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Novel Concepts: Langerhans Cells 
in the Tumour Microenvironment
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Abstract

Langerhans cells (LCs) are immune cells that 
reside in the stratified epithelium of the skin 
and mucosal membranes. They play a range of 
roles in the skin, including antigen presenta-
tion and maintenance of peripheral tolerance. 
Reports of LC numbers have been variable in 
different cancer types, with the majority of 
studies indicating a reduction in their number. 
Changes in the cytokine profile and other 
secreted molecules, downregulation of surface 
molecules on cells and hypoxia all contribute 
to the regulation of LCs in the tumour micro-
environment. Functionally, LCs have been 
reported to regulate immunity and carcino-
genesis in different cancer types. An improved 
understanding of the function and biology of 
LCs in tumours is essential knowledge that 
underpins the development of new cancer 
immunotherapies.
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8.1	 �Langerhans Cells

Langerhans cells (LCs) are unique antigen-
presenting cells that reside in the stratified squa-
mous epidermis of cutaneous and mucosal 
epithelium. LCs were discovered in 1868 by Paul 
Langerhans, who initially believed that these 
cells were neurons due to their dendritic mor-
phology [39]. Nearly 100 years later, the antigen-
presenting function of these cells was 
determined.

Langerhans cells can be identified based on 
the expression of the C-type lectin receptor, lan-
gerin (CD207) [81], along with other less-specific 
markers such as CD1a in humans [21, 66] and 
major histocompatibility complex (MHC) class 
II [37]. Langerin is involved in antigen capture 
and induces the formation of Birbeck granules 
[8]. Birbeck granules are unique rod or tennis 
racket-shaped endocytic vesicles that are consid-
ered the hallmark of LCs. LCs express the epithe-
lial cell adhesion molecule (EpCAM) in mice [4, 
55], which enables LC motility and migration to 
lymph nodes and modulates responses to epicuta-
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neously applied protein antigen in a mouse 
model.

8.2	 �Ontogeny of Langerhans 
Cells

Cutaneous LCs originate from embryonic macro-
phages and foetal liver monocytes [29]. LC pre-
cursors seed the epidermis during murine 
embryonic development, but are not able to enter 
the adult epidermis in the steady state. These pre-
cursors differentiate into LCs in the epidermis 
immediately [29]. These newly differentiated LCs 
rapidly proliferate to form a radio-resistant cellular 
network that is capable of self-renewal throughout 
life [45]. During inflammation, the skin is permis-
sive for the entry of circulating precursors to the 
epidermis that differentiate locally to LCs. 
Monocytes are the first bone marrow precursors 
that differentiate into LCs during inflammation 
[25, 54]. Unlike the skin, mucosal epithelium has 
better accessibility to circulating precursors in the 
steady state. Mucosal LCs arise from adult bone 
marrow precursors, unlike the embryonic precur-
sor origin of cutaneous LCs [12].

Despite the differing ontogeny in the steady 
state, skin and mucosal LCs share similarities in 
anatomic location, phenotype, transcriptomic 
signature and function [30]. Mouse mucosal LCs 
can be controlled by the microbiota via regula-
tion of epithelial differentiation signals, which 
may contribute to their generally less-dendritic 
appearance [30].

8.3	 �Langerhans Cell Function

The role of LCs in the skin was initially believed 
to be primarily one of antigen presentation. 
Through a number of studies using mice that are 
selectively depletable of skin antigen presenting 
cell  subsets, langerin-positive dermal dendritic 
cells (dDCs) have now been identified as the pri-

mary antigen-presenting cells in the skin. LCs are 
not considered necessary for the initiation of an 
adaptive T-cell response to skin-expressed 
antigen.

