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Abstract In many physical systems one encounters situations where phenomena
occur at different scales. An example is the modeling of a rarefied gas at varying
Knudsen number (Kn). Large Kn corresponds to a case where the Boltzmann
equation is the most appropriate model while, for small Kn, one can obtain
the Euler or Navier–Stokes–Fourier system. At intermediate regime, using the
mathematical methods of Rational Extended Thermodynamics (RET), one can
obtain the closure of hyperbolic moment system associated with the Boltzmann
equation for monatomic gas. This methodology can be extended to polyatomic gas
by considering a distribution function depending on an extra variable that takes into
account the internal motion of polyatomic molecule (rotation and vibration). In this
survey paper we consider first the state-of-the-art of RET and at the end we give
a summary on the recent results about more refined version of RET of polyatomic
gas in which molecular rotational and vibrational relaxation processes are treated
individually.

1 Thermodynamics of Irreversible Processes

A continuous medium is a continuous distribution of material points which occupy
a region of the Euclidean space Ω with boundary Σ . The typical unknown fields
depending on space x ≡ (xi) (i = 1, 2, 3) and time t are the mass density ρ,
the velocity v ≡ (vi), the temperature T , the specific internal energy ε, the heat flux
q ≡ (qi), and the stress tensor t ≡ (tij ) that in the case of a fluid can be decomposed
into the equilibrium and non-equilibrium parts:

tij = −p δij + σij = −(p + Π) δij + σ<ij>, (1)
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where p is the equilibrium pressure, δij is the Kronecker symbol, and σ ≡ (σij )

is the viscous stress tensor that is decomposed furthermore into isotropic and
deviatoric parts: Π is called the dynamical pressure and σ<ij> is the deviatoric
(traceless) shear viscosity tensor.

These fields obey two kinds of equations: the universal balance laws (valid for all
materials) which are typically: Conservation of mass; Balance law of momentum;
Balance laws of energy; and the so-called constitutive equations that are necessary
to close the system and to characterize the constitutive properties of the material in
question.

For example in the case of one-component fluid we have:

∂ρ

∂t
+ ∂ρvi

∂xi

= 0,

∂ρvj

∂t
+ ∂

∂xi

(ρvivj − tij ) = ρbj ,

∂E

∂t
+ ∂

∂xi

(Evi + qi − tij vj ) = ρbjvj + r,

(2)

where E = ρv2/2 + ρε is the total energy that is the sum of the kinetic energy
density and the internal energy density, b ≡ (bi) and r are, respectively, the
external body force and the heat supply. If b and r vanish, the balance laws become
conservation laws.

As is well known the previous system (2) in the absence of external sources can
be rewritten, for classical solutions, in the form:

ρ̇ + ρ
∂vj

∂xj

= 0,

ρv̇i − ∂tij

∂xj

= 0, (3)

ρε̇ − tij
∂vi

∂xj

+ ∂qi

∂xi

= 0,

where a dot on a quantity denotes the material time derivative operator:

∂

∂t
+ vi

∂

∂xi

.

The specific internal energy ε and the pressure p are considered to be functions
of ρ and T that are prescribed by the thermal and caloric equations of state of
equilibrium thermodynamics

p ≡ p(ρ, T ), ε ≡ ε(ρ, T ). (4)
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In order to close the system (3), we need the constitutive relations of σij and qi in
terms of the independent fields ρ, vi , and T . In TIP, such relations are derived in
a heuristic manner from the entropy balance equation that is based on the Gibbs
equation of the concept of local equilibrium.

First of all we need to recall the important contribution by the mathematician
Constantin Carathéodory with his fundamental work on the axiomatic approach of
thermodynamics. He postulated the so-called principle of inaccessibility that states
[1] (see also [2, 3]): “In the neighborhood of any equilibrium state of a system (of
any number of thermodynamic coordinates), there exist states that are inaccessible
by reversible adiabatic processes”.

Starting with this axiom and using some properties of Pfaffian forms
Carathéodory showed how to derive the absolute temperature as integral factor
and he justify rigorously the famous Gibbs equation in thermostatics:

T ds = dε − p

ρ2 dρ, (5)

where s is the specific entropy density.
In non-equilibrium according to the procedure TIP the concept of local equilib-

rium is introduced and the Gibbs relation (5) is assumed to be valid. From (5) we
have

ṡ = 1

T

(
ε̇ − p

ρ2 ρ̇

)
. (6)

Elimination of ε̇ and ρ̇ in (6) by using (3) gives

ρṡ + ∂

∂xi

(qi

T

)
= 1

T
σ〈ij 〉

∂v〈i
∂xj 〉

− 1

T
Π

∂vi

∂xi

− 1

T 2
qi

∂T

∂xi

,

or equivalently:

∂ρs

∂t
+ ∂

∂xi

(
ρsvi + qi

T

)
= 1

T
σ〈ij 〉

∂v〈i
∂xj 〉

− 1

T
Π

∂vi

∂xi

− 1

T 2
qi

∂T

∂xi

,

which can be seen as a balance equation of the entropy with the following
interpretation:

intrinsic entropy flux : Φi = qi

T
,

entropy production: Σ = 1

T
σ〈ij 〉

∂v〈i
∂xj 〉

− 1

T
Π

∂vi

∂xi

− 1

T 2
qi

∂T

∂xi

.
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The entropy production is a sum of products of:

Dissipative fluxes Thermodynamic forces

shear stress σ〈ij 〉 deviatoric velocity gradient
1

T

∂v<i

∂xj>

,

dynamic pressure Π divergence of velocity − 1

T

∂vi

∂xi

,

heat flux qi temperature gradient − 1

T 2

∂T

∂xi

.

From the second law of thermodynamics, the entropy production must be
non-negative. Assuming linear relations between the dissipative fluxes and the
thermodynamic forces, we have the constitutive equations (phenomenological
equations) of the type:

σ〈ij 〉 = 2μ
∂v<i

∂xj>

μ ≥ 0,

Π = −ν
∂vi

∂xi

ν ≥ 0, (7)

qi = −κ
∂T

∂xi

κ ≥ 0.

These are known as the constitutive laws of Navier-Stokes and Fourier with μ and
ν being the shear and bulk viscosities and κ the thermal conductivity. All of these
coefficients may be functions of ρ and T .

