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Abstract We briefly review the elastic properties of granular materials, as explored
in numerical studies of simple model materials by the “discrete element method”
(DEM). Elastic or quasielastic responses are obtained as stable contact networks
are probed with negligible friction effects. Elastic moduli, at the macroscopic scale,
or contact stiffnesses at the contact network scale, have very limited influence on
macroscopic constitutive laws ruling quasistatic deformation and inertial flow. The
elastic moduli nevertheless provide useful indirect information on internal variables
such as coordination and fabric. Singularities in the tensor of elastic moduli are
related to the proximity of failure in the microscopic sense (contact network) but not
in the macroscopic sense (yield condition). Elastic properties are also useful in the
characterization of the directional dependence of incremental stress-strain response,
a key ingredient in the identification of instabilities causing localization phenomena.

Keywords Granular materials · Elasticity · Elastoplasticity · Numerical
simulation

1 Introduction

Elasticity is often dealt with as an essential ingredient in mechanical models of
granular materials [1]. Micromechanical approaches classically involve contact
elasticity, combined with friction and viscous dissipation [2]. Macroscopic consti-
tutive laws for granular soils are often assumed in elastoplastic form [3–5], even
though the identification of the parameters of such laws might be delicate and
the truly elastic range of material behaviour is restricted to very small strains [6].
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Measurements of elastic moduli associated with a linear response to small load or
strain increments about well-equilibrated states of grain packs, under controlled
confining stress, have quite often been reported in the geomechanics or physics
literature, as obtained via static stress-strain relations [7–11], or dynamical means:
resonance modes [12–14], or sound propagation [7, 9–11, 14–18]. Those moduli, as
probed for typical strain increments of order 10−5 or 10−6, differ from the “elastic”
ingredients of constitutive laws [4, 6], which are used in practice for considerably
larger strains (say, of order 10−3 or 10−2).

Numerical simulation studies of model materials, using the “discrete element
method" (or DEM), like many experimental studies or modelling attempts, very
often investigate either the elastic moduli of equilibrated grain packs under pre-
scribed stresses [19, 20] or the solid material quasistatic rheology [21], thus
considering both strain domains separately. Furthermore, numerical studies of
elastic properties often focussed on isotropic states, and their sensitivity to the
proximity of a “jamming" threshold (transition to a solid-like material resisting
shear stress) [22–25], with considerably fewer investigations of anisotropic con-
figurations [26–28]. And, on the other hand, although quite a few DEM studies have
successfully explored the moderate to large strain regime associated with particle
rearrangements [29–31] with the “Contact Dynamics" method [32, 33], in which
grains are dealt with as perfectly rigid and contacts are devoid of elasticity, the
theoretical approach known as Granular Solid Hydrodynamics [34, 35] (evoked
in [1]) attributes a basic role to an elastic instability in the macroscopic material
yield.

It seems thus necessary to better explore and clarify the role of the elastic
ingredients of a granular model, and the connections between elastic moduli and
constitutive laws or internal material states.

The present paper proposes a contribution to these issues, based on an overview
of DEM studies [28, 36–42] of assemblies of spherical beads, with elasticity
and friction in their contacts, but devoid of cohesion. The model material and
computation methods are described in Sect. 2. The material is subjected to different
kinds of loads, and the resulting characteristic behaviours are briefly reviewed in
Sect. 3. We then turn to the connections between elastic properties and material
state and mechanical properties, first for isotropic and oedometric loading, in which
the stresses essentially vary in intensity, in Sect. 4; then for triaxial compression,
in which the direction of stresses and the internal state evolve towards failure and
plastic flow (Sect. 5). Sect. 6 is a report on some preliminary results in the modelling
of non-elastic strains. Some concluding remarks are given in the final part of the
chapter, Sect. 7.
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2 Model Material and Simulation Procedures

2.1 System and Contact Laws

Spherical beads of diameter a interact via elasticity and friction, with friction
coefficient μ = 0.3, supplemented by viscous dissipation in their contacts. Contact
elasticity, as in Ref. [36], is modelled with a simplified version of the Hertz-Mindlin
law [43]. Specifically, the normal force FN

ij in the contact between beads i and
j , the centres of which are located at ri and rj , depends on contact deflection
hij = a − ||rj − ri ||, as

FN
ij = Ẽ

√
a

3
h

3/2
ij , (1)

in which notation Ẽ = E/(1 − ν2) is introduced, combining the Young modulus E

and the Poisson ratio ν of the solid material within the beads. Equation (1) entails
that the normal stiffness expressing the response to small variations of deflection
|hij | in the contact varies as

KN
ij = Ẽ

√
a

2
|hij |1/2 = 31/3

2
Ẽ2/3a1/3

(
FN

ij

)1/3
. (2)

The tangential elastic force FT
ij [36, 42] is incrementally related to the relative

tangential displacement δuT
ij in the contact, by the stiffness coefficient KT , assumed

proportional to KN :

dFT
ij = KT

ij d
(
δuT

ij

)
, with KT

ij = 2 − 2ν

2 − ν
KN

ij . (3)

Tangential stiffness KT should be suitably rescaled whenever the normal elastic
force decreases, in order to avoid spurious elastic energy creation [36, 44].

The Coulomb condition enforces inequality ||FT
ij || ≤ μFN

ij . As explained
in [36, 45], contact forces also have to follow the general motion of the grain pair
(maintaining the objectivity of the model).

While all simulations use the elastic properties of glass, E = 70 GPa and
ν = 0.3, results, if expressed in dimensionless form, exactly apply to all materials
sharing the same dimensionless characteristics μ and ν. A normal viscous force is
added to the elastic-frictional one [36, 46], corresponding to a very low coefficient of
restitution in binary collisions. This viscous ingredient of contact interaction laws is
irrelevant in the simulation of quasistatic processes [2]. Most simulations are carried
out in samples of 4000 grains and results are averaged over several realizations.
Occasional tests with larger samples revealed no significant size effects.
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2.2 Loading Procedures

We consider cuboidal simulation cells and apply periodic boundary conditions in
all three directions, following the procedure of Refs. [36, 41, 47]. Cell dimensions
L1, L2, L3, parallel to the three axes of coordinates (to which correspond basis
unit vectors e1, e2, e3), may vary with prescribed strain rate, or gradually adjust to
ensure equilibrium under prescribed stresses. Denoting as σ1, σ2, σ3, the diagonal
stresses conjugate to strain components εα , 1 ≤ α ≤ 3, associated with changes
in dimensions Lα , we show results corresponding to isotropic compression (σ1 =
σ2 = σ3 = P ), to oedometric compression (in which σ1 and ε1 increase while L2,
L3 are maintained fixed—ε2 = ε3 = 0), and triaxial compression (increase of σ1
and ε1, while σ2 = σ3 are kept constant).

In both strain rate-controlled and stress-controlled simulations, inertial effects as
evaluated through the reduced strain rate or inertial number I [2] should remain low
enough. I is defined in terms of the mass m of a grain and characteristic stress σ as

I = ε̇

√
m

aσ
. (4)

I values are requested not to exceed some upper bound Imax: typically 10−3 in the
first preparation stage, in which a granular gas is compressed to form the initial solid
configuration; down to 10−4 or sometimes 10−6 in the subsequent quasistatic tests
on the solid material. Suitable values are those for which the final results of interest
no longer appreciably depend on strain rate.

Stresses are evaluated via the usual formula

σαβ = 1

V

⎡
⎣

N∑
i=1

mvα
i v

β
i +

∑
1≤i<j≤N

Fα
ij r

β
ij

⎤
⎦ , (5)

with a kinetic term (negligible except in the initial granular gas compression)
involving velocities vi of all N grains i within sample volume V , and a sum over
pairs of interacting grains i, j transmitting force Fij (from i to j ) in their contact,
rij denoting the “branch vector" pointing from the centre of i to the centre of j . As
a result of (5), the average pressure P = (σ1 + σ2 + σ3)/3 is simply connected to
the average normal force in the contacts as

P = zΦ〈FN 〉
πa2

, (6)

through the solid fraction Φ and the coordination number z. The dimensionless
stiffness number, defined as

κ =
(

Ẽ

P

)2/3

, (7)



Elasticity in Granular Materials 189

is such that the typical contact deflection h, relative to diameter a, is proportional to
κ−1 (κ would be defined as KN/aP with constant contact stiffness KN , for linear
contact elasticity). Using (6), the coefficient can be made explicit:

〈(h
a

)3/2〉2/3 =
(

3π

zΦ

)2/3

κ−1. (8)

2.3 Stiffness Matrices and Tensor of Elastic Moduli

Elastic moduli express the relations between small stress increments Δσ and small
strains ε, assuming the contact network, in equilibrium, behaves like a network

of elastic springs, with stiffnesses KN and KT varying from contact to contact
according to relations (2) and (3). This assumes that the effects of the mobilization
of friction, which implies a non-elastic contact behaviour, are macroscopically
negligible for small strain increments about the investigated equilibrium state,
which needs to be checked. Stiffness matrices and their structure are presented and
discussed in Refs. [36, 38, 48], and will not be detailed here.

