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This book’s initial title was “Tumor Microenvironment.” However, due to the 
current great interest in this topic, we were able to assemble more chapters 
than would fit in one book, covering tumor microenvironment biology from 
different perspectives. Therefore, the book was subdivided into several 
volumes.

This book “Tumor Microenvironment: Hematopoietic Cells  – Part B” 
presents contributions by expert researchers and clinicians in the multidisci-
plinary areas of medical and biological research. The chapters provide timely 
detailed overviews of recent advances in the field. This book describes the 
major contributions of different hematopoietic components in the tumor 
microenvironment during cancer development. Further insights into these 
mechanisms will have important implications for our understanding of cancer 
initiation, development, and progression. The authors focus on the modern 
methodologies and the leading-edge concepts in the field of cancer biology. 
In recent years, remarkable progress has been made in the identification and 
characterization of different components of the tumor microenvironment in 
several tissues using state-of-art techniques. These advantages facilitated 
identification of key targets and definition of the molecular basis of cancer 
progression within different organs. Thus, the present book is an attempt to 
describe the most recent developments in the area of tumor biology which is 
one of the emergent hot topics in the field of molecular and cellular biology 
today. Here, we present a selected collection of detailed chapters on what we 
know so far about the hematopoietic components in the tumor microenviron-
ment in various tissues. Eleven chapters written by experts in the field sum-
marize the present knowledge about distinct hematopoietic components 
during tumor development.

Fabrizio Mattei and colleagues from Instituto Superiore di Sanità discuss 
the role of eosinophils in the tumor microenvironment. Karan Kohli and Venu 
G. Pillarisetty from the University of Washington describe dendritic cells in 
the tumor microenvironment. Jason B. Williams and Thomas S. Kupper from 
Harvard Medical School compile our understanding of resident memory T 
cells in the tumor microenvironment. Camille Guillerey from The University 
of Queensland updates us with what we know about tumoral NK cells. 
Caroline Imbert and Daniel Olive from Inserm, France, summarize current 
knowledge on γδ T cells in tumor microenvironment. Dario A.A. Vignali and 
colleagues from the University of Pittsburgh School of Medicine address the 
importance of regulatory T cells in the tumor microenvironment. Huichun 
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Zhan and Kenneth Kaushansky from Stony Brook School of Medicine talk 
about the hematopoietic stem cells microenvironment in myeloproliferative 
neoplasms. Aarthi Rajesh and Merilyn Hibma from the University of Otago 
focus on Langerhans cells in the tumor microenvironment. Angélica Aponte- 
López and Samira Muñoz-Cruz from Universidad Nacional Autónoma de 
México give an overview of the mast cells in the tumor microenvironment. 
Markus Maeurer and colleagues from Champalimaud Center for the Unknown 
present the role of B cells in the gastrointestinal tumor microenvironment. 
Finally, Samuel Cheshier and colleagues from the University of Utah School 
of Medicine introduce what we know so far about the role of microglia within 
brain tumors.

It is hoped that the articles published in this book will become a source of 
reference and inspiration for future research ideas. I would like to express my 
deep gratitude to my wife Veranika Ushakova and Mr. Murugesan Tamilselvan 
from Springer, who helped at every step of the execution of this project.

 Alexander Birbrair Belo Horizonte, Minas Gerais, Brazil
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Eosinophils in the Tumor 
Microenvironment

Fabrizio Mattei, Sara Andreone, 
Giancarlo Marone, Adriana Rosa Gambardella, 
Stefania Loffredo, Gilda Varricchi, 
and Giovanna Schiavoni

Abstract

Eosinophils are rare blood-circulating and 
tissue- infiltrating immune cells studied for 
decades in the context of allergic diseases and 
parasitic infections. Eosinophils can secrete a 
wide array of soluble mediators and effector 
molecules, with potential immunoregulatory 
activities in the tumor microenvironment (TME). 
These findings imply that these cells may play a 
role in cancer immunity. Despite these cells were 
known to infiltrate tumors since many years ago, 
their role in TME is gaining attention only 
recently. In this chapter, we will review the main 
biological functions of eosinophils that can be 
relevant within the TME. We will discuss how 
these cells may undergo phenotypic changes 
acquiring pro- or antitumoricidal properties 

according to the surrounding stimuli. Moreover, 
we will analyze canonical (i.e., degranulation) 
and unconventional mechanisms (i.e., DNA 
traps, exosome secretion) employed by eosino-
phils in inflammatory contexts, which can be 
relevant for tumor immune responses. Finally, 
we will review the available preclinical models 
that could be employed for the study of the role 
in vivo of eosinophils in cancer.
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List of Abbreviations

AEC  Absolute eosinophils count
ANGPTs  Angiopoietins
ADCC  Antibody-dependent cell-  

 mediated cytotoxicity
Ag  Antigen
APCs  Antigen-presenting cells
A. fumigatus Aspergillus fumigatus
BECs  Blood endothelial cells
BAL  Bronchoalveolar lavage
CAFs  Cancer-associated fibroblasts
CEL  Chronic eosinophilic leukemia
DCs  Dendritic cells
ECP  Eosinophil cationic protein
EDN  Eosinophil-derived neurotoxin
EPX  Eosinophil peroxidase
E. coli  Escherichia coli
EXO  Exosomes
EV  Extracellular vesicles
FGF  Fibroblast growth factor
FPR-1  Formyl peptide receptor-1
HSC  Hematopoietic stem cell
HMGB1  High Mobility Group Box 1
HD  Hodgkin’s disease
HES  Hypereosinophilic syndrome
ICIs  Immune checkpoint inhibitors
ILC2  Innate lymphoid cells
IFN  Interferon
IL  Interleukin
iNKT  Invariant natural killer T
LIAR  Local immunity and/or remod 

 eling/repair
LECs  Lymphatic endothelial cells
MBP  Major basic protein
MCA  Methylcholanthrene
mAb  Monoclonal antibody
M-MDSC Monocytic myeloid-derived  

 suppressor cells
MVB  Multivesicular bodies
MDSC  Myeloid-derived suppressor  

 cells
NK  Natural killer () cells
NO  Nitric oxide
NOG  NOD/Shi-scid/IL-2Rγnull

NSCLC  Non-small cell lung cancer
OSCC  Oral squamous cell carcinoma
OS  Overall survival

PRR  Pattern recognition receptor
PlGF  Placenta growth factor
PDGF  Platelet-derived growth factor
PMN-MDSC Polymorphonuclear myeloid-  

 derived suppressor cells
PD-1  Programmed cell death-1
PSF  Progression-free survival
ROS  Reactive oxygen species
RSV  Respiratory syncytial virus
Siglec-8  Sialic-binding immunoglobulin 

  like lectin 8
S. aureus  Staphylococcus aureus
Th2  T helper 2
TSLP  Thymic stromal lymphopoietin
TREG  T regulatory cell
TAM  Tumor-associated macrophages
TATE  Tumor-associated tissue   

 eosinophilia
TILs  Tumor-infiltrating lymphocytes
TME  Tumor microenvironment
TK  Tyrosine kinase
VEGF  Vascular endothelial growth  

 factor

1.1  Introduction

Eosinophils are rare blood circulating granulo-
cytic cells representing 1–3% of total leukocyte 
population under physiological condition. Paul 
Ehrlich in 1879 first described blood eosinophils 
by their unique staining properties with acidic 
dyes, such as eosin and Luxol fast blue [1]. These 
cells originate and differentiate in the bone mar-
row in response to IL-5, together with IL-3 and 
GM-CSF, which support both maturation and 
survival of eosinophils [2]. In addition, IL-33 
sustains eosinophilopoiesis at various levels, pro-
moting survival, maturation, and functional acti-
vation [3]. During bone marrow development, 
IL-33 both expands eosinophil precursors 
expressing the IL-5Rα and induces systemic IL-5 
production, thus fueling the eosinophil matura-
tion [4].

Upon response to certain inflammatory condi-
tions (i.e., allergies, parasitic infections, and 
autoimmune diseases), eosinophils can rapidly 
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3

expand and can infiltrate inflamed tissues, where 
they play diverse roles in inflammatory responses. 
Eosinophils are well known to infiltrate the tumor 
microenvironment (TME), and this condition is 
referred to as tumor-associated tissue eosino-
philia (TATE). The role of TATE in human can-
cers is still controversial [5, 6]. However, recent 
clinical observations in melanoma patients 
undergoing immunotherapy targeting the immune 
checkpoints CTLA-4 and PD-1 have unraveled a 
predictive role of eosinophil counts for therapeu-
tic response [7]. These findings suggested that 
eosinophils might be regarded as possible prog-
nostic/predictive biomarkers in cancer immuno-
therapy, thus repositioning this immune cell 
population at the forefront of cancer immunology 
research.

1.2  The Tumor 
Microenvironment: 
A Dynamic System 
with Multiple Interacting 
Players

The definition of tumor microenvironment 
(TME) originates from the dynamic interaction 
of the host immune system with the forming and 
growing tumor. This continuously evolving 
milieu is the result of the constant cross-talk 
between cancer cells and immune cells through 
the release of soluble factors that shape the phe-
notype of both cell types [8]. The TME is com-
posed of a number of resident and nonresident 
cell types, as well as extracellular factors, and 
each cell component has a distinct role in this 
complex scenario [9]. When the TME is in its ini-
tial stage, resident tumor cells instruct the TME 
for the formation of blood vessels that allow the 
access of nutritive factors, cell-derived vesicles, 
and immune cells. Pericytes and endocytes, key 
cellular components of the blood vessel architec-
ture, are considered resident cells in the TME [9] 
and play a relevant role in angiogenesis. In par-
ticular, a type-2 (Nestin+) subset of pericytes has 
been identified that promotes normal and tumoral 
angiogenesis [10]. Cancer-associated fibroblasts 
(CAFs), a heterogeneous subset of several cell 

types, are resident cells that play an important 
role in tumorigenesis. These cells produce and 
release several mediators, such as vascular endo-
thelial growth factor (VEGF), platelet-derived 
growth factor (PDGF), fibroblast growth factor 
(FGF), and cytokines, important to generate the 
3D stromal architecture of blood vessels and of 
the TME itself [11].

The immune cells infiltrating the TME in solid 
cancers are heterogeneous, and their roles depend 
on the site, grade, and stage of malignancy. This 
is in part due to the fact that within the TME the 
patterns of soluble mediators (cytokines, chemo-
kines, angiogenic, lymphangiogenic, and growth 
factors) and cellular receptors dynamically 
change and thus influence the homing and pheno-
type of immune cells [9].

Tumor infiltrating lymphocytes (TILs) are 
associated with antitumor activity, whose fre-
quency often correlates with a favorable progno-
sis in cancer patients. In particular, CD8+ T cells 
are often present as infiltrating cells in solid can-
cers, where they can exert potent and selective 
cytotoxic action on tumor cells [12]. However, an 
important fraction of TILs is represented by regu-
latory CD4+ T (TREG) lymphocytes with opposite 
effects on cancer progression. Indeed TREG are 
endowed with potent pro-tumoral effects when 
infiltrating the TME and are considered a target 
for immunotherapeutic strategies [13]. Recently, 
a novel subset of tissue-resident memory 
CD69+CD103+ T cells (TRM), either CD4+ or 
CD8+, has been reported to play a crucial role in 
preventing the development and spread of solid 
tumors and has been associated with favorable 
outcomes in cancer patients. TRM cells may medi-
ate tumor protection by promoting tumor- 
immune equilibrium through the secretion of 
cytokines and/or via CD103-enhanced tumor cell 
killing [14]. Natural killer (NK) cells, an innate 
immune subset with potent cytotoxic function, 
also contribute to tumor rejection [15].

Several dendritic cell (DC) subsets may be 
found in variable frequencies in the TME of vari-
ous solid cancers, where they are deputed to 
tumor antigen (Ag) presentation and cross- 
presentation in lymphoid organs and in the TME 
itself [16]. Certain chemotherapeutic drugs pro-

1 Eosinophils in the Tumor Microenvironment
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mote the release of immunogenic signals from 
dying tumor cells, which are perceived by DC 
and promote a cascade of events that stimulate an 
anticancer immune response [17]. Among these 
signals, the ligand Annexin-a1 released by dying 
tumor cells was shown to bind formyl peptide 
receptor-1 (FPR-1), expressed by DC, acting as 
signal for the correct positioning of DC in prox-
imity of dying cancer cells within TME.  This 
Annexin-a1/FPR-1 axis enabled stable DC-corpse 
interactions, and subsequent engulfment and Ag 
cross-presentation by DC [18]. Ag cross- 
presentation for CD8+ T-cell cross-priming is 
mainly carried out by Batf3- and Irf8-dependent 
type 1 conventional DCs, a subset of DC express-
ing the markers CD103 and CD8α [19]. CD8+ 
T-cell cross-priming is promoted by type I IFNs 
signaling on CD8α DC and is required for antitu-
mor immunity in vivo [20]. Type I IFNs act on 
CD8α DC prolonging Ag retention after engulf-
ment of tumor apoptotic cells leading to efficient 
CD8+ T-cell cross-priming [21]. In addition, DC 
can interact with innate and innate-like immune 
cells, including NK, invariant natural killer T 
(iNKT), and γδ T cells, amplifying direct and 
indirect antitumoral responses through a mutual 
cross-talk [22]. On the other hand, some tolero-
genic DC contribute to the generation of TREG and 
engage in a cross-talk, thus favoring the estab-
lishment and maintenance of an immunosuppres-
sive TME that inhibits antitumor immunity [23].

Myeloid cells represent a major fraction of 
infiltrating immune cells. Tumor-associated mac-
rophages (TAM) play a major role in tumor pro-
gression. TAM are distinguished into two major 
subsets: classically activated M1 with antitumor 
functions and pro-inflammatory M2 that supports 
tumor progression [24]. The balance of frequen-
cies in infiltrating M1 and M2 TAMs often dic-
tates the tumor fate and is a prognostic factor for 
patients [25]. Myeloid-derived suppressor cells 
(MDSC) are immature-like myeloid cells capable 
of strong immunosuppressive activity. Based on 
their phenotype marker expression and morphol-
ogy, these cells can be subdivided into two sub-
groups, monocytic MDSC (M-MDSC) and 
granulocytic or polymorphonuclear MDSC 
(PMN-MDSC) due to their morphological (but 

not functional) resemblance with monocytes and 
granulocytes, respectively [25]. Both types of 
MDSC infiltrate the TME, where they act as 
potent suppressors of CD4+ and CD8+ T lympho-
cytes while favoring recruitment of TREG cells. In 
addition, MDSC promote tumor cell stemness, 
angiogenesis, and metastasis [25]. Mast cells, 
[26], neutrophils [27], eosinophils [6], and 
 basophils [28], historically recognized for their 
involvement in allergy and inflammation, are 
now being repositioned for the recently discov-
ered role in cancer. The function and role of 
eosinophils within the TME will be covered in 
detail below.

1.3  General Properties 
of Eosinophils

For many years, eosinophils have been mostly 
appreciated for two aspects of immune response: 
the ability to fight parasites and their contribution 
to allergic inflammation [29, 30]. This is because 
eosinophils produce a wide array of toxic granule 
proteins and pro-inflammatory mediators that 
lead to tissue damage [31]. Indeed, eosinophils 
exert potent cytotoxic functions through the pro-
duction and release of cationic proteins, such as 
major basic protein (MBP), eosinophil cationic 
protein (ECP), eosinophil peroxide (EPX), and 
eosinophil-derived neurotoxin (EDN). 
Furthermore, eosinophils secrete a wide array of 
soluble mediators, including cytokines, chemo-
kines, and angiogenic and lipid mediators, con-
tributing to immune regulation, tissue remodeling, 
and many other processes [30].

Eosinophil degranulation can occur via differ-
ent cellular mechanisms [32]. Eosinophils adher-
ent to parasites have been shown to degranulate 
through classical exocytosis, a process involving 
granule fusion with the plasma membrane that 
creates a pore through which the total granule 
content is secreted into the target cell. In contrast, 
piecemeal degranulation enables the release 
“piece-by-piece” of specific granule-stored pro-
teins, such as cytokines and chemokines, and is 
thought to be the main secretion mode during 
chronic inflammatory responses. As a third mode 
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of secretion, eosinophils may undergo cytolysis, 
a process involving extracellular release of intact 
granules with rupture of plasma membrane. 
Eosinophils may also undergo cytolytic cell 
death with extrusion of nuclear materials, such as 
histones and DNA, and extracellular expulsion of 
intact granules entrapped in DNA nets, named 
DNA traps [33, 34].

According to the LIAR hypothesis formulated 
by James Lee, eosinophils are homeostatic cells 
that regulate Local Immunity And/or Remodeling/
Repair during both steady state conditions and 
disease, especially associated with tissue injury 
[35]. Hence, besides the destructive effects, 
eosinophils also participate in resolution of 
inflammation, tissue repair, remodeling, and 
homeostasis, through the release of a variety of 
pro-fibrotic (i.e., TGF-β), growth factors (i.e., 
FGF-2, NGF, and VEGF), and matrix metallo-
proteinases. In addition, eosinophils participate 
in the modulation of adaptive immune responses 
[36]. Eosinophils can induce the recruitment of 
Th2 cells [37] and TREG cells [38] through the 
production of the chemokines CCL17 and 
CCL22. Moreover, eosinophil-derived CXCL9 
and CXCL10 recruit Th1 cells [37, 39] and CD8+ 
T cells [40–42]. Eosinophil cationic proteins can 
have immunostimulatory activities; for example, 
EDN can both attract and induce the maturation 
of DC into a Th2-promoting phenotype [43]. 
Stimulation of eosinophils with CpG-ODN 
results in degranulation and induction of DC mat-
uration in a cell contact independent manner via 
MBP [44]. Furthermore, EPX activates DC 
in  vitro and in  vivo, inducing mobilization to 
lymph nodes and Th2 priming [45]. Eosinophils 
play an active role in the induction and expansion 
of Th2 type of immune response, through the 
production of IL-4, IL-5, IL-13, and IL-25 par-
ticipating in allergic reactions, parasitic infec-
tions, and autoimmune disorders [46]. 
Eosinophils can also produce, store, and secrete 
Th1-associated pro-inflammatory cytokines (i.e., 
IFN-γ, TNF-α and IL-12) and TREG-associated 
mediators (i.e., IDO, IL-10, and TGF-β), thus 
demonstrating their versatile immunoregulatory 
role [46]. Following activation with cytokines, 
such as GM-CSF, IL-4, IL-5, or IFN-γ, eosino-

phils upregulate MHC class II and co-stimulatory 
molecules (CD80, CD86, and CD40) and can act 
as non-professional Ag presenting cells (APC) 
stimulating Ag-specific CD4+ T-cell proliferation 
and Th2 cytokine production in vitro and in vivo 
[47].

Eosinophils are equipped with a variety of 
surface receptors fundamental for their function 
and localization within inflamed tissues [30]. 
These include pattern recognition receptors 
(PRRs), such as TLR1–5, TLR7, TLR9, NOD1, 
NOD2, Dectin-1, and RAGE, that recognize spe-
cific molecular components associated with 
pathogens or danger signals and allow a rapid 
pro-inflammatory response to insults through 
production of cytokines, chemokines, and gran-
ule cationic proteins [48]. Eosinophils also 
express receptors for many cytokines (IL-2R, 
IL-3R, IL-4R, IL-5Rα, IL-9R, IL-10R, IL-13R, 
IL-17R, IL-23R, IL-27R, IL-31R, IL-33/ST2, 
TSLPR, GM-CSFR, IFNγR, TGF-βR), chemo-
kines (CCR1, CCR3, CCR4, CCR5, CCR6, 
CCR8, CCR9, CXCR2, CXCR3, CXCR4), for-
myl peptide receptors-1, −2, −3, and a variety of 
integrins and adhesion molecules (CD11a/CD18, 
CD11b/CD18, CD11c/CD18, CD49d/CD29, 
CD49f/CD29, ICAM-1), which drive eosinophil 
transmigration from the bloodstream to inflamed 
tissues [49, 50].

Eosinophils express various receptors for 
immunoglobulins, complements, proteases, and 
lipid mediators, such as leukotrienes and prosta-
glandins. Sialic-binding immunoglobulin-like 
lectin 8 (Siglec-8) and its ortholog murine 
Siglec-F are hallmark receptors for eosinophils 
that function as inducers of apoptosis associated 
with reactive oxygen species (ROS) production 
following antibody cross-linking [51, 52], espe-
cially when eosinophils are pre-activated with 
cytokines [53, 54]. Administration of Siglec-F 
mAb in vivo results in selective ablation of blood 
and tissue eosinophils in mice through induction 
of apoptosis [55]. EGF-like module containing 
mucin-like hormone receptor-1 (EMR1), the 
human ortholog of mouse F4/80, is a receptor 
highly specific to mature human eosinophils [56]. 
Targeting EMR1 with a specific mAb enhanced 
NK-mediated killing of human eosinophils 
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in vitro and induced eosinophil depletion in mon-
keys [57]. In addition, eosinophils express vari-
ous adhesion molecules and integrins (i.e., 
CD49d/29, CD49f/29, CD11b/18, CD11a/18, 
CD11c/18, CD11d/18, and CD49d/β7) that are 
upregulated upon activation and mediate eosino-
phil migration and effector functions [58]. 
Overall, these features endow eosinophils with 
multiple roles as effectors and regulators of dif-
ferent immune responses.

1.4  Eosinophils in Allergic 
Diseases and Infections

Eosinophils play a prominent role in Th2-related 
pathologies, and tissue eosinophilia is associated 
with inflammation in respiratory allergies, atopic 
dermatitis, eosinophilic esophagitis, and gastro-
enteritis [30]. Allergic asthma is often associated 
with skewing of naïve Th cells toward Th2 phe-
notype and activation of eosinophils. In the latter 
condition, referred to as eosinophilic asthma 
[59], eosinophils are recruited in the airways by 
Th2 cytokines (i.e., IL-5) and chemokines (i.e., 
eotaxin-1/CCL11). Airway epithelial cells acti-
vated by different stimuli (e.g., allergens, super-
allergens, viral and bacterial proteins, tobacco 
smoke, and so on) release the alarmins IL-25, 
IL-33, and TSLP that promote Th2 polarization 
with massive production of IL-4, IL-5, and IL-13 
[60]. Recent evidence suggests that these alarm-
ins stimulate type 2 innate lymphoid cells (ILC2), 
which also secrete IL-4, IL-5, and IL-13 and sub-
sequently recruit eosinophils to the inflamed tis-
sue [61].

Eosinophils are key players in airway inflam-
mation contributing to the so-called T2 asthma 
pathogenesis by damaging the epithelium and 
orchestrating the immune response [62]. It is 
believed that the pathophysiologic effects of 
eosinophils in allergic inflammation are caused 
by the release of cationic proteins, ROS, lipid 
mediators, proteases, and pro-inflammatory cyto-
kines. The mechanisms triggering eosinophil 
degranulation in inflamed tissues are not fully 
understood. However, recent evidences have 
shown that epithelial cell-derived alarmins may 

play a role. In mouse models of allergic asthma, 
accumulation of eosinophils in the lung and ensu-
ing allergic inflammation are strongly inhibited 
by blockade of IL-33/ST2 signaling pathway 
[63–66], while they are exacerbated by adminis-
tration of recombinant IL-33 [67]. In patients, a 
rare IL-33 loss-of-function causes reduced num-
ber of eosinophils in blood and protects against 
asthma [68]. Furthermore, IL-33 is a potent acti-
vator of eosinophils in vitro, enhancing adhesion 
and promoting degranulation [69–71]. These data 
strongly suggest that IL-33 not only drives eosin-
ophilia but also stimulates eosinophil effector 
functions in allergy. TSLP, another epithelial- 
derived alarmin involved in allergic inflamma-
tory response [60], can promote degranulation 
and survival of eosinophils through STAT5 phos-
phorylation [72]. In mice, intradermal adminis-
trations of TSLP resulted in the induction of a 
systemic Th2-skewed inflammatory response, 
which was dependent on the presence of eosino-
phils [73]. A monoclonal antibody (mAb) target-
ing TSLP (tezepelumab) is currently under 
development for the treatment of different forms 
of severe type 2 asthma (i.e., eosinophilic and 
non-eosinophilic) [74, 75].

A canonical function of eosinophils is to pro-
vide protection against parasitic helminths. 
Eosinophils also participate in the host defense 
against other pathogens, such as bacteria, viruses, 
and fungi [49, 76]. The mechanisms accounting 
for the antiparasitic role of eosinophils in  vitro 
include direct killing through the release of cyto-
toxic proteins (MBP, EPX, ECP, EDN) [77, 78]. 
Furthermore, eosinophils can present parasite- 
specific Ags to T cells in  vivo, leading to the 
polarization of Th2 response and increase of 
Ag-specific IgM concentration [79]. However, 
studies in mouse models of helminth infection 
have yielded contrasting results, and the role of 
eosinophils in host response to parasites in vivo 
remains controversial [49]. In vitro, eosinophils 
adhere to the fungus Alternaria alternata by 
binding of the integrin CD11b to β-glucan, a 
component of the fungal cell wall, resulting in 
degranulation and release of the cationic proteins 
MBP and EDN [80]. In 1978, DeChatelet and 
coworkers first reported a bactericidal activity of 
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eosinophils, showing that these cells can phago-
cytize Escherichia coli or Staphylococcus aureus 
as efficiently as neutrophils via hydrogen perox-
ide production [81]. Furthermore, human eosino-
phils can release extracellular DNA traps in 
response to Aspergillus fumigatus in vitro, via a 
cytolytic mechanism that depends on the Syk 
tyrosine kinase pathway and CD11b [82]. 
Eosinophils exploit extracellular traps of mito-
chondrial DNA and granule proteins also to kill 
bacteria both in  vitro and in  vivo [34]. These 
catapult-like released traps protected from micro-
bial sepsis in a model of intestinal inflammation, 
unravelling the importance of eosinophils for 
maintaining the intestinal barrier function after 
inflammation-associated epithelial cell damage.

Eosinophils play a role in host defense against 
single-stranded RNA viruses, such as respiratory 
syncytial virus (RSV), by exploiting the ribonu-
clease activity of the granule proteins EDN and 
ECP [83]. In vitro, degranulation of eosinophils 
following RSV-infected pulmonary epithelial 
cells is dependent on CD18-mediated cell contact 
[84]. In addition, binding of rhinovirus to eosino-
phils via ICAM-1 causes phenotypic activation 
of eosinophils promoting their ability to present 
viral Ags to Ag-specific T cells, causing T-cell 
proliferation and secretion of IFN-γ [85]. In vivo, 
eosinophils promote the clearance of RSV by 
stimulation of the TLR-7-MyD88 pathway, 
which triggers degranulation and expression of 
IRF-7, IFN-β, and iNOS [86]. Furthermore, 
infection of eosinophils with pulmonary viruses 
can result in the release of proinflammatory 
mediators, such as IL-6, IP-10, CCL2, and CCL3 
[87]. The precise mechanisms by which eosino-
phils interact with viruses and contribute to host 
antiviral immunity remain to be clarified.

1.5  Repositioning Eosinophils 
in Cancer

The increase of eosinophils in cancer patients has 
been known for over a century. Pioneering stud-
ies in the 1980s described tumor-infiltrating 
eosinophils in human gastric cancers and sug-
gested their good prognostic value for prolonged 

survival [88, 89]. In addition, eosinophils were 
reported to exert cytotoxic function against breast 
cancer cells in  vitro [89], and blood eosinophil 
counts inversely correlated with risk of recurrent 
disease in breast cancer patients [90]. In cancer 
patients undergoing immunotherapy with IL-2, 
eosinophils were expanded and acquired an acti-
vated phenotype, with increased degranulation, 
survival, and antitumor cytotoxicity [91–93]. 
Despite these early evidences supporting the 
presence of eosinophils in TME of many human 
cancers, the role of eosinophils in cancer has 
been largely overlooked for long time. Recent 
data indicate that these cells are potent immune 
effectors and regulators within the TME with 
potential prognostic/predictive role in human 
cancers.

1.5.1  Role of Eosinophils 
in Hematologic Tumors

The role of eosinophils in hematologic tumors is 
still unclear. Andersen and coworkers showed 
that the eosinophil counts below 0.16  ×  109 /L 
can be associated with acute myeloid leukemia 
and myelodysplastic syndrome. By contrast, 
eosinophil counts above 0.16 × 109 /L were asso-
ciated with myeloproliferative neoplasms [94]. 
Several studies have reported the association of 
peripheral blood and tissue eosinophilia with 
Hodgkin’s disease (HD) [95]. Eosinophilia in 
peripheral blood is associated with a positive 
prognostic factor [96]. Eosinophils can be found 
in lymph nodes of HD patients, but their prognos-
tic relevance remains controversial [95]. It is 
unclear why tissue eosinophilia can be found 
only in some subsets of HD patients. Tumor cells 
can produce different eosinophil-attracting mol-
ecules such as IL-5 and eotaxins [97, 98]. In nod-
ular sclerosing Hodgkin’s disease, tissue 
eosinophilia was shown to represent a poor prog-
nostic indicator. In fact, binding of eosinophil- 
secreted CD30 ligand to CD30 on tumor cells 
was shown to trigger NF-kB activation and con-
sequent proliferation of tumor cells [99].

Verstovsek and coworkers highlighted the 
efficacy of alemtuzumab in the treatment of 
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patients affected by hypereosinophilic syndrome 
(HES) or chronic eosinophilic leukemia (CEL) 
refractory to standard therapies [100]. 
Alemtuzumab induced a relevant decline of the 
absolute eosinophilic count and the percentage of 
eosinophils in the peripheral blood in all 11 
patients examined. This study demonstrated that 
alemtuzumab decreased blood eosinophils and 
improved patients with HES and CEL refractory 
to standard therapy. These case studies suggest, 
on one hand, that resistance to standard therapy 
may be in part due to the hypereosinophilia and, 
on the other hand, that treatment of these refrac-
tory patients with alternative therapies may be 
successful and is partly associated with a decrease 
of blood eosinophilia [100]. These data have 
been confirmed by Strati and coworkers, who 
reported that alemtuzumab is a useful treatment 
for CEL patients with hypereosinophilia [101].

1.5.2  Role of the Eosinophils 
in Solid Tumors

Several studies have shown an improved progno-
sis of patients with TATE or evidence of eosino-
phil degranulation in various types of solid 
tumors. Caruso and coworkers described TATE 
in human gastric adenocarcinoma, with tumor 
cells in close proximity to eosinophils displaying 
signs of autophagic cell death [102]. The same 
group described the presence of degranulating 
eosinophils in human advanced gastric carci-
noma. In these ultrastructural studies, deposition 
of extracellular granules from apoptotic eosino-
phils either free in the tumor stroma [103] or 
within the cytoplasm of gastric carcinoma cells 
was observed [104].

An antitumoral role of eosinophils has been 
described in colon cancer, melanoma, lung can-
cer, and oral squamous cell carcinoma [6]. In 
melanoma mouse models, eosinophils play a 
clear antitumoral role both in restraining tumor 
growth and in preventing lung metastasis onset 
[40, 41, 105]. Lucarini et  al. demonstrated the 
positive influence of eosinophils on CD8+ T cells 
for the local tumor, and their tumor cytotoxicity 
activity on lung metastasis [41]. Importantly, 

eosinophil count in peripheral blood is correlated 
with a good prognosis in patients with metastatic 
melanoma undergoing immunotherapy with 
immune checkpoint inhibitors targeting CTLA-4 
[106, 107] or PD-1 [108]. Furthermore, in a study 
involving 173 patients, it was shown that periph-
eral blood eosinophilia is a good prognostic 
marker correlating with prolonged survival in 
patients with metastatic melanoma independently 
from any treatment [109].

In mouse and human colorectal cancer, Munitz 
and colleagues elegantly demonstrated an antitu-
morigenic role of eosinophils during tumor 
development [110]. By analyzing human biop-
sies, they found an inverse correlation between 
tumor stage and intratumoral eosinophil counts. 
In Apcmin/+ mice, which develop spontaneous 
intestinal adenomas, eosinophils were recruited 
into tumors during induction of inflammation- 
induced colorectal cancer and played an essential 
role in tumor rejection, independently of CD8+ T 
cells [110].

In non-small-cell lung cancer (NSCLC), a 
recent report by Tanizaki and colleagues showed 
an important correlation between peripheral 
blood eosinophil counts and patients’ survival. 
They showed that an increase in absolute eosino-
phil count (AEC) (≥ 150 /μl) is linked to a better 
progression-free survival (PSF) and overall sur-
vival (OS) in patients treated with nivolumab, an 
anti-PD-1 mAb. For this reason, they suggested 
that absolute eosinophil count can be a biomarker 
for this kind of treatment [111]. Dorta and col-
leagues reported an antitumor role of eosinophils 
in oral squamous cell carcinoma (OSCC). Indeed, 
they demonstrated that patients with a lower 
number of TATE have lower probability to sur-
vive [112].

By contrast, elevated eosinophils in the TME 
seem to be correlated with poor survival in cervi-
cal carcinoma patients [113]. This pro-tumoral 
activity of eosinophils may be related to the 
microenvironment of this type of cancer. In this 
regard, eosinophils may be polarized to a pheno-
type that promotes tumor growth and reduces 
tumor cell death [114]. The ensemble of these 
evidences suggests that the role of eosinophils in 
tumorigenesis is cancer dependent. Alternatively, 
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as discussed below, different subsets of eosino-
phils may exist that play divergent roles in tumor-
igenesis, depending on the tumor histotype.

1.6  Antitumoral Mechanisms 
of Eosinophils

Tumor-infiltrating eosinophils have the potential 
to control tumor progression, exerting direct and 
indirect antitumoral activities, through secretion 
of a variety of soluble mediators. Recruitment of 
eosinophils to the TME can be driven by several 
chemokines (eotaxin-1/CCL11, eotaxin-2/
CCL24, eotaxin-3/CCL26, and RANTES) that 
activate the CCR3 receptor highly expressed on 
eosinophils [6]. The alarmin IL-33, locally 
expressed by epithelial and tumor cells, can also 
promote eosinophil recruitment through stimula-
tion of tumor-derived eosinophil-attracting che-
mokines [71]. IL-33, together with IL-5, may 
also prolong the life span of eosinophils at site of 
tumor growth [6].

Eosinophils accumulate early within tumor 
necrotic areas of experimental tumors, and this 
event is accompanied with degranulation and 
release of MBP and EPX [115, 116]. In fact, dan-
ger signals released by necrotic cells, particularly 
High Mobility Group Box 1 (HMGB1), can 
induce eosinophil migration, adhesion, survival, 
and degranulation with release of granule cat-
ionic proteins and ROS that promote oxidation 
and thus inactivation of necrotic material and 
tumor-promoting inflammation [116]. Moreover, 
eosinophil-derived MBP can inhibit the activity 
of heparanase, an endoglycosidase involved in 
remodeling the extracellular matrix that enhances 
tumor growth, angiogenesis, and the formation of 
metastasis [117].

1.6.1  Direct Antitumor Activity 
of Eosinophils

Eosinophils are equipped with granule proteins 
endowed with potent cytotoxic activity [118]. 
MBP can mediate tumor toxicity through disrup-
tion of membrane lipid bilayers [119]. ECP is 

cytotoxic for Hodgkin lymphoma tumor cells 
[120], inhibits the proliferation of oral squamous 
cell carcinoma [121], and induces apoptosis of 
bronchial epithelial cells by caspase-8 activation 
[122]. Furthermore, EPX and EDN exhibit 
 cytolytic activity against human colorectal carci-
noma cell lines [123]. These findings support the 
hypothesis that eosinophil cationic proteins can 
exert direct antitumor activities. Vadas and 
coworkers reported that exposure of eosinophils 
to CSF or GM-CSF activates antibody-dependent 
cell-mediated cytotoxicity (ADCC) against EL-4 
and BW thymoma cells, as well as P815 masto-
cytoma cells. Importantly, eosinophils needed 
direct contact with P815 cells to induce killing, 
suggesting a contact-dependent cytotoxicity 
[124]. Murine eosinophils also could induce 
apoptosis of A20 murine lymphoma cells through 
the release of granzyme B [125]. Furthermore, 
eosinophils activated by cross-linking of the 2B4/
CD244 receptor exhibited tumoricidal activities 
against human B lymphoma cells [126]. In addi-
tion, human eosinophils can directly kill human 
colon carcinoma cells via release of granzyme A 
in a mechanism dependent on the integrin CD11a/
CD18 and on IL-18 [123, 127]. These in  vitro 
results suggest that tumor cytotoxic function of 
eosinophils require cell–cell contact through var-
ious adhesion molecules and integrins.

Whether eosinophils mediate tumor cytotox-
icity in vivo remains to be demonstrated. Presence 
of degranulating eosinophils and of eosinophil- 
specific granules within tumor cytoplasm has 
been reported in human gastric cancer biopsies 
[103, 104]. In mouse melanoma models, immu-
notherapy with the “alarmin” IL-33 promotes the 
expansion and tumor infiltration of eosinophils, 
which play an essential role in antitumor 
responses mediated by IL-33 and prevents the 
onset of pulmonary metastasis. Terminal differ-
entiation of bone marrow-derived eosinophils 
with IL-33 results in the generation of highly 
activated cells, compared to classical eosinophils 
differentiated with IL-5, revealed by increased 
aggregation in clusters (Fig. 1.1). IL-33-activated 
eosinophils highly resembled pulmonary eosino-
phils recruited by IL-33 in  vivo and exhibited 
upregulation of granzyme B and potent tumor 
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cytotoxicity in vitro [6, 41]. Furthermore, IL-33- 
activated eosinophils are able to establish a large 
number of cell conjugates with different tumor 
cell lines (B16.F10 melanoma, MC38 colon car-
cinoma, TC-1 lung adenocarcinoma and 
MCA205 fibrosarcoma) leading to efficient 
tumor cell killing in vitro and in vivo [71]. IL-33 
promoted the tumoricidal functions of eosino-
phils in a cell adhesion-dependent manner 

through the integrin CD11b/CD18 and by induc-
ing lytic granule convergence, with polarization 
of eosinophil effector proteins (ECP, EPX, and 
granzyme B) to the tumor-eosinophil immune 
synapse [71], in a similar mechanism operated by 
NK cells [128]. These observations demonstrate 
that IL-33 can potently stimulate eosinophil- 
dependent direct tumor cell killing by targeted 
degranulation, as schematized in Fig. 1.2.

Fig. 1.1 Terminal differentiation of bone marrow–
derived eosinophils with IL-33 yields highly activated 
cells. Bone marrow cells from tibiae and femurs of C57Bl/6 
mice were cultured for 4  days in a medium containing 
100  ng/ml SCF and 100  ng/ml FLT-3  L, followed by 
10  ng/ml IL-5. From day 10, cells were supplemented 
every other day with either IL-5 or IL-33 (100 ng/ml) in 
order to generate IL-5 eosinophils (IL-5 EO) or IL-33 

eosinophils (IL-33 EO), as described previously [36]. On 
day 16, when fully differentiated eosinophils were gener-
ated, microphotographs were obtained by EVOS-FL 
microscope. Images at the indicated magnifications show 
IL-33 EO aggregating in clusters, as opposed to IL-5 EO, 
indicative of highly activated phenotype. Scale bars, 
100 μm
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1.6.2  Indirect Antitumoral Function 
of Eosinophils: Interaction 
with Other Immune Cells 
within the TME

Studies in preclinical models indicate that tumor- 
infiltrating eosinophils may affect indirectly 
tumor growth. In mouse models of melanoma, it 
has been shown that infiltrating eosinophils pro-
mote the recruitment of tumor-reactive CD8+ T 
cells through expression of the T-cell-attracting 
chemokines CCL5, CXCL9, and CXCL10 [40, 
41]. Another indirect antitumor mechanism oper-
ated by eosinophils is their ability of influencing 
the tumor angiogenesis in TME. Human eosino-
phils can produce in vitro several proangiogenic 
molecules [129–132]. In vivo eosinophils induce 

vessel normalization by increasing the expres-
sion of adhesion molecules, such as VCAM-1, 
and by polarizing TAM toward M1-like macro-
phages, which produce smaller amounts of pro- 
angiogenic factors, compared to M2 macrophages 
[40]. Finally, as discussed above, eosinophils 
may function as nonprofessional APC, although 
whether they do so within the TME remains to be 
demonstrated.

Both solid and hematologic tumors are associ-
ated with the accumulation of peritumoral and/or 
intratumoral mast cells, suggesting that these 
cells can help to promote and/or limit tumorigen-
esis [133]. Interestingly, human mast cells and 
eosinophils were both identified and named by 
Paul Ehrlich [134, 135]. These cells have distinct 
progenitors and differ morphologically, ultra-

Fig. 1.2 IL-33 promotes the activation of CD11b/CD18 
adhesion-dependent granule polarization in eosinophils 
within the immune synapse. Upon coculture with tumor 
cells, eosinophils (EO) activated with IL-33 through its 
specific receptor complex ST2/IL1RAP form stable 
EO-tumor cell conjugates. This event is mediated by 
CD11b/CD18-dependent adhesion and synapse-polarized 

degranulation of eosinophil toxic proteins (EPX, ECP, 
granzyme B), resulting in efficient tumor cell killing. By 
contrast, activation of eosinophils with IL-5, through its 
receptor complex IL5RA/IL3RB subunit, fails to induce 
tumor cell adhesion and subsequent degranulation, thus 
sustaining tumor cell proliferation
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structurally, immunologically, and biochemi-
cally. However, mast cells and eosinophils can 
form the “allergic effector unit” and can be found 
in proximity in TME of several tumors [135]. 
Therefore, it is likely that eosinophils have the 
capacity to modulate mast cell functions and vice 
versa. For example, ECP and MBP [136] and 
VEGFs released by activated eosinophils [137] 
can modulate mast cell functions. These bidirec-
tional interactions between eosinophils and mast 
cells and vice versa might be relevant in TME.

1.7  Functional Plasticity 
of Eosinophils in Cancer

Eosinophils display the potential to interact with 
the tumor moiety. This feature stems from the 
ability of eosinophils to change their phenotype 
in response to stimuli present in the TME, such as 
cytokines, inducing variable responses. In addi-
tion, eosinophils have the capacity to release 
extracellular vesicles, which may shape the 
TME. For these reasons, eosinophils can be con-
sidered as cells endowed with a certain functional 
plasticity constantly remodeling the TME.

1.7.1  Role of Cytokines in Shaping 
Eosinophil Phenotype within 
the TME

It has been suggested that at least four subsets of 
murine eosinophils exist depending on their tis-
sue localization, maturation, and type of immune 
response triggered [138]. The first subset is rep-
resented by eosinophil progenitors, which are 
immature eosinophils undergoing hematopoiesis 
in situ. They express the receptors for IL-5, 
IL-33, and TSLP, the latter two regulating eosin-
ophil homing to inflamed tissues and activation. 
Steady-state or tissue-resident eosinophils, which 
were only characterized in the lung parenchyma 
of mice, are resting cells expressing intermediate 
levels of Siglec-F and with donut-shaped nucleus. 
A third subset (i.e., type 1 eosinophils) was 
described as interstitial/stromal cells in morpho-
genetic and type 1 immunity contexts. These 

eosinophils display similar surface markers as 
steady-state eosinophils, such as Siglec-Fint, but 
have pluri-lobated nucleus without vacuolization. 
The fourth subset (i.e., type 2 eosinophils) is 
characterized in the epithelium in type 2 immu-
nity contexts, such as allergic asthma and chronic 
colitis. These eosinophils exhibit pluri-lobated 
nucleus, vacuolized cytoplasm and high expres-
sion of Siglec-F. The relative roles of these sub-
sets of eosinophils in cancer immunity are 
unknown. This is because these cell types have 
been characterized mainly morphologically and 
by the expression of some surface markers. Thus, 
gene expression profiles and single-cell RNA 
sequencing of tumor-infiltrating eosinophils in 
various settings may help to define these cells in 
relation to their functional (pro- or antitumori-
genic) role.

Some studies have reported that cytokines 
may shape the phenotype of eosinophils, deter-
mining their polarization and tumor immune 
responses induced. Reichman and colleagues 
reported that in experimental colorectal cancer, 
intratumoral eosinophils exhibit an IFN-γ-related 
signature, which prevented the development of 
colorectal cancer in mice. Furthermore, activa-
tion of resting peritoneal eosinophils with IFN-γ 
potentiated their ability to kill colorectal cancer 
cells in vitro [110]. Similarly, activation of eosin-
ophils with IFN-γ plus TNF-α induced upregula-
tion of T-cell-attracting chemokines (CCL5, 
CXCL9, and CXCL10), IFN-γ, TNF-α, and 
NOS2. These activated eosinophils reduced 
tumor growth, through recruitment of tumor- 
reactive CD8 T cells, when adoptively transferred 
in melanoma-bearing mice [40]. These data sug-
gest that IFN-γ may skew eosinophils toward a 
type 1 immunity-promoting phenotype.

IL-33 is another important cytokine that may 
affect eosinophil phenotype within the TME. In 
experimental tumors, IL-33 promotes antitumor 
immunity through expansion and activation of 
eosinophils in  vivo [41, 105]. In melanoma- 
bearing mice, depletion of eosinophils by an anti- 
Siglec- F antibody injections abrogated the 
therapeutic efficacy of IL-33, indicating that 
eosinophils were indispensable for IL-33 antitu-
moral function [41]. Exposure to IL-33 in  vivo 
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induced in tumor-infiltrating eosinophil gene 
transcripts, which differ in the primary tumor site 
and pulmonary metastasis. At the primary tumor 
site, IL-33-recruited eosinophils expressed 
T-cell-attracting chemokines (CCL5, CXCL9, 
and CXCL10), but not effector molecules. 
Conversely, at the pulmonary site, eosinophils 
expressed high levels of granzyme B and IFN-γ, 
but not T-cell-attracting chemokines. These find-
ings suggested indirect or direct antitumor func-
tions of eosinophils at the primary or pulmonary 
site, respectively. Furthermore, in vitro activation 
of eosinophils with IL-33 resulted in upregula-
tion of effector molecules (i.e., granzyme B), 
Th-1 (i.e., IL-12, TNF-a), and Th-2 cytokines 
(i.e., IL-10, IL-13) [41, 71]. Thus, IL-33 may 
polarize eosinophils to a mixed type 1 and 2 
immunity phenotype that promotes antitumoral 
function.

Several lines of evidence indicate that IL-5 
may not support antitumor reactions in eosino-
phils. An early study showed that IL-5 gene- 
transfected tumors promote eosinophil recruitment 
but not antitumor immunity [139]. In a Meth-A 
fibrosarcoma model, intratumoral injection of 
OK-432 (a derivative of penicillin) and fibrinogen 
induces local production of IL-5 that recruits in 
the tumor tissue eosinophils which, however, did 
not play a relevant role in tumor regression [140]. 
In a different model, IL-5 could facilitate experi-
mental lung metastasis of various cancer cells by 
creating an allergic inflammatory environment 
with CCL22- producing eosinophils that recruited 
TREG cells [38]. By contrast, IL-5 plays a major 
role in driving the recruitment of eosinophils at 
primary and metastatic sites, promoting antitumor 
responses in models of hepatocellular carcinoma 
[141], methylcholanthrene-induced fibrosarcoma 
[98], and melanoma [142]. These apparently con-
trasting findings are compatible with the hypoth-
esis that IL-5 can play distinct or even opposite 
roles in modulation of tumorigenesis. The role of 
IL-5  in shaping the phenotype of eosinophils in 
TME from different cancers needs to be addressed 
more extensively. Fig. 1.3 summarizes the possi-
ble role of subsets of eosinophils in the TME and 
their modulation by cytokines (i.e., IFN-γ, IL-5, 
IL-33).

1.7.2  Role of Extracellular Vesicles 
in the Biological Activity 
of Eosinophils  
within the TME

There is compelling evidence that eosinophils 
can release exosomes (EXO) and other extracel-
lular vesicles (EV). EXO represent a small popu-
lation of vesicles produced by any kind of cell 
and reflect the molecular signature (made up of 
lipids, nucleic acids, and proteins) of their pro-
ducing cells. Through transfer of their bioactive 
molecules from the cell of origin to the target cell 
or tissue, EXO contribute to intercellular com-
munication and represent an important diagnostic 
biomarker in pathological conditions [143].

Although intercellular communication 
appears to be the one of the most important func-
tions of EV, they also have specific molecules 
related to their biogenesis. In fact, EXO have 
been defined by their size, density, and expres-
sion of specific biomarkers such as proteins 
involved in targeting and adhesion (tetraspanins, 
integrins, adhesion molecules), multivesicular 
bodies (MVB) biogenesis and secretion- 
associated proteins (ALIX, Rab GTPase), chap-
erone proteins, and others. The distinction 
between eosinophilic granules and EV becomes 
increasingly difficult, due to many shared mole-
cules expressed, such as CD63 [144], and to the 
fact that granules can also be found intact extra-
cellularly as membrane-bound, ligand-responsive 
structures [145]. Eosinophil EXO include/con-
tain a series of cationic proteins (MBP, EPX, 
EDN, ECP), miRNA, mRNA, cytokines, chemo-
kines, enzymes, and lipid mediators whose activ-
ities can mediate and autoregulate eosinophil 
biological functions. EXO-stored products are 
released from eosinophils through different 
mechanisms: classical exocytosis providing for 
exosome fusion with the plasma membrane and 
exosome embedding within target cell [146]. The 
release of eosinophil-derived EXO content in the 
receiving cell can condition the most important 
biological cell activities (transcription, transla-
tion, regulation by posttranscriptional or transla-
tional modifications), leading to drastic 
phenotypic variations in the receiving cell.
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Evidences suggest that eosinophil EXO, 
secreted into the extracellular microenvironment 
and delivered to different locations within the 
body, participate in multiple processes and 
pathologies, including asthma. Eosinophil EXO 
from asthmatic patients can influence the func-
tions of structural lung cells, modifying several 
processes and changing the expression profile of 
various pro-inflammatory molecules [147]. 
Furthermore, eosinophil-derived EXO can 
increase nitric oxide (NO) and ROS production 
in eosinophils themselves, thus autoregulating 
eosinophil functions [148]. The role of eosinophil- 
derived EXO in cancer progression is unknown 
and deserves investigation. By using electron 
microscopy, Feng and coworkers demonstrated 

that pericytes, like eosinophils, are equipped with 
internal vesicles that can be released outside of 
the cell [149]. Since pericytes represent an impor-
tant component of vessels involved in the modu-
lation of angiogenesis, it is conceivable that 
eosinophils and pericytes interact within the 
TME through the release of EV.

1.8  Regulatory Functions 
of Eosinophils: The Complex 
Role of the Angiogenesis

Angiogenesis and lymphangiogenesis are complex 
processes requiring a finely tuned balance between 
stimulatory and inhibitory signals [150–152]. The 

Fig. 1.3 Modulation of eosinophil phenotype by cyto-
kines. Activation of eosinophils with IFN-γ results in the 
expression of T-cell-attracting chemokines (CXCL9, 
CXCL10, and CCL5), effector molecules (TNF-α, IFN-γ, 
and NOS2), promoting both CD8 T-cell recruitment and 
tumor cytotoxicity. Similarly, IL-33 triggering leads to 
upregulation of T-cell-attracting chemokines (CXCL9, 
CXCL10, and CCL5), effector molecules (granzyme B 

and TNF-α), Th-1 cytokines (IL-12), and Th-2 cytokines 
(IL-10 and IL-13), as well as to granule protein polariza-
tion toward immune synapses. These traits favor 
eosinophil- mediated direct and indirect (CD8 T-cell- 
mediated) antitumor activities. In contrast, activation of 
eosinophils with IL-5 induce the expression of the chemo-
kine CCL22 that recruits TREG cells, which may promote 
tumor progression
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formation of new blood and lymphatic vessels 
occurs vigorously during embryogenesis but is 
restricted in adults [150]. In adults, angiogenesis 
and lymphangiogenesis are limited to sites of 
chronic inflammation [64], tissue injury or remod-
eling [153], and cancer [154]. The association 
between angiogenesis/lymphangiogenesis and 
tumor growth was of great interest during the last 
decades for the implications of the nature of tumors 
and the possibility to inhibit cancer growth and the 
formation of metastasis by blocking angiogenesis/
lymphangiogenesis [155]. The interest in angio-
genesis/lymphangiogenesis increased during last 
years for several reasons. Chronic low-grade 
inflammation is an essential hallmark of cancer [8] 
and several immune cells can be involved, directly 
and indirectly, in the modulation of angiogenesis 
and lymphangiogenesis [6, 156–163]. The latter 
observation led to the recognition that the interac-
tions between immune cells and the vascular sys-
tem are involved in a multitude of cancers [164].

Angiogenesis is initiated by activation of vas-
cular endothelial growth factor receptor 2 
(VEGFR2), expressed on blood endothelial cells 
(BECs) by vascular endothelial growth factor-A 
(VEGF-A). Cancer cells are an important source 
of VEGF-A and other pro-angiogenic mediators 
[6, 165, 166]. Immune cells in TME increase 
VEGF-A availability during the angiogenic 
switch [159]. Angiogenesis and lymphangiogen-
esis require the participation of additional mole-
cules, such as angiopoietins (ANGPTs) [167]. 
VEGF-A signaling through VEGFR2 is the major 
angiogenic pathway. VEGF-C and VEGF-D, 
mainly through the engagement of VEGFR3 on 
lymphatic endothelial cells (LECs), induce lym-
phangiogenesis in tumors and stimulate the for-
mation of metastasis [168,169]. The VEGF 
family includes VEGF-A, VEGF-B, VEGF-C, 
VEGF-D, and placenta growth factor (PlGF) 
[159]. VEGF-A signaling through VEGFR2 acti-
vates angiogenesis by inducing the survival, pro-
liferation, sprouting, and migration of BECs. 
VEGF-A also increases endothelial permeability 
[160, 170] and induces inflammation [157, 163, 
171]. There are several splicing isoforms of 
VEGF-A (121, 165, 189, and 206), which differ 
in their binding to matrix and to co-receptor. 

VEGF-A121 is freely diffusible, whereas 
VEGF-A165, VEGF-A189, and VEGF-A206 bind to 
heparin and heparin proteoglycans on cellular 
surfaces and extracellular matrices [172].

VEGF-A is primarily known for its essential 
role in physiologic and pathologic angiogenesis 
[173] and also retains lymphangiogenic proper-
ties [174] by binding to VEGFR2/VEGFR3 het-
erodimer receptor [175]. VEGF-A modulates 
lymphangiogenesis also indirectly by recruiting 
immune cells (e.g., macrophages, mast cells) that 
produce VEGF-C and VEGF-D [161, 163]. PlGF, 
expressed in the placenta, heart, and lungs, has 
four isoforms (PlGF1–4) [176, 177]. VEGF-B is 
highly expressed in heart, skeletal muscles, and 
brown fat in adults and has two major isoforms in 
humans: VEGF-B167 binds to heparin proteogly-
cans, whereas VEGF-B186 does not bind heparin 
and is more soluble [178]. PlGF and VEGF-B 
bind with high affinity to VEGFR1 whose tyro-
sine kinase (TK) activity is weak and downstream 
signaling poorly understood [179]. VEGFR1 is 
expressed on BECs, some immune cells, and 
pericytes, and its TK activity is required for cell 
migration toward VEGFs or PlGF [157, 171, 
180]. VEGF-B and PlGF are angiogenic in cer-
tain pathophysiological settings [181]. VEGF-B 
can modulate coronary vessel growth and cardiac 
hypertrophy and lipid metabolism [177, 182].

The VEGF-C/VEGFR3 signaling pathway is 
the main pathway implicated in lymphangiogen-
esis [183]. VEGF-C is crucial for the survival, 
proliferation, and migration of LECs [184]. 
VEGF-D also binds VEGFR3 to promote lym-
phangiogenesis [168].

Angiopoietins (ANGPTs) also play an impor-
tant role in modulating angiogenesis and lym-
phangiogenesis. In humans, the ANGPT/Tie 
system consists of two cell-surface TK receptors 
(TIE1 and TIE2) and two ligands ANGPT1 and 
ANGPT2. TIE2, primarily expressed on BECs, 
binds both ANGPTs, whereas TIE1 is an orphan 
receptor that can modulate ANGPT1, expressed 
by perivascular cells (i.e., pericytes), and sustains 
BEC survival. By contrast, ANGPT2, secreted by 
BECs, acts autocrinally and paracrinally as TIE2 
ligand to promote angiogenesis and lymphangio-
genesis [185]. Several chemokines, produced by 
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immune and nonimmune cells, also play a role in 
the modulation of angiogenesis and antiangio-
genesis [158].

Human eosinophils produce several angio-
genic factors such as VEGF-A [129, 137], fibro-
blast growth factors (FGF-2) [40, 130], CXCL8/
IL-8 [131], and osteopontin [132]. Human eosin-
ophils also produce MMP9 [186–188]. 
Eosinophils have been detected in metastatic 
lymph nodes of cancer patients, but the produc-
tion of lymphangiogenic factors by these cells 
should be further addressed.

1.9  Mouse Models to Investigate 
the Role of Eosinophils 
in Cancer

Several mouse models have been developed for 
the study of the functional role of eosinophils. 
Most of these experimental models have been 
employed mainly in the study of respiratory dis-
eases, such as asthma and eosinophilic esophagi-
tis. These models can be transgenic, genetically 
engineered, target-specific, and humanized.

1.9.1  Transgenic Mouse Models

A relevant transgenic mouse model used to 
assess phenotypic features of eosinophils in the 
host is represented by PHIL transgenic mouse 
model of study. PHIL mice were first described 
by Lee and colleagues as a transgenic line of 
mice with a complete ablation of eosinophils and 
the contemporary presence of a fully functional 
hematopoietic compartment [189]. These mice 
have been generated by replacing the eosinophil 
peroxidase (EPX) with the Diphtheria toxin A 
chain (DT) and by exploiting the cytocidal prop-
erty of DT. When host eosinophils undergo mat-
uration or activation of the transcription factors 
devoted to the expression initiation of EPX in 
PHIL transgenic mice, the promoter transcribes 
the replaced DT sequence, thus selectively ablat-
ing eosinophils [189]. These mice have allowed 
to establish the contribution of eosinophils to the 
resolution of inflammatory responses in experi-

mental pulmonary allergies [190], experimental 
colitis [191], and to pathology and protection 
against parasites [78].

An alternative mouse model for studying 
eosinophil functions in vivo is the ΔdblGATA1 
transgenic mice. Deletion of a high-affinity 
GATA site in the GATA-1 promoter results in a 
complete ablation of the eosinophil lineage with-
out affecting the development of the other GATA- 
1- dependent lineages, such as erythroid, 
megakaryocytic, and mast cell [192]. These mice 
have been used to demonstrate a protective role 
for eosinophils in a methylcholanthrene (MCA)-
induced fibrosarcoma tumor mouse model [98]. 
However, besides eosinophil deficiency, 
ΔdblGATA1 mice were subsequently reported to 
display numerical and functional aberrancy in 
basophils [193], thus raising concerns on their 
specificity for eosinophil-specific studies.

IL-5 transgenic mice display an overrepre-
sented eosinophil compartment due to the insur-
gence of eosinophilia in the host. These 
hypereosinophilic mice display abnormally high 
presence of eosinophils in bone marrow, spleen, 
and peritoneal exudate, compared to controls. 
Simson and coworkers proposed a role for eosin-
ophils in tumor immunosurveillance by using the 
IL-5 transgenic mice with elevated levels of cir-
culating eosinophils [98]. Similarly, Kataoka and 
coworkers exploited these IL-5 transgenic mice 
to demonstrate an antitumor activity of eosino-
phils in hepatocellular carcinoma [141].

1.9.2  Target-Specific in Vivo Models

Depletion mechanisms to generate selected 
target- specific mouse models have been devel-
oped to produce in vivo eosinophil-targeted mod-
els of study. Repeated systemic injections of an 
anti-Siglec-F polyclonal antibody that function-
ally inhibits the activity of Siglec-F protein and 
selectively induces apoptosis in eosinophils 
result in eosinophil ablation in mice [55]. 
Recently, this Siglec-F-based functional deple-
tion of eosinophils in mice has been employed to 
study the role of eosinophils in cancer. By using 
this approach, three independent groups demon-
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strated the essential role of eosinophils in antitu-
mor response in mouse models of melanoma and 
other cancers [40, 41, 105].

1.9.3  Genetically Engineered 
in Vivo Models

Initially, genetically modified mouse models 
with impaired eosinophil development and/or 
function, although not eosinophil-specific, were 
described. These include mice deficient for the 
eosinophilic cytokine IL-5 [194] or its receptor 
[195], which are characterized by the absence of 
eosinophilia upon Th2 cell-inducing stimuli. 
Furthermore, mice with a double deletion of 
CCL11 and CCL24 genes are characterized by a 
severe diminished eosinophil recruitment in 
response to allergic stimuli [196]. These models 
were largely employed in allergy and respiratory 
disease research.

Subsequently, mice deficient for eosinophil- 
specific granule proteins MBP and EPX were 
described. MBP-1−/− mice were generated by 
truncating the MBP-1 gene, thus producing a 
dysfunctional protein containing the exons 1 
and 2 but lacking the exons 2, 3, and 4. This 
model is characterized by a reorganization of 
eosinophil secondary granule structures and by 
a marked reduction of the eosinophil numbers in 
lung parenchyma and bronchoalveolar lavage 
[197]. Similarly, EPX−/− mice were generated 
by a targeted disruption of the EPX gene, in 
which the normal EPX gene was replaced with a 
dysfunctional EPX sequence lacking the exons 
7, 8, and 9. EPX−/− mice displayed an altered 
structure of eosinophil secondary granules and a 
remarkable reduction of eosinophils in lung 
BAL [198]. Interestingly, a recent report 
described the generation of a double knockout 
mouse model for both MBP and EPX (MBP−/-

EPX−/− mice). These mice are featured with 
eosinophil deficiencies similar to those observed 
in animals deficient of EPX or MBP only, but 
represent an advance in the implementation of 
an in vivo model to investigate eosinophil patho-
physiology [199]. These models are largely uti-
lized for research in allergy, inflammation, and 

respiratory diseases and could be successfully 
employed in anticancer research [200].

1.9.4  Humanized Mouse Models

The development of humanized mouse models 
best recapitulates the pathology of human dis-
eases and thus represents a major goal to under-
stand the role of eosinophils in human cancer. 
Recently, a novel IL-3/GM-CSF/IL-5 Tg NOD/
Shi-scid-IL2rγnull (NOG) model, a mouse strain 
in which human eosinophil differentiation is 
induced from HSC, was reported [201]. In this 
mouse strain, the authors established a human 
asthmatic inflammation model by intratracheal 
administration of human IL-33. This enabled to 
study the Th2 responses specifically in a human 
context, including the eosinophil-dependent 
responses in asthma. By using humanized NSG 
mice adoptively transferred with human CD34+ 
hematopoietic stem cells, Arnold and collabora-
tors showed that following infection with gastro-
intestinal bacteria, eosinophils are recruited to 
the tissue where they reduce inflammation by 
suppressing Th1 immune responses [202]. Thus, 
humanized mouse models represent a valid 
opportunity to investigate specifically the roles of 
eosinophils in different human cancers.

1.10  Concluding Remarks 
and Outstanding Questions

There is compelling evidence that eosinophils are 
potent effector and immunoregulatory cells in 
TME of experimental and human cancer [49, 
203]. Several studies have reported that eosino-
philia can be associated with a favorable progno-
sis in a variety of solid and hematologic tumors 
[6]. By contrast, a limited number of studies indi-
cate a protumorigenic role of eosinophils [6, 
114]. The potentially dual role (i.e., pro- 
tumorigenic and antitumorigenic) of eosinophils 
raises several fundamental questions. First, there 
is the possibility that the role of eosinophils and 
their mediator is cancer-specific (e.g., influenced 
by different TMEs). Alternatively, different sub-
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sets of eosinophils and/or different eosinophil- 
derived mediators can play distinct or even 
opposite roles in tumorigenesis. There is already 
evidence, at least in mice, of the existence of dif-
ferent subsets representing different stages of 
maturation of eosinophils [202, 204, 205]. Recent 
fate mapping experiments demonstrate that mac-
rophages [206] and mast cells [207, 208] form a 
highly heterogeneous population of immune 
cells, similar to T cells [209]. Future studies 
should address the possible roles of plasticity/
hypothetical subtypes of eosinophils by single- 
cell RNA-seq, together with analyses of encoded 
proteins.

Studies of eosinophils are usually performed 
on cells isolated from peripheral blood where O2 
and nutrients are abundant and pH neutral. By 
contrast, eosinophils in TME are embedded in a 
hostile metabolic setting characterized by 
hypoxia, accumulation of lactate, potassium and 
adenosine, and low pH [210–214]. Thus, the bio-
chemical and functional characteristics of peritu-
moral and intratumoral eosinophils likely differ 
from those of peripheral blood eosinophils.

Experimental models have started to provide 
evidence that eosinophils and their mediators can 
play a protective role by inhibiting tumor growth 
and the formation of metastasis in different can-
cers [40, 41]. Several mouse models have been 
characterized for the evaluation of the pathophys-
iological roles of eosinophils. Different groups 
have used target-specific mouse models to dem-
onstrate the antitumorigenic role of eosinophils 
[40, 41, 105]. Humanized mouse models best 
recapitulate human disease and will represent a 
useful tool to evaluate the role of eosinophils and 
their mediators in different human cancers.

Immunotherapy with mAbs targeting immune 
checkpoint inhibitors (ICIs) (e.g., CTLA-4, 
PD-1/PD-L1 network) has revolutionized the 
therapies of an increasing number of solid and 
hematologic tumors [215, 216]. Unfortunately, 
these therapies are effective only in a percentage 
of patients, and there is urgent need of biomark-
ers predictive for ICI-based immunotherapy 
[217]. There is some evidence that baseline 
peripheral blood eosinophils represent a useful 
biomarker for prognosis of melanoma [109] and 

NSCLC [111]. Future studies should evaluate the 
predictive value of different subsets of peripheral 
blood eosinophils (e.g., low and high density) in 
response to ICIs in different cancers.

A deeper insight into the immunological and 
molecular mechanisms regulating the link 
between tumor-infiltrating eosinophils and tumor 
cells could lead to the identification of new prog-
nostic/predictive biomarkers, as well as a wider 
view of cancer immunotherapy, in an even more 
personalized therapeutic approach.
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Dendritic Cells in the Tumor 
Microenvironment
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Abstract

Dendritic cells (DCs) are professional antigen- 
presenting cells (APCs)  of the immune sys-
tem. They capture foreign antigens and can 
present them to lymphocytes, that is, T cells 
and B cells, to activate them. DCs are the most 
potent of all immune cells at inducing the 
adaptive immune system. Thus, the presence 
of DCs at the anatomical site of the immune 
challenge is imperative for the immune sys-
tem to mount an effective immune response. 
From the anatomical site of the immune chal-
lenge, DCs cargo antigens to the draining 
lymph nodes, specialized immune organs 
where adaptive immunity is generated. DCs 
are heterogeneous as a type of immune cell, 
and various subsets of DCs have been reported 
and their functions described. In this chapter, 
we discuss various aspects of DC develop-
ment and function. We further discuss how 
various tumor microenvironments can affect 
DC development, function, and migration, 

thus evading a strong adaptive immune 
response.
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2.1  Introduction

Dendritic cells (DCs) play a crucial role in initiat-
ing and modulating adaptive immune responses 
during infections, allergies, autoimmune disor-
ders as well as maintain T-cell homeostasis in 
steady-state conditions. Depending on the 
immune challenge, they can initiate or enhance 
an immune response. Moreover, they can tolerize 
or suppress the immune system toward innocu-
ous antigens. DCs can infiltrate solid tumors, 
capture, and process tumor antigens and transport 
them to the draining lymph node (LN) to initiate 
an effective adaptive immune response against 
the tumor, by priming and expanding naïve T 
cells to become anti-tumor effector T cells. 
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Although many other antigen-presenting cells 
(APCs) such as macrophages also contribute to 
this process, DCs are considered the most profi-
cient of all APC types. Additionally, DCs can 
modulate the tumor microenvironment to influ-
ence the recruitment of other immune cell popu-
lations into the tumor. DCs are very heterogeneous 
and can be classified into many subsets depend-
ing on factors including their phenotype, special-
ized function, localization in peripheral tissue, 
lineage, etc. Even though the exact role of every 
DC subset in generating anti-tumor immunity has 
not yet been fully deciphered, DCs, in general, 
are an important arm in adaptive immune 
responses against tumors. However, a tumor 
environment can present many hurdles in the 
scheme of DC-mediated anti-tumor immunity. 
Here, we review different aspects of DC biology 
and how DC function can be influenced by 
tumors.

2.2  Tumor-Infiltrating Dendritic 
Cells Mediate Anti-tumor 
Immunity

For the generation of efficient anti-tumor immu-
nity professional APCs need to capture tumor- 
derived antigens, process them to form a complex 
with major histocompatibility complex (MHC) 
molecules, migrate to the draining LN, and 
finally present them to cognate CD4 or CD8 T 
cells [1]. Presentation of antigen to T cells can 
lead to two possible outcomes. Either the T cells 
can be tolerized, that is, they become quiescent 
and/or get converted into an immune regulatory T 
cell, or they can be activated to mount a response 
against the immune threat [2]. The latter outcome 
is desired for an effective anti-tumor immune 
response and for that APCs, either alone or in co- 
operation with other APC types, need to provide 
three signals to the cognate T cells [3].

• Signal one is the peptide:MHC complex. 
APCs capture exogenous antigens such as 
tumor-derived antigens and process them effi-
ciently to eventually present them as a com-
plex with MHCI or MHCII molecules to 

present them to CD8 T cells or CD4 T cells, 
respectively. The process of internalization of 
exogenous antigens to be processed and pre-
sented as a complex with MHCI complex to 
CD8 T cells is called “cross-presentation” 
and this process is important to generate 
effective anti-tumor immunity. Among all 
APC types, DCs are considered most profi-
cient at antigen presentation, especially 
cross-presentation.

• Signal two are co-stimulatory signals. APCs 
can present p:MHC complexes to T cells, but, 
in the absence of any inflammatory signal, it 
might not necessarily lead to T-cell activation. 
However, during an infection or other inflam-
matory conditions, APCs can sense the dan-
ger, as they express specific receptors which 
can bind to pathogen-associated molecular 
patterns (PAMPs) or damage-associated 
molecular patterns (DAMPs) and up-regulate 
the expression of co-stimulatory molecules 
such as CD40 and CD86. The ligands for these 
receptors are expressed on T cells eternally. 
An APC when presents p:MHC complexes in 
conjunction with co-stimulatory molecules 
leads to efficient activation of T cells. DCs 
express an array of receptors to detect PAMPs 
and DAMPs including toll-like receptors 
(TLRs), NOD-like receptors (NLRs), C-type 
lectins, etc., which enable them to detect dan-
ger signals and over-express co-stimulatory 
molecules, making them capable of effec-
tively activating T cells toward anti-tumor 
response [4].

• Signal three is activating cytokines. Along 
with receiving signal one and two con- 
currently from a single APC type, T cells 
need inflammatory cytokines such as IL-12 
and IL-15 which boost and sustain their effec-
tor status and enable them to keep expanding 
[5]. Certain subsets of APCs, depending on 
the environment, can provide these signals 
along with signal 1 and signal 2. However, a 
new concept of APC co-operation is emerg-
ing which suggests that, while a single APC 
can provide signals 1 and 2 to the cognate T 
cells, another myeloid cell can serve as a 
source of signal 3 during an inflammatory 
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challenge [6, 7]. Whether this co-operation 
between myeloid cells exists in the tumor 
microenvironment is a challenging research 
question.

DCs are considered as the most proficient 
APCs that provide signals 1, 2, and 3 to T cells 
and thus initiate adaptive immune responses 
against tumor antigens. However, to do so, dif-
ferentiated DCs must be able to infiltrate the 
tumor microenvironment from neighboring tis-
sues. Precursors of DCs which originate in the 
bone marrow  (BM) can also enter the tumor 
parenchyma and differentiate in situ. While it is 
still unclear which path DCs take to infiltrate 
tumors, their presence in the tumor is beneficial 
toward anti-tumor immunity. In clinical samples, 
the presence of DCs in the primary tumor site has 
been correlated with increased survival in many 
tumor typesincluding ovarian carcinoma, head 
and neck tumors, pancreatic adenocarcinoma, 
lung, and breast cancer [8–11].