Along with the thermal and caloric equations of state, the equations (7) are
adopted as the constitutive equations of the thermodynamical of irreversible pro-
cesses (TIP), and the differential system (3) is closed, i.e., 5 equations for 5
unknowns [4]. The system formed by the balance laws (2) and the constitutive
laws (4), (7) is called briefly Navier–Stokes–Fourier system and if isothermal
Navier-Stokes system.

1.1 Equations of Heat and Heat Paradox

In the simplified case of a rigid heat conductor the system of balance equations (3)
reduces to that of energy:

ρε̇ + ∂qj

∂xj

= 0, (8)
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which, combined with the Fourier equation (7)3 and the caloric equation ε ≡ ε(T ),
provides the classic heat equation, a prototype of a parabolic equation:

∂T

∂t
= DΔT,

(
D = κ

ρcV

, cV = dε

dT

)
(9)

that, in the simple case of constant D, has the following solution of the Cauchy
problem:

T (x, t) = 1

(4πD t)3/2

∞∫
−∞

T (y, 0)e− (y−x)2

4D t dy. (10)

We notice that T (x, t) is nonzero for any x if t > 0 even though the initial value
T (x, 0) is nonzero only in a bounded domain. This phenomenon has been sometimes
called a paradox, because the temperature perturbations propagate with infinitely
large speed. From a mathematical point of view, this is due to the parabolic character
of the basic equation (9).

The assertion of infinite speed is, of course, beyond the validity range of TIP.
We cannot describe properly such a rapid change by TIP because TIP is based on
the local equilibrium assumption. On the other hand, it is well known that Eqs. (9)
and (10) have been utilized quite successfully in various practical situations. Indeed,
if we take carefully its validity range into account, and if we do not care about its
unphysical predictions, we would have useful results from a practical point of view.

There is, however, a situation where the infinite speed should be avoided strictly.
It is a relativistic thermodynamic case where propagation speed of a wave should
be less or equal to the light speed. How can we construct a new thermodynamic
theory that predicts only finite speed of waves by generalizing TIP? Carlo Cattaneo
addressed this paradox, and proposed in 1948 a modified Fourier equation which is
known as Cattaneo equation [5]:

τ q̇i + qi = −χ
∂T

∂xi

. (11)

Combining (8) with (11) we obtain instead of the classical heat equation an
hyperbolic equation called the telegraph equation:

τ
∂2T

∂t2 + ∂T

∂t
= DΔT.

The importance of hyperbolic equations has its experimental evidence in the
so-called second sound, which is a perturbation wave of temperature observed
firstly in liquid helium at low temperatures [6] and subsequently in crystals [7].
However Cattaneo equation has several weak points: it can predict negative value



230 T. Ruggeri

of the temperature and the entropy principle is not satisfied for processes far from
equilibrium (see [8] and references therein on this subject).

On the other hand, Cattaneo equation has an empirical genesis and is oversimpli-
fied. To find a theoretical justification for hyperbolic systems for heat propagation
need the approach of extended thermodynamics as we shall see in Sect. 3.

2 Successive Approach

After the pioneering work of Cattaneo the most fundamental improvements on this
subject were done:

– 1949—Grad [9] constructed by kinetic methods the so-called 13 moments fields
theory that give a system of hyperbolic type for monatomic rarefied gases.

– 1966—Müller [10] determined, via a continuum approach, a hyperbolic system
for a generic gas abandoning the local equilibrium assumption and modifying
the Gibbs equations using as extended fields the heat flux and the viscous stress
tensor. This was the first version and the begin of Extended Thermodynamics
theory. This point of view has been adopted by several authors and is the
starting point of Extended Irreversible Thermodynamics (EIT), which has gained
popularity through the book of Jou et al. [11].

– 1983—Following some criticism of Ruggeri in [12] a revision of ET was
proposed by Liu and Müller [13] in a classic context, and by Liu, Müller and
Ruggeri in a relativistic framework [14]. This new approach was named Rational
Extended Thermodynamics (RET) and the main results obtained at that time were
summarized in the two editions of the book by Müller and Ruggeri [15, 16].

– 2012—The previous RET theory, being strictly connected with the kinetic theory,
suffers from nearly the same limitations as the Boltzmann equation. Indeed, the
theory is valid only for rarefied monatomic gases, where the specific internal
energy ε and the pressure p are connected by the relation 2ρε = 3p, and the
dynamic pressure Π vanishes identically. In the case of polyatomic gases, on
the other hand, the rotational and vibrational degrees of freedom of a molecule,
which are not present in monatomic gases, come into play. After several tentative
theories, a satisfactory 14-field ET theory for rarefied polyatomic ones was
recently developed by Arima et al. [17]. The recent book of Ruggeri and
Sugiyama summarizes this new extension of RET [8].

This list reflects the personal opinion of the present author but of course it is
not exhaustive because it is well known that several different approaches on
non-equilibrium thermodynamics are present in the literature. A first tentative of
comparison between different theories was done in [18].
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3 Rational Extended Thermodynamics of Rarefied
Monatomic Gas

The kinetic theory describes a state of a rarefied gas through the phase density
f (x, t, c), where f (x, t, c)dc is the number density of atoms at point x and time
t that have velocities between c and c + dc. The phase density obeys the Boltzmann
equation that in the case of absence of external forces reads:

∂f

∂t
+ ci

∂f

∂xi

= Q, (12)

where Q represents the collisional term. Most macroscopic thermodynamic quanti-
ties are identified as moments of the phase density

Fk1k2···kj
=

∫
R3

mf ck1ck2 · · · ckj
dc,

where m is the mass of a molecule. Due to the Boltzmann equation (12), the
moments satisfy an infinite hierarchy of balance laws in which the flux in one
equation becomes the density in the next one:

∂tF + ∂iFi = 0

↙
∂tFk1 + ∂iFik1 = 0

↙
∂tFk1k2 + ∂iFik1k2 = P<k1k2>

↙
∂tFk1k2k3 + ∂iFik1k2k3 = Pk1k2k3

...

∂tFk1k2...kn + ∂iFik1k2...kn = Pk1k2...kn ,

...

