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Foreword

When we were preparing sixteen years ago the first edition of professor Tomasz P.
Zielinski’s monograph, titled “Digital Signal Processing. From Theory to Use,”
for publication in Poland in 2005, I did not think that this book, that treats very
complex issues, would have such good readers’ success. It had turned out that it was
even more popular in our country than some world-renowned telecommunication
titles we had translated. Why? Because the merits of severe mathematical problems
were explained in so accessible way and it was directly shown how to use many
software solutions, presented in the book, in a variety of fascinating, different ap-
plications. It was the first book of this type in Polish technical literature in the field
of telecommunications. In this, I find the justification that this publication was ap-
preciated by readers so much. The book had two editions and it was systematically
reprinted (recently in 2014).

Apart from being appreciated by the reading market, in 2006 the book was
awarded for the best academic book presented at the 13th National Fair of Academic
Book ATENA 2006 in Poland and professor Tomasz P. Zieliński got the award of
the Minister of Science and Higher Education in Poland as the book author.

Years go by. At present, 16 years later, professor Zieliński wrote a new book. In
big part, it takes all the best from our previous, Polish monograph in its DSP part,
but with significant modification and even further simplifications. A completely new
software-defined digital telecommunication section has been added, containing
about 350 pages. Knowing professor Zieliński writing style, I am fully convinced in
good readers’ reception of his new work.

Years go by and times are changing. The modern access to the information is
different than it was years ago. The Internet is cutting our knowledge, and thoughts,
into pieces. How to distinguish valuable ones? Where to find them? How to combine
all pieces together? Questions, questions! May be it will be more effective to start
our infinite queries from reading one good textbook?
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x Foreword

I am proud that I can recommend this new book of such experienced Polish
author.

Editor-in-Chief Krzysztof Wiśniewski
Wydawnictwa Komunikacji i Łączności
Warszawa
21 April 2020



Preface

After almost 40 years’ long friendship with Digital Signal Processing (DSP) and
many, many years of teaching it, I have realized, finally, that most of my students,
more than 90% of them, are not interested in DSP. They are obliged only to take
DSP course and learn it in many different specializations, but they are more inter-
ested in some other topics. There is no sense to feel offended: the world surrounding
is so fascinating and beautiful. What should result from this observation for me as a
teacher? Of course, to fight for student attention and to try to make the course as at-
tractive as it could be. At university practice, attractive means: short, comprehensive,
fully understandable, and focused on applications, not on theoretical derivations.

I hope that this textbook fulfills the mentioned above, severe students conditions.
I have tried to make it as compact as possible, but still presenting all the primary
and important DSP concepts. The book is intended to cover in an attractive way
introductory material for:

– the first student DSP laboratory, i.e. introduction to signals, primary spectral
analysis, and digital filtering (Chaps. 1–9),

– the second student DSP laboratory, with important, special DSP topics and ap-
plications, including re-sampling, Hilbert transform and analytic signal, adap-
tive filters and modern spectral estimation methods as well as multimedia,
speech–audio–video signal processing (Chaps. 10–16), and

– the first DSP-based digital telecommunication laboratory, with an introduc-
tion to software-defined radio technology, digital modulation basics, single-
carrier and multi-carrier transmission fundamentals as well as digital receivers
of FM/RDS radio, DAB radio, DSL modems and 4G/5G digital telephony
(Chaps. 17–24).

Multimedia part (Chaps. 14–16) can be used as a bridge between general-purpose
and strictly digital telecommunication DSP applications.

All the chapters end with exercises aimed at involving the student into her/his
own funny bungee-jump experiments. Their difficulty is marked with “*, **, ***.”
Since “happy people do not count the time,” an attempt is made to attract student
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xii Preface

attention and interest and reach teaching goals by project-oriented, case study-based
self-education.

In order to make all the chapters self-contained, a short list of the most important
references and further readings accompanies each of them. The short list of refer-
ences offers students essential, DSP knowledge. The book intends to offer an easy
explanation for the most common DSP problems and to involve students into the fun
of DSP and not to lose them in the complex mathematical DSP at the beginning of
its course in their education. When being interested in DSP, a contemporary student
can find everything in the web. She/he even prefers to do it herself/himself—as their
private investigation, not as an official obligation. This is the book well-known phi-
losophy: less is more—less references, more joy and freedom, more self-studying,
more unforeseen surprises and exciting adventures. In this aspect, all important pa-
pers and books are left for future reading—which is desirable and recommended but
not obligatory.

In my opinion, a good explanation and understanding of a starting point is the
most important in teaching and learning. This book aims at being a different type of
introductory text on DSP with a more informal, friendly dialog.

My general intention was to make the book as short and simple as possible.
Because none of us have time for technical epics—the world is changing too fast.
Despite a very wide thematic scope, I had planned to write no more than 480 pages:
24 chapters with less than 20 pages each. Unfortunately, I did not succeed in re-
alization of this goal. The final book manuscript had about 800 pages. But, in my
opinion, the simplicity of book was not lost: all the chapters are really essential. So
how has this happened? It is the presentation that is responsible for making the book
immense. The book is full of diagrams, figures, exercises, and programs, which are
the heart of DSP. These programs give the readers a chance to see all the math in ac-
tion and help to understand definitively the underlying DSP concepts. Not all books
allow this. All of them tell how to do it, but only a few show how to write a program
solving a problem. Programs are used for the verification of a concept’s correctness.
Programs do not forgive mistakes. Everything should be considered in them: even
one simple error can cause unpredictable consequences. Everything is explained by
program in this book and this is its real strength, in my opinion.

Distinguishing between absolutely basic and complementary information is a
crucial task in our everyday life. Between what has to be done and what can be
done. Most students are obliged to take many courses, that are mainly focused on
fundamental concepts. In this book all important issues are highlighted with a gray
background and optional mathematical derivations are specially marked in order to
be easily skipped during the first reading. Additionally, all chapters are proceeded
by short introductions and ended with generalizing summaries—they help readers
to select and remember fundamental problems discussed in each chapter. Last but
not least, all new important terms appearing in the text that should be remembered
are marked with different colors—we can say that the knowledge is well labeled and
annotated. All of this, in my opinion, is a great help in fast acquiring and effective
knowledge consolidation.



Preface xiii

Finally, I would like to provide some logistic information which, in my opinion,
should be very important for most readers.

1. Book web page with programs. All programs from this book, and some others,
together with supported data, are available at the book web page:
http://kt.agh.edu.pl/~tzielin/books/DSPforTelecomm/.

2. Matlab/Octave version and toolboxes required. Most of the programs do not
use special Matlab functions and can be run in any Matlab/Octave version.
However, the proposed solutions are very often compared with Matlab ones,
and in such a situation the Signal Processing Toolbox is needed (or functions
from the SPT should be commented). In image processing chapter, many Image
Processing Toolbox are exploited. In analog filter design chapter, a few func-
tions from the Control Toolbox are used but they are not necessarily required
(impulse(),step()).

3. Loading data to Matlab. Due to changes in Matlab software, readers are asked
to carefully exchange, when necessary, the following new Matlab functions
audioread(), audiowrite(), audioinfo(), audiorecorder() to old ones:
wavread(), wavwrite(), wavrecord(), etc.

4. Auxiliary functions. To allow readers to partially solve a problem of missing
toolboxes, some very important auxiliary functions are given on the book web
page in sub-folder/auxiliary. For example, very useful spectrogram() func-
tion for signal spectrogram calculation and visualization. Together, we could
increase these sub-sets significantly.

We wish you an enjoyable and fruitful reading.

Kraków, Poland Tomasz P. Zieliński
April 2020

http://kt.agh.edu.pl/~tzielin/books/DSPforTelecomm/


Acknowledgements

In the first place, I would like to thank a lot all my colleagues with whom I had a
pleasure to work during my whole, long, professional DSP life. We were discovering
and enjoying the DSP world together. This book could not have been written without
their inspiration and longstanding kind co-operation in different scientific projects.
I would like to especially thank Roman Rumian, Pawel Turcza, Krzysztof Duda,
Tomasz Twardowski, Jarosław Bułat, Andrzej Skalski, Przemysław Korohoda,
Dimitar Deliyski, Bogdan Matuszewski, Mirosław Socha, Jacek Stȩpień, Rafał
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Chapter 1
Signals: Acquisition, Classification,
Sampling

Let’s try to climb mountain peaks! Do not send the SOS signal
seeing the first obstacle!

1.1 Introduction

In digital signal processing (DSP) a signal is a vector (or matrix) of numbers
taken from the real world. These numbers are acquired via sensors and Analog-
to-Digital Converters (ADC). They are called the signal samples—samples of
some known or unknown functions. During sampling a function value is dis-
cretized in time (in its argument) and quantized in amplitude (in its value). A
sinusoid, e.g. power supply voltage, and damped sinusoids, e.g. generated in
magnetic resonance, are the most frequently observed and the best known sig-
nals since they are solutions of second-order differential equations describing
many existing physical phenomena. The other well-known signal are electro-
cardiograms and fingerprints.

In each signal the information is hidden about object which generated it.
Most often signal analysis is focused on finding and extracting this informa-
tion. In shape of the ECG signals there is the information about state of our
heart. Fingerprint image allows to distinguish the person. Many signals are gen-
erated by people in some technical systems. Analysis of echoes of transmitted
radar signal, penetrating our neighborhood, tells us about surrounding objects
and their velocity. We have millions of sensors in the world and millions of
phenomena to track and to analyze.

1.2 Digital Signal Processing Systems

In Fig. 1.1 a simple diagram of digital signal acquisition and processing systems
is shown. Typically an observed real-world phenomena is continuous-time (analog),
e.g. our heartbeat (ECG) or speech signals. The low-pass (LP) filter should pass only
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T. P. Zieliński, Starting Digital Signal Processing in Telecommunication
Engineering, Textbooks in Telecommunication Engineering,
https://doi.org/10.1007/978-3-030-49256-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49256-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-49256-4_1
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signals’ sinusoidal components having frequencies smaller than half of the sampling
frequency (called sampling rate also, i.e. number of signal samples taken per one
second). As a result each low-frequency sine, which is passed, after the sampling
has more than two samples per period. Without usage of the LP filter, sinusoids with
higher frequencies would be also present on the ADC input. They would be sampled
to sparsely, i.e. their samples might be taken once for a few signal periods only. As
a result, when no low-pass filter is used, high-frequency signals could look after
sampling as low-frequency ones. It is creating for us a signal ambiguity problem: is
an observed signal really a low-frequency one or it only looks to be such? From this
reason usage of low-pass filter is obligatory.

Coming back to Fig. 1.1: the low-pass filter before the analog-to-digital (A/D)
converter removes the unwanted high-frequency signal components, too high in re-
gard to chosen sampling rate, while the low-pass filter after the digital-to-analog
converter (D/A) smoothes jumps present in analog signal, resulting from converting
real values into integer ones via rounding. The first filter is called an anti-aliasing
one, while the second—a reconstruction one.

Fig. 1.1: Two digital paths of signal analysis and processing: (up) analog-digital-
analog, (down) digital-analog-digital
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The digital signal has a form of vector of numbers. These numbers are taken
from sensors: sensor values are discretized in time and quantized in value by an
A/D converter (ADC), like in computer sound cards. Next, they are processed by
digital computer. Calculation results can be shown/stored or inversely converted to
the analog world by the D/A converter (DAC). After the DAC the analog signals
have step-wise shapes: they take only values from a predefined set of numbers,
most values are missing. For example, the number “1” could represent the whole
interval [0.5 . . . 1.5), number “2”—interval [1.5. . . 2.5) and so on. For this reason
the low-pass filter, called a reconstruction filter, should smooth the synthesized sig-
nal and remove these “steps.” Very often, in communication, the processing chain
is inverted: at the input we have digital sinusoid. It takes different states, i.e. dif-
ferent values of amplitude, phase, or frequency and it is carrying bits in “state”
numbers (e.g. state number 9, decimally, is equal to 1001, binary). In a transmitter
the digital signal is converted to its analog form, then transmitted, passed through
the communication channel (e.g. telephone/cable line, for DSL modems, or fiber),
back converted into the digital form in the receiver, synchronized, and analyzed.
This way the transmitted bits, 1001 in our example, are recovered in a receiver from
the state number of acquired signal.

The simplest example of a DSP acquisition system is a personal computer
equipped with microphone, AD converter, microprocessor, DA converter, and
speaker. We can record our speech or environmental sound using it, do some digital
processing (e.g. mixing and adding some special audio effects), and after that play
our recordings. During recording the computer hardware is expected specification
of the following parameters: sampling frequency/sampling rate (number of signal
samples taken per one second), e.g.
8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 96000, 192000, . . . ,
number of channels, one (mono) or two (stereo), and number of bits for one sample,
for example 8 or 16. Changing pressure of the acoustical longitudinal wave is caus-
ing motion of the microphone membrane. This motion is transformed into voltage,
also changing, which is processed by the low-pass filter removing signal compo-
nents having frequency equal or higher than half of the sampling frequency. Then
the AD converter is periodically taking samples of the signal (with earlier specified
sampling frequency), rounding their values in amplitude to some predefined levels,
and coding the level numbers as integer numbers with a sign. Then the stream of
such numbers is processed by a computer, stored, transmitted or . . . converted back
to the analog form. In the last case the DA converter synthesizes analog voltages
corresponding to integer numbers, interpreting them as numbers of voltage levels,
and, finally, the analog signal is smoothed by the analog low-pass filter aiming at re-
moval of output voltage switching (“jumps”) resulting from the voltage quantization
(“leveling”) process.

There are plenty of DSP applications. For example, radar/sonar/USG echo-
graphic systems where technically generated electromagnetic or sound waves
are emitted, reflected by different objects, and later analyzed in order to find
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object characterization. Or digital telecommunication systems in which single
or multiple sines with different amplitudes, frequencies, and phase shifts are
synthesized, transmitted, and analyzed in receivers, since bits are hidden (car-
ried) in sine parameters. And so on, and so forth. After each A/D and before
each D/A converter, typically the DSP machinery is used.

Rounding operation, or signal binarization is performed in the following way. Typ-
ically each AD converter has some predefined input voltage range, for example
[−5V, 5V]. For example, having N = 8 output bits, the converter divides this range
into 2N = 256 intervals, enumerating them from −128 (= 10000002 binary) to 127
(= 01111112 binary). In the C language it is a signed char variable, codded using
U2 two complement notation: 1 = 000000012, −1 = 111111112 = −128 + 127,
the most significant bit is negative. In the discussed case the interval width in
volts ΔV = 10/256V. Let us assume that the input voltage is equal to 1.2345V or
−1.2345V. It will be coded as (very, very roughly speaking)

round

(
1.2345V
10V/256

)
= round(31.6031999 . . .) = 32 = 001000002, (1.1)

round

(−1.2345V
10V/256

)
= round(-31.6031999 . . .) =−32 = 111000002. (1.2)

One can say: binary representation is not important for me! I will do all cal-
culation in Matlab/Octave or Python where very precise 32- or 64-bit floating-point
number representation is used. Yes, it is true. All your calculation will be done really
with high precision but they could be performed upon data which have lost already
their precision during analog-to-digital conversion and have been rounded to near-
est signed integers! The floating-point computing will help us only with precision
of further computing.

For Inquisitive Readers It is important also to remark that the same bits after the
ADC can be interpreted not as integers but also as fractional numbers lying in the
range [−1, 1). It can be beneficial during signal multiplications since multiplying
integer numbers gives us a bigger number as a result (e.g. 2 · 3 = 6) while multi-
plying fractions gives us a smaller number (e.g. 0.2 · 0.3 = 0.06). This nice feature
protects us against computational overflow. In fixed-point DSP processor the frac-
tional number representation can be used.

From Nb-bit ADC, one can obtain only 2Nb values being Nb-bit binary sequences
of zeros and ones. For example, for 8-bit ADC we obtain 28 = 256 different 8-bit
patterns, changing from 000000002 to 111111112, and bits are numbered from 0 to
7 (Nb −1) from right (the least significant) to left (the most significant). From these
binary sequences one can obtain signed or unsigned integer values vi or fractional
values v f , creating summations of 2’s, taken to the positive or negative powers. For
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example in two’s complement (U2) notation, the following values are obtained:

vi =−b(Nb−1) ·2(Nb−1) +
Nb−2

∑
k=0

bk ·2k, v f = sign(−b(Nb−1))+
Nb−2

∑
k=0

bk ·2−((Nb−1)−k)

(1.3)
For Nb = 3 bits and signed integers using U2 representation, the following bit

interpretation is used:

Binary 1002 1012 1102 1112 0002 0012 0102 0112
Meaning −4 −4+1 −4+2 −4+2+1 0 1 2 2+1
Value vi −4 −3 −2 −1 0 1 2 3

while for signed fractional values the following interpretation is valid:

Binary 1002 1012 1102 1112 0002 0012 0102 0112

Meaning −1 −1+ 1
4 −1+ 1

2 −1+ 3
4 0 1

4
1
2

1
2 +

1
4

Value v f −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75

If you are interested in a Matlab program doing the above calculations, look at
lab01_ex_binary.m at book repository.

Exercise 1.1 (Recording and Playing Speech). Let us do the first experiment.
We will record a few words, a fragment of our own speech, using computer
sound card and Matlab environment. After that we will look at the acquired sig-
nal shape and check values of the signal samples. Run the below program 1.1.
You should see a signal waveform more or less similar to the one presented in
Fig. 1.2 in its upper part. Perform tasks listed below.

• Record some voiced phonemes (a, e, i, o, u ) when vocal folds are working,
opening and closing, and unvoiced ones (s, c, h) when vocal folds are open
all the time. Check voiced plosives (d, g) and unvoiced ones (k, p). Test
complicated words and longer sentences. Zoom different signal fragments.
Look for periodic oscillatory fragments and noise-like speech intervals.

• Try to speak very loud (observe a clipping/saturation effect when signal
is going beyond the allowed voltage limit) and very weak (observe clearly
visible amplitude quantization levels).

• Record the same word using low sampling rate with small number of bits
per sample and very high sampling rate with many bits per sample. Can
you hear the difference? Hmm . . . me not, unfortunately, . . . “I am sixty
four” (as in the Beatles’ song). Do not worry: it was a joke.
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Fig. 1.2: Time waveforms of three signals: x1(t)—a recorded speech signal, x2(t)—
a generated 5 Hz sinusoid sin(2π5t) (in Matlab t=0:0.001:1; sin(2*pi*5*t)),
x3(t)—a generated Gaussian noise (using Matlab function randn(1,1000)), with
mean value equal to 0 and standard deviation equal to 1, and assumed to have the
same time support as the sinusoid. Notice that time at horizontal axis is scaled in
seconds what is important for evaluation of signal duration and its frequency content

• Play recorded files with different frequencies allowed by the sound card.
Why the speaking is faster or slower?

• Add different recordings sampled with the same or different frequencies.
Listen to the result of your digital sound mixer.

• Try to find pitch frequency of your normal speech (frequency of vocal folds
opening and closing) using visual observation of the signal plot. Measure
the speech period in seconds and calculate its inverse. You should obtain
a number approximately in the range [80–250] Hz. Check different voiced
vowels (a, e, i, o, u). Do special recordings speaking vowel “a” as a singer:
a bass, baritone, tenor, .. , soprano, alto, i.e. try to change pitch frequency
from low to high value.
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Listing 1.1: Recording and playing sounds
�

1 % File lab01_ex_audio.m
2 clear all; close all;
3

4 % Audio signal acquisition
5 fs = 8000; % samplingfrequency (samples per second):
6 % 8000, 11025, 16000, 22050, 32000, 44100, 48000, 96000,
7 bits = 8; % number of bits per sample: 8, 16, 24, 32
8 channels = 1; % number of channels: 1 or 2 (mono/stereo)
9 recording = audiorecorder(fs, bits, channels); % create recording object

10 disp(’Press any key and to record audio’); pause;
11 record(recording); % start recording
12 pause(2); % record for two seconds
13 stop(recording); % stop recording
14 play(recording); % listen
15 audio = getaudiodata( recording, ’single’ ); % import data from the audio object
16

17 % Verification - listening, plotting
18 sound(audio,fs); % play a recorded sound
19 x = audio; clear audio; % copy audio, clear audio
20 Nx = length(x); % get number of samples
21 n= 0:Nx-1; % indexes of samples
22 dt = 1/fs; % calculatesampling period
23 t = dt*n; % calculate time stamps
24 figure; plot(x,’bo-’); xlabel(’sample number n’); title(’x(n)’); grid;
25 figure; plot(t,x,’b-’); xlabel(’t (s)’); title(’x(t)’); grid;
26

27 % Write to disc and read from disc
28 audiowrite(’speech.wav’,x,fs,’BitsPerSample’,bits); % write the recording
29 [y,fs] = audioread(’speech.wav’); % read it from file
30 sound(y,fs); % play it again

��

1.3 Signal Classes

From functional analysis and signal theory point of view signals can be divided into
the following four groups (look at Fig. 1.3):

• continuous-time and continuous-value (CT-CV), e.g. pure analog speech, au-
dio, ECG signal, etc.,

• discrete-time and continuous-value (DT-CV), CT-CV signal after discretiza-
tion in time or space (sampling) but without value quantization, e.g. signal from
single CCD camera capacitor, with its charge induced by light, before AD con-
version, or set of signal samples generated in a computer with floating-point
high precision from a mathematical function,

• continuous-time and discrete-value (CT-DV), for example signal just after
the DA converter, before smoothing by low-pass, reconstruction filter, being
continuous but quantized in amplitude, e.g. digital music played from a compact
disc or Internet,
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• discrete-time and discrete-value (DT-DV), for example signal after any AD
converter, having specified number of bits (N-bits give 2N states—quantization
levels) and working with some sampling frequency, e.g. digital multimedia:
speech, audio, image, video.

In Fig. 1.3 the CT-CV, DT-CV, CT-DV, and DT-DV versions of a pure sinusoidal
signal are presented. We will be training generation of different signals in the next
chapter. In this one we learn computer synthesis of the sine only, the King of the
Road in the DSP world, and use it for practical demonstration of discussed con-
cepts. The sine repeating f0 times per second, for example 5 times, is given by the
following math formula:

x(t) = sin(2π f0t), x(t) = sin(2π5t), (1.4)

and generated by the following Matlab program (assumed: signal duration = 1 s,
sampling rate = 1000 samples per second, i.e. sampling period equal to 1/1000 =
0.001 s):

Fig. 1.3: Different representations of a sine signal repeating two times per second
(period 0.5 s, frequency 2 Hz): (CT-CV) (left up) continuous-time–continuous-
value x(t), (CT-DV) (left down) continuous-time–discrete (quantized) value xq(t),
(DT-CV) (right up) discrete-time–continuous-value x(nT ) = x(n) = xn and (DT-
DV) (right down) discrete-time–discrete (quantized) value xq(nT ) = xq(n). T de-
notes sampling period. In left plots—wide solid line represents a signal, in right
plots—black dots represent a signal [15]
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T=1; dt=0.001; t=0:dt:T; f0=5; x = sin(2*pi*f0*t); plot(t,x);

Let us check if the Eq. (1.4) defines the desired signal. Since for t = 1 s the sine
angle is equal to f0-th multiplicity of 2π—the sine period, i.e. sine repeats f0 times
per second, in our case 5 times.

Exercise 1.2 (Discretizing Signals). Try to generate exactly the same signal
plots as presented in Fig. 1.3. Modify the Matlab code given in Listing 1.2.
Generate and discretize a sum of two sinusoids with different frequencies and
amplitudes not equal to 1.

Listing 1.2: Signal discretization
�

1 % File lab01_ex_discretizattion.m
2 clear all; close all;
3

4 T = 1;
5 fs1 = 1000; fs2 = 50; % samplingfrequencies 1 & 2
6 dt1 = 1/fs1; dt2 = 1/fs2; % samplingperiods 1 & 2
7 N1 = ceil(T/dt1); N2 = ceil(T/dt2); % numbers of samples to generate
8 n1 = 0:N1-1; n2 = 0:N2-1; % vectors of sample indexes
9 t1 = dt1*n1; t2 = dt2*n2; % vectors of sampling time moments

10 x1 = sin(2*pi*1*t1); % sinusoidrepeating 1 times per second
11 x2 = sin(2*pi*1*t2); % sampled with differentfrequencies
12

13 x_min=-1.5; x_max=1.5; x_minmax=x_max-x_min; % ADC range in Volts
14 Nb=3; Nq=2̂ Nb; % number of bits, number of quantizationlevels
15 dx = x_minmax/Nq; % width of the quantizationlevel
16 x2q = dx*round(x2/dx); % quantization of signal value
17 K = fs1/fs2; x2qt = [];
18 for k=1:N2, x2qt = [x2qt, x2q(k)*ones(1,K) ]; end
19

20 figure; plot(t1,x1,’b-’,t2,x2,’bo’,t2,x2q,’r*’,t1,x2qt,’k-’);
21 xlabel(’t (s)’); title(’x(t)’); grid;

��

Additionally, having in mind signal generation, signals belong to the two main
groups:

• deterministic—a function describing a signal waveform (curve, shape) exits,
like sine, exponent, gaussoid, etc.,

• random, stochastic—a function describing a signal waveform is unpredictable.

In Fig. 1.4 detailed diagram of signal classification is presented.
The following signals belong to the deterministic class: periodic ones, quasi-

periodic (having periodic components but as a mixture not periodic, e.g. when a ratio
of periods of at least two signal components is an irrational number: Tm/Tn �= m/n,
where m,n are two integer numbers), modulated and impulsive with finite energy.
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Fig. 1.4: Basic signal classification [15]

The random signals are divided into two groups: stationary and non-stationary.
Let us assume that we have built a matrix putting into its rows different sequences of
random samples taken from the same sensor. Figure 1.5 illustrates our explanation
using analog signals: in rows we have 4 different signal realizations. If the signal
is stationary, statistical signal parameters (like mean, variation, etc.), calculated for
each instant across many signal realizations are the same, in our case—means and
variations of the samples in each column are equal (in Fig. 1.5 parameters calculated
vertically). For non-stationary signals they are different. Stationary signals are addi-
tionally ergodic when statistical parameters calculated for every instant over many
signal realization are the same as for each signal realization in time. In our example,
when statistical parameters of each column are the same as of each row (in Fig. 1.5
parameters calculated vertically and horizontally should be the same). In this situa-
tion, one signal realization, one matrix row, is sufficient for derivation of statistical
description of the observed stochastic process.

Exercise 1.3 (Noise Stationarity/Ergodicity). Run the following Matlab code
and verify stationarity of the generated Gaussian noise:

N=1000; X=rand(N,N); mcols=mean(X); mrows=mean(X.’);
[ mcols.’ mrows.’]

(.’) denotes matrix transposition: converting rows into columns. Any Matlab
function performed upon a matrix is executed independently over each ma-
trix column. Therefore the mean() function calculates mean value of each
column of the matrix X. Exchange mean() function with var() function.
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Fig. 1.5: Graphical illustration of random process stationarity and ergodicity. Four
different realizations xk(t), k = 1,2,3,4, of the same analog random process X are
plotted horizontally. xt1,xt2,xt3 denote observed random variables in times t1, t2, t3.
The process is stationary if: (1) statistical parameters (e.g. means, variations,. . . )
of random variables xt1,xt2,xt3 are the same and do not depend on t, (2) variable
correlation E[xtxt+τ ]) =R(τ) depends only on time shift τ between variables but not
on t. The process is ergodic when statistical parameters across process realizations
(vertically) are the same as statistical parameters of each realization individually
(horizontally) [15]

The shape in time domain of the random signals is unknown (unpredictable) but
function describing probability of taken signal values (probability density function
(PDF), marked as P(x)) can be known. The most popular random signal is a Gaus-
sian noise (generated by Matlab function x=randn(1,N)). It is the most frequent
signal disturbance with P(x) described by the well-known Gaussian curve, having
maximum for x = 0 (it is the most probable noise value) and decaying on both sides
(depending on the noise variance). The uniform noise is an another noise exam-
ple that has uniform distribution of values in some interval [a, b] (Matlab function
x=rand(1,N) generates signal samples in the range [0,1]). We will investigate
both types of noises in the next chapter, do not worry about not seeing their figures
at present.

Two of the most famous examples of a deterministic and a random signal, a
sinusoid and Gaussian noise, are presented in Fig. 1.2, as signals x2(t) and x3(t),
together with a fragment of real speech x1(t). In the real speech we can distinguish
oscillatory/deterministic-like as well as noisy/random-like intervals. Consequently,
the theory works.

Going further, considering dimensionality, signal can be treated as a set (collec-
tion) of some elements (consisting of a single or multiple values) captured in one or
many dimensions. For example it can be
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• one-dimensional (1D), e.g. mono speech or audio samples changing in time,
• two-dimensional (2D), e.g. one picture from camera, i.e. pixel values changing

in x-y space coordinates,
• three-dimensional (3D), e.g. computer tomography (CT) data (so-called voxels)

changing in x-y-z space coordinates or movie as a sequence of 2D x-y pixel-
based pictures changing in time,

• four-dimensional (4D), e.g. 3D x-y-z field of temperature, pressure, or pollution
changing in time, functional/dynamic 4D CT as a 3D CT x-y-z data changing in
time,

• multi-dimensional.

Of course, no surprise, things can be becoming more and more complicated. In
the above list I have tried to present only examples of one-value function with in-
creasing number of arguments: time and space coordinates. But the function can
be a multi-value one: for one set of arguments the function could take not only
one but many values, which is the case in multi-channel sound systems (e.g. stereo,
5.1 or 7.1) or color images, e.g. RGB ones with Red, Green, and Blue components
per one pixel. Multi-value signals can come from multi-value sensors, for example
RGB color or NMR perpendicular x-y detectors, but can be also created artificially
like telecommunication IQ signals (In phase and Quadrature) which are addition-
ally interpreted as complex-value numbers for easier processing. Uff . . . “What a
wonderful world!”

In the next section we will investigate in detail the signal sampling problem.

1.4 Base-Band and Sub-Band Sampling

It is easy to predict and see that the signal should be sampled sufficiently dense
in order not to lose its fast variations. How dense? The base-band signal the-
ory says: more than two samples for one period of the fastest signal periodic
component, i.e. its component having the highest frequency. In Fig. 1.6 we see
example of good and bad sampling.
But the above rule represents only part of the truth. In the second, more general
sub-band version it is said: if a signal of interest has only frequency components
lying in some limited band, it is sufficient to isolate it from surrounding lower
and higher frequency signals, and use sampling frequency two times bigger
than the width of the signal frequency bandwidth. Information about the signal
will not be lost. This phenomena will be shown in this section.

Till now we were treating signals as time functions. Therefore there is no problem
to do the following assignments (Δ t—sampling period, distance between samples
in seconds (= 1/ fs), fs—sampling frequency, number of samples per second (=
1/Δ t)):
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Fig. 1.6: Example of correct (left) and incorrect (right) sampling with frequency
aliasing

t = n ·Δ t = n · 1
fs

(1.5)

and to obtain discrete-time signals from all continuous-time signal functions pre-
sented till now in this chapter. For example, after these substitutions the signal (1.4)
has a form:

x(t) = A · sin(2π f0t) → x(n ·Δ t) = A · sin

(
2π

f0

fs
n

)
, F0 =

f0

fs
. (1.6)

Equation (1.6) tells us that continuous-time sinusoids having different frequencies
fk and different sampling frequencies fsk but the same normalized frequency Fk:

f1

fs1
=

f2

fs2
= . . .=

fk

fsk
= Fk (1.7)

after time discretization have exactly the same sequence of samples, so they will
be completely none-distinguishable. As a consequence signal processing algorithms
designed for sinusoid with frequency f1 and sampled with frequency fs1 can be used
without no hesitation for processing of sinusoid with frequency f2 and sampled with
frequency fs2 (when Eq. (1.7) is fulfilled).

So now we can ask the question: is it all? Does the sampling represents only
discretization of a function argument, a function of time in our example? The answer
is: NO. In the real-world signal processing signal values are also discretized by AD
converters: in this context we are saying that the signals values are quantized. Due
to high-precision floating-point 32-bit or 64-bit number representation we generate
in computers quasi-DT-CV signals and perform quasi-perfect calculations on them,
concerning the signal values. But we can round them (as in Matlab Fixed-Point DSP
Blockset) and test the influence of number representation upon signal processing
results. In real-time DSP very often fixed-point processors are used with limited
precision of data representation and arithmetic. Let us remember that different signal
representations have been presented in Fig. 1.3.
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Let us go back to signal sampling. Let us assume that a signal is a sum of sinu-
soids with different frequencies and fmax and fmin denote the highest and the lowest
of them. As already stated the signal sampling frequency fs should fulfill one of the
following rules, so-called sampling theorems (Nyquist theorems):

Base-band version fs > 2 fmax, (1.8)

Sub-band version fs > Δ f = fmax − fmin. (1.9)

Let us take the sine/cosine signal (1.6) having one frequency from the follow-
ing set of frequencies: f0 + k fs and − f0 + k fs where k is any integer value:
k = 0,±1,±2,±3, . . . and 0 ≤ f0 < fs/2. Since the following trigonometric equiva-
lences holds

sin(k ·2π) = 0, cos(k ·2π) = 1, (1.10)

sin(α ±β ) = sin(α)cos(β )± sin(β )cos(α) (1.11)

cos(α ±β ) = cos(α)cos(β )∓ sin(α)sin(β ) (1.12)

we can write the sine signal as

x(n) = sin

(
2π

k fs ± f0

f s
n

)
= sin

(
2πkn±2π

f0

f s
n

)
= . . .

= sin

(
2π

± f0

f s
n

)
=±sin

(
2π

f0

f s
n

)
(1.13)

and similarly the cosine one:

x(n) = cos

(
2π

k fs ± f0

f s
n

)
= cos

(
2πkn±2π

f0

f s
n

)
= . . .

= cos

(
2π

± f0

f s
n

)
= cos

(
2π

f0

f s
n

)
. (1.14)

As we see all high-frequency signals (k fs + f0 and k fs − f0,k = 1,2,3, . . .), not ful-
filling Eq. (1.8), after sampling have exactly the same samples as the signal with low
frequency f0. In order to avoid this ambiguity/aliasing (So what do I see right now,
a high or low frequency?) we have to be sure that the signal being sampled fulfills
the Nyquist theorem. Therefore the analog signal is low-pass filtered before the A/D
converter as shown in Fig. 1.1, which removes all unwanted high-frequency signal
components. The cut-off frequency of the filter should be smaller than half of the
sampling frequency, i.e. the filter should pass only the components with frequencies
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Fig. 1.7: Graphical illustration of a risk of signal components aliasing when sam-
pling frequency fs is too low in regard to all signal component frequencies. A low-
pass filter has to be used that removes all signal components having frequencies
higher than fs

2 and lower than − fs
2 , which will be understandable after a few chap-

ters. Otherwise they will be leaked to the band [− fs
2 , fs

2 ] and will be visible as low-
frequency ones

lying in the band [0, fs/2) Hz. In Fig. 1.7 a risk of signal components misinterpre-
tation is graphically illustrated. The problem of described above signal ambiguity is
called a frequency aliasing phenomena in signal processing nomenclature.

The second possibility, used widely in telecommunication systems, is usage of
the band-pass filter in the frequency range [k fs/2, (k+1) fs/2), instead of the low-
pass filter before the A/D converter, and application of the same low sampling fre-
quency fs as before. At present the sub-band sampling rule (1.9) is used. Of course,
the signal observed in this case looks like a low-frequency one but knowing the
exact frequency band of the filter we know its frequency shift in respect to 0 Hz
(the DC constant value) and can correct the frequency measurement. Thanks to this
effect, sub-band high-frequency telecommunication signals can be processed with
lower sampling frequencies. That is a good news!

Remark: More on frequency Aliasing (Sampling Ambiguity) Effect The very good
example of sampling ambiguity is a car wheel turning backward during film watch-
ing. In reality the wheel is turning forward but we are taking pictures too rarely and
it looks on the movie that the wheel is turning back! One more example. Let us
assume that we are taking a picture of a black and white chess-board with a low-
resolution camera and we are frustrated obtaining completely white or completely
black images and not seeing the chess-board pattern. The camera image sampling
in space is too low: we have too less number of pixels per one chess-board square.
The other example. We are walking on the pavement with many holes but somehow
we are doing steps in such a way (sampling the pavement) that we are not falling
into them, we do not see them. In case of signal we prefer to see everything. Not to
observe any spurious/misleading effect like wheels “turning back” in a movie.
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Exercise 1.4 (Good and Wrong Signal Sampling or Function Generation).
Try to do a figure similar to Fig. 1.6 showing the original high-frequency signal,
for example 9000 Hz sine, properly sampled by you at fs = 48 kHz, and its
misleading low-frequency version obtained after wrong sampling with fs = 8
kHz. Listen to both signals using the Matlab function sound(x,fs).

Exercise 1.5 (Wrong Re-sampling Music Files). Find in the Internet mu-
sic file with high sampling rate, at least 48000 samples per second, and
with high-frequency content. Take every 6-th sample of it and play the re-
sultant signal in Matlab/Octave environment at 8 kHz using the command
sound(x(1:6:end), 8000). Do you hear the difference? You should.

Exercise 1.6 (Testing Sampling Theorem—On the Path to Sub-Band Sam-
pling). For example let assume us that the sampling frequency fs = 1000 Hz
and the analyzed (co)sinusoid has frequency f0 = 100 Hz. The (co)sinusoids
with the following frequencies (written using bold characters) will look exactly
the same (with ± sinus sign exception which is impossible to catch):

k k · fs − f0 k · fs k · fs + f0

0 −100 0 100

1 900 1000 1100

2 1900 2000 2100

3 2900 3000 3100

4 3900 4000 4100

. . . . . . . . . . . . . .

Run the program presented in Listing 1.3. 11 sines and 11 cosines with different
frequencies k fs ± f0 are generated and displayed in one plot, separately sines
(up) and cosines (down). How many signals do we see and how many do we
expected to see? The signals perfectly overlay. Modify the program, changing
f0 = 100 Hz to 200 Hz, then to 50 Hz. Observe how the figures have changed.
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Listing 1.3: Sampling and danger of signal uncertainty
�

1 % File lab01_ex_sampling.m
2 % Sampling and signal aliasing (uncertainty)
3 clear all; close all;
4

5 fs = 2000; % samplingfrequency
6 dt = 1/fs; % sampling period
7 Nx = 100; % number of signal samples
8

9 n = 0 : Nx-1; % vector of indexes of signal samples
10 t = dt*n; % vector of samplinginstants (in seconds)
11

12 fx = 50; % frequency of power supply
13 figure;
14 for k = 0 : 10
15 k % checking loop execution
16 x1 = 230*sqrt(2) * sin(2*pi*(+fx + k*fs)*t); % freq = +fx + k*fs
17 x2 = 230*sqrt(2) * sin(2*pi*(-fx + k*fs)*t); % freq = -fx + k*fs
18 x3 = 230*sqrt(2) * cos(2*pi*(+fx + k*fs)*t); % freq = +fx + k*fs
19 x4 = 230*sqrt(2) * cos(2*pi*(-fx + k*fs)*t); % freq = -fx + k*fs
20 subplot(211); plot(t,x1,’bo-’,t,x2,’r*-’); hold on; title(’Sines’);
21 subplot(212); plot(t,x3,’bo-’,t,x4,’r*-’); hold on; title(’Cosines’);
22 end

��

Sub-band Sampling Repeating: to avoid the signal ambiguity effect it is neces-
sary to ensure that frequencies of all components of analog signal, being sampled,
are lower than half of the sampling frequency, in our Exercise 1.6—in the range
[0, . . . ,500) Hz. Or . . . yes, yes, we can try to ride round this drawback and even
make an advantage from it. Looking at the frequency values written in the Exer-
cise 1.6 one can do very important conclusion about the so-called sub-band sam-
pling: if one knows the bandwidth of the signal she/he could sample it with smaller
frequency according to the rule (1.9) and adjusts the sampling frequency accord-
ing to the bandwidth, not to the maximum frequency. Why is it possible? Because
when one knows that her/his signal is in some known frequency range, e.g. [2000
2500) Hz, even observing low-frequency signal, e.g. 100 Hz, is not misleading be-
cause, knowing the frequency shift 2000 Hz, the true signal frequency can be cal-
culated, e.g. (100+2000) Hz = 2100 Hz, and no ambiguity exists. This topic will be
further discussed in next chapters. In such case sampling frequency should be two
times bigger than the signal frequency band. This rule, the killer for most students,
is known as the general sub-band Nyquist sampling theorem.

1.5 Analog Signal Reconstruction

Freedom. Everybody would like to have a chance to go back. Can we go back to
the exactly the same analog signal from its samples, i.e. from discrete-time but
continuous-value (DT-CV) signal?
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The answer is YES if the sampling theorem frequency restriction (1.8) has been
fulfilled! If we assume that our analog signal is a sum of sinusoidal components with
different frequencies, and if the sampling frequency was more than two times bigger
than the highest signal frequency—it is possible to go back to the analog world.
Proof of this is not possible now (in some books it takes even several pages). But
we can demonstrate experimentally that such reconstruction is in practice possible.

The analog signal x(t) is reconstructed, using it non-quantized samples x(nT ),
T —sampling period, from the following formula:

x(t) =
∞

∑
n=−∞

x(nT )
sin
( π

T (t −nT )
)

π
T (t −nT )

. (1.15)

The output analog signal is a sum of many analog functions Sinc(a) = sin(a)/a,a =
π
T · (t − nT ) (see Fig. 1.8), that are shifted in time by n ·T and scaled in amplitude
by x(n ·T ) (i.e. centered at each signal sample and multiplied by its value). Sinc(a)
function is a sinusoid divided by its angle changing from minus to plus infinity:
−∞ ≤ a ≤ ∞. The function is equal to 1 for a = 0. It oscillates (as sine does) and it
is periodically crossing zero for a = k ·π (as a sine). It is decaying also with increase
of the value of a. What is interesting, the Sinc(a) centered at one signal sample has
zero values at positions of all remaining samples. In consequence, in the sum it does
not change signal values in these time points. Deeper practical explanation of the
signal reconstruction from its samples offers the program 1.4.

Fig. 1.8: Graphical illustration of analog signal reconstruction from its samples:
(up) Sinc function, (down) the sine reconstruction process: addition of many shifted
Sinc functions scaled in amplitude by sample values gives us a reconstructed signal
plotted with the thick line. In the figure an analog sinusoid is reconstructed from its
samples marked with “•” [15]
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Exercise 1.7 (Illustration of Analog Signal Reconstruction). Analyze the
Matlab code presented in program 1.4, illustrating the idea of analog (CT-CV)
signal reconstruction from samples of discrete-time continuous-value (DT-CV)
signal. We would like to go back from signal with coarse sampling to signal
with finer sampling. Try to change values of program parameters in order to
make the reconstruction error lower. What is a source of the error?

Listing 1.4: Signal reconstruction after sampling
�

1 % File lab01_ex_reconstruction.m
2

3 clear all; close all; hold off;
4

5 % Programparameters
6 f0 = 1; % frequency of signal x(n) [Hz]
7 fs = 100; % frequency of sampling [Hz]
8 N = 400; % number of signal x(n) samples
9 D = 10; % down-sampling ratio (D-times)

10

11 % Generation of sine x(n) with fx frequency
12 T = 1/fs; % sampling period for x(n)
13 t = 0 : T : (N-1)*T; % time instants for x(n)
14 x = sin(2*pi*f0*t); % generation of sine x(n)
15 figure; plot(t,x,’b-’,t,x,’ro’); grid; title(’Sine sampled with high frequency’);
16

17 % Sine down-sampling: only every D-th sample is left
18 xD = x(1 : D : length(x)); % down-sampled sine x(n)
19 ND = length(xD); TD = D*T; tD = 0 : TD : (ND-1)*TD;
20 figure; plot(t,x,’b-’,tD,xD,’ro’); grid; title(’Sine sampled with low frequency’);
21 figure; plot(tD,xD,’b-’,tD,xD,’ro’); grid; title(’Sine sampled with low frequency’);
22 figure; stem(xD,’b’); title(’Sine sampled with low frequency’);
23

24 % Sinc(a) = sin(a)/a function
25 tt = -(N-1)*T : T : (N-1)*T; % time support of Sinc function
26 fSinc = sin(pi/TD*tt)./(pi/TD*tt); % Sinc functiongeneration
27 fSinc(N) = 1; % its value for arg=0 (division 0/0)
28 tz = [ -tD(end:-1:1) tD(2:ND)]; % instants of zero-crossing plus 0
29 z = [zeros(1,ND-1) 1 zeros(1,ND-1)]; % Sinc values at time tz
30 figure; plot(tt,fSinc); %,’b’,tz,z,’o’); grid; title(’Sinc function’);
31

32 % Reconstruction of the original signal from the decimated signal
33 figure;
34 y = zeros(1,N);
35 for k = 1 : ND
36 fSinc1 = fSinc( (N)-(k-1)*D : (2*N-1)-(k-1)*D );
37 y1 = xD(k) * fSinc1;
38 y = y + y1;
39 subplot(311); plot(t,fSinc1); grid; title(’Next shifted Sinc function’);
40 subplot(312); plot(t,y1); grid; title(’Next shifted and scaled Sinc function’);
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41 subplot(313); plot(t,y); grid; title(’Summed y(t) till now’);
42 pause
43 end
44 figure; plot(t,y,’b’,t,x,’r’); grid; title(’Reconstructedsignal’);
45 figure; plot(t,x(1:N)-y(1:N),’b’); grid; title(’Reconstruction error’);

��

1.6 Summary

There is no doubt that good understanding of the signal concept is ex-
tremely important in contemporary digital signal processing. In this first in-
troductory chapter we have tried to see signals diversity, their different origin,
types, shapes, features, applications. We have learned a little bit about signal ac-
quisition, including proper sampling. What is the most important? What should
be remembered?

1. Real-world signals are continuous-time functions/waveforms which are
sampled and after this, having already a form of vectors and matrices of
numbers, they are analyzed and processed by digital computers.

2. Sampling rate has to be carefully chosen in order not to lose the original
signal shape and, in consequence, information about its abrupt change or
frequency of repeating.

3. In Matlab we generate signals discretizing time variable and putting the
resultant vector of sampling instants into a signal function of interest. In
this chapter we did it only for sine/cosine signals.

4. Discrete-time signals, as sequences of numbers, can have very different
shapes and forms. They are classified as deterministic and random, one
or more-dimensional, real and complex-value, periodic, quasi-periodic and
non-periodic, impulsive or not, stationary or not, . . .

1.7 Private Investigations: Free-Style Bungee Jumps

Exercise 1.8 (What a Wonderful World of . . . Sounds!). Find in the Internet files
of recorded sounds, read them into Matlab, observe their waveforms, and play them
inside the Matlab environment. Many different sounds you can find on this web
page: https://www.findsounds.com/. I am sure that you will be pleased.

Exercise 1.9 (* At Railway Station). Take your speech signal (a vector of speech
samples) and make a few delayed copies of it. For example, delay the vector by
100, 250, 500, and 750 elements. Scale delayed copies by 1, 0.5, 0.25, and 0.1,
respectively, add all of them, and listen to the result. Wow! Are you really at the
railway station?

https://www.findsounds.com/
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Exercise 1.10 (* BALANGA Records Studio). Read any real audio signal with
music (a wav file). Zoom its different fragments. Observe changing frequency (os-
cillation) content. Play the signal using sound card. Observe that knowing sampling
frequency (and in consequence sampling period, distance between the samples) is
very important! Do specially some mistakes in specification of the sampling rate
during signal reproduction (playing). Add a few signal recordings to themselves.
Listen to the result. Cut and add different sound pieces. Try to obtain something
your boyfriend, girlfriend, or grandfather, even the laboratory assistant, will enjoy.

Exercise 1.11 (* Is My Heart Broken?). Find in the Internet an ECG heart ac-
tivity signal. E.g. take it from the page https://archive.physionet.org/cgi-bin/atm/
ATM. Choose, for example, MIT BIH Arythmia Database, Record: 100, Signals: all,
Length: 1 min, Time format: seconds, Data format: standard, Toolbox Plot: wave-
form, Toolbox export signals as .mat. Download file xxx.mat and xxx.info (ASCII).
Find signal periodicity looking at signal plot. How many heartbeats per second?

load ecg100.mat; whos;
fs=360; N=length(val(1,:)); dt=1/fs; t=dt*(0:N-1);
plot(t, val(1,:)); xlabel(’t [s]’); title(’ECG(t)’); grid; pause

References

1. L.F. Chaparro, Signals and Systems Using Matlab (Academic Press, Burling-
ton MA, 2011)

2. M.H. Hayes, Schaum’s Outline of Theory and Problems of Digital Signal Pro-
cessing (McGraw-Hill, New York, 1999, 2011)

3. E.C. Ifeachor, B.W. Jervis, Digital Signal Processing. A Practical Approach
(Addison-Wesley Educational Publishers, New Jersey, 2001)

4. V.K. Ingle, J.G. Proakis, Digital Signal Processing Using Matlab (PWS Pub-
lishing, Boston, 1997; CL Engineering, 2011)

5. R.G. Lyons, Understanding Digital Signal Processing (Addison-Wesley Long-
man Publishing, Boston, 1996, 2005, 2010)

6. J.H. McClellan, R.W. Schafer, M.A. Yoder, DSP FIRST: A Multimedia Ap-
proach (Prentice Hall, Upper Saddle River, 1998, 2015)

7. S.K. Mitra, Digital Signal Processing. A Computer-Based Approach
(McGraw-Hill, New York, 1998)

8. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (Pearson Ed-
ucation, Upper Saddle River, 2013)

9. A.V. Oppenheim, A.S. Willsky, S.H. Nawab, Signals & Systems (Prentice Hall,
Upper Saddle River, 1997, 2006)

10. A. Papoulis, Signal Analysis (Mc-Graw Hill, New York, 1977)

https://archive.physionet.org/cgi-bin/atm/ATM
https://archive.physionet.org/cgi-bin/atm/ATM


22 1 Signals: Acquisition, Classification, Sampling

11. J.G. Proakis, D.G. Manolakis, Digital Signal Processing. Principles, Algo-
rithms, and Applications (Macmillan, New York, 1992; Pearson, Upper Saddle
River, 2006)

12. S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing
(California Technical Publishing, San Diego, 1997, 1999). Online: http://www.
dspguide.com/

13. K. Steiglitz, A Digital Signal Processing Primer: With Applications to Digital
Audio and Computer Music (Pearson, Upper Saddle River, 1996)

14. M. Vetterli, J. Kovacevic, V.K. Goyal, Foundations of Signal Processing (Cam-
bridge University Press, Cambridge, 2014)
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Chapter 2
Signals: Generation, Modulation,
Parameters

In high mountains all steps are very important, the second also.
Welcome in Chap. 2!

2.1 Introduction

In the first chapter we were dealing with proper signal acquisition, rules
of good sampling, signal computer representation, and classification/interpre-
tation. We were observing and enjoying the real-world signals diversity. Now
we will do the deeper dive: we will generate the most important deterministic
and random signals, including amplitude and frequency modulated ones. Do-
ing this we will feel better the signal concept and will better understand the
signal anatomy. After that we learn about quantities and functions describing
signal features like its minimum, maximum and mean value, signal variance,
energy, power, RMS value, signal-to-noise ratio (SNR), and signal(s) correla-
tion function. The signal parameters (descriptors) are important because they
summarize the signal behavior in a set of a few numbers. We can track change
of these numbers in time. Having them in hand we can easily imagine the nature
of signal variability.

The outline of this chapter is as follows. We will start with generation of
deterministic signals, continue with random ones, than become familiar with a
concept of signal instantaneous frequency (IF) and generate signals with given
IF. Finally, we learn mathematical definition of the most important signal pa-
rameters and code for their calculation. Special attention will be given to auto-
and cross-correlation functions and their applications.

2.2 Deterministic Signals

Signals can be described by many functions. But some of them are more important
than the others. In Table 2.1 equations defining some of the most frequently occur-
ring or specially used deterministic signals are given. Sinusoid, a signal of power
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Table 2.1: Basic functions defining deterministic signals with their Matlab code

Signal type Math definition Matlab code

Sine, cosine x1(t) = A · sin(2π f0t +φ) x1=A*sin(2*pi*f0*t+fi);

Cmplx harmonic x2(t) = A · e j(2π f0t+φ) x2=A*exp(j*(2*pi*f0*
t+fi));

Exponentiala x3(t) = A · e− 1
T t x3=A*exp(-t/T);

Damped sinea x4(t) = A · e− 1
T t · sin(2π f0t +φ) x4=x3.*sin(2*pi*

f0*t+phi);

Gaussoidb x5(t) = A · e−
1
2

(
t−t0

T

)2

x5=A*exp(-(1/2)*
((t-t0)/T).ˆ2 );

AM Modulatedc x6(t) = A(1+ kAmA(t)) · sin(2π fct) x6=A*(1+kA*mA).*
sin(2*pi*fc*t);

FM Modulatedc x7(t) = Asin

(
2π
(

fct + kF

t∫
0

mF (t)dt

))
x7=A*sin(2*pi*
(fc*t+kF*cumsum(mF)*dt));

a Decaying exponent having value 1
e A for t = T

b Gaussoid having maximum A for t = t0 and width approximately equal to 6T around it
c A,F—amplitude and frequency, kA,kF —amplitude and frequency modulation depths,
mA(t),mF (t)—amplitude and frequency modulation functions, fc—carrier frequency

supply, is generated in a natural way by different resonant oscillatory circuits or res-
onant mechanical objects, for example a pendulum. Damped sinusoids are observed
in resonators with attenuation, e.g. in magnetic resonance. Signal modulated in am-
plitude, frequency, and phase are used in radio broadcasting and in many digital
communication systems.

Simple signals can be summed to each other or multiplied by themselves giving
as a result a new signal, more complicated, even a very sophisticated mixture of
signals. The power supply voltage consists of fundamental frequency component
(50 or 60 Hz) and its harmonics. Damped sine is an example of multiplication of
sine and exponential signal: we say that exponent is modulating sine in amplitude.
Gaussoids are used also for amplitude sine modulation: impulsive oscillatory signals
transmitted in radar/sonar systems can be created this way. In turn, a received signal
analyzed in radar/sonar systems is a sum of different copies of the transmitted signal,
reflected from different targets. And so on, and so forth.

Exercise 2.1 (Generation of Deterministic Signals). We can record real-
world signals like in Exercise 1.1 but it is also possible to generate them using
functions defining them, i.e. from their mathematical recipe. Such skill is very
important because in many applications, for example in radar echolocation or
digital telecommunication, we are digitally generating signals that are next con-
verted into analog form and transmitted. So, we can at present proudly say that,
in this exercise, we will deal with programmable signal generators.
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In most cases typical signal generation is as easy as going for lunch to the
closest fast food bar: one should know the mathematical signal formula and
put numbers into it, especially time vector with all moments of sample taking
from the function. Listing 2.1 presents a Matlab code of such operation while
Figs. 2.1 and 2.2—waveforms of signals generated with its help, of course, after
slight modifications. As an exercise, please, modify the program and generate
these signals yourself.

Listing 2.1: Generation of deterministic signals
�

1 % File: lab02_ex_deterministic.m
2 clear all; close all;
3

4 fs = 1000; % samplingfrequency (samples per second):
5 N = 1000; % number of samples to generate
6 dt = 1/fs; % time between samples
7 n = 0 : N-1; % vector of sample indexes
8 t = dt * n; % vector of sampling time moments
9 x1 = sin(2*pi*5*t); % sinusoidrepeating of 5 times per second

10 x2 = exp( -t/0.1 ); % exponent with T=0.1s
11 x3 = exp(-(1/2)*((t-0.5)/0.1).̂ 2 ); % Gaussiancentered at t=0.5s with T=0.1s
12 x4a = sin( 2*pi*(100*t+90*cumsum(x1)*dt) ); % signal modulated in frequency by x1
13 x4b = sin( 2*pi*(100*t-90/(2*pi*5)*cos(2*pi*5*t) ) ); % the same theoretically
14 x5 = 1/3*randn(1,N); % NOBODY IS PERFECT! disturbingnoise
15

16 figure;
17 subplot(6,1,1); plot(t,x1,’b.-’); grid; title(’x(t)’);
18 subplot(6,1,2); plot(t,x2,’b.-’); grid;
19 subplot(6,1,3); plot(t,x3,’b.-’); grid;
20 subplot(6,1,4); plot(t,x4a,’b.-’); grid;
21 subplot(6,1,5); plot(t,x4b,’b.-’); grid;
22 subplot(6,1,6); plot(t,x5,’b.-’); grid; xlabel(’t [s]’);

��

2.3 Random Signals

When a signal does not have a specific shape, very often it has a specific distribution
of its values, i.e. some values are observed more frequently than the others and they
are more probable than the other values. The probability density function (PDF)
denoted as p(x) characterizes this feature: it tells what is the probability that a signal
will take a value belonging to a small interval around x. Therefore the PDF integral
should be equal to 1: the signal for sure should have some value:
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∞∫
−∞

p(x)dx = 1 (2.1)

For: (1) Gaussian noise having mean value equal to (x̄) and variance equal to (σ2),
and (2) noise with uniform distribution of values in the open interval a < x < b, the
PDF is defined as, respectively:

pG(x) =
1√

2πσ2
exp

[
− (x− x̄)2

2σ2

]
, pU (x) =

{ 1
b−a for a < x < b
0 for other x values

(2.2)
In Fig. 2.3 both probability density functions defined in Eq. (2.2), the Gaussian and
the uniform, are plotted for predefined values of their parameters. At this moment,
it is important to stress that deterministic gaussoid, defined in Table 2.1, as a signal
shape, and signal probability density functions with a Gaussian shape, defined in
Eq. (2.2) and plotted in Fig. 2.3, concern and describe two completely different
things.

Fig. 2.1: Examples of mono-component deterministic signals: (left up) sinusoid
damped (attenuated) by exponent (T =0.2): exp(−5t)sin(2π10t), (right up) si-
nusoid with Gaussian envelope (T =0.1581): exp

(−20(t −0.5)2
)

sin(2π10t), (left
down) sinusoid with linearly increasing frequency (LFM): sin

(
2π ·0.5 ·20t2

)
,

(right down) sinusoid being, both, modulated in amplitude and frequency: 10(1+
0.5sin(2π2t))sin(2π(30t +25sin(2π2t)/(4π)))
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Fig. 2.2: Examples of multi-component signals: (left) multi-sine signal x1(t) =
sin(2π5t)+ 0.5sin(2π10t)+ 0.25sin(2π30t), (right) summation x2(t) of three de-
layed oscillatory impulses with different frequencies and amplitude envelopes

Fig. 2.3: Probability density functions for Gaussian noise with x̄ = 0, σ2 = 1 (left),
and uniform noise in the interval [−1,1] (for a =−1,b = 1) (right) [19]

In this book we will deal with discrete-time random signals x(n), not x(t). These
signals are interpreted as a sequence of independent random variables, specified by
their PDF functions. When these functions are identical, the signal generation pro-
cess is called IID, Independent and Identically Distributed. In consequence, the pro-
cess/signal is also stationary—see Fig. 1.5 and its description in Chap. 1, including
definition of process stationarity. Finally, when one long discrete-time realization of
a stationary process, as a sequence of realizations of IID random variables (signal
samples), has a PDF identical to the PDF of all IID processes, then the process/sig-
nal is called ergodic—please, look once more the Fig. 1.5. In this case, one random
signal realization only is sufficient for finding all statistical features of the signal.
Such situation is assumed in the remaining part of this sub-chapter.