At the macroscopic scale, in the oedometric and triaxial compressions considered
here, the granular material is transversely isotropic, i.e., invariant by rotation
about the major compression axis (index 1). The moduli are then defined by the
following macroscopic relation between stress increments and small strains about
an equilibrium prestressed state:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Δσ11

Δσ22

Δσ33

Δσ23

Δσ31

Δσ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C55 0
0 0 0 0 0 2C55

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

ε23

ε31

ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

Equation (9) uses the Voigt notation, in which Δσ and ε are written as 6-dimensional
vectors, and the elastic moduli form a second-rank tensor, denoted as C, with
corresponding indices, e.g., C11 for C1111, or C44 for C2323. Isotropy within the
transverse plane (2, 3) entails

C22 − C23 = 2C44. (10)

In the isotropic case, there are only two independent elastic coefficients, the bulk
modulus B and one shear modulus G, and the moduli written in Eq. (9) satisfy
C11 = C22 = B + 4G/3, C12 = C13 = C23 = B − 2G/3, C44 = C55 = G.
In anisotropic systems in which the tensor of elastic moduli has the transversely
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isotropic symmetry of (9), a bulk modulus can be defined from the variation of
average pressure with an applied, isotropic, volumetric strain, as

B = 1

9
(C11 + 4C12 + 2C22 + 2C23) . (11)

3 Stress-Strain Relations and Material State: DEM
Observations

This section provides a brief review of some basic features of material behaviour,
which are observed and studied by DEM simulations of model systems, outside
the elastic regime [37, 39, 40, 42]. Simulations are also used to correlate such
macroscopic observations to state variables characterizing the material on the
microscopic scale of the grains and the contact network.

3.1 Assembling Grains into Solid Packs

The first solid states are made under low stress on compressing granular gases to
equilibrium. By varying either the friction coefficient in the granular compression
stage (e.g., setting it to zero) or by mimicking numerically the effects of strong
vibrations in dense states, it is possible to produce

(i) very dense, highly coordinated states denoted as A in the isotropic compression
study, or DH (dense, high coordination number) in the oedometric compression
study;

(ii) very dense, poorly coordinated states, denoted as C (isotropic compression) or
DL (dense, low coordination) in the oedometric compression study;

(iii) looser states, referred to as D if isotropically compressed, or LL (loose with
low coordination) in the oedometric test study.

The solid fraction Φ in very dense samples (A, C, DH, DL), initially assembled
on setting the friction coefficient to zero, is the “random close packing" value
Φ � 0.64. The (rattler-corrected) coordination number z∗ of well-coordinated
samples (A, DH) is near 6, while it decreases to about 4.6 in poorly coordinated
ones. The rattlers, grain carrying no force, are very few in highly coordinated
systems, but comprise typically 10% of all grains in poorly coordinated ones.
Coordination number z becomes z∗ = z/(1 − x0) as rattlers are excluded from the
evaluation of the average number of contacts per grain. In addition (iv), intermediate
states B were created using a small friction coefficient in the assembling stage, with
ΦB � 0.628 and zB � 5.8—thus looser than C but better coordinated— to further
illustrate the independent variations of z and Φ in dense configurations.
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The samples that were prepared for oedometric compression were assembled
by isotropically or oedometrically compressing the initial granular gas, which
duplicates each initial state: DHi/DHo, DLi/DLo, LLi/LLo. The nature of the gas
compression does not significantly affect the density and the coordination number,
but of course “o” states are anisotropic from the start, while “i” ones gradually
become anisotropic in the oedometric compression process.

Finally, we also exploit a set of loose initial isotropic configurations, simply
denoted as “L", with Φ = 0.571 ± 0.005 and z∗ � 4.7, as obtained from
a compression cycle applied to initially wet beads, with a model of capillary
cohesion—the liquid menisci being removed in the final state [49].

3.2 Changing Stress Intensity: Isotropic and Oedometric
Compressions

We first discuss the elastic properties of systems subjected to large variations of
stress intensities, without or with comparatively little change in stress directions.

Density and Coordination

States A, B, C, D are isotropically compressed up to large values of confining
pressure P (100 MPa). The grains are assumed not to undergo any damage, despite
the very large stress levels involved in their contacts [37]. States DH, DL and
LL are similarly subjected to oedometric compressions, with σ1 reaching 30 MPa.
Such compression processes impose an increase of the solid fraction and of contact
deflections, and consequently strongly depend on contact elasticity, which sets the
scale of strains, determined by κ−1. As κ (defined with P in (7) for isotropic
compression, with σ1 for oedometric compression) decreases from order 104–105

down to κ ∼ 100 during compression, Φ typically increases by 2 to 5 × 10−2.
Meanwhile, coordination number z increases and rattler fraction x0 decreases, as
shown in Fig. 1, for the different systems subjected to oedometric compression. Note
however that the coordination number, if initially high (as for DHo and DHi), does
not increase monotonically with axial stress in oedometric compression.

Force Distribution and Friction Mobilization

The distribution of normal force values, regarded as characteristic of granular
disorder, has been quite extensively studied in equilibrated granular assemblies [50–
53]. It usually exhibits an exponential decrease of the probability density for large
force values, and its width tends to vary with coordination number, the wider the
smaller the contact density. Upon increasing the pressure in compressive loading,
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Fig. 1 Coordination number z (left graph) and rattler fraction x0 (right graph) versus axial stress
σ1, or κ−1, in oedometric compression of the different initial states (“DLo+" data pertain to DLo-
type sample with 13,500 grains instead of 4000, showing size independence)

the coordination number increases and the force distribution becomes correlatively
narrower [37, 54]. In the context of the estimation of stiffnesses and elastic moduli,
force distributions are usefully characterized by their reduced moments, defined as

Z(α) = 〈Fα
N 〉

〈FN 〉α . (12)

Thus the average contact stiffness, from Eq. (2), is related to Z(1/3), which varies
between 0.92 and 0.96 in the set of investigated bead packs. The width of the large
force wing of the distribution may be assessed, e.g., from the values of Z(2), which
vary between 1.45 and 1.65.

A related quantity (close to Z(5/3)) is useful to evaluate elastic energies from

contact forces. If rT N is the ratio
||FT||
FN

in any contact, and αT denotes the stiffness

ratio KT /KN (see Eqs. (2) and (3)), then we define

Z̃(5/3) = 〈F 5/3
N (1 + r2

T N

αT
)〉

〈FN 〉5/3
. (13)

Values of Z̃(5/3) are observed to vary between 1.1 and 1.4.
Friction mobilization is systematically larger in contacts carrying small normal

forces [36, 37], and, globally, larger in scarcely coordinated systems. In oedometric
compression, it is (surprisingly) larger in contacts with normal direction transverse
to the major compression axis [42].