(13)

where

∂t = ∂

∂t
, ∂i = ∂

∂xi

and < · · · > indicates the deviatoric part of a tensor, (i, k1, k2, · · · = 1, 2, 3).
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Taking into account that Pkk = 0, the first five equations are conservation laws
and coincide with the mass, momentum, and energy conservation, respectively,
while the remaining ones are balance laws.

Remark ET with this hierarchy structure is valid only for monatomic gases. In fact
due to the previous structure we have from (13)2 that the momentum flux:

Fik = ρvivk − tik,

while the trace of (13)3 is the conservation of energy with:

Fll = 2ρε + ρv2

then taking into account (1) we have

3p = 2ρε, Π = 0. (14)

The first of (14) gives

γ = cp

cV

= 5

3
,

i.e. monatomic gas; while the second of (14) implies that in monatomic gas the
dynamical pressure is identical zero.

When we cut the hierarchy at the density with tensor of rank n, we have the
problem of closure because the last flux and the production terms are not in the
list of the densities. The first idea of Rational Extended Thermodynamics [16]
was, by assumptions to adopt, as differential system, the one with the structure of
moments (13) but forgetting that the fields are moments of a distribution function.
Then the truncated system at tensorial index n is considered as a phenomenological
system of continuum mechanics. As usual in continuum mechanics we consider the
quantities (last flux and the production terms) that are not in the list of densities as
constitutive functions:

Fk1k2...knkn+1 ≡ Fk1k2...knkn+1

(
F,Fk1 , Fk1k2 , . . . Fk1k2...kn

)

Pk1k2...kj
≡ Pk1k2...kj

(
F,Fk1 , Fk1k2 , . . . Fk1k2...kn

)
, (2 ≤ j ≤ n).

According to the continuum theory, the restrictions on the constitutive equations
come only from universal principles, i.e.: Entropy principle, Objectivity Principle,
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and Causality and Stability (convexity of the entropy). The most interesting physical
cases were the 13 fields theory [13]:

∂tF + ∂iFi = 0

∂tFk1 + ∂iFik1 = 0

∂tFk1k2 + ∂iFik1k2 = P<k1k2>

∂tFk1jj + ∂iFik1jj = Pk1jj .

The surprising result is that the closure adopted by the Rational Extended Ther-
modynamics via phenomenological approach gives the same differential system
obtained by Grad using the well known 13 moments perturbation method of the
Maxwellian in terms of Hermite polynomials [16].

4 Closure via the Maximum Entropy Principle
and Molecular RET of Monatomic Gases

If the number of moments increases, it is too difficult to adopt the pure continuum
approach for a system with such a large number of field variables. Therefore it
is necessary to recall that the field variables are the moments of a distribution
function truncated at some order. And then the closure of the balance equations of
the moments, which is known as the Maximum Entropy Principle (MEP), should be
introduced. This approach was called by Müller and Ruggeri Molecular Extended
Thermodynamics [15]. The principle of maximum entropy has its root in statistical
mechanics. It is developed by Jaynes [19] in the context of the theory of information
basing on the Shannon entropy. Nowadays the importance of MEP is recognized
fully due to the numerous applications in many fields, for example, in the field of
computer graphics.

MEP states that the probability distribution that represents the current state of
knowledge in the best way is the one with the largest entropy.

Another way of stating this is as follows: Take precisely stated prior data or
testable information about a probability distribution function. Then consider the
set of all trial probability distributions that would encode the prior data. Of those,
one with maximal information entropy is the proper distribution, according to this
principle.

Concerning the applicability of MEP in non-equilibrium thermodynamics, this
was originally by the observation made by Kogan [20] that Grad’s distribution
function maximizes the entropy. The MEP closure was proposed in RET for the
first time by Dreyer in 1987 [21]. In this way the closure of 13-moment theory can
be obtained in three different ways: RET, Grad, and MEP. A remarkable point is that
all closures are equivalent to each other!
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In 1993 the MEP procedure was then generalized by Müller and Ruggeri to the
case of any number of moments in the first edition of their book [15] proving that
the system is symmetric hyperbolic if the Lagrange multipliers are chosen as field
variables. The complete equivalence between the entropy principle closure and the
MEP ones in molecular extended thermodynamics was finally proved by Boillat and
Ruggeri in 1997 [22] who proved that the Lagrange multipliers coincide with the so-
called main field that symmetrize any hyperbolic system compatible with a convex
entropy law [23, 24].

The RET has been successful because several experiments are in agreement with
the theory (sound waves in high frequencies, light scattering, shock waves) [16].
Nevertheless it has two limitations:

1. The theory is valid only for monatomic rarefied gas.
2. The theory is substantially valid only near equilibrium.

5 Polyatomic Gases

In 2012 Arima et al. [17] deduced a 14-fields phenomenological theory for
polyatomic rarefied gas using the universal principles of RET postulating a double
hierarchy of equations. We do not discuss here this macroscopic theory. The
interested reader may consult the original paper [17] or the book [8]. Instead we
want to recall the molecular approach in the present case of polyatomic gas. The first
question is that “does a macroscopic system have a kinetic counterpart?” The idea
first developed by Borgnakke and Larsen [25] and successively reconsidered in more
mathematical aspects by Bourgat et al. [26] to have a kinetic theory of polyatomic
gas is to assume that the distribution function f (t, x, c, I ) defined on extended
domain [0,∞) × R

3 × R
3 × [0,∞) depends on an additional continuous variable

I representing the energy of the internal mode. Its rate of change is determined
by the Boltzmann equation which has the same form as for monatomic gas (12),
but collision integral Q(f ) takes into account the influence of internal degrees of
freedom through collisional cross section.

5.1 Equilibrium Distribution Function for Polyatomic Gases

In the present approach the collision invariants form a vector with five components:

ψ(c, I ) =
(

m,mci,
1

2
mc2 + I

)T

,
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which lead to hydrodynamic variables in the form:

⎛
⎝ ρ

ρvi
1
2ρv2 + ρε

⎞
⎠ =

∫
R3

∫ ∞

0
ψ(c, I )f (t, x, c, I )ϕ(I ) dI dc. (15)

Here ϕ(I)dI represents the number of internal modes between I and I+dI . Entropy
is defined by the following relation:

h = ρs = −kB

∫
R3

∫ ∞

0
f log f ϕ(I) dI dc, (16)

where kB i the Boltzmann constant. We shall introduce the peculiar velocity C ≡
(Ci):

C = c − v, C2 = CiCi

and rewrite the Eq. (15) in terms of it. Then

⎛
⎝ ρ

0i

2ρε

⎞
⎠ =

∫
R3

∫ ∞

0
m

⎛
⎝ 1

Ci

C2 + 2I/m

⎞
⎠ f (t, x, C, I )ϕ(I ) dI dC.