The central limit theorem specifies that sum of many independent random vari-
ables tends to the Gaussian (normal) PDF. For this reason such type of noise dis-
turbance is the most frequently observed in real-world measurements and it is typi-
cally used during DSP algorithm testing. Estimation of signal mean value (x̄), vari-
ance (σ2

x ), and standard deviation (σx), based on signal samples, is addressed in
Table 2.2. Their definitions and Matlab implementations, which are given in it, can
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Table 2.2: Basic signal features and their calculation in Matlab

Feature Math definition Matlab code

Mean x̄ = 1
N

N
∑

n=1
x(n) mean(x); sum(x)/length(x);

Variance σ2
x = 1

N

N
∑

n=1
(x(n)− x̄)2 var(x); sum((x-mean(x)).ˆ2)/N;

Deviation stdx =

√
1

N−1

N
∑

n=1
(x(n)− x̄)2 std(x); sqrt(sum((x-mean(x)).ˆ2)

/(N-1);

Energya Ex = T ·
N
∑

n=1
x2(n) T*sum(x.ˆ2);

Powera Px =
Ex

N·T = 1
N

N
∑

n=1
x2(n) sum(x.ˆ2)/length(x);

RMS value rmsx =
√

Px =

√
1
N

N
∑

n=1
x2(n) sqrt(sum(x.ˆ2)/length(x))

SNR 10 · log10
Px
Pn

(dB) 10*log10(Px/Pn);

Correlationb Rxx[k] = 1
C

N−k
∑

n=1
x(n)y∗(n+ k) xcorr(x); xcorr(x,y);

a T denotes sampling period, i.e. distance between signal samples (sampling frequency inverse 1
fs

)
b C is a normalization constant equal to 1, N or N − k deciding on estimator features

be used for finding real-world noise parameter values. Additionally, special tests
should be performed for verification of the noise PDF type.

In Matlab pseudo-random sequences of numbers are generated by functions:
randn() and rand(). The first of them returns the pseudo-Gaussian noise (nor-
mal noise) with x̄ = 0, σ = 1, while the second—the pseudo-uniform noise in the
range [0,1]. In turn, the function px=hist(x,M) is responsible in Matlab for the
signal PDF estimation: it divides the signal value range [min(x),max(x)] into de-
sired number M of sub-intervals and calculated how many signal samples belong to
each of them. When called by hist(x,M), it only plots the estimated p(x) shape.
In Fig. 2.4 two noisy signals are presented, first having normal (Gaussian) PDF with
mean equal to 0 and standard deviation equal to 1, and the second—having uniform
PDF in the interval [0, 1]. In the figure histograms of both signals are shown also. In
the left figure we see Gaussian-like bell around 0, spreading in horizontal axis from
−3 to +3 (± 3 standard deviation equal to 1), and in the right—a rectangular hat,
spreading in x axis from 0 to 1.

In Matlab language one can also very easily embed her/his signal in white Gaus-
sian noise ensuring required signal-to-noise ratio (SNR), defined in Table 2.2. For
this purpose, the function awgn(), Additive White Gaussian Noise (AWGN), is
used: x=awgn(x,SNR). Additive—because noise is added to our signal, white—
because noise power is equally spread across (between) all frequencies, i.e. its fre-
quency spectrum is white, Gaussian—because the function PDF has Gaussian shape.
Here we can do short generalization of noise description: terms Gaussian/uniform
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Fig. 2.4: Examples of pseudo-random signals and their histograms: (left) Gaussian
noise (function randn()), (right) uniform noise (function rand())

describe the probability of noise value distribution, while terms white/pink/blue—
stand for distribution of noise power between different frequencies (white—equal,
pink—decreasing 6 decibels per octave, blue—increasing 6 decibels per octave).
Increase/decrease 6 dB per frequency octave corresponds to 20 dB per frequency
decade (decade = 10-times increase/decrease).

We encourage Reader to further reading one of many random signal theory
books.

Remark: For ICT Funs In each computer language there are functions for pseudo-
random number generation. Typically first congruent (additive + multiplicative) re-
cursive number generator is used:

xn+1 = (a · xn +m)mod p (2.3)

giving uniformly distributed values in the range [1, p−1). In ANSI C the following
parameters values are used: p = 232,a = 1103515245,m = 12345. After division
by p numbers from the range [0,1) are obtained. Next these numbers are trans-
formed to desired distribution of values—for example they are put into the inverse
of cumulative distribution equation. In case of the normal distribution it is very easy
to implement Box–Muller transformation of numbers [0,1). Look at Exercise 2.15.
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Please, find additional information about the “Box–Muller transform” in . . . as usual
. . . the Internet.

Exercise 2.2 (Probability Study of Random Numbers). Make use of the
following Matlab code for obtaining plots very similar to these presented in
Fig. 2.4:

N=10000; M=25;
x1=randn(1,N); figure; plot(x1); figure; hist(x1,M);
x2=rand (1,N); figure; plot(x2); figure; hist(x2,M);

Please, observe consequences of changing values of N and M (histograms are
becoming smoother and closer to theoretical ones) with the increase of (N).
Run the program a few times and observe different signal shapes and different
values of signals parameters, for example minimum, maximum, and mean
values. Modify the code and generate: (1) pseudo-random Gaussian noise with
mean value equal to 10 and standard deviation equal to 3, (2) pseudo-random
uniform noise with values in the range (−2, 2).

2.4 Sines and Instantaneous Frequency

As already mentioned in Sect. 1.3 sinusoid is the most popular signal. Analog sinu-
soid repeating f0 times per second is given by the formula:

x(t) = sin(2π f0t) = sin(ω0t), ω0 = 2π f0. (2.4)

For example, sine sin(2π10t) repeats 10 times per second since for t = 1 s the sine
argument (angle) is equal to the 10-th multiplicity of the 2π being the sine period.
The sinusoid (2.4) with amplitude A and phase φ is defined as

x(t) = Asin(2π f0t +φ) = Asin(ϕ(t)), (2.5)

where ϕ(t), an argument of sine, is a function of time. When signal amplitude and
phase is changing in time (A(t),φ(t) instead of A,φ ), the sinusoid is modulated
in amplitude and phase. Frequency modulation concept will be introduced later.
In many applications, for example in all damped resonance systems, sinusoid is
damped (attenuated) by exponential function:

x(t) = Ae−λ t sin(2π f0t +φ). (2.6)
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Fig. 2.5: One channel, real part, of recorded Nuclear Magnetic Resonance (NMR)
signal being summation of many damped sines with different frequencies and dif-
ferent attenuation: a long fragment and its zoomed beginning

Sinusoids and damped sinusoids occur very often not alone but in linear super-
positions (sums), like 50 Hz power supply voltage with its harmonics 100, 150, 200,
250, . . . Hz:

x(t) =
K

∑
k=1

Ak sin(2π fkt +φk), (2.7)

or multi-component resonance signals:

x(t) =
K

∑
k=1

Ake−λkt sin(2π fkt +φk). (2.8)

In magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) the
damped components are even complex-value ones: real and imaginary parts are
coming from two different perpendicular sensors:

x(t) =
K

∑
k=1

Ake−λkte j(2π fkt+φk). (2.9)

In Fig. 2.5 real part of a NMR signal (2.9), consisting of 15 damped complex oscil-
lations, is presented.

In communication systems the signal (2.5) has varying (modulated) amplitude A
and phase φ :

x(t) = A(t)sin(2π f0t +φ(t)) (2.10)

in order to encode the transmitted information in the changes of these parameters.
The instantaneous frequency of the sinusoid is defined as

ωinst(t) =
dφ(t)

dt
, finst(t) =

1
2π

dφ(t)
dt

, (2.11)
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i.e. it is a time-derivative of its angle, divided by 2π . Let us apply definition (2.11) to
signal (2.4). The result is finst(t) = f0—the correct value because signal frequency
is constant and equal to f0. Applying (2.11) to (2.10) gives

finst(t) = f0 +
1

2π
dφ(t)

dt
. (2.12)

Therefore in order to obtain from (2.10) a signal with the desired functional change
mF(t) of instantaneous frequency around f0:

f (t) = f0 + kF ·mF(t) (2.13)

one should set:

φ(t) = 2π · kF ·
t∫

0

mF(t)dt, (2.14)

since the derivative of definite integral is equal to the function being integrated:

finst(t) = f0 +
1

2π
d
dt

⎛
⎝2π · kF ·

t∫
0

mF(t)dt

⎞
⎠= f0 + kF ·mF(t). (2.15)

Plots shown in the second row of Fig. 2.1 present two signals modulated in fre-
quency. In the first of them, the instantaneous frequency starts from 0 Hz and it is
linearly increasing 20 Hz per second: finst = 0+ 20t, while in the second one—it
cosinusoidally oscillates around 30 Hz with depth 25 Hz, repeating up-down cycle
two times per second: finst = 30+25cos(2π2t). In the second case, the signal is ad-
ditionally modulated in amplitude, i.e. its amplitude is changing in time according
to the formula: A(t) = 10 · (1+0.5sin(2π2t)).

Wow! Is it an easy DSP starter?! Yes, it is. It results from my teaching experience
that understanding the concept of signal instantaneous frequency is the main key
opening a door to understanding the concept of signal itself.

Exercise 2.3 (Generating Signals Modulated in Frequency). This is one of
the most important exercise of this book since the frequency is the basic signal
parameter. Use program from the Listing 2.1 and Matlab code from the Ta-
ble 2.1, and generate different signals modulated in frequency, for example the
following ones having:

• parameters as in two down plots of Fig. 2.1,
• frequency changing linearly from value f1 to value f2, for example from

0.01 Hz to 100 Hz in 1 s,
• frequency changing sinusoidally ±Δ f hertz around some given f0, for ex-

ample ± 10 Hz around 10 Hz once per second,
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• frequency change described by slowly varying function finst(t) chosen
yourself, for example finst(t) = 10 · e2t .

Assume, for example, sampling frequency equal to 1000 Hz. Check visually,
whether the frequency requirements are fulfilled, observing the signal wave-
form/signature in each case and measuring period of oscillation (or counting
changing number of samples per signal period).

Exercise 2.4 (** Generating FM Signals with Violation of the Sampling
Theorem). This is a wonderful exercise. Understanding it means that you are
really very good in signal sampling and modulation, and you are ready for
climbing next chapters of this book. Use the program 2.1 and the Table 2.1.
Change sampling frequency to fs = 8000 Hz and number of samples to be gen-
erated to N = 5 fs (5 s). Generate a signal having frequency 0.01 Hz at t = 0 s
and then increasing it linearly 4000 Hz per second. Plot the signal and hear it
(plot(t,x); sound(x,fs);. Why the signal shape is repeating? Why do you
hear the sound going periodically up-and-down? If it is too difficult for you, use
a Life-belt: a call to your friend from the Wheel of Fortune—call the special
Matlab function aimed at tracking of varying frequency content of a signal:

spectrogram(x,512,512-32,1024,fs,’yaxis’);

You see 2D plot of frequency change in time. Observe the curve of frequency
change. Explain origin of a zig–zag shape.
Now generate a signal with sinusoidal frequency modulation: carrier frequency
f0 = 7500 Hz, modulation depth Δ f = 500 Hz, modulating frequency fm =
0.5 Hz (once per two seconds). Is not the signal oscillating to slowly in the
plot? Is not the played sound too low-frequency one? How do you explain this?
Now change sampling frequency to fs = 44.1 kHz and repeat last experiments.
Why at present the sound is a high-frequency one?

2.5 Signal Parameters incl. Correlation Function

Having a signal we can calculate many numbers describing (characterizing) it fea-
tures, like minimum, maximum, peak-to-peak (difference between maximum and
minimum) and mean values, signal energy, power (energy in time), root-mean-
square (RMS) value, variance, standard deviation (STD), and many others. Values
of these parameters help us to feel the signal nature without observing its shape.
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We are like a doctor who is looking at blood analysis results instead of observing a
patient physiognomy. For more details see Table 2.2.

Signal-to-Noise Ratio (SNR), given in Table 2.2, is defined as a ratio of signal-to-
noise power, expressed in decibels. It is used for characterization of signal strength
in respect to embedded noise. SNR describes signal acquisition conditions and ef-
ficiency of performed, different DSP operations since we can compare the SNR
before and after the signal processing. A ratio R = y

x of two not-negative values y,x
is expressed in decibels with the help of the following equation:

R(dB) = 20 · log10

(y
x

)
= 10 · log10

(
y2

x2

)
. (2.16)

In case of SNR, decimal logarithm of signal-to-noise power ratio is calculated and
multiplied by 10.

Instead of simple one-value signal parameters, we can also associate with each
signal a function having more values and describing it in some way. Signals can
be self-similar (repetitive, periodic) or similar to each other. Auto- and cross-
correlation functions are used for examination of this phenomena. Auto-correlation
of one N-sample long x(n) signal is defined in Table 2.2. Below definition of a cross-
correlation of two different signals x(n) and y(n), both having N samples, is given:

Rxy(k) =
1
C

N−k

∑
n=1

x(n)y∗(n+ k), (2.17)

where a normalization constant C is equal 1, N or N−k (for each k the exact number
of samples taking part is accumulation is different and equal N − k). ()∗ denotes
complex conjugation if signal has complex values (otherwise it is omitted).

In the above definition the following operations are performed:

1. the first signal x(n) is not moved,
2. the second signal shift value is initialized: k = k0,
3. the second signal, y∗(n) or x∗(n) as a special case of y∗(n), is shifted by k

samples,
4. both signals are multiplied,
5. multiplication results are accumulated and the sum is stored as R(k),
6. if necessary, value of k is changed and jump to step 3 is performed.

The distinctive maximum of the function R(k) tells us that after the shift of k samples
both signals x(n) and y∗(n) are similar to each other or one signal x(n) is similar to
complex conjugation of its own shift (i.e. it is periodic) and k is the period.

Correlation function is used, for example, in

• speech analysis where auto-correlation is used for finding pitch period of vocal
cords opening and closing,

• radar systems where signal echoes (signal reflections coming back to transmit-
ter) are cross-correlated with the sent signal penetrating the neighborhood, and
moving object distance and velocity is found,
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• telecommunication systems where receiver is cross-correlating the received sig-
nal with known pilot sequence, aiming at data synchronization and channel
equalization.

Noise signal does not auto-correlate with itself for any k �= 0 since there is no
connection between its present value and past/future values. Noise auto-correlation
function has a single peak for k = 0: the signal is only similar to itself with no shift.

Auto-correlation function of (co)sinusoid x(n) = Asin(2π( f0/ fs)n) is equal to a
cosine:

Rx(k) =
A2

2
cos

(
2π

f0

fs
k

)
(2.18)

because (co)sinusoid is periodically self-similar to itself.

Exercise 2.5 (Calculating the Signal Features (Descriptors)). Calculate sig-
nal features defined in Table 2.2 for sinusoid (with integer and fractional num-
ber of periods), mixture of sinusoids, speech signal, and white Gaussian noise
(with different lengths).

Exercise 2.6 (My AWGN: Embedding Signal in Gaussian Noise). In Octave
there is no awgn() function for signal embedding in additive white Gaussian
noise. Use SNR definition, presented in Table 2.2. Write a function adding to
a given signal x(n) the Gaussian noise, ensuring the SNR level requested by a
user.

Exercise 2.7 (My XCorr and Its First DSP Mission). Write code of your own
myxcorr() procedure, calculating auto- and cross-correlation function of two
signals x(n) and y(n)—use definition given in Table 2.2. Verify its correctness
comparing the function output with output of the Matlab function xcorr().
Apply it to cosinusoid and verify validity of Eq. (2.18). Try to find your own
speech period, auto-correlating the signal with itself.

OK. I have changed my mind: in the second chapter still more father’s help is
expected and needed, I will help you with calculation of the signal auto-correlation
function. In Fig. 2.6 a fragment of voiced speech is shown, the waveform of the
“a” vowel (240 samples for sampling rate 8000 samples per second), and plot of
its auto-correlation function, calculated for the shift parameter k changing in the
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Fig. 2.6: Waveform of the vovel ‘a’ (left) and its auto-correlation (right)

range −180, . . . ,0, . . . ,180. One can observe that the signal is periodic with the pe-
riod approximately equal to 0.01 s (80 samples). The auto-correlation function is
symmetric (the same values are obtained for positive and negative values of k) since
the shift left and right of the second signal give the same result when signals being
correlated are the same. The auto-correlation function has the maximum value for
k = 0—the signal is the most similar to itself in such case—no surprise. The high-
est side-maxima are observed for shift equal to ≈ ±0.01 s which is true—it is the
signal period. The Fig. 2.6 was generated with the help of below program which
can be used for further experiments with correlation function testing in different
applications.

Listing 2.2: Calculation of auto/cross-correlation function in Matlab
�

1 % File: Lab02_ex_correlation.m
2 clear all; close all;
3

4 [x,fs] = audioread(’A8.wav’,[1001,1240]); % your waveform
5 x=x(:,1).’; % first channel only
6

7 Nx = length(x); n=0:Nx-1; % find number of samples, sample numbers
8 dt = 1/fs; t = dt*n; % scale in seconds
9 K = 180; % how many shifts left and right

10

11 y = x; % more general, ready for cross-correlation
12 R(K+1) = sum( x .* conj(y) ); % no shift, k=0
13 for k = 1 : K % MAIN LOOP
14 R(K+1+k) = sum( x(1 : Nx-k) .* conj(y(1+k : Nx )) ); % shift left
15 R(K+1-k) = sum( x(1+k : Nx ) .* conj(y(1 : Nx-k)) ); % shift right
16 end %
17 k = -K : K;
18 figure
19 subplot(211); plot(t,x,’b.-’);
20 xlabel(’t (s)’); title(’Signal fragment’); grid;
21 subplot(212); plot( k*dt, R, ’b.-’);
22 xlabel(’\tau (s)’); title(’Signal auto-correlation’); grid;

��
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Exercise 2.8 (Scaling Auto-Correlation Function). Add normalization of the
auto-correlation function to the program 2.2, i.e. division by C value as in
Eq. (2.17). Observe its influence upon the function shape.

2.6 Summary

In this chapter we did a longer visit in the signals’ world, wonderful for
me and a strange Zoo, or an old-fashion museum, for many of my students.
We have generated different types of mono-component signals, deterministic
and random ones, as well as their mixtures. We study more carefully amplitude
and frequency signal modulation. We learn definition of sine instantaneous fre-
quency and signal correlation. We become familiar with the most important
signal parameters and their calculation. What should be remembered?

1. Deterministic signals have known shapes that are described by some
mathematical function. Random signal have unknown shapes—they are
unpredictable—but their probability distribution functions (PDFs), in Mat-
lab histograms, are usually described by some specific functions, e.g. Gaus-
sian curve.

2. The most important deterministic signal is a sinusoid and sinusoid having
amplitude decreasing exponentially (so-called damped sinusoid). Such sig-
nals are generated by many real-world objects described by second-order
differential equations.

3. The most important random signal is the Gaussian noise. The theory (cen-
tral limit theorem) says that when there are many opposed factors, the
Gaussian noise results.

4. Signals typically occur in mixtures: several components added together
(e.g. radar echoes, many speaker talking simultaneously) or signal of inter-
est and disturbances (like in telecommunication systems when each service
is the disturber for all others).

5. A special very important class of signals represent modulated ones. Any
signal can change (modulate) amplitude and/or frequency/phase of a sine.
In telecommunication systems the sine is a carrier and the modulating
signal—the information that is transmitted and should be correctly re-
ceived.

6. It is extremely important to remember that instantaneous frequency of a
single sine is equal to derivative of its angle divided by 2π . This knowledge
is priceless in signal generators and transmitters.
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7. Generation of deterministic signals is not difficult. We simply calculate
values of functions that are defining the signals, e.g. sine, cosine, exponent,
Gaussian, . . . In Matlab the situation is even simpler: we send to a function
a whole vector of argument values, typically time moments, and collect at
once all function values—signal samples.

8. Having a signal we can calculate numbers describing it: its minimum, max-
imum and mean value, variance, deviation, energy, power, RMS value,
signal-to-noise ratio (SNR), . . . and many other. Each of them is a measure
of one important signal feature. A set of them all is significantly smaller
than a set of all signal samples but can give us an essential signal charac-
terization.

9. The auto-correlation function specifies self-similarity of a signal. It is de-
fined as an inner product (multiplication of corresponding elements and
summation) of original signal samples and the shifted ones calculated for
different shift values. Dominant values of the auto-correlation function for
certain shift values tell us that some signal components repeat after these
shifts, i.e. the shifts are their periods.

10. While introduced for the first time, the auto- and cross-correlation typi-
cally do not look for us as very important heroes of the DSP epic. But
they really are! They play very important role in signal frequency analysis
(power spectral density), signal detection (matched filter), and statistical
signal processing (Wiener and Kalman filter). During any call each mobile
phone calculates auto-correlation of the speech of any talker. How many
auto-correlations are calculated all around the world now?

2.7 Private Investigations: Free-Style Bungee Jumps

Exercise 2.9 (* NMR as Sherlock-Holmes). Generate the complex-value signal
(2.9) having now the form:

x(n) =
K

∑
k=1

Ake−dkne j2πFkn +w(n), Fk =
fk

fs

which is exploited for testing algorithms for analysis of Nuclear Magnetic Reso-
nance (NMR) signals [1]. Assume the following values of normalized frequencies,
amplitudes, and damping factors:

Fk = −0.205 −0.2 0.05 0.1 0.105 0.205

Ak = 1.0 0.25 1.0 5.0 0.75 1

dk = 0.005 0.0 0.0 0.001 0.01 0.005
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Assume n = 0,1,2, . . . ,N−1,N = 2048. Add white Gaussian noise to the signal us-
ing Matlab functions: x=x+std*randn(size(x)) or x=awgn(x,SNR) (ad-
ditive white Gaussian noise with specified SNR). If, having a signal, we would find
parameters of its all oscillatory components, we could deduce objects which have
generated them. This way one can characterize ingredients of chemical compounds
which can be safe or dangerous for human being. The method is called a spec-
troscopy.

Listing 2.3: Synthesis of NMR signal
�

1 % File: Lab02_ex_nmr.m
2 clear all; close all;
3 Nx = 2̂ 11; % number of samples
4 K = 6; % number of components
5 F = [ -0.205 -0.2 0.05 0.1 0.105 0.205 ];
6 A = [ 1 0.25 1 5 0.75 1 ];
7 d = [ 0.005 0 0 0.001 0.01 0.005 ];
8 fi = zeros(1,K);
9

10 % Signal generation
11 figure
12 x = zeros(1,Nx); n = 0:Nx-1;
13 for k=1:K
14 k
15 x1 = A(k) .* exp(-d(k)*n) .* exp(j*2*pi*F(k)*n);
16 x = x + x1;
17 subplot(211); plot(real(x1)); grid; title(’x1 real’); axis tight;
18 subplot(212); plot(real(x)); grid; title(’x real’); axis tight;
19 xlabel(’sample number’); pause
20 end
21 x = awgn(x,40,’measured’); % x = x + 0.0187*randn(size(x));
22 figure;
23 subplot(211); plot(real(x)); grid; title(’real(x)’); axis tight;
24 subplot(212); plot(imag(x)); grid; title(’imag(x)’); axis tight;
25 xlabel(’sample number’); pause

��

Exercise 2.10 (* KARAOKE Piano Bar). Visit one of Internet pages with vir-
tual pianos (e.g. https://recursivearts.com/virtual-piano/, https://virtualpiano.net/)
and play the instrument for a while. After this analyze the below Matlab code. Do
you recognize the song? Now try to synthesize a musical track of your favorite
song for the nearest Karaoke Bar. Musical frequency scale is defined as follows (see
https://pages.mtu.edu/~suits/notefreqs.html):

• note Ak in k-th octave has frequency f A
k = 2k ·27.5 Hz, where k = 0,1,2,3, . . .8;

• 12 notes {Ak,B
f lat
k = Bb

k ,Bk,Ck,C
sharp
k = C#

k ,Dk,D
sharp
k = D#

k ,Ek,Fk,F
sharp
k =

F#
k ,Gk,A

f lat
k = Ab

k} of the k-th octave have the following frequencies, respec-
tively, for m = 0,1,2,3, . . . ,11 : fk,m = f A

k ·2m/12.

https://recursivearts.com/virtual-piano/
https://virtualpiano.net/
https://pages.mtu.edu/~suits/notefreqs.html
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Listing 2.4: Virtual piano program
�

1 % File: Lab02_ex_doremi.m
2 clear all; close all;
3

4 fs = 8000; T = 0.5;
5 dt = 1/fs; N = round(T/dt); t = dt*(0:N-1);
6 damp = exp(-t/(T/2));
7

8 % C D E F G A H
9 % do re mi fa sol la si

10 freqs = [ 261.6, 293.7, 329.6, 349.6, 391.9, 440.0, 493.9 ];
11 kb = [ freqs; 2*freqs ]; % keybord;
12 temp = kb’; f=temp(:),
13

14 % Gama
15 mscale = [];
16 for k = 1 : length(f)
17 x = damp .* sin(2*pi*f(k)*t);
18 mscale = [ mscale x ];
19 end
20 soundsc(mscale,fs);
21 pause( T * (length(f)+1) );
22

23 % My song
24 myfreqs = [ kb(1,5) kb(1,5) kb(1,6) kb(1,5) kb(2,1) kb(1,7) ...
25 kb(1,5) kb(1,5) kb(1,6) kb(1,5) kb(2,2) kb(1,2) ...
26 kb(1,5) kb(1,5) kb(2,5) kb(2,3) kb(2,1) kb(1,7) kb(1,6) ...
27 kb(2,4) kb(2,4) kb(2,3) kb(2,1) kb(2,2) kb(2,1) ];
28 mysong = [];
29 for k = 1 : length(myfreqs)
30 x = damp .* sin(2*pi*myfreqs(k)*t);
31 mysong = [ mysong x ];
32 end
33 soundsc(mysong,fs);

��

Exercise 2.11 (* Fire! Fire!). Using elaborate frequency modulation patterns try to
synthesize a very impressive alarm signal for your local fire brigade, your computer
laboratory, or your boyfriend/girlfriend.

Exercise 2.12 (* My First Digital Modem). Generate a random sequence of N bits
0/1 using Matlab command: round(rand(1,N)). Modulate a sinusoid in ampli-
tude or frequency according to the bit values 0/1, i.e. high or low. Write a program
for bit recovery. Possibilities: AM: tracking local maximum/minimum, peak2peak
value, FM: tracking local speed of zero-crossing.

Exercise 2.13 (* How My Vocal Cords Are Working? Part 2). Repeat the Ex-
ercise 1.1 but now find the pitch period for different voiced phonemes using the
auto-correlation function. Calculate frequencies of vocal cords opening and closing.

Exercise 2.14 (* Is My Heart Still Broken? Part 2). Repeat the Exercise 1.11 but
now find periodicity of the ECG signal using the auto-correlation function. Calculate
the number of heartbeats per second.
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Exercise 2.15 (* Generation of Random Numbers). Generate random numbers
with uniform distribution in the interval (0,1) and then transform it into normal
distribution using Box–Muller method. Test the program given below.

Listing 2.5: Random number generation by hand
�

1 % File: Lab02_ex_BoxMuller.m
2 clear all; close all;
3

4 % Uniform [0,1]
5 r = rand_mult(10000,123); % multiplicativegenerator
6 %r = rand_multadd(10000,123); % multiplicative + additivegenerator
7 figure; plot(r,’bx’);
8 figure; hist(r,20);
9

10 % Uniform [0,1] --> Normal(0,1)
11 N = 10000; r1 = rand(1,N); r2 = rand(1,N);
12 n1 = sqrt(-2*log(r1)) .* cos(2*pi*r2);
13 n2 = sqrt(-2*log(r1)) .* sin(2*pi*r2);
14 figure;
15 subplot(211); hist(n1,20);
16 subplot(212); hist(n1,20);
17

18 %#####################################
19 function s=rand_mult( N, seed )
20 a = 69069; p = 2̂ 12; s = zeros(N,1); % speciallydesigned values
21 for i=1:N
22 s(i) = mod(seed*a,p); seed = s(i);
23 end
24 s = s/p;
25 end
26

27 %#####################################
28 function s=rand_multadd( N, seed )
29 a = 69069; m = 5; p = 2̂ 32; s = zeros(N,1); % speciallydesigned values
30 for i=1:N
31 s(i) = mod(seed*a,p);
32 seed = s(i);
33 end
34 s = s/p;
35 end

��
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Chapter 3
Signal Orthogonal Transforms

Everything can be taken to pieces and assembled back. A signal
also.

3.1 Introduction

This chapter is devoted to fundamental concept of signal decomposition into
some simpler components (into some smaller parts). We are very close to math-
ematical theory of functional analysis, i.e. representation of one function as a
result of weighted summation of some other basic functions. The basis func-
tions should be orthogonal to each other: their inner products (similarity to each
other) should be equal to 0. They are many sets of functions fulfilling this con-
dition, in consequence there are many orthogonal signal transformations, for
example discrete cosine transforms (DCTs), discrete sine transforms (DSTs),
discrete Fourier (DFT), Hartley, Haar and Walsh–Hadamard transform. In this
chapter we learn about general orthogonal signal analysis (looking for a signal
recipe/prescription, i.e. calculation of signal similarity coefficients/weights in
respect to some elementary signals) and orthogonal signal synthesis (summa-
tion of elementary signals scaled by calculated similarity weights). In computer
implementation both operations are straightforward: first a vector of signal sam-
ples has to be multiplied by an analysis orthogonal matrix having different basis
function in each row. Then the resultant vector of similarity coefficient is mul-
tiplied by a synthesis matrix being transposition and complex conjugation of
the first. For real-value transformations only matrix transposition is done which
shifts samples of basis functions from rows to corresponding columns. Wow!
Yes! In discrete case both direct and inverse orthogonal signal transformation
simplify to multiplication of a vector and by a rectangular matrix. When only a
few similarity coefficients are significant for a given signal, we are telling that
the transformation has compact support. It is the case when basis functions well
fit to signal components. When we synthesize a signal from modified similarity
coefficients, some filtering of signal content is done.

© Springer Nature Switzerland AG 2021
T. P. Zieliński, Starting Digital Signal Processing in Telecommunication
Engineering, Textbooks in Telecommunication Engineering,
https://doi.org/10.1007/978-3-030-49256-4_3
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3.2 Orthogonal Transformation by Intuition: From Points in 3D
to Vector Spaces

And now slowly, from the beginning. Each color can be treated, roughly speak-
ing, as a summation of three basics ones: red–green–blue (RGB). Each point in 3-
dimensional space XYZ has three coordinates/components (x,y,z). Could any signal
be represented as a linear superposition of some elementary (basic) components?
The answer is YES and there is infinite number of such representations. The only
question is how to choose good ones. For example, an RGB color can be coded using
YIQ, YUV, or YCbCr components that could better fit to some specific applications.
Similarly, using again the 3D space template, we could rotate our coordinate XYZ
system in 3D and a point (x,y,z), not lying upon axes 0-X, 0-Y, 0-Z, could have
simpler representation (xr, yr, 0) in the rotated system 0-Xr, 0-Yr, 0-Zr.

So, the question is what is used as RGB or XYZ in signal decomposition case?
Since in real world, in circuits and systems engineering, different frequency com-
ponents (sines) are treated (attenuated and delayed) in different manner, the most
important is frequency content of any signal. Therefore, our elementary basis func-
tions, playing a role of RGB colors in signal space, should be some frequency
patterns. Since signals are treated by us as functions, this reasoning leads us to
functional analysis—a branch of mathematics dealing with the problem of approx-
imation of one function by linear superposition of some other functions, obligatory
orthogonal. Orthogonality means that each two basic functions/signals are totally
independent, in some way perpendicular to themselves as axes 0-X, 0-Y, 0-Z in 3D.
The well-known Fourier series fulfills the orthogonality requirement and allows us
to decompose any continuous differentiable periodic function into an infinite sum-
mation of sines and cosines having frequencies being an integer multiple of funda-
mental frequency, inverse of a signal period.

Digital signals are N-element vectors of samples: [x1,x2,x3, . . . ,xN ]. Therefore
vector spaces and linear algebra offer the best starting point for explanation and
understanding the concept of orthogonal signal decomposition (by analogy to XYZ
one).

Any signal, understood as a vector of samples, can be represented as a linear
superposition (summation) of some orthogonal vectors, treated as elementary func-
tions of the decomposition. Typically, the orthogonal vectors are obtained by sam-
pling some oscillatory functions, sines and cosines, with different frequencies. The
idea of orthogonal signal transformation is graphically explained in Fig. 3.1. Matrix
A, having in rows samples of elementary functions, into summation of which our
signal is decomposed, is multiplied by vector of signals samples x̄,x(n),n = 1 . . .N.:

ȳ = A · x̄. (3.1)

Vector ȳ represents a decomposition result: a signal recipe called a signal spec-
trum. It consists of coefficients telling us how much our signal is similar to each
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Fig. 3.1: Graphical explanation of orthogonal signal analysis/decomposition (left)
and synthesis (right)

elementary function. When we take all elementary functions, scale them by these
coefficients and add, the signal is perfectly reconstructed:

x̄ = A−1 · ȳ = (A∗)T · ȳ. (3.2)

Equation (3.1) describes orthogonal signal transformation (i.e. the signal analysis),
while Eq. (3.2) inverse orthogonal transformation (i.e. signal synthesis). Since in-
verse of an orthogonal matrix is obtained by complex conjugation of the matrix ele-
ments and the matrix transposition (rows becomes columns), during signal synthesis
the same elementary vectors are used as during analysis: the signal is synthesized as
a sum of weighted elementary functions. Only so much and so much.

When equality A−1 = (A∗)T holds, the matrix A is more than orthogonal
only: it is orthogonal and the same time normalized, i.e. orthonormal. In such
case A−1 ·A = I, the identity matrix. In this chapter we will consider such case
only. When matrix A is only orthogonal, i.e. its rows and column are mutually
orthogonal, multiplication of the matrix and its transposed conjugation gives a
diagonal matrix with not all elements equal to 1 on the main diagonal. In such
case, some additional scaling of orthogonal forward (3.1) and backward (3.2)
transformations is required. It will be introduced in next chapter on discrete
orthogonal Fourier transform (DFT).

Many such signal decompositions (orthogonal matrices) exist. They are giving
us information about the signal content. Knowing the signal decomposition result,
we can remove (modify) some of its components and synthesize its filtered version.
This is like with a soup: having its recipe we can modify it, for example remove
cucumbers and increase number of tomatoes, and boil a different soup using the
modified prescription.
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3.3 Orthogonal Transformation Mathematical Basics

Let x̄ and ȳ denote N-element vertical vectors of signal samples, real- or complex-
value ones:

x̄ =

⎡
⎢⎢⎢⎣

x1

x2
...

xN

⎤
⎥⎥⎥⎦ , ȳ =

⎡
⎢⎢⎢⎣

y1

y2
...

yN

⎤
⎥⎥⎥⎦ , (3.3)

They are orthogonal (independent, perpendicular) when their inner product 〈x̄, ȳ〉,
summation of multiplications of all corresponding elements is equal to zero:

〈x̄, ȳ〉= x1y∗1 + x2y∗2 + . . .+ xNy∗N =
[
y∗1 y∗2 · · · y∗N

]
⎡
⎢⎢⎢⎣

x1

x2
...

xN

⎤
⎥⎥⎥⎦= ȳH x̄ = 0. (3.4)

In Eq. (3.4) the mark “*” denotes complex conjugation, negation of imaginary
part of complex-value data, and “()H”—complex conjugation and additional vec-
tor transposition (changing orientation vertical ↔ horizontal). Both vectors x̄, ȳ are
orthonormal when additionally they have norm equal to 1 (perfect similarity to it-
self):

‖v̄‖= 〈v̄, v̄〉= 1, (3.5)

Inner product can be treated as a measure of similarity: 1 = the same, 0 = completely
different. Unitary vectors ēx = [1,0,0], ēy = [0,1,0], ēz = [0,0,1], defining axes 0-X,
0-Y, 0-Z in 3D space are orthogonal because their mutual inner products are equal
to 0 (1s are in different positions):

〈
ēx, ēy

〉
= 1 ·0+0 ·1+0 ·0 = 0,

〈ēx, ēz〉= 1 ·0+0 ·0+0 ·1 = 0,〈
ēy, ēz

〉
= 0 ·0+1 ·0+0 ·1 = 0.

Exercise 3.1 (Checking Vector Orthogonality). In this short program we are
checking orthogonality of two vector of numbers:

x = [ 1; -1; 2 ], y = [ 3; 1; -1 ], pause

o1 = sum(x .* conj(y)), o2 = (y’) * x, pause

Change values of vector elements and run program a few times. Then make the
vectors longer. At present vectors are vertical. Make them horizontal. Modify
the program if it stops to work after the last change.



3.3 Orthogonal Transformation Mathematical Basics 47

Let us choose N orthonormal, vertical, basis vectors v̄k,k = 1,2,3, . . . ,N, N-
element each, and build matrix V, having conjugated vectors in rows (conjugation
if complex-value):

V =

⎡
⎢⎢⎢⎣

v̄H
1

v̄H
2
...

v̄H
N

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

v∗1,1 v∗1,2 · · · v∗1,N
v∗2,1 v∗2,2 · · · v∗2,N

...
...

. . .
...

v∗N,1 v∗N,1 · · · v∗N,N

⎤
⎥⎥⎥⎦ , (3.6)

where vk,n denotes n-th element of k-th vector. By definition it is an orthogonal
matrix since it has orthogonal rows. When we multiply vector x̄ by this matrix we
do its orthogonal transformation:

X̄ =

⎡
⎢⎢⎢⎣

X1

X2
...

XN

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣
< v̄H

1 , x̄ >
< v̄H

2 , x̄ >
...

< v̄H
N , x̄ >

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

v∗1,1 v∗1,2 · · · v∗1,N
v∗2,1 v∗2,2 · · · v∗2,N

...
...

. . .
...

v∗N,1 v∗N,1 · · · v∗N,N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2
...

xN

⎤
⎥⎥⎥⎦ (3.7)

Vector X̄ consists of coefficients < v̄H
k , x̄ >,k = 1,2, . . . ,N, specifying similarity of

vector x̄ to the elementary vectors v̄H
k . Equation (3.7) can be written as:

X̄ = V · x̄. (3.8)

Multiplication of both sides of (3.8) by the inverse of matrix V results in

V−1X̄ = (V−1V) · x̄ = I · x̄ = x̄. (3.9)

Therefore the vector x̄ can be always recovered from vector X̄ of similarity coeffi-
cients for any matrix V having an inverse:

x̄ = V−1 · X̄. (3.10)

Exercise 3.2 (Forward and Backward: Solving Inverse Equation).
Let us do a very simple experiment: we will generate a vector and a rectangular
matrix with random numbers. Then we will perform the vector transforma-
tion (3.8) and the inverse transformation (3.10), assuming that the matrix V has
an inverse:

N=100; x=randn(N,1); V=randn(N,N);

X = V*x; xe = inv(V)*X;

error = max(abs( x - xe )),

What do we see? We came back perfectly! Concluding: there is no problem
with doing perfect signal analysis and synthesis using any matrix and its in-
verse, if it exists. But interpretation of the similarity vector X̄ is difficult in this
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case: the signal is reconstructed as sum of columns of matrix V−1 scaled by co-
efficients X̄. If column of V−1 would be equal to rows of V the situation would
be much more comfortable for us: the same functions would be used for the
analysis and synthesis. We could easily interpreted elements of X̄ in such case.
For the non-orthogonal matrix V it is impossible. Run the program a few times
for different random data. Is the perfect signal reconstruction observed all the
time?

But we have assumed that V is an orthogonal matrix and as such it not only has
an inverse but this inverse is equal to transposition and conjugation of V (denoted
by operator (.)H ):

V−1 = VH = (V∗)T . (3.11)

Only orthogonal matrix V has this nice feature! So we see that during signal synthe-
sis from similarity coefficients X̄ we are using the same vectors as for the analysis,
only transposed and conjugated:

x̄ = (V∗)T · X̄, x̄ =
N

∑
k=1

Xkv̄k. (3.12)

and the same but more user-friendly:

Fig. 3.2: Graphical illustration of signal analysis (left) and synthesis (right) by
means of orthogonal transformations. During decomposition signal is multiplied
by a matrix having reference oscillatory signals in its rows. Calculated similarity
coefficients are used next for signal synthesis: vector with them is multiplied by a
matrix having basis functions in its columns—the columns are scaled by transform
coefficients and added
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⎡
⎢⎢⎢⎣

x1

x2
...

xN

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

v1,1 v2,1 · · · vN,1

v1,2 v2,2 · · · vN,2
...

...
. . .

...
v1,N v2,N · · · vN,N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

X1

X2
...

XN

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

x1

x2
...

xN

⎤
⎥⎥⎥⎦= X1

⎡
⎢⎢⎢⎣

v1,1

v1,2
...

v1,N

⎤
⎥⎥⎥⎦+X2

⎡
⎢⎢⎢⎣

v2,1

v2,2
...

v2,N

⎤
⎥⎥⎥⎦+ . . .+XN

⎡
⎢⎢⎢⎣

vN,1

vN,2
...

vN,N

⎤
⎥⎥⎥⎦

Therefore these coefficients have a big sense: our signal is represented as a summa-
tion of basis orthogonal vectors taken with some weights. Basic concept of orthogo-
nal signal transformation is once again repeated in Fig. 3.2 similar to Fig. 3.1. Like
in the army: permanent repeating makes masters from us!

So doing orthogonal signal transformation we are looking for signal x̄ similar-
ity to vectors v̄∗k , k = 1,2,3, . . . ,N, and doing inverse transformation we are doing
synthesis of x̄ using vectors v̄k, k = 1,2,3, . . . ,N. Since the signal is represented
as a sum of vectors v̄k, we can say that during orthogonal transformation it is de-
composed into these vectors (spanned by these vectors). And we can choose them
(signal components we are looking for) in different ways. The best are vectors v̄k

similar to real-life (real-world) components, e.g. (co)sine oscillations. In Fig. 3.2
graphical illustration of forward and backward orthogonal signal transformations is
given.

In signal theory books matrix equations of direct and inverse orthogonal trans-
formation of signals/vectors are typically written in the following form:

ANALYSIS : Xk = 〈x̄, v̄k〉= v̄H
k · x̄ =

N

∑
n=1

xnv∗k,n, k = 1, 2, 3, . . . ,N, (3.13)

SYNTHESIS : x̄ =
N

∑
k=1

Xkv̄k. (3.14)

In the above discussion we have assumed more general case when vectors v̄k

are complex-value. In such situation during analysis (3.7), (3.13) their conjugation
is used. The reason of this is that in the next chapter we will discuss with more
details the discrete Fourier transformations being a complex-value one. For real-
value orthogonal basis vectors, the conjugation is not used (there is no imaginary
part to be negated).

Soup Example Orthogonal transformations of signals and orthogonal signal de-
compositions are unpleasant concept for students. To make them more tasty I usu-
ally present to students a soup example. Let us assume that we have the soup com-
ponents: potatoes, tomatoes, cucumbers, onions . . . , and that they are orthogonal.
Then we go to a bar and we eat fantastic soup. Of course, we are interested in its
recipe. So, what we are doing? We compare the soup as a whole with a reference
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potato (some basic pattern) and find the similarity coefficient for potatoes, i.e. how
many they are in our soup, e.g. one and a half. Next, we repeat this operation for
all soup ingredients, and find in this way (analysis) a complete soup prescription.
Next, we go home and during a Sunday dinner we boil the soup (do it synthesis)
for our guests using its know recipe. The same is with a signal: we are finding its
ingredients and synthesizing it, even with slight modification of the recipe (e.g. with
a little bit less or more amount of some signal frequency components).

Exercise 3.3 (Forward and Backward: Usage of Orthogonal Matrix).
At present we modify the program in Exercise 3.2. We use orthogonal transfor-
mation matrix V of the DCT-IV transform, which will be defined later, and in
the backward signal synthesis we exchange its inverse with its joint transposi-
tion and conjugation, in Matlab denoted as ()’:

N=100; x=randn(N,1);

k=(0:N-1); n=(0:N-1);

V=sqrt(2/N)*cos( pi/N * (n’+1/2)*(k+1/2) );

X = V’ * x; xe = V * X;

error = max(abs( x-xe )), ortho = sum( V(:,10).*conj(V(:,20)) ),

If the signal reconstruction error is on the level of computational accuracy, let
us say 10−13, we can conclude that time spent for reading equations in this
chapter was not lost at least! We can find with ease ingredients of our signal and
synthesize the signal back using them (i.e. boil the soup). In the last program
line we have checked orthogonality of the 10-th and 20-th column of the matrix
V. Please, check orthogonality of all pairs of matrix columns. Or alternatively,
multiply the matrix V and its transposed conjugation VH , in Matlab ortho =
V’*V, and see whether the identity matrix is obtained.

Exercise 3.4 (Testing Simple 3D Orthogonal Transformation). Let us do a
very simple experiment: we will rotate orthogonal unitary vectors of the 3D
coordinate system and check orthogonality of the rotated ones. To do verifi-
cation in one step we will build a matrix from input vectors (put them into
matrix columns), multiply it by any 3D rotation matrix, and check orthogonal-
ity of the resultant matrix. For orthogonal matrix the matrix multiplication by
its conjugated transposition should result in a diagonal matrix! In the case of
orthonormality (additional normalization)—only “1s” on the main diagonal are
allowed.

a = pi/4; c = cos(a); s = sin(a); % rotation angle a

Rx = [ 1 0 0; 0 c s; 0 -s c ]; % 3D 0-X rotation matrix

V = eye(3), Vx = Rx*V, % rotation, new 3D system vectors

ortho = Vx’*Vx, pause; % checking results: diagonal or not?

Modify the program: add rotation matrices around O-Y and 0-Z axes. Cre-
ate more complex rotations multiplying rotation matrices by themselves:
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Rxyz=Rx*Ry*Rz. Check that in each case you can go back doing inverse
(backward) rotation, i.e. doing inverse orthogonal transformation with a matrix
being conjugated transposition of the direct (forward) transformation matrix.
At present let us do the final cut: let us transform any point (u) = (x,y,z) from
the first coordinate system to the second one and go back, i.e. do in chain the
forward and backward orthogonal transformation of a point in 3D space, i.e.
the vector u:

u = [ 1; 2; 3], pause % vector/signal

ux = (Vx’) * u; [u ux], pause % forward transformation

ub = Vx * ux; [ux ub], pause % backward transformation

It is a magic! Perfect reconstruction! Now do it for any 3D vector (signal): u
= randn(3,1). It works for any square orthonormal matrix of any size! But
may be some matrices are better. Which ones and why? How to find them?

3.4 Important Orthogonal Transforms

Signal orthogonal transforms differ in selection of orthogonal functions that are
used for signal decomposition. Many functions can be used for this purpose: sines,
cosines, summation of sines and cosines, and different rectangular-shape sequences.
In Fig. 3.3 function shapes for several orthogonal transformations are shown for
N = 8. When basis functions are more similar to signal components, less number of
decomposition coefficients have significant values. We are telling in such situation
that a sparse signal representation is obtained and the decomposition functions offer
compact signal support. In this case signal components are well represented by de-
composition functions (since these functions are similar to signal components). And
this fact apart from existence of a fast algorithm should be used for the transform
selection. The most popular are discrete cosine transforms using sampled cosines
functions as elementary signals.

Definitions of the most important real-value discrete orthogonal transforms
are listed below where vk,n and vk(n) denote n-th sample of k-th basic function and
k,n = 0,1,2, . . . ,N −1 for all transformations except DCT-I: k,n = 0,1,2, . . . ,N.



52 3 Signal Orthogonal Transforms

1) discrete cosine transforms DCT-I, DCT-II, DCT-III, DCT-IV:

DCT-I: vk,n = vk(n) =
√

2/N · c(k) c(n) · cos

[
πkn
N

]
, (3.15)

DCT-II: vk,n = vk(n) =
√

2/N · c(k) · cos

[
πk(n+1/2)

N

]
, (3.16)

DCT-III: vk,n = vk(n) =
√

2/N · c(n) · cos

[
π(k+1/2)n

N

]
, (3.17)

DCT-IV: vk,n = vk(n) =
√

2/N · cos

[
π(k+1/2)(n+1/2)

N

]
, (3.18)

where

c(m) =

{
1/
√

2, m = 0 or m = N
1, 0 < m < N

(3.19)

2) discrete sine transform:

vk,n = vk(n) =

√
2

N +1
sin

[
π(k+1)(n+1)

N +1

]
, (3.20)

3) discrete Hartley transform:

vk,n = vk(n) =
1√
N

(
cos

2π
N

kn+ sin
2π
N

kn

)
==

√
2
N

sin

(
2π
N

kn+
π
4

)
, (3.21)

4) Hadamard transform (only values 1 and −1 divided by
√

N):

vk,n = vk(n) =
1√
N
(−1) f (k,n), (3.22)

where

f (k,n) =
M−1

∑
i=0

ki ni, M = log2N, ki, ni = 0, 1,

k = k0 +2k1 + . . .+2M−1kM−1,

n = n0 +2n1 + . . .+2M−1nM−1,

5) Haar transform (only values ±2p/2 divided by
√

N):

v0,n = 1/
√

N, vk,n =
1√
N

⎧⎪⎨
⎪⎩

2p/2, q−1
2p ≤ n

N < q−1/2
2p

−2p/2, q−1/2
2p ≤ n

N < q
2p

0, other n

, k = 1, 2, . . . ,N −1,

(3.23)
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Fig. 3.3: Vectors v̄k,k = 0,1,2, . . . ,N − 1, for some real-value orthogonal transfor-
mations: cosine, sine, Hadamard, and Haar (vertically from left to right). REMARK:
for Hadamard transform vectors are presented in changed order: v̄0, v̄4, v̄6, v̄2, v̄3,
v̄7, v̄5, v̄1, in order to obtain increasing frequency of oscillations [10]
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where

N = 2m, k = 2p +q−1, 0 ≤ p ≤ m−1,

p = 0 ⇒ q = 0, 1, p �= 0 ⇒ 1 ≤ q ≤ 2p.

For example for N = 4 one has: k = 0,1,2,3; p = 0,0,1,1; q = 0,1,1,2.
Please, do not worry, be happy even seeing equations of the Haar transform. Not

all days are rainy.
Most orthogonal transforms have real-value signal decomposition functions.

They are mainly used in image and audio compression, like DCT in JPEG/M-
PEG and AAC standards. But one of the most important and the most frequently
used in the world transform for signal analysis and processing has complex-value
functions! It is more difficult for us but at the same time very useful, for exam-
ple in multi-carrier telecommunication (DAB, DVB-T, ADSL, Wi-Fi, LTE, 5G),
psycho-acoustical sub-band audio coding (MP3 and AAC standards), and general-
purpose signal analysis like in magnetic resonance (MRI, NMR) . This is the dis-
crete Fourier transform (DFT), the biggest Animal in the DSP forest! the real
King of the DSP road! being time-discretized version of the Fourier series equations
( j =

√−1):

vk,n = vk(n) =
1√
N

exp

(
j
2π
N

kn

)
, k, n = 0, 1, 2, . . . , N −1, (3.24)

Due to its importance it is individually presented in the next chapter.
Why the DFT is so important? Because it is shift invariant: the original signal and

its time-shifted version have the some magnitudes (absolute values) of the transform
coefficients. This is not the case for real-value orthogonal transformation and is
shown in next section.

All defined above discrete orthogonal transforms are implemented in the program
presented in Listing 3.1.

Listing 3.1: Orthogonal sine/cosine-like signal transformations
�

1 % lab03_ex_transforms.m
2 clear all; close all;
3

4 N = 8; % for ortho checking N=8 (examples), for spectrumviewing e.g. N=100
5

6 % Orthogonaltransformmatrices (basis function in columns k, n - samples number)
7 k=0:N-1; n=0:N-1; % k-basis function index, n-b.f. sample index
8 % Comment the below two lines after understanding them
9 Indexes = n’*k, % outer product of argumentvectors

10 CosMatrix = cos(n’*k), pause % function values for index matrix
11

12 k=(0:N-1); n=(0:N-1); nk = [1,N];
13 V1 = sqrt(2/(N-1)) * cos( pi*n’*k/(N-1)); % DCT-I
14 V1(nk,:)=V1(nk,:)/sqrt(2); V1(:,nk)=V1(:,nk)/sqrt(2); % DCT-I
15 V2 = sqrt(2/N) * cos( pi*(n+1/2)’*k/N ); V2(:,1)=V2(:,1)/sqrt(2); % DCT-II
16 V3 = sqrt(2/N) * cos( pi*n’*(k+1/2)/N ); V3(1,:)=V3(1,:)/sqrt(2); % DCT-III
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17 V4 = sqrt(2/N) * cos( pi/N *(n+1/2)’*(k+1/2) ); % DCT-IV
18 V5 = sqrt(2/(N+1)) * sin(pi*(n+1)’*(k+1)/(N+1)); % DST
19 V6 = sqrt(1/N) * ( cos(2*pi/N*n’*k) + sin(2*pi/N*n’*k) ); % Hartley
20 V7 = sqrt(1/N) * exp(j*2*pi/N *n’*k); % DFT - only info, real() below for DFT
21

22 V = V1; % our choice
23 ortho = V’ * V, % orthogonality test: 1s on main diag, 0s elsewhere?
24 figure; % open figure
25 for k = 1:N % comment these four lines
26 k, stem(real(V(:,k))), pause % after seeing the transform
27 end % basis functions
28

29 % Choosing signal to be transformedforward and backward (vertical vector)
30 N1 = floor(N/2); N2=N-N1;
31 x1 = 5*V(:,2) + 10*V(:,7); % #1: linear superposition of V columns
32 x2 = [ x1(N); x1(1:N-1) ]; % #2: first signal shifted by one sample
33 x3 = sin(2*pi/7*n’); % #3: pure sine
34 x4 = [ones(N1,1); -ones(N2,1)]; % #4: rectangular wave
35 x5 = randn(N,1); % #5: random Gaussian noise
36 % x6 = ...; % #6: now your turn
37 x = x1; % OUR CHOICE
38 figure; plot(n,real(x),’ro-’); title(’x(n)’); % signal plot
39

40 % Transformations % (.)’ - transposition and conjugation
41 X = V’*x; % directtransformation (analysis)
42 figure; stem(real(X)); title(’X(k)’); % plot of transformcoefficients
43

44 if(0) % possible "spectrum" modification
45 X(8) = 0; % remove unwantedcomponents
46 figure; stem(real(X)); title(’Xm(k)’); % plot of modifiedtransformcoefficients
47 end %
48

49 xs = V*X; % inversetransformation (synthesis)
50 error = max(abs(x-xs)), % signalreconstruction error
51 figure; plot(n,real(x),’ro-’,n,real(xs),’b*-’); title(’xs(n)’); % synthesizedsignal

��

Exercise 3.5 (First ORTHO Tests). In the beginning set N=8. First, observe
how tricky generation of the transformation matrix is: first matrix of all pairs
of index values is calculated, then this matrix is put as an argument to a ba-
sis function and the whole orthogonal matrix is obtained at once. Then, check
matrix orthogonality (look at multiplication of the matrix and its transposi-
tion V’*V—the identity matrix should result). Next, set N=100 and observe
in the loop shape of the basis functions—columns of the matrix V. You should
see faster and faster oscillations. Comment the loop. Now observe shape of
the transform coefficients for different input signals (bigger values should be
concentrated around signal frequency components) and the shape of the recon-
structed signal—without coefficients modification it should be exactly the same
as the input one. Now turn on the spectrum modification and try to remove some
signal components. It can be well done when the signal is summation of trans-
formation matrix columns. Finally, implement N = 8 point Wash–Hadamard
transform interpreting properly Fig. 3.3.



56 3 Signal Orthogonal Transforms

0.2

0

-0.2

0.2

0

-0.2

0 5 10 15 0 5 10 15

0 5 10 150 5 10 15

1

0.5

0

0.5

0

x(n) x(n)

X(k)X(k)

n n

k k

Fig. 3.4: Example of signal decomposition using discrete cosine transform (DCT-I)
for N = 16. The analyzed signal is (left) perfectly equal to the third basis vector,
(right) equal to the third basis vector but circularly shifted one sample right. As
we see this very small shift has the dramatic influence upon the result: after shift
the spectrum of similarity coefficients is smeared, more vectors have to be used
for signal reconstruction. The DCT transform is not shift invariant. The DFT one,
discussed in the next chapter, is! [10]

3.5 Transformation Experiments

In this section we will demonstrate the most important features of the orthogonal
transform machinery using program 3.1.

Perfect Reconstruction The orthogonal signal transformation is perfect reversible.
Every signal, perfectly smooth like a sinusoid or perfectly rough like random noise,
will go back to itself perfectly after the direct and inverse orthogonal transformation.
It has been already presented in Exercises 3.3.

Perfect Signal Matching: Perfect Spectrum Compactness Since after the or-
thogonal signal decomposition any signal is represented as summation of scaled
orthogonal basis functions, it is no surprise that the signal spectrum is perfectly
sharp/compact when the signal components are exactly equal to scaled basis func-
tions only. In such case the orthogonal decomposition exhibits perfectly the signal
content because basis functions perfectly fits to themselves. Such situation is pre-
sented in left part of Fig. 3.4. The signal has one component being exactly equal to
the 3-rd basis function. Perfect fit! The audience applause!

Shift-Variance and Spectrum Smearing But the situation is completely different
when signal components are not equal to basis functions: the signal can consist of
only one pure sinusoid being out of the basis set either of only one basis function
but a little bit shifted in time and . . . the Happy End disappears! The spectrum
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Fig. 3.5: Example of signal components separation in domain of transforma-
tion coefficients: (up left) input signal with two-components, low-frequency, and
high-frequency ones, (up right) signal DCT-I spectrum, (down right) modified
spectrum—the high-frequency component is removed, (down left) synthesized
signal—only low-frequency component is synthesized

is smeared and analytic skills of orthogonal transforms are lost. In such case the
orthogonal transformation still offers the perfect signal reconstruction but the signal
spectrum (transform coefficients, similarity coefficients) is not compact. In right
part of Fig. 3.4 the same signal is analyzed but it is circularly shifted one sample
right. We observe that the spectrum compactness is completely lost. Seeing this the
students are leaving the lecture in silence muttering under breath: We lost our time
again!

Signal Components Separation in Domain of Transform Coefficients Having a
signal with several components we can

• calculate orthogonal transform coefficients (i.e. the signal spectrum),
• identify which coefficients belong to components of interest and which to dis-

turbers,
• set values of disturber coefficients to zero,
• synthesize signal from the modified signal spectrum.

This way we can separate some signal components from the rest, as a special case
we can minimize noise embedded in the signal. Figure 3.5 illustrates this procedure.
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Exercise 3.6 (Testing Orthogonal Transformations). Use the program 3.1 to
test yourself all the listed above features of orthogonal transforms (in the be-
ginning disable spectrum modification option):

• choose different matrices V=V1,V2,...,V7 and check their orthogo-
nality (operation V’*V should result in identity matrix with 1s on the main
diagonal and 0s elsewhere);

• observe that each testing signal x=x1,x2,...,x5, independently from
its shape, is perfectly reconstructed;

• observe that for the first signal the spectrum is perfectly matched to signal
components (no surprise! it is summation of scaled columns of the V ma-
trix!) but for the second one, which is simply one-sample shifted version of
the first signal, the spectrum compactness is completely lost (no surprise,
these transforms are not time-invariant);

• observe that for the third signal, a pure sine, the spectrum has many non-
zero coefficients: many basis functions are required for representation of
signal having frequency not present in the basis functions set;

• now turn on the spectrum modification option and choose again the signal
number one; observe that setting to zero the 8-th coefficient cause removing
the basis function associated with it from the synthesized signal: filtration
of signal components can be realized this way.

• now you are ready to drive a car by yourself : cut-and-paste the program
code, computers allow a lot; for example increase value of N, analyze a
speech signal read from disc, . . . .