Anisotropy

Anisotropy is introduced in the assembling stage in systems DHo, DLo, LLo, for
which the granular gas is assembled in solid form by oedometric compression. It
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is gained in the course of compression for initially isotropic systems DHi, DLi,
LLi or A to D. The simplest characteristics of anisotropy are the coefficients of
the distribution of unit normal vector orientations and the angular distribution of
normal force intensities. Defining angle θ between direction 1 and normal unit
vector n, with 0 ≤ θ ≤ π , the orientation distribution (or fabric) anisotropy is
conveniently expressed by the probability density function (p. d. f.) of cos θ = n1
over interval −1 ≤ n1 ≤ 1, p(n1). By construction, it is an even function (n and
−n are equivalent), constant with value 1/2 in an isotropic system. p(n1) might
be expanded in the series of Legendre polynomials, with only terms of even order.
Truncating the series after the term of order 4, one has

p(n1) = 1 + A2

(
3n2

1 − 1
)

+ A4

(
35n4

1 − 30n2
1 + 3

)
, (14)

in which coefficients are related to moments of the distribution: thus coefficient, A2,
given by

A2 = 15

4

(
〈n2

1〉 − 1

3

)
= 15

4

∫ 1

−1
p(n1)n

2
1dn1 − 5

4
, (15)

is directly related to the difference between the second moment and its isotropic
value, for which we introduce the notation

c̃2 = 〈n2
1〉 − 1

3
. (16)

Figure 2 shows that the distribution of contact orientations (normalized, using
P(|n1|) = 2p(n1), such that the integral from 0 to 1 equals unity) is well fitted
with relation (14), with coefficient A4 given by

A4 = 9

64

(
35〈n4

1〉 − 30〈n2
1〉 + 3

)
. (17)

Figure 3 shows the evolution of c̃2 in oedometric compression. We denote as
F(n) the average normal force amplitude for contacts with normal direction n,
normalized by the global average 〈FN 〉, such that its integral over the unit sphere,
Σ , weighed by the orientation distribution p(n), satisfies

∫

Σ

p(n)F(n)d2n = 1. (18)

Similarly to p(n), F , a function of |n1| may be expanded in a series of Legendre
polynomials. We define

f̃2 = 1

4π

∫

Σ

F(|n1|)n2
1d

2n − 1

3
, (19)
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100 kPa, and its representation with expansion (14), truncated after order 2 (solid line) or order
4 (dashed line)
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Fig. 3 Fabric anisotropy parameter c̃2 and force anisotropy parameter f̃2 versus axial stress σ1 or
κ−1 in oedometric compression of the different initial states

which vanishes in isotropic systems (Fig. 4).
Stress anisotropy in oedometric compression is characterized by the ratio of

lateral to axial stresses K0 = σ2/σ1 = σ3/σ1, traditionally referred to as the
coefficient of earth pressure at rest [55, 56]. Stress components relate, in good
approximation, to c̃2 and f̃2 [31, 41, 42, 57]. Ignoring the (very small) contribution
of tangential forces to principal stresses in oedometric compression, one obtains

K0 = 2 − 3(c̃2 + f̃2)

2 + 3(c̃2 + f̃2)
. (20)
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Fig. 5 Left: variations of solid fraction Φ in isotropic compression cycle for states A, B, C and
D. Right: variations of void ratio e (see Eq. (21)) in oedometric compression cycle for states LLo,
DLo and DHo

Unloading and Irreversibility

The increase in density under isotropic compression is, in appearance, very nearly
reversed and cancelled upon reducing the pressure back to its initial value, as shown
in Fig. 5. Remarkably, the small initial difference in solid fraction between states A
and C (the latter being very slightly less dense) survives a loading cycle in which the
pressure varies by 4 orders of magnitude. Only the looser state D exhibits a notable
density change. Similar observations are made in oedometric compression, in which
case, to conform to soil mechanics tradition, the void ratio, i.e.,

e = 1 − Φ

Φ
, (21)
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Fig. 6 Left: variations of rattler-corrected coordination number z∗ in isotropic compression cycle
for states A to D. Right: effects on z∗ of smaller pressure cycles in A systems, with load reversals
at 316.2 kPa, 3.162 MPa and 31.62 MPa, instead of 100 MPa
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Fig. 7 Left: variations of stress ratio K0 in oedometric compression cycle for states LLo, DLo and
DHo. Right: effect of 3 repeated cycles on K0 in state DLo

is plotted versus axial stress σ1 on a logarithmic scale in Fig. 5 (right). As in
the isotropic case, the small differences in initial densities are retrieved after a
compression cycle in which stresses vary by more than 3 orders of magnitude, and
a change in density is only notable in the loosest initial state (LLo).

Coordination numbers, on the other hand, do change over such a cycle, especially
in the initially highly coordinated systems, in which the number of contacts is
considerably decreased. This is shown in the isotropic compression case in Fig. 6.

Similar observations are made in oedometrically compressed systems, with
coordination numbers, if initially large, as in systems DHi and DHo, reduced to
smaller values the larger the loading cycle in terms of axial stress σ1. Furthermore,
this lack of reversibility is also extremely conspicuous for stress ratio K0, the
evolution of which on the unloading branch of the cycle, as shown in Fig. 7, is
quite different from the one on the loading branch. The effect of the oedometric
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loading cycle, in systems with small initial stress anisotropy (such as DHo, as
well as initially isotropic systems DHi, DLi, LLi) is such that the stresses become
larger in horizontal directions than along the compression axis, with K0 > 1, up
to about 1.5. This lack of reversibility rules out an elastic response in compression.
In view of the subsequent behaviour under repeated load cycles (see right graph
in Fig. 7), the unloading part of the cycle is also irreversible and anelastic. This
conclusion is apparently at odds with the elastic-plastic compression laws often
adopted in soil mechanics treatises, according to which the compression, both in
isotropic and oedometric cases, should be plastic (irreversible) for growing stress
levels but reversible and “elastic" on the unloading branch of the cycle, and as
long as the maximum loading level the maximum has known in the past (the
maximum pressure in isotropic compression), termed “preconsolidation stress",
is not exceeded. We attribute this discrepancy to the frequent grain breakage or
contact damage experienced by irregular sand grains under growing pressure, which
is ignored in the numerical model. Such phenomena naturally explain the strong
dissymmetry between loading and unloading, and are very likely to entail larger
irreversibilities than the ones observed in DEM with elastic-frictional grains without
damage in the contacts.

Another remarkable feature of the simulated isotropic or oedometric compres-
sion tests investigated in the model systems discussed here is the enduring memory
of the initial assembling procedure kept in the internal states of the different systems
despite the large increase of the applied stresses. The different initial configurations
do not approach the same state under large pressure or axial stress.

3.3 Changing Stress Direction: Triaxial Compression

Axisymmetric triaxial compression (Fig. 8) is the most classical mechanical test
probing the shear strength of a granular material in controlled stress conditions [6].
In the most frequent experimental configuration, as schematized in Fig. 8, it consists
in subjecting a cylindrical specimen, maintained under constant lateral pressure
σ2 = σ3 = P0, to a vertical stress σ1 gradually growing from initial value P0. The
principal stress values thus evolve from the initial isotropic state σ1 = σ2 = σ3 = P0
to growing values of deviator stress q = σ1 − σ3 = σ1 − σ2, maintaining the same
symmetry of revolution as in the oedometric test. Results of the triaxial compression
test are traditionally expressed as the dependence of deviator stress q = σ1 −σ3 and
of the volumetric strain εv = ε1 + ε2 + ε3 on the axial strain, εa = ε1. (For large
strains, keeping the simple definition of ε1, ε2, ε3 as relative length reductions along
the principal axes, open should use the definition εv = 1− (1−ε1)(1−ε2)(1−ε3)).
The growth of −εv , expressing material dilation, with εa is the dilatancy of the
granular material under deviatoric (shear) strain.
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Fig. 8 Left: schematic view of triaxial compression test. Right: aspect of deviatoric stress q (solid
line) and volumetric strain εv (thin dotted line) versus axial strain εa = ε1 for initially dense (upper
curves for both q and −εv) and loose (lower curves) states

Approach to the Critical State for Large Strains

A fundamental property of quasistatic granular mechanics is the existence of critical
states, attractor states approached by the material subjected to monotonically
growing strain, irrespective of the initial state. Thus under growing axial strain
εa in triaxial compression, the material achieves a certain deviator stress level, as
well as values of density and internal structure parameters, independent of its initial
preparation. As sketched in the second graph of Fig. 8, initially dense samples first
slightly contract, and then dilate. The deviator stress, in those systems, first grows,
then passes through a maximum (the “peak” deviator stress) and then decreases
to a plateau. In initially loose systems, both q and solid fraction Φ monotonically
increase to the same asymptotic values as in the dense case.