2.3  Migration of DCs 
to and from Tumor 
Parenchyma

Chemotaxis is a major mechanism utilized by 
immune cells for directional migration. DCs 
exhibit classic directional migration engaging 
their chemokine receptors to move toward gra-
dients of the corresponding chemokine ligands. 
DCs are pliable in their expression of chemo-
kine receptors and, depending on the subset, 
anatomical location and pathophysiological 
condition, they can express varying levels of 
multiple chemokine receptors [12]. DCs do not 
develop fully at their site of origin, that is, BM, 
and complete their differentiation program in 
peripheral tissues [13]. For instance, skin DCs 
develop from DC precursors traveling from BM 
into the skin via blood. In the tissue DCs capture 
antigens, follow the chemokine gradients to 
reach terminal lymphatics, and through the lym-
phatic vessels enter the nearest LN. Unlike other 
immune cell populations, DCs, except pDCs, 
migrate dominantly through the lymphatic sys-

tem [12]. This scheme of DC development and 
migration raises an important question regard-
ing the migration of DCs into solid tumors, that 
is, do terminally differentiated DCs migrate 
from surrounding tissue into the tumor? or if 
DC precursors migrate into the tumors and dif-
ferentiate in situ. Assuming either possibility, 
another key aspect that needs investigation is 
what chemokine gradients do DC or DC precur-
sors follow to reach into the tumor parenchyma. 
DC migration toward the LN has been well 
characterized. C–C Motif Chemokine Receptor 
(CCR)7 on DCs is the dominant chemokine 
receptor which guides DCs toward gradients of 
C–C Motif Chemokine Ligand (CCL)19/21 on 
the way to LN and also from the boundaries of 
the LN into the deep T-cell zone of the 
LN. However, steps involved in the migration of 
DCs/DC precursors toward non-lymphoid tis-
sues have only been partly characterized [14]. 
Adoptive transfer experiments revealed that 
DCs can adhere to skin venules by attaching to 
certain selectins expressed on endothelial cells; 
however, attachment to selectins is only the start 
of a multistep adhesion cascade and subsequent 
intravasation [15]. All the steps entailed in DC 
migration from blood to tissue are not fully 
characterized for solid tumors. This is a chal-
lenge, as tumors are diverse and there might not 
be a common adhesion and chemotactic axes 
that guide DCs into solid tumors. Nonetheless, 
certain chemokine ligands that have been seen 
in certain tumors can attract DCs. These chemo-
kines can be secreted either by the tumor them-
selves such as CCL4 or immune cells within the 
tumor [16]. For example, CD8 T cells or NK 
cells can secrete CCL5 and CXCL1 which can 
attract DCs expressing the corresponding che-
mokine receptor [17]. In various settings, it has 
been demonstrated that immune cells reaching a 
site can secrete chemokines to attract other 
types of immune cells as a part of the ongoing 
immune response. Thus, it seems likely that cer-
tain immune cells in tumors have the potential 
to attract other immune cells, and thus the role 
of other immune cells in attracting DCs into the 
tumor environment must be further 
investigated.
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2.4  Longevity of DCs 
in the Tumor 
Microenvironment

A study, investigating the life of major immune 
cell populations revealed that while B cells and T 
cells can live up to 20 days after they leave their 
site of origin, DCs have a relatively short life of 
around 3 days in lymphoid and non-lymphoid tis-
sues at steady state [18]. However, the ratio of 
DCs to other immune cells remains constant, 
which suggests that DCs have a high turnover. 
However, in many tumors, the decreased pres-
ence of DCs can be attributed to factors released 
in the tumor microenvironment, which can affect 
the lifespan of DCs in the tumor. These factors 
include mucins, gangliosides neuropeptides, and 
nitric oxide. A study showed that gangliosides 
including GM3 and GD3 induce apoptosis of 
DCs in vitro [19]. These gangliosides are found 
at high concentrations in melanoma patients. The 
presence of these gangliosides in melanoma 
explains the lower number of DCs in malignant 
melanoma as compared to that in benign skin 
lesions. MUC2 mucins derived from conditioned 
medium of LS180 cells, a colorectal cancer cell 
line, can cause apoptosis of mature DCs [20]. 
Overexpression of mucins, large extracellular 
proteins that are heavily glycosylated with com-
plex oligosaccharides, is associated with many 
epithelial cancers. Thus, considering these unfa-
vorable conditions, the life of DCs could be much 
different compared to healthy tissue.

2.5  Immunosuppression of DCs 
in Solid Tumors

Some tumors, such as Merkel Cell Carcinoma 
(MCC), are initiated by oncoviruses, and princi-
pally these viruses can provide danger signals to 
DCs which could trigger them to their path 
toward initiating anti-tumor immunity. However, 
most solid tumors do not provide any inflamma-
tory or danger signals to infiltrating DCs, unless 
somehow the tumor microenvironment can derive 
inflammatory signals. Besides a lack of adequate 
inflammatory signals, a solid tumor environment 

can actively suppress DC-mediated anti-tumor 
immunity. Across many studies, various mecha-
nisms have been postulated by which tumor or 
tumor components can suppress DC activity. For 
instance, in a mouse model of ovarian tumor, 
tumor cells induced the activation of transcrip-
tion factor Xbox binding protein (XBP) which 
caused endoplasmic reticulum stress in DCs 
which impeded their ability to prime T cells [21]. 
Cancer cells by initiating the B-catenin signaling 
pathway can also limit DC recruitment into 
tumors [22]. Interleukin (IL)-10 is a widely 
known immunosuppressive cytokine, and tumor 
cells, as well as other components of the tumor 
environment such as tumor-associated macro-
phages (TAMs), can secrete IL-10 [23]. CD103+ 
tumor-infiltrating DCs have a high expression of 
IL-10 receptor and, in response to sensing IL-10, 
they can downregulate the production of IL-12, a 
cytokine known to enhance CD8+ T-cell prolifer-
ation and effector function [24]. IL-10 can also 
skew the differentiation of monocytes toward 
immunosuppressive macrophages instead of 
monocyte-derived DCs [25]. The role of IL-10 in 
the suppression of anti-tumor immunity is a 
broad area of investigation and the studies 
describing its mechanisms have been covered in 
this review [26].

Tumor cells can also secrete thymic stromal 
lymphoprotein (TSLP) which induces OX40 
OX40L expression in DCs [27]. OX40L- 
expressing DCs induce a type 2 immune response 
which is not as potent an anti-tumor response as 
a type 1 response. Plasmacytoid dendritic cells 
(pDCs), which are known to secrete high amounts 
of type 1 interferon during viral infections, can 
also limit their production of type 1 interferon 
when immunoglobulin-like transcript 7 (ILT7) on 
pDCs engages with bone marrow stromal antigen 
2 (BST2) on tumor cells [28]. Tumors secrete 
growth factors and produce chemokines that help 
sustain the tumor and even metastasize. A promi-
nent growth factor that is over-produced in many 
tumors is Vascular Endothelial Growth Factor 
(VEGFA). Tumors expressing VEGFA can cause 
“angiogenic switch” which means that new vas-
culature can develop which will support tumor 
growth and metastasis [29]. Besides supporting 
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tumor growth, VEGF is an immunosuppressant 
for DCs [30]. Treatment of DCs with VEGF 
results in inhibition of their maturation [31, 32]. 
Some tumor-associated chemokines that can also 
cause similar inhibition of DC maturation include 
CCL2, C-X-C Motif Chemokine Ligand 
(CXCL)1, and CXCL5 [33]. In a mouse model of 
Ovarian cancer, Programmed cell death-1 (PD-1) 
was expressed on tumor-infiltrating DCs [34]. 
PD-1 is generally expressed on T cells which are 
exhausted in solid tumors or during chronic viral 
infections [35]. The same study further showed 
that these PD-1+ DCs could block T-cell prolif-
eration. Factors that induce PD-1 expression on 
DCs are largely unknown. It is tempting to 
assume that the same factors that induce PD-1 
expression on T cells would do the same for DCs. 
Nonetheless, anti-PD-1 therapy which is the most 
commonly applied immunotherapy for solid 
tumors could potentially work by blocking the 
immunosuppressive activity of PD-1-expressing 
DCs. Another marker of exhaustion expressed 
generally on T cells, that is, T-cell Ig and mucin 
domain 3 (Tim-3), was also expressed on tumor- 
infiltrating DCs in mouse models for Lewis lung 
cancer tumors and colorectal adenocarcinoma. 
Nucleic acids  (NA) from dying tumor cells can 
lead to NA-mediated anti-tumor immunity. Tim- 
3- expressing DCs were shown to suppress 
NA-mediated anti-tumor immunity [36]. Thus, 
much like T cells, DCs can also become dormant 
or immunosuppressive in solid tumor microenvi-
ronments and this can be reflected by the expres-
sion of certain markers. Besides inducing 
immunity, DCs also play a pivotal role in main-
taining immune tolerance to innocuous antigens. 
In the steady state, some subsets of DCs such as 
migratory DCs and pDCs have been shown to 
specialize in inducing immune tolerance, by 
transporting peripheral harmless antigens to sec-
ondary lymphoid organs such as lymph nodes 
and priming T cells to an anergic, that is, non- 
responsive state, or even convert naïve CD4+ T 
cells into regulatory T cells [36]. Many solid 
tumors have a relatively high frequency of Tregs, 
which adds to the immunosuppressive environ-
ment. In mice and rats bearing melanoma, it was 
shown that a fraction of DCs accumulated in the 

draining LNs and these DCs were proficient in 
inducing expansion of Treg cells.

2.6  DC Subsets in Tumors

DCs are a heterogeneous group of cells and 
depending on the anatomical location and physi-
ological condition many DC subsets can be iden-
tified [37]. However, recently a study that 
attempted to relate DCs between species and ana-
tomical locations broadly grouped all DC subsets 
into five subsets, that is, cDC1s and cDC2s for 
conventional DCs, pDCs, Langerhans cells, and 
MoDCs [38]. These subsets express exclusive 
markers that can be used to identify them. For 
instance, in both mice and humans, cDC1s 
express C-type lectin endocytic receptor 
CLEC9A and chemokine receptor XCR1, 
whereas cDC2s express CD1c, a transmembrane 
glycoprotein [39]. Many studies have investi-
gated the above subsets for specialized roles. 
While this remains a topic of intense investiga-
tion, some specialized roles have been specifi-
cally ascribed to individual subsets. For instance, 
in various settings including infection and tumor 
models, it has been shown that cDC1s are spe-
cialized at cross-presentation of exogenous anti-
gens and crucial for inducing an effective CD8 
T-cell response [40–42]. Since the cross- 
presentation of exogenous antigens in the context 
of MHC-I molecules to CD8 T cells is essential 
to generate effective anti-tumor immunity, the 
presence of cDC1s in tumors is believed to be 
beneficial to anti-tumor immunity [43]. Indeed, 
defect in cDC1s in the tumor microenvironment 
has been shown to negatively impact tumor 
immunosurveillance in many tumor models [44–
46]. However, cDC1s are the minority DC type in 
tumors, as well as lymphoid and non-lymphoid 
tissues, making them a precious immune popula-
tion. However, more studies across different can-
cer types looking at relative cDC1 frequencies in 
solid tumors and their impact on patient survival 
and tumor progression are warranted.

In mouse tumor models, specific depletion of 
cDC1s impairs the CD8 T cell-mediated anti- 
tumor response and the ability to reject trans-
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planted tumors [47]. Across many studies, much 
evidence suggests that cDC1s in tumors are the 
most proficient of all DC subsets at cross- 
presentation and some other key unique features 
of cDC1s make them the most prominent DC 
type for generating anti-tumor immunity. For 
instance, cDC1s produce CXCL9/10, chemokine 
ligands that can recruit effector and memory T 
cells expressing the corresponding chemokine 
receptor CXCR3 [48]. cDC1s have been shown 
to efficiently capture, process, and transport 
tumor-derived antigens to the draining LN, and 
ex vivo experiments showed that they were most 
proficient at stimulating and activating T cells 
[49]. cDC1s also produce high amounts of IL-12, 
an inflammatory cytokine that has been shown to 
enhance the CD8 T cell- and NK cell-mediated 
cytotoxicity [50]. cDC1s are also most sensitive 
and responsive to type I interferons, as they 
enhance their cross-presentation capacity in 
response to stimulation by type I interferons [51]. 
Due to the above features, cDC1s are regarded as 
the DC type essential for mounting effective anti- 
tumor immunity. However, it is important to real-
ize that the anti-tumor functions of cDC1s have 
been ascribed to them based on mouse tumor 
models. Besides the obvious caveat of species- 
specific discrepancies, there are other issues with 
mouse models that could complicate the interpre-
tation of results. For instance, none of the models 
could exclusively deplete cDC1s. The most com-
mon model uses knocking out of Basic Leucine 
Zipper ATF-Like Transcription Factor 3 (BATF3), 
which is crucial for cDC1 development. However, 
the same transcription factor is also crucial in the 
development of other DC types. Similarly, some 
of the genetic ablation models have not been able 
to exclusively deplete cDC1s and thus better 
models are warranted to support the above find-
ings [52]. In addition to caveats of the mice mod-
els, discrepancies between the profile and 
function of cDC1s in mice and humans still 
leaves some doubt about the exclusive specialty 
of cDC1s in generating anti-tumor immunity. For 
instance, a few studies showed that other DC sub-
sets, for example, the cDC2 subset, produced 
more IL-12 than cDC1s in response to certain 
adjuvants [53]. Also, while in mouse models, 

cDC1s were shown to efficiently capture and 
transport tumor-derived antigens, cDC1s in 
humans were shown not to efficiently capture 
antigens from the parenchyma of non-lymphoid 
tissues to the draining LNs [54]. The study also 
shows that cDC1s express a lower level of CCR7, 
a receptor pivotal for the migration of DC from 
peripheral tissues to LNs. Thus, in summary, 
while experimental models have highlighted the 
importance of cDC1s in anti-tumor immunity, 
more data regarding the alignment of the pheno-
type and function of DC subsets across species, 
especially in different cancer types, are warranted 
to endorse the notion that cDC1s are the special-
ized DC subset in cross-presentation and generat-
ing anti-tumor immunity.

cDC2s are the more abundant population in 
lymphoid and non-lymphoid tissues [54]. Unlike 
cDC1s, their role in cancer is much less estab-
lished, perhaps because they are considered less 
efficient at cross-presentation than cDC1s. 
However, studies have shown that cDC2s are 
present in solid tumors and can migrate to drain-
ing LNs [55]. The current belief is that while 
cDC1s are more potent at cross-presentation and 
priming CD8 T cells, cDC2s are better activators 
of CD4 T cells [54]. Effective priming of CD4 T 
cells for an anti-tumor response is crucial as a 
large body of literature emphasizes the role of 
CD4 T cells in helping CD8 T cells to infiltrate 
and kill tumor cells [56]. Thus, cDC2s, although 
not considered specialized at cross-presentation, 
serves as a crucial arm in anti-tumor immune 
responses by effectively priming CD4 T cells. 
This idea is corroborated by studies that show 
that the presence of gene signature of cDC2s 
directly correlates with better survival for cancer 
patients [56, 57].

pDCs were initially discovered as cells spe-
cialized to produce type-1 interferon in response 
to viral ligands [58]. However, afterward, many 
reports postulated a role of pDCs in driving both 
central and peripheral tolerance [59–63]. 
Currently, the consensus is that pDCs can be 
tolerogenic or immunogenic depending on their 
environmental stimuli. While type 1 interferons 
have a clear role in anti-viral immunity, they can 
be both anti-tumor and pro-tumor [64]. pDCs can 
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contribute to anti-tumor immunity by serving as 
APCs and via type 1 interferon production, but 
there have been many mechanisms described 
through which various solid tumors can induce 
the tolerogenic or regulatory function of pDCs to 
promote tumor growth. Demoulin, S et al. in their 
review describe mechanisms by which various 
tumors can induce tolerogenic function and 
inhibit immunogenic functions of pDCs [65].

2.7  DCs Help in Anti-tumor 
Immunity: Beyond T-Cell 
Priming

Besides their classic function of antigen presen-
tation, DCs also play a key role in the recruitment 
of other immune cells. In a landmark study, it was 
shown that LNs of mice lacking DCs are much 
smaller than those of wild-type (WT) mice [66]. 
Mechanistic experiments in the same study fur-
ther showed that DCs modulate the phenotype of 
specialized endothelial venules of the LN, called 
high endothelial venules (HEVs) which are por-
tals through which other immune cells including 
T cells and B cells can enter into the LN from the 
bloodstream. DCs induced the expression of mul-
tiple adhesion molecules on endothelial cells to 
which immune cells can adhere as the first step in 
their intravasation into the LNs. A similar phe-
nomenon is observed in ectopic lymphoid struc-
tures that form in certain pathophysiological 
conditions, such as persistent pathogenic infec-
tions, or autoimmune diseases, such as rheuma-
toid arthritis, to generate local immunity [67]. 
The neogenesis of tertiary lymphoid structures 
(TLS) has been described in many models and 
across many of these studies; DCs have been 
shown to play a pivotal role in aiding genesis of 
TLS [68]. Even in cancer patients, a positive cor-
relation between the presence of DCs and the 
presence of TLSs has been demonstrated [8, 10, 
61–63]. While the role of TLS in cancer immu-
nity is still an area of investigation, the majority 
of the correlation studies show that the presence 
of TLS in the tumor is positively correlated with 
patient survival for several different cancer types. 
After their genesis, TLS can play several roles 

including serving as a site for DC-T cell priming, 
and somatic hypermutation. Additionally, TLS 
provide the necessary adhesion molecules and 
chemokines to serve as a portal for the recruit-
ment of immune cells into the tumor [72–74]. 
Thus, by aiding the formation of TLS in cancer, 
intra-tumoral DCs play a pivotal role in the 
recruitment of immune cells into the tumor 
microenvironment, akin to their role in LN.

Besides inducing the maturation of endothelial 
cells of TLS, DCs themselves can modulate the 
chemotactic environment of tumors to further 
assist in lymphocyte recruitment. For instance, in a 
mouse model of melanoma, it was shown that DCs 
are the chief source of the chemokine CXCL10 
which is a ligand for CXCR3. CXCR3–CXCL10 
chemokine axis plays a pivotal role in the migra-
tion of effector T cells into the tumor [75].

2.8  Summary

Dendritic cells are a heterogeneous population of 
cells and research into the specialized function of 
different DC subsets continues. Ultimately, as the 
development and function of each subset becomes 
more clear, specific DC subsets can be targeted to 
either enhance or suppress immunity. 
Additionally, a clear understanding of the devel-
opment requirements of DC subsets will also 
enable us to skew in vitro generated DCs toward 
one type or other, which then can be used as ther-
apeutics. Migration of DCs and DC precursors 
into tumors is not well studied. Unlike lymphoid 
organs, solid tumors might not have the neces-
sary lymphatic structure and chemokine gradi-
ents to allow for the migration of DCs from the 
adjacent healthy tissue. Thus, even if appropriate 
DCs can be generated in  vitro or identified 
in vivo, one has to think about their route to the 
tumor parenchyma. It is also crucial to  understand 
better tumor-derived factors that can lead to sup-
pression of DC activity or their death or cause 
aberrant development of DC precursors. 
Strategies to make DCs immunogenic and refrac-
tory to tumor-derived apoptotic factors can help 
in the effort to use DC-based therapeutics to treat 
cancer (Fig. 2.1).
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Resident Memory T Cells 
in the Tumor Microenvironment

Jason B. Williams and Thomas S. Kupper

Abstract

Tissue-resident memory T (TRM) cells are stra-
tegically positioned within the epithelial lay-
ers of many tissues to provide enduring 
site-specific immunological memory. This 
unique T-cell lineage is endowed with the 
capacity to rapidly respond to tissue perturba-
tions and has a well-documented role in eradi-
cating pathogens upon reexposure. Emerging 
evidence has highlighted a key role for TRM 
cells in cancer immunity. Single-cell 
approaches have identified TRM cells among 
other CD8+ tumor-infiltrating lymphocyte 
(TIL) subsets, and their presence is a positive 
indicator of clinical outcome in cancer 
patients. Furthermore, recent preclinical stud-
ies have elegantly demonstrated that TRM cells 
are a critical component of the antitumor 
immune response. Given their unique func-
tional abilities, TRM cells have emerged as a 
potential immunotherapeutic target. Here, we 
discuss TRM cells in the framework of the 
cancer- immunity cycle and in the context of 
the T cell- and non-T cell-inflamed tumor 

microenvironments (TME). We highlight how 
their core features make TRM cells uniquely 
suited to function within the metabolically 
demanding TME. Finally, we consider poten-
tial therapeutic avenues that target TRM cells to 
augment the antitumor immune response.
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3.1  Introduction

While the immune response to cancer is incom-
pletely understood, cytotoxic CD8+ T lympho-
cytes are thought to be the fundamental antitumor 
effector cells. The presence of a CD8+T-cell infil-
trate is a positive prognostic marker in most types 
of solid cancer [1–3] and can predict clinical 
response to immune checkpoint blockade therapy 
[4, 5]. Most of these therapies aim to increase the 
frequency and function of tumor-infiltrating T 
lymphocytes (TILs) by inhibiting the negative 
regulatory pathways present in the tumor micro-
environment (TME). Despite recent advances in 
immunotherapy to harness the power of these 
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cells, cures remain rare, and only a subset of 
patients exhibit durable responses. At present, a 
fundamental objective in the field of immuno-
therapy is to understand the biological mecha-
nisms behind the lack of clinical response and to 
develop new therapeutic approaches to overcome 
these obstacles.

Research over the past 20 years has revealed a 
network of checkpoints impeding effective T 
cell-mediated tumor destruction [6]. This check-
point network can be framed into two generalized 
phases: T cell homing to and entry into the tumor 
site and overcoming the immunosuppressive 
TME. Once within a tumor tissue, a T cells’ abil-
ity to function requires adaptation to a challeng-
ing environment. Furthermore, different cancer 
tissues exhibit distinct local microenvironments. 
Even different metastases within the same patient 
may create distinct milieus capable of influenc-
ing T-cell function [7]. As such, T cells must be 
adaptable to survive and operate in diverse and 
difficult environments. The availability of nutri-
ents and oxygen, local cytokine and chemokine 
concentrations, extracellular matrix components, 
adhesion molecules, and commensal microbials 
are among many other physiological variables. 
Within this framework, a recently discovered 
T-cell subset, called tissue-resident memory T 
(TRM) cells, has emerged as a critical T-cell 
 lineage in the fight against cancer, in part because 
its most distinctive feature is its ability to persist 
and function within demanding tissue 
micro environments.

Memory T cells enter tissues in response to 
external stimuli (for example, infection or inflam-
mation) and a subset remain as long-lived perma-
nent residents in that tissue. In this process, after 
pathogen encounter, naïve T cells are primed in 
the draining lymph node by dendritic cells carry-
ing antigen from the site of infection. Naïve T 
cells differentiate into effector T cells, which 
then migrate to the infected tissues to clear the 
pathogen. After clearance of the infection, the 
majority of effector T cells die or leave the tissue, 
but some differentiate into TRM cells that impart 
long-term localized T-cell immunity with the 
capacity to rapidly respond to subsequent infec-
tion. TRM cells reside in most major organs and 

are abundant in epithelial barrier tissues such as 
the skin, lung, kidneys, and gastrointestinal and 
reproductive tracts [8–10]. Commitment to tissue 
of residence distinguishes TRM from effector T 
(TEFF) cells, effector memory T (TEM) cells, and 
central memory T (TCM) cell subsets. It also dif-
ferentiates TRM cells functionally; they can persist 
in tissues for years [11, 12], display heightened 
response kinetics [13, 14], exhibit a unique 
metabolism [15], and are transcriptionally dis-
tinct compared to other T-cell memory subsets 
[10, 16]. These characteristics are a reflection of 
an adaptation to survive and function in the local 
environment and highlight TRM cells as a poten-
tially targetable population for the development 
of novel immunotherapies in the fight against 
cancer. In this chapter, we will discuss the funda-
mental properties of TRM cells in the context of 
cancer and approaches to target TRM cells as a 
cancer therapy.

3.2  Core Features of TRM Cells

Bunkered in barrier tissue at the interface between 
the host and environment, TRM cells are strategi-
cally positioned to react quickly to tissue pertur-
bations, such as infection, injury, or cancer. TRM 
cells are not immobile within tissues: instead, 
they migrate locally along components of the 
extracellular matrix and blood capillary to patrol 
resident tissue for signs of barrier disruption, 
such as cellular distress signals produced in 
response to pathogen insult or from cellular death 
or injury. TRM cells display a wide range of migra-
tory behavior, which is likely dictated by the 
local anatomical properties. For instance, in the 
dense regions of the epidermis, TRM cells take on 
a dendritic morphology and patrol at a slower 
rate (0.5–1.5 μm min−1) [17–19] compared to TRM 
cells in the myometrium of the female reproduc-
tive tract (10 μm  min−1) [20] or liver sinusoids 
[21]. This localized surveillance by TRM cells in 
tissues after pathogen encounter is a critical fea-
ture of immune memory and anamnestic protec-
tion against repeat pathogen exposure.

The commitment to remain in tissue after 
pathogen clearance is a defining feature of TRM 
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cells and has been elegantly demonstrated in 
transplantation and parabiosis experiments. In 
one set of foundational studies, tissues from 
virally infected mice containing TRM cells were 
transplanted into naïve congenic recipients, 
where they were restrained within the graft [13, 
22, 23] and exhibited protective functions upon 
reinfection [13, 23]. In another set of experi-
ments, by fusing the circulatory system of a 
virus-immune mouse with a virus-naïve parabi-
ont, TRM cells were found in the tissues of the 
immune parabiont but not the naïve parabiont, 
whereas T memory cells equilibrated between 
parabionts in secondary lymphoid organs (SLO, 
e.g., spleen and lymph nodes) [13, 22, 24, 25].

Tissue retention is maintained by two main 
mechanisms: expression of adhesion molecules, 
and a lack of responsiveness to cytokines and 
chemokines that direct cells back into circulation. 
Important for the capacity to remain in tissues are 
cell surface receptors that also function as useful 
markers to define and identify TRM cells. In this 
role are an array of adhesion molecules, some 
upregulated rapidly after T-cell activation (e.g., 
CD44) that are important for tissue entry, while 
others are tissue-specific and are only expressed 
once T cells gain access to the tissue. While the 
exact mechanistic roles adhesion molecules play 
are still being investigated, especially in the case 
of cancer, evidence indicates that they are critical 
for TRM formation but are not always required for 
maintenance [26]. Two well-studied adhesion 
molecules, the αE integrin CD103, which pairs 
with β7, and the α1 integrin CD49a, which pairs 
with β1 and together are called VLA-1, are found 
at variable frequencies on epithelium-localized 
TRM cells across many tissues [19, 26–30]. CD8+ 
and CD4+ TRM cells can be found in the dermal 
and basement membrane regions but are more 
likely to be CD103 negative [19, 30]. While 
CD103 is critical for TRM cell formation in epi-
thelial tissues, it was found to be dispensable for 
TRM maintenance in models of intestinal infection 
[31, 32]. Intriguingly, CD103 expression was 
found to be enriched on CD8+ TILs in epithelial- 
derived tumors [33–35] and is important for anti-
tumor activities of CD8+ TILs [33, 36, 37]. 
Studies inhibiting VLA-1 or CD103 by using 

blocking antibodies or gene-deficient T cells 
highlighted the importance of these integrins for 
generating TRM cells against tumors [38] and led 
to a loss of tumor control [39].

Aiding in tissue retention is the refractory 
nature of TRM cells to mediators that signal T cell 
egress from tissues into the afferent lymphatics. 
Egress is mainly dictated by sphingosine-1- 
phosphate (S1P) gradients, which are established 
by vascular endothelial cells. Accordingly, TRM 
cells display minimal levels of the S1P receptor 
(S1P1, SIPR1) [40]. Continued unresponsiveness 
to S1P is promoted by CD69, a C-type lectin that 
interferes with the function of S1P1, and is 
expressed on many TRM cells, especially those in 
the skin [28]. Moreover, TRM cells lack surface 
expression CCR7, a lymphoid tissue homing che-
mokine receptor, and CD62L (L-selectin), 
responsible for tethering to high endothelial 
venules for entry into lymph nodes (LN). Caution 
should be exercised for solely using cell surface 
markers, the most common being CD103 and 
CD69, for the identification of TRM cells. CD103 
is expressed on only a subset of TRM cells and is 
more enriched in epithelial sites compared to 
other organs in the body [28]. While CD69 seems 
to be expressed on the majority of epidermal-
localized TRM cells, this does not hold true for 
other sites such as the kidney and liver [28]. 
Furthermore, CD69+ T cells were found to recir-
culate in the LNs of mice [41]. Therefore, in 
addition to phenotypic characterization, resi-
dency should be tested functionally by comple-
mentary methods including parabiosis, 
transplantation, in  vivo intravascular antibody 
staining, and in situ labeling of cells [42].

An important feature of TRM cells is their abil-
ity to provide accelerated protection against 
repeatedly encountered pathogens. This function 
relies on their strategic location in barrier tissues, 
where pathogens are most likely to be encoun-
tered, and where epithelial cancers originate. 
When a disruption in homeostasis is recognized 
by TRM cells, they rapidly produce effector mole-
cules that not only impede the spread of the 
pathogen but also alarm and mobilize the sur-
rounding tissue into an anti-pathogen state. In 
response to local secretion of alarmins such as 
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ATP and IL-33, TRM cells are reactivated and 
induce a strong effector cytokine program [40, 
43]. Reactivated TRM cells can upregulate perfo-
rin and granzyme B and efficiently kill target 
cells [8, 30], secrete IFN-γ, TNF-α, and IL-2, and 
activate dendritic cells (DCs), NK cells, and other 
resident CD4+ and CD8+ T cells [44]. The role of 
IFN-γ is particularly important for protection. In 
response to IFN-γ, nearby cells upregulate 
interferon- stimulated genes, which are critical 
for resisting pathogen spread and also activate 
the endothelium to express adhesion molecules 
that support recruitment of immune cells. 
Furthermore, it was found that TNF-α plus IFN-γ 
do the latter synergistically, which induced the 
recruitment of TCM and TEM cells from peripheral 
blood [45]. Reactivated TRM cells also contribute 
directly to the recruitment of other immune cells 
by producing chemokines [14, 30]. These mecha-
nisms by which TRM perform their protective 
functions against pathogens naturally engender 
the question of whether these same functions are 
also used against neoplasms. This question 
remains largely uninvestigated, although recent 
reports in addition to circumstantial evidence 
point to an important role for TRM cells in antitu-
mor immunity. In the following sections, we will 
first focus on the similarities and differences 
between the TRM lineage and CD8+ TILs. In par-
ticular, we review how TRM cells may be gener-
ated against tumor antigens, the phenotypic 
features of the TRM cells compared to TILs, and 
the transcriptional and metabolic profiles of T 
cells within tumors. We explore how TRM cells fit 
within the framework of the T cell- and non-T 
cell-inflamed TME and finally, we end with cur-
rent immunotherapeutic strategies under investi-
gation to target or augment the antitumor TRM cell 
response.

3.3  Immunologic Memory 
to Tumors

The immune system plays a critical role in pro-
tecting the host from cancer [46]. The innate 
sensing of tumor cell-derived factors can lead to 
an adaptive T-cell response through the presenta-

tion of tumor-associated antigens generated from 
genetic mutations and epigenetic changes that 
occur during carcinogenesis [47]. Spontaneously 
primed CD8+ T cells can home to tumor sites and 
accumulate there, even if tumors are not com-
pletely eliminated [48, 49]. In fact, an extensive 
body of work over the past 20 years suggests that 
T cells frequently prune neoplastic cells from 
healthy tissue throughout life [46, 50, 51]. Under 
this premise, it follows that tumor antigen- 
specific TRM cells likely form in response to 
tumors.

Early evidence of immunologic memory 
against cancer was uncovered in mice that 
received autologous tumor transplantation. After 
resection of 3-methylcholanthrene (MCA)-
induced tumors, mice were protected against a 
subsequent challenge with the same tumor cells 
but not those derived from a different MCA- 
induced tumor [52, 53]. These studies were fol-
lowed by a conceptual proposal by Burnet and 
Thomas, who independently posited that an 
evolutionary- driven feature of the immune sys-
tem is to detect and eliminate incipient tumors 
that arise in tissues susceptible to genetic muta-
tions, such as the highly proliferative epithelium 
[54, 55]. This theory evolved into what is known 
today as “cancer immunoediting” [56]. However, 
it is still unclear as to the relative involvement of 
different effector and memory T-cell subsets in 
the antitumor immune response.

Circumstantial evidence from human tumor 
biopsies pointed toward TRM cells as a major 
T-cell population found within tumors. CD8+ 
TILs isolated from biopsies of human solid 
tumors often express markers characteristic of 
residency, including CD103 [33, 34, 57], VLA-1 
[39], and CD69 [33, 57]. Although phenotypic 
similarity alone is not adequate to identify TRM 
cells, transcriptional profiling of CD8+ TILs from 
human tumors has revealed a TRM cell gene signa-
ture, in at least a subpopulation of CD8+ TILs 
[33, 34, 58]. The detailed study of the TRM cell 
response to cancer has been hampered by a lack 
of robust mouse models. Mice are kept in abnor-
mally hygienic Specific Pathogen Free (SPF) 
barrier facilities, the most common mouse hus-
bandry practice, and hence lack key characteris-

J. B. Williams and T. S. Kupper



43

tics of the human immune systems due to a lack 
of exposure to common pathogens. Perhaps most 
importantly, SPF laboratory mice contain fewer 
TRM cells and have a naïve immune phenotype 
more similar to the immune profile of human 
neonates rather than adults [59, 60]. SPF facili-
ties also prevent exposure to environmental car-
cinogens, which may be important for the natural 
pruning of neoplastic cells and the formation of 
TRM cells against future cancers. Several studies 
have circumvented this limitation by populating 
the skin with TRM cells before tumor challenge by 
vaccination [61, 62], resection of a growing 
tumor [38], or epicutaneous engraftment of tumor 
cells [63]. These studies revealed that TRM cells 
can indeed form against tumors and if the tumor 
is successfully eradicated, the resulting TRM cells 
display antitumor properties that are distinct 
from those of circulating memory T cells.

It is important to keep in mind that the suc-
cessful initiation of an immune response against 
an established tumor will inevitably lead to a het-
erogenous CD8+ TIL population, which includes 
TRM and circulating effector and memory cells. 
This heterogeneity makes understanding the biol-
ogy of a given CD8+ TIL subset very difficult, as 
there is no current way to identify TRM cells ver-
sus newly recruited T cells expressing TRM-like 
phenotypic markers. In addition, it remains 
unknown whether bona-fide TRM cells can form 
within an established tumor, as structural and 
molecular features within tumors differ from nor-
mal tissues. Nevertheless, it is clear that many 
tumors are populated by CD8+ TILs that display 
a tissue-resident phenotype, and recent studies in 
mice clearly demonstrate a role for TRM cells in 
antitumor immunity.

3.4  Tumor-Antigen Specificity

The three tenets of cancer immunoediting 
describe different phases of the antitumor 
immune response: elimination, equilibrium, and 
escape [64]. During the elimination phase, 
nascent transformed cells are effectively pruned 
by the immune system from otherwise healthy 
tissue. This presents a dichotomy regarding the 

formation of TRM cells against neoplastic tissue: 
those that successfully eliminate nascent trans-
formed cells thus preventing tumor development, 
and those that form after a tumor is established, 
during the equilibrium or escape phases. In the 
latter situation, the cues within the TME influ-
encing TRM cell formation are likely to be differ-
ent from those experienced in normal tissue. The 
immunological mechanisms pertinent to TRM cell 
formation in these two scenarios remain to be 
elucidated.

Certain steps and features in the cancer- 
immune cycle are required regardless of the envi-
ronmental cues influencing TRM differentiation, 
and most important of these is tumor antigen 
reactivity.

At the core of the endogenous antitumor 
immune response are T cells that have the ability 
to recognize tumor-specific antigens. Tumor anti-
gens can fall under three main classifications: 
tumor-specific, tumor-associated, and cancer- 
testis antigens [65]. Tumor-specific antigens, also 
referred to as neoantigens, are absent from nor-
mal cells and recognized as foreign by the host 
immune system. They are derived from non- 
synonymous driver or passenger mutations and 
viral genes [66]. Since tumors are derived from 
normal self-tissues, how neoantigens arise and 
how the innate immune system initiates an effec-
tor rather than a tolerogenic adaptive immune 
response had been unclear. Recent data have indi-
cated that many tumor-specific antigens are 
derived from mutational processes that also drive 
oncogenesis. Defects in DNA repair machinery, 
exposure to mutagens (e.g., UV light and tobacco 
smoking), and abnormalities in enzymes that 
modify DNA can lead to somatic mutations, 
genome translocations, and alterations in gene 
expression as part of the process of carcinogene-
sis [47]. These processes lead to diverse muta-
tional landscapes, with some commonly mutated 
oncogenes or tumor-suppressor genes that are 
characteristics of certain cancer types but also 
defined by a spectrum of unique mutations spe-
cific to an individual tumor [67].

It is clear that multiple cancer types can be 
infiltrated by CD8+ T cells, and in many cases, a 
proportion of these T cells are tumor-antigen 
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 specific. However, recent evidence questions this 
central dogma by suggesting that tumor resi-
dency does not always translate to tumor- 
specificity. Profiling T-cell reactivity among 
CD8+ TILs in human tumors with MHCI tetra-
mers or cloning TCRα/β pairs from intratumoral 
T cells revealed that nearly all tumors analyzed 
were infiltrated by both virus-specific and tumor- 
specific CD8+ T cells [68–71]. To distinguish 
bystander from tumor-reactive T cells, expres-
sion of the ATP catabolizing ectonucleoside, 
CD39, was found to be a promising marker for 
tumor reactivity. Expression of CD39 correlated 
with TRM genetic signatures and with co- 
expression of other resident markers, namely 
CD69 and CD103 [34, 69, 72]. Deciphering 
whether a TIL expressing TRM phenotypic mark-
ers is a recent immigrant or resident cell remains 
a challenging problem in the field, especially 
with human tumor samples. Nevertheless, it is 
clear that many tumors are populated with tumor- 
reactive CD8+ TILs that display a tissue-resident 
phenotype.

3.5  Innate Immune Factors 
Regulating Antitumor T-Cell 
Responses

Local activation of APCs is a required initiating 
step for a productive adaptive T-cell response 
against tumor antigens. The innate signaling 
pathways involved in this activation step were 
first hinted in transcriptome profiling of human 
tumors, where a type I IFN gene signature was 
found to correlate with a T-cell infiltrate [48, 73]. 
Mice deficient in genes involved in IFN signal-
ing, IFNAR, and STAT1, could not control 
immunogenic tumors [49, 74]. Ultimately, the 
required APC cell population receiving the type I 
IFN signals were mapped to a rare population of 
CD8α positive classical dendritic cell (cDC1). 
cDC1s are known for their ability to cross- present 
antigens and are developmentally dependent on 
the transcription factors Batf3 and IRF8 [75, 76]. 
cDC1s are also important for the generation of 
TRM cells in the skin and lung. Batf3-deficient 
mice exhibit blunted TRM development in the skin 

after intradermal vaccinia virus (VACV) immuni-
zation [77]. Given the essential role cDC1s play 
in priming CD8+ T cells against tumor antigens, it 
is likely that they are also critical for TRM forma-
tion against tumors; however, detailed studies 
addressing this question remain to be performed.

The functional role for type I IFNs prompted 
the next level question regarding the nature of the 
damage-associated molecular pattern (DAMP) 
that could induce type I IFN production in a ster-
ile tumor without pathogen exposure. Early stud-
ies identified several DAMPs that could be 
released by stressed or dying tumor cells that 
subsequently could lead to productive T-cell 
priming. For example, high-mobility group pro-
tein B1 (HMGB1) binding to TLR4 and extracel-
lular ATP binding to the P2X7 purinergic receptor 
triggering activation of the NLRP3 inflamma-
some were both reported to induce DC matura-
tion and subsequent activation of anti-tumor T 
cells [78, 79]. In apparent contrast to inducing 
DC maturation, extracellular ATP can also impact 
TRM cell maintenance. TRM cells can  express 
P2RX7, which induces cell death when triggered 
[80]. However, attrition of TRM cells can be fine- 
tuned by their ability to regulate local ATP con-
centrations through the action of the ectoenzyme 
CD39. Beyond HMGB1 and ATP, tumor-derived 
DNA was found to be a potent initiator of the 
endogenous antitumor immune response [81, 
82]. DCs recruited to the TME were found to take 
up tumor-derived DNA leading to stimulator of 
interferon genes (STING)-dependent production 
of type I IFNs [83]. Besides DCs, endothelial 
cells of the tumor vasculature were also reported 
to produce type I IFNs in response to STING 
activation [84]. STING signaling not only acti-
vates DCs but also induces the upregulation of 
adhesion molecules on endothelial cells of the 
tumor-associated vasculature, a critical step for 
T-cell extravasation into the tumor [85]. STING 
is an endoplasmic reticulum adaptor that is acti-
vated by cyclic dinucleotides generated by 
cGAMP synthase [86]. The mechanism by which 
tumor-derived DNA can gain access to the cyto-
sol to activate the STING pathway has yet to be 
elucidated. But consistent with this mechanism, 
immunogenic tumors fail to be rejected and grow 
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progressively in mice lacking STING and sponta-
neous priming of CD8+ T cells against tumor 
antigens is nearly ablated [81, 82, 87]. The cel-
lular cues alerting the immune system of a 
nascent tumor are just starting to be uncovered. 
Mouse models highlight an important role for 
sensing tumor-derived DNA. Whether this occurs 
in the absence of spontaneous tumor cell death 
remains to be determined.

3.6  Antigen-Presenting Cells: 
The Gatekeepers 
of the Antitumor T-Cell 
Response

The process by which DCs are initially recruited 
to the tumor site is not fully understood and likely 
depends on the chemokine repertoire produced 
by tumor cells or the surrounding tissue. 
Alternatively, a subset of DCs exists at steady- 
state in barrier tissues, such as the CD103+ vari-
ety found in the skin [88], and therefore local 
activation may not require DC recruitment from 
the periphery. In support of this notion, it was 
found that CD103+ DCs were uniquely capable in 
the uptake of tumor antigens and trafficking to 
the lymph node to prime CD8+ T cells (Fig. 3.1) 
[89]. Regardless of the mode of DC recruitment, 
tumor cells can acquire the ability to produce 
chemokines that can contribute to their own 
growth, survival, and metastasis [90]. Genomic 
aberrations such as oncogenic pathways can 
impact the array of chemokines expressed. In a 
melanoma model, B-Raf pathway activation led 
to the production of the chemokine CCL4, which 
contributed to the recruitment of cDC1s in a 
CCR5-dependent manner [87]. Taken together, it 
is likely that both tissue-localized and circulatory 
DCs can effectively prime CD8+ T cells, indicat-
ing another layer of control for effective T-cell 
responses. Nevertheless, delineating the anatomi-
cal logistics of DC activation will be important 
for determining which DC populations can be 
effectively targeted as a cancer therapy.

After DC activation by type I IFN at the site of 
tumor formation, DCs traffic to the draining 
lymph node to prime tumor-antigen-specific 

naïve T cells. T-cell priming encompasses a com-
plex series of spatial, biochemical, transcrip-
tional, proliferative, and differentiation events 
that engender clonal populations of activated T 
cells with effector and tissue-homing programs 
[91]. The tissue-homing program is characterized 
by expression of specific chemokine receptors 
responsible for correctly trafficking T cells to the 
site of an infection or tumor and aid in entry into 
the tissue. The CXC-chemokine receptor 3 
(CXCR3) has an intriguing role, as it was shown 
to be important for T-cell entry into many 
inflamed peripheral sites [92]. Adoptively trans-
ferred antigen-specific CXCR3-deficient CD8+ T 
cells failed to traffic to infected skin [26], vaginal 
epithelium [93, 94], and melanoma [95]. 
Antibody-mediated blockade of CXCR3 pre-
vented T-cell infiltration in a model of pancreatic 
ductal carcinoma [96]. It must be noted that 
CXCR3 was not required for tissue infiltration in 
all experimental systems. For instance, CXCR3- 
deficient mice displayed similar numbers of skin- 
infiltrating T cells after cutaneous VACV 
infection and B16F10 [97] tumor engraftment 
[98], suggesting the existence of compensatory 
mechanisms. Beyond its role in aiding T-cell 
entry into tissues and tumors, CXCR3 was also 
shown to play an active role in TRM generation 
within tissues [26], possibly through influencing 
intra-tissue migration [99] and cell–cell interac-
tions [100, 101]. Consistent with this latter role, 
CD8+ TIL interactions with cDC1s were medi-
ated by CXCR3, which was critical for the effec-
tiveness of anti-PD-1 blockade in mice [98].

A strong correlation between the presence of 
CD8+ T cells and expression of the CXCR3 
ligands, CXCL9 and CXCL10, has been observed 
across a range of tumor types [48, 102, 103]. The 
source of these chemokines in early recruitment 
of CD8+ T cells was initially attributed to tumor 
cells [48, 104] or activated keratinocytes [26]; 
however, in a murine model of oncogene-induced 
melanoma, cDC1s were identified to be the major 
source of CXCL9 and CXCL10 within the TME 
and those DCs were required to recruit activated 
CD8+ T cells to the tumor site in a CXCR3- 
dependent manner [87]. Similar results were 
found in an engraftable tumor model using a dual 
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Fig. 3.1  TRM cells in the context of T cell-inflamed, T 
cell-excluded, and non-T cell-inflamed tumors. DCs 
acquire tumor antigens and traffic to the LN where they 
prime T cells. Studies in mice indicate that the Batf3- 
lineage DC is particularly critical in this process. TGF-β 
signaling in the LN can precondition T cells to become 
TRM cells upon entering their target tissue prior to tumor 
development. This suggests the possibility that preexist-
ing TRM cells are present in many tumors, despite the fail-
ure at a later time to recruit new T cells. TRM cells may be 
an actionable target to disrupt the non-T cell-inflamed 
phenotype. T cell infiltration into tumors is regulated by 
many factors. A lack of T cell priming can occur when 
DCs are not recruited to the TME, for instance in the case 

of tumor-intrinsic β-catenin activation (non-T cell- 
inflamed). The tumor vasculature can also diminish T cell 
influx when adhesion molecules are not upregulated or 
induce T cell apoptosis via Fas-FasL interaction (both T 
cell-excluded and non-T cell-inflamed). TGF-β in the 
TME can act on cancer-associated fibroblasts to exclude T 
cells to the marginal area (T cell-excluded). In response to 
proper homing signals, such as CXCL9 and CXCL10 and 
adhesion molecule expression on vascular endothelium, T 
cells migrate into the tumor leading to the T cell-inflamed 
phenotype. This phenotype exhibits an IFN-γ-gene signa-
ture, which correlates with responsiveness to checkpoint 
blockade therapy
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reporter for CXCL9 and CXCL10, where CD11b+ 
DCs were also producing these chemokines [98]. 
In summary, DCs play a critical role in regulating 
the antitumor immune response, acting as sen-
tries for detecting the initial cellular cues pro-
vided by nascent tumors. The cDC1 subset is 
critical for priming and recruiting CD8+ T cells to 
the tumor site, and for providing a stimulus to T 
cells within the tumor.

3.7  TRM Cell Commitment, 
Maintenance, and Function

T-cell memory encompasses not just the antigen 
for which a TCR is specific, but also the anatomic 
site of T-cell activation. The initial site of T-cell 
priming imprints chemokine receptors and adhe-
sion molecules that biases migration to a specific 
tissue or organ where the pathogen is first encoun-
tered [105]. Upregulation of tissue-specific che-
mokine and adhesion molecules occurs after 
T-cell stimulation in coordination with molecular 
cues encountered in secondary lymphoid organs 
(SLOs) [106]. For example, in conjunction with 
TGF-β and retinoic acid, DCs that emigrate from 
intestinal tissue induce expression of α4β7 and 
CCR9 on T cells within the mesenteric lymph 
nodes, guiding T cells to inflamed sites within the 
intestine [107].

Migratory potential seems to be lost over time 
as TEFF cells isolated from the spleen 7 days after 
LCMV infection failed to generate TRM cells [22]. 
This raises the question of whether TRM cells are 
restricted to only populate sites of infection. In 
this scenario, the TRM-arm of immunological 
memory would be compromised if the pathogen 
is re-encountered elsewhere in the body. 
Addressing this question, it was found that TRM 
cells populated distant non-infected skin sites in 
response to skin-localized vaccinia virus infec-
tion [24]. In addition, overlapping TCR reper-
toires were found between TCM and TRM cell 
populations after skin immunization, which 
points to a common naive T-cell precursor and 
suggests that TCM cells can serve as a reservoir for 
the formation of TRM cells upon re-challenge 

[108]. In support of this notion, TCM cells possess 
stem-like properties [109], a feature shared with 
TRM cells, and after transfer into a naïve host, TCM 
cells can differentiate into TRM cells upon re- 
challenge [61]. These findings revealed addi-
tional pathways for the formation of TRM cells, 
providing protection at sites secondary to the ini-
tial pathogen encounter. It also suggested that at 
least part of the TRM genetic program is initiated 
in SLOs, while the final commitment steps occur 
in tissue. This is supported by a recent study pro-
posing a mechanism where naïve T cells are pre-
conditions to become TRM cells after interacting 
with cognate antigen, cDCs, and TGF-β in the 
LN [110]. The full extent of the genetic determi-
nants permissive for TRM development initiated in 
the LN remains to be elucidated.

In the early phases after T-cell priming and 
entry into target tissue, T cells are endowed with 
the capacity to patrol and eliminate infected or 
cancerous cells. Signals within the peripheral tis-
sue environment aid in this transformation by 
heightening cytotoxic capacity and cellular 
motility. One example is TGF-β, which has a 
well-documented role in the induction of the TRM 
phenotype. In response to TGF-β, T cells enter-
ing epithelial tissue upregulate CD103 and down-
regulate the transcription factor KLF2, a promoter 
of S1PR1, which together enforce tissue resi-
dence [40]. CD103 is not only important for 
retaining T cells within tissues, it contributes to 
T-cell movement toward tumor regions [36], 
enhances cytotoxic functions against tumor cells 
[111], and can convey survival signals [26, 29]. 
These functional roles may help explain why the 
intratumoral expression of CD8 and CD103 is a 
more robust prognostic indicator of overall sur-
vival and predictor of response to anti-PD-1 ther-
apy than CD8 alone [33, 34, 112]. However, an 
alternative possibility for this observation is that 
CD103 may identify the critical cDC1 popula-
tion, which has been linked to the efficacy of 
anti-PD-1 therapy [98, 113].

After successful elimination of infected cells, 
T cells undergo a contraction phase where they 
can die by apoptosis, enter the circulation to 
become TCM or TEM cells, or remain in the tissue 
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to become TRM cells. The selection of cells enter-
ing the TRM-lineage may not entirely be stochas-
tic, but likely depends on the differentiation state, 
expression of pro-survival cytokine receptors and 
adhesion molecules, and transcriptional regula-
tion. For example, homeostatic cytokines, namely 
IL-7 and IL-15, are important for TRM formation. 
However, their requirements are heterogenous 
among different tissues. IL-15 and IL-7 signaling 
is critical for TRM formation in the skin, kidney, 
and liver, but not for the female reproductive 
tract, pancreas, or small intestine [114–117].

During the T-cell response to a pathogen, it 
remains unclear when commitment to the TRM 
lineage occurs. Highly differentiated cells that 
are marked by high KLRG-1 and low IL-7R 
expression fail to differentiate into TRM cells [26, 
32, 117]. However, using a KLRG-1 lineage trac-
ing mouse model, it was found that T cells which 
downregulated KLRG-1 but retained IL-7R 
expression during the contraction phase were 
able to differentiate into TRM cells [117]. Thus, 
expression of KLRG-1 does not exclude cells 
from entering the TRM cell fate and its downregu-
lation before TRM-formation may indicate escape 
from a terminally differentiated state. Consistent 
with this notion, TRM cells do not express KLRG-1 
at steady state and local antigen persistence is not 
required for TRM maintenance in some tissues 
[29, 118]. On the other hand, KLRG-1 is upregu-
lated after antigen stimulation [119]; therefore, it 
is intriguing that CD8+ TILs generally do not 
express KLRG-1 despite the presence of local 
cognate antigens [120, 121]. However, in 
response to checkpoint blockade therapy or ago-
nistic antibodies against co-stimulatory recep-
tors, KLRG-1 is upregulated, which correlates 
with greater antitumor activity and indicates a 
transition into a more effector-like state [122, 
123]. In summary, TRM differentiation may be ini-
tiated in the LN and finalized in the tissue. The 
steps toward TRM commitment involve local cyto-
kine signals, which can vary among different tis-
sues. The exact mechanism driving differentiation 
and commitment, as well as markers identifying 
TRM-precursors, remains to be elucidated.

3.8  TRM Cells and Tumor Immune 
Exclusion

Despite the ability of the immune system to rec-
ognize cancer cells, not all patients respond to 
checkpoint blockade therapy. Anti-PD-1/PD-L1 
therapy exhibits an almost bimodal response. 
Some patients experience complete eradication 
of tumors, while a majority derive little or no 
clinical benefit. To explain this dichotomy, gene 
expression profiling across all cancer types has 
revealed that tumors can be classified into three 
major subsets, the T cell-inflamed, T cell- 
excluded, and non-T cell-inflamed based on the 
relative abundance of T cell-related transcripts 
(e.g., CD8A, GZMA, PRF1, and IFNG) and 
location of T cells relative to the tumor core 
(Fig.  3.1) [4, 124–127]. By segregating tumors 
this way, it was found that the majority of patients 
responding to checkpoint blockade therapy con-
tained a T cell-inflamed tumor phenotype [4], 
suggesting that in these patients, the immune sys-
tem has been restrained while remaining primed 
for reinvigoration. However, some patients within 
this subset fail to respond to checkpoint blockade 
therapy, indicating that additional resistance 
mechanisms must be overcome to achieve effec-
tive clinical responses [128, 129].

The non-T cell-inflamed subtype of tumor is 
remarkably devoid of immune cell signatures, 
including the negative regulatory pathways nor-
mally seen in the T cell-inflamed tumor. Exclusion 
of T cells from the tumor may result from the 
breakdown of key events required for successful 
T-cell recruitment. These include innate immune 
activation, chemotaxis, and extravasation into the 
tumor or surrounding tissue, and penetration 
from peritumoral space into the tumor bed. The 
mechanisms behind the evolution of non-T cell- 
inflamed tumors are currently under intense 
investigation and recent observations have helped 
to understand this phenotype. Genetic events 
with oncogenic potential include those that 
increase immune evasion. For example, activa-
tion of the Wnt/β-catenin pathway led to a loss of 
chemokines critical for the recruitment of the 
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Batf3-DC lineage to the tumor site, and thus a 
failure to activate the innate immune system 
[127, 130]. Inactivating mutations or deletions of 
PTEN led to activation of the PI3K-AKT path-
way and subsequent decrease in tumor cell 
autophagy, thereby diminishing innate immune 
activation and T-cell priming [131]. The non-T 
cell-inflamed TME appears to be independent of 
nonsynonymous mutation load, indicating that a 
lack of immunogenic T-cell antigens does not 
drive exclusion [132]. However, tumor evolution 
in response to immune pressure can lead to tumor 
cells with defects in antigen presentation machin-
ery. Many of these cases were documented from 
patients that developed acquired resistance to 
immunotherapies through loss of function muta-
tions in B2M and HLA genes [133–137]. 
Neoantigen loss also contributes to immune 
resistance through selective killing of tumor sub-
clones or gene silencing via epigenetic processes 
and chromosomal deletions can lead to an overall 
decrease in tumor immunogenicity [138, 139].

The tumor-associated vasculature is also a 
critical barrier regulating T-cell infiltration [140]. 
A network of arterioles, capillaries, and postcap-
illary venules provide avenues for T cells to enter 
the tumor peritumorally though the tumor stroma 
or intratumorally through the tumor parenchyma. 
Unlike peritumoral blood vessels, which can be 
derived from exiting normal endothelium, intra-
tumoral vessels are often found to be immature 
[141]. This immaturity is driven by rapid angio-
genesis when the metabolic demands of the 
tumor surpass the supply of the local vasculature. 
In response, tumors produce angiogenic factors, 
including vascular endothelial growth factor 
(VEGF), angiopoietins, and thrombospondins to 
induce the formation of new blood vessels. These 
angiogenic factors contribute to leaky and chaoti-
cally organized vessels, which often express low 
levels of adhesion molecules (e.g., E/P-selectin, 
ICAM-1/2, VCAM-1, and VAP-1) [141–146], 
fail to respond to inflammatory stimuli [147, 
148], and can express FasL to directly kill antitu-
mor T cells [149]. Additional players in tumor 
angiogenesis are pericytes, which surround blood 
vessels and contribute to new blood vessel forma-
tion and immune cell trafficking. Pericyte pheno-

type and coverage along the tumor vasculature 
are often found to be abnormal when compared 
to normal adjacent vasculature [150]. 
Interestingly, immune cells can interact with 
pericytes in a positive feedback loop resulting in 
normalization of blood vessels and immune- 
favorable changes in the TME such as hypoxia 
mitigation [151]. Similarly, genetic deletion of 
the G-protein signaling component Rsg5 induced 
pericyte-mediated vasculature normalization and 
increased T-cell recruitment [152]. These studies 
indicated that pericytes associated with the tumor 
vasculature have abnormal activity and distribu-
tion. Normalization of pericyte function to pro-
mote T-cell infiltration into the TME may be a 
potential therapeutic approach. Entry into the 
TME via the peritumoral route also contains hur-
dles for T cells. Stroma surrounding the tumor 
often contains immune-suppressive cell popula-
tions such as cancer-associated fibroblasts 
(CAFs), myeloid-derived suppressor cells, and 
tumor-associated macrophages. CAFs sterically 
inhibit T-cell ingress into the tumor through the 
synthesis of a dense extracellular matrix [153, 
154]. Overall, endothelial cell immaturity, 
anergy, and pericyte abnormality diminish T-cell 
infiltration directly into the tumor parenchyma, 
diverting T cells to enter via perivascular routes, 
where the dense ECM of the tumor stroma can 
border T cells.

When considering immune exclusion in the 
context of TRM cells, there is the possibility that 
TRM cell localization at tumor sites precedes 
tumor formation. Given the patrolling nature of 
TRM cells and their relative abundance within tis-
sues (a recent study found around 500 TRM cells 
per mm3 in healthy human skin [19]), the ques-
tion arises as to how some tumors can apparently 
develop without T cells present. One possibility 
lies in how T-cell infiltration is calculated. While 
methods may differ, quantification of T-cell infil-
trations from RNASeq data is generally scored 
based on relative expression of a T cell-related 
gene signature. Therefore, non-T cell-inflamed 
samples may contain RNA transcripts below a 
defined threshold, but this does not translate to a 
complete lack of T cell-related transcripts. Thus, 
T cells may be present at low frequency in non-T 
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cell-inflamed tumors, which may represent a pre-
existing TRM cell population. This is consistent 
with recent findings that in some T cell- containing 
tumors the majority of T cells are specific for 
commonly encountered viruses (e.g., EBV, 
CMV) and not tumor antigens [69, 70]. However, 
studies quantifying T-cell infiltration by histol-
ogy clearly identify tumors that are devoid of T 
cells, termed “immune-desert”, or T cells that are 
retained to the peritumoral area, termed “immune- 
excluded” [6]. These phenotypes suggest that 
tumors may actively exclude T cells.

Active exclusion of T cells may involve 
sequestering T cells to peritumoral regions via 
coinhibitory receptor interactions such as 
PD-1:PD-L1. Biopsies taken before and after 
anti-PD-1/PD-L1 therapy show an increase in 
tumor penetration after treatment [155]. Another 
possibility is adhesion molecule-mediated reten-
tion of T cells in the stroma. Recent studies pro-
vide evidence for a role of TGF-β in driving 
peritumoral T-cell retention. While TGF-β exerts 
positive immune effects on TRM cell differentia-
tion and function, the abundance of TGFB tran-
scripts in the tumor also correlates with poor 
prognosis in multiple cancer types [156–158]. 
Indeed, the role of TGF-β in cancer immunity is 
complex and contextual, exhibiting pleotropic 
effects on cancer, stromal, and immune cells 
within the tumor [159]. TGF-β can be co-opted 
by cancers to promote their progression by evad-
ing the growth-inhibitory effects through inacti-
vating mutations in the TGF-β signaling pathway 
and maintaining the immune suppressive effects 
on surrounding stroma and immune cells. In par-
ticular, TGF-β signaling in CAFs was associated 
with poor prognosis in colorectal cancer [160, 
161]. Furthermore, transcriptome analysis of 
tumors from patients with metastatic urothelial 
cancer refractory to the PD-L1 antagonist atezoli-
zumab had an enrichment for genes involved in 
the TGF-β signaling pathway. This enrichment 
correlated an immune-excluded phenotype [162]. 
Similar evidence was found in a genetically engi-
neered mouse model of colorectal cancer. In this 
model, combinatorial oncogenic mutations led to 
metastatic tumors with an immune excluded phe-
notype and TGF-β transcriptional signature. 

Interfering with TGF-β via blocking antibodies 
or a small molecule inhibitor for TGFBR1 redis-
tributed T cells into the intratumoral zone and 
sensitized mice to PD-L1 blockade therapy [163]. 
Taken together, an interesting relationship 
emerges between the TRM-promoting and the 
immune-excluding effects of TGF-β, where the 
sum of the effects results in retainment of immune 
cells to peritumoral regions.

3.9  T-Cell Dysfunction

The defining features of TRM cells: tissue resi-
dency, tissue patrol, and rapid response to stimu-
lus, have mainly been described under conditions 
of tissue homeostasis after pathogen clearance. In 
the context of chronic infection or persistent anti-
gen exposure, less is known about TRM differen-
tiation or how the TRM genetic program is 
influenced. However, it is well known that T cells 
isolated from tumors or from secondary lym-
phoid organs during chronic viral infections are 
dysfunctional or exhausted. Much of the knowl-
edge surrounding T-cell dysfunction is derived 
from in vivo models of chronic viral infections, 
in particular clone 13 LCMV. In this model, anti-
gen is continuously present, which drives the 
breakdown of immunological memory formation 
and pushes responding T cells into a state termed 
exhaustion, which is characterized by a gradual 
and sequential loss of effector functions [164–
166]. Furthermore, continuous TCR signaling 
induces an NFAT-driven transcriptional program, 
promoting the expression of inhibitory receptors, 
including PD-1 [167, 168], which in turn blunts 
CD28 co-stimulatory receptor signaling in a 
SHP2-dependent manner [169]. Other in  vivo 
studies found that SHP2 was dispensable for pro-
moting exhaustion; thus, similar phosphatase- 
recruiting inhibitory receptors may compensate 
[170]. In fact, both tumor-antigen specific TILs 
and exhausted virus-specific CD8+ T cells upreg-
ulate and maintain expression of an array of co- 
inhibitory receptors, including CTLA-4, TIM-3, 
TIGIT, and LAG-3, in addition to PD-1 [120, 
121, 171–173]. Engagement of these receptors 
has been shown to blunt proliferation and 
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 cytokine production by T cells, and blocking 
interactions between these receptors and their 
corresponding ligands can restore T-cell function 
[120, 174, 175]. Due to these key features that 
parallel chronic infection and cancer, persistence 
of antigen and expression of inhibitory receptors 
on T cells, it has long been proposed that dys-
functional CD8+ TILs resemble virally exhausted 
CD8+ T cells. Some studies have found similari-
ties between these two cellular states [121, 176]. 
Other studies have found significant differences. 
For example, despite expression of inhibitory 
receptors, CD8+ TILs were found to not be func-
tionally inert and retained the capacity to prolif-
erate, produce cytokines, and lyse target cells 
[120, 174, 177]. Under the latter premise, it is 
unclear why a tumor is not controlled by the 
immune system despite a tumor-reactive T-cell 
infiltrate with tumoricidal properties. This ques-
tion and the discrepancy surrounding T-cell func-
tionality between chronic viruses and cancer 
have been looming in the background for many 
years [178] and not until recently, with the tech-
nological advances of single-cell genomic analy-
ses, has a more encompassing picture emerged.

Investigations into CD8+ TIL biology using 
single-cell RNA sequencing (scRNA Seq) tech-
nology have revealed previously unappreciated 
transcriptional heterogeneity. Clustering of sin-
gle cells based on the expression of core genetic 
signatures suggests a developmental continuum, 
at least for some T-cell subsets. This type of anal-
ysis has revealed similar CD8+ TIL subsets across 
many human cancers including human lung 
 cancer [179–181], breast cancer [58, 182], liver 
cancer [183], colorectal cancer [184], and human 
and mouse melanoma [176, 185, 186]. In addi-
tion, the immune cell infiltrate appears to differ 
significantly depending on the tumor tissue type, 
the individual patient, and even among different 
metastasis sites within the same host [7]. Host 
genetics and environmental influences such as 
the composition of microbiota can have a 
 profound impact on the transcriptional landscape 
of tumor-infiltrating immune cell populations 
[187, 188]. Despite much observed heterogene-
ity, these studies revealed several key CD8+ TIL 
populations that are commonly found across 

many tumor types. One of the most abundant 
T-cell types are dysfunctional CD8+ TILs, char-
acterized by expression of inhibitory (e.g., Pdcd1, 
Havrc2), co-stimulatory (e.g., Tnfrsf9), effector 
cytokines (e.g., Ifng, Gzmb), and cell cycle 
genes. This population usually contains many 
expanded clones, suggesting tumor specificity, 
and is often actively proliferating. Generally, 
within this population is a subset with a transcrip-
tional signature similar to TRM cells that has been 
described in mice and humans [58, 179, 180, 
186]. However, the precise relationship between 
TRM cells and infiltrating T cells is not well char-
acterized. Memory T-cell populations, including 
TCM and TEM were identified as having lower 
expression of inhibitory receptors while retaining 
expression of effector molecules (e.g., Gzmk and 
Prf1) and in the case of TCM, expressing genes 
important for circulating among secondary lym-
phoid organs (e.g., Sell and Ccr7). Finally, a new 
stem-like T-cell population was found, which 
was characterized by the expression of genes that 
promote self-renewal properties (e.g., Tcf1) 
[189].

A primary goal of checkpoint blockade is to 
reinvigorate T cells into a state of potent effector 
function. It follows that determining the T-cell 
populations responding to checkpoint blockade 
can have important clinical implications for 
selecting patients who are more likely to respond. 
An analysis of immune cell infiltrates responding 
to anti-PD-1 therapy revealed that the presence of 
the CD8+ TCF7+ stem-like TIL population indi-
cated a greater probability of a clinical response 
[185]. Furthermore, studies have suggested an 
interplay between the stem-like and dysfunc-
tional CD8+ TIL populations, where the stem-like 
cells act as long-lived progenitors for the dys-
functional population [176, 190]. Since the stem- 
like population expresses intermediate levels of 
PD-1, it is thought that they are antigen experi-
enced. Furthermore, PD-1 was found to promote 
survival of this population by preventing over-
stimulation [191]. This population expresses 
SLAM6 and CXCR5 and has antigen- independent 
self-renewal properties [176, 192]. In response to 
anti-PD-1 therapy, T cells from the stem-like 
population differentiate and expand into effector 
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cells with a dysfunctional phenotype [176, 185, 
192]. Integration of these datasets indicates that 
transitional response to anti-PD-1 therapy first 
gives rise to potent cytotoxic T cells, which over-
time enter into a dysfunctional state [192–194]. 
In line with this evidence, TCR sequence analysis 
revealed an overlap between the dysfunctional 
and stem-like T-cell populations, suggesting a 
clonal relationship. In addition, adoptive transfer 
of the stem-like TIL population into tumor- 
bearing mice further demonstrated their transi-
tion into the dysfunctional phenotype [176, 185]. 
Importantly, dysfunctional CD8+ TILs can also 
respond to checkpoint blockade. In one proposed 
mechanism, it was found that CD8+ TILs undergo 
a futile cycle of proliferation and apoptosis at 
steady state, which was reversed by agonistic 
anti-4-1BB plus anti-PD-L1 antibody treatment 
or by inhibiting Fas–FasL interactions [174, 
175]. Similarly, targeting co-stimulatory recep-
tors such as 4-1BB, GITR, and OX40, or other 
co-inhibitory receptors like LAG-3, both of 
which are absent or lowly expressed on stem-like 
TILs, can restore CD8+ TIL function and induce 
tumor control [195]. Taken together, blocking 
PD-1 may stimulate PD-1+ TCF7+ stem-like 
CD8+ TILs, giving rise to potent effector cells. 
Although these cells may eventually enter into a 
dysfunctional state, dysfunctional cells can be 
reinvigorated in response to the same anti-PD-1/
PD-L1 therapy. Developing a more comprehen-
sive understanding of the clonal and functional 
relationships between the stem-like population, 
TRM cells, and dysfunctional CD8+ TILs is an 
investigational priority with considerable thera-
peutic implications.

In response to cognate antigen recognition, T 
cells undergo a metabolic switch from oxidative 
phosphorylation (OXPHOS) and fatty acid oxi-
dation (FAO) to aerobic glycolysis and glutami-
nolysis. While energetically less efficient, this 
allows for the rapid production of biosynthetic 
molecules such as nucleotides, amino acids, and 
lipids that are required for clonal expansion and 
the acquisition of effector functions [196]. 
Similarly, cancer cells use more aerobic glycoly-
sis and glutaminolysis compared to normal cells 
to support their rapid growth. This, in combina-

tion with poor angiogenesis, nearly depletes 
exogenous glucose and fills the tumor with 
hypoxic regions. In addition, uncontrolled cell 
growth and necrosis can lead to a buildup of 
byproducts such as lactate and extracellular 
potassium that can interfere with T-cell function 
[197, 198]. Accordingly, after entering the TME, 
T cells undergo profound metabolic changes in 
response to competition with tumor cells for 
nutrients. For instance, in melanoma and renal 
cell carcinoma, CD8+ TILs exhibited severely 
diminished glycolysis and mitochondrial func-
tion [199, 200]. In a preclinical model, CD8+ 
TILs in tumors exhibiting low glycolytic activity 
maintained tumoricidal activity, while those in 
high glycolytic tumors did not. These data high-
light a local competition for glucose that can 
impede the antitumor functions of T cells and 
impair immunotherapy [201, 202]. Due to these 
metabolic constraints, CD8+ TILs developed the 
altered metabolism necessary to support survival 
and function. For example, in response to hypoxia 
and hypoglycemia, CD8+ TILs upregulate 
PPAR-α signaling and increase FAO of exoge-
nous lipids and decrease glycolysis. When treated 
with a PPAR-α agonist, CD8+ T cells displayed 
enhanced cytolytic function after adoptive trans-
fer into a tumor-bearing host [203]. A shift to 
FAO after entering the TME is also partially due 
to PD-1 signaling, which can inhibit glycolysis 
and promote FAO [204]. In the face of a meta-
bolically hostile TME, TRM cells may therefore be 
ideally suited to function within a tumor. As TRM 
cells differentiate, they adapt to the metabolic 
constraints and available energy resources in 
their residing tissue. For example, TRM cells that 
reside in the skin epidermis, which is avascular 
and relies on diffusion for nutrients [205, 206], 
have altered their metabolism to function with 
less oxygen and glucose. This is accomplished 
through mitochondrial beta oxidation using 
exogenous FAs scavenged from the surrounding 
environment [15, 207]. Reliance on FAs could 
benefit TRM cells inside solid tumors as the lipid 
content is generally higher compared to normal 
tissue [208]. In summary, TIL function is impeded 
by the immunosuppressive and metabolically 
challenging TME, which can push TILs into a 
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state of dysfunction. Checkpoint blockade ther-
apy can reinvigorate TILs and understanding 
which TIL populations respond is critical for 
designing new therapies. Evidence suggests that 
both the stem-like and dysfunctional TIL popula-
tions contain the capacity to respond. TRM cells 
may be a component of the responding popula-
tions; however, further investigation is needed to 
characterize the nature of TRM cell responses. 
Nonetheless, TRM cells are prime targets for 
checkpoint blockade therapy due to their ability 
to function under the metabolic constraints within 
their tissue of residence.

