
Chapter 4
Discrete Fourier Transforms: DtFT and
DFT

Always there are many runners but typically the winner is the
same: DFT in the form of FFT!

4.1 Introduction

This chapter is devoted to practical computer-based frequency analysis
of discrete-time signals, i.e. vectors of signal samples, by means of Fourier
transform-based methods. We are assuming now that the analyzed signal is a
summation of different oscillatory components with different frequencies and
we are interested in finding them. From the chapter about orthogonal transforms
we remember that signal analysis (decomposition into simpler components) is
performed by calculation of signal similarity to some reference oscillations. The
similarity coefficients are calculated as inner products of the signal vector and
some reference vectors (sum of products of corresponding elements). In analog
signal theory the methodology is exactly the same but the inner product has a
form of infinite integral of the product of signal and reference function, cal-
culated for an infinite number of reference frequencies. One obtains this way
a signal spectrum being a continuous function of frequency. When values of
this function, i.e. signal similarity measures to some reference oscillations, are
multiplied by these oscillations, and all oscillations are added together in in-
finite integral over frequency—the signal is synthesized (reconstructed) from
its spectral description. The direct and inverse continuous Fourier transform
(CFT) act the same way in the analog world as discrete orthogonal transforms
in discrete-time world.

When the analog signal is periodic and repeats every T seconds, the signal
integration in CFT can be limited to one signal period only because all informa-
tion about the signal is in this time interval. Being periodic, the signal can have
only components with frequencies being multiplicities of the signal repetition
frequency f0 = 1/T , i.e. fk = k · f0. Thanks to this, the analyzing integration and
final signal synthesizing integration from similarity coefficients are repeated not
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66 4 Discrete Fourier Transforms: DtFT and DFT

for all frequencies. In such case the CFT is taking a form of Fourier series (FS),
its special case.

When we are coming to discrete world, the CFT is changing to discrete-
time Fourier transform (DtFT) and the FS are replaced with discrete Fourier
transform (DFT).

In this chapter we learn only minimum amount of information concern-
ing CFT, FS, DtFT, and DFT. We become familiar with their definitions and
primary features. The main goal is to understand, from one side, the broth-
erhood relation between DtFT and DFT, and, from the second side, differ-
ences in their practical usage. In frequency analysis performed on a digital
computer, time-limited N-samples long signal has to be used in DtFT, simi-
larly as in DFT. For this reason the only difference between both transforms
relies on different frequency sets which are used by them. Let us assume that
sampling frequency is equal to fs and the analyzed signal has N samples. In
DFT one can only calculate similarity coefficients for N frequencies equal to
fk = k · f0,k = 0,1, . . . ,N− 1, N multiplicities of f0 = fs/N, while in DtFT a
user does not have any restrictions in her/his frequency choice. It is interest-
ing that DSP users very often forget about DtFT which offers better spectrum
inspection than DFT.

Finally, we will make a link to the previous chapter on orthogonal trans-
forms. DFT is a special type of N×N orthogonal transform. In contrary to or-
thogonal transformations discussed before, it is using complex-value, not real-
value, harmonic oscillations as orthogonal basis functions to which the signal
is decomposed, cosine in the real part and sine in the imaginary part. Let us
repeat the definition of normalized DFT basis functions for smoother continu-
ation (k—function number and transformation matrix row number, n—sample
number and transformation matrix column number, k,n= 0,1,2, . . . ,N−1):

vk,n = vk(n) =
1√
N
ej

2π
N kn =

1√
N

(
cos

(
2π
N

kn

)
+ j · sin

(
2π
N

kn

))
. (4.1)

Due to its complexity, the transformation result is robust to signal shift in time
(delay), i.e. after this modification the absolute value of the signal transform
coefficients does not change after the signal shift. In this chapter we will derive
the DFT equation from the Fourier series analysis and show its relation to DtFT,
its older brother.

4.2 Continuous Fourier Transform and Fourier Series

Let us start from the beginning, from an analog world description. The continuous
Fourier transforms (CFT), direct and inverse, are defined as follows:

X( f ) =

∞∫
−∞

x(t)e− j2π f tdt, x(t) =

∞∫
−∞

X( f )e j2π f tdf , j =
√−1. (4.2)
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Again, during analysis, the continuous-time signal x(t) is compared with complex-
conjugated continuous-time basis functions e− j2π f t , now complex-value ones. It is
done by performing integration (summation) of their product. The integration is
convergent for limited energy signals only, for others—concept of generalized func-
tions (distributions) should be applied. During synthesis all basis functions e j2π f t

are scaled by corresponding, calculated spectral coefficients X( f ) and summed (in-
tegrated). Any signal is represented as infinite summation/integration of complex-
value harmonic signals of the form:

e j2π f t = cos(2π f t)+ j · sin(2π f t) (4.3)

with different frequencies f . Pure cosine and sine signals with frequency f0 have
the following Fourier spectral decomposition (representation):

cos(2π f0t) =
e j2π f0t + e− j2π f0t

2
, sin(2π f0t) =

e j2π f0t − e− j2π f0t

2 j
, (4.4)

or:

cos(2π f0t) =
1
2
e j2π f0t +

1
2
e− j2π f0t , sin(2π f0t) =

− j
2
e j2π f0t +

j
2
e− j2π f0t .

(4.5)

They are summation of two harmonic signals (4.3), first with positive frequency f0
and second with negative frequency − f0. Fourier spectrum coefficients for cosine
and sine are, respectively, equal to [1/2,1/2] and [−0.5 j,0.5 j], first for positive
frequency, then for negative (amount of two basis signals, all remaining transform
coefficients are equal to zero). We are doing here deliberately very big simplifica-
tions not mentioning the Dirac Delta functions but aiming at more intuitive, less
formal presentation. Fourier spectra of pure cosine and sine with frequency f0 are
presented in Fig. 4.1.

For real-value signals, the CFT spectrum has conjugate (Hermitian) symmetry in
respect to frequency f = 0 Hz, i.e. it is the same for positive and negative frequencies
in its real part and negated in its imaginary part:

X(− f ) = X∗( f ). (4.6)

Fig. 4.1: Fourier spectrum of cosine (left) and sine (right)—see Eq. (4.5)
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This feature is inherited from functions of cos() and sin():

X( f ) =

∞∫
−∞

x(t)e− j2π f tdt =

∞∫
−∞

x(t)cos(2π f t)dt

︸ ︷︷ ︸
XRe(− f )=XRe( f )

− j

∞∫
−∞

x(t)sin(2π f t)dt

︸ ︷︷ ︸
XIm(− f )=−XIm( f )

. (4.7)

Spectra of pure cosine and sine signals, presented in Fig. 4.1, are the best exam-
ples of the CFT spectrum symmetry.

It is very informative to calculate the Fourier spectrum of a rectangular pulse
equal to 1 in the interval [−T,T ] and zero elsewhere:

RT ( f ) =

∞∫
−∞

rT (t)e
− j2π f tdt =

T∫
−T

1 · e− j2π f tdt =
1

− j2π f
e− j2π f t

∣∣∣∣
T

−T
= . . .

e− j2π f T − e j2π f T

− j2π f
=

− j2sin(2π f T )
− j2π f

=
sin(2π f T )

π f
= 2T sinc(2π f T ). (4.8)

Value for f = 0 we find calculating derivatives of nominator and denominator of the
final formula in Eq. (4.8) in respect to f :

RT ( f )| f=0 =
(2πT )cos(2π f T )

π

∣∣∣∣
f=0

= 2T. (4.9)

Signal of rectangular pulse and its Fourier spectrum are presented in Fig. 4.2. The
plots have been done using program 4.1.