Lots of DEM studies were devoted to the investigation of the critical state
and characteristic internal state parameters approaching the corresponding critical
values [58–62]. Typical results [39] are shown in Figs. 9 and 10. Figure 9 shows
the evolution of deviator stress and solid fraction, both quantities approaching their
asymptotic critical values for εa ≥ 0.25, irrespective of their initial structure. The
approach of internal variables to specific critical values is visualized in Fig. 10. Note
that the same value c̃2 = 〈n2

1〉 − 1/3 � 0.07 for large strains is obtained in both
graphs, and thus for all three initial states A, D and L.

4 Elastic Properties in Isotropic or Oedometric Compression

We now turn to the investigation of elastic response in the case of the compression
tests of Sect. 3.2, either isotropic or oedometric, in which stresses mostly change in
intensity, over several decades.



Elasticity in Granular Materials 199

Fig. 9 Deviator stress q and solid fraction Φ versus axial strain εa in simulated triaxial tests
(P0 = 100 kPa or κ � 8000) carried out with initial states A, D and L
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Fig. 10 Left: evolution of coordination number z∗ and fabric parameters (here nz = n1) in dense
and medium dense systems A and D in triaxial compression test, versus εa . Right: increase of
anisotropy parameters c̃2 and f̃2 (see Eqs. (16) and (19)) in loose system L, versus normalized
deviator q/σ3

4.1 Moduli in Isotropic Compression

Under growing isotropic or oedometric load, contact stiffnesses (see Eqs. (2)
and (6)) scale as (zΦ)−1/3P 1/3, while the density of contacts is proportional to
zΦ, whence an expected scaling for elastic moduli C:

C ∼ (zΦ)2/3P 1/3. (22)
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Fig. 11 Bulk (left) and shear (right) moduli versus confining pressure on doubly logarithmic scale
in isotropic compression of states A, B, C, D. Line marked “KJ": fit through experimental data of
Ref. [9]

Fig. 12 Left: reduced bulk modulus br = B/(Ẽ2/3P 1/3), for systems A to D in compression
cycle, versus (zΦ)2/3. Right: same graph for reduced shear modulus gr = G/(Ẽ2/3P 1/3). Dotted
lines show Voigt predictions

Figure 11 shows the evolution of bulk and shear moduli, computed for a set of inter-
mediate equilibrium states, versus confining pressure in isotropically compressed
systems A to D (among which intermediate system B is less dense than C, with
ΦB � 0.625, but more coordinated, z∗

B � 5.8). It is immediately apparent that
moduli primarily depend on coordination number, as moduli in poorly coordinated
systems C and D, despite their different densities, nearly coincide, and significantly
differ from those in well-coordinated systems A and B. To some extent, this is
explained by the predicted scaling with (zΦ)2/3, since coordination number z

(from 4 to 6 at low pressure) differs more than solid fraction Φ (from 0.6 to
0.64 at low pressure) between the different preparation procedures. This scaling
is however imperfectly satisfied, as shown in Fig. 12. While the bulk modulus
approximately abides by the behaviour expected from (22), the shear modulus
increases significantly faster with z.
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4.2 Estimating Elastic Moduli

Voigt Estimates By analogy with elasticity of heterogeneous continuous media,
we refer as Voigt estimates to the approximate values of elastic moduli obtained
from the assumption of homogeneous strains, which in the case of a discrete
granular assembly amounts to assuming that grain centres move like the points of a
homogeneous elastic medium. As in the continuous case, it can be shown [38] that
the resulting estimated bulk and shear moduli are upper bounds to the true values. In
the isotropic case, one obtains (superscript V denotes Voigt estimates, and Z(1/3)

is defined in Eq. (12)):

BV = Z(1/3)

2

(
zΦẼ

3π

)2/3

P 1/3

GV = 6 + 9αT

10
BVoigt.

(23)

The Voigt estimates for the five moduli defined in Eq. (9) are obtained analogously.
Let us introduce notations fN = FN/〈FN 〉 for the normal contact force divided
by its average, αT = KT /KN = (2 − 2ν)/(2 − ν) (see Eq. (3)) for the ratio of
tangential to normal contact stiffnesses, and C0, for the following factor (involving
contact density and typical contact stiffness):

C0 = 34/3

2π2/3 (zΦ)2/3Ẽ2/3P 1/3. (24)

Then, defining the following averages for any coordinates α, β of unit normal vector
n,

Aα = 〈f 1/3
N n2

α〉; Bαβ = 〈f 1/3
N n2

αn2
β〉, (25)

Voigt estimates of elastic moduli read (no summation implied over repeated indices)

CV
αα = C0 [(1 − αT )Bαα + αT Aα] (1 ≤ α ≤ 3) (26)

CV
αβ = C0(1 − αT )Bαβ (1 ≤ α < β ≤ 3) (27)

CV
44 = C0

[
(1 − αT )B23 + 1

2
αT A3.

]
(28)

Optimal Voigt estimates of moduli involve [38, 63, 64] a common spin to all
particles, which vanishes if the strain tensor has common eigendirections with the
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fabric tensor F, defined as Fαβ = 〈nαnβ〉. In the present case of transverse isotropic
media this only affects shear modulus C55, resulting in formula

CV
55 = C0

[
(1 − αT )B12 + αT

A1A2

A1 + A2

]
. (29)

Relations (23) and (24) abide by the expected scaling (Eq. (22)). As to quantita-
tively estimating the values of moduli, Fig. 12 shows that, although B is only slightly
overestimated in isotropic systems, Voigt predictions of shear moduli can be much
larger than actual values for poorly coordinated systems. Turning to anisotropic,
oedometrically compressed systems, similar observations can be made: the bulk
modulus, as expressed in (11), is not sensitive to the varying degree of anisotropy
between the different states, and only distinguishes highly coordinated (DH) from
poorly coordinated (DL and LL) states, as shown in Fig. 13. As in the isotropic case,
the Voigt estimate BV only exceeds the true value of B by less than 15%. On the
other hand, as shown in the second plot of Fig. 13, the shear moduli are grossly
overestimated by the Voigt approximation, the more the lower the coordination
number, ratio GV/G reaching 3.5 in the worst case, state DLo under low axial stress.

Reuss Estimates Just like in elasticity of heterogeneous continua, it is possible
in principle to write down upper bounds to elastic compliances using trial values
of contact force increments balancing applied stress increments. Such trial forces
are, however, not known in general, except in the special case of stress increments
proportional to the preexisting stresses. One may then, as described in Ref. [38],
exploit the knowledge of the distribution of forces to write an estimate of one
specific elastic compliance, expressing the response to a change in stress intensity
for the same stress direction. Assuming transverse isotropy as in the oedometric or
triaxial compression tests, elements of the 3 × 3 upper left block of the compliance
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Fig. 13 Left: bulk modulus, as defined in Eq. (11), under oedometric compression cycle, versus
average pressure in different systems subjected to oedometric compression. Dashed line slopes:
1/3 (top), 0.4 (bottom). Right: ratio CV

44/C44 versus rattler-corrected coordination number z∗ in
oedometric compression
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matrix (the inverse to the matrix written in Eq. (9)) are usually defined in terms of
Young moduli E1, E2 and Poisson ratios ν12, ν23 as

M̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

E1

− ν12

E1

− ν12

E1− ν12

E1

1

E2

− ν23

E2− ν12

E1

− ν23

E2

1

E2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (30)

Specifically, in the transversely symmetric case, denoting as K0 the stress ratio as in
Sect. 3.2, a Reuss estimate might be written for the following compliance:

SP = 1 − 4ν12K0

E1
+ 2(1 − ν23)K

2
0

E2
, (31)

as [38, 41]

SR
P = 2

(
3π

zΦ

)2/3
Z̃(5/3)

Ẽ2/3P 1/3
. (32)

In the isotropic case 1/SR
P provides a lower bound to B, which only differs from BV,

as written in (23), by factors of order 1 related to the shape of the force distribution.
This explains the success of the Voigt approximation for the bulk modulus in
isotropic systems. In transversely isotropic ones, modulus B also turns out correctly
estimated (within 15%) in our results [28]: it appears to be nearly equal to the bulk
modulus of an isotropic system with the same coordination number. The error on SP

as predicted by the Reuss estimate is also of order 10% (16% in the worst case in
[28]). Meanwhile, errors in Voigt-estimated shear moduli (see Figs. 12 and 13) are
quite large, especially in poorly coordinated systems. Poisson ratios are also very
poorly predicted [28, 38].