Note that the internal energy density can be divided into the translational part ρεK

and the part related to the internal degrees of freedom ρεI :

ρεK =
∫
R3

∫ ∞

0

1

2
mC2f (t, x, C, I )ϕ(I ) dI dC,

ρεI =
∫
R3

∫ ∞

0
If (t, x, C, I )ϕ(I ) dI dC. (17)

The former can be related to the kinetic temperature in the following way:

εK = 3

2

k

m
T, (18)

whereas the latter is the energy contribution of internal degrees of freedom to the
internal energy, which is determined by

εI = ε − εK. (19)
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Pavic et al. [27]1 firstly considered the five moments of Euler fluids and they
proved using MEP that the distribution function in equilibrium that maximizes the
entropy has the form:

fE = ρ

m A(T )

(
m

2πkBT

)3/2

exp

{
− 1

kBT

(
1

2
mC2 + I

)}
, (20)

where

A(T ) =
∫ ∞

0
exp

(
− I

kBT

)
ϕ(I)dI. (21)

This is a generalization of the Maxwellian distribution function to the case of
polyatomic gas and was obtained first with different arguments in [26].

Non-polytropic Gas In the case of ideal non-polytropic gases the specific heat
cv = dε(T )/dT is, in general, a non-linear function of the temperature and the
caloric and thermal equations of state read:

ε ≡ ε(T ), p = kB

m
ρT = 2

3
ρεK.

As cv can be measured by experiments as a function of the temperature T we can
obtain the specific internal energy ε as

ε(T ) = kB

m

∫ T

T0

ĉv(T
′) dT ′, (22)

where ĉv = (m/kB)cv is the dimensionless specific heat and T0 is an inessential
reference temperature.

From (17), inserting the equilibrium distribution (20) and taking into
account (21), we obtain the internal energy at equilibrium due to the internal
motion:

εI (T ) = kB

m
T 2 d log A(T )

dT
, (23)

with εK given by (18).
Therefore if we know the caloric equation of state (22) we know from (19) the

expression of εI and from (23) we can obtain A(T ):

A(T ) = A0 exp

(
m

kB

∫ T

T0

εI (T
′)

T ′2 dT ′
)

,

1In this paper there are some misprints and therefore interested reader can check also Chapter 6 of
the book [8].
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where A0 and T0 are inessential constants. As it was observed in [28] and in [29],
the function A is, according to (21), the Laplace transform of ϕ:

A(s) = L [ϕ(I)] (s) =
∫ ∞

0
e−sI ϕ(I )dI, s = 1

kBT
,

and then we can obtain the weighting function ϕ as the inverse Laplace transform
of A:

ϕ(I) = L−1 [A(s)] .

Polytropic Gas In the polytropic case cv is constant and the internal energy is
linear in the temperature:

ε(T ) = D

2

kB

m
T,

where D is the number of degrees of freedom of a molecule. This is a particular case
of the previous non-polytropic case and we obtain the following weighting function:

ϕ(I) = Iα, with α = D − 5

2
> −1

and

A(T ) = (kBT )1+αΓ (1 + α),

where Γ is the gamma function.
Observe that model for a monatomic gas (D = 3) cannot be recovered from the

one with continuous internal energy, since the value of parameter α in monatomic
case violates the overall restriction α > −1 but can be considered only as singular
limit for α → −1.

5.2 The Closure of 14-Field Model of Polyatomic Gas

Pavić, Ruggeri and Simić after they considered the case of 14 moments in the
case of polytropic gas [27] considering the same binary hierarchy proposed in the
macroscopic approach [30]:

∂tF + ∂kFk = 0,

∂tFi + ∂kFik = 0,

∂tFij + ∂kFijk = Pij , ∂tGll + ∂kGllk = 0,

∂tGlli + ∂kGllik = Qlli,
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where F is the mass density, Fi is the momentum density, Gii is the energy density,
Fij is the momentum flux, and Glli is the energy flux. And Fijk and Gllik are the
fluxes of Fij and Glli , respectively, and Pij and Qlli are the productions with respect
to Fij and Glli , respectively. In the present case they take into account that the fields
are moments of the generalized distribution function in this way:

⎛
⎜⎜⎝

F

Fi1

Fi1i2

Fi1i2i3

⎞
⎟⎟⎠ =

∫
R3

∫ ∞

0
m

⎛
⎜⎜⎝

1
ci1

ci1ci2

ci1ci2ci3

⎞
⎟⎟⎠ f (t, x, c, I ) ϕ(I ) dI dc,

⎛
⎝ Gll

Gllk1

Gllk1k2

⎞
⎠ =

∫
R3

∫ ∞

0
m

⎛
⎝ c2 + 2 I

m(
c2 + 2 I

m

)
ck1(

c2 + 2 I
m

)
ck1ck2

⎞
⎠ f (t, x, c, I ) ϕ(I ) dI dc.