Exercise 4.1 (Fourier Spectrum of the Rectangular Pulse). Run program 4.1
which is doing the Fourier spectrum visualization of a rectangular pulse. Ob-
serve oscillatory shape of this spectrum. Around f = 0 Hz the so-called spec-
tral main-lobe of the oscillations is located. On both sides of it the so-called
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Fig. 4.2: Rectangular pulse and its Fourier spectrum
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oscillatory spectral side-lobes are visible. Change the pulse duration. Ob-
serve that the shorter the pulse is, the wider is its spectrum. Note also that
the spectrum has values equal to zero for frequencies being multiplicities of
1/(2T ) : f = k · (1/(2T )).

Listing 4.1: Fourier spectrum of rectangular pulse
�

1 % lab04_ex_rectpulse.m
2 clear all; close all;
3

4 T = 1; t = -2*T : T/100 : 2*T;
5 x = zeros(1,length(t)); indx = find(abs(t)<=T); x(indx)=ones(1,length(indx));
6 figure; plot(t,x,’b-’); xlabel(’t [s]’); title(’x(t)’); grid;
7

8 f0 = 1/T; f= -4*f0 : f0/100 : 4*f0;
9 X = sin(2*pi*f*T) ./ (pi*f);

10 X( ceil(length(X)/2) ) = 2*T;
11 figure; plot(f,X,’b-’); xlabel(’f [Hz]’); title(’X(f)’); grid;

��

In DSP we deal with discrete-time signals taken from real-world objects. There-
fore it is very important to know which are theoretical spectra of the most popu-
lar continuous-time signals. Why? Since the same spectra should be obtained dur-
ing computer calculations performed upon discrete-time signal representations. In
Table 4.1 some spectra examples (definitions) are given.

We should also know which are spectral consequences of different operations
performed upon the signal. To find corresponding mathematical formulas one should
put the modified signal into CFT integral (4.2) and calculate it. This is a routine
exercise during analog circuits and signals (or signal theory) workouts. I recommend

Table 4.1: Continuous-time signals and their continuous-frequency CFT spectra

No Signal name Signal equation Spectrum equation

1 Rectangular pulse rT (t) =

{
0 for |t|> T
1 for |t| ≤ T

X(ω) = 2 sinωT
ω

2 Sign signal x(t) = sign(t) X(ω) = 2
jω

3 Gaussian function x(t) = e−at2 X(ω) =
√

π
a e

−ω2/(4a)

4 One-side
exponential

x(t) =

{
0 t < 0
e−at t ≥ 0

, a> 0 X(ω) = 1
a+ jω

5 Damped sine x(t) =

{
0 t < 0

Ae−at sin(ω0t) t ≥ 0
X(ω) = Aω0

(a+ jω)2+ω2
0

6 Damped cosine x(t) =

{
0 t < 0

Ae−at cos(ω0t) t ≥ 0
X(ω) = A a+ jω

(a+ jω)2+ω2
0

7 Cosine fragment x(t)=cos(ω0t) · rT (t) X(ω) = sin((ω−ω0)T )
ω−ω0

+ sin((ω+ω0)T )
ω+ω0
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Table 4.2: Basic CFT features: signal processing and its spectral consequence

No Feature Signal manipulation Spectral consequence

1 Linearity ax(t)+by(t) aX( f )+bY ( f )

2 Scaling x(at), a> 0 1
aX
(

f
a

)
3 Time reverse x(−t) X(− f )
4 Conjugation x∗(t) X∗(− f )
5 Time shift x(t− t0) e− j2π f t0X( f )
6 Frequency Shift e± j2π f0t x(t) X( f ∓ f0)

7 Multiplication x(t) · y(t)
∞∫

−∞
X(v)Y ( f − v)dv

8 Complex modulation e± j2π f0t x(t) X( f ∓ f0)
9 Cos() modulation x(t)cos(2π f0t) 1

2 [X( f − f0)+X( f + f0)]
10 Sin() modulation x(t)sin(2π f0t)

− j
2 [X( f − f0)−X( f + f0)]

11 Convolution
∞∫

−∞
x(τ)y(t− τ)dτ X( f ) ·Y ( f )

12 Correlation
∞∫

−∞
x(t)y∗(t+ τ)dt X( f ) ·Y ∗( f )

13 Derivative dnx(t)
dtn ( j2π f )n ·X( f )

14 Energy—Parseval eq.
∞∫

−∞
x(t)x∗(t)dt

∞∫
−∞

X( f )X∗( f )d f

to do it for one or two signal modifications. Examples could be found in many
textbooks. The most important CFT features are listed in Table 4.2.

At present, as an example, we will derive a few important spectral relations which
will be very often used later in this book (ω = 2π f ):

1. signal time shift—results only in signal spectrum phase change (after introduc-
ing new variable τ = t− t0, from where t = τ + t0):

∞∫
−∞

x(t− t0)e
− jωt dt =

∞∫
−∞

x(τ)e− jω(τ+t0)dτ = e− jωt0

∞∫
−∞

x(τ)e− jωτdτ = e− jωt0X(ω);

(4.10)

2. complex modulation—causes frequency shift of the signal spectrum to the
modulation frequency:

∞∫
−∞

(
e± j2π f0t x(t)

)
e− j2π f tdt =

∞∫
−∞

x(t)e− j2π( f∓ f0)tdt = X( f ∓ f0); (4.11)

3. convolution of two signals—results in multiplication of their spectra, which
is extremely important in signal filtering (new variable λ = t− τ , from where
t = τ +λ ):
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∞∫
−∞

⎛
⎝

∞∫
−∞

x(τ)y(t− τ)dτ

⎞
⎠e− jωt dt =

∞∫
−∞

⎛
⎝

∞∫
−∞

x(τ)e− jωτdτ

⎞
⎠y(λ )e− jωλ (dλ +dτ) = . . .

⎡
⎣

∞∫
−∞

x(τ)e− jωτdτ

⎤
⎦ ·
⎡
⎣

∞∫
−∞

y(λ )e− jωλ dλ

⎤
⎦= X( f )Y ( f ); (4.12)

4. multiplication of two signals—results in convolution of their spectra, ex-
tremely important in spectral analysis (we show that inverse Fourier transform
of convolution of two signal spectra is equal to multiplication of these signals,
i.e. we will present an inverse proof; using new variable u= f − v, from where
f = v+u):

∞∫
−∞

⎛
⎝

∞∫
−∞

X(v)Y ( f − v)dv

⎞
⎠e j2π f td f =

=

⎡
⎣

∞∫
−∞

X(ν)e j2πνtdv

⎤
⎦ ·
⎡
⎣

∞∫
−∞

Y (u)e j2πutdu

⎤
⎦= x(t)y(t); (4.13)

5. signal energy—Parseval’s equation—integration of squared signal in time do-
mains is equivalent to the integration of its squared Fourier spectra in the fre-
quency domain, important in signal power and spectral density analysis:

∞∫
−∞

x(t)x∗(t)dt =
∞∫

−∞

⎛
⎝

∞∫
−∞

X( f )e j2π f td f

⎞
⎠x∗(t)dt =

=

∞∫
−∞

X( f )

⎛
⎝

∞∫
−∞

x∗(t)e j2π f tdt

⎞
⎠d f =

∞∫
−∞

X( f )X∗( f )d f . (4.14)