More Sophisticated Approaches La Ragione and Jenkins [65], in the isotropic
case, designed an improved prediction scheme for elastic moduli, based on a self-
consistent approach to the fluctuations (ignored in the Voigt approach) of local grain
displacements about the average affine field, on the scale of a pair of contacting
grains. The resulting formulae are quite complex and have not been generalized to
anisotropic systems. They were observed to improve the prediction of shear moduli
to some extent, although still not accurately in systems with low coordination
number. The role of fluctuations was explored by numerical means [20, 66], with
investigations of the scale over which a similar self-consistent scheme should
become accurate [20].

The Singular Limit of Vanishing Force Indeterminacy The anomalously low
values of elastic moduli in poorly coordinated granular systems, as observed in
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numerical studies, have been related to the singular values of eigenfrequencies of
stiffness matrices [22, 67]. Both phenomena are controlled by the approach of a
state of vanishing force indeterminacy (or degree of hyperstaticity). Such a situation
occurs in packings of frictionless objects in the rigid limit (κ → ∞) [68], as often
studied in numerical simulations of spherical bead assemblies [22, 36, 69, 70]. It
was predicted in [24] that the singular moduli (the shear modulus in the isotropic
case) should vary proportionally to the degree of force indeterminacy as this limit is
approached. With frictionless beads, the degree of force indeterminacy H is directly
related to coordination number z∗, as

H = 1

2
n(1 − x0)(z

∗ − 6), (33)

in a system of n particles with rattler proportion x0 [68]. In the presence of friction,
one should in principle [36, 38] define a slightly corrected value of z∗, denoted as
z∗∗:

z∗∗ = z∗ + 2x2

3(1 − x0)
, (34)

where x2 is the proportion of 2-coordinated beads. The degree of force indetermi-
nacy is then given by

H = 3

2
n(1 − x0)(z

∗∗ − 4). (35)

x2 values raise to about 2.5% in configurations C and D discussed here, for which
z∗ on the order of 4.5 under low pressure still implies a notable force indeterminacy.
H = 0, in frictional systems, may be approached in simulations carried out in the
(unrealistic) limit of very large friction coefficient (μ → ∞) [25, 36].

The prediction G ∝ H/n is checked in Fig. 14, using a reduced shear modulus ga

obtained by dividing G by density and average contact stiffness. The vanishing of
shear modulus proportionally to the force indeterminacy is very well satisfied in the
frictionless case. With frictional beads, such a behaviour is retrieved in the infinite
friction case (state Z on the figure), and approached in some poorly coordinated
systems with a realistic value of μ. The linear fits through the data predict that
the shear modulus should vanish for z∗ = 6 for frictionless beads and z∗∗ = 4 for
frictional ones, and thus, from relations (33) and (35), for H = 0. The self-consistent
approach of La Ragione and Jenkins [65] does not capture this tendency. The results
on modulus C44 in oedometrically compressed systems shown in Fig. 13 exhibit a
similar vanishing tendency for the smallest values of z∗ (evidenced by the growth
of ratio CV

44/C44).
Studies of frictionless systems under low pressure (in the rigid limit of large

κ) [41, 71] reveal that, in general, all moduli tend to vanish with the degree of force
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Fig. 14 Reduced shear moduli ga versus corrected coordination number, in systems in isotropic
compression. Left: frictionless case. Right: frictional case, with poorly coordinated states C and
D, and state Z, assembled with infinite friction coefficient. z∗∗ defined from z∗ as in Eq. (34). Data
points marked “LRJ": prediction of the La Ragione-Jenkins scheme [65]. Dotted lines: linear fits

Fig. 15 Elastic moduli of nearly rigid frictionless bead packs under triaxial compression (σ1 ≥
σ2 = σ3) or extension (σ1 ≤ σ2 = σ3). Left: ratio of moduli to C11, for Hertzian (square dots)
or linear (round dots) contact elasticity. Continuous lines: behaviour predicted in Eqs. (36). Right:
dominant eigenvalue CI (data points) of tensor of elastic moduli, compared to Reuss prediction
(between dashed lines) with Hertzian (CH

I ) or linear (CL
I ) contact elasticity

indeterminacy, except the one (1/SP ) associated with a proportional increase of all
stress components, for which the Reuss estimate becomes exact [41] (see Fig. 15).

4.3 Anisotropy

The dominant feature in the variations of elastic moduli within the set of material
states obtained through different preparation methods and subsequently subjected
to oedometric compression is the role of coordination number—this is similar, as
explained above, to the behaviour of isotropic systems. We now turn to specific
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properties of transversely isotropic system, and briefly discuss the sensitivity of
elastic moduli to fabric and force anisotropy parameters.

In the extreme case of nearly isostatic frictionless bead assemblies in the rigid
limit [41], the one non-singular eigenvalue of the tensor of elastic moduli, playing
the role of bulk modulus B in the isotropic case, is 1/SP , all the others becoming
negligible in comparison. This implies the following relations between moduli:

C22

C11
�

(
σ33

σ11

)2

� C23

C11

C12

C11
� σ33

σ11
,

(36)

a behaviour clearly satisfied by the data shown in Fig. 15. Remarkably, these
relations, characteristic of a nearly singular tensor of moduli, with all eigenvalues
vanishing except one, still hold on replacing the Hertzian contact elasticity by a
linear unilateral law.

In the general case, assemblies of frictional beads under axisymmetric com-
pression (oedometric or triaxial) depart from the singular limit of vanishing force
indeterminacy, and their moduli, even though some are anomalously small (see
Fig. 13, right graph), are sensitive both to fabric anisotropy and, because from (2)
and (3), stiffnesses increase with forces, also to force anisotropy. The latter effect
should be smaller in systems with small force indeterminacy H, and it vanishes
for H = 0, as the force values are then determined by the sole contact network
geometry. Figure 16 shows the variations of the ratio of longitudinal moduli in
oedometrically assembled systems. The Voigt prediction is inaccurate for these
moduli, but it may provide a fair prediction of ratio C11/C22 for moderately

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

C
11
/C

22

LLo
DHo
DLo

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
11
/C

22
−
1

LLo
DHo
DLo

101 102 103 104

s1 (kPa)

10−4 10−3
k−1

101 102 103 104

s1 (kPa)

10−4 10−3
k−1

Fig. 16 Ratio, C11/C22, of longitudinal moduli in axial and lateral directions in oedometrically
compressed transversely isotropic systems, versus axial stress (or κ−1) in oedometric compression
for different initial states. Dashed lines show Voigt prediction in left graph, results for linear contact
elasticity in right graph



Elasticity in Granular Materials 207

−0.10 −0.05 0.00 0.05 0.10 0.15 −0.10 −0.05 0.00 0.05 0.10 0.15
c̃2

f̃ 2

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

C
11
/C

22

c̃2

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

f̃ 2

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

C
55
/C

44

Fig. 17 Ratios of moduli characterizing elastic anisotropy: C11/C22 (left) and C55/C44 (right),
with values encoded as colour intensity in c̃2, f̃2 plane

anisotropic, well-coordinated systems (DHo). However, it underestimates relative
difference C11/C22 − 1 by as much as 50% for large anisotropies (DLo) and/or
small coordination numbers (DLo and LLo). On computing the moduli with linear
contact elasticity, one keeps the effect of fabric anisotropy, but suppresses the one
of force anisotropy. The second graph of Fig. 16 shows that the effect of force
anisotropy, as expected, decreases for smaller force indeterminacies (in poorly
coordinated systems). Then the anisotropy of the moduli appears to be primarily due
to fabric anisotropy. This stronger effect of fabric, as opposed to force anisotropy,
is also apparent on plots of elastic anisotropy, as characterized by the ratios of
longitudinal moduli and of shear moduli, encoded as colour intensity, shown in
Fig. 17, versus both anisotropy parameters c̃2 and f̃2. While it is not obvious in
general to distinguish the effects of anisotropic fabric (c̃2) from those of anisotropic
forces (f̃2), given that both vary in a correlated way, it does appear that the rightmost
regions of the graphs contain lighter dots on going from top left towards the bottom
right direction, implying a larger effect of fabric in the most anisotropic cases. Given
that the Voigt approximation scheme, as shown in Fig. 16, proves again insufficient,
we do not have any quantitative means to relate the force network anisotropy to the
anisotropy of the tensor of elastic moduli. The results reported here nevertheless
indicate qualitative trends and attainable orders of magnitude for elastic anisotropy
among a series of states varying in density, coordination and initial fabric.