For the entropy defined by (16), the following variational problem, expressing the
maximum entropy principle, can be formulated: determine the velocity distribution
function f (t, x, c, I ) such that h → max., being subjected to the constraints of
prescribed 14 moments. The solution near an equilibrium state is that the distribution
function, which maximizes the entropy with weighting function ϕ(I) = Iα , has the
form:

f = fE

{
1 − ρ

p2 qiCi + ρ

p2

[
−σ〈ij 〉 +

(
5

2
+ α

)
(1 + α)−1Πδij

]
CiCj

− 3

2(1 + α)

ρ

p2 Π

(
1

2
C2 + I

m

)
+

(
7

2
+ α

)−1
ρ2

p3 qi

(
1

2
C2 + I

m

)
Ci

}
,

(24)

where fE is the equilibrium distribution (20). The non-equilibrium distribution (24)
reduces to the velocity distribution obtained by Mallinger for gases composed of
diatomic molecules (α = 0). Again as in the monatomic case also in polyatomic gas
for any α > −1, the closure gives exactly the same equations obtained previously
by using the macroscopic approach [17]:

ρ̇ + ρ
∂vk

∂xk

= 0,

ρv̇i + ∂p

∂xi

+ ∂Π

∂xi

− ∂σ〈ij〉
∂xj

= 0,

Ṫ + 2

D kB

m
ρ

(p + Π)
∂vk

∂xk

− 2

D kB

m
ρ

∂vi

∂xk

σ〈ik〉 + 2

D kB

m
ρ

∂qk

∂xk

= 0,
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σ̇〈ij〉 + σ〈ij〉
∂vk

∂xk

− 2Π
∂v〈i
∂xj〉

+ 2
∂v〈i
∂xk

σ〈j〉k〉 − 4

D + 2

∂q〈i
∂xj〉

− 2p
∂v〈i
∂xj〉

= − 1

τS

σ〈ij〉,

Π̇ + 5D − 6

3D
Π

∂vk

∂xk

− 2(D − 3)

3D

∂v〈i
∂xk〉

σ〈ik〉 + 4(D − 3)

3D(D + 2)

∂qk

∂xk

+ 2(D − 3)

3D
p

∂vk

∂xk

= − 1

τΠ

Π,

q̇i + D + 4

D + 2
qi

∂vk

∂xk

+ 2

D + 2
qk

∂vk

∂xi

+ D + 4

D + 2
qk

∂vi

∂xk

+kB

m
T

∂Π

∂xi

− kB

m
T

∂σ〈ik〉
∂xk

+ Π

[
−

kB

m
T

ρ

∂ρ

∂xi

+ D + 2

2

kB

m

∂T

∂xi

− 1

ρ

∂Π

∂xi

+ 1

ρ

∂σ〈ik〉
∂xk

]

−σ〈ik〉

[
−

kB

m
T

ρ

∂ρ

∂xk

+ D + 2

2

kB

m

∂T

∂xk

− 1

ρ

∂Π

∂xk

+ 1

ρ

∂σ〈pk〉
∂xp

]

+ D + 2

2

(
kB

m

)2

ρT
∂T

∂xi

= − 1

τq

qi , (25)

where τS , τΠ , and τq are the relaxation times. The Navier–Stokes Fourier theory is
contained in the present theory as a limit of small relaxation times (the Maxwellian
iteration [31]) as shown in [17].

The monatomic gas limit D → 3 is a singular limit. It is possible to prove that
the 14 equations (25) and the solutions of the system converge to the 13 equations
and solutions of monatomic gas with Π = 0, respectively, provided that the initial
data are chosen in such a way that the data are compatible with a monatomic gas,
i.e., Π(x, 0) = 0 [32].

6 The General Hierarchy of Moment Equations
for Polyatomic Gases

In non-equilibrium motivated by the idea of phenomenological ET, we shall
generalize the moment equations for polyatomic gases by constructing two inde-
pendent hierarchies. One will be much alike classical “momentum” hierarchy of
monatomic gases (F -hierarchy); the other one, “energy” hierarchy, commences with
the moment related to the energy collision invariant and proceeds with standard
increase of the order through multiplication by velocities (G-hierarchy). They read
[27, 33]:

∂tF + ∂iFi = 0,

∂tFk1 + ∂iFik1 = 0,
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∂tFk1k2 + ∂iFik1k2 = Pk1k2 , ∂tGkk + ∂iGikk = 0,

... ∂tGkkj1 + ∂iGkkij1 = Qkkj1,

...
...

∂tFk1k2...kN
+ ∂iFik1k2...kN

= Pk1k2...kN
,

...

∂tGkkj1j2...jM
+ ∂iGkkij1j2...jM

= Qkkj1j2...jM
.

The particular case are (N = 1,M = 0) and (N = 2,M = 1), which correspond
to the Euler system and the 14-field system, respectively. The interested reader can
see the results in this general case in [8, 33, 34].

7 RET with Different Molecular Relaxations Processes

It is evident, however, that the ET theory of polyatomic gases with the binary
hierarchy has the limitation of its applicability, although the theory has been
successfully utilized to analyze various non-equilibrium phenomena. In fact, we
have many experimental data showing that the relaxation times of the rotational
mode and of the vibrational mode are quite different to each other. In such a
case, more than one molecular relaxation processes should be taken into account
to make the ET theory more precise. In order to describe the relaxation processes
of rotational and vibrational modes separately, Arima, Ruggeri and Sugiyama, first
in the case of 7 fields [35] and then in the general case of 15 fields [36], proposed
to decompose the energy of internal modes I as the sum of the energy of rotational
mode IR and the energy of vibrational mode IV :

I = IR + IV .

Generalizing the Borgnakke–Larsen idea, we assume the same form of the Boltz-
mann equation with a velocity distribution function that depends on these additional
parameters, i.e., f ≡ f

(
x, c, t, IR, IV

)
. And we also take into account the effect

of the parameters IR and IV on the collision term Q(f ).
Let us introduce three kinds of moments F , HR , and HV as follows:

Fi1...ij =
∫

R3

∫ ∞

0

∫ ∞

0
mci1 · · · cij f ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

HR
lli1...ik

=
∫

R3

∫ ∞

0

∫ ∞

0
2IRci1 · · · cikf ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

HV
lli1...il

=
∫

R3

∫ ∞

0

∫ ∞

0
2IV ci1 · · · cil f ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,
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where j, k, l = 1, 2, · · · . From the Boltzmann equation (12), we obtain three hier-
archies (a triple hierarchy) of balance equations, i.e., F , HR , and HV -hierarchies in
the following form:

∂tF + ∂iFi = 0,

∂tFi1 + ∂iFii1 = 0,

∂tFi1i2 + ∂iFii1i2 = P K
i1i2

, ∂tH
R
ll + ∂iH

R
lli = P R

ll , ∂tH
V
ll + ∂iH

V
lli = P V

ll ,

(26)

∂tFi1i2i3 + ∂iFii1i2i3 = P K
i1i2i3

, ∂tH
R
lli1

+ ∂iH
R
llii1

= P R
lli1

, ∂tH
V
lli1

+ ∂iH
V
llii1

= P V
lli1

,

...
...