3.10  Targeting TRM Cells in Cancer 
Immunotherapy

The magnitude of the T-cell infiltrate in tumors is 
a major determinant of effective immunotherapy, 
including checkpoint blockade. Patients with low 
or no T-cell infiltrate are generally less likely to 
respond. Designing new therapeutic interven-
tions to augment the chances of a response is a 
principal goal for researchers and clinicians. 
Targeting TRM cells may provide new therapeutic 
avenues by either directly augmenting TRM cell 
function or inducing the recruitment of periph-
eral T cells (Fig. 3.2). In fact, TRM cells may be a 
component of the T-cell pool that is reinvigorated 
in response to checkpoint blockade. In their core 
genetic signature, TRM cells can express a range 
of co-inhibitory receptors, such as PD-1, TIM-3, 
and LAG-3, as well as costimulatory receptors, 
such as 4-1BB and ICOS [10, 15, 26, 209]. Since 
TRM cells are poised to rapidly respond, expres-
sion of these co-inhibitory receptors on TRM cells 
is thought to limit unwarranted activation. In a 
mouse model of contact hypersensitivity, anti-
body blockade of PD-1 and TIM-3 exacerbated 
TRM-driven skin inflammation in response to 
allergen rechallenge. Further, in response to viral 
challenge, TRM cells were found to proliferate in 
situ generating a secondary pool of TRM cells [17, 
210]. These observations suggest that TRM func-
tions can be augmented in response to checkpoint 
blockade.

TRM cells can also be targeted by vaccination. 
Cancer vaccine therapies can provoke two differ-
ent TRM responses by (i) priming new T-cell infil-
tration into the tumor and (ii) activating TRM cells 
already present in the tumor at the time of vacci-
nation. The recruitment of new effector T cells 
was the goal of many cancer vaccine trials, which 
have only shown limited efficacy [211]. One pos-
sible explanation may involve the route of admin-
istration. It is well documented that intramuscular 
vaccination induces the formation of circulating 
memory T cells, but only weakly induces TRM 
cells in tissues [212, 213]. It is now evident that 
manipulation of the target tissue is needed to 
induce the proper homing and inflammatory sig-
naling required for TRM formation. Vaccine 
administration to mucosal sites, for instance, 
through intranasal, cervicovaginal, or skin scari-
fication routes, more robustly generates TRM cells 
at the site of vaccination [214–216]. In a preclini-
cal model of orthotopic head and neck or lung 
cancer, intranasal, but not intramuscular, vacci-
nation protected nearly all mice from tumor 
growth when given prophylactically, and inhib-
ited tumor growth in the therapeutic setting [216, 
217]. Similarly, vaccination by skin scarification 
was sufficient to slow tumor growth and syner-
gized with circulating memory T cells [61]. Site- 
specific vaccination may also provide a means to 
disperse T cells to other unmanipulated sites, 
such as in the case of skin scarification [24]. This 
phenomenon may provide a means to promote 
T-cell infiltration when in situ vaccination is not 
possible and may help explain cases of abscopal 
tumor regression [218].

Other approaches combine systemic immuni-
zation with tissue-specific stimulation. In these 
“prime and pull” strategies, the TRM precursor 
frequency is increased either by adoptive transfer 
of activated antigen-specific T cells or by subcu-
taneous vaccination, which is followed by 
antigen- independent stimulation of the target tis-
sue to recruit and promote TRM cell formation. 
For example, after subcutaneous vaccination to 
induce a circulating memory T-cell response, 
intravaginal injection of CXCL9 and CXCL10 
resulted in the recruitment and formation of TRM 
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cells in the vaginal tissue [94]. Likewise, adop-
tively transferred activated T cells were effec-
tively recruited to the skin by topical application 
of the contact sensitizer dinitrofluorobenzene 
(DNFB) [17].

While cancer vaccination strategies show 
great promise, they are only possible when tumor 
antigens are known. Identifying neo-antigens and 
formulating personalized cancer vaccines remain 

logistically challenging and expensive. An alter-
native approach is to target virus-specific T cells 
within the tumor to incite favorable changes in 
other host cells found within the TME.  This 
approach may be more feasible because for many 
common pathogens, immunogenic peptides are 
known and tumors often contain virus-specific T 
cells. Indeed, a recent study found that T-cell 
immunity against commensal papillomavirus 

Fig. 3.2  Immunotherapeutic strategies that target TRM 
cells to induce tumor control. TRM cells may be one of the 
responding intratumoral T cell populations to checkpoint 
blockade, such as anti-PD-1, which augments their tumor-
icidal functions. Interactions between T cells and cDCs 
via CXCR3 are important for anti-PD-1 efficacy. In situ 
tumor vaccination with tumor antigens may activate pre-
existing TRM cells and infiltrating TEFF cells. In situ vacci-
nation could also be used to activate anti-viral TRM cells to 
induce positive immune changes within the TME. Such 
changes may include production of chemokines to recruit 

TEFF cells or cytokines that support TEFF cell functions. The 
“prime and pull” strategy, which has been successfully 
used to recruit T cells into tissues, could be adapted to 
recruit T cells to the tumor. In this strategy, the frequency 
of circulating tumor antigen-specific TEFF cells is increased 
by immunization. Chemokines or inflammatory mediators 
are then injected into the tumor tissue to recruit these TEFF 
cells. Finally, T cells extracted from the patient could be 
modified to express TRM genes, for example, by promoting 
Runx3 activity, which may improve T cell infiltration and 
function after adoptive transfer back into the patient

J. B. Williams and T. S. Kupper



55

was critical for controlling development of skin 
tumors in response to chemically- or UV-induced 
carcinogenesis [219]. Further, activating pre- 
existing antiviral immunity can enhance antitu-
mor immunity. Rosato et  al. [71] showed that 
reactivation of VSV-specific CD8+ T cells by 
intratumoral peptide injections could delay tumor 
growth and synergized with anti-PD-L1 antibody 
therapy.

One key to therapeutic strategies designed to 
enhance T-cell infiltration into tumors may lie in 
understanding and promoting the specific DC 
populations and attendant T-cell transcriptional 
programs that imprint TRM precursor behavior. 
Recent data suggest that T cells in secondary 
lymphoid organs can be conditioned by migra-
tory DCs to become TRM cells in a TGF-β- 
dependent manner [110]. Promoting TRM 
precursor characteristics can also be accom-
plished by manipulating transcriptional activity 
directly in T cells. Runx3 was found to program 
CD8+ T cells for tissue residency and adoptive 
transfer of T cells overexpressing Runx3 aug-
mented T-cell accumulation in the tumor while 
enhancing their anti-tumor activity [220]. These 
studies suggest that peripheral T cells can be pro-
gramed to become TRM cells by promoting genes 
and cellular pathways that regulate TRM develop-
ment. This may be an attractive approach to 
potentiate adoptive cell transfer therapies.

3.11  Concluding Remarks

TRM cells are a unique lineage of T cells with spe-
cialized functions endowing them with the capac-
ity to adapt and survive in their tissue of residence. 
Their high abundance in most peripheral tissues 
and ability to rapidly respond to stimuli make 
them prime targets for cancer immunotherapies. 
Studies in mice have clearly demonstrated a role 
for both peripheral T cells and TRM cells in antitu-
mor immunity. However, a lack of cellular 
 markers defining TRM cells from other infiltrating 
effector T-cell subsets has hindered determining 
their composition within human tumors. Recent 
single-cell transcriptome analyses have revealed 
that most immune-infiltrated tumors contain  

T cells with a TRM-like genetic profile. Further, 
the abundance of T cells with TRM cell character-
istics often correlates with a favorable outcome 
and several lines of evidence suggest that TRM 
cells may be an important population activated 
by anti-PD-1 therapy.

Cancer vaccination is one type of therapy that 
can activate intratumoral TRM cells. However, the 
route of administration is a critical component 
influencing the effectiveness of this approach. 
While in situ vaccination has shown great poten-
tial, the immune-suppressive TME can diminish 
its effect. Furthermore, it remains to be deter-
mined how the TME affects TRM differentiation 
and whether newly infiltrated T cells can become 
bona fide TRM cells with their specific functional 
qualities. Understanding these influences, includ-
ing which immune-inhibitory pathways are active 
in the TME, will be important for deciding which 
therapy will best synergize with in situ vaccina-
tion. Vaccinating against common viral antigens 
can activate preexisting TRM cells to induce posi-
tive immune changes in the TME and sensitize 
the tumor to checkpoint blockade therapy. On 
balance, TRM cells possess the desired functional 
characteristics that can be harnessed to eliminate 
tumors, and the study of TRM cell biology in the 
context of cancer is nascent and a worthy 
endeavor.
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NK Cells in the Tumor 
Microenvironment

Camille Guillerey

Abstract

Natural killer cells are powerful effectors of 
innate immunity that constitute a first line of 
defense against cancer. NK cells express an 
array of germline-encoded receptors which 
allow them to eliminate transformed cells and 
spare normal, healthy cells. Owing to their 
ability to kill circulating tumor cells, NK cells 
play a major role in the protection against can-
cer metastases. There is also convincing evi-
dence that NK cells protect against some 
hematological cancers such as acute myeloid 
leukemia. However, the importance of NK 
cells for the control of established solid tumors 
is rather uncertain. Several mechanisms 
impede NK cell-mediated elimination of solid 
tumors, starting with the incapacity of NK 
cells to infiltrate the core of the tumor. In addi-
tion, immune escape mechanisms are at play 
in both solid and hematological cancers. These 
include the immunoediting of tumor cells and 
aberrant chronic inflammation that renders 
NK cells ineffective. In this chapter, I review 
the phenotypic characteristics of NK  
cells within the tumor microenvironment. 

Furthermore, I describe the mechanisms by 
which NK cells contribute to antitumor immu-
nity. Finally, I review the different immune- 
evasion factors that impair NK cell activity 
against cancer.
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4.1  Introduction

Natural killer (NK) cells are the cytotoxic mem-
bers of the innate lymphoid cell (ILC) family 
[49]. They were discovered in the mid-1970s for 
their ability to rapidly kill tumor cells without 
pre-activation [69, 70]. In opposition to other 
ILCs which are tissue resident, NK cells are 
blood-circulating cells that screen our body for 
damaged or stressed cells. Because they can 
detect and respond immediately to the very early 
signs of tumor transformation or infection, NK 
cells constitute a first line of defense against 
viruses and cancer [136].
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Belonging to the innate immune system, NK 
cells are devoid of recombination activating gene 
(RAG)-rearranged receptors and do not mediate 
antigen-specific responses. Instead, the molecu-
lar basis for NK cell-mediated recognition of 
tumor cells is ensured by a panel of germline- 
encoded surface receptors [88]. Some of these 
receptors bind to stress-induced molecules and 
transmit activation signals, while other deliver 
inhibitory signals upon binding to “normal self” 
molecules (e.g., class I molecules of the major 
histocompatibility complex, MHC-I). Therefore, 
NK cell activation and the outcome of NK cell 
interaction with a potential target cell is tightly 
regulated by the fine balance of positive and neg-
ative signals NK cells receive from their 
receptors.

In the last few years, major progress has been 
made in understanding NK cell heterogeneity. 
Human NK cells are commonly divided into 
CD56brightCD16− and CD56dimCD16+ subsets 
[26]. While CD56brightCD16− NK cells are usually 
referred to as the immunoregulatory, cytokine- 
responsive subset, CD56dimCD16+ NK cells show 
potent killing activity and secretion of IFN-γ 
when stimulated with target cells [79]. In healthy 
donors, CD56bright NK cells represent 5–10% of 
peripheral blood NK cells, but these cells are 
more abundant in tissues. According to the linear 
model of NK cell differentiation, CD56bright NK 
cells constitute the precursors of CD56dim NK 
cells [106]. However, other models have been 
proposed, whereby different NK cell subsets 
arise from distinct lineages [24]. The question of 
equivalence between mouse and human NK cell 
subsets has occupied scientists for more than a 
decade [57]. It is only recently that high through-
put single-cell RNA sequencing allowed the 
establishment of a correspondence across the two 
species [29]. NK1 cells, defined as human 
CD56dim NK cells or mouse CD27−CD11b+ NK 
cells, constitute a cytolytic subset and express a 
5-gene signature (GZMB, PRF, EMP3, ITGB2, 
and EB2). The NK2 subset, defined as human 
CD56bright NK cells or mouse CD27+CD11b− NK 
cells, is characterized by the expression of a sin-
gle gene (XCL1, encoding a chemoattractant). It 
is important to keep in mind that NK cell diver-

sity expands far beyond these two main subsets. 
Indeed, mass cytometry analysis of 28 NK cell 
receptors revealed a remarkable degree of hetero-
geneity with an estimation of 6000–30,000 phe-
notypic NK cell subsets in the peripheral blood of 
a given individual [60].

Owing to their ability to identify and rapidly 
kill genetically stressed or transformed cells, NK 
cells are crucial protagonists of anticancer 
responses. However, according to the dogma, NK 
cells eliminate newly arising tumors or metasta-
ses but are rather ineffective against established 
large solid tumors. Developing tumors employ a 
myriad of mechanisms to escape from NK cell- 
mediated immunosurveillance leading to limited 
access of NK cells to the tumor bed, alterations of 
NK cell phenotypes and functions and loss of 
immunogenicity impeding tumor cell recognition 
by NK cell receptors. In this chapter, I review the 
phenotypic characteristics of NK cells within the 
tumor microenvironment. Furthermore, I describe 
the mechanisms by which NK cells contribute to 
antitumor immunity. Finally, I review the differ-
ent immune-evasion factors that impair NK cell 
activity against cancer.

4.2  Tumor Infiltration by NK 
Cells

NK cells have been shown to infiltrate primary 
tumors of solid cancers [16], as well as metasta-
ses [55, 105] and tumor-infiltrated lymph nodes 
[2]. However, NK cell infiltration of most solid 
tumors is rather scarce [116], and the majority of 
studies reported reduced NK cell infiltrate in 
malignant tissues when compared with corre-
sponding nonmalignant tissues (Table  4.1). 
Several factors are likely to influence the degree 
of NK cell tumor invasion. An important factor is 
the tumor localization since in healthy individu-
als, organs are differentially populated by NK 
cells [16]. However, comparison of metastases 
from different cancer types revealed that the 
nature of the cancer cells greatly influences the 
degree of NK cell infiltration. Indeed, higher NK 
cell infiltrates have been reported in lung metas-
tases of renal cell carcinomas when compared 
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with those of colorectal carcinomas [105]. A high 
variability between patients has also been 
observed. For instance, in endometrial cancer, 
intra-tumoral NK cells have been detected in 
60% of patients and are absent in the remaining 
40% [132]. The localization of NK cells within 
the tumor is likely to impact on NK cells’ ability 
to control cancer progression. In this regard, 
immunohistochemistry analyses of primary 
tumors from non-small-cell lung cancer patients 
revealed that NK cells mostly localized at the 
invasive margin of the tumor and did not appear 
to be in direct contact with the tumor cells [17, 
98]. These observations suggest that NK cell- 
mediated protection against established solid 
tumors is limited by NK cells’ inability to reach 
their targets.

Although historically high levels of NK cell 
infiltration have been associated with favorable 
prognostic factors and better survival, many 
reports used CD57 as an NK cell-identifying 
marker (Table  4.2). Since CD57 only stains a 
subset of NK cells, and this marker is also 

expressed by T cells, additional studies should be 
performed to confirm the prognostic value of NK 
cell infiltrate. NKp46 is currently considered the 
most reliable marker to identify NK cells [87]. In 
colorectal carcinoma, high CD57+ infiltrate is 
associated with good prognosis while NKp46+ 
infiltrate has no prognostic value [105]. Data to 
date point to a correlation between high NK cell 
infiltration and better prognosis in renal cell car-
cinoma [105, 114], but NK cell infiltrate does not 
seem to influence the outcome of non-small-cell 
lung cancer patients [98]. Interestingly, a recent 
report suggested that the prognostic benefit of 
tumor-infiltrating NK cells may depend on the 
concurrent expression of ligands for NK cell 
receptors in the tumor microenvironment [132]. 
This study showed that, in endometrial cancer, 
NK cell presence in the tumor was associated 
with enhanced disease-free survival only when 
human leukocyte antigen (HLA)-E (a ligand for 
the inhibitory NK cell receptor NKG2A and the 
activating receptor NKG2C) was expressed at 
high levels. However, if HLA-E expression was 

Table 4.1 Comparison of NK cell infiltration levels between malignant and corresponding nonmalignant tissue

Cancer Method Phenotype Tumor tissue Normal tissue Infiltration Reference
Breast cancer FC CD3− 

CD56+

Primary tumor Healthy mammary 
tissue

↘ =a Mamessier 
et al. [80]

Colorectal carcinoma IH NKp46+ Primary tumor Adjacent normal 
mucosa

↘ Halama 
et al. [56]

Colorectal carcinoma FC NKp46+ Liver 
metastasis

Normal liver tissue ↘ Halama 
et al. [56]

Gastric and 
colorectal cancers

FC CD3− 
CD56+

Liver 
metastasis

Normal liver tissue ↘ Gulubova 
et al. [55]

Endometrial cancer FC CD3− 
CD56+

Primary tumor Adjacent normal 
tissue

↘ Degos et al. 
[32]

Esophageal cancer FC CD3− 
CD56dim

Primary tumor Normal mucosa ↘ Izawa et al. 
[66]

Gastric cancer FC CD3− 
CD56dim

Primary tumor Normal mucosa ↘ Izawa et al. 
[66]

Melanoma FC CD3− 
CD56+

Tumor 
infiltrated LN

Ipsilateral 
tumor-free LN

↗ Ali et al. [2]

Non-small-cell lung 
carcinoma

FC CD3− 
CD56+

Primary tumor Nonmalignant lung 
tissue

↘ Esendagli 
et al. [40]

Severalb FC CD3− 
CD56+

Primary tumor Corresponding 
normal tissue

= Carrega 
et al. [16]

FC flow cytometry, IH Immunohistochemistry, LN lymph node
↘ NK cell infiltration is decreased in tumor compared with normal tissue, = NK cell infiltration is similar in tumor and 
normal tissue, ↗ NK cell infiltration is increased in tumor compared with normal tissue
aSimilar proportions but decreased numbers
bColorectal, lung, stomach, breast, adrenal gland, and kidney cancers
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Table 4.2 Association between NK cell infiltration and cancer prognosis

Tumor Method
NK cell 
identification

Prognostic 
factor

Prognostic of 
high NK cell 
infiltrate

Cohort size 
(patient number) Reference

Non-small- cell 
lung cancer

FC CD3−CD56+ Tumor size −a 28 Carrega et al. 
[17]

Renal cell 
carcinoma

FC CD3−CD56+ Distant 
metastasis

+ 34 Schleypen et al. 
[114]

Non-small- cell 
lung cancer

FC CD3−CD56+ Overall 
survival

None 30 Platonova et al. 
[98]

Endometrial 
cancer

IC NKp46+ Disease- free 
survival

+/− b 303 Versluis et al. 
[132]

Colorectal cancer 
(lung metastases)

IC NKp46+ Overall 
survival

None 140 Remark et al. 
[105]

Renal cell 
carcinoma (lung 
metastases)

IC NKp46 + Overall 
survival

+ 52 Remark et al. 
[105]

Squamous cell 
lung carcinoma

IC CD57 + Overall 
survival

+ 50 Villegas et al. 
[133]

Gastric 
carcinoma

IC CD57 + Overall 
survival

+ 146 Ishigami et al. 
[65]

Colorectal 
carcinoma

IC CD57 + Overall and 
disease- free 
survival

+ 157 Coca et al. [25]

Pulmonary 
adenocarcinoma

IC CD57 + Overall 
survival

+ 150 Takanami et al. 
[126]

Lung 
adenocarcinoma 
(brain metastasis)

IC CD57 + Time free of 
intracranial 
disease

None 20 Vaquero et al. 
[130]

+ High NK cell infiltration is associated with good prognostic factors or better survival, − High NK cell infiltration is 
associated with poor prognostic factors or lower survival
aLarger tumors have higher percentages of NK cell infiltration
bIn cases of normal HLA-E expression, disease free survival is reduced when NK cells are present, whereas in cases of 
upregulated HLA-E expression, disease free survival is increased when NK cells are present

normal, the presence of NK cells was associated 
with worse prognosis.

The mechanisms driving NK cell infiltration 
of tumors are not fully understood and are likely 
to vary depending on the cancer type and the 
tumor localization. An accumulation of NKp46+ 
or CD3−CD56+cells (encompassing NK cells and 
subsets of helper ILCs) within a malignant tissue 
might result from a combination of cell recruit-
ment from the blood stream and expansion of 
tissue-resident populations. The primary chemo-
kine receptors involved in NK cell migration to 
inflammatory stimuli are CCR2, CCR5, CXCR3, 
and CX3CR1 [48]. Those allow NK cells to 
respond to the pro-inflammatory chemokines 
CCL2, CCL3, CCL5, CCL8, CCL9, CCL11, 

CCL13, CXCL9, CXCL10, CXCL11, and 
CX3CL1. The CXCR3/CXCL10 axis has been 
identified as a major mechanism driving NK cell 
accumulation in subcutaneous mouse tumors, as 
well as in xenograft models of melanoma [140, 
141]. CXCR3, together with CXCR4, might also 
regulate NK cell localization to the bone marrow 
in the context of multiple myeloma [100]. Since 
CD56dim and CD56bright NK cell subsets differ in 
their expression of chemokine receptors [48], 
specific chemokine microenvironments may lead 
to the preferential accumulation of one subset. In 
melanoma patients, the CXCR2/CXCL8 axis 
was suggested to mediate the recruitment of 
CD56dim NK cells to the metastatic lymph node 
while the CCR2/CCL2 axis would recruit 
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CD56bright NK cells and CCL19/CCL21 would 
attract both subsets through CCR7 [2]. Moreover, 
chemerin, a chemoattractant protein that acts 
through the receptor CMKLR1 expressed by 
CD56dim NK cells [48], has been identified as an 
NK cell-attracting factor in mouse cancer models 
[92, 93]. However, the detection of NK cell- 
homing factors within the tumor microenviron-
ment is not always associated with intra-tumor 
NK cell infiltrate. For instance, despite elevated 
levels of NK cell-attracting chemokines, colorec-
tal carcinomas are poorly infiltrated by NK cells 
[56]. This suggests that additional signals might 
be required to allow NK cell accumulation within 
the tumor bed and/or that inhibitory mechanisms 
might prevent NK cells from entering the tumor 
or from surviving within the tumor microenvi-
ronment. In this regard, an interesting study 
established that NK cell intrinsic expression of 
heparanase, an enzyme known to degrade hepa-
ran sulfate proteoglycans of the extracellular 
matrix, was absolutely necessary for tumor inva-
sion and immunosurveillance in mice [102].

4.3  Phenotype of Intra-Tumoral 
NK Cells

A vast number of studies reported dysregu-
lated proportions of CD56dimCD16+ and 
CD56brightCD16− NK cells infiltrating solid 

tumors (Table 4.3). However, some studies used 
peripheral blood as a comparison. In this context, 
the higher percentages of CD56bright or CD16− 
NK cells observed in esophageal cancer and renal 
cell carcinoma might only reflect differences 
between tissue and blood-circulating NK cells 
[114, 142]. Direct comparison between malig-
nant and corresponding nonmalignant tissue 
revealed increased CD56bright NK cell infiltrate in 
lung and breast cancers [16, 17, 80]. By contrast, 
higher percentages of CD56dim NK cells were 
found in tumor-infiltrated lymph nodes of mela-
noma patients, when compared with control non-
infiltrated lymph nodes [2]. This last observation 
was associated with decreased CD56dim NK cells 
in the peripheral blood of melanoma patients, 
suggesting that, in these patients, CD56dim NK 
cells are recruited from the blood circulation to 
the tumor-colonized lymph node. Distortion in 
the proportions of CD56bright and CD56dim NK 
cell subsets has also been observed in the blood 
of hematological cancer patients (Table 4.4). The 
proportion of CD56bright cells is increased in B 
cell lymphomas [131] while it is decreased in 
acute myeloid leukemia [23].

Distortion in NK cell subset representation is 
accompanied by changes in the expression of NK 
cell receptors (Table 4.5). The severity of these 
alterations varies depending on the type of malig-
nancy. Significant differences in NK cell receptor 
expression have been observed in non-small-cell 

Table 4.3 Proportions of CD56bright NK cells infiltrating solid tumors

Cancer type
CD56bright

in tumor Control tissue Reference
Esophageal cancer ↗ (30%) Peripheral blood (10%) Zheng et al. [142]
Non-small- cell lung cancer ↗ (40%) Peritumoral lung tissue (20%) Carrega et al. [17]
Breast cancer ↗ (34%) Healthy mammary tissue (15%) Mamessier et al. [80]
Endometrial cancer = (10%) Adjacent tissue (15%) Degos et al. [32]
Colorectal cancer = (60%) Normal tissue (60%) Carrega et al. [16]
Lung cancer ↗ (50%) Normal tissue (10%) Carrega et al. [16]
Stomach cancer = (50%) Normal tissue (70%) Carrega et al. [16]
Breast cancer ↗ (30%) Normal tissue (5%) Carrega et al. [16]
Kidney cancer = (40%) Normal tissue (40%) Carrega et al. [16]
Metastatic lymph node of 
melanoma

↘ (50%) Control lymph node (70%) Ali et al. [2]

The percentages of CD56bright NK cells among total NK cells in tumors and control tissues are indicated
↗ percentages of CD56bright NK cells are increased compared with control, = no significant difference observed between 
tumor and control, ↘ percentages CD56bright NK cells are decreased compared with control
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lung carcinomas [17, 98] and in breast cancers 
[80]. An interesting study comparing NK cells at 
different stages of breast cancer showed that 
NK-cell phenotypic alterations accompanied 
tumor progression and were much more pro-
nounced at metastatic stages than in benign mam-
mary tumors [80]. Among hematological cancers, 
the most drastic alterations have been observed in 
acute myeloid leukemia [28, 111], while only 
minor modifications were reported in B-cell lym-

phomas [131]. The most common alterations are 
the downregulation of activating receptors such 
as DNAM-1, NKG2D, and CD16 [38, 80, 98]. 
These alterations may hamper the immunosur-
veillance role of NK cells. Moreover, the 
decreased expression of CD16 observed in most 
solid and hematological cancers (that is likely to 
partially result from reduced proportions of 
CD56dimCD16+ NK cell subset) has important 
therapeutic implications since CD16 is the 

Table 4.4 Percentages of total NK cells and proportions of CD56bright NK cells in the blood of hematological cancer 
patients

Cancer type Total NK cells CD56bright NK cells Reference
Healthy 10% 10% Cooper et al. [26]
Hodgkin lymphoma ↘ (6.2%) ↗ (38%) Vari et al. [131]
Diffuse large B-cell lymphoma ↘ (5%) ↗ (28%) Vari et al. [131]
Childhood B-cell acute 
lymphoblastic leukemia

↘ (3.3%) = Rouce et al. [108]

Acute myeloid leukemia ↘ (<1%) ↘(1.3%) Costello et al. [28], 
Chretien et al. [23]

Chronic myeloid leukemia ↘ (5.10%) = Chen et al. [20]
Multiple myeloma = = Konjevic et al. [72]

The first line indicates the proportions in the blood of healthy volunteers for comparison
↘ decreased compared with healthy controls, = no significant difference observed when compared with healthy con-
trols, ↗ increased compared with healthy controls

Table 4.5 Alterations of NK cell receptor expression in cancer patients

Melanoma 
metastatic LN NSCLC

Breast 
cancer

HL and 
DLBCL

Childhood 
B-ALL MM AML

NKG2D = ↘ = = =
DNAM ↘ ↘ ↘ ↘
NKp46 = = = ↘ = ↘
NKp30 ↘ ↘ = = = ↘
NKp44 ↗ = ↘
NKp80 ↘
CD16 ↗ ↘ ↘ ↘ ↘ ↘
2B4 ↗ ↘ ↘
KIR ↗ ↘ =
NKG2A ↗ ↗ ↗ ↘
CD69 ↗ ↗ =
HLA-DR ↗ =
Reference Ali et al. [2] Carrega et al. 

[17], Platonova 
et al. [98]

Mamessier 
et al. [80]

Vari et al. 
[131]

Rouce 
et al. 
[108]

Fauriat 
et al. [41], 
El-Sherbiny 
et al. [38]

Costello et al. 
[28], Sanchez-
Correa et al. 
[111]

For solid tumors (i.e., melanoma, NSCLC, breast cancer), the phenotypes of tumor-infiltrating NK cells were compared 
to those of NK cells from corresponding normal tissue. For hematological cancers (i.e., HL and DLBCL, B-ALL, MM, 
and AML), the phenotypes of patient peripheral blood NK cells were compared to those of healthy donors
LN lymph node, NSCLC non-small cell lung cancer, HL Hodgkin lymphoma, DLBCL diffuse large B cell lymphoma, 
B-ALL B-cell acute lymphoblastic leukemia, MM multiple myeloma, AML acute myeloid leukemia
↘ decreased expression, = no significant difference, ↗ increased expression
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 receptor mediating antibody-dependent cellular 
cytotoxicity (ADCC), a process involved in the 
mechanism of action of some monoclonal anti-
body (mAb) therapies [71].

Alterations of NK cell receptor expression 
and subset representation might be the result of 
defective maturation since CD56bright NK cells 
are known to differentiate into CD56dim NK 
cells [61, 106]. The CD56brightKIR−CD16− NK 
cell phenotype observed in gastrointestinal sar-
comas is consistent with a blocked maturation 
process [33]. By contrast, increased percentages 
of mature NK cells characterized by a 
CD56dimKIR+CD57+ phenotype have been 
detected in the blood of patients with acute 
myeloid leukemia [23]. The terminal differenti-
ation marker CD57 was also found to be upreg-
ulated on NK cells in metastatic lymph nodes of 
melanoma patients [2]. While CD57 identifies 
mature NK cells with high cytotoxic potential 
and responsiveness to CD16 stimulation [77, 
90], an alternative maturation pathway charac-
terized by the loss of DNAM-1 expression on 
CD56dim NK cells has recently been reported 
[125]. Peripheral blood DNAM-1− NK cells, 
which were found to arise from DNAM-1+ NK 
cells, are poorly functional in terms of cytokine 
secretion and killing capacity. Interestingly, 
increased proportions of the dysfunctional 
DNAM-1− NK cells were observed in the blood 
of B-cell lymphomas patients, and overrepre-
sentation of this terminally differentiated subset 
might contribute to cancer escape from 
immunosurveillance.

Furthermore, tumor-infiltrating NK cells often 
exhibit an activated/exhausted phenotype. Upre-
gulation of the activation markers CD69, NKp44, 
and HLA-DR has been observed on NK cells infil-
trating non-small-cell lung carcinoma or mela-
noma metastatic lymph nodes [2, 17, 98]. The 
upregulation of checkpoint molecules such as 
PD-1, Tim-3, TIGIT, and LAG-3, often regarded 
as a sign of exhaustion, has been detected in 
esophageal and endometrial cancers, as well as in 
B-cell lymphoma patients [32, 131, 142].

4.4  Regulation of NK Cell 
Responses Within the Tumor 
Microenvironment

NK cell-mediated killing is a tightly regulated 
process involving an array of germline-encoded 
surface receptors that screen the spectrum of 
ligands expressed on the surface of the target cell 
[136]. Moreover, cytokines and pathogen- 
associated molecular patterns (PAMPs) or 
damage- associated molecular patterns (DAMPs) 
modulate NK cell activity (Fig. 4.1).

4.4.1  Tumor Cell Recognition 
Through NK Cell Receptors

The “missing-self” recognition, which refers to 
the detection of cells lacking self MHC-I mole-
cules, is a major functional feature of NK cells. 
This phenomenon was proposed almost 30 years 
ago [76] to explain NK cells’ ability to spare 
healthy cells (expressing normal levels of MHC-I 
molecules) and to react against stressed or trans-
formed cells that have downregulated MHC-I 
molecules as an immune-escape mechanism 
[44]. The “missing-self” recognition is mediated 
by killer cell immunoglobulin-like receptors 
(KIRs) in humans and the Ly49 receptor family 
in mice [81]. The KIR and Ly49 families include 
various members with distinct binding affinity 
for different allelic variants of MHC-I molecules. 
In addition to KIRs/Ly49 receptors, the CD94/
NKG2A receptor complex (expressed by both 
human and mouse NK cells) delivers negative 
signals upon binding to nonclassical MHC-I mol-
ecules (HLA-E in human and Qa-1 in mice). NK 
cell autoreactivity is further controlled through a 
process called NK cell education, which ensures 
that fully responsive NK cells express at least one 
inhibitory receptor that is specific for a self- 
MHC- I ligand [118].

The lack of inhibitory signals is usually not 
sufficient to trigger NK cell cytotoxicity or cyto-
kine production. Indeed, NK cell activation 
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requires activating signals delivered by cell- 
surface receptors recognizing ligands expressed 
on the surface of stressed, damaged, or trans-
formed cells [134]. NKG2D and natural cytotox-
icity receptors (NCRs) are activating receptors 
playing an important role in cancer immunosur-
veillance. NKG2D recognizes MHC-I homolo-
gous molecules (e.g., MICA, MICB, and ULBPs 
in humans; Rae-1, Mult-1, and H60 in mice) and 
signals through the adapter DAP10 to induce NK 
cell degranulation and cytokine production [103]. 
The cellular expression of NKG2D ligands is 
regulated by DNA-damage pathways [45] and 

experiments in mice have revealed that NK cells 
play a crucial role in the rejection of tumor cells 
overexpressing NKG2D ligands [35]. The NCR 
family includes NKp30, NKp44, and NKp46 
[88]. All NCRs are expressed by human NK cells 
while only NKp46 is expressed in mice. 
Moreover, NKp44 is not expressed on resting NK 
cells but is upregulated after activation. NCRs 
contain a transmembrane domain that interacts 
with signaling adaptor proteins containing immu-
noreceptor tyrosine-based activation motifs 
(ITAMs) and thereby mediate NK cell activation 
[73]. While the first NCR ligands identified were 

Fig. 4.1 NK cell activation. NK cells receive activation 
signals from soluble factors present in the tumor microen-
vironment (upper panel) or from their receptors upon 
interaction with their potential target cells (lower panel). 
Several cell types (including M1-polarized macrophages, 
DCs, and T cells) contribute to NK cell activation via the 
production of cytokines such as IL-2, IL-12, IL-15, and 
IL-18. These cytokines can induce NK cells to secrete 
IFN-γ or TNF-α. They also increase the killing potential 
of NK cells by augmenting their expression of effector 

molecules (perforin and granzyme). The outcome of NK 
cell interaction with a potential target cell is determined 
by the dynamic balance between the positive and negative 
signals transmitted by NK cell receptors. Inhibitory recep-
tors recognize self-MHC-I molecules while activating 
receptors bind to stress-induced ligands upregulated on 
the surface of malignant cells. DAMP damage-associated 
molecular pattern, TLR Toll-like receptor, DC dendritic 
cell, MHC-I class I major histocompatibility complex
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of viral origin, several NCR ligands contributing 
to NK cell lysis of tumor cells have now been 
identified. All three NCRs can recognize tumor 
membrane-associated heparan sulfates [58]. 
Other NCR ligands expressed by tumor cells 
include B7-H6 [12] and HLA-B-associated tran-
script B (BAT3) [99]; both of them are recog-
nized by NKp30. NKp44L, a shorter isoform of 
the mixed-lineage leukemia 5 protein, has been 
identified as a cancer cell-expressed ligand for 
NKp44 [9]. Recently, platelet-derived growth 
factor (PDGF)-DD, a soluble factor secreted by 
many tumors, has also been shown to stimulate 
NK cell functions through NKp44 [7]. In vivo 
experiments using mice modified to express 
NKp44 (NCR2-Tg mice) demonstrated that 
NKp44-PDGF-DD interactions induced IFN-γ 
and TNF-α secretion by NK cells, resulting in 
tumor cell growth arrest [7]. It is noteworthy that 
although NCRs are commonly seen as activating 
receptors, they can sometime deliver negative 
signals. For instance, proliferating cell nuclear 
antigen (PCNA), an NKp44 ligand often overex-
pressed by cancer cells, has been shown to inhibit 
NK cell functions [107]. While activating signals 
through NKp44 are mediated via the adapter 
DAP12, PCNA initiates a signaling cascade 
through the immunoreceptor tyrosine-based 
inhibitory motifs (ITIM) domain located in the 
NKp44 cytoplasmic tail. Alternative splicing of 
the NKp44 mRNA results in three isoforms; the 
NKp44-1 isoform but not NKp44-2 nor NKp44-3 
harbors ITIM in its cytoplasmic portion. 
Consequently, in acute myeloid leukemia, poor 
survival has been associated with an NKp44-1 
splice variant profile [117]. Similarly, alternative 
splicing of the NCR3 gene gives rise to three iso-
forms of NKp30 [33]. While NKp30a was shown 
to stimulate NK cell cytotoxicity and both 
NKp30a and NKp30b could stimulate the pro-
duction of IFN-γ, NKp30c induced the secretion 
of the immunosuppressive cytokine IL-10 and 
has been associated with poor outcome in gastro-
intestinal cancers.

Receptors that bind to nectin and nectin-like 
family proteins have emerged as critical regula-
tors of NK cell functions [83]. Those receptors 
include CD226 (DNAM-1), T-cell immunorecep-

tor with immunoglobulin and ITIM domains 
(TIGIT) and CD96 (TACTILE) and are expressed 
by both T cells and NK cells. CD226, TIGIT, and 
CD96 all bind to CD155 (also called PVR), a 
ligand expressed on antigen-presenting cells  
and activated lymphocytes, as well as non- 
hematopoietic cells and tumor cells from variable 
origin. In addition, TIGIT and CD226 bind to 
CD112 (nectin-2), and TIGIT also interacts with 
CD113. CD226 is an adhesion molecule that 
delivers co-stimulatory signals to NK cells [96]. 
Experiments in mouse tumor models indicated an 
important role for DNAM-1 in cancer immuno-
surveillance [51, 62]. By contrast, TIGIT and 
CD96 are inhibitory receptors that have emerged 
as new targets for immunotherapy [19, 36, 124].

4.4.2  Soluble Factors Regulating NK 
Cell Activity

4.4.2.1  Cytokines
Cytokines such as IL-2, IL-12, IL-15, IL-18, and 
type I IFNs are critical regulators of NK cell 
functions [143]. Within the tumor microenviron-
ment, these cytokines are most likely to be 
secreted by the immune infiltrate, and particu-
larly myeloid cells and T cells [31, 119]. IL-15 is 
essential for NK cell ontogeny, while both IL-2 
and IL-15 promote NK cell survival, prolifera-
tion, and cytotoxic activity. For instance, IL-2- 
activated human NK cells are more sensitive to 
receptor stimulation [13]. In mice, the trans- 
presentation of IL-15 on IL-15Rα by dendritic 
cells (DCs) was found critical for the acquisition 
of IFN-γ-producing and killing capacities by NK 
cells, a process termed “NK priming” [78]. CIS 
(encoded by the gene Cish) is a negative regula-
tor of IL-15 signaling; and Cish−/− mice were 
reported to be resistant to experimental metasta-
sis, a phenotype that was associated with 
enhanced NK cell activity [34]. The importance 
of IL-15 for NK cell priming was also demon-
strated in humans as brief exposure to IL-15 was 
found to improve the antitumor function of 
CD56bright NK cells [138]. Cytokines such as 
IL-12 or IL-18 have little activity on NK cells 
when used on their own. However, IL-12 and 

4 NK Cells in the Tumor Microenvironment



78

IL-18 synergize with other cytokines to potenti-
ate NK cell functions. For instance, the combina-
tion of IL-12, IL-15, and IL-18 induces 
“memory-like” NK cells with increased respon-
siveness to IL-2 [74].

4.4.2.2  DAMPs
Some chemotherapy or radiotherapy  treatments 
may stimulate the release of DAMPs that are rec-
ognized by Toll-like receptors (TLRs) and induce 
innate immune responses [4]. Human NK cells 
express the endosomal receptors TLR3 and 
TLR9, which allow responses to double-stranded 
RNA and CpG oligonucleotides, respectively 
[121]. Interestingly, the KIR receptor KIR3DL2 
was found to interact with CpG oligonucleotides 
[120]. Data suggested that KIR3DL2 may act as 
a transporter that shuttles CpG oligonucleotides 
from the surface to the endosomes where TLR9 
is localized. Moreover, NK cells isolated from 
Tlr3−/−mice are hyporesponsive to in vitro cyto-
kine stimulation [50]. Various studies performed 
in mice established the potential of TLR-ligand 
administration to enhance antitumor NK cell 
responses [1, 7, 21]. However, the importance of 
direct sensing of DAMPs by NK cells remains 
unclear. By contrast, there is evidence that TLR 
ligands stimulate NK cell functions in an indirect 
manner via DCs [75].

4.5  Anticancer Roles of NK Cells

Evidence for anticancer functions of NK cells 
has been mostly provided by mouse cancer mod-
els using NK cell-depleting antibodies or NK 
cell-deficient mouse strains (reviewed in [53, 
54]). The most convincing data supporting a role 
of NK cell in the immunosurveillance of human 
cancers come from an epidemiology study of the 
Japanese population [64]. This study revealed 
that individuals with low cytotoxic activity of 
peripheral blood lymphocytes against K562 tar-
get cells have an enhanced risk of cancer devel-
opment. Additional evidence for a protective role 
of NK cells against human cancers comes from 
clinical studies involving acute leukemia patients 
for whom the transfer of allogeneic KIR- 

mismatched NK cells appeared to be beneficial 
[30, 109, 110]. NK cells protect against tumor 
progression through various mechanisms 
(Fig.  4.2). Those include cytotoxic activity and 
the secretion of cytokines such as IFN-γ or TNF- 
α that may directly act on the tumor cells to 
decrease their survival or proliferation. Moreover, 
NK cells play an important role in shaping the 
immune response by interacting with cells from 
either the innate or the adaptive immune system.

4.5.1  NK Cells Provide Direct 
Protection Against Cancer 
Cells

NK cells directly eliminate cancer cells through 
the release of cytotoxic granules or by engaging 
death receptors. Both modes of killing require the 
formation of an immune synapse between the 
NK cell and the target cell. The initiation, main-
tenance, and termination of the immune synapse 
is a highly regulated process that determines the 
ability of NK cells to consecutively kill multiple 
targets [89]. Granule-mediated cellular toxicity 
appears as a major mechanism of cancer immu-
nosurveillance [68, 129]. This pathway is entirely 
dependent on the pore-forming protein perforin, 
which allows serine proteases called granzymes 
and other granule-contained lytic molecules to 
reach the cytosol of the target cell, leading to the 
cleavage of several substrates and the consequent 
initiation of pro-apoptotic cascades [137]. In 
addition, NK cells can express the death recep-
tors FasL and TNF-related apoptosis-inducing 
ligand (TRAIL). FasL and TRAIL bind to their 
receptors – Fas (CD95) and DR-4/DR-5, respec-
tively  – on the surface of the target cell and 
thereby initiate the formation of the death- 
signaling inducing complex, ultimately leading 
to the apoptosis of the target cell [97]. Although 
death-receptors do not appear as crucial as the 
granule-exocytosis pathway [122], experiments 
in mice suggested that FasL and TRAIL could 
contribute to NK cell-mediated control of liver 
metastasis [37, 127].

As different modes of cancer cell death lead to 
the release of different activating factors [43], the 
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way NK cells kill their targets may greatly influ-
ence the immune response. While the granule 
exocytosis pathway can induce the target cell to 
die by necrosis or by apoptosis, the Fas-FasL 
pathways only kill via apoptosis [5]. Moreover, a 
recent in  vitro study demonstrated that human 
NK cells use the granule exocytosis pathway dur-
ing the first killing events and the death receptor 
pathway for their last killing event [101]. In this 
last study, granzyme B-mediated death was faster 
and mostly non-apoptotic, whereas death- 
receptor- mediated killing resulted in the slow 
apoptosis of the target cell.

IFN-γ production by NK cells has broad 
immune and non-immune-mediated antitumor 
effects. Many tumors are IFN-γ-sensitive, and 
disruption of IFN-γ signaling in these tumors 
increases their tumorigenicity [63]. IFN-γ can 
exert direct antiproliferative, anti-metabolic, and 
proapoptotic effects on IFN-γ-sensitive tumors. 
Moreover, a recent study using the mouse B16 
melanoma model identified a novel mechanism 
by which NK cell-mediated IFN-γ production 
prevents metastasis [47]. In this study, IFN-γ pro-
duction by NK cells triggered through NKp46 
induced the upregulation of fibronectin-1 on 

Fig. 4.2 Antitumor functions of NK cells. NK cells 
directly eliminate cancer cells through the release of per-
forin/granzyme-containing granules (1) or through 
TRAIL/FasL that interact with death receptors on target 
cells (2). In addition, NK cells secrete IFN-γ and TNF-α 
that may exert direct antiproliferative or pro-apoptotic 
effect on tumor cells (3). IFN-γ secreted by NK cells also 
induce the upregulation of fibronectin-1 on tumor cells 
and thereby decrease their metastatic potential (4). Tumor 
cell killing by NK cells leads to the release of apoptotic 
bodies and DAMPs that facilitate antigen uptake and 
T  cell priming by DCs. Furthermore, NK cells directly 

interact with DCs to promote protective T cell responses. 
NK cells eliminate immature tolerogenic DCs (5) or 
induce their maturation through the release of IFN-γ and 
TNF-α (6), thereby ensuring that T cells receive adequate 
co-stimulatory signals. NK cells also release XCL1, 
CCL5, and Flt3L that promote cDC1 accumulation within 
the tumor (7). Finally, the secretion of IFN-γ and TNF-α 
promotes the development of protective type 1 responses, 
including Th1 polarization of CD4 T cells (8) and M1 
polarization of macrophages (9). DC dendritic cell, Mϴ 
monocyte/macrophage, DAMPs damage-associated 
molecular patterns
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tumor cells; this led to architectural remodeling 
of the primary tumor and decreased metastasis.

4.5.2  NK Cells Shape the Ongoing 
Immune Response

NK cells secrete many soluble factors including 
IFN-γ, TNF, IL-6, GM-CSF, and CCL5. NK cell- 
derived cytokines and chemokines can influence 
both the innate and adaptive arms of the immune 
system. In addition, NK cells can establish cel-
lular contacts with other immune subsets and 
thereby orient the immune response. For instance, 
the NK cell-activating receptor NKp80 binds to 
AICL to induce TNF production by monocytes 
[139]. NK cells have the ability to stimulate, 
shape, and terminate adaptive immune responses 
[3]. In mice, blood NK cells recruited to inflamed 
lymph nodes through CXCR3 constitute a source 
of IFN-γ that is critical for the Th1 polarization 
of CD4+ T cells [82]. DCs are professional 
antigen- presenting cells responsible for the prim-
ing of T-cell responses [85]. NK cells are known 
to control T-cell responses through their interac-
tion with DCs [31]. NK cells can enhance T-cell 
priming by promoting DC maturation and by 
eliminating immature and potentially tolerogenic 
DCs. Furthermore, the direct killing of tumor 
cells by NK may facilitate the uptake of antigenic 
material by DCs. In mice, NK cells activated by 
MHC-Ilow tumors were found to stimulate IL-12 
production by DCs, which ultimately resulted in 
protective CD8+ T-cell responses [86]. However, 
not all DC subsets are equivalent. Conventional 
(c)DC1s (characterized by the marker CD141 in 
humans and CD103 or CD8α in mice) constitute 
a small subset of DCs that are essential for the 
initiation of cytotoxic T cell responses [59, 67]. 
Recent studies performed in mouse tumor mod-
els indicated that NK cells play an important role 
in promoting the intra-tumoral accumulation 
cDC1s, a process that relies on the production of 
CCL5, XCL1, and/or Fms-related tyrosine kinase 
3 ligand (Flt3L) by NK cells [8, 11]. Although 
correlative data suggest that similar mechanisms 
may be at play in humans, additional research is 
required formally to establish the importance of 
the NK cell-cDC1 axis in cancer patients.

4.6  Escape from NK Cell- 
Mediated 
Immunosurveillance

Although there is convincing evidence that NK 
cells kill newly transformed cells and protect 
against formation of metastases, they seem to 
have little effect against established cancers. This 
paradox can be explained by the multiple mecha-
nisms that tumors have supplanted to evade NK 
cell surveillance. Among the various cellular and 
molecular pathways contributing to cancer 
 evasion from NK cell-mediated immunosur-
veillance, some modifications reduce the immu-
nogenicity of the tumor cells while others alter 
NK cell functions (Fig. 4.3).

4.6.1  Cancer Immunoediting  
by NK Cells

As they eradicate the most immunogenic malig-
nant cells, immune cells sculpt the tumor and 
select the most aggressive variants. This process 
is known as “cancer immunoediting” [115]. 
Within a tumor population, clones that develop 
mutations rendering them more resistant to 
immune attacks will be preferentially selected. 
Because of their high mutational rate, tumor cells 
can rapidly adapt to their environment and accu-
mulate changes that allow them to escape from 
the immune system. Such changes include the 
modulation of surface receptors to go unnoticed, 
the intrinsic resistance to immune killing, and the 
acquisition of highly immune-suppressive prop-
erties. All these modifications hinder NK cell- 
mediated eradication of tumors.

The formal evidence of NK cell-mediated 
immunoediting was provided by the comparison 
of the immune properties of carcinogen-induced 
tumors arising in RAG2−/− and RAG2−/− x γc

−/− 
mice [91]. This study showed that the vast major-
ity of the cancer cell lines developing in NK 
cell-deficient RAG2−/− x γc

−/− mice were rejected 
when transplanted into wild-type (WT) mice. 
Similarly, WT mice rejected cell lines derived 
from RAG2−/− mice treated with NK cell- 
depleting Abs (anti-NK1.1) but not those derived 
from control Ab-treated RAG2−/− mice. These 
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data demonstrate that tumors developing in the 
absence of NK cells are more immunogenic. In 
addition, another group observed that carcinogen- 
induced tumors arising in mice lacking the NK 
cell receptor NKp46 expressed NKp46 ligands, 
while those ligands were undetected on tumors 
originating in WT mice [39]. Indications that NK 
cells can sculpt the phenotype of human tumors 
come from the comparison of the expression of 
ligands for NK cell receptors at different disease 
stages. In colorectal cancer patients, NKG2D 
ligands are frequently expressed on tumors from 
tumor-node-metastasis stage I patients, but their 
expression is progressively reduced on stage II, 
III, and IV tumors [84].

The phenomenon of NK cell-mediated immu-
noediting seems to be particularly prominent in 
hematological cancers. Bone marrow tumors 
from early stages myeloma patients, which 
express NKG2D ligands ULBPs and/or MICA 
and low levels of MHC-I molecules, are readily 
killed by autologous NK cells [14]. By contrast, 
cell lines from pleural effusions of late myeloma 
patients are NK cell-resistant, a phenotype that is 
associated with increased MHC-I and decreased 
NKG2D ligand expression. Finally, recent work 
established that AML leukemic stem cells (that 
are chemo-resistant and responsible for disease 
relapse) can be distinguished from the bulk  
AML cells by their absence of NKG2D ligand 

Fig. 4.3 Mechanisms leading to tumor escape from NK 
cell-mediated immunosurveillance. Immunoediting: NK 
cell-mediated killing of highly immunogenic tumor 
clones leads to the outgrowth of tumor variants that are 
poorly recognized by NK cells, either because they have 
downregulated ligands for activating NK cell receptors or 
because they have upregulated ligands for inhibitory NK 

cell receptors. Immunosuppression: the tumor microenvi-
ronment is highly immunosuppressive. Tregs tolerogenic 
immune cells comprise regulatory T cells, MDSCs 
myeloid-derived suppressor cells, TAM tumor-associated 
macrophages. Soluble factors such as prostaglandin E2 
(PGE2), indoleamine 2,3 dioxygenase (IDO), adenosine, 
and TGFβ contribute to hamper NK cell functions
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expression [94]. It was shown that leukemic stem 
cells also displayed reduced expression of the 
DNAM ligands CD112 and CD155 and were 
resistant to NK cell-mediated killing. These data 
highlight how a specific subpopulation of tumor 
cells may prevent cancer eradication by NK cells.

4.6.2  Suppression of NK Cell 
Responses Within the Tumor 
Microenvironment

Aberrant inflammation within the tumor micro-
environment may favor cancer evasion from NK 
cell-mediated control. Several cell types contrib-
ute to the establishment of an immunosuppres-
sive microenvironment poorly favorable to NK 
cell functions. Tumor-associated stromal cells, 
tumor-infiltrating immunosuppressive cells, or 
the tumor cells themselves may alter NK cell 
activity, either through cell-to-cell contacts or 
through the release of soluble factors [6, 135]. 
Immunosuppressive cells known to infiltrate 
tumors comprise regulatory T cells (Tregs), 
tumor-associated macrophages (TAM), and 
myeloid-derived suppressor cells (MDSCs). All 
these cell types have been shown to decrease NK 
cell functions through a wide range of mecha-
nisms [135].

NK cells from cancer patients often display 
aberrant expression of NK cell receptors 
(Table  4.5). The mechanisms leading to the 
downregulation of major activating NK cell 
receptors (NKp30, NKp44, NKG2D, and 
DNAM-1) have been reviewed elsewhere [135]. 
In ovarian cancer patients, decreased expression 
of activating NK cell receptors has been associ-
ated with impaired killing activity [15]. Moreover, 
reduced expression of effector molecules such as 
perforin, granzymes, or TRAIL is a common fea-
ture of tumor-infiltrating NK cells that has been 
associated with decreased cytokine production 
and cytotoxicity (Table 4.6).

Soluble factors known to decrease NK cell 
antitumor activity include shed ligands for acti-
vating NK cell receptors (e.g., soluble MICA), 
prostaglandin E2 (PGE2), indoleamine 2,3 diox-
ygenase (IDO), extracellular adenosine, and 

TGFβ [6, 135]. In breast cancer patients, TGFβ1 
secreted by tumor stromal cells was identified as 
a main factor driving NK cell dysfunction [80]. 
TGFβ can also be expressed on the surface of 
Tregs, and data obtained from gastrointestinal 
and metastatic cancer patients together with 
mouse models indicated that membrane-bound 
TGFβ inhibits NK cell functions [46]. Moreover, 
TGFβ may alter NK cell activity indirectly, for 
instance by promoting DCs with tolerogenic 
properties [128]. Finally, TGFβ was shown to 
promote the conversion of mouse NK cells into 
cells with a phenotype resembling type 1 helper 
ILC (ILC1s) [27, 42]. In opposition to mouse NK 
cells which are CD49a−CD49b+ and express  
the transcription factor Eomes, ILC1s are 
CD49a+CD49b−Eomes−. The signal-transducer 
SMAD4 was found essential for the maintenance 
of NK cell identity through its role in restricting 
noncanonical TGFβ signaling [27]. SMAD4 defi-
ciency largely impaired NK cell lytic activity and 
their secretion of IFN-γ in response to cytokines 
or target cells. Moreover, it was suggested that 
ILC1-derived TNF facilitates tumor escape from 
the innate immune system [42]. Another member 
of the TGFb family, activin-A, was found to sig-
nal through SMAD2/3  in NK cells, leading to 
suppressed cellular metabolism, impaired prolif-
eration, and increased expression of ILC1-related 
markers [104]. Adenosine, an immunosuppres-
sive purine metabolite that accumulates in 
hypoxic conditions, is another important factor 
that limits NK cell functions in the tumor micro-
environment. Blockade of the adenosine receptor 
A2A has been shown to enhance mouse NK cell 
cytotoxicity and control of experimental lung 
metastasis [10]. However, a recent study on 
human NK cells showed that adenosine targets 
specific cellular pathways and induces repro-
gramming of NK cell functions rather than a 
broad inhibition of NK cell activity [18]. 
Surprisingly, in this study, adenosine induced a 
profound inhibition in glycolysis and glycolytic 
capacity of IL-12/IL-15 stimulated NK cells but 
increased their production of IFN-γ. Additional 
work is necessary to better understand the effects 
of adenosinergic signaling on NK cells in the 
tumor microenvironment.
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In the last decade, immune checkpoints have 
emerged as crucial immune regulators that inhibit 
the functions of cancer infiltrating T cells [95]. 
There is newly accumulated evidence that 
immune checkpoints might also impair NK cell 
responses [22, 112]. For instance, peripheral 
blood NK cells from Hodgkin lymphoma patients 
were found to express elevated levels of the PD-1 
immune checkpoint; and it was suggested that, in 
these patients, tumor-associated monocytes and 
macrophages may inhibit NK cell activity 
through the PD-1/PD-L1 pathway [131]. The 
expression of two other immune checkpoints, 
TIGIT and Tim3, was elevated on the surface of 
tumor-resident CD103+ NK cells in women with 
endometrial cancer [32]. Importantly, patients 
with lymph node invasions exhibited higher per-
centages of TIGIT- or Tim3-expressing NK cells, 
suggesting that checkpoint expression on NK 
cells may correlate with the severity of the dis-
ease. Similarly, in esophageal cancer patients, 
higher percentages of Tim3+ NK cells were 
observed in the peripheral blood and tumor of 
patients with pathological parameters for poor 

prognosis [142]. Tim3+ NK cells expressed lower 
levels of mRNAs encoding for the effector mol-
ecules perforin, granzyme, and IFN-γ. Moreover, 
in patients with myelodysplastic syndrome, 
TIGIT was found to hinder NK cell cytolytic 
ability by interacting with its  ligand, CD155, 
expressed on MDSCs [113].

4.7  Future Directions

NK cells are powerful anticancer agents and con-
stitute promising therapeutic targets. Unlike T 
cells, they are not MHC-restricted, they do not 
require clonal selection, and they are safe in allo-
geneic settings. Several approaches have been 
proposed to exploit NK cells in cancer patients 
[52, 123]. Patients can receive autologous or allo-
geneic NK cells, and genetic engineering of 
adoptively transferred NK cells may further 
improve cancer control. Moreover, several drugs 
have been developed to redirect NK cell killing 
such as bispecific or trispecific killer engagers 
(Bikes or Trikes). Finally, “NK cell-specific” 

Table 4.6 Impaired functions of tumor infiltrating NK cells

Tumor
Expression of 
effector molecules

Cytokine 
production Killing activity Comparison Reference

NSCLC ↘
Perforin

=
PMA- 
ionomycin

↘
K562 cells

Peritumoral tissue and 
peripheral blood

Carrega 
et al. [17]

Renal cell 
carcinoma

↘, =a

Granzymes A, B 
and perforin

=b

K562 cells
Peripheral blood Schleypen 

et al. [114]

NSCLC ↘
Autologous 
tumor cells

↘c

Autologous 
tumor cells

Peripheral blood Platonova 
et al. [98]

Endometrial 
cancer

↘
Granzyme B

↘
PMA- 
ionomycin

↘c

PMA- 
ionomycin

Tumor-adjacent tissue Degos et al. 
[32]

Breast cancer ↘
Perforin, 
granzymes and 
TRAIL

↘
K562 cells
mAb-coated 
cells

↘c

K562 cells
mAb-coated 
cells

Healthy mammary 
tissue

Mamessier 
et al. [80]

Comparison of tumor-infiltrating NK cell functions with those of peripheral blood or corresponding healthy tissue
↘ decreased expression/function, = no significant difference. For the cytokine production and killing activity, the type 
of stimulation is specified
aOnly NK cells from poorly infiltrated tumors, but not those from highly infiltrated tumors, had decreased expression of 
effector molecules
bOnly NK from highly infiltrating tumors
cOnly degranulation capacity was assessed
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immune checkpoint inhibitors such as lirulumab 
(that targets KIRs) or monalizumab (that targets 
NKG2A) may improve anticancer responses by 
releasing signals suppressing NK cell activity. 
However, NK cell infiltration of the tumor bed 
and the preservation of NK cell functions within 
the local tumor microenvironment are prerequi-
sites for the success of the aforementioned 
 therapies. Successful therapies may include com-
binations of agents to ensure that fully active NK 
cells unrestricted access to tumor cells. In line 
with NK cell role in early defenses, efforts should 
also be focused on enhancing NK cell cross-talk 
with other immune cells for the initiation of 
adaptive immune responses and the establish-
ment of long-lasting memory T-cell responses.
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Abstract

Gamma delta (γδ) T cells which combine both 
innate and adaptive potential have extraordi-
nary properties. Indeed, their strong cytotoxic 
and pro-inflammatory activity allows them to 
kill a broad range of tumor cells. Several stud-
ies have demonstrated that γδ T cells are an 
important component of tumor-infiltrated 
lymphocytes in patients affected by different 
types of cancer. Tumor-infiltrating γδ T cells 
are also considered as a good prognostic 
marker in many studies, though the presence 
of these cells is associated with poor progno-
sis in breast and colon cancers. The tumor 
microenvironment seems to drive γδ T-cell 
differentiation toward a tumor-promoting or a 
tumor-controlling phenotype, which suggests 
that some tumor microenvironments can limit 
the effectiveness of γδ T cells.

The major γδ T-cell subsets in human are 
the Vγ9Vδ2 T cells that are specifically acti-
vated by phosphoantigens. This unique anti-

genic activation process operates in a 
framework that requires the expression of 
butyrophilin 3A (BTN3A) molecules. 
Interestingly, there is some evidence that 
BTN3A expression may be regulated by the 
tumor microenvironment. Given their strong 
antitumoral potential, Vγ9Vδ2 T cells are 
used in therapeutic approaches either by 
ex  vivo culture and amplification, and then 
adoptive transfer to patients or by direct stim-
ulation to propagate in vivo. These strategies 
have demonstrated promising initial results, 
but greater potency is needed. Combining 
Vγ9Vδ2 T-cell immunotherapy with systemic 
approaches to restore antitumor immune 
response in tumor microenvironment may 
improve efficacy.

In this chapter, we first review the basic 
features of γδ T cells and their roles in the 
tumor microenvironment and then analyze the 
advances about the understanding of these 
cells’ activation in tumors and why this repre-
sent unique challenges for therapeutics, and 
finally we discuss γδ T-cell-based therapeutic 
strategies and future perspectives of their 
development.
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5.1  Classification of γδ T Cells

The γδ T cells are a subgroup of T cells that pos-
sess a TCR composed of the γ and δ chains, and 
they are, therefore, distinguished from their αβ 
T-cell counterparts by utilizing a distinct set of 
somatically rearranged variable (V), diversity 
(D), joining (J), and constant (C) genes.

During thymic ontogeny, γδ T-cell subsets 
originating from a common lymphoid precursor 
cell emerge before αβ T cells to represent the pre-
dominant CD3+ population during fetal develop-
ment. In humans, their frequency then decreases 
after birth, while αβ T cells progressively predom-
inate. Interestingly, γδ T cells comprise up to 60% 
of circulating T lymphocytes in some nonprimate 
species (i.e., sheep, cattle, rabbits, and chicken), 
while in human peripheral blood (PB), they 
account for 1–5% of CD3+ T cells, which raises 
questions about the evolutionary processes and 
the biology of this subset [1]. However, unlike αβ 
T cells, our knowledge of γδ T-cell development 
is relatively limited and controversial [2].

Although important information has been 
obtained by studies in mice, this chapter focuses 
on human γδ T cells. Human γδ T cells can be 
divided into two main subsets based on their TCR 
δ chain expression: γδ T cells expressing the Vδ1 
chain, which are most often present in tissues, 
and γδ T cells expressing the Vδ2 chain, which 
predominate in peripheral blood and secondary 
lymphoid organs [3]. The Vδ1 chains are pre-
dominantly associated with the VγI gene family 
(Vγ2/3/4/5/8) chains, whereas a majority of Vδ2 
T cells coexpress the VγI (Vγ9) chain. Human 
Vδ3 and Vδ5 γδ T cells comprise only minor 
subsets of T lymphocytes, which are, respec-
tively, present in tissues and peripheral blood 
(Table 5.1). Again, in contrast with αβ T cells and 
despite three decades of research since their dis-

covery, the nature of γδ TCR-mediated ligand 
recognition remains poorly defined.

5.1.1  Vδ1 T Cells

Vδ1 T cells are the predominant tissue-associated 
γδ T-cell subset in humans. They are mainly 
found in the skin, gut, spleen, and liver and are 
involved in maintaining the integrity of epithelial 
tissue. These cells can recognize signs of cellular 
dysregulation, including viral infection and trans-
formation. Indeed, during HIV infection, Vδ1 
T-cell numbers are increased in PB and the nor-
mal Vδ2/ Vδ1 ratio is inverted, suggesting a 
potential involvement of Vδ1 T cells in antiviral 
immunity [13, 14]. Moreover, Ravens et  al. 
showed that acute cytomegalovirus (CMV) infec-
tion following stem cell transplantation (SCT) 
can drive expansion of Vδ1 T cells [15].

The Vδ1 T-cell ligands discovered until now 
are CD1c, CD1d, MICA/B, ULBPs, 
“Staphylococcal enterotoxin B” (SEB), and 
B7-H6. In particular, the CD1-family proteins 
present in endogenous lipids act as markers of 
malignant transformation (CD1c) [16] or viral 
infection (CD1d) [17]. It has also been demon-
strated that human intestinal epithelial Vδ1 T 
cells respond to tumor cells overexpressing 
MICA/B and ULBPs through the synergistic 
actions of TCR and NKG2D [18]. In addition, 
these cells respond to the SEB superantigen but 
not to the “Staphylococcal enterotoxin A” (SEA) 
thanks to their non-αβ TCR [19]. Finally, B7-H6, 
a member of the B7 family that is expressed in 
tumors, but not healthy tissues, is also recognized 
by Vδ1 T cells through the expression of “natural 
killer cell p30-related protein” (NKp30) [20, 21].

5.1.2  Vδ2 T Cells

In the blood of most healthy individuals, T cells 
expressing the Vδ2Vγ9 T cells account for 
50–90% of the γδ T-cell population. Vδ2Vγ9 
T-cell activation by phosphoantigens will be 
extensively explained in Sect. 5.3.
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5.1.3  Non-Vδ2 and Non-Vδ1 T Cells

Human γδ T cells expressing the Vδ3 TCR com-
prise a minor lymphocyte subset in the blood but 
are enriched in the liver and in patients with some 
chronic viral infections and leukemias. In the 
same way as Vδ1 T cells, Vδ3 T cells recognize 
CD1d. Upon activation, they kill CD1d + target 
cells; release Th1, Th2, and Th17 cytokines; and 
induce maturation of dendritic cells into antigen-
presenting cells (APCs). Thus, Vδ3 T cells are 
glycolipid-reactive T cells with distinct antigen 
specificities but functional similarities to natural 
killer T cells [11]. Furthermore, Vγ4Vδ5 T cells 
recognize stressed cells through TCR binding to 
the endothelial protein C receptor [12].

5.2  γδ T Cells in Tumor 
Microenvironment

Recently, the role of γδ T cells in tumor immu-
nity has received considerable attention and 
research. Studies highlight that these cells are an 
important component of the immune effector 
cells that contribute to the tumor immunosur-
veillance against many types of tumors, espe-
cially in hematologic malignancies [22] in 
addition to solid cancers like melanoma [23], 
breast [24, 25], prostate [26, 27], and pancreas in 
an inflammatory context [28] (Table  5.2). 
Although their activation mechanisms differ, 
both Vδ1 and Vδ2 T-cell subsets can exert potent 
antitumor effects.

5.2.1  γδ T Recruitment into 
the Tumor Microenvironment

Human γδ T cells have been shown to migrate 
in vitro toward several chemokines, such as CCL2, 
CCL3, CCL4, CCL5, CXL10, CXCL11, and 
CXCL12 [29, 30]. In another study, which com-
pared the chemotactic response of human αβ and 
γδ T cells, γδ T cells underwent transendothelial 
chemotaxis in response to the chemokines MCP-1, 
RANTES, MIP-1α, and MIP-1β, but not to inter-
leukin (IL)-8 and IP-10 [31]. So far, little is known 
about chemokines that mediate γδ T-cell recruit-
ment to tumor beds. In this context, chemokines 
can be expressed by tumor cells and other cells, 
including immune cells and stromal cells. 
Contrasting with the previous result, IL-10 
secreted by breast cancer cells has been shown to 
attract regulatory γδ T cells [32]. Moreover, two 
studies have also highlighted a critical role for 
CCR2/CCL2 in γδ T-cell infiltration in B16 mela-
noma tumors [33, 34]. However, a detailed analy-
sis on the expression of chemokine receptors on γδ 
T cells and secreted chemokines in tumor micro-
environments is lacking and needs investigation.

5.2.2  γδ T-Cell Subsets in Tumor 
Immunity: The Good Guys 
and the Bad Guys

In melanoma patients, an elevated frequency of 
circulating as well as tumor infiltrating Vδ2Vγ9 
T cells in early-stage tumors was correlated with 

Table 5.1 Structural subsets of human γδ T cell

Structural 
subset Paired Vγ gene Distribution Activation stimulus and/or γδ TCR ligands References

Vδ1 Vγ2, Vγ3, 
Vγ4, Vγ5, 
Vγ8, Vγ9

Skin, gut, spleen, liver, 
and PB

MICA/B, ULBPs, CD1c, CD1d, SEB, and 
B7-H6

[4–6]

Vδ2 Vγ9 PB Phosphoantigens, BTN3A1, F1-ATPase, 
hMSH2, MICA/B, ULBPs, TSST-1, 
Nectin-like-5

[7–10]

Vδ3 Vγ2, Vγ3 Liver, gut, chronic 
infections, and 
leukemia

CD1d [11]

Vδ5 Vγ4 PB EPCR [12]
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decreased mortality and disease relapse. 
Additionally, Meraviglia et al. showed with tran-
scriptomic analysis that patients with colorectal 
tumor containing abundant γδ T cells had signifi-
cantly longer 5-year disease-free survival rate, 
suggesting an efficacy of these cells in control-
ling tumors at a very early stage [35]. Of particu-
lar interest, a recent correlation between the 
molecular profile of the tumor immune microen-
vironment and prognosis in a large number of 
human tumors indicated that the presence of 
infiltrating γδ T cells was the strongest predictor 
of positive outcome [36].

Although the antitumor function of γδ T cells 
is well established, they can also promote tumor 
growth under certain circumstances (Table 5.2). 
For example, intratumoral γδ T-cell numbers are 
positively associated with advanced tumor stages 
and are inversely correlated with both relapse- 
free survival and overall survival of breast cancer 
patients [37]. However, these latter publications 
were recently challenged (A.  Hayday, AACR 
2019, unpublished).

Based on their function, γδ T cells can be 
divided into two subsets: effector γδ T cells with 
an antitumor role and regulatory γδ T cells which 
promote tumor progression (Fig. 5.1).

5.2.3  γδ T Cells as Foes in Tumor 
Development

γδ T cells have a broad array of effector functions 
that reflect their major involvement in the antitu-
mor response. They can kill transformed cells, 
through four pathways that involve cytokine pro-
duction, the release of cytotoxic effector molecules, 
such as perforin and granzymes, the engagement of 
death-inducing receptors, and antibody-dependent 
cell-mediated cytotoxicity (ADCC).

First, γδ T cells are an important early sources 
of interferon (IFN)-γ and tumor necrosis factor 
(TNF)-α, two cytokines known to inhibit cancer 
growth through special enhancement of antitu-
mor immunity and the inhibition of angiogenesis 
[40]. Moreover, it has been demonstrated that γδ 
T cells can induce dendritic cell (DC) maturation 
through TNF-α production [41]. The secretion of 
these cytokines is promoted by several stimuli, 
including phosphoantigen  stimulation, TCR ago-
nist, ligands of NKG2D, and certain cytokines.

Second, after migrating to the local tumor 
environment, γδ T cells can lyse cancer cells 
through the perforin–granzyme pathway. Indeed, 
inhibiting the perforin–granzyme secretion 
capacity of Vγ9Vδ2 T cells reduces the lysis of 

Table 5.2 γδ T-cell function in tumors

γδ T-cell subset Cancer type Results Reference
Antitumor functions

All γδ T cells Myeloma γδ T cells express the natural cytotoxicity receptor natural killer p 44 
and show cytotoxic activity against myeloma cells

[22]

Vδ1 and Vδ2 T 
cells

Melanoma γδ T cells are capable of killing melanoma cell lines in vitro and 
percentages of Vδ2 cells correlate with early stage of development of 
melanoma and absence of metastasis

[23]

Vγ2Vδ2 T cells Breast γδ T cells limit in vitro growth of most breast tumor cells by inhibiting 
their survival and inducing apoptosis

[25]

Vγ2Vδ2 T cells Prostate γδ T cells mediate innate antitumor activity against human prostate 
cancer cells in vitro

[26]

Pro-tumor functions

All γδ T cells Breast Intratumoral γδ T-cell numbers were inversely correlated with breast 
cancer prognosis

[37]

γ2Vδ2 T cells Colorectal γδ T cell promotes the accumulation and expansion of myeloid-derived 
suppressor cells which lead to tumor progression

[38]

γδ T17 cells Gall 
bladder

γδ T17 cell infiltration induces angiogenesis and is associated with 
poor survival

[39]
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aminobisphosphonate-sensitized MCF-7 breast 
tumor cells [42].