4.4 Anelasticity and Irreversibility: Elastic Range

We now compare the stresses (σ1 and σ2 = K0σ1) ) versus strain (εa = ε1) curves
to the elastic response about an equilibrium state along the oedometric curve. It
should be recalled that moduli are measured from stiffness matrices of contact
networks, built on assimilating all contacts to elastic elements (involving normal and
tangential stiffness constants, depending on the instantaneous value of the contact
force). To obtain non-singular, well behaved matrices the system has to be carefully
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Fig. 18 Ratio of elastic
moduli C12/C22 versus stress
ratio K0 in oedometric
compression (arrows
indicating growing stress) for
differently assembled
samples
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equilibrated, and it turns out, in practice, to suppress full friction mobilization in the
contacts: the Coulomb inequality, in all contacts, is satisfied in the strict form, and
no situation of incipient sliding is to be found anywhere in the contact network. If
the equilibration is carried out under constant applied stress from an intermediate
configuration reached along a strain rate-controlled compression path, it involves
then an additional creep strain interval (typically of order 10−5 in the conditions
of the simulations). Because of the role of friction in oedometric compression [42]
the evolution is not elastic. In particular, as clearly shown in Fig. 18, the stress ratio
K0 systematically differs from the moduli ratio C12/C11. A nearly constant value
of C12/C11, as in well-coordinated systems, over 3 decades of stress should imply
a constant K0 if the compression were elastic. A nearly constant K0, as for LLo
and DLo, should imply a constant C12/C11. This is contradicted by the results of
Fig. 18.

The small elastic response after equilibration is similar to the one observed in
experiments on sands [11, 72] after some creep strain (obtained by waiting a few
hours). Even though the experimental creep, likely due to microcreep on the grain
surfaces, as discussed, e.g., in Refs. [73, 74] and the numerical one (corresponding to
the approach to equilibrium of a system subjected to much higher strain rates than
in the laboratory) are of different physical origins, they entail similar effects: the
system subsequently responds quasielastically, and the initial anelastic stress-strain
curves are retrieved beyond a small strain domain. This is illustrated in Fig. 19.

The quasielastic domain, as identified in tests like the one of the first graph in
Fig. 19, from the interval of strain ε for which the stress increment Δσ differs from
the elastic prediction Cε by less than 5%, is observed to extend in the 10−6 or
10−5 range for the available data set, approximately growing with axial stress as
σ

2/3
1 . This power law corresponds to a constant relative stress increment Δσ1/σ1

for the quasielastic domain, assuming the modulus to grow as σ
1/3
1 . This trend is

apparent in Fig. 20. While oedometric unloading is sometimes regarded as elastic, it
is observed here to be associated with irreversible evolutions, and the stresses, upon
unloading, also depart from the elastic prediction after a strain interval larger than
in the forward loading direction, but still of order 10−5 or 10−4.
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5 Elastic Properties in Triaxial Compression

In many respects, the evolution of a granular material under triaxial compression,
as briefly described in Sect. 3.3, strongly differs from its evolution under the
isotropic or oedometric compressions of Sects. 3.2 and 4. The direction of the
stresses is changing, as opposed to their intensity. As the deviator level gradually
increases, macroscopic failure is approached, as the fabric and force distribution
in the rearranging contact network will prove unable to support the stresses. Such
a failure is gradual as the critical state is approached from an initially loose
configuration. It might be more sudden and catastrophic in initially dense systems,
which should be unstable in deviator stress-controlled compression as the peak
value is reached (other instabilities, associated with shear banding localisation, tend
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to occur before the peak [75–77]). Do elastic properties detect incipient material
failure (as speculated, e.g., in [34])? From the observations reported in the previous
sections on the nature of elastic response and the conditions in which elastic moduli
are measured, it transpires that the answer to this question should be negative. While
elastic moduli are attached to one particular contact network, material failure is
associated with the impossibility of rearranging the contact network in order to
support larger deviatoric stresses.

In this section, we quickly review some results on the elastic moduli and their
connections to internal state variables (Sect. 5.1), showing similar results as in
Sect. 4. Then we discuss the role of contact stiffness and contact deflections in
macroscopic strains (Sect. 5.2), and discuss the elastic or quasielastic range in
Sect. 5.3.

5.1 Moduli and Internal State Parameters

Comparing Figs. 10 and 3, it is noteworthy that parameters c̃2 and f̃2, characterizing
fabric and force anisotropy, reach similar values in triaxial compression of loose
systems evolving to the critical state and in some samples under oedometric
compression. Both L systems in triaxial compression and poorly coordinated ones
(types DL and LL) in the early stages of oedometric compression also share
similar coordination numbers (z∗ between 4.5 and 4.8). Quite unsurprisingly, similar
observations are also made on moduli in triaxial compression and under oedometric
loading, as shown in Fig. 21. The ratio of longitudinal moduli in the major principal
direction and in the transverse direction, C11/C22, grows along with anisotropy
parameters, reaching 2 as anisotropy is maximized (compare with Fig. 16). The
ratio CV

44/C44 of the Voigt estimate of the shear modulus in the transverse plane
to its exact value varies between 2 and 3, showing that C44 is anomalously low,
as previously observed in all systems with low coordination. In general, all Voigt
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estimates perform poorly, except the bulk modulus as defined in (11). The Reuss
estimate of compliance SP , as defined in (31), is also quite correct. And, just like
in the oedometric compression case, Voigt estimates also fail to predict ratios like
C11/C22 accurately. A similarly elastic anisotropy is observed in dense systems
(such as A and C, see Sect. 3.1), for which ratio C11/C22 grows from 1 to 2.5 in the
pre-peak range (i.e., for εa ≤ 0.02, see Fig. 9).

5.2 Elasticity and Stress-Strain Curves

An important difference between isotropic or oedometric compression (Sect. 3.2),
on the one hand, and triaxial compression (Sect. 3.3), on the other hand, is the
possibility to observe the evolution towards the characteristic behaviour of granular
assemblies under shear or triaxial compression with rigid grains, as in simulations
carried out with the Contact Dynamics method [31, 59]. It is indeed widely
accepted [2] that elastic deflections in contacts are irrelevant on the scale of the
strains (or order 10−2 or above) corresponding to the attainment of the peak stress
in the dense case or, a fortiori, to the approach to the critical state. Yet, at the
very beginning of the triaxial test, within the quasielastic range, strains are directly
related to contact deflections, resulting from material strain in the intergranular
contact regions at small scale. How the initial regime with strains associated
with contact deflections is replaced by the strains associated with rearrangements,
which no longer depend on contact stiffnesses, is worth investigating [78–81].
The difference between very dense initial states (type A of Sects. 3.1 and 4) with
coordination number near 6 under small pressure, on the one hand, and equally
dense systems with low coordination (type C) is particularly striking in the pre-
peak strain range, and relates to their different sensitivity to dimensionless stiffness
number κ . Figure 22 shows that the deviator stress and volumetric strain variations
with axial strain in A-type samples, assembled with a large coordination number,
strongly depend on stiffness level κ (or on confining stress P for given material
elasticity). In the elastic range, strains under given P should vary approximately as
P 2/3, due to the scaling of stiffnesses as P 1/3. Upon dividing strains by (P/P0)

2/3,
one should then renormalize the strains so that, if they are on the scale of elastic
strains, then the curve coincides with the ones obtained under reference confining
pressure P0. Once carried out in the second plot of Fig. 22 (choosing P0 = 100 kPa)
this rescaling operation leads to a successful collapse of the different curves onto a
single one, in a small initial strain range, within which ratio q/σ3 raises nearly up
to 1. Outside this initial interval (note the fast initial increase of the deviator), the
scaling is no longer satisfied.