Exercise 3.7 (More Fun: Audio Compression Using 1D DCT). Record one
speech word, reach acoustically, with 11025 Hz sampling ratio, approximately
1–2 s. Perform the DCT upon it, DCT-IV manually or using the Matlab dct()
function, then quantize the transform coefficients (see exercises in Chap. 1) and
perform the inverse DCT. Compare the original and synthesized speech in one
plot and by listening. Coefficients associated with lower frequencies could be
quantized less.

Exercise 3.8 (Mega Fun: Image Compression Using the 2D DCT Trans-
formation). 2D DCT image transformation is a cascade of 1D DCTs: first of
each image row, then of each column of the matrix resulting from the first
step. After the first operation image pixels are replaced by DCT coefficients.
Read any image to Matlab using function [img,map]=imread(’x.y’);
and display it imshow(img,map). Convert it to gray scale if image is
in color img=rgb2gray(img);, then transform it into double precision
format: img=double(img)/255;. Set colormap(gray). Perform the
2D DCT coeffs=dct2(img) and display matrix of transform coefficients
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also as an image: imshow(abs(coeffs)). Modify the coefficient values,
for example leaving ones in the left-up corner or taking only the biggest of
them, and removing the rest. See result. Perform inverse DCT transformation
img=idct2(coeffs); and compare synthesized image with the original
one. Repeat this operation for different DCT coefficient selections. In case of
any problems, look at the program lab03_ex_image.m.
2D DCT transformation of M × N image can be manually done in Matlab
coeffs=U’*img*V where U and V are DCT matrices with dimensions
M×M and N ×N, respectively, having basis functions in their column. Check
it. How to implement the inverse transformation in matrix form?

Conclusion: Take Things as They Are, Do Not Expect Impossible When the an-
alyzed signal is a linear superposition of some orthogonal vectors used by the trans-
formation (i.e. x̄ = ckv̄k + cl v̄l + cmv̄m), the similarity coefficients, i.e. the signal
spectrum, give us perfect information about the signal content, i.e. coefficients ck, cl

and cm (“the spectrum is compact”). When signal components do not perfectly fit to
the basis vectors used for the decomposition—the spectrum is smeared. Even slight
signal shift in time leads to interpretation problems-mash. We can explain this fact
using the 3D space analogy again: after some rotation of the coordinate system the
unitary vector ēx = [1,0,0] for sure will lose its perfect “energy” compactness and
after rotation more coordinates are necessary to describe it, e.g. ēx = [0.8, 0.6, 0].
This is the same vector but represented in two different 3D coordinate systems (vec-
tor spaces)—one better and one worse. The DFT transform, which is discussed in
the next chapter, is in this context more robust—it is signal time-shift invariant (in
sense of spectrum magnitude).

3.6 Optimal Discrete Orthogonal Transforms

Important Mathematical Generalization This section has an off-road character
and should be absolutely skipped by Readers without math interests. An interesting
generalization of orthogonal signal decomposition is derived in it. Let us assume
that the analyzed signal vector x̄ to be decomposed and orthonormal decomposi-
tion/basis vectors v̄k,k = 1,2,3, . . . ,N, are vertical, as in Eq. (3.13). For random
signals with mean value equal to 0, decomposition coefficients:

Xk = v̄H
k · x̄ (3.25)

should be completely independent (uncorrelated), i.e.

E
[
Xk ·XH

l

]
= E

[
(v̄H

k x̄) · (v̄H
l x̄)

H
]
= v̄H

k ·E [x̄ · x̄H] · v̄l =

= v̄H
k [Rxx] v̄l =

{
0, for k �= l,
λk, for k = l,

(3.26)
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where ()H denotes the Hermitian transpose, E[.]—the statistically expected value,
λk—a constant, and Rxx—the signal auto-correlation matrix with conjugate (Hermi-
tian) symmetry:

Rxx = E[xxH ] =

⎡
⎢⎢⎢⎣

E[x1x∗1] E[x1x∗2] · · · E[x1x∗N ]
E[x2x∗1] E[x2x∗2] · · · E[x2x∗N ]

...
...

. . .
...

E[xNx∗1] E[xNx∗2] · · · E[xNx∗N ]

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

Rxx(0) Rxx(−1) · · · Rxx(−(N −1))
Rxx(1) Rxx(0) · · · Rxx(−(N −2))

...
...

. . .
...

Rxx(N −1) Rxx(N −2) · · · Rxx(0)

⎤
⎥⎥⎥⎦ (3.27)

consisting of auto-correlation values Rxx(m). Signal samples xk, elements of the
vector x̄, are treated by us as independent and identically distributed discrete-time
variables. Since the basis functions are orthonormal:

v̄H
k · v̄l =

{
0, k �= l,
1, k = l,

(3.28)

after left multiplication of Eq. (3.26) by v̄k, one obtains the following formula:

Rxxv̄k = λkv̄k, k = 1, 2, 3, . . . , N. (3.29)

informing us that vectors v̄k should be eigenvectors and values λk—eigenvalues of
the matrix Rxx, and can be found by its eigenvalue decomposition (EVD):

Rxx =
N

∑
k=1

λkvkvH
k , λ1 ≥ λ2 ≥ λ3 ≥ . . .≥ λN . (3.30)

Eigenvectors are unitary (orthonormal) and they optimally span (adjust) the vector
space for a concrete signal in directions of the signal energy concentration.

This result is very important. It tells us how to choose orthogonal decomposition
vectors for a random signal, aiming at maximum concentration of signal energy in
the smallest number of orthogonal transformation coefficients: as eigenvectors of
the signal auto-correlation matrix Rxx. Of course, if computational expense of such
signal treatment is acceptable. Discrete orthogonal transform with optimal signal-
driven basis vectors chosen this way is called the Karhunen–Loève transform. For
auto-regressive first-order AR(1) signals, fulfilling the relation:

x(n) = ax(n−1)+noise(n)/
√

1−a2 (3.31)

and having auto-correlation function of the form Rxx(m) = am, the DCT-II transform
is a very close approximation of the described above optimal Karhunen–Loève sig-
nal decomposition for value of a close to 1. For this reason, DCT-II is widely used
in image processing.
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As a side conclusion, we can generalize this section saying that one should al-
ways try to choose such discrete orthogonal transformation which functions are the
most similar (best fitted) to an analyzed signal. Such procedure guarantees the most
compact signal decomposition, i.e. represented by left plot of Fig. 3.4, not the right
one.

3.7 Summary

In this chapter we studied discrete orthogonal transformations of discrete-
time signals. There are whole books dealing only with this one topic—so impor-
tant it is for signal analysis and processing. Now we will summarize in points
the most important things which should be remembered.

1. Two vectors are orthogonal when their inner product is equal to zero (sum
of multiplied elements). A matrix is orthogonal when it is built from rows or
columns which are all orthogonal to themselves. Inverse of an orthogonal
matrix is equal to conjugation and transposition of its elements (the first
row becomes the first column, the second row becomes the second column,
and so on). Multiplication of the matrix and its inverse gives an identity
matrix with ones on the main diagonal: VH ·V = I.

2. Orthogonal transformation of a vector x̄ of N signal samples is defined as
its multiplication with a rectangular N ×N orthogonal matrix VH :
X̄ = VH · x̄.
The matrix has in its rows so-called basis signals/function into which the
analyzed signal is decomposed. The transformation result X̄ is a vector of
coefficients telling us about quantity of each basis function presence in the
analyzed signal. Thanks to this we are informed about a signal content: the
signal becomes for us a summation of scaled basis functions/signals.

3. The transformation result can be used for signal synthesis/reconstruction.
In this case the vector of similarity coefficients X̄ is multiplied by the matrix
V giving in a result:
V · X̄ = V ·VH · x̄ = I · x̄ = x̄.
This is a consequence of the fact that an orthogonal matrix is used and its
inverse is equal to transposed conjugation.

4. Doing some modification of the transformation result before backward
transformation we can change the signal content, i.e. separate signal com-
ponents or reduce the noise.

5. There are many orthogonal discrete transformations: DCT, DST, DFT, . . .
The transformation is good in our application when only a few similar-
ity coefficients are significant, i.e. the vector of coefficient has compact
form. It is achieved only in the situation when basis functions are perfectly
matched to signal components. It almost never happens for real-word data.
Hmm. . . Uff. . .
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6. If decomposition coefficients have the same values after the signal shift,
the transformation is shift invariant. Unfortunately, only the complex-value
discrete Fourier transform has this nice feature (and only for magnitude of
its coefficients).

7. The Karhunen–Loève transform is the optimal discrete orthogonal trans-
form for random data—it maximizes compactness of the transform coeffi-
cients. The DCT-II is close to KL transform for AR(1) signals.

3.8 Private Investigations: Free-Style Bungee Jumps

Exercise 3.9 (Writing Program of a Universal Ortho-Screwdriver). Matlab func-
tions are computer scripts having extension “.m” and starting with the reserved word
function. After it, in square brackets there are listed variables computed inside
the function while on the right, after the function name, in round brackets, there are
listed variables sent to the function. The function task is to compute values of output
variables using values of input variables. Matlab function recognizes each variable
size. In program 3.2 an example of simple function call is presented.
Modify the function code from Listing 3.2 written above. Name it as myortho.m.
The function should calculate different direct and inverse orthogonal transforms of
any signal x of arbitrary length. You should check the perfect reconstruction feature
for each transform. In case of DCT-IV and DFT compare your results with output
of Matlab functions dct() and fft() (in the second one in Matlab no scaling of
basis functions is done).

Listing 3.2: Example of writing and calling functions in Matlab
�

1 % File lab03_ex_function_call.m
2

3 % Main program - scripts myprog.m
4 x = [1; 2; 3]; trans = 1; direction = -1;
5 [X, M] = myfun( x, trans, direction ),
6

7 % Function - script myfun.m
8 function [ Y, N ] = myfun( y, ortho, direct )
9 N = length(y); % length of the input signal

10 if( ortho==1 ) A = eye(N); % definition of the
11 else A = rand(N,N); % transform matrix, basis functions in columns
12 end % end of if()
13 if(direct==1) A = A’; end % for direct transform
14 Y = A*y; % signaltransformation
15 end

��

Exercise 3.10 (* Periodicity/Frequency Hunter: Orthogonal Signal Analysis).
In Chaps. 1 and 2 we were reading and generating different signals, and trying to
find (calculate) a period of signal repetition. But inverse of the signal period is equal
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to repetition frequency. The orthogonal transformations can be used for frequency
analysis. Looking at basis functions of DCT transform, presented in Fig. 3.3, we see
that each next basis function (in the DCT matrix) has higher frequency of oscilla-
tions. Therefore if some transform coefficients are significantly bigger than the oth-
ers, we can conclude that our signal is mostly built from functions associated with
them, consequently it consists of frequencies of them. These way we can estimate
frequency of oscillations present in our data. Try to use this approach to estima-
tion of the following frequencies: generated artificially sinusoids (initial test), vocal
cords opening and closing (for different isolated vowels—record your own speech)
and heartbeat periodicity (file (ECG100.mat) from the first laboratory on signals).
Use your own function OrthoScrewDriver() or the Matlab function dct().
Compare obtained results with visual finding of signal period from its time plot and
with period values calculated using the auto-correlation function.

Exercise 3.11 (* Frequency Killer: Orthogonal Signal Tailoring/Filtering).
Knowing coefficients of orthogonal signal components one can manipulate them: set
some of them to zero and increase values of some other ones. The same way as in the
cinema: you are passing only when you have a ticket! This way after the orthogonal
synthesis a different signal is obtained: it should be more useful for us since it was
personally tailored by us. For example, noise or unwanted signal components can
be removed or reduced this way. Generate a signal consisting of a few sinusoids and
try to remove some of them in the domain of transform coefficients (setting their
values to zero). Do the same with fragments of speech or audio as well as our ECG
signals.

Exercise 3.12 (** Flip-Flop: Orthogonal Signal Transformations with Rectan-
gular Shape Functions). Try to write a Matlab code implementing Hadamard (3.22)
and Haar (3.23) orthogonal transforms for N = 2p. Both of them have basis func-
tions with rectangular shapes. Note that the basis functions of the first transform
have a form of rectangular-shape oscillations having the same amplitude while in
the second transform the amplitudes are different, additionally the functions are im-
pulsive and try to detect not only frequencies of signal components but also their
time localization. First, generate basis functions for N = 8 and compare them with
these presented in Fig. 3.3. Then, in the second high-mountains task, try to write a
program for calculation of the Wash–Hadamard transform for any N = 2p equal to
a power of 2. Use the transform definition (3.22) or find in the Internet and apply
recursive generation rule of the WH orthogonal matrix.

Exercise 3.13 (*** Mount Everest of Orthogonality: Optimal Orthogonal Trans-
forms for Noisy Signals). What are optimal shapes of orthogonal basis functions
for noisy signals? How to find their collection, which do packing of the signal en-
ergy to the smallest number of them (how to ensure compactness of random sig-
nal spectrum?) If you are really interested in this story, look for its continuation
in many optimum signal processing books. May be the following Matlab functions
R=xcorr(x); Rxx=toeplitz(R); [V,D] = eig(Rxx) can help you to
find an answer?
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Chapter 4
Discrete Fourier Transforms: DtFT and
DFT

Always there are many runners but typically the winner is the
same: DFT in the form of FFT!

4.1 Introduction

This chapter is devoted to practical computer-based frequency analysis
of discrete-time signals, i.e. vectors of signal samples, by means of Fourier
transform-based methods. We are assuming now that the analyzed signal is a
summation of different oscillatory components with different frequencies and
we are interested in finding them. From the chapter about orthogonal transforms
we remember that signal analysis (decomposition into simpler components) is
performed by calculation of signal similarity to some reference oscillations. The
similarity coefficients are calculated as inner products of the signal vector and
some reference vectors (sum of products of corresponding elements). In analog
signal theory the methodology is exactly the same but the inner product has a
form of infinite integral of the product of signal and reference function, cal-
culated for an infinite number of reference frequencies. One obtains this way
a signal spectrum being a continuous function of frequency. When values of
this function, i.e. signal similarity measures to some reference oscillations, are
multiplied by these oscillations, and all oscillations are added together in in-
finite integral over frequency—the signal is synthesized (reconstructed) from
its spectral description. The direct and inverse continuous Fourier transform
(CFT) act the same way in the analog world as discrete orthogonal transforms
in discrete-time world.

When the analog signal is periodic and repeats every T seconds, the signal
integration in CFT can be limited to one signal period only because all informa-
tion about the signal is in this time interval. Being periodic, the signal can have
only components with frequencies being multiplicities of the signal repetition
frequency f0 = 1/T , i.e. fk = k · f0. Thanks to this, the analyzing integration and
final signal synthesizing integration from similarity coefficients are repeated not
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for all frequencies. In such case the CFT is taking a form of Fourier series (FS),
its special case.

When we are coming to discrete world, the CFT is changing to discrete-
time Fourier transform (DtFT) and the FS are replaced with discrete Fourier
transform (DFT).

In this chapter we learn only minimum amount of information concern-
ing CFT, FS, DtFT, and DFT. We become familiar with their definitions and
primary features. The main goal is to understand, from one side, the broth-
erhood relation between DtFT and DFT, and, from the second side, differ-
ences in their practical usage. In frequency analysis performed on a digital
computer, time-limited N-samples long signal has to be used in DtFT, simi-
larly as in DFT. For this reason the only difference between both transforms
relies on different frequency sets which are used by them. Let us assume that
sampling frequency is equal to fs and the analyzed signal has N samples. In
DFT one can only calculate similarity coefficients for N frequencies equal to
fk = k · f0,k = 0,1, . . . ,N − 1, N multiplicities of f0 = fs/N, while in DtFT a
user does not have any restrictions in her/his frequency choice. It is interest-
ing that DSP users very often forget about DtFT which offers better spectrum
inspection than DFT.

Finally, we will make a link to the previous chapter on orthogonal trans-
forms. DFT is a special type of N ×N orthogonal transform. In contrary to or-
thogonal transformations discussed before, it is using complex-value, not real-
value, harmonic oscillations as orthogonal basis functions to which the signal
is decomposed, cosine in the real part and sine in the imaginary part. Let us
repeat the definition of normalized DFT basis functions for smoother continu-
ation (k—function number and transformation matrix row number, n—sample
number and transformation matrix column number, k,n = 0,1,2, . . . ,N −1):

vk,n = vk(n) =
1√
N

e j 2π
N kn =

1√
N

(
cos

(
2π
N

kn

)
+ j · sin

(
2π
N

kn

))
. (4.1)

Due to its complexity, the transformation result is robust to signal shift in time
(delay), i.e. after this modification the absolute value of the signal transform
coefficients does not change after the signal shift. In this chapter we will derive
the DFT equation from the Fourier series analysis and show its relation to DtFT,
its older brother.

4.2 Continuous Fourier Transform and Fourier Series

Let us start from the beginning, from an analog world description. The continuous
Fourier transforms (CFT), direct and inverse, are defined as follows:

X( f ) =

∞∫
−∞

x(t)e− j2π f tdt, x(t) =

∞∫
−∞

X( f )e j2π f tdf , j =
√−1. (4.2)
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Again, during analysis, the continuous-time signal x(t) is compared with complex-
conjugated continuous-time basis functions e− j2π f t , now complex-value ones. It is
done by performing integration (summation) of their product. The integration is
convergent for limited energy signals only, for others—concept of generalized func-
tions (distributions) should be applied. During synthesis all basis functions e j2π f t

are scaled by corresponding, calculated spectral coefficients X( f ) and summed (in-
tegrated). Any signal is represented as infinite summation/integration of complex-
value harmonic signals of the form:

e j2π f t = cos(2π f t)+ j · sin(2π f t) (4.3)

with different frequencies f . Pure cosine and sine signals with frequency f0 have
the following Fourier spectral decomposition (representation):

cos(2π f0t) =
e j2π f0t + e− j2π f0t

2
, sin(2π f0t) =

e j2π f0t − e− j2π f0t

2 j
, (4.4)

or:

cos(2π f0t) =
1
2

e j2π f0t +
1
2

e− j2π f0t , sin(2π f0t) =
− j
2

e j2π f0t +
j
2

e− j2π f0t .

(4.5)

They are summation of two harmonic signals (4.3), first with positive frequency f0

and second with negative frequency − f0. Fourier spectrum coefficients for cosine
and sine are, respectively, equal to [1/2,1/2] and [−0.5 j,0.5 j], first for positive
frequency, then for negative (amount of two basis signals, all remaining transform
coefficients are equal to zero). We are doing here deliberately very big simplifica-
tions not mentioning the Dirac Delta functions but aiming at more intuitive, less
formal presentation. Fourier spectra of pure cosine and sine with frequency f0 are
presented in Fig. 4.1.

For real-value signals, the CFT spectrum has conjugate (Hermitian) symmetry in
respect to frequency f = 0 Hz, i.e. it is the same for positive and negative frequencies
in its real part and negated in its imaginary part:

X(− f ) = X∗( f ). (4.6)

Fig. 4.1: Fourier spectrum of cosine (left) and sine (right)—see Eq. (4.5)



68 4 Discrete Fourier Transforms: DtFT and DFT

This feature is inherited from functions of cos() and sin():

X( f ) =

∞∫
−∞

x(t)e− j2π f tdt =

∞∫
−∞

x(t)cos(2π f t)dt

︸ ︷︷ ︸
XRe(− f )=XRe( f )

− j

∞∫
−∞

x(t)sin(2π f t)dt

︸ ︷︷ ︸
XIm(− f )=−XIm( f )

. (4.7)

Spectra of pure cosine and sine signals, presented in Fig. 4.1, are the best exam-
ples of the CFT spectrum symmetry.

It is very informative to calculate the Fourier spectrum of a rectangular pulse
equal to 1 in the interval [−T,T ] and zero elsewhere:

RT ( f ) =

∞∫
−∞

rT (t)e
− j2π f tdt =

T∫
−T

1 · e− j2π f tdt =
1

− j2π f
e− j2π f t

∣∣∣∣
T

−T
= . . .

e− j2π f T − e j2π f T

− j2π f
=

− j2sin(2π f T )
− j2π f

=
sin(2π f T )

π f
= 2T sinc(2π f T ). (4.8)

Value for f = 0 we find calculating derivatives of nominator and denominator of the
final formula in Eq. (4.8) in respect to f :

RT ( f )| f=0 =
(2πT )cos(2π f T )

π

∣∣∣∣
f=0

= 2T. (4.9)

Signal of rectangular pulse and its Fourier spectrum are presented in Fig. 4.2. The
plots have been done using program 4.1.

Exercise 4.1 (Fourier Spectrum of the Rectangular Pulse). Run program 4.1
which is doing the Fourier spectrum visualization of a rectangular pulse. Ob-
serve oscillatory shape of this spectrum. Around f = 0 Hz the so-called spec-
tral main-lobe of the oscillations is located. On both sides of it the so-called

-2 -1 0 1 2
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x(t)
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0

1

2
X(f )

Fig. 4.2: Rectangular pulse and its Fourier spectrum
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oscillatory spectral side-lobes are visible. Change the pulse duration. Ob-
serve that the shorter the pulse is, the wider is its spectrum. Note also that
the spectrum has values equal to zero for frequencies being multiplicities of
1/(2T ) : f = k · (1/(2T )).

Listing 4.1: Fourier spectrum of rectangular pulse
�

1 % lab04_ex_rectpulse.m
2 clear all; close all;
3

4 T = 1; t = -2*T : T/100 : 2*T;
5 x = zeros(1,length(t)); indx = find(abs(t)<=T); x(indx)=ones(1,length(indx));
6 figure; plot(t,x,’b-’); xlabel(’t [s]’); title(’x(t)’); grid;
7

8 f0 = 1/T; f= -4*f0 : f0/100 : 4*f0;
9 X = sin(2*pi*f*T) ./ (pi*f);

10 X( ceil(length(X)/2) ) = 2*T;
11 figure; plot(f,X,’b-’); xlabel(’f [Hz]’); title(’X(f)’); grid;

��

In DSP we deal with discrete-time signals taken from real-world objects. There-
fore it is very important to know which are theoretical spectra of the most popu-
lar continuous-time signals. Why? Since the same spectra should be obtained dur-
ing computer calculations performed upon discrete-time signal representations. In
Table 4.1 some spectra examples (definitions) are given.

We should also know which are spectral consequences of different operations
performed upon the signal. To find corresponding mathematical formulas one should
put the modified signal into CFT integral (4.2) and calculate it. This is a routine
exercise during analog circuits and signals (or signal theory) workouts. I recommend

Table 4.1: Continuous-time signals and their continuous-frequency CFT spectra

No Signal name Signal equation Spectrum equation

1 Rectangular pulse rT (t) =

{
0 for |t|> T
1 for |t| ≤ T

X(ω) = 2 sinωT
ω

2 Sign signal x(t) = sign(t) X(ω) = 2
jω

3 Gaussian function x(t) = e−at2
X(ω) =

√
π
a e−ω2/(4a)

4 One-side
exponential

x(t) =

{
0 t < 0

e−at t ≥ 0
, a > 0 X(ω) = 1

a+ jω

5 Damped sine x(t) =

{
0 t < 0

Ae−at sin(ω0t) t ≥ 0
X(ω) = Aω0

(a+ jω)2+ω2
0

6 Damped cosine x(t) =

{
0 t < 0

Ae−at cos(ω0t) t ≥ 0
X(ω) = A a+ jω

(a+ jω)2+ω2
0

7 Cosine fragment x(t)=cos(ω0t) · rT (t) X(ω) = sin((ω−ω0)T )
ω−ω0

+ sin((ω+ω0)T )
ω+ω0
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Table 4.2: Basic CFT features: signal processing and its spectral consequence

No Feature Signal manipulation Spectral consequence

1 Linearity ax(t)+by(t) aX( f )+bY ( f )

2 Scaling x(at), a > 0 1
a X
(

f
a

)
3 Time reverse x(−t) X(− f )
4 Conjugation x∗(t) X∗(− f )
5 Time shift x(t − t0) e− j2π f t0 X( f )
6 Frequency Shift e± j2π f0t x(t) X( f ∓ f0)

7 Multiplication x(t) · y(t)
∞∫

−∞
X(v)Y ( f − v)dv

8 Complex modulation e± j2π f0t x(t) X( f ∓ f0)
9 Cos() modulation x(t)cos(2π f0t) 1

2 [X( f − f0)+X( f + f0)]

10 Sin() modulation x(t)sin(2π f0t) − j
2 [X( f − f0)−X( f + f0)]

11 Convolution
∞∫

−∞
x(τ)y(t − τ)dτ X( f ) ·Y ( f )

12 Correlation
∞∫

−∞
x(t)y∗(t + τ)dt X( f ) ·Y ∗( f )

13 Derivative dnx(t)
dtn ( j2π f )n ·X( f )

14 Energy—Parseval eq.
∞∫

−∞
x(t)x∗(t)dt

∞∫
−∞

X( f )X∗( f )d f

to do it for one or two signal modifications. Examples could be found in many
textbooks. The most important CFT features are listed in Table 4.2.

At present, as an example, we will derive a few important spectral relations which
will be very often used later in this book (ω = 2π f ):

1. signal time shift—results only in signal spectrum phase change (after introduc-
ing new variable τ = t − t0, from where t = τ + t0):

∞∫
−∞

x(t − t0)e
− jωt dt =

∞∫
−∞

x(τ)e− jω(τ+t0)dτ = e− jωt0

∞∫
−∞

x(τ)e− jωτ dτ = e− jωt0 X(ω);

(4.10)

2. complex modulation—causes frequency shift of the signal spectrum to the
modulation frequency:

∞∫
−∞

(
e± j2π f0t x(t)

)
e− j2π f tdt =

∞∫
−∞

x(t)e− j2π( f∓ f0)tdt = X( f ∓ f0); (4.11)

3. convolution of two signals—results in multiplication of their spectra, which
is extremely important in signal filtering (new variable λ = t − τ , from where
t = τ +λ ):
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∞∫
−∞

⎛
⎝

∞∫
−∞

x(τ)y(t − τ)dτ

⎞
⎠e− jωt dt =

∞∫
−∞

⎛
⎝

∞∫
−∞

x(τ)e− jωτ dτ

⎞
⎠y(λ )e− jωλ (dλ +dτ) = . . .

⎡
⎣

∞∫
−∞

x(τ)e− jωτ dτ

⎤
⎦ ·
⎡
⎣

∞∫
−∞

y(λ )e− jωλ dλ

⎤
⎦= X( f )Y ( f ); (4.12)

4. multiplication of two signals—results in convolution of their spectra, ex-
tremely important in spectral analysis (we show that inverse Fourier transform
of convolution of two signal spectra is equal to multiplication of these signals,
i.e. we will present an inverse proof; using new variable u = f − v, from where
f = v+u):

∞∫
−∞

⎛
⎝

∞∫
−∞

X(v)Y ( f − v)dv

⎞
⎠e j2π f td f =

=

⎡
⎣

∞∫
−∞

X(ν)e j2πνtdv

⎤
⎦ ·
⎡
⎣

∞∫
−∞

Y (u)e j2πutdu

⎤
⎦= x(t)y(t); (4.13)

5. signal energy—Parseval’s equation—integration of squared signal in time do-
mains is equivalent to the integration of its squared Fourier spectra in the fre-
quency domain, important in signal power and spectral density analysis:

∞∫
−∞

x(t)x∗(t)dt =

∞∫
−∞

⎛
⎝

∞∫
−∞

X( f )e j2π f td f

⎞
⎠x∗(t)dt =

=

∞∫
−∞

X( f )

⎛
⎝

∞∫
−∞

x∗(t)e j2π f tdt

⎞
⎠d f =

∞∫
−∞

X( f )X∗( f )d f . (4.14)

Fourier series use the same methodology as CFT but are dedicated to analysis
and synthesis of periodic signals: only one signal period T is analyzed (multiplied
with the reference and integrated, the result is divided by T ) and only frequencies
being multiplies of the signal repetition frequency k f0 = k 1

T ,k = −∞, . . . ,∞, are
checked:

Xk =
1
T

T∫
0

x(t)e− j2π(k f0)tdt, x(t) =
+∞

∑
k=−∞

Xke j2π(k f0)t , f0 =
1
T
. (4.15)

The Fourier series equations are written also in the so-called trigonometric ver-
sion:
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ak =
1
T

T∫
0

x(t)cos(2π(k f0)t)dt, bk =
1
T

T∫
0

x(t)sin(2π(k f0)t)dt (4.16)

x(t) = a0 +2
+∞

∑
k=1

[ak cos(2π(k f0)t)+bk sin(2π(k f0)t)] = (4.17)

= X0 +2
+∞

∑
k=1

|Xk|cos(2π(k f0)t +�Xk)

Xk = ak − jbk, |Xk|=
√

a2
k +b2

k , �X = arctg

(−bk

ak

)
.

4.3 Discrete-Time Fourier Transform: From CFT to DtFT

Presentation of the continuous Fourier transform, given above, is very important for
us because in computer-based frequency analysis a discretized CFT version is very
widely used. Let us rewrite the CFT into more computer-friendly form. Denoting
sampling frequency as fs, sampling period as Δ t = 1/ fs, sampling time as t = n ·Δ t,
and exchanging infinite integral with infinite summation, Eq. (4.2) of the forward
CFT takes the following form:

X( f ) =

+∞∫
−∞

x(t)e− j2π f tdt ⇒ X( f ) =
+∞

∑
n=−∞

x(n ·Δ t)e− j2π f (n·Δ t). (4.18)

Going further, we can write final equations for DtFT and its inverse as (defining
Ω = 2π f

fs
):

Analysis: X

(
f
fs

)
=

+∞

∑
n=−∞

x(n)e− j2π f
fs

n =
+∞

∑
n=−∞

x(n)e− jΩn, (4.19)

Synthesis: x(n) =
1
fs

+ fs/2∫

− fs/2

X

(
f
fs

)
· e j2π f

fs
nd f . (4.20)

In (4.19) X( f
fs
) can be calculated for any value of frequency f , being a continuous

variable, but there is no need for this because the function e− j2π f
fs

n is periodic in
respect to f and has period fs:

e− j2π ( f+k· fs)
fs

n = e− j2π f
fs

n · e− j2πkn = e− j2π f
fs

n. (4.21)
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Therefore, it is sufficient to calculate X( f
fs
) for − fs/2 ≤ f < fs/2 or for 0 ≤ f < fs.

In the first case the inspection of the spectrum is more intuitive and easier for inter-
pretation because pairs of positive and negative frequency components are visible
in the spectrum. Going back to the sampling Exercise 1.4 presented in Chap. 1, for
fs = 1000 Hz and fx = 100 Hz we see in the spectrum signal components −100
Hz and 100 Hz, not 100 Hz and 900 Hz (see equations (1.13) and (1.14)). In fact
during discretization of CFT we are sampling not only analyzed signals but also the
reference functions cos() and sin(). When their frequency is too high, the sampling
theorem is not fulfilled, and the high-frequency reference signals are under-sampled
and look as low-frequency ones and, as such, they fit to the analyzed low-frequency
signal again. From this reason the DtFT spectrum is periodic and there is no need
for its whole computation.

When we have only N signal samples, after dividing (4.19) by N, one obtains the
following equation:

X

(
f
fs

)
=

1
N

N−1

∑
n=0

x(n)e− j2π f
f s n, − fs/2 ≤ f < fs/2, (4.22)

which offers properly scaled signal amplitude spectrum (for example, the cosine
spectrum has two peaks equal to 1/2 for frequencies f0 and − f0). In DtFT (4.22) we
can sample (discretize in frequency) the spectrum as dense as we want, significantly
denser than in the DFT method, being discussed later in this chapter, where the
frequency step Δ f = fs/N is always used. From this reason (4.22) should be treated
as a basic tool for spectral zooming and allows us to see details invisible in DFT. It
is building a bridge between digital and analog signal theory.

It is very important also to note that, analogically to CFT and its Eqs. (4.6), (4.7),
the DtFT spectrum X() = XRe()+XIm() has conjugate symmetry also around the
frequency f = 0 Hz—it is the same in its real part XRe() and negated in its imaginary
part XIm():

XRe

(− f
fs

)
= XRe

(
f
fs

)
, XIm

(− f
fs

)
=−XIm

(
f
fs

)
. (4.23)

Fundamentals of frequency analysis of signals by means of DtFT, discretized in
frequency, are summarized in Fig. 4.3. A pure cosine is analyzed in it. Signals are
presented on the left side, while on the right their CFT and DtFT spectra. We see on
the left side, one after the other: continuous-time cosine, a continuous-time rectan-
gular window—a function, one of many possible, used for cutting a cosine fragment,
result of their multiplication, i.e. the signal fragment to be analyzed, and, finally, its
time-discretized version. The CFT spectrum of a cosine cos(2π f0t) is equal to 1

2
for − f0 and f0 (see Eq. (4.5)). The CFT spectrum of the rectangular cutting func-
tion has an oscillatory shape described by sin(x)

x function (see Eq. (4.8)). The CFT
spectrum of a cut cosine consists of two copies of the CFT spectrum of rectangular
window, shifted to frequencies − f0 and f0 (due to modulation feature of the CFT
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Fig. 4.3: Graphical illustration of fundamental principles of digital spectral analysis:
(left) signals, (right) their spectra. In consecutive rows: (1) infinite cosine and its the-
oretical Fourier spectrum, (2) rectangular window and its theoretical Fourier spec-
trum, (3) multiplication of cosine and rectangular window and its spectrum (convo-
lution of two above spectra marked with “*”), (4) sampled signal and its periodic
spectrum, (5) sampled one period of the repeating spectrum [11]
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transform—see feature 9 in Table 4.2). After signal discretization in time with sam-
pling frequency fs, the continuous-frequency DtFT spectrum is obtained in which
the CFT spectrum is repeated with period fs—due to Eq. (4.21). Since the DtFT
spectrum is periodic, only its one period can be calculated. In Fig. 4.3 this is one
DtFT spectrum period from [0, fs) Hz, the same as in the discrete Fourier transform
(DFT) presented in the next section. In computer implementation some sampling of
the frequency axis has to be chosen, which is presented also. When different win-
dow function is used for cutting a signal fragment, the observed signal spectrum has
different shapes but its peaks are still located at signal frequency components. In
Exercise 4.2 we will apply and test some exemplary window functions (rectangular,
Hanning, and Chebyshev) during signal DtFT analysis.

Short Summary Since during DtFT-based frequency analysis, signal is multi-
plied with some windowing function, the DtFT spectrum of the signal fragment
is a result of convolution of the signal spectrum and spectrum of the window—
see Eq. (4.13). Signal discretization causes spectrum periodic repeating (sam-
pling frequency is the period)—due to Eq. (4.21). Therefore, the DtFT spectrum
of a discrete signal should be calculated only in the frequency range [− fs

2 ,
fs
2 )

for complex-value signals or in the range [0, fs
2 ) for real-value signals—due to

its conjugate symmetry (4.23).

In program 4.2 the Matlab code of the DtFT algorithm is presented. It will be
used as a frequency detective for performing some initial experiments, recognition
of DtFT features, and validation of the presented above mathematical material. We
will start from the DtFT analysis of a pure cosine fragment cut by exemplary win-
dow: rectangular, Hanning, or Chebyshev. Do Exercise 4.2. Look at plots shown in
Fig. 4.2, presenting DtFT spectra being solutions/results of the consecutive exercise
tasks.

Listing 4.2: Matlab program for DtFT calculation
�

1 % lab04_ex_dft_dtft_analysis.m
2 clear all; close all;
3

4 N = 100; % number of samples: 100 --> 1000
5 fs = 1000; dt=1/fs; t=dt*(0:N-1); % sampling ratio
6 df = 10; % sampling step in DtFT: 10 --> 1
7 fmax = 2.5*fs; % sampling range in DtFT: 2.5 --> 0.5
8 fx1 = 100; % frequency of signal component 1
9 fx2 = 250; Ax2 =0.001; % frequency and amplitude of signal component 2

10 % 250 --> 110, 0.001 --> 0.00001
11 % Signal
12 x1 = cos(2*pi*fx1*t); % first component
13 x2 = Ax2*cos(2*pi*fx2*t); % 250Hz --> 110Hz, 0.001 --> 0.00001
14 x = x1; % + x2; % x1, x1+x2, 20*log10(0.00001)=-100 dB
15 figure; stem(x); title(’x(n)’); pause % analyzed signal
16
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17 % Windowing
18 w1 = boxcar(N)’; % rectangularwindow
19 w2 = hanning(N)’; % Hanning window
20 w3 = chebwin(N,140)’; % Chebyshev window, 80, 100, 120, 140
21 w = w1; % w1 --> w2, w3 (80, 100, 120, 140)
22 figure; stem(w); title(’w(n)’); pause % window
23 x = x .* w; % x = x, w, x.*w
24 figure; stem(x); title(’xw(n)’); pause % windowed signal
25

26 % DFT - later in this chapter (red circles)
27 % k=0:N-1; n=0:N-1; F = exp(-j*2*pi*(k’*n)); X = (1/N)*F*x;
28 f0 = fs/N; f1 = f0*(0:N-1); % DFT freq step = f0 = 1/(N*dt)
29 for k = 1:N
30 X1(k) = sum( x .* exp(-j*2*pi/N* (k-1) *(0:N-1) ) )/ N;
31 % X1(k) = sum( x .* exp(-j*2*pi/N* (f1(k)/fs) *(0:N-1) ) )/ N;
32 end
33 %X1 = N*X1/sum(w); % scaling for any window
34

35 % DtFT - alreadydiscussed (blue line)
36 f2 = -fmax : df : fmax; % df = 10 --> 1; first this freq. range
37 for k = 1 : length(f2)
38 X2(k) = sum( x .* exp(-j*2*pi* (f2(k)/fs) *( 0:N-1) ) ) / N;
39 end
40 %X2 = N*X2/sum(w); % scaling for any window
41

42 % Figures
43 figure; plot(f1,abs(X1),’ro’,f2,abs(X2),’b-’);
44 xlabel(’f (Hz)’); grid; pause
45 figure; plot(f1,20*log10(abs(X1)),’ro’,f2,20*log10(abs(X2)),’b-’);
46 xlabel(’f (Hz)’); grid; pause

��

Exercise 4.2 (DtFT of a Cosine with Rectangular Window). Use pro-
gram 4.2 for computing DtFT spectrum of a simple cosine signal. Choose
fx1 = 100 Hz as a signal frequency and fs = 1000 Hz as sampling frequency.
Generate N = 100 signal samples. Choose x=x1.

1. Analyze the signal using DtFT in the frequency range
[− fmax, . . . , fmax], fmax = 2.5 fs with the frequency step d f = 10 Hz,
equal to DFT step f0 = fs

N . We are expecting two sharp peaks at fre-
quencies f = −100 Hz and f = 100 Hz since, due to Eq. (4.5), after
discretization our signal has the form:

cos

(
2π

fx1

fs
n

)
=

e j2π fx1
fs

n + e− j2π fx1
fs

n

2
. (4.24)

Why we see only two peaks in DFT and much more peaks in DtFT, pe-
riodically repeating around multiplies of the sampling frequency fs? Be-
cause DFT calculates the signal spectrum only in the range [0, fs) with the
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step f0 and we see only two components of the cosine: fx1 = 10 f0 and
fs− fx1 = fs−10 f0. In DtFT situation is different. Due to equations (4.21),
the generated reference signals of higher frequencies k fs ± fx1 have ex-
actly the same samples as for the low frequencies ± fx1 and for them the
perfect fit is valid also. Conclusion: the frequency range [−0.5 fs, . . . ,0.5 fs]
is all we need. For real-value signals, having symmetrical spectra, even
[0, . . . ,0.5 fs] is enough.

2. Now decrease the DtFT spectrum sampling 10 times, other words set
d f = 1 Hz. Wow! What happens! Take it easy: now you see repeating spec-
trum of rectangular pulse (4.8) shown in Fig. 4.2, at present its absolute
value is calculated. But why I did not see it before?! Since the rectangular
pulse spectrum is oscillatory, it is crossing through zero and we before, by
chance, took only samples at those zeros and at spectral peaks. But why
the spectrum of rectangular pulse is present in the spectrum of the cosine?
Where the rectangular pulse is hidden in math equations? We analyze not
the WHOLE cosine but its N-samples long FRAGMENT, cut by the rect-
angular pulse. Therefore two analog time-infinite signals are multiplied:
cosine and rectangular pulse, and the resultant spectrum is equal to convo-
lution of their individual spectra (see multiplication feature in Table 4.2 and
Eq. (4.13)). For this reason we see spectrum of the rectangular pulse in the
position of cosine spectral peaks. We can also apply in this case the cosine
modulation feature from the same table: multiplying any signal w(n) by
cosine with frequency fx1 shifts the signal spectrum to cosine frequencies:
fx1 and − fx1 and scale them by 1/2. In discrete-time case:

W

(
f
fs

)
=

+∞

∑
n=−∞

[
w(n)cos

(
2π

fx1

fs
t

)]
e− j2π f

f n =
1
2

+∞

∑
n=−∞

w(n)e− j2π ( f− fx1)
fs

n + . . .

1
2

+∞

∑
n=−∞

w(n)e− j2π ( f+ fx1)
fs

n =
1
2

W

(
f − fx1

fs

)
+

1
2

W

(
f + fx1

fs

)
. (4.25)

Because we sample the DtFT spectrum in wider frequency range then the
DFT spectrum is sampled, we have many copies of the cosine spectrum, in
consequence, we see many copies of the rectangular pulse spectrum.

3. I do not want to watch the same film many times? No problem. We are
changing frequency range of interest to [−0.5 fs, . . . ,0.5 fs] remaining the
small frequency step d f = 1 Hz of DtFT spectrum sampling. Run the pro-
gram. Are you satisfied? Yes, but if I had the second very weak signal fre-
quency component lying apart, I would not see it in the spectrum because it
would be hidden by big spectral oscillations coming from the strong signal!

4. Yes, you are right! Add a second weak cosine component to the signal:
x=x1+x2, for example, with frequency fx2 = 250 Hz and very small am-
plitude Ax2 = 0.001. Run the program. The second component is not visi-
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ble! I knew! I knew! Yes, as usual, you knew how to complaint but I know
. . . how to solve the problem.

5. Multiply the two-component signal with samples of Hanning window func-
tion x=x.*w;, i.e. exchange the rectangular window with the Hanning
window. In Matlab: w2=hanning(N); w=w2;. This function has lower
level of spectral side-lobes than the rectangular window (look at Fig. 4.2)
at the price of wider spectral main-lobe. Run the program. Now the sec-
ond frequency component is visible. But if the second component would be
very, very weak indeed, having only A2 = 0.00001 (10−5, ten micro-volts)?

6. No problem. We are choosing adjustable Chebyshev window function hav-
ing side-lobes on the level of Asl = 10−7, 20 log10(Asl) =−140 dB. In Mat-
lab: w3=chewin(N,140); w=w3. Run the program. The second com-
ponent is now seen. Wow! But now the spectral peaks are very wide! If the
second component had a frequency very close to the first one, for example,
fx2 = 110 Hz, I would not see it!

7. No problem. Let us make use of the scaling feature of the CFT given in
Table 4.2, in consequence being the feature of the DtFT also. Making the
signal longer (for a < 1) leads to its spectrum narrowing. For example,
the window 10 times longer has the DtFT/DFT spectrum 10 times more
narrow. Therefore, we will increase now the length of our signal vector 10
times, setting N = 1000. Run the program. Yes, it works. But now . . . after
the window usage, amplitudes of spectral peaks are not correct! For cosine
1/2 is expected!

8. Yes. I admire your curiosity! Now we have to change the spectrum nor-
malization. Since windows are reducing amplitude of oscillations in signal
fragment being analyzed, we should compensate this effect! We will ex-
change dividing the spectrum by N, which is correct for the rectangular
window, by sum of window samples, which is correct for any window (for
rectangular one we have N as before). In Matlab: uncomment the line: X =
N*X/sum(w); You see! Now the spectrum scaling is corrected.

9. But . . . Bang! Time is over! . . . You are the game winner. The worst thing
pupil can do is not asking questions!

4.4 Window Functions

4.4.1 Practical Summary

It turned out in the previous section how important are functions used for
cutting signal into fragments which are called windows! For signals being sum-
mations of pure tones we observe in their spectra only scaled and shifted copies



4.4 Window Functions 79

-2000 -1000 0 1000 2000
f (Hz)

0

0.2

0.4

0.6
After step 1

-2000 -1000 0 1000 2000
f (Hz)

0

0.2

0.4

0.6
After step 2

-500 0 500
f (Hz)

0

0.2

0.4

0.6
After step 3

-500 0 500
f (Hz)

-150

-100

-50

0
After step 5

-500 0 500
f (Hz)

-200

-150

-100

-50

0
After step 6

60 80 100 120 140
f (Hz)

-200

-150

-100

-50

0
After step 8

Fig. 4.4: DtFT spectra calculated for signals in consecutive steps (points) of Exer-
cise 4.2: initially for cosine 100 Hz, N = 100 samples, fs = 1000 Hz. After step 1:
spectrum of rectangular window not visible, after step 2: window spectrum is visi-
ble after decreasing frequency step d f from 10 Hz to 1 Hz, after step 3: reduction
of frequency range due to spectrum periodicity, after step 5: addition of the second
signal component with frequency 250 Hz and amplitude 0.001 and using Hanning
window, after step 6: changing amplitude of the second component to 0.00001 and
using Chebyshev window with side-lobes level of −140 dB, after step 8: chang-
ing second component frequency to 110 Hz and increasing number of samples to
N = 1000, additionally improving spectrum scaling

of windows spectra (Fig. 4.4). Therefore one should choose windows very care-
fully: they should help us in spectral analysis, do not create troubles. The good
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window should have both: very narrow spectral main-lobe (similar to rectangu-
lar window) and a very big attenuation of the spectral side-lobes (in contrary to
the rectangular window). The narrow spectral main-lobe allows to distinguish in
the spectrum signal components having similar frequency values, while highly
attenuated spectral side-lobes of the window spectrum makes possible to see in
the spectrum, both, very strong and very weak components (with very large and
very small amplitudes).

Window tailoring is a great DSP art! There are many window functions
with precisely specified, fixed shapes: rectangular, triangular (Bartlett), Ham-
ming, Hanning, Blackman, Blackman–Harris, and many others. There are also
flexible windows with adjustable shapes: Chebyshev and Kaiser windows are
the most popular among them. The latter allows to change the shape of the
window and its spectrum in a controlled way and make a compromise between
frequency spectrum resolution (width of the window main-lobe) and amplitude
spectrum resolution (attenuation of the side-lobes). A special type of windows,
flat-top ones, is designed to have a very flat main-lobe peak at the cost of in-
creasing its width. Such windows allow very precise amplitude measurements
of many signal components (for example, of power voltage supply harmonics)
but they require their significant separation in frequency.

In this chapter the DtFT spectrum of the rectangular window is derived
and it is shown how a big family of cosine-based windows is designed (Ham-
ming, Hanning, Blackman, etc.), summarized in Table 4.3. Design equations of
Chebyshev and Kaiser windows are presented also with an explanation of their
usage. In Fig. 4.5 different window shapes (up) and their DtFT spectra (down)
are compared. Easy riders can skip the mathematical part, which follows, and
go directly to Exercise 4.3 using program from Listing 4.3.

4.4.2 Mathematical Description

Rectangular Window Let us start with the rectangular window.

wR(n) =

{
1, n = 0, 1, 2, . . . , N −1,
0, other n.

(4.26)

After introduction of a new variable—angular frequency:

Ω = 2π f/ fs, (4.27)

and putting Eq. (4.26) into the DtFT definition (4.19), we obtain

WR(Ω) =
∞

∑
n=−∞

wR(n)e
− jΩn =

N−1

∑
n=0

wR(n)e
− jΩn =

N−1

∑
n=0

1 · e− jΩn. (4.28)



4.4 Window Functions 81

After multiplying both sides of Eq. (4.28) by e− jΩ and rewriting the equation we
have

e− jΩWR(Ω) =
N

∑
n=1

e− jΩn =
N−1

∑
n=0

e− jΩn + e− jΩN − e− jΩ0 =WR(Ω)+ e− jΩN −1.

(4.29)
Now we can calculate the value of WR(Ω):

WR(Ω) · (1− e− jΩ ) = 1− e− jΩN (4.30)

WR (Ω) =
1− e− jΩN

1− e− jΩ =
e− jΩN/2

(
e jΩN/2 − e− jΩN/2

)
e− jΩ/2

(
e jΩ/2 − e− jΩ/2

) = . . .

= e− jΩ(N−1)/2 sin(ΩN/2)
sin(Ω/2)

. (4.31)

In a similar way it can be derived that DtFT spectrum of the odd-length rectangu-
lar window wRS(n),n = −M, . . . ,−1,0,1, . . . ,M, N = 2M + 1, symmetrical around
n = 0, is equal to:

WRS(Ω) =
sin(Ω(2M+1)/2)

sin(Ω/2)
. (4.32)

Since wRS(n) is obtained by shifting wR(n) M samples left, e.g. wR(n+M), therefore
WRS(Ω) is equal to WR(Ω) multiplied by e jΩM . Of course, absolute values of both
spectra are the same: |WR(Ω)|= |WRS(Ω)|. A main spectral lobe of the rectangular
window (i.e. distance between first zero-crossings on both sides around Ω = 0) is
equal to 4π/N, since from Eq. (4.31) we have (first zeros of the sin() function)

Ω1N/2 = π ⇒ Ω1 = 2π/N

Ω2N/2 =−π ⇒ Ω2 =−2π/N

ΔΩR = Ω1 −Ω2 = 4π/N.

In practice we analyze not infinite signals but their shorter or longer fragments.
Some special functions are used for cutting long signal into fragments. They are
called “window” functions because we are looking at signals “through” them. The
window functions are extremely important in signal theory, especially in spectral
analysis and filter design.

Cosine Windows In the beginning we ask fundamental question: what window
functions are used and what are their spectra? A big family of so-called cosine-
type windows is obtained by multiplication of N samples long rectangular window
by sum of K cosines with different angular frequencies (Ωk) and amplitudes (Ak)
(n =−∞, . . . ,−1,0, 1, . . . , +∞):



82 4 Discrete Fourier Transforms: DtFT and DFT

w(n) = wR(n)
K

∑
k=0

Ak cos(Ωkn) = wR(n)
K

∑
k=0

Ak

(
1
2

e jΩk +
1
2

e− jΩk

)
, Ωk =

2πk
N −1

.

(4.33)

The DtFT (4.19) of (4.33) is equal to:

W (Ω) =
K

∑
k=0

Ak

2

(
+∞

∑
n=−∞

wR(n) · e− j(Ω−Ωk) +
+∞

∑
n=−∞

wR(n) · e− j(Ω+Ωk)

)
=

K

∑
k=0

Ak

2
(WR(Ω −Ωk)+WR(Ω +Ωk)) (4.34)

due to transformation linearity: spectrum of sum of signals is equal to sum of their
individual spectra. Since the window spectrum (4.34) is a sum of scaled (by Ak) and
shifted (Ωk = 2πk/(N − 1)) spectra of the rectangular window (4.31), (4.32), such
weights (Ak) are chosen which minimizes side-lobe oscillations in final spectrum
W (Ω). Definitions and spectral parameters of the most popular cosine windows are
given in Table 4.3.

Table 4.3: Definitions and parameters of the most popular non-parametric digi-
tal window functions. Denotations: Δml—width of the main-lobe of the spectrum
around Ω = 0 (rad/s), Asl—relative attenuation of the highest side-lobe in relation
to W (0)

Window name, Matlab function Definition w(n),n = 0,1,2, . . . ,N −1 Δml Asl

Rectangular, w=boxcar() 1 4π
N 13.3 dB

Triangular, bartlett() 1− 2|n−(N−1)/2|
N−1

8π
N 26.5 dB

Hanning (Hann), hanning() 1
2

(
1− cos

(
2πn
N−1

))
8π
N 31.5 dB

Hamming, hamming() 0.54−0.46cos
(

2πn
N−1

)
8π
N 42.7 dB

Blackman, blackman() 0.42−0.50cos
(

2πn
N−1

)
+0.08cos

(
4πn
N−1

)
12π
N 58.1 dB

Window spectral features are characterized by the shape of its DtFT spectrum.
The best window should have a very narrow peak around frequency 0 Hz (the so-
called main-lobe) and highly attenuated spectral side-peaks, lying elsewhere (the
so-called side-lobes). The first feature is measured by Δml (width of the main-lobe),
the second by Asl (attenuation of the highest spectral side-lobe). It is impossible to
fulfill both criteria at the same time. The rectangular window has the sharpest main-
lobe but, unfortunately, a very high level of spectral side-lobes. Different designers
of other windows have tried to increase the side-lobes attenuation at the price of
making the spectral main-lobe wider, but as least as possible. In Table 4.3 a few
window functions are defined and values of their Δml and Asl are given. We see
that the more cosine terms the window has, the larger its width Δml is (multiplicity
of 4π/N—the size of the rectangular window is shifted K times) and the bigger
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Fig. 4.5: Exemplary shapes (up) and their DtFT spectra (down) for the following
windows (they are becoming more peaky in the upper plot): rectangular, Hamming,
Hanning, Blackman, Kaiser with β = 12 and Chebyshev −120 dB. Windows are
ordered from the lowest to the highest attenuation of spectral side-lobes (oscillatory
ripples observed in window spectrum) obtained at the cost of widening the spectral
main-lobe (spectral peak around 0 Hz)

attenuation Asl is. Exemplary shapes of windows (up) and their DtFT spectra (down)
are presented in Fig. 4.5. Since window functions are real-value ones their spectra
are always symmetrical around Ω = 0.

Special Adjustable Windows Apart from mentioned above fixed-shape
non-parametric windows having fixed spectral features there are two very impor-
tant parametric windows which can change their shape and spectral characteristics.
The first one is the Dolph–Chebyshev window defined as follows (N = 2M+1):

wDC [m+(M+1)] =C

[
1
γ
+2

M

∑
k=1

TN−1

(
β cos

πk
N

)
cos

2πkm
N

]
, −M ≤ m ≤ M,

(4.35)
where γ denotes the required relative height of maximum spectrum side-lode in
relation to the height of the spectrum main-lobe (e.g. γ = 0,01 or 0,001, which
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corresponds to relative attenuation of the side-lobe Asl = 20log10(γ) = 40 dB or
60 dB) and parameter β , depending on γ , is given by

β = cosh

(
1

N −1
cosh−1 1

γ

)
= cosh

(
1

N −1
cosh−1(10Asl/20)

)
. (4.36)

TN−1(x) is Chebyshev polynomial of the (N −1)-th order:

TN(x) =

{
cos
(
(N −1)cos−1x

)
, |x| ≤ 1

cosh
(
(N −1)cosh−1x

)
, |x|> 1.

(4.37)

The Kaiser window, for N even or odd, is defined by formula:

wK(n) =

I0

(
β
√

1−
(

n−(N−1)/2
(N−1)/2

)2
)

I0 (β )
, 0 ≤ n ≤ N −1, (4.38)

where I0(β ) denotes Bessel function of the 0-th order:

I0 (x) = 1+
∞

∑
k=1

[
(x/2)k

k!

]2

. (4.39)

In literature one can find equations connecting required values of Δml and Asl with
values of Kaiser window parameters β and N:

β =

⎧⎨
⎩

0 Asl < 13.26 dB
0.76609(Asl −13.26)0.4 +0,09834(Asl −13.26) , 13.26 < Asl < 60 dB
0.12438(Asl +6.3) 60 < Asl < 120 dB

(4.40)

N = �K� , K =
24π(Asl +12)

155 ·Δml
+1, (4.41)

where �K� denotes the smallest integer value equal to or greater than K. In Matlab
we have functions kaiser() and chebwin().

4.4.3 Application Example

Exercise 4.3 (DtFT of Different Windows). First, choose any window and cal-
culate its DtFT spectra for different lengths, for example, N = 50, 100, 200, 500,
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1000, 2000. Plot all spectra in decibels in one figure. What is your conclusion?
Next, calculate the DtFT spectra for Kaiser window for the value of β chang-
ing from 0 to 14 with step 2. Plot all spectra in decibels in one figure. What
is your conclusion? Finally, repeat Exercise 4.2 using in it the Chebyshev win-
dow. Change the signal length as well as frequencies and amplitudes of its two
components. Try to obtain a compromise between the Δml and Asl .

Listing 4.3: DtFT spectra of different windows
�

1 % lab04_ex_windows.m
2 % DtFT of windows, window importance in frequencyanalysis
3

4 clear all; close all;
5

6 M = 100; % one-side number of window samples
7 N = 2*M+1; % all samples
8 n = -M : M; % sample indexes
9 text={’Rect’,’Triang’,’Hamm’,’Hann’,’Black’,’Kaiser’,’Cheb’}

10

11 % Window functions, i.e. "windows" in columns of matrix W
12 w(:,1) = boxcar(N); w(:,2) = bartlett(N);
13 w(:,3) = hamming(N); w(:,4) = hanning(N);
14 w(:,5) = blackman(N); w(:,6) = kaiser(N,10);
15 w(:,7) = chebwin(N,120);
16 [ N, Nw] = size(w); % N window length, Nw number of windows
17

18 figure
19 plot(n,real(w)); xlabel(’n’); title(’Windows w(n)’); grid;
20 axis([-(M+10) M+10-0.1 1.1]); legend(text); pause
21

22 % Normalizationrequired for correctinterpretation of amplitudespectrum
23 w = w ./ repmat(sum(w),N,1); % normalization (in column) to sum(w)=1
24

25 % DtFT of windows
26 f =-1/10 : (1/N)/20 : 1/10; % normalized freq ( f/fs )
27 for k = 1:length(f)
28 bk(1:N) = exp( -j*2*pi*f(k)*n ); % reference Fourierharmonics
29 W(k,1:Nw) = bk(1:N) * w(1:N,1:Nw); % DtFT coeffs for all windows (in cols)
30 end
31 figure
32 subplot(211); plot(f,real(W)); title(’Real(DtFT)’); grid;
33 subplot(212); plot(f,imag(W)); title(’Imag(DtFT)’); xlabel(’f [Hz]’); grid; pause
34 figure
35 subplot(211); plot(f,abs(W)); title(’Abs(DtFT)’); grid;
36 subplot(212); plot(f,angle(W)); title(’Angle(DtFT)’); xlabel(’f [Hz]’); grid; pause
37 figure
38 subplot(111); plot(f,20*log10(abs(W))); xlabel(’f [Hz]’); title(’|W(f|’);
39 grid; axis([min(f) max(f)-160 20]);
40 legend(text); pause
41
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42 % Windowed signal
43 x = 2*cos(2*pi*1/20*n); % signal
44 x = w .* repmat(x’,1,Nw); % its multiplication with many different windows
45 for k = 1:length(f)
46 bk = exp( -j*2*pi*f(k)*n );
47 X(k,:) = bk * x;
48 end
49 figure
50 subplot(111); plot(f,20*log10(abs(X))); xlabel(’f [Hz]’); title(’|X(f|’);
51 grid; axis([min(f) max(f)-160 20]);
52 legend(text)
53

54 % Repeat the program for different values of N: 50, 100, 200, 500
��

Windows Application Summary The window spectrum should have narrow “main-
lobe” to allow seeing in it two separate peaks for frequencies Ωk and Ωl , which can
lie very close to each other. Otherwise, we might observe one broad peak instead of
two narrow ones because of their fusion.

The window spectrum should also have high attenuation of side-lobes in the situ-
ation when amplitudes Ak and Al of two cosine components differ a lot and spectral
peak of the weaker component could be lost/missed in high spectral side-lobes (in
the grass) of the stronger component.