In the steady state, LCs survey the epidermis 
and migrate to the lymph nodes where they pres-
ent self or commensal microbial antigens to T 
cells to induce tolerance and maintain tissue 
homeostasis (reviewed in [19]). LCs play an 
important role in maintaining the population of 
memory T cells in the epidermis [73]. Mucosal 
LCs express the  lipopolysaccharide receptor 
CD14 and have a high-affinity receptor for IgE 
[2]. LCs have regulatory roles and may either 
promote or suppress disease progression depend-
ing on the condition (reviewed in [61]).

8.4	 �LCs in the Tumour 
Microenvironment

The tumour microenvironment includes neoplas-
tic and non-neoplastic cells along with the extra-
cellular matrix, and cytokines, chemokines and 
growth factors that may be derived from those 
cells [68]. LCs have been identified in the tumour 
microenvironment in a range of cancer types, 
particularly skin cancers [75]. There is a body of 
evidence showing the presence of LCs in head 
and neck [35], gastric [80] and cervical cancers 
[43], and papillary thyroid carcinoma [70]. Some 
studies have also identified LCs in breast [79] 
and prostate cancers [7]. In this chapter, we 
explore the regulation and function of LCs in 
cancers, summarised in Fig. 8.1.

8.5	 �Regulation of LC Numbers 
and Location in the Tumour 
Microenvironment

Generally, there is a reduced number of LCs 
observed in cancer, particularly skin cancer. LC 
numbers in squamous cell carcinoma (SCC) and 

Fig. 8.1 (continued)  E-cadherin and BMP7 can affect the retention of LCs in the TME. Hypoxic conditions cause down-
regulation of langerin and CD1a on LCs, and they become more rounded and less functional. The role of LCs in the TME 
includes detoxification of toxins in the skin that can result in carcinogenesis via HRAS mutation. LCs regulate immunity 
in the TME by recruiting immune cells and also mediating anti-tumour T-cell responses. LIGHT is upregulated in LCs 
during inflammation, promoting lymphangiogenesis in skin. It is currently unclear if this also occurs in tumours
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Fig. 8.1  Langerhans cell regulation and role in the tumour microenvironment. Regulation of Langerhans cells (LCs) in 
the tumour microenvironment (TME) occurs due to several factors. Production of cytokines and other soluble molecules 
by the tumour cells can either attract or inhibit the migration of LCs into the TME. Changes to surface molecules such as 

8  Novel Concepts: Langerhans Cells in the Tumour Microenvironment



150

basal cell carcinoma (BCC) are significantly 
decreased when compared to normal skin [75]. 
The LC count is reported to be higher in benign 
compared with malignant skin tumours, suggest-
ing that carcinogenesis is associated with a reduc-
tion in the number of LCs [75]. Similarly, 
increased LC numbers are associated with less 
aggressive forms of BCC [69]. Increased num-
bers of LCs in the normal epidermis at the margin 
of less aggressive tumours could be indicative of 
greater immunological resistance, limiting the 
aggressiveness of the neoplasm [69].

LC numbers in the lesion may have utility as a 
prognostic marker; however, this may only be the 
case in certain cancer types. Increased LC num-
bers in the lesion are correlated with better prog-
nosis in gastric carcinoma [80], thyroid 
carcinoma, ductal breast cancer [38] and lung 
carcinoma [14]. Higher LC numbers are associ-
ated with increased survival of the patients, par-
ticularly with stage III gastric cancer [80]. CD1a 
and S100 have been used to identify LCs in some 
studies; however, CD207 (langerin) is considered 
to be the most robust marker for the identification 
of LCs [6]. For laryngeal SCC, using S100 as a 
marker for LCs, numbers were not considered a 
reliable marker of prognosis in clinical practice 
[33]. Similarly, using CD1a as a marker for LCs, 
numbers were increased when compared to nor-
mal tissue, but there was no association with the 
prognosis for laryngeal cancer [20]. However, 
these differences in results could also arise from 
the use of antibodies against markers other than 
langerin for the identification of LCs.