Third, γδ T cells upregulate the expression of 
Fas ligand (Fas-L) and TNF-related apoptosis- 
inducing ligand (TRAIL) and, therefore, enhance 
the tumor-killing activity in the Fas- or TRAIL- 
receptor- sensitive tumors.

Finally, human γδ T cells also express CD16, 
which can bind to the Fc region of immunoglobu-
lin G deposited on tumor cells, leading to their 
lysis by ADCC [43]. In this context, and knowing 
that PD-1 is expressed by most follicular 
lymphoma- infiltrating γδ T lymphocytes, 
recently, Rossi et al. highlighted that boosting of 
γδ T-cell-mediated ADCC was due to PD-1 
blockade in FL [44].

Intriguingly, γδ T cells also exhibit an 
antigen- presenting capacity. Similar to den-
dritic cells (DCs), Vγ9Vδ2 T cells are able to 
respond to signals from microbes and tumors 
and prime CD4+ and CD8+ T cells [45]. 
Moreover, not only can γδ T-APCs cross-pres-
ent antigens to CD8+ T cells [46], but also acti-
vated γδ T cells are able to phagocytose tumor 
antigens and apoptotic or live cancer cells, pos-
sibly through the scavenger receptor CD36, to 
mount a tumor antigen- specific CD8+ T-cell 
response [47].

5.2.4  γδ T Cells as Friends in Tumor 
Development

Even though γδ T cells demonstrate potent antitu-
mor capacity, they can paradoxically also exert 
protumor effects, through direct or indirect strate-
gies, that subvert cytotoxic antitumor immunity. 
The differentiation of unique subpopulations of 
Vγ2Vδ2 T cells with immunosuppressive features 
can be induced in the presence of specific stimuli, 
such as in the tumor-established microenviron-
ment. Vγ2Vδ2 T cells may display Th2, Th17, or 
Treg-like profile and produce IL-4, IL-17, or IL-10 
and transforming growth factor (TGF)-β [32, 39].

γδ T17 cells are the major source of IL-17, 
which plays an immunosuppressive role in can-
cer. Indeed, in human colorectal cancer, γδ T17 
cells promote the accumulation and expansion of 
myeloid-derived suppressor cells [38]. In addi-
tion, IL-17 producing γδ T cells induce angio-
genesis and are associated with poor survival in 
gall bladder cancer patients [39].

Furthermore, it has been demonstrated that 
Vγ2Vδ2 T cells can polarize toward FOXP3+ γδ 
Treg cells following stimulation with TGF-β and 
IL-15 in vitro. In this context, a specific recruit-
ment of γδ regulatory T cells into tumors is 

Fig. 5.1 Antitumor and pro-tumor functions of γδ T cell
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induced by IL-10 secreted by breast cancer cells, 
thereby suppressing T-cell responses and DC 
maturation [32]. In addition, Kühl et al. showed 
that in  vitro peripheral γδ T cells have a more 
potent regulatory potential than αβ Treg cells 
regarding T helper cell suppression [48]. In 
another study, Vδ1 T cells have been reported to 
be strongly secreted TGF-β, which can induce 
the epithelial to mesenchymal transition resulting 
in an increase in cancer invasiveness [48].

Unexpectedly, a recent report has shown that 
TGF-β augments the cytotoxic effector activity 
of short-term expanded Vδ2 T cells when puri-
fied γδ T cells are activated with specific pyro-
phosphate antigens and IL-2 or IL-15  in the 
presence of TGF-β [49].

5.2.5  γδ T-Cell Plasticity

In response to cytokine stimulation, like conven-
tional T cells, γδ T cells are capable of modifying 
their functions. They can convert their functions 
into an antitumor or protumor phenotype depend-
ing on the cytokines present in the tumor micro-
environment (Fig. 5.2). Consequently, an artificial 
switch toward an antitumoral tumor microenvi-
ronment could improve the efficacy of γδ T cells. 
In this way, IL-15 could be a good candidate to 
favor antitumor microenvironment. Indeed, this 
cytokine can promote both innate and adaptive 
immune reactions by stimulating CD8+/CD4+ T 
cells and natural killer cells (NK) while showing 
no effect in inducing activation-associated death 
among effector T cells and NK cells [50]. 
Furthermore, the addition of IL-15 to γδ T-cell 
cultures resulted in a more activated phenotype, 
higher proliferative capacity, and an increased 
cytotoxic capacity [51]. Finally, combining IL-15 
with γδ T immunotherapy could be a promising 
strategy to enhance antitumor immune therapy.

5.3  Vδ2Vγ9 T-Cell Activation by 
Tumor Cells

Researchers first thought that γδ T cells, like αβ 
T cells, recognized peptides bound to major 
histocompatibility complex (MHC) molecules; 

however, there was poor evidence that antigens 
were physically presented to γδ T cells in clas-
sical way [52]. Indeed, it was later demon-
strated that Vδ2Vγ9 T cells are specifically 
activated by phosphoantigens (pAgs) without 
the requirement for antigen processing, presen-
tation, and MHC restriction, which strengthens 
their therapeutic interest by the absence of allo-
reactivity. Despite the major advance repre-
sented by this discovery, how such antigens are 
presented by tumors cells to Vδ2Vγ9 T cells 
remains a mystery to be elucidated. Discoveries 
in the αβ T-cell activation mechanism are now 
successfully exploited in the clinic, especially 
for antigen- specific vaccination against infec-
tious diseases and cancer. In the same way, elu-
cidating the molecular mechanisms of the 
fascinating γδ T-cell activation mechanism 
could open the way to an increase in clinical 
applications.

5.3.1  Sensing of Cellular Stress by 
Vδ2Vγ9 T Cells

Numerous studies have highlighted that Vδ2Vγ9 
T-cell numbers in peripheral blood strongly 
increase in response to a variety of infectious 
diseases including not only bacterial infections, 
such as tuberculosis, sarcoidosis [53], 
 salmonellosis [54], brucellosis [55], infections 
caused by protozoal parasites such as leishmani-
asis [56], malaria [57], and toxoplasmosis [58], 
but also viral infections like HIV (early stages) 
[59] and Epstein-Barr virus (EBV) [60]. 
Expansion of Vγ9Vδ2 T cells has also been 
observed in patients with lymphoid malignan-
cies [61]. These expansions can be reproduced 
in vitro by stimulating Vγ9Vδ2 T cells with cer-
tain cancer cell lines or cells treated with micro-
bial extracts [62]. Interestingly, activation of 
Vδ2Vγ9 T cells is dependent on the expression 
of the Vδ2Vγ9 TCR, and this reactivity is trans-
ferable with the TCR [63, 64]. Whereas αβ T-cell 
activation is dependent on protein components, 
in vitro assays showed that Vγ9Vδ2 T expansion 
is mediated by protease-resistant and 
phosphatase- sensitive components hereafter 
called phosphoantigens (pAgs) [65].
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5.3.2  The Mysterious 
Phosphoantigens

pAgs are characterized as small molecules con-
taining a phosphate moiety with a variable organic 
group. pAgs can be classified as “exogenous” 
when they are from a microbial origin or “endog-
enous” when they are from a mammalian origin.

Exogenous pAgs were first identified in 
extracts from Mycobacterium tuberculosis [66]. 
Most common among them is the 4-hydroxy- 
3methyl-but-2-enyl pyrophosphate (HMBPP) 
produced through the 2-C-methyl-D-erythritol 
4-phosphate (MEP) pathway found in most 
eubacteria and apicomplexan protozoa. 
Exogenous pAgs stimulate with 1000-fold more 
efficiency than their endogenous counterparts, 
therefore preventing autoreactivity in normal 
cells where the concentration should be below 
threshold for stimulation [67, 68].

Endogenous pAgs are products of isoprenoid 
synthesis, the building blocks of which are the 

isopentenyl pyrophosphate (IPP) and its isomer 
dimethylallyl pyrophosphate. In cancer cells, 
such as in the Hodgkin B-cell lymphoma cell line 
Daudi and breast adenocarcinoma cells, it has 
been demonstrated that IPP is strongly accumu-
lated due to hyperactivity of HMG-CoA reduc-
tase, the rate-limiting enzyme in the mevalonate 
(MVA) pathway (Fig. 5.1) [69]. This accumula-
tion compensates for low potency of endogenous 
pAgs and reaches the threshold that leads to the 
Vδ2Vγ9 T-cell activation.

In mammals and most animals, IPP is synthe-
sized via the mevalonate pathway whose manipu-
lation can turn human cells toward Vδ2Vγ9 
T-cell activators. Indeed, cells pulsed with ami-
nobisphosphonates (e.g., zoledronate or pami-
dronate) become potent activators of primary 
Vδ2Vγ9 T cells and Vδ2Vγ9 T TCR transduced 
cells most likely as a consequence of IPP accu-
mulation after inhibition of the IPP metabolizing 
farnesyl pyrophosphate synthase (FPP synthase) 
(Fig. 5.3).

Fig. 5.2 γδ T plasticity in tumor microenvironment
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Exogenous pAgs such as HMBPP could prove 
useful in the composition of vaccines involving 
γδ T-cell-mediated immunity, although their very 
low abundance in natural sources limits such 
applications. To overcome this, a phosphorylated 
bromohydrin (BrHPP) analog that mimics the 
biological properties of natural pAgs has been 
synthetized [71].

The discovery of pAgs role was a ground-
breaking step in our understanding of Vγ9Vδ2 T 
cells; however, the molecular link that connects 
accumulation of endogenous (tumor-derived) or 
exogenous pAgs to activation was still missing. 
First, it was thought that pAgs could bind the γδ 
TCR directly, but the recent discovery of the cru-
cial role of butyrophilin-3 (BTN3A) rather points 
toward an indirect recognition of pAgs.

5.3.3  BTN3A

Butyrophilins (BTNs) contain one or two extra-
cellular Ig domains that exhibit some structural 

features of the B7 family of co-receptors and are 
considered to be B7-related proteins, which thus 
suggests that they possess immunological func-
tions. The BTN3A subfamily, which includes 
three members in humans: BTN3A1, BTN3A2, 
and BTN3A3, shares a high structural homology 
for the extracellular domain composed of two 
immunoglobulin extracellular domains (IgV and 
IgC). However, the three isoforms differ substan-
tially in their intracellular domains; whereas 
BTN3A1 and BTN3A3 contain a B30.2 domain, 
BTN3A2 lacks this domain. Moreover, the intra-
cellular region of A3 has a unique extension 
C-terminal to its B30.2 domain and, thus, differs 
to the one of A1 [72].

5.3.3.1  The Crucial Role of BTN3A
When treated with the 20.1, a BTN3A agonist 
antibody, the three isoforms confer an activating 
signal to Vγ9Vδ2 T cells, suggesting the involve-
ment of their extracellular domains in the activa-
tion process. This phenomenon was restricted to 
the Vγ9Vδ2 population in peripheral blood 
mononuclear cells (PBMCs), with no effect on 
αβ T cells or Vδ1 T cells. Moreover, addition of 
the 20.1 antibody to a panel of human tumor/
transformed cell lines induced potent activation 
of Vγ9Vδ2 T cells [73]. However, only the 
BTN3A1 isoform mediates pAg-induced activa-
tion, a feature which requires the presence of its 
intracellular component containing a B30.2 
domain. Surprisingly, the BTN3A3 isoform, 
which also contains a B30.2 domain, cannot 
stimulate in a pAg-dependent manner [73, 74]. 
Importantly, in 2014, Sandstrom et  al. demon-
strated that the B30.2 intracellular domain of 
BTN3A1 is a sensor for detecting changes in pAg 
metabolite concentrations and is associated with 
immobilization of the BTN3A extracellular 
domains. Interestingly, they identified a single 
amino acid difference in the B30.2 domain of the 
nonstimulatory BTN3A3 that, when mutated to 
the corresponding residue in BTN3A1, conferred 
the ability to bind pAg and to activate Vγ9Vδ2 T 
cells. These results suggest a mechanism through 
which intracellular recognition, and not extracel-
lular presentation, of pAgs is essential to mediat-
ing Vγ9Vδ2 T-cell stimulation [75]. Despite 
these discoveries, BTN3A1 alone fails to activate 

Fig. 5.3 Mevalonate metabolic pathway. (Adapted from 
[70])
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Vγ9Vδ2 T cells. Indeed, Vantourout et al. dem-
onstrated recently that BTN3A2 regulates the 
subcellular localization of BTN3A1 and is, thus, 
essential for the optimal activation of Vγ9Vδ2 T 
cells [76].

5.3.3.2  BTN3A Interactions
Until now, little is known about the receptor–
ligand interactions for the BTN3A family or 
about their precise functions in the tumor micro-
environment. Two cytoskeletal proteins have 
been shown to interact with the intracellular 
domain of BTN3A1: periplakin and RhoB 
(Table  5.3). The role of the first one remains 
unclear; however, periplakin seems to be required 
for pAg-induced γδ T-cell activation [7]. 
Concerning the second one, Sebestyen et  al. 
showed in tumor cells that relocalization of RhoB 
to BTN3A1 induced its immobility on the mem-
brane. Subsequently, a pAg-induced conforma-
tional change in BTN3A1 leads to Vγ9Vδ2 T-cell 
activation [77]. Compte et  al. showed that the 
BTN3A1 ligand is overexpressed in certain T 
leukemia lines in a leukemia B line and in a 
myeloerythroid leukemia line, and to a lesser 
extent in several solid tumor cell lines, and 
although they did not identify the ligand, they 
ruled out CD28, Cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4), inducible T-cell 
costimulator (ICOS), programmed cell death 1 
(PD-1), or B and T lymphocyte attenuator 
(BTLA) [78]. Interestingly, a recent study dem-
onstrated that BTN3A3 expressed by human 
breast cancer cell interacts with LSECtin on 
tumor-associated macrophages (TAM), which 
enhances tumor stemness and growth [79]. While 
it is known that BTN3A expressed by tumors 
cells plays an important role in γδ T-cell activa-
tion, the role of BTN3A interactions with other 
immune cells in tumor microenvironment still 
needs to be clarified.

5.3.3.3  BTN3A Regulation by 
the Tumor Microenvironment

Despite BTN3A being widely expressed by 
immune cells and some tumor cell lines, few 
studies have analyzed its regulation. Nevertheless, 
it has been demonstrated that inflammatory stim-
ulus such as IFN-γ and TNF-α treatment 
increased BTN3A expression on endothelial cells 
[78]. Moreover, other tumor microenvironmental 
inflammatory cytokines such as IL-6, CCL3, and 
hypoxia-associated mediators (IL-10, VEGF, 
PIGF-1) upregulate BTN3A expression in 
monocyte- derived human DCs [80]. Since 
BTN3A plays a crucial role in Vγ9Vδ2 T-cell 
activation, an exhaustive analysis of the regula-
tion of each isoform in tumor microenvironment 
is needed.

5.4  Vγ9Vδ2: A New Hope 
for Fighting Cancer

γδ T cells are considered as good candidates for 
effective antitumor therapeutic approaches, 
because they recognize malignant cells, infiltrate 
tumors, and combine both innate and adaptive 
response potential with strong cytotoxic and pro- 
inflammatory activity. Additionally, a deficiency 
of γδ T cells has been reported in several malig-
nancies, such as breast cancer [81] and hemato-
logical [82], liver [81], and gastric tumors [83], 
which could suggest that these cells may have 
beneficial effects in controlling tumors. Despite 
Vδ1+ cells showing promising preclinical 
results, most studies have focused on Vγ9Vδ2 T 

Table 5.3 BTN3A interactions in tumors

BTN3A 
subtype Ligand Observations References
Intracellular ligand
BTN3A1 pAgs Human γδ T-cell 

activation
[73, 74]

BTN3A1 Periplakin Involved in 
pAg-induced γδ 
T-cell activation

[7]

BTN3A1 RhoB 
GTPase

Induces 
membrane 
immobility of 
BTN3A1 which 
allows pAg 
recognition and 
γδ T-cell 
activation

[77]

Extracellular ligand
BTN3A3 LSECTIN BTN3A3 express 

by TAM 
enhances tumor 
stemness and 
growth

[79]
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cells, because of their high abundance in the 
peripheral blood which facilities their ex  vivo 
expansion.

Two main therapeutic strategies based on 
Vγ9Vδ2 T cells have been proposed for tumor 
immunotherapy: the in  vivo expansion of 
Vγ9Vδ2 T cells and the adoptive transfer in 
patients of ex  vivo expanded Vγ9Vδ2 T cells 
(Fig. 5.4). In both cases, activation and ampli-
fication of Vγ9Vδ2 T cells can be accom-
plished through multiple ways with the use of 
exogenous pAg, aminobisphosphonate drugs, 
TCR-cross- linking monoclonal antibodies, 
BTN3A agonist antibodies, or stimulatory 
tumor cells. Given that BTN3A agonist anti-
bodies might outperform aminobisphospho-
nate drugs or other metabolic sensitizers in 
target cells that fail to internalize drugs or 
which have decreased mevalonate pathway 
activity, combining approaches should be con-
sidered. Moreover, in case of in  vivo use of 
these drugs, it will be important to determine 
their impact on the other immune cells of the 
tumor microenvironment.

5.4.1  Exogenous pAg 
and Aminobisphosphonate 
Drugs

Most clinical trials focusing on the in vivo or ex 
vivo stimulation of γδ T cells have used the ami-
nobisphosphonate zolendronate in combination 
with IL-2. Few studies applying adoptive cell 
transfer included systemic administration of 
zoledronate. When used in combination to treat a 
different type of malignancy, zoledronate showed 
tolerable toxicity, but revealed inconsistent 
responses and an overall modest efficacy. Along 
the same line, BrHPP combined with low doses 
of IL-2 in several solid tumors was safe, was well 
tolerated and induced γδ T-cell expansion in 
patients, but showed weak overall responses [84].

Several hypotheses could explain these disap-
pointing results: first, BrHPP is quickly degraded 
by plasma phosphatases and zoledronate cannot 
passively cross the plasma membrane [85]. 
Furthermore, zoledronate has an unfavorable bio-
distribution due to covalent binding with calcium 
in bone.

Fig. 5.4 Strategies for γδ T-cell-based immunotherapy
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5.4.2  BTN3A Agonist Antibodies

As discussed above, peripheral blood mononu-
clear cells stimulated with BTN3A agonist anti-
bodies such as 20.1 induced proliferation and 
expansion of γδ T cells. Moreover, addition of 
the 20.1 antibody to a panel of human tumor/
transformed cell lines induced potent activation 
of Vγ9Vδ2 T cells [73]. These data support the 
rational to use BTN3A agonist antibodies in ther-
apeutic approaches. Using the human AML 
xenograft mouse model, it has been demonstrated 
that 20.1 associated with Vγ9Vδ2 T-cell immu-
notherapy exerts a potent antileukemic effect 
[86]. In PDAC context, 20.1 was also shown to 
enhance BTN3A-mediated Vγ9Vδ2 T-cell anti-
tumor functions under hypoxic conditions [87]. 
Because of the widespread expression of BTN3A, 
additional strategies for the enhancement of 
selectivity could be used like a bispecific anti-
body targeting both BTN3A and a tumor antigen. 
Moreover, antibodies that promote an inactive 
conformation of BTN3A have also been devel-
oped, which could be useful tools to treat autoim-
mune diseases [88].

5.4.3  Future Perspectives

As discussed above, several signals from the 
microenvironment, particularly cytokines, can 
confer some plasticity to γδ T cells and promote 
their differentiation into γδ T cells with regula-
tory functions. A therapeutic strategy combining 
ex  vivo or in  vivo activation and expansion of 
Vγ9Vδ2 T cells with systemic approaches to 
restore antitumor immune response may improve 
their efficacy. Another approach consists of 
lentiviral- mediated transduction of T cells with 
chimeric antigen receptors (CARs), which, thus, 
enables the CAR-transduced T cells to recognize 
tumor epitopes independently of their TCR. Until 
now, most CARs utilize αβ T cells, but due to 
their potent antitumor effector functions, γδ T 
cells could be good candidates for this strategy 
and are currently being tested in clinical trials 
[89]. Finally, the identification of biomarkers to 
predict clinical outcome is crucial for patient 

selection. Interestingly, 10 genes encoding cell 
surface proteins were identified to be statistically 
differentially expressed between “gammadelta- 
susceptible” and “gammadelta-resistant” hema-
topoietic tumors [90]. Another important issue is 
the functional status of these cells in the tumor 
microenvironment and the expression of co-sig-
naling receptors. Our current studies favor their 
activated state together with their expression of 
PD1 (Olive et  al., manuscript in preparation). 
Finally, an improvement of γδ T-cell immuno-
therapy associated with a selection of potential 
good responders to this treatment could be a 
promising way for fighting cancer.
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Abstract

Regulatory T cells (Tregs) are an immunosup-
pressive subpopulation of CD4+ T cells that 
are endowed with potent suppressive activity 
and function to limit immune activation and 
maintain homeostasis. These cells are identi-
fied by the hallmark transcription factor 

FOXP3 and the high-affinity interleukin-2 
(IL-2) receptor chain CD25. Tregs can be 
recruited to and persist within the tumor 
microenvironment (TME), acting as a potent 
barrier to effective antitumor immunity. This 
chapter will discuss [i] the history and hall-
marks of Tregs; [ii] the recruitment, develop-
ment, and persistence of Tregs within the TME; 
[iii] Treg function within TME; asnd [iv] the 
therapeutic targeting of Tregs in the clinic. This 
chapter will conclude with a discussion of 
likely trends and future directions.
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6.1  Introduction

Regulatory T cells (Tregs) are an immunosuppres-
sive subset of CD4+ T cells that regulate the 
immune response to maintain homeostasis and 
limit autoimmunity; however, Tregs also play a 
deleterious role by suppressing antitumor 
responses [55, 144, 219, 256]. High numbers of 
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Tregs are found in a variety of human and murine 
tumors. In human tumors, an increased Treg to 
CD8+ T cell ratio correlates with worse prognosis 
in many cancer types [176]. Further, systemic 
ablation of Tregs in mice results in complete tumor 
clearance, although these mice eventually suc-
cumb to lethal autoimmunity [51, 117, 118, 186, 
190, 239]. Therefore, targeting Tregs specifically 
in the tumor microenvironment (TME) but not in 
the periphery may prove efficacious for cancer 
treatment.

This chapter provides a brief overview of Tregs 
and their hallmarks, subsets, and phenotypes, fol-
lowed by an in-depth review of Tregs in the TME 
that includes recruitment, persistence, function, 
and therapeutic potential. We will mainly focus 
on Tregs in the TME, and their interactions with 
CD4+ and CD8+ T cells, and antigen-presenting 
cells (APCs); however, Tregs can also interact with 
other cells in the TME. This has been highlighted 
in several reviews [34, 139, 173].

6.1.1  Discovery of Tregs

The concept of a suppressor cell population was 
initially demonstrated through two seminal stud-
ies. The first found that removal of the mouse 
thymus within 3 days of birth, or neonatal thy-
mectomy, causes immune-mediated destruction 
of the ovary [178]. The second found that adop-
tive transfer of thymocytes, most likely a subtype 
of CD4+ T cells, limits immune response in a 
model of immune activation [73]. Together, these 
data suggested there is a subset of T cells that is 
important to control autoreactive cells.

However, identification and isolation of the 
“suppressive” subset of T cells proved difficult, 
so interest in the possibility of such a subset 
waned. It was not until the discovery of a 
suppressor- like subset of CD4+ cells with consti-
tutive high expression of the IL-2 receptor com-
ponent CD25 (Il2ra) that interest in Tregs was 
reignited [223, 305]. For the first time, human 
and murine Tregs were isolated and examined 
based on the cell surface marker CD25. Together 

with the discovery of the primary hallmark of 
Tregs, the transcription factor Foxp3, this provided 
proof of the existence of a “suppressor”-like 
cell—and the Treg field was born.

Discovery of the Foxp3 gene began at the Oak 
Ridge Laboratory (Oak Ridge, TN, USA) with 
identification of a spontaneous X-linked muta-
tion in a mouse colony that causes a phenotype of 
runtiness, scaly tail and skin, and closed eyelids 
and results in death within 3–4  weeks of age 
[222]. This mutation causes an increase in infil-
tration of the immune system into secondary 
lymphoid organs [76]. It was later discovered that 
the mutation, coined scurfy, results in truncation 
of the FOXP3 protein [27]. In addition, further 
studies found that mutations in the human FOXP3 
gene result in a similar substantive autoimmune 
phenotype called immunodysregulation polyen-
docrinopathy enteropathy X-linked syndrome 
(IPEX) [20, 21, 264, 288]. FOXP3 was subse-
quently linked to the CD25high CD4+ “suppressor” 
cells as the primary transcription factor driving 
their phenotype [63, 97, 115]. Further, ectopic 
expression of Foxp3 in CD4+ T cells was found to 
confer a suppressive phenotype. Therefore, 
expression of FOXP3 and CD25 identified and 
solidified the existence of Tregs, leading to a major 
advancement in immunology.

Despite these exciting discoveries, there are 
limitations in using CD25 and FOXP3 to mark 
Tregs. For example, in mice and humans, activated 
T cells upregulate CD25 [277]. Therefore, identi-
fying Tregs in an inflamed environment based on 
CD25 alone is difficult due to the activated phe-
notype of CD4+ cells [119]. Further, isolation of 
live Tregs based upon FOXP3 expression is diffi-
cult because it is an intracellular transcription 
factor.

Therefore, other markers are continually being 
investigated to identify Tregs. One marker that is 
minimally expressed on Tregs compared to CD4+ 
effector T cells is CD127, the IL-7 receptor that 
promotes expansion and survival of T cells [85, 
142, 232, 305]. Currently, the combination of 
CD25+ and CD127− is one of the best strategies 
to identify Tregpopulations in mice and humans.
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6.1.2  Hallmarks of Tregs

Tregs are incredibly unique and have many charac-
teristics that are critical for their function. 
Expression of FOXP3 and CD25 are two key 
hallmarks of Tregs.

6.1.2.1  FOXP3
FOXP3 is a transcriptional activator and repres-
sor for genes important for Treg function either 
through direct DNA binding or binding to other 
transcription factors to alter their interactions 
with DNA [300]. Some examples of genes regu-
lated by FOXP3 and critical in Treg function are 
Il2ra (encodes CD25), Tnfrsf18 (encodes GITR/
TNFRSF18), and Nrp1 [encodes Neuropilin-1 
(NRP1)] [154, 315]. FOXP3 can also transcrip-
tionally repress genes such as Ifng (encodes 
Interferon-γ) and Il2 (encodes IL-2), enhancing a 
suppressive phenotype [145]. While regulation of 
these genes by FOXP3 plays an important role in 
Treg development, maintenance, and function, 
ectopic expression of Foxp3 will confer a sup-
pressive phenotype but does not confer all signa-
ture Treg genes [92, 221, 289, 316]. Consequently, 
other key molecules may regulate Treg function.

Foxp3 has multiple key regulatory elements, 
including the promoter, 3′ untranslated region, a 
super-enhancer, and three intronic conserved 
noncoding sequences (CNS1–CNS3), that regu-
late Foxp3 expression and Treg development and 
function [133, 314]. CNS1 aids in induction of 
Foxp3 expression in peripherally derived Tregs, 
while CNS2 maintains FOXP3 expression after 
cell division [60]. CNS2 is regulated by CpG 
DNA methylation, which dampens Foxp3 expres-
sion, while demethylation maintains Foxp3 
expression and promotes recruitment of tran-
scription factors that stabilize Foxp3 expression 
[172]. CNS3 is critical for de novo expression of 
Foxp3 in the thymus, and deletion of this region 
substantially decreases Tregs numbers in the thy-
mus [61, 314].

Other regions of the Treg genome are specifi-
cally demethylated that are important to maintain 
Treg function, including Ikzf2 (HELIOS), Ikzf4 
(EOS), Ctla4 (CTLA4), Il2ra (CD25), and 
Tnfrsf18 (GITR) [62].

6.1.2.2  CD25 and IL-2
In addition to its role in identifying Tregs, CD25 
also plays a critical role in the development, 
maintenance, and function of Tregs. CD25, or 
IL-2Rα, is one component of the IL-2 receptor, 
consisting of CD25, CD122 (IL-2Rβ), and 
CD132 (common gamma chain, γc). IL-2 bind-
ing to its receptor induces a signaling cascade 
that results in the Janus kinase (JAK)-mediated 
tyrosine phosphorylation and activation of signal 
transducer and activator of transcription 5 
(STAT5). STAT5 homodimers translocate to the 
nucleus to facilitate the induction of Foxp3 
expression, which is critical for Treg development 
and homeostasis [37, 200, 257]. STAT5 also 
induces expression of Il2ra to enforce a positive 
feedback loop, as well as other key Treg functional 
genes, such as Ctla4, Tnfrsf18, and Icos [37]. 
This highlights that the IL-2/STAT5 pathway is 
not only required for Treg development and main-
tenance but also necessary for Treg function.

As Tregs are unable to make their own IL-2, 
they rely on other cells as their source of IL-2 
[37]. There has been speculation that due to their 
high CD25 expression, Tregs can sequester IL-2 
away from other cells as a form of suppression 
[196]. However, it has been highly contended 
whether this occurs in  vivo. Nonetheless, Treg 
expression of CD25 and dependence on IL-2 is a 
key hallmark of Tregs.

6.1.3  Treg Subsets

There are two types of Tregs commonly identified 
in  vivo: thymically derived Tregs (tTregs), and 
peripherally derived Tregs (pTregs) [1]. tTregs or 
“natural” Tregs follow a similar developmental tra-
jectory as other T cells in the thymus. However, 
pTregs or “induced” or “adaptive” Tregs begin as 
CD4+Foxp3— cells in the periphery but are con-
verted into CD4+Foxp3+ Tregs in the periphery by 
suboptimal T-cell receptor (TCR) stimulation, 
TGFβ, retinoic acid, and IL-2 [36, 58, 138, 273]. 
tTregs are thought to be important in maintaining 
homeostasis due to their higher affinity toward 
self-peptide compared to CD4+ FOXP3— cells 
[98]. pTregs are also specific toward self-antigen; 
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they can limit autoimmunity, although they are 
more commonly thought to be important sup-
pressors at mucosal surfaces and environmental 
barriers [23, 108, 302]. pTregs seem to be less sta-
ble than tTregs, which could be due to increased 
methylation at the CNS2 locus compared to tTregs 
[180]. However, this finding has been contested 
[84, 90, 162, 207]. Although pTregs are thought to 
be less suppressive than tTregs, it is possible that 
pTregs and tTregs work together to suppress differ-
ent types of inflammation [84].

The majority of the in vivo pool of FOXP3+ 
Tregs are likely thymically derived, although the 
absence of specific markers that are unique to 
either tTregs or pTregs makes it difficult to discern 
[238]. Two markers, HELIOS and NRP1, have 
been used to assess Treg origin, although they are 
not completely faithful. For example, high 
expression of the Ikaros family member HELIOS 
is thought to mark tTregs [254], although other 
studies have demonstrated that pTregs can express 
HELIOS depending on cell activation status [6, 
79]. In addition, although NRP1 was originally 
thought to be a promising candidate to identify 
tTregs [286, 301], mice that favor production of 
only tTregs or pTregs show similar levels of NRP1 
expression [249].

While pTregs and tTregs are the key contributing 
sources of Tregs, there are also suppressor cells 
that lack FOXP3 expression that can also contrib-
ute to immune regulation in different settings, 
namely, Tr1, Th3, and iTr35 cells. The impor-
tance of these cells is highlighted in several 
reviews [22, 34, 42, 227, 303]. To limit our scope, 
we will not discuss these further.

6.1.4  Treg Phenotypes

In addition to division into pTregs and tTregs, Tregs 
also can be classified by their phenotype. For 
example, human Tregs can be segregated into three 
populations: resting Tregs (CD45RA+FOXP3lo), 
activated or effector Tregs (CD45RA−FOXP3hi), 
and non-Tregs capable of making pro- inflammatory 
cytokines (CD45RA− FOXP3lo) [161].

Tregs are also capable of expressing lineage 
transcription factors to aid in their suppression of 
various responses. For example, mouse and 
human Tregs can express the Th1 transcription fac-
tor T-BET to suppress Th1 responses [53, 121, 
136]. GATA3 expression in Tregs is required for 
general Treg suppression, while RORγT+ or 
STAT3+ Tregs suppress Th17 inflammation, and 
IRF4+ Tregs suppress Th2 responses [35, 280, 304, 
313]. Therefore, Tregs can have many phenotypes 
that contribute to their function.

6.2  TREG Recruitment, 
Development, 
and Persistence Within 
the TME

There are three possible mechanisms behind 
accumulation of Tregs within the TME: (1) Tregs are 
recruited via chemokines, (2) Tregs are derived 
from CD4+ FOXP3— precursors (pTregs) within 
the tumor, or (3) Tregs are present in the tissue and 
expand in situ during pathogenesis. This section 
focuses on recruitment of Tregs, development of 
pTregs within the TME, and persistence of Tregs that 
encompass possible expansion of tissue-resident 
Tregs [152].

6.2.1  Recruitment

CCR4 is the most studied receptor in recruitment 
of Tregs to the TME (Fig. 6.1). The ligands for this 
receptor, CCL22 and CCL17, are produced by 
tumor cells and tumor-associated macrophages 
[48, 101]. CCR4 has been  shown to be highly 
expressed on human ovarian tumor Tregs and the 
CCL22 ligand, but not CCL17, can recruit these 
cells [48]. However, this discrepancy may depend 
on the type of tumor and model system. Some 
murine studies showed that CCL17 rather than 
CCL22 recruits these cells in a model of breast 
cancer, while others showed only CCL22 is 
responsible [151, 183]. Interestingly, CCR4+ Tregs 
in the TME have been identified as effector Tregs. 
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Therefore, Tregs recruited by the CCR4:CCL22 
and CCR4:CCL17 axis may be more suppressive 
in the TME [248]. There are efforts to target 
CCR4 in the clinic, which will be discussed in a 
later section.

Murine and human models of pancreatic ade-
nocarcinoma show that Tregs can express CCR5 
and are recruited to tumors through tumor pro-
duction of CCL5 [251]. Further, myeloid-derived 
suppressor cells can recruit Tregs through CCL5 
production [229]. Consequently, reduced 
 tumor- derived CCL5 results in decreased Treg 
accumulation in the TME.

The TME also produces the pro-inflammatory 
cytokine IFNγ, which can induce CXCL9, 
CXCL10, and CXCL11 [168]. These three che-
mokines bind to the receptor CXCR3. In Tregs, 
IFNγ can also induce CXCR3 expression indi-
rectly through activation and expression of 
T-BET, which may aid Treg recruitment to the 
TME [122, 126, 140, 215].

In summary, three key mechanisms of Treg migra-
tion to the TME have been identified: CCR4, CCR5, 
and CXCR3. However, many other axes, such as 
CCR6:CCL20, CCR7:CCL21, CCR8:CCL1, 
CCR10:CCL28, and CXCR4:CXCL12, may also 
aid Treg recruitment to the TME [182, 185].

6.2.2  Treg Development Within 
the TME

While it is clear that tTregs and pTregs exist in vivo, 
it is currently debated which cells dominate in 
limiting the antitumor response. Of course, it is 
possible that this may vary between different 
mouse tumor models, human tumor types, and 
even from patient to patient. In a murine model, 
adoptive transfer of CD4+FOXP3— cells into 
mice bearing the TGFβ-producing tumor cell line 
Panc02 induces FOXP3 in transferred cells [166]. 
Contrary to these results, TCR sequencing stud-

Fig. 6.1 Tregrecruitment 
to the TME
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ies revealed only 3.8% TCR similarity between 
CD4+FOXP3— and Tregs in a murine chemical- 
induced tumor, indicating these Tregs did not 
develop from the CD4+FOXP3— precursors [93]. 
However, other analyses of murine Tregs and 
CD4+FOXP3— cells indicates some TCR overlap, 
ranging from 10% to 20% [59, 98, 193, 194, 
293]. Analysis of the human TCR repertoire 
between these two populations in the blood 
shows less than 1% overlap, while tumors have a 
range of 0.5–13.2% overlap [3, 77].

The CNS2 locus of Foxp3 is demethylated in 
mouse tumor-infiltrating T cells, indicating a thy-
mic origin [271]. Further, elimination of TGFβ in 
the 4T1 breast tumor mouse model does not 
reduce numbers of Tregs, further suggesting a thy-
mic origin [271]. However, others have argued 
that the pool of Tregs in tumors is from both thy-
mic and peripheral origins [317].

In human tumors, the source of Tregs is also 
unclear. The CNS2 of Foxp3 is demethylated in 
these isolated Tregs, which may indicate a thymic 
origin [271]. However, others have suggested that 
various human patient cells, such as malignant B 
cells and tumor cells, can convert CD4+ FOXP3— 
to FOXP3+ Tregs in vitro [4, 83, 160]. Therefore, 
more studies are necessary to determine the deri-
vation of Tregs in the TME.

6.2.3  Treg Persistence Within 
the TME

The TME is an extremely unique and metaboli-
cally demanding environment that presents many 
challenges to tumor infiltrating lymphocytes. 
Here, we discuss Treg antigen specificity and TCR 
repertoire that contributes to their persistence in 
the TME, metabolic challenges, and techniques 
Tregs use to maintain stability in the harsh TME 
(Figs. 6.2 and 6.3).

6.2.3.1  Treg Antigen Specificity Within 
the TME

Tregs in the thymus must undergo TCR rear-
rangement before migrating to the periphery. 
This process can create unlimited diversity in 
TCR repertoire. However, among this diversity, 

it is commonly understood that Tregs generally 
have a higher affinity for self-antigen [99, 194]. 
Treg specificity to self-peptide is critical to limit 
autoreactive immune responses and maintain 
homeostasis [116, 177]. Interestingly, others 
have contested that Tregs only have slightly 
higher affinity for self, as they also have the 
ability to respond to foreign antigens [19, 41, 
95, 135, 253].

Within the TME, many self-antigens are pre-
sented that are overexpressed, mutated, altered 
in structure, expressed at the wrong stage of cel-
lular development, and/or expressed due to cel-
lular lineage [270]. Therefore, Tregs in the TME 
may recognize these self-antigens. For example, 
Tregs, in a study of human metastatic melanoma, 
are specific for cancer germline protein 
MAGE-A3 [68]. Tregs from melanoma can also 
recognize antigens such as GP100, NYESO-1, 
and SURVIVIN [2, 3, 9, 265, 275, 276]. Further, 
Tregs from melanoma, gastrointestinal, and ovar-
ian malignancies have high specificity toward 
mutated neoantigens [3]. These data suggest 
that Tregs in the TME are specific toward self-
antigens which may aid in their persistence in 
the TME.

6.2.3.2  Treg Metabolism Within the TME
The TME is metabolically demanding. The tumor 
contains rapidly expanding malignant cells that 
outgrow oxygen availability and induce a hypoxic 
environment (Fig. 6.2) [105]. Further, the pH of 
the TME is acidic due to its mechanism of glu-
cose metabolism. Normal cells in the presence of 
oxygen use oxidative phosphorylation 
(OXPHOS) to metabolize glucose [107]. Without 
oxygen, cells convert pyruvate to lactic acid, 
which is known as anaerobic glycolysis. However, 
tumor cells are unique in that they convert pyru-
vate to lactic acid even in the presence of oxygen, 
which is known as the Warburg effect or aerobic 
glycolysis [312]. This switch is thought to pro-
vide cancer cells with building blocks for nucleo-
tides, amino acids, and lipids [171]. Tumor cells 
can then use the end product, lactate, as an addi-
tional energy source and shuttle excess out into 
the microenvironment, substantially lowering pH 
of the TME [33, 104, 247].
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Hypoxia, low glucose, and lactic acid limit 
effector T-cell function, including decreasing 
IFNγ production [26]. However, Tregs are uniquely 
capable of living in the high lactate and low glu-
cose TME through metabolic reprogramming to 
OXPHOS, which allows resistance to the harsh 
TME [14, 247] (Fig.  6.2). Others showed that 
Tregs in the TME may rely more on glycolysis, 
with higher levels of glucose transporters and 
glycolytic flux [192]. This may also aid in their 
competition for the limited glucose in the 
TME.  In addition, hypoxia upregulates hypoxia 
inducible factor 1 subunit alpha (HIF1α), which 
promotes FOXP3 expression in CD4+ FOXP3— 
cells, further increasing numbers of Tregs in the 
TME [39, 281]. Tregs have developed these char-
acteristics to withstand the harsh metabolic 
requirements of the TME and thus survive and 
persist.

6.2.3.3  Treg Stability Within the TME
In addition to changing their metabolism, Tregs 
have other ways to reinforce their stability in the 
TME (Fig.  6.3). One is the maintenance of 
FOXP3 expression, as loss of FOXP3 in mice or 
humans induces an autoimmune response. Tregs 
have multiple mechanisms to sustain FOXP3 
expression. First, a defined epigenetic profile 
focused on CNS2 demethylation at CpG-rich 
residues is required for the maintenance of 
FOXP3 expression in the TME [271]. Second, we 
have discussed previously the importance of 
CD25 expression on Tregs and the fact that STAT5 
activation downstream of the IL-2 receptor 
induces expression of FOXP3. Tregs express 
CD25 in the murine and human TME, thus pro-
moting the expression and maintenance of 
FOXP3 expression [16]. Third, Tregs specifically 
limit activation of the phosphatidylinositol 3 

Fig. 6.2 Tregmetabolism 
in the TME
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kinase (PI3K) pathway and protein kinase B 
(AKT), as their activation limits induction of 
FOXP3 expression [88, 158, 226]. Limitation of 
AKT activates FOXO1 and FOXO3a transcrip-
tion factors to translocate to the nucleus, drive 
Foxp3 expression, and bind other loci to induce a 
suppressive phenotype [114, 181, 188, 189]. 
However, expression of FOXO proteins in Tregs in 
the TME may have negative consequences as 
high expression of a constitutively active FOXO1 
impedes Treg migration, while low expression of 
the constitutively active FOXO1 mutant depletes 
Tregs in the tumor [150]. Clearly, more studies are 
required to determine the importance of the 
FOXO pathway in tumor-derived Tregs.

In addition to FOXP3 expression, the Ikaros 
transcription factor family member EOS plays an 
important role in Treg stability. EOS, a transcrip-
tional repressor, binds with FOXP3 to silence 
genes such as Il2, and others key to maintaining a 
suppressive phenotype [216]. Loss of Ikzf4 (EOS) 
through siRNA reduces suppressive capacity of 
Tregs [195]. Further, populations of “EOS-labile” 
Tregs that lose EOS in response to a vaccination 
strategy are reprogrammed and upregulate 
inflammatory molecules such as IL-2, IL-17, and 

CD40L [236]. These cells maintain FOXP3 
expression but change their phenotype to help 
CD8+ T-cell priming [236]. Tregs in the human 
TME express EOS, which is positively correlated 
with FOXP3 expression [7]. Therefore, expres-
sion of EOS is critical for the suppressive pheno-
type of Tregs.

The NRP1-Semaphorin-4a (SEMA4a) axis 
has been shown to be important for the mainte-
nance of Treg phenotype and function within the 
TME [51, 189]. NRP1 is expressed on the major-
ity of murine Tregs. In contrast, whereas Tregs in 
healthy donor human peripheral blood mononu-
clear cells (PBMCs) have little to no expression 
of NRP1, a substantively increased proportion of 
Tregs express NRP1 on Tregs in the TME in a subset 
of patients with melanoma or head and neck can-
cer [190, 191]. NRP1 expressed on Tregs binds 
phosphatase and tensin homolog (PTEN) at the 
immunological synapse to limit AKT activation, 
directing FOXO1 and FOXO3a to the nucleus to 
further promote Treg stability. Moreover, Treg- 
restricted deletion of NRP1 leads to changes in 
intratumoral Tregs from a suppressive to a more 
effector phenotype, secreting IFNγ. This change 
limits Treg suppression, which enhances the anti-

Fig. 6.3 Tregstability in 
the TME
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tumor response [190, 191]. Thus, NRP1-SEMA4a 
and other key mechanisms are critical to maintain 
Treg stability in the TME.

Tregs have multiple mechanisms to aid their 
accumulation in the TME.  First, Tregs can be 
recruited through multiple chemokine gradients 
such as CCR4:CCL22/CCL17, CCR5:CCL5, 
and CXCR3:IFNγ, CXCL9/10/11. Second, Tregs 
can be induced from a CD4+ FOXP3— T cell. 
Finally, Tregs persist in the TME due to their TCR 
specificity, altered metabolism, and mechanisms 
to enforce stability. These three mechanisms con-
tribute to Treg accumulation in the TME.

6.3  TREG Function Within the TME

There are four main mechanisms of Treg suppres-
sion: [i] production of inhibitory cytokines, [ii] 
cytolysis, [iii] targeting dendritic cells (DCs) and 
inhibitory receptor expression, and [iv] metabolic 
disruption (Fig.  6.4) [47, 141, 224, 230, 267, 
268]. For the purpose of this review, we will only 
focus on the mechanisms that have been shown to 
occur within the TME.

6.3.1  Inhibitory Cytokines

6.3.1.1  IL-10
IL-10 is a suppressive cytokine that exerts its sup-
pressive function in many ways. For example, 
IL-10 inhibits transcription of pro-inflammatory 
cytokines such as TNFα, IL-1β, IL-6, and IL-12 in 
macrophages [128]. IL-10 can also block T-cell 
function by targeting APCs, indirectly blocking 
IL-2, TNFα, and other Th1 cytokines in T cells 
[167]. IL-10 can also block downstream signaling 
of the CD28 costimulatory receptor in T cells 
[252]. IL-10 mediates this suppression through 
activation of JAK1 and TYK2. These molecules 
activate STAT3, which can transcriptionally regu-
late genes or activate other members such as 
SOCS3, further aiding gene suppression [52, 170].

It is currently thought that Tregs make IL-10 in 
the TME and can be a major source of IL-10 in 
tumors [228, 246]. Treg production of IL-10 leads 
to upregulation of inhibitory molecules on CD8+ 
T cells contributing to their exhaustion. IL-10 is 
thus an important suppressive molecule that Tregs 
use in tumors, and in vivo, it is currently being 
investigated in the clinic [279].

Fig. 6.4 Tregsuppression 
in the TME
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6.3.1.2  IL-35
IL-35 is a suppressive cytokine that is composed 
of p35 (encoded by IL12a) and the IL-27β chain, 
EBI3 (encoded by Ebi3) [45]. It is a member of 
the IL-12 cytokine family, which includes IL-12, 
IL-23, and IL-27. These cytokines are composed 
of heterodimers with certain family members 
sharing the same monomers resulting in diverse 
functions [269]. For example, IL-12 is a pro- 
inflammatory cytokine composed of p40 and p35 
compared to IL-35, a suppressive cytokine com-
posed of EBI3 and p35 [44]. IL-35 binds to the 
IL-35 receptor complex, which is made up of 
GP130 and IL-12Rβ2 [43]. This activates and 
forms a heterodimer of STAT4 and STAT1, which 
moves to the nucleus to induce transcription of 
IL12a and Ebi3, creating a positive feedback 
loop. Interestingly, IL-35 can suppress cells in 
two ways: [i] inhibition of CD4+ and CD8+ effec-
tor T-cell proliferation and function, and [ii] 
induction of an IL-35-induced Treg population. 
This induced cell population aids immune sup-
pression but does not express FOXP3 [42]. 
Interestingly, Tregs are the main IL-35 producers, 
and recent studies have shown that Tregs in both 
mice and humans can make IL-35  in the 
TME. Treg-restricted deletion of Ebi3, using the 
mouse model Ebi3L/L.Foxp3Cre-YFP, led to 
decreased tumor growth, reduced T-cell exhaus-
tion, and increased pro-inflammatory cytokine 
production in the TME [261].

Tregs have the ability to make various inhibi-
tory cytokines in the TME. There appears to be 
two separate Treg populations in the TME, an 
IL-35+population and an IL-10+ population, 
with few double-positive IL-10+IL35+ Tregs [228, 
285]. Interestingly, IL-10 and IL-35 derived 
from each population directly regulates inhibi-
tory receptor expression on CD8+ T cells, 
thereby impacting their exhaustion, via the tran-
scriptional repressor BLIMP1 but with slightly 
different functional outcomes. IL-10+ Tregs seem 
to limit CD8+ T-cell proliferation and function, 
whereas IL-35+ Tregs limit CD8+ T-cell memory. 
These studies demonstrate the important nonre-
dundant role of Treg- produced inhibitory cyto-
kines in the TME.

6.3.2  Cytolysis

Cellular apoptosis is a critical component of 
immune homeostasis, cellular turnover, and 
destruction of infected, cancerous, or damaged 
cells. One way to induce apoptosis is through 
production of cytolytic molecules such as 
Perforin (PRF1) or Granzymes (GZM). The 
pore-forming protein PRF1 forms holes that 
compromise the integrity of target cell mem-
branes, aiding in passage of molecules that initi-
ate cell death such as GZMs [187]. GZMB 
induces cell apoptosis by cleaving caspases, 
which trigger the apoptosis pathway [25]. While 
GZMs and PRF1 are commonly expressed in 
CD8+ T cells and NK cells, Tregs also use these 
pathways as a means of suppression. In vitro 
studies show that mouse Tregs use a GZMB- 
dependent, PRF1-independent pathway, while 
human Tregs use a GZMA- and PRF1-dependent 
pathway to mediate suppression by cytolysis [78, 
81]. Importantly, Tregs can express high levels of 
GZMB and PRF1 to aid in cell death of CD8+ T 
cells and NK cells in tumors [31]. Therefore, 
GZM and PRF1 direct cytolysis is a key mecha-
nism of Treg suppression in the TME.

6.3.3  Targeting DCs and Inhibitory 
Molecule Receptor Expression

DCs are critical for activation of T cells. Tregs can 
inhibit DC function through several molecules, 
including Cytotoxic T-lymphocyte-associated 
protein 4 (CTLA4) and Lymphocyte activation- 
gene 3 (LAG3), which we discuss in this section. 
Tregs also express several inhibitory and activating 
molecules that can modulate their function and 
play an important role in immunotherapy and fur-
ther targeting in the tumor.

6.3.3.1  CTLA4/CD152
T cells require binding of TCR to the peptide- 
major histocompatibility complex (MHC) for 
activation and stimulation. However, T cells also 
require activation of the costimulatory pathway. 
The costimulatory molecule CD28 is expressed 
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by T cells and interacts with B7–1 (CD80) or 
B7–2 (CD86) on APCs. This signal provides T 
cells with additional signals for activation and 
survival [28].

CTLA4 is a highly similar molecule to CD28 
and also binds CD80 and CD86. CTLA4 does not 
provide T cells with the same activation signals 
but rather is a negative regulator, inhibiting CD28 
costimulation, IL-2 production, and cell cycle 
progression [123]. CTLA4 was discovered as a 
key negative regulator of T-cell activation through 
administration of a blocking antibody and estab-
lishment of Ctla4 knock-out mice that develop 
severe lymphoproliferative disease and succumb 
to the disease within 3–4  weeks of age [130, 
255]. T cells upregulate CTLA4 upon activation, 
and CTLA4 competes with CD28 for binding to 
CD80 and CD86. Further, Tregs constitutively 
express CTLA4 and use it as a means of suppres-
sion [213, 250]. For example, CTLA4 restricts 
expression of CD80 and CD86 on DCs to limit 
activation of other cells [32, 291].

In addition to causing downregulation of 
CD80 and CD86, CTLA4 on Tregs can bind to 
these molecules to induce expression of indole-
amine 2,3,-dioxygenase (IDO) [56, 80, 157]. 
IDO catalyzes breakdown of the amino acid tryp-
tophan to suppressive metabolites including kyn-
urenines. IDO breaking down tryptophan 
suppresses T cells in two ways: [i] less available 
tryptophan will limit the ability of T cells to use 
this amino acid for the cell cycle and other func-
tions [57, 131, 169], and [ii] tryptophan metabo-
lites such as kynurenine, quinolinic acid, and 
picolinic acid suppress T-cell proliferation and 
function and can induce apoptosis [56, 205].

Tregs in the TME express CTLA4 and utilize 
this to suppress in the TME.  Studies of human 
head and neck cancer show CTLA4 is highly 
expressed on Tregs, and these cells are more sup-
pressive than CTLA4— Tregs [155]. However, 
studies examining the experimental autoimmune 
encephalomyelitis (EAE) model suggest that 
deletion of CTLA4 on Tregs may result in better 
Treg expansion and activation but does not affect 
their function [201]. This could suggest that 
CTLA4 acts as a brake on Tregs, so removal 
unleashes Treg activation and expansion. Many 

studies are still investigating CTLA4 to target 
Tregs and their function in the TME, which is dis-
cussed in a later section.

6.3.3.2  LAG3
Lymphocyte activation-gene 3 (LAG3) or CD223 
is an inhibitory receptor that is highly homolo-
gous to CD4 and is upregulated upon activation 
[259, 297, 298]. Like CD4, LAG3 binds to 
MHCII but with a much higher affinity resulting 
in the negative regulation of T-cell activation [12, 
295, 296]. Targeting LAG3 along with 
Programmed cell death protein 1 (PD-1) has had 
significant efficacy in limiting tumor growth in 
murine models [294].

Tregs express low levels of LAG3, which is 
upregulated upon stimulation and required for 
full Treg suppression [100, 298]. In addition, 
LAG3 binding to MHC II on DCs limits DC acti-
vation to further suppress T-cell activation [137]. 
Tregs from the TME and PBMCs express LAG3, 
and these LAG3+ Tregs are fully suppressive [30, 
197, 284]. However, these studies are further 
complicated by evidence that LAG3 expression 
on Tregs in the autoimmune microenvironment 
inhibits their proliferation and function [310]. 
The function of LAG3 on Tregs may differ in auto-
immune versus tumor settings. LAG3 target-
ing  may affect Treg function but also may 
re-invigorate exhausted CD8+ T cells. Further 
studies are required to understand these differ-
ences. LAG3 is currently in clinical trials as a 
single and combinatory treatment [12, 13].

6.3.3.3  PD-1
Programmed cell death protein 1 (PD-1) is upreg-
ulated on activated and exhausted T cells in 
chronic viral infections, cancers, and other 
inflammatory responses [211]. Studies have 
shown that ligation of PD-1 to one of its ligands, 
programmed death-ligand 1 (PD-L1), delivers an 
intrinsic signal to dampen immune activation and 
function, including decreased cytokine produc-
tion [156, 225] and decreased TCR signaling and 
stimulation [225, 258]. PD-1 is necessary to limit 
aberrant T-cell activation, although tumor cells 
and other cells in the TME can express PD-L1 to 
dampen T-cell response in the TME [299]. 
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Therefore, it may prove important to limit this 
pathway for full activation of the T-cell response 
to tumors.

In a murine model, T-cell ligation of PD-1 to 
PD-L1 induces FOXP3 expression in CD4+ 
Foxp3— T cells, as well as increases the level of 
suppressive capability [17, 67, 124, 245, 278, 
308]. Moreover, Tregs require PD-1 expression to 
suppress activated CD8+ T cells in mice infected 
with chronic lymphocytic choriomeningitis virus 
(LCMV) clone 13 [198, 199].

In humans, the role of PD-1 expression on Tregs 
is unclear. PD-1 expression on Tregs in hepatitis C 
virus (HCV) infection is associated with a more 
effector-like Treg and may contribute to long-term 
infection, although others have found Tregs 
expressing PD-1  in the liver of HCV-infected 
patients to have decreased suppressive capability 
and proliferation [66, 212, 237]. PD-1 is also 
expressed on Tregs in the TME [165, 197], which 
results in cell dysfunction including decreased 
suppressive ability and increased production of 
inflammatory cytokines [146]. In vitro studies 
show anti-PD-1 blockade enhances Treg suppres-
sion and proliferation [110]. This suggests that 
targeting PD-1 may result in improved Treg func-
tion. Therefore, more studies are necessary to 
elucidate how this could impact anti-PD-1 thera-
peutic outcome. 

6.3.3.4  TIM3
T-cell immunoglobulin and mucin domain 3 
(TIM3), also known as hepatitis A virus cellular 
receptor 2 (HAVCR2), is expressed on T cells, 
DCs, B cells, macrophages, mast cells, and NK 
cells [75, 86, 89, 164]. TIM3 binds to four pos-
sible ligands: galectin-9, carcinoembryonic anti-
gen cell adhesion molecule 1 (CEACAM-1), 
high-mobility group protein B1 (HMGB1), and 
phosphatidylserine (PS) [89]. Ligand binding of 
GALECTIN-9 and CEACAM-1 may lead to 
downregulation of TCR signaling molecules 
[10]. Further, ligand binding of TIM3 on T cells 
limits pro-inflammatory cytokine expression and 
cellular proliferation [86].

Tregs also express high TIM3 levels that are 
upregulated upon activation and in the TME 

[82]. TIM3 and PD-1 are commonly co-
expressed, and TIM3 expression is correlated 
with worse cancer progression in human lung 
cancer [71]. Moreover, TIM3+ Tregs are more 
suppressive than TIM3— Tregs [10, 72]. Therefore, 
clinical targeting of TIM3 may reinvigorate 
CD8+ T cells and limit Treg function. TIM3 is 
currently being clinically investigated as a sin-
gle agent therapy and in combination with anti-
PD-1 [13, 89].

6.3.4  Metabolic Disruption

Tregs are capable of limiting metabolism of other 
cells through multiple means. We will discuss Treg 
expression and function of CD39 and CD73.

6.3.4.1  CD39 and CD73
Cells contain a high concentration of intracellular 
adenosine-tri-phosphate (ATP) that is needed for 
cellular processes. However, release of extracel-
lular ATP is an indicator that a cell is damaged. 
These processes activate several immune 
responses, including production of inflammatory 
molecules and migration of cells [8]. Two mole-
cules, CD39 and CD73, are ectoenzymes that can 
use ATP as a substrate to convert into metabo-
lites. CD39 converts ATP to adenosine diphos-
phate (ADP) and adenosine monophosphate 
(AMP). CD73 then converts AMP to extracellu-
lar adenosine. Adenosine is a suppressive mole-
cule that binds one of its multiple receptors, A1, 
A2a, A2b, and A3 [134]. This triggers activation 
of intracellular cAMP, which activates protein 
kinase A (PKA). PKA then limits TCR, IL-2R 
signaling, and IL-2 and pro-inflammatory 
 cytokine production to limit T-cell activation 
[134, 266].

Interestingly, adenosine plays a dual role in 
Tregs. Adenosine can favor Treg stability, but Tregs 
themselves can express high levels of CD39 and 
CD73 to aid in their suppression [18, 50]. In the 
TME, mouse Tregs express CD39 and CD73 and 
use them for suppression [64, 125]. However, 
expression of these markers on human Tregs in the 
TME is less clear. Human tumor studies examin-
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ing melanoma and follicular lymphoma have 
shown expression of CD39+ Tregs [91, 263]. The 
latter study demonstrated blockade of adenosine 
receptors or CD39 catalytic activity results in 
increased activation and effector cytokine secre-
tion in T cells. CD73 expression on Tregs in the 
TME is contended [8, 91]. Therefore, further 
studies are needed to clarify the role of CD39 and 
CD73 in Tregsuppression of the antitumor 
response.

6.4  Therapeutic Targeting of Tregs 
in the Clinic

Tregs are key suppressors of the antitumor 
response, thus targeting their function in tumors 
could be efficacious. Here, we focus on a few 
ways Tregs are directly and indirectly targeted in 
the clinic or being tested in preclinical and clini-
cal trials (Table 6.1) [241]. We will only discuss a 
few of the clinical trials for each target, but a 

Table 6.1 Therapies for targeting Tregs

Target Name
Trial phase/FDA 
approval date Clinical outcome Citation(s)

Denileukin diftitox FDA approved in 
but discontinued 
in 2014

44% ORR in cutaneous T-cell 
lymphoma
Discontinued due to manufacturing 
and toxicity issues

Dannull et al. 
(2005) [49]
Kaminetzky and 
Hymes (2008) 
[111]

CD25 Daclizumab Phase I/II clinical 
trials

Range of efficacy in tumor 
treatments, more studies required. 
Modifications such as radionuclide 
may increase efficacy
Discontinued in MS treatment due 
to toxicity issues

Waldmnn (2007) 
[272]
Rech and 
Vonderheide 
(2009) [214]

Lytic anti-CD25 Preclinical trials Efficacious in initial experiments
CRR: 70–100% in mouse studies, 
upcoming clinical trials to determine 
efficacy

Arce Vargas et al. 
(2017) [16]
Solomon et al. 
(2017) [243]

TGFβ Galunisertib Phase II clinical 
trials

May be 10 month increase in 
survival, along with sorafenib

Qin et al. (2017) 
[210]

TGFβR Traps, M7824, 
RER

Preclinical trials Inhibit Treg development, may effect 
suppression

Zwaagstra et al. 
(2012) [319]

CCR4 Mogamulizumab FDA approved in 
2018

23–34% ORR in clinical trials for 
relapsed or refractory mycosis 
fungoides and Sézary disease

Zinzani et al. 
(2016) [318]
Kasamon et al. 
(2019) [112]

Nrp1 MNRP1685A Phase 1B clinical 
trial

Little efficacy alone, toxicity with 
other agents. Studies discontinued

Patnaik, et al. 
(2014) [202].

Anti-Nrp1, 
(Fc(AAG)-TPP11)

Preclinical trials 50–80% survival rate in mice Jung et al. (2020) 
[109]

CTLA4 Ipilimumab FDA approved in 
2011

10.9% ORR alone
40% ORR in combination with 
anti-PD1

Callahan et al. 
(2014) [29]
Hodi et al. 
(2010) [94]

TIGIT BMS-986207, 
YH29143, Etigilimab, 
etc.

Phase I/II clinical 
trials

Drug is well tolerated, may decrease 
Treg numbers

Anderson et al. 
(2019) [11]
Lee (2019) [132]

GITR BMS-986156, TRX51, 
MEDI1873, etc.

Phase I/II clinical 
trials

May prove efficacy with anti-PD1. 
More studies necessary

Zappasodi et al. 
(2019) [307]

CD39/
CD73

TTX-030, KY3475070, 
MEDI9447, CD73.4, 
etc

Preclinical trials, 
Phase I/IB, Phase 
II

May decrease Treg suppression Hausler, et al. 
(2014) [87]
Perrot, et al. 
(2019) [204]
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complete list of clinical trials can be found at 
www.clinicaltrials.gov.

6.4.1  CD25

Treatment of tumor-bearing mice with anti-CD25 
leads to depletion of Tregs, control of tumor 
growth, and, in some cases, clearance of the 
tumor [239]. Therefore, it is of interest to target 
CD25 expressing cells. Production of an IL-2 
diphtheria toxin conjugate (Denileukin diftitox), 
which depletes all CD25 expressing cells, was 
approved by the Food and Drug Administration 
(FDA) after demonstration of a 44% overall 
response rate (ORR) in recurrent cutaneous T-cell 
lymphoma [111]. This drug showed efficacy in 
depleting Tregs but was discontinued due to diffi-
culties with manufacturing and toxicity [49]. 
Other groups are working to make a similar drug 
that is easier to manufacture [282]. Daclizumab 
is also an anti-CD25 antibody that was previ-
ously approved for patients with multiple sclero-
sis but has been repurposed for cancer treatment. 
Treatment with Daclizumab can reduce Treg num-
bers in metastatic breast cancer, but its efficacy as 
a therapeutic is unclear [214, 272].

Intriguingly, two modifications to an anti-
 CD25 antibody have improved its efficacy. First, 
an altered Fc-region of anti-CD25 mouse anti-
body increases Treg depletion through antibody- 
dependent cell-mediated cytotoxicity (ADCC). 
Treatment of mice with this anti-CD25 antibody 
in combination of anti-PD-1 resulted in tumor 
regression in 78.6% of mice [16]. Second, a drug 
designed to deplete Tregs but not block critical IL- 2 
signaling on other T cells demonstrates tumor 
regression in 70–100% of mice after one dose 
[243]. These antibodies must be tested for effi-
cacy in humans. Therefore, CD25 remains a valu-
able target for Treg targeting in the TME.

6.4.2  TGFβ

We have discussed how TGFβ plays important 
roles in Treg development in the TME. Treg produc-
tion of TGFβ may also contribute to functional 
suppression, although this is contended [102, 

274]. Importantly, TGFβ also aids tumor cell sur-
vival and function [96]. Higher TGFβ in patient 
tumors is thought to be associated with worse 
prognosis [103, 218, 260], although others have 
refuted this [290]. In any event, it may be a desir-
able target to inhibit in the TME potentially for 
its role in Treg development. Primary and preclini-
cal studies demonstrated efficacy of various 
inhibitors of this pathway by affecting Treg func-
tion rather than development or number [143, 
206]. For example, the TGFβ receptor I (TGFβRI) 
small molecule inhibitor Galunisertib can block 
human Treg suppression and induce tumor regres-
sion [96]. Recently, a Phase II study of 
Galunisertib combined with standard-of-care 
sorafenib blockade in advanced hepatocellular 
carcinoma patients improved overall patient sur-
vival in responders by approximately 10 months 
[113]. Further studies are required to examine if 
this treatment affects Treg number or function. 
TGFβ receptor traps that bind to TGFβ and 
inhibit its function are also currently being inves-
tigated for cancer treatments [209, 210, 319].

6.4.3  CCR4

Tregs can express CCR4, which recruits them to 
the TME.  Strategies to stop this recruitment 
include the approved drug Mogamulizumab 
[262, 318]. This drug binds CCR4 and targets 
Tregs for ADCC, reducing Treg numbers in patients 
[175]. Interestingly, CCR4 expression on Tregs is 
not an indicator of response to the drug. 
Mogamulizumab is approved for relapsed or 
refractory mycosis fungoides and Sézary disease, 
two types of rare cutaneous T-cell lymphoma 
after clinical trials demonstrated a 23–34% ORR 
[112, 184]. Mogamulizumab is also currently in 
clinical trials for patients with advanced and/or 
metastatic solid tumors and diffuse large B cell 
lymphoma as a combination study with anti- 
PD- 1 (NCT02281409, NCT03309878).

6.4.4  NRP1

NRP1 is an important molecule that regulates Treg 
function in the TME [51, 190]. Several studies 
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have examined the effects of anti-NRP1 blocking 
antibody on the TME, although these studies 
have focused on targeting NRP1 expressed on 
tumor cells [54, 174]. Current studies are investi-
gating the consequence of blocking NRP1 in the 
TME, with a focus on Tregs. A Phase Ib clinical 
trial showed little efficacy with anti-NRP1 ther-
apy, although the antibody did not block the 
SEMA-4a-NRP1 axis that is important in Tregs 
[202]. A recent study found that an NRP1 antago-
nist that downregulates surface NRP1 expression 
decreases Treg function and increases production 
of IFNγ in human and mouse tumors ex  vivo 
[109]. Further analysis of disruption of the NRP1 
pathway on Tregs is warranted for future clinical 
use.

6.4.5  CTLA4

Anti-CTLA4 was originally designed to block 
negative regulation of activated T cells. However, 
Tregs also express CTLA4, so anti-CTLA4 therapy 
can target both activated T cells and Tregs [283]. 
The mechanism of action of anti-CTLA4 remains 
unclear, as various studies describe that anti- 
CTLA4 works in different ways. Studies show 
that anti-CTLA4 enhances activation of CD4+ 
and CD8+ T cells, while other studies show that it 
affects Tregs [292]. Some studies show that anti- 
CTLA4 binding to Tregs induces ADCC to remove 
Tregs [233, 242], while others show that this does 
not affect Treg numbers in human cancers [235].

Treating mice with established tumors with 
anti-CTLA4 results in tumor clearance, which 
could be due to Treg ADCC [130, 163]. Currently, 
there are two antibodies that block CTLA4. The 
first approved was the human monoclonal anti-
body Ipilimumab. In clinical trials, the antibody 
improved overall survival in metastatic mela-
noma with an ORR of 10.9% alone [29, 94]. Due 
to these trials, Ipilimumab was FDA approved for 
metastatic melanoma treatment in 2011. 
Ipilimumab has also been approved for use in 
combination with anti-PD-1 (Nivolumab) for 
melanoma, renal cell carcinoma, and metastatic 
colorectal cancer [129]. However, whether 
Ipilimumab actually targets Tregs remains contro-
versial [234]. A new anti-CTLA4 antihuman 

antibody with a non-fucosylated Fc region, which 
increases availability for ADCC, has efficacy in 
monkeys and is currently in clinical trials 
(NCT03110107) [208].

The other CTLA4 blocking antibody, 
Tremelimumab, is also a fully humanized mono-
clonal antibody but is not currently FDA 
approved. Tremelimumab failed in Phase III clin-
ical trials [46]. However, this antibody is still in 
clinical development and may be interesting to 
examine again for future treatment.

6.4.6  TIGIT

T-cell immunoglobulin and ITIM domain 
(TIGIT) is upregulated after activation and is 
expressed on Tregs, memory T cells, T-follicular 
helper cells (TFH), NK cells, and exhausted T 
cells [24, 153]. TIGIT binds its ligands poliovirus 
receptor (PVR, CD155) and PVRL2 (CD112) 
expressed on APCs, other T cells, and tumor cells 
[203, 244]. Another receptor, CD226 (also known 
as DNAX accessory molecule 1; DNAM-1) also 
binds CD155 and CD112 to deliver activating 
signals, while TIGIT delivers a negative signal 
[74, 287]. This negative signal arrests important 
T-cell activation pathways such as PI3K, mitogen- 
activated protein kinase (MAPK), and T-cell 
receptor signaling, resulting in decreased effector 
function [147]. TIGIT binding to CD155 also 
extrinsically pushes DCs toward a tolerogenic 
state characterized by production of IL-10 and 
reduced production of a subunit of the pro- 
inflammatory cytokine IL-12 [147, 306].

Tregs that express TIGIT are thymically derived, 
more activated, and better suppressors in both 
humans and mice compared to TIGIT— Tregs. 
[311]. TIGIT also can be expressed on pTregs 
[217]. TIGIT+ Tregs specifically suppress Th1 and 
Th17 cells through production of IL-10 [10, 70, 
106, 149]. TIGIT expression on Tregs in the TME 
also corresponds with high suppressive capabil-
ity [65]. Further, deletion of Tigit on CD8+ T cells 
has little effect on tumor growth while deletion of 
Tigit on Tregs delays tumor growth, indicating an 
important role of TIGIT on Tregs, specifically in 
tumors [127]. Therefore, targeting TIGIT may 
prove efficacious to limit Treg suppression. Anti- 
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TIGIT therapy showed some promising results in 
preclinical trials and is currently in clinical trials 
as a combination therapy along with anti-PD-1 
and anti-LAG3 [11, 13, 132].

6.4.7  GITR

Glucocorticoid-induced tumor necrosis factor 
family-related protein (GITR, or TNFRSF18) is 
expressed on T cells and upregulated upon their 
activation [179]. GITR binds to its ligand GITRL, 
which is expressed on APCs. GITR ligation can 
activate pathways critical for T-cell activation, 
including MAPK and extracellular-signal-related 
kinase (ERK), in effector T cells. GITR is a 
downstream target of FOXP3 and is highly 
expressed on naïve Tregs and further increased 
after Treg activation [115, 240]. GITR aids in tTreg 
and pTreg development, but Treg suppressive func-
tion is limited by GITR ligation in the periphery 
[220, 240]. Tregs express the highest levels of 
GITR in tumors, and GITR+ Tregs are functionally 
suppressive and associated with poor prognosis 
[69, 231]. Therefore, agonism of GITR in the 
TME may dually aid activation of effector CD8+ 
and CD4+ FOXP3— T cells and limit Treg suppres-
sive capacity. Interestingly, use of an agonist 
anti-GITR in mice demonstrates specific deple-
tion of Tregs in the TME rather than loss of sup-
pressive function [40]. Indeed, high expression of 
GITR on these cells could depletion of these cells 
specifically [120]. GITR agonism also showed 
promising results in mice with combination ther-
apy of anti-PD-1 and others [5, 148]. GITR is in 
clinical trials, with preliminary results showing a 
requirement for anti-PD-1 and GITR synergy for 
efficacy [307].

