feasibility of ECP materials for the removal of dissolved micro-pollutants 
as a tertiary treatment of wastewater in a pilot-scale experiment using real munici-
pal wastewater effluent in the adsorptive post-step of the investigated technology. 
For example, the measured removal efficiencies were >99% for hormones and 
bisphenol A and ~85% for ibuprofen and diclofenac in a few minutes of contact 
time. Bioassays also confirmed the environmental benefits obtained after ECP poly-
mer treatment. The decrease in pollutant concentrations in wastewaters has resulted 
in a significant reduction in their impact on bioindicators. Their pilot-scale results in 
removing emerging pollutants such as pharmaceuticals and endocrine disruptors are 
very encouraging. Now it will be necessary to convince industry to use these materi-
als in their wastewater treatment plants.

Currently, we are working on the treatment of certain industrial baths containing 
high loads of multiple organic and metallic contaminants through two national and 
European projects. These complex baths are difficult to treat. In general, they are 
eliminated by dilution in less loaded effluents and then by physicochemical treat-
ment. A promising solution would be to pre-treat the baths with ECP particles of 
known size in order to decomplex the contaminants and insolubilize them more 
effectively. Another challenging application might be the removal of endocrine dis-
ruptors such as alkylphenols, alkylphenol polyethoxylates (Priac et al. 2017), and 
pesticides (Crini et al. 2017) from industrial and municipal discharges. These sub-
stances, which appear on a European priority list of potentially hazardous pollut-
ants, are the subject of much research and policy debate. Results of adsorption in 
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batch mode showed that ECP materials are efficient adsorbents for the removal of 
fungicides present in polycontaminated solutions (Crini et  al. 2017). Interesting 
affinities were found toward the mixture propiconazole + tebuconazole + epoxicon-
azole + bromuconazole + difenoconazole, five triazole fungicides. These contami-
nants are commonly used in the wood industry, vegetable cultivation, horticulture, 
and agriculture to protect various products against fungal decay.

8.4.5  Mechanisms of Sorption

In spite of the abundance of literature and conclusive results, interpreting the mech-
anisms of pollutant removal by ECP materials remains a source of debate and some-
times contradiction (Morin-Crini and Crini 2013; Gidwani and Vyas 2014; Cova 
et al. 2018; Morin-Crini et al. 2018a; Sikder et al. 2019; Liu et al. 2020). Recently, 
we published a review summarizing the different mechanisms proposed in the lit-
erature (Morin-Crini et al. 2018a).

Mechanisms are still being debated because they involve various interactions that 
can occur simultaneously, making it difficult to interpret the results. Until the 2000s, 
the literature reported a consensus on the adsorption/sorption mechanism which was 
mainly a chemical mechanism (chemisorption) via the formation of inclusion com-
plexes (complexation concept introduced by Professor Cramer in the 1950s), as first 
suggested by Professor Solms in the 1960s to interpret its adsorption results, par-
ticularly the adsorption mechanism. At the same time, this concept was also taken 
up by Professors Wiedenhof and Hoffman. It was only demonstrated in the 1980s by 
Professor Szejtli (Crini 2005a; Morin-Crini and Crini 2013). Professor Szejtli also 
used the notion of association complexes (also suggested by Professor Cramer in the 
1950s), i.e., the cooperation effect between cyclodextrin cavities during the adsorp-
tion process, in addition to the formation of inclusion complexes to interpret the 
adsorption mechanism (Crini 2014). Since the mid-2000s, studies have also high-
lighted the role played by the macromolecular network formed by the cross-linking 
agent. The performance of an ECP material depended not only on the presence of 
cyclodextrin units but also on its structure and therefore on the cross- linking step.