Fourier series use the same methodology as CFT but are dedicated to analysis
and synthesis of periodic signals: only one signal period T is analyzed (multiplied
with the reference and integrated, the result is divided by T ) and only frequencies
being multiplies of the signal repetition frequency k f0 = k 1

T ,k = −∞, . . . ,∞, are
checked:

Xk =
1
T

T∫
0

x(t)e− j2π(k f0)tdt, x(t) =
+∞

∑
k=−∞

Xke
j2π(k f0)t , f0 =

1
T
. (4.15)

The Fourier series equations are written also in the so-called trigonometric ver-
sion:
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ak =
1
T

T∫
0

x(t)cos(2π(k f0)t)dt, bk =
1
T

T∫
0

x(t)sin(2π(k f0)t)dt (4.16)

x(t) = a0 +2
+∞

∑
k=1

[ak cos(2π(k f0)t)+bk sin(2π(k f0)t)] = (4.17)

= X0 +2
+∞

∑
k=1

|Xk|cos(2π(k f0)t+�Xk)

Xk = ak− jbk, |Xk|=
√

a2
k +b2

k , �X = arctg

(−bk
ak

)
.

4.3 Discrete-Time Fourier Transform: From CFT to DtFT

Presentation of the continuous Fourier transform, given above, is very important for
us because in computer-based frequency analysis a discretized CFT version is very
widely used. Let us rewrite the CFT into more computer-friendly form. Denoting
sampling frequency as fs, sampling period as Δ t = 1/ fs, sampling time as t = n ·Δ t,
and exchanging infinite integral with infinite summation, Eq. (4.2) of the forward
CFT takes the following form:

X( f ) =

+∞∫
−∞

x(t)e− j2π f tdt ⇒ X( f ) =
+∞

∑
n=−∞

x(n ·Δ t)e− j2π f (n·Δ t). (4.18)

Going further, we can write final equations for DtFT and its inverse as (defining
Ω = 2π f

fs
):

Analysis: X

(
f
fs

)
=

+∞

∑
n=−∞

x(n)e− j2π f
fs
n =

+∞

∑
n=−∞

x(n)e− jΩn, (4.19)

Synthesis: x(n) =
1
fs

+ fs/2∫

− fs/2

X

(
f
fs

)
· e j2π f

fs
nd f . (4.20)

In (4.19) X( f
fs
) can be calculated for any value of frequency f , being a continuous

variable, but there is no need for this because the function e− j2π f
fs
n is periodic in

respect to f and has period fs:

e− j2π ( f+k· fs)
fs

n = e− j2π f
fs
n · e− j2πkn = e− j2π f

fs
n. (4.21)
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Therefore, it is sufficient to calculate X( f
fs
) for − fs/2 ≤ f < fs/2 or for 0 ≤ f < fs.

In the first case the inspection of the spectrum is more intuitive and easier for inter-
pretation because pairs of positive and negative frequency components are visible
in the spectrum. Going back to the sampling Exercise 1.4 presented in Chap. 1, for
fs = 1000 Hz and fx = 100 Hz we see in the spectrum signal components −100
Hz and 100 Hz, not 100 Hz and 900 Hz (see equations (1.13) and (1.14)). In fact
during discretization of CFT we are sampling not only analyzed signals but also the
reference functions cos() and sin(). When their frequency is too high, the sampling
theorem is not fulfilled, and the high-frequency reference signals are under-sampled
and look as low-frequency ones and, as such, they fit to the analyzed low-frequency
signal again. From this reason the DtFT spectrum is periodic and there is no need
for its whole computation.

When we have only N signal samples, after dividing (4.19) by N, one obtains the
following equation:

X

(
f
fs

)
=

1
N

N−1

∑
n=0

x(n)e− j2π f
f s n, − fs/2 ≤ f < fs/2, (4.22)

which offers properly scaled signal amplitude spectrum (for example, the cosine
spectrum has two peaks equal to 1/2 for frequencies f0 and − f0). In DtFT (4.22) we
can sample (discretize in frequency) the spectrum as dense as we want, significantly
denser than in the DFT method, being discussed later in this chapter, where the
frequency step Δ f = fs/N is always used. From this reason (4.22) should be treated
as a basic tool for spectral zooming and allows us to see details invisible in DFT. It
is building a bridge between digital and analog signal theory.

It is very important also to note that, analogically to CFT and its Eqs. (4.6), (4.7),
the DtFT spectrum X() = XRe()+XIm() has conjugate symmetry also around the
frequency f = 0 Hz—it is the same in its real part XRe() and negated in its imaginary
part XIm():

XRe

(− f
fs

)
= XRe

(
f
fs

)
, XIm

(− f
fs

)
=−XIm

(
f
fs

)
. (4.23)

Fundamentals of frequency analysis of signals by means of DtFT, discretized in
frequency, are summarized in Fig. 4.3. A pure cosine is analyzed in it. Signals are
presented on the left side, while on the right their CFT and DtFT spectra. We see on
the left side, one after the other: continuous-time cosine, a continuous-time rectan-
gular window—a function, one of many possible, used for cutting a cosine fragment,
result of their multiplication, i.e. the signal fragment to be analyzed, and, finally, its
time-discretized version. The CFT spectrum of a cosine cos(2π f0t) is equal to 1

2
for − f0 and f0 (see Eq. (4.5)). The CFT spectrum of the rectangular cutting func-
tion has an oscillatory shape described by sin(x)

x function (see Eq. (4.8)). The CFT
spectrum of a cut cosine consists of two copies of the CFT spectrum of rectangular
window, shifted to frequencies − f0 and f0 (due to modulation feature of the CFT
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Fig. 4.3: Graphical illustration of fundamental principles of digital spectral analysis:
(left) signals, (right) their spectra. In consecutive rows: (1) infinite cosine and its the-
oretical Fourier spectrum, (2) rectangular window and its theoretical Fourier spec-
trum, (3) multiplication of cosine and rectangular window and its spectrum (convo-
lution of two above spectra marked with “*”), (4) sampled signal and its periodic
spectrum, (5) sampled one period of the repeating spectrum [11]
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transform—see feature 9 in Table 4.2). After signal discretization in time with sam-
pling frequency fs, the continuous-frequency DtFT spectrum is obtained in which
the CFT spectrum is repeated with period fs—due to Eq. (4.21). Since the DtFT
spectrum is periodic, only its one period can be calculated. In Fig. 4.3 this is one
DtFT spectrum period from [0, fs) Hz, the same as in the discrete Fourier transform
(DFT) presented in the next section. In computer implementation some sampling of
the frequency axis has to be chosen, which is presented also. When different win-
dow function is used for cutting a signal fragment, the observed signal spectrum has
different shapes but its peaks are still located at signal frequency components. In
Exercise 4.2 we will apply and test some exemplary window functions (rectangular,
Hanning, and Chebyshev) during signal DtFT analysis.

Short Summary Since during DtFT-based frequency analysis, signal is multi-
plied with some windowing function, the DtFT spectrum of the signal fragment
is a result of convolution of the signal spectrum and spectrum of the window—
see Eq. (4.13). Signal discretization causes spectrum periodic repeating (sam-
pling frequency is the period)—due to Eq. (4.21). Therefore, the DtFT spectrum
of a discrete signal should be calculated only in the frequency range [− fs

2 ,
fs
2 )

for complex-value signals or in the range [0, fs
2 ) for real-value signals—due to

its conjugate symmetry (4.23).