4.5 Discrete Fourier Transform

DFT represents discretization result of the Fourier series (4.15) which is defined
in analog world for periodic signals (fundamental frequency f0 = 1/T , T —period,
T = N ·Δ t, t = n ·Δ t):

Xk =
1
T

T∫
0

x(t)e− j2π(k f0)tdt ≈ 1
N ·Δ t

N−1

∑
n=0

x(n ·Δ t)e− j2π(k 1
N·Δ t )(n·Δ t)Δ t = . . .

=
1
N

N−1

∑
n=0

x(n)e− j 2π
N kn, fk = k · f0 = k

fs

N
, k = 0,1,2 . . . ,N −1. (4.42)

Equation (4.42) and its inverse can be written in matrix form as orthogonal transfor-
mation pair:

Analysis : X̄ =
1
N

F · x̄, (4.43)

Synthesis : x̄ = FH · X̄ = (F∗)T · X̄, (4.44)
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well-known for us from Chap. 2. The transformation matrix F is defined as, for
example, also for N = 4:

FN =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

1 e− j 2π
N 1·1 · · · e− j 2π

N 1·(N−1)

...
...

. . .
...

1 e− j 2π
N (N−1)·1 · · · e− j 2π

N (N−1)·(N−1)

⎤
⎥⎥⎥⎥⎦ , F4 =

⎡
⎢⎢⎢⎣

1 1 1 1

1 e− j 2π
4 1·1 e− j 2π

4 1·2 e− j 2π
4 1·3

1 e− j 2π
4 2·1 e− j 2π

4 2·2 e− j 2π
4 2·3

1 e− j 2π
4 3·1 e− j 2π

4 3·2 e− j 2π
4 3·3

⎤
⎥⎥⎥⎦ ,

(4.45)

so it has in its rows conjugated orthogonal harmonic vectors, with different scal-
ing than in Eq. (4.1). In non-vector form and with changed normalization, equa-
tions (4.43) and (4.44) have the following form:

Analysis : X(k) =
1
N

N

∑
n=1

x(n)e− j 2π
N kn, k = 0, 1, 2, . . . ,N −1, (4.46)

Synthesis : x(n) =
N

∑
k=1

X(k)e j 2π
N kn, n = 0, 1, 2, . . . ,N −1. (4.47)

In Eq. (4.46) the signal is compared (correlated) with conjugation of harmonic
Fourier basis function, while in Eq. (4.47) it is represented as a sum of basic func-
tions scaled by spectral (“similarity”) coefficients X(k), calculated in Eq. (4.46).

First, the main student problem, after calculation of the signal DFT spectrum
using Eq. (4.46), is how to connect calculated spectral coefficients Xk with real-
world frequencies when the frequency is missing in these equations! But we know
how long the signals are (N samples) and which is the sampling frequency ( fs), so
as a result we know also the time duration of signals: T = N ·Δ t = N/ fs. In first row
(k = 0) of matrix F we have only ones, in the second (k = 1)—one period of cos() in
real part and one period of -sin() in imaginary part, in the third (k = 2)—two periods,
later three, four, five, . . . , N − 1 periods. Therefore, since we know T , we should
deduce that X0 is a mean value of the signal, spectral coefficient X1 corresponds to
frequency 1 · f0 = 1/T , X2—to 2 · f0, X3—to 3 · f0, and so on. This sounds reasonable
since in Fourier series coefficients are also calculated for frequencies k · f0.

That is it! Now a reader should do some computer experiments and . . . find visu-
ally with surprise conjugate symmetry of the DFT spectrum: Xk,k = 0,1,2, . . . ,N −
1. Yes, indeed, the spectrum of our speech has such symmetry! This is typically
the second student surprise! We analyze, for example, a real-value signal having
only one frequency component but in the spectrum we see two peaks: one in its
first half and one in the second half. This phenomena results from the fact that for
k = 1,2,3 . . . ,N −1 the following relations hold:
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XN−k = Xk
∗ ⇒ real(XN−k) = real(Xk), imag(XN−k) =− imag(Xk) (4.48)

Additionally the DFT spectrum always has zeros in imaginary part for k = 0 and
k = N/2:

imag(X0) = imag(XN/2) = 0. (4.49)

Why the DFT spectrum has conjugate symmetry? What is the sense of computing
something twice? The first answer is that conjugated Fourier harmonics which are
used for signal decomposition in Eq. (4.46) are the same for k and N − k, only
conjugated. For the k-th harmonic we have

e− j 2π
N kn, n = 0,1,2, . . . ,N −1, (4.50)

while for the (N − k)-th:

e− j 2π
N (N−k)n = e− j2πn · e+ j 2π

N kn = e+ j 2π
N kn. (4.51)

Therefore the calculated DFT coefficients have also the same values, only complex-
conjugated:

X(k) =
1
N

N

∑
n=1

x(n)cos

(
2π
N

kn

)
− j

1
N

N

∑
n=1

x(n)sin

(
2π
N

kn

)
= a− jb (4.52)

X(N − k) =
1
N

N

∑
n=1

x(n)cos

(
2π
N

kn

)
+ j

1
N

N

∑
n=1

x(n)sin

(
2π
N

kn

)
= a+ jb. (4.53)

The second explanation of the spectrum (a)symmetry phenomena is that real-
value cosine and sine functions can be expressed as a summation of two Fourier
harmonics used for signal decomposition:

cos

(
2π
N

kn

)
=

e j 2π
N kn + e− j 2π

N (N−k)n

2
, (4.54)

sin

(
2π
N

kn

)
=

e j 2π
N kn − e− j 2π

N (N−k)n

2 j
, (4.55)

therefore, since the DFT transform is linear, when analyzing real-value signals we
have two symmetrical peaks in the DFT spectrum with complex-conjugated values.

Exercise 4.4 (DFT of a Cosine with Rectangular Window). Make use of the
Matlab program 4.2 in which the DFT algorithm is also implemented. In figures
generated by the program, the DFT spectra are marked with red circles and
compared with the DtFT spectra, denoted by blue solid line. In the beginning,
try to obtain the same plots as presented in Fig. 4.6. Set the following values of
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program parameters: sampling ratio fs = 1000 Hz, number of signal samples
N = 50, only component x1, in the beginning with frequency 100 Hz, than
with 110 Hz. Check validity of the DFT spectrum (a)symmetry (Eq. (4.48)).
Next, apply different windows to the signal. Again check the DFT spectrum
(a)symmetry.

-500 -100 0 100 500 1000
f (Hz)

0

0.2

0.4

0.6
After step 3

-500 -110 0 110 500 1000
f (Hz)

0

0.2

0.4

0.6
After step 3

Fig. 4.6: DtFT and DFT spectra of two cosines, blue line and red dots, respectively:
(up) signal with f0 = 100 Hz: perfect DFT match to the cosine frequency, (down)
signal with f0 = 110 Hz: the worst DFT match to the cosine frequency. Values
of parameters: sampling frequency fs = 1000 Hz, N = 50 samples, DFT spectrum
discretization step Δ f = f0 = fs/N = 20 Hz. Observe symmetry of the DFT spec-
trum marked with red circles. Notice the different shapes of correct DtFT spectrum
marked with blue solid line (two shifted spectra of the rectangular window)
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4.6 Summary

Signal processing consists of two fundamental branches: frequency analysis
and signal filtering (noise reduction and rejections of some signal components).
This chapter has been focused on fundamentals of frequency analysis by means
of Fourier transform—it has a crucial significance in our DSP course. You
should understand everything in it. If you do not, I am very sorry, read this
chapter again and again . . . before the examination. Yes, you can. Personally,
some papers I was reading repeatedly even 10 years. With final success. What
should be remembered?

1. Most frequency analysis methods are very similar: one compares a signal
with reference frequency components (oscillations) multiplying it with the
references and accumulating single products. This is valid in analog and
digital world, done by Fourier integrals and summations.

2. DtFT is a discretized continuous Fourier transform and DFT is a result
of the discretization of Fourier series. In computer implementation both
transforms are very similar: they use the same signal samples and treat them
in almost the same manner. The only difference is that in N-sample DFT the
signal spectrum is computed for precisely specified set of N frequencies:
fk = k · f0,k = 0,1,2, . . . ,(N − 1), where f0 = 1/T is the inverse of the
analyzed signal duration. In DtFT the choice of frequencies is completely
free. For real-value signals we are typically choosing frequency values in
the range [0, fs/2). The DtFT offers better visualization of the theoretical
signal spectrum due to its possible more dense sampling.

3. The DtFT is more application flexible but the DFT is faster due to the ex-
istence of very fast DFT implementations (FFT algorithms are presented
in the next chapter). DtFT calculation can be speed up by using fast im-
plementations of the chirp-Z transform (usage of three FFTs, not discussed
here)—never the less the method is slower than the DFT.

4. One should always remember that in practice frequency analysis is per-
formed upon a signal fragment, not on the whole signal. What is the conse-
quence of this fact? That a fragment cutting operation has a very big influ-
ence on the final result! Simply taking signal samples from–to means that
we are multiplying a signal with an observation window function having a
value equal to “1” from–to and “0” elsewhere.

5. If two signals are multiplied, the Fourier spectra are convoluted. Due to this,
the signal windowing performed during signal fragment cutting causes that
the theoretical spectrum of the time-infinite signal is convoluted with the
window spectrum modifying it. Therefore, one should choose very care-
fully the window function during spectral analysis.

6. Increasing K-times the length of the analyzed signal, one improves K-times
the DFT frequency resolution, no matter what the window function is used.
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As a consequence, signal components having near frequencies are better
distinguished.

7. Using windows with a low level of spectral side-lobes, one improves am-
plitude resolution of the spectrum by the cost of decreasing its frequency
resolution. But the frequency resolution can be always improved by signal
enlargement.

8. There are many window functions. The best should offer the most nar-
row spectral main-lobe (good frequency resolution) and the lowest level
of spectral side-lobes (good amplitude resolution). In practice, Kaiser and
Chebyshev windows are very often used due to their adjustable shapes and
changeable spectral features.

4.7 Private Investigations: Free-Style Bungee Jumps

Exercise 4.5 (Am I An Enrico Caruso? Finding Frequency of Vocal Cords Os-
cillation). Use DtFT and DFT detectives for finding the frequency of your vocal
cords opening and closing for different vowels.

Exercise 4.6 (In the Wonderful World of Sounds). From the Internet web page
FindSounds (https://www.findsounds.com/) take 2–3 signals of different origin and
use DtFT and DFT for finding their frequency content. Scale frequency axis in hertz.
Overlay two spectra in one plot.

Exercise 4.7 (Did You Break My Heart? What Is the Frequency of My Heart-
beat?). Take from the Internet an ECG heart activity signal, e.g. from the page
https://archive.physionet.org/cgi-bin/atm/ATM. Calculate the frequency of the heart-
beat using DtFT and DFT.

Exercise 4.8 (Steel Factory Secrets). Analyze signals of supply voltages and cur-
rents recorded for operating arc furnace. Take them from the file load(’UI.mat’);
whos, given at the book web page. Do spectral DtFT analysis for interesting parts
of the spectra. Estimate frequencies and amplitudes of fundamental frequency 50
Hz (close to 50) and its harmonics 100, 150, 200, 250, . . . Hz.

Exercise 4.9 (Clear Water, Clear Power Supply). Please, analyze recorded power
supply voltage signal tu.dat which is used for testing algorithms for monitoring
electric power quality (https://grouper.ieee.org/groups/1159/). First, extract time and
voltage values from matrix columns:
load(’tu.dat’); t=tu(:,1); u=tu(:,2); plot(t,u);).
Then, estimate frequencies and amplitudes of fundamental frequency 50 Hz (close
to 50) and its harmonics, if they are present.

Exercise 4.10 (Mysteries of NMR Laboratory). Do frequency analysis of pseudo-
NMR signal synthesized in first additional exercise after Chap. 2.

https://www.findsounds.com/
https://archive.physionet.org/cgi-bin/atm/ATM
https://grouper.ieee.org/groups/1159/
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Chapter 5
Fast Fourier Transform

Salute! Your Majesty Fast Fourier Transform - the DSP King
(Kong)!

5.1 Introduction

Discrete Fourier transform (DFT) is the orthogonal transform defined in pre-
vious chapter by Eqs. (4.46), (4.47) in which reference oscillatory signals are
complex-value Fourier harmonics. The forward DFT (transforming signal sam-
ples x(n) to spectral coefficients X(k)) and the inverse DFT (transforming back
spectral coefficients to signal samples) are defined with very similar equations
being different only in the sign of the exponent and 1

N scaling of the first sum:

X(k) =
1
N

N−1

∑
n=0

x(n)e− j(2π/N)kn, x(n) =
N−1

∑
n=0

X(k)e+ j(2π/N)kn, k,n = 0,1, . . . ,N −1.

(5.1)

Therefore fast algorithms, designed for the forward DFT, can be used also
for the inverse DFT (IDFT) after change of the exponent sign and the overall
scaling.

Warning! It is important to note that scaling by 1
N is done inside Matlab

function x=ifft(X) of the second IDFT equation, not in the first DFT one
X=fft(x). We prefer putting scaling in the first of them since this is cor-
rect when DFT is derived from Fourier series—see Eq. (4.42). For such scal-
ing, mathematically correct values of spectral coefficients are obtained. In this
chapter the scale factor 1

N is completely neglected in order to unify algorithms
for DFT and IDFT calculation.
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Both algorithms, of DFT and IDFT, can be written using matrix notation typ-
ical for all orthogonal transforms (see previous chapter): the transform matrix
with dimensions N ×N, having in rows sampled conjugated reference oscilla-
tory basis functions, is multiplied by a vertical vector of signal samples. There-
fore the DFT computation requires calculations of N2 complex-value multipli-
cations and N · (N − 1) complex-value additions. As an example we will cal-
culate DFT coefficients, without 1

N scaling, for signal x(n) = [1,2,3,4] having
N = 4 samples:

X(0) =
4−1

∑
n=0

x(n)e− j(2π/4)0n = x(0)+ x(1)+ x(2)+ x(3) = 10,

X(1) =
3

∑
n=0

x(n)e− j(2π/4)1n = x(0)e0 + x(1)e− j(2π/4) + x(2)e− j(2π/4)2

+ x(3)e− j(2π/4)3 = 1− j2−3+ j4 = -2+j2,

X(2) =
3

∑
n=0

x(n)e− j(2π/4)2n = x(0)e0 + x(1)e− j(2π/4)2 + x(2)e− j(2π/4)2·2

+ x(3)e− j(2π/4)2·3 = 1−2+3−4 = -2,

X(3) =
3

∑
n=0

x(n)e− j(2π/4)3n = x(0)e0 + x(1)e− j(2π/4)3 + x(2)e− j(2π/4)3·2

+ x(3)e− j(2π/4)3·3 = 1+ j2−3− j4 = -2+j2.

The resultant DFT spectrum is equal to X(k) = [10,−2+ j2,−2,−2− j2].
The first value, equal to 10, is the sum of signal samples, the following ones
are coefficients measuring the analyzed signal similarity to complex-value sig-
nals with reference frequencies (their real part specifies similarity to the cosine,
while imaginary part to the sine). Let us write the same calculations in matrix
form:

⎡
⎢⎢⎣

X(0)
X(1)
X(2)
X(3)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

10
-2+j2

-2
-2-j2

⎤
⎥⎥⎦ .

Fast DFT calculation algorithms make use of the observation that values
in the transformation matrix are repeating (since sin() and cos() functions are
periodic) and they are multiplied many times by the same signal samples. Such
situations are identified and removed: multiplications are done only once and
their results used a few times. For example, let us see how the fast algorithm
works in the discussed case of N = 4 DFT:
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⎡
⎢⎢⎣

X(0)
X(1)
X(2)
X(3)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦= (5.2)

=

⎡
⎢⎢⎣

1 1
1 −1
1 1
1 −1

⎤
⎥⎥⎦
[

x(0)
x(2)

]
+

⎡
⎢⎢⎣

1 1
− j j
−1 −1

j − j

⎤
⎥⎥⎦
[

x(1)
x(3)

]
= (5.3)

=

⎡
⎢⎢⎣

1 1
1 −1
1 1
1 −1

⎤
⎥⎥⎦
[

x(0)
x(2)

]
+

⎡
⎢⎢⎣

1
− j
−1

j

⎤
⎥⎥⎦ .∗

⎡
⎢⎢⎣

1 1
1 −1
1 1
1 −1

⎤
⎥⎥⎦
[

x(1)
x(3)

]
= (5.4)

=

⎡
⎢⎢⎣

1 1
1 −1

⎤
⎥⎥⎦
[

1
3

]
+

⎡
⎢⎢⎣

1
− j
−1

j

⎤
⎥⎥⎦ .∗

⎡
⎢⎢⎣

1 1
1 −1

⎤
⎥⎥⎦
[

2
4

]
= (5.5)

=

⎡
⎢⎢⎣

4
−2

4
−2

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
− j
−1

j

⎤
⎥⎥⎦ .∗

⎡
⎢⎢⎣

6
−2

6
−2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

10
-2+2j

-2
-2+2j

⎤
⎥⎥⎦ (5.6)

First, Eq. (5.3)—the signal samples are grouped into even- and odd-indexed
ones and the 4×4 transformation matrix is replaced by two sub-matrices 4×2.
Additionally, Eq. (5.4)—odd-indexed signal samples multiplication by the sec-
ond sub-matrix is re-organized: first multiplication is done by the simplified
matrix, then the obtained result is corrected: each calculated value is multiplied
by different correction term. .∗ in Eq. (5.4) denotes, as in Matlab, multiplica-
tion of corresponding values of two vectors or matrices, first-by-first, second-
by-second, . . . and so on. Now we see that lower 2× 2 matrices are the same
as the upper ones (marked with bold font and blue color). Therefore it is suffi-
cient to multiply signal samples by upper 2×2 matrices only (bold/blue ones),
then copy the result and put it down. For this reason in Eq. (5.5) elements of
lower matrices are missing and in Eq. (5.6) two calculated values (bold/blue)
in the upper part are copied down and marked in red! Finally, the same result is
obtained as in Eq. (5.1) but faster. In the original algorithm we do 42 =16 mul-
tiplication. In the fast version: 2 ·22 = 8 plus 4 multiplications with corrections,
all together 12 operations.

This savings does not seem to be significant. However when the signal vec-
tor is long, for example, has N = 1024 samples, and the data partition into
even- and odd-indexed signal samples is repeated many times, to the moment
of obtaining vectors having two samples only, the savings are really impressive:
about 200 TIMES FASTER (in general not N ·N multiplications are performed
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but only N
2 log2(N)). It is like to drive a car with speed 200 kilometers per hour

instead of 1 kilometer per hour only. Or like pay only 1 euro/dollar instead of
200 euro/dollars. Who would like to move as a turtle? Or overpay. Do you not
want?

Let us now look to the heart of the radix-2 FFT algorithm. After recursive
multi-level partition of signal samples into even- and odd-indexed ones, two-
element vectors are obtained and N

2 2-point DFTs are performed upon them.
Then: (1) 2-point DFT spectra are combined into 4-point ones, (2) 4-point DFT
spectra into 8-point DFT spectra, (3) 8-point to 16-point, and so on, up to the
reconstruction of the DFT spectrum of the whole signal.

So, . . . , the text of this chapter is yours.

5.2 Radix-2 FFT Algorithm

Fast Fourier Transform (FFT) is a fast algorithm for computation of discrete Fourier
transform (DFT) discussed in Chap. 4. In turn DFT represents itself an orthogonal
transformation of the form:

X̄N×1 = WN×N · x̄N×1, (5.7)

where x̄N×1 is a vertical vector of N signal samples, WN×N is an orthogonal N ×N
transformation matrix (with orthogonal rows), and X̄N×1 is a vertical N-element
vector of calculated DFT spectrum coefficients. In case of DFT, the matrix-based
Eq. (5.1) has the following form:

⎡
⎢⎢⎢⎣

X(0)
X(1)

...
X(N −1)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

1 e− j 2π
N 1·1 · · · e− j 2π

N 1·(N−1)

...
...

. . .
...

1 e− j 2π
N (N−1)·1 · · · e− j 2π

N (N−1)·(N−1)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x(0)
x(1)

...
x(N −1)

⎤
⎥⎥⎥⎦ (5.8)

while the non-matrix one is defined as (we are at present neglecting division by N
in comparison to Eq. (4.46):

X(k) =
N−1

∑
n=0

x(n)e− j 2π
N kn, k = 0, 1, 2, . . . ,N −1. (5.9)

At the first look there is no possibility to do calculation faster: N-element vertical
vector should be multiplied by N×N-element matrix. This is the task! However the
matrix elements (k—row/oscillation index, n—column/sample index):

W [k,n] = exp

(
− j

2π
N

kn

)
, (5.10)
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repeat (they have the same values due to periodicity of sin()/cos() functions) and
some of them are multiplied by the same signals samples. These repeated multipli-
cations should not be performed: the previous arithmetical results should be copied
only. Savings offered by this strategy is very big. Instead of performing N ·N mul-
tiplications (e.g. for N = 1024 we have 1024 ·1024 = 1048576), only 10240 multi-
plications have to be done (approximately) or even two times less if some additional
trick is done. Therefore we are taking about decreasing the number of multiplica-
tions more than 100 times or even 200 times. This is like driving 200 km per hour,
not 1 km per hour. Wow! So how is it done. This chapter is giving an answer to this
question. To be precise, we are talking now about radix-2 decimation-in-time FFT
algorithm. There are many other FFT algorithms, for example, radix-4, split-radix,
prime-factor, . . .

Let us introduce the following denotations:

WN = e− j 2π
N , (WN)

kn =W kn
N = e− j 2π

N kn. (5.11)

Next, let us do in Eq. (5.9) summations of multiplications of W kn
N with even (n = 2r)

and odd (n = 2r+1) samples of x(n) separately:

X(k)=
N/2−1

∑
r=0

x(2r)e− j 2π
N k(2r)+

N/2−1

∑
r=0

x(2r+1)e− j 2π
N k(2r+1), k= 0, 1, 2, . . . ,N−1.

(5.12)
We can replace multiplication by 2 in exp(.) by dividing by N/2:

X(k)=
N/2−1

∑
r=0

x(2r)e
− j 2π

N/2 kr
+e− j 2π

N k ·
N/2−1

∑
r=0

x(2r+1)e
− j 2π

N/2 kr
, k= 0,1,2, . . . ,N−1.

(5.13)
Now we see that we have obtained summation of N/2-point DFTs of even

and odd signal samples (and the odd DFT result is multiplied by correction term
exp(− j2πk/N)). With the only difference that k is not changing in the range
0,1,2, . . . ,N/2 − 1 as in N/2-point DFT but in the range 0,1,2, . . . ,N − 1 as in
the N-point DFT. But we can observe that for values of k bigger then N/2−1 (i.e.
N/2+ k, k = 0,1,2, . . . ,N/2− 1), we obtain the same result as for values smaller
then N/2 (i.e. k):

e
− j 2π

N/2 (N/2+k)r
= e− j2πre

− j 2π
N/2 kr

= e
− j 2π

N/2 kr
, k = 0,1,2, . . . ,

N
2
−1. (5.14)

What does result from this “discovery”? Is it a real “treasure” or not? Yes, it
is! One can perform two DFTs upon two two-times shorter N/2-point vectors of
samples (even and odd), copy each of calculated DFT vectors two times, making
them this way two times longer (enlargement k from N/2−1 to N−1), multiply the
second vector associated with odd samples by the correction term exp(− j2πk/N),
and do final summation of vectors (even and odd parts, respectively):
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X̄(e)
N/2×1 = WN/2×N/2 · x̄(e)N/2×1, X̄(o)

N/2×1 = WN/2×N/2 · x̄(o)N/2×1, (5.15)

X̄N×1 =

[
X̄(e)

N/2×1

X̄(e)
N/2×1

]
+

⎡
⎢⎢⎢⎢⎣

e− j 2π
N 0

e− j 2π
N 1

...

e− j 2π
N (N−1)

⎤
⎥⎥⎥⎥⎦ .∗

[
X̄(o)

N/2×1

X̄(o)
N/2×1

]
. (5.16)

.∗ in Eq. (5.16) denotes, as in Matlab, multiplication of corresponding values of
two vectors or matrices. Let us calculate the obtained speed-up! As we see, now
in Eq. (5.15) we multiply two times matrix with dimensions N/2×N/2 by N/2-
element vector, which gives 2N2/4 = N2/2 multiplications, while the initial matrix
equation (5.8) requires two times more, N2 multiplications. Of course, we should
not forget about N additional multiplications required for correction of the DFT
of odd samples, however, in comparison with N2/2 multiplications, the increase is
insignificant.

Equations (5.15), (5.16) look serious and with dignity. But their graphical inter-
pretation presented in Fig. 5.1 is very simple. It convincingly confirms our step-by-
step calculations presented in Eqs. (5.2)–(5.6), leading to the fast FFT algorithm.
Lower parts of even and odd matrices, in figure white, are exactly the same as their
upper parts, therefore calculated upper results can be copied down and about 50
percents of multiplications are not performed. In Matlab program 5.1 we are per-
forming operations presented in Fig. 5.1. Wow! How simple is the computational
trick used in radix-2 DIT FFT!

Fig. 5.1: Graphical illustration of reduction of number of multiplications in the DIT
radix-2 FFT algorithm after one-level even/odd samples partitioning. Multiplication
of even-/odd-indexed samples by “white” sub-matrices with red “×” is not per-
formed since “white” sub-matrices are the same as upper “blue” ones—result of
the upper matrix-vector multiplications is simply copied. “.*” denotes element-by-
element multiplications as in Matlab
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Listing 5.1: First step in the radix-2 DIT FFT algorithm
�

1 % lab05_ex_partition1.m
2 % One-level FFT : first sample re-ordering
3 clear all; close all;
4

5 N = 100; x = rand(1,N);
6 Xm = fft(x);
7 Xe = fft(x(1:2:N));
8 Xo = fft(x(2:2:N));
9 X = [ Xe, Xe ] + exp(-j*2*pi/N*(0:1:N-1)) .* [Xo, Xo ];

10 error = max( abs( X - Xm ) ),
��

Exercise 5.1 (Matrix Interpretation of Speeding-Up Calculations in Radix-
2 DIT FFT). In the introduction we have presented, as an example, matrix anal-
ysis of the 4-point DFT calculation. It was shown that after sample grouping
into even- and odd-indexed ones, the square transformation matrix is replaced
with two smaller matrices having the same elements in their lower parts as in
upper parts. Set N = 4,8,16 in program 5.1 and verify this observation. Use the
DFT transformation sub-matrices for calculation of spectra Xe and Xo. Check
result correctness.

So, if approximately two times reduction of multiplication number is obtained
only by simple separating of even and odd signal samples and performing two-
times shorter DFTs on them, WHY not to continue and why not to divide signal
samples once more: do partition of even samples into even and odd (even–even,
even–odd) and odd samples into even and odd (odd–even, odd–odd). After that we
will have four vectors four times shorter and four N/4-point DFTs will be perform
with corrections. Such proceeding offers complexity of 4(N2/16) = N2/4 plus 2N
multiplications. So now not 2 but 4 times reduction of multiplication number is get
in comparison to Eq. (5.7).

In radix-2 algorithm repetitive partitioning data to even/odd samples is repeated
to the moment when N/2 vectors having only 2 samples are obtained. Then N/2
times 2-point DFT spectra are computed. Next N/2 2-point spectra are combined
with corrections and give N/4 4-point spectra, then N/4 4-point spectra are com-
bined to N/8 8-point spectra, 8-point to 16-point, . . . etc., to the moment when the
final N-point DFT spectrum is reconstructed. On each algorithm level one performs
N complex multiplications (due to required correction of N samples) and in bottom
level N/2 times 2-point DFTs are done:

[
X(0)
X(1)

]
=

[
1 1

1 e− j 2π
2 1·1

][
x(0)
x(1)

]
=

[
1 1
1 −1

][
x(0)
x(1)

]
, (5.17)

representing only addition and subtraction of two samples with no multiplication.
Summarizing the total number of multiplication, we have N corrections (multiplica-
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tions) done on each spectra combining level. The number of such levels is equal to
the number of even/odd sample partitions minus 1, i.e. log2(N)−1. Minus 1, since
the decomposition is stopped for vectors with 2 samples upon which 2-point DFTs
are executed. Therefore, when we neglect the simplicity of the 2-point DFT level
and assume the regular algorithm structure, N log2(N) number of multiplication is
required. For N = 1024 the speed-up is more than 100 times while compared to N2!

The following program 5.2 presents two-level fast radix-2 DFT computation and
it is an introduction to the divide even/odd philosophy of the FFT.

Listing 5.2: First two steps in the radix-2 DIT FFT algorithm
�

1 % lab05_ex_partition2.m
2

3 clear all; close all;
4

5 N=64;
6 x = randn(1,N);
7 X = fft(x);
8

9 % One-level decomposition
10 x1 = x(1:2:end); % even samples
11 X1 = fft(x1);
12 x2 = x(2:2:end); % odd samples
13 X2 = fft(x2);
14 Xr = [ X1 X1 ] + exp(-j*2*pi/N*(0:N-1)) .* [ X2 X2 ];
15 error_manual_1 = max( abs(X-Xr) ), pause
16

17 % Two-level decomposition
18 x11 = x1(1:2:end); % even even samples
19 X11 = fft(x11);
20 x12 = x1(2:2:end); % even odd samples
21 X12 = fft(x12);
22 X1 = [ X11 X11 ] + exp(-j*2*pi/(N/2)*(0:N/2-1)) .* [ X12 X12 ];
23

24 x21 = x2(1:2:end); % odd even samples
25 X21 = fft(x21);
26 x22 = x2(2:2:end); % odd odd samples
27 X22 = fft(x22);
28 X2 = [ X21 X21 ] + exp(-j*2*pi/(N/2)*(0:N/2-1)) .* [ X22 X22 ];
29

30 Xr = [ X1 X1 ] + exp(-j*2*pi/N*(0:N-1)) .* [ X2 X2 ];
31 error_manual_2 = max( abs(X-Xr) ), pause
32

33 % Calling our recursive multi-level FFT function
34 Xr = myRecFFT(x);
35 error_recursive = max( abs(X-Xr) ), pause
36

37 % Calling our non-recursive FFT function
38 Xr = myFFT(x);
39 error_nonrecursive = max( abs(X-Xr) ), pause

��
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Finally, the program 5.3 presents a recursive implementation of the complete
FFT algorithm with all even/odd decomposition levels. It should be used as a test for
checking understanding of the radix-2 FFT philosophy based on even/odd partition
of signal samples. It is important to notice how simple the program is (!) thanks to
the fact that now not we but Matlab is responsible for memory management inside
each function call and for exchange of results between the function successive calls.

Listing 5.3: Radix-2 DIT FFT algorithm implemented as recursive function
�

1 function X = myRecFFT(x)
2

3 % My recursive radix-2 FFT function
4 N = length(x);
5 if(N==2)
6 X(1) = x(1) + x(2); % # 2-point DFT
7 X(2) = x(1) - x(2); % # on the lowest level
8 else
9 X1 = myRecFFT(x(1:2:N)); % call itself on even samples

10 X2 = myRecFFT(x(2:2:N)); % call itself on odd samples
11 X = [ X1 X1 ] + exp(-j*2*pi/N*(0:N-1)).* [X2 X2]; % combine spectra
12 end

��

5.3 FFT Butterflies

So, is that all about the famous FFT? Absolutely NO. Two important issues still are
not discussed. The first is an additional simple observation which can offer addi-
tional reduction of the FFT computational time by half. Does it sound impossible?

In the FFT algorithm one longer spectrum is reconstructed repeatedly from two
two-times shorter spectra. Shorter even and odd spectra, in the first decomposition
stage, were denoted in our programs as X1(k),X2(k), k = 0,1,2, . . . ,N/2−1, while
the spectrum reconstructed from them as X(k), k = 0,1,2, . . . ,N −1. Let us denote
shorter spectra as Xe(k) and Xo(k). After this, Eq. (5.13) describing the final spec-
trum reconstruction can be rewritten as (k = 0,1,2, . . . ,N/2−1):

X(k) = Xe(k)+ e− j 2π
N k ·Xo(k), (5.18)

X(N/2+ k) = Xe(k)+ e− j 2π
N (N/2+k) ·Xo(k) = Xe(k)+ e− jπe− j 2π

N k ·Xo(k). (5.19)

Since e− jπ =−1, the second correction (5.19) differs only from the first one (5.18)
with sign:

X(N/2+ k) = Xe(k)− e− j 2π
N k ·Xo(k). (5.20)

Eureka! The second term calculated in Eq. (5.18) is added to the first term in
Eq. (5.18) and subtracted in Eq. (5.19). Therefore only one multiplication can be
done instead of two:

X (c)
o (k) = e− j 2π

N k ·Xo(k), (5.21)
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and after its result should be added and subtracted from Xe(k), k = 0,1, . . . ,N/2−1:

X(k) = Xe(k)+X (c)
o (k), (5.22)

X(N/2+ k) = Xe(k)−X (c)
o (k) (5.23)

This way the overall number of multiplication is reduced by half to (1/2)N log2(N)
since N

2 not N corrections are done (one correction is used two times, one time
negated). This twin operations is called the FFT butterfly: two numbers are coming
into the module in which the second of them is corrected (Eq. (5.21)) and then added
(Eq. (5.22)) and subtracted (Eq. (5.23)) from the first one, which gives two output
numbers.

As an example let us write all butterfly equations of the one-level fast radix-2
DIT DFT algorithm:

{
X(0) = Xe(0)+ e− j 2π

N 0Xo(0),

X(4) = Xe(4)+ e− j 2π
N 4Xo(4) = Xe(0)− e− j 2π

N 0Xo(0),{
X(1) = Xe(1)+ e− j 2π

N 1Xo(1),

X(5) = Xe(5)+ e− j 2π
N 5Xo(5) = Xe(1)− e− j 2π

N 1Xo(1),{
X(2) = Xe(2)+ e− j 2π

N 2Xo(2),

X(6) = Xe(6)+ e− j 2π
N 6Xo(6) = Xe(2)− e− j 2π

N 2Xo(2),{
X(3) = Xe(3)+ e− j 2π

N 3Xo(3),

X(7) = Xe(7)+ e− j 2π
N 7Xo(7) = Xe(3)− e− j 2π

N 3Xo(3),

The FFT butterfly computation is presented in Fig. 5.2. The name butterfly is
used since in module figure/diagram we see characteristic butterfly contour/shape.

Fig. 5.2: Computational structure of the basic decimation-in-time (DIT) radix-2 FFT
algorithm, the so-called butterfly. (left) full version with two multiplications, (right)
simplified version with only one multiplication. Values close to arrows denote multi-

plication by them. WN is defined by Eq. (5.11). Thanks to equality: W (N/2+k)
N =−W k

N
only one multiplication is done instead of two [11]
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5.4 Fast Signal Samples Re-ordering

The second important issue in the FFT algorithm is changing samples position due
to dividing them into two sets: even- and odd-indexed. Since moving data in com-
puter memory requires also processor cycles, as multiplications, it may look that
we won a lot, reducing the number of multiplications, but at the cost of significant
increasing sample movement. If we could directly put the input signal sample to its
target position (obtained after many even/odd sample partitions), we would benefit
a lot. Therefore let us look more carefully at the partition process.

Let us assume that we are calculating 8-point FFT upon signal samples having
values equal to sample numbers, and perform two-level even–odd sample sorting
and four 2-point DFTs. Consecutive steps of samples re-ordering are presented in
Fig. 5.3.

What do we observe? That the input sample position index, written binary, after
many even/odd partitions, is equal to the original index but written in bit-reversed
manner. For example, sample with binary position 011b (3) can go directly to binary
position 110b (6) which is marked in figure with red dotted line. Therefore, only one
move in computer memory is required for each signal sample which significantly
simplifies the sample re-positioning. Look at Fig. 5.3. In the lowest level of the
FFT algorithm the series of four 2-point DFTs takes place upon two neighboring
data (short blue lines at the bottom of partition diagram are presented), next four 2-
point DFT spectra are combined into two 4-point DFT spectra (two blue lines in the
middle of the diagram), and, finally, 4-point spectra are combined into one 8-point
DFT spectrum (one blue line in the upper part).

Fig. 5.3: Graphical illustration of two-level even/odd signal samples sorting before
the 8-point radix-2 DIT FFT algorithm. It is assumed that signal samples have values
equal to their indexes. Each sample goes finally to the new position having index
with reversed bits, for example, the sample number 4 (100b) goes to the position 1
(001b) which is marked with red dotted line. Horizontal blue lines connect samples
being in the same block of butterflies (the same sub-spectrum)
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5.5 Example: 8-Point Radix-2 DIT FFT

In this section we will summarize our present knowledge about the FFT in all-in-
one example. We will draw complete FFT block diagrams of the 8-point radix-2
decimation-in-time FFT algorithm and analyze programs implementing them. In
Fig. 5.4 first two even/odd decomposition levels of the algorithm are presented.
They lead to the final 8-point FFT computation shown in Fig. 5.5. The FFT pro-
gram implementing it is written in two versions, as data block-oriented and single
butterfly-based.

Fig. 5.4: Consecutive derivation of 8-point decimation-in-time radix-2 FFT algo-
rithm leading to diagram presented in Fig. 5.5 [11]
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Fig. 5.5: Final block diagram for the decimation-in-time radix-2 FFT algorithm for
N = 8 [11]

Listing 5.4: Radix-2 DIT FFT algorithm in Matlab—data blocks approach
�

1 % lab05_ex_blocks.m
2 % Radix-2 decimation in time (DIT) FFT algorithm
3 clear all; close all;
4

5 N=8; % number of signal samples (power of 2 required)
6 x=0:N-1; % exemplaryanalyzed signal
7 Nbit=log2(N); % number of bits for sample indexes, e.g. N=8, Nbit=3
8

9 % Samplesreordering (in bitreversefashion)
10 n = 0:N-1; % indexes
11 m = dec2bin(n); % bits of indexes
12 m = m(:,Nbit:-1:1); % reverse of bits
13 m = bin2dec(m); % new indexes
14 y(m+1) = x(n+1); % data reordering
15 y, pause % check result
16

17 % All 2-point DFTs
18 y = [ 1 1; 1 -1] * [ y(1:2:N); y(2:2:N) ]; y=y(:)’;
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19

20 % Butterflies, i.e. spectrareconstruction
21 Nlev=Nbit; % number of levels
22 Nfft=2; % initial Nfft value after 2-point DFTs
23 for lev=2:Nlev % LEVELS
24 Nfft = 2*Nfft;
25 Nblocks = N/Nfft;
26 W = exp(-j*2*pi/Nfft*(0:Nfft-1));
27 for k = 1:Nblocks % butterflies
28 y1 = y( 1 + (k-1)*Nfft : Nfft/2 + (k-1)*Nfft );
29 y2 = y( Nfft/2+1 + (k-1)*Nfft : Nfft + (k-1)*Nfft );
30 y(1 + (k-1)*Nfft : Nfft + (k-1)*Nfft ) = [ y1 y1 ] + W .* [ y2 y2 ];
31 end
32 end
33 ERROR = max( abs( fft(x) - y ) ), pause

��

Listing 5.5: Radix-2 DIT FFT algorithm in Matlab—single butterfly-based approach
�

1 % lab05_ex_butterfly_in_a_loop.m
2 % Radix-2 decimation in time (DIT) FFT algorithm
3 clear all; close all;
4

5 N=8; % number of signal samples (power of 2 required)
6 x=0:N-1; % exemplaryanalyzed signal
7 Nbit=log2(N); % number of bits for sample indexes, e.g. N=8, Nbit=3
8

9 %Samplesreordering (in bitreversefashion)
10 for n=0:N-1
11 nc = n; % old sample position - copying
12 m = 0; % new sample position - initialization
13 for k=1:Nbit % check all bits
14 if(rem(n,2)==1) % check low significant bit
15 m = m + 2̂ (Nbit-k); % accumulate "m" using bitreversedweight
16 n = n - 1; % decrement by 1
17 end
18 n=n/2; % shift all bits one position right
19 end
20 y(m+1) = x(nc+1); % copy sample into new "bitreversed" position
21 end
22 y, pause % check result
23

24 % Butterflies
25 Nlev=Nbit; % number of levels
26 for lev=1:Nlev % LEVELS
27 bw=2̂ (lev-1); % butterflieswidth
28 nbb=2̂ (lev-1); % number of butterflies per block
29 sbb=2̂ lev; % shift between blocks
30 nbl=N/2̂ lev; % number of blocks
31 W=exp(-j*2*pi/2̂ lev); % correctioncoefficient
32 for bu=1:nbb % BUTTERFLIES
33 Wb=Ŵ (bu-1); % correction for given butterfly
34 for bl=1:nbl % BLOCKS
35 up = 1 + (bu-1) + (bl-1)*sbb; % up sample index
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36 down = 1+bw + (bu-1) + (bl-1)*sbb; % down sample index
37 temp = Wb * y(down); % temporary value
38 y(down) = y(up) - temp; % new down sample
39 y(up) = y(up) + temp; % new up sample
40 end
41 end
42 end
43 ERROR = max( abs( fft(x) - y ) ), pause

��

5.6 Efficient FFT Usage for Real-Value Signals

Fourier harmonic signals, being oscillatory basis functions in DFT, have complex-
values. Our analyzed signal can be also a superposition (summation) of Fourier har-
monics (e.g. like in NMR, in OFDM multi-carrier transmission). However, the most
often, our signal has real-value samples and spectrum with conjugate symmetry in
which half of the coefficients is repeated (with complex conjugation). The second
half is calculated but is useless: the first half is for us sufficient, they contain the
whole information about the signal.

We can exploit the DFT spectrum symmetry (valid for real-value data only) in
two ways, perform one N-point DFT (FFT) but calculate:

1. two spectra of two real-value signals having N samples each,
2. one spectrum of a real-value signal having 2N samples.

Case 1: One FFT, Two Signals We have two real-value signals x1(n) and x2(n)
having N samples. Their DFT spectra X1(k) and X2(k) are also N samples long. Let
us create a complex signal having x1(n) in its real part and x2(n) in the imaginary
part:

x(n) = x1(n)+ jx2(n) (5.24)

Due to transform linearity, the DFT of x(n) is equal to:

X(k) = X1(k)+ jX2(k) (5.25)

Making use of the DFT spectrum symmetry (in respect to the N/2-th spectral coef-
ficient) in real part and its asymmetry in the imaginary part, we can reconstruct the
spectra X1(k) and X2(k) from X(k) (k = 1,2, . . . ,N −1):

X1(k) =
Re(X(k)+X(N − k))

2
+ j

Im(X(k)−X(N − k))
2

, (5.26)

X2(k) =
Im(X(k)+X(N − k))

2
− j

Re(X(k)−X(N − k))
2

. (5.27)

The following trick is used: the symmetrical values are removed when symmetrically
subtracted (values from the beginning and corresponding values from the end) and
they are amplified by 2—when symmetrically added (values from the beginning
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and corresponding values from the end). The inverse rule is valid for asymmetrical
data. Mean signal value is always in the real part of the k = 0 DFT coefficient:
X1(0) = Re(X(0)),X2(0) = Im(X(0)).

Case 2: One FFT, Signal Two Times Longer In this case we divide a signal hav-
ing 2N samples into even- and odd-indexed ones, exactly the same way as in the
radix-2 DIT FFT algorithm discussed before, put them into real and imaginary parts
of x(n) as x1(n) and x2(n), and perform N-point FFT. After this we reconstruct spec-
tra X1(k) and X2(k) using Eqs. (5.26), (5.27). Finally, the whole signal spectrum is
reconstructed from its even and odd spectra using Eq. (5.13), the same way as in
program 5.1.

Exercise 5.2 (Two-Times Faster FFT Spectra Calculation for Real-Value
Signals). In program 5.6 we address computing two DFT spectra in one FFT
call. Spectrum of the first signal has been already calculated with success. Fin-
ish the program, writing a code for computing spectrum of the second signal.
After that add a new functionality to the program: assume that two input signals
are even and odd samples of one two-times longer signal. Reconstruct spectrum
of this signal.

Listing 5.6: Calculation of two DFT spectra using one FFT call
�

1 % lab05_ex_2in1
2 clear all; close all;
3 N=16;
4

5 x1 = randn(1,N); % Signals
6 x2 = randn(1,N);
7 x3(1:2:2*N) = x1; x3(2:2:2*N) = x2; % even and odd samples
8

9 X1 = fft(x1); % Their DFT spectra
10 X2 = fft(x2);
11 X3 = fft(x3);
12

13 % Exploit this symmetry
14 x12 = x1 + j*x2; % Artificial complex-value signal
15 X12 = fft(x12); % Its DFT spectrum
16 X12r = real(X12);
17 X12i = imag(X12);
18

19 % Reconstruction of X1 from X12
20 X1r(2:N) = (X12r(2:N)+X12r(N:-1:2))/2; % using symmetry of Real(X1)
21 X1i(2:N) = (X12i(2:N)-X12i(N:-1:2))/2; % using asymmetry of Imag(X1)
22 X1r(1) = X12r(1);
23 X1i(1) = 0;
24 X1rec = X1r + j*X1i;
25 error_X1 = max(abs( X1 - X1rec )), pause
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26

27 % Reconstruction of X2 from X12
28 % ... to be done
29 % Reconstruction of X3 from X1 and X2
30 % ... to be done

��

5.7 FFT Algorithm with Decimation-in-Frequency

In the second big family of fast Fourier transform algorithms, not input signal sam-
ples are re-ordered as even-/odd-indexed ones but the calculated spectra coefficients.
Let us first calculate even spectral coefficients (r = 0,1,2, . . . , N

2 −1):

X(2r) =
N−1

∑
n=0

x(n)e− j 2π
N (2r)n = (5.28)

=
N/2−1

∑
n=0

x(n)e− j 2π
N (2r)n +

N−1

∑
n=N/2

x(n)e− j 2π
N (2r)n = (5.29)

=
N/2−1

∑
n=0

x(n)e− j 2π
N (2r)n +

N/2−1

∑
n=0

x

(
N
2
+n

)
e− j 2π

N (2r)(N
2 +n) = (5.30)

=
N/2−1

∑
n=0

x(n)e
− j 2π

N/2 (r)n +
N/2−1

∑
n=0

x

(
N
2
+n

)
e
− j 2π

N/2 (r)ne− j2πr = (5.31)

=
N/2−1

∑
n=0

[
x(n)+ x

(
N
2
+n

)]
e
− j 2π

N/2 (r)n (5.32)

In Eq. (5.29) we divide summation in Eq. (5.28) into two parts (to sample N/2−1
and above). In Eq. (5.30) we change denotation of sample index in the second sum
and obtain the same summation limits as in the first sum. Then in Eq. (5.31) we
calculate the exponent argument in the second sum, exploiting equality e− j2πr = 1.
Since it simplified to the exponent of the first sum, we combine two sums into one
in Eq. (5.32). As a result we obtain N/2-point DFT performed upon summation of
the first and the second half of the signal samples (having N/2 samples each).

Now let us do calculation of the odd spectral coefficients:

X(2r+1) =
N−1

∑
n=0

x(n)e− j 2π
N (2r+1)n, r = 0,1,2, . . . ,

N
2
−1 (5.33)

=
N/2−1

∑
n=0

x(n)e− j 2π
N (2r+1)n +

N−1

∑
n=N/2

x(n)e− j 2π
N (2r+1)n = (5.34)
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=
N/2−1

∑
n=0

x(n)e− j 2π
N (2r+1)n +

N/2−1

∑
n=0

x

(
N
2
+n

)
e− j 2π

N (2r+1)(N
2 +n) =

(5.35)

=
N/2−1

∑
n=0

[
x(n)− x

(
N
2
+n

)]
e− j 2π

N (2r+1)n = (5.36)

=
N/2−1

∑
n=0

[
e− j 2π

N n
(

x(n)− x

(
N
2
+n

))]
e
− j 2π

N/2 (r)n. (5.37)

In Eq. (5.35) we have exploited the following substitution:

e− j 2π
N (2r+1) N

2 = e− j2πre− jπ =−1. (5.38)

Now, the X(2r+ 1) spectrum is obtained as a result of N/2-point DFT performed
upon subtraction of the first and the second half of signal samples but initially mul-
tiplied by exp(− j2π/Nn), where n = 0,1,2, . . . ,N/2−1.

Concluding, in radix-2 decimation-in-frequency FFT algorithm we are perform-
ing two-times smaller N/2-point DFTs on summation and (corrected) subtraction of
the first and the second half of the signal samples. Data re-ordering procedure is re-
peated recursively. In Fig. 5.6 first decomposition level of N = 8 DIF FFT algorithm
is presented, while in Fig. 5.7—the whole algorithm.

Fig. 5.6: First decomposition level of the N = 8-point decimation-in-frequency
radix-2 FFT algorithm leading to diagram presented in Fig. 5.7 [11]
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Fig. 5.7: Final block diagram for the decimation-in-frequency radix-2 FFT algo-
rithm for N = 8 [11]

Exercise 5.3 (DIF FFT: With First Two Decomposition Levels). Write Mat-
lab program implementing DIF FFT algorithm with first two decomposition
levels only, for arbitrary signal having 2p samples. Make use of diagrams pre-
sented in Figs. 5.6 and 5.7.

5.8 Summary

In this chapter we dealt with the fast Fourier transform algorithms. They
are really very fast, not 5, 10, or even 100% (2-times) faster—they are about
200000% faster, YES! 200 TIMES! for signals having N = 1024 samples.
Wow! How is it possible? During DFT calculation we multiply a vector of
signal samples with matrix of samples of frequency basis/reference functions.
How could any savings be done in such strictly defined mathematical opera-
tion?! Yes, it is possible to reduce the number of multiplications since the ma-
trix elements are equal to sampled values of sine and cosine periodic functions,
which are repeating and therefore they are repeatedly multiplied by the same
signal samples. There is no sense to repeat some multiplications: it is more
practical to copy the result calculated already. Exploiting this idea further leads
to radix-K FFT algorithms in which divide-by-K concept is used: (1) signal is
recursively decomposed into K fragments (e.g. even/odd samples for K = 2)
until obtaining K-sample long sub-signals, (2) then many short K-point DFT
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spectra are computed, and (3) the spectra are combined in recursive way (e.g.
2-point to 4-point, 4-point to 8-point, etc.), up to the reconstruction of the whole
signal DFT spectrum. So something that looks impossible, becomes possible.
What we should remember about the FFT?

1. All decimation-in-time FFT algorithms exploit the divide-and-conquer
methodology: (1) they recursively divide input samples into smaller groups,
for example, by 2, by 2, by 2 . . . , or by 4, by 4 . . . , (2) when the further divi-
sion is impossible they calculate DFT spectra of very short sample vectors
(e.g. with 2 or 4 elements), and after that (3) they are recursively combin-
ing smaller spectra, e.g. initially 2- or 4-point, into longer ones, e.g. 4- or
8-point, and so on: 8-, 16-, 32-, 64-point, . . . , finally doing reconstruction
of the whole signal DFT spectrum.

2. Samples partition can be fixed, e.g. into 2 or 4 groups at each sample de-
composition level (radix-2, radix-4 algorithms) or can be changed from
level to level as it is done in split-radix algorithms, for example, first into
2 groups, then into four groups, next into 3 groups, etc. Algorithms with
bigger radix values offer better computational speed-up but restrict the sig-
nal to have a length being power of 4, 8, . . . Split-radix algorithms can be
better adjusted to signal length.

3. In FFT algorithms are used the so-called butterflies—computation blocks
with two inputs and outputs. Calculations are done in-place: input values
are replaced by output values and no memory allocation problem exists.
The second input number is first corrected in the block and then added and
subtracted from the first one. The name butterfly is used since in module
figure/diagram we see characteristic butterfly contour/shape.

4. In the simplest radix-2 N-point DIT FFT algorithm input samples are
first re-ordered (result from recursive data partitioning) and then we have
log2(N) calculation levels. Each level consists of blocks of butterfly mod-
ules. In the beginning we have always N/2 blocks with one butterfly hav-
ing width of one sample. In each next level: number of blocks is two times
lower, number of butterflies in each block is two times bigger, and butterfly
width is two times larger.

5. Implementation of radix-2 DIT FFT algorithm in any computer language
is very simple: first we do sample re-ordering (in some DSP processors
a special bit-reversed addressing mode should be turned on), then we have
three nested loops (level, block, and butterfly number) inside which a single
butterfly module is executed.

6. Apart from decimation-in-time (DIT) FFT algorithms, there are used also
decimation-in-frequency (DIF) FFT algorithms. They offer the same com-
putational speed-up but their philosophy is different: one recursively di-
vides not signal samples but calculated spectral coefficients into groups,
in the simplest case of radix-2 DIF—into even and odd numbered. In DIF
FFTs the input signal samples have not to be initially re-ordered (advan-
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tage) but, at the price of this, the FFT spectral coefficients are obtained in
wrong sequence (drawback). But there are applications in which wrong or-
der of calculated spectral coefficients is not important. Fast signal filtering
and correlating in frequency domain are such examples explained in the
next chapter.

7. As already stated in the motto of this chapter: the FFT is a King of a DSP
highway! It is so fast that it is used not only for signal frequency analy-
sis (in next chapter) but also it is exploited as a computational hammer in
other DSP tasks, when-ever and where-ever it is possible. For example, in
fast implementations of digital non-recursive signal filtering having a form
of digital convolution of signal samples with filter weights or signal cor-
relation. These two operations have similar representation: multiply-and-
accumulate the result. Fast signal filtering or signal correlation in frequency
domain are performed as follows: instead of time-consuming signal con-
volution/correlation in time domain three FFTs are performed, two direct
done separately upon two signal vectors and one inverse performed upon
the resultant multiplication of two signal FFT spectra.

5.9 Private Investigations: Free-Style Bungee Jumps

Exercise 5.4 (Need for Speed). In 99.9% Matlab is not your favorite computer lan-
guage. You a master of Basic, C, C++, Fortran, Java, Julia, Pascal, Python,. . . For
sure you have a Need for Speed! Therefore make yourself a little fun and imple-
ment any FFT program from this chapter in your language. At the end compare the
calculated FFT spectrum with the Matlab result.

Exercise 5.5 (Dancing with the Stars: One Step Forward and One Step Back-
ward). Performing in a cascade the direct (forward) and the inverse (backward)
FFT algorithm, we should return perfectly to the same signal (with error on the
level 10−14 of the signal amplitude). Write a program of inverse FFT modifying any
Matlab code of direct FFT. FFT and inverse FFT programs should differ only in
the exponent sign. Check your implementation using the Matlab function ifft().
Next, perform FFT and inverse FFT upon any signal and check the results: are both
signals the same?

Exercise 5.6 (** Radix-2 DIF FFT: On the Other Side of the Moon). Write uni-
versal Matlab program for arbitrary N = 2p implementing radix-2 FFT algorithm
with decimation-in-frequency (DIF) with all even/odd decomposition levels.

Exercise 5.7 (* DCT-II via FFT). Write Matlab program for calculation of orthog-
onal transform DCT-II presented in Chap. 2 (c(k = 0) =

√
1/N, c(k > 0) =

√
2/N):

XDCT (k) = c(k) ·
N−1

∑
n=0

x(n)cos

(
π (2n+1) · k

2N

)
, 0 ≤ k ≤ N −1, (5.39)
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with the FFT use. Equation connecting both transforms is as follows:

XDCT (k) = Re
[
c(k)e− j πk

2N ·FFTN(x̃(n))
]
, (5.40)

where signal x̃(n) is equal to:

x̃(n) = x(2n) , x̃(N −n−1) = x(2n+1) , n = 0,1,2, . . . ,N/2−1. (5.41)

Check correctness of your implementation (outputs of both programs).
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Chapter 6
FFT Applications: Tips and Tricks

Having an F1 car or the X-Wing spacecraft it would be a big sin
not to use it at full speed!

6.1 Introduction

This chapter aims to do comprehensive, short introduction to important FFT
applications in field of digital signal processing. Since the FFT is really, re-
ally fast, about 100 times faster than regular DFT for 1000 signal samples,
one should exploit its speed not only in spectral analysis, that is its primary
usage, but also as a computational “hammer” for calculation of functions con-
nected with signal spectrum. For example, for signal convolution and correla-
tion. We start with demonstration of proper scaling of DFT amplitude spectrum
and of its zooming possibilities, realized by appending additional zeros to an
analyzed signal and performing the FFT. Zeros can be also appended to the sig-
nal spectrum—after IFFT we are obtaining interpolated signal. We will advise
also to show only first half of the FFT spectrum for real-value signals since the
second half is symmetric in its real part while asymmetric in the imaginary part.
We will stress significance of the window function choice for the FFT spectrum
amplitude and frequency resolution and show proper spectrum scaling when
window is used.

In the first part of Chap. 4 on DtFT and DFT, we have discussed features
of the discrete-time Fourier transform spectrum, result of discretization of the
continuous Fourier transform. It was stressed that DtFT offers more flexible
spectrum visualization (from-to any frequency with arbitrary frequency step)
but at the cost of more time-consuming computing implementation. But a fast
algorithm for DtFT calculation exists also. It makes use of three (I)FFTs and is
known as chirp-Z transform. We learn about it.

When the signal is contaminated in noise or it is changing its deterministic
content in random manner, like during bit transmission, we should calculate
power spectra. How the power spectral density (PSD) function is defined? How
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it can be calculated? We will answer these questions. It will turn out that the
PSD calculation requires computation of correlation function which is widely
used in statistical signal processing. We will calculate it fast by means of FFT.

Since the correlation function computation is almost the same as calculation
of signal convolution, we will derive algorithms for fast signal convolution us-
ing the FFT. It will be used by us in next chapters for fast non-recursive FIR
digital signal filtering. Wow!

Next, signal frequencies of signal components can vary in time, like in
speech, audio, AM and FM modulated signals. Calculation of one FFT sig-
nal spectrum for many signal samples is not a good solution in this case.
The spectrum will be smeared because, for sure, the changing signal compo-
nents will not fit well to the constant-frequency Fourier harmonics. As a con-
sequence, many spectral coefficients will be turned on and the spectrum will
be smeared. Solution to this is assuming that signal components are not chang-
ing very fast, cutting signal into smaller fragments, calculating FFT spectra for
them, and putting all spectra together into one matrix for precise inspection of
the spectrum change. Such repetitive calculation of FFT on overlapping signal
fragments is called short-time Fourier transform (performed on short consecu-
tive signal parts). In Matlab the spectrogram() function implements the
STFT.

Finally, we will end chapter with description of one interpolated DFT algo-
rithm. What is the difference between DFT spectrum interpolation (zooming)
by DtFT and interpolated IpDFT algorithms? In IpDFT one derives mathemat-
ical equations for DFT spectrum values. Then take a few of them around the
spectral peak, solve set of some equations, and calculate frequency of one sig-
nal component. This is completely different approach than DtFT. Better fre-
quency estimates are obtained for signals which mathematical model is known,
in our case for summation of damped sinusoids. In this method not only sine
frequency can be found but also its damping which is very important in different
resonance spectroscopy methods.

So this is a chapter with a lot of DSP cookies.

6.2 FFT Usage Principles

Butterfly FFT algorithms, not very difficult, give the same result as slow direct mul-
tiplication of DFT matrix with a vector of signal samples but they are significantly
faster. For this reason the FFT should replace DFT in all our programs. The classical
TV advertisement says: “There is no sense to over-pay for the washing powder: buy
cheaper one if you do not see the difference in action.” But how to use FFT properly,
efficiently, and flexible?

In this section, in the chapter beginning, we briefly summarize the general prin-
ciples of proper FFT usage, on the base of [15]. In most cases we use DFT/FFT
for obtaining signal amplitude spectrum, i.e. for measuring amplitudes of single fre-
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quency components of the signal. Having these amplitudes known, we can calculate
later the signal power spectrum, its power spectral density and amplitude spectral
density. In previous chapters, we have discussed only a problem how to calculate
correct signal amplitude spectrum from the DFT/FFT result. At present we will deal
with the other spectra also.