Since the 1980s, to explain the chemical effectiveness of ECP materials in water 
treatment, the concept of inclusion complex or more simply complexation was used 
by all researchers working on this subject, demonstrating the predominant role of 
the cyclodextrin molecules in the performance of an ECP material. This concept is 
mainly the formation of inclusion complexes between cyclodextrin and pollutant 
molecules. Our first studies also confirmed it (Crini et al. 1998b; Bertini et al. 1999; 
Janus et al. 1999). Kinetic studies have indicated longer contact times required to 
achieve equilibrium independently of polymer structure, suggesting chemisorption 
mechanism such as molecular encapsulation or complexation. During synthesis, the 
parameter that must be followed the most closely to obtain a material efficient for 
forming complexes was the quantity of cyclodextrin present per gram of material 
used. The greater this quantity (for a constant amount of adsorbent), the greater the 
complexing capacity of the material (Bertini et al. 1999). This first led to an impor-
tant notion, namely, that a molecule of cyclodextrin corresponds to a guest 
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molecule. The complexation reaction depended also on the polarity of the guest 
molecule, stressing the major role played by the cyclodextrin in the mechanism 
(Crini et al. 2002, 2003; Crini 2003). It was the most hydrophobic part of the host 
molecule that was preferentially included in the cavity. The more hydrophobic the 
guest molecule, the greater the stability of the complex, and the more efficient the 
decontamination performance. Similar conclusions were previously reported by 
Professor Szejtli.

Later, studying the formation of complexes with low molecular weight model 
organic molecules such as phenol, benzene, and naphthol derivatives, up to more 
complicated chemical structures with higher molecular weights (dyes, polycyclic 
aromatic hydrocarbons), we have obtained four surprising results regarding the 
adsorption of bulky molecules (Crini and Peindy 2006; Crini et  al. 2007; Crini 
2008; Charles et al. 2010). The first showed that, even if the guest dye was too large, 
it could be complexed by the ECP polymers, irrespective of the size of the cyclodex-
trin ring. Even if the pollutant is too bulky, it could be immobilized in a complex, 
thanks to the cooperative effect of the cyclodextrin molecules of the macromolecu-
lar network. Several different cyclodextrin cavities could encapsulate different parts 
of a pollutant. This conclusion was in accordance with the notion of association 
complexes introduced by Professor Cramer for soluble native cyclodextrins in solu-
tion or solid state and demonstrated by Professor Szejtli for insoluble cyclodextrin 
polymers (Crini 2014). Two types of complexes are distinguished: complexes with 
simple model molecules for which inclusion is total – these they called inclusion 
complexes – and complexes with larger molecules for which inclusion would only 
be partial, which they called association complexes, and which can be the prepon-
derant form of interaction or simply occur alongside inclusion complexes. This is 
why some bulky molecules are adsorbed by ECP polymers (Crini 2003, 2008; Crini 
and Peindy 2006; Crini et al. 2007; Charles et al. 2010; Sancey et al. 2010, 2011a). 
This was previously demonstrated using HRMAS experiments (Crini et al. 2000). 
Later, we also reported that there may be a cooperative effect not only between the 
cavities but also between the cyclodextrin cavities and the 3D polymer network, as 
shown in Fig. 8.11 (Euvrard et al. 2015, 2016, 2017).