In program 4.2 the Matlab code of the DtFT algorithm is presented. It will be
used as a frequency detective for performing some initial experiments, recognition
of DtFT features, and validation of the presented above mathematical material. We
will start from the DtFT analysis of a pure cosine fragment cut by exemplary win-
dow: rectangular, Hanning, or Chebyshev. Do Exercise 4.2. Look at plots shown in
Fig. 4.2, presenting DtFT spectra being solutions/results of the consecutive exercise
tasks.

Listing 4.2: Matlab program for DtFT calculation
�

1 % lab04_ex_dft_dtft_analysis.m
2 clear all; close all;
3

4 N = 100; % number of samples: 100 --> 1000
5 fs = 1000; dt=1/fs; t=dt*(0:N-1); % sampling ratio
6 df = 10; % sampling step in DtFT: 10 --> 1
7 fmax = 2.5*fs; % sampling range in DtFT: 2.5 --> 0.5
8 fx1 = 100; % frequency of signal component 1
9 fx2 = 250; Ax2 =0.001; % frequency and amplitude of signal component 2

10 % 250 --> 110, 0.001 --> 0.00001
11 % Signal
12 x1 = cos(2*pi*fx1*t); % first component
13 x2 = Ax2*cos(2*pi*fx2*t); % 250Hz --> 110Hz, 0.001 --> 0.00001
14 x = x1; % + x2; % x1, x1+x2, 20*log10(0.00001)=-100 dB
15 figure; stem(x); title(’x(n)’); pause % analyzed signal
16
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17 % Windowing
18 w1 = boxcar(N)’; % rectangularwindow
19 w2 = hanning(N)’; % Hanning window
20 w3 = chebwin(N,140)’; % Chebyshev window, 80, 100, 120, 140
21 w = w1; % w1 --> w2, w3 (80, 100, 120, 140)
22 figure; stem(w); title(’w(n)’); pause % window
23 x = x .* w; % x = x, w, x.*w
24 figure; stem(x); title(’xw(n)’); pause % windowed signal
25

26 % DFT - later in this chapter (red circles)
27 % k=0:N-1; n=0:N-1; F = exp(-j*2*pi*(k’*n)); X = (1/N)*F*x;
28 f0 = fs/N; f1 = f0*(0:N-1); % DFT freq step = f0 = 1/(N*dt)
29 for k = 1:N
30 X1(k) = sum( x .* exp(-j*2*pi/N* (k-1) *(0:N-1) ) )/ N;
31 % X1(k) = sum( x .* exp(-j*2*pi/N* (f1(k)/fs) *(0:N-1) ) )/ N;
32 end
33 %X1 = N*X1/sum(w); % scaling for any window
34

35 % DtFT - alreadydiscussed (blue line)
36 f2 = -fmax : df : fmax; % df = 10 --> 1; first this freq. range
37 for k = 1 : length(f2)
38 X2(k) = sum( x .* exp(-j*2*pi* (f2(k)/fs) *( 0:N-1) ) ) / N;
39 end
40 %X2 = N*X2/sum(w); % scaling for any window
41

42 % Figures
43 figure; plot(f1,abs(X1),’ro’,f2,abs(X2),’b-’);
44 xlabel(’f (Hz)’); grid; pause
45 figure; plot(f1,20*log10(abs(X1)),’ro’,f2,20*log10(abs(X2)),’b-’);
46 xlabel(’f (Hz)’); grid; pause

��

Exercise 4.2 (DtFT of a Cosine with Rectangular Window). Use pro-
gram 4.2 for computing DtFT spectrum of a simple cosine signal. Choose
fx1 = 100 Hz as a signal frequency and fs = 1000 Hz as sampling frequency.
Generate N = 100 signal samples. Choose x=x1.

1. Analyze the signal using DtFT in the frequency range
[− fmax, . . . , fmax], fmax = 2.5 fs with the frequency step d f = 10 Hz,
equal to DFT step f0 = fs

N . We are expecting two sharp peaks at fre-
quencies f = −100 Hz and f = 100 Hz since, due to Eq. (4.5), after
discretization our signal has the form:

cos

(
2π

fx1

fs
n

)
=

e j2π fx1
fs

n+ e− j2π fx1
fs

n

2
. (4.24)

Why we see only two peaks in DFT and much more peaks in DtFT, pe-
riodically repeating around multiplies of the sampling frequency fs? Be-
cause DFT calculates the signal spectrum only in the range [0, fs) with the
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step f0 and we see only two components of the cosine: fx1 = 10 f0 and
fs− fx1 = fs−10 f0. In DtFT situation is different. Due to equations (4.21),
the generated reference signals of higher frequencies k fs ± fx1 have ex-
actly the same samples as for the low frequencies ± fx1 and for them the
perfect fit is valid also. Conclusion: the frequency range [−0.5 fs, . . . ,0.5 fs]
is all we need. For real-value signals, having symmetrical spectra, even
[0, . . . ,0.5 fs] is enough.

2. Now decrease the DtFT spectrum sampling 10 times, other words set
d f = 1 Hz. Wow! What happens! Take it easy: now you see repeating spec-
trum of rectangular pulse (4.8) shown in Fig. 4.2, at present its absolute
value is calculated. But why I did not see it before?! Since the rectangular
pulse spectrum is oscillatory, it is crossing through zero and we before, by
chance, took only samples at those zeros and at spectral peaks. But why
the spectrum of rectangular pulse is present in the spectrum of the cosine?
Where the rectangular pulse is hidden in math equations? We analyze not
the WHOLE cosine but its N-samples long FRAGMENT, cut by the rect-
angular pulse. Therefore two analog time-infinite signals are multiplied:
cosine and rectangular pulse, and the resultant spectrum is equal to convo-
lution of their individual spectra (see multiplication feature in Table 4.2 and
Eq. (4.13)). For this reason we see spectrum of the rectangular pulse in the
position of cosine spectral peaks. We can also apply in this case the cosine
modulation feature from the same table: multiplying any signal w(n) by
cosine with frequency fx1 shifts the signal spectrum to cosine frequencies:
fx1 and − fx1 and scale them by 1/2. In discrete-time case:

W

(
f
fs

)
=

+∞

∑
n=−∞

[
w(n)cos

(
2π

fx1

fs
t

)]
e− j2π f

f n =
1
2

+∞

∑
n=−∞

w(n)e− j2π ( f− fx1)
fs

n+ . . .

1
2

+∞

∑
n=−∞

w(n)e− j2π ( f+ fx1)
fs

n =
1
2
W

(
f − fx1

fs

)
+

1
2
W

(
f + fx1

fs

)
. (4.25)

Because we sample the DtFT spectrum in wider frequency range then the
DFT spectrum is sampled, we have many copies of the cosine spectrum, in
consequence, we see many copies of the rectangular pulse spectrum.

3. I do not want to watch the same film many times? No problem. We are
changing frequency range of interest to [−0.5 fs, . . . ,0.5 fs] remaining the
small frequency step d f = 1 Hz of DtFT spectrum sampling. Run the pro-
gram. Are you satisfied? Yes, but if I had the second very weak signal fre-
quency component lying apart, I would not see it in the spectrum because it
would be hidden by big spectral oscillations coming from the strong signal!

4. Yes, you are right! Add a second weak cosine component to the signal:
x=x1+x2, for example, with frequency fx2 = 250 Hz and very small am-
plitude Ax2 = 0.001. Run the program. The second component is not visi-
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ble! I knew! I knew! Yes, as usual, you knew how to complaint but I know
. . . how to solve the problem.