...

where the production terms are related to the collision term as follows:

P K
i1...ij

=
∫

R3

∫ ∞

0

∫ ∞

0
mci1 · · · cij Q(f ) ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

P R
lli1...ik

=
∫

R3

∫ ∞

0

∫ ∞

0
2IRci1 · · · cikQ(f ) ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

P V
lli1...il

=
∫

R3

∫ ∞

0

∫ ∞

0
2IV ci1 · · · cilQ(f ) ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc.

We notice that the first and second equations of the F -hierarchy represent the
conservation laws of mass and momentum, while the sum of the balance equations
of Fll , HR

ll , and HR
ll represents the conservation law of energy with

Qll = P K
ll + P R

ll + P V
ll = 0.

In each of the three hierarchies, the flux in one equation appears as the density in the
next equation. Here ϕ

(
IR

)
and ψ

(
IV

)
are the state densities corresponding to IR

and IV , i.e., ϕ
(
IR

)
dIR (ψ

(
IV

)
dIV ) represents the number of internal rotational

(vibrational) state between IR and IR + dIR (IV and IV + dIV ).

7.1 Entropy Law

The entropy density h = ρs, the entropy flux hi , and the entropy production Σ are
defined by
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h = −kB

∫
R3

∫ ∞

0

∫ ∞

0
f log f ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

hi = −kB

∫
R3

∫ ∞

0

∫ ∞

0
cif log f ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

Σ = −kB

∫
R3

∫ ∞

0

∫ ∞

0
Q(f ) log f ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc.

(27)

Then we have the entropy law: ∂th + ∂ihi = Σ.

7.2 Equilibrium Distribution Function

We derive the equilibrium distribution function fE by means of MEP. We remark
that the collision invariants of the present model are m, mci , and mc2 + 2IR + 2IV .
These quantities correspond to the hydrodynamics variables, i.e., the mass density
F(= ρ), the momentum density Fi(= ρvi), and twice the energy density Gll(=
2ρε + ρv2):

Gll =
∫

R3

∫ ∞

0

∫ ∞

0

(
mc2 + 2IR + 2IV

)
f ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc. (28)

It is easy to see, from (28), that the specific internal energy ε is composed of the
kinetic, rotational, and vibrational parts, εK , εR , and εV , i.e.,

ε = εK + εR + εV .

The equilibrium distribution function fE , which maximizes the entropy den-
sity (27)1 under the constraints that the first five moments are prescribed, is given
by

fE = f
(K)
E f

(R)
E f

(V )
E (29)

with

f
(K)
E = ρ

m

(
m

2πkBT

)3/2

exp

(
− mC2

2kBT

)
,

f
(R)
E = 1

AR(T )
exp

(
− IR

kBT

)
, f

(V )
E = 1

AV (T )
exp

(
− IV

kBT

)
,
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where AR(T ) and AV (T ) are normalization factors (partition functions):

AR(T ) =
∫ ∞

0
ϕ

(
IR

)
e−βEIR

dIR, AV (T ) =
∫ ∞

0
ψ

(
IV

)
e−βEIV

dIV .

(30)

Here βE = 1/(kBT ) and T is the equilibrium temperature. For the proof see [29,
35, 37].

Using the equilibrium distribution function fE , we obtain the caloric and thermal
equations of state. The caloric equation of state is given by

ε = εE(T ) = εK
E (T ) + εR

E(T ) + εV
E (T ),

and we have

εK
E (T ) ≡ 3

2

kB

m
T, εR

E(T ) ≡ kB

m
T 2 d log AR(T )

dT
, εV

E (T ) ≡ kB

m
T 2 d log AV (T )

dT
.

(31)

If the partition functions AR and AV are given, for example, by a statistical-
mechanical analysis, we obtain the equilibrium energies of rotational and vibrational
modes from (31). Vice versa, if we know the caloric equations of state εK

E (T )

and εR
E(T ), we can obtain, by integration of (31)2,3, the partition functions. We

remark that the knowledge of the partition functions permits us to obtain, from (30),
the measures ϕ

(
IR

)
and ψ

(
IV

)
via the inverse Laplace transform. The thermal

equation of state is given by

p = pK(ρ, T ) ≡ kB

m
ρT = 2

3
ρεK

E (T ).

The specific entropy density in equilibrium sE = hE/ρ is given by

sE(ρ, T ) = sK
E (ρ, T ) + sR

E(T ) + sV
E (T ),

where

sK
E (ρ, T ) ≡ −kB

ρ

∫
R3

∫ ∞

0

∫ ∞

0
fE log f

(K)
E ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

= kB

m
log

(
T 3/2

ρ

)
+ εK

E (T )

T
− kB

m
log

[
1

m

(
m

2πkB

)3/2
]

,
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sR
E(T ) ≡ −kB

ρ

∫
R3

∫ ∞

0

∫ ∞

0
fE log f

(R)
E ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

= kB

m
log AR(T ) + εR

E(T )

T
,

sV
E (T ) ≡ −kB

ρ

∫
R3

∫ ∞

0

∫ ∞

0
fE log f

(V )
E ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

= kB

m
log AV (T ) + εV

E (T )

T
.

7.3 Molecular ET Theory with 7 Independent Fields (ET7)

The simplest RET theory with the triple hierarchy is the theory with 7 fields
(ET7); mass density, velocity, internal energy of translational mode, internal energy
of rotational mode, and internal energy of vibrational mode [35]. The system of
balance equations is the system of (26) but truncated at the second-order tensor:

∂F

∂t
+ ∂Fi

∂xi

= 0,

∂Fj

∂t
+ ∂Fij

∂xi

= 0,

∂Fll

∂t
+ ∂Flli

∂xi

= P K
ll ,

∂HR
ll

∂t
+ ∂HR

lli

∂xi

= P R
ll ,

∂HV
ll

∂t
+ ∂HV

lli

∂xi

= P V
ll .

The closure in this simple case is very interesting because as in the previous ET6
[29, 37] can be done in full non-linear way and therefore is not necessary to assume
that the processes are near an equilibrium state [35]. On the basis of this theory, it
was revealed that the internal energies of the three modes can be characterized by the
three non-equilibrium temperatures and the non-equilibrium entropy is expressed in
terms of these non-equilibrium temperatures. It was also shown that the dispersion
relation derived by ET7 is in excellent agreement with the experimental data of CO2,
Cl2, and Br2 gases [35].