The changes in LC number in the tumour are a 
consequence of cytokine and chemokine regula-
tion in the microenvironment. Macrophage inflam-
matory protein-3/C-C motif chemokine ligand 20 
produced by tumour cells is selectively chemotac-
tic to LCs [56]. Interleukin (IL)-10, transforming 
growth factor β (TGFβ) [32], IL-1β [17] and vas-
cular endothelial growth factor (VEGF) [76] may 
also regulate the recruitment and migration in the 
tumour microenvironment. IL-10 is a known 
inhibitor of LC migration [18] that is increased in 
tumour cells [85]. IL-1β is a critical mediator of 
chronic inflammation and has been implicated in 
tumour pathogenesis [3]. When oral SCC cells are 

treated with IL-1β, they proliferate and their pro-
tumorigenic cytokine network is stimulated [40]. 
Elevated levels of IL-1β, tumour necrosis factor-α 
and prostaglandin E2 in chronic periodontitis stim-
ulate dendritic cell (DC) maturation and migra-
tion. Environmental factors, such as smoking, 
could lead to changes in the cytokine profile, 
which can contribute to a reduction in LC levels or 
change the phenotype of LCs. There is an increase 
in LC density in the lateral border of the tongue 
and lip of patients with oral SCC with a history of 
smoking [16]. Cytokine profiles compared 
between tobacco users and non-tobacco users 
change significantly, with increased VEGF [74]. 
Further analysis is needed to study the direct rela-
tionships between these cytokines and LCs. 
However, the varied cytokine profiles in different 
cancers or even in the same cancer present a formi-
dable challenge for the development of immuno-
modulatory drugs.

CD10 is a zinc dependent metalloproteinase 
that can be detected in peritumoural fibroblast-like 
stromal cells within the invasive area of various 
cancers. CD10 expression is low in precancerous 
lesions and normal skin tissues [78]. 
Immunohistochemical analysis indicates increased 
induction of CD10  in stromal cells in epidermal 
tumours, especially in SCC, which could be con-
tributing to the tumorigenesis and reduction in 
LCs [78]. There is a positive correlation between 
Ki67 levels with LCs and stromal CD10-positive 
cells but a negative correlation with CD1a-positive 
cells in the tumour [78], suggesting a potential 
suppressive role for the CD10-positive cells in the 
tumour microenvironment on the number of LCs. 
However, further in vitro analyses are required to 
confirm the exact relationship.

A pronounced reduction in LCs has been 
observed in low-grade cervical intraepithelial 
neoplasia (CIN) [15, 27]. However, LC numbers 
are increased in cervical cancer, when compared 
to precancerous CIN lesions [11]. The interaction 
between LCs and keratinocytes  (KCs) is medi-
ated by E-cadherin. Immature LCs adhere to KCs 
via E-cadherin, which is constitutively expressed 
by KCs in the basal and suprabasal layers. This 
interaction is important for both LC localisation 
and retention. The detachment of LCs from the 
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surrounding KCs is an essential step in the initia-
tion of their migration from the epidermis. 
Reduced E-cadherin expression in CIN reduces 
the retention of LCs, which is proposed to con-
tribute to immune evasion in human papillomavi-
rus (HPV) pre-cancer [44]. Similarly, E-cadherin 
levels are reduced in oral [34] and cutaneous 
SCC samples [86], compared with normal skin. 
More poorly differentiated tumours express less 
than 40% E-cadherin, which could be leading to 
the reduced LC levels [83]. There is a loss of cell-
to-cell adhesion and gain of cell-to-matrix adhe-
sion when E-cadherin expression is lost, 
promoting the transformation of pre-malignant to 
malignant cells. However, in a recent study using 
a CD11c-specific E-cadherin knockout, it was 
shown that an absence of E-cadherin-mediated 
cell adhesion on LCs did not affect their stability 
in epidermal sheets [10]. The LCs did exhibit 
altered morphology with fewer dendrites and a 
more rounded body. However, the lack of 
E-cadherin on LCs did not affect their prolifera-
tion or retention in the skin [10].