Repeating the DFT Definition Let us assume that an FFT procedure is implement-
ing the DFT definition with correct amplitude scaling for the rectangular window
(see Eq. (4.42)):

X(k) =
1
N

N−1

∑
n=0

x(n)e− j 2π
N kn, k = 0, 1, 2, . . . ,N −1, (6.1)

where x(n),n= 0,1,2, . . . ,N−1, is an analyzed signal, X(k),k = 0,1,2, . . . ,N−1—
its amplitude FFT spectrum, and e− j(2π/N)kn—the n-th sample of k-th Fourier basis
function (reference oscillatory signals). When in Eq. (6.1) the following operations
are performed: (1) 1

N scaling is removed, (2) positions of X(k) and x(n) are ex-
changed, (3) summation is performed over k for n = 0,1 . . .N − 1, and (4) sign in
the exponent is changed from “−” to “+,” Eq. (6.1) becomes a definition of the
inverse Fourier transform :

x(n) =
N−1

∑
k=0

X(k)e j 2π
N kn, n = 0, 1, 2, . . . ,N −1. (6.2)

For this reason fast algorithms designed for direct FFT can also be used for inverse
FFT after slight modifications. After performing Eqs. (6.1), (6.2) in a cascade, one
obtains exactly the same signal (with negligible computational error). It is ensured
by scaling the result by 1

N , now performed in the first Eq. (6.1), however, typically
done in the second equation in software implementations. Choice of the proper spec-
trum scaling, not only by number 1

N , will be further discussed by us in this chapter.

Direct or Inverse FFT FFT is implemented in different languages and libraries.
Very often names FFT and DFT are used in them interchangeably. Very often the
same function can be used for direct (forward) and inverse (backward) FFT which
differs only in sign of the exponent: −1 for direct and 1 for inverse. Typically, we are
calling one FFT function in this way X=fft(x,direction) specifying whether
direct or inverse FFT is to be computed. In Matlab there are two separate func-
tions which are called as follows: X=fft(x); x=ifft(X); . Performing FFT
and inverse FFT in cascade, one should return back the same signal. Try it in your
favorite language or in Matlab.

Choosing FFT Length From one side, since frequency discretization (step) in di-
rect DFT is equal to sampling frequency divided by number of analyzed samples
N, i.e. Δ f = fs/N, we are interested in increasing the number of analyzed signal
samples N in order to have better spectrum resolution, i.e. smaller Δ f . From the
other side, well remembering the most known radix-2 decimation algorithms, we



118 6 FFT Applications: Tips and Tricks

feel that we are obligated to prefer FFT lengths N being powers of 2: 256, 512,
1024, 2048, . . . What is the problem? If the signal sampling frequency is already
given and the number of signal samples has to be power of 2, it is very difficult to ob-
tain well-rounded frequency resolutions like 0.25, 0.5, 1, 2, 5, 10 Hz. Hmm . . . But
we should remember that there are many different data-partition FFT approaches,
not only radix-2 one. Fast procedures from the most popular and frequently used
FFTW library (http://www.fftw.org/) are optimized for different signal lengths, for
example, ones being equal [15]:

N = 2a ·3b ·5c ·7d ·11e ·13 f , (6.3)

where numbers a,b,c,d are arbitrary none-negative integers and the sum e+ f is
equal 0 either 1. It is wise to know this.

Describing Frequency Axis When FFT spectral coefficients are already calcu-
lated, typically the first biggest problem rely on connecting frequency values with
them. What frequency is this and this and . . . ?!. Coefficients X(1),X2),X(3), . . . ,
X(N) are associated with frequencies being multiplicities of the fundamental fre-
quency f0 = fs/N, i.e. to: 0, f0,2 f0,3 f0, . . . ,(N − 1) f0. For example, for fs =
1000 Hz and N = 100 we have: 0,10,20, . . . ,990 Hz.

Meaning of Spectral Coefficients After euphoria of knowing what frequency
components are present in my signal, the next question arises: how much of each
of them we have? DFT/FFT is an orthogonal transformation. The signal is decom-
posed into summation of some elementary functions being references of certain fre-
quencies. If properly scaled, the FFT coefficients are amplitudes of these reference
signals. Properly? In most cases we should divide the FFT result by N, in Matlab
also, obtaining: X=fft(x)/N; plot(fs/N*(0:N-1),abs(X)) .

Using Only First Half of the FFT Spectrum In case of real-value signal it is a
good practice to display only first half of the calculated FFT spectrum since the
second half have complex-conjugated values, which are confusing for non- experi-
enced user. In Matlab: X=fft(x)/N; plot(fs/N*(0:N/2), abs(X(1:N/
2+1)). In such case, it has a sense also to change the FFT scaling: divide the spec-
trum not by N but by N/2: in Matlab: X=2*fft(x)/N; . With this modification
we will see only one peak for each sine/cosine being exactly equal to the signal
amplitude, not half of it.

FFT Normalization for Rectangular Window Typically, FFT procedures return
spectral coefficients X(k) defined by Eq. (6.1), therefore, with no normalization.
Alternatively, they divide X(k) by

√
N, N either N/2. Performing a sequence of

direct and inverse FFT we should go back to the same signal. If not, we should
check the scaling implemented in our subroutines. In direct FFT there are three
possibilities. In the first case, the inner product of signal and reference frequency
function is not normalized: analyzing a cosine with amplitude equal to one we ob-
tain two spectral peaks with height N/2. In this way work functions from FFTW
package and math libraries of most languages, including Matlab using FFTW. In

http://www.fftw.org/
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the second case, mathematically the most correct, the inner product result is di-
vided by

√
(N) offering orthonormality of the DFT transform (inner product of

each basis function with itself is equal to 1). Such normalization is used in Math-
ematica language. When analyzing a unitary cosine we obtain two spectral peaks
with heights

√
N/2. In the third normalization strategy, the FFT coefficient can

be divided by N and cosine has two spectral peaks equal to 1/2 (for positive and
negative frequency). This is mathematically correct and practically good result dur-
ing signal analysis. Necessity of negative frequencies existence results from com-
plexity of Fourier basis functions (Fourier harmonics). But during practical fre-
quency analysis, for engineers, these cosine representation as summation of 1/2
of the positive frequency harmonic and 1/2 of the negative frequency can be treated
as making things more difficult than they in reality are. Therefore in the fourth
method, division by N can be replaced by division by N/2 and our cosine has
in the spectrum two peaks with amplitudes 1—what is correct when we observe
only one half of the FFT spectrum connected with positive frequencies. In Matlab:
X=2*fft(x)/N; plot(fs/N*(0:N/2),abs(X(1:N/2+1) .

FFT Normalization for Arbitrary Window In order to obtain amplitude signal
spectrum, i.e. correct amplitudes of its frequency components, the FFT result should
be scaled. In the simplest situation when no extra window function is used, only the
rectangular one, we should simply divide the spectrum by N and multiply it by 2
in order to obtain correct amplitude spectrum in positive frequency range. But, as
we remember from chapter on DtFT and DFT, one should multiply signal fragment
with deliberately chosen window function w(n) (and additionally use sufficiently
long signal fragment, i.e. high value of N) in order to ensure required amplitude
and frequency resolution of the spectrum. In such case the scaling of FFT amplitude
spectrum has to be changed to general formula:
Xampl=2*fft(x)/sum(w); .

Power Spectrum and Power Spectral Density The last question to be answered
before FFT usage is what kind of FFT spectrum we are interested in: amplitude,
power, power spectral density, or amplitude spectral density [15]. In different appli-
cations and for different signals different FFT spectra are preferred. First, we should
specify our expectations. Signal power and RMS value were defined in Table 2.2.
One can analytically or computationally verify that sine with amplitude A has a
power equal to 1

2 A2 and the RMS value equal to the square root of the power 1√
2
A.

Basic equalities and Matlab commands for primary spectral analysis are given in
Table 6.1. We start from signal x(n) windowing and computation of its FFT, then
we take absolute value of the result and receive |X(k)|. Signal amplitude spectrum
(AS) XAS(k) is obtained by multiplying calculated |X(k)| by 2 (taking into account
negative frequencies) and normalizing the result—division by summation of win-
dow w(n) coefficients (division by N is correct only for rectangular window). The
signal power spectrum XPS(k), as described above, is simply squared XAS(k) divided
by 2.
Density spectra are calculated in similar way. The amplitude spectral density (ASD)
XASD(k) is only differently normalized than XAS(k), by square root of summation
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Table 6.1: Mathematical definition and computation in Matlab of amplitude
and power spectrum (AS, PS) as well as amplitude and power spectral den-
sity (ASD, PSD) for signal x(n) multiplied by window function w(n),n =
0,1,2, . . . ,N − 1 . Values of spectral coefficients computed in Matlab are valid
for k=1,2,3,...,N/2+1 and they correspond to frequencies k fs/N,k =
0,1,2, . . . , N

2

Quantity Math definition, k = 0 . . . N
2 Matlab code

DFT Eq. (6.1), |DFT| X(k) =
N−1
∑

n=0
x(n)w(n)e− j 2π

N kn X=fft(x.*w); Xa =
abs(X);

Window Sum S1 =
N−1
∑

n=0
w(n) S1=sum(w);

Window Energy S2 =
N−1
∑

n=0
w2(n) S2=sum(w.ˆ2);

Ampl Spectrum (AS) XAS(k) = 2 |X(k)|
S1

(V) Xas=2*Xa / S1;

Power Spectrum (PS) XPS(k) =
X2

AS(k)
2 (V2) Xps=Xas.ˆ2 / 2;

Ampl Spectral Density (ASD) XASD(k) = 2 |X(k)|√
fsS2

(
V√
Hz

)
Xasd=2*Xa /
sqrt(fs*S2);

Power Spectral Density (PSD) XPSD(k) =
X2

ASD(k)
2

(
V2

Hz

)
Xpsd=Xasd.ˆ2 / 2;;

not of window coefficients but their squared values, the sum is additionally multi-
plied by the sampling frequency fs. The power spectral density (PSD) XPSD(k) is a
squared XASD(k) divided by 2, as before.
A complete all-in-one program for computation of all signal spectra defined in
Table 6.1 is presented in Listing 6.1. Signal components have amplitudes 1 and√

2. Calculated spectra are shown in Fig. 6.1. The AS spectrum shows these values.
The PS spectrum, as expected, gives values 1

2 and 1. Correct are also plots of ASD
and PSD.

Listing 6.1: Computation of different FFT spectra
�

1 % lab06_ex_fft_usage.m
2 clear all; close all;
3

4 % Signal
5 N=5000; fs=10000; xlsb=0.001; % N=5000=(2̂ 3)*(5̂ 4)=8*625 = fast alg.
6 dt=1/fs; t=dt*(0:N-1);
7 x = 1*sin(2*pi*1000*t) + sqrt(2)*sin(2*pi*3501.1234*t);
8

9 % Noise - alternative: SNR=80(?); x = awgn(x,SNR,’measured’);
10 x = floor( x/xlsb + 0.5 )*xlsb; noise_level = xlsb/sqrt(6*fs),
11

12 % Windowing
13 w1 = rectwin(N)’; w2 = hann(N)’; w3 = kaiser(N,12)’; w4 = flattopwin(N)’;
14 w = w4;
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15 x = x .* w;
16

17 % Spectralestimation
18 X = fft(x); Xa = abs(X); % FFT without scaling, no division (by sqrt(N),N)
19 XN = X/N; % FFT with typicaldivision by N (rectangular wind)
20 Xas = 2*Xa/sum(w); % Ampl spectrum (AS) - correct for any window
21 Xps = Xas.̂ 2/2; % Power spectrum (PS) - correct for any window
22 Xasd = 2*Xa/sqrt(fs*sum(w.̂ 2)); % Amplitudespectraldensity (ASD) - as above
23 Xpsd = Xasd.̂ 2/2; % Power spectraldensity (PSD) - as above
24

25 % PS = AŜ 2/2; ASD=AS/sqrt(ENBW); PSD = ASD̂ 2/2 = PS/ENBW = AŜ 2/ENBW;
26 S1 = sum(w); S2 = sum(w.̂ 2); ENBW = fs*S2/S1̂ 2, NENBW = N*S2/S1̂ 2,
27 err_asd = max(abs(Xasd-Xas/sqrt(ENBW))),
28 err_psd = max((abs(Xpsd)-Xas.̂ 2/ENBW)), pause
29

30 % Figures
31 k = 1:N/2+1; % indexes of non-negativefrequencies
32 f0 = fs/N, f = f0 * (k-1); % none-negativefrequencies (1st spectrum half)
33 figure; % change stem() to semilogy()
34 subplot(221); stem(f(k),Xas(k)); xlabel(’f(Hz)’); ylabel(’[V]’); title(’AS’);
35 subplot(222); stem(f(k),Xasd(k)); xlabel(’f(Hz)’); ylabel(’[V/\surdHz]’); title(’ASD’);
36 subplot(223); stem(f(k),Xps(k)); xlabel(’f(Hz)’); ylabel(’[V̂ 2]’); title(’PS’);
37 subplot(224); stem(f(k),Xpsd(k)); xlabel(’f(Hz)’); ylabel(’[V̂ 2/Hz]’); title(’PSD’);
38 pause

��

Exercise 6.1 (Standard FFT Usage for Different Signal Spectra Calcula-
tion). Carefully analyze code of the program 6.1. Read all comments. Run the
program. You should see plots presented in Fig. 6.1. In the beginning make
an extra copy of the last figure and replace in it the function stem() with the
function semilogy() (only this). Run the program. Notice low level of noise.
Next modify amplitudes and frequencies of two signal components. Calculate
expected theoretical values (using Table 6.1) and check figure correctness. In-
crease value of xlsb—voltage corresponding to the low significant bit of the
AD converter—and make this way level of noise higher. Observe spectra. In-
crease the xlsb once more, check result and return to the initial xlsb setting.
Observe that till now you were using the Matlab flattopwin() function
as a window. It has very wide spectral main-lobe and relatively low level of
spectral side-lobes letting you, both, correct measurement of signal component
amplitudes (reduction of spectral leakage effect), even in the case when they
differ a lot (high dynamic range). Change the window to rectangular and Hann.
Observe spectral peaks at present. Are their heights correct or not? Make one
component being significantly weaker than the other, e.g. decrease its amplitude
1000 times. Observe spectra.
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Fig. 6.1: Different signal spectra calculated in program 6.1, from (up-left) to (down-
right): amplitude spectrum (AS), power spectrum (PS), amplitude spectral density
(ASD), and power spectral density (PSD). Linear scale

6.3 Fast Frequency Resolution Improvement

We can very easily increase frequency resolution (zoom) of the DFT spectrum as a
whole. How to do it? In discrete-time Fourier transform we analyze N signal sam-
ples assuming zeros before and after them. So the result will be the same when we
perform FFT procedure on vector of N signal samples with some (K − 1)N zeros
appended at the end. This way we increase the signal length artificially and the FFT
function sees the K ·N samples and build the DFT matrix with dimensions KN×KN
instead of N ×N. So we have now KN frequency reference functions spanning the
range [0, fs) which result in frequency resolution fs/(KN) instead of fs/N, i.e. K
times higher (with frequency step K times smaller). The spectral window, if neces-
sary, should have the length N and do weighting of original signal samples only. The
program 6.2 is demonstrating the described DFT zooming trick.Plots presented in
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Fig. 6.2: Different signal spectra calculated in program 6.1, from (up-left) to (down-
right): amplitude spectrum (AS), power spectrum (PS), amplitude spectral density
(ASD), and power spectral density (PSD). Logarithmic scale

Fig. 6.2 have been generated with its use. In order to make things simpler the FFT
is computed for a pure sine signals with two different frequencies: 20 Hz (left) and
22 Hz (right). Frequency discretization in original FFT is equal to fs/N = 5Hz while
with K = 25 times signal enlargement by zero appending—25 times less, i.e. 0.2Hz.
Improvement in spectrum shape is tremendous: theoretical spectrum of rectangu-
lar window is clearly visible (blue small dots). Without zero appending the spectral
result can look very different—compare FFT red dots in both figures.

It is important to remember that in the FFT Matlab function additional zeros
are automatically appended at the signal end on request, i.e. when we specify FFT
length M bigger then original signal length N. In such case, M −N zeros are ap-
pended. In Matlab for rectangular window we should write
X=fft(x,M)/N); plot(fs/M*(0:M-1),abs(X)) .

It is important to observe that all spectra calculated in the previous section can
be zoomed since each of them represent a scaled version of the amplitude spectrum
which can be zoomed, as shown in this section (Fig. 6.3).
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Fig. 6.3: DFT (red circles) and DtFT (blue dots) spectra of a signal having only one
sinusoid: 20 Hz left and 22 Hz right. Higher frequency resolution DtFT spectrum is
obtained after increasing signal length by appending zeros at the end and calculating
longer FFT

Listing 6.2: FFT spectrum with denser frequency sampling
�

1 % lab06_ex_dft_zoom.m
2 clear all; close all;
3

4 N=20; K=25; fs=100; % FFT length, resolution increase, samplingfrequency
5 dt=1/fs; t=dt*(0:N-1); % sampling period, sampling time moments
6 x = sin(2*pi*22*t); % signal
7 w = rectwin(N)’; % window: rectwin(),hanning(),blackman(),flattopwin(),..
8 x = x.*w; % signal windowing
9 X = fft(x)/sum(w); % FFT withoutappending zeros

10 Xz = fft( [x,zeros(1,(K-1)*N)] )/sum(w); % with zeros; or X=fft(x,K*N)/sum(w)
11 f = fs/N *(0:N-1); fz = fs/(K*N)*(0:K*N-1); % frequency axis
12 figure; plot(f,abs(X),’ro’,fz,abs(Xz),’b.’,’MarkerFaceColor’,’r’); xlabel(’f (Hz)’);
13 title(’Zoomed DFT via FFT’); grid; pause

��

Exercise 6.2 (Zoomed FFT by Appending Extra Zeros). Run the pro-
gram 6.2. Choose different windows. Change N to 50 and 100. Add logarith-
mic scaling of spectral coefficients. Show only coefficients for non-negative
frequencies. Multiply spectrum by 2 in this case. Add calculation of power
spectral density—see Table 6.1.

6.4 FFT of Noisy Signals: Welch Power Spectral Density

In Sect. 6.2 general FFT application rules were presented. In part, computation of
signal power spectrum and its power spectral density were described. But presented
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solutions were more applied than statistically correct. Only one FFT procedure was
executed and all resulting amplitude and power spectra were calculated. Such ap-
proach is good for deterministic signals but not for noisy ones. In case of noise,
individual spectra differ a lot, and several of them have to be computed and aver-
aged in order to obtain reliable estimate of noise power or power spectral density.
This section is devoted to this problem: how to apply FFT in case of noisy signals?

In high math theory, the signal power spectral density is defined as Fourier trans-
form of the signal auto-correlation function. The cross-correlation function between
two signals with finite energy is defined by formula:

Rxy(τ) =
+∞∫

−∞

x(t)y∗(t − τ)dt (6.4)

and their cross power spectral density is defined as Fourier transform of the first:

Pxy( f ) =

∞∫
−∞

Rxy(τ)e− j2π f τ dτ . (6.5)

After setting y(n) = x(n), the auto-correlation function of the signal x(n) is obtained
and its power spectral density. Considering two signals we are making discussion
deliberately a little bit deeper. After time discretization the Eq. (6.5) takes the form:

Pxy( f/ fs) =
∞

∑
m=−∞

Rxy(m)e− j2π( f/ fs)m. (6.6)

Let us assume that we have only one signal x(n) with N samples. We can first
calculate estimates of its auto-correlation function for −N +1 ≤ m ≤ N −1:

R̂(1)
xx (m) =

1
N

N−1−|m|
∑
n=0

x(n)x∗(n−m), (6.7)

R̂(2)
xx (m) =

1
N −|m|

N−1−|m|
∑
n=0

x(n)x∗(n−m), (6.8)

and then estimate of its PSD:

P̂(N)
xx ( f/ fs) =

N−1

∑
m=−(N−1)

R̂xx(m)e− j2π( f/ fs)m. (6.9)

Estimator R̂(1)
xx (m) is biased (has an offset in respect to the true, correct value),

while the estimator R̂(2)
xx (m) is un-biased. However R̂(2)

xx (m) has bigger variance than

R̂(1)
xx (m), i.e. its scatter around the expected value (mean) is bigger. In turn, the PSD

estimator P̂(N)
xx ( f/ fs) is not consistent since its variance does not tend to zero with

the increase of signal length N to infinity.



126 6 FFT Applications: Tips and Tricks

There are different methods coping with this drawback.
In Blackman–Tukey method the Fourier transform is performed upon the win-

dowed auto-correlation function estimator, i.e. R̂xx(m) multiplied by chosen window
function w(n) (Hamming, Hann, or some other):

P̂(N)
xx ( f/ fs) =

N−1

∑
m=−(N−1)

w(m)R̂xx(m)e− j2π( f/ fs)m. (6.10)

It is interesting to mark that this method, directly implementing the PSD definition,
was in the past available in Matlab but at present it is not. Since it is computation-
ally attractive and very educational we will discuss it later after introducing fast
computation of convolution/correlation by FFT.

In Welch method, nowadays the most frequently used approach for PSD esti-
mation, relation between the PSD and the so-called periodogram 1/(2N + 1)|XN

( f/ f s)|2, the squared DtFT, is exploited:

Pxx

(
f
fs

)
= lim

N→∞
E

⎡
⎣ 1

2N +1

∣∣∣∣∣
N

∑
n=−N

x(n)e− j 2πn f
fs

∣∣∣∣∣
2
⎤
⎦= lim

N→∞
E

[
1

2N +1
XN

(
f
fs

)
X∗

N

(
f
fs

)]
.

(6.11)
Please note that we were calculated periodograms, squared FFT spectra, in Sect. 6.2.
In Welch approach many windowed periodograms (windowed, squared FFTs) are
calculated and averaged. Input sequence of N signal samples x(n) is divided into L
fragments x(l)(n) with M samples, which overlay or not in dependence on the offset
(step) D:

x(l)(n) = x(n+ lD), 0 ≤ l ≤ L−1, 0 ≤ n ≤ M−1. (6.12)

Next each data fragment is multiplied with window function w(n) (e.g. Hamming),
the DtFT is computed, the result is squared and divided by sum of squared window
coefficients:

P̂(l)
M ( f ) =

1
Ew

∣∣∣∣∣
M−1

∑
n=0

x(l)(n)w(n)e− j2π( f/ fs)n

∣∣∣∣∣
2

, Ew =
M−1

∑
n=0

w2(n) (6.13)

The final PSD estimator is a mean value of calculated modified periodograms:

P̂w
xx( f ) =

1
L

L−1

∑
l=0

P̂(l)
M ( f ). (6.14)

When D = M consecutive signal fragments do not overlay (Bartlett method), in turn
for D = M/2 they overlay in fifty percents.

How to implement the Welch method? It is not difficult, especially its Bartlett
version in Matlab. A code example is presented in Listing 6.3—being a continua-
tion of the program 6.1. The signal amplitude and power spectral densities are calcu-
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lated. Since in Matlab each operation (function) which is performed upon a matrix
is executed over matrix columns, we can put consecutive (one-by-one) signal frag-
ments into signal matrix X columns (line 7) using function reshape(), create a
window matrix W having repeated window function w(n) in each column using func-
tion repmat()(line 8), then multiply both matrices X.*W (line 9), then perform
fft() on the matrices product (line 9) and, finally, square the result, multiply it by
2, normalize by doubled energy of window coefficients multiplied by sampling fre-
quency fs, and calculate mean value of all columns (spectra). Uff. . . Last operation
is performed via matrix transposition (().’), calling function sum() and division
by M. This way the signal amplitude spectral density is obtained. Next, it is squared
and divided by 2 giving the signal power spectral density.

In Fig. 6.4 there are presented two calculated mean FFT spectra of signal ampli-
tude and power. The Welch spectra averaging concept is applied. We can see with
ease the difference between these mean spectra and spectra presented in Fig. 6.2—
the noise floor is significantly smoother and on the expected level.

Listing 6.3: Calculation of noise-robust amplitude and power spectra using FFT
�

1 % lab06_ex_welch.m continuation of lab06_ex_fft_usage.m
2

3 M = 100; NM=N*M; n = 0 : NM-1; t=dt*(0:NM-1);
4 x = 1*sin(2*pi*1000*t) + sqrt(2)*sin(2*pi*3501.1234*t); % two sines
5 %x = 1*sin(2*pi*(1000*t + 0.5*50*t.̂ 2)); % LFM signal: increase of 50 Hz/s
6 x = floor( x/xlsb + 0.5 )*xlsb; % noise addition
7 X = reshape(x,N,M); % matrix with signal fragments in M columns
8 W = repmat( w’, 1, M); % matrix with the same window in M columns
9 Xa = abs( fft( X.*W ) ); % FFT of each column of X.*W, then abs()

10 Xasd2 = 2*Xa/sqrt(fs*sum(w.̂ 2)); % AmplitudeSpectralDensity (ASD)
11 Xpsd2 = Xasd2.̂ 2/2; % Power SpectralDensity (PSD)
12

13 Xasd2 = sum(Xasd2. ’)/M; Xpsd2 = sum(Xpsd2. ’)/M; % cols (spectra) --> rows, mean of
rows

14

15 % Figures
16 % Mean amplitudespectrum and mean power spectrum (for many signal fragments)
17 figure
18 subplot(121); semilogy(f(k),Xasd(k),f(k),Xasd2(k),’g’);
19 xlabel(’f (Hz)’); ylabel(’[V/\surdHz]]’); title(’Amplitude SD’);
20 subplot(122); semilogy(f(k),Xpsd(k),f(k),Xpsd2(k),’g’);
21 xlabel(’f (Hz)’); ylabel(’[V̂ 2/Hz]]’); title(’Power SD’);
22 pause

��

Exercise 6.3 (Welch PSD Calculation and Verification). Carefully analyze
code of the program 6.3. At present signal amplitude and power spectral den-
sities are calculated, i.e. ASD and PSD, respectively. Add calculation of av-
erage amplitude and power signal spectra, AS and PS. Become familiar with
pwelch() or periodogram() Matlab functions. Use them, set their pa-
rameter values and try to obtain results that are similar to received in the pro-
gram 6.3.
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Fig. 6.4: Amplitude (left) and power (right) spectral densities after averaging of 100
FFT spectra (narrow blue solid curve). Noise level becomes significantly smoother
after mean DFT spectrum calculation in comparison to the single DFT spectrum
computing (light green dashed line)

6.5 FFT of Time-Varying Signals

6.5.1 Short-Time Fourier Transform

An analyzed signal can vary in time. For example, sine signal can have slowly
changing amplitude, frequency, or phase, i.e. it can be modulated in amplitude,
frequency, or phase, like telecommunication carriers. Our speech signal has per-
manently changing frequency content. In this case, only one spectrum calculated
for the whole signal changing in time can be misleading! It offers mean values of
signal components parameters inside the observation window—we cannot see in it
trajectories of changes. In order to track frequency changes of the signal in time we
should use the so-called short-time Fourier transform:

1. cut the signal into many, shorter overlapping fragments using any window,
2. calculate FFT spectrum of each fragment and collect all of them into one matrix,
3. display matrix values in 3D (mesh(),surf()) or as color/gray-scale image

(imagesc() (gray-levels),
4. observe how the signal spectrum is changing in time—observe frequency and

amplitude modulation curves of individual signal components.

The applied window should not be too long and too short since:

• for too long window more average than instantaneous spectrum is obtained,
with smearing in time axis,

• for too short window the obtained instantaneous spectrum has too low-frequency
resolution and visual smearing in frequency axis is observed.

In program 6.4 the above-described procedure is implemented in Matlab in simpli-
fied form: the signal is cut into non-overlapping fragments. In program 6.3, being
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a continuation of the programs 6.1, the signal was cut also into fragments, many
spectra were computed and then they were averaged. We aimed at noise suppres-
sion then. At present all calculated spectra are important for us and we are not
averaging them: we deliberately observe in them signal change in frequency do-
main. Figure 6.5 presents a STFT spectrum: a sequence of many amplitude spectra
computed for shorter signal fragments and stored as a 2D time–frequency matrix.
The STFT spectrum was computed for cosine signal changing its frequency linearly
from 1000 Hz to 3500 Hz during 50 s of signal observation. In left figure the spec-
trum is plotted as a 3D mesh while in right one as color image. The signal frequency
change is very well visible in both plots. It is not the case when only one spectrum of
the whole signal is computed, which demonstrates Fig. 6.6. In the left plot one am-
plitude spectrum, calculated for the whole very long signal, is shown, while in the
right one one mean amplitude spectrum of many consecutive signal fragments. In
both cases the spectrum is wide and tells us that signal consists of many frequencies
what is misleading. In fact the signal has only one sinusoidal component changing
its frequency in time (Fig. 6.5).
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Fig. 6.5: Short-time Fourier transform spectrum |X(t, f )| of cosine signal changing
its frequency linearly from 1000 Hz to 3500 Hz during 50 s of signal observation,
calculated using Hann window. (left) 3D mesh plot, (right) visualized as color image
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Fig. 6.6: Amplitude spectra calculated for cosine signal changing its frequency lin-
early from 1000 Hz to 3500 Hz during 50 s of signal observation, calculated using
Hann window. (left) amplitude spectrum calculated for the whole long signal, (right)
mean amplitude spectrum of many consecutive signal fragments
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Listing 6.4: STFT calculation: sequence of short FFT amplitude spectra—
continuation of Listing 6.4

�

1 % lab06_ex_stft.m continuation of lab06_ex_welch.m
2 % ...
3 X = reshape(x,N,M); % put signal fragments into M columns of matrix X
4 W = repmat( w’, 1, M); % put the same window w into M columns of matrix W
5 Xa = abs( fft( X.*W ) ); % perform FFT of each column of X.*W, then abs()
6

7 figure
8 Xas = 2*Xa(1:N/2+1,1:M)/sum(w); % absolute values, positive frequencies, scaling
9 t = dt*(N/2 : N : N/2+(M-1)*N);

10 mesh(t,f,20*log10(Xas)); view(-40,70); axis tight; % AS matrix as a 3D mesh
11 cb=colorbar(’location’,’EastOutside’); set( get(cb,’Ylabel’),’String’,’V (dB)’);
12 xlabel(’time (s)’); ylabel(’frequency (Hz)’); pause
13

14 figure
15 imagesc(t,f,20*log10(Xas)); % AS matrix as an image
16 cb=colorbar(’location’,’EastOutside’); set( get(cb,’Ylabel’),’String’,’V (dB)’);
17 xlabel(’time (s)’); ylabel(’frequency (Hz)’); pause
18

19 % For comparison - one mean spectrum of many short signal fragments
20 Xas = 2*Xa/sum(w); % many amplitude spectra (AS)
21 Xasm = sum(Xas’)/M; % mean AS, cols --> rows, sum of rows
22 figure
23 subplot(111); semilogy(f(k),Xasm(k),’b’); xlabel(’f (Hz)’); title(’Mean AS’);
24 pause
25

26 % For comparison - one spectrum of very long signal fragment
27 w = hann(NM)’; % very long window
28 Xas1 = 2*abs(fft(x.*w))/sum(w); % one AS of the whole long signal
29 k = 1:1:NM/2+1; f=fs/NM*(0:NM-1); % frequencies of AS coefficients
30 figure
31 subplot(111); semilogy(f(k),Xas1(k),’b’); xlabel(’f (Hz)’); title(’One long AS’);

��

Mathematically, for discrete-time signals, the short-time Fourier transform is de-
fined as:

X(n, f ) =
2

∑N−1
n=0 w(n)

∞

∑
m=−∞

[x(m)w(m−n)]e− j2π f
f s m, 0 ≤ f < fs/2 (6.15)

A window w(m) has non-zeros values only for m = 0,1,2, . . . ,N − 1. The value n
denotes the window shift, i.e. after it the shifted window w(m−n) has non-zero val-
ues for m = n,n+1,n+2, . . . ,m+(N −1) and signal samples having these indexes
are weighted by the window and transformed with FFT.
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Fig. 6.7: Window length influence upon STFT time–frequency resolution: (left) win-
dow too short, (center) optimal window length, (right) window too long. Sum of two
LFM signals with Gaussian time-envelopes is analyzed [27]

The FFT and window length N should be very carefully chosen. Too short or
too long window causes unwanted STFT spectrum smearing in direction of the fre-
quency axis (too short) or the time axis (too long), which is shown in Fig. 6.7.

Exercise 6.4 (STFT Calculation and Verification). Carefully analyze code of
Listing 6.4 which is continuation of the program 6.3. At present a signal is
cut into non-overlapped fragments and only signal amplitude spectrum is cal-
culated. Become familiar with spectrogram() Matlab function. Use this
function, set its parameter values, and try to get plots which are similar to ones
obtained in the program 6.4. Next, try to add signal fragments overlapping—
perform FFT not in the matrix form but in the loop, one-by-one over signal frag-
ments. Change window length and its overlap. Observe changes in the STFT
spectrum. Read any speech signal, then calculate and display its STFT spec-
trum.

6.5.2 Wigner–Ville Time–Frequency Signal Representation

The short-time Fourier transform is only one example of the so-called time–frequency
distributions (TFD), intend to track the signal spectrum change. Most of them be-
long to the Cohen’s TFD family [9]. A special role in it plays the Wigner–Ville
TFD, which is a perfect tool for analysis of mono-component signals with linear
frequency modulation. It was proposed by Wigner [25] for real-value signals, and
extended to complex-value signals by Ville. Such signals are widely used in radar
signal processing. The continuous-time Wigner–Ville TFD (WVD) is defined as a
continuous-time Fourier transform, performed over variable τ , upon a WV signal
kernel:



132 6 FFT Applications: Tips and Tricks

X(t,ω) =

∫ ∞

−∞
xx(t,τ)e− jωτ dτ , xx(t,τ) = x

(
t +

τ
2

)
· x∗
(

t − τ
2

)
, (6.16)

and repeated for many values of t. For a complex-value signal with linear frequency
modulation, the WV kernel is equal to:

x(t) = e j(ω0t+0.5αt2) ⇒ xx(t,τ) = e j(ω0+αt)τ , (6.17)

and the WVD magnitude has maximum at instantaneous angular signal frequency
(ω0+αt), regardless the t value. For this reason, the repeated WVD tracks perfectly
the instantaneous signal frequency. In discrete-time implementation the WVD is
computed as follows:

1. calculation of a complex-value, analytic signal corresponding to a real value,
analyzed signal, using the Hilbert transform (discussed in the chapter on special
filters; in Matlab: xa=hilbert(x);

2. cutting the signal into fragments N-samples long, in Matlab:
xf=xa(n:n+(N-1));

3. calculation of the WV kernel of each signal fragment, in Matlab:
xx=xf.*conj( xf(end:-1:1) );

4. performing FFT upon each WV kernel, in Matlab: X=fft(xx)/N;
5. collecting all FFT spectra into a matrix and displaying absolute values of matrix

elements.

Mono-component signals different than the LFM ones, and multi-components
signals, have the so-called cross-terms in the WVD spectrum. There are many meth-
ods for their suppression. If you are interested how it is done, take any book on
time–frequency signal analysis.

Exercise 6.5 (Wigner–Ville Distribution of Signals Modulated in Fre-
quency). Modify program lab06_ex_wvd.m from the book repository. Gen-
erate a signal with linear frequency modulation (LFM) and calculate its WVD.
Check whether the frequency change is properly tracked. Propose correct scal-
ing of the frequency axis—due to signal multiplication the observed frequency
is two times higher. Repeat experiment for different speed of frequency change,
starting from small values. Apply different windows to the WV kernel. Use
different values of N. Compare obtained WVD spectra with STFT spectra.
Now, calculate WVD for a signal with sinusoidal FM, i.e. SFM, and for a two-
component signal: LFM plus SFM. Finally, return to the LMF signal and omit
calculation of the analytic signal version. What has changed? Why?
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6.6 Fast Convolution and Correlation Based on FFT

One of the most important laws in analog signal theory tells: “Considering
time and frequency: convolution in one domain corresponds to multiplication
in the other domain and vice versa.” For example, convolution of two signals
in time results in multiplication of their frequency spectra while multiplication
of two signals causes convolution of their spectra. These relations hold also
for discrete-time signals. Therefore, instead of convoluting two long signals in
time domain, for example, input samples and weights of very long FIR digital
filter, it is better to calculate their DFT spectra using fast FFT algorithms, mul-
tiply them and compute the inverse FFT. The result will be exactly the same but
computational effort—significantly smaller. Such signal convoluting by their
spectra multiplication is called fast convolution and it is widely used for fast
implementation of FIR digital signal filtering (see Chap. 9). Since computa-
tionally correlation of two signals is very similar to convolution of two signals
(with the only difference that the second signal is not time-reversed but com-
plex conjugated), fast convolutions algorithms and programs can be with ease
apply to efficient correlation computing. In this section we learn how all of this
it is done, of course thanks to our sweet FFT.

6.6.1 Linear Convolution

Linear convolution of two signals x(n) and h(n), i.e. two sequences of samples, is
defined as:

y(n) =
∞

∑
k=−∞

x(k)h(n− k). (6.18)

Graphical illustration of signal linear convolution is presented in left part of
Fig. 6.8. Two signals are convoluted, x(k) = [2,1,1,2], having N = 4 samples, and
h(k) = [1,2,3], consisting of M = 3 samples. Order of operations is as follows:

1. first, the second signal is reversed in time: h(k)→ h(−k)—third row from the
top,

2. then, many times shifted right by 1 sample: h(−k)→ h(1−k),h(1−k)→ h(2−
k),h(2− k)→ h(3− k), . . .—the following rows are obtained,

3. after every shift, the second signal samples are multiplied with corresponding
samples of the first signal x(k)[2,1,1,2] (i.e. samples being in the same position)
in the sample-by-sample manner: x(k)h(n−k) for every value of k, e.g. for n= 2
and shifted signal h[2− k] we have

x(2)h(0) = 1 ·1 = 1, x(1)h(1) = 1 ·2 = 2, x(0)h(2) = 2 ·3 = 6, (6.19)
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Fig. 6.8: Linear (left) and circular modulo-6 (right) convolution of two sequences
of samples: x(k) = [2,1,1,2],N = 4, and h(k) = [1,2,3],M = 3. In both cases the
convolution result is the same, has K = N +M − 1 = 6 samples, and is equal to
y(n) = [2,5,9,7,7,6]. For clarity of presentation, we are neglecting signal synchro-
nization problem

4. finally, all products are summed (accumulated) giving a convolution result y(n)
for each shift n of h(k). This way one obtains N +M − 1 samples of y(n). For
example, for n = 2 we have (see Fig. 6.8):

x(2)h(0)+ x(1)h(1)+ x(0)h(2) = 1+2+6 = 9. (6.20)

Since linear convolution plays a very important role in digital signal filtering, its
understanding is crucial in our course. For this reason, in Fig. 6.9 one additional,
very simple graphical explanation is presented in which two vectors x(k) and h(k),
consisting of three 1s, are convolved. The second is reversed, shifted forward, mul-
tiplied by the first, and mult results are accumulated. Only first three output samples
y(0), y(1), and y(3) are computed. They represent sum of one, two, and three 1s. It
is a last chance to catch a train to London. The train’s going.

6.6.2 Circular Convolution

Circular convolution modulo-K of two signals, x(k) having N samples and h(k) with
M samples (N > M), is defined as:

y(n) =
K−1

∑
k=0

x(k)h((n− k)modK), (6.21)
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Fig. 6.9: Linear convolution of two vectors x = [1,1,1] and h = [1,1,1]. Only three
first output samples y(0), y(1), and y(3) are computed [27]

where h((n−k)modK) denotes circular modulo-K shift n position right of the signal
h(−k). Let us assume that K =N+M−1 and both signals x(k) and h(k) are initially
enlarged with padding zeros, appended at their ends, to the length N +M−1. Then
they are convoluted in circular manner: the second signal is reversed in time (in
circular modulo-K manner), shifted one sample right (also in modulo-K fashion),
multiplied by the first signal, then all products are accumulated. This operation and
its result are presented in Fig. 6.8 (right side). As we see, exactly the same values
are obtained as for the linear convolution. If N −M zeros are appended only to the
second signal and the modulo-N convolution is performed, the first M − 1 samples
of the signal y(n) are wrong. But the remaining ones are correct.

Exercise 6.6 (Halo! My name Is Linear Convolution: Linear Not Circu-
lar!). Check manually calculation of linear and circular convolution of two sig-
nals, presented graphically in Fig. 6.8. Correct results are given in the bottom
of the figure. Linear and circular convolutions are not well distinguished by stu-
dents. This is like with my person: I am from Poland but recognized as coming
from Holland.

6.6.3 Fast Linear Convolution

The DtFT of signal y(n), result of convoluting two signals x(n) and h(n), is equal to
(using denotation: m = n− k):
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Y (Ω) =
∞

∑
n=−∞

(
∞

∑
k=−∞

x(k)h(n− k)

)
e− jΩ n =

∞

∑
k=−∞

x(k)e− jΩ k
∞

∑
m=−∞

h(m)e− jΩ m =

= X(Ω)H(Ω), (6.22)

i.e. to multiplication of DtFT spectra of convoluted signals x(k) and h(k). Therefore,
instead of using Eq. (6.18), one can calculate vector of signal samples y(n) from
Eq. (6.22), performing inverse DtFT upon product X(Ω)Y (Ω):

y(n) = IDTFT( Y(Ω) ) = IDTFT( DFT(x(n)) .∗DFT(h(n)) ) . (6.23)

When DtFT and inverse DtFT are replaced by fast FFT and inverse FFT, the so-
called fast convolution result:

y(n) = IFFT( X(k)H(k) ) = IFFT( FFT(x(n)) .∗FFT(h(n)) ) (6.24)

where .∗ denotes, as in Matlab, multiplication of corresponding elements of two
equal-length vectors, sample-by-sample. Fast convolution is beneficial for long sig-
nals: time-consuming signal convolving in time domain is replaced by three FFTs,
two direct and one inverse. However the shorter signal should be appended with
padding zeros at its end to the length of the longer signal. Or both signals have to be
enlarged with zeros to the same length but bigger. What signal length is optimal?

Block of samples y(n) calculated in Eq. (6.24) using DFTs, represents result not
of the linear convolution of signals x(k) and h(k) but of the circular one. When
only N −M zeros are appended to the second signal, the first M−1 samples of the
convolution result are wrong, because after initial time-reversion of the signal h(k)
its M−1 samples hits to last samples of the signal x(k) and are multiplied with them.
In order to avoid this effect, both signal have to be appended with zeros minimum
to the length N +M − 1, as explained above in Fig. 6.8. We will test in detail the
described algorithm of fast convolution of two signals in Exercise 6.7. This way
an FIR digital signal filtering, addressed in Chap. 9, can be implemented in a fast
way. It is possible because such filtering has a form of convolution of signal samples
x(n) with specially designed filter weights h(n). This operation, calculation of local
weighted signal average, can cause removal of some frequencies from the processed
signal.

6.6.4 Fast Overlap–Add and Overlap–Save Sectioned Convolution

In Eq. (6.24) FFTs are performed upon blocks of signal samples. There are two
drawbacks of the data-block signal processing. From one side, it can cause a long
time delay of out samples in respect to input samples. From the second side, in real-
time signal filtering (convolving), when signal samples are permanently coming in,
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we would wait forever for end of data stream. Therefore cutting signal into smaller
fragments and implementation of fast convolution in real-time over smaller vectors,
data pieces, is necessary. In this section two fast sectioned convolution methods
will be described, in which fast FFT-based convolution concept is applied, but for
separate, consecutive signal fragments, not to the whole signal.

Fast Overlap–Add Method In this method zeros are appended to all, non-
overlapping input signal sections, changing block-based circular convolution to the
linear one. Due to this, the output signal sections are longer, they overlap and have
to be added. The computational procedure is graphically illustrated in Fig. 6.10, im-
plemented in program 6.5 and tested in Exercise 6.7. Let us assume that a shorter
signal h(k) has M = 7 samples. A longer signal x(n), with L = 46 samples, is cut
into non-overlapped fragments having N = 10 samples, its last 6 samples are ne-
glected. In the beginning, N − 1 = 9 zeros are appended to the h(k) end, the hz(n)
is get, and (N +M − 1 = 16)-point FFT over hz(k) is performed. Then M − 1 = 6
zeros are appended to each, consecutive, N-samples long fragment of signal x(n),
and short x1z(n), . . . ,x5z(n) sub-signals are obtained. Next (L+M − 1) = 16-point
FFT is computed upon each short data block. Obtained results are multiplied with
already computed FFT of hz(k) (in sample-by-sample manner, starting from the
first samples) and inverse FFTs of the multiplication results are calculated for all
sub-signals. N+M−1 = 16 samples of the output sub-signals y1z(n), . . . ,y5z(n) are
obtained this way. Then they are combined (partially added): first (M − 1) = 6 of
the next block are added to the last (M−1) samples of the previous block, already
calculated, and the remaining next N samples of the next block are appended to the
end of y(n) calculated till now.

Fast Overlap–Save Method In this method zeros are not appended to the input
signal sections and sectioned circular, not linear, convolutions are performed. For
this reason, first M − 1 samples of each calculated output signal block are wrong!
Because they should be taken from the end of a previous block, the input signal
sections have to overlap. Graphical method illustration of the fast overlap–save con-
volution method is presented in Fig. 6.11. Let us assume that a filter h(n) has M
weights and it is artificially extended to the length N by appending N −M zeros to
its end. In turn, the filtered x(n) consists of L samples and it is divided into frag-
ments having N samples, but overlapping with M −1 samples. Because we are not
appending M−1 zeros to signal fragments and applying the fast FFT-based convo-
lution concept to signal sections, the first M−1 samples of each partial convolution
result are wrong, since circular—not linear—convolution is performed. The solu-
tion is to discard these samples and use the M − 1 last samples calculated for the
previous signal fragment. But it is only possible when the processed input signal
blocks overlap with M−1 samples. Therefore, such overlapping is done.
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Fig. 6.10: Graphical illustration of fast overlap–add convolution (by sections) of two
discrete-time sequences: x(n), e.g. signal to be filtered, and h(n), e.g. filter weights.
Denotations: M = 7—length of h(n), N = 10—length of x(n) fragment (both sig-
nals without appended zeros), hz(n)—filter weights appended with N−1 = 9 zeros,
x1z(n), x2z(n), x3z(n), x4z(n)—consecutive N = 10-element fragments of input sig-
nal x(n), appended with M−1 = 6 zeros and overlapping with M−1 = 6 samples,
y1z(n), y2z(n), y3z(n), y4z(n)—consecutive fragments of the output signal y(n), all
resulting from inverse FFT, which are combined (added when overlapping) [27]
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Fig. 6.11: Graphical illustration of fast overlap–save convolution (by sections) of
two discrete-time sequences: x(n), e.g. signal to be filtered, and h(n), e.g. filter
weights. Denotations: M = 7—length of h(n), N = 16—length of x(n) fragment
(both without appended zeros), hz(n)—filter weights appended with N −M = 9 ze-
ros to the length N=16, x1(n), x2(n), x3(n), x4(n)—consecutive N = 16-element
fragments of input signal x(n), overlapping with M − 1 = 6 samples, y1(n), y2(n),
y3(n), y4(n)—results of inverse FFTs (yk(n) = IFFT( FFT(xk(n)).* FFT(hz(n)))):
their fragments, presented on gray background, are put one-by-one giving the out-
put signal y(n), the final filtering result [27]
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6.6.5 Fast Signal Correlation

Correlation and convolution differ only in time-reversion and complex conjugation
of the second signal: in convolution (see (Eq. (6.18))) the time-reversion of the sec-
ond signal is done—summation over k is performed—but its complex conjugation is
not applied, while in the correlation (see Eq. (6.25)) the time-reversion of the second
signal does not take place—summation over n is performed—but its conjugation is
applied (setting n− k = m):

rxy(k) =
+∞

∑
n=−∞

x(n)y∗(n− k), (6.25)

Rxy(Ω) =
∞

∑
k=−∞

(
+∞

∑
n=−∞

x(n)y∗(n− k)

)
e− jΩ k = (6.26)

=
∞

∑
n=−∞

x(n)e− jΩ n
∞

∑
m=−∞

y∗(m)e jΩ m = X(Ω)Y ∗(Ω), (6.27)

rxy(k) = IDtFT(Rxy(Ω)) = IDtFT( X(Ω) .∗ Y∗(Ω) ) , (6.28)

where .∗ denotes element-by-element vector multiplication (as in Matlab).
In Eq. (6.25) we consider more general form of correlation of complex-value
signals—()∗ denotes complex conjugation of the second signal (such correlations
we perform, for examples, in telecommunication applications as complex-value
matched filters). We see in Eq. (6.27) that in the DtFT spectrum of the correlation
result, the second signal spectrum is conjugated while for signal convolution (6.22)
it is not. Conjugation of the signal frequency spectrum is equivalent to conjugation
of the signal itself and its reversion in time (see Table 4.2). Concluding: in order to
obtain correlation while computing convolution we should only do time-reversion
and conjugation of the second signal before the convolution. Therefore all fast algo-
rithms designed for convolution can be used also for fast correlating complex-value
signals. User has only to do time-reversion and conjugation of the second signal
before the procedure call. That is it! In Matlab:

rxy = conv(x,conj(y(end:-1:1));

6.6.6 Fast Convolution/Correlation Example and Program

All details discussed in this section concerning optimal FFT usage for fast signal
convolution and correlation are presented in program 6.5 written in Matlab. User
should read it very carefully. This section, albeit does not looking as being con-
nected to the chapter subject, is very close connected to spectral analysis. Firstly,
fast convolution will be used in the next section to fast computing of DtFT offering
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selective (from-to) frequency spectrum zooming. Secondly, the correlation function
is widely used in spectral analysis of random (noisy) signals because power spec-
tral density is defined as Fourier transform of it (see Eqs. (6.4), (6.5)). Later in
this chapter we will calculate Blackman–Tukey PSD estimator exploiting the signal
auto-correlation function.

Exercise 6.7 (Fast and Last ConvCorr Train to London!). Analyze the pro-
gram 6.5. Choose short testing signal, setting sig=1;. Run the program, ob-
serve figures. The correct convolution result is y(n) = [1,2,3,3,3,2,1]. Note,
that enlarging only the second signals with zeros does not work. Appending ze-
ros to both signals to the length (N +M −1) offers good result. See, that even
for so short signals fast correlation methods works also. Now set sig=2. For
this option overlap–add convolution methods are switched on. Display signals
yy (calculated new output fragment) and y4 (the whole convolution result cal-
culated so far) inside the loop. The overlap–save fast convolution method is not
implemented in the program. Please, write its Matlab code. Check its correct-
ness calculating an error in respect to the Matlab conv() function.

Listing 6.5: Fast convolution and correlation using FFT
�

1 % lab06_ex_fastconvcorr.m Fast signal convolution and correlationusing FFT
2 clear all; close all
3

4 sig = 2; % 1/2, signal: 1=short, 2=long
5 if(sig==1) N=5; M=3; x = ones(1,N); h = ones(1,M); % signals to be
6 else N=256; M=32; x = randn(1,N); h = randn(1,M); % convolved
7 end
8 n = 1:N+M-1; nn = 1:N; % sample indexes
9 figure;

10 subplot(211); stem(x); title(’x(n)’);
11 subplot(212); stem(h); title(’h(n)’); pause
12

13 % Conv by Matlab function
14 y1 = conv(x,h);
15 figure; stem(y1); title(’y1(n)’); pause
16

17 % Fast conv - WRONG!
18 hz = [ h zeros(1,N-M) ]; % append N-M zeros to the shorter signal only
19 y2 = ifft( fft(x) .* fft(hz) ); % fast conv, first M-1 samples are wrong
20 figure; plot(nn,y1(nn),’ro’,nn,y2(nn),’bx’); title(’y1(n) & y2(n)’);
21 error2 = max(abs(y1(M:N)-y2(M:N))), pause
22

23 % Fast conv - GOOD!
24 hzz = [ h zeros(1,N-M) zeros(1,M-1) ]; % append zeros to the length N+M-1
25 xz = [ x zeros(1,M-1) ]; % append zeros to the length N+M-1
26 y3 = ifft( fft(xz) .* fft(hzz) ); % fast conv, all samples are good
27 figure; plot(n,y1,’ro’,n,y3,’bx’); title(’y1(n) & y3(n)’);
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28 error3 = max(abs(y1-y3)), pause
29

30 % Fast conv by pieces - OVERLAP-ADD method
31 if( sig > 1 ) % only for long signal
32 L = M; % signal fragment length
33 K = N/L; % number of signal fragments
34 hzz = [ h zeros(1,L-M) zeros(1,M-1) ]; % append zeros to the shorter signal
35 Hzz = fft(hzz); % its FFT
36 y4 = zeros(1,M-1); % output signalinitialization
37 for k = 1:K % LOOP
38 m = 1 + (k-1)*L : L + (k-1)*L; % select samples indexes
39 xz = [ x(m) zeros(1,M-1) ]; % cut signal fragment
40 YY = fft(xz) .* Hzz; % # fast convolution - spectra mult
41 yy = ifft( YY ); % # inverse FFT
42 y4(end-(M-2):end) = y4(end-(M-2):end) + yy(1:M-1); % output overlap-add
43 y4 = [ y4, yy(M:L+M-1) ]; % output append
44 end
45 figure; plot(n,y1,’ro’,n,y4,’bx’); title(’y1(n) & y4(n)’);
46 error4 = max(abs(y1-y4)), pause
47 end
48

49 % Fast cross-correlation by fast convolution
50 R1 = xcorr( x, h );
51 R2 = conv( x, conj( h(end:-1:1) ) );
52 Kmax=max(M,N); Kmin=min(M,N); R2 = [ zeros(1,Kmax-Kmin) R2 ];
53 m = -(Kmax-1) : 1 : (Kmax-1);
54 figure; plot(m,R1,’ro’,m,R2,’bx’); title(’R1(n) & R2(n)’);
55 error5 = max( abs( R1-R2 ) ), pause
56

57 % Fast computation of the first M coeffs of the auto-correlationfunction
58 R1 = xcorr( x, x ); % Matlab auto-correlationfunction
59 xz = [x zeros(1,M-1)]; % add M-1 zeros on the end of signal
60 X = fft(xz); % calculate (N+M-1)-point FFT
61 X = X.*conj(X); % calculate |X(k)|̂ 2
62 R2 = ifft(X); % calculate inverse (N+M-1)-point FFT
63 R2 = real(R2(1:M)); % choose correct values, scale
64 m=1:M; figure; plot(m,R1(N:N+M-1),’ro’,m,R2(m),’bx’); grid;
65 title(’Autocorr Rxx(m): Matlab (RED), WE (BLUE)’); xlabel(’m’); pause
66 error6 = max( abs( R1(N:N+M-1) - R2(m) ) ), pause

��

Exercise 6.8 (Virtual Concert Hall). Read from disc one of acoustical impulse
responses (room, bathroom, cathedral,. . . ). Check sampling frequency. Record
your speech, about 5–10 s, with the same sampling ratio. Perform fast convolu-
tion of both signals. Listen to the result. Wow!
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6.7 Fast DtFT Calculation via Chirp-Z Transform

As demonstrated in Chap. 4, the discrete-time Fourier transform (DtFT) offers pre-
cise Fourier spectrum zooming for any frequency range [ f1, f2] with arbitrarily cho-
sen step Δ f but at the price of significant computational increase.

Let us assume that we would like to calculate DtFT coefficients X(k) of signal
x(n), n = 0,1,2, . . . ,N −1, for M frequencies fk, starting from f0 and with step Δ f :

X(k) =
N−1

∑
n=0

x(n)e− j2π fk
fs

n, fk = f0 + k ·Δ f , k = 0, . . . , M−1. (6.29)

Equation (6.29) requires NM complex multiplications. For big values of N and M it
is beneficial to use the chirp-Z transform (CZT), exploiting FFT. After introduction
of two new variables A and W :

A ≡ e− j2π f0
fs , W ≡ e− j2π Δ f

2 fs (6.30)

Eq. (6.29) takes the form of CZT:

X(k) =
N−1

∑
n=0

x(n)AnW 2kn, k = 0, . . . , M−1. (6.31)

Since the following equality holds 2kn= n2+k2−(k−n)2, Eq. (6.31) can be written
as:

X(k) =W k2
N−1

∑
n=0

[
x(n)AnW n2

]
︸ ︷︷ ︸

y1(n)

W−(k−n)2︸ ︷︷ ︸
y2(n)

, k = 0, 1, . . . , M−1. (6.32)

Since in Eq. (6.32) two sequences of samples:

y1(n) = x(n)AnW n2
, (6.33)

y2(n) =W−n2
, (6.34)

are convolved, Eq. (6.32) can be calculated efficiently in frequency domain using
three fast FFTs, two direct and one inverse:

X(k) =W k2 · IFFT(FFT(ỹ1(n)) .∗FFT(ỹ2(n))) . (6.35)

Result of circular convolution (6.35) is the same as result of linear convolu-
tion (6.32) when in (6.35) not signals y1(n) and y2(n) are transformed but their
modified versions ỹ1(n) and ỹ2(n). The first signal is calculated from Eq. (6.33) for
0 ≤ n ≤ N −1 and M−1 zeros are appended at its end. It is obvious why it is done:
standard signal conditioning before performing circular convolution which should
result in linear convolution. The second signal is calculated from Eq. (6.34) for
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n = [0,1, . . . ,(M − 1),−(N − 1),−(N − 2), . . . ,−2,−1], so it is prepared for time-
reversion after which its samples n = 1, . . . ,M go to end and hit zeros added to the
first signal. Remaining details are presented in program 6.6.

Listing 6.6: Fast DtFT calculation
�

1 % lab06_ex_dtft.m
2 clear all; close all
3

4 N = 256; M = 32; % number of signal samples, number of frequency bins
5 fs = 128; % sampling ratio (Hz)
6 fd = 5; fu = 9; % down and up frequency (from-to)
7 df = (fu-fd)/(M-1); % step in frequency
8 f = fd : df : fu; % frequencies of interest
9 x = rand(1, N); % analyzed signal, random noise [0, 1]

10

11 NM1 = N+M-1;
12 A = exp( -j*2*pi * fd/fs ); % for first frequency
13 W = exp( -j*2*pi * ((fu-fd)/(2*(M-1))/fs) ); % for frequency step
14 y1 = zeros(1,NM1); k=0:N-1; y1(k+1)=((A*W.̂ k).̂ k).*x(k+1); % init of y1
15 k = [ 0:M-1, -(N-1):1:-1]; y2 = W.̂ (-k.̂ 2); % init of y2
16 Y1 = fft(y1); % # fast circularconvolution
17 Y2 = fft(y2); % # of signals y1 and y2
18 Y = Y1.*Y2; % #
19 y = ifft(Y)/(N/2); % #
20 k=0:M-1; XcztN(k+1) = y(k+1) .* (W.̂ (k.̂ 2)); % phase correction
21

22 n = 0:N-1; Xref=x*exp(-j*2*pi*n(:)*f/fs)/(N/2); % reference - matrix def
23 error = max(abs( XcztN - Xref )), % error
24

25 figure;
26 subplot(2,1,1); plot(f,real(XcztN),’r.-’); grid on; hold on;
27 plot(f,real(Xref),’bo-’);
28 subplot(2,1,2); plot(f,imag(XcztN),’r.-’); grid on; hold on;
29 plot(f,imag(Xref),’bo-’); pause

��

Exercise 6.9 (Spectral Microscope). Apply fast DtFT algorithm to signal an-
alyzed in program 6.2. Interpolate very dense its Fourier spectrum around the
signal frequency peak. Add calculated fragment of the signal spectrum to figure
plotted in Exercise 6.2. Mark spectrum samples with magenta circles.