Fig. 8.11 Schematic illustration of the cooperative effect between cyclodextrin cavities and/or the 
role of the 3D polymer network during the removal of the Acid Blue 25 dye present in aqueous 
solution by an ECP material
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The second result indicated that for polymers containing only a small proportion 
of cyclodextrin, the quantity of pollutant bound by the material was often much 
greater than the quantity of cyclodextrin present in the material, contradicting the 
notion that one molecule of cyclodextrin traps one pollutant molecule. For contami-
nants containing aromatic groups, we also introduced the occurrence of hydropho-
bic interactions leading to pollutant stacking (π–π interactions) and/or the formation 
of multilayers of contaminants at the surface of the polymers, in agreement with 
Freundlich’s model. In the presence of phenolic derivatives with high dipole 
moments, electrostatic interactions of the dipole-dipole type between pollutant mol-
ecules were also possible, in particular at high concentrations (Crini and Peindy 
2006; Crini et  al. 2007). Another surprising result was the type of cyclodextrin 
incorporated into the gel. We prepared materials based on α-, β-, and γ-cyclodextrin 
using the same experimental conditions during the synthesis. The results showed 
that contaminants could be removed regardless of the type of cyclodextrin polymer 
used. For example, the cross-linked α-cyclodextrin polymer can adsorb Acid Blue 
25 dye, which is too large to be a guest. For the three types of polymers (with a close 
cyclodextrin content but with different swelling properties), the performance could 
be comparable (Crini 2005a, b). A response was found in the structure of each mac-
romolecular network. Similar conclusions have been published by Professor Yilmaz 
(Yilmaz Ozmen and Yilmaz 2007, 2008). The last result was related to the shape of 
the materials. As expected, the more regular the structure and spherical distribution 
of the beads, the higher their performance. However, the results were independent 
of the amount of cyclodextrin but dependent on the degree of cross-linking. With the 
beads, kinetic studies have indicated short contact times necessary to reach equilib-
rium, suggesting rapid adsorption surface. This led us to highlight the importance of 
physisorption in the process of pollutant removal by ECP polymers. This physisorp-
tion mechanism acts as a complement to chemisorption by complexation (Crini and 
Peindy 2006; Crini 2008).

We explained these four results mainly by the network structure of the materials 
and their shape and swelling properties, closely related to the degree of cross- 
linking, and also by the presence of cyclodextrin units (Morin-Crini and Crini 2012, 
2013; Morin-Crini et  al. 2015). For ECP materials, the question arises as to the 
predominance of inclusion complexes due to the cyclodextrin molecules or associa-
tion complexes due to the polymer network. Currently, the consensus is rather for 
the latter, with the results being mainly due to the structure of the macromolecular 
network independent of the quantity of cyclodextrin actually present (Morin-Crini 
et al. 2018a).

The concept of association complexes is less simple since there can be a coopera-
tive effect, not only between the cyclodextrin cavities themselves (particularly for 
large guest molecules) but also between the cyclodextrin cavities and those of the 
polymer network. To demonstrate this conclusion, we synthetized materials com-
posed of non-cyclic oligosaccharides (linear dextrins, sugars such as sucrose which 
has similar dimensions and chemical composition to cyclodextrin moieties) and 
polysaccharides (starch fractions rich in amylose or amylopectin components, chi-
tosan) under the same experimental conditions as the ECP polymers (Badot et al. 
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2007; Crini et  al. 2007; Crini 2008; Sancey et  al. 2010, 2011a, b, 2012). These 
cross-linked materials have been studied in pollutant complexing experiments, and 
their different performances were compared. It was found that, in some cases, cross- 
linked starches and cross-linked dextrins had higher adsorption capacities than 
cross-linked cyclodextrin polymers even if they did not have the type of cavity that 
participates in the inclusion complexes. The density of the cross-linking mainly 
explained these results. The cross-linking reaction creates a particular 3D macromo-
lecular structure (recognized as difficult to control) forming a mesh that is also 
susceptible to bind pollutants (Fig.  8.11). The polymer network therefore offers 
cross-linked oligosaccharide and polysaccharide materials the possibility to seques-
ter contaminants through effects of cooperation not only between cyclodextrin mol-
ecules but also via additional interactions in the mesh with diffusion into the network 
(Morin-Crini et al. 2013, 2015, 2018a). These mesh interactions have a greater role 
when the degree of cross-linking is lower, enabling the polymer to swell in water 
and thus enhance diffusion of the contaminants through the network. Professors 
Isasi and Yilmaz have carried out similar studies, which have led to similar 
conclusions.

8.5  Conclusions

This chapter reviews the research conducted over the past 30 years by our research 
group on water-insoluble cyclodextrin-epichlorohydrin polymers. It shows the 
progress of our work and our contribution to a better understanding of these materi-
als. Table 8.1 summarizes all our contributions on cyclodextrin polymers during the 
period 1996–2019. Table 8.2 reports the ten most cited papers in the ISI Web of 
Science and Scopus databases since 1998 with “cyclodextrin polymer” and “pollut-
ant removal” in the topic of our works.