On the other hand, in C-type systems, as shown in Fig. 23, on the scale of the
axial strain corresponding to the deviator peak, the deviator stress and volumetric
strain curves do not appear to depend strongly on stiffness level κ-except in some
initial range, hardly visible in the main plots Fig. 23, including the elastic range
shown in the insets. This regime should correspond to the very fast increase of q
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Fig. 22 Normalized deviator q/σ3 and volumetric strain −εv versus axial strain εa in triaxial
compression of A-type system with different values of initial isotropic pressure P = σ3, from
10 kPa (κ � 39,000) to 1 MPa (κ � 1800). Left: natural strains; right: rescaled strains, using
P0 = 100 kPa

Fig. 23 Normalized deviator q/σ3 (left) and volumetric strain −εv versus axial strain εa (right)
in triaxial compression of C-type system with different values of initial isotropic pressure P = σ3.
Insets show very small strain range, with straight line slopes equal to elastic prediction

(the part of the curve confused with the axis). The very different approach to the
peak deviator between A and C systems, with a much faster initial increase in case
A (for which the stiffness scales with the elastic stiffness), should be noted. For
σ3 = 100 kPa, q/σ3 = 1 is reached near εa = 4.10−4 or A, near 8.10−3 for C.
However, the value of the peak deviator is near q = 1.38 × σ3 in both systems (see
Fig. 9 for A). While the strain curves are strongly different in the first part of the
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pre-peak range, both systems A and C, which have the same initial density, exhibit
the same peak strength.

In Refs. [48, 80, 81] the strains due to varying contact deflections, characterizing
the response of A-type systems (in which the initial coordination number is very
high) as shown in Fig. 22, for q/σ3 ≤ 1, are termed “type I strains". Strains
stemming mainly from network breakage and rearrangement, occurring for higher
deviators in A samples, and dominating the response of poorly coordinated C
samples, as shown in Fig. 23, at least for q/σ3 ≥ 0.2, are referred to as “type
II strains". Type I strains, although their scale is determined by the elasticity
of the contact network, are not elastic, because of Coulomb friction. In a type
I strain regime, as long as the contact network does not break, a purely static
simulation method may be adopted instead of standard dynamical DEM. The contact
network is dealt with as a set of connected elastic springs and plastic sliders. Such
static methods [48, 78] are based on elastoplastic stiffness matrices, similarly to
finite element computations in elastoplastic problems of continuum mechanics, and
dispense with all dynamical ingredients of DEM computations, i.e., inertia and
viscous forces. Interesting examples and discussions of the applicability of such
approaches are to be found in papers by McNamara and coworkers [82–84]. If the
initial coordination number can be inferred from the values of elastic moduli, then
measurements of the initial, very small strain, quasielastic response could provide
useful information—extension of some type I strain regime—on the stress-strain
curves in the pre-peak strain interval.

5.3 Irreversibility and Anelasticity: Elastic Range

The irreversibility of the deviator stress variation in triaxial tests is a well-known
phenomenon, and its occurrence within the initial regime of type I strains is
illustrated in Fig. 24, showing that the unloading branches do not retrace the
loading curve back. The deviator stress on unloading will decrease to zero without
cancelling the accumulated axial strain, and the residual part of εa increases in
proportion with the amplitude of the deviator cycle. In Fig. 24, the results of a DEM
computation of the triaxial compression test without creation of new contacts are
also presented, showing its coincidence with the complete calculation in an initial
type I strain regime, observed as long as the initial contact network is able to support
the growing deviator stress. Note the different stress and strain scales on the two
graphs, highlighting the different behaviours according to coordination number (let
us recall that both initial states are isotropic, with the same density). Regime I (i.e.,
with type I strains) extends to about εa = 3.10−4 and q/σ3 = 0.9 in case A and
to nearly εa = 10−4 and q/σ3 = 0.15 in case C. It should also be noted that the
slope of the unloading curves coincides with the initial elastic modulus, showing
that friction mobilization, the physical origin of anelasticity and softening in the
forward loading direction, is suppressed in the initial stage of unloading (the change
of direction in volumetric strain curves on reversing the loading direction, more
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Fig. 24 Behaviour of dense systems upon load reversal (reversing of the sign of ε̇a) at different
stages within initial regime of type I strain in triaxial compression at constant lateral stress 100 kPa.
Left: high coordination number (A). Right: low coordination number (C). Thin dotted lines:
response on ignoring the creation of new contacts

obviously in the first graph, also tends to return to the initial quasielastic slope).
The elastic or quasielastic range was investigated in [38] for the isotropic state
at the beginning of such triaxial test, with results analogous to those of Figs. 20
and 19 (corresponding to oedometric compression): elastic ranges are of order 10−6

or 10−5, tend to grow like σ
2/3
3 , and correspond to relative deviator increases Δq/σ3

of the order of a few times 10−2.
One may also evaluate elastic properties along the triaxial loading curve, first

equilibrating the configuration under constant stresses, thereby causing small creep
motion and strain intervals, as shown in Fig. 25. The second graph in Fig. 25 shows
that, after equilibrating intermediate states along the triaxial loading curve, the
obtained contact networks respond quasielastically to very small stress or strain
increments in the forward loading direction, with an initial stiffness, upon resuming
the DEM-simulated triaxial compression, equal in good approximation to the one
evaluated in static computations using the contact elastic stiffness matrix. The
response in unloading (not shown here) exhibits a larger quasielastic interval.

5.4 Some Conclusions and Remarks

The correlations one may find between elastic moduli and internal variables in
configurations along the triaxial loading curve prove, as expected, quite similar
to the ones observed in oedometric compression (Sect. 4). As the material state
evolves towards the critical state, the coordination number quickly evolves (Fig. 10)
to a small value (z∗ ∼ 4.5 − 4.7 for σ3 = 100 kPa, or κ � 8400, not too far
from the rigid limit). This is similar, for the same range of average pressure, to
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Fig. 25 Left: equilibration after small creep strain interval (beginning and end marked by round
dots), followed by resumed strain rate-controlled loading. Right: deviator and volumetric strain
curves, on small scale, upon resuming loading from equilibrated configurations. Straight lines:
elastic response

z∗ values observed in states C, D, L, DL and LL, under isotropic or oedometric
compression, initially assembled as poorly coordinated. Elastic moduli exhibit the
specific properties observed in isotropic or oedometric loading: anomalously small
shear moduli, poor performance of Voigt approximation (see Figs. 12, 13, and 21).
Meanwhile, the force network anisotropy increases, reaching levels similar to the
ones observed in oedometric compression (see Figs. 3 and 10) whence a similar
anisotropy in the tensor of elastic moduli in triaxial as in oedometric compression
(see Figs. 16 and 21). The elastic moduli of the states reached along the triaxial
loading curve, as anticipated, do not show any sign of the material incipient yield.

One major difference between isotropic or oedometric compressions, up to very
large stresses, on the one hand, and triaxial compression, up to large strains and to
the critical state, on the other hand, is that the magnitude of strains, in the second
case, is such that the material gets strongly restructured. Elastic behaviour could be
expected in isotropic or oedometric compression, and the stress-strain relations may
seem reversible in such cases (Fig. 5). However, the evolution of internal variables
(see Fig. 6 for coordination numbers) and the behaviour of stress ratio K0 (Fig. 7)
clearly show that the response to such compression tests is inherently irreversible
and anelastic. On the other hand, one may expect the stress and strain curves in
a triaxial compression test to be completely insensitive to contact elasticity, as the
behaviour is dominated by the contact network rearrangements. This proves correct
for type II strains, but a regime characterized by type I strains, the scale of which is
set by the stiffness number κ . Such a regime is present in the beginning of a triaxial
compression from isotropically prepared initial packings, and tends to reappear
upon unloading, even in rearrangement regimes for which type II strains dominate
the material behaviour in forward loading [78].
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The existence of a small quasielastic regime in well-equilibrated numerical
configuration, once the material sample has acquired a stable contact network and
remaining vibrations have been damped out, appears to be a constant feature,
occurring even in configurations along the triaxial loading path close to the yield
limit. Even though the creep or shakedown stage observed before the quasielastic
behaviour is recorded has different causes in simulations and in laboratory exper-
iments, the phenomenon is similar. In this small range (sometimes called “elastic
bubble") about a well-stabilized equilibrium state, one observes an elastic response,
with a tensor of elastic moduli, endowed with all classical symmetries, expressing
the linear dependence of stress increments on strain increments; approximate for
finite increments, those stress-strain relations become very nearly exact in the
limit of small amplitudes. The slope of stress-strain curves, however, differs, as
shown in Fig. 25, before and after creep and full equilibration. Before creep, as the
material is being deformed at controlled ε̇a , due to contact sliding and/or continuous
network rearrangements, the stress-strain evolution is considerably softer than the
one observed right after equilibrium, upon resuming triaxial loading, when a stabler
contact network in which friction is not completely mobilized is being probed.
Investigating the full response to incremental stress probes is one way to clarify
such issues, as attempted in the 2D studies reported in the next section.