6.8 Blackman–Tukey PSD Fast Calculation

Having fast algorithm for computation of signal auto-correlation, we can calculate
efficiently the Blackman–Tukey PSD estimator defined by Eq. (6.10) and compare
it with Welch PSD. This is done in program 6.7.
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Listing 6.7: Fast calculation of Blackman–Tukey PSD estimator
�

1 % lab06_ex_psd.m
2 clear all; close all
3

4

5 % lab06_ex_psd.m Blackman-Tukey PSD compared with Welch PSD
6

7 clear all; close all; subplot(111);
8

9 % Parameters
10 N = 256; fs = 1000; % number of samples, sampling ratio
11 M = N/4; % number of computedAutoCorr coeffs
12 df = fs/N, f=0:df:(N-1)*df; % PSD spectrumfrequencies
13 dt=1/fs; t=0:dt:(N-1)*dt; % time stamps for signal
14 tR=-(N-1)*dt:dt:(N-1)*dt; k=1:N/2+1; % time stamps for auto-correlation
15

16 % Generation of analyzed signal - sinusoid 100 Hz in noise
17 x = sin(2*pi*25.5*t) + 0.1*randn(1,N); % signal + Gaussian noise
18 figure; plot(t,x); grid; axis tight; title(’x(n)’); xlabel(’time [s]’); pause
19

20 % Fast computation of the first M coeffs of the auto-correlationusing FFT
21 xz = [x zeros(1,M-1)]; % appending M-1 zeros
22 X = fft(xz); X = X.*conj(X); R = ifft(X); % FFT, |X(k)|̂ 2, IFFT
23 R = real(R(1:M))/N; % coeffs of interest, scaling
24

25 % PDS estimation - Blackman-Tukey method = Fouriertransform of signal autocorr
26 w = hanning(2*M-1); w=w(M:2*M-1); w=w’; % choose window
27 Rw = R .* w; % multiplyautocorr with window
28 s = [ Rw(1:M) zeros(1,N-2*M+1) Rw(M:-1:2)]; % input to FFT is symmetrical
29 P1 = real(fft(s))/fs; % the FFT result, real-value vector
30 figure; subplot(211); plot(f(k),P1(k),’b’); grid;
31 title(’Blackman-Tukey estimation of PSD’); xlabel(’f [Hz]’); ylabel(’V̂ 2 / Hz’);
32

33 % PSD estimation - Welch method = averagingperiodograms of signal fragments
34 Nfft = N; Nwind = 2*M; Noverlap = Nwind/2; % lengths: FFT, window, overlap
35 Nshift = Nwind-Noverlap; % window shift
36 M = floor((N-Nwind)/Nshift)+1; % number of signal fragments
37 w = hanning(Nwind)’; % window choice
38 P2 = zeros(1,Nfft); % initialization
39 for m=1:M % number of the signal fragment
40 n = 1+(m-1)*Nshift : Nwind+(m-1)*Nshift; % which samples?
41 X = fft( x(n) .* w, Nfft); % FFT of windowedfragment
42 P2 = P2 + abs(X).̂ 2; % accumulate
43 end % end of loop
44 P2 = P2/(fs*M*sum(w.*w)); % PSD normalization
45 subplot(212); plot(f(k),P2(k)); grid; title(’Welch estimation of PSD’);
46 xlabel(’f [Hz]’); ylabel(’V̂ 2 / Hz’); pause

��
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Exercise 6.10 (Discovering Noisy Sounds). Analyze code of the program 6.7.
Run it increasing level of noise up to the moment when you completely
loose your signal. Observe both, signal and spectrum shape. Then, take from
web page FindSounds some noisy sounds, read them to the program and
analyze.

6.9 Fast Estimation of Damped Sinusoids by Interpolated DFT

If an analyzed signal is a mixture of cosines, like in Eq. (4.33), its DFT spectrum is
specified by Eq. (4.34). Let us assume now more general and more universal signal
model, than the above one, in which each cosine signal component has phase shifts
φk and is attenuated by an exponent with damping factor dk:

x(n) =
K

∑
k=1

xk(n), xk(n) = Ak cos(Ωkn+φk)e
−dkn, n = 0,1,2, . . . ,N−1. (6.36)

After defining a complex-value signal sk(n) of the form:

sk(n) = Ake jφk e−dkne+ jΩkn = Ake jφk λ n
k , λk = e−dk+ jΩk . (6.37)

each signal component xk(n) in Eq. (6.36) can be expressed as summation of a
corresponding signal sk(n) (6.37) and its complex conjugation, divided by two:

xk(n) =
1
2
(sk(n)+ s∗k(n)) . (6.38)

In consequence we can rewrite Eq. (6.36) into the following form:

x(n) =
K

∑
k=1

1
2
(sk(n)+ s∗k(n)) =

K

∑
k=1

(
Ak

2
e jφk λ n

k +
Ak

2
e− jφk λ ∗n

k

)
. (6.39)

In chapter on DFT we have derived spectrum of the rectangular window (equa-
tions from (4.28) to (4.31)). In similar way we can calculate now the DFT spectrum
of complex signal sk(n) defined by Eq. (6.37), and obtain

Sk(Ω) = Ake jφk
1−λ N

k

1−λke− jΩ . (6.40)
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I am leaving this derivation for an ambitious/interesting reader. As a consequence
the DFT spectrum Xk(Ω) of each signal xk(n) (6.38) is equal to:

Xk(Ω) =
A
2

(
e jφk

1−λ N
k

1−λke− jΩ + e− jφk
1−λ ∗N

k

1−λ ∗
k e− jΩ

)
. (6.41)

At present we are in the turning point of the story. If maxima of the DFT spectrum
of signal defined by Eq. (6.36) is well separated, it is possible to estimate Ωk and
dk of each signal component from three DFT samples X(m− 1),X(m),X(m+ 1),
corresponding to DFT angular frequencies Ωm−1,Ωm,Ωm+1, lying around the peak
|X(m)| in the DFT magnitude spectrum, i.e. close to Ωk.

Let us define ratio R as:

Rk =
X(m−1)−X(m)

X(m)−X(m+1)
. (6.42)

and put Eq. (6.41) into Eq. (6.42). When the second component in (6.41) is neglected
(for the negative frequency), we obtain

Rk =
1−λke− jΩm+1

1−λke− jΩm−1
r, r =

−e− jΩm + e− jΩm−1

−e− jΩm+1 + e− jΩm
, (6.43)

From Eq. (6.43) one can calculate λk as the only unknown value:

λk = e jΩk
r−R

re− j2π/N −Re j2π/N
, (6.44)

and remembering its definition in (6.37)

λk = e−dk+ jΩk (6.45)

we can calculate next values of Ωk and dk from λk:

dk =−Re [ln(λk)] , Ωk = Im [ln(λk)] . (6.46)

The above derivation was first done by Yoshida et al. [23].
Again, when the second component in Eq. (6.41) is neglected (for the negative

frequency), signal amplitude Ak and phase φk are easy to be estimated:

Ak = |2X [m]/c|, φk = angle(2X [m]/c) , where c =
1−λ N

k

1−λke− jΩm
. (6.47)
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To Remember Algorithms similar to the described above, are called in liter-
ature interpolated DFTs. They have a very important feature that parameters
of signals modeled by Eq. (6.36), i.e. being a sum of damped sinusoids, can
be precisely recovered from them using a few FFT/DFT samples lying around
spectral peaks of individual signal components. Before, in the beginning of this
chapter, we have been interpolating shape of FFT spectrum by performing FFT
upon signal with appended zeros. Now, a different type of interpolation is per-
formed: we are exploiting some FFT samples for more precise calculation of
the frequency value of one signal component using known signal model. The
frequency lying in between the FFT spectrum bins of its peak. In-between. In-
terpolation!

There are many different IpDFT algorithms. The Bertocco–Yoshida one was de-
scribed here. In other algorithms different numbers of DFT samples lying around
spectral peaks are used. The DFT spectrum can be also calculated for windowed
signals, e.g. using Hanning window. It is possible to estimate many signal com-
ponents from their DFT/FFT peaks when signal component peaks are well sep-
arated in DFT spectrum. If not, in order to minimize influence of spectral leak-
age from one component to the other, an iterative leakage compensation can be
applied [11, 26].

In program 6.8 Bertocco–Yoshida IpDFT algorithm without leakage correction
is implemented. The analyzed damped cosine signal is presented on the left side
of Fig. 6.12, while on the right side beginning of the signal DFT spectrum mag-
nitude. Values of signal amplitude, damping, frequency, and phase are correctly
estimated.

0 0.5 1 1.5 2 2.5
t (s)

-5

0

5

x(
t)

Signal x(t)

0 2 4 6 8 10
f (Hz)

0

100

200

300

400

|X
(f

)|

DFT spectrum |X(f)|

Fig. 6.12: Damped cosine signal analyzed by the IpDFT algorithm (left) and begin-
ning of its DFT spectrum magnitude (right)
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Listing 6.8: Matlab implementation of Bertocco–Yoshida interpolated DFT algo-
rithm

�

1 % lab06_ex_ipdft.m Interpolated DFT/FFT
2 clear all; close all;
3

4 % Test signal
5 N=256; fs=100; % number of samples, sampling ratio [Hz]
6 Ax=6; dx=0.5; fx=4; px=3; % signal amplitude, damping, frequency, phase
7 dt=1/(fs); t=(0:N-1)*dt; % sampling time
8 x = Ax*exp(-dx*t).*cos(2*pi*fx*t+px); figure; plot(t,x); pause % signal generation
9

10 % Interpolated DFT for maximumabsolute DFT peak
11 Xw = fft(x); figure; plot(abs(Xw)), pause % computation of DFT/FFT
12 [Xabs, ind] = max(abs(Xw(1:round(N/2)))); % find maximum and its index
13 km1 = ind-1; k=ind; kp1 = ind+1; % three DFT samples around max
14 dw = 2*pi/N; % DFT frequency step
15 wkm1= (km1-1)*dw; % angularfrequency of DFT bin with index k-1
16 wk = (k -1)*dw; % angularfrequency of DFT bin with index k
17 wkp1= (kp1-1)*dw; % angularfrequency of DFT bin with index k+1
18 r = ( -exp(-j*wk)+exp(-j*wkm1) )/( -exp(-j*wkp1)+exp(-j*wk) ); % eq.(6.43)
19 R = ( Xw(km1)-Xw(k) )/( Xw(k)-Xw(kp1) ); % eq.(6.42)
20 lambda = exp(j*wk)*(r-R)/( r*exp(-j*2*pi/N)-R*exp(j*2*pi/N) ); % eq.(6.44)
21 we = imag(log(lambda)); % estimated angularfrequency
22 de = -real(log(lambda)); % estimated damping
23 fe = we*fs/(2*pi); % angularfrequency --> frequency
24 de = de*fs; % normalizeddamping (de/fs) --> damping (de)
25

26 if round(1e6*R)==-1e6 % COHERENT SAMPLING, dx=0
27 Ae = 2*abs(Xw(k))/N; % estimatedamplitude
28 pe = angle(Xw(k)); % estimated phase
29 else % NON-COHERENTSAMPLING
30 c = (1-lambdâ N)/(1-lambda*exp(-j*wk)); % eq.(6.47)
31 c = 2*Xw(k)/c; % eq.(6.47)
32 Ae = abs(c); % estimatedamplitude
33 pe = angle(c); % estimated phase
34 end
35

36 result = [ Ae, de, fe, pe ], % display results
37 errors = [ Ae-Ax, de-dx, fe-fx, pe-px ], pause % show errors

��

Exercise 6.11 (Testing IpDFT Algorithm). Analyze code of the program 6.8.
Run it. Observe figures. Are the estimated signal amplitude and frequency cor-
rect? They should be. Take a sound recording of single piano, guitar, or trumpet
note from FindSounds web page. Read it into the program. Cut-off silence part
from the recording beginning and end. Choose three FFT points lying around
one spectrum peak. May be the first one? Or the highest one? What parameters
has a damped sine you have selected? Do you trust in this result? How to verify
its correctness?
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Hmm. . . Hmm. . . This DSP course has been promised to be easy! Yes, it is.
This was the most difficult derivation in this chapter. But it was extremely important
for us, since in engineer’s practice precise estimation of each damped sine param-
eters (Ak, fk,φk,dk) is very often priceless because such signals widely occurs in
surrounding us world (due to physical damped resonance phenomena). We should
also observe that IpDFT technique is different than DFT zooming realized by ap-
pending zeros to the signal end. In IpDFT we exploit the signal model, use it for a
few DFT points (three in the described method), create a system of equations, and
solve it. The solution obtained this way has very good accuracy and it is computa-
tionally fast due to the FFT usage. All four signal parameters are computed.

6.10 Summary

So our FFT cruiser, after a long voyage, after many intellectual storms, is
finally sailing into a port. A lot places, views, and memories. What should stay
unforgettable?

1. FFT has many faces. It can be used not only in spectral analysis but also
as computational hammer in many other applications, for example, for fast
calculation of signal convolution and correlation.

2. In the kingdom of spectral estimation, FFT can be applied to calculation of
four different spectra types, appropriate for different usage, e.g. amplitude
and power spectrum ((V ) and (V 2), respectively), amplitude and power
spectral density ((V/

√
(Hz)) and (V 2/Hz)). Their definitions should be

remembered.
3. Noisy random signals and signals with strong noise background require

different FFT treatment. In their case, spectral density functions should
be preferred and many FFT spectra of different signal fragments have to
be calculated and averaged. Such signal processing minimizes variation of
noise spectrum and ensures more reliable (consistent) estimation of noise
level. PSD estimation using the Welch method, averaging windowed peri-
odograms, is the most prominent example in this FFT application area.

4. Time-varying signals require also calculation of many FFT spectra of
consecutive shorter signal fragments. However, not for the purpose of
mean spectrum calculation. The spectra are stored one-by-one into time–
frequency matrix and they are displayed all as a 3D mesh or color image
which allows observation of the spectrum change in time.

5. The whole DFT spectrum of N-sample long signal can be zoomed K times
after appending K(N − 1) zeros at the signal end and after performing
longer, KN-point FFT.
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6. We can zoom also not the whole DFT spectrum but its selected part only
(from one frequency to the other frequency with a chosen step) using the
chirp-Z transform exploiting three FFTs.

7. As already mentioned, the FFT is widely used for fast calculation of signal
convolution and correlation. Both operations are extremely important in
DSP: the first one describes always stable, non-recursive signal filtering,
while the second one finds application in detection of one signal hidden
inside the other signal (echo detectors, telecommunication receivers).

8. Interpolated FFT algorithms, exploiting damped sine signal model, should
be used for fast and precise estimation of parameters of such signals.

9. Everybody should bless the FFT king!

6.11 Private Investigations: Free-Style Bungee Jumps

Exercise 6.12 (Looking for a Needle in a Bottle of Hay). Generate a sinus. Add
a weak white Gaussian noise to it—use randn() function. Calculate and observe
power FFT frequency spectrum. Then step-by-step increase the level of noise, stop
when a sine peak is not visible in the spectrum. Then increase the signal length,
calculate more power spectra and their average. Find how many spectra should be
averaged in order to see again the signal peak.

Exercise 6.13 (Steel Factory Secrets: Revisited). Apply your present knowledge
to spectral analysis of supply voltages and currents recorded for operating arc
furnace, previously processed in Exercise 4.9. Read signals from files load
(’UI.mat’); whos. Calculate the amplitude FFT spectrum of the whole signal,
then its Welch PSD estimate (psd()) and time–frequency spectrogram
(spectrogram()). Try to estimate frequencies and amplitudes of fundamental
frequency 50 Hz (close to 50) and its harmonics 100, 150, 200, 250, . . . Hz.

Exercise 6.14 (Piano Sound Spectrogram: Describing the Beauty). In one of pre-
vious exercises you generated a piano-like sound signal. At present use your own
short-time Fourier transform program or the spectrogram() Matlab function
and do inverse engineering: find sequence of frequencies hidden in your piano mas-
terpiece. You can also take any recording from the Internet, for example, from Find-
Sounds web page (https://www.findsounds.com/). Adjust properly: window length,
window shift, FFT length (zero padding) in order to better see the frequency change.

Exercise 6.15 (Speech Spectrogram: Emotion Detector). Frequency of vocal cords
opening and closing (pitch frequency) become higher during emotional speaking.
Record a few times the same word, increasing level of excitement, astonishment,
fear, . . . Calculate and compare their spectrograms. Do you see no change? May
be you are cold-blooded cad? Adjust properly: window length, window shift, FFT
length (zero padding) in order to track better change of pitch frequency.

https://www.findsounds.com/
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Exercise 6.16 (Is My Heart Still Broken? Part 3). Apply fast correlation algo-
rithm, described in this section, for estimation of heartbeat periodicity in ECG
recording analyzed in Chaps. 1 and 2 in Exercises 1.11 and 2.14.
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Chapter 7
Analog Filters

Fresh salad versus old wine, or old Cadillac, or vinyl records.
There is no hard rule that newer things are always better!

7.1 Introduction

Talking about old-fashioned analog filters is always very difficult to me.
Young audience expects the hottest news from first magazine pages. Unfortu-
nately, analog filter theory is not the hottest topic. But this knowledge is still
priceless, like old good wine, old good Cadillac, or old good vinyl records.
Why?

Our world is analog. Our speech and our heart bit. When we are interfacing
our DSP systems with a real world, we have to:

• firstly—on input, before the A/D converter—remove in analog way all fre-
quency components lying out-of-band in our sampling scheme,

• secondly—on output, after the D/A converter—smooth in analog manner
our continuous-time but discrete-value (step-like) signals.

Both operations require analog filters. Therefore, at least these two types of
analog filters are absolutely necessary for us, DSP enthusiasts.

The second motivation for analog filter introducing in DSP book is that the
theory of high-quality analog filter design is very well established and exist pos-
sibilities for very easy transformation of analog filter designs to digital ones, for
example, using the bilinear transformation. Thanks to this analog filter design
experience can be applied also in DSP core.

In this chapter only the simplest linear time-invariant analog systems/filters
are presented. But such filters are used in more than 99% of all analog filter ap-
plications. Analog filters represent connections of passive elements (resistors,
inductors, capacitors), like in RLC circuit, which can be additionally accompa-
nied by electronic operational amplifiers. Each analog filter has the so-called
impulse response, i.e. response to Dirac impulse occurring on its input. Theo-
retical Dirac impulse consists of all frequencies. In the filter impulse response
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there are present only these frequencies that the filter can pass. The Fourier
transform of the impulse response is called the filter frequency response—it
tells us how much each input frequency component will be gained/attenuated
by the filter and how much delayed.

Having the analog filter structure and its passive element values, we can
write a mathematical equation describing the filter (consisting of derivatives
and integrals of flowing currents) and then transform it into differential equa-
tion of higher order—calculating derivatives of its both sides. The final analog
filter differential equation is connecting output filter voltage (and its deriva-
tives) with the input voltage (and its derivatives). The Laplace transform allows
us to change (transform) this differential equation into filter transfer function,
while the Fourier transform into filter frequency response. Filter design task
is to choose proper transfer function coefficients being also coefficients of the
filter differential equation. Having values of these coefficients and knowing re-
lation between them and passive RLC filter elements, one can solve set of equa-
tions and find values of the elements. Next, the only task is to go the nearest
Electronic Store and to buy elements with the closest values to the designed
ones.

Generally, in this chapter we make a short but consistent walk from analog
LTI system theory to the design of concrete analog circuits. We become familiar
with analog low-pass filters designed by Butterworth, Chebyshev, and Cauer
(elliptic filter). We learn how to transform analog low-pass filter into another
low-pass filter or high-pass, band-pass, or band-stop filter.

This will be a simple story. But I hope that different panorama views we will
see during our analog trip will be unforgettable for some Readers.

7.2 Analog LTI Systems

Linear time-invariant (LTI) analog systems are specified by differential equations
defining relation between input signal x(t) and its derivatives (multiplied by coeffi-
cients bm) and output signal y(t) and its derivatives (taken with coefficients am):

x(t) ⇒ [ Differential EQUATION ] ⇒ y(t). (7.1)

E.g.

b0x(t)+b1
dx(t)

dt
+ ...+bM

dxM(t)
dtM = y(t)+a1

dy(t)
dt

+ ...+aN
dyN(t)

dtN . (7.2)

Coefficients {bm,an} depend on the system structure (its element connection) and
values of passive elements used (R,L,C—resistance, inductance, capacitance). The
Laplace transform (with complex variable s) is defined as:
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L(x(t)) = X(s) =

+∞∫
−∞

x(t)e−stdt (7.3)

and has two features very important for us:

L

(
dxm(t)

dtm

)
= smX(s), L

⎛
⎝

t∫
−∞

x(t)dt

⎞
⎠=

1
s

X(s). (7.4)

The first of them is true for zero initial conditions.
Calculation of the Laplace transform of both sides of the differential equation of

the analog system (7.2), having in mind features (7.4), results with the following
system transfer function (TF):
[
b0 +b1s1 +b2s2 + ...+bMsM]X(s) =

[
1+a1s1 +a2s2 + ...+aNsN]Y (s), (7.5)

H(s) =
Y (s)
X(s)

=
b0 +b1s1 +b2s2 + ...+bMsM

1+a1s1 +a2s2 + ...+aNsN . (7.6)

Having differential equation describing the system, we can write with ease its trans-
fer function, for example:

7x(t)+6
dx2(t)

dt2 +5
dx3(t)

dt3 = y(t)+2
dy1(t)

dt1 +3
dy2(t)

dt2 +4
dy3(t)

dt3 ⇒

⇒ H(s) =
7+6s2 +5s3

1+2s1 +3s2 +4s3

and, vice versa, from system transfer function deduce its differential equation:

H(s) =
2+3s1 +4s2

1+5s2 +6s4 +7s6 ⇒

⇒ 2x(t)+3
dx(t)

dt
+4

dx2(t)
dt2 = y(t)+5

dy2(t)
dt2 +6

dy4(t)
dt4 +7

dy6(t)
dt6 .

Designing an analog filter relies on choosing values of {R,L,C} elements and
structure of their connection. After this we obtain a concrete differential equation
with coefficients {bm,an}. They precisely describe the filter and its filter transfer
function. After setting:

s = jω = j2π f (7.7)

the Laplace transform changes to continuous Fourier transform:

F (x(t)) = X(ω) =

+∞∫
−∞

x(t)e− jωtdt (7.8)

and the system TF to the system frequency response (FR):
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H(ω) =
Y (ω)

X(ω)
=

b0 +b1( jω)1 +b2( jω)2 + ...+bM( jω)M

1+a1( jω)1 +a2( jω)2 + ...+aN( jω)N . (7.9)

The complex number H(ω), ω = 2π f :

H(ω) = |H(ω)| · e j∠H(ω) (7.10)

is telling us what the system will do with a given frequency f . Its magnitude |H(ω)|:

M(ω) = |H(ω)|=
√

Re(H(ω))2 + Im(H(ω))2 (7.11)

gives us information how the system will amplify/attenuate the signal with angular
frequency ω = 2π f , while its angle ∠H(ω):

Φ(ω) = ∠H(ω) = tan−1
(

Im(H(ω))

Re(H(ω))

)
(7.12)

gives information about the signal phase shift, i.e. its time delay on the system out-
put.

Analog or digital frequency filter design relies on constructing a circuit or
program which pass from its input to its output only selected band of frequen-
cies. The filters, as frequency selectors, are classified into: low-pass (only low
frequencies are passed), high-pass (high frequencies), band-pass (mid-range
frequencies from-to), and band-stop (all frequencies except a specified band).
In Fig. 7.1 all these filters types are shown as well as desirable (linear) and
undesirable (non-linear) filter phase response. When filter phase response is a
linear function of frequency in the pass-band, all frequencies which are passed
by the filter are delayed by the same amount of time and signal shape in the
pass-band is not changed (this issue is discussed below).

Fig. 7.1: (left)—frequency filter types in respect to frequencies which are passed:
Low-Pass (LP), High-Pass (HP), Band-Pass (BP), and Band-Stop (BS), (right)—
linear (L), desirable, and non-linear (NL), undesirable, filter phase response [7]
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Fig. 7.2: Illustration of phase response calculation problem. Phase (angle of complex
number) can be calculated only in the range [−π,π), in Matlab using functions
angle(),atan2()—then the phase unwrapping is necessary (unwrap()) [7]

Angle of a complex number can be computed only in the range [−π,π). For
this reason filter phase response, calculated using Matlab functions angle(),
atan2(), is wrapped and the unwrap() function must be used—see
Fig. 7.2.

Now let us look at analog systems from slightly different perspective. Let us
deduce an equation relating output signal y(t) with input signal x(t) for the linear
time-invariant (LTI) system. In system theory circuits are characterized by their im-
pulse response, i.e. response to an ideal input impulse, e.g. Dirac delta function,
which Fourier spectrum is equal to 1 for all frequencies. Therefore, when one does
frequency analysis of the system response to perfect impulse, she/he knows what
frequencies the system is passing and how they are deformed by the circuit. Let
us now analyze step-by-step relation between an input signal (left, blue) and LTI
system output (right, red):

INPUT → OUTPUT

δ (t)→ h(t) (impulse response definition)

δ (t − τ)→ h(t − τ) (delayed by τ due to time-invariance)

x(τ)δ (t − τ)→ x(τ)h(t − τ) (delayed and scaled by constant x(τ))
+∞∫

−∞

x(τ)δ (t − τ)dτ →
+∞∫

−∞

x(τ)h(t − τ)dτ (sum of delayed and scaled signals)

x(t)→ y(t) (generalization of input and output)

In summary:
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y(t) = H [x(t)] = H

⎡
⎣

∞∫
−∞

x(τ)δ (t − τ)dτ

⎤
⎦=

∞∫
−∞

x(τ)H [δ (t − τ)] dτ =

∞∫
−∞

x(τ)h(t − τ)dτ.

(7.13)

Therefore, the LTI system output y(t) is result of convolving input x(t) with
system impulse response h(t):

y(t) =

+∞∫
−∞

x(τ)h(t − τ)dτ. (7.14)

Performing continuous Fourier transform (7.8) on both sides of Eq. (7.14) and us-
ing setting ξ = t − τ, we obtain the fundamental frequency consequence of signal
convolution:

Y (ω) =

∞∫
−∞

⎛
⎝

∞∫
−∞

x(τ)h(t − τ)dτ

⎞
⎠e− jωt dt

=

∞∫
−∞

⎛
⎝

∞∫
−∞

x(τ)e− jωτ dτ

⎞
⎠h(ξ )e− jωξ (dξ +dτ) = ...

=

⎛
⎝

∞∫
−∞

x(τ)e− jωτ dτ

⎞
⎠
⎛
⎝

∞∫
−∞

h(ξ )e− jωξ dξ

⎞
⎠= X(ω) ·H(ω). (7.15)

In summary, Fourier transform Y (ω) of the LTI signal output is equal to mul-
tiplication of Fourier transform X(ω) of the input signal and system frequency
response H(ω) (Fourier transform of the system impulse response):

Y (ω) = X(ω) ·H(ω). (7.16)

If H(ω0) = 0 for any angular frequency ω0, this frequency is removed by the system:
Y (ω0) = 0 despite value of X(ω0). Similarly, if H(ω0) = 1 for any angular frequency
ω0, this frequency is passed unchanged by the system since for it Y (ω0) = X(ω0),
despite value of X(ω0).

If harmonic signal:
x(t) = e jω0t (7.17)

is processed by the LTI system described by Eq. (7.14):

y(t)=

∞∫
−∞

h(τ)x(t−τ)dτ =
∞∫

−∞

h(τ)e jω0(t−τ)dτ =

⎡
⎣

∞∫
−∞

h(τ)e− jω0τ dτ

⎤
⎦e jω0t =H(ω0)e

jω0t

(7.18)
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the system output is equal to:

y(t) = H(ω0) · e jω0t =
[
M(ω0) · e jΦ(ω0)

]
· e jω0t = M(ω0) · e j(ω0t+Φ(ω0)). (7.19)

It is the input signal scaled in amplitude by M(ω0) and shifted in phase by Φ(ω0),
i.e. shifted in time by Δ t = Φ(ω0)

ω0
:

y(t) = M(ω0) · e jω0(t+Δ t), Δ t =
Φ(ω0)

ω0
. (7.20)

Assuming that T = 1
f0

is the sinusoid period, we can connect the phase shift
Φ(ω0) of any sinusoid with its time delay Δ t:

Φ(ω0) = Δ t ·ω0 = Δ t ·2π f0 =
Δ t
T

·2π. (7.21)

Coming back to our LTI system. The phase response is negative when the system
is delaying an input. When it is additionally linear:

Φ(ω) =−α ·ω, (7.22)

Eq. (7.19) takes the following form:

y(t) = M(ω0) ·Ae jω0(t−α), (7.23)

which is telling us that the input signal is delayed at output by α . This delay does
not depend on signal frequency. So, if the system is linear, all his K components
with different amplitudes and frequencies will be delayed by the same value α:

y(t) =
K

∑
k=1

M(ωk)Ake jωk(t−α) (7.24)

and, for M(ωk) = 1, k = 1,2, . . . ,K, the whole signal will be only delayed by α on the
system output and its shape will not be changed. This signal processing feature is very
important in many applications. For example in ECG analysis, because a medical
doctor is specially interested in signal shape while investigating heart work anoma-
lies, or in Hi-Fi acoustics where audiophiles do not want to lose space localization
of sound sources (our ears localize sound source by triangulation and relative delay
of the same sound in both ears).

Conclusion Linear phase response in the pass-band is a desirable feature of an
LTI system. It guarantees that the passing signal is delayed only and does not
have shape distortion.
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Exercise 7.1 (LTI System: Frequency Response, Impulse Response). In program 7.1
a simple analog LTI system is analyzed with a=[1,2], b=[3,4,5] in Matlab:

H(s) =
1s1 +2

3s2 +4s1 +5
.

Different filter characteristics are computed and plotted: its frequency and phase re-
sponse in frequency domain as well as its impulse and step response in time domain. In
Fig. 7.3 only system frequency and phase responses are shown. They allow us to verify
amplification/attenuation and phase shift of different signal frequency components on
the system output. Slightly modify values of system transfer function {b,a} coefficients
and observe changing shapes of system responses (plot them in the same figure). Fi-
nally, concentrate on frequency system response and try to find such values of {b,a} for
which system is passing from input to output only high-frequency input components,
e.g. higher than 1 Hz. Spend only 5 min on this task. You should accept an eventual
failure. Nothing is perfect. This LTI system design method for sure is not.

Listing 7.1: Analysis of simple analog LTI system/filter
�

1 % lab07_ex_lti.m
2 clear all; close all;
3

4 b = [1, 2]; % coefficients {b} of the TF nominator polynomial
5 a = [3, 4, 5]; % coefficients {a} of the TF denominatorpolynomial
6 f = 0 : 0.01 : 10; % frequencies of interest
7 t = 0 : 0.01 : 10; % time of interest
8 f0 = 1; % radius (w0=2*pi*f0) for circle in s=j*w domain
9 [ H, h ] = AFigs(b,a,f,t,1); % figures for analog filter

10

11 % ################################
12 function [H,h] = AFigs(b,a,f,t,f0)
13

14 % Position of zeros and poles
15 z = roots(b)/(2*pi); p = roots(a)/(2*pi); % scaling for frequency
16 phi = 0:pi/1000:2*pi; si = f0*sin(phi); co = f0*cos(phi);
17 figure; plot(real(z),imag(z),’ro’,real(p),imag(p),’b*’,co,si,’k-’);
18 xlabel(’real()’); xlabel(’imag()’); title(’TF Zeros (o) & Poles (*)’); grid; pause
19

20 % Frequencyresponse
21 w = 2*pi*f; s = j*w; % angular frequency, Laplacetransformvariable
22 H = polyval(b,s)./polyval(a,s); % frequencyresponse H(f) = H(s=j*2*pi*f)
23 % H = freqs(b,a,2*pi*f); % Matlab function
24 % Figures
25 figure; plot(f,abs(H)); xlabel(’f (Hz)’); title(’|H(f)|’); grid; pause
26 figure; plot(f,20*log10(abs(H))); xlabel(’f (Hz)’); title(’|H(f)| (dB)’); grid; pause
27 figure; semilogx(f,20*log10(abs(H))); xlabel(’f (Hz)’); title(’|H(f)| (dB)’); grid;

pause
28 figure; plot(f,angle(H)); xlabel(’f (Hz)’); title(’\angle H(f) (rd)’); grid; pause
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29

30 % Impulseresponse - functions impulse() and step() from Control Toolbox
31 sys=tf(b,a);
32 figure
33 subplot(211); impulse(sys), % plot impulseresponse h(t)
34 subplot(212); step(sys), pause % plot step response u(t); test also:
35 h = impulse(sys,t); % calculate impulseresponse h(t)
36 figure; plot(t,h); grid; xlabel(’t (s)’); title(’Impulse response h(t)’); pause
37 u = step(sys,t); % calculate step response u(t)
38 figure; plot(t,u); grid; xlabel(’t (s)’); title(’Step response u(t)’); pause
39

40 end
��
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Fig. 7.3: Frequency response (left) and phase response (right) of an LTI system
analyzed in Exercise 7.1

7.3 RLC Circuit Example

Let us analyze the RLC circuit—sequential connection of resistance R, inductance
L, and capacitance C—presented in Fig. 7.4. The input voltage u(t) causes flow of
a current i(t), which generates voltages uR(t), uL(t), and uC(t) upon elements R,L,C
that are proportional: to the current for R, to the current derivative for L, and to the
bounded integral from 0 to t for C. From Kirchhoff voltage law, the sum of this
voltages is equal to the input voltage uin(t) while the output voltage uout(t) is equal
to the capacitor voltage uC(t) only:

uin(t) = uR(t)+uL(t)+uC(t) = R · i(t)+L
di(t)

dt
+

1
C

t∫
0

i(t)dt (7.25)

uout(t) = uC(t) =
1
C

t∫
0

i(t)dt. (7.26)
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Fig. 7.4: Sequential connection of R,L,C elements, the RLC circuit [7]

After performing the Laplace transform (7.3) of both sides of Eqs. (7.25), (7.26) and
after using Laplace transform features (7.4):

Uin(s) = R · I(s)+ sL · I(s)+ 1
Cs

· I(s) =
[

R+ sL+
1

Cs

]
· I(s) (7.27)

Uout(s) =UC(s) =

[
1

Cs

]
· I(s) (7.28)

one obtains the transfer function of RLC circuits:

H(s) =
Uout(s)
Uin(s)

=
1

Cs

R+Ls+ 1
Cs

=
1

1+RC · s+LC · s2 (7.29)

and its frequency response after using equality (7.7):

H(ω) =
Uout(ω)

Uin(ω)
=

1

1+RC · ( jω)+LC · ( jω)2 =
1

LC
1

LC + R
L ( jω)+( jω)2 . (7.30)

Eq. (7.30) tells us what the circuit is doing with input signal component with angular
frequency ω. We can vary value of ω in (7.30), calculate H(ω), and plot it.

After introduction of the following new variables: ω0—circuit resonance angular
frequency of un-damped oscillations and ξ—circuit damping, as well as A,d,ω1—
amplitude, damping and angular frequency of circuit impulse response, having a
form of damped sinusoid:

ω0 = 1/
√

LC, ξ = (R/L)/(2ω0), A =
ω0√
1−ξ 2

, d = ξ ω0, ω1 = ω0

√
1−ξ 2

(7.31)
we get from Eq. (7.31):

H(ω) =
ω2

0

ω2
0 +2ξ ω0( jω)+( jω)2 =

Aω1

(d + jω)2 +ω2
1

. (7.32)

The following signal has the continuous Fourier transform (7.8) equal to (7.32):

h(t) =

{
Ae−d·t sinω1t for t ≥ 0,

0 for t < 0,
(7.33)
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therefore (7.33) represents the impulse response of the RLC circuit. In Fig. 7.5 there
are presented frequency and time characteristics for the RLC circuit from Fig. 7.4,
having transfer function (7.32), un-damped resonance frequency ω0 = 1, and damp-
ing ξ = 0.3.

What the RLC filter will do with arbitrary one frequency component, for example,
f0 = 10 Hz one?

Input: x(t) = sin(2π · f0 · t) = sin(2π ·10 · t)
Output: y(t) = |H( f0)| · sin(2π ·10 · t +∠(H( f0))) = A · sin(2π ·10 · t +ϕ)

The output signal amplitude is A = |H( f0)| and the new phase is ϕ = ∠(H( f0)).

Fig. 7.5: Frequency and time characteristics of RLC circuit from Fig. 7.5, with trans-
fer function (7.32), having un-damped resonance frequency ω0 = 1 and damping
ξ = 0.1,0.3,0.5. From left to right, up to down: magnitude response (amplifica-
tion/attenuation), response for Dirac impulse function, phase response (delay), re-
sponse for unitary step excitation [7]
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Exercise 7.2 (RLC Circuit). In program 7.2 there are computed and visualized different
characteristics of an exemplary RLC circuit. Values of its elements are chosen arbitrarily.
Run the program and observe figures. Calculate the angular frequency ω0 and ω1 as
well as circuit damping ξ and signal impulse response damping d. Change RLC values
in order to obtain lower and higher circuit damping ξ . Plot figures similar to Fig. 7.5.
Finally, try to change {R,L,C} values and to obtain a low-pass filter with cut-off angular
frequency ω3dB = 1 rad/s.

Listing 7.2: Analysis of analog RLC circuit
�

1 % lab07_ex_rlc.m
2 clear all; close all;
3

4 R = 10; % resistance in ohms
5 L = 2*10̂ (-3); % inductance in henrys
6 C = 5*10̂ (-6); % capacitance in farads
7

8 w0 = 1/sqrt(L*C); f0 = w0/(2*pi), % undumpedresonancefrequency
9 ksi = (R/L)/(2*w0), % should be smaller than 1

10 w1 = w0*sqrt(1-ksî 2); f1 = w1/(2*pi), pause % damped resonancefrequency
11

12 b = [ 1 ]; % coeffs of nominatorpolynomial
13 a = [ L*C, R*C, 1 ]; % coeffs of denominator poly (from the highest order)
14 %z = roots(b), p = roots(a), gain = b(1)/a(1), % coeffs --> roots, gain
15 %[z,p,gain] = tf2zp(b,a), % the same in one Matlab function
16

17 f=0:1:10000; t=0:0.000001:2.5e-3; f0=0;
18 [ H, h ] = AFigs(b,a,f,t,f0); % figures for analog filter

��

7.4 Analog Filter Design by Zeros and Poles Method

In analog filter design we would like to obtain filter frequency response character-
ized by

• good flatness in the filter pass-band, i.e. gain close 1,
• good sharpness of the filter transition from pass-band to stop-band,
• very high attenuation in the stop-band, i.e. gain ≈ 0.

However, it is difficult to propose “good/compact” equations for choosing such
values of polynomial coefficients {bm,an}, which ensure required frequency features
of the filter. It is much easier to design system with a required H( f ), designing roots
{zm, pn} of the transfer function (TF) polynomials:
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H(s) =
Y (s)
X(s)

=
bM · (s− z1)(s− z2) · ... · (s− zM)

aN · (s− p1)(s− p2) · ... · (s− pN)
. (7.34)

Why? Because system transfer function H(s), given by Eq. (7.34), becomes the
system frequency response (system frequency characteristics) after setting (7.7)
s = jω = j2π f :

H(ω) =
Y (ω)

X(ω)
=

bM · ( jω − z1)( jω − z2) · ... · ( jω − zM)

aN · ( jω − p1)( jω − p2) · ... · ( jω − pN)
. (7.35)

The analog filter design by TF zeros-poles placement is illustrated in Fig. 7.6.
For given value of ω we have in Eq. (7.35) many complex-value vectors:

jω − zm = Bme jθm , jω − pn = Ane jφn , (7.36)

and we can express magnitude and phase of the filter frequency response Eq. (7.35)
as follows:

H( jω) = M(ω)e jΦ(ω) =

bM
M
∏

m=1
Bme jθm

aN
N
∏

n=1
Ane jφn

=
B( jω)

A( jω)
. (7.37)

From Eq. (7.37) the frequency response magnitude and phase are equal to:

Fig. 7.6: Illustration of analog filter frequency response H(ω) calculation in “s”
plane: (left) magnitude response, (right) phase response. The filter transfer function
H(s) has zeros marked with blue dots (•) and poles marked with red crosses (×) [7]
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M(ω) =

bM
M
∏

m=1
Bm

aN
N
∏

n=1
An

, Φ(ω) =
M

∑
m=1

θm −
N

∑
n=1

φn. (7.38)

Therefore, the filter amplification/attenuation for a given frequency is proportional
to the ratio of two products of complex vector magnitudes: product of distances of
jω to all TF zeros zm divided by product of distances of jω to all TF poles pn. In
turn, filter phase shift for a given frequency is difference of two sums of complex
vector angles: sum of angles of TF zeros minus sum of angles of TF poles.

When frequency is changing, the jω = j2π f is moving along the imaginary axis
in the complex-value plane. Therefore, it is easy to put on its way zero zk = j2π fk
or pole pl = j2π fl and turn to zero any term in the nominator and denominator of
(7.35): ( jω − zk) = 0 or ( jω − pl) = 0. This causes complete removal of signal with
frequency fk on the system output and infinite amplification by the system (division
by zero) of signal with frequency fl . Since we want to avoid infinite amplification,
we put the TF pole close to imaginary axis at left half-plane: pl =−δk + j2π fl , where
δk is a small number, and we divide in (7.35) by small number: as a result the TF
value is high (amplification!) but not infinite. The analog system stability requires
placement of the TF poles in the left half-plane of complex variable s (−δk, negative
real part!) because only in such situation the system impulse response decays to
zero after some time. From the system stability point of view, position of TF zeros
is arbitrary.

For Questioning The LTI system with transfer function (7.34) has impulse response
of the form:

h(t) =
N

∑
k=1

hk(t), hk(t) =

{
0 dla t < 0,

ckepkt dla t ≥ 0,
(7.39)

where pk denotes roots of the TF denominator polynomial. When we assume that
they are complex-value, i.e. pk = σk + jωk, we obtain

hk(t) =

{
0 dla t < 0,

cke(σk+ jωk) t dla t ≥ 0.
(7.40)

Because roots occur in complex-conjugated pairs (explanation why is given below),
we have (for ck = uk + jvk,βk = atan

(
vk
uk

)
):

hk(t)+ h(∗)k (t) = cke(σk+ jωk) t + c∗ke(σk− jωk) t = 2
√

u2
k + v2

k · eσkt · cos(ωkt +βk) . (7.41)

Each pair of impulse response components hk(t) and h(∗)k (t) is decaying only when
σk < 0. Therefore TF roots pk can lie only in left half-plane of Laplace variable s.
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Single Frequency Attenuate/Amplify Analog Filter Design If we want to sup-
press signal with frequency f1 on the system output, it is sufficient to set in
Eqs. (7.34), (7.35):

z1 = j2π f1, z2 = z∗1 (7.42)

since for jω = j2π f1 the term ( jω − z1) = 0. If we want to amplify signal with fre-
quency f2 on the system output, it is sufficient to set:

p1 =−δ + j2π f2, p2 = p∗1 (7.43)

since for jω = j2π f2 the term ( jω − p1) = δ and we will be dividing in Eq. (7.35) by
a small number δ causing that the TF value for frequency f2 will be high, the higher
the smaller δ is. The very important question is why in Eqs. (7.42), (7.43) z2 = z∗1 and
p2 = p∗1, so why we need a pair of conjugated zeros and a pair of conjugated poles
to remove ( f1) and amplify ( f2), single frequency components? Because practical
system realization requires polynomial with real-values coefficients {bm,an} and this
is obtained when zeros and poles occur in conjugated pairs:

(s− (c+ jd))(s− (c− jd)) = s2 − s(c− jd)− s(c+ jd)+(c+ jd)(c− jd) = ... (7.44)

= 1 · s2 −2c · s+(c2 +d2). (7.45)

We see that roots c± jd of the polynomial (7.45) of complex variable s are complex,
but polynomial coefficients [1,−2c,c2 +d2] are real.

Simple Band-Pass Filter Design Example Having in mind all above recommen-
dations, let us try to propose by TF zeros & poles placement of an analog filter,
amplifying signal components having angular frequency close to ω0 = 10 rd/s and
attenuating the remaining ones. To achieve this goal, we can place three TF poles
close to ω0 in the left half-plane of complex variable s and one TF zero left and right
to them:

p1,2 =−0.5± j9.5; p3,4 =−1± j10; p5,6 =−0.5± j10.5

z1,2 =± j5, z3,4 =± j15

and obtain the following transfer function:

H(s) =
(s− j5)(s+ j5)

(s+0.5− j9.5)(s+0.5+ j9.5)(s+1− j10)(s+1+ j10)
...

...
(s− j15)(s+ j15)

(s+0.5− j10.5)(s+0.5+ j10.5)
.
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Fig. 7.7: Frequency responses of two filters designed in Exercise 7.3: (left) the am-
plifier (1000 and 2000 Hz) and attenuator (3000 and 4000 Hz) of selected frequen-
cies, and (right) band-pass filter in the frequency range from 1000 Hz to 2000 Hz
[7]

Exercise 7.3 (Design of Analog Filters by TF Zeros & Poles Placement). In pro-
gram 7.3 three different analog filters are designed using the ZP method. The first of
them is simple analog amplifier and attenuator of selected frequencies. The second and
the third have ambitions to be a low-pass and band-pass analog filters. Obtained fre-
quency responses of the first and second filter are shown in Fig. 7.7. Run the program.
Do recommended exercises. Finally, try to design a good low-pass filter for cut-off an-
gular frequency ω3dB = 1 rad/s.

Listing 7.3: Design of analog filters by appropriate placement of transfer function
zeros and poles in complex s-plane

�

1 % lab07_ex_zp_design.m
2 clear all; close all;
3

4 task = 1; % 1=Remove/Amplify, 2=LP, 3=BP
5 if(task==1) % Simple ZP design: remove 3000, 4000 Hz, amplify 1000, 2000 Hz
6 z = j*2*pi*[ 3000 4000 ]; z = [ z conj(z) ];
7 p = [ -10-10 ] + j*2*pi*[ 1000 2000 ]; p = [ p conj(p) ];
8 b = poly(z); a = poly(p);
9 b = 100*b / abs(polyval( b,j*2*pi*2000) / polyval( a,j*2*pi*2000) );

10 end
11 % Design filter rejecting 1500 Hz and amplifying 3000 Hz.
12

13 %###############################
14 if(task==2) % ZP design of LowPass filter [ 0 - 1000 Hz ]
15 z = j*2*pi*[ 2000 3000 ]; z = [ z conj(z) ];
16 p = [-2000-2000-400 ] + j*2*pi*[ 400 700 1000 ]; p = [ p conj(p) ];
17 b = poly(z); a = poly(p);
18 b = b / abs(polyval( b,0) / polyval( a,0) );
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19 end
20 % Using ZP method design a good analog HighPass filter for [ 2000 ... ] Hz.
21

22 %###############################
23 if(task==3) % ZP design of Band-Pass [ 1000 Hz - 2000 Hz ]
24 z = j*2*pi*[ 250 500 2500 2750 ];
25 z = [ z conj(z) ];
26 p = [-450-2000-3500-2000-400 ] + j*2*pi*[ 1000 1250 1500 1750 2000 ];
27 p = [ p conj(p) ];
28 b = poly(z); a = poly(p);
29 b = b / abs(polyval( b,j*2*pi*1500) / polyval( a,j*2*pi*1500) );
30 end
31

32 % Figures
33 f = 0 : 1 : 10000; % frequencies of interest
34 t = 0 : 1e-5 : 50e-3; % time of interest
35 f0 = 1000; % radius (w0=2*pi*f0) for circle in s=j*w domain
36 [ H, h ] = AFigs(b,a,f,t,1); % figures for analog filter

��

Conclusions Proper placement of roots “zk” of the nominator polynomial (ze-
ros of transfer function) is used for frequency attenuation. Their position is not
limited. Proper placement of roots “pk” of the denominator polynomial (poles
of transfer function) is used for frequency amplification. Position of TF poles
is allowed only in left half-plane because then the system impulse response de-
cays to zero. Manual “zeros & poles placement” design method of the H(s) is
simple but very time-consuming.

Uff! We have just finished the introduction.

7.5 Butterworth, Chebyshev, and Elliptic Analog Filters

Standard analog filters are designed to pass only signal components with frequencies
(see Fig. 7.8): lower than f0 (low-pass, LP), higher than f0 (high-pass, HP), only in
the range from frequency f1 to frequency f2 (band-pass, BP), or out of this frequency

Fig. 7.8: Standard analog filter types: what frequencies will be passed?
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Fig. 7.9: Technical specification of requirements in analog filter design: δp,δs—
allowed level of ripples in the pass-band and in the stop-band, ωp,ωs—angular fre-
quencies of the pass-band end stop-band beginning (giving filter transition width)
[7]

range (band-stop, BS, in some frequency range). Typically a so-called normalized
low-pass prototype filter is designed first (always for ω0 = 1), then it is transformed to
any other filter type using frequency transformations. Using one more transforma-
tion, e.g. the bilinear one, an analog filter can be transformed into a digital filter.

Typical specifications used in analog filter design are presented in Fig. 7.9. The
magnitude frequency response of the filter should fits into the tunnel of requirements,
concerning allowed oscillations in the pass-band (δp) and stop-band (δs) as well as
width of the transition band (ωs −ωp).

Exist special mathematical rules for appropriate placement of TF zeros & poles
in low-pass (ω0 = 1) prototype filters. We can choose the following prototype filters:

• Butterworth—only poles (on circle), no oscillations in |H( f )|, not sharp,
• Chebyshev type 1—only poles (on ellipse), oscillations in pass-band, sharper,
• Chebyshev type 2—poles & zeros, oscillations in stop-band, sharper,
• Cauer–Elliptic—poles & zeros, oscillations in pass-band and stop-band, very

sharp.

In Fig. 7.10 different LP prototype filter (ω0 = 1) design strategies are shown in
consideration of TF zeros and poles placement. In turn, LP prototype filter frequency
responses, designed by different methods, are shown in Fig. 7.11. More oscillations
the filter has in the pass-band and in the stop-band of its magnitude response, the
sharper transition edge it has. Butterworth (no oscillations, non-sharp) and elliptic
(oscillations everywhere, very sharp) filters are mutual reverses.
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The Analog Filter Design Procedure Consists of the Following Steps

1. filter specification: first, we choose a Low-Pass filter prototype (Butterworth,
Chebyshev 1/2 or Cauer—elliptic), its parameters (e.g. number N of TF poles
and oscillation levels), and target frequency characteristics (Low-Pass, High-
Pass, Band-Pass, Band-Stop),

2. design of prototype filter zeros & poles: then, we design {zm, pn} of a Low-Pass
prototype filter having ω0 = 1,

3. frequency transformation of prototype zeros & poles: next, {zm, pn} of the LP
prototype filter are transformed into zeros and poles of the target filter: LP (with
different ω0), HP, BP or BP,

4. target TF coefficients calculation: then coefficients {bm,an} of target TF poly-
nomials are calculated using {zm, pn},

5. RLC values calculation: finally, knowing {bm,an} we calculate values of RLC
from set of equations.

Only low-pass Butterworth, Chebyshev, and Cauer/elliptic filters are de-
signed in the method described above. They are called prototype filters and
have features summarized in Table 7.1. High-pass, band-pass, and band-stop
filters are obtained via frequency transformation of the prototypes. Designed

-1 -0.5 0
-1

-0.5

0

0.5

1
Butterworth

-0.1 -0.05 0
-1

-0.5

0

0.5

1
Chebyshev #1

-0.6 -0.4 -0.2 0

-5

0
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Elliptic
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-5

0
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Chebyshev #2

Fig. 7.10: Comparison of zeros and poles placement for different low-pass prototype
filters (ω0 = 1), from left-to-right, from top-to-bottom: Butterworth (only poles on
circle), Chebyshev type 1 (only poles on ellipse), elliptic (Cauer) (zeros and poles),
and Chebyshev type 2 (zeros and poles)
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Fig. 7.11: Comparison of frequency responses of different low-pass prototypes fil-
ters (ω0 = 1) having N = 10 poles (their zeros and poles) placement is shown in
Fig. 7.10

filters inherit prototype features—quantity of oscillations and sharpness—what
is shown in Fig. 7.12 presenting results of band-pass filter design. Increasing
number of prototype TF poles results in sharper transition edges of the target
filter. The most useful Matlab functions for analog filter design are given in
Listing 7.4.

Listing 7.4: Matlab functions useful for analog filter design
�

1 % lab07_ex_functions.m - program to be finished by Reader
2 clear all; close all;
3

4 % Polynomial roots to polynomialcoefficients
5 b = poly(z); a = poly(p);
6 % Polynomialcoefficients to polynomial roots
7 z = roots(b); p = roots(a);
8 % Required order of transferfunction (N = number of poles)
9 [N,Wn] = buttord(.,’s’), cheby1ord(.,’s’), cheby2ord(.,’s’), ellipord(.,’s’),

10 % Analog prototype (Rp - ripples in passband, Rs - ripples in stopband)
11 [b,a] = buttap(N), cheby1ap(N,Rp), cheby2ap(N,Rs), ellipap(N,Rp,Rs),
12 % Frequencytransformation (required W0, Wn=[W1,W2], Rp, Rs)
13 [bt,at] = lp2lp(b,a,.), lp2hp(b,a,.), lp2bp(b,a,.), lp2bs(b,a,.),
14 % All-in-one analog filter design (required N, W0, Wn=[W1,W2], Rp, Rs)
15 [b,a] = butter(N,.,’s’), cheby1(N,.,’s’), cheby2(N,.,’s’), ellip(N,.,’s’);
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16 % Frequencyresponse - magnitude, phase as a function of frequency
17 f=?; H = freqs(b,a,f)
18 f=?; H = polyval(b,j*2*pi*f)./polyval(a,j*2*pi*f);
19 figure; plot(f,20*log10(abs(H))); figure; plot(f,unwrap(angle(H)));
20 % Impulse response, step response - functions from Control Toolbox
21 figure; impulse(b,a);
22 figure; step(b,a);

��

Exercise 7.4 (My First Professional Analog Filter). Use functions from the Listing 7.4
as well as previous programs of this chapter and design transfer function of a band-stop
or band-pass filter in the range [10, ...,20] kHz with allowed 3 dB ripples in the pass-
band and −100 dB ripples in the stop-band (Fig. 7.12).

Table 7.1: Analog filters comparison

Name Types Oscillations
pass-band

Oscillations
stop-band

Edges Non-linear
phase

Butterworth LP, HP, BP, BS No No Flat Very small
Chebyshev 1 LP, HP, BP, BS Yes No Sharp Small
Chebyshev 2 LP, HP, BP, BS No Yes Sharp Small
Cauer (elliptic) LP, HP, BP, BS Yes Yes Very sharp Very big
Bessel LP No No Very flat No

7.6 Frequency Transformation

In analog filter design, first, normalized (ω0 = 1) low-pass prototype filter is designed
(of Butterworth, Chebyshev, Cauer, ...) and, then, it is transformed into target filter
of any frequency characteristics (low-pass, high-pass, band-pass, and band-stop). In
transfer function H(s) of the prototype low-pass normalized (ω0 = 1) filter, variable
s is substituted with a special function of s′ (s = gxx(s′)) and polynomials of s are
changed to polynomial of s′:

H(ω0=1)
LP (s) →︸ ︷︷ ︸

s = gxx(s′)

Hxx(s
′), s = jω, s′ = jv, xx = LP,HP,BP,BS. (7.46)

In consequence H(s) is transformed to H(s′) of a different filter, LP, HP, BP, or BS.
The frequency filter transformation idea is explained in Fig. 7.13 while the mapping
functions s = gxx(s′) are given in Table 7.2.
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Fig. 7.12: Comparison of different analog filter designs on the example of a band-
pass filter [10,1000] Hz. N = 7. The elliptic filter offers the fastest transition from
pass-band to the stop-band

In practical realization, each single zero and pole of the prototype TF are mapped
into possible multiple zeros and poles of the target filter TF. For example, let us do
mapping of one TF zero in case of LP → BS transformation:

(s− zm) →
(

Δω · (s′)
(s′)2 +ω2

0

− zm

)
→ (−zm)

(s′)2 − Δω
zm

(s′)+ω2
0

(s′)2 +ω2
0

. (7.47)

Doing transformation of the whole TF, all M zeros and N poles have to be
mapped. In the discussed case of LP → BS mapping we have

HBS(s
′) =

bM

aN
·

M
∏

m=1
(−zm)

N
∏

n=1
(−pn)

·

[
(s′)2 +ω2

0

]N−M M
∏

m=1

[
(s′)2 − (z−1

m Δω)s′+ω2
0

]
N
∏

n=1

[
(s′)2 − (p−1

n Δω)s′+ω2
0

] . (7.48)

Ufff! Take a breath! Do not worry! The program implementing this, shown in
Listing 7.5, is not so difficult. Code of other transformations will be presented in the
last listing of this chapter.

Having functions specifying relations between s = jω and s′ = jν for different
frequency mapping, we can find relations between ω and ν . Plotting them gives us
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Fig. 7.13: Explanation of frequency transformation of analog filters: normalized
low-pass prototype filter (B, C1, C2 or E) with cut-off angular frequency 1 is trans-
formed to low-pass, high-pass, band-pass, or band-stop filters with arbitrary angular
frequencies ω1 and ω2

Table 7.2: Frequency transformations of analog low-pass filter prototypes:
Hω0=1

LP (s)→ HLP,HP,BP,BS(s′)

No Type Function s = gxx(s′) Transformation result of (s− zm)

1 LP → LP s = s′/ω0
a s′−zmω0

ω0

2 LP → HP s = ω0/s′a (−zm)
(s′)− ω0

zm
(s′)

3 LP → BP s =
s′2+ω2

0
Δω ·s′

b
(s′)2−zmΔω ·(s′)+ω2

0
Δω ·(s′)

4 LP → BP s = Δω ·s′
s′2+ω2

0

b
(−zm)

(s′)2− Δω
zm

(s′)+ω2
0

(s′)2+ω2
0

a—ω0 = ωpass
b—ω0 =

√ωpass1ωpass2, Δω = ωpass2 −ωpass1

a very good graphical illustration how frequency response H(ω) of the prototype
low-pass filter is transformed into frequency response H(ν) of filter with different
type. Look at Fig. 7.14.
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Listing 7.5: Matlab code of two frequency transformation functions
�

1 %-----------------------------------------
2 function [zz,pp,gain] = lp2hpTZ(z,p,gain,w0)
3 % LowPass to HighPass TZ
4

5 zz = []; pp = [];
6 for k=1:length(z) % transformation of zeros
7 zz = [ zz w0/z(k) ];
8 gain = gain*(-z(k));
9 end

10 for k=1:length(p) % transformation of poles
11 pp = [ pp w0/p(k) ];
12 gain = gain/(-p(k));
13 end
14 for k=1:(length(p)-length(z))
15 zz = [ zz 0 ];
16 end
17

18 %--------------------------------------------
19 function [zz,pp,gain] = lp2bsTZ(z,p,gain,w0,dw)
20 % LowPass to BandStop TZ
21

22 zz = []; pp = [];
23 for k=1:length(z) % transformation of zeros
24 zz = [ zz roots([ 1 -dw/z(k) w0̂ 2 ])’ ];
25 gain = gain*(-z(k));
26 end
27 for k=1:length(p) % transformation of poles
28 pp = [ pp roots([ 1 -dw/p(k) w0̂ 2 ])’ ];
29 gain = gain/(-p(k));
30 end
31 for k=1:(length(p)-length(z))
32 zz = [ zz roots([ 1 0 w0̂ 2 ])’ ];
33 end
34 %--------------------------------------------

��

Exercise 7.5 (Frequency Transformations in Analog Filter Design). Analytically
check correctness of equations written in last column of Table 7.2. Next, check whether
the Matlab code of LP→HP and LP→BS frequency transformations, presented in List-
ing 7.5, gives the same results as Matlab functions lp2hp() and lp2bs(). Finally,
write code for LP → LP and LP → BP transformations.