6.4.8  CD39/CD73

Targeting a main function of Treg suppression, 
such as CD39 and CD73, is an attractive target 
for immunotherapy. Knockout of Entpd1 (CD39) 
or Nt5e (CD73) in mice slows or delays tumor 
growth, indicating importance of targeting these 
molecules in the tumor [266]. There are currently 

several agents targeting both molecules that are 
being investigated along with combination thera-
pies [87, 204]. For example, multiple monoclonal 
antibodies are being developed to target the active 
conformation of CD73 or directly block CD73 
activation. CD39 is also currently being investi-
gated through pharmacologic inhibitors and 
monoclonal antibodies [15]. In vitro analysis 
shows that limiting CD39 decreases Treg suppres-
sion. In mice, in vivo CD39 targeting in combina-
tion with chemotherapy resulted in 60% of the 
mice surviving in a 3-methylcholanthrene 205 
tumor challenge [204]. Targeting CD39 and 
CD73 together has shown to mediate an increase 
in T-cell proliferation from healthy donor PBMC 
[204]. Therefore, it will be important to examine 
the efficacy of targeting CD73 and CD39  in 
ongoing clinical trials.

Strategies targeting molecules such as CD39/
CD73, GITR, TIGIT, CTLA4, NRP1, CCR4, 
TGFβ, and CD25 could limit Treg number, recruit-
ment, and function in the tumor microenviron-
ment to improve antitumor immunity.

6.5  Summary and Commentary 
on Likely Trends and Future 
Directions

Study of Tregs has been extremely fast-past paced 
since their discovery [311]. Tregs were initially 
discovered as suppressor cells that express 
FOXP3. These cells exhibit multiple mechanisms 
of tumor recruitment, persist in the TME, and 
function through production of inhibitory cyto-
kines, targeting dendritic cells, cytolysis, and 
metabolic disruption. Understanding these 
important characteristics and abilities of Tregs is 
critical for their targeting in the TME to induce 
antitumor responses.

There are four questions that highlight future 
trends in this research. (1) Are there other unique 
targets specific to Tregs in the TME that can be 
identified and therapeutically targeted? We have 
discussed how unique Tregs are and how there are 
multiple ways to target their recruitment and 
function in tumors but given their role within the 
TME more in-depth analysis is ongoing [38, 159, 
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309]. (2) Can we change therapies to be more 
efficacious to Tregs? We discussed that changing 
existing therapies such as anti-CD25 to an 
Fc-optimized anti-CD25 increases therapeutic 
potential in synergy with anti-PD-1. Therefore, it 
may be possible to re-examine our current thera-
pies to better target Tregs. (3) Can we identify 
combinations of therapies that can target multiple 
cellular functions in the TME? We previously 
discussed that combination therapies such as 
anti-CTLA4 and anti-PD-1 can target Tregs and 
exhausted CD8+ T cells. Therefore, future studies 
should examine the combination potential. (4) 
How do Tregs respond to various therapies com-
pared to other cells in the TME? If we can under-
stand and predict how cells within the TME 
respond to treatment, we may be able to tailor 
treatments based on either different immunother-
apies or different temporal treatments. For exam-
ple, Tregs could first be targeted for depletion, 
followed by anti-PD-1 to enhance effector T-cell 
function. In conclusion, further understanding of 
Treg recruitment, persistence, and function within 
the TME may provide answers to these ques-
tions, which may ultimately lead to more 
advanced clinical immunotherapies and more 
favorable clinical outcomes.

Citations

 1. Abbas AK, Benoist C, Bluestone JA, Campbell DJ, 
Ghosh S, Hori S, Jiang S, Kuchroo VK, Mathis D, 
Roncarolo MG, Rudensky A, Sakaguchi S, Shevach 
EM, Vignali DA, Ziegler SF (2013) Regulatory T 
cells: recommendations to simplify the nomencla-
ture. Nat Immunol 14:307–308

 2. Adeegbe DO, Nishikawa H (2013) Natural and 
induced T regulatory cells in cancer. Front Immunol 
4:190

 3. Ahmadzadeh M, Pasetto A, Jia L, Deniger DC, 
Stevanovic S, Robbins PF, Rosenberg SA (2019) 
Tumor-infiltrating human CD4(+) regulatory T cells 
display a distinct TCR repertoire and exhibit tumor 
and neoantigen reactivity. Sci Immunol 4:eaao4310

 4. Ai WZ, Hou JZ, Zeiser R, Czerwinski D, Negrin RS, 
Levy R (2009) Follicular lymphoma B cells induce 
the conversion of conventional CD4+ T cells to 
T-regulatory cells. Int J Cancer 124:239–244

 5. Aida K, Miyakawa R, Suzuki K, Narumi K, Udagawa 
T, Yamamoto Y, Chikaraishi T, Yoshida T, Aoki K 
(2014) Suppression of Tregs by anti-glucocorticoid 

induced TNF receptor antibody enhances the antitu-
mor immunity of interferon-alpha gene therapy for 
pancreatic cancer. Cancer Sci 105:159–167

 6. Akimova T, Beier UH, Wang L, Levine MH, 
Hancock WW (2011) Helios expression is a marker 
of T cell activation and proliferation. PLoS One 
6:e24226

 7. Akimova T, Zhang T, Negorev D, Singhal S, 
Stadanlick J, Rao A, Annunziata M, Levine MH, 
Beier UH, Diamond JM, Christie JD, Albelda 
SM, Eruslanov EB, Hancock WW (2017) Human 
lung tumor FOXP3+ Tregs upregulate four “Treg- 
locking” transcription factors. JCI Insight 2:e94075

 8. Allard B, Longhi MS, Robson SC, Stagg J (2017) The 
ectonucleotidases CD39 and CD73: Novel check-
point inhibitor targets. Immunol Rev 276:121–144

 9. Amedei A, Niccolai E, Benagiano M, Della Bella C, 
Cianchi F, Bechi P, Taddei A, Bencini L, Farsi M, 
Cappello P, Prisco D, Novelli F, D’elios MM (2013) 
Ex vivo analysis of pancreatic cancer-infiltrating T 
lymphocytes reveals that ENO-specific Tregs accu-
mulate in tumor tissue and inhibit Th1/Th17 effec-
tor cell functions. Cancer Immunol Immunother 
62:1249–1260

 10. Anderson AC, Joller N, Kuchroo VK (2016) Lag- 
3, Tim-3, and TIGIT: Co-inhibitory Receptors 
with Specialized Functions in Immune Regulation. 
Immunity 44:989–1004

 11. Anderson AE, Becker A, Yin F, Sing H, Zhao X, Seitz 
L, Stanton R, Walker NPC, Tan JBL (2019) Abstract 
A124: Preclinical characterization of AB154, a fully 
humanized anti-TIGIT antibody, for use in combina-
tion therapies. Cancer Immunol Res 7:A124

 12. Andrews LP, Marciscano AE, Drake CG, Vignali DA 
(2017) LAG3 (CD223) as a cancer immunotherapy 
target. Immunol Rev 276:80–96

 13. Andrews LP, Yano H, Vignali DAA (2019) Inhibitory 
receptors and ligands beyond PD-1, PD-L1 and 
CTLA-4: breakthroughs or backups. Nat Immunol 
20:1425–1434

 14. Angelin A, Gil De Gomez L, Dahiya S, Jiao J, Guo 
L, Levine MH, Wang Z, Quinn WJ 3rd, Kopinski 
PK, Wang L, Akimova T, Liu Y, Bhatti TR, Han R, 
Laskin BL, Baur JA, Blair IA, Wallace DC, Hancock 
WW, Beier UH (2017) Foxp3 Reprograms T cell 
metabolism to function in low-glucose, high-lactate 
environments. Cell Metab 25:1282–1293 e7

 15. Antonioli L, Pacher P, Vizi ES, Hasko G (2013) 
CD39 and CD73  in immunity and inflammation. 
Trends Mol Med 19:355–367

 16. Arce Vargas F, Furness AJS, Solomon I, Joshi K, 
Mekkaoui L, Lesko MH, Miranda Rota E, Dahan 
R, Georgiou A, Sledzinska A, Ben Aissa A, Franz 
D, Werner Sunderland M, Wong YNS, Henry JY, 
O’brien T, Nicol D, Challacombe B, Beers SA, 
Melanoma TC, Renal TC, Lung TC, Turajlic S, 
Gore M, Larkin J, Swanton C, Chester KA, Pule 
M, Ravetch JV, Marafioti T, Peggs KS, Quezada 
SA (2017) Fc-optimized anti-CD25 depletes tumor- 
infiltrating regulatory T cells and synergizes with 

6 Regulatory T Cells in the Tumor Microenvironment



122

PD-1 blockade to eradicate established tumors. 
Immunity 46:577–586

 17. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA 
(2003) CD4 + CD25+ regulatory cells from human 
peripheral blood express very high levels of CD25 
ex  vivo. Novartis Found Symp 252:67–88; discus-
sion 88–91, 106–14.

 18. Bao R, Hou J, Li Y, Bian J, Deng X, Zhu X, Yang 
T (2016) Adenosine promotes Foxp3 expression in 
Treg cells in sepsis model by activating JNK/AP-1 
pathway. Am J Transl Res 8:2284–2292

 19. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, 
Sacks DL (2002) CD4 + CD25+ regulatory T cells 
control Leishmania major persistence and immunity. 
Nature 420:502–507

 20. Bennett CL, Christie J, Ramsdell F, Brunkow ME, 
Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, 
Chance PF, Ochs HD (2001) The immune dysregu-
lation, polyendocrinopathy, enteropathy, X-linked 
syndrome (IPEX) is caused by mutations of FOXP3. 
Nat Genet 27:20–21

 21. Bennett CL, Ochs HD (2001) IPEX is a unique 
X-linked syndrome characterized by immune dys-
function, polyendocrinopathy, enteropathy, and 
a variety of autoimmune phenomena. Curr Opin 
Pediatr 13:533–538

 22. Bergmann C, Strauss L, Wang Y, Szczepanski MJ, 
Lang S, Johnson JT, Whiteside TL (2008) T regu-
latory type 1 cells in squamous cell carcinoma of 
the head and neck: mechanisms of suppression and 
expansion in advanced disease. Clin Cancer Res 
14:3706–3715

 23. Bilate AM, Lafaille JJ (2012) Induced 
CD4 + Foxp3+ regulatory T cells in immune toler-
ance. Annu Rev Immunol 30:733–758

 24. Blessin NC, Simon R, Kluth M, Fischer K, Hube- 
Magg C, Li W, Makrypidi-Fraune G, Wellge B, 
Mandelkow T, Debatin NF, Hoflmayer D, Lennartz 
M, Sauter G, Izbicki JR, Minner S, Buscheck F, 
Uhlig R, Dum D, Krech T, Luebke AM, Wittmer 
C, Jacobsen F, Burandt EC, Steurer S, Wilczak W, 
Hinsch A (2019) Patterns of TIGIT Expression in 
lymphatic tissue, inflammation, and cancer. Dis 
Markers 2019:5160565

 25. Bots M, Medema JP (2006) Granzymes at a glance. 
J Cell Sci 119:5011–5014

 26. Brand A, Singer K, Koehl GE, Kolitzus M, 
Schoenhammer G, Thiel A, Matos C, Bruss C, 
Klobuch S, Peter K, Kastenberger M, Bogdan C, 
Schleicher U, Mackensen A, Ullrich E, Fichtner- 
Feigl S, Kesselring R, Mack M, Ritter U, Schmid 
M, Blank C, Dettmer K, Oefner PJ, Hoffmann P, 
Walenta S, Geissler EK, Pouyssegur J, Villunger A, 
Steven A, Seliger B, Schreml S, Haferkamp S, Kohl 
E, Karrer S, Berneburg M, Herr W, Mueller-Klieser 
W, Renner K, Kreutz M (2016) LDHA-associated 
lactic acid production blunts tumor immunosurveil-
lance by T and NK cells. Cell Metab 24:657–671

 27. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper 
B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, 
Ziegler SF, Ramsdell F (2001) Disruption of a new 
forkhead/winged-helix protein, scurfin, results in 
the fatal lymphoproliferative disorder of the scurfy 
mouse. Nat Genet 27:68–73

 28. Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 
pathways: similarities, differences, and implications 
of their inhibition. Am J Clin Oncol 39:98–106

 29. Callahan MK, Postow MA, Wolchok JD (2014) 
CTLA-4 and PD-1 pathway blockade: combinations 
in the clinic. Front Oncol 4:385

 30. Camisaschi C, Casati C, Rini F, Perego M, DE 
Filippo A, Triebel F, Parmiani G, Belli F, Rivoltini 
L, Castelli C (2010) LAG-3 expression defines a 
subset of CD4(+)CD25(high)Foxp3(+) regulatory 
T cells that are expanded at tumor sites. J Immunol 
184:6545–6551

 31. Cao X, Cai SF, Fehniger TA, Song J, Collins LI, 
Piwnica-Worms DR, Ley TJ (2007) Granzyme B 
and perforin are important for regulatory T cell- 
mediated suppression of tumor clearance. Immunity 
27:635–646

 32. Chambers CA, Kuhns MS, Egen JG, Allison JP 
(2001) CTLA-4-mediated inhibition in regulation 
of T cell responses: mechanisms and manipula-
tion in tumor immunotherapy. Annu Rev Immunol 
19:565–594

 33. Chang CH, Qiu J, O’sullivan D, Buck MD, Noguchi 
T, Curtis JD, Chen Q, Gindin M, Gubin MM, VAN 
DER Windt GJ, Tonc E, Schreiber RD, Pearce EJ, 
Pearce EL (2015) Metabolic Competition in the 
Tumor Microenvironment Is a Driver of Cancer 
Progression. Cell 162:1229–1241

 34. Chaudhary B, Elkord E (2016) Regulatory T cells 
in the tumor microenvironment and cancer progres-
sion: role and therapeutic targeting. Vaccines (Basel) 
4:28

 35. Chaudhry A, Rudra D, Treuting P, Samstein RM, 
Liang Y, Kas A, Rudensky AY (2009) CD4+ regu-
latory T cells control TH17 responses in a Stat3- 
dependent manner. Science 326:986–991

 36. Chen W, Konkel JE (2015) Development of thymic 
Foxp3(+) regulatory T cells: TGF-beta matters. Eur 
J Immunol 45:958–965

 37. Chinen T, Kannan AK, Levine AG, Fan X, Klein 
U, Zheng Y, Gasteiger G, Feng Y, Fontenot JD, 
Rudensky AY (2016) An essential role for the 
IL-2 receptor in Treg cell function. Nat Immunol 
17:1322–1333

 38. Cillo AR, Kurten CHL, Tabib T, Qi Z, Onkar S, 
Wang T, Liu A, Duvvuri U, Kim S, Soose RJ, 
Oesterreich S, Chen W, Lafyatis R, Bruno TC, Ferris 
RL, Vignali DAA (2020) Immune Landscape of 
Viral- and carcinogen-driven head and neck cancer. 
Immunity 52:1–17

 39. Clambey ET, Mcnamee EN, Westrich JA, Glover LE, 
Campbell EL, Jedlicka P, DE Zoeten EF, Cambier 
JC, Stenmark KR, Colgan SP, Eltzschig HK (2012) 

R. E. Dadey et al.



123

Hypoxia-inducible factor-1 alpha-dependent induc-
tion of FoxP3 drives regulatory T-cell abundance and 
function during inflammatory hypoxia of the mucosa. 
Proc Natl Acad Sci U S A 109:E2784–E2793

 40. Coe D, Begom S, Addey C, White M, Dyson J, 
Chai JG (2010) Depletion of regulatory T cells by 
anti-GITR mAb as a novel mechanism for can-
cer immunotherapy. Cancer Immunol Immunother 
59:1367–1377

 41. Cohen JL, Trenado A, Vasey D, Klatzmann D, 
Salomon BL (2002) CD4(+)CD25(+) immunoregu-
latory T Cells: new therapeutics for graft-versus-host 
disease. J Exp Med 196:401–406

 42. Collison LW, Chaturvedi V, Henderson AL, 
Giacomin PR, Guy C, Bankoti J, Finkelstein D, 
Forbes K, Workman CJ, Brown SA, Rehg JE, Jones 
ML, Ni HT, Artis D, Turk MJ, Vignali DA (2010) 
IL-35-mediated induction of a potent regulatory T 
cell population. Nat Immunol 11:1093–1101

 43. Collison LW, Delgoffe GM, Guy CS, Vignali KM, 
Chaturvedi V, Fairweather D, Satoskar AR, Garcia 
KC, Hunter CA, Drake CG, Murray PJ, Vignali 
DA (2012) The composition and signaling of the 
IL-35 receptor are unconventional. Nat Immunol 
13:290–299

 44. Collison LW, Vignali DA (2008) Interleukin-35: 
odd one out or part of the family? Immunol Rev 
226:248–262

 45. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang 
Y, Vignali KM, Cross R, Sehy D, Blumberg RS, 
Vignali DA (2007) The inhibitory cytokine IL-35 
contributes to regulatory T-cell function. Nature 
450:566–569

 46. Comin-Anduix B, Escuin-Ordinas H, Ibarrondo FJ 
(2016) Tremelimumab: research and clinical devel-
opment. Onco Targets Ther 9:1767–1776

 47. Corthay A (2009) How do regulatory T cells work? 
Scand J Immunol 70:326–336

 48. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, 
Mottram P, Evdemon-Hogan M, Conejo-Garcia 
JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, 
Daniel B, Gordon A, Myers L, Lackner A, Disis 
ML, Knutson KL, Chen L, Zou W (2004) Specific 
recruitment of regulatory T cells in ovarian carci-
noma fosters immune privilege and predicts reduced 
survival. Nat Med 10:942–949

 49. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, 
Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, 
Vieweg J (2005) Enhancement of vaccine-mediated 
antitumor immunity in cancer patients after depletion 
of regulatory T cells. J Clin Invest 115:3623–3633

 50. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva 
A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka 
M, Kuchroo VK, Strom TB, Robson SC (2007) 
Adenosine generation catalyzed by CD39 and CD73 
expressed on regulatory T cells mediates immune 
suppression. J Exp Med 204:1257–1265

 51. Delgoffe GM, Woo SR, Turnis ME, Gravano 
DM, Guy C, Overacre AE, Bettini ML, Vogel P, 
Finkelstein D, Bonnevier J, Workman CJ, Vignali 

DA (2013) Stability and function of regulatory T 
cells is maintained by a neuropilin-1-semaphorin-4a 
axis. Nature 501:252–256

 52. Dennis KL, Blatner NR, Gounari F, Khazaie K 
(2013) Current status of interleukin-10 and regula-
tory T-cells in cancer. Curr Opin Oncol 25:637–645

 53. DI Giovangiulio M, Rizzo A, Franze E, Caprioli F, 
Facciotti F, Onali S, Favale A, Stolfi C, Fehling HJ, 
Monteleone G, Fantini MC (2019) Tbet expression 
in regulatory T Cells is required to initiate Th1- 
mediated colitis. Front Immunol 10:2158

 54. Ding Y, Zhou J, Wang S, Li Y, Mi Y, Gao S, Xu Y, 
Chen Y, Yan J (2018) Anti-neuropilin-1 monoclonal 
antibody suppresses the migration and invasion of 
human gastric cancer cells via Akt dephosphoryla-
tion. Exp Ther Med 16:537–546

 55. Facciabene A, Motz GT, Coukos G (2012) 
T-regulatory cells: key players in tumor immune 
escape and angiogenesis. Cancer Res 72:2162–2171

 56. Fallarino F, Grohmann U, Hwang KW, Orabona C, 
Vacca C, Bianchi R, Belladonna ML, Fioretti MC, 
Alegre ML, Puccetti P (2003) Modulation of trypto-
phan catabolism by regulatory T cells. Nat Immunol 
4:1206–1212

 57. Fallarino F, Grohmann U, Vacca C, Bianchi R, 
Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) 
T cell apoptosis by tryptophan catabolism. Cell 
Death Differ 9:1069–1077

 58. Fantini MC, Becker C, Monteleone G, Pallone F, 
Galle PR, Neurath MF (2004) Cutting edge: TGF- 
beta induces a regulatory phenotype in CD4 + CD25- 
T cells through Foxp3 induction and down-regulation 
of Smad7. J Immunol 172:5149–5153

 59. Fazilleau N, Bachelez H, Gougeon ML, Viguier 
M (2007) Cutting edge: size and diversity of 
CD4  +  CD25high Foxp3+ regulatory T cell reper-
toire in humans: evidence for similarities and partial 
overlapping with CD4 + CD25- T cells. J Immunol 
179:3412–3416

 60. Feng Y, Arvey A, Chinen T, van der Veeken J, 
Gasteiger G, Rudensky AY (2014) Control of the 
inheritance of regulatory T cell identity by a cis ele-
ment in the Foxp3 locus. Cell 158:749–763

 61. Feng Y, van der Veeken J, Shugay M, Putintseva EV, 
Osmanbeyoglu HU, Dikiy S, Hoyos BE, Moltedo B, 
Hemmers S, Treuting P, Leslie CS, Chudakov DM, 
Rudensky AY (2015) A mechanism for expansion 
of regulatory T-cell repertoire and its role in self- 
tolerance. Nature 528:132–136

 62. Floess S, Freyer J, Siewert C, Baron U, Olek S, 
Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt 
E, Klein-Hessling S, Serfling E, Hamann A, Huehn J 
(2007) Epigenetic control of the foxp3 locus in regu-
latory T cells. PLoS Biol 5:e38

 63. Fontenot JD, Gavin MA, Rudensky AY (2003) 
Foxp3 programs the development and function of 
CD4  +  CD25+ regulatory T cells. Nat Immunol 
4:330–336

 64. Forte G, Sorrentino R, Montinaro A, Luciano A, 
Adcock IM, Maiolino P, Arra C, Cicala C, Pinto 

6 Regulatory T Cells in the Tumor Microenvironment



124

A, Morello S (2012) Inhibition of CD73 improves 
B cell-mediated anti-tumor immunity in a mouse 
model of melanoma. J Immunol 189:2226–2233

 65. Fourcade, J., Sun, Z., Chauvin, J. M., Ka, M., Davar, 
D., Pagliano, O., Wang, H., Saada, S., Menna, C., 
Amin, R., Sander, C., Kirkwood, J.  M., Korman, 
A. J. & Zarour, H. M. 2018. CD226 opposes TIGIT 
to disrupt Tregs in melanoma. JCI Insight, 3(14): 
e121157

 66. Franceschini D, Paroli M, Francavilla V, Videtta 
M, Morrone S, Labbadia G, Cerino A, Mondelli 
MU, Barnaba V (2009) PD-L1 negatively regulates 
CD4 + CD25 + Foxp3+ Tregs by limiting STAT-5 
phosphorylation in patients chronically infected with 
HCV. J Clin Invest 119:551–564

 67. Francisco LM, Salinas VH, Brown KE, Vanguri 
VK, Freeman GJ, Kuchroo VK, Sharpe AH (2009) 
PD-L1 regulates the development, maintenance, and 
function of induced regulatory T cells. J Exp Med 
206:3015–3029

 68. Francois V, Ottaviani S, Renkvist N, Stockis J, 
Schuler G, Thielemans K, Colau D, Marchand M, 
Boon T, Lucas S, VAN DER Bruggen P (2009) The 
CD4(+) T-cell response of melanoma patients to a 
MAGE-A3 peptide vaccine involves potential regu-
latory T cells. Cancer Res 69:4335–4345

 69. Fridman WH, Pages F, Sautes-Fridman C, Galon J 
(2012) The immune contexture in human tumours: 
impact on clinical outcome. Nat Rev Cancer 
12:298–306

 70. Fuhrman CA, Yeh WI, Seay HR, Saikumar Lakshmi 
P, Chopra G, Zhang L, Perry DJ, Mcclymont SA, 
Yadav M, Lopez MC, Baker HV, Zhang Y, Li Y, 
Whitley M, Von Schack D, Atkinson MA, Bluestone 
JA, Brusko TM (2015) Divergent Phenotypes of 
Human Regulatory T Cells Expressing the Receptors 
TIGIT and CD226. J Immunol 195:145–155

 71. Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F, 
Sun J, Yang Q, Zhang X, Lu B (2012) TIM-3 expres-
sion characterizes regulatory T cells in tumor tis-
sues and is associated with lung cancer progression. 
PLoS One 7:e30676

 72. Gautron AS, Dominguez-Villar M, DE Marcken M, 
Hafler DA (2014) Enhanced suppressor function of 
TIM-3+ FoxP3+ regulatory T cells. Eur J Immunol 
44:2703–2711

 73. Gershon RK, Kondo K (1970) Cell interactions in 
the induction of tolerance: the role of thymic lym-
phocytes. Immunology 18:723–737

 74. Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport 
AS, Boles KS, Andrews DM, Smyth MJ, Colonna M 
(2008) DNAM-1 promotes activation of cytotoxic 
lymphocytes by nonprofessional antigen-presenting 
cells and tumors. J Exp Med 205:2965–2973

 75. Gleason MK, Lenvik TR, Mccullar V, Felices M, 
O’brien MS, Cooley SA, Verneris MR, Cichocki 
F, Holman CJ, Panoskaltsis-Mortari A, Niki T, 
Hirashima M, Blazar BR, Miller JS (2012) Tim-3 is 
an inducible human natural killer cell receptor that 

enhances interferon gamma production in response 
to galectin-9. Blood 119:3064–3072

 76. Godfrey VL, Wilkinson JE, Rinchik EM, Russell LB 
(1991) Fatal lymphoreticular disease in the scurfy 
(sf) mouse requires T cells that mature in a sf thymic 
environment: potential model for thymic education. 
Proc Natl Acad Sci U S A 88:5528–5532

 77. Golding A, Darko S, Wylie WH, Douek DC, 
Shevach EM (2017) Deep sequencing of the TCR- 
beta repertoire of human forkhead box protein 3 
(FoxP3)(+) and FoxP3(−) T cells suggests that they 
are completely distinct and non-overlapping. Clin 
Exp Immunol 188:12–21

 78. Gondek DC, Lu LF, Quezada SA, Sakaguchi S, 
Noelle RJ (2005) Cutting edge: contact-medi-
ated suppression by CD4  +  CD25+ regulatory 
cells involves a granzyme B-dependent, perforin- 
independent mechanism. J Immunol 174:1783–1786

 79. Gottschalk RA, Corse E, Allison JP (2012) 
Expression of Helios in peripherally induced Foxp3+ 
regulatory T cells. J Immunol 188:976–980

 80. Grohmann U, Orabona C, Fallarino F, Vacca C, 
Calcinaro F, Falorni A, Candeloro P, Belladonna 
ML, Bianchi R, Fioretti MC, Puccetti P (2002) 
CTLA-4-Ig regulates tryptophan catabolism in vivo. 
Nat Immunol 3:1097–1101

 81. Grossman WJ, Verbsky JW, Tollefsen BL, Kemper 
C, Atkinson JP, Ley TJ (2004) Differential expres-
sion of granzymes A and B in human cytotoxic 
lymphocyte subsets and T regulatory cells. Blood 
104:2840–2848

 82. Gupta S, Thornley TB, Gao W, Larocca R, Turka LA, 
Kuchroo VK, Strom TB (2012) Allograft rejection is 
restrained by short-lived TIM-3  +  PD-1  +  Foxp3+ 
Tregs. J Clin Invest 122:2395–2404

 83. Han Y, Wu J, Bi L, Xiong S, Gao S, Yin L, Jiang L, 
Chen C, Yu K, Zhang S (2011) Malignant B cells 
induce the conversion of CD4  +  CD25- T cells to 
regulatory T cells in B-cell non-Hodgkin lymphoma. 
PLoS One 6:e28649

 84. Haribhai D, Williams JB, Jia S, Nickerson D, 
Schmitt EG, Edwards B, Ziegelbauer J, Yassai M, 
Li SH, Relland LM, Wise PM, Chen A, Zheng YQ, 
Simpson PM, Gorski J, Salzman NH, Hessner MJ, 
Chatila TA, Williams CB (2011) A requisite role 
for induced regulatory T cells in tolerance based 
on expanding antigen receptor diversity. Immunity 
35:109–122

 85. Hartigan-O’connor DJ, Poon C, Sinclair E, Mccune 
JM (2007) Human CD4+ regulatory T cells express 
lower levels of the IL-7 receptor alpha chain 
(CD127), allowing consistent identification and sort-
ing of live cells. J Immunol Methods 319:41–52

 86. Hastings WD, Anderson DE, Kassam N, Koguchi 
K, Greenfield EA, Kent SC, Zheng XX, Strom 
TB, Hafler DA, Kuchroo VK (2009) TIM-3 is 
expressed on activated human CD4+ T cells and 
regulates Th1 and Th17 cytokines. Eur J Immunol 
39:2492–2501

R. E. Dadey et al.



125

 87. Hausler SF, DEL Barrio IM, Diessner J, Stein RG, 
Strohschein J, Honig A, Dietl J, Wischhusen J 
(2014) Anti-CD39 and anti-CD73 antibodies A1 and 
7G2 improve targeted therapy in ovarian cancer by 
blocking adenosine-dependent immune evasion. Am 
J Transl Res 6:129–139

 88. Haxhinasto S, Mathis D, Benoist C (2008) The 
AKT-mTOR axis regulates de novo differentiation 
of CD4 + Foxp3+ cells. J Exp Med 205:565–574

 89. He Y, Cao J, Zhao C, Li X, Zhou C, Hirsch FR 
(2018) TIM-3, a promising target for cancer immu-
notherapy. Onco Targets Ther 11:7005–7009

 90. Hilbrands R, Chen Y, Kendal AR, Adams E, Cobbold 
SP, Waldmann H, Howie D (2016) Induced Foxp3(+) 
T cells colonizing tolerated allografts exhibit the 
hypomethylation pattern typical of mature regula-
tory T cells. Front Immunol 7:124

 91. Hilchey SP, Kobie JJ, Cochran MR, Secor-Socha 
S, Wang JC, Hyrien O, Burack WR, Mosmann TR, 
Quataert SA, Bernstein SH (2009) Human follicular 
lymphoma CD39 + -infiltrating T cells contribute to 
adenosine-mediated T cell hyporesponsiveness. J 
Immunol 183:6157–6166

 92. Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez 
J, Melamed R, Mathis D, Benoist C (2007) Foxp3 
transcription- factor-dependent and -independent 
regulation of the regulatory T cell transcriptional 
signature. Immunity 27:786–800

 93. Hindley JP, Ferreira C, Jones E, Lauder SN, Ladell 
K, Wynn KK, Betts GJ, Singh Y, Price DA, Godkin 
AJ, Dyson J, Gallimore A (2011) Analysis of the 
T-cell receptor repertoires of tumor-infiltrating 
conventional and regulatory T cells reveals no evi-
dence for conversion in carcinogen-induced tumors. 
Cancer Res 71:736–746

 94. Hodi FS, O’day SJ, Mcdermott DF, Weber RW, 
Sosman JA, Haanen JB, Gonzalez R, Robert C, 
Schadendorf D, Hassel JC, Akerley W, VAN DEN 
Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette 
GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, 
Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin 
MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved 
survival with ipilimumab in patients with metastatic 
melanoma. N Engl J Med 363:711–723

 95. Hoffmann P, Ermann J, Edinger M, Fathman CG, 
Strober S (2002) Donor-type CD4(+)CD25(+) regu-
latory T cells suppress lethal acute graft-versus-host 
disease after allogeneic bone marrow transplanta-
tion. J Exp Med 196:389–399

 96. Holmgaard RB, Schaer DA, Li Y, Castaneda SP, 
Murphy MY, Xu X, Inigo I, Dobkin J, Manro JR, 
Iversen PW, Surguladze D, Hall GE, Novosiadly 
RD, Benhadji KA, Plowman GD, Kalos M, Driscoll 
KE (2018) Targeting the TGFbeta pathway with 
galunisertib, a TGFbetaRI small molecule inhibitor, 
promotes anti-tumor immunity leading to durable, 
complete responses, as monotherapy and in com-
bination with checkpoint blockade. J Immunother 
Cancer 6:47

 97. Hori S, Nomura T, Sakaguchi S (2003) Control of 
regulatory T cell development by the transcription 
factor Foxp3. Science 299:1057–1061

 98. Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, 
Rudensky AY (2004) Recognition of the peripheral 
self by naturally arising CD25+ CD4+ T cell recep-
tors. Immunity 21:267–277

 99. Hsieh CS, Zheng Y, Liang Y, Fontenot JD, Rudensky 
AY (2006) An intersection between the self-reactive 
regulatory and nonregulatory T cell receptor reper-
toires. Nat Immunol 7:401–410

 100. Huang CT, Workman CJ, Flies D, Pan X, Marson 
AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, 
Levitsky HI, Powell JD, Pardoll DM, Drake CG, 
Vignali DA (2004) Role of LAG-3  in regulatory T 
cells. Immunity 21:503–513

 101. Iellem A, Mariani M, Lang R, Recalde H, Panina- 
Bordignon P, Sinigaglia F, D’ambrosio D (2001) 
Unique chemotactic response profile and specific 
expression of chemokine receptors CCR4 and CCR8 
by CD4(+)CD25(+) regulatory T cells. J Exp Med 
194:847–853

 102. Islas-Vazquez L, Prado-Garcia H, Aguilar-Cazares 
D, Meneses-Flores M, Galicia-Velasco M, Romero- 
Garcia S, Camacho-Mendoza C, Lopez-Gonzalez JS 
(2015) LAP TGF-beta subset of CD4(+)CD25(+)
CD127(−) Treg cells is Increased and overexpresses 
LAP TGF-beta in lung adenocarcinoma patients. 
Biomed Res Int 2015:430,943

 103. Javle M, Li Y, Tan D, Dong X, Chang P, Kar S, Li 
D (2014) Biomarkers of TGF-beta signaling path-
way and prognosis of pancreatic cancer. PLoS One 
9:e85942

 104. Jiang B (2017) Aerobic glycolysis and high level of 
lactate in cancer metabolism and microenvironment. 
Genes Dis 4:25–27

 105. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, 
Shu Y (2019) Role of hypoxia in cancer therapy by 
regulating the tumor microenvironment. Mol Cancer 
18:157

 106. Joller N, Lozano E, Burkett PR, Patel B, Xiao S, 
Zhu C, Xia J, Tan TG, Sefik E, Yajnik V, Sharpe 
AH, Quintana FJ, Mathis D, Benoist C, Hafler DA, 
Kuchroo VK (2014) Treg cells expressing the coin-
hibitory molecule TIGIT selectively inhibit proin-
flammatory Th1 and Th17 cell responses. Immunity 
40:569–581

 107. Jones W, Bianchi K (2015) Aerobic glycolysis: 
beyond proliferation. Front Immunol 6:227

 108. Josefowicz SZ, Niec RE, Kim HY, Treuting P, 
Chinen T, Zheng Y, Umetsu DT, Rudensky AY 
(2012) Extrathymically generated regulatory T 
cells control mucosal TH2 inflammation. Nature 
482:395–399

 109. Jung K, Kim JA, Kim YJ, Lee HW, Kim CH, Haam 
S, Kim YS (2020) A Neuropilin-1 antagonist exerts 
antitumor immunity by inhibiting the suppressive 
function of intratumoral regulatory T cells. Cancer 
Immunol Res 8:46–56

6 Regulatory T Cells in the Tumor Microenvironment



126

 110. Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, 
Nakamura Y, Sato E, Fukuoka S, Tada Y, Tanaka A, 
Morikawa H, Kawazoe A, Kinoshita T, Shitara K, 
Sakaguchi S, Nishikawa H (2019) PD-1(+) regula-
tory T cells amplified by PD-1 blockade promote 
hyperprogression of cancer. Proc Natl Acad Sci U S 
A 116:9999–10,008

 111. Kaminetzky D, Hymes KB (2008) Denileukin difti-
tox for the treatment of cutaneous T-cell lymphoma. 
Biologics 2:717–724

 112. Kasamon YL, Chen H, DE Claro RA, Nie L, Ye 
J, Blumenthal GM, Farrell AT, Pazdur R (2019) 
FDA approval summary: mogamulizumab-kpkc 
for mycosis fungoides and sezary syndrome. Clin 
Cancer Res 25:7275–7280

 113. Kelley RK, Gane E, Assenat E, Siebler J, Galle 
PR, Merle P, Hourmand IO, Cleverly A, Zhao Y, 
Gueorguieva I, Lahn M, Faivre S, Benhadji KA, 
Giannelli G (2019) A Phase 2 study of galunisertib 
(TGF-beta1 Receptor Type I Inhibitor) and sorafenib 
in patients with advanced hepatocellular carcinoma. 
Clin Transl Gastroenterol 10:e00056

 114. Kerdiles YM, Stone EL, Beisner DR, Mcgargill MA, 
Ch’en IL, Stockmann C, Katayama CD, Hedrick 
SM (2010) Foxo transcription factors control regu-
latory T cell development and function. Immunity 
33:890–904

 115. Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) 
An essential role for Scurfin in CD4  +  CD25+ T 
regulatory cells. Nat Immunol 4:337–342

 116. Killebrew JR, Perdue N, Kwan A, Thornton AM, 
Shevach EM, Campbell DJ (2011) A self-reactive 
TCR drives the development of Foxp3+ regulatory 
T cells that prevent autoimmune disease. J Immunol 
187:861–869

 117. Kim J, Lahl K, Hori S, Loddenkemper C, Chaudhry 
A, Deroos P, Rudensky A, Sparwasser T (2009) 
Cutting edge: depletion of Foxp3+ cells leads to 
induction of autoimmunity by specific ablation of 
regulatory T cells in genetically targeted mice. J 
Immunol 183:7631–7634

 118. Kim JM, Rasmussen JP, Rudensky AY (2007) 
Regulatory T cells prevent catastrophic autoimmu-
nity throughout the lifespan of mice. Nat Immunol 
8:191–197

 119. Kmieciak M, Gowda M, Graham L, Godder K, Bear 
HD, Marincola FM, Manjili MH (2009) Human T 
cells express CD25 and Foxp3 upon activation and 
exhibit effector/memory phenotypes without any 
regulatory/suppressor function. J Transl Med 7:89

 120. Knee DA, Hewes B, Brogdon JL (2016) Rationale 
for anti-GITR cancer immunotherapy. Eur J Cancer 
67:1–10

 121. Koch MA, Thomas KR, Perdue NR, Smigiel KS, 
Srivastava S, Campbell DJ (2012) T-bet(+) Treg 
cells undergo abortive Th1 cell differentiation due 
to impaired expression of IL-12 receptor beta2. 
Immunity 37:501–510

 122. Koch MA, Tucker-Heard G, Perdue NR, Killebrew 
JR, Urdahl KB, Campbell DJ (2009) The transcrip-

tion factor T-bet controls regulatory T cell homeo-
stasis and function during type 1 inflammation. Nat 
Immunol 10:595–602

 123. Krummel MF, Allison JP (1996) CTLA-4 engage-
ment inhibits IL-2 accumulation and cell cycle pro-
gression upon activation of resting T cells. J Exp 
Med 183:2533–2540

 124. Krupnick AS, Gelman AE, Barchet W, Richardson 
S, Kreisel FH, Turka LA, Colonna M, Patterson 
GA, Kreisel D (2005) Murine vascular endothelium 
activates and induces the generation of allogeneic 
CD4 + 25 + Foxp3+ regulatory T cells. J Immunol 
175:6265–6270

 125. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, 
Wei S, Huang E, Finlayson E, Simeone D, Welling 
TH, Chang A, Coukos G, Liu R, Zou W (2009) 
Phenotype, distribution, generation, and functional 
and clinical relevance of Th17 cells in the human 
tumor environments. Blood 114:1141–1149

 126. Kuo PT, Zeng Z, Salim N, Mattarollo S, Wells JW, 
Leggatt GR (2018) The role of CXCR3 and Its che-
mokine ligands in skin disease and cancer. Front 
Med (Lausanne) 5:271

 127. Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan 
DJ, Teng MW, Smyth MJ, Kuchroo VK, Anderson 
AC (2015) TIGIT predominantly regulates the 
immune response via regulatory T cells. J Clin Invest 
125:4053–4062

 128. Lang R, Patel D, Morris JJ, Rutschman RL, Murray 
PJ (2002) Shaping gene expression in activated and 
resting primary macrophages by IL-10. J Immunol 
169:2253–2263

 129. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, 
Rutkowski P, Lao CD, Cowey CL, Schadendorf 
D, Wagstaff J, Dummer R, Ferrucci PF, Smylie 
M, Hogg D, Hill A, Marquez-Rodas I, Haanen J, 
Guidoboni M, Maio M, Schoffski P, Carlino MS, 
Lebbe C, Mcarthur G, Ascierto PA, Daniels GA, 
Long GV, Bastholt L, Rizzo JI, Balogh A, Moshyk 
A, Hodi FS, Wolchok JD (2019) Five-year sur-
vival with combined nivolumab and ipilimumab in 
advanced melanoma. N Engl J Med 381:1535–1546

 130. Leach DR, Krummel MF, Allison JP (1996) 
Enhancement of antitumor immunity by CTLA-4 
blockade. Science 271:1734–1736

 131. Lee GK, Park HJ, Macleod M, Chandler P, Munn 
DH, Mellor AL (2002) Tryptophan deprivation sen-
sitizes activated T cells to apoptosis prior to cell divi-
sion. Immunology 107:452–460

 132. Lee, K.-H. 2019. Abstract 4844: A novel anti-TIGIT 
antibody (YH29143) enhances T cell activity and 
suppresses Treg cell activity and synergizes with 
anti-PD-L1 antibody. Exp Mol Ther 79:4844

 133. Lee W, Lee GR (2018) Transcriptional regulation 
and development of regulatory T cells. Exp Mol Med 
50:e456

 134. Leone RD, Emens LA (2018) Targeting adenosine for 
cancer immunotherapy. J Immunother Cancer 6:57

 135. Lerman MA, Larkin J 3rd, Cozzo C, Jordan MS, 
Caton AJ (2004) CD4+ CD25+ regulatory T cell rep-

R. E. Dadey et al.



127

ertoire formation in response to varying expression 
of a neo-self-antigen. J Immunol 173:236–244

 136. Levine AG, Mendoza A, Hemmers S, Moltedo B, 
Niec RE, Schizas M, Hoyos BE, Putintseva EV, 
Chaudhry A, Dikiy S, Fujisawa S, Chudakov DM, 
Treuting PM, Rudensky AY (2017) Stability and 
function of regulatory T cells expressing the tran-
scription factor T-bet. Nature 546:421–425

 137. Liang B, Workman C, Lee J, Chew C, Dale BM, 
Colonna L, Flores M, Li N, Schweighoffer E, 
Greenberg S, Tybulewicz V, Vignali D, Clynes R 
(2008) Regulatory T cells inhibit dendritic cells by 
lymphocyte activation gene-3 engagement of MHC 
class II. J Immunol 180:5916–5926

 138. Lin X, Chen M, Liu Y, Guo Z, He X, Brand D, Zheng 
SG (2013) Advances in distinguishing natural from 
induced Foxp3(+) regulatory T cells. Int J Clin Exp 
Pathol 6:116–123

 139. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema 
GJ (2013) The immunosuppressive tumour network: 
myeloid-derived suppressor cells, regulatory T cells 
and natural killer T cells. Immunology 138:105–115

 140. Littringer K, Moresi C, Rakebrandt N, Zhou X, 
Schorer M, Dolowschiak T, Kirchner F, Rost F, 
Keller CW, Mchugh D, Leibundgut-Landmann S, 
Robinson MD, Joller N (2018) Common features 
of regulatory T Cell specialization during Th1 
responses. Front Immunol 9:1344

 141. Liu C, Workman CJ, Vignali DA (2016) Targeting 
regulatory T cells in tumors. FEBS J 283:2731–2748

 142. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu 
S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas 
De St Groth B, Clayberger C, Soper DM, Ziegler SF, 
Bluestone JA (2006) CD127 expression inversely 
correlates with FoxP3 and suppressive function of 
human CD4+ T reg cells. J Exp Med 203:1701–1711

 143. Loffek S (2018) Transforming of the tumor microen-
vironment: implications for TGF-beta inhibition in 
the context of immune-checkpoint therapy. J Oncol 
9:732–939

 144. Long SA, Buckner JH (2011) CD4  +  FOXP3+ T 
regulatory cells in human autoimmunity: more than 
a numbers game. J Immunol 187:2061–2066

 145. Lopes JE, Torgerson TR, Schubert LA, Anover SD, 
Ocheltree EL, Ochs HD, Ziegler SF (2006) Analysis 
of FOXP3 reveals multiple domains required for its 
function as a transcriptional repressor. J Immunol 
177:3133–3142

 146. Lowther DE, Goods BA, Lucca LE, Lerner BA, 
Raddassi K, VAN Dijk D, Hernandez AL, Duan X, 
Gunel M, Coric V, Krishnaswamy S, Love JC, Hafler 
DA (2016) PD-1 marks dysfunctional regulatory T 
cells in malignant gliomas. JCI Insight 1:e85935

 147. Lozano E, Dominguez-Villar M, Kuchroo V, Hafler 
DA (2012) The TIGIT/CD226 axis regulates human 
T cell function. J Immunol 188:3869–3875

 148. Lu L, Xu X, Zhang B, Zhang R, Ji H, Wang X (2014) 
Combined PD-1 blockade and GITR triggering 
induce a potent antitumor immunity in murine can-

cer models and synergizes with chemotherapeutic 
drugs. J Transl Med 12:36

 149. Lucca LE, Axisa PP, Singer ER, Nolan NM, 
Dominguez-Villar M, Hafler DA (2019) TIGIT sig-
naling restores suppressor function of Th1 Tregs. 
JCI Insight 4:e124427

 150. Luo CT, Liao W, Dadi S, Toure A, Li MO (2016) 
Graded Foxo1 activity in Treg cells differentiates 
tumour immunity from spontaneous autoimmunity. 
Nature 529:532–536

 151. Mailloux AW, Young MR (2009) NK-dependent 
increases in CCL22 secretion selectively recruits 
regulatory T cells to the tumor microenvironment. J 
Immunol 182:2753–2765

 152. Mailloux AW, Young MR (2010) Regulatory 
T-cell trafficking: from thymic development to 
 tumor- induced immune suppression. Crit Rev 
Immunol 30:435–447

 153. Manieri NA, Chiang EY, Grogan JL (2017) TIGIT: 
a key inhibitor of the cancer immunity cycle. Trends 
Immunol 38:20–28

 154. Marson A, Kretschmer K, Frampton GM, Jacobsen 
ES, Polansky JK, Macisaac KD, Levine SS, Fraenkel 
E, VON Boehmer H, Young RA (2007) Foxp3 occu-
pancy and regulation of key target genes during 
T-cell stimulation. Nature 445:931–935

 155. Matoba T, Imai M, Ohkura N, Kawakita D, Ijichi 
K, Toyama T, Morita A, Murakami S, Sakaguchi S, 
Yamazaki S (2019) Regulatory T cells expressing 
abundant CTLA-4 on the cell surface with a prolif-
erative gene profile are key features of human head 
and neck cancer. Int J Cancer 144:2811–2822

 156. Mazanet MM, Hughes CC (2002) B7-H1 is 
expressed by human endothelial cells and suppresses 
T cell cytokine synthesis. J Immunol 169:3581–3588

 157. Mellor AL, Munn DH (2004) IDO expression by 
dendritic cells: tolerance and tryptophan catabolism. 
Nat Rev Immunol 4:762–774

 158. Merkenschlager M, VON Boehmer H (2010) PI3 
kinase signalling blocks Foxp3 expression by seques-
tering Foxo factors. J Exp Med 207:1347–1350

 159. Miragaia RJ, Gomes T, Chomka A, Jardine L, Riedel A, 
Hegazy AN, Whibley N, Tucci A, Chen X, Lindeman 
I, Emerton G, Krausgruber T, Shields J, Haniffa M, 
Powrie F, Teichmann SA (2019) Single-cell transcrip-
tomics of regulatory T cells reveals trajectories of tis-
sue adaptation. Immunity 50(493–504):e7

 160. Mittal S, Marshall NA, Duncan L, Culligan DJ, 
Barker RN, Vickers MA (2008) Local and sys-
temic induction of CD4 + CD25+ regulatory T-cell 
population by non-Hodgkin lymphoma. Blood 
111:5359–5370

 161. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, 
Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, 
Mathian A, Nakahata T, Yamaguchi T, Nomura T, 
Ono M, Amoura Z, Gorochov G, Sakaguchi S (2009) 
Functional delineation and differentiation dynamics 
of human CD4+ T cells expressing the FoxP3 tran-
scription factor. Immunity 30:899–911

6 Regulatory T Cells in the Tumor Microenvironment



128

 162. Mohr A, Malhotra R, Mayer G, Gorochov G, Miyara 
M (2018) Human FOXP3(+) T regulatory cell het-
erogeneity. Clin Transl Immunology 7:e1005

 163. Mokyr MB, Kalinichenko T, Gorelik L, Bluestone 
JA (1998) Realization of the therapeutic potential of 
CTLA-4 blockade in low-dose chemotherapy-treated 
tumor-bearing mice. Cancer Res 58:5301–5304

 164. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner 
H, Chernova T, Manning S, Greenfield EA, Coyle 
AJ, Sobel RA, Freeman GJ, Kuchroo VK (2002) 
Th1-specific cell surface protein Tim-3 regulates 
macrophage activation and severity of an autoim-
mune disease. Nature 415:536–541

 165. Montler R, Bell RB, Thalhofer C, Leidner R, Feng 
Z, Fox BA, Cheng AC, Bui TG, Tucker C, Hoen H, 
Weinberg A (2016) OX40, PD-1 and CTLA-4 are 
selectively expressed on tumor-infiltrating T cells in 
head and neck cancer. Clin Transl Immunology 5:e70

 166. Moo-Young TA, Larson JW, Belt BA, Tan MC, 
Hawkins WG, Eberlein TJ, Goedegebuure PS, 
Linehan DC (2009) Tumor-derived TGF-beta medi-
ates conversion of CD4 + Foxp3+ regulatory T cells 
in a murine model of pancreas cancer. J Immunother 
32:12–21

 167. Moore KW, De Waal Malefyt R, Coffman RL, 
O’garra A (2001) Interleukin-10 and the interleukin-
 10 receptor. Annu Rev Immunol 19:683–765

 168. Muller M, Carter SL, Hofer MJ, Manders P, Getts 
DR, Getts MT, Dreykluft A, Lu B, Gerard C, King 
NJ, Campbell IL (2007) CXCR3 signaling reduces 
the severity of experimental autoimmune encepha-
lomyelitis by controlling the parenchymal distribu-
tion of effector and regulatory T cells in the central 
nervous system. J Immunol 179:2774–2786

 169. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, 
Pashine A, Mellor AL (1999) Inhibition of T cell 
proliferation by macrophage tryptophan catabolism. 
J Exp Med 189:1363–1372

 170. Murray PJ (2005) The primary mechanism of the 
IL-10-regulated antiinflammatory response is to 
selectively inhibit transcription. Proc Natl Acad Sci 
U S A 102:8686–8691

 171. Nadzialek S, Vanparys C, VAN DER Heiden E, 
Michaux C, Brose F, Scippo ML, DE Coen W, 
Kestemont P (2010) Understanding the gap between 
the estrogenicity of an effluent and its real impact 
into the wild. Sci Total Environ 408:812–821

 172. Nair VS, Song MH, Ko M, Oh KI (2016) DNA 
demethylation of the Foxp3 enhancer Is maintained 
through modulation of ten-eleven-translocation and 
DNA methyltransferases. Mol Cells 39:888–897

 173. Najafi M, Farhood B, Mortezaee K (2019) 
Contribution of regulatory T cells to cancer: A 
review. J Cell Physiol 234:7983–7993

 174. Napolitano V, Tamagnone L (2019) Neuropilins con-
trolling cancer therapy responsiveness. Int J Mol Sci 
20:2049

 175. Ni X, Jorgensen JL, Goswami M, Challagundla P, 
Decker WK, Kim YH, Duvic MA (2015) Reduction 
of regulatory T cells by Mogamulizumab, a defu-

cosylated anti-CC chemokine receptor 4 antibody, 
in patients with aggressive/refractory mycosis 
fungoides and Sezary syndrome. Clin Cancer Res 
21:274–285

 176. Nishikawa H, Sakaguchi S (2010) Regulatory T cells 
in tumor immunity. Int J Cancer 127:759–767

 177. Nishio J, Baba M, Atarashi K, Tanoue T, Negishi 
H, Yanai H, Habu S, Hori S, Honda K, Taniguchi 
T (2015) Requirement of full TCR repertoire for 
regulatory T cells to maintain intestinal homeostasis. 
Proc Natl Acad Sci U S A 112:12,770–12,775

 178. Nishizuka Y, Sakakura T (1969) Thymus and repro-
duction: sex-linked dysgenesia of the gonad after 
neonatal thymectomy in mice. Science 166:753–755

 179. Nocentini G, Giunchi L, Ronchetti S, Krausz LT, 
Bartoli A, Moraca R, Migliorati G, Riccardi C 
(1997) A new member of the tumor necrosis factor/
nerve growth factor receptor family inhibits T cell 
receptor-induced apoptosis. Proc Natl Acad Sci U S 
A 94:6216–6221

 180. Ohkura N, Hamaguchi M, Morikawa H, Sugimura 
K, Tanaka A, Ito Y, Osaki M, Tanaka Y, Yamashita 
R, Nakano N, Huehn J, Fehling HJ, Sparwasser 
T, Nakai K, Sakaguchi S (2012) T cell receptor 
stimulation-induced epigenetic changes and Foxp3 
expression are independent and complementary 
events required for Treg cell development. Immunity 
37:785–799

 181. Ohkura N, Sakaguchi S (2010) Foxo1 and Foxo3 
help Foxp3. Immunity 33:835–837

 182. Ohue Y, Nishikawa H (2019) Regulatory T (Treg) 
cells in cancer: Can Treg cells be a new therapeutic 
target? Cancer Sci 110:2080–2089

 183. Olkhanud PB, Baatar D, Bodogai M, Hakim F, Gress 
R, Anderson RL, Deng J, Xu M, Briest S, Biragyn 
A (2009) Breast cancer lung metastasis requires 
expression of chemokine receptor CCR4 and regula-
tory T cells. Cancer Res 69:5996–6004

 184. Ollila TA, Sahin I, Olszewski AJ (2019) 
Mogamulizumab: a new tool for management of 
cutaneous T-cell lymphoma. Onco Targets Ther 
12:1085–1094

 185. Ondondo B, Jones E, Godkin A, Gallimore A (2013) 
Home sweet home: the tumor microenvironment as 
a haven for regulatory T cells. Front Immunol 4:197

 186. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, 
Fujita T, Nakayama E (1999) Tumor rejection by 
in  vivo administration of anti-CD25 (interleukin-2 
receptor alpha) monoclonal antibody. Cancer Res 
59:3128–3133

 187. Osinska I, Popko K, Demkow U (2014) Perforin: an 
important player in immune response. Cent Eur J 
Immunol 39:109–115

 188. Ouyang W, Liao W, Luo CT, Yin N, Huse M, Kim 
MV, Peng M, Chan P, Ma Q, Mo Y, Meijer D, Zhao 
K, Rudensky AY, Atwal G, Zhang MQ, Li MO (2012) 
Novel Foxo1-dependent transcriptional programs 
control T(reg) cell function. Nature 491:554–559

 189. Overacre AE, Vignali DA (2016) T(reg) stability: to 
be or not to be. Curr Opin Immunol 39:39–43

R. E. Dadey et al.



129

 190. Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano 
H, Brunazzi EA, Shayan G, Horne W, Moskovitz 
JM, Kolls JK, Sander C, Shuai Y, Normolle DP, 
Kirkwood JM, Ferris RL, Delgoffe GM, Bruno 
TC, Workman CJ, Vignali DAA (2017) Interferon- 
gamma drives Treg fragility to promote anti-tumor 
immunity. Cell 169(1130–1141):e11

 191. Overacre-Delgoffe AE, Vignali DAA (2018) Treg 
fragility: a prerequisite for effective antitumor 
immunity? Cancer Immunol Res 6:882–887

 192. Pacella I, Piconese S (2019) Immunometabolic 
checkpoints of treg dynamics: adaptation to micro-
environmental opportunities and challenges. Front 
Immunol 10:1889

 193. Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz 
L (2006) Origin and T cell receptor diversity 
of Foxp3  +  CD4  +  CD25+ T cells. Immunity 
25:249–259

 194. Pacholczyk R, Kern J (2008) The T-cell recep-
tor repertoire of regulatory T cells. Immunology 
125:450–458

 195. Pan F, Yu H, Dang EV, Barbi J, Pan X, Grosso JF, 
Jinasena D, Sharma SM, Mccadden EM, Getnet 
D, Drake CG, Liu JO, Ostrowski MC, Pardoll DM 
(2009) Eos mediates Foxp3-dependent gene silencing 
in CD4+ regulatory T cells. Science 325:1142–1146

 196. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo 
MJ (2007) CD4 + CD25 + Foxp3+ regulatory T cells 
induce cytokine deprivation-mediated apoptosis of 
effector CD4+ T cells. Nat Immunol 8:1353–1362

 197. Park HJ, Kusnadi A, Lee EJ, Kim WW, Cho BC, Lee 
IJ, Seong J, Ha SJ (2012) Tumor-infiltrating regula-
tory T cells delineated by upregulation of PD-1 and 
inhibitory receptors. Cell Immunol 278:76–83

 198. Park HJ, Park JS, Jeong YH, Son J, Ban YH, Lee 
BH, Chen L, Chang J, Chung DH, Choi I, Ha SJ 
(2015a) Correction: PD-1 upregulated on regulatory 
T cells during chronic virus infection enhances the 
suppression of CD8+ T cell immune response via the 
interaction with PD-L1 expressed on CD8+ T cells. J 
Immunol 195:5841–5842

 199. Park HJ, Park JS, Jeong YH, Son J, Ban YH, Lee 
BH, Chen L, Chang J, Chung DH, Choi I, Ha SJ 
(2015b) PD-1 upregulated on regulatory T cells dur-
ing chronic virus infection enhances the suppression 
of CD8+ T cell immune response via the interaction 
with PD-L1 expressed on CD8+ T cells. J Immunol 
194:5801–5811

 200. Passerini L, Allan SE, Battaglia M, DI Nunzio S, 
Alstad AN, Levings MK, Roncarolo MG, Bacchetta 
R (2008) STAT5-signaling cytokines regulate the 
expression of FOXP3 in CD4 + CD25+ regulatory T 
cells and CD4 + CD25- effector T cells. Int Immunol 
20:421–431

 201. Paterson AM, Lovitch SB, Sage PT, Juneja VR, Lee 
Y, Trombley JD, Arancibia-Carcamo CV, Sobel RA, 
Rudensky AY, Kuchroo VK, Freeman GJ, Sharpe 
AH (2015) Deletion of CTLA-4 on regulatory T 
cells during adulthood leads to resistance to autoim-
munity. J Exp Med 212:1603–1621

 202. Patnaik A, Lorusso PM, Messersmith WA, 
Papadopoulos KP, Gore L, Beeram M, Ramakrishnan 
V, Kim AH, Beyer JC, Mason Shih L, Darbonne WC, 
Xin Y, Yu R, Xiang H, Brachmann RK, Weekes CD 
(2014) A Phase Ib study evaluating MNRP1685A, 
a fully human anti-NRP1 monoclonal antibody, 
in combination with bevacizumab and paclitaxel 
in patients with advanced solid tumors. Cancer 
Chemother Pharmacol 73:951–960

 203. Pauken KE, Wherry EJ (2014) TIGIT and CD226: 
tipping the balance between costimulatory and coin-
hibitory molecules to augment the cancer immuno-
therapy toolkit. Cancer Cell 26:785–787

 204. Perrot I, Michaud HA, Giraudon-Paoli M, Augier 
S, Docquier A, Gros L, Courtois R, Dejou C, Jecko 
D, Becquart O, Rispaud-Blanc H, Gauthier L, Rossi 
B, Chanteux S, Gourdin N, Amigues B, Roussel A, 
Bensussan A, Eliaou JF, Bastid J, Romagne F, Morel 
Y, Narni-Mancinelli E, Vivier E, Paturel C, Bonnefoy 
N (2019) Blocking antibodies targeting the CD39/
CD73 immunosuppressive pathway unleash immune 
responses in combination cancer therapies. Cell Rep 
27(2411–2425):e9

 205. Platten M, Wick W, VAN DEN Eynde BJ (2012) 
Tryptophan catabolism in cancer: beyond IDO and 
tryptophan depletion. Cancer Res 72:5435–5440

 206. Polanczyk MJ, Walker E, Haley D, Guerrouahen BS, 
Akporiaye ET (2019) Blockade of TGF-beta signal-
ing to enhance the antitumor response is accompa-
nied by dysregulation of the functional activity of 
CD4(+)CD25(+)Foxp3(+) and CD4(+)CD25(−)
Foxp3(+) T cells. J Transl Med 17:219

 207. Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe 
A, Baron U, Olek S, Hamann A, VON Boehmer H, 
Huehn J (2008) DNA methylation controls Foxp3 
gene expression. Eur J Immunol 38:1654–1663

 208. Price, K.  D., Simutis, F., Fletcher, A., Ramaiah, 
L., Srour, R., Kozlosky, J., Sathish, J., Engelhardt, 
J., Capozzi, A., Crona, J., Newsome, C., Wheeler, 
J., Szatkowski, D., Thekkumthala, A., Wang, B., 
Freebern, W., Haggerty, H., Bunch, T., and Graziano, 
M. Abstract LB-B33: Nonclinical safety evaluation 
of two distinct second generation variants of anti- 
CTLA4 monoclonal antibody, ipilimumab, in mon-
keys. AACR-NCI-EORTC international conference: 
molecular targets and cancer therapeutics. 2018.

 209. Qin T, Barron L, Xia L, Huang H, Villarreal MM, 
Zwaagstra J, Collins C, Yang J, Zwieb C, Kodali R, 
Hinck CS, Kim SK, Reddick RL, Shu C, O’connor- 
Mccourt MD, Hinck AP, Sun LZ (2016) A novel 
highly potent trivalent TGF-beta receptor trap inhib-
its early-stage tumorigenesis and tumor cell invasion 
in murine Pten-deficient prostate glands. Oncotarget 
7:86,087–86,102

 210. Qin T, Barron L, Xia L, Huang H, Villarreal MM, 
Zwaagstra J, Collins C, Yang J, Zwieb C, Kodali R, 
Hinck CS, Kim SK, Reddick RL, Shu C, O’connor- 
Mccourt MD, Hinck AP, Sun LZ (2017) Correction: 
A novel highly potent trivalent TGF-beta receptor 
trap inhibits early-stage tumorigenesis and tumor 

6 Regulatory T Cells in the Tumor Microenvironment



130

cell invasion in murine Pten-deficient prostate 
glands. Oncotarget 8:57,905

 211. Qin W, Hu L, Zhang X, Jiang S, Li J, Zhang Z, Wang 
X (2019) The diverse function of PD-1/PD-L path-
way beyond cancer. Front Immunol 10:2298

 212. Radziewicz H, Dunham RM, Grakoui A (2009) 
PD-1 tempers Tregs in chronic HCV infection. J 
Clin Invest 119:450–453

 213. Read S, Malmstrom V, Powrie F (2000) Cytotoxic T 
lymphocyte-associated antigen 4 plays an essential 
role in the function of CD25(+)CD4(+) regulatory 
cells that control intestinal inflammation. J Exp Med 
192:295–302

 214. Rech AJ, Vonderheide RH (2009) Clinical use of 
anti-CD25 antibody daclizumab to enhance immune 
responses to tumor antigen vaccination by targeting 
regulatory T cells. Ann N Y Acad Sci 1174:99–106

 215. Redjimi N, Raffin C, Raimbaud I, Pignon P, 
Matsuzaki J, Odunsi K, Valmori D, Ayyoub M 
(2012) CXCR3+ T regulatory cells selectively accu-
mulate in human ovarian carcinomas to limit type I 
immunity. Cancer Res 72:4351–4360

 216. Rieder SA, Shevach EM (2013) Eos, goddess of treg 
cell reprogramming. Immunity 38:849–850

 217. Riquelme P, Haarer J, Kammler A, Walter L, Tomiuk 
S, Ahrens N, Wege AK, Goecze I, Zecher D, Banas 
B, Spang R, Fandrich F, Lutz MB, Sawitzki B, 
Schlitt HJ, Ochando J, Geissler EK, Hutchinson JA 
(2018) TIGIT(+) iTregs elicited by human regula-
tory macrophages control T cell immunity. Nat 
Commun 9:2858

 218. Robson H, Anderson E, James RD, Schofield PF 
(1996) Transforming growth factor beta 1 expres-
sion in human colorectal tumours: an independent 
prognostic marker in a subgroup of poor prognosis 
patients. Br J Cancer 74:753–758

 219. Romano M, Fanelli G, Albany CJ, Giganti G, 
Lombardi G (2019) Past, Present, and future of regu-
latory T cell therapy in transplantation and autoim-
munity. Front Immunol 10:43

 220. Ronchetti S, Ricci E, Petrillo MG, Cari L, Migliorati 
G, Nocentini G, Riccardi C (2015) Glucocorticoid- 
induced tumour necrosis factor receptor-related pro-
tein: a key marker of functional regulatory T cells. J 
Immunol Res 2015:171,520

 221. Rudensky AY, Gavin M, Zheng Y (2006) FOXP3 
and NFAT: partners in tolerance. Cell 126:253–256

 222. Russell WL, Russell LB, Gower JS (1959) 
Exceptional inheritance of a sex-linked gene in the 
mouse explained on the basis that the X/O sex- 
chromosome constitution is female. Proc Natl Acad 
Sci U S A 45:554–560

 223. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda 
M (1995) Immunologic self-tolerance maintained 
by activated T cells expressing IL-2 receptor alpha- 
chains (CD25). Breakdown of a single mechanism 
of self-tolerance causes various autoimmune dis-
eases. J Immunol 155:1151–1164

 224. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, 
Yamaguchi T (2009) Regulatory T cells: how do 

they suppress immune responses? Int Immunol 
21:1105–1111

 225. Salmaninejad A, Valilou SF, Shabgah AG, Aslani S, 
Alimardani M, Pasdar A, Sahebkar A (2019) PD-1/
PD-L1 pathway: Basic biology and role in cancer 
immunotherapy. J Cell Physiol 234:16,824–16,837

 226. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu 
M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, 
O’connor E, Shokat KM, Fisher AG, Merkenschlager 
M (2008) T cell receptor signaling controls Foxp3 
expression via PI3K, Akt, and mTOR.  Proc Natl 
Acad Sci U S A 105:7797–7802

 227. Sawant DV, Hamilton K, Vignali DA (2015) 
Interleukin-35: expanding its job profile. J Interferon 
Cytokine Res 35:499–512

 228. Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, 
Liu C, Callahan DJ, Sun Z, Sun T, Tabib T, Pennathur 
A, Corry DB, Luketich JD, Lafyatis R, Chen W, 
Poholek AC, Bruno TC, Workman CJ, Vignali DAA 
(2019) Adaptive plasticity of IL-10(+) and IL-35(+) 
Treg cells cooperatively promotes tumor T cell 
exhaustion. Nat Immunol 20:724–735

 229. Schlecker E, Stojanovic A, Eisen C, Quack C, 
Falk CS, Umansky V, Cerwenka A (2012) Tumor- 
infiltrating monocytic myeloid-derived suppressor 
cells mediate CCR5-dependent recruitment of regu-
latory T cells favoring tumor growth. J Immunol 
189:5602–5611

 230. Schmidt A, Oberle N, Krammer PH (2012) 
Molecular mechanisms of treg-mediated T cell sup-
pression. Front Immunol 3:51

 231. Schoenhals JE, Cushman TR, Barsoumian HB, Li 
A, Cadena AP, Niknam S, Younes AI, Caetano MDS, 
Cortez MA, Welsh JW (2018) Anti-glucocorticoid- 
induced tumor necrosis factor-related protein 
(GITR) therapy overcomes radiation-induced Treg 
immunosuppression and drives abscopal effects. 
Front Immunol 9:2170

 232. Seddiki N, Santner-Nanan B, Martinson J, Zaunders 
J, Sasson S, Landay A, Solomon M, Selby W, 
Alexander SI, Nanan R, Kelleher A, Fazekas 
De St Groth B (2006) Expression of interleukin 
(IL)-2 and IL-7 receptors discriminates between 
human regulatory and activated T cells. J Exp Med 
203:1693–1700

 233. Selby MJ, Engelhardt JJ, Quigley M, Henning KA, 
Chen T, Srinivasan M, Korman AJ (2013) Anti- 
CTLA- 4 antibodies of IgG2a isotype enhance anti-
tumor activity through reduction of intratumoral 
regulatory T cells. Cancer Immunol Res 1:32–42

 234. Sharma A, Subudhi SK, Blando J, Scutti J, Vence 
L, Wargo J, Allison JP, Ribas A, Sharma P (2019a) 
Anti-CTLA-4 immunotherapy does not deplete 
FOXP3(+) regulatory T cells (Tregs) in human can-
cers. Clin Cancer Res 25:1233–1238

 235. Sharma A, Subudhi SK, Blando J, Vence L, Wargo J, 
Allison JP, Ribas A, Sharma P (2019b) Anti-CTLA-4 
immunotherapy does not deplete FOXP3(+) regula-
tory T cells (Tregs) in human cancers-response. Clin 
Cancer Res 25:3469–3470

R. E. Dadey et al.



131

 236. Sharma MD, Huang L, Choi JH, Lee EJ, Wilson JM, 
Lemos H, Pan F, Blazar BR, Pardoll DM, Mellor AL, 
Shi H, Munn DH (2013) An inherently bifunctional 
subset of Foxp3+ T helper cells is controlled by the 
transcription factor eos. Immunity 38:998–1012

 237. Shen T, Zheng J, Liang H, Xu C, Chen X, Zhang T, 
Xu Q, Lu F (2011) Characteristics and PD-1 expres-
sion of peripheral CD4  +  CD127loCD25hiFoxP3+ 
Treg cells in chronic HCV infected-patients. Virol J 
8:279

 238. Shevach EM, Thornton AM (2014) tTregs, pTregs, 
and iTregs: similarities and differences. Immunol 
Rev 259:88–102

 239. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction 
of tumor immunity by removing CD25 + CD4+ T 
cells: a common basis between tumor immunity and 
autoimmunity. J Immunol 163:5211–5218

 240. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, 
Sakaguchi S (2002) Stimulation of CD25(+)CD4(+) 
regulatory T cells through GITR breaks immuno-
logical self-tolerance. Nat Immunol 3:135–142

 241. Shitara K, Nishikawa H (2018) Regulatory T cells: a 
potential target in cancer immunotherapy. Ann N Y 
Acad Sci 1417:104–115

 242. Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda 
MA, Bergerhoff K, Arce F, Roddie C, Henry JY, 
Yagita H, Wolchok JD, Peggs KS, Ravetch JV, 
Allison JP, Quezada SA (2013) Fc-dependent deple-
tion of tumor-infiltrating regulatory T cells co- 
defines the efficacy of anti-CTLA-4 therapy against 
melanoma. J Exp Med 210:1695–1710

 243. Solomon, I., Vargas, F.A., Zervas, D., Qing, C., 
Salimu, J., Brown, M., Merchiers, P., Boughetane, 
A., Peggs, K.S., Goubier, A., Quezada, S.A. (2018) 
Abstract 3143: A novel approach to deplete Treg 
cells using non-IL-2 blocking anti-CD25-targeting 
antibodies leads to complete rejection of established 
tumors. AACR Annual Meeting

 244. Stanietsky N, Simic H, Arapovic J, Toporik A, 
Levy O, Novik A, Levine Z, Beiman M, Dassa 
L, Achdout H, Stern-Ginossar N, Tsukerman P, 
Jonjic S, Mandelboim O (2009) The interaction 
of TIGIT with PVR and PVRL2 inhibits human 
NK cell cytotoxicity. Proc Natl Acad Sci U S A 
106:17,858–17,863

 245. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt 
FA, Liniany LP, Knight D, Samsel LA, Berlinguer- 
Palmini R, Yim JJ, Felizardo TC, Eckhaus MA, 
Edgington-Mitchell L, Martinez-Fabregas J, Zhu J, 
Fowler DH, VAN Kasteren SI, Laurence A, Bogyo 
M, Watts C, Shevach EM, Amarnath S (2018) PD-1 
inhibitory receptor downregulates asparaginyl endo-
peptidase and maintains Foxp3 transcription factor 
stability in induced regulatory T cells. Immunity 
49(247–263):e7