5. Multiply the two-component signal with samples of Hanning window func-
tion x=x.*w;, i.e. exchange the rectangular window with the Hanning
window. In Matlab: w2=hanning(N); w=w2;. This function has lower
level of spectral side-lobes than the rectangular window (look at Fig. 4.2)
at the price of wider spectral main-lobe. Run the program. Now the sec-
ond frequency component is visible. But if the second component would be
very, very weak indeed, having only A2 = 0.00001 (10−5, ten micro-volts)?

6. No problem. We are choosing adjustable Chebyshev window function hav-
ing side-lobes on the level of Asl = 10−7, 20 log10(Asl) =−140 dB. In Mat-
lab: w3=chewin(N,140); w=w3. Run the program. The second com-
ponent is now seen. Wow! But now the spectral peaks are very wide! If the
second component had a frequency very close to the first one, for example,
fx2 = 110 Hz, I would not see it!

7. No problem. Let us make use of the scaling feature of the CFT given in
Table 4.2, in consequence being the feature of the DtFT also. Making the
signal longer (for a < 1) leads to its spectrum narrowing. For example,
the window 10 times longer has the DtFT/DFT spectrum 10 times more
narrow. Therefore, we will increase now the length of our signal vector 10
times, setting N = 1000. Run the program. Yes, it works. But now . . . after
the window usage, amplitudes of spectral peaks are not correct! For cosine
1/2 is expected!

8. Yes. I admire your curiosity! Now we have to change the spectrum nor-
malization. Since windows are reducing amplitude of oscillations in signal
fragment being analyzed, we should compensate this effect! We will ex-
change dividing the spectrum by N, which is correct for the rectangular
window, by sum of window samples, which is correct for any window (for
rectangular one we have N as before). In Matlab: uncomment the line: X =
N*X/sum(w); You see! Now the spectrum scaling is corrected.

9. But . . . Bang! Time is over! . . . You are the game winner. The worst thing
pupil can do is not asking questions!

4.4 Window Functions

4.4.1 Practical Summary

It turned out in the previous section how important are functions used for
cutting signal into fragments which are called windows! For signals being sum-
mations of pure tones we observe in their spectra only scaled and shifted copies
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Fig. 4.4: DtFT spectra calculated for signals in consecutive steps (points) of Exer-
cise 4.2: initially for cosine 100 Hz, N = 100 samples, fs = 1000 Hz. After step 1:
spectrum of rectangular window not visible, after step 2: window spectrum is visi-
ble after decreasing frequency step d f from 10 Hz to 1 Hz, after step 3: reduction
of frequency range due to spectrum periodicity, after step 5: addition of the second
signal component with frequency 250 Hz and amplitude 0.001 and using Hanning
window, after step 6: changing amplitude of the second component to 0.00001 and
using Chebyshev window with side-lobes level of −140 dB, after step 8: chang-
ing second component frequency to 110 Hz and increasing number of samples to
N = 1000, additionally improving spectrum scaling

of windows spectra (Fig. 4.4). Therefore one should choose windows very care-
fully: they should help us in spectral analysis, do not create troubles. The good
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window should have both: very narrow spectral main-lobe (similar to rectangu-
lar window) and a very big attenuation of the spectral side-lobes (in contrary to
the rectangular window). The narrow spectral main-lobe allows to distinguish in
the spectrum signal components having similar frequency values, while highly
attenuated spectral side-lobes of the window spectrum makes possible to see in
the spectrum, both, very strong and very weak components (with very large and
very small amplitudes).

Window tailoring is a great DSP art! There are many window functions
with precisely specified, fixed shapes: rectangular, triangular (Bartlett), Ham-
ming, Hanning, Blackman, Blackman–Harris, and many others. There are also
flexible windows with adjustable shapes: Chebyshev and Kaiser windows are
the most popular among them. The latter allows to change the shape of the
window and its spectrum in a controlled way and make a compromise between
frequency spectrum resolution (width of the window main-lobe) and amplitude
spectrum resolution (attenuation of the side-lobes). A special type of windows,
flat-top ones, is designed to have a very flat main-lobe peak at the cost of in-
creasing its width. Such windows allow very precise amplitude measurements
of many signal components (for example, of power voltage supply harmonics)
but they require their significant separation in frequency.

In this chapter the DtFT spectrum of the rectangular window is derived
and it is shown how a big family of cosine-based windows is designed (Ham-
ming, Hanning, Blackman, etc.), summarized in Table 4.3. Design equations of
Chebyshev and Kaiser windows are presented also with an explanation of their
usage. In Fig. 4.5 different window shapes (up) and their DtFT spectra (down)
are compared. Easy riders can skip the mathematical part, which follows, and
go directly to Exercise 4.3 using program from Listing 4.3.

4.4.2 Mathematical Description

Rectangular Window Let us start with the rectangular window.

wR(n) =

{
1, n= 0, 1, 2, . . . , N−1,
0, other n.

(4.26)

After introduction of a new variable—angular frequency:

Ω = 2π f/ fs, (4.27)

and putting Eq. (4.26) into the DtFT definition (4.19), we obtain

WR(Ω) =
∞

∑
n=−∞

wR(n)e
− jΩn =

N−1

∑
n=0

wR(n)e
− jΩn =

N−1

∑
n=0

1 · e− jΩn. (4.28)
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After multiplying both sides of Eq. (4.28) by e− jΩ and rewriting the equation we
have

e− jΩWR(Ω) =
N

∑
n=1

e− jΩn =
N−1

∑
n=0

e− jΩn+ e− jΩN − e− jΩ0 =WR(Ω)+ e− jΩN −1.

(4.29)
Now we can calculate the value of WR(Ω):

WR(Ω) · (1− e− jΩ ) = 1− e− jΩN (4.30)

WR (Ω) =
1− e− jΩN

1− e− jΩ =
e− jΩN/2

(
e jΩN/2 − e− jΩN/2

)
e− jΩ/2

(
e jΩ/2 − e− jΩ/2

) = . . .

= e− jΩ(N−1)/2 sin(ΩN/2)
sin(Ω/2)

. (4.31)

In a similar way it can be derived that DtFT spectrum of the odd-length rectangu-
lar window wRS(n),n = −M, . . . ,−1,0,1, . . . ,M, N = 2M+ 1, symmetrical around
n= 0, is equal to:

WRS(Ω) =
sin(Ω(2M+1)/2)

sin(Ω/2)
. (4.32)

Since wRS(n) is obtained by shifting wR(n)M samples left, e.g. wR(n+M), therefore
WRS(Ω) is equal to WR(Ω) multiplied by e jΩM . Of course, absolute values of both
spectra are the same: |WR(Ω)|= |WRS(Ω)|. A main spectral lobe of the rectangular
window (i.e. distance between first zero-crossings on both sides around Ω = 0) is
equal to 4π/N, since from Eq. (4.31) we have (first zeros of the sin() function)

Ω1N/2 = π ⇒ Ω1 = 2π/N
Ω2N/2 =−π ⇒ Ω2 =−2π/N

ΔΩR = Ω1 −Ω2 = 4π/N.

In practice we analyze not infinite signals but their shorter or longer fragments.
Some special functions are used for cutting long signal into fragments. They are
called “window” functions because we are looking at signals “through” them. The
window functions are extremely important in signal theory, especially in spectral
analysis and filter design.