Exercise 7.6 (Frequency Transformation of RLC Circuit Transfer Function).
Choose such {R,L,C} values in RLC circuit that it became a low-pass filter with cut-off
angular frequency ω3dB = 1 rad/s (or design such low-pass ω3dB = 1 rad/s filter us-
ing the TF zeros-poles placement method). Then transform the filter TF into high-pass,
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Fig. 7.14: Graphical explanation of frequency transformations of analog filter pro-
totypes, in consecutive rows: LP → LP, LP → HP, LP → BP, LP → BS [7]

band-pass, and band-stop analog filters. Cut-off frequencies are arbitrary, e.g. 100, 200,
500, 1000, 2000, 5000, 10000 Hz.

7.7 Butterworth Filter Design Example

In this chapter a very short example of low-pass and high-pass Butterworth filter
design is presented. The low-pass filter has only N poles on the circle with radius
ω3dB and constant in the nominator (product of negated poles):

H(LP)
B,N (s) =

N

∏
k=1

(−pk)/
N

∏
k=1

(s− pk). (7.49)

The high-pass Butterworth filter has the same N poles on the circle and additionally
N-multiple zero in 0, i.e. (s−0)N :
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Fig. 7.15: Graphical illustration of the fact that Butterworth filter having N =
1,2,3, ...,7 poles has frequency response decaying in frequency −20N decibels per
decade (decade = 10 times increase/decrease of frequency)

H(HP)
B,N (s) = (s−0)N/

N

∏
k=1

(s− pk). (7.50)

In both filters poles are designed as:

pk = ω3dBe jφk = ω3dB exp
[

j
(π

2
+

π
2N

+(k−1)
π
N

)]
, k = 1, 2, 3, ...., N. (7.51)

One pole in the low-pass Butterworth filter causes decrease of magnitude fre-
quency response −20 dB per decade, i.e. for frequency 10 times higher than the
cut-off one. Therefore, for example, a filter having N = 5 poles offers falling of fre-
quency response −100 dB per decade. Figure 7.15 illustrates this Butterworth filter
feature.

Butterworth designed a low-pass filter which TF has only poles (no zeros!) placed
on a circle. When two specific Butterworth filters with poles located on two circles
(bigger and smaller) are designed and their poles combined, the Chebyshev low-
pass filter type 1 is obtained. Again, the filter TF has no zeros but now its poles lie
on an ellipse, not on a circle. Details can be found in Listing 7.7. In turn, transfer
function of Chebyshev type 2 low-pass filter is modification of Chebyshev type 1
but it has also zeros apart from poles. Similarly placed poles and zeros have Cauer
(elliptic) filter. However, in contrary to Chebyshev 2 filter, it allows oscillation in the
pass-band, offering thanks to this sharper transition edge than the Chebyshev type 2
filter.

Step-by-step design of the Butterworth low-pass and high-pass filter is presented
in Listing 7.6.



7.8 All Together Now: Unified Program for Analog Filter Design 181

Listing 7.6: Analog low-pass and high-pass Butterworth filter design
�

1 % lab07_ex_butterworth.m
2 clear all; close all;
3

4 N=6; % number of poles
5 f0 = 100; % 3 dB cut-off frequency
6 dfi = pi/N; % angle of ‘‘piece of cake’’
7 fi = pi/2 + dfi/2 + (0 : N-1)*dfi; % all angles of poles
8 p = w0*exp(j*fi); % all poles
9 if(1) % LOW-PASS

10 z = []; % no zeros
11 gain = real( prod(-p) ); % gain
12 else % HIGH-PASS
13 z = zeros(1,N); % zeros
14 gain = 1; % gain
15 end
16 a = poly(p); % poles to coeffs of polynomial of denominator A(z)
17 b = poly(z); % poles to coeffs of polynomial of nominator B(z)
18 f = 0:1:1000; % frequencies of interest
19 w = 2*pi*f; % angularfrequencies
20 s = j*w; % Laplacetransform ‘‘s’’ variable
21 H = gain*polyval(b,s) ./ polyval(a,s); % ratio of two polynomials
22 ang=0:pi/100:2*pi; co=w0*cos(ang); si=w0*sin(ang); % circle for poles
23 figure; plot(real(z),imag(z),’bo’,real(p),imag(p),’r*’,co,si,’k-’); pause
24 figure; plot(f,20*log10(abs(H)); grid; xlabel(’f [Hz]’); title(’|H(f)| (dB)’); pause
25 figure; semilogx(f,20*log10(abs(H)); grid; xlabel(’f [Hz]’); title(’|H(f)| (dB)’);

pause
��

Exercise 7.7 (Do It Yourself: Designing a Band-Pass and Band-Stop Butterworth
Filters). Use programs from Listings 7.5 and 7.6, modify them and design your-
self a band-pass and band-stop Butterworth filters, for example, for frequency range
[10, ...,20] kHz. Compare your filters with Matlab ones.

7.8 All Together Now: Unified Program for Analog Filter Design

Since appetite is increasing during eating, at the end of this chapter, for readers that
are still hungry, a unified analog filter design program is given for self-studying. It
allows design of Butterworth, Chebyshev, and elliptic filters of four types: LP, HP,
BP, and BS. All operations are done by hand using the simplest Matlab functions.

Exercise 7.8 (Alice in Wonderland! Discovering Chebyshev Filter Prototypes). An-
alyze code of the program 7.7. In frequency transformations some lines are marked as
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comments, because the transfer function has the same values of zeros and poles and
they should be removed—we do not trust Matlab and do it manually. After the loop we
are adding zeros or poles which have not been rejected. Run the program for different
input options. Observe figures. At the end, concentrate on design of Chebyshev filter
prototypes. Replace the program code with dedicated Matlab functions cheby1ap(),
cheby2ap(). Compare results.

Listing 7.7: Analog low-pass and high-pass Butterworth filter design
�

1 % lab07_ex_all_in_one.m
2 clear all; close all;
3

4 proto = 3; % 0=Butt, 1=Cheb1, 2=Cheb2, 3=Ellip (prototypes)
5 ftype = 4; % 1=LP, 2=HP, 3=BP, 4=BS (filter types)
6 N = 10; % number of poles in the LowPass analog prototype filter
7

8 if(ftype<3) % LP, HP
9 f0 = 1000; w0 = 2*pi*f0; % frequency for LP and HP

10 else % BP, BS
11 f1 = 100; f2 = 1000; % frequencies for BP and BS
12 f0 = sqrt(f1*f2); w0 = 2*pi*f0; %
13 dw = 2*pi*(f2-f1); %
14 end
15

16 % ################
17 % ANALOG PROTOTYPE
18 % ################
19

20 if(proto==0) % Butterworth (NO oscillations), only poles, on circle, left half s-plane
21 % [ z,p,gain ] = buttap(N);
22 w00=1;
23 dfi=pi/N;
24 fi=pi/2+dfi/2+dfi*(0:N-1);
25

26 p=w00*exp(j*fi); % poles on a circle
27 z=[];
28 gain=prod(-p);
29 end
30

31 if(proto==1) % Chebyshev 1 (oscillations in Pass), only poles, on ellipse, left half s-
plane

32 % [ z,p,gain ] = cheb1ap(N,Apass); % Apass=Rp ripples in Pass in dB
33 w00=1;
34 dfi=pi/N;
35 fi=pi/2+dfi/2+dfi*(0:N-1);
36

37 Apass = 3;
38 epsi = sqrt(10̂ (Apass/10)-1);
39 D = asinh(1/epsi)/N;
40 R1 = sinh(D);
41 R2 = cosh(D);
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42 p1 = R1*exp(j*fi);
43 p2 = R2*exp(j*fi);
44 p = real(p1)+j*imag(p2); % poles on an ellipse
45

46 z = [];
47 if(rem(N,2)==0) % N even
48 gain = 10̂ (-Apass/20)*prod(-p);
49 else % N odd
50 gain = prod(-p);
51 end
52 end
53

54 if(proto==2) % Chebyshev 2 (oscillations in Pass and Stop)
55 % [ z,p,gain ] = cheb2ap(N,Astop); % Astop=Rs ripples in Stop
56 w00=1;
57 dfi=pi/N;
58 fi=pi/2+dfi/2+dfi*(0:N-1);
59

60 %Apass = 3;
61 %epsi = sqrt(10̂ (Apass/10)-1);
62 %D = asinh((1/epsi)/N);
63

64 Astop=120;
65 gamma = 1/sqrt(10̂ (Astop/10)-1);
66 D = asinh(1/gamma)/N;
67

68 R1 = sinh(D);
69 R2 = cosh(D);
70 p1 = R1*exp(j*fi);
71 p2 = R2*exp(j*fi);
72 p = real(p1)+j*imag(p2);
73 z = j*sin(fi);
74

75 gain = prod(z./p);
76 p = 1./p;
77 z = 1./z;
78 end
79

80 if(proto==3) % Elliptic from Matlab (oscillations in Pass and Stop)
81 [ z,p,gain ] = ellipap(N,3,120); % Apass, Astop (Rp,Rs)
82 end
83

84 b = poly(z);
85 a = poly(p);
86

87 % CHECKINGFREQUENCYRESPONSE OF THE ANALOG PROTOTYPE
88

89 alf = 0:pi/100:2*pi; c=cos(alf); s=sin(alf);
90 figure;
91 plot(real(z),imag(z),’ro’,real(p),imag(p),’b*’,c,s,’k-’); grid; pause
92

93 w = 0 : 0.01 : 100;
94 s = j*w;
95 H = gain*polyval(b,s)./polyval(a,s);
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96 figure; plot(w,abs(H)); grid; xlabel(’w (rd*Hz)’); title(’|H(w)|’); pause
97 figure; semilogx(w,20*log10(abs(H))); grid; xlabel(’w (rd*Hz)’);
98 title(’|H(w)| (dB)’); pause
99 figure; semilogx(w,unwrap(angle(H))); grid; xlabel(’w (rd*Hz)’);

100 title(’\angle H(w) (rad)’); pause
101

102 % ########################################################
103 % FREQUENCYTRANSFORMATION LP (norm) -> { LP, HP, BP, BS }
104 % ########################################################
105

106 Nz=length(z);
107 Np=length(p);
108 zt=[];
109 pt=[];
110 gaint=gain;
111

112 if(ftype==1) % LP-->LP
113 for k=1:Np % from poles
114 pt = [ pt p(k)*w0 ];
115 gaint = gaint*w0;
116 end
117 for k=1:Nz % from zeros
118 zt = [ zt z(k)*w0 ];
119 gaint = gaint/w0;
120 end
121 end
122 if(ftype==2) % LP->HP
123 for k=1:Np
124 pt = [ pt w0/p(k) ];
125 % zt = [ zt 0 ]; % zeros at s=0
126 gaint = gaint/(-p(k));
127 end
128 for k=1:Nz
129 zt = [ zt w0/z(k) ];
130 % pt = [ pt 0 ]; % poles at s=0
131 gaint = gaint*(-z(k));
132 end
133 zt = [ zt zeros(1,Np-Nz)]; % left zeros at s=0
134 end
135 if(ftype==3) % LP->BP
136 for k=1:Np
137 pt = [ pt roots([1,-p(k)*dw,w0̂ 2 ])’ ];
138 % zt = [ zt 0];
139 gaint = gaint*dw;
140 end
141 for k=1:Nz
142 zt = [ zt roots([1,-z(k)*dw,w0̂ 2 ])’ ];
143 % pt = [ pt 0];
144 gaint = gaint/dw;
145 end
146 zt = [ zt zeros(1,Np-Nz)];
147 end
148 if(ftype==4) % LP->BS
149 for k=1:Np
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150 % zt = [ zt roots([1,0,w0̂ 2])’];
151 pt = [ pt roots([1,-dw/p(k),w0̂ 2 ])’ ];
152 gaint = gaint/(-p(k));
153 end
154 for k=1:Nz
155 % pt = [ pt roots([1,0,w0̂ 2])’];
156 zt = [ zt roots([1,-dw/z(k),w0̂ 2 ])’ ];
157 gaint = gaint*(-z(k));
158 end
159 for k=1:Np-Nz
160 zt = [ zt roots([1,0,w0̂ 2])’];
161 end
162 end
163

164 z = zt;
165 p = pt;
166 gain = gaint;
167

168 b = poly(z);
169 a = poly(p);
170

171 % ########################################
172 % FINAL CHECKING OF DESIGNED ANALOG FILTER
173 % ########################################
174

175 if(ftype<3) fR=f0; else fR=f2; end
176 alf = 0:pi/100:2*pi; c=fR*cos(alf); s=fR*sin(alf);
177 figure;
178 z = z /(2*pi); p = p / (2*pi);
179 plot(real(z),imag(z),’ro’,real(p),imag(p),’b*’,c,s,’k-’); grid; pause
180

181 if(ftype<3) fmax=10*f0; else fmax=10*f2; end
182 f = 0 : fmax/10000 : fmax;
183 s = j*2*pi*f;
184 H = gain*polyval(b,s)./polyval(a,s);
185 figure;
186 plot(f,abs(H)); grid; xlabel(’f (Hz)’); title(’|H(f)|’); pause
187 figure;
188 semilogx(f,20*log10(abs(H))); grid; xlabel(’f (Hz)’); title(’|H(w)| (dB)’); pause
189 figure;
190 semilogx(f,unwrap(angle(H))); grid; xlabel(’f (Hz)’); title(’\angle H(w) (rad)’); pause

��

7.9 Example of Hardware Design of Analog Filters

Designed transfer function of analog filter should be mapped into appropriate hard-
ware, allowing its implementation. In Fig. 7.16 four circuits with operational am-
plifiers are shown capable of implementing low-pass (left) and high-pass (right)
analog-Butterworth filters of the first order (top) and second order (down). They
have the following transfer function, respectively:
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H(1)
LP (s) =

1
RC

s+ 1
RC

, H(1)
HP(s) =

s

s+ 1
RC

, (7.52)

H(2)
LP (s) =

K/R1R2C1C2

s2 +
[

1
R1C1

+ 1
R2C1

+ 1−K
R2C2

]
s+ 1

R1R2C1C2

, (7.53)

H(2)
HP(s) =

Ks2

s2 +
[

1
R2C2

+ 1
R2C1

+ 1−K
R1C1

]
s+ 1

R1R2C1C2

, (7.54)

where k = RA+RB
RA

= 1+ RB
RA

. Having a concrete transfer function equation, for example
(7.52), (7.53), or (7.54), and values of its coefficients {bk},{ak}, designed in Matlab,
one should solve set of algebraic equations, like b1 = function(R1,R2, ...,C1,C2, ...),

and find values of resistors and capacitors. For example, for R1 = R2 = R and C1 =

C2 = C both second-order transfer functions in Eqs. (7.53), (7.54) have the same
polynomial in TF denominator. Using the following qualities:

a2 = 1, a1 =
3−K

RC
, a0 =

1
R2C2 (7.55)

values R,K = 1+RB/RA can be calculated when C is arbitrarily chosen:

Fig. 7.16: Examples of low-pass (left) and high-pass (right) filter circuits, using
operational amplifiers and passive RC elements. Their transfer functions are defined
by Eqs. (7.52), (7.53), or (7.54). Up—first-order sections, down—so-called second-
order bi-quadratic sections (they implement transfer functions being a ratio of two
second-order polynomials of s). Higher order filters are obtained by cascading filters
of the first and second order. Output impedance of each section is very low and
allows their cascading. In first-order sections operational amplifier works as simple
voltage repeater [7]
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R =
1

C
√

a0
, K = 3− a1√

a0
. (7.56)

When a transfer function is of higher order, i.e. has polynomials of higher order, it
should be represented as a result of multiplication of simpler TFs with polynomials
of the second order (so-called bi-quadratic sections using one operational amplifier
only) and eventually one TF of the first order:

H(s) =
b1,0(s− z0)

a1,0(s− p0)
· b2,1(s− z1)(s− z∗1)

a2,1(s− p1)(s− p∗1)
· ... · b2,M(s− zM)(s− z∗M)

a2,M(s− pM)(s− p∗M)
. (7.57)

In such case, in hardware design, bi-quadratic TF sections should be cascaded
and accompanied, eventually, by one first order TF. In Fig. 7.17 there is shown a
design example confirming the above statement. It is an analog low-pass Butter-
worth filter fulfilling the requirements: Apass = 2 dB; fpass = 8000 Hz, Astop = 40 dB;
fstop = 22050 Hz, built from two bi-quadratic sections and one first-order section. It
has the following transfer function:

H(s) =
3 042 184 930

(s2 +34088.3s+3 042 184 930)
· 3 042 184 930
(s2 +89244.3s+3 042 184 930)

·
55156

(s+55156)
, (7.58)

and frequency response presented in Fig. 7.18. Note phase response is approxi-
mately linear function of frequency in the filter pass-band therefore the signal shape
will not be deteriorated a lot. Required values of output resistors Rx and Ry are calcu-
lated from equations specifying an overall, requested circuit gain G and an overall,
desired, output circuit resistance:

G = K · Ry

Rx +Ry
, Rout =

Rx ·Ry

Rx +Ry
. (7.59)

Exercise 7.9 (Analog Filter Hardware). Become familiar with the Matlab pro-
gram lab07_ex_hardware.m, available in the book archive, designing filter pre-
sented in Fig. 7.17. Analyze its code, run it, observe plotted figure and displayed values.
Knowing transfer function (7.58) of the circuit from Fig. 7.17 and having Eqs. (7.52),
(7.53), (7.54), verify whether the circuit RC values are calculated properly, i.e. whether
they ensure obtaining correct values of the TF polynomial coefficients (7.58). Calculate
frequency response of the circuit from Fig. 7.17 and frequency response of the analog
system having TF (7.58). Display them in one figure, compare results with Fig. 7.18.
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Fig. 7.17: Exemplary realization of 5-th order low-pass filter having transfer func-
tion described by Eq. (7.58). Values of remaining elements are as follows: R1 =
R2 =R3 = 18.13 kΩ, R1B = 13.82 kΩ, R2B = 3.8197 kΩ, K1 = 2.3820, K2 = 1.3820,
K3 = 1, K = K1K2K3 = 3.2918. For requested overall gain G = 1 and output resis-
tance Rout = 10 kΩ, we have Rx =

K
G Rout = 32.92 kΩ and Ry =

K
K−G Rout = 14.36 kΩ

[7]

Fig. 7.18: Frequency response of the hardware analog filter from Fig. 7.17, having
transfer function (7.58): (left) magnitude, (right) phase [7]

7.10 Summary

In this chapter we learn a little about analog filters. I heard already many
nervous questions: Why analog, why old-fashioned technology of the past? Why?
Because modern DSP has to live in symbiosis with surrounding world which is
mechanically and electrically analog. Digital signals are transmitted nowadays
as analog ones, which are changing their states. DSP systems require analog fil-
ters at their inputs (anti-aliasing filter) and outputs (reconstruction filter). Apart
from this, designed analog filters can be easily changed into digital ones.

So what should be remembered?

1. Analog filters theory is like an old wine or old good Cadillac. It represents
well-known old engineering achievement and nothing better has been pro-
posed till now.

2. Analog filters are necessary elements in contemporary digital signal pro-
cessing systems at their front-ends, inputs, and outputs. They are used for
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removal of out-of-band disturbing signal from the point of view of Nyquist
sampling theorem. At present they use state-of-the art electronic technol-
ogy and are designed for work with GHz signals.

3. Analog filters are also very important for us because their transfer func-
tions and frequency responses can be easily changed into transform func-
tions and frequency responses of corresponding digital filters, using, for
example, the bilinear transformation. Thanks to this very high-quality digi-
tal filters can be designed without application of elaborate time-consuming
optimization schemes.

4. Filters are divided into four primary types (from the point of view what
frequencies are passed by the filter): low-pass, high-pass, band-pass, and
band-stop.

5. Prototype low-pass filters are aristocrats in the analog filter theory. They
are very smart mathematically designed and offer different shape of filter
frequency response in respect to its oscillations and sharpness. The well-
known are: Butterworth, Chebyshev type 1 and 2, as well as Cauer (ellip-
tic) prototype. Frequency response of Butterworth filter has no oscillations,
Chebyshev type 1—oscillations only in the pass-band, Chebyshev type 2—
oscillations only in the stop-band, Cauer (elliptic)—oscillations in the pass-
band and stop-band. The more oscillations the filter frequency response has
in its pass-band and stop-band, the sharper is transition band of the filter,
i.e. switching from signal passing to rejecting.

6. Design of any analog filter starts from design of a low-pass normalized
prototype filter. Normalized because for ω3dB = 1 rad/s. Then this filter is
transformed into target low-pass, high-pass, band-pass, or band-stop filter.
Transformation changes the prototype transfer function from H(s) to H(s′).
It is realized by substituting (s) by some function of new variable (s′).

7.11 Private Investigations: Free-Style Bungee Jumps

Exercise 7.10 (Calculating RLC Circuit Frequency Response from Its Impulse Re-
sponse). Use program 7.2 of the RLC circuit. Acquire impulse response samples from the
function step(). Having it try to calculate the circuit frequency response as a Fourier trans-
form of its impulse response. Compare obtained result with the circuit frequency response
calculated from its transfer function as a ratio of two polynomials of variable s = jω .

Exercise 7.11 (Calculating Frequency and Damping of an RLC Circuit Impulse Re-
sponse). Use program 7.2 of the RLC circuit. Acquire impulse response samples of the circuit
from the function step(). Then use the interpolated DFT algorithm (IpDFT) and program,
described in the previous chapter, for finding angular frequency ω1 and damping of the im-
pulse response signal. Compare obtained results with correct values.
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Exercise 7.12 (Analog Filter Tutorial). Become familiar with the program lab07_

demo_all.m. Analyze the Matlab code. Run program for six different options (task =

1,2,3,4,5,6,7). Observe figures.

Exercise 7.13 (RLC Circuit). Cut RLC fragment from the program lab07_demo_all.m

(task=1). Change values of RLC parameters (ξ should be smaller than 1). Plot a few fre-
quency responses in one figure—use semilogx(f,20 × log10(abs(H))).

Exercise 7.14 (Zeros & Poles—love and hate Analog Filter). Set task=2 in the program
lab07_demo_all.m. Design an analog filter rejecting 1500 Hz and amplifying 3000 Hz.

Exercise 7.15 (Zeros & Poles: Analog High-Pass Filter with Flat Pass-Band). Set task
= 3, 4 in the program lab07_demo_all.m. Using zeros & poles method try to de-
sign good analog high-pass filter with cut-off frequency 2000 Hz (passing frequencies above
2000 Hz) having flat frequency response.

Exercise 7.16 (Butterworth Band-Pass Filter). Set task=5 in the program lab07_

demo_all.m. Design analog band-pass Butterworth filter for N = 4,5,6,7,8 for frequency
range [100, ...,1000] Hz. Observe pole placement. Calculate |H( f )| for all cases. Plot them in
one figure using semilogx( f, 20*log10(abs(H))). What is an influence of higher
N value for the |H( f )| shape?

Exercise 7.17 (Zeros & Poles Placements in Different Analog Filters). Set task=6 in the
program lab07_demo_all.m. Compare transfer function zero & poles placement for the
same low-pass filter, e.g. having frequency range [0...1000] Hz, but designed using different
methodology (Butterworth, Chebyshev, Cauer).

Exercise 7.18 (Analog Filter Sharpness). Set task=6 in the program lab07_demo_

all.m. Calculate [b,a] for the same band-stop filter [ f 1... f 2] using Matlab functions:

Listing 7.8: Matlab functions to be used
�

1 [b,a] = cheby1(N, Rp, 2*pi*[f1,f2], ’stop’, ’s’); % Cheb1 BS
2 [b,a] = cheby2(N, Rs, 2*pi*[f1,f2], ’stop’, ’s’); % Cheb2 BS
3 [b,a] = ellip (N, Rp, Rs,2*pi*[f1,f2], ’stop’, ’s’); % Ellip BS
��

and plot their |H( f )| in one figure using semilogx(f,20*log10(abs(H))). Which
filter has the sharpest edge in frequency domain?

Exercise 7.19 (Analog Filter Impulse Response). Set task=1,5,6 in the program
lab07_demo_all.m. Acquire impulse response of analog filter using: [h,t]=impulse
(b,a,Tmax). Calculate its DtFT and compare with filter |H( f )| in one figure.

Exercise 7.20 (** Mount Everest of Elliptic Filter Design). If you are still hungry try to
design your own code for the elliptic filter prototype. Find yourself information about it. Add
your code to program 7.7.
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Exercise 7.21 (*** Hardware Design Verification). Download and install analog circuits
simulator LTSpice (http://www.linear.com/designtools/software/)—freeware license. Imple-
ment in it analog filter from Fig. 7.17. Do simulations and find circuit frequency response.
Compare it with response presented in Fig. 7.18.
Use AC source 10 kHz with amplitude 10 V as input signal (Edit/Components/Voltage). Use
universal operational amplifiers: go to Edit/Components/, then choose UniversalOamp2 from
folder /Opamps and supply it with DC ±15 V. Do AC analysis: Simulation/Edit Simulation
Command/AC Analysis.
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Chapter 8
IIR Digital Filters

Mothers and Fathers, Sisters and Brothers. It is a short story
about Johnny Digital, a successor of Bartholomew Analog.

8.1 Introduction

Digital spectral analysis and digital filtering are two basic parts of each dig-
ital signal processing course. A time has come to open a new coffer with Al-
addin’s digital treasures, this time with digital filtering masterpieces.

Digital filter is a number processing module that obtains some signal sam-
ples x(n) on its input and calculates output samples y(n), having two sets of
coefficients {bk} and {ak}, that should be designed, see Fig. 8.1.

Fig. 8.1 The simplest block diagram of a digital filter

Digital filtering can be interpreted as running weighted “summation” of last
input and output samples of a digital filter. The output filter sample y(n) at time
moment n is calculated as:

• a sum of present and previous M input samples x(n− k),k = 0,1,2, ...,M,
taken with weights bk,

• minus a sum of previous N output samples y(n−k),k = 1,2,3, ...,N, taken
with weights ak,

in summary:

y(n) =
M

∑
k=0

bkx(n− k)−
N

∑
k=1

aky(n− k), (8.1)
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for example:

y(n) = b0x(n)+b1x(n−1) − a1y(n−1)+a2y(n−2) ,

y(n) = 0.1x(n)+10x(n−1) − 1y(n−1)+ 2y(n−2) ,

The following introductory specifications are worth to be remembered.

• Design of weights {bk} and {ak} is called a filter design.
• Calculation of y(n) having x(n) is called digital filtering.
• When all coefficients ak are equal to zero (no recursion exists—the present

output sample does not depend on previous outputs), the filter has finite
impulse response (FIR) to Kronecker input impulse. Finite means equal to
zero after some time. For this reason such filter is called an FIR filter.

• When some coefficients ak are different from zero, there is a feedback in
output samples calculation and filter has infinite impulse response (IIR).
Infinite means does not decaying to zero on filter output. Such filter is called
an IIR filter.

In digital filter design the Z-transform (ZT) plays a very significant, presti-
gious role. Due to it, transfer functions and frequency responses of digital filters
can be easily calculated and set of filter coefficients can be found without prob-
lems. The ZT plays in digital world the same role as the Laplace transform in
analog world. The Z-transform is defined as follows:

X(z) =
∞

∑
n=−∞

x(n)z−n, (8.2)

where z is a complex variable similar to s in the Laplace transform. The Z-
transform has two features which are very important for us:

Z (x(n−n0)) = X(z) · z−n0 , Z (c1 · x1(n)+ c2 · x2(n)) = c1 ·X1(z)+ c2 ·X2(z).
(8.3)

Firstly, the Z-transform of signal delayed by n0 samples is equal to the
Z-transform of the non-delayed signal multiplied by z−n0 . Secondly, the Z-
transform of the sum of signals is equal to the sum of these signals Z-
transforms. Therefore, when the Z-transform is performed upon the digital filter
Eq. (8.1), the digital filter transfer function (TF) H(z) is obtained:

H(z) =
Y (z)
X(z)

=
b0 +b1z−1 +b2z−2 + ...+bMz−M

1+a1z−1 +a2z−2 + ...+aNz−N . (8.4)

The coefficients bk and ak are the same as in the filtering equation (8.1). What
is extremely important? After using the setting ( fs—sampling frequency):
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z = e j2π f
fs (8.5)

the Z-transform (8.2) takes a form of the discrete-time Fourier transform:

X

(
f
fs

)
=

+∞

∑
n=−∞

x(n)e− j2π f
fs

n, (8.6)

and the digital filter transfer function H(z) (8.4) becomes a function of fre-
quency. It is changing into digital filter frequency response H( f ) which is
telling us what the filter will do with signal component having frequency f .
To find this, we have to put only values of frequency of interest into H( f ) and
chosen/designed values of filter weights {bk} and {ak}.

For different values of coefficients {bk} and {ak} digital filters have differ-
ent:

• frequency characteristics, e.g. frequency magnitude and phase responses,
• time characteristics, e.g. impulse and step responses.

In this lecture and laboratory we will become familiar with:

• program implementation of digital filtering algorithm described by
Eq. (8.1),

• digital filter design method in which roots of the filter transfer func-
tion polynomials (8.4) are specially chosen (zeros and poles placement
method),

• designing digital filters by means of bilinear transformation of analog fil-
ters,

• designing digital Butterworth, Chebyshev, and Cauer (elliptic) filters this
way,

• zeros and poles placements in the mentioned above three types of filters, as
well as shapes of frequency responses of these filters, i.e. the existence of
oscillations in them and sharpness of their transition edges.

8.2 Discrete-Time LTI Systems

Derivation of LTI Systems Input–Output Equation Digital filters designed in
this chapter are discrete-time linear time-invariant systems since they fulfill the fol-
lowing two features:

• system response to linear superposition of different inputs is equal to superpo-
sition of individual system responses to each input separately (c1,c2—arbitrary
constants):
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x1(n) → y1(n)
x2(n) → y2(n)

⇒ c1x1(n)+c2x2(n) → c1y1(n)+c2y1(n), (8.7)

• system response to the delayed input is the same as before but delayed:

x(n)→ y(n) ⇒ x(n−n0)→ y(n−n0). (8.8)

Let us derive input–output relation of a discrete-time LTI system. The Kronecker
delta impulse is defined as:

δ (n) =
{

1, n = 0,
0, n �= 0.

(8.9)

Making use of the LTI system features (8.7), (8.8) the following relations are valid
between LTI system input and output :

(1) δ (n) → h(n)

(2) δ (n− k) → h(n− k)

(3) x(k)δ (n− k) → x(k)h(n− k)

(4) x(n) =
∞

∑
k=−∞

x(k)δ (n− k) → y(n) =
∞

∑
k=−∞

x(k)h(n− k).

Relation (1) is a definition of an impulse response of a discrete-time system. Re-
lation (2) is a consequence of system time invariance. Relations (3) and (4) are
consequences of assumed system linearity: system response to summation of many
delayed and scaled Kronecker delta impulses is equal to summation of scaled indi-
vidual impulse responses.

As a result the following LTI input–output relation is achieved, having the
written immediately below frequency consequence (spectra multiplication):

y(n) =
∞

∑
k=−∞

x(k)h(n− k) = x(n)�h(n), (8.10)

Y (Ω) = X(Ω)H(Ω). (8.11)

It is a convolution of two signals x(n) and h(n) (denoted by �). The second
signal is reversed in time, shifted n samples and multiplied by the first signal x(k)
in sample-by-sample manner. Then all multiplication results are accumulated and
obtained one value is treated as an output filter sample y(n) for time stamp n. Single
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Fig. 8.2: Block diagrams and equations for discrete-time linear time-invariant (LTI)
systems: (left) arbitrary input x(n), (right) Kronecker delta input δ (n) having DtFT
Fourier spectrum Δ(Ω) (equal to 1 for all frequencies) [10]

time-reversion and shifting are relative operations; therefore, they can be performed
upon the first signal and the result will be the same:

y(n) =
∞

∑
k=−∞

h(k)x(n− k) = h(n)� x(n). (8.12)

Concluding, the output signal in LTI systems is equal to the convolution of its input
with the system impulse response. LTI system impulse response is fully specifying
the filter output for known input. The DtFT spectrum of Kronecker delta impulse
consists of all frequencies (Δ(Ω) = 1 for all Ω ). In the LTI system impulse response
h(n) there are only frequencies which the system can pass. The DtFT spectrum of
h(n) characterizes the LTI system behavior for each input frequency. Our present
knowledge about the discrete-time LTI systems is summarized in Fig. 8.2. From
Chaps. 4 and 6 we know that if two signals are convoluted, their DtFT spectra are
multiplied. Therefore equality |H(Ω)| = 0, valid for some angular frequency Ω ,
causes that this frequency component will not be passed by the LTI system from its
input to output.

Frequency Response of LTI Systems Let us calculate the discrete-time Fourier
transform of the LTI system impulse response h(n):

H(Ω) =
∞

∑
n=−∞

h(n)e− jΩn, Ω = 2π
f
fs
. (8.13)

As a result the system frequency response H(Ω) is obtained, being a complex-value
function of angular frequency Ω . It has magnitude M(Ω)) and angle Φ(Ω):

H(Ω) = |H(Ω) |e j�H(Ω) = M(Ω)e jΦ(Ω). (8.14)

When we assume the following input signal:

x(n) = e jΩn, (8.15)
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the LTI system output is equal to:

y(n) =
∞

∑
k=−∞

h(k)x(n− k) =
∞

∑
k=−∞

h(k)e jΩ(n−k) = e jΩn
∞

∑
k=−∞

h(k)e− jΩk =

= e jΩnH (Ω) = e jΩn M(Ω)e jΦ(Ω) = M(Ω)e j[Ωn+Φ(Ω)] , (8.16)

i.e. the input signal is multiplied in amplitude by M(Ω) and shifted in phase by
Φ(Ω). Therefore, knowing the system impulse response we have complete knowl-
edge about the LTI system treatment of different frequency components.

Further Specifications of LTI Systems The LTI system is causal when its impulse
response is equal to zero for t < 0: first the system excitation appears at t = 0, then
the system responds. Taking this into account, the causal input–output LTI system
Eq. (8.10) is equal to:

y(n) =
∞

∑
k=0

h(k)x(n− k) =
∞

∑
k=0

hkx(n− k). (8.17)

The LTI system is stable when

∞

∑
n=−∞

|h(n)|< ∞. (8.18)

Resultant, joint impulse response of parallel and serial connection of two LTI sys-
tems (see Fig. 8.3) is equal, respectively:

Parallel LTI: h(n) = h1(n)+h2(n), (8.19)

Serial LTI: h(n) =
∞

∑
k=−∞

h1(k)h2(n− k) = h1(n)�h2(n). (8.20)

Fig. 8.3: Serial (up) and parallel (down) connection of two LTI systems
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Fig. 8.4: Block diagram of the simplest digital recursive filter

From LTI Systems to Digital Filters Now we look at LTI systems from slightly
different perspective. Let us consider a system having very long impulse response
described by equation:

h(n) = (−a1)
n, for n ≥ 0. (8.21)

Such impulse response has the system presented in Fig. 8.4 and described by the
equation:

y(n) = x(n)−a1y(n−1). (8.22)

The last equation can be extended to more general one:

y(n) = x(n)−
∞

∑
k=1

aky(n− k) (8.23)

in which many previous system outputs are weighted in the process of calculation
of the present output.

It can be proofed that the following equation:

y(n) =
∞

∑
k=0

bkx(n− k)−
∞

∑
k=1

aky(n− k) (8.24)

is the most general description of LTI systems as systems performing weighting
averaging of input and output samples. Now hk is replaced by bk in order to have
more consistent denotations.

The digital filters averaging is limited to orders M and N:

y(n) =
M

∑
k=0

bkx(n− k)−
N

∑
k=1

aky(n− k). (8.25)

In Fig. 8.5 block diagrams of typical digital filters are shown. Three main architec-
tures can be distinguished:
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Fig. 8.5: Block diagrams of the digital filter structures: (left) full IIR (AR+MA),
(center) FIR (MA), (right) reduced IIR (AR) [10]

• input and output averaging, and two buffers for samples, one on filter input and
one on output (auto-regressive (AR)–moving average (MA) case),

• only input averaging and input buffer (MA case),
• only output averaging and output buffer (AR case).

8.3 Digital Signal Filtering

In this section we will write a first program for digital filtration and use it.
An algorithm for on-line digital signal filtering is summarized in Table 8.1. In

DSP processors shift buffers are replaced with circular buffers and modulo-M and
modulo-N sample addressing is used. Additionally, calculations are organized in an
in-place manner: the newest sample, coming in or out, is put into an appropriate
buffer into the position of the oldest sample. If you are interested in this topic, look
at manuals of DSP processor vendors.

Matlab code implementing the described above filtering procedure is given in
Listing 8.1. Results obtained with its use are presented in Fig. 8.6: input and output
signals and their FFT spectra.

Listing 8.1: Matlab code of digital signal filtration
�

1 % lab08_ex_filtering.m
2 clear all; close all;
3

4 % Input signal x(n) - two sinusoids: 50 and 500 Hz
5 fs = 2000; % sampling ratio
6 Nx = 4000; % number of samples
7 dt = 1/fs; t = dt*(0:Nx-1); % samplingmoments
8 %x = zeros(1,Nx); x(1) = 1; % Kronecker delta impulse
9 x = sin(2*pi*50*t+pi/3) + sin(2*pi*500*t+pi/7); % sum of 2 sines

10

11 % Digital filter coefficients [ b, a] = ?
12 b = [ 1, 0, 2, 0, 1 ]; % [ b0, b1, b2, b3, b4]
13 a = [ 1.0000,-3.2199, 3.9203,-2.1387, 0.4412 ]; % [a0=1, a1, a2, a3, a4]
14
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15 % Different design - our future work ...
16 % ########################################
17 % b = ?, a= ?, a_compare=[...], b_compare=[...],
18 % ########################################
19

20 % Digitalfiltration: x(n) --> [ b, a ] --> y(n)
21 M = length(b); % number of {b} coefficients
22 N = length(a); a = a(2:N); N=N-1; % number of {a} coeffs, remove a0=1, weight of y(n)
23 bx = zeros(1,M); % buffer for input samples x(t)
24 by = zeros(1,N); % buffer for output samples y(t)
25 for n = 1 : Nx % MAIN LOOP
26 bx = [ x(n) bx(1:M-1) ]; % put new x(n) into bx buffer
27 y(n) = sum( bx .* b ) - sum( by .* a ); % do filtration, find y(n)
28 by = [ y(n) by(1:N-1) ]; % put y(n) into by buffer
29 end
30

31 % Comparison of input and output
32 figure;
33 subplot(211); plot(t,x); grid; % input signal x(n)
34 subplot(212); plot(t,y); grid; pause % output signal y(n)
35 figure; % signal spectra of the second halves of samples (transients are removed!)
36 k=Nx/2+1:Nx; f0 = fs/(Nx/2); f=f0*(0:Nx/2-1);
37 subplot(211); plot(f,20*log10(abs(2*fft(x(k)))/(Nx/2))); grid;
38 subplot(212); plot(f,20*log10(abs(2*fft(y(k)))/(Nx/2))); grid; pause

��

Table 8.1: Digital filtering algorithm

No Operation name Operation code Matlab code

1 Correct coeffs a k = 1...N −1 : ak = ak+1,N = N −1 a=a(2:N); N=N-1;
2 Initialize buffers k = 1, ...,M : bx[k] = 0 bx=zeros(1,M);

k = 1, ...,N : by[k] = 0 by=zeros(1,N);
3 REPEAT, n = 1,2, ...
3a Shift input buffer bx k = M, ...,2 : bx[k] = bx[k−1] bx=[ 0 x(1:M-1)];
3b Put new x(n) into bx bx[1] = x(n) bx(1)=x(n);

3c Do filtration (8.25) y(n) =
M
∑

k=1
bk ·bx[k]−

N
∑

k=1
ak ·by[k] y(n)=sum(bx.*b)-

-sum(by.*a);
3d Shift output buffer by k = N, ...,2 : by[k] = by[k−1] by=[ 0 by(1:N-1)];
3e Put new y(n) into by by[1] = y(n) by(1)=y(n);

ad. 1) coefficient a0, if present, is removed from {ak} and N is decreased by 1
ad. 2) two buffers bx[.] and by[.] for input x(.) and output y(.) samples are initialized with 0s
ad. 3) in a loop, the following operations are performed
ad. 3a) samples in the input buffer bx[.] are shifted one position right
ad. 3b) new sample x(n) is put into the first, most left position in bx[.]
ad. 3c) samples in both buffers are multiplied by corresponding filter weights and sum/subtracted
as in Eq. (8.25), new output filter value y(n) is calculated
ad. 3d) samples in the output buffer by[.] are shifted one position right
ad. 3e) value y(n) is put into the first, most left position in by[.]
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Fig. 8.6: Illustration of digital signal filtering done in Exercise 8.1: (left) input and
output signals of a digital filter, (right) FFT spectra of both signals

Exercise 8.1 (My First Digital Filtration). Run program 8.1. Compare input
and output signals and their spectra. Observe that the first signal component
having 50 Hz is amplified 1000 times, while the second with 500 Hz is com-
pletely rejected (!). Modify the program code in order to obtain exactly the same
plots as in Fig. 8.6. Modify frequencies of input signal components and try to
design new weights of digital filter which should amplify the high-frequency
component and reject the low-frequency one. Do not spend more than 15 min
on this task.

8.4 Z-Transform and Its Features

The last exercise should show us that digital filters can be extremely effective but
their design is not very easy, at least at present level of our knowledge. How digital
filters are professionally designed? This will be the subject of our interest in the
remaining part of this chapter and in the next few chapters.
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First, we need a transform which will be eliminating delays in the digital
filter equation (8.25) in a similar way the Laplace transform removes signal
derivatives in differential equations of analog circuits. Such transform exists
and is called the Z-transform:

X(z) =
∞

∑
n=−∞

x(n)z−n, (8.26)

where z is a complex-value variable, similar to variable s in the Laplace trans-
form. Equation (8.26) defines Laurent polynomial of variable z: signal Z-
transform is summation of signal samples, multiplied by z taken to the power
of negated samples indexes.

Exercise 8.2 (From Signal Samples to Signal Z-Transform). In the begin-
ning we will look at the Z-transform of a very simple signal having non-zero
the following samples only:

x(−2) =−20, x(−1) =−10, x(0) = 0.1, x(1) = 1, x(2) = 2.

Its Z-transform exists only for z �= ∞ and z �= 0 and is equal to:

X(z) =−20z2−10z1 +0.1+1z−1 +2z−2.

Exercise 8.3 (From Signal Z-Transform to Signal Samples). Conversely,
knowing the signal Z-transform we have knowledge about signal samples val-
ues, for example:

X(z) = 5+4z−1 +3z−2 +2z−3 +1z−4,

X(z) = x(0)+ x(1)z−1 + x(2)z−2 + x(3)z−3 + x(4)z−4,

x(0) = 5, x(1) = 4, x(2) = 3, x(3) = 2, x(4) = 1.

From the point of view of our application, the most important are the following
Z-transform features:

• signal shift:

∞

∑
n=−∞

x(n−n0)z
−n =

∞

∑
m=−∞

x(m)z−(m+n0) = z−n0
∞

∑
m=−∞

x(m)z−m = z−n0X(z),

(8.27)
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• signal superposition (c1,c2—arbitrary constants):

∞

∑
n=−∞

[c1x1(n)+ c2x2(n)]z
−n = c1

∞

∑
n=−∞

x1(n)z
−n + c2

∞

∑
n=−∞

x2(n)z
−n =

c1X1(z)+ c2X2(z), (8.28)

• signal convolution:

∞

∑
n=−∞

(
∞

∑
k=−∞

x(k)y(n− k)

)
z−n =

∞

∑
m=−∞

(
∞

∑
k=−∞

x(k)y(m)

)
z−(m+k) =

(
∞

∑
k=−∞

x(k)z−k

)(
∞

∑
m=−∞

y(m)z−m

)
= X(z)Y (z). (8.29)

In many textbooks one can find more Z-transforms features and Z-transforms of
many signals. For us the following pair {signal, its Z-transform} is important:

x(n) = anu(n) ⇔ X(z) =
1

1−az−1 , |z|> |a|, (8.30)

where u(n) denotes the unitary step function:

u(n) =

{
1, n ≥ 0
0, n < 0

. (8.31)

The X(z) is calculated as a limit value of the Laurent polynomial:

∞

∑
k=0

(
a
z

)n

. (8.32)

Correspondence (8.30) x(n) ⇔ X(z) can be used for finding impulse response
h(n) of a digital filter when its transfer function H(z) has been already designed:
H(z)⇒ h(n). In order to do this, however, it should be possible to represent/rewrite
H(z) as a summation of low-order transfer functions (8.30). An example presenting
this is shown in Sect. 8.6.

8.5 Digital Filter Transfer Function and Frequency Response

Let us repeat the input–output equation of the discrete-time LTI system (8.10):
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y(n) =
∞

∑
k=−∞

x(k)h(n− k). (8.33)

Performing the Z-transform on both sides of Eq. (8.33), due to Eq. (8.29) and system
causality, we obtain

Y (z) = H(z)X(z) ⇒ H(z) =
Y (z)
X(z)

=
∞

∑
n=−∞

h(n)z−n =
∞

∑
n=0

hnz−n. (8.34)

Doing the same upon LTI input–output system description (8.25):

y(n) =
M

∑
k=0

bkx(n− k)−
N

∑
k=1

aky(n− k), (8.35)

we get

Y (z) =

[
M

∑
k=0

bkz−k

]
X(z)−

[
N

∑
k=1

akz−k

]
Y (z). (8.36)

From Eq. (8.36) the digital LTI system transfer function is derived:

H(z) =
Y (z)
X(z)

=
b0 +b1z−1 + ...+bMz−M

1+a1z−1 + ...+aNz−N =
b0

1
(1− z1z−1)...(1− zMz−1)

(1− p1z−1)...(1− pNz−1)
.

(8.37)

Finally, after multiplication of the transfer function (8.37) by zM

zM and zN

zN and do-
ing some math rearrangements, polynomials of positive powers of variable z are
obtained:

H(z) =
zN

zM

b0zM +b1zM−1 + ...+bM

a0zN +a1zN−1 + ...+aN
= zN−M b0

a0

(z− z1)...(z− zM)

(z− p1)...(1− pN)
. (8.38)

Example The digital filter having the following transfer function:

H(z) =
3+2z−1 + z−2

1+2z−1 +3z−3 (8.39)

is described by the following input–output equation:

y(n) = [3x(n)+2x(n−1)+ x(n−2)]− [2y(n−1)+3y(n−3)]. (8.40)
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Concluding, having a digital filter input–output equation we can write its transfer
function, and vice versa, knowing filter transfer function we can deduce the filter
time equation.

The last two questions to answer are as follows:

• how to find quickly what a given digital filter with weights {bk},{ak} will do
with any arbitrary frequency component,

• how to choose filter coefficients (weights) in order to design a filter with the
desired treatment of different frequencies.

Since after setting:

z = e jΩ = e j2π f
fs , (8.41)

the Z-transform is changing to the discrete-time Fourier transform and obtains its
frequency interpretation (meaning), the same setting is used to change the filter
transfer function H(z) (8.37) into the filter frequency response H(Ω) = H( f/ fs):

H(Ω) =
(

e jΩ
)N−M · b0

a0
· (e jΩ − z1)(e jΩ − z2)...(e jΩ − zM)

(e jΩ − p1)(e jΩ − p2)...(e jΩ − pN)
. (8.42)

Let us introduce the following denotations:

e jΩ − zm = Bme jθm , e jΩ − pn = Ane jϕn , (8.43)

where

Bm =
∣∣∣e jΩ − zm

∣∣∣ , An =
∣∣∣e jΩ − pn

∣∣∣ , θm =�
(

e jΩ − zm

)
, ϕn =�

(
e jΩ − pn

)
.

(8.44)
Now we can rewrite (8.42) into very compact form:

H(Ω) = M(Ω)e jΦ(Ω) =
(

e jΩ
)N−M b0

a0

M
∏

m=1
Bme jθm

N
∏

n=1
Ane jφn

, (8.45)

where
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Fig. 8.7: Graphical illustration of digital filter design by appropriate placement of
its transfer function zeros and poles, in rows from top to bottom: (1) unitary cir-

cle of z = exp
(

j2π f
fs

)
, (2) stability requirements: zeros can lie everywhere, while

poles only inside the unitary circle, (3) calculation of filter magnitude response, see
Eqs. (8.44), (8.45), (4) calculation of filter phase response, see Eqs. (8.44), (8.45)
[10]

M(Ω) =
b0

a0

M
∏

m=1
Bm

N
∏

n=1
An

, Φ(Ω) = Ω(N −M)+
M

∑
m=1

θm −
N

∑
n=1

φn (8.46)

are magnitude (amplitude) response and phase response of a digital filter. If Bm = 0
for some angular frequency Ω , this frequency component will be removed from the
filter output. When An is very small for some angular frequency Ω , this frequency
component will be amplified at the filter output. Appropriate placement of zeros
zm and poles pn of the filter TF has influence upon Bm and An and decides about
the filter frequency behavior. This method, called the zeros-and-poles one, is the
simplest method for designing digital filters aimed at rejection and amplification of
selected frequency signal components. It is graphically explained in Fig. 8.7.



208 8 IIR Digital Filters

To Remember The main rules for designing filter magnitude response M(Ω)
are as follows:

• in order to remove f1 frequency component, set TF zero z1 = exp
(

j2π f1
fs

)
,

i.e. place it on the unitary circle at angle 2π f1
fs

; remember to add z1 conju-
gation to set of TF zeros;

• in order to amplify f2 frequency component, set TF pole p2 = 0.99 ·
exp
(

j2π f2
fs

)
, i.e. place it inside the unitary circle but very close to it at

angle 2π f2
fs

; remember to add p2 conjugation to set of TF poles; value 0.99
can be changed: amplification is bigger when the pole is closer to the uni-
tary circle;

• in order to ensure digital filter stability, its zeros can lie everywhere, while
poles only inside the unitary circle.

Exercise 8.4 (Digital Filter Design by Its TF Zeros and Poles Placement.
Calculation of Digital Filter Frequency Response). Become familiar with
program 8.2, calculating and displaying digital filter frequency response as well
as showing placement of its TF zeros and poles. Filter from Exercise 8.1 is an-
alyzed. Run program 8.2. Copy fragments of its code to program 8.1. Your task
is to add frequency response magnitude curve M(Ω) to the figure of the output
signal spectrum and to check whether input signal components are correctly
amplified and attenuated.

Listing 8.2: Matlab program for calculation of digital filter frequency response
�

1 % lab08_ex_freq_response.m
2 clear all; close all;
3

4 % Digital filter coefficients from programlab08_ex_filtering.m
5 bb = [ 1, 0, 2, 0, 1 ];
6 aa = [ 1.0000,-3.2199, 3.9203,-2.1387, 0.4412 ];
7

8 % [bb,aa] values were found by TF zeros & poles placement:
9 fs = 2000; % sampling ratio

10 f1 = 50; % frequency to be amplified
11 f2 = 500; % frequency to be removed
12 p = 0.815*exp(j*2*pi*[f1 f1]/fs); p = [ p conj(p)];
13 a = poly(p);
14 z = exp(j*2*pi*[f2 f2]/fs); z = [ z conj(z)];
15 b = poly(z);
16 [a’ aa’], pause, [b’ bb’], pause % comparison
17



8.6 Example: Digital Filter Design by TF Zeros and Poles Placement 209

18 % Position of zeros & poles in respect to unitary circle
19 fi = 0 : pi/1000 : 2*pi; si=sin(fi); co=cos(fi);
20 figure; plot(co,si,’k-’,real(z),imag(z),’bo’,real(p),imag(p),’r*’);
21 title(’ZP’); pause
22

23 % IIR filter frequency response, magnitude and phase
24 f = 0 : 0.5 : fs/2; % frequencies of interest
25 zz = exp(j*2*pi*f/fs); % eq.(8.41), zz - Z-transformvariable
26 H = zz.̂ (length(a)-length(b)) .* polyval(b,zz) ./ polyval(a,zz); % eq.(8.38)
27 % H = polyval(b(end:-1:1),conj(zz)) ./ polyval(a(end:-1:1),conj(zz)); % eq.(8.37)
28 Hm = freqz(b,a,f,fs); % Matlab function for (8.40)
29 error = max(abs(H-Hm)), pause % error in comparison to Matlab
30

31 figure; plot( f, 20*log10(abs(H))); xlabel(’f (Hz)’); title(’|H(f)| (dB)’); grid; pause
32 figure; plot( f, unwrap(angle(H))); xlabel(’f (Hz)’); title(’angle |H(f)| (rad)’); grid

; pause
��

8.6 Example: Digital Filter Design by TF Zeros and Poles
Placement

Simple examples showing everything in action are priceless! In this section we will
design a very simple digital filter amplifying frequency f1 = 10 Hz and rejecting
frequency f2 = 50 Hz for sampling frequency fs = 1000 Hz. Below step-by-step all
calculations are given. Plots describing the designed digital filter are presented in
Figs. 8.8, 8.9, and 8.10.

Choosing a TF Pole

p1 = 0.98e jΩ1 = 0.98e j2π( f1/ fs) = 0.98e j2π(10/1000) = 0.98e jπ/50.

Choosing a TF Zero

z2 = e jΩ2 = e j2π( f2/ fs) = e j2π(50/1000) = e jπ/10.

Calculation of Filter Transfer Function (TF)

H(z) =
(1− z2z−1)(1− z∗2z−1)

(1− p1z−1)(1− p∗1z−1)
=

(1− e jπ/10z−1)(1− e− jπ/10z−1)

(1−0.98e jπ/50z−1)(1−0.98e− jπ/50z−1)
,

H(z)=
1− (e jπ/10 + e− jπ/10)z−1 + z−2

1−0.98(e jπ/50+e− jπ/50)z−1 + z−2
=

1−2cos(π/10)z−1+z−2

1−0.98 ·2cos(π/50)z−1 +0.9604z−2 ,

H(z) =
1−1.9021z−1 + z−2

1−1.9561z−1 +0.9604z−2 .
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Fig. 8.8: Characterization of designed digital filter passing frequency 10 Hz and
removing frequency 50 Hz. In rows: (1) zeros (◦) and poles (×) placement, (2)
magnitude response in linear scale, (3) phase response, (4) magnitude response in
decibels [10]

Fig. 8.9: Block diagram of the designed filter (left) and its impulse response, calcu-
lated by Matlab function impulse(b,a) [10]

Calculation of Filter Frequency Response

z = e jΩ = e j2π( f/ fs),

H(Ω) =
1−1.9021e− jΩ + e−2 jΩ

1−1.9561e− jΩ +0.9604e−2 jΩ .

Filter Behavior for Frequencies f1 and f2

H

(
2π

f1

fs

)
= H

( π
50

)
= Ge jϕ = 37.23 · e− j1.40, H

(
2π

f2

fs

)
= H

( π
10

)
= 0.
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Filter Input–Output Equation
[

1−1.9561z−1 +0.9604z−2] Y (z) =
[

1−1.9021z−1 + z−2] X(z),

y(n)−1.9561y(n−1)+0.9604y(n−2) = x(n)−1.9021x(n−1)+ x(n−2),

y(n) = x(n)−1.9021x(n−1)+ x(n−2)+1.9561y(n−1)−0.9604y(n−2).

Filter Impulse Response the filter transfer function is rewritten into summation
of two simpler ratios of z-polynomials—it turns out that they are Z-transforms of
known signals, see Eq. (8.30):

H(z) =
0.7669 · e− j1.5977

1−0.98e jπ/50z−1
+

0.7669 · e j1.5977

1−0.98e− jπ/50z−1
,

h(n)= (0.7669 · e− j1.5977)(0.98e jπ/50)
n
u(n)+(0.7669·e j1.5977)(0.98e− jπ/50)

n
u(n),

h(n)= h0(n)+h∗0(n)= 2Re(h0(n))= 2Re
(

0.7669e− j1.5977 · (0.98)ne jπn/50 ·u(n)
)
,

h(n) = 2 ·0.7669 · (0.98)n cos(πn/50−1.5977) ,

h(0) = 1.

Filter Input x(n) and Output y(n)

x(n) = sin

(
2π

f1

fs
n

)
+ sin

(
2π

f2

fs
n

)
= sin

( π
50

n
)
+ sin

( π
10

n
)
,

y(n) = Gsin
( π

10
n+φ

)
= 37.23 · sin

( π
10

n−1.4
)
.

Exercise 8.5 (Digital Filter Design Using the Zeros-and-Poles Method). Use
programs 8.1 and 8.2, adjust values of their parameters to example presented in
this section. Now coefficients b and a of the transfer function polynomials are
calculated from the following polynomial roots:

p = 0.98*exp(j*2*pi*[f1]/fs); p = [p conj(p)];
z = (j*2*pi*[f2]/fs); z = [z conj(z)];
b = poly(z); a = poly(p);

Compare your input and output signals with the signals shown in Fig. 8.10. Find
impulse response of the filter, using the Kronecker delta impulse as the filter
excitation (input). Compare your result with the signal presented in Fig. 8.9.
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Fig. 8.10: Results of designed filter testing. In rows: (1) input signal x(n), (2) mag-
nitude of x(n) FFT spectrum, (3) output signal y(n), (4) magnitude of y(n) FFT
spectrum [10]

8.7 Digital Filter Design Using Bilinear Transformation

In Chap. 7, during unforgettable presentation of analog filters in the book on DSP, I
argued that analog filter theory is not only used for the design of circuits for analog
signal filtering on DSP front-ends, but also it is very widely used for the design of a
very good analog transfer functions which can be very easily converted into discrete-
time transfer functions of digital filters. Yes, it is true. Even during my last DSP
lecture, I asked the Matlab environment about routines for IIR digital filter design
and the yulewalk() function was the only fully digital optimization procedure
which was offered. The other recommended functions, butter(), cheby1(),
cheby2() and ellip(), are based on designing analog filters H(s) and trans-
forming them into digital ones H(z).

So, how this magic transformation is done? By exchanging “s” variable in analog
filter transfer function H(s) with variable “z” using the so-called bilinear setting:

s =
2
T

z−1
z+1

= 2 fs
z−1
z+1

, (8.47)

where T is the sampling period (inverse of the sampling ratio fs) in discrete-time
system being designed. Thanks to this the H(s), ratio of two polynomials of variable
s, is changed into digital filter transfer function H(z), ratio of two polynomials of
variable z:
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s = 2
T

z−1
z+1 z = 1+sT/2

1−sT/2
Ha(s) −→ Hd(z) −→ Ha(s)

(8.48)

In the last equation possibility of coming in the reverse direction is shown also.
Having H(z), we can take coefficients of its polynomials and put them into digital
filter input–output equation, as we did in Sect. 8.5.