7.4 Molecular ET Theory with 15 Independent Fields (ET15)

Because the ET7 theory describes the relaxation processes of molecular rotational
and vibrational modes satisfactorily, but it ignores the effect of shear stress and heat
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flux, a more realistic theory including all these dissipative fluxes was established in
[36]. In this case the starting moments are:

∂F

∂t
+ ∂Fi

∂xi

= 0,

∂Fj

∂t
+ ∂Fij

∂xi

= 0,

∂Fij

∂t
+ ∂Fijk

∂xk

= P K
ij ,

∂HR
ll

∂t
+ ∂HR

lli

∂xi

= P R
ll ,

∂HV
ll

∂t
+ ∂HV

lli

∂xi

= P V
ll ,

∂Glli

∂t
+ ∂Gllik

∂xk

= Qlli ,

(32)

where (Fijk , HR
lli , HV

lli , Gllik) and (P K
ij , P R

ll , P V
ll , Qlli) are, respectively, the fluxes

and productions of the densities (Fij , HR
ll , HV

ll , Glli). It is worth emphasizing
again that the ET14 theory adopts F,Fi, Fij ,Gll(= Fll + HR

ll + HV
ll ) and Glli as

independent fields and the internal modes of a molecule are treated as a unit. On the
other hand, ET15 describes the rotational and vibrational modes individually. The
densities of the system (32) are related to the following conventional field variables:

ρ ≡
∫

R3

∫ ∞

0

∫ ∞

0
mf ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

vi ≡ 1

ρ

∫
R3

∫ ∞

0

∫ ∞

0
mcif ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

εK ≡ 1

2ρ

∫
R3

∫ ∞

0

∫ ∞

0
mC2f ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

εR ≡ 1

ρ

∫
R3

∫ ∞

0

∫ ∞

0
mIRf ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc, (33)

εV ≡ 1

ρ

∫
R3

∫ ∞

0

∫ ∞

0
mIV f ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

σ〈ij 〉 ≡ −
∫

R3

∫ ∞

0

∫ ∞

0
mC〈iCj 〉f ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc,

qi ≡ 1

2

∫
R3

∫ ∞

0

∫ ∞

0
(mC2 + 2IR + 2IV )Cif ϕ

(
IR

)
ψ

(
IV

)
dIRdIV dc.

We define three new variables θK , θR , and θV associated with the specific energies
εK , εR , and εV in (33)3,4,5 through the caloric equations of state given in (31) [35]:

εK = εK
E (θK), εR = εR

E(θR), εV = εV
E (θV ).
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Because of the monotonicity of ε
K,R,V
E , these are one-to-one relations between the

new variables θK,R,V and the specific energies εK,R,V . From (29), the temperature
T is determined in an implicit way by the relation:

εE(T ) = εK
E (θK) + εR

E(θR) + εV
E (θV ).

The trace part of the momentum flux is related to the pressure p and the dynamic
pressure Π in continuum mechanics as follows:

Fll = 3(p + Π) + ρv2.

The dynamic pressure is expressed as [37, 38]:

Π = pK(ρ, θK) − pK(ρ, T ) = 2

3
ρ

(
εK
E (θK) − εK

E (T )
)

. (34)

It is convenient to introduce the following variables, i.e., energy deviations of the
three modes from the state with the common temperature T [35, 38–40]:

ΔK = εK
E (θK) − εK

E (T ), ΔR = εR
E(θR) − εR

E(T ), ΔV = εV
E (θV ) − εV

E (T ).

Then, from (34), the dynamic pressure Π is expressed as

Π = 2

3
ρΔK.

Proceeding with the usual technique of MEP we obtain for processes near the
equilibrium the following closed differential system written with the usual physical
symbols:

∂ρ

∂t
+ ∂

∂xi

(ρvi) = 0,

∂ρvj

∂t
+ ∂

∂xi

{[p(ρ, T ) + Π ]δij − σ〈ij〉 + ρvivj

} = 0,

∂

∂t

{
2ρεE(T ) + ρv2

}
+ ∂

∂xi

{
2qi + 2 [ρε(T ) + p(ρ, T ) + Π ] vi − 2σ〈li〉vl + ρv2vi

}
= 0,

∂

∂t

{
2ρ

[
εE

R(T ) + ΔR
]}

+ ∂

∂xi

{
2ρ

[
εE

R(T ) + ΔR
]
vi + 2cR

v (T )

kB

m
+ cv(T )

qi

}
= P̂ R

ll ,

∂

∂t

{
2ρ

[
εE

V (T ) + ΔV
]}

+ ∂

∂xi

{
2ρ

[
εE

V (T ) + ΔV
]
vi + 2cV

v (T )

kB

m
+ cv(T )

qi

}
= P̂ V

ll ,
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∂

∂t

(−σ〈ij〉 + ρv〈ivj〉
) + ∂

∂xk

{
2 kB

m
kB

m
+ cv(T )

q〈i δj〉k + 2[p(ρ, T ) + Π ]v〈i δj〉k

− σ〈ij〉vk − 2σ〈k〈i〉vj〉 + ρv〈ivj〉vk

}
= P̂ K〈ij〉,

∂

∂t

{
2qi + 2 [ρεE(T ) + p(ρ, T ) + Π ] vi − 2σ〈li〉vl + ρv2vi

}
+

+ ∂

∂xk

{
2

[
p(ρ, T )

(
εE(T ) + p(ρ, T )

ρ

)
+ Π

(
εE(T ) + 2

p(ρ, T )

ρ

)]
δik

− 2

[
εE(T ) + 2

p(ρ, T )

ρ

]
σ〈ik〉 + 2 kB

m
kB

m
+ cv(T )

qlvlδik

+ 2

[
1 +

kB

m
kB

m
+ cv(T )

]
(qivk + qkvi) + [p(ρ, T ) + Π ]v2δik

+ 2 [ρεE(T ) + 2p(ρ, T ) + 2Π ] vivk − v2σ〈ik〉 − 2vlviδ〈lk〉 − 2vlvkσ〈il〉 + ρv2vivk

}

= 2vlP̂
K
il + Q̂lli .