Cosine Windows In the beginning we ask fundamental question: what window
functions are used and what are their spectra? A big family of so-called cosine-
type windows is obtained by multiplication of N samples long rectangular window
by sum of K cosines with different angular frequencies (Ωk) and amplitudes (Ak)
(n=−∞, . . . ,−1,0, 1, . . . , +∞):
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w(n) = wR(n)
K

∑
k=0

Ak cos(Ωkn) = wR(n)
K

∑
k=0

Ak

(
1
2
e jΩk +

1
2
e− jΩk

)
, Ωk =

2πk
N−1

.

(4.33)

The DtFT (4.19) of (4.33) is equal to:

W (Ω) =
K

∑
k=0

Ak

2

(
+∞

∑
n=−∞

wR(n) · e− j(Ω−Ωk) +
+∞

∑
n=−∞

wR(n) · e− j(Ω+Ωk)

)
=

K

∑
k=0

Ak

2
(WR(Ω −Ωk)+WR(Ω +Ωk)) (4.34)

due to transformation linearity: spectrum of sum of signals is equal to sum of their
individual spectra. Since the window spectrum (4.34) is a sum of scaled (by Ak) and
shifted (Ωk = 2πk/(N− 1)) spectra of the rectangular window (4.31), (4.32), such
weights (Ak) are chosen which minimizes side-lobe oscillations in final spectrum
W (Ω). Definitions and spectral parameters of the most popular cosine windows are
given in Table 4.3.

Table 4.3: Definitions and parameters of the most popular non-parametric digi-
tal window functions. Denotations: Δml—width of the main-lobe of the spectrum
around Ω = 0 (rad/s), Asl—relative attenuation of the highest side-lobe in relation
to W (0)

Window name, Matlab function Definition w(n),n= 0,1,2, . . . ,N−1 Δml Asl

Rectangular, w=boxcar() 1 4π
N 13.3 dB

Triangular, bartlett() 1− 2|n−(N−1)/2|
N−1

8π
N 26.5 dB

Hanning (Hann), hanning() 1
2

(
1− cos

(
2πn
N−1

))
8π
N 31.5 dB

Hamming, hamming() 0.54−0.46cos
(

2πn
N−1

)
8π
N 42.7 dB

Blackman, blackman() 0.42−0.50cos
(

2πn
N−1

)
+0.08cos

(
4πn
N−1

)
12π
N 58.1 dB

Window spectral features are characterized by the shape of its DtFT spectrum.
The best window should have a very narrow peak around frequency 0 Hz (the so-
called main-lobe) and highly attenuated spectral side-peaks, lying elsewhere (the
so-called side-lobes). The first feature is measured by Δml (width of the main-lobe),
the second by Asl (attenuation of the highest spectral side-lobe). It is impossible to
fulfill both criteria at the same time. The rectangular window has the sharpest main-
lobe but, unfortunately, a very high level of spectral side-lobes. Different designers
of other windows have tried to increase the side-lobes attenuation at the price of
making the spectral main-lobe wider, but as least as possible. In Table 4.3 a few
window functions are defined and values of their Δml and Asl are given. We see
that the more cosine terms the window has, the larger its width Δml is (multiplicity
of 4π/N—the size of the rectangular window is shifted K times) and the bigger
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Fig. 4.5: Exemplary shapes (up) and their DtFT spectra (down) for the following
windows (they are becoming more peaky in the upper plot): rectangular, Hamming,
Hanning, Blackman, Kaiser with β = 12 and Chebyshev −120 dB. Windows are
ordered from the lowest to the highest attenuation of spectral side-lobes (oscillatory
ripples observed in window spectrum) obtained at the cost of widening the spectral
main-lobe (spectral peak around 0 Hz)

attenuation Asl is. Exemplary shapes of windows (up) and their DtFT spectra (down)
are presented in Fig. 4.5. Since window functions are real-value ones their spectra
are always symmetrical around Ω = 0.

Special Adjustable Windows Apart from mentioned above fixed-shape
non-parametric windows having fixed spectral features there are two very impor-
tant parametric windows which can change their shape and spectral characteristics.
The first one is the Dolph–Chebyshev window defined as follows (N = 2M+1):

wDC [m+(M+1)] =C

[
1
γ
+2

M

∑
k=1

TN−1

(
β cos

πk
N

)
cos

2πkm
N

]
, −M ≤ m≤M,

(4.35)
where γ denotes the required relative height of maximum spectrum side-lode in
relation to the height of the spectrum main-lobe (e.g. γ = 0,01 or 0,001, which
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corresponds to relative attenuation of the side-lobe Asl = 20log10(γ) = 40 dB or
60 dB) and parameter β , depending on γ , is given by

β = cosh

(
1

N−1
cosh−1 1

γ

)
= cosh

(
1

N−1
cosh−1(10Asl/20)

)
. (4.36)

TN−1(x) is Chebyshev polynomial of the (N−1)-th order:

TN(x) =

{
cos
(
(N−1)cos−1x

)
, |x| ≤ 1

cosh
(
(N−1)cosh−1x

)
, |x|> 1.

(4.37)

The Kaiser window, for N even or odd, is defined by formula:

wK(n) =

I0

(
β
√

1−
(
n−(N−1)/2
(N−1)/2

)2
)

I0 (β )
, 0 ≤ n≤ N−1, (4.38)

where I0(β ) denotes Bessel function of the 0-th order:

I0 (x) = 1+
∞

∑
k=1

[
(x/2)k

k!

]2

. (4.39)

In literature one can find equations connecting required values of Δml and Asl with
values of Kaiser window parameters β and N:

β =

⎧⎨
⎩

0 Asl < 13.26 dB
0.76609(Asl −13.26)0.4 +0,09834(Asl −13.26) , 13.26 < Asl < 60 dB
0.12438(Asl +6.3) 60 < Asl < 120 dB

(4.40)

N = �K	 , K =
24π(Asl +12)

155 ·Δml
+1, (4.41)

where �K	 denotes the smallest integer value equal to or greater than K. In Matlab
we have functions kaiser() and chebwin().

4.4.3 Application Example

Exercise 4.3 (DtFT of DifferentWindows). First, choose any window and cal-
culate its DtFT spectra for different lengths, for example, N = 50, 100, 200, 500,
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1000, 2000. Plot all spectra in decibels in one figure. What is your conclusion?
Next, calculate the DtFT spectra for Kaiser window for the value of β chang-
ing from 0 to 14 with step 2. Plot all spectra in decibels in one figure. What
is your conclusion? Finally, repeat Exercise 4.2 using in it the Chebyshev win-
dow. Change the signal length as well as frequencies and amplitudes of its two
components. Try to obtain a compromise between the Δml and Asl .