HPV type 16 E7 is a cell cycle deregulating 
protein that contributes to the oncogenesis of 
HPV16-related cervical cancer [63]. The K14 E7 
transgenic mouse expresses HPV16 E7 in the epi-
dermal KCs, which was associated with increased 
numbers of skin-resident LCs in the skin [1]. The 
increased LC number was attributed to the chronic 
inflammatory environment of the skin in this 
transgenic mouse model. LCs were atypically 
activated and functionally impaired in this model; 
however, they were functionally active when 
extracted from the skin and matured in vitro [1].

Changes to the cell polarity and adhesive 
properties of cells enable malignant conversion 
of cells. LCs could contribute to epithelial–mes-
enchymal transition (EMT) in cutaneous cancers. 
Many of the cytokines involved in mediating LC 
migration have also been associated with EMT 
processes [28], such as TGFβ [26]. BMP7 is 
important for the maintenance of LCs in the epi-
dermis. Immunohistological analysis of LC 
niches in early prenatal epidermis and adult 
basal  (KCs) show high levels of BMP7 expres-
sion. Mice deficient of BMP7 have diminished 
levels of LCs, and any remaining LCs are less 

dendritic [84]. In melanoma, BMP7 can induce 
mesenchymal–epithelial transition (MET), which 
can inhibit metastasis in vitro [50].

A common feature of most tumours is the 
presence of regions that have low levels of oxy-
gen. In increasingly proliferating and expanding 
tumour tissue, the oxygen demand surpasses the 
oxygen supply, which creates hypoxic regions 
[72]. The severity of hypoxia varies in different 
cancers [49]. Increased hypoxia is associated 
with poorer prognosis of patients [67].

The hypoxic conditions of cancers could have 
an effect on the regulation of LCs in tumours. In 
response to hypoxic conditions, cells rapidly 
upregulate genes under the control of the tran-
scription factor hypoxia-inducible factor-1α 
(HIF-1α). HIF-1α can downregulate LC functions 
in vivo [52]. The phenotypic features and surface 
expression markers of LC-like cells generated 
from human monocytes cultured in hypoxic and 
normoxic conditions have been assessed [60]. The 
expression of langerin and the activation markers 
CD86 and CD83 were significantly decreased on 
cells from the majority of the donors, while CD1a 
and E-cadherin were reduced in cells from some 
donors. These results suggest that there could be 
downregulation of cell surface markers on LCs, 
creating an apparent loss of the cells rather than 
actual depletion of LCs from the tumour [60].

Hypoxic conditions also impaired the LCs’ 
ability to stimulate T-cell responses. More LCs in 
hypoxic regions were shown to be viable, as indi-
cated by the lower percentage of early and late 
apoptosis, when compared to LCs grown in nor-
moxic cultures [60]. The impairment of LC func-
tion in hypoxia could contribute to tumour cell 
evasion of the immune response.

8.6	 �LCs Regulate Immunity 
in the Cancer 
Microenvironment

Langerhans cells are associated with infiltration of 
immune cells into the tumour. An increase in 
FoxP3+ Tregs as a percentage of total CD4+ T cells 
was observed in melanoma patient samples [71]. To 
test if there was a direct association between 
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increased FoxP3+ Tregs in melanoma and LCs, the 
authors assessed co-localisation of the two cell pop-
ulations [71]. However, LCs were not co-located 
with infiltrating Tregs, which led the authors to pro-
pose that LCs have a tolerogenic role in melanomas 
but not by directly effecting Tregs [71]. Melanoma-
infiltrating LCs expressed less CD40 and are more 
likely to express the inhibitory programmed 
cell  death-ligand 1  (PD-L1) marker [71]. Further 
in  vitro studies may help to shed light on the 
increased Treg accumulation and LCs in melanoma. 
An analysis of cell infiltrates in radiation therapy 
demonstrated that a favourable prognosis was asso-
ciated with LC infiltration [51]. T-cell infiltration 
into the tumour was associated with the presence of 
LCs [51], suggesting that they may induce a T-cell-
mediated anti-tumour response that can improve the 
local response in radiation therapy.