 246. Stewart CA, Metheny H, Iida N, Smith L, Hanson 
M, Steinhagen F, Leighty RM, Roers A, Karp CL, 
Muller W, Trinchieri G (2013) Interferon-dependent 
IL-10 production by Tregs limits tumor Th17 inflam-
mation. J Clin Invest 123:4859–4874

 247. Sugiura A, Rathmell JC (2018) Metabolic barriers to 
T cell function in tumors. J Immunol 200:400–407

 248. Sugiyama D, Nishikawa H, Maeda Y, Nishioka 
M, Tanemura A, Katayama I, Ezoe S, Kanakura Y, 
Sato E, Fukumori Y, Karbach J, Jager E, Sakaguchi 
S (2013) Anti-CCR4 mAb selectively depletes 
effector- type FoxP3  +  CD4+ regulatory T cells, 
evoking antitumor immune responses in humans. 
Proc Natl Acad Sci U S A 110:17,945–17,950

 249. Szurek E, Cebula A, Wojciech L, Pietrzak M, 
Rempala G, Kisielow P, Ignatowicz L (2015) 
Differences in expression level of helios and neu-
ropilin- 1 do not distinguish thymus-derived from 
extrathymically-induced CD4 + Foxp3+ regulatory 
T cells. PLoS One 10:e0141161

 250. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu 
J, Sakaguchi N, Mak TW, Sakaguchi S (2000) 
Immunologic self-tolerance maintained by CD25(+)
CD4(+) regulatory T cells constitutively expressing 
cytotoxic T lymphocyte-associated antigen 4. J Exp 
Med 192:303–310

 251. Tan MC, Goedegebuure PS, Belt BA, Flaherty B, 
Sankpal N, Gillanders WE, Eberlein TJ, Hsieh CS, 
Linehan DC (2009) Disruption of CCR5-dependent 
homing of regulatory T cells inhibits tumor growth 
in a murine model of pancreatic cancer. J Immunol 
182:1746–1755

 252. Taylor A, Verhagen J, Blaser K, Akdis M, Akdis 
CA (2006) Mechanisms of immune suppression 
by interleukin- 10 and transforming growth factor- 
beta: the role of T regulatory cells. Immunology 
117:433–442

 253. Taylor PA, Lees CJ, Blazar BR (2002) The infusion 
of ex vivo activated and expanded CD4(+)CD25(+) 
immune regulatory cells inhibits graft-versus-host 
disease lethality. Blood 99:3493–3499

 254. Thornton AM, Korty PE, Tran DQ, Wohlfert 
EA, Murray PE, Belkaid Y, Shevach EM (2010) 
Expression of Helios, an Ikaros transcription factor 
family member, differentiates thymic-derived from 
peripherally induced Foxp3+ T regulatory cells. J 
Immunol 184:3433–3441

 255. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, 
Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 
leads to massive lymphoproliferation and fatal multi-
organ tissue destruction, revealing a critical negative 
regulatory role of CTLA-4. Immunity 3:541–547

 256. Togashi Y, Shitara K, Nishikawa H (2019) 
Regulatory T cells in cancer immunosuppression  - 
implications for anticancer therapy. Nat Rev Clin 
Oncol 16:356–371

 257. Toomer KH, Lui JB, Altman NH, Ban Y, Chen X, 
Malek TR (2019) Essential and non-overlapping 
IL-2Ralpha-dependent processes for thymic devel-
opment and peripheral homeostasis of regulatory T 
cells. Nat Commun 10:1037

 258. Topalian SL, Drake CG, Pardoll DM (2012) 
Targeting the PD-1/B7-H1(PD-L1) pathway to 
activate anti-tumor immunity. Curr Opin Immunol 
24:207–212

6 Regulatory T Cells in the Tumor Microenvironment



132

 259. Triebel F, Jitsukawa S, Baixeras E, Roman-Roman 
S, Genevee C, Viegas-Pequignot E, Hercend T 
(1990) LAG-3, a novel lymphocyte activation gene 
closely related to CD4. J Exp Med 171:1393–1405

 260. Tsamandas AC, Kardamakis D, Ravazoula P, Zolota 
V, Salakou S, Tepetes K, Kalogeropoulou C, Tsota 
I, Kourelis T, Makatsoris T, Karavias D, Scopa CD, 
Bonikos DS, Kalofonos HP, Petsas T (2004) The 
potential role of TGFbeta1, TGFbeta2 and TGFbeta3 
protein expression in colorectal carcinomas. 
Correlation with classic histopathologic factors and 
patient survival. Strahlenther Onkol 180:201–208

 261. Turnis ME, Sawant DV, Szymczak-Workman AL, 
Andrews LP, Delgoffe GM, Yano H, Beres AJ, Vogel 
P, Workman CJ, Vignali DA (2016) Interleukin-35 
limits anti-tumor immunity. Immunity 44:316–329

 262. Ueda R (2015) Clinical application of anti-CCR4 
monoclonal antibody. Oncology 89(Suppl 1):16–21

 263. Umansky V, Shevchenko I, Bazhin AV, Utikal J 
(2014) Extracellular adenosine metabolism in 
immune cells in melanoma. Cancer Immunol 
Immunother 63:1073–1080

 264. van der Vliet HJ, Nieuwenhuis EE (2007) IPEX as 
a result of mutations in FOXP3. Clin Dev Immunol 
2007:89,017

 265. Vence L, Palucka AK, Fay JW, Ito T, Liu YJ, 
Banchereau J, Ueno H (2007) Circulating tumor 
antigen-specific regulatory T cells in patients with 
metastatic melanoma. Proc Natl Acad Sci U S A 
104:20,884–20,889

 266. Vigano S, Alatzoglou D, Irving M, Menetrier-Caux 
C, Caux C, Romero P, Coukos G (2019) Targeting 
adenosine in cancer immunotherapy to enhance 
T-Cell function. Front Immunol 10:925

 267. Vignali DA (2012) Mechanisms of T(reg) suppres-
sion: still a long way to go. Front Immunol 3:191

 268. Vignali DA, Collison LW, Workman CJ (2008) 
How regulatory T cells work. Nat Rev Immunol 
8:523–532

 269. Vignali DA, Kuchroo VK (2012) IL-12 family cyto-
kines: immunological playmakers. Nat Immunol 
13:722–728

 270. Vigneron N (2015) Human tumor antigens 
and cancer immunotherapy. Biomed Res Int 
2015:948,501

 271. Waight JD, Takai S, Marelli B, Qin G, Hance KW, 
Zhang D, Tighe R, Lan Y, Lo KM, Sabzevari H, 
Hofmeister R, Wilson NS (2015) Cutting edge: epi-
genetic regulation of Foxp3 defines a stable popula-
tion of CD4+ regulatory T cells in tumors from mice 
and humans. J Immunol 194:878–882

 272. Waldmann TA (2007) Daclizumab (anti-Tac, 
Zenapax) in the treatment of leukemia/lymphoma. 
Oncogene 26:3699–3703

 273. Wan YY, Flavell RA (2005) Identifying Foxp3- 
expressing suppressor T cells with a bicistronic 
reporter. Proc Natl Acad Sci U S A 102:5126–5131

 274. Wang H, Franco F, Ho PC (2017a) Metabolic regula-
tion of Tregs in cancer: opportunities for immuno-
therapy. Trends Cancer 3:583–592

 275. Wang HY, Lee DA, Peng G, Guo Z, Li Y, Kiniwa 
Y, Shevach EM, Wang RF (2004) Tumor-specific 
human CD4+ regulatory T cells and their ligands: 
implications for immunotherapy. Immunity 
20:107–118

 276. Wang HY, Peng G, Guo Z, Shevach EM, Wang RF 
(2005) Recognition of a new ARTC1 peptide ligand 
uniquely expressed in tumor cells by antigen-specific 
CD4+ regulatory T cells. J Immunol 174:2661–2670

 277. Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga 
TW, Toes RE (2007) Transient expression of 
FOXP3  in human activated nonregulatory CD4+ T 
cells. Eur J Immunol 37:129–138

 278. Wang L, Pino-Lagos K, DE Vries VC, Guleria I, 
Sayegh MH, Noelle RJ (2008) Programmed death 1 
ligand signaling regulates the generation of adaptive 
Foxp3 + CD4+ regulatory T cells. Proc Natl Acad 
Sci U S A 105:9331–9336

 279. Wang X, Wong K, Ouyang W, Rutz S (2019) 
Targeting IL-10 family cytokines for the treatment 
of human diseases. Cold Spring Harb Perspect Biol 
11:a028548

 280. Wang Y, Su MA, Wan YY (2011) An essential role 
of the transcription factor GATA-3 for the function 
of regulatory T cells. Immunity 35:337–348

 281. Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong 
F, Guo C, Xiang B, Zhou M, Ma J, Huang X, Wu X, 
Li Y, Li GY, Zeng ZY, Xiong W (2018) Effects of 
tumor metabolic microenvironment on regulatory T 
cells. Mol Cancer 17:168

 282. Wang Z, Zheng Q, Zhang H, Bronson RT, Madsen 
JC, Sachs DH, Huang CA, Wang Z (2017b) Ontak- 
like human IL-2 fusion toxin. J Immunol Methods 
448:51–58

 283. Wei SC, Duffy CR, Allison JP (2018) Fundamental 
mechanisms of immune checkpoint blockade ther-
apy. Cancer Discov 8:1069–1086

 284. Wei T, Zhang J, Qin Y, Wu Y, Zhu L, Lu L, Tang 
G, Shen Q (2015) Increased expression of immuno-
suppressive molecules on intratumoral and circulat-
ing regulatory T cells in non-small-cell lung cancer 
patients. Am J Cancer Res 5:2190–2201

 285. Wei X, Zhang J, Gu Q, Huang M, Zhang W, Guo J, 
Zhou X (2017) Reciprocal expression of IL-35 and 
IL-10 defines two distinct effector Treg subsets that 
Are required for maintenance of immune tolerance. 
Cell Rep 21:1853–1869

 286. Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto 
De Lafaille MA, Parkhurst CN, Xiong H, Dolpady 
J, Frey AB, Ruocco MG, Yang Y, Floess S, Huehn 
J, Oh S, Li MO, Niec RE, Rudensky AY, Dustin 
ML, Littman DR, Lafaille JJ (2012) Neuropilin 1 is 
expressed on thymus-derived natural regulatory T 
cells, but not mucosa-generated induced Foxp3+ T 
reg cells. J Exp Med 209(1723–42):S1

 287. Welch MJ, Teijaro JR, Lewicki HA, Colonna M, 
Oldstone MB (2012) CD8 T cell defect of TNF- 
alpha and IL-2  in DNAM-1 deficient mice delays 
clearance in  vivo of a persistent virus infection. 
Virology 429:163–170

R. E. Dadey et al.



133

 288. Wildin RS, Ramsdell F, Peake J, Faravelli F, 
Casanova JL, Buist N, Levy-Lahad E, Mazzella 
M, Goulet O, Perroni L, Bricarelli FD, Byrne G, 
Mceuen M, Proll S, Appleby M, Brunkow ME 
(2001) X-linked neonatal diabetes mellitus, enter-
opathy and endocrinopathy syndrome is the human 
equivalent of mouse scurfy. Nat Genet 27:18–20

 289. Williams LM, Rudensky AY (2007) Maintenance 
of the Foxp3-dependent developmental program in 
mature regulatory T cells requires continued expres-
sion of Foxp3. Nat Immunol 8:277–284

 290. Wincewicz A, Koda M, Sulkowski S, Kanczuga- 
Koda L, Sulkowska M (2010) Comparison of beta- 
catenin with TGF-beta1, HIF-1alpha and patients’ 
disease-free survival in human colorectal cancer. 
Pathol Oncol Res 16:311–318

 291. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, 
Miyara M, Fehervari Z, Nomura T, Sakaguchi S 
(2008) CTLA-4 control over Foxp3+ regulatory T 
cell function. Science 322:271–275

 292. Wolchok JD, Saenger Y (2008) The mechanism of 
anti-CTLA-4 activity and the negative regulation of 
T-cell activation. Oncologist 13(Suppl 4):2–9

 293. Wolf KJ, Emerson RO, Pingel J, Buller RM, Dipaolo 
RJ (2016) Conventional and regulatory CD4+ T cells 
that share identical TCRs are derived from common 
clones. PLoS One 11:e0153705

 294. Woo SR, Turnis ME, Goldberg MV, Bankoti J, 
Selby M, Nirschl CJ, Bettini ML, Gravano DM, 
Vogel P, Liu CL, Tangsombatvisit S, Grosso JF, 
Netto G, Smeltzer MP, Chaux A, Utz PJ, Workman 
CJ, Pardoll DM, Korman AJ, Drake CG, Vignali 
DA (2012) Immune inhibitory molecules LAG-3 
and PD-1 synergistically regulate T-cell function 
to promote tumoral immune escape. Cancer Res 
72:917–927

 295. Workman CJ, Cauley LS, Kim IJ, Blackman MA, 
Woodland DL, Vignali DA (2004) Lymphocyte 
activation gene-3 (CD223) regulates the size of the 
expanding T cell population following antigen acti-
vation in vivo. J Immunol 172:5450–5455

 296. Workman CJ, Dugger KJ, Vignali DA (2002) 
Cutting edge: molecular analysis of the negative reg-
ulatory function of lymphocyte activation gene-3. J 
Immunol 169:5392–5395

 297. Workman CJ, Vignali DA (2003) The CD4-related 
molecule, LAG-3 (CD223), regulates the expansion 
of activated T cells. Eur J Immunol 33:970–979

 298. Workman CJ, Vignali DA (2005) Negative regula-
tion of T cell homeostasis by lymphocyte activation 
gene-3 (CD223). J Immunol 174:688–695

 299. Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, 
Liu X (2019) Application of PD-1 Blockade in can-
cer immunotherapy. Comput Struct Biotechnol J 
17:661–674

 300. Xie X, Stubbington MJ, Nissen JK, Andersen KG, 
Hebenstreit D, Teichmann SA, Betz AG (2015) The 
regulatory T Cell lineage factor Foxp3 regulates 
gene expression through several distinct mecha-

nisms mostly independent of direct DNA binding. 
PLoS Genet 11:e1005251

 301. Yadav M, Louvet C, Davini D, Gardner JM, 
Martinez-Llordella M, Bailey-Bucktrout S, Anthony 
BA, Sverdrup FM, Head R, Kuster DJ, Ruminski 
P, Weiss D, VON Schack D, Bluestone JA (2012) 
Neuropilin-1 distinguishes natural and inducible 
regulatory T cells among regulatory T cell subsets 
in vivo. J Exp Med 209(1713–22):1–19

 302. Yadav M, Stephan S, Bluestone JA (2013) 
Peripherally induced tregs – role in immune homeo-
stasis and autoimmunity. Front Immunol 4:232

 303. Yan H, Zhang P, Kong X, Hou X, Zhao L, Li T, 
Yuan X, Fu H (2017) Primary Tr1 cells from 
metastatic melanoma eliminate tumor-promot-
ing macrophages through granzyme B- and 
perforin-dependent mechanisms. Tumour Biol 
39:1010428317697554

 304. Yang BH, Hagemann S, Mamareli P, Lauer U, 
Hoffmann U, Beckstette M, Fohse L, Prinz I, 
Pezoldt J, Suerbaum S, Sparwasser T, Hamann A, 
Floess S, Huehn J, Lochner M (2016) Foxp3(+) T 
cells expressing RORgammat represent a stable 
regulatory T-cell effector lineage with enhanced 
suppressive capacity during intestinal inflammation. 
Mucosal Immunol 9:444–457

 305. Yu N, Li X, Song W, Li D, Yu D, Zeng X, Li M, Leng 
X, Li X (2012) CD4(+)CD25 (+)CD127 (low/−) 
T cells: a more specific Treg population in human 
peripheral blood. Inflammation 35:1773–1780

 306. Yu X, Harden K, Gonzalez LC, Francesco M, 
Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark 
H, Eaton D, Grogan JL (2009) The surface protein 
TIGIT suppresses T cell activation by promoting the 
generation of mature immunoregulatory dendritic 
cells. Nat Immunol 10:48–57

 307. Zappasodi R, Sirard C, Li Y, Budhu S, Abu-Akeel 
M, Liu C, Yang X, Zhong H, Newman W, Qi J, 
Wong P, Schaer D, Koon H, Velcheti V, Hellmann 
MD, Postow MA, Callahan MK, Wolchok JD, 
Merghoub T (2019) Rational design of anti-GITR-
based combination immunotherapy. Nat Med 
25:759–766

 308. Zhang B, Chikuma S, Hori S, Fagarasan S, Honjo T 
(2016) Nonoverlapping roles of PD-1 and FoxP3 in 
maintaining immune tolerance in a novel autoim-
mune pancreatitis mouse model. Proc Natl Acad Sci 
U S A 113:8490–8495

 309. Zhang L, Zhang Z (2019) Recharacterizing Tumor- 
Infiltrating Lymphocytes by Single-Cell RNA 
Sequencing. Cancer Immunol Res 7:1040–1046

 310. Zhang Q, Chikina M, Szymczak-Workman AL, 
Horne W, Kolls JK, Vignali KM, Normolle D, 
Bettini M, Workman CJ, Vignali DAA (2017) 
LAG3 limits regulatory T cell proliferation and 
function in autoimmune diabetes. Sci Immunol 
2:eaah4569

 311. Zhao H, Liao X, Kang Y (2017) Tregs: Where We 
Are and What Comes Next? Front Immunol 8:1578

6 Regulatory T Cells in the Tumor Microenvironment



134

 312. Zheng J (2012) Energy metabolism of cancer: 
Glycolysis versus oxidative phosphorylation 
(Review). Oncol Lett 4:1151–1157

 313. Zheng Y, Chaudhry A, Kas A, Deroos P, Kim JM, 
Chu TT, Corcoran L, Treuting P, Klein U, Rudensky 
AY (2009) Regulatory T-cell suppressor program 
co-opts transcription factor IRF4 to control T(H)2 
responses. Nature 458:351–356

 314. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, 
Forbush K, Rudensky AY (2010) Role of conserved 
non-coding DNA elements in the Foxp3 gene in reg-
ulatory T-cell fate. Nature 463:808–812

 315. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin 
MA, Rudensky AY (2007) Genome-wide analysis of 
Foxp3 target genes in developing and mature regula-
tory T cells. Nature 445:936–940

 316. Zheng Y, Rudensky AY (2007) Foxp3  in con-
trol of the regulatory T cell lineage. Nat Immunol 
8:457–462

 317. Zhou G, Levitsky HI (2007) Natural regulatory T 
cells and de novo-induced regulatory T cells con-
tribute independently to tumor-specific tolerance. J 
Immunol 178:2155–2162

 318. Zinzani PL, Karlin L, Radford J, Caballero D, 
Fields P, Chamuleau ME, D’amore F, Haioun C, 
Thieblemont C, Gonzalez-Barca E, Garcia CG, 
Johnson PW, VAN Imhoff GW, Ng T, Dwyer K, 
Morschhauser F (2016) European phase II study of 
mogamulizumab, an anti-CCR4 monoclonal anti-
body, in relapsed/refractory peripheral T-cell lym-
phoma. Haematologica 101:e407–e410

 319. Zwaagstra JC, Sulea T, Baardsnes J, Lenferink 
AE, Collins C, Cantin C, Paul-Roc B, Grothe 
S, Hossain S, Richer LP, L’abbe D, Tom R, Cass 
B, Durocher Y, O’connor-Mccourt MD (2012) 
Engineering and therapeutic application of single-
chain bivalent TGF- beta family traps. Mol Cancer 
Ther 11:1477–1487

R. E. Dadey et al.



135© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2020 
A. Birbrair (ed.), Tumor Microenvironment, Advances in Experimental Medicine and Biology 1273, 
https://doi.org/10.1007/978-3-030-49270-0_7

The Hematopoietic 
Microenvironment 
in Myeloproliferative Neoplasms: 
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(Stem Cells) and Nurture (the 
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Abstract

Hematopoietic stem cells (HSCs) rely on 
instructive cues from the marrow microenvi-
ronment for their maintenance and function. 
Accumulating evidence indicates that the sur-
vival and proliferation of hematopoietic neo-
plasms are dependent not only on cell-intrinsic, 
genetic mutations, and other molecular altera-
tions present within neoplastic stem cells, but 
also on the ability of the surrounding microen-
vironmental cells to nurture and promote the 
malignancy. It is anticipated that a better 
understanding of the molecular and cellular 
events responsible for these microenvironmen-
tal features of neoplastic hematopoiesis will 
lead to improved treatment for patients. This 
review will focus on the myeloproliferative 

neoplasms (MPNs), polycythemia vera (PV), 
essential thrombocythemia (ET), and primary 
myelofibrosis (PMF), in which an acquired 
signaling kinase mutation (JAK2V617F) plays 
a central, pathogenetic role in 50–100% of 
patients with these disorders. Evidence is pre-
sented that the development of an MPN 
requires both an abnormal, mutation-bearing 
(i.e., neoplastic) HSC and an abnormal, muta-
tion-bearing microenvironment.

Keywords
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7.1  The Hematopoietic 
Microenvironment

The hematopoietic microenvironment or “stem 
cell niche” is defined as the site at which HSCs 
reside and are nurtured, receiving the humoral 
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and cell-surface signals that lead to their survival, 
replication, and/or differentiation into all the 
mature cells of the blood. Technical break-
throughs in imaging HSCs in the marrow cavity, 
coupled with a series of elegant functional stud-
ies in murine models, have identified a number of 
HSC niche cells that provide the secreted factors 
and cell-surface molecules essential for HSC 
maintenance and function. The cellular compo-
nents of the marrow HSC niche are derived from 
both hematopoietic and non-hematopoietic cells. 
Examples of non-hematopoietic niche cells are 
perivascular stromal cells and endothelial cells 
(ECs), and hematopoietic niche cells include 
large mature megakaryocytes (MKs). All niche 
cells are located adjacent to sinusoidal blood ves-
sels throughout the marrow, allowing their close 
juxtaposition or direct contact with HSCs. At 
these locations, niche cells produce cytokines 
that affect HSCs, including stem cell factor 
(SCF), chemokine (C-X-C motif) ligand 12 
(CXCL12), thrombopoietin (TPO), each a non- 
redundant cytokine important for maintaining 
HSC numbers and enforcing HSC quiescence 
[1–15]. The vast majority of HSCs reside imme-
diately adjacent to sinusoid blood vessels and 
close to ECs, perivascular stromal cells, and/or 
MKs, suggesting the existence of a perivascular 
niche [6, 7, 13–15]. Other marrow cells, includ-
ing osteoblasts [16, 17], macrophages [18, 19], 
and sympathetic nerve fibers [20, 21], indirectly 
influence HSC function by affecting the HSC 
supportive capacity of the essential niche cells, 
through complex crosstalk mechanisms [2, 3, 
22]. It has become increasingly evident that the 
HSC niche consists of a complex assembly of 
multiple components existing in close proximity 
to one another, and that the interaction between 
these cells contributes to the resilience and func-
tion of HSCs.

Accumulating evidence also indicates that the 
hematopoietic niche is altered in patients with 
hematological neoplasms and that the “neoplastic 
niche” is an important contributor to the develop-
ment of hematologic malignancies [23–28]. At 
least part of mechanism by which a malignancy- 
promoting niche arises is through the effect of 

neoplastic cells on adjacent niche cells, although 
the responsible molecular signals are not well 
understood. And because the genetic mutations 
that drive hematological neoplasms can affect 
both marrow cells and ECs [29–38], a fraction of 
the niche cells can carry the driver mutation pres-
ent in the neoplastic stem cell. Once formed by 
these mechanisms, the “malignant niche” can act 
to favor progression of the malignancy, both by 
impairing normal hematopoiesis and by enhanc-
ing malignant stem cell expansion [26, 39–43]. 
Hence, interventions to arrest neoplasia should 
not be restricted solely to the neoplastic stem cell 
itself; rather, if neoplasia is fostered by a coordi-
nated corruption of both niche and stem cells, 
targeting the niche can theoretically provide ther-
apeutic benefit.

7.2  The Marrow 
Microenvironment 
in Myeloproliferative 
Neoplasms

The classic Ph-negative MPNs, which include 
PV, ET, and PMF, are stem cell disorders charac-
terized by hematopoietic stem/progenitor cell 
(HSPC) expansion and overproduction of mature 
blood cells. Patients with MPNs suffer from 
many debilitating complications including both 
venous and arterial thrombosis, and, in some, 
especially if treated with genotoxic agents to 
control blood cell counts, evolution to acute leu-
kemia. An acquired signaling kinase mutation 
JAK2V617F is present in virtually all patients 
with PV, and in ∼50% of patients with ET and 
PMF. The JAK2V617F mutation has a central 
role in the pathogenesis of MPN, but our under-
standing of the stem cell expansion that charac-
terizes MPNs remains incomplete, limiting the 
effectiveness of current treatments. While a vari-
ety of therapies can control the abnormal expan-
sion of the progeny of the malignant HSC, the 
only curative therapy is stem cell transplantation 
(SCT), a procedure that is toxic and often inade-
quate, due to relapse of the malignant clone 
(Fig. 7.1).
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Although the etiology of dysregulated hema-
topoiesis has been mainly attributed to the 
molecular alterations within the corresponding 
stem or progenitor cells, recent studies suggest 
that a diseased hematopoietic microenvironment 
is a critical element in the development of MPNs 
[23, 28, 39, 40]. The marrow of patients with 
MPNs is characterized by increased angiogene-
sis and MK hyperplasia when compared to nor-
mal marrow architecture [44–48]. In addition to 
mutant blood cells (including MKs), JAK2V617F 
is also  present in isolated liver, spleen, and mar-
row ECs from patients with MPNs [29–31]. 
Using both in vitro and in vivo methods, several 
investigators have shown that the JAK2V617F 
mutation contributes to these neoplasms by 
altering the ECs and MKs that participate in the 
hematopoietic niche, enhancing their production 
of growth- promoting cytokines and chemokines, 
ultimately resulting in their differential support 
of mutant stem cells over their normal counter-
parts, and imparting relative radiation resistance 
to neoplastic stem cells. The evidence support-
ing these conclusions regarding the biological 
properties of the vascular niche will next be 
discussed.

7.2.1  JAK2V617F-Bearing Vascular 
ECs Promote JAK2V617F- 
Mutant HSC Expansion over 
Normal HSCs, Both In vitro 
and In Vivo

The early view that a malignancy arising from a 
single mutant stem cell can expand and overtake 
all the (then) existing normal hematopoietic ele-
ments because mutant cells “grow faster” than 
normal cells is far too simplistic. Rather, it is far 
more likely that mutation-bearing cells have 
developed multiple molecular and cellular mech-
anisms, both cell intrinsic and cell extrinsic, 
which make them more competitive than their 
normal hematopoietic and microenvironmental 
counterparts. To explore such microenvironmen-
tal influences, studies of the effects of the 
JAK2V617F mutation on vascular niche function 
were conducted employing mice that bear a Cre- 
inducible human JAK2V617F transgene (termed 
Flip-Flop (FF1) [49]) crossed with a Tie2-Cre 
transgenic mouse [50] to express JAK2V617F 
specifically in all hematopoietic cells (including 
HSCs) and ECs (Tie2+FF1+) [51, 52]. As 
expected, these mice developed a robust MPN 

Fig. 7.1 Hematopoietic microenvironment in myeloproliferative neoplasms

7 The Hematopoietic Microenvironment in Myeloproliferative Neoplasms: The Interplay…



138

characterized by neutrophilia, thrombocytosis, 
splenomegaly, and hematopoietic stem and pro-
genitor cell (HSPC) expansion within 2 months 
of birth.

To assess whether mutant ECs differentially 
support mutant HSCs, the growth of normal and 
malignant hematopoietic cells on normal or 
mutant ECs was assessed by co-culture of normal 
or malignant LineagenegcKit+ (Lin−cKit+) marrow 
HSPCs on monolayers of normal or JAK2V617F- 
mutant ECs. No differences were found between 
normal and JAK2V617F-mutant HSPC prolifera-
tion when cultured on normal ECs. In contrast, 
JAK2V617F HSPCs displayed a relative growth 
advantage over normal HSPCs when cultured on 
JAK2V617F-mutant ECs [53]. These results sug-
gest that the malignant niche differentially sup-
ports the proliferation of malignant stem cells 
over that of normal cells.

Next, to assess whether the enhanced prolif-
eration of JAK2V617F HSPCs on JAK2V617F 
ECs is also seen in  vivo, competitive marrow 
transplantation experiments were performed in 
which donor marrow cells from Tie2+FF1+ mice 
were injected intravenously together with wild- 
type “competitor” marrow cells into lethally irra-
diated Tie2+FF1+ mice (with mutant ECs) or 
control recipient mice (with only normal ECs). 
During a 4-month follow-up, Tie2+FF1+ recipi-
ents displayed a greater level of peripheral blood 
JAK2V617F-mutant cell expansion than the con-
trol recipient mice. By 18 weeks following trans-
plantation, Tie2+FF1+ recipients developed a 
profound MPN phenotype with neutrophilia, 
thrombocytosis, and moderate splenomegaly. 
Quantitative evaluation of the marrow HSC com-
partment revealed significant increases in 
JAK2V617F CD150+CD48− cells, a population 
of cells highly enriched in HSCs (~20% display 
long-term repopulating capacity), in Tie2+FF1+ 
recipients compared with control recipients. In 
contrast, there was no significant difference in 
WT HSC cell numbers between Tie2+FF1+ recip-
ients and controls. In addition, wild-type donor- 
derived hematopoietic progenitors were present 
in 60% of control recipients while none was 
detected in Tie2/FF1 recipients. Therefore, the 
JAK2V617F-mutant vascular niche promoted the 

expansion of JAK2V617F HSCs at the expense 
of normal hematopoiesis.

Of considerable interest, recipients (with the 
normal vascular niche) of an equal mixture of 
Tie2+FF1+ and normal cells had mostly normal 
blood cell counts, and there were no significant 
differences between the numbers of normal and 
mutant HSCs in the marrow of the transplanted 
mice [52]. While this appears to be in conflict 
with other reports that the JAK2V617F-positive 
MPN phenotype is transplantable, and usually 
develops as early as 4 weeks following transplan-
tation, in every such study only JAK2V617F- 
positive marrow cells were transplanted into WT 
recipients [51, 54–57]. One possible explanation 
is that the mutant stem cells have little selective 
advantage over wild-type cells when transplanted 
into mice that bear a normal niche, or that the co- 
transplanted normal marrow cells can “control” 
expansion of the transplanted mutant-bearing 
cells, which is also consistent with the clinical 
observation that in some patients with MPNs, 
there is a “peaceful coexistence” of the mutant 
clone and the wild-type clone, with no change in 
the mutant/wild-type cell ratio over prolonged 
follow-up [55, 57–62]. But whichever is the 
actual mechanism, these studies indicate that 
crosstalk between mutant HSCs and their micro-
environment is required to provide the ‘selective 
pressure’ for the mutant cells to outcompete nor-
mal cells in the development of a MPN.

7.2.2  The JAK2V617F-Mutant ECs 
Protect JAK2V617F HSCs 
from Radiation Injury Both 
In Vitro and In Vivo

Disease relapse is seen in up to 40% of patients 
with MPNs following allogeneic SCT (especially 
after reduced intensity conditioning), which con-
tribute to most of the treatment-related morbidity 
and mortality associated with the only curative 
treatment for patients with MPNs [63–66]. To 
investigate the effects of the JAK2V617F-mutant 
vascular niche on the response of MPN HSCs to 
radiation, which is frequently used in clinical 
transplantation, and serves as a reasonable exper-
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imental surrogate for many forms of chemother-
apy, wild-type marrow cells were transplanted 
directly into irradiated Tie2+FF1+ mice or age- 
matched normal recipients, using a radiation dose 
that is 100% myeloablative to normal mice. 
During a 3-month follow-up, while all normal 
recipients displayed full donor engraftment, ~ 
60% of Tie2+FF1+ recipient mice displayed 
recovery of JAK2V617F-mutant hematopoiesis 
(mixed donor/recipient chimerism) 10  weeks 
after irradiation and transplantation. In contrast 
to the Tie2+FF1+ recipients with full wild-type 
donor engraftment, the mice with mixed chime-
rism developed neutrophilia, thrombocytosis, 
splenomegaly, and mutant HSC expansion, simi-
lar to what we observed in the primary 
JAK2V617F-mutant Tie2+FF1+ mice [67], indi-
cating that the usually stem-cell lethal dose of 
irradiation was not uniformly lethal to the HSCs 
in Tie2+FF1+ mice. In essence, the presence of 
JAK2V617F mutation generated a model of dis-
ease refractory to what should have been curative 
transplantation.

As noted above, Tie2-Cre mice express the 
recombinase in both ECs and HSCs. To investi-
gate whether the observed radioprotection phe-
notype was due to the presence of JAK2V617F in 
Tie2+FF1+ HSCs, a chimeric murine model with 
JAK2V617F-mutant HSCs and a wild-type vas-
cular niche was generated by transplanting 
Tie2+FF1+ marrow cells into wild-type recipients. 
The transplantation of wild-type marrow cells 
into wild-type recipients served as a control. 
Following hematopoietic recovery and full donor 
cell engraftment, each set of mice were again 
irradiated with 300 cGy to test the radiation sen-
sitivity of the transplanted wild-type HSCs. In 
the presence of a wild-type vascular niche, mar-
row Lin− cell apoptosis was significantly higher 
in the JAK2V617F-mutant cells compared to 
normal cells. Thus, radioresistance of mutant 
HSCs could not account for JAK2V617F-mutant 
disease relapse following marrow transplanta-
tion. To test whether the mutant-bearing niche 
was responsible for relapse following transplan-
tation, mice with normal HSCs and JAK2V617F 
ECs were generated by transplanting normal 
marrow cells into lethally irradiated Tie2+FF1+ 

recipients. The transplantation of normal HSCs 
into normal recipients again served as a control 
experiment. Six to ten  weeks following trans-
plantation, each set of mice was irradiated with 
300  cGy to test the radiation sensitivity of the 
transplanted HSCs. In this case, normal Lin− cell 
apoptosis was significantly decreased in mice 
with JAK2V617F-mutant ECs compared to mice 
with normal ECs. Taken together, these data indi-
cate that a JAK2V617F-bearing vascular niche 
contributes directly to HSC radioprotection, 
which could be responsible for the high incidence 
of disease relapse in patients undergoing alloge-
neic stem cell transplantation for MPNs [67].

7.2.3  The JAK2V617F Mutation 
Alters Vascular Niche Function 
to Contribute to HSC 
Expansion and HSC 
Radioprotection

The mechanism(s) by which the JAK2V617F 
mutation alters ECs to promote neoplastic hema-
topoiesis was/were next explored, and revealed 
several changes. First, JAK2V617F ECs display 
significantly increased cellular proliferation, cell 
migration, angiogenesis, and decreased apoptosis 
(after irradiation) compared with normal ECs 
in  vitro [53], indicating that the mutant kinase 
could act to expand the vascular niche in 
JAK2V617F-positive Tie2+FF1+ mice, findings 
that also characterize the marrow vascular den-
sity of patients with MPNs [45–47]. Next, the EC 
expression levels of CXCL12 and SCF, two 
essential niche factors important for HSC main-
tenance [1, 3], were increased in freshly isolated 
marrow ECs from Tie2+FF1+ mice compared to 
those from control ECs. Moreover, the propor-
tion of HSCs expressing the CXCL12 receptor, 
CXCR4, or the SCF receptor, c-Kit, was signifi-
cantly increased in JAK2V617F-mutant marrow 
cells compared with normal marrow cells. 
Therefore, increased CXCL12 and SCF levels in 
the JAK2V617F-mutant ECs could contribute to 
the clonal expansion of JAK2V617F HSCs, via 
the upregulated CXCR4 and c-Kit receptors in 
mutant HSCs, compared to wild-type HSCs.
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To determine if enhanced cytokine and/or 
cytokine receptors might also be responsible, at 
least in part, for the relative radioresistance seen 
in Tie2+FF1+ mice, a number of HSC active cyto-
kines were assessed; the expression levels of 
CXCL12, epidermal growth factor [68], and 
pleiotrophin [69] were upregulated in irradiated 
JAK2V617F ECs compared with that seen in 
normal ECs. These results suggest that the 
JAK2V617F-mutant vascular niche contributes 
to JAK2V617F HSC radioprotection by its 
expression of HSC active chemokines and 
cytokines.

7.2.4  Megakaryocytes (MKs) Are 
an Important Component 
of the Perivascular Stem Cell 
Niche in MPNs

MKs are rare, polyploid hematopoietic cells that 
give rise to blood platelets. MKs are often located 
adjacent to marrow sinusoids, a critical juxtapo-
sition required for the cells to issue platelets 
directly into the sinusoidal vascular lumen [70]. 
A number of investigators have found that MKs 
are an important component of the hematopoietic 
vascular niche [6, 7, 10, 12]. In contrast to non- 
hematopoietic niche cells (e.g., ECs, perivascular 
stromal cells), niche MKs provide direct feed-
back to their precursor HSCs, many of which are 
located adjacent to MKs in vivo [6, 7], and there-
fore play important roles in malignant HSC 
clonal expansion during neoplastic 
hematopoiesis.

MK hyperplasia is a hallmark feature of all 
three chronic Ph-negative MPNs. To gauge the 
effects of JAK2V617F-bearing MKs on MPN 
development, FF1 mice were crossed with Pf4- 
Cre mice (which bear a Cre recombinase driven 
by the MK-specific platelet factor 4 promoter) 
[71] to express JAK2V617F exclusively in the 
MK lineage (Pf4+FF1+). As expected, the 
Pf4+FF1+ mice developed modest thrombocyto-
sis, splenomegaly, and greatly increased marrow 
megakaryopoiesis. Somewhat surprisingly, the 
mice also developed significant increases in HSC 
numbers [72]. In addition, there were dilated 

marrow sinusoids in the Pf4+FF1+ mice, and MKs 
were preferentially located near sinusoid vessels. 
Quantitative analysis revealed increased marrow 
sinusoid vascular density in Pf4+FF1+ mice mar-
row compared with controls, resembling the mar-
row of patients with MPNs [44–48]. Further 
work demonstrated that HSCs from the Pf4+FF1+ 
mice (with JAK2V617F-mutant MK niche) dis-
play higher levels of TPO receptor MPL and are 
more quiescent than those from normal mice 
(with wild-type MK niche). In addition, using a 
competitive repopulation assay, marrow cells 
from the Pf4+FF1+ mice were found to display 
greater engraftment capacity than cells from nor-
mal mice [73]. Therefore, the quantitative or 
qualitative changes (or both) of JAK2V617F- 
mutant MKs drove HSC expansion in 
JAK2V617F-positive MPNs.

7.2.5  TPO/MPL Signaling Is 
Important for HSC Expansion 
in the Vascular Niche of MPNs

TPO acting through its receptor, the proto- 
oncogene c-MPL, is a key regulator of mega-
karyopoiesis and HSC activity [74–80]. MPL is 
also expressed on several types of ECs, and TPO 
can stimulate EC growth and angiogenesis [81–
83]. Several studies have shown that MPL is 
essential for the development of an increased 
neoplastic stem cell pool in MPNs [73, 84–89]. 
Specifically, in the Tie2+FF1+ mice where 
JAK2V617F is expressed in all hematopoietic 
cells and ECs, reducing MPL expression attenu-
ated MPN severity with reduced platelet count 
and HSC numbers, suggesting a gene-dosage 
effect of MPL levels on the disease process [84]. 
In the Pf4+FF1+ mice where JAK2V617F is 
expressed exclusively in the MK lineage, abla-
tion of TPO or MPL abolished the phenotype of 
thrombocytosis or HSC expansion despite the 
presence of JAK2V617F-bearing MKs [73]. 
Taken together, these studies demonstrate that 
TPO/MPL signaling is important for MPN HSC 
expansion in both Tie2+FF1+ and Pf4+FF1+ mice, 
where major components of the hematopoietic 
vascular niche (ECs and MKs in Tie2+FF1+, and 
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MKs in Pf4+FF1+, respectively) bear the 
JAK2V617F mutation.

To further determine the role(s) of TPO/MPL 
signaling in JAK2V617F-bearing vascular niche 
function, EC MPL mRNA expression was found 
to be increased in JAK2V617F-bearing lung and 
marrow ECs, suggesting that TPO/MPL signal-
ing could affect both the general vasculature 
(e.g., the lung) and the hematopoietic vascular 
niche (e.g., the marrow) in JAK2V617F-positive 
MPNs [52, 53]. The effects of TPO on EC func-
tion in vitro were also assessed; the cytokine sig-
nificantly stimulated EC cell migration in a 
dose-dependent fashion. In addition, compared 
with untreated ECs, both the EC junction mole-
cules ZO-190 (zonula occludens-1, or Tight junc-
tion protein-1) and PECAM1 [90] (platelet 
endothelial cell adhesion molecule, or CD31) 
were upregulated in TPO-treated ECs, suggesting 
that TPO/MPL signaling may regulate vascular 
integrity, important for both hemostasis and tis-
sue stem cell function [91].

Using an in  vitro competitive growth assay 
where both normal Lin−cKit+ HSPCs (CD45.1) 
and JAK2V617F-mutant HSPCs (CD45.2) were 
cultured together in the presence of conditioned 
medium collected from either normal or MPL 
knockout lung ECs, the EC MPL receptor was 
found to be important for the maintenance/expan-
sion of the JAK2V617F cells over the wild-type 
cells in vitro [53]. Furthermore, CXCL12 levels 
are reduced in MPL−/− or TPO−/− marrow ECs 
compared with normal ECs, in a dose-dependent 
fashion [52, 73]. Since CXCL12 is important in 
directing MK migration toward the vascular 
niche and promoting MK maturation and platelet 
release [92, 93], the decreased CXCL12 expres-
sion in TPO−/− and MPL−/− marrow ECs could 
impair the interactions between MKs and ECs in 
the vascular niche. In support of this conclusion, 
MKs are less likely to be in direct contact with 
sinusoidal vessels in the TPO−/− and MPL−/− mice 
compared to normal mice, suggesting that TPO/
MPL signaling can affect MK–EC interactions in 
the vascular niche [73].

Taken together, these results suggest that both 
secreted factors and cell–cell interactions in the 
vascular niche contribute to the JAK2V617F 

HSC expansion in MPNs, and that TPO/MPL 
signaling is critical for this vascular niche 
function.

7.2.6  Crosstalk 
in the Hematopoietic 
Microenvironment of MPNs

Considering that most HSCs reside close to a 
marrow sinusoid and MKs are often located adja-
cent to marrow sinusoids, the interactions 
between MKs and the vascular ECs in the hema-
topoietic vascular niche are positioned to play an 
important role in modulating stem cell function, 
and, by extrapolation, might be deregulated in 
disease states. In Pf4+FF1+ mice, where 
JAK2V617F is expressed exclusively in the MK 
lineage, MK hyperplasia was accompanied by 
dilated marrow sinusoids and increased sinusoid 
vascular density in vivo, and JAK2V617F-mutant 
MKs stimulated EC tube formation (a measure of 
in vitro angiogenesis) and EC migration in vitro 
[72]. In Tie2+FF1+ mice, where JAK2V617F is 
expressed in all hematopoietic cells and ECs, 
mutant ECs directly stimulate mutant MK expan-
sion [52]. Taken together, these data indicate that 
modulating one vascular niche component can, in 
turn, impact the function and HSC supportive 
capacity of the other cell types within the niche, 
and that the JAK2V617F mutation alters the 
MK–endothelial “crosstalk” to promote neoplas-
tic hematopoiesis in a murine model of MPN.

Such “crosstalk” also exists between the 
malignant HSC and its surrounding niche cells. 
Not only can a diseased hematopoietic niche 
drive neoplastic hematopoiesis [23–28], but 
malignant HSCs can also alter the niche to sup-
press normal hematopoiesis and advance disease 
[26, 39–43]. These bi-directional interactions 
indicate a functional symbiosis between malig-
nant HSCs and their microenvironment. 
Therefore, a better understanding of how the 
niche is modified in different hematological dis-
ease states (including MPNs) could lead to the 
ability to protect and/or treat the niche, and, 
hence, provide a new therapeutic approach to 
hematological malignancies.
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Novel Concepts: Langerhans Cells 
in the Tumour Microenvironment

Aarthi Rajesh and Merilyn Hibma

Abstract

Langerhans cells (LCs) are immune cells that 
reside in the stratified epithelium of the skin 
and mucosal membranes. They play a range of 
roles in the skin, including antigen presenta-
tion and maintenance of peripheral tolerance. 
Reports of LC numbers have been variable in 
different cancer types, with the majority of 
studies indicating a reduction in their number. 
Changes in the cytokine profile and other 
secreted molecules, downregulation of surface 
molecules on cells and hypoxia all contribute 
to the regulation of LCs in the tumour micro-
environment. Functionally, LCs have been 
reported to regulate immunity and carcino-
genesis in different cancer types. An improved 
understanding of the function and biology of 
LCs in tumours is essential knowledge that 
underpins the development of new cancer 
immunotherapies.
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8.1  Langerhans Cells

Langerhans cells (LCs) are unique antigen- 
presenting cells that reside in the stratified squa-
mous epidermis of cutaneous and mucosal 
epithelium. LCs were discovered in 1868 by Paul 
Langerhans, who initially believed that these 
cells were neurons due to their dendritic mor-
phology [39]. Nearly 100 years later, the antigen- 
presenting function of these cells was 
determined.

Langerhans cells can be identified based on 
the expression of the C-type lectin receptor, lan-
gerin (CD207) [81], along with other less- specific 
markers such as CD1a in humans [21, 66] and 
major histocompatibility complex (MHC) class 
II [37]. Langerin is involved in antigen capture 
and induces the formation of Birbeck granules 
[8]. Birbeck granules are unique rod or tennis 
racket-shaped endocytic vesicles that are consid-
ered the hallmark of LCs. LCs express the epithe-
lial cell adhesion molecule (EpCAM) in mice [4, 
55], which enables LC motility and migration to 
lymph nodes and modulates responses to epicuta-
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neously applied protein antigen in a mouse 
model.

8.2  Ontogeny of Langerhans 
Cells

Cutaneous LCs originate from embryonic macro-
phages and foetal liver monocytes [29]. LC pre-
cursors seed the epidermis during murine 
embryonic development, but are not able to enter 
the adult epidermis in the steady state. These pre-
cursors differentiate into LCs in the epidermis 
immediately [29]. These newly differentiated LCs 
rapidly proliferate to form a radio-resistant cellular 
network that is capable of self-renewal throughout 
life [45]. During inflammation, the skin is permis-
sive for the entry of circulating precursors to the 
epidermis that differentiate locally to LCs. 
Monocytes are the first bone marrow precursors 
that differentiate into LCs during inflammation 
[25, 54]. Unlike the skin, mucosal epithelium has 
better accessibility to circulating precursors in the 
steady state. Mucosal LCs arise from adult bone 
marrow precursors, unlike the embryonic precur-
sor origin of cutaneous LCs [12].

Despite the differing ontogeny in the steady 
state, skin and mucosal LCs share similarities in 
anatomic location, phenotype, transcriptomic 
signature and function [30]. Mouse mucosal LCs 
can be controlled by the microbiota via regula-
tion of epithelial differentiation signals, which 
may contribute to their generally less-dendritic 
appearance [30].

8.3  Langerhans Cell Function

The role of LCs in the skin was initially believed 
to be primarily one of antigen presentation. 
Through a number of studies using mice that are 
selectively depletable of skin antigen presenting 
cell  subsets, langerin-positive dermal dendritic 
cells (dDCs) have now been identified as the pri-

mary antigen-presenting cells in the skin. LCs are 
not considered necessary for the initiation of an 
adaptive T-cell response to skin-expressed 
antigen.

In the steady state, LCs survey the epidermis 
and migrate to the lymph nodes where they pres-
ent self or commensal microbial antigens to T 
cells to induce tolerance and maintain tissue 
homeostasis (reviewed in [19]). LCs play an 
important role in maintaining the population of 
memory T cells in the epidermis [73]. Mucosal 
LCs express the  lipopolysaccharide receptor 
CD14 and have a high-affinity receptor for IgE 
[2]. LCs have regulatory roles and may either 
promote or suppress disease progression depend-
ing on the condition (reviewed in [61]).

8.4  LCs in the Tumour 
Microenvironment

The tumour microenvironment includes neoplas-
tic and non-neoplastic cells along with the extra-
cellular matrix, and cytokines, chemokines and 
growth factors that may be derived from those 
cells [68]. LCs have been identified in the tumour 
microenvironment in a range of cancer types, 
particularly skin cancers [75]. There is a body of 
evidence showing the presence of LCs in head 
and neck [35], gastric [80] and cervical cancers 
[43], and papillary thyroid carcinoma [70]. Some 
studies have also identified LCs in breast [79] 
and prostate cancers [7]. In this chapter, we 
explore the regulation and function of LCs in 
cancers, summarised in Fig. 8.1.

8.5  Regulation of LC Numbers 
and Location in the Tumour 
Microenvironment

Generally, there is a reduced number of LCs 
observed in cancer, particularly skin cancer. LC 
numbers in squamous cell carcinoma (SCC) and 

Fig. 8.1 (continued) E-cadherin and BMP7 can affect the retention of LCs in the TME. Hypoxic conditions cause down-
regulation of langerin and CD1a on LCs, and they become more rounded and less functional. The role of LCs in the TME 
includes detoxification of toxins in the skin that can result in carcinogenesis via HRAS mutation. LCs regulate immunity 
in the TME by recruiting immune cells and also mediating anti-tumour T-cell responses. LIGHT is upregulated in LCs 
during inflammation, promoting lymphangiogenesis in skin. It is currently unclear if this also occurs in tumours
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Fig. 8.1 Langerhans cell regulation and role in the tumour microenvironment. Regulation of Langerhans cells (LCs) in 
the tumour microenvironment (TME) occurs due to several factors. Production of cytokines and other soluble molecules 
by the tumour cells can either attract or inhibit the migration of LCs into the TME. Changes to surface molecules such as 
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basal cell carcinoma (BCC) are significantly 
decreased when compared to normal skin [75]. 
The LC count is reported to be higher in benign 
compared with malignant skin tumours, suggest-
ing that carcinogenesis is associated with a reduc-
tion in the number of LCs [75]. Similarly, 
increased LC numbers are associated with less 
aggressive forms of BCC [69]. Increased num-
bers of LCs in the normal epidermis at the margin 
of less aggressive tumours could be indicative of 
greater immunological resistance, limiting the 
aggressiveness of the neoplasm [69].

LC numbers in the lesion may have utility as a 
prognostic marker; however, this may only be the 
case in certain cancer types. Increased LC num-
bers in the lesion are correlated with better prog-
nosis in gastric carcinoma [80], thyroid 
carcinoma, ductal breast cancer [38] and lung 
carcinoma [14]. Higher LC numbers are associ-
ated with increased survival of the patients, par-
ticularly with stage III gastric cancer [80]. CD1a 
and S100 have been used to identify LCs in some 
studies; however, CD207 (langerin) is considered 
to be the most robust marker for the identification 
of LCs [6]. For laryngeal SCC, using S100 as a 
marker for LCs, numbers were not considered a 
reliable marker of prognosis in clinical practice 
[33]. Similarly, using CD1a as a marker for LCs, 
numbers were increased when compared to nor-
mal tissue, but there was no association with the 
prognosis for laryngeal cancer [20]. However, 
these differences in results could also arise from 
the use of antibodies against markers other than 
langerin for the identification of LCs.

The changes in LC number in the tumour are a 
consequence of cytokine and chemokine regula-
tion in the microenvironment. Macrophage inflam-
matory protein-3/C-C motif chemokine ligand 20 
produced by tumour cells is selectively chemotac-
tic to LCs [56]. Interleukin (IL)-10, transforming 
growth factor β (TGFβ) [32], IL-1β [17] and vas-
cular endothelial growth factor (VEGF) [76] may 
also regulate the recruitment and migration in the 
tumour microenvironment. IL-10 is a known 
inhibitor of LC migration [18] that is increased in 
tumour cells [85]. IL-1β is a critical mediator of 
chronic inflammation and has been implicated in 
tumour pathogenesis [3]. When oral SCC cells are 

treated with IL-1β, they proliferate and their pro-
tumorigenic cytokine network is stimulated [40]. 
Elevated levels of IL-1β, tumour necrosis factor-α 
and prostaglandin E2 in chronic periodontitis stim-
ulate dendritic cell (DC) maturation and migra-
tion. Environmental factors, such as smoking, 
could lead to changes in the cytokine profile, 
which can contribute to a reduction in LC levels or 
change the phenotype of LCs. There is an increase 
in LC density in the lateral border of the tongue 
and lip of patients with oral SCC with a history of 
smoking [16]. Cytokine profiles compared 
between tobacco users and non-tobacco users 
change significantly, with increased VEGF [74]. 
Further analysis is needed to study the direct rela-
tionships between these cytokines and LCs. 
However, the varied cytokine profiles in different 
cancers or even in the same cancer present a formi-
dable challenge for the development of immuno-
modulatory drugs.

CD10 is a zinc dependent metalloproteinase 
that can be detected in peritumoural fibroblast- like 
stromal cells within the invasive area of various 
cancers. CD10 expression is low in precancerous 
lesions and normal skin tissues [78]. 
Immunohistochemical analysis indicates increased 
induction of CD10  in stromal cells in epidermal 
tumours, especially in SCC, which could be con-
tributing to the tumorigenesis and reduction in 
LCs [78]. There is a positive correlation between 
Ki67 levels with LCs and stromal CD10-positive 
cells but a negative correlation with CD1a-positive 
cells in the tumour [78], suggesting a potential 
suppressive role for the CD10- positive cells in the 
tumour microenvironment on the number of LCs. 
However, further in vitro analyses are required to 
confirm the exact relationship.

A pronounced reduction in LCs has been 
observed in low-grade cervical intraepithelial 
neoplasia (CIN) [15, 27]. However, LC numbers 
are increased in cervical cancer, when compared 
to precancerous CIN lesions [11]. The interaction 
between LCs and keratinocytes  (KCs) is medi-
ated by E-cadherin. Immature LCs adhere to KCs 
via E-cadherin, which is constitutively expressed 
by KCs in the basal and suprabasal layers. This 
interaction is important for both LC localisation 
and retention. The detachment of LCs from the 
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surrounding KCs is an essential step in the initia-
tion of their migration from the epidermis. 
Reduced E-cadherin expression in CIN reduces 
the retention of LCs, which is proposed to con-
tribute to immune evasion in human papillomavi-
rus (HPV) pre-cancer [44]. Similarly, E-cadherin 
levels are reduced in oral [34] and cutaneous 
SCC samples [86], compared with normal skin. 
More poorly differentiated tumours express less 
than 40% E-cadherin, which could be leading to 
the reduced LC levels [83]. There is a loss of cell- 
to- cell adhesion and gain of cell-to-matrix adhe-
sion when E-cadherin expression is lost, 
promoting the transformation of pre-malignant to 
malignant cells. However, in a recent study using 
a CD11c-specific E-cadherin knockout, it was 
shown that an absence of E-cadherin-mediated 
cell adhesion on LCs did not affect their stability 
in epidermal sheets [10]. The LCs did exhibit 
altered morphology with fewer dendrites and a 
more rounded body. However, the lack of 
E-cadherin on LCs did not affect their prolifera-
tion or retention in the skin [10].

HPV type 16 E7 is a cell cycle deregulating 
protein that contributes to the oncogenesis of 
HPV16-related cervical cancer [63]. The K14 E7 
transgenic mouse expresses HPV16 E7 in the epi-
dermal KCs, which was associated with increased 
numbers of skin-resident LCs in the skin [1]. The 
increased LC number was attributed to the chronic 
inflammatory environment of the skin in this 
transgenic mouse model. LCs were atypically 
activated and functionally impaired in this model; 
however, they were functionally active when 
extracted from the skin and matured in vitro [1].

Changes to the cell polarity and adhesive 
properties of cells enable malignant conversion 
of cells. LCs could contribute to epithelial–mes-
enchymal transition (EMT) in cutaneous cancers. 
Many of the cytokines involved in mediating LC 
migration have also been associated with EMT 
processes [28], such as TGFβ [26]. BMP7 is 
important for the maintenance of LCs in the epi-
dermis. Immunohistological analysis of LC 
niches in early prenatal epidermis and adult 
basal  (KCs) show high levels of BMP7 expres-
sion. Mice deficient of BMP7 have diminished 
levels of LCs, and any remaining LCs are less 

dendritic [84]. In melanoma, BMP7 can induce 
mesenchymal–epithelial transition (MET), which 
can inhibit metastasis in vitro [50].

A common feature of most tumours is the 
presence of regions that have low levels of oxy-
gen. In increasingly proliferating and expanding 
tumour tissue, the oxygen demand surpasses the 
oxygen supply, which creates hypoxic regions 
[72]. The severity of hypoxia varies in different 
cancers [49]. Increased hypoxia is associated 
with poorer prognosis of patients [67].

The hypoxic conditions of cancers could have 
an effect on the regulation of LCs in tumours. In 
response to hypoxic conditions, cells rapidly 
upregulate genes under the control of the tran-
scription factor hypoxia-inducible factor-1α 
(HIF-1α). HIF-1α can downregulate LC functions 
in vivo [52]. The phenotypic features and surface 
expression markers of LC-like cells generated 
from human monocytes cultured in hypoxic and 
normoxic conditions have been assessed [60]. The 
expression of langerin and the activation markers 
CD86 and CD83 were significantly decreased on 
cells from the majority of the donors, while CD1a 
and E-cadherin were reduced in cells from some 
donors. These results suggest that there could be 
downregulation of cell surface markers on LCs, 
creating an apparent loss of the cells rather than 
actual depletion of LCs from the tumour [60].

Hypoxic conditions also impaired the LCs’ 
ability to stimulate T-cell responses. More LCs in 
hypoxic regions were shown to be viable, as indi-
cated by the lower percentage of early and late 
apoptosis, when compared to LCs grown in nor-
moxic cultures [60]. The impairment of LC func-
tion in hypoxia could contribute to tumour cell 
evasion of the immune response.

8.6  LCs Regulate Immunity 
in the Cancer 
Microenvironment

Langerhans cells are associated with infiltration of 
immune cells into the tumour. An increase in 
FoxP3+ Tregs as a percentage of total CD4+ T cells 
was observed in melanoma patient samples [71]. To 
test if there was a direct association between 
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increased FoxP3+ Tregs in melanoma and LCs, the 
authors assessed co-localisation of the two cell pop-
ulations [71]. However, LCs were not co-located 
with infiltrating Tregs, which led the authors to pro-
pose that LCs have a tolerogenic role in melanomas 
but not by directly effecting Tregs [71]. Melanoma-
infiltrating LCs expressed less CD40 and are more 
likely to express the inhibitory programmed 
cell  death- ligand 1  (PD-L1) marker [71]. Further 
in  vitro studies may help to shed light on the 
increased Treg accumulation and LCs in melanoma. 
An analysis of cell infiltrates in radiation therapy 
demonstrated that a favourable prognosis was asso-
ciated with LC infiltration [51]. T-cell infiltration 
into the tumour was associated with the presence of 
LCs [51], suggesting that they may induce a T-cell-
mediated anti-tumour response that can improve the 
local response in radiation therapy.

Immature LCs express the programmed cell 
death protein 1 (PD-1) receptor, which helps to 
maintain tolerance in the skin [59]. As LCs 
mature, there is a decline in PD-1 receptor expres-
sion [59]. Blockade of PD-1 upregulates T-cell 
responses that can help fight off tumour cells 
[59]. However, the cells that provide the  PD-L1/
PD-L2 signal to PD-1 on the LCs are yet to be 
determined. KCs express high levels of PD-L1/
PD-L2 during chronic inflammation [22]. Fujita 
et al. [24] have shown that LCs from SCC in par-
ticular are more mature, which could contribute 
to a reduced anti-tumour response [24].

LCs do contribute to the anti-tumour response 
to ovalbumin (OVA)-expressing melanoma cells 
following epicutaneous immunisation with OVA 
protein in the mouse, as do dermal dendritic cells 
[77]. The CD8+ T-cell response that is initiated 
following the presentation of antigen inhibited 
growth of the OVA-expressing transplanted mel-
anoma [77]. Depletion of LCs at any point during 
the process resulted in susceptibility of the mice 
to the tumour [77].

8.7  Langerhans Cells Regulate 
Carcinogenesis

The epidermis is exposed to a variety of DNA- 
damaging chemicals. Cutaneous LCs play an 
important role in the detoxification of molecules 

such as polyaromatic hydrocarbons (PAH) in the 
skin. When toxins such as 
2,4- dimethoxybenzaldehyde (DMBA) are detoxi-
fied by LCs, a carcinogenic intermediate is pro-
duced. The carcinogenic intermediate leads to 
increased HRAS mutations in the KCs , contribut-
ing to their malignant transformation. LC-intact 
mice are more susceptible to chemical carcinogen-
esis provoked by DMBA than mice without LCs 
[47]. The expression of p450 enzyme CYP1B1 is 
required for the rapid induction of DNA damage 
within the KCs to enable efficient neoplastic trans-
formation [41]. Depletion of LCs worsened the 
progression of SCC in a temporarily LC-depletable 
mouse model. In the absence of LCs, there was 
reduced recruitment of natural killer (NK) cells 
into the tumour microenvironment [53]. NK cells 
are crucial for the elimination of DNA-
damaged KCs during the tumour initiation step of 
chemical carcinogenesis [53]. These results need 
to be replicated in the same mouse model to make 
conclusive statements regarding the contribution 
of LCs in carcinogenesis.

8.8  LCs Regulate 
Lymphangiogenesis 
and Angiogenesis 
in the Tumour 
Microenvironment

Tumour growth and metastasis depend on angio-
genesis and lymphangiogenesis triggered by 
chemical signals produced by tumour cells in a 
rapid growth phase [57]. In the absence of vascu-
lar support, tumours may become apoptotic or 
necrotic [58]. A role for LCs in tumour lymphatic 
development has not been defined; however, LCs 
do contribute to lymphatic vessel formation in 
the skin [54, 82]. LIGHT (an acronym for homol-
ogous to lymphotoxins, exhibits inducible 
expression, and competes with HSV glycopro-
tein D for herpesvirus entry mediator, a receptor 
expressed by T lymphocytes)  is an important 
ligand that is required for lymphoid tissue devel-
opment and homeostasis [23, 87]. LIGHT expres-
sion is significantly upregulated in skin LCs 
during inflammation, and LC signals play a dom-
inant role in lymph endothelial cell activation 
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[82]. A direct role for LCs in tumour lymphangi-
ogenesis is still to be confirmed.

Lymphangiogenesis occurs following angio-
genesis and relies on angiogenic factors in order 
for it to occur [42]. Pericytes contribute to angio-
genesis in the tumour microenvironment [9], by 
producing pericyte-derived milk fat globulin E8 
(MFG-E8) [48]. MFG-E8 is also produced by 
other immune cells, especially LCs [46], also 
implicating them in angiogenesis. Further investi-
gation of their role in angiogenesis is warranted.

8.9  Langerhans Cells in Tumour 
Immunotherapy

Through translational studies it has been shown 
that DC-based immunisation is safe and feasible 
for patients with cancer. Most DC-based vaccines 
have used monocyte-derived DCs, but LCs 
derived from CD34+ haematopoietic cells are 
superior at activating a cytotoxic T-cell response 
[62]. Peptide-loaded LC vaccinations against 
melanoma elicited tumour responses that were 
comparable to monocyte-derived DCs in  vivo 
[65]. A Phase I study of LCs electroporated with 
tyrosinase-related protein-2 (TRP-2) mRNA, a 
melanosomal differentiation antigen, in patients 
with melanoma was conducted [13]. The vac-
cines induced greater T-cell activation and diver-
sity against the TRP-2 antigen, which correlated 
with clinical benefits [13]. Apart from mild 
delayed-type hypersensitivity reactions, no major 
toxicities were observed post vaccination [13]. 
LCs electroporated with Wilms Tumour 1 (WT1) 
induced sufficiently strong WT1-specific cyto-
toxic T lymphocytes in vitro [64]. These studies 
along with other clinical study data [5] highlight 
the feasibility and safety of LC immunisation, 
and the use of vaccination in combination with 
other immune therapies could further improve 
clinical outcomes for cancer patients.

8.10  Future Directions

The potential for LCs to amplify immune func-
tion in an antigen-specific manner makes them 
ideal candidates for cancer immunotherapy, 

which attempts to eradicate tumours through the 
manipulation of host immunity. The superior 
ability of LCs over other skin DCs to induce 
cytotoxic T-cell responses in vitro [62, 77] makes 
them ideal to be exploited for therapy. Protein 
antigen applied onto barrier-disrupted skin 
induces a long-lasting cytotoxic T-cell response 
that is potent enough to control and inhibit 
tumour growth [77]. In order for immunothera-
pies to be maximally effective, a thorough under-
standing of LC biology and function is required.

The identification of the distinct DC subset – 
langerin+ dermal DCs, has revealed that many of 
the functions attributed to LCs are in fact being 
carried out by dermal DCs. Many of these studies 
need to be revisited to separate the role of 
langerin- positive DCs from LCs. The inducible 
LC depletion mouse model, such as the Langerin- 
diphtheria toxin receptor (DTR) mouse, [36] 
depletes both the populations of langerin-positive 
cells (LCs and dDCs). Using the langerin- 
diphtheria toxin subunit A (DTA) model [31], or 
the generation of a specific mouse model that 
enables the inducible-targeted depletion of LCs 
over the DCs, would be highly useful to confirm 
the roles of the two langerin-positive populations 
in cancer. Single-cell sequencing would be highly 
beneficial to further define the roles of the differ-
ent types of langerin-positive cells in cancer. This 
technology might help to uncover any potential 
subsets of LCs that could play a role in tumori-
genesis and cancer. This may also help to clarify 
the controversy over the roles that have been 
attributed to LCs that may instead be a function 
of DCs, further paving the way for the targeting 
of antigen presentation for immune therapy 
against cancer.

8.11  Conclusion

Although there are varied levels of LCs reported 
in different cancers, the general trend is for num-
bers to be reduced. This could be an immune eva-
sion mechanism that occurs in the neoplastic 
environment. The regulation of LCs in cancer 
could be mediated by changes in the cytokine 
milieu, downregulation of cell surface adhesion 
molecules, such as E-cadherin, or a result of the 
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infiltration of other immune cells. Studies involv-
ing a LC-only depletable mouse model, single 
sequencing and standardised immunohistochem-
ical protocols are necessary to further elucidate 
the function of LCs in cancers.
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Abstract

Mast cells are tissue-resident, innate immune 
cells that play a key role in the inflammatory 
response and tissue homeostasis. Mast cells 
accumulate in the tumor stroma of different 
human cancer types, and increased mast cell 
density has been associated to either good or 
poor prognosis, depending on the tumor type 
and stage. Mast cells play a multifaceted role 
in the tumor microenvironment by modulating 
various events of tumor biology, such as cell 
proliferation and survival, angiogenesis, inva-
siveness, and metastasis. Moreover, tumor- 
associated mast cells have the potential to 
shape the tumor microenvironment by estab-
lishing crosstalk with other tumor-infiltrating 
cells. This chapter reviews the current under-

standing of the role of mast cells in the tumor 
microenvironment. These cells have received 
much less attention than other tumor- 
associated immune cells but are now recog-
nized as critical components of the tumor 
microenvironment and could hold promise as 
a potential target to improve cancer 
immunotherapy.
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9.1  Introduction

The mast cell (MC) is a tissue-resident, innate 
immune cell that plays a key role in the host 
defense and homeostatic response but also con-
tributes to several immune-mediated disorders, 
such as allergic reactions, autoimmune diseases, 
and cancer.

Although MC accumulation at tumor sites has 
been reported for many years, there is still con-
troversy about the contribution of this cell to 
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tumor development. This chapter provides a 
review of the literature focusing on the MC role 
in the tumor microenvironment of different 
human solid cancers. After briefly reviewing new 
insights into MC biology, with a major focus on 
MC phenotype and function, as a direct conse-
quence of the local microenvironment, we ana-
lyze the described mechanisms for MC 
recruitment into the tumor microenvironment. 
We also discuss evidence reporting MCs anti- 
tumoral role, as well as evidence supporting a 
pro-tumoral role, and the mechanisms implicated 
in each response. The goal of this chapter is to 
give insight into the multifaceted role played by 
MCs in the tumor microenvironment and puts 
forward some perspectives for future studies.

9.2  Biology of the Mast Cell

MCs are tissue-resident cells extensively distrib-
uted throughout the body, especially prominent 
in protective tissue barriers, such as the skin, air-
ways, and gut mucosa. MCs differentiation into 
one of their distinct phenotypes and their func-
tions are strongly determined by growth factors 
and cytokines present in the tissue microenviron-
ment [1]. In rodents, MC subtypes are classified 
based on their tissue location in two major popu-
lations: connective tissue mast cells (CTMCs), 
which reside constitutively in most connective 
tissues, and mucosal mast cells (MMCs), which 
reside in the intestinal and respiratory mucosa. 
MMCs arise from bone marrow-derived MC pro-
genitors that are recruited and undergo matura-
tion in a T cell-dependent manner. Unlike MMCs, 
CTMCs are seeded during embryogenesis, by 
MC “primitive” progenitors (derived from yolk 
sac) and progenitors derived from “definitive” 
fetal hematopoietic stem cells, and their mainte-
nance in adult tissues occurs independently of 
bone marrow progenitors [2, 3]. Their human 
counterparts are classified based on the proteases 
they contain, tryptase alone (MCT), chymase 
alone (MCC), or both (MCTC). These subsets dif-
fer in their tissue localization and function [4]. 
The origin of human MCs and the factors that 
influence each subtype are yet to be completely 

understood. It is worth noting that both human 
and rodent MCs are highly heterogeneous and 
moldable, and intraspecies as well as interspecies 
heterogeneity has been reported [5]. MC pheno-
type and function are profoundly shaped by the 
microenvironment where they originate, mature, 
and reside. Indeed, MCs are endowed with a high 
degree of site-specific plasticity, and tissue- 
specific MCs display differences in granule con-
tent, cytokine expression patterns, and receptors, 
which provide context-related functions to these 
cells [4]. Even within the same tissue and under 
basal conditions, MC populations are phenotypi-
cally different and can generate further specific 
subpopulations [6, 7]. MCs also display specific 
activation-associated transcriptional signatures, 
for example, interleukin (IL)-33 activated MCs 
are transcriptionally and most likely functionally 
distinct than MCs activated via cross-linking of 
the high-affinity receptor for IgE (FcεRI) [8]. 
Therefore, the traditional classification based on 
the produced proteases is too simplistic and a fur-
ther classification, that takes into consideration 
the variety of tissue-specific MC subtypes, has 
been proposed [4]. Supporting this idea, recent 
studies identified that CTMCs from distinct ana-
tomical locations or with a different fetal origin, 
had considerable heterogeneity in gene profiles 
revealing different CTMC subsets [2, 3, 9]. Also, 
these studies found evidence for previously unap-
preciated CTMC turnover, in the absence of tis-
sue inflammation and with tissue-specific kinetics 
[2, 9]. The existence of distinct CTMC subsets 
confirms that MC identity and function are 
strongly influenced by their developmental origin 
and microenvironment.

MCs are characterized by a cytoplasm packed 
with secretory granules, filled with a broad array 
of immunomodulatory and vasoactive mediators 
such as histamine, heparin, cytokines such as 
tumor necrosis factor-alpha (TNF-α), and differ-
ent proteases. Indeed, half of the content in secre-
tory granules of mature MCs consists of 
proteases, tryptase being the predominant prote-
ase in human MC [10].

MCs are notable for their extraordinary ability 
to respond rapidly to stimuli (Fig.  9.1). Upon 
activation and depending on the type of stimuli 
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and receptor involved, MCs can release three dis-
tinct classes of bioactive molecules: granule- 
stored preformed mediators that are released 
within seconds to minutes (degranulation); de 
novo-synthesized lipid mediators, prostaglan-
dins, and leukotrienes, produced within minutes; 
and a variety of cytokines, chemokines, and 
growth and angiogenic factors that are produced, 
following their transcription and translation, 
within hours [11]. MC activation is mediated by 
a variety of receptors expressed on their surface, 
the most well-known pathway of activation is 
mediated by the cross-linkage of their high- 
affinity IgE receptor (FcεRI), but MC activation 
can also be triggered by other receptors, such as 
Toll-like receptors (TLRs), complement recep-
tors, adenosine receptor, and cytokine and che-
mokine receptors [5]. The nature of the MC 
response is dependent on the stimulating ligand.