Listing 4.3: DtFT spectra of different windows
�

1 % lab04_ex_windows.m
2 % DtFT of windows, window importance in frequencyanalysis
3

4 clear all; close all;
5

6 M = 100; % one-side number of window samples
7 N = 2*M+1; % all samples
8 n = -M : M; % sample indexes
9 text={’Rect’,’Triang’,’Hamm’,’Hann’,’Black’,’Kaiser’,’Cheb’}

10

11 % Window functions, i.e. "windows" in columns of matrix W
12 w(:,1) = boxcar(N); w(:,2) = bartlett(N);
13 w(:,3) = hamming(N); w(:,4) = hanning(N);
14 w(:,5) = blackman(N); w(:,6) = kaiser(N,10);
15 w(:,7) = chebwin(N,120);
16 [ N, Nw] = size(w); % N window length, Nw number of windows
17

18 figure
19 plot(n,real(w)); xlabel(’n’); title(’Windows w(n)’); grid;
20 axis([-(M+10) M+10-0.1 1.1]); legend(text); pause
21

22 % Normalizationrequired for correctinterpretation of amplitudespectrum
23 w = w ./ repmat(sum(w),N,1); % normalization (in column) to sum(w)=1
24

25 % DtFT of windows
26 f =-1/10 : (1/N)/20 : 1/10; % normalized freq ( f/fs )
27 for k = 1:length(f)
28 bk(1:N) = exp( -j*2*pi*f(k)*n ); % reference Fourierharmonics
29 W(k,1:Nw) = bk(1:N) * w(1:N,1:Nw); % DtFT coeffs for all windows (in cols)
30 end
31 figure
32 subplot(211); plot(f,real(W)); title(’Real(DtFT)’); grid;
33 subplot(212); plot(f,imag(W)); title(’Imag(DtFT)’); xlabel(’f [Hz]’); grid; pause
34 figure
35 subplot(211); plot(f,abs(W)); title(’Abs(DtFT)’); grid;
36 subplot(212); plot(f,angle(W)); title(’Angle(DtFT)’); xlabel(’f [Hz]’); grid; pause
37 figure
38 subplot(111); plot(f,20*log10(abs(W))); xlabel(’f [Hz]’); title(’|W(f|’);
39 grid; axis([min(f) max(f)-160 20]);
40 legend(text); pause
41
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42 % Windowed signal
43 x = 2*cos(2*pi*1/20*n); % signal
44 x = w .* repmat(x’,1,Nw); % its multiplication with many different windows
45 for k = 1:length(f)
46 bk = exp( -j*2*pi*f(k)*n );
47 X(k,:) = bk * x;
48 end
49 figure
50 subplot(111); plot(f,20*log10(abs(X))); xlabel(’f [Hz]’); title(’|X(f|’);
51 grid; axis([min(f) max(f)-160 20]);
52 legend(text)
53

54 % Repeat the program for different values of N: 50, 100, 200, 500
��

Windows Application Summary The window spectrum should have narrow “main-
lobe” to allow seeing in it two separate peaks for frequencies Ωk and Ωl , which can
lie very close to each other. Otherwise, we might observe one broad peak instead of
two narrow ones because of their fusion.

The window spectrum should also have high attenuation of side-lobes in the situ-
ation when amplitudes Ak and Al of two cosine components differ a lot and spectral
peak of the weaker component could be lost/missed in high spectral side-lobes (in
the grass) of the stronger component.

4.5 Discrete Fourier Transform

DFT represents discretization result of the Fourier series (4.15) which is defined
in analog world for periodic signals (fundamental frequency f0 = 1/T , T—period,
T = N ·Δ t, t = n ·Δ t):

Xk =
1
T

T∫
0

x(t)e− j2π(k f0)tdt ≈ 1
N ·Δ t

N−1

∑
n=0

x(n ·Δ t)e− j2π(k 1
N·Δ t )(n·Δ t)Δ t = . . .

=
1
N

N−1

∑
n=0

x(n)e− j 2π
N kn, fk = k · f0 = k

fs
N
, k = 0,1,2 . . . ,N−1. (4.42)

Equation (4.42) and its inverse can be written in matrix form as orthogonal transfor-
mation pair:

Analysis : X̄=
1
N
F · x̄, (4.43)

Synthesis : x̄= FH · X̄= (F∗)T · X̄, (4.44)
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well-known for us from Chap. 2. The transformation matrix F is defined as, for
example, also for N = 4:

FN=

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

1 e− j 2π
N 1·1 · · · e− j 2π

N 1·(N−1)

...
...

. . .
...

1 e− j 2π
N (N−1)·1 · · · e− j 2π

N (N−1)·(N−1)

⎤
⎥⎥⎥⎥⎦ , F4 =

⎡
⎢⎢⎢⎣

1 1 1 1

1 e− j 2π
4 1·1 e− j 2π

4 1·2 e− j 2π
4 1·3

1 e− j 2π
4 2·1 e− j 2π

4 2·2 e− j 2π
4 2·3

1 e− j 2π
4 3·1 e− j 2π

4 3·2 e− j 2π
4 3·3

⎤
⎥⎥⎥⎦ ,

(4.45)

so it has in its rows conjugated orthogonal harmonic vectors, with different scal-
ing than in Eq. (4.1). In non-vector form and with changed normalization, equa-
tions (4.43) and (4.44) have the following form:

Analysis : X(k) =
1
N

N

∑
n=1

x(n)e− j 2π
N kn, k = 0, 1, 2, . . . ,N−1, (4.46)

Synthesis : x(n) =
N

∑
k=1

X(k)e j
2π
N kn, n= 0, 1, 2, . . . ,N−1. (4.47)

In Eq. (4.46) the signal is compared (correlated) with conjugation of harmonic
Fourier basis function, while in Eq. (4.47) it is represented as a sum of basic func-
tions scaled by spectral (“similarity”) coefficients X(k), calculated in Eq. (4.46).

First, the main student problem, after calculation of the signal DFT spectrum
using Eq. (4.46), is how to connect calculated spectral coefficients Xk with real-
world frequencies when the frequency is missing in these equations! But we know
how long the signals are (N samples) and which is the sampling frequency ( fs), so
as a result we know also the time duration of signals: T =N ·Δ t =N/ fs. In first row
(k= 0) of matrix F we have only ones, in the second (k= 1)—one period of cos() in
real part and one period of -sin() in imaginary part, in the third (k= 2)—two periods,
later three, four, five, . . . , N− 1 periods. Therefore, since we know T , we should
deduce that X0 is a mean value of the signal, spectral coefficient X1 corresponds to
frequency 1 · f0 = 1/T , X2—to 2 · f0, X3—to 3 · f0, and so on. This sounds reasonable
since in Fourier series coefficients are also calculated for frequencies k · f0.

That is it! Now a reader should do some computer experiments and . . . find visu-
ally with surprise conjugate symmetry of the DFT spectrum: Xk,k= 0,1,2, . . . ,N−
1. Yes, indeed, the spectrum of our speech has such symmetry! This is typically
the second student surprise! We analyze, for example, a real-value signal having
only one frequency component but in the spectrum we see two peaks: one in its
first half and one in the second half. This phenomena results from the fact that for
k = 1,2,3 . . . ,N−1 the following relations hold:



88 4 Discrete Fourier Transforms: DtFT and DFT

XN−k = Xk
∗ ⇒ real(XN−k) = real(Xk), imag(XN−k) =− imag(Xk) (4.48)

Additionally the DFT spectrum always has zeros in imaginary part for k = 0 and
k = N/2:

imag(X0) = imag(XN/2) = 0. (4.49)

Why the DFT spectrum has conjugate symmetry? What is the sense of computing
something twice? The first answer is that conjugated Fourier harmonics which are
used for signal decomposition in Eq. (4.46) are the same for k and N − k, only
conjugated. For the k-th harmonic we have

e− j 2π
N kn, n= 0,1,2, . . . ,N−1, (4.50)

while for the (N− k)-th:

e− j 2π
N (N−k)n = e− j2πn · e+ j 2π

N kn = e+ j 2π
N kn. (4.51)

Therefore the calculated DFT coefficients have also the same values, only complex-
conjugated:

X(k) =
1
N

N

∑
n=1

x(n)cos

(
2π
N

kn

)
− j

1
N

N

∑
n=1

x(n)sin

(
2π
N

kn

)
= a− jb (4.52)

X(N− k) =
1
N

N

∑
n=1

x(n)cos

(
2π
N

kn

)
+ j

1
N

N

∑
n=1

x(n)sin

(
2π
N

kn

)
= a+ jb. (4.53)

The second explanation of the spectrum (a)symmetry phenomena is that real-
value cosine and sine functions can be expressed as a summation of two Fourier
harmonics used for signal decomposition:

cos

(
2π
N

kn

)
=

e j
2π
N kn+ e− j 2π

N (N−k)n

2
, (4.54)

sin

(
2π
N

kn

)
=

e j
2π
N kn− e− j 2π

N (N−k)n

2 j
, (4.55)

therefore, since the DFT transform is linear, when analyzing real-value signals we
have two symmetrical peaks in the DFT spectrum with complex-conjugated values.