Immature LCs express the programmed cell 
death protein 1 (PD-1) receptor, which helps to 
maintain tolerance in the skin [59]. As LCs 
mature, there is a decline in PD-1 receptor expres-
sion [59]. Blockade of PD-1 upregulates T-cell 
responses that can help fight off tumour cells 
[59]. However, the cells that provide the PD-L1/
PD-L2 signal to PD-1 on the LCs are yet to be 
determined. KCs express high levels of PD-L1/
PD-L2 during chronic inflammation [22]. Fujita 
et al. [24] have shown that LCs from SCC in par-
ticular are more mature, which could contribute 
to a reduced anti-tumour response [24].

LCs do contribute to the anti-tumour response 
to ovalbumin (OVA)-expressing melanoma cells 
following epicutaneous immunisation with OVA 
protein in the mouse, as do dermal dendritic cells 
[77]. The CD8+ T-cell response that is initiated 
following the presentation of antigen inhibited 
growth of the OVA-expressing transplanted mel-
anoma [77]. Depletion of LCs at any point during 
the process resulted in susceptibility of the mice 
to the tumour [77].

8.7	 �Langerhans Cells Regulate 
Carcinogenesis

The epidermis is exposed to a variety of DNA-
damaging chemicals. Cutaneous LCs play an 
important role in the detoxification of molecules 

such as polyaromatic hydrocarbons (PAH) in the 
skin. When toxins such as 
2,4-dimethoxybenzaldehyde (DMBA) are detoxi-
fied by LCs, a carcinogenic intermediate is pro-
duced. The carcinogenic intermediate leads to 
increased HRAS mutations in the KCs , contribut-
ing to their malignant transformation. LC-intact 
mice are more susceptible to chemical carcinogen-
esis provoked by DMBA than mice without LCs 
[47]. The expression of p450 enzyme CYP1B1 is 
required for the rapid induction of DNA damage 
within the KCs to enable efficient neoplastic trans-
formation [41]. Depletion of LCs worsened the 
progression of SCC in a temporarily LC-depletable 
mouse model. In the absence of LCs, there was 
reduced recruitment of natural killer (NK) cells 
into the tumour microenvironment [53]. NK cells 
are crucial for the elimination of DNA-
damaged KCs during the tumour initiation step of 
chemical carcinogenesis [53]. These results need 
to be replicated in the same mouse model to make 
conclusive statements regarding the contribution 
of LCs in carcinogenesis.

8.8	 �LCs Regulate 
Lymphangiogenesis 
and Angiogenesis 
in the Tumour 
Microenvironment

Tumour growth and metastasis depend on angio-
genesis and lymphangiogenesis triggered by 
chemical signals produced by tumour cells in a 
rapid growth phase [57]. In the absence of vascu-
lar support, tumours may become apoptotic or 
necrotic [58]. A role for LCs in tumour lymphatic 
development has not been defined; however, LCs 
do contribute to lymphatic vessel formation in 
the skin [54, 82]. LIGHT (an acronym for homol-
ogous to lymphotoxins, exhibits inducible 
expression, and competes with HSV glycopro-
tein D for herpesvirus entry mediator, a receptor 
expressed by T lymphocytes)  is an important 
ligand that is required for lymphoid tissue devel-
opment and homeostasis [23, 87]. LIGHT expres-
sion is significantly upregulated in skin LCs 
during inflammation, and LC signals play a dom-
inant role in lymph endothelial cell activation 
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[82]. A direct role for LCs in tumour lymphangi-
ogenesis is still to be confirmed.