MCs are multifunctional cells implicated in 
several physiologic and disease responses. They 
contribute to tissue homeostasis by promoting 
inflammation, angiogenesis, and wound healing 

[12]. They also accumulate in injured and 
inflamed tissue, where they can amplify or sup-
press inflammation. MCs also play a key role in 
the host defense, acting as sentinels, sensing their 
environment via multiple cell surface receptors to 
orchestrate the immune response through the 
fine-tuned release of their biologically active 
mediators [11]. MC-derived mediators can influ-
ence migration, maturation, and function of dif-
ferent cell types, including dendritic cells (DCs), 
macrophages, eosinophils, natural killer cells 
(NK), T cells, B cells, fibroblasts, endothelial, 
and epithelial cells [13]. For example, MC-derived 
TNF-α is required for efficient DCs and cytotoxic 
T cells responses, since it promotes DC matura-
tion and migration, and boost the T-cell-priming 
efficiency [14]. This mediator is also a critical 
factor for neutrophil recruitment. Similarly, 
MC-derived prostaglandins and leukotrienes act 
mainly as proinflammatory factors [15], whereas 
histamine has pleiotropic effects dependent upon 
the receptor subtype it is bound to. Therefore, 
histamine not only enhances the proliferation and 

Fig. 9.1 Mast cells (MCs) express several receptors on 
their surface, which give them the ability to recognize a 
wide range of endogenous/exogenous ligands. Upon acti-
vation by diverse mechanisms, MCs can release a broad 
array of biologically active mediators that can be divided 
into two major categories: preformed mediators, stored 

within the MC granules and released immediately after 
activation (a process called degranulation) and de novo 
synthesized mediators, produced following activation. 
These mediators are directly or indirectly involved in sev-
eral physiological and pathophysiological processes
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activation of different immune and nonimmune 
cells but also inhibits cell proliferation and stimu-
lates immune cell suppressor activity. One of the 
most important modulatory effects of histamine 
is its influence on T lymphocyte function and dif-
ferentiation. Specifically, through its H1 receptor, 
histamine influences T-cell development into Th1 
and leads to a decrease of T cell suppressor activ-
ity, but through its H2 receptor, histamine stimu-
lates T lymphocyte suppressor activity and 
inhibits cytolytic activity [15]. It is worth to note 
that the effector functions of MCs could be dif-
ferent depending on the tissue in which the 
response occurs, and then the same MC-derived 
mediator can induce different effects.

Under physiological conditions, MCs can 
induce and enhance angiogenesis through the 
production of a variety of pro-angiogenic factors, 
such as vascular endothelial growth factor 
(VEGF), fibroblast growth factor 2 (FGF2), 
tryptase, and other proteases [16]. These mole-
cules also contribute to cancer progression. 
Indeed, one of the main MC effects on tumor 
growth is related to their pro-angiogenic 
function.

9.3  Tumor-Associated Mast Cells 
(TAMCs)

Increased understanding of the relationship 
between cancer cells and their microenvironment 
has shed light on how tumors evolve as complex 
systems, involving dynamic interactions between 
tumor cells and different cell types, including 
infiltrating immune cells. The interaction of 
tumor cells with the immune cells in their micro-
environment is essential for determining the 
tumor fate [17].

MC infiltration is commonly found in differ-
ent human cancer types, and their accumulation, 
either at the peri-tumoral or intra-tumoral level, 
has been associated with both promotion and 
suppression of tumor growth [16].

TAMCs may arise in tumor microenvironment 
either by recruitment of neighboring tissue- 
resident MCs and/or MC progenitors (MCP) via 
healthy vasculature close to the tumor site or by 

the proliferation of both mature tissue-resident 
MCs and MCPs. MCs could be recruited by 
 various inflammatory stimuli within the tumor 
microenvironment, including hypoxia, cellular 
injury, and tissue ischemia. MCs could also be 
recruited by soluble factors secreted from the 
tumor cells and noncancerous stromal cells. So 
far, the precise molecular mechanisms involved 
in the MC accumulation in tumors remain poorly 
studied.

In healthy tissue, stem cell factor (SCF) is the 
most characterized chemotactic factor for MC 
recruitment. Similarly, MC infiltration in tumors 
is mainly mediated by tumor-derived SCF and its 
receptor c-kit in MC [18–20]. Experiments using 
cancer cells from clear cell renal cell carcinoma 
(ccRCC), the most common histological subtype 
of renal cell carcinoma (RCC), identified SCF as 
a key mediator of MC recruitment. Additionally, 
assays using 3D coculture models showed that 
hypoxia inducible factor (HIF-2α) expression in 
these cancer cells was responsible for inducing 
SCF secretion and subsequently MC recruitment 
[20]. In vitro evidence showed that colon cancer 
cells recruited MCs by releasing SCF, and this 
effect was mediated via bidirectional crosstalk 
[21]. This study also demonstrated that MC 
recruitment, rather than local proliferation, was 
the determinant factor for the increased mast cell 
density (MCD) observed in colorectal cancer 
(CRC). Besides SCF, other growth factors pro-
duced by noncancerous stromal cells, such as 
FGF-2, VEGF, and platelet-derived endothelial 
cell growth factor (PD-ECGF) mediated MC 
recruitment both in vivo and in vitro [22, 23].

Recently, chemokines were described as 
important factors for MC recruitment to the 
tumor microenvironment. For instance, experi-
ments using cell culture supernatants from gas-
tric cancer (GC) tissues, demonstrated the 
importance of CXCL12 and its receptor 
CXCR4  in MC recruitment [24]. These experi-
ments indicated that the CXCL12-CXCR4 che-
motactic axis could be one of the mechanisms for 
MC recruitment to the tumor microenvironment, 
in gastric cancer in vivo, since high MC infiltra-
tion correlated with high CXCL12 levels in tumor 
tissues. Moreover, TAMCs were preferably 
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located intratumorally, and their numbers 
increased with tumor progression, showing a 
positive correlation between MCD and increased 
advanced lymphatic invasion, tumor size, and 
tumor stage, in tissues from patients with this dis-
ease [24, 25]. Another study reported that CCL15, 
a chemokine constitutively secreted by colon 
cancer cells, was as an important chemotactic 
factor for MCs in  vitro, eventually promoting 
MCs migration [21].

9.4  Mast Cells’ Functions 
in the Tumor 
Microenvironment

It is clear that mast cells infiltrate tumors of dif-
ferent types of cancer, but what is the role of 
tumor-associated mast cells?

Although MCs have been long recognized as 
early and persistent tumor-infiltrating cells, they 
remain less studied than other components of the 
tumor microenvironment [26]. Undeniably, MCs 
can influence directly or indirectly the tumor 
biology and fate, but their functions in the tumor 
microenvironment are complex and still poorly 
understood.

MCs are a rich source of diverse biologically 
active mediators (cytokines, chemokines, growth 
factors, matrix metalloproteinases, and prote-
ases), with pro-inflammatory, immunoregulatory, 
and angiogenic properties. Similar to its physio-
logical functions, MCs can exert diverse func-
tions during cancer development and progression 
(Fig. 9.2). Depending largely on the microenvi-
ronmental stimuli, MCs can inhibit or promote 
several processes of tumor biology, such as pro-
liferation and survival, angiogenesis, lymphangi-
ogenesis, tissue remodeling, disruption of the 
extracellular matrix, invasion, and metastatic 
spread [16]. Therefore, TAMCs could be either 
pro-tumorigenic, anti-tumorigenic, or innocent 
bystander cells.

In this chapter, we discuss the role of MCs as 
a potential prognostic marker in cancer, as well 
as some anti- and pro-tumor mechanisms by 
which MCs potentially modulate the tumor 
microenvironment.

9.4.1  Anti-Tumoral Role of Mast 
Cells

9.4.1.1  Tumor-Associated Mast Cells 
as a Good Prognostic Marker

The prognostic value of TAMCs in human solid 
tumors is still unclear and controversial. Some 
clinical studies have considered TAMCs as indi-
cators of better prognosis in certain human can-
cers, such as breast, prostate, and lung cancer 
(Table  9.1). In this context, MC infiltration in 
breast cancer has been considered a favorable 
prognostic factor, and in some cases, this good 
prognosis was independent of age, tumor grade, 
and molecular cancer subtype [27–32]. Similarly, 
in nonsmall-cell lung cancer (NSCLC), high MC 
infiltration was considered an indicator of good 
prognosis, independently of tumor stage [33, 34]. 
In another study, high MCD was linked to a bet-
ter prognosis in stage I NSCLC but not in stage II 
[35]. Interestingly, in prostate cancer, an experi-
mental study in mice found that TAMCs exerted 
different functions according to tumor stage and 
that MC inactivation promoted the occurrence of 
highly malignant neuroendocrine cancers [36]. 
Clinical studies in humans have shown that in 
prostate cancer, the prognostic role of TAMCs 
depends not only on the tumor stage but also on 
the MC location within tumor tissue. So far, the 
results obtained indicate that intra-tumoral and 
peri-tumoral MCs have opposing effects on pros-
tate cancer outcome. Therefore, high intra- 
tumoral but not peri-tumoral MC numbers were 
associated with a favorable prognosis [37–40].

Few studies have investigated the role of spe-
cific MC subtypes in cancer. From this perspec-
tive, a recent study found that both MCT and 
MCTC phenotypes were associated with less 
aggressive breast cancer and that increased num-
bers of any of the MC subtypes correlated with a 
better prognosis [32]. This is consistent with 
another study reporting that both MCT and MCTC 
phenotypes correlated with improved survival in 
NSCLC [34]. In colon cancer, only one study has 
associated high MCD to longer overall survival 
in patients [41]. Together, these data indicate that 
MCs may contribute to the anti-tumor response 
in these cancer types; however, more high- quality 
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Fig. 9.2 Multifaceted effects of mast cells in the tumor 
microenvironment. Mast cells (MCs) accumulate in the 
tumor microenvironment either by the proliferation of 
local tissue-resident MCs or via recruitment of neighbor-
ing tissue-resident MCs and/or MC progenitors, by tumor- 
derived factors such as SCF, CXCL12, and CCL15. MCs 
could also be recruited and activated by various inflamma-
tory stimuli within the tumor microenvironment. Activated 
MCs can exert antitumor effects through direct tumor cell 
lysis, or indirectly through the release of mediators that 
promote recruitment and maturation of immune effector 
cells in the tumor microenvironment. MCs can also con-
tribute to the antitumor microenvironment by decreasing 
tumor angiogenesis through the inhibition of vascular per-
meability via MC production of prostaglandin D2 (PGD2). 
On the other side, activated MCs can also exert pro-tumor 
effects. In particular, MC-derived histamine can enhance 
tumor cell proliferation through binding to its H4 recep-
tor. Tumor derived-adrenomedullin (ADM) stimulates 
MCs to produce IL-17, which in turn suppresses cancer 
cell apoptosis contributing to cancer growth. Besides, 
MCs contribute to angiogenesis in the tumor microenvi-

ronment by secreting several angiogenesis-promoting fac-
tors. Tryptase, a MC-specific protease, enhances 
angiogenesis directly by stimulating endothelial cell pro-
liferation and vascular tube formation, or indirectly by 
activating matrix-metalloproteases (MMPs) and plasmin-
ogen activator (PA), which in turn degrade extracellular- 
matrix components to provide space for neovascular 
growth. MC-derived factors are also potent promoters of 
lymphangiogenesis. Moreover, MCs also contribute to the 
development of tumor-favoring microenvironment by 
suppressing T-lymphocytes function, via MC secretion of 
IL-10 and TGF-β or by recruitment of myeloid-derived 
suppressor cells (MDSC) via secretion of CCL-2 and leu-
kotriene B4 (LTB4). Tumor-derived TNF-α upregulates 
PD-L1 expression in the MC, which represents a mecha-
nism of immune suppression via direct interaction 
between MCs and T lymphocytes in a PDL1-dependent 
manner. MCs can also exacerbate the immunosuppressive 
tumor microenvironment by establishing crosstalk with 
MDSC through CD40:CD40L axis. IMCs immature 
myeloid cells, MEC microvascular endothelial cells, 
PD-L1 programmed death-ligand 1
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clinical studies and standardization of methods 
are needed before MCD can be considered a bio-
marker of prognosis for routine use in clinical 
practice.

9.4.1.2  Mast Cells’ Potential to Exert 
Anti-tumor Effects

Little has been studied about the mechanisms 
implicated in the anti-tumor activity of MCs 
(Fig.  9.2). Through microscopic analysis of 

breast cancer tissues, one study reported that 
peri-tumoral MCs showed cytolytic activity 
against tumor cells [29]. Another study, using a 
mouse model of lung carcinoma, demonstrated 
that MCs decreased angiogenesis and vascular 
permeability in the tumor microenvironment, 
through the production of prostaglandin D2 
(PGD2). Additionally, this study showed that 
MC-derived PGD2 reduced TNF-α synthesis, and 
then limited the pro-tumor response in the tumor 

Table 9.1 Correlation of tumor-infiltrating MCs with prognosis in different human solid cancers

Cancer type
Good prognosis
(clinicopathological observation)

Poor prognosis
(clinicopathological observation)

Breast 
cancer

Correlation with better OS [27]
Correlation with low-grade tumors, no 
correlation with OS [28]
Correlation with HHR cancer [29]
Correlation with better OS, independently 
of grade, LN and ER status [30]
Correlation with less aggressive molecular 
subtypes [31, 32]

Correlation with increased MVD [61]
Correlation with high-grade tumors [62]
Correlation with LVI, PI, and LNM [63]
Specific correlation of itMC with aggressive molecular 
subtypes [64]
Correlation with poor response to chemotherapy in the 
inflammatory type [65]

Lung 
cancer

Correlation with better OS independently 
of NSCLC stage [33, 34]
Correlation of ptMC with better 5 years 
survival in stage-I NSCLC, but not in 
stage-II NSCLC [35]a

Correlation of itMC with MVD in stage-I NSCLC [35, 
66] and worse OS in stage-I LAC but not in LSCC [66]
Correlation with MVD and worse OS [67]

Prostate 
cancer

Correlation of itMC with low-grade 
tumors and better DFS [37, 39]; less 
metastasis and better OS [38]a

Correlation with improved DMFS [40]

Correlation with high-stage cancer and worse PFS [68]
Correlation of ptMC with high-stage cancer and worse 
OS [38]a

Colo-rectal 
cancer

Correlation with better OS [41] Correlation with MVD [46, 49], LVI, LNM, and worse 
OS [46]
Correlation with worse OS [47, 48, 51, 52] and worse 
DFS [48, 51]
Correlation with worse OS after resection for CRLM 
[50]

Gastric 
cancer

Correlation with better OS and DFS in 
stage I cancer [80]

Correlation with angiogenesis [53–55] and high-grade 
tumors [55]
Correlation with increased MVD and LNM [56]
Correlation with worse OS [24, 54]

Pancreatic 
cancer

Correlation with high-grade tumors [57] and worse OS 
[57–59]
Correlation with MVI, LVI, and LNM, in the intra- 
tumoral border zone, but not in the peri-tumoral or in 
the intra-tumoral center zone in PDAC [59]b

CRLM colorectal liver metastases, DFS disease-free survival, DMFS distant metastasis-free survival, ER estrogen 
receptor, HHR high hormone-receptive, itMC intra-tumoral mast cell, LAC lung adenocarcinoma, LN lymph node, LNM 
lymph node metastasis, LSCC lung squamous cell carcinoma, LVI lymphovascular invasion, MVD microvascular den-
sity, MVI microvascular invasion, NSCLC nonsmall-cell lung carcinoma, OS overall survival, PDAC pancreatic ductal 
adenocarcinoma, PFS progression-free survival, PI peri-neural invasion, ptMC peri-tumoral mast cell
aThese studies demonstrated that intra-tumoral and peri-tumoral mast cells had opposite functions (anti-tumor or 
pro-tumor)
bThis study underlies the relevance of zone-specific distribution of mast cells in the prognosis of patients with pancreatic 
ductal adenocarcinoma
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microenvironment [42]. This work identified 
MC-derived PGD2 as an anti-angiogenic factor in 
lung carcinoma. Besides, analysis in an experi-
mental model of chemical skin carcinogenesis, in 
MC-deficient KitW/KitW-v mice, demonstrated 
that the absence of MCs led to an increased tumor 
incidence and growth. This observation was asso-
ciated with reduced infiltration of Gr-1+ granulo-
cytes, F4/80+ macrophages, B220+ B cells, and 
CD8+ T cells in sites of skin carcinogenesis. The 
authors suggested that MCs contributed to the 
anti-tumor response indirectly by promoting the 
recruitment of immune cells and immunosurveil-
lance in the tumor microenvironment. This find-
ing was supported by demonstrating that local 
adoptive transfer of MCs restored cell infiltra-
tion, leading to an active immune response that 
did not allow tumor establishment [43]. The 
potential of MCs to stimulate the anti-tumor 
immune response was also demonstrated using a 
model of murine melanoma. TLR2-activated 
MCs were able to inhibit tumor growth in vivo, 
by recruitment of NK and T cells to tumor sites 
and reduction of angiogenesis. MC-derived IL-6 
but not TNF-α was required for tumor growth 
inhibition after TLR2-mediated MC activation 
[44]. Comparably to the effect observed in mela-
noma, TLR2-activated MCs also inhibited the 
growth of lung cancer in vivo, and this effect was 
also associated with mononuclear cell infiltration 
and decreased angiogenesis. In vitro experiments 
also showed that tumor cell proliferation 
decreased in the presence of TLR2-activated 
MCs supernatants, indicating direct MCs anti- 
tumor effects. Furthermore, in vitro chemotaxis 
experiments using CCL3−/− murine-derived MCs 
demonstrated a clear role for CCL3 in mediating 
MC-dependent recruitment of immune effector 
cells [44]. Similarly, another study using a model 
of murine melanoma demonstrated that TLR7- 
activated dermal MCs secreted CCL2, resulting 
in skin inflammation and recruitment of plasma-
cytoid DCs to tumor sites, which after transfor-
mation into a subset of killer DCs directly 
eliminated tumor cells [45]. Overall, these stud-
ies indicated that TLR-mediated activation could 
harness MCs to exert tumor inhibitory functions, 
such as the recruitment of immune effector cells 

to tumor sites and the boost of cancer 
immunosurveillance.

9.4.2  Pro-tumoral Role of Mast Cells

9.4.2.1  Tumor-Associated Mast Cells 
as a Poor Prognostic Marker

Several scientific studies support MCs pro- 
tumoral function and association of TAMCs with 
a poor clinical prognosis of various solid tumors 
(Table 9.1). Mostly in colon [46–52], gastric [53–
56], and pancreatic cancer [57–60], a growing 
number of clinical studies have associated high 
TAMC numbers with tumor progression and 
worse prognosis in patients. A similar associa-
tion, though controversial, have been reported for 
breast [26, 61–65], lung [35, 66, 67], and prostate 
cancer [38, 68].

The mechanisms that potentially mediate 
MCs pro-tumoral functions include stimulation 
of tumor cells growth, induction of an immuno-
suppressive tumor microenvironment, promotion 
of angiogenesis and lymphangiogenesis, and 
facilitation of invasion and metastasis (Fig. 9.2).

9.4.2.2  Mast Cells as Promoters 
of Tumor Cell Proliferation 
and Survival

MCs can induce proliferation of tumor cells 
either by direct cell–cell contact or through the 
release of mediators that directly or indirectly 
stimulate proliferation and survival. Studies 
using MC-deficient mice demonstrated that MCs 
were an essential hematopoietic component for 
the development and growth of preneoplastic 
polyps [69]. Moreover, MC-secreted mediators 
promoted tumor growth by stimulation of colon 
cancer cell proliferation, through bidirectional 
communication between MCs and cancer cells, 
without the need of cell–cell contact [21]. A 
recent study showed that adrenomedullin, an acid 
peptide amide in supernatants from cancerous 
gastric tissue, stimulated MC production of 
IL-17A, which in turn promoted proliferation by 
suppressing apoptosis in GC cells, contributing 
to cancer growth and progression [25]. These 
data were supported by histopathological results 
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showing that increased numbers of intra-tumoral 
MCs correlated with tumor progression and poor 
survival in GC patients [25]. An in  vitro study 
showed that MCs, in coculture with lung cancer 
cells, released high levels of histamine, 
β-hexosaminidase, and tryptase. Interestingly, 
histamine was the only MC-derived mediator 
capable of inducing cancer cell proliferation 
through its H4 receptor [70]. Although some 
studies have demonstrated that tryptase can 
induce proteinase-activated receptor 2 (PAR-2)-
mediated proliferation of some types of cancer 
cells, here it was demonstrated that this protease 
did not directly affect lung cancer cell 
proliferation.

9.4.2.3  Mast Cells’ Contribution 
to Tumor Angiogenesis 
and Lymphangiogenesis

MCs can be potent inductors of angiogenesis 
because of their ability to synthesize and release 
several common angiogenic components, such as 
FGF, IL-8, transforming growth factor (TGF-β), 
TNF-α, and VEGF, as well as noncommon angio-
genic components, such as tryptase. Currently, a 
great amount of evidence has shown that mast 
cell density (MCD) is strongly correlated to 
angiogenesis in different human cancers, and 
among the proangiogenic factors released by 
MCs tryptase, it is one of the most powerful [23]. 
A relationship between microvascular density 
(MVD) and MCD has been shown in various 
human tumors. A recent paper showed a positive 
correlation between the MCD and MVD in oral 
squamous cell carcinoma (OSCC) [71]. Also, in 
gastric cancer, MCD correlates with angiogene-
sis, growth, and cancer progression [54]. In 
patients with breast cancer, high levels of trypt-
ase in serum correlated with high TAMCs num-
bers and strongly with MVD, supporting the 
involvement of MC-derived tryptase in tumor 
angiogenesis [61]. Moreover, experimental data 
using MC-deficient mice have also provided 
strong evidence for a positive correlation between 
the MCD in mammary tumors and angiogenesis. 
Histological examination of tumors in 
MC-deficient mice that spontaneously develop 
breast cancer revealed a marked decrease in 

angiogenesis compared to control mice, thus sup-
porting the fact that MCs contribution to angio-
genesis was strongly due to their ability to 
promote tumor vascularization [72].

Recent evidence showed a positive relation-
ship between TAMCs and lymphatic vessels 
(LV), suggesting that MCs may also contribute to 
the formation of LV in the tumor microenviron-
ment [63, 73]. Analysis of the association 
between TAMCs and lymphangiogenesis in dif-
ferent molecular subtypes of breast cancer, 
showed a significant correlation between a high 
number of peri-tumoral MCs and newly formed 
LV, in the luminal A-type and the basal-like sub-
types [73]. Interestingly, the basal-like subtype 
exhibited a particular behavior concerning 
TAMCs and LV density (LVD). This subtype was 
the only one that showed a significant correlation 
between the overall MCD (peri-tumoral and 
intra-tumoral MC count) and LVD. These find-
ings indicated that TAMCs response was specific 
for each molecular subtype of breast cancer, and 
this could influence lymphovascular invasion 
dependent on each molecular tumor subtype [73].

Although MC association with cancer angio-
genesis and lymphangiogenesis has been widely 
demonstrated, the specific mechanisms and fac-
tors implicated are only partially characterized, 
and the MC role in these events seems to be 
tumor type-dependent.

9.4.2.4  Mast Cells as Promoters 
of Invasion and Metastasis

In addition to releasing their specific proteases 
tryptase and chymase, MCs can release different 
matrix metalloproteases, which degrade compo-
nents of the extracellular matrix (ECM), and have 
a key role in cancer progression [16]. Some stud-
ies have demonstrated the potential role of MCs 
in favoring cancer invasion and metastasis. In a 
cohort of patients with breast cancer, MCs were 
detected in all metastatic lymph nodes, but not in 
reactive lymph nodes, which indicated a specific 
MC role in nodal metastasis of breast cancer 
[63]. Another study showed that increased trypt-
ase expression, in tumor tissues of breast cancer, 
was associated with a higher tumor grade and 
greater lymph node metastasis [74]. Supporting 
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this, in  vitro assays showed that tryptase pro-
moted the invasion and migration of the breast 
cancer cell line MDA-MB-231, along with acti-
vation of matrix metalloproteinase-2, which 
could facilitate vascular invasion and accelerate 
metastatic spread [74]. Recently, a meta-analysis 
of cohort studies evaluating the prognostic role of 
MC, in different human solid tumors, found that 
increased tryptase + MC infiltration was signifi-
cantly associated with lymph node metastasis in 
NSCLC, hepatocellular, and colorectal cancer 
[75].

9.4.2.5  Mast Cells Contribute 
to an Immunosuppressive 
Tumor Microenvironment

MCs can contribute to the generation of a tumor- 
favoring microenvironment by disrupting the 
anti-tumor immunity (Fig.  9.2). A recent study 
found that intra-tumoral MCs, in samples from 
patients with gastric cancer, expressed a signifi-
cantly higher level of immunosuppressive mole-
cule PD-L1. Since crosstalk between PD-L1 and 
PD-1 is one of the main mechanisms leading to 
immunosuppression of T cells, this result sug-
gested that MCs may play a role to directly mod-
ulate effector function in the tumor 
microenvironment [24]. This study also demon-
strated that TNF-α produced by tumor cell cul-
tures significantly upregulated PD-L1 expression 
in MCs by activating the nuclear factor-κB (NF- 
κB) signaling pathway. Through experimental 
evidence, the authors showed that TAMC inhib-
ited the normal T-cell function in a PD-L1- 
dependent manner. The results also indicated a 
significant negative correlation between MC 
numbers and CD8+ T cells. Additionally, the per-
centage of MC was significantly increased in 
patients with advanced stages of GC, suggesting 
that MC contributes to tumor growth and GC pro-
gression via PD-L1 [24]. Besides, in colorectal 
cancer, CD8+ T-cell infiltration was negatively 
correlated with MC infiltration. Likewise, Th1- 
type chemokines CXCL9 and CXCL10, which 
recruit and promote cytotoxicity of T and natural 
killer (NK) cells, were highly upregulated in low 
MCD tumors, suggesting that tumors with less 
MCs infiltration had a more intense immune 

response, which could explain the better progno-
sis in such patients. Importantly, the authors 
showed that patients with a lower MCD had bet-
ter survival rates after receiving adjuvant 
 chemotherapy [52]. Using gene set enrichment 
analysis, it was reported that tumor-infiltrating 
MC in ccRCC promoted an immunosuppressive 
environment through suppression of CD8+ T-cell 
function, via secretion of IL-10 and TGF-β. 
Furthermore, the expression of characteristic 
genes of the adaptive immune system and cyto-
toxic functions [interferon-γ (IFN-γ) and gran-
zyme B (GZMB)] were markedly downregulated 
in tumors with a high MCD [20].

MCs also contribute to immune suppression 
through the recruitment of myeloid-derived sup-
pressor cells (MDSCs) and boost their suppressor 
activity (Fig. 9.2). In a murine model of hepato-
carcinoma, activated MCs modified the tumor 
microenvironment by upregulating CCL2, and 
the Th2 cytokines IL-10 and IL-13. Moreover, 
MCs induced IL-17 expression in MDSCs, which 
in turn regulated the infiltration and enhanced the 
suppressive function of Treg cells in the tumor 
microenvironment [76]. In a mouse model of 
colon cancer, MCs were required to enhance 
MDSC-mediated immune suppression, through a 
mechanism involving IFN-γ and nitric oxide pro-
duction. In the same study, in  vitro migration 
assays showed that activated MCs induced the 
migration of MDSCs, partly through MC-derived 
leukotrienes [77]. Also, crosstalk between MCs 
and MDSCs through the CD40:CD40L axis was 
responsible for shaping the MC-derived proin-
flammatory microenvironment (CCL2, IL-6, and 
TNF-α), that could further support MDSC activa-
tion, resulting in a tumor-promoting microenvi-
ronment [77]. The fact that MDSCs selectively 
increased the production of proinflammatory 
mediators by MCs when cocultured, highlighted 
the existence of a bidirectional modulation 
between these two cell populations in the tumor 
microenvironment.

9.4.2.6  Mast Cells’ Role in Cancer 
Therapeutic Resistance

In addition to the pro-tumoral functions described 
above, MCs may also modulate the response of 
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cancer cells to therapy. In vitro assays demon-
strated that MC culture supernatants blocked 
gemcitabine (GEM)/nabpaclitaxel (NAB)-
induced apoptosis in pancreatic cancer cell lines, 
through the activation of TGF-β1 signaling. 
Furthermore, these MC-derived supernatants 
reduced the anti-invasive activity of GEM/
NAB. These data showed a functional interplay 
between MCs and pancreatic cancer cells, which 
induced resistance to GEM/NAB. This observa-
tion was supported by the finding that unrespon-
siveness to GEM/NAB correlated with increased 
levels of tryptase and TGF-β1  in the blood of 
pancreatic ductal adenocarcinoma patients. Thus, 
MCs seem to play a crucial role in tumor resis-
tance to GEM/NAB [60]. Analysis of tumor tis-
sue of inflammatory breast cancer (IBC), an 
aggressive form of breast cancer characterized by 
the clinical appearance of inflammation, showed 
that the MCD was significantly associated with 
poor response to neoadjuvant chemotherapy in 
all disease stages and molecular subtypes of 
IBC. Moreover, MCs were located within range 
for direct or paracrine interactions with CD8+ T 
cells, as well as CD163+ macrophages and tumor 
cells. The authors suggested that interaction of 
MCs with these immune cells might be exerting 
an inhibitory effect in IBC, through suppressing 
CD8+ T cells, enhancing immunosuppressive 
CD163+ macrophages, and directly promoting 
tumor cell growth [65]. This study indicated that 
MCs could represent a possible therapeutic target 
to enhance the response to chemotherapy.

9.5  Concluding Remarks

Despite recent advances in understanding the mast 
cell role in tumor biology, we still have limited 
knowledge of the molecular mechanisms driving 
mast cells functions in the tumor microenviron-
ment. Most studies agree that mast cells are tumor-
infiltrating cells of different human cancers; 
however, conflicting data exist about the role 
played by these cells. Also, in specific cancer types, 
there is a discrepancy in the correlation between 
the mast cell density and cancer prognosis.

The role of mast cells in the tumor microenvi-
ronment might be more complex than suggested 
by the studies reviewed here, and mast cells func-
tions could rely heavily on the poorly described 
role of tumor microenvironment in shaping the 
mast cell response.

Similar to other cell constituents of the tumor 
microenvironment, such as macrophages, mast 
cells are extremely moldable and can change 
their phenotype and functions in response to a 
changing microenvironment. While tumor- 
associated macrophages (TAMs) have been 
extensively studied, and distinct specialized 
TAMs subpopulations have been well described 
[78], mast cells have received much less atten-
tion, and mast cell diversity and function in dis-
tinct tumor microenvironments have not been 
described up to now. Elucidation of how mast 
cell plasticity impacts on mechanisms orchestrat-
ing a pro-tumor or anti-tumor milieu could 
explain the contradictory findings regarding the 
mast cell function in the tumor 
microenvironment.

In general, cancer is a highly heterogeneous 
disease with a great variety of genetic and histo-
logical clinical subtypes, with each subtype also 
exhibiting a high heterogeneity within itself. The 
landscape is made even more complex by the 
intrinsic mast cell heterogeneity and plasticity, 
making it possible that within each cancer sub-
type a variety of tumor associated-mast cell sub-
populations exists. Consequently, mast cell 
contribution, either positive or negative, could be 
specific to certain cancer subtypes or tumor 
microenvironments, which could dictate context- 
dependent functions to the mast cell.

The interaction of mast cells with other tumor- 
associated stromal cell types, in addition to 
immune cells, such as fibroblasts, pericytes, 
endothelial cells, and adipocytes, should be 
investigated. These stromal cells are key compo-
nents of the tumor microenvironment, which sup-
port tumor growth. Specifically, endothelial cells 
and pericytes participate in tumor angiogenesis 
[79]. Therefore, crosstalk between these stromal 
cells and mast cells may occur within the tumor 
microenvironment.
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More work is needed to understand the intri-
cate crosstalk between mast cells and the tumor 
microenvironment. Uncovering the mechanisms 
orchestrating this reciprocal communication will 
allow mast cell inclusion in future therapeutic 
approaches.
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Abstract

We review state-of-the-art in translational and 
clinical studies focusing on the tumor micro-
environment (TME) with a focus on tumor- 
infiltrating B cells (TIBs). The TME is a 
dynamic matrix of mutations, immune- 
regulatory networks, and distinct cell-to-cell 
interactions which collectively impact on dis-
ease progress. We discuss relevant findings 
concerning B cells in pancreatic cancer, the 
concepts of “bystander” B cells, the role of 
antigen-specific B cells contributing to aug-
menting anticancer-directed immune 

responses, the role of B cells as prognostic 
markers for response to checkpoint inhibitors 
(ICBs), and the potential use in adoptive cell 
tumor-infiltrating lymphocyte (TIL) products.
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10.1  Introductory Note

Gastrointestinal malignancies accounted for over 
30% of cancer-related deaths globally in 2018 
[1]. Pancreatic cancer – most importantly pancre-
atic ductal adenocarcinoma (PDAC) – is a deadly 
gastrointestinal disease and the seventh leading 
cause of cancer-related deaths worldwide, with a 
meagre 5–7% of patients surviving up to 5 years 
post diagnosis and at least 80–85% of them pre-
senting with metastatic disease [2] at the time of 
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diagnosis. Novel chemotherapy-based treatment 
regimens such FOLFIRINOX [3, 4] and 
gemcitabine- nab paclitaxel [5, 6] have improved 
clinical outcomes in certain groups of patients 
with PDAC. Nevertheless, the immune landscape 
in pancreatic tumors plays a major role in mediat-
ing its refractory nature to productive host 
responses, including receptiveness to precision 
medicine strategies such as immune checkpoint 
blockade and cellular immunotherapy [7].

We explore in this chapter the state-of-the-art 
in translational and clinical studies focusing on 
the tumor microenvironment (TME) with an 
emphasis on the role of B cells therein  – also 
referred to as tumor-infiltrating B cells (TIBs). 
The TME is a dynamic matrix of mutations, 
immune-regulatory networks, and distinct cell- 
to- cell interactions which collectively impact on 
disease progress. Among lymphocytic cells, con-
ventional and unconventional T-cell subsets 
(tumor-infiltrating lymphocytes, TILs) as well as 
natural killer (NK) have been extensively 
described, while the knowledge base for B cells 
remains rather scarce. The sections in this chap-
ter cover concepts and findings related to B cells 
in the context of gastrointestinal cancers with a 
special focus on pancreatic cancer where relevant 
examples are available. Novel concepts such as 
“bystander” B cells, strategizing immune check-
point inhibition to also include B-cell activity in 
patients with cancer as well as their potential use 
in adoptive cell transfer protocols for the treat-
ment of gastrointestinal malignancies including 
pancreatic cancer, are also discussed. We also 
discuss current clinical drug trials which may 
augment B-cell activity or target their presence in 
the TME which may show a disease-modifying 
effect in cancer.

10.2  The Tumor 
Microenvironment 
in Gastrointestinal Cancers

The unique nature of the tumor microenviron-
ment (TME) in solid tumors comprises an inde-
pendent area of intense research due to the 
intricacies surrounding its sustainability, impact 

on drug resistance, metastasis, and immune sur-
veillance and immunological control of cancer 
spread [7, 8]. Cellularity of the TME comprises a 
variety of immune-cell infiltrates, including but 
not limited to lymphocytes (T, B, and NK cells), 
myeloid cells (macrophages, dendritic cells, sup-
pressor cells), granulocytes (mainly neutrophils), 
fibroblasts, and other newly described cell types 
such as innate lymphoid cells [9]. Some of these 
cells, that is, myeloid-derived suppressor cells 
(MDSCs), cancer-associated fibroblasts (CAFs), 
and mesenchymal stromal cells (MSCs), also 
occupy the tumor stroma – the cardinal support 
structure for the tumor’s scaffold and survival 
[10–12]. The cells produce several cardinal bio-
logical mediators which help sustain tumor 
growth and survival, including in pancreatic can-
cer, that is, transforming growth factor beta 
(TGF-β), vascular endothelial growth factor 
(VEGF), hepatocyte growth factor (HGF), and 
CCL5 as well as export of exosomes containing 
nucleic acids and/or proteins which help sustain 
tumor progression [10–12]. Tumor-infiltrating 
macrophages (TAMs) also have an equal respon-
sibility in impeding productive immune responses 
in pancreatic tumor lesions, thereby promoting 
cancer progression [13]. Regulatory T cells 
(Tregs) contribute significantly to the inhibition 
of productive cellular immune responses in can-
cer [14]. The uptake, processing, and presenta-
tion of immune-tolerizing antigens, that is, sialic 
acid-containing proteins by professional antigen- 
presenting cells (APCs) in the TME, can result in 
Treg generation while hampering tumor-directed 
T helper 1 (Th1)-cell development [15]. Previous 
findings show that sialic acid-containing surface 
antigens on pancreatic cancer cells contribute to 
tumor formation as well as cell adhesion and 
migration [16, 17]. Thus, the nature of the anti-
gens in addition to growth factors, chemoattrac-
tants, and selected subsets of APCs present in the 
TME can directly impose local 
immunosuppression.

Additionally to tumor initiation, progression 
of disease is also mediated by the major driver 
mutations associated with pancreatic cancer in 
the KRAS, SMAD4, CDKN2A, and TP53 genes 
[12, 18–20]. Mutations in KRAS, TP53, and 
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SMAD4 are also implicated in the pathogenesis 
of colon/colorectal cancer [21], which, although 
presents a better prognosis than pancreatic can-
cer, was nonetheless responsible for over 850,000 
deaths in 2018 [1]. Overt inflammation is a note-
worthy cause of driver mutations; thus, hyperac-
tivation of innate immune pathways, that is, 
nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB), interleukin (IL)-6 
overproduction, and adaptive immune responses, 
that is, enhanced IL-17 and tumor necrosis factor 
(TNF)-α production in addition to expression of 
pro-tumor IL-13 as well as IL-35  in tissue, can 
also lead to suppression of productive and tar-
geted antitumor responses and, conversely, sup-
port tumor survival and spread of transformed 
cells [22–26]. There is also evidence in preclini-
cal modeling of pancreatic cancer, where p53 
silencing or mutant KRAS introduction in other-
wise healthy organisms or cells perpetrates tumor 
initiation and progression [19, 27–30]. 
Furthermore, the upregulation of cell surface 
molecules such as mucins (MUC) and ICAM-1 in 
pancreatic cancer cells by oncogenic KRAS con-
tributes to enhanced disease invasiveness [31, 
32]. Mutation in the major histocompatibility 
complex (MHC) class I pathway is a critical 
component of tumor resistance to cell-mediated 
immune attack, dampening or even eliminating 
tumor-directed immune responses afforded by 
CD8+ T cells, including the recognition of 
cancer- associated mutations [33–38]. Loss of or 
disruptions in the MHC-I pathway have also been 
reported in patients with pancreatic cancer [39–
41], adding to the mechanism of immune sup-
pression and tolerance in the TME.

10.3  A Role for B Cells 
in Gastrointestinal 
and Pancreatic Cancer 
Pathophysiology

Further to T lymphocytes, B cells are an integral 
component of the immune-cell infiltrate in 
tumors including pancreatic cancer [42–44]. 
B-cell (CD20+) infiltrates in the TME have been 
linked to positive prognosis in several solid can-

cers, including but not limited to epithelial ovar-
ian cancer [45], non–small-cell lung cancer [46, 
47], head and neck cancer [48], and cutaneous 
primary melanoma [49]. The presence of TIBs 
(CD20+ B cells) in tumor-associated tertiary 
lymphoid structures (TLSs) in colorectal cancer 
and PDAC has been associated with improved 
survival of patients [50–52]. Occurrence of 
CD20+ B cells and Th1 cells at the tumor margin 
in gastric cancer has also been observed to reflect 
better survival [53]. Similarly, CD20+ B-cell and 
CD8+ T-cell infiltrates in gastric cancer TLS 
have been shown to associate with an improved 
prognosis for patients [54].

The recognition of mutant cancer epitopes, 
that is, KRAS by antibodies in the TME, is pos-
sible [43] – a possible role of B cells as APCs in 
amplifying the local T-cell responses cannot be 
dismissed [55]. This supports the notion that 
there are specific B-cell receptors (BCRs) in the 
TME equipped with the capacity to recognize 
cancer mutations. B-cell infiltration into PDAC 
tumors has been controversial [56], although a 
recent study using a mouse model, genetically 
predisposed to contract pancreatic cancer, dem-
onstrated that the activation of B-cell subsets in 
the TME is associated with a favorable prognosis 
[57]. Furthermore, the production of pro- 
inflammatory cytokines, that is, IFN-γ, TNF-α 
[58], and IL-17, by some B-cell subsets (as seen 
in rheumatoid arthritis, which is representative of 
a relevant inflammatory condition [59]) inevita-
bly promotes the activation of potent effector 
T-cell phenotypes, which could either kill or help 
tumor proliferation in the context of cancer. 
IL-35-producing B cells have been observed in 
the peripheral blood of patients with advanced 
gastric cancer, concomitant with high frequen-
cies of Tregs, MDSCs, and IL-10-producing B 
cells [60]. However, the presence of this B-cell 
subset in the TME remains to be demonstrated. 
Follicular T-helper cell (TFH)-derived IL-21 
itself is a strong inducer of B-cell differentiation 
into antibody-secreting plasma cells [61], the 
effect of which is enhanced in the presence of 
IL-6 [62], suggesting a possible engagement of 
antibody-dependent cellular cytotoxicity 
(ADCC) in the B-cell rich TME. IL-6 and IL-21 
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are also necessary for augmenting T-cell activa-
tion and antigen-specific responses [63–66]. 
Nevertheless, IL-6 has been implicated in the 
pathogenesis of pancreatic immunopathology 
and tumorigenesis [67] and must, therefore, be 
handled with caution concerning immune 
stimulation.

Extracellular cleavage of adenosine molecules 
from ATP/ADP/AMP released by cancer cells in 
the TME is chiefly facilitated by the surface 
expression of CD73, a 5′-ectonucleotidase and 
CD39, which is a nucleoside triphosphate 
dephosphorylase [68]. The cell-free adenosine 
then binds to its receptors, that is, A1, A2A/B, 
and A3, on several cell types, that is, macro-
phages, dendritic cells, lymphocytes, and epithe-
lial cells, to activate intracellular pathways which 
include response to tissue injury by modulating 
superfluous local inflammation. This activity is 
beneficial for tissue protection during chronic 
infection [69] as well as in autoimmune disease 
[70]. It has also been shown in zebrafish and mice 
harboring type 1 diabetes mellitus that activation 
of the adenosine signaling pathway is crucial for 
resolution of inflammation leading to increased 
tissue regeneration of pancreatic β cells [71], 
while another study using a mouse model of 
high-fat diet-induced obesity evidenced that the 
loss of adenosine signaling was concomitant with 
pancreatic dysfunction and reduced insulin secre-
tion [72]. However, the anti-inflammatory reper-
cussions of adenosine signaling, that is, reduced 
production of IFN-γ, TNF-α, IL-2, and IL-1 to 
name a few, would dampen cellular immune 
responses (effector/memory T cells) to tumor 
cells, thus promoting a favorable environment for 
their survival and proliferation [73].

Regulatory B cells (Bregs), defined as CD19+ 
CD39+ CD73+ cells, represent the highest fre-
quency of CD39/CD73 expression among 
immune cells, and have been shown to actively 
produce immunosuppressive adenosine [74]. 
Later, platinum-based chemotherapy was shown 
to lead to the decrease of CD39+ Bregs in patients 
with head and neck squamous cell carcinoma 
(HNSCC), concomitant with reduced adenosine 
in peripheral circulation [75]. Thus, in addition to 
the conventional myeloid cell which expresses 

CD39 and CD73, TME-associated Bregs present 
yet another immunosuppressive cell type 
involved in the pathogenesis of solid cancers. 
Indeed, IL-18-induced PD-1 expression on B 
cells in pancreatic cancer was recently shown to 
impede ADCC and NK-cell activity, further to 
IL-10 production in the TME [76]. Whether 
CD39+ CD73+ B cells responsive to IL-18 sig-
naling occur in the pancreatic TME and their role 
in disease progression remain to be studied. 
Another subset of Bregs expressing high amounts 
of the immune checkpoint molecules pro-
grammed cell death (PD-1) as well as CD24, 
CD27, CD5, CD38, and CD69 has been described 
in the TME, but not in blood, from patients with 
hepatocellular carcinoma (HCC), a gastrointesti-
nal cancer which claimed almost 800,000 lives in 
2018 [1, 77]. Intriguingly, culture supernatants 
from HCC cell lines were able to induce PD-1 
upregulation in healthy peripheral blood B cells 
in addition to production of pro-inflammatory 
(IL-1β, IL-6, IFN-γ) and anti-inflammatory (IL- 
4, IL-10) cytokines. Finally, yet importantly, the 
authors showed – using in vitro and mouse exper-
iments  – that PD-1hi Bregs hamper productive 
antitumor responses by T cells. Thus, Bregs 
appear to be susceptible to their immediate envi-
ronment and can be crucial immunomodulators 
of antitumor immune responses in the TME.

Tregs also release exosomes which contain 
microRNAs, one of which is known as Let-7d 
and has inhibitory effects on Th1 responses, thus 
effector T-cell activation and IFN-γ production 
against the tumor [78]. Let-7d has also been 
shown to negatively affect antibody production 
by B cells by interfering with glucose and gluta-
mine metabolism [79]. Removing this compo-
nent by means of drug treatment with gemcitabine 
[80], fludarabine [81], or cyclophosphamide [82] 
can potentiate the efficacy of immunotherapies, 
such as that shown in the context of peptide- 
based vaccination of patients with renal cell car-
cinoma [83].

An interesting new observation demonstrates 
that the use of MEK inhibitors such as trametinib 
in colorectal cancer may promote cancer-cell 
proliferation by increasing stem-cell plasticity 
[84]. A previous study showed that MEK inhibi-

D. Ligeiro et al.



179

tion in metastatic melanoma cells is partly medi-
ated by insulin-like growth factor 1 
(IGF-1)-expressing CD20+ TIB also positive for 
the transcription factor paired box protein 5 
(Pax5), which is reversible with IGF-1 neutral-
ization in  vitro [85]. Furthermore, treatment of 
patients with metastatic melanoma with ofatu-
mumab (anti-CD20 monoclonal antibody to 
deplete B cells) resulted in significant reduction 
of CD20+ Pax5+ TIB along with tumor regres-
sion. Since IGF-1 has been discussed as a poten-
tial therapeutic target in pancreatic cancer [86], 
TIB and circulating B cells as a source of this 
factor cannot be dismissed and may be useful in 
diagnosis as well as treatment monitoring. 
Figure 10.1 is a schematic representation of the 
possible roles played by infiltrating B cells in the 
TME in line with the points discussed above.

10.3.1  The Concept of “Bystander B 
Cells” in the TME

B cells infiltrating cancer or chronic inflamma-
tory lesions may comprise up to 40% of immune 
cells in some tumor histologies [87], often resid-
ing in tertiary lymphoid structures (TLSs) [44]. 
Although the beneficial or detrimental role of B 
cells in antitumor immune responses is debated, 
an increased number of B cells infiltrating into 
melanoma lesions has been correlated with 
improved survival [49]. Some of these tumor- 
infiltrating B cells (TIBs) have reported to recog-
nize driver mutations, for example, mutant p53 in 
colorectal cancer [88] or mutant KRAS in lesions 
from patients with pancreatic cancer [43]. 
Bystander T cells directed against unrelated tar-
get epitopes are implicated in diverse diseases 
[89, 90], a situation similar to B-cell responses 
associated with autoimmunity as the “price-tag” 
for successful cancer-directed immune responses, 
with the prototype of the neoplastic syndrome 
associated with humoral autoimmunity in lung 
cancer [91]. Similarly to bystander T cells, the 
collateral immune activation of B cells could also 
be utilized to augment clinically relevant B- and 
T-cell responses in patients with cancer, for 
example, by active transfer of IL-21 and CD40- 

activated B cells [92], that may serve as “cyto-
kine producers,” antigen-presenting cells, or – not 
mutually exclusively  – producers of tumor- 
reactive Ig leading to complement activation or 
Fc receptor-augmented antigen uptake. We 
recently described that TIBs in human pancreatic 
cancer lesions or glioblastoma recognize a broad 
repertoire of CMV and EBV-specific target epit-
opes [93], complementing the earlier finding that 
CMV-specific T cells infiltrate melanoma lesions 
while retaining their function despite upregulated 
PD1 expression [94]. This suggests that targeting 
bystander B cells for the immunological therapy 
of patients with cancer may be achieved via (i) 
adoptive transfer [92], (ii) checkpoint inhibition 
[95], and/or iii) augmenting the combined axis of 
intratumoral anti-CMV [94] or anti-EBV T-cell 
and B-cell responses associated with an antican-
cer pro-inflammatory microenvironment.

Another concept to study further is the poten-
tial presentation of tolerogenic cancer-associated 
antigens to Tregs by B-cell subsets in the TME 
via the MHC-II pathway, given that Treg-reactive 
neoepitopes were recently described [96]. As 
cancer-derived private neoepitopes can also 
induce IL-13 production by some T-cell subsets 
[97], whether B cells have a part to play herein 
pertaining to antigen presentation in the TME is 
worth investigating. Conversely, the presence of 
neutralizing antibodies against tolerogenic (or 
potentially pathogenic) cancer neoantigens 
would also be useful to decipher the role of cer-
tain B/plasma-cell populations the 
TME.  Figure  10.2 shows histological observa-
tions of B-cell infiltration into human PDAC 
lesion in addition to a schematic which describes 
the possible effects of bystander B cells in the 
TME.

10.3.2  Immune Checkpoint Blockade 
and Anticancer Immune 
Responses: B-Cell 
Involvement

Immune checkpoint molecules such as pro-
grammed cell death 1 (PD-1) and its ligands 
PD-L1/2, cytotoxic T-lymphocyte-associated 
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Fig. 10.1 Possible roles of TIB in the gastrointestinal/
pancreatic TME. As shown in the schematic, TIB recog-
nizing cancer neoantigens could activate productive antitu-
mor responses in the TME by promoting Th1 polarization 
as well as inflammatory antibody production by TIB-

derived plasma cells. Bindings of IgG to the Fcγ receptor 
(CD16) on NK cells also engage antitumor activity, releas-
ing cytotoxic molecules as well as IFN-γ. However, pro-
duction of adenosine by tumor cells as well as regulatory B 
cells (Bregs) can impede productive TIL and TIB responses 
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antigen 4 (CTLA-4), lymphocyte-activation gene 
3 (LAG-3), and T-cell immunoglobulin and 
mucin-domain containing-3 (TIM-3), although 
evolutionarily preserved to carefully tailor 
immune responses to provide optimal host pro-
tection without excessive tissue damage, their 
premature overexpression in tumors and T-cell 
infiltrates functions in favor of tumor survival 
and dissemination [98]. Thus, immune check-
point expression in human cancer is a clinically 
and biologically relevant form of immune sup-
pression. Along these lines, therapeutic targeting 
of PD-1 and CTLA-4 has been the greatest break-
through in clinical oncology as of recent times 
[99], a turning point in immuno-oncology paving 
the way for future immune-based interventions.

A role for memory B cells in promoting 
immune activation in tumor of patients with can-
cer who response positively to anti-PD-1/anti- 
CTLA- 4 therapy was recently appreciated [100], 
suggesting that local B-cell responses – in addi-
tion to T cells – constitute an integral arm of anti-
tumor responses mobilized by ICB. Successful 
anti-PD-1 therapy may also involve B-cell infil-
tration of metastatic lesions [95], where an early 
increase in CD21lo B cells is likely to predict 
occurrence of immune-related adverse events in 
patients with cancer received combination ICB 
therapy [101]. In addition to several other 
immune-cell types in the TME, B cells could also 
augment MHC-II-dependent CD4+ T-cell 
responses to private mutations in PDAC where 
MHC-I-restricted CD8+ T-cell reactivity may fail 
[43, 44]. This consolidates the role of B cells in 
augmenting and sustaining inflammatory 
responses in cancer, jointly (with T cells and NK 

cells) contributing to tumor rejection and not 
only unproductive and detrimental pathology 
[102]. Also, as discussed earlier in this review, 
PD-1 expressed by B cells in the TME – induced 
by nonproductive inflammation – is also a target 
of ICB, as shown in hematological malignancies 
[103] and warrants investigation in pancreatic 
cancer. This notion has been corroborated in can-
cers of different histology. Soft-tissue sarcomas 
can be grouped into distinct phenotypes, that is, 
immune absent/low (groups A and B), vascular-
ized (group C), and immune positive (groups D 
and E) [104]. B cells may be associated with peri-
cytes [105, 106], for instance, for group B, or 
group E, rich in TLS and dendritic cells. B cells 
turned out to be the strongest prognostic indica-
tor, independent of T cells [104]. This has also 
been observed for patients with melanoma, 
although with a different angle: Clonal expansion 
of B cells, Ig switch, and the quality of immune 
effector functions are associated with better 
responses to ICB [107]: B-cell-associated imma-
ture TLS may show inhibitor effects, whereas 
well-structured, “mature” TLSs are associated 
with improved antitumor responses [107], 
changes that may be influenced by standard (neo-
adjuvant) chemotherapy of cancer that induces 
complement (C3) products binding to the com-
plement receptor 2 on (antitumor directed) acti-
vated (ICOSL+ IL-10low) B cells [108].

A molecule with immune checkpoint proper-
ties in pancreatic cancer is the focal adhesion 
kinase (FAK). Although with important roles in 
neovascularization and the migratory capacity of 
cells [109], FAK promotes fibrosis and poor 
T-cell infiltration into PDAC tissue, thus worsen-

Fig. 10.1 (continued) in the TME via subsequent produc-
tion of anti-inflammatory factors, that is, TGF-β, IL-13, 
IL-35, IL-4, and IL-10, also involving Treg participation. 
The latter are cytokines associated with Th2 skewing of T 
cells, while IL-13 and IL-35 may support tumor-cell 
growth as well as M2 polarization of TAMs. Also, some 
activated B cells may express PD-1 which, by binding to 
PD-L1 on the surface of tumor cells, can abrogate tumor 
recognition and killing. Tregs also contribute to dampen-
ing of B-cell (and T-cell) responses in the TME via 
miRNA-dependent mechanisms, that is, Let-7d in exo-
somes. CAFs also produce TGF-β as well as VEGF, which 
directly enables neovascularization in the TME and plays 

an important role in establishment of hypoxia. Activation 
of B cells via C3 components binding to CD21 (the com-
plement receptor 2) may shape the B-cell phenotype and 
promote anticancer-directed responses. B cells in well-
organized TLS, in close vicinity to T cells, are associated 
with better survival, by serving as antigen-presenting cells 
and producers of anticancer-directed antibodies. CAF can-
cer-associated fibroblasts, Treg regulatory T cells, MHC-II 
major histocompatibility complex class II, TAM tumor-
associated macrophage, PC plasma cell, VEGF vascular 
endothelial growth factor, ATP adenosine triphosphate, 
ADP adenosine diphosphate, AMP adenosine 
monophosphate
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Fig. 10.2 Bystander B cells in patients with cancer. (a) 
Immunohistology showing infiltrating of CD20+ B cells 
into human pancreatic cancer lesions in the same loci as 
CD3+ T cells (brown patches, top panel). (b) Activation 
of bystander B cells during antigen-specific immune rec-
ognition. Direct uptake of an antigen (represented by the 
neoantigen) triggers its own activation and ability to pro-

duce antibodies, following differentiation into a plasma 
cell, and cytokines. This initial immune response then 
triggers the transactivation of bystander B cells in its 
vicinity by several mechanisms. Exosomes containing 
HLA-peptide complexes displaying neoantigen-derived 
epitopes or BCRs specific for the aforementioned neoan-
tigen can be transferred to the bystander B cells not in 
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ing the immunosuppressive nature of the TME 
[28]. Therapeutic targeting of FAK using small 
molecules has shown promise in preclinical 
mouse models of PDAC [28, 110] as well as in a 
human organoid system [111], based on its rever-
sal of local immunosuppression by limiting 
MDSC and Treg infiltration, increased sensitivity 
to PD-1/CTLA-4 blockade, and killing of PDAC 
cells in vitro, further to providing evidence that 
FAK inhibition can overturn disease outcome in 
PDAC in tumors with a mesenchymal phenotype 
[110]. Safety and efficacy clinical trials of FAK 
inhibitors in patients with solid tumors including 
PDAC as well as hematological malignancies are 
currently underway [112]. It has been shown in 
mice that FAK expression in progenitor B cells is 
important for their spatial organization and 
homeostasis in the bone marrow, especially under 
inflammatory conditions [113]. As such, it would 
be worthwhile to investigate whether FAK inhibi-
tion in patients with PDAC also affects B-cell 
infiltration into the TME as well as their numbers 
in blood, thus having an influence on egress from 
the bone marrow to traffic to sites of disease.

The gut microbiome was recently shown to 
regulate clinically beneficial antitumor immune 
responses following ICB in patients with meta-
static melanoma [114–116]. A recent study 
showed quite the contrary in the context of PDAC, 
where ablation of the host gut microbiota in fact 
promoted antitumor functions in addition to 
improving the efficacy of PD-1 blockade [117]. 
Interestingly, patients with PDAC are also likely to 
have changes in their oral microbiota, that is, 
increases in numbers of Porphyromonas gingivalis 
and Aggregatibacter actinomycetemcomitans, in 
associated with poor dental health and greater risk 

of developing pancreatic cancer [118, 119]. More 
recently, the role of complement has been re-
appreciated in pancreatic cancer, showing that 
Malassezia furfur activation of C3 and interaction 
with mannan-binding protein induce tumor pro-
gression associated with chronic inflammation 
[120], whereas distinct bacterial species, among 
them Pseudoxanthomonas–Streptomyces–
Saccharopolyspora–Bacillus clausii, were associ-
ated with longer survival [121]. Whether 
biologically and clinically, humoral relevant anti-
tumor immune responses are targeting cancer-spe-
cific antigens can be mediated by cross-reactive 
antibodies, elicited by human gut commensals, as 
shown for autoimmune responses [122] has to be 
demonstrated. This would not be unexpected, 
since anticancer immune responses can be concep-
tualized as very focused autoimmune responses. 
Nevertheless, it would be worthwhile to investi-
gate whether changes in the oral, pancreatic, and 
gut microbiota of patients with PDAC who 
undergo ICB are concomitant clinical responses. 
In other words, blood and tissue samples from 
these patients may help better understand altera-
tions in immunological mediators as well as 
immune-cell frequencies, that is, B and T cells 
which will aid immunotherapy development.

10.3.3  B-Cell Metabolism in the TME: 
Knowns and Unknowns

Unlike the metabolic profiles of T-cell subsets in 
the TME, B-cell metabolism and its effect on 
immune responses are not as well studied. Prior 
research has shown that the activity of glycogen 
synthase kinase B (GSK3) in murine B cells is 

Fig. 10.2 (continued) direct contact with the neoantigen. 
In addition to an increased population of B cells express-
ing neoantigen-specific BCRs and associated antibody 
production, these transactivated bystander B cells may 
also produce T-cell-activating cytokines, including IL-6, 
IFN-γ, and TNF-α to amplify the cellular immune 
response. B-cell-derived IL-6 can induce T-cell activation 
and subsequent IL-17 production which, if directed only 
against mutated epitopes, may be beneficial in the early 
stages of antitumor inflammation. The deposition of a 
fragment of complement C3 on the surface of B-cell- 
derived, antigen-loaded exosomes can also bind to the 
complement receptor (CR) expressed on the surface of  

T cells for antigen acquisition and activation, resulting in 
production of pro-inflammatory cytokines by the latter. 
BCR transfer between B cells has also shown to be pos-
sible via cytonemes – molecular nanotubes which form 
an intercellular passageway for material transfer. IL-21 
and anti-CD40, as shown in preclinical studies, can be 
excellent immunotherapy candidates to promote plasma 
cell differentiation and induce antibody production 
in vivo. Thus, B cells may amplify the ensuing immune 
response in tissue compartments also when antigen load 
is limiting. Abs antibodies, BCR B-cell receptor, TCR 
T-cell receptor, HLA-II human leukocyte antigen class II, 
C3R complement C3 receptor
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necessary for glycolysis, mitochondrial biogene-
sis, CD40-mediated activation, and antibody pro-
duction as well as reactive oxygen species 
generation [123]. Importantly, this enzyme was 
found to be essential for the proliferation of ger-
minal center B cells, particularly for survival and 
growth in hypoxic environments (pertinent to the 
TME), which necessitates high glucose con-
sumption and glycolytic breakdown. Driven by 
Pax5 and Ikaros activity, B cells in lymphoma are 
noted to express high levels of AMPK, which is 
also the target of metformin – a highly effective 
antidiabetic drug that concomitantly promotes 
CD8+ T-cell activity [124, 125]. The mammalian 
target of rapamycin (mTOR), which is also 
upregulated in lymphoma B cells and is neces-
sary for NF-κB induction, antibody production, 
and mitochondrial output [126], is druggable by 
metformin, although its effects have been shown 
in the context of T-cell physiology [127]. 
Pharmacological inhibition of mTOR/PI3K sig-
naling in human lung cells infected with influ-
enza virus has been shown to arrest pathogen 
replication, reduce myelocytomatosis virus onco-
gene cellular homolog (Myc) induction, and pro-
tect mice from lethal influenza virus infection 
[128]. Myc overexpression is also a common 
molecular marker in B-cell-associated hemato-
logical malignancies and is negatively regulated 
by the aforementioned GSK3 [123, 126]. Glucose 
transporter 1 (Glut1), a cell membrane-bound 
nutrient channel necessary for glucose homeosta-
sis, was shown to be crucial for B-cell prolifera-
tion and antibody production following BCR 
stimulation [129]. Myc/PI3K/Akt axis is also 
necessary for Glut1 upregulation in B cells [130], 
thus presenting an important molecular network 
incorporating GSK3 and mTOR which controls 
B-cell metabolism in tissue  – and the 
TME. Another important factor pertinent to the 
TME is hypoxia, often involving the expression 
of the hypoxia-inducible factor 1 alpha (HIF-1α). 
Low oxygen tension in tissue has been demon-
strated, using germinal centers in mice, to affect 
antibody class switching, increase the rate of 
B-cell death, and reduce their proliferation [131]. 
HIF-1α is necessary for engaging the glyoxylate 
shunt pathway in the absence of oxygen, where 

glucose is catabolized to lactate instead of pyru-
vate [132]. Importantly, mTOR is required for the 
subsequent expression of HIF-1α protein [132].

Whether these pathways are also activated in 
B cells in gastrointestinal TMEs requires thor-
ough assessment. Considering that TIBs can pro-
duce antibodies in vitro following several days to 
weeks of culture [43, 93], it is likely that like TIL, 
their functionality in the TME is also subdued 
owing to local immunosuppression but is never-
theless restorable under suitable conditions 
ex vivo.

10.4  The Clinical Utility of B Cells 
in Precision Oncology

Gaining a deeper understanding of the signifi-
cance of B cells in solid cancers not only helps 
strengthen the knowledge base for the disease 
process but also helps the development of next- 
generation therapies. The classical role of B cells 
as APCs and producers of antibodies – following 
their differentiation into plasma cells  – offers 
broad clinical utility in developing next- 
generation cancer immunotherapy drugs. 
Co-activation of the humoral and cellular arms of 
the immune system, for example, antibody/B-cell 
and T-cell responses to the same antigen, that is, 
NY-ESO-1 [133, 134], mesothelin [135], and 
mucins [136], is an important and relevant bio-
logical phenomenon requiring further dissection. 
Adoptive transfer of memory B cells, unlike T 
cells, has not been clinically attempted but may 
be pursuable given that cultivating them in large 
numbers in the laboratory is possible [137]. 
Based on immunoglobulin heavy chain CDR3 
spectratyping (the antigen-binding region of the 
BCR akin to that of the TCR), in vitro expansion 
of TIL with IL-2, IL-15, and IL-21 can also give 
rise to various flavors of BCR-IgM and BCR-IgG 
expressing TIB populations (Fig.  10.3), certain 
subsets of which may be useful in orchestrating a 
desired antigen-specific response. Personalized 
vaccination strategies may also benefit by admin-
istering neoantigen-loaded B cells to patients not 
only to induce strong T-cell responses in their 
capacity as APCs but also to locally produce 
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mutation-specific antibodies as well as pro- 
inflammatory, anticancer-directed cytokines 
[138]. B cells close to tumor-infiltrating T cells 
[139] appear to be antigen driven; the adoptive 
transfer of TIL, containing both T and B cells in 
a preclinical cancer model, showed that both 
components of the cellular immune system pro-
vide a better anticancer response as compared to 
T or B cells alone, a concept that has not yet been 
translated into clinical cell therapy trials [140].

Chimeric antigen receptor-bearing T cells 
(CAR-T) represent a breakthrough in cellular 
immunotherapy, with two pharmaceutical prod-
ucts currently licensed for clinical use in patients 
with B-cell malignancies with further candidate 
in clinical trials for solid tumors [141, 142]. 
CARs are a fusion of an exterior, antigen- binding, 
antibody-derived single-chain variable fragment 
(scFv) with a CDR3 sequence of interest and the 

intracellular molecules necessary for triggering a 
pro-inflammatory T-cell response. Thus, screen-
ing of antibody responses to a variety of cancer- 
associated targets – including mutations – may be 
used for CAR-T development provided the mol-
ecules are surface expressed. This may also apply 
to KRAS and p53 mutations, where simultaneous 
activation of T-cell and humoral immune 
responses to mutated epitopes has been observed 
[43, 143].

Antibodies reactive to protein targets derived 
from EBV and CMV produced by tumor- 
infiltrating B cells as well as those in the periph-
ery are of great significance due to the role of 
these viral pathogens in modulating antitumor 
responses in patients with brain or pancreatic 
cancer [93, 144]. Serum analysis of IgG mole-
cules in blood, based on their recognition of 
EBV/CMV epitopes, may be useful in informing 

Fig. 10.3 IGH CDR3 spectratyping. Immunoglobulin 
heavy chain (IGH) variable segment expression and 
CDR3 length distribution for IgM (panel A) and IgG 
(panel B) transcripts (left panels) and TIB clonality pro-
files (right panels). Total RNA from TIL fractions from a 
patient with PDAC was isolated for first strand cDNA syn-
thesis with the Superscript III system (Invitrogen). 
Diversity of immunoglobulin heavy chain (IGH) tran-

scripts in TIB was evaluated with a CDR3 spectratyping 
assay for heavy chain variable segments (IGHV) IGHV1-6 
families and common primers specific for IGHM and 
IGHG gene segments. Shown are a representative IGH-M 
and G spectratype for an individual TIL culture and mean 
clonality profiles for five different TIL cultures. Switched 
memory B cells and clonal expansion appear to be associ-
ated with better response to ICB
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of the clinical status of the patient from an immu-
nological perspective and their amenability to 
immunotherapy, thus serving as a biomarker. 
This hypothesis, however, requires formal testing 
using suitable patient-derived cancer samples.

Therapeutic interventions targeting growth 
factors in the pancreatic TME, in addition to spe-
cific receptor-targeted drugs, that is, anti-EGFR 
antibodies/small molecules and anti-KRAS 
drugs, may not only kill the tumor cells directly 
but also induce immunomodulation in the TME, 
which can simultaneously activate the immune 
system and elicit productive antigen-specific 
responses. Along these lines, antibodies targeting 
mutant KRAS may be able to specifically target 
the aberrantly expressed protein in cancer cells 
[43, 145, 146]. Phosphorylation of the Bruton 
tyrosine kinase (BTK), which is activated follow-
ing B-cell receptor (BCR) engagement with 
FcγR on macrophages via phosphoinositide-3- 
kinase gamma (PI3Kγ) in the latter, can lead to 
M2 polarization of TAMs as well as Th2 skewing 
of cellular immune responses – with IL-10 and 
IL-4 involvement [147]. BTK can be inhibited by 
ibrutinib (PCI-32765) [148], while P13Kγ is sus-
ceptible to treatment with TG100-115, an experi-
mental drug with anticancer properties [149]. 
Using both drugs, Gunderson and colleagues 
demonstrated improved pro-inflammatory 
responses in BTK+/P13Kγ+ TAMs in a mouse 
model of PDAC [147]. As such, BTK inhibition 
presents a B-cell-dependent therapeutic strategy 
in PDAC, which can be better visualized using 
patient samples from the ongoing clinical trial 
(NCT02562898).

In KRASG12D-driven PDAC model established 
in mice lacking HIF-1α, B-cell depletion using 
an anti-CD20 monoclonal antibody inhibited the 
progression of pancreatic intraepithelial neopla-
sia (PanIN) to PDAC [150]. Primarily, HIF-1α 
expression and stabilization in these animals 
were observed to occur early during tumor devel-
opment, the absence of which promoted disease 
exacerbation. The authors also observed that the 
latter scenario entailed the production of 
CXC13 in the TME, a strong B-cell chemoattrac-
tant, which lead to infiltration of CD20+ B cells 
that were eventually responsible for PDAC devel-

opment. This observation needs to be repeated in 
patients with PDAC or those diagnosed with 
PanIN (as well as individuals presenting with 
other gastrointestinal disease) to see whether 
HIF-1α destabilization can be observed in cancer 
tissue and coinciding with CD20+ enrichment in 
the TME. Indeed, CD20+ B cells in the TME per 
se and not the TLS appear to not reflect a good 
prognosis for survival [52].

Tregs have been shown to promote the sur-
vival of IgA+ B cells which recognize a gut 
microbiota-associated antigen in mice [151], 
indicating that the former may also assisting in 
modulating B-cell immune responses during can-
cer pathogenesis. Gut bacteria-specific IgA in 
mice was previously demonstrated to necessitate 
PD-1 expression on plasma cells for optimal reg-
ulation of the microbiota composition [152]. As 
such, PD-1+ plasma cells – unlike B cells – may 
have an important role in gut homeostasis and, 
therefore, tissue protection and reduced chances 
of contracting cancer. Also, the possibility of 
cross-reactivity between commensal bacteria- 
derived targets and host-associated epitopes lead-
ing to productive anticancer antibody responses 
cannot be dismissed [153]. These hypotheses, 
however, remain to be formally tested in patients 
with pancreatic cancer (as well as other gastroin-
testinal malignancies) in relation to those show-
ing clinical responses to surgery, chemotherapy, 
and immunological treatment, that is, cancer vac-
cines, cellular therapy, and changes in the gut 
microbiota using high-end molecular techniques 
couples with immunoassays, that is, bacterial 
species enriched in stool samples, IgA/IgG abun-
dance in serum and TME, as well as their respec-
tive specificities using peptide-based 
identification [93]. However, it may be necessary 
to bear in mind the influence of the time of day 
when samples are collected due to differences in 
leukocyte populations and properties in blood 
and, possibly, in tissue owing to the effect on 
their migratory patterns [154].