Exercise 4.4 (DFT of a Cosine with Rectangular Window). Make use of the
Matlab program 4.2 in which the DFT algorithm is also implemented. In figures
generated by the program, the DFT spectra are marked with red circles and
compared with the DtFT spectra, denoted by blue solid line. In the beginning,
try to obtain the same plots as presented in Fig. 4.6. Set the following values of
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program parameters: sampling ratio fs = 1000 Hz, number of signal samples
N = 50, only component x1, in the beginning with frequency 100 Hz, than
with 110 Hz. Check validity of the DFT spectrum (a)symmetry (Eq. (4.48)).
Next, apply different windows to the signal. Again check the DFT spectrum
(a)symmetry.

-500 -100 0 100 500 1000
f (Hz)

0

0.2

0.4

0.6
After step 3

-500 -110 0 110 500 1000
f (Hz)

0

0.2

0.4

0.6
After step 3

Fig. 4.6: DtFT and DFT spectra of two cosines, blue line and red dots, respectively:
(up) signal with f0 = 100 Hz: perfect DFT match to the cosine frequency, (down)
signal with f0 = 110 Hz: the worst DFT match to the cosine frequency. Values
of parameters: sampling frequency fs = 1000 Hz, N = 50 samples, DFT spectrum
discretization step Δ f = f0 = fs/N = 20 Hz. Observe symmetry of the DFT spec-
trum marked with red circles. Notice the different shapes of correct DtFT spectrum
marked with blue solid line (two shifted spectra of the rectangular window)
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4.6 Summary

Signal processing consists of two fundamental branches: frequency analysis
and signal filtering (noise reduction and rejections of some signal components).
This chapter has been focused on fundamentals of frequency analysis by means
of Fourier transform—it has a crucial significance in our DSP course. You
should understand everything in it. If you do not, I am very sorry, read this
chapter again and again . . . before the examination. Yes, you can. Personally,
some papers I was reading repeatedly even 10 years. With final success. What
should be remembered?

1. Most frequency analysis methods are very similar: one compares a signal
with reference frequency components (oscillations) multiplying it with the
references and accumulating single products. This is valid in analog and
digital world, done by Fourier integrals and summations.

2. DtFT is a discretized continuous Fourier transform and DFT is a result
of the discretization of Fourier series. In computer implementation both
transforms are very similar: they use the same signal samples and treat them
in almost the same manner. The only difference is that in N-sample DFT the
signal spectrum is computed for precisely specified set of N frequencies:
fk = k · f0,k = 0,1,2, . . . ,(N − 1), where f0 = 1/T is the inverse of the
analyzed signal duration. In DtFT the choice of frequencies is completely
free. For real-value signals we are typically choosing frequency values in
the range [0, fs/2). The DtFT offers better visualization of the theoretical
signal spectrum due to its possible more dense sampling.

3. The DtFT is more application flexible but the DFT is faster due to the ex-
istence of very fast DFT implementations (FFT algorithms are presented
in the next chapter). DtFT calculation can be speed up by using fast im-
plementations of the chirp-Z transform (usage of three FFTs, not discussed
here)—never the less the method is slower than the DFT.

4. One should always remember that in practice frequency analysis is per-
formed upon a signal fragment, not on the whole signal. What is the conse-
quence of this fact? That a fragment cutting operation has a very big influ-
ence on the final result! Simply taking signal samples from–to means that
we are multiplying a signal with an observation window function having a
value equal to “1” from–to and “0” elsewhere.

5. If two signals are multiplied, the Fourier spectra are convoluted. Due to this,
the signal windowing performed during signal fragment cutting causes that
the theoretical spectrum of the time-infinite signal is convoluted with the
window spectrum modifying it. Therefore, one should choose very care-
fully the window function during spectral analysis.

6. Increasing K-times the length of the analyzed signal, one improves K-times
the DFT frequency resolution, no matter what the window function is used.
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As a consequence, signal components having near frequencies are better
distinguished.

7. Using windows with a low level of spectral side-lobes, one improves am-
plitude resolution of the spectrum by the cost of decreasing its frequency
resolution. But the frequency resolution can be always improved by signal
enlargement.

8. There are many window functions. The best should offer the most nar-
row spectral main-lobe (good frequency resolution) and the lowest level
of spectral side-lobes (good amplitude resolution). In practice, Kaiser and
Chebyshev windows are very often used due to their adjustable shapes and
changeable spectral features.

4.7 Private Investigations: Free-Style Bungee Jumps

Exercise 4.5 (Am I An Enrico Caruso? Finding Frequency of Vocal Cords Os-
cillation). Use DtFT and DFT detectives for finding the frequency of your vocal
cords opening and closing for different vowels.

Exercise 4.6 (In the Wonderful World of Sounds). From the Internet web page
FindSounds (https://www.findsounds.com/) take 2–3 signals of different origin and
use DtFT and DFT for finding their frequency content. Scale frequency axis in hertz.
Overlay two spectra in one plot.

Exercise 4.7 (Did You Break My Heart? What Is the Frequency of My Heart-
beat?). Take from the Internet an ECG heart activity signal, e.g. from the page
https://archive.physionet.org/cgi-bin/atm/ATM. Calculate the frequency of the heart-
beat using DtFT and DFT.

Exercise 4.8 (Steel Factory Secrets). Analyze signals of supply voltages and cur-
rents recorded for operating arc furnace. Take them from the file load(’UI.mat’);
whos, given at the book web page. Do spectral DtFT analysis for interesting parts
of the spectra. Estimate frequencies and amplitudes of fundamental frequency 50
Hz (close to 50) and its harmonics 100, 150, 200, 250, . . . Hz.

Exercise 4.9 (Clear Water, Clear Power Supply). Please, analyze recorded power
supply voltage signal tu.dat which is used for testing algorithms for monitoring
electric power quality (https://grouper.ieee.org/groups/1159/). First, extract time and
voltage values from matrix columns:
load(’tu.dat’); t=tu(:,1); u=tu(:,2); plot(t,u);).
Then, estimate frequencies and amplitudes of fundamental frequency 50 Hz (close
to 50) and its harmonics, if they are present.

Exercise 4.10 (Mysteries of NMR Laboratory). Do frequency analysis of pseudo-
NMR signal synthesized in first additional exercise after Chap. 2.

https://www.findsounds.com/
https://archive.physionet.org/cgi-bin/atm/ATM
https://grouper.ieee.org/groups/1159/
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11. T.P. Zieliński, Cyfrowe Przetwarzanie Sygnalów. Od Teorii do Zastosowań
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