Knowing relation (8.47) between variables s and z, and remembering definitions:

s = jω = j2π f , z = e j Ω = e j2π f
fs , (8.49)

we can find their non-linear relation, resulting from bilinear transformation:

jω =
2
T

e jΩ −1
e jΩ +1

=
2
T

e jΩ/2
(
e jΩ/2 − e− jΩ/2

)
/2

e jΩ/2
(
e jΩ/2 + e− jΩ/2

)
/2

=
2
T

j sin(Ω/2)
cos(Ω/2)

, (8.50)

in short:

ω =
2
T

tan(Ω/2) , Ω = 2atan(ωT/2) . (8.51)

Graphical illustration of bilinear transformation is presented in Fig. 8.11. Zeros
and poles of an analog transfer function H(s), designed is space of the complex vari-
able s of the Laplace transform, are mapped into zeros and poles of a digital transfer

Fig. 8.11: Graphical illustration of the bilinear transformation of analog filter with
transfer function Ha(s) into digital filter with transfer function Hd(z). Line s = jω is
transformed into unitary circle z = e jΩ . Left half-plane of variable s is transformed
into interior of unitary circle, i.e. stable analog filters (poles in left half-plane) are
transformed into stable digital filters (poles inside the unitary circle) [10]
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Fig. 8.12: Graphical illustration showing how analog filter frequency response (left)
is mapped into digital filter frequency response (bottom) through the non-linear
atan() function curve of bilinear transformation [10]

function H(z), lying in space of the complex variable z of the Z-transform. Left half-
plane of s is transformed into the interior of unitary circle in the plane of z and digital
filter stability is guaranteed. In turn, in Fig. 8.12, it is shown how designed analog
filter frequency response (bottom) is mapped into digital filter frequency response
(left) by non-linear atan() function.

In the bilinear transformation method digital IIR filters are designed using the
following steps:

1. required cut-off frequencies and allowed pass-band and stop-band ripples (os-
cillations) are specified first,

2. digital cut-off angular frequencies Ω3dB are transformed into analog ones ω3dB

using the formula:

ω3dB =
2
T

tan(Ω3dB/2) , (8.52)

3. analog transfer functions Ha(s), fulfilling analog frequency and ripples require-
ments, are designed (it is important to stress once more that analog design fre-
quencies differ from digital ones),

4. the analog filter is transformed into the corresponding digital filter:

Hd (z) = Ha (s)
∣∣∣s=(2/T ) z−1

z+1
, (8.53)

5. during the analog-to-digital system mapping each root of analog transfer func-
tion (TF) polynomials is generating zeros and poles of the digital TF and mod-
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ifying its gain according to the following formula, at present, as an example,
given only for exemplary zero of the analog TF:

s− zk = 2 fs
z−1
z+1

− zk = (2 fs − zk)
z− 2 fs+zk

2 fs−zk

z+1
. (8.54)

In Listing 8.3 the Matlab code is shown for bilinear mapping of analog TF zeros,
poles, and gain into digital TF zeros, poles, and gain. In program 8.4 the whole
procedure of digital IIR filter design is implemented.

Exercise 8.6 (Digital Filter Design Using the Bilinear Transformation). Try
to design any digital IIR filter using skeleton of program 8.4. Feel free to use
fragments of code from programs 8.1 and 8.2. Add plot of zeros and poles.
Calculate and display yourself digital filter frequency response. Check it cor-
rectness. Do filtration of some signals. Display input and output signals and
their FFT spectra.

Listing 8.3: Matlab function for bilinear transformation of analog filter into digital
one

�

1 function [zz,pp,ggain] = bilinearTZ(z,p,gain,fs)
2 % Bilineartransformation: H(s) (analog filter) --> H(z) digital filter
3 % zeros, poles, gain (z,p,gain) --> zeros, poles, gain (zz,pp,ggain)
4

5 pp = []; zz = []; ggain = gain;
6 for k=1:length(z) % transformingzeros
7 zz = [ zz (2*fs+z(k))/(2*fs-z(k)) ];
8 ggain = ggain*(2*fs-z(k));
9 end

10 for k=1:length(p) % transformingpoles
11 pp = [ pp (2*fs+p(k))/(2*fs-p(k)) ];
12 ggain = ggain/(2*fs-p(k));
13 end
14 if (length(p)>length(z)) zz = [ zz-1*ones(1,length(p)-length(z)) ]; end
15 if (length(p)<length(z)) pp = [ pp-1*ones(1,length(z)-length(p)) ]; end

��

Listing 8.4: Matlab code for IIR digital filter design using bilinear transformation of
analog filters

�

1 % lab08_ex_iir_design.m
2

3 % Digitalrequirements
4 fs = 2000; % sampling ratio
5 f1 = 400; % minimumfrequency of band-pass filter
6 f2 = 600; % maximumfrequency of band-pass filter
7 N = 8; % number of poles
8
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9 % Analog requirements--> digitalrequirements
10 f1 = 2*fs*tan(pi*f1/fs) / (2*pi); % f1: analog --> digital
11 f2 = 2*fs*tan(pi*f2/fs) / (2*pi); % f2: analog --> digital
12 w0 = 2*pi*sqrt(f1*f2); % pass-band center
13 dw = 2*pi*(f2-f1); % pass-band width
14

15 % Analog filter design
16 [z,p,gain] = cheb2ap(N,100); % low-pass Chebyshev 2 prototype filter
17 [z,p,gain] = lp2bpTZ(z,p,gain,w0,dw); % frequencytransformation: LP to BP
18 b = real(gain*poly(z)); a = real(poly(p)); % analog zeros&poles --> [b,a] coeffs
19 f = 0 : fs/2000 : fs; % frequencies of interest
20 H = freqs(b,a,2*pi*f); % frequencyresponse of analog filter
21 figure; plot(f,20*log10(abs(H))); xlabel(’f (Hz)’); title(’Analog |H(f)| (dB)’); pause
22

23 % Conversion of analog filter to digital
24 [z,p,gain] = bilinearTZ(z,p,gain,fs); % bilineartransformation
25 b = real(gain*poly(z)); a = real(poly(p)); % analog zeros&poles --> [b,a] coeffs
26 figure; fvtool(b,a), pause % displayingdigital filter
27

28 % Add plot of zeros & poles
29 % Calculate and displayyourself filter frequencyresponse
30 % Do filtration of some signals

��

Example of Digital IIR Filter Design Required digital cut-off frequency:

Ω3dB = 2π
f3dB

fs
= 2π

0.25
1

=
π
2
. (8.55)

Resulting analog cut-off frequency:

ω3dB =
2
T

tan(Ω3dB/2) = 2tan(π/4) = 2. (8.56)

Analog filter:

Ha (s) =
−p1 p2 p3

(s− p1) (s− p2) (s− p3)
=

ω3
3dB

(s+ω3dB)
(

s2 + sω3dB +ω2
3dB

) ,
(8.57)

where

p1 = p∗3 = ω3dB

[(
−1+ j

√
3
)
/2
]
, p2 =−ω3dB. (8.58)

After taking into account that ω3dB = 2:

Ha (s) =
8

(s+2) (s2 +2s+4)
. (8.59)
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Digital filter:

Hd (z) = Ha

(
2
T

z−1
z+1

)
=

(z+1)3

2z (3z2 +1)
=

(
1+ z−1

) 3

2 (3+ z−2)
. (8.60)

Its frequency response:

Hd (Ω) =

(
1+ e− jΩ) 3

2 (3+ e−2 jΩ )
(8.61)

.

8.8 Digital IIR Butterworth, Chebyshev, and Elliptic Filters

Matlab language has many ready-to-use functions for IIR digital filter design from
analog prototypes. They are summarized in Listing 8.5.

Listing 8.5: Matlab functions useful for IIR digital filter design
�

1 % lab08_ex_functions.m - program to be finished and tested by Reader
2 clear all; close all;
3

4 % Iterative digital filter design
5 fdatool; filterDesigner;
6 % Required order of transferfunction (N - number of poles), Wn=2*pi*fcut/fs
7 [N,Wn] = buttord(.), cheby1ord(.), cheby2ord(.), ellipord(.),
8 % All-in-one analog filter design (required N, W0, Wn=[W1,W2], Rp, Rs); R ripples
9 [b,a] = butter(N,Wn,.), cheby1(N,Rp,Wn,.), cheby2(N,Rs,Wn,.), ellip(N,Rp,Rs,Wn,.);

10 % Frequencyresponse - magnitude, phase as a function of frequency
11 f=0:fs/2000:fs/2; H = freqz(b,a,f,fs)
12 f=0:fs/2000:fs/2; H = polyval(b,exp(j*2*pi*f/fs))./polyval(a,exp(j*2*pi*f/fs));
13 figure; plot(f,20*log10(abs(H))); figure; plot(f,unwrap(angle(H)));

��

Exercise 8.7 (Using Matlab Functions for IIR Filter Design). Select Mat-
lab functions from Listing 8.5 and design an IIR digital filter of your dream.
Display its magnitude and phase response. Apply it to any test signal, maybe
to speech or music. For example, design a band-pass filter in the frequency
range [400,600] Hz for sampling frequency fs = 2000 Hz, having attenuation
in the stop-band bigger than 60 dB. Going further, you can design Butterworth,
Chebyshev type 1, Chebyshev type 2, and Cauer (elliptic) digital band-pass fil-
ters of the same order and display their magnitude responses in one figure. You
should obtain figure similar to Fig. 7.12.
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From our present perspective, having the method transforming analog filters into
digital ones, the all-in-one Matlab program 7.7 for analog filter design should be
extremely precious for us. It offers design “by hand” of analog Butterworth, Cheby-
shev type 1&2 as well as Cauer (elliptic) filters, low/high/band-pass and band-stop,
which can be very easily transformed into fantastic IIR digital filters. One should
only remember about transforming digital frequency requirements into analog ones
by Eq. (8.52) before an analog filter design. Matlab code for changing analog TF
into digital TF is given in Listing 8.4. What can I say more? Run Forest, run!

Exemplary placements of zeros and poles as well magnitude and phase responses
of many digital filters, designed by bilinear transformation method, are shown be-
low in Figs. 8.13, 8.14, 8.15, 8.16, 8.17. Our design requirements are marked in
them with circles: we would like to obtain attenuation not bigger than −3 dB in the
pass-band and not smaller than −60 dB in the stop-band, for different frequencies:
200, 300, 400, 600, and 700 hertz. We can observe that filters which allow oscil-
lations in their magnitude response are sharper, i.e. have more narrow pass-to-stop
frequency transition zones (among the filters with the same number of TF poles).
We should prefer them when we aim at the minimization of filter order. See Fig. 7.12
for additional illustration/explanation of this phenomena.

The figures are many, maybe too many, but personally I admire the beauty of nice,
symmetric zeros and poles patterns (looking like stars in the sky) as well mathemat-
ically rigorous shapes of frequency responses, theoretically derived. Viva IIR digital
filters!

Exercise 8.8 (Beautiful IIR Filters). Use program 8.4. Try to design yourself
some of IIR filters whose characteristics are shown in Figs. 8.13, 8.14, 8.15,
8.16, 8.17. Use also Matlab functions for designing digital elliptic filters.

8.9 IIR Filter Structures: Bi-quadratic Sections

IIR digital filters are described by time equations (in which scaled delayed input
and output samples are added/subtracted) and by corresponding transfer functions.
Both, time equations and transfer functions, can be written in forms differing in
number of required arithmetic operations and memory data/coefficients locations.
Because IIR digital filters are recursive (they have feedback loop), they can become
unstable when calculation errors are accumulated. Errors occur when filters coeffi-
cients are represented with limited bit precision and calculations are done with fixed
point arithmetic. Therefore suitable computational IIR filter structures should be
used which are robust to limited precision arithmetic. For this reason the IIR digital
filters are typically implemented as a cascade of digital second-order bi-quadratic
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Fig. 8.13: Results of bilinear transformation of band-stop analog Butterworth filter
(up) to corresponding digital filter (down): (left) zeros and poles placement, (right)
magnitude frequency response [10]

sections/filters (transfer functions of the second order). It is significantly easier to
control filter stability of smaller recursive systems.

Let us look at the transfer function decomposition problem. The following
second-order TF:

H(1)(z) =
1+2z−1 + z−2

1−0.9z−1 +0.2z−2 (8.62)

can be rewritten as:

H(2)(z) = 5+
−4+6.5z−1

1−0.9z−1 +0.2z−2 , (8.63)

H(3)(z) = 5− 49
1−0.4z−1 − 45

1−0.5z−1 , (8.64)

H(4)(z) =

(
1+ z−1

1−0.4z−1

)(
1+ z−1

1−0.5z−1

)
, (8.65)

H(5)(z) =
(
1+ z−1) (1+ z−1) ( 1

1−0.4z−1

)(
1

1−0.5z−1

)
. (8.66)

Block diagrams of all filters are presented in Fig. 8.18. As we can see, even in this
simple case, possibilities are many.

As already mentioned, an IIR digital filter having high-order transfer function
is typically represented as a cascade connection (multiplication) of simpler second-
order TF systems (SOS):
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Fig. 8.14: Zeros and poles placement (up), magnitude frequency response (center),
and phase frequency response (down) of digital Butterworth low-pass filter (left)
and high-pass filter (right) [10]

H(z) =
bk,0

ak,0
· (1− zkz−1)(1− z∗kz−1)

(1− pkz−1)(1− p∗kz−1)
. (8.67)

In Matlab there are special functions doing this. Each second-order system can be
implemented in one of the four forms: direct type I and II and their transposed ver-
sion (see Fig. 8.19). Direct form type II is obtained by changing order of (MA) and
(AR) parts of full type IIR filter (see Fig. 8.5). Transposed filter versions are derived
by changing direction flow of samples, i.e. from output to input, and reversing each
operation in only-MA and only-AR filters. Then the obtained two simple filters are
cascaded, first transposed MA, then transposed AR, and vice versa. In transposed
filter versions delay-one-sample blocks are shifted into different positions.

Exercise 8.9 (IIR Digital Filter Structures). Try to write Matlab functions of
second-order IIR filter sections. Check them in action, i.e. doing some signal
filtering.
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Fig. 8.15: Zeros and poles placement (up), magnitude frequency response (center),
and phase frequency response (down) of digital Butterworth band-pass filter (left)
and band-stop filter (right) [10]

8.10 Summary

This is a very important chapter. The fundamental one in this book. Why?
Because the DSP core consists of two main topics: frequency analysis and dig-
ital filtering. In this chapter we learn the digital filtering basics. What should be
remembered?

1. Digital filtering can be interpreted as simple local weighted averaging of
last filter input samples (as well as already computed last output samples).

2. Filter design methods aim at selection of appropriate filter coefficients
(weights). Till now we learn about filter transfer function zeros and poles
placements and bilinear transformation of analog filters.
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Fig. 8.16: Zeros and poles placement (left) and magnitude frequency response
(right) of digital Chebyshev type 1 filter, from top to bottom: low-pass, high-pass,
band-pass, and band-stop [10]

3. Z-transform of an input–output digital filtering equation (weighted summa-
tion of delayed input and output filter samples) gives a filter transfer func-
tion H(z) which helps us in designing the filter weights. It has the same
coefficients as the filter equation.

4. After setting z = e j2π( f/ fs), the filter transfer function H(z) changes into
filter frequency response H( f/ fs) and tells us what the filter will do with
any arbitrary frequency component. After appropriate adjusting the filter
coefficients in filter frequency response, we can copy them to the input–
output filter equation and use.
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Fig. 8.17: Zeros and poles placement (left) and magnitude frequency response
(right) of digital Chebyshev type 2 filter, from top to bottom: low-pass, high-pass,
band-pass, and band-stop [10]

5. Digital filters are divided into two main groups: (1) recursive ones having
infinite impulse response (IIR), performing weighting of input and output
filter samples, (2) non-recursive ones having finite impulse response (FIR),
performing weighting of input filter samples only. FIR filters are sub-class
of the IIR filters.

6. Digital IIR filters are stable when its TF poles lie inside the unitary circle.

7. Digital IIR filters require small number of weights to be sharp and very
frequency selective, they are fast. However, they should be very carefully
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Fig. 8.18: Alternative implementation structures of the IIR digital SOS filter (8.62),
described by equations (8.63)–(8.66)—presented in consecutive rows [10]

designed due to possible instability and do not have a perfectly linear-phase
response—can change slightly the signal shape.

8. IIR filters are mainly obtained by means of bilinear transformation of ana-
log filters: Butterworth, Chebyshev, and Cauer (elliptic).

9. Non-recursive digital FIR filters (finite impulse response ones), calculating
a local mean average of filter input samples only, will be described in the
next chapter.



8.11 Private Investigations: Free-Style Bungee Jumps 225

Fig. 8.19: Possible implementations of a second-order section (SOS) (8.67) of IIR
digital filters. In rows: direct form type I and II, transposed form type I and II [10]

8.11 Private Investigations: Free-Style Bungee Jumps

Exercise 8.10 (Optimization of Digital Signal Filtering Loop). Look at digital
signal filtering loop presented in Table 8.1 and program 8.1. Try to rewrite it: remove
time-consuming operation of buffer shifting. Consider using circular buffers instead
of shift buffers.

Exercise 8.11 (Separation of Real-World Signal Components). Record some
speech signals or use signals from Internet, for example, take them from FindSounds
web page. Calculate their spectra using Matlab or our spectrogram() function
designed in Chap. 6 (see program 6.4). Try to separate signal frequency components
via digital filtering, for example, pass only: (1) frequencies lower than 2000 Hz, (2)
higher than 2000 Hz. Plot signals before and after the filter and listen to them. You
can try to separate components of different technical sounds (like a police car alarm)
or animal sounds (for example, frog and canary singing together).

Exercise 8.12 (Disturbance Reduction in Real-World Signals). Record a speech
signal. Generate and add to it a disturbing sinusoid with a constant frequency. De-
sign and apply a digital filter trying to remove the disturbance. Plot spectrogram of
original speech signal, after the addition of disturber and after filter application. Lis-
ten to all signals. You can take a more complicated disturber from the FindSounds
web page.
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Chapter 9
FIR Digital Filters

Mirror, mirror on the wall, who’s the prettiest of them all? The
FIR digital filters are, My Cinderella.

9.1 Introduction

There are people that are talking a lot and therefore thinking that they are
pulling the strings and pressing the buttons. But very often, the other persons,
men of few words are taking decisions and solving things in silence. The same
is with FIR digital filters: there are a lot of more attractive DSP solutions but in
need the FIR filters are used.

FIR filters are special case of IIR filters. The FIR digital filtering represents
a simple weighted averaging of last N samples of input signal x(n) using filter
coefficients {hk}:

y(n) =
N−1

∑
k=0

h(k)x(n− k) =
N−1

∑
k=0

hkx(n− k), (9.1)

y(n) = h0 · x(n−0)+h1 · x(n−1)+h2 · x(n−2)+ ...+hN−1 · x(n− (N −1)),
(9.2)

for example:

y(n) = 5 · x(n)+10 · x(n−1)+20 · x(n−2)+30 · x(n−3). (9.3)

In Fig. 9.1 block diagram of the very short FIR filter is shown having only four
weights {h0,h1,h2,h3}.
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Fig. 9.1: Block diagram of an FIR digital filter calculating weighted average of
last four input samples using four weights hk,k = 0,1,2,3

Design of weights {hk} is called an FIR filter design. Calculation of output
signal samples y(n), having input signal samples x(n) and filter coefficients
{hk}, is called an FIR digital filtering.

Making connection to the previous chapter on IIR digital filtering, we can
briefly characterize the FIR filters as digital filters having the following transfer
function H(z) and resulting from it frequency response H(Ω), after the setting
z = e jΩ , Ω = 2π f

fs
:

H(z) =
Y (z)
X(z)

=
N−1

∑
k=0

hkz−k = h0

N−1

∏
k=1

(1− zkz−1) = h0z−(N−1)
N−1

∏
k=1

(z− zk)

(9.4)

H(Ω) = |H(Ω)|e j∠H(Ω) = M(Ω)e jΦ(Ω) =
Y (Ω)

X(Ω)
=

N−1

∑
k=0

hke− jΩk, Ω = 2π
f
fs
.

(9.5)

The filter length N typically should be large in order to obtain sharp filter
transition from its pass-band to stop-band. In different applications values of N
vary, approximately, from 10 to 1000. Uhh ... 1000! Yes. In such case a design
method could not be a try and check one: some mathematical foundation/deriva-
tion is required.

There are many methods for FIR digital filter design. One of the most simple
is a window method. The filter weights are found in it in analytic way: inverse
discrete-time Fourier transform of the desired filter frequency response is cal-
culated. The theoretically derived filter weights are next multiplied by chosen
window function and a compromise is done between the filter frequency re-
sponse: flatness in the pass-band, attenuation in the stop-band, and sharpness
in the transition band. Despite its simplicity, the window method offers a very
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efficient low-pass, high-pass, band-pass, and band-stop FIR filters that are suffi-
cient in most of DSP applications. In Matlab the function fir1() implements
them.

In the second very popular inverse DFT method the filter weights are calcu-
lated not analytically but computationally, performing the inverse DFT of the
specially shaped samples of the required filter frequency response. Then again,
a window function is applied upon calculated filter weights. In comparison to
the window method, a non-standard filter frequency characteristic can be de-
signed, for example, having values different from 1 for selected frequencies in
the pass-band, e.g. 0.9 or 1.2 (i.e. only correcting the signal processing path
characteristics). This way signal frequency equalizers can be designed (even
the digital music correctors) or multi-pass-band filters, not only typical one-
band-pass/stop (1/0) LP, HP, BP, and BS FIR filters. Such filters are designed
by the fir2() Matlab functions.

Techniques relying on finding optimal filter weights by means of numerical
minimization of some cost functions represent the next qualitative level of FIR
filter design methods. The weighted least-squares (WLS) method as well as
Chebyshev min-max equiripple approximation method of the filter frequency
response shape are the well-known examples of such methods. In Matlab one
should use functions firls() and firpm(), respectively.

What are advantages of FIR non-recursive digital filers in comparison with
IIR recursive digital filters, discussed in the previous chapter? For limited num-
ber of finite-value weights they are always stable. Additionally, it is very easy to
design filters with linear-phase response in which all signal components, which
are passed by the filter, are delayed by the same amount of time. Thanks to
this, shape of the passed signal is not changed what is very important in many
applications. Linear-phase filter characteristics are guaranteed by symmetry or
asymmetry of filter weights according to their center.

As a main drawback of FIR filters, we have to mention, is a fact that long
filters with hundreds of weights are required to ensure very sharp filter transition
from its frequency pass-band to stop-band. However, large filter size does not
create nowadays a problem for filter practical implementation since specialized
very fast processor exists. Nevertheless, application of long FIR filters is always
more power consuming than of significantly shorter IIR digital filters.

Simple weighted running averaging of signal samples allows not only fre-
quency low-high-band-stop filtration but also designing digital phase shifters
and digital differentiation filters. However, these types of filters, due to their
significance, especially in telecommunications, will be presented in separate
chapter.

In my opinion it will be an interesting story.
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9.2 FIR Filter Description

The FIR digital filter is described by the following input–output relation (x(n) →
y(n)):

y(n) =
N−1

∑
k=0

h(k)x(n− k) ←→ Y (Ω) = H(Ω)X(Ω), Ω = 2π
f
fs
, (9.6)

where h(k) denotes the filter impulse response, also marked as hk or bk, as in the
previous chapter, and fs is a sampling frequency. The summation is limited only
to k = 0,1,2, ...,N − 1, since it is assumed that the filter is causal (h(k) = 0 for
k < 0) and has only N non-zero weights h(k) for non-negative values of k. FIR
signal filtering has a form of input samples convolution with filter weights (left part
of Eq. (9.6)). When two signals are convoluted, their DtFT spectra are multiplied
(right part of Eq. (9.6)).

The discrete-time Fourier transform (DtFT) of the time-limited signal h(k) and
the inverse DtFT are defined as (Ω = 2π f

fs
):

H(Ω)=
N−1

∑
k=0

h(k)e− jΩk, h(k)=
1

2π

+π∫
−π

H(Ω)e jΩkdΩ =
1
fs

+ fs/2∫

− fs/2

H( f )e j2π f
fs

kd f .

(9.7)
H(Ω) is a complex-value number for each Ω :

H(Ω) = Re(H(Ω))+ j Im(H(Ω)) = |H(Ω)| · e j∠H(Ω), (9.8)

where

|H(Ω)|=
√

Re2(H(Ω))+ Im2(H(Ω)), (9.9)

∠(H(Ω)) = atan

(
Im(H(Ω))

Re(H(Ω))

)
. (9.10)

|H(Ω)| tells us about filter amplification of radial frequency Ω while ∠(H(Ω))
specifies the frequency phase shift (in consequence time delay—see beginning
of the chapter on IIR digital filters). When the filter has a linear-phase response
∠(H(Ω))=−αΩ , its answer to the complex-value harmonic excitation x(n)= e jΩn

is equal to (see Eq. (8.16)):

y(n) = |H(Ω)|e j∠(H(Ω)) · x(n) = |H(Ω)|e− jαΩ · e jΩn = |H(Ω)|e jΩ(n−α), (9.11)



9.2 FIR Filter Description 231

i.e. each signal component, regardless its frequency value, is delayed by α samples
at filter output. As a result, shape of the signal passing through the filter is not
changed, the signal is only delayed α samples.

Let us write Eq. (9.7) in alternative form (for some integer constant M):

H(Ω) = e− jΩM ·
[

N−1

∑
k=0

h(k)e jΩ(M−k)

]
= e− jΩM ·A(Ω). (9.12)

It results from Eq. (9.12) that the filter phase response (phase shift) is linear
function of Ω when the complex-value function A(Ω) takes real values only ei-
ther imaginary values only. This is the case when filter weights are symmetrical
or asymmetrical. Because phase response linearity is the biggest advantage of
FIR digital filters in comparison with IIR filters, it will be proved below.

Proof. For ambitious Readers. Let us assume that M denotes the index of the central
filter weight: M = (N − 1)/2. When the number of the filter weights is odd N =
2L+1, we obtain M = L. In such case A(Ω) in Eq. (9.12) is equal to:

A(Ω) =
L−1

∑
k=0

(h(k)+h(N −1− k))cos(Ω(M− k))+

+ j
L−1

∑
k=0

(h(k)−h(N −1− k))sin(Ω(M− k))+h(L). (9.13)

Therefore when filter impulse response is symmetrical (h(k) = h(N − 1− k), k =
0,1,2, ...,N −1), we have

A(Ω) =
L−1

∑
k=0

2h(k)cos(Ω(M− k))+h(L), (9.14)

while for the asymmetrical filter impulse response(h(k) = −h(N − 1 − k), k =
0,1,2, ...,N −1) and for h(L) = 0, one obtains

A(Ω) = j
L−1

∑
k=0

2h(k)sin(Ω(M− k)). (9.15)

In similar way derivation is done when filter has even number of weights N = 2L
(what is left for Reader as a homework).

��
In Table 9.1 it is shown what filter length (even/odd) or what filter weights sym-

metry is required for design of linear-phase FIR digital filters of different types.
Transfer function H(z) of different FIR linear-phase filter types has obligatory dif-
ferent positions of its zeros (without proof!)—information about this is also included
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Table 9.1: Specification of filter length (even N = 2L or odd N = 2L+1) and filter
weights symmetry (symmetry h(k) = h(N − k) or asymmetry h(k) =−h(N − k) for
k = 0,1,2, ...,N−1)) which are required for design of linear-phase FIR digital filters
of different types: LP—low-pass, HP—high-pass, BP—band-pass, BS—band-stop,
H—Hilbert −π/2 (rad) phase shifter, D—differentiation filter

Type Symmetry Length A(Ω) H(z)
zeros

H(0) = 0 H
(

fs
2

)
=0 Filter type

I Symmetrical Odd Real – – – LP, HP, BP, BS
II Symmetrical Even Real z =−1 – Yes LP, BP
III Asymmetrical Odd Imag z =±1 Yes Yes BP, H, D
IV Asymmetrical Even Imag z =+1 Yes – HP, BP, H, D

in the table. In Table 9.1 Hilbert (H) and differentiation (D) filters are considered
also. They are discussed in next chapters.

Let us remember that equation z = e j2π f/ fs draws unitary circle for changing
frequency f . The following partial cases can be distinguished:

• when polynomial of the variable z of the transfer function H(z) has zero for
z = −1 = e jπ , i.e. for f = fs/2, it means that H( fs/2) = 0, which allows only
obtaining LP or BP filter,

• when H(z) has zero for z = 1, i.e. for f = 0Hz, it means that H(0) = 0, which
allows only designing HP and BP filters,

• finally, zeros z =±1 allow only building BP filters.

In order to make things shorter and simpler, if not otherwise stated, in this chapter
we will be designing only FIR filters h(k) having odd number of weights N = 2L+
1 = 2M+1 being symmetrical or asymmetrical around its central point.

Exercise 9.1 (Filter Impulse Response: Symmetric or Asymmetric, Even or
Odd Length). Become familiar of program 9.1. Observe displayed plots: ex-
emplary ones are shown in Fig. 9.2. Run it. Set h as h1, h2, h3, h4 for
two versions of h0. Check what filters have always roots of their transfer func-
tion polynomials at points z = ±1. Observe magnitude response (responsible
for filter gain) and phase response (responsible for time delay) of all filters.
Note ±π jumps in phase response for frequencies of roots, lying on the unitary
circle. Observe linear-phase characteristics of all filters in frequency-passing
regions. Set h=h5, i.e. to low-pass filter impulse response generated by Mat-
lab. A magic occurs! At present frequency response of the filter is very good:
magnitude response (filter gain) is equal to 0 dB for low frequencies and more
than −60 dB for high frequencies. The phase linearly decreases with frequency
in filter pass-bands.
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Fig. 9.2: Characteristics of a test FIR filter, designed in the program 9.1, in rows
from left to right: symmetrical weights of odd-length filter, magnitude response,
zeros placement in H(z), filter phase response. fs =2000 Hz

Listing 9.1: Testing symmetry and number of FIR filter weights
�

1 % lab09_ex_symmetry.m
2 clear all; close all;
3

4 % Impulseresponse - filter weights
5 L = 10; % half of the filter length
6 h0 = (0:L-1); % h0 = randn(1,L); % half of the filter weights
7 h1 = [ h0(1:L) 1 h0(L:-1:1) ]; % symmetry, odd length
8 h2 = [ h0(1:L) h0(L:-1:1) ]; % symmetry, even length, z=-1
9 h3 = [ -h0(1:L) 0 h0(L:-1:1) ]; % asymmetry, odd length, z=+/-1

10 h4 = [ -h0(1:L) h0(L:-1:1) ]; % asymmetry, even length, z=+1
11 h5 = fir1( 200, 0.5 ); % symmetry, odd length, Matlab example
12 h = h1;
13 figure; stem(h); title(’h(n)’); grid; pause
14

15 % Roots (zeros) of the filter transferfunction H(z)
16 z = roots(h); z = z( find( abs(z) < 10 ) );
17 alpha = 0 : pi/1000 : 2*pi; co=cos(alpha); si=sin(alpha);
18 figure; plot(co,si,’k-’,real(z),imag(z),’bo’); title(’TF Roots’);
19 grid; pause
20

21 % Filter frequencyresponse H(f)
22 fs = 2000; f =-0.25*fs : fs/10000 : 1.25*fs;
23 zz = exp(-j*2*pi*f/fs); % ẑ (-1)
24 H = polyval(h(end:-1:1),zz); % H = freqz(h,1,f,fs);
25 figure; plot(f,20*log10(abs(H))); xlabel(’f (Hz)’); title(’|H(f)|’); grid; pause
26 figure; plot(f,unwrap(angle(H))); xlabel(’f (Hz)’); title(’phase H(f)’); grid; pause

��
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Exercise 9.2 (Testing FIR Digital Filters Designed by Matlab Functions).
Become familiar with program 9.2. First, program parameters are set and sig-
nal to be filtered is generated. Then, weights of HP, LP, BP, and BS filters are
designed by Matlab function fir1(). Next, roots of the filter transfer func-
tion H(z) and filter frequency response are plotted. Finally, the input signal
is filtered and filtration result is analyzed. Exemplary plots displayed by the
program are shown in Fig. 9.3. Run the program for task=1,2,3,4. Ob-
serve placement of H(z) roots in relation to unitary circle. Note linear-phase
response in filter pass-band. Notice that ±π jumps occur in phase response for
frequencies of H(z) roots lying on the unitary circle. Change the filter length L:
observe sharper filter transition from frequency passing to stopping for bigger
values of L. Look carefully at comparison of input and output signals in one
figure. Remember that the first valid output sample y(n) has index N, due to
computational transition effect resulting from filling the input buffer with sam-
ples x(n). The sample y(N) is delayed by M = (N−1)/2 in relation to the input
signal x(n). For N = 2L+ 1 and M = (N − 1)/2 = L, the y(N) corresponds to
the input sample x(N −L) while for N = 2L and M = (N − 1)/2 = L− 1/2 to
input signal value lying between samples x(N −L) and x(N − (L−1)).
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Fig. 9.3: Characteristics of an FIR filter designed in the program 9.2 using the win-
dow method, in rows from left to right: symmetrical weights of odd-length filter,
filter magnitude response, zeros placement in H(z), filter phase response



9.2 FIR Filter Description 235

Listing 9.2: Testing FIR filters designed by Matlab functions
�

1 % lab09_ex_filtering.m
2 clear all; close all;
3

4 % Parameters
5 task=1; % 1=LP, 2=HP, 3=BP, 4=BS - filter type
6 fs=2000; % sampling ratio
7 f0=100; f1=200; f2=300; % cut-off frequencies
8 L=100; % half of the filter length
9 N=2*L+1 % filter length: 2*L or 2*L+1

10 M=(N-1)/2; % central point of weights
11

12 % Signal
13 Nx=2000; n=0:Nx-1; dt=1/fs; t=dt*n;
14 x1 = cos(2*pi*10*t); x2 = cos(2*pi*250*t);
15 x = x1 + x2;
16 if(task==1 | task==4) xref = x1; else xref = x2; end
17

18 % Matlab functions - design of filter impulseresponses
19 h1=fir1(N-1,f0/(fs/2),’low’); % low-pass
20 h2=fir1(N-1,f0/(fs/2),’high’); % high-pass
21 h3=fir1(N-1,[f1,f2]/(fs/2),’bandpass’); % band-pass
22 h4=fir1(N-1,[f1,f2]/(fs/2),’stop’); % band-stop
23 if (task==1) h=h1;
24 elseif(task==2) h=h2;
25 elseif(task==3) h=h3;
26 else h=h4;
27 end
28 figure; stem(h); title(’h(n)’); grid; pause
29

30 % Roots of filter transferfunction
31 z = roots(h); z = z( find( abs(z) < 10 ) );
32 alpha = 0 : pi/1000 : 2*pi; co=cos(alpha); si=sin(alpha);
33 figure; plot(co,si,’k-’,real(z),imag(z),’bo’); title(’TF Zeros’); grid; pause
34

35 % Filter frequencyresponse
36 f = 0 : fs/2000 : fs/2;
37 z = exp(-j*2*pi*f/fs); % ẑ (-1) of the Z transform
38 H = polyval(fliplr(h),z); % H = freqz(h,1,f,fs);
39 figure
40 subplot(211); plot(f,20*log10(abs(H))); xlabel(’f (Hz)’); title(’|H(f)|’); grid;
41 subplot(212); plot(f,unwrap(angle(H))); xlabel(’f (Hz)’); title(’Phase H(f)’); grid;

pause
42

43 % FIR digitalfiltering
44 %y = conv(x,h); y = filter(h,1,x);
45 N = length(h);
46 bx = zeros(1,N);
47 for n = 1 : Nx
48 bx = [ x(n) bx(1:N-1) ];
49 y(n) = sum( bx .* h );
50 end
51
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52 % Figures
53 n=0:Nx-1;
54 figure; % observe that first N-1 samples of y(n) are erroneous (transient)
55 subplot(211); plot(n,x,’.-’); xlabel(’n’); title(’x(n)’); grid;
56 subplot(212); plot(n,y,’.-’); xlabel(’n’); title(’y(n)’); grid; pause
57 figure; nx = L+1: Nx-L; ny = N:Nx;
58 subplot(111); plot(t(nx),xref(nx),’b.-’,t(nx),y(ny),’r.-’); xlabel(’n’);
59 title(’x(n), y(n)’); grid; pause
60 figure; % signal spectra of the second halves of samples (transients out!)
61 k=Nx/2+1:Nx; f0 = fs/(Nx/2); f=f0*(0:Nx/2-1);
62 subplot(211); plot(f,20*log10(abs(2*fft(x(k)))/(Nx/2))); grid;
63 subplot(212); plot(f,20*log10(abs(2*fft(y(k)))/(Nx/2))); grid; pause

��

9.3 Window Method

In the window method, first, theoretical filter impulse response h(k) is derived ana-
lytically: the inverse discrete-time Fourier transform (DtFT) (9.7) is calculated upon
the required filter frequency response equal to 1 in pass-band and 0 in stop-band:

h(k) =
1

2π

π∫
−π

HXX (Ω)e j Ω kdΩ , −M ≤ k ≤ M, (9.16)

where XX denotes: LP, HP, BP, or BS, and HXX (Ω) is user-defined required filter
frequency response symmetrical or asymmetrical around Ω = 0 (rad/s). Next, calcu-
lated values h(k) are multiplied by carefully chosen window function w(k), deciding
about filter frequency response oscillations in the pass-band and stop-band as well
as about the sharpness of filter transition band (−M ≤ k ≤ M):

hw(k) = h(k)w(k) ↔ Hw (Ω) =
1

2π

π∫
−π

H (Θ)W (Ω −Θ)dΘ . (9.17)

Finally, the filter weights, cut by the window, are shifted M samples right (0 ≤ k ≤
2M):

h(M)
w (k) = hw(k−M) ↔ H(M)

w (Ω) = e− jΩMHw(Ω). (9.18)

This operation makes the filter causal but delays the filter output by M samples.
Since for N = 2M + 1, the Hw(Ω) is a real-value function, we can conclude from
Eq. (9.18) that the filter phase response linearly decreases with frequency. This
means that shape of the passed signal is not changed on the output.

The filter design using the window method is a big pleasure: a little effort and
a very good effect. Only impulse response equation of the low-pass filter has to
be derived analytically, the other filters are represented as linear super-positions of
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low-pass and all-pass filters working in parallel. Their outputs are subtracted from
each other.

The impulse response of the low-pass filter with cut-off frequency f0 (Hz) and
cut-off angular frequency Ω0 = 2π f0/ fs (rad · Hz/Hz) is analytically calculated as
follows:

hΩ0
LP (k) =

1
2π

π∫
−π

HLP(e
jΩ )e jΩkdΩ =

1
2π

Ω0∫
−Ω0

1 · e jΩkdΩ =
1

2π
1
jk

e jΩk

∣∣∣∣
Ω0

−Ω0

=

=
1

j2πk

[
e jΩ0k − e− jΩ0k

]
=

2 j sin(Ω0k)
j2πk

=
sin(Ω0k)

πk
= 2

f0

fs

sin(Ω0k)
Ω0k

. (9.19)

Equation (9.19) is only valid for k �= 0 since for k = 0 division 0 by 0 takes place.
Value hΩ0

LP (0) is found by calculating derivatives over k of nominator and denomi-
nator in Eq. (9.19) and computing value of the result for k = 0:

hΩ0
LP (0) = 2

f0

fs

d( sin(Ω0k))/dk
d(Ω0k )/dk

∣∣∣∣
k→0

= 2
f0

fs
· Ω0 cos(Ω0k)

Ω0

∣∣∣∣
k→0

= 2
f0

fs
. (9.20)

Having formulas (9.19), (9.20) for an impulse response hΩ0
LP (k) of the low-pass

filter (LP), we can find with ease impulse responses of HP, BP, and BS filters. All
equations are given in Table 9.2. One all-pass filter and different low-pass filters
are working in parallel and their outputs are subtracted. The all-pass filter impulse
response hALL(k) is equal to Kronecker delta impulse δ (k): 1 only for k = 0, other-
wise 0. Obtaining HP, BP, and BS filters from low-pass ones and the all-pass filter
is presented in Fig. 9.4. For example, a high-pass filter is obtained by subtracting a
low-pass filter from the all-pass one (first column of plots in the figure), while the
band-pass filter is a result of subtracting two low-pass filters: the filter with wider
pass-band minus the filter with narrower pass-band (second column of plots in the
figure).

Exercise 9.3 (Theoretical Filter Impulse Responses). Analyze code of the
program 9.3, implementing in Matlab impulse response equations from
Table 9.2. Run the program, change filter parameters, observe different filter
weights (shapes)–see Fig. 9.5. Add this code to the program 9.2. Observe place-
ments of H(z) roots as well as filter magnitude response (Fig. 9.6) and phase
response. Do signal filtering. Compare input and output signals.
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Table 9.2: Theoretical impulse responses h(k),k = −M, ...,0, ...,M of non-causal
FIR digital filters derived analytically—by performing inverse DtFT upon required
frequency response of the filter. δ (k)—Kronecker impulse equal to 1 for k = 0 and
0 otherwise. Cut-off frequencies f0, f1, f2 are selected by a user

Type Denotation Relation to LP/BP h(k),k �= 0 h(0)

LP hΩ0
LP (k) – 2 f0

fs
sin(Ω0k)

Ω0k 2 f0
fs

HP hΩ0
HP(k) δ (k)−hΩ0

LP (k) −2 f0
fs

sin(Ω0k)
Ω0k 1−2 f0

fs

BP h[Ω1,Ω2]
BP (k) hΩ2

LP (k)−hΩ1
LP (k) 2 f2

fs
sin(Ω2k)

Ω2k −2 f1
fs

sin(Ω1k)
Ω1k 2 f2

fs
−2 f1

fs

BS h[Ω1,Ω2]
BS (k) δ (k)−h[Ω1,Ω2]

BP (k) −
(

2 f2
fs

sin(Ω2k)
Ω2k −2 f1

fs
sin(Ω1k)

Ω1k

)
1−
(

2 f2
fs
−2 f1

fs

)

Fig. 9.4: Obtaining high-pass, band-pass, and band-stop filters (from left to right
in columns) by subtracting outputs of working in parallel low-pass and all-pass fil-
ters. Filters presented in the middle row are subtracted from corresponding filters
presented in the first row: as a result filters shown in the last row are get. For first
column: all-pass filter minus low-pass filter gives a high-pass filter

Listing 9.3: Generation of theoretical impulse responses of LP/HP/BP/BS filters
�

1 % lab09_ex_impulse_response.m
2

3 % Filter parameters
4 fs = 1000; % samplingfrequency
5 f0 = 100; % cut-off frequency for low-pass and high-pass filters
6 f1 = 200; % low frequency for band-pass and band-stop filters
7 f2 = 300; % high frequency for band-pass and band-stop filters
8 M = 100; % half of the filter weights
9 N = 2*M + 1; % number of weights {h(n)} (b(n) in IIR filters) - always odd
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10 n = -M :1: M; % non-causal weights indexes
11

12 % Impulseresponses - weights
13 hALL = zeros(1,N); hALL(M+1)=1; % AllPass
14 hLP = sin(2*pi*f0/fs*n)./(pi*n); hLP(M+1) = 2*f0/fs; % LowPass f0
15 hHP = hALL - hLP; % HighPass
16 hLP1 = sin(2*pi*f1/fs*n)./(pi*n); hLP1(M+1) = 2*f1/fs; % LowPass f1
17 hLP2 = sin(2*pi*f2/fs*n)./(pi*n); hLP2(M+1) = 2*f2/fs; % LowPass f2
18 hBP = hLP2 - hLP1; % BandPass [f1,f2]
19 hBS = hALL - hBP; % BandStop [f1,f2]
20 hH = (1-cos(pi*n))./(pi*n); hH(M+1)=0; % Hilbert filter-90deg phase shifter
21 hD = cos(pi*n)./n; hD(M+1)=0; % differentiationfilter
22 h = hLP; % choose filter: hLP, hHP, hBP, hBS, hH, hD
23 figure; stem( n, h ); title(’h(n)’); grid; pause

��

The only parameters which can be changed in the window method are:

• impulse response equation with specified cut-off frequencies f0,1,2,Ω0,1,2 (Ta-
ble 9.2),

• filter length N = 2M+1 deciding about filter sharpness,
• window type deciding about filter flatness in the pass-band and attenuation in

the stop-band as well as about width of the transition band.

Window choice has a crucial impact on filter quality because:
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Fig. 9.5: Theoretical un-windowed impulse responses of FIR filters, designed in the
program 9.3, in columns: LP, HP, BP, and BS filter
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Fig. 9.6: Magnitude responses of FIR filters, designed in the program 9.3, in
columns: LP, HP, BP, and BS filter. They correspond to impulse responses presented
in Fig. 9.5

• the more narrow is its spectral main-lobe, the faster/sharper is filter transition
from pass-band to stop-band,

• the bigger is attenuation of its spectral side-lobes, the better is filter flatness in
the pass-band, and the higher is filter attenuation in the stop-band.

There are many window functions. Each of them could be used. But typically they
have fixed shapes and fixed spectral features. For this reason the Chebyshev and
Kaiser window usage is recommended because their shapes can be changed and
their spectral features adjusted. For the Chebyshev window, first, one can choose
directly the spectral side-lobes attenuation, and, then, change the window length
in order to obtain a desired filter sharpness: fast transition from signal passing to
stopping.

The following filter design procedure is widely used for the Kaiser window.

1. Choose filter type (LP, HP, BP, or BS) and cut-off frequencies of its H(Ω).
2. Compute samples of theoretical filter impulse response h(n) using one equation

from Table 9.2.
3. Decide about the filter quality, see Fig. 7.9 in chapter on analog filters:

a. specify allowed level of oscillations δpass in the filter pass-band around
gain equal to 1 (e.g. 0.01 around 1) and gain δstop in the filter stop-band
(e.g. 0.0001), i.e. the filter attenuation,
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b. specify Δ f (in Hz) of the widest transition band (from pass-band to stop-
band) of the filter edge.

4. Design Kaiser window:

a. Calculate A using equation:

δ = min(δpass,δstop) , A =−20log10 (δ ) . (9.21)

b. Calculate required β :

β =

⎧⎨
⎩

0, for A < 21 dB,
0.5842(A−21)0.4 +0.07886(A−21) , for 21 dB ≤ A ≤ 50 dB,

0.1102(A−8.7) , for A > 50 dB.
(9.22)

c. Calculate required length of the filter ( fs—sampling frequency):

N = 2M+1 ≥ A−7.95
14.36

fs

Δ f
. (9.23)

d. Calculate the Kaiser window for given β and M, where I0(x) denotes the
modified Bessel function of the zeroth order:

wK (k) =

⎧⎨
⎩

I0
[

β
√

1−(n/M)2
]

I0(β )
, −M ≤ k ≤ M,

0, elsewhere.
(9.24)

5. Window the impulse response: multiply h(k) of the filter and Kaiser window
wK(k):

hw(k) = h(k) ·wK(k), −M ≤ k ≤ M. (9.25)

6. Shift impulse response right by M samples:

h(M)
w (k) = hw(k−M), 0 ≤ k ≤ N −1. (9.26)

7. Use weights {hk} in filtering equation for any n:

y(n) =
2M

∑
k=0

h(M)
w (k)x(n− k). (9.27)
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Exercise 9.4 (FIR Filter Design Using Window Method with Kaiser Win-
dow). Check whether Matlab code in Listing 9.4 correctly calculates Kaiser
window parameters from Eqs. (9.21)–(9.24). Compare generated Kaiser win-
dow with output of the Matlab function kaiser(). Use calculated window
for windowing the FIR filter impulse responses computed in the program 9.3.
Verify the FIR digital filters designed this way using the program 9.2: check
whether obtained filter frequency responses are correct (Fig. 9.7), estimate from
them expected attenuation of different signal frequency components at filter
output and observe their practical attenuation at the filter output as well as in
FFT spectra of output signals.
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Fig. 9.7: Magnitude responses of FIR filters designed by window method, corre-
sponding to frequency responses of un-windowed filters presented in Fig. 9.6. The-
oretical impulse responses calculated in the program 9.3 have been multiplied by
Kaiser windows designed in the program 9.4. In Columns: LP, HP, BP, and BS filter
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Listing 9.4: Choosing Kaiser window for FIR filter design
�

1 % lab09_ex_kaiser.m
2 clear all; close all;
3

4 % Choose filter parameters
5 fs = 2000; % samplingfrequency (Hz)
6 fa1 = 150; % low frequency 1 (Hz), LP, BP, BS
7 fa2 = 200; % low frequency 2 (Hz), LP, BP, BS
8 fb1 = 300; % high frequency 1 (Hz), HP, BP, BS
9 fb2 = 350; % high frequency 2 (Hz), HP, BP, BS

10 if(1)
11 dpass = 0.001; % allowedoscillations in passband, e.g. 0.1, 0.01, 0.001
12 dstop = 0.0001; % allowedoscillations in stopband, 0.001, 0.001, 0.0001
13 else % Alternative: from Apass and Astop in (dB) to dpass and dstop (linear)
14 Apass = 3; Astop = 80;
15 dpass = ((10̂ (Ap/20))-1)/((10̂ (Ap/20))+1);
16 dstop = 10̂ (-As/20);
17 end
18

19 type = ’bp’; % lp=LowPass, hp=HighPass, bp=BandPass, bs=BandStop
20

21 % Calculate Kaiser window parameters
22 if (type==’lp’) % Filter LP
23 df=fa2-fa1; fc=((fa1+fa2)/2)/fs; wc=2*pi*fc;
24 end
25 if (type==’hp’) % Filter HP
26 df=fb2-fb1; fc=((fb1+fb2)/2)/fs; wc=2*pi*fc;
27 end
28 if (type==’bp’ | type==’bs’) % Filter BP or BS
29 df1=fa2-fa1; df2=fb2-fb1; df=min(df1,df2);
30 f1=(fa1+(df/2))/fs; f2=(fb2-(df/2))/fs;
31 w1=2*pi*f1; w2=2*pi*f2;
32 end
33 % beta = ?
34 d=min(dpass,dstop); A=-20*log10(d);
35 if(A>=50) beta=0.1102*(A-8.7); end
36 if(A>21 & A<50) beta=(0.5842*(A-21)̂ 0.4)+0.07886*(A-21); end
37 if(A<=21) beta=0; end
38 % D = ?
39 if(A>21) D=(A-7.95)/14.36; end
40 if(A<=21) D=0.922; end
41 % N = ?
42 N=(D*fs/df)+1; N=ceil(N); if(rem(N,2)==0) N=N+1; end
43 N, pause
44 M = (N-1)/2; m = 1 : M; n = 1 : N;
45

46 % Generate Kaiser window
47 % e.g. w=hanning(N)’; w=hamming(N)’, w=blackman(N)’; w=chebwin(N,Astop)’
48 % w=Kaiser(N,beta)’;
49 w = besseli( 0, beta * sqrt(1-((n-1)-M).̂ 2/M̂ 2) ) / besseli(0,beta);
50 figure; plot(n,w,’bo-’); title(’Window function w(n)’); grid; pause

��
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9.4 Inverse DFT Method

In the inverse DFT method of FIR filter design, the filter impulse response sam-
ples h(n) (index k is replaced by n in this section) is not derived analytically but
calculated by a computer program. The inverse DFT (FFT) algorithm is executed:

h(n) =
N−1

∑
k=0

H(k)e j( 2π
N k)n, n = 0, 1, 2, ..., N −1 (9.28)

directly upon user-selected samples of the required filter frequency response:

H(k) = H(Ωk) = H

(
2π
N

k

)
= H

(
2π

k · f0

fs

)
, f0 =

fs

N
. (9.29)

In order to obtain real-value, not complex-value, filter weights, the DFT spectrum
(a)symmetry should be fulfilled: H(N−k)=H∗(k). The calculated filter coefficients
(9.28) are multiplied with window samples, as before, in order to improve filter
features: linearity in the passband and attenuation in the stop-band.

Why is the windowing necessary? To answer this question let us perform the
DtFT over calculated filter weights (9.28):

H(Ω) =
1
N

N−1

∑
n=0

h(n)e− jΩn =
1
N

N−1

∑
n=0

[
N−1

∑
k=0

X(k)e j( 2π
N k)n

]
e− jΩn. (9.30)

After changing order of summations in Eq. (9.30), we have

H(Ω) =
1
N

N−1

∑
k=0

X(k)

[
N−1

∑
n=0

e j( 2π
N k)ne− jΩn

]
=

1
N

N−1

∑
k=0

X(k)

[
1− e− jΩN

1− e j(2π/N)ke− jΩ

]
,

(9.31)
where the following equality and derivation were exploited:

N−1

∑
n=0

rn =
1− rN

1− r
(9.32)

N−1

∑
n=0

e j( 2π
N k)ne− jΩn =

N−1

∑
n=0

e j[ 2π
N k−Ω ]n =

1− e j[ 2π
N k−Ω ]N

1− e j[ 2π
N k−Ω ]

=
1− e− jΩN

1− e j[ 2π
N k−Ω ]

(9.33)

Equation (9.31) represents summation of shifted oscillatory functions:

[
1− e− jΩN

1− e j(2π/N)ke− jΩ

]
= e− jΩ(N−1)/2e− jπk/N sin(ΩN/2)

sin(Ω/2−πk/N)
. (9.34)
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Fig. 9.8: Magnitude responses of two FIR filters designed by inverse DFT method
using the program 9.5: (left) frequency oversampling K = 1, (right) K = 4, (top)
without Kaiser window, (down) with Kaiser (β = 10)

Therefore the frequency response H(Ω) of the designed filter (9.31) is oscillatory
between points H(k). In order to improve the designed filter and to reduce the oscil-
lations, calculated h(n) is multiplied with a chosen spectral window.

Exercise 9.5 (FIR Filter Design Using Inverse DFT). Matlab code imple-
menting the FIR filter design method using inverse DFT is given in Listing 9.5–
see Fig. 9.8. Calculated weights of the FIR filter are not windowed in it. Do
the windowing and plot the magnitude and phase filter response. Compare
them in one figure with characteristics of the filter designed using the window
method and the same window. Test different oversampling orders in frequency
domain, set K=1,2,4. Compare your filters with filters generated by the Mat-
lab function fir2(). Calculate and plot magnitude of the function (9.34) of
variable Ω .
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Listing 9.5: Matlab code of inverse DFT method of FIR filter design
�

1 % lab09_ex_inv_dft.m
2 clear all; close all;
3

4 % Parameters
5 fs = 2000; % samplingfrequency (Hz)
6 f0=100; f1=200; f2=300; % cut-off frequencies
7 M = 100; % half of the filter weights
8 K = 4; % oversamplingorder in frequency domain
9 N = 2*M + 1; % number of weights {h(n)} (b(n) in IIR filters) - always odd

10 n = -M :1: M; % non-causal weights indexes
11 NK = N*K; if(rem(NK,2)==1) NK=NK+1; end % after oversampling in frequency
12 df = fs/NK; f = df*(0 : NK/2); % frequencies
13 H0 = zeros(1,NK/2+1); % initialization
14 H1 = ones(1,NK/2+1); % initialization
15 % Low-Pass
16 ind = find( f<=f0 );
17 HLP = H0; HLP(ind) = ones(1,length(ind)); HLP(ind(end))=0.5;
18 % High-Pass
19 ind = find( f>=f0 );
20 HHP = H0; HHP(ind) = ones(1,length(ind)); HLP(ind(1))=0.5;
21 % Band-Pass and Band-Stop
22 ind1 = find( f< f1 );
23 ind2 = find( f<=f2 ); %
24 ind = find( ind2 > ind1(end) );
25 HBP = H0; HBP(ind) = ones(1,length(ind)); HBP(ind(1))=0.5; HBP(ind(end))=0.5;
26 HBS = H1; HBS(ind) = zeros(1,length(ind)); HBS(ind(1))=0.5; HBS(ind(end))=0.5;
27

28 % Our choice: LP, HP, BP, BS
29 H = HBS; % copy
30 H(NK:-1:NK/2+2) = H(2:NK/2); % by symmetry
31 h = ifft( H ); % inverse DFT
32 h = [ h(M+1:-1:2) h(1:M+1) ]; % selection of 2M+1 weights
33 figure; stem(n,h); title(’h(n)’); grid; pause % figure

��

9.5 Weighted Least-Squares Method

In this section we will describe FIR filter design method in which filter weights h(n)
result from least-squares fitting of their DtFT H(Ωk) to the desired filter frequency
response Hd(Ωk), specified by a user. We limit our discussion to the design case
described by Eq. (9.14), i.e. symmetrical N = 2M+1 weights: h(N−k) = h(k),k =
0,1,2, ...,2M.

In the beginning, let us assume that Ωk of our requirements result from DFT
frequency sampling grid:

Ωk =
2π
L

k, k = 0, 1, 2, ..., L−1. (9.35)
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We would like to find such weights h(n), fulfilling Eq. (9.14), for which the follow-
ing LS error is minimal:

E1 =
L−1

∑
k=0

|H(Ωk)−Hd(Ωk)|2 =
L−1

∑
k=0

|M(Ωk)−Md(Ωk)|2. (9.36)

From Parseval’s equality telling about energy preservation by the Fourier trans-
form (see Table 4.2)), minimization of the cost function E1 (9.36) corresponds to
minimization of a cost function E2:

E2 =
(L−1)/2

∑
n=−(L−1)/2

|h(n)−hd(n)|2. (9.37)

The error (9.36) is minimal when H(Ωk) = Hd(Ωk) for all Ωk, therefore the
optimal filter weights are equal to the inverse DFT of our requirements, similarly as
in the previous section.

The situation is different when number of points L (requirements), specified in
the frequency domain, is bigger than number of filter weights N = 2M + 1 to be
found. In this situation the error sum (9.37) can be divided into two parts:

E2 =
M

∑
n=−M

|h(n)−hd(n)|2 +2
(L−1)/2

∑
n=M+1

|hd(n)|2 (9.38)

and the cost function E2 reaches minimum when the first term in (9.38) is the small-
est, i.e. as designed filter weights are taken only samples hd(n),n =−M, ...,0, ...,M,
resulting from inverse DFT of the Hd(Ωk).

Finally, let us consider the most general case when radial frequencies Ωk,k =
0,1,2, ...L− 1, are sampled non-uniformly and we are specifying L values A(Ωk)
in Eq. (9.14). Our goal is to find the M + 1 weights of the FIR filter (half of them)
by means of solving the following over-determined set of equations (L > M+1) in
least-squares sense:
⎡
⎢⎢⎢⎣

2cos(Ω0M) 2cos(Ω0(M−1)) · · · 2cos(Ω0)
2cos(Ω1M) 2cos(Ω1(M−1)) · · · 2cos(Ω1)

...
...

. . . 1
2cos(ΩL−1M) 2cos(ΩL−1(M−1)) · · · 2cos(ΩL−1)

1
1
1
1

⎤
⎥⎥⎥⎦·
⎡
⎢⎢⎢⎣

h(0)
h(1)

...
h(M)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

A(Ω0)
A(Ω1)

...
A(ΩL−1)

⎤
⎥⎥⎥⎦

(9.39)
The matrix in Eq. (9.39) has dimensions L× (M+1). Therefore for L > M +1 we
have more equations than unknowns and we are finding the solution in the least-
squares sense.

After introducing a vector e of the LS approximation error, the Eq. (9.39) can be
rewritten as follows:

Fh ∼= ad , Fh = ad + e. (9.40)

After left multiplication of both sides of Eq. (9.40) by the matrix F transposition,
we have
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FT Fh = FT ap +FT e. (9.41)

For the optimal LS solution the error vector is orthogonal to rows of the matrix FT .
Therefore the last term in Eq. (9.41) is equal to zero, which gives

FT Fh = FT ad , (9.42)

and after multiplication of both sides of Eq. (9.42) by the matrix (FT F)−1, the de-
signed filter weight is obtained:

h =
(
FT F

)−1
FT ad = pinv(F)ad . (9.