7.5 Three Relaxation Times

In polyatomic gases, we may introduce three characteristic times corresponding to
three relaxation processes caused by the molecular collision:

1. Relaxation time τK : This characterizes the relaxation process within the transla-
tional mode (mode K) of molecules. The process shows the tendency to approach
an equilibrium state of the mode K.

2. Relaxation time τbc: There are energy exchanges among the three modes: mode
K, rotational mode (mode R), and vibrational mode (mode V). The relaxation
process occurs in such a way that two of the three modes (say (bc) = (KR), (KV),
(RV)) approach, after the relaxation time τbc, an equilibrium state characterized
by a common temperature θbc.

3. Relaxation time τ of the last stage: after the relaxation process between b
and c, all modes, K, R, and V, eventually approach a local equilibrium state
characterized by fE with a common temperature T .
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7.6 Generalized BGK Collision Term

The generalized BGK collision term for (bc)-process ((bc) = (KR), (KV), (RV)) is
proposed as follows:

Qbc(f ) = − 1

τK

(f − fK:E) − 1

τbc
(f − fbc:E) − 1

τ
(f − fE),

where the distribution functions fK:E and fbc:E are given as follows:

fK:E = ρRV (IR, IV )

m

(
m

2πkBθK

)3/2

exp

(
− mC2

2kBθK

)
,

fKR:E = ρV (IV )

mAR(θKR)

(
m

2πkBθKR

)3/2

exp

{
− 1

kBθKR

(
mC2

2
+ IR

)}
,

fKV :E = ρR(IR)

mAV (θKV )

(
m

2πkBθKV

)3/2

exp

{
− 1

kBθKV

(
mC2

2
+ IV

)}
,

fRV :E = ρ

mAR(θRV )AV (θRV )

(
m

2πkBθK

)3/2

exp

(
− mC2

2kBθK
− IR + IV

kBθRV

)
,

with

ρRV (IR, IV ) =
∫
�3

mf dc,

ρV (IV ) =
∫
�3

∫ ∞

0
mf ϕ

(
IR

)
dIRdc, ρV (IV ) =

∫
�3

∫ ∞

0
mf ϕ

(
IR

)
dIRdc.

Several works are now in progress with the new ET15 theory in particular compari-
son of dispersion relation between theoretical prediction and experimental data, and
the analysis of shock waves.
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27. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases,

Physica A, 392, 1302- 1317 (2013).
28. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Recent results on nonlinear extended

thermodynamics of real gases with six fields Part I: general theory, Ric. Mat., 65, 263–277
(2016).

29. Bisi, M., Ruggeri,T., Spiga, G.: Dynamical pressure in a polyatomic gas: Interplay between
kinetic theory and extended thermodynamic, Kinetic and Related Models, 11 (1), 71–95,
(2018).

30. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Monatomic Rarefied Gas as a Singular
Limit of Polyatomic Gas in Extended Thermodynamics, Phys. Lett. A, 377, 2136–2140 (2013).

31. Ikenberry, E.; Truesdell, C.: On the pressure and the flux of energy in a gas according to
Maxwell’s kinetic theory. J. Rational Mech. Anal. 5, 1–54 (1956).



250 T. Ruggeri

32. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Monatomic rarefied gas as a singular limit
of polyatomic gas in extended thermodynamics, Phys. Lett. A 377, 2136 (2013).

33. Arima, T., Mentrelli, A., Ruggeri, T.: Molecular Extended Thermodynamics of Rarefied
Polyatomic Gases and Wave Velocities for Increasing Number of Moments, Annals of Physics
345, 111–140 (2014).

34. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Monatomic gas as a singular limit of
polyatomic gas in molecular extended thermodynamics with many moments, Annals of Physics
372, 83-109 (2016).

35. Arima, T.; Ruggeri, T.; Sugiyama, M.: Rational extended thermodynamics of a rarefied
polyatomic gas with molecular relaxation processes. Phys. Rev. E, 96, 042143 (2017).

36. Arima, T.; Ruggeri, T.; Sugiyama, M.: Extended Thermodynamics of Rarefied Polyatomic
Gases: 15-Field Theory Incorporating Relaxation Processes of Molecular Rotation and Vibra-
tion. Entropy, 20, 301 (2018).

37. Ruggeri, T.: Non-linear maximum entropy principle for a polyatomic gas subject to the
dynamic pressure. Bull. Inst. Math. Acad. Sin., 11, 1–22 (2016).

38. Arima, T.; Ruggeri, T.; Sugiyama, M.: Duality principle from rarefied to dense gas and
extended thermodynamics with six fields. Phys. Rev. Fluids, 2, 013401 (2017).

39. Arima, T.; Sugiyama, M.: Extended thermodynamics of dense polyatomic gases: modeling of
molecular energy exchange. Ricerche mat. 68, 91–101 (2019). https://doi.org/10.1007/s11587-
018-0386-8.

40. Arima, T. Six-field extended thermodynamics models representing molecular energy exchange
in a dense polyatomic gas. J. Phys.: Conf. Ser. 1035, 012002 (2018).

https://doi.org/10.1007/s11587-018-0386-8
https://doi.org/10.1007/s11587-018-0386-8

	Multiscale Phenomena in Continuum Mechanics: Mesoscopic Justification of Rational Extended Thermodynamics of Gases with Internal Structure
	1 Thermodynamics of Irreversible Processes
	1.1 Equations of Heat and Heat Paradox

	2 Successive Approach
	3 Rational Extended Thermodynamics of Rarefied Monatomic Gas
	4 Closure via the Maximum Entropy Principle and Molecular RET of Monatomic Gases
	5 Polyatomic Gases
	5.1 Equilibrium Distribution Function for Polyatomic Gases
	5.2 The Closure of 14-Field Model of Polyatomic Gas

	6 The General Hierarchy of Moment Equations for Polyatomic Gases
	7 RET with Different Molecular Relaxations Processes
	7.1 Entropy Law
	7.2 Equilibrium Distribution Function
	7.3 Molecular ET Theory with 7 Independent Fields (ET7)
	7.4 Molecular ET Theory with 15 Independent Fields (ET15)
	7.5 Three Relaxation Times
	7.6 Generalized BGK Collision Term

	References