Table 10.1 summarizes clinically pursued ther-
apeutic strategies at present which involve modu-
lation of B-cell responses (mostly at the clinical 
stage, others still in the preclinical phase) to 
improve treatment outcomes in pancreatic cancer.
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Table 10.1 ∎

Target Therapeutic agents Description Status
Adenosine 
signaling

Anti-CD73 
(+/− PD-1)

Cell surface-bound 
5′-ectonucleotidase which 
converts ATP/ADP/AMP to 
adenosine. Inhibiting CD73 
blocks the conversion of ATP/
ADP/AMP to adenosine

Phase I clinical study undertaken 
by Corvus Pharmaceuticals Inc. to 
test CPI-006, an anti-CD73 
monoclonal antibody tested as a 
single agent or in combination with 
pembrolizumab or CPI444 (A2A 
receptor antagonist) in patients with 
various solid tumors including 
pancreatic cancer (ClinicalTrials.
gov identifier: NCT03454451)

CD73 + PD-L1 Phase I clinical study by 
MedImmune/Astra Zeneca to 
investigate the efficacy of 
MEDI9447 (oleclumab), a 
therapeutic monoclonal antibody 
against CD73 given either as a 
single agent or in combination with 
MEDI4736 (durvalumab, anti- 
PD- L1) in patients with solid 
tumors including pancreatic cancer 
(ClinicalTrials.gov identifier: 
NCT02503774)

Anti-CD39 Cell surface-bound nucleoside 
dephosphorylase which converts 
ATP/ADP/AMP to adenosine. 
Inhibiting CD39 blocks the 
conversion of ATP/ADP/AMP 
to adenosine

Preclinical development of IPH52, 
a first-in-class therapeutic 
anti-CD39 monoclonal antibody at 
Innate Pharma, France

SCH-58261 Adenosine receptor antagonist, 
with very high selectivity for the 
A2A receptor. Blocks the uptake 
of adenosine molecules into the 
cell to activate a variety of 
anti-inflammatory pathways

Delivery of CAR-T cells harboring 
liposomal SCH-58261 improved 
anticancer immunotoxicity in vivo 
(mouse model) (Siriwon et al., 
2018); SCH-58261 administration 
blocked A2A receptor activity and 
lead to delay in tumor progression 
in a mouse model of HNSCC (Ma 
et al., 2017). No clinical trials in 
patients with pancreatic cancer 
have been reported as of 2018

CPI-444 Adenosine receptor antagonist, 
with very high selectivity for the 
A2A receptor. Blocks the uptake 
of adenosine molecules into the 
cell to activate a variety of 
anti-inflammatory pathways

Phase I clinical study undertaken 
by Corvus Pharmaceuticals Inc. to 
test CPI-444 alongside CPI-006 
(anti-CD73) in patients with solid 
tumors including pancreatic cancer 
(ClinicalTrials.gov identifier: 
NCT03454451)

Bruton tyrosine 
kinase (BTK)

Ibrutinib Blocks BTK activity and 
downstream anti-inflammatory 
effects in tumor-associated 
macrophages as well as 
pro-tumor B-cell populations to 
promote effective antitumor 
T-cell responses in the TME

Phase I/II clinical study currently 
underway, investigating ibrutinib 
alongside gemcitabine and 
nab-paclitaxel in patients with 
pancreatic ductal adenocarcinoma 
at UCSF (ClinicalTrials.gov 
identifier: NCT02562898)

(continued)
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Table 10.1 (continued)

Target Therapeutic agents Description Status
Phase II study currently underway 
in patients with pancreatic 
neuroendocrine tumors (pNETs) by 
H. Lee Moffitt Cancer Center and 
Research Institute Collaborator and 
Pharmacyclics LLC. Pharmacyclics 
is also carrying out a phase II/III 
study using the same drug 
combinations in patients with 
metastatic PDAC (study name: 
RESOLVE) (ClinicalTrials.gov 
identifier: NCT02436668)

BTK + PD-L1 A phase I/II study sponsored by 
Pharmacyclics is currently 
underway investigating the clinical 
efficacy of ibrutinib with or without 
MEDI4736 (durvalumab, anti- 
PD- L1) in patients with refractory 
solid tumors including pancreatic 
cancer (ClinicalTrials.gov 
identifier: NCT02403271)

Phosphoinositide- 
3- kinase gamma 
(PI3Kγ)

TG100-115 Blocks the activity of PI3Kγ 
which reverses the anti- 
inflammatory properties of 
tumor-associate macrophages

Preclinical studies in a mouse 
model of PDAC showed improved 
survival (Gunderson et al., 2016), 
while antitumor activity of the drug 
has also been validated in breast 
cancer cells (Song et al., 2017). No 
clinical trials in patients with 
pancreatic cancer have been 
reported as of 2018

PI3Kδ INCB050465 Blocks the activity of PI3Kδ 
which reverses the anti- 
inflammatory properties of 
tumor-associate macrophages

Phase I clinical trial undertaken by 
Incyte Corp. to assess the efficacy 
of INCB050465 in combination 
with pembrolizumab in patients 
with advanced solid tumors 
including pancreatic cancer for 
inducing potent antitumor immune 
responses in the TME 
(ClinicalTrials.gov Identifier: 
NCT02646748)

Cancer vaccine GVAX (with 
cyclophosphamide 
+/− anti-PD-1)

Tumor cell heterologously 
expressing GM-CSF which has 
undergone clinical testing in 
patients with pancreatic cancer

Phase I/II clinical trial at Sidney 
Kimmel Comprehensive Cancer 
Centre (Johns Hopkins University) 
to assess the combination of 
cyclophosphamide with GVAX in 
the presence or absence of 
nivolumab to induce 
immunological changes in the TME 
and to achieve improved clinical 
efficacy in patients with pancreatic 
cancer (ClinicalTrials.gov 
Identifier: NCT02451982)

(continued)
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10.5  Concluding Note

Given that a sizeable component of current 
research in pancreatic cancer therapy focusses on 
modulating immune responses in the TME, learn-
ing from other disease modalities, therefore, 
becomes very useful. This also applies to expand-
ing our current knowledge on B cells and their 
role in orchestrating clinically relevant immune 
responses in the TME.  A very recent article 
describes how CRISPR technology can be used 
to manipulate tumor cells to start recognizing 
other cancerous cells in the primary and metasta-
sis TME as a threat and kills them [155]. Thus, it 
is even possible to turn cancer cells against them-
selves at the genetic level, which opens up addi-
tional possibilities to treat advanced 
malignancies.

References

 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre 
LA, Jemal A (2018) Global cancer statistics 2018: 
GLOBOCAN estimates of incidence and mortal-
ity worldwide for 36 cancers in 185 countries. CA 
Cancer J Clin 68(6):394–424

 2. McGuigan A, Kelly P, Turkington R, Jones C, 
Coleman H, McCain S (2018) Pancreatic cancer: a 
review of clinical diagnosis, epidemiology, treatment 
and outcomes. World J Gastroenterol 24(43):16

 3. Conroy T, Desseigne F, Ychou M, Bouche O, 
Guimbaud R, Becouarn Y et al (2011) FOLFIRINOX 
versus gemcitabine for metastatic pancreatic cancer. 
N Engl J Med 364(19):1817–1825

 4. Gourgou-Bourgade S, Bascoul-Mollevi C, 
Desseigne F, Ychou M, Bouche O, Guimbaud R 
et al (2013) Impact of FOLFIRINOX compared with 
gemcitabine on quality of life in patients with meta-
static pancreatic cancer: results from the PRODIGE 
4/ACCORD 11 randomized trial. J Clin Oncol 
31(1):23–29

Table 10.1 (continued)

Target Therapeutic agents Description Status
Chemokine 
antagonist

Olaptesed pegol 
(+/− anti-PD-1)

Olaptesed pegol blocks the 
activity of CXCL12, which is 
implicated in EMT egress (and 
metastasis) in the TME of 
pancreatic cancer. CXCL12 has 
also been shown to be important 
for B-cell development and 
colonization in the bone marrow 
[156]

Phase I/II clinical study by 
NOXXON Pharma AG (Germany) 
currently recruiting participants 
with pancreatic cancer to test for 
the activity of olaptesed pegol with 
and without pembrolizumab for 
improving antitumor responses in 
the TME (ClinicalTrials.gov 
Identifier: NCT03168139)

Focal adhesion 
kinase inhibitor

Defactinib Focal adhesion kinase (FAK) or 
protein tyrosine kinase 2 is 
necessary for pancreatic cancer 
cell proliferation and metastasis 
due to its role is activating cell 
adhesion signaling cascades

Phase I study at Washington 
University Medical School 
involving patients with pancreatic 
cancer assessing the activity of 
defactinib with gemcitabine and 
pembrolizumab to induce 
immunomodulation in the TME as 
well as cancer cell death 
(ClinicalTrials.gov Identifier: 
NCT02546531)

JAK1 inhibitor Itacitinib 
(INCB039110)

Selective inhibitor of the JAK1 
molecules which is imperative 
for IFN-γ signaling, but 
hyperactivation of this pathway 
also leads to immune exhaustion 
and cancer progression in solid 
tumors. May pose a risk of 
uncontrolled B-cell growth and 
cancerous transformation [157]

Phase I clinical trial undertaken by 
Incyte Corp. to assess the efficacy 
of itacitinib in combination with 
pembrolizumab in patients with 
advanced solid tumors including 
pancreatic cancer for inducing 
potent antitumor immune responses 
in the TME (ClinicalTrials.gov 
Identifier: NCT02646748)

10 B Cells in the Gastrointestinal Tumor Microenvironment with a Focus on Pancreatic Cancer…

http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov


190

 5. Von Hoff DD, Ramanathan RK, Borad MJ, Laheru 
DA, Smith LS, Wood TE et al (2011) Gemcitabine 
plus nab-paclitaxel is an active regimen in patients 
with advanced pancreatic cancer: a phase I/II trial. J 
Clin Oncol 29(34):4548–4554

 6. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, 
Infante J, Moore M et al (2013) Increased survival 
in pancreatic cancer with nab-paclitaxel plus gem-
citabine. N Engl J Med 369(18):1691–1703

 7. Zhang J, Wolfgang CL, Zheng L (2018) Precision 
immuno-oncology: prospects of individualized 
immunotherapy for pancreatic cancer. Cancers 
(Basel) 10(2):39

 8. Vennin C, Murphy KJ, Morton JP, Cox TR, Pajic 
M, Timpson P (2018) Reshaping the tumor stroma 
for treatment of pancreatic cancer. Gastroenterology 
154(4):820–838

 9. Dougan SK (2017) The pancreatic cancer microen-
vironment. Cancer J 23(6):321–325

 10. Chang AI, Schwertschkow AH, Nolta JA, Wu J 
(2015) Involvement of mesenchymal stem cells in 
cancer progression and metastases. Curr Cancer 
Drug Targets 15(2):88–98

 11. Gururajan M, Josson S, Chung LWK (2015) 
Targeting the tumor-stromal-immune cell axis. Onco 
Targets Ther 2(9):743–744

 12. Xie D, Xie K (2015) Pancreatic cancer stromal biol-
ogy and therapy. Genes Dis 2(2):133–143

 13. Mielgo A, Schmid MC (2013) Impact of tumour 
associated macrophages in pancreatic cancer. BMB 
Rep 46(3):131–138

 14. Yao X, Ahmadzadeh M, Lu YC, Liewehr DJ, Dudley 
ME, Liu F et al (2012) Levels of peripheral CD4(+)
FoxP3(+) regulatory T cells are negatively associ-
ated with clinical response to adoptive immunother-
apy of human cancer. Blood 119(24):5688–5696

 15. Perdicchio M, Ilarregui JM, Verstege MI, 
Cornelissen LA, Schetters ST, Engels S et al (2016) 
Sialic acid-modified antigens impose tolerance via 
inhibition of T-cell proliferation and de novo induc-
tion of regulatory T cells. Proc Natl Acad Sci U S A 
113(12):3329–3334

 16. Bassagañas S, Carvalho S, Dias AM, Pérez-Garay 
M, Ortiz MR, Figueras J et  al (2014) Pancreatic 
cancer cell glycosylation regulates cell adhesion and 
invasion through the modulation of α2β1 integrin 
and E-cadherin function. PLoS One 9(5):e98595

 17. Akasov R, Haq S, Haxho F, Samuel V, Burov SV, 
Markvicheva E et  al (2016) Sialylation transmog-
rifies human breast and pancreatic cancer cells 
into 3D multicellular tumor spheroids using cyclic 
RGD-peptide induced self-assembly. Oncotarget 
7(40):66119–66134

 18. Guo G, Marrero L, Rodriguez P, Del Valle L, Ochoa 
A, Cui Y (2013) Trp53 inactivation in the tumor 
microenvironment promotes tumor progression by 
expanding the immunosuppressive lymphoid-like 
stromal network. Cancer Res 73(6):1668–1675

 19. Lee J, Snyder ER, Liu Y, Gu X, Wang J, Flowers BM 
et al (2017) Reconstituting development of pancre-

atic intraepithelial neoplasia from primary human 
pancreas duct cells. Nat Commun 8:14686

 20. Qian ZR, Rubinson DA, Nowak JA, Morales- 
Oyarvide V, Dunne RF, Kozak MM et  al (2017) 
Association of alterations in main driver genes with 
outcomes of patients with resected pancreatic ductal 
adenocarcinoma. JAMA Oncol 4(3):e173420

 21. Huang D, Sun W, Zhou Y, Li P, Chen F, Chen H et al 
(2018) Mutations of key driver genes in colorec-
tal cancer progression and metastasis. Cancer 
Metastasis Rev 37(1):173–187

 22. Cui Y, Guo G (2016) Immunomodulatory func-
tion of the tumor suppressor p53  in host immune 
response and the tumor microenvironment. Int J 
Mol Sci 17(11):1942

 23. Zhang Y, Yan W, Collins MA, Bednar F, Rakshit S, 
Zetter BR et al (2013) Interleukin-6 is required for 
pancreatic cancer progression by promoting MAPK 
signaling activation and oxidative stress resistance. 
Cancer Res 73(20):6359–6374

 24. Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, 
Coffre M, Koralov SB et al (2016) IL35-producing 
B cells promote the development of pancreatic neo-
plasia. Cancer Discov 6(3):247–255

 25. Fujisawa T, Joshi B, Nakajima A, Puri RK (2009) A 
novel role of interleukin-13 receptor alpha2 in pan-
creatic cancer invasion and metastasis. Cancer Res 
69(22):8678–8685

 26. Liou GY, Bastea L, Fleming A, Doppler H, Edenfield 
BH, Dawson DW et al (2017) The presence of inter-
leukin- 13 at pancreatic ADM/PanIN lesions alters 
macrophage populations and mediates pancreatic 
tumorigenesis. Cell Rep 19(7):1322–1333

 27. Weissmueller S, Manchado E, Saborowski M, 
Morris JP, Wagenblast E, Davis CA et  al (2014) 
Mutant p53 drives pancreatic cancer metastasis 
through cell-autonomous PDGF receptor beta sig-
naling. Cell 157(2):382–394

 28. Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon 
JM, Meyer MA et  al (2016) Targeting focal adhe-
sion kinase renders pancreatic cancers responsive to 
checkpoint immunotherapy. Nat Med 22(8):851–860

 29. Muzumdar MD, Dorans KJ, Chung KM, Robbins R, 
Tammela T, Gocheva V et al (2016) Clonal dynamics 
following p53 loss of heterozygosity in Kras-driven 
cancers. Nat Commun 7:12685

 30. Collins MA, Bednar F, Zhang Y, Brisset JC, Galban 
S, Galban CJ et al (2012) Oncogenic Kras is required 
for both the initiation and maintenance of pancreatic 
cancer in mice. J Clin Invest 122(2):639–653

 31. Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W et  al 
(2017) Oncogenic KRAS targets MUC16/CA125 in 
pancreatic ductal adenocarcinoma. Mol Cancer Res 
15(2):201–212

 32. Liou GY, Doppler H, Necela B, Edenfield B, Zhang 
L, Dawson DW et al (2015) Mutant KRAS-induced 
expression of ICAM-1  in pancreatic acinar cells 
causes attraction of macrophages to expedite the 
formation of precancerous lesions. Cancer Discov 
5(1):52–63

D. Ligeiro et al.



191

 33. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin- 
Ordinas H, Hugo W, Hu-Lieskovan S et  al (2016) 
Mutations associated with acquired resistance 
to PD-1 blockade in melanoma. N Engl J Med 
375(9):819–829

 34. Gettinger S, Choi J, Hastings K, Truini A, Datar I, 
Sowell R et  al (2017) Impaired HLA Class I anti-
gen processing and presentation as a mechanism of 
acquired resistance to immune checkpoint inhibitors 
in lung cancer. Cancer Discov 7(12):1420–1435

 35. Syn NL, Teng MWL, Mok TSK, Soo RA (2017) 
De-novo and acquired resistance to immune check-
point targeting. Lancet Oncol 18(12):e731–ee41

 36. Koopman LA, van Der Slik AR, Giphart MJ, Fleuren 
GJ (1999) Human leukocyte antigen class I gene 
mutations in cervical cancer. J Natl Cancer Inst 
91(19):1669–1677

 37. Atkins D, Breuckmann A, Schmahl GE, Binner P, 
Ferrone S, Krummenauer F et al (2004) MHC class 
I antigen processing pathway defects, ras mutations 
and disease stage in colorectal carcinoma. Int J 
Cancer 109(2):265–273

 38. Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran 
E et  al (2014) PD-1 identifies the patient-specific 
CD8(+) tumor-reactive repertoire infiltrating human 
tumors. J Clin Invest 124(5):2246–2259

 39. Torres MJ, Ruiz-Cabello F, Skoudy A, Berrozpe G, 
Jimenez P, Serrano A et al (1996) Loss of an HLA 
haplotype in pancreas cancer tissue and its corre-
sponding tumor derived cell line. Tissue Antigens 
47(5):372–381

 40. Pandha H, Rigg A, John J, Lemoine N (2007) Loss 
of expression of antigen-presenting molecules in 
human pancreatic cancer and pancreatic cancer cell 
lines. Clin Exp Immunol 148(1):127–135

 41. Fruci D, Giacomini P, Nicotra MR, Forloni M, 
Fraioli R, Saveanu L et al (2008) Altered expression 
of endoplasmic reticulum aminopeptidases ERAP1 
and ERAP2  in transformed non-lymphoid human 
tissues. J Cell Physiol 216(3):742–749

 42. Meng Q, Liu Z, Rangelova E, Poiret T, Ambati A, 
Rane L et  al (2016) Expansion of tumor-reactive 
T cells from patients with pancreatic cancer. J 
Immunother 39(2):81–89

 43. Meng Q, Valentini D, Rao M, Maeurer M (2018) 
KRAS RENAISSANCE(S) in tumor infiltrating B 
cells in pancreatic cancer. Front Oncol 8:384

 44. Meng Q, Valentini D, Rao M, Moro CF, Paraschoudi 
G, Jager E et al (2019) Neoepitope targets of tumour- 
infiltrating lymphocytes from patients with pancre-
atic cancer. Br J Cancer 120(1):97–108

 45. Milne K, Kobel M, Kalloger SE, Barnes RO, Gao 
D, Gilks CB et  al (2009) Systematic analysis of 
immune infiltrates in high-grade serous ovarian 
cancer reveals CD20, FoxP3 and TIA-1 as positive 
prognostic factors. PLoS One 4(7):e6412

 46. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, 
Bremnes RM, Busund LT (2008) Prognostic effect 
of epithelial and stromal lymphocyte infiltration 

in non-small cell lung cancer. Clin Cancer Res 
14(16):5220–5227

 47. Dieu-Nosjean MC, Antoine M, Danel C, Heudes 
D, Wislez M, Poulot V et al (2008) Long-term sur-
vival for patients with non-small-cell lung cancer 
with intratumoral lymphoid structures. J Clin Oncol 
26(27):4410–4417

 48. Pretscher D, Distel LV, Grabenbauer GG, Wittlinger 
M, Buettner M, Niedobitek G (2009) Distribution of 
immune cells in head and neck cancer: CD8+ T-cells 
and CD20+ B-cells in metastatic lymph nodes are 
associated with favourable outcome in patients with 
oro- and hypopharyngeal carcinoma. BMC Cancer 
9:292

 49. Garg K, Maurer M, Griss J, Bruggen MC, Wolf IH, 
Wagner C et al (2016) Tumor-associated B cells in 
cutaneous primary melanoma and improved clinical 
outcome. Hum Pathol 54:157–164

 50. Suzuki A, Masuda A, Nagata H, Kameoka S, 
Kikawada Y, Yamakawa M et  al (2002) Mature 
dendritic cells make clusters with T cells in the 
invasive margin of colorectal carcinoma. J Pathol 
196(1):37–43

 51. Jackson PA, Green MA, Marks CG, King RJ, 
Hubbard R, Cook MG (1996) Lymphocyte sub-
set infiltration patterns and HLA antigen sta-
tus in colorectal carcinomas and adenomas. Gut 
38(1):85–89

 52. Castino GF, Cortese N, Capretti G, Serio S, Di Caro 
G, Mineri R et  al (2015) Spatial distribution of B 
cells predicts prognosis in human pancreatic adeno-
carcinoma. Oncoimmunology 5(4):e1085147

 53. Hennequin A, Derangere V, Boidot R, Apetoh L, 
Vincent J, Orry D et al (2016) Tumor infiltration by 
Tbet+ effector T cells and CD20+ B cells is associ-
ated with survival in gastric cancer patients. Onco 
Targets Ther 5(2):e1054598

 54. Sakimura C, Tanaka H, Okuno T, Hiramatsu S, 
Muguruma K, Hirakawa K et  al (2017) B cells in 
tertiary lymphoid structures are associated with 
favorable prognosis in gastric cancer. J Surg Res 
215:74–82

 55. Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh 
KA, Eruslanov EB et al (2017) Antigen-presenting 
intratumoral B cells affect CD4(+) TIL pheno-
types in non-small cell lung cancer patients. Cancer 
Immunol Res 5(10):898–907

 56. Chang JH, Jiang Y, Pillarisetty VG (2016) Role of 
immune cells in pancreatic cancer from bench to 
clinical application: an updated review. Medicine 
95(49):e5541

 57. Spear S, Candido JB, McDermott JR, Ghirelli C, 
Maniati E, Beers SA et al (2019) Discrepancies in 
the tumor microenvironment of spontaneous and 
orthotopic Murine models of pancreatic cancer 
uncover a new immunostimulatory phenotype for B 
cells. Front Immunol 10:542

 58. Lund FE (2008) Cytokine-producing B lymphocytes- 
key regulators of immunity. Curr Opin Immunol 
20(3):332–338

10 B Cells in the Gastrointestinal Tumor Microenvironment with a Focus on Pancreatic Cancer…



192

 59. Schlegel PM, Steiert I, Kotter I, Muller CA (2013) 
B cells contribute to heterogeneity of IL-17 produc-
ing cells in rheumatoid arthritis and healthy controls. 
PLoS One 8(12):e82580

 60. Wang K, Liu J, Li J (2018) IL-35-producing B cells 
in gastric cancer patients. Medicine (Baltimore) 
97(19):e0710

 61. Ettinger R, Sims GP, Fairhurst AM, Robbins R, da 
Silva YS, Spolski R et al (2005) IL-21 induces dif-
ferentiation of human naive and memory B cells 
into antibody-secreting plasma cells. J Immunol 
175(12):7867–7879

 62. Diehl SA, Schmidlin H, Nagasawa M, Blom B, Spits 
H (2012) IL-6 triggers IL-21 production by human 
CD4+ T cells to drive STAT3-dependent plasma 
cell differentiation in B cells. Immunol Cell Biol 
90(8):802–811

 63. Li Y, Bleakley M, Yee C (2005) IL-21 influences 
the frequency, phenotype, and affinity of the 
antigen-specific CD8 T cell response. J Immunol 
175(4):2261–2269

 64. Liu S, Lizée G, Lou Y, Liu C, Overwijk WW, Wang 
G et  al (2007) IL-21 synergizes with IL-7 to aug-
ment expansion and anti-tumor function of cytotoxic 
T cells. Int Immunol 19(10):1213–1221

 65. Frohlich A, Kisielow J, Schmitz I, Freigang S, 
Shamshiev AT, Weber J et  al (2009) IL-21R 
on T cells is critical for sustained functional-
ity and control of chronic viral infection. Science 
324(5934):1576–1580

 66. Nish SA, Schenten D, Wunderlich FT, Pope SD, Gao 
Y, Hoshi N et al (2014) T cell-intrinsic role of IL-6 
signaling in primary and memory responses. eLife 
3:e01949

 67. Holmer R, Goumas FA, Waetzig GH, Rose-John 
S, Kalthoff H (2014) Interleukin-6: a villain in the 
drama of pancreatic cancer development and progres-
sion. Hepatobiliary Pancreat Dis Int 13(4):371–380

 68. Kumar V (2013) Adenosine as an endogenous 
immunoregulator in cancer pathogenesis: where to 
go? Purinergic Signal 9(2):145–165

 69. Mahamed DA, Toussaint LE, Bynoe MS (2015) 
CD73-generated adenosine is critical for immune 
regulation during Toxoplasma gondii infection. 
Infect Immun 83(2):721–729

 70. Dong K, Gao Z-W, Zhang H-Z (2016) The role of 
adenosinergic pathway in human autoimmune dis-
eases. Immunol Res 64(5):1133–1141

 71. Andersson O, Adams Bruce A, Yoo D, Ellis Gregory 
C, Gut P, Anderson Ryan M et al (2012) Adenosine 
signaling promotes regeneration of pancreatic β cells 
in vivo. Cell Metab 15(6):885–894

 72. Csóka B, Törő G, Vindeirinho J, Varga ZV, Koscsó 
B, Németh ZH et  al (2017) A2A adenosine recep-
tors control pancreatic dysfunction in high-fat-diet- 
induced obesity. FASEB J 31(11):4985–4997

 73. Antonioli L, Hasko G, Fornai M, Colucci R, 
Blandizzi C (2014) Adenosine pathway and can-
cer: where do we go from here? Expert Opin Ther 
Targets 18(9):973–977

 74. Saze Z, Schuler PJ, Hong CS, Cheng D, Jackson 
EK, Whiteside TL (2013) Adenosine production by 
human B cells and B cell-mediated suppression of 
activated T cells. Blood 122(1):9–18

 75. Ziebart A, Huber U, Jeske S, Laban S, Doescher J, 
Hoffmann TK et al (2017) The influence of chemo-
therapy on adenosine-producing B cells in patients 
with head and neck squamous cell carcinoma. 
Oncotarget 9(5):5834–5847

 76. Zhao Y, Shen M, Feng Y, He R, Xu X, Xie Y et al 
(2017) Regulatory B cells induced by pancreatic 
cancer cell-derived interleukin-18 promote immune 
tolerance via the PD-1/PD-L1 pathway. Oncotarget 
9(19):14803–14814

 77. Xiao X, Lao XM, Chen MM, Liu RX, Wei Y, Ouyang 
FZ et al (2016) PD-1hi identifies a novel regulatory 
B-cell population in human hepatoma that promotes 
disease progression. Cancer Discov 6(5):546–559

 78. Okoye IS, Coomes SM, Pelly VS, Czieso S, 
Papayannopoulos V, Tolmachova T et  al (2014) 
MicroRNA-containing T-regulatory-cell-derived 
exosomes suppress pathogenic T helper 1 cells. 
Immunity 41(1):89–103

 79. Jiang S, Yan W, Wang SE, Baltimore D (2018) Let-7 
suppresses B cell activation through restricting 
the availability of necessary nutrients. Cell Metab 
27(2):393–403.e4

 80. Shevchenko I, Karakhanova S, Soltek S, Link J, 
Bayry J, Werner J et al (2013) Low-dose gemcitabine 
depletes regulatory T cells and improves survival in 
the orthotopic Panc02 model of pancreatic cancer. 
Int J Cancer 133(1):98–107

 81. Beyer M, Kochanek M, Darabi K, Popov A, Jensen 
M, Endl E et al (2005) Reduced frequencies and sup-
pressive function of CD4+CD25hi regulatory T cells 
in patients with chronic lymphocytic leukemia after 
therapy with fludarabine. Blood 106(6):2018–2025

 82. Zhao J, Cao Y, Lei Z, Yang Z, Zhang B, Huang B 
(2010) Selective depletion of CD4+CD25+Foxp3+ 
regulatory T cells by low-dose cyclophosphamide 
is explained by reduced intracellular ATP levels. 
Cancer Res 70(12):4850–4858

 83. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, 
Pluzanska A, Szczylik C et  al (2012) Multipeptide 
immune response to cancer vaccine IMA901 after 
single-dose cyclophosphamide associates with lon-
ger patient survival. Nat Med 18(8):1254–1261

 84. Zhan T, Ambrosi G, Wandmacher AM, Rauscher B, 
Betge J, Rindtorff N et  al (2019) MEK inhibitors 
activate Wnt signalling and induce stem cell plastic-
ity in colorectal cancer. Nat Commun 10(1):2197

 85. Somasundaram R, Zhang G, Fukunaga-Kalabis M, 
Perego M, Krepler C, Xu X et  al (2017) Tumor- 
associated B-cells induce tumor heterogeneity and 
therapy resistance. Nat Commun 8(1):607

 86. Mutgan AC, Besikcioglu HE, Wang S, Friess H, 
Ceyhan GO, Demir IE (2018) Insulin/IGF-driven 
cancer cell-stroma crosstalk as a novel therapeutic 
target in pancreatic cancer. Mol Cancer 17(1):66

D. Ligeiro et al.



193

 87. Nelson BH (2010) CD20+ B cells: the other 
tumor-infiltrating lymphocytes. J Immunol 
185(9):4977–4982

 88. Scanlan MJ, Chen YT, Williamson B, Gure AO, 
Stockert E, Gordan JD et al (1998) Characterization 
of human colon cancer antigens recognized by autol-
ogous antibodies. Int J Cancer 76(5):652–658

 89. Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, 
Teng KWW et al (2018) Bystander CD8(+) T cells 
are abundant and phenotypically distinct in human 
tumour infiltrates. Nature 557(7706):575–579

 90. Whiteside SK, Snook JP, Williams MA, Weis JJ 
(2018) Bystander T cells: a balancing act of friends 
and foes. Trends Immunol 39(12):1021–1035

 91. Seluk L, Taliansky A, Yonath H, Gilburd B, Amital 
H, Shoenfeld Y et al (2018) A large screen for para-
neoplastic neurological autoantibodies; diagnosis 
and predictive values. Clin Immunol 199:29–36

 92. Wennhold K, Thelen M, Schlosser HA, Haustein 
N, Reuter S, Garcia-Marquez M et al (2017) Using 
antigen-specific B cells to combine antibody and T 
cell-based cancer immunotherapy. Cancer Immunol 
Res 5(9):730–743

 93. Meng Q, Valentini D, Rao M, Dodoo E, Maeurer M 
(2018) CMV and EBV targets recognized by tumor- 
infiltrating B lymphocytes in pancreatic cancer and 
brain tumors. Sci Rep 8(1):17079–17089

 94. Erkes DA, Smith CJ, Wilski NA, Caldeira-Dantas S, 
Mohgbeli T, Snyder CM (2017) Virus-specific CD8+ 
T cells infiltrate melanoma lesions and retain func-
tion independently of PD-1 expression. J Immunol 
198(7):2979–2988

 95. Suyama T, Fukuda Y, Soda H, Ogawara D, Iwasaki 
K, Hara T et  al (2018) Successful treatment with 
nivolumab for lung cancer with low expression of 
PD-L1 and prominent tumor-infiltrating B cells and 
immunoglobulin G. Thorac Cancer 9(6):750–753

 96. Ahmadzadeh M, Pasetto A, Jia L, Deniger DC, 
Stevanović S, Robbins PF et  al (2019) Tumor- 
infiltrating human CD4+ regulatory T cells display a 
distinct TCR repertoire and exhibit tumor and neo-
antigen reactivity. Sci Immunol 4(31):eaao4310

 97. Rao M, Zhenjiang L, Meng Q, Sinclair G, Dodoo 
E, Maeurer M (2018) Mutant epitopes in cancer. In: 
Zitvogel L, Kroemer G (eds) Oncoimmunology: a 
practical guide for cancer immunotherapy. Springer 
International Publishing, Cham, pp 41–67

 98. Rao M, Valentini D, Dodoo E, Zumla A, Maeurer 
M (2017) Anti-PD-1/PD-L1 therapy for infectious 
diseases: learning from the cancer paradigm. Int J 
Infect Dis 56:221–228

 99. Marin-Acevedo JA, Soyano AE, Dholaria B, 
Knutson KL, Lou Y (2018) Cancer immunotherapy 
beyond immune checkpoint inhibitors. J Hematol 
Oncol 11(1):8

 100. Varn FS, Wang Y, Cheng C (2018) A B cell-derived 
gene expression signature associates with an immu-
nologically active tumor microenvironment and 
response to immune checkpoint blockade therapy. 
Oncoimmunology 8(1):e1513440

 101. Das R, Bar N, Ferreira M, Newman AM, Zhang 
L, Bailur JK et al (2018) Early B cell changes pre-
dict autoimmunity following combination immune 
checkpoint blockade. J Clin Invest 128(2):715–720

 102. Griss J, Bauer W, Wagner C, Maurer-Granofszky 
M, Simon M, Chen M et  al (2019) B cells sus-
tain  inflammation and predict response to immune 
checkpoint blockade in human melanoma. bioRxiv 
478735

 103. Zhang Y, Gallastegui N, Rosenblatt JD (2015) 
Regulatory B cells in anti-tumor immunity. Int 
Immunol 27(10):521–530

 104. Petitprez F, de Reynies A, Keung EZ, Chen TW, Sun 
CM, Calderaro J et al (2020) B cells are associated 
with survival and immunotherapy response in sar-
coma. Nature 577(7791):556–560

 105. Birbrair A, Zhang T, Files DC, Mannava S, Smith T, 
Wang ZM et al (2014) Type-1 pericytes accumulate 
after tissue injury and produce collagen in an organ- 
dependent manner. Stem Cell Res Ther 5(6):122

 106. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson 
JD, Mintz A et al (2014) Type-2 pericytes participate 
in normal and tumoral angiogenesis. Am J Physiol 
Cell Physiol 307(1):C25–C38

 107. Sharonov GV, Serebrovskaya EO, Yuzhakova DV, 
Britanova OV, Chudakov DM (2020) B cells, plasma 
cells and antibody repertoires in the tumour micro-
environment. Nat Rev Immunol 20(5):294–307

 108. Lu Y, Zhao Q, Liao JY, Song E, Xia Q, Pan J et al 
(2020) Complement signals determine opposite 
effects of B cells in chemotherapy-induced immu-
nity. Cell 180(6):1081–97 e24

 109. Zhao X, Guan JL (2011) Focal adhesion kinase and 
its signaling pathways in cell migration and angio-
genesis. Adv Drug Deliv Rev 63(8):610–615

 110. Hirt UA, Waizenegger IC, Schweifer N, Haslinger 
C, Gerlach D, Braunger J et  al (2018) Efficacy of 
the highly selective focal adhesion kinase inhibi-
tor BI 853520  in adenocarcinoma xenograft mod-
els is linked to a mesenchymal tumor phenotype. 
Oncogenesis 7(2):21

 111. Kanteti R, Mirzapoiazova T, Riehm JJ, Dhanasingh 
I, Mambetsariev B, Wang J et al (2018) Focal adhe-
sion kinase a potential therapeutic target for pan-
creatic cancer and malignant pleural mesothelioma. 
Cancer Biol Ther 19(4):316–327

 112. Medicine USNLo. Focal adhesion kinase: 
U.S. National Library of Medicine; 2018. Available 
from: https://clinicaltrials.gov/ct2/results?cond=foc
al+adhesion+kinase&term=&cntry=&state=&city=
&dist=

 113. Park SY, Wolfram P, Canty K, Harley B, Nombela- 
Arrieta C, Pivarnik G et  al (2013) Focal adhesion 
kinase regulates the localization and retention of 
pro-B cells in bone marrow microenvironments. J 
Immunol 190(3):1094–1102

 114. Gopalakrishnan V, Spencer CN, Nezi L, Reuben 
A, Andrews MC, Karpinets TV et  al (2018) Gut 
microbiome modulates response to anti-PD-1 

10 B Cells in the Gastrointestinal Tumor Microenvironment with a Focus on Pancreatic Cancer…

https://clinicaltrials.gov/ct2/results?cond=focal+adhesion+kinase&term=&cntry=&state=&city=&dist
https://clinicaltrials.gov/ct2/results?cond=focal+adhesion+kinase&term=&cntry=&state=&city=&dist
https://clinicaltrials.gov/ct2/results?cond=focal+adhesion+kinase&term=&cntry=&state=&city=&dist


194

immunotherapy in melanoma patients. Science 
359(6371):97–103

 115. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, 
Alegre ML et al (2018) The commensal microbiome 
is associated with anti-PD-1 efficacy in metastatic 
melanoma patients. Science 359(6371):104–108

 116. Routy B, Le Chatelier E, Derosa L, Duong CPM, 
Alou MT, Daillere R et al (2018) Gut microbiome 
influences efficacy of PD-1-based immunotherapy 
against epithelial tumors. Science 359(6371):91–97

 117. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, 
Kurz E, Mishra A et al (2018) The pancreatic can-
cer microbiome promotes oncogenesis by induction 
of innate and adaptive immune suppression. Cancer 
Discov 8(4):403–416

 118. Archibugi L, Signoretti M, Capurso G (2018) The 
microbiome and pancreatic cancer: an evidence- 
based association? J Clin Gastroenterol 52(Suppl 
1)., Proceedings from the 9th probiotics, prebiotics 
and new foods, nutraceuticals and botanicals for 
nutrition & human and microbiota health meet-
ing, held in Rome, Italy from September 10 to 12, 
2017:S82–S85

 119. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs 
EJ, Gapstur SM et  al (2018) Human oral microbi-
ome and prospective risk for pancreatic cancer: a 
population-based nested case-control study. Gut 
67(1):120–127

 120. Aykut B, Pushalkar S, Chen R, Li Q, Abengozar 
R, Kim JI et al (2019) The fungal mycobiome pro-
motes pancreatic oncogenesis via activation of 
MBL. Nature 574(7777):264–267

 121. Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan 
M, Dong W et al (2019) Tumor microbiome diver-
sity and composition influence pancreatic cancer 
outcomes. Cell 178(4):795–806 e12

 122. Ruff WE, Dehner C, Kim WJ, Pagovich O, Aguiar 
CL, Yu AT et  al (2019) Pathogenic autoreactive T 
and B cells cross-react with mimotopes expressed by 
a common human gut commensal to trigger autoim-
munity. Cell Host Microbe 26(1):100–113.e8

 123. Jellusova J, Cato MH, Apgar JR, Ramezani-Rad 
P, Leung CR, Chen C et al (2017) Gsk3 is a meta-
bolic checkpoint regulator in B cells. Nat Immunol 
18(3):303–312

 124. Chan LN, Chen Z, Braas D, Lee J-W, Xiao G, Geng 
H et  al (2017) Metabolic gatekeeper function of 
B-lymphoid transcription factors. Nature 542:479

 125. Singhal A, Jie L, Kumar P, Hong GS, Leow MK, 
Paleja B et  al (2014) Metformin as adjunct antitu-
berculosis therapy. Sci Transl Med 6(263):263ra159

 126. Franchina DG, Grusdat M, Brenner D (2018) B-cell 
metabolic remodeling and cancer. Trends Cancer 
4(2):138–150

 127. Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell 
DA (2014) Adenosine-mono-phosphate-activated 
protein kinase-independent effects of metformin in 
T cells. PLoS One 9(9):e106710

 128. Smallwood HS, Duan S, Morfouace M, Rezinciuc 
S, Shulkin BL, Shelat A et al (2017) Targeting meta-

bolic reprogramming by influenza infection for ther-
apeutic intervention. Cell Rep 19(8):1640–1653

 129. Caro-Maldonado A, Wang R, Nichols AG, Kuraoka 
M, Milasta S, Sun LD et  al (2014) Metabolic 
reprogramming is required for antibody produc-
tion that is suppressed in anergic but exaggerated 
in chronically BAFF-exposed B cells. J Immunol 
192(8):3626–3636

 130. Doughty CA, Bleiman BF, Wagner DJ, Dufort FJ, 
Mataraza JM, Roberts MF et  al (2006) Antigen 
receptor–mediated changes in glucose metabo-
lism in B lymphocytes: role of phosphatidylinosi-
tol 3-kinase signaling in the glycolytic control of 
growth. Blood 107(11):4458–4465

 131. Cho SH, Raybuck AL, Stengel K, Wei M, Beck TC, 
Volanakis E et  al (2016) Germinal centre hypoxia 
and regulation of antibody qualities by a hypoxia 
response system. Nature 537:234

 132. Semenza GL (2010) HIF-1: upstream and down-
stream of cancer metabolism. Curr Opin Genet Dev 
20(1):51–56

 133. Gnjatic S, Nishikawa H, Jungbluth AA, Gure AO, 
Ritter G, Jager E et  al (2006) NY-ESO-1: review 
of an immunogenic tumor antigen. Adv Cancer Res 
95:1–30

 134. Odunsi K, Qian F, Matsuzaki J, Mhawech-Fauceglia 
P, Andrews C, Hoffman EW et al (2007) Vaccination 
with an NY-ESO-1 peptide of HLA class I/II 
specificities induces integrated humoral and T cell 
responses in ovarian cancer. Proc Natl Acad Sci U S 
A 104(31):12837–12842

 135. O'Hara M, Stashwick C, Haas AR, Tanyi JL 
(2016) Mesothelin as a target for chimeric antigen 
receptor-modified T cells as anticancer therapy. 
Immunotherapy 8(4):449–460

 136. Suh H, Pillai K, Morris DL (2017) Mucins in pan-
creatic cancer: biological role, implications in carci-
nogenesis and applications in diagnosis and therapy. 
Am J Cancer Res 7(6):1372–1383

 137. Néron S, Roy A, Dumont N (2012) Large-scale 
in  vitro expansion of polyclonal human switched- 
memory B lymphocytes. PLoS One 7(12):e51946

 138. Nicodemus CF (2015) Antibody-based immuno-
therapy of solid cancers: progress and possibilities. 
Immunotherapy 7(8):923–939

 139. Coronella JA, Spier C, Welch M, Trevor KT, Stopeck 
AT, Villar H et  al (2002) Antigen-driven oligoclo-
nal expansion of tumor-infiltrating B cells in infil-
trating ductal carcinoma of the breast. J Immunol 
169(4):1829–1836

 140. Li Q, Lao X, Pan Q, Ning N, Yet J, Xu Y et al (2011) 
Adoptive transfer of tumor reactive B cells confers 
host T-cell immunity and tumor regression. Clin 
Cancer Res 17(15):4987–4995

 141. Zhang J, Wang L (2019) The emerging world of 
TCR-T cell trials against cancer: a systematic 
review. Technology in Cancer Research & Treatment 
18:1533033819831068

D. Ligeiro et al.



195

 142. June CH, O’Connor RS, Kawalekar OU, Ghassemi 
S, Milone MC (2018) CAR T cell immunotherapy 
for human cancer. Science 359(6382):1361–1365

 143. Ichiki Y, Takenoyama M, Mizukami M, So T, 
Sugaya M, Yasuda M et  al (2004) Simultaneous 
cellular and humoral immune response against 
mutated p53 in a patient with lung cancer. J Immunol 
172(8):4844–4850

 144. Liu Z, Poiret T, Meng Q, Rao M, von Landenberg 
A, Schoutrop E et  al (2018) Epstein-Barr virus- 
and cytomegalovirus-specific immune response in 
patients with brain cancer. J Transl Med 16(1):182

 145. Lasota J, Kowalik A, Felisiak-Golabek A, Inaguma 
S, Wang ZF, Pieciak L et  al (2017) SP174, NRAS 
Q61R mutant-specific antibody, cross-reacts with 
KRAS Q61R mutant protein in colorectal carci-
noma. Arch Pathol Lab Med 141(4):564–568

 146. Shin SM, Choi DK, Jung K, Bae J, Kim JS, Park SW 
et  al (2017) Antibody targeting intracellular onco-
genic Ras mutants exerts anti-tumour effects after 
systemic administration. Nat Commun 8:15090

 147. Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen 
AV, Affara NI, Ruffell B et  al (2016) Bruton tyro-
sine kinase–dependent immune cell cross-talk drives 
pancreas cancer. Cancer Discov 6(3):270–285

 148. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, 
Gandhi V, Wierda WG et al (2012) The Bruton tyro-
sine kinase inhibitor PCI-32765 thwarts chronic 
lymphocytic leukemia cell survival and tissue hom-
ing in vitro and in vivo. Blood 119(5):1182–1189

 149. Song C, Bae Y, Jun J, Lee H, Kim ND, Lee KB et al 
(2017) Identification of TG100-115 as a new and 
potent TRPM7 kinase inhibitor, which suppresses 
breast cancer cell migration and invasion. Biochim 
Biophys Acta 1861(4):947–957

 150. Lee KE, Spata M, Bayne LJ, Buza EL, Durham AC, 
Allman D et  al (2016) Hif1a deletion reveals pro- 
neoplastic function of B cells in pancreatic neopla-
sia. Cancer Discov 6(3):256–269

 151. Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO 
(2009) A dominant, coordinated T regulatory cell- 
IgA response to the intestinal microbiota. Proc Natl 
Acad Sci U S A 106(46):19256–19261

 152. Kawamoto S, Tran TH, Maruya M, Suzuki K, Doi Y, 
Tsutsui Y et al (2012) The inhibitory receptor PD-1 
regulates IgA selection and bacterial composition in 
the gut. Science 336(6080):485–489

 153. Petta I, Fraussen J, Somers V, Kleinewietfeld M 
(2018) Interrelation of diet, gut microbiome, and 
autoantibody production. Front Immunol 9:439

 154. Pick R, He W, Chen C-S, Scheiermann C (2019) 
Time-of-day-dependent trafficking and function of 
leukocyte subsets. Trends Immunol 40(6):524–537

 155. Reinshagen C, Bhere D, Choi SH, Hutten S, 
Nesterenko I, Wakimoto H et  al (2018) CRISPR- 
enhanced engineering of therapy-sensitive cancer 
cells for self-targeting of primary and metastatic 
tumors. Sci Transl Med 10(449):eaao3240

 156. Nagasawa T (2007) The chemokine CXCL12 and 
regulation of HSC and B lymphocyte develop-
ment in the bone marrow niche. Adv Exp Med Biol 
602:69–75

 157. Porpaczy E, Tripolt S, Hoelbl-Kovacic A, Gisslinger 
B, Bago-Horvath Z, Casanova-Hevia E et al (2018) 
Aggressive B-cell lymphomas in patients with 
myelofibrosis receiving JAK1/2 inhibitor therapy. 
Blood 132(7):694–706. https://doi.org/10.1182/
blood-2017-10-810739

10 B Cells in the Gastrointestinal Tumor Microenvironment with a Focus on Pancreatic Cancer…

https://doi.org/10.1182/blood-2017-10-810739
https://doi.org/10.1182/blood-2017-10-810739


197© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2020 
A. Birbrair (ed.), Tumor Microenvironment, Advances in Experimental Medicine and Biology 1273, 
https://doi.org/10.1007/978-3-030-49270-0_11

Microglia in the Brain Tumor 
Microenvironment

Allison P. Cole, Eric Hoffmeyer, 
Senthilnath Lakshmana Chetty,  
Joselyn Cruz- Cruz, Forrest Hamrick, 
Osama Youssef, Samuel Cheshier, 
and Siddhartha S. Mitra

Abstract

Microglia are the brain resident phagocytes 
that act as the primary form of the immune 
defense in the central nervous system. These 
cells originate from primitive macrophages 
that arise from the yolk sac. Advances in 
imaging and single-cell RNA-seq technolo-
gies provided new insights into the complexity 
of microglia biology.

Microglia play an essential role in the brain 
development and maintenance of brain 
homeostasis. They are also crucial in injury 
repair in the central nervous system. The 
tumor microenvironment is complex and 

includes neoplastic cells as well as varieties of 
host and infiltrating immune cells. Microglia 
are part of the glioma microenvironment and 
play a critical part in initiating and maintain-
ing tumor growth and spread. Microglia can 
also act as effector cells in treatments against 
gliomas. In this chapter, we summarize the 
current knowledge of how and where microg-
lia are generated. We also discuss their func-
tions during brain development, injury repair, 
and homeostasis. Moreover, we discuss the 
role of microglia in the tumor microenviron-
ment of gliomas and highlight their therapeu-
tic implications.
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11.1  Introduction

Gliomas are a heterogeneous group of tumors 
(WHO Grade I–IV), including astrocytoma, oli-
godendroglioma, and ependymoma [40]. They 
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represent the most common brain tumor in adults, 
making up 30% of all Central Nervous System 
(CNS) neoplasms and more than 80% of malig-
nant CNS tumors [24]. The most common glioma 
in adults is Glioblastoma Multiforme (GBM), 
which is a highly aggressive tumor with a dismal 
prognosis. The current standard-of-care for adults 
with malignant glioma is maximal surgical resec-
tion, followed by radiation and occasionally che-
motherapy. With few available therapy options 
and little improvement in survival over the past 
several decades, this disease is in dire need of a 
new treatment paradigm.

In recent years, immunotherapy in the treat-
ment of CNS neoplasms has become a subject of 
great interest. The CNS is home to microglia, a 
resident intracerebral phagocyte critically 
involved in brain development, homeostasis, and 
response to injury and disease. Our understand-
ing of the origin, function, and phenotype of 
microglia has dramatically advanced in the past 
three decades. Because of these advances, it is 
now possible to study microglia in the context of 
brain tumor pathophysiology. In this chapter, we 
will provide a brief introduction to the origin and 
functions of microglia and subsequently discuss 
the role of microglia within the brain tumor 
microenvironment. Finally, we will examine the 
therapeutic potential of microglia as a target or 
effector cell in the treatment of glioma.

11.2  Embryological Origin, 
Development, and Function 
of Microglia

11.2.1  Origin and Development

The exact origin of microglia has remained a sub-
ject of debate since their discovery in 1919 by del 
Río Hortega. Microglia were initially thought to 
derive from the neuroectoderm, along with neu-
rons and other resident CNS cells that make up 
the brain parenchyma. When microglia were 
found to express distinctive macrophage antigens 
on their surface, an extracerebral hematopoietic 
origin was suggested [56]. In the 1990s, research-
ers posited that microglial progenitors arise from 
the mesodermal tissue in the yolk sac and migrate 

into the brain rudiment in rodents and humans [2, 
3]. In 2010, Ginhoux et al. provided conclusive 
evidence that these “microglial progenitors” are, 
in fact, primitive macrophages [23].

By E9.5, around the start of angiogenesis, 
these primitive macrophages surround the devel-
oping neuroepithelium and begin migrating into 
the neuroectoderm by E10.5. At this stage, imma-
ture, amoeboid microglia begin populating the 
cerebral cortex and white matter before migrat-
ing into the telencephalon [49]. These amoeboid 
microglia are highly active and proliferative, 
expressing Ki67 and Runx1, a transcription fac-
tor involved in myeloid lineage differentiation 
[67]. Mature, ramified microglia can be observed 
throughout the fetal brain parenchyma by E28, 
earlier than any other glial cell [51].

Though the origin of microglia from a singular 
source is widely accepted, the heterogeneity of 
microglia has led to further investigation into their 
ontogeny. It has been suggested that a Hoxb8+ 
subset of microglia are derived from the bone 
marrow of adult mice or during a “second wave” 
of hematopoiesis during development [14].

11.2.2  Function of Microglia Within 
the Developing Fetal 
and Postnatal Brain

The development and organization of the cere-
bral cortex during prenatal development is depen-
dent upon the proper balance between 
proliferation and inhibition of growth: too many 
neural precursor cells and resulting cortical neu-
rons can have devastating effects. Microglia serve 
a vital role in this balance by regulating the num-
ber of precursor cells within the neural prolifera-
tive zones through phagocytosis. Importantly, 
evidence suggests that microglia not only phago-
cytose abnormal or apoptotic cells, but also via-
ble precursor cells [16].

Microglia also play a critical role in normal 
postnatal brain development. Microglia are 
actively involved in the formation of neuronal 
circuitry, primarily through pruning of extrane-
ous presynaptic material [71]. During a specific 
window of time in which synaptic creation and 
elimination are peaking, the complement cascade 
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proteins C1q and C3b are expressed on the sur-
face of developing synapses. As the only known 
CNS-resident cell with a receptor for activated 
C3 (C3b), microglia are the most likely phago-
cytes responding to opsonized C3b [64].

During the third postnatal week (P21), microg-
lia numbers begin to decline gradually and reach 
a population steady state by postnatal week six 
[52]. Using a multicolor “Microfetti” fate- 
mapping mouse model, Tay et al. concluded that 
every mature microglial cell is plastic and can 
divide to give rise to a clone [66]. Thus, the popu-
lation of microglia within the developed brain is 
self-sustaining and maintained by a precise bal-
ance of apoptosis and proliferation in the absence 
of injury or disease.

11.3  Characterization of Microglia

11.3.1  Homeostasis

In addition to the controversy surrounding the 
ontogeny of microglia, the phenotypic character-
ization of microglia has been a source of debate 
and conjecture. In order to study their unique 
physiological role, it is necessary to distinguish 
microglia from other antigen-presenting or CNS- 
resident cells. Early studies of microglia within the 
glioma microenvironment relied on surface pro-
teins, such as CD45, to eliminate non-immune 
cells and CD11b to further isolate dendritic cells. 
Other early studies relied on CD45low expression 
and cell morphology to distinguish microglia from 
other cells. However, these two characteristics are 
subject to change with disease and injury. Further, 
it is known that microglia within the tumor micro-
environment (TME) can upregulate CD45, further 
complicating its use in this context [6].

The first functional surface protein with 
reported expression on the surface of mature 
microglia was the fractalkine CX3CR1, which is 
necessary for neuron–microglia crosstalk [30]. 
Jung et al. subsequently established a transgenic 
mouse model for the study of microglia in which 
CX3CR1 was replaced with a reporter GFP gene 
[35]. The specificity of CX3CR1 expression in 
microglia was confirmed in a gene expression 
profile analysis across various phagocyte 

 populations [21]. TMEM119 is another promis-
ing microglia-specific surface marker. TMEM119 
may be particularly useful in studying microglia 
throughout development, as its expression is evi-
dent from early development through maturation 
[7]. A third microglia-specific surface marker, 
P2RY12, was identified through RNAseq and 
proteomics [11]. The presence of both TMEM119 
and P2RY12 has been confirmed in other tran-
scriptomic profiling studies [78].

Recent advances in single-cell RNA- 
sequencing has allowed for regional and tempo-
ral transcriptional-level characterization of 
microglia across both the human and mouse brain 
[44]. This technology has generated  a  tremen-
dously comprehensive profile of microglial 
regional heterogeneity in both healthy and dis-
eased human brain. In the healthy, homeostatic 
brain, TMEM119, P2RY13, CX3CR1, SLC2A5, 
and P2RY12 are the most enriched genes. The 
expression of these “core” genes changes in the 
setting of demyelination and neurodegeneration. 
Additional genes are often enriched depending 
on disease state, which may establish a disease- 
specific genetic signature.

11.3.2  Polarization

Peripheral blood-derived macrophages are often 
characterized by their state of polarization. 
M1macrophages are considered “pro- 
inflammatory,” while M2macrophages are consid-
ered anti-inflammatory and are involved in tissue 
healing [48]. This dichotomy may be an oversim-
plification of actual macrophage activity in vivo, 
which likely exists as a complex spectrum. 
However, this M1/M2 nomenclature is widely uti-
lized to describe macrophage behavior [75].

The existence of a similar polarization state or 
activity spectrum in microglia in vivo is contro-
versial [60]. Based upon this a priori definition of 
activated macrophage classification, multiple 
studies have similarly attempted to categorize 
microglia into this dichotomous relationship. 
However, in-depth transcriptomic analyses of 
microglia have failed to prove this relationship 
in  vivo [72]. Such investigations have revealed 
that microglia are incredibly diverse. This con-
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clusion should come as no surprise given their 
complex range of functions within an ever- 
changing microenvironment across the lifespan.

11.4  Function of Microglia

11.4.1  Homeostasis

In 2005, two landmark studies provided conclu-
sive proof of active microglia within the homeo-
static adult brain [17, 53]. Thanks to technological 
advances in microscopy allowing for intravital 
imaging, interactions between microglia and 
other CNS-resident cells within their native envi-
ronment could be visualized for the first time. 
This imaging modality revealed highly active 
“resting” microglia, perpetually surveying their 
environment by extending their long processes. 
Microglia can detect minute changes within their 
microenvironment due to the presence of diverse 
signaling receptors for both endogenous and 
exogenous insults. After a threat is detected, 
microglia react through phagocytosis or produc-
tion of inflammatory and trophic factors [19]. 
This response, while necessary for the protection 
of the CNS, can also lead to aberrant effects.

The adult brain has two sites of continued 
neurogenesis: the subgranular zone (SGZ) of the 
dentate nucleus found in the hippocampus and in 
the olfactory bulb. Within the SGZ, the majority 
of quiescent neural progenitor cells (NPCs) that 
become activated die as neuroblasts before 
becoming immature neurons. Apoptotic cells and 
debris are phagocytosed by unchallenged microg-
lia within this niche. In this setting, microglia do 
not need to be “activated,” as has been reported in 
other conditions. These microglia maintain their 
high phagocytic efficiency in the presence of 
inflammatory conditions and in spite of decreased 
neurogenesis due to age [63].

11.4.2  Injury

An in-depth discussion of microglia’s role in dis-
eases outside of brain tumors is beyond the scope 
of this chapter; however, the inclusion of some 

background information is warranted. In the set-
ting of brain tumors, injury occurs during tumor 
growth and radiation therapy-induced inflamma-
tion. Both processes elicit changes within the 
brain that promote activation and chemotaxis of 
microglia.

Microglia are primarily directed to sites of 
injury to the blood-brain barrier (BBB) by stimu-
lation of P2Y G-protein coupled receptors. Upon 
P2Y receptor stimulation by extracellular ATP, 
ADP, or UTP, microglia rapidly converge at the 
site of injury and begin proliferating [17]. In 
addition to stimulating the motility of microglia, 
ATP can induce microglial production of IL1β, 
TNF-α, and plasminogen [31]. Clopidogrel was 
administered in a mouse model to inhibit 
P2YR12. As a result, chemotaxis of microglia to 
sites of BBB injury and subsequent closure of the 
defect were greatly impaired [39].

Neuroinflammation is a significant complica-
tion resulting from radiation therapy for glioma 
[26]. In response to irradiation, it has been 
reported that microglia begin secreting cytotoxic 
and proinflammatory factors, including IL-6, 
TNF-α, and PGE2 [33]. PGE2 release by microg-
lia has been suggested to significantly contribute 
to inflammation and reactive gliosis following 
irradiation. Irradiation-induced changes to the 
BBB further attract microglia, which bolster the 
proinflammatory milieu. While this inflammation 
can be pharmacologically mitigated by the use of 
COX-2 inhibitors, potentially positive neuropro-
tective functions of microglia are also stifled.

11.5  Microglia Within the Tumor 
Microenvironment

In 1925, Wilder Penfield published the first 
description of microglia in the context of glioma. 
Penfield, who studied the development and 
behavior of microglia under del Rio-Hortega, 
suggested that microglia within the TME play a 
significant role in extracellular matrix (ECM) 
remodeling and the destruction of by-products 
from this process [55]. It was not until much later 
that this ECM-remodeling role of microglia was 
suggested to be pro-tumorigenic and not merely a 

A. P. Cole et al.



201

reaction to tissue injury. In 2002, Bettinger et al. 
published a study in which Boyden chambers 
were used to study the effect of microglia on gli-
oma cell migration in vitro [8]. They found that 
in the presence of microglia or microglia- 
conditioned media, glioma cells exhibited up to a 
threefold increase in motility (Fig. 11.1).

11.5.1  Immune-Suppression 
and Evasion

Increased prostaglandin synthases and upstream 
enzyme cyclooxygenase-2 (COX-2) have been 
reported in a variety of malignancies, including 
glioma [47]. COX-2 is an inducible enzyme 
involved in the conversion of arachidonic acid to 
prostaglandins (PGE1 and PGE2). COX-2 upreg-
ulation in gliomas is associated with more aggres-
sive tumors and a worse prognosis [62]. PGE2 
blocks the activation of T cells by inhibiting T 
cell–dendritic cell interactions [73]. Glioma cells 
are known to release PGE2. However, when 
glioma- released soluble factors are present, 
microglia may release a more significant quantity 
of PGE2 [50]. In addition to inhibition of T-cell 

activation, PGE2 production is associated with 
TNF downregulation, which is a potential mech-
anism of decreased TRAIL-mediated apoptosis 
in glioma cells [29].

Fas-Fas ligand (FasL) may also play a role in 
the microglia-induced immunosuppressive envi-
ronment of gliomas [5]. Some level of FasL 
expression is seen in neurons, astrocytes, and 
microglia in homeostatic and pathological con-
ditions, perhaps as a protective mechanism 
against inflammation. Upregulation of FasL on 
the surface of tumor-associated microglia leads 
to apoptosis of FasL-expressing T cells. 
Supporting this hypothesis, when FasL expres-
sion was inhibited in a murine model of glioma, 
leukocyte infiltration into tumors increased up to 
threefold.

In addition to its involvement in ECM 
remodeling, discussed below, TLR2 plays a 
role in glioma immune evasion. In a murine 
model of glioma, TLR2 was reported to cause 
downregulation of MHC Class II expression 
on microglia [59]. This decreases the antigen-
presenting capabilities of microglia, limiting 
the role of CD4+ T cells in antitumor 
immunity.

Fig. 11.1 The complex interplay between brain-resident 
microglia and tumor cells is highlighted by this very 
simplified schematic. Brain microglia and infiltrating 
peripheral macrophages are reprogrammed or re-edu-
cated to produce growth factors that increase glioma cell 
proliferation, attenuate glioma cell apoptosis, and pro-
mote tumor cell migration. Chemokines produced by 
glioma cells actively recruit resident microglia from the 
brain, as well as macrophages from the blood, through 

binding to their cognate receptors. In addition, glioma 
cells either intrinsically produce proteins that increase 
cytokine release and induce extensive ECM remodeling 
or can co-opt glioma- associated microglia to do the 
same. Extensive remodeling of the ECM is not restricted 
to physical alteration of the tissue microenvironment but 
also induce immune suppression by blocking the infiltra-
tion of T cells and inducing apoptosis of Fas-L-
expressing T cells
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11.5.2  ECM Remodeling

Microglia secrete a variety of factors to increase 
their motility, which is necessary to their role as 
resident surveyors of the CNS. In the setting of 
glioma, this increase in motility comes at a cost. 
Glioma cells exploit ECM remodeling, which is 
necessary to allow microglia to survey their envi-
ronment and migrate toward threats.

TGF-β1, which is necessary for microglial 
development and activation, also promotes gli-
oma invasiveness and progression. In a syngeneic 
mouse glioma model, high levels of TGF-β1 pro-
duction by TAMs caused an increase in MMP-9 
production by CD133+ glioma “stem-like cells” 
(GSLCs). This paracrine stimulation via the 
TGFBR2 pathway is thought to be the direct 
cause of glioma invasiveness into surrounding 
parenchyma [76]. Another modulator of MMP-9, 
STI1 (stress inducible protein 1), is also upregu-
lated in the TME and its increase is associated 
with disease progression [13].

Another proinflammatory cytokine, IL-6, has 
been implicated as a protumorigenic signal in the 
TME of gliomas. IL-6 secretion by microglia/
TAMs is induced by interaction with CD133+ 
GSLCs and acts as a mitogen for GSLCs [18]. 
The exact pathway by which this occurs is the 
subject of debate, with in vitro evidence suggest-
ing TLR4 or CCR2 as the key mediator of this 
pathway [18, 77].

TLR2 has also been implicated as a mediator 
of microglia–glioma interactions [68]. TLR2 
stimulation ex vivo leads to MT1-MMP upregu-
lation in microglia, presumably leading to remod-
eling of the ECM and further invasion of glioma 
cells in vivo. The importance of TLR2 in glioma 
pathobiology was further confirmed in a 
TLR2-KO mouse model in which TLR2-KO 
mice showed smaller tumors and better survival 
than those in WT mice. A vicious cycle of TLR–
glioma interactions has been posited in which 
microglia expressing TLR2 are stimulated by 
glioma-released factors (e.g. HMGB1, HSPs, 
hyaluronan) and microglia increase ECM remod-
eling by TLR2-induced MT1-MMP upregula-
tion. This ECM remodeling further amplifies 
TLR2 signaling, thereby advancing glioma inva-

sion and expansion [68]. When the MT1-MMP 
pathway is inhibited in vivo, glioma cell growth 
and invasion are attenuated [43]. This MT1- 
MMP upregulation in mouse microglia was not 
observed in human microglia; instead, MT3- 
MMP serves an analogous role in the human gli-
oma microenvironment [54].

11.5.3  Microglia and Pericytes

Pericytes are multifunctional cells that wrap 
around endothelial cells lining the microvascula-
ture of tumors, as well as normal capillaries and 
venules. These cells serve a multitude of essential 
blood vessel functions, including regulation of 
flow, clearance of cellular debris via phagocyto-
sis, and help in the maturation and stabilization 
of the endothelial cells. Pericytes interact with 
blood vessel-associated cells via paracrine sig-
naling and direct cell-to-cell membrane interac-
tions. Pericytes play an essential role in 
maintaining the blood–brain barrier (BBB) dur-
ing homeostasis and disease, and have unique 
functions within the CNS [4].

Pericytes have recently been classified into 
two subtypes [9]. Both subtypes (Type-1 and 
Type-2) express the classical pericyte markers 
CD146/PDGFRβ/NG2, but only Type-2 express 
Nestin. Using a syngeneic model, Birbrair et al. 
found that only Type-2 pericytes participate in 
normal and tumor angiogenesis both in vivo and 
in vitro [10]. Additionally, cerebral host pericytes 
are actively recruited to the tumor site and par-
ticipate in vascular formation in a murine synge-
neic orthotopic model of glioma [65].

Depending upon disease states (e.g., tumor 
progression or radiation-induced injury) peri-
cytes can alter the activation state of microglia. 
In the setting of neuroinflammation, pericytes 
are stimulated by TNF-α and release proinflam-
matory factors, causing upregulation of iNOS 
and IL-1β in microglia [46]. Microglia in this 
setting are phagocytic and likely to be actively 
involved in tissue remodeling, which may also 
contribute to tumor invasion. Conversely, 
microglia can influence pericytes to promote 
tumor growth. Wallman et  al. recently demon-

A. P. Cole et al.



203

strated that M2-polarized microglia induced 
high expression of PDGFRβ expression in gli-
oma cells and stimulated their migratory capac-
ity [70]. They proposed that microglia–glioma 
cell-to-cell contact regulates PDGFRβ transcrip-
tion, affecting the known transcription factors 
promoting PDGFRβ transcription. The microg-
lial PDGFRβ expression results in a feed-for-
ward cycle of tissue remodeling, PDGF release, 
and chemotaxis of angiogenic pericytes and 
migratory glioma cells. In a mouse model of 
PDGFβ-drivenhigh-grade glioma, the vast 
majority of tumor pericytes were found in close 
association with microglia rather than in conju-
gation with perfused vessels [70]. Thus, microg-
lia act to actively recruit pericytes to the tumor 
microvasculature.

Interestingly, glioblastoma-associated peri-
cytes have also been observed to express signals 
associated with immune suppression, such as 
IL-10 and TGF-β [61]. These signals are associ-
ated with inactive microglia, thus reducing their 
ability to act as phagocytes. Recent evidence 
suggests that targeting pericytes in glioma 
improves response to therapy, either by increas-
ing drug permeability or by decreasing immune 
suppression [25]. Another study used an Ang-2/
VEGF bi-specific antibody to target tumor 
angiogenesis in GBM.  The authors observed 
increased survival and reprogramming of 
microglia and macrophages to an antitumor phe-
notype [36]. Collectively, these results suggest 
that reversing the immune-suppressive environ-
ment supported by pericytes is a promising treat-
ment strategy.

11.5.4  Microglia–Glioma Crosstalk

Glioma cells are thought to secrete a variety of 
factors that attract microglia/macrophages to the 
tumor site, among other downstream effects. One 
such factor released by glioma cells is CSF-1 
(M-CSF), a ligand of CSF-1R [37]. Glioma cells 
constitutively release CSF-1, which attracts 
TAMs to the tumor site and enhances TAM–gli-
oma crosstalk. CSF-1R is also necessary for 

maintenance of the steady-state microglia popu-
lation in adult mice [20]. In a preclinical murine 
model, inhibition of CSF-1R with the small mol-
ecule PLX3397 stopped glioma cells from invad-
ing the surrounding parenchyma, perhaps due to 
inhibition of microglia activation and prolifera-
tion [15].

The WNT/β-catenin pathway is important for 
gliomagenesis, and its expression correlates with 
disease progression [58]. Microglia express a 
variety of WNT receptors, including multiple 
FZDs and LRP6 [28]. Expression of WNT3a by 
glioma cells is thought to increase glioma–
microglia interactions. Matias et al. have demon-
strated that WNT3a stimulation of microglia 
induces their expression of ARG-1 and STI1 and 
pushes them toward an “M2-like” phenotype 
[45].

CXCL16, released by glioma cells, polarizes 
microglia and TAMs toward an “anti- 
inflammatory” phenotype in  vitro. The impor-
tance of the CXCL16/CXCR6 axis for tumor 
growth was confirmed in a syngeneic mouse 
model. GL261, a mouse glioma cell line, 
expresses both CXCL16 and CXCR6, with the 
highest expression on CD133+ cells. When 
GL261 tumor cells with a knockdown of CXCR6 
were engrafted in WT mice, a lower tumor vol-
ume was observed compared to mice engrafted 
with parental GL261 cells. Additionally, stimula-
tion of tumors with CXCL16 causes increased 
proliferation and invasion into surrounding 
parenchyma [38].

Within the tumor microenvironment, microg-
lia readily take up extracellular vesicles (EVs) 
released by glioma cells. These extracellular ves-
icles contain proteins, lipids, and nucleic acids, 
which, upon uptake into microglia, can serve as 
intercellular messengers [41]. Recent evidence 
suggests that microRNA (miRNA) contained in 
these vesicles may affect tumor-associated 
microglial transcription. Specifically, miR-21 is 
thought to downregulate Btg2, which is involved 
in the regulation of cell proliferation [1]. Btg2 
downregulation by miR-21 leads to increased 
microglia proliferation, which in turn increases 
glioma invasiveness.
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11.6  Therapeutic Implications

11.6.1  Microglia as a Therapeutic 
Target

The preclinical success of CSFR-1 inhibitor, 
PLX3397, set the stage for a clinical trial for the 
treatment of recurrent GBM. Although the treat-
ment was well tolerated and effectively crossed 
the BBB, no clinical response was seen 
(NCT01349036) [12]. In another Phase II trial 
(NCT01790503), PLX3397 was combined with 
temozolomide and radiation for the treatment of 
primary GBM. The complete results of this study 
have not been published, but the available pre-
liminary results do not suggest this treatment 
approach was effective.

Microglia suppression by minocycline was 
effective in reducing glioma growth and pro-
gression in preclinical murine models of glioma 
[43]. Minocycline may block expression of 
MT1- MMP, slowing ECM remodeling by 
microglia. However, this success was not repli-
cated when minocycline was used as an adju-
vant treatment in human clinical trials 
(NCT01580969, NCT02272270, and 
NCT02770378) [27]. This lack of translation is 
likely due to the involvement of MT3-MMP 
expression, rather than MT1-MMP, in human 
gliomas, which was discussed earlier in this 
chapter.

THIK-1, a constitutively active K+ channel on 
the surface of microglia, has recently been 
reported to regulate microglial motility, surveil-
lance, and IL-1β release [42]. IL-1β is known to 
be necessary for glioma angiogenesis and inva-
sion [69]. Pharmacological inhibition of THIK-1 
as a therapy in the treatment of glioma has been 
suggested [57]. Assessment of the efficacy of 
THIK-1 inhibition as a treatment strategy against 
glioma has thus far been limited by a lack of 
drugs targeting THIK-1 and the need for a better 
understanding of this pathway.

11.6.2  Microglia as an Effector Cell

One common mechanism of tumor cell immune 
evasion is the upregulation of CD47, which, 
upon binding to SIRPα on the phagocyte’s sur-
face, acts as an antiphagocytic “don’t eat me” 
signal [34]. This protective mechanism has been 
successfully abrogated in multiple in vivo stud-
ies by the treatment of tumors with an anti-CD47 
mAb [22, 32, 74]. Until recently, peripheral 
CCR2+macrophages were the only known effec-
tor cell of this treatment. Using a transgenic 
mouse model constitutively expressing RFP+ 
CCR2+ peripheral macrophages and GFP+ 
CX3CR1+ microglia, Hutter et al. showed for the 
first time that microglia are also potent media-
tors of the anti-CD47 response against an adult 
GBM xenograft [32]. Perhaps the most striking 
finding of this study was the strength of phago-
cytic response to anti- CD47 treatment even in 
mice with absent CCR2+peripheral  macro-
phages. With a lower inflammatory signature 
than activated peripheral macrophages, microg-
lia have promising therapeutic potential in the 
treatment of glioma.

11.7  Conclusion and Future 
Directions

Despite recent advances in understanding the 
ontogeny and physiology of microglia, many 
questions remain. By necessity, microglia pro-
mote ECM remodeling, a function that has been 
implicated as pro-tumorigenic. However, efforts 
to target this process to reduce tumor invasion 
have been unsuccessful in clinical trials, perhaps 
due to inter-species differences or heterogeneity 
of microglia. A recent in vivo study has shown 
microglia to be a promising effector cell in check-
point inhibitor therapy against GBM [32]. Future 
studies should aim to further characterize these 
microglia in order to fully exploit this potential.
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