Lymphangiogenesis occurs following angio-
genesis and relies on angiogenic factors in order 
for it to occur [42]. Pericytes contribute to angio-
genesis in the tumour microenvironment [9], by 
producing pericyte-derived milk fat globulin E8 
(MFG-E8) [48]. MFG-E8 is also produced by 
other immune cells, especially LCs [46], also 
implicating them in angiogenesis. Further investi-
gation of their role in angiogenesis is warranted.

8.9	 �Langerhans Cells in Tumour 
Immunotherapy

Through translational studies it has been shown 
that DC-based immunisation is safe and feasible 
for patients with cancer. Most DC-based vaccines 
have used monocyte-derived DCs, but LCs 
derived from CD34+ haematopoietic cells are 
superior at activating a cytotoxic T-cell response 
[62]. Peptide-loaded LC vaccinations against 
melanoma elicited tumour responses that were 
comparable to monocyte-derived DCs in  vivo 
[65]. A Phase I study of LCs electroporated with 
tyrosinase-related protein-2 (TRP-2) mRNA, a 
melanosomal differentiation antigen, in patients 
with melanoma was conducted [13]. The vac-
cines induced greater T-cell activation and diver-
sity against the TRP-2 antigen, which correlated 
with clinical benefits [13]. Apart from mild 
delayed-type hypersensitivity reactions, no major 
toxicities were observed post vaccination [13]. 
LCs electroporated with Wilms Tumour 1 (WT1) 
induced sufficiently strong WT1-specific cyto-
toxic T lymphocytes in vitro [64]. These studies 
along with other clinical study data [5] highlight 
the feasibility and safety of LC immunisation, 
and the use of vaccination in combination with 
other immune therapies could further improve 
clinical outcomes for cancer patients.

8.10	 �Future Directions

The potential for LCs to amplify immune func-
tion in an antigen-specific manner makes them 
ideal candidates for cancer immunotherapy, 

which attempts to eradicate tumours through the 
manipulation of host immunity. The superior 
ability of LCs over other skin DCs to induce 
cytotoxic T-cell responses in vitro [62, 77] makes 
them ideal to be exploited for therapy. Protein 
antigen applied onto barrier-disrupted skin 
induces a long-lasting cytotoxic T-cell response 
that is potent enough to control and inhibit 
tumour growth [77]. In order for immunothera-
pies to be maximally effective, a thorough under-
standing of LC biology and function is required.

The identification of the distinct DC subset – 
langerin+ dermal DCs, has revealed that many of 
the functions attributed to LCs are in fact being 
carried out by dermal DCs. Many of these studies 
need to be revisited to separate the role of 
langerin-positive DCs from LCs. The inducible 
LC depletion mouse model, such as the Langerin-
diphtheria toxin receptor (DTR) mouse, [36] 
depletes both the populations of langerin-positive 
cells (LCs and dDCs). Using the langerin-
diphtheria toxin subunit A (DTA) model [31], or 
the generation of a specific mouse model that 
enables the inducible-targeted depletion of LCs 
over the DCs, would be highly useful to confirm 
the roles of the two langerin-positive populations 
in cancer. Single-cell sequencing would be highly 
beneficial to further define the roles of the differ-
ent types of langerin-positive cells in cancer. This 
technology might help to uncover any potential 
subsets of LCs that could play a role in tumori-
genesis and cancer. This may also help to clarify 
the controversy over the roles that have been 
attributed to LCs that may instead be a function 
of DCs, further paving the way for the targeting 
of antigen presentation for immune therapy 
against cancer.

8.11	 �Conclusion

Although there are varied levels of LCs reported 
in different cancers, the general trend is for num-
bers to be reduced. This could be an immune eva-
sion mechanism that occurs in the neoplastic 
environment. The regulation of LCs in cancer 
could be mediated by changes in the cytokine 
milieu, downregulation of cell surface adhesion 
molecules, such as E-cadherin, or a result of the 
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infiltration of other immune cells. Studies involv-
ing a LC-only depletable mouse model, single 
sequencing and standardised immunohistochem-
ical protocols are necessary to further elucidate 
the function of LCs in cancers.
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