6 Some Investigations of Incremental Elastoplasticity

We report in this section on the investigations [85] of the effect of stress probes
incrementally applied to equilibrated granular materials, carried out in two-
dimensional (2D) disk samples, along the biaxial test loading trajectory. Similar
studies have been carried out by several groups [86, 87], with the objective, in
particular, of testing instability criteria based on incremental constitutive laws [75].
The study recalled here [85] was carried out with attention to the influence of initial
coordination number (as in the previous sections for 3D simulations), and stiffness
level. The biaxial test is similar to the triaxial test of Sect. 3.3, except that there
is only one transverse direction (labelled here with index 1) to the axial direction
(index 2), which is the major principal stress direction. The typical results of such
tests on samples of 5600 polydisperse disks (with a uniform distribution of radii
between Rmin and Rmax = 13Rmin/7) are shown in Fig. 26. Those biaxial tests are
carried out starting with isotropic systems under pressure P , under constant lateral
stress σ1 = P . The curves of Fig. 26, showing the variations of normalized deviator
stress q/P = (σ2 − σ1)/P and “volumetric” strain εv = 1 − (1 − ε1)(1 − ε2)

pertain to a dense, poorly coordinated sample analogous to 3D systems labelled
C in the previous sections. Along such curves, investigation points are chosen,
corresponding to different values of principal stress ratio ζ = σ2/σ1. In those
points, after equilibrating the system with good accuracy under the current values
of σ1, σ2, stress increments of growing amplitudes along different directions in
plane σ1, σ2 are applied, as indicated in Fig. 27 (16 different directions, 12 values
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Fig. 27 Applied stress increments (left), example of resulting elastic strain increments (right)

of the amplitude in this case), and the system carefully equilibrated after each
new increment. Adopting vector notations for stress and strain (three-dimensional,
symmetric tensors in 2D), the aim of such studies is the identification of direction-
dependent compliance tensors M such that the relation between increments δσ and
δε takes the form

δε = M
(

δσ

||δσ ||
)

· δσ . (37)



218 J.-N. Roux et al.

10

0

10

20

30

40

50

60

70 60 50 40 30 20 10 0 10
E
11,

P
11 (×106)

E 22
,

P 22
(×

10
6 )

ς = 1.8

elastic response

5

3

1

1

3

5

5 3 1 1 3 5

,ς = 1.2

-20

0

20

40

60

80

100

-140 -120 -100 -80 -60 -40 -20 0 20
E
11,

P
11 (×105)

E 22
,

P 22
(×

10
5 )

elastic response

Fig. 28 Decomposition of strain increments into elastic and plastic parts. Left: stress probes in
type I strain regime with ζ = 1.8 (main plot) or ζ = 1.2 (inset). Right: stress probes in type II
strain regime (ζ = 1.8)

Using the elastic compliance matrix, ME , associated with the contact network (ME

does not depend on the direction δσ
||δσ || of δσ in stress space) one may extract the

elastic part δεE = ME · δσ of the strain increment response. δεE is shown in

Fig. 27 for one particular investigation point. The elastic compliance tensor ME is
computed similarly to the 3D calculations of the previous sections, based on the
stiffness matrix of the contact network. The transformation of isotropically oriented
δσ values into an ellipse of δε values reflects the anisotropy of tensor ME . The

plastic (or anelastic) part of the strain increment is defined as δεP = δε − δεE . On
subtracting δεE from the total strain increment, a plastic component δεP is defined,
which, as apparent in Fig. 28, stays in a well-defined flow direction for all stress
increments δσ within the σ1, σ2 plane. According to the probed investigation point,
the relative importance of elastic and plastic strains varies considerably. The total
strain increment for a given deviator increase should become larger and larger as the
deviator curve softens. Consequently, as the elastic moduli remain of the same order
and the elastic strain does not increase, the strain gradually becomes mostly plastic.
In the case of type II strains (right graph in Fig. 28), the scale of global strains is set
by network rearrangements and the elastic term δεE becomes negligible.

An incremental law in the form of Eq. (37) should also imply the identification
of a plastic criterion, and of a plastic modulus EP , such that the magnitude of the
plastic strain increment is proportional to the stress increment projected along the
outward normal ξ in stress space. The choice of ξ is the one leading to a linear
relation between [ξ · δσ ]+ (the positive part of ξ · δσ , equal to itself if positive, to
zero otherwise) and ||δεP ||,

||δεP || = 1

EP
[ξ · δσ ]+ , (38)
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Fig. 29 ||δεP || versus [ξ · δσ ]+, for different stress ratios ζ and κ = 104. (a): type I strains. (b):
type II strains

as represented in Fig. 29. In good approximation, it is observed that direction
ξ is orthogonal to the vector of coordinates σ1, σ2 in stress space, oriented in
the direction of growing principal stress ratio σ2/σ1. The directional linearity (or
positive homogeneity of order (1) expressed by Eqs. (37) and (38) is obtained in
practice with an appropriate choice of increment sizes. With too large increments
the linearity is lost as the stress-strain curve departs from its tangent. With very
small increments, greater computational accuracy could be required. Note also that
one may observe the “elastic bubble" phenomenon mentioned in Sect. 5.4: a small
interval [ξ · δσ ]E+ of [ξ · δσ ]+ entails no plastic strain. This is apparent, in particular,
in the data of Fig. 29a pertaining to stress ratio ζ = 1.8. Thus the linear law written
in (38) applies to some difference [ξ · δσ ]+ − [ξ · δσ ]E+.

In the case of strains of type II, caused by instabilities and rearrangements of the
network, the hardening modulus has to be identified from the slope of a staircase-
shaped curve, as shown in Fig. 29b, corresponding to the discontinuous appearance
of the second plot of Fig. 28.
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These results should be generalized to three-dimensional stress space in 2D,
before dealing with 3D systems. Preliminary results show then that the applications
of increments of shear stress σ12 always cause plastic strains, and that the incremen-
tal law (37) relates stress and strain increments both spanning a two-dimensional
space [85].

7 A Few Remarks and Perspectives

As announced, and commented in Sect. 5.4, the measurement of elastic moduli,
although indicative of some properties of the contact network (coordination number,
fabric, and, to a lesser extent, anisotropy of forces), does not provide information
about incipient failure modes. This information, on the other hand, is contained in
the incremental anelastic response, which may apparently be described, to some
extent, with the ingredients of elastoplastic models: flow rule, criterion, plastic
hardening modulus (although some results, not reported in Sect. 6, imply that several
plasticity mechanisms are required). Singularities in the elastic response occur in
poorly connected contact networks with very small force indeterminacy. Systems
with vanishing degree of force indeterminacy are observed with frictionless grains,
but are not usually obtained in the presence of friction. The absence of observed
elastic singularity in assemblies of frictional grains is related to the conditions for
observing elastic properties, which usually imply a stable network and negligible
effects of friction forces in contacts. The exploration of the incremental behaviour
of granular materials outside a quasielastic range is difficult. Experimentally, it is
impossible to repeat the test with the same sample as the material state is bound
to evolve irreversibly. One thus needs to prepare, e.g., as many samples in the
same state as there are directions of stress increments to probe, a cumbersome and
technically challenging task. Numerically, although it is feasible to apply different
probes to the same system, one has to characterize a behaviour from the noisy
response of systems of relatively small size, especially on dealing with strains “of
type II", caused by network failure and rearrangements. Careful and statistically
representative tests still need to be carried out to understand frictional failure of
contact networks, and how such accumulated events, in which the networks get
repeatedly broken and repaired, give rise to well-defined stress-strain relations,
involving fabric and friction mobilization evolutions.
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