Cyclodextrin-epichlorohydrin polymers can be used as complexing adsorbents 
to remove contaminants from polycontaminated effluents. They have several advan-
tages: technological simplicity in their use, efficiency in the elimination of sub-
stances even at trace levels, easily recyclable (regeneration) or disposable 
(incineration), and beneficial to the environment to reduce the impact/toxicity of an 
effluent. However, as industrial production of cyclodextrin-epichlorohydrin poly-
mers has not started, the materials produced at lab scale suffer from variability in 
their characteristics. There is also a non-negligible cost difference with conven-
tional materials such as activated carbon used in wastewater treatment. Therefore, 
cyclodextrin polymer materials are basically at the laboratory study stage, and there 
is still a lot of work to be done to demonstrate their potential on an industrial scale.

On this subject, the first study on the industrial-scale use of cyclodextrin- 
epichlorohydrin polymers to remove emerging pollutants such as endocrine disrupt-
ers from wastewater treatment plant effluents has just been published (Fenyvesi 
et al. 2020). Chemical abatement and toxicity mitigation of wastewater have shown 
that adsorption on modified ECP materials can be an interesting additional 
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treatment step for the detoxification of municipal effluents. Their results clearly 
indicated that ECP materials are efficient as non-conventional adsorbents to treat 
complex mixtures. Bioassays also confirmed the environmental benefits obtained 
after ECP polymer treatment: the decrease in pollutant concentrations in effluents 
resulted in a significant reduction of toxicity water. The authors also showed that 
both inclusion complex formation of pollutants with cyclodextrin and physisorption 
due to the polymer network played a role in the adsorption mechanism. These 
chemical and biological results are very encouraging. Now, the industry should be 
convinced to use these materials in their wastewater treatment plants as we men-
tioned in our last review (Morin-Crini et al. 2018a).

Table 8.2 The ten most cited papers in the ISI Web of Science and Scopus databases since 1998 
with “cyclodextrin polymer” and “pollutant removal” in the topic of our works, July 02, 2020

Journal Article title

ISI Web 
of 
Science Scopus

References
Times 
cited

Times 
cited

Bioresource 
Technology

Non-conventional low-cost adsorbents 
for dye removal: a review

2777 2872 Crini (2006)

Progress in 
Polymer Science

Recent developments in polysaccharide- 
based materials used as adsorbents in 
wastewater treatment

1382 1396 Crini (2005a)

Separation and 
Purification 
Technology

Removal of C.I. Basic Green 4 
(Malachite Green) from aqueous 
solutions by adsorption using 
cyclodextrin-based adsorbent: kinetic 
and equilibrium studies

674 688 Crini et al. 
(2007)

Chemical 
Reviews

Review: a history of cyclodextrins 599 604 Crini (2014)

Dyes and 
Pigments

Kinetic and equilibrium studies on the 
removal of cationic dyes from aqueous 
solution by adsorption onto a 
cyclodextrin polymer

307 317 Crini (2008)

Journal of 
Separation 
Science

Synthesis, characterization, and 
applications of adsorbents containing 
cyclodextrins

238 247 Crini and 
Morcellet 
(2002)

Progress in 
Polymer Science

Environmental applications of water- 
insoluble beta-cyclodextrin- 
epichlorohydrin polymers

216 212 Morin-Crini 
and Crini 
(2013)

Bioresource 
Technology

Studies on adsorption of dyes on 
beta-cyclodextrin polymers

175 190 Crini (2003)

Journal of 
Applied Polymer 
Science

Sorption of aromatic compounds in 
water using insoluble cyclodextrin 
polymers

137 132 Crini et al. 
(1998b)

Journal of 
Hazardous 
Materials

Adsorption of C.I. Basic Blue 9 on 
cyclodextrin-based material containing 
carboxylic groups

120 127 Crini and 
Peindy (2006)
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Finally, from a fundamental point of view, cross-linking cyclodextrin polymers 
continue to be of interest to the scientific community, as evidenced by the many 
publications on the subject that are published each year (Table 8.3), and I am sure it 
will last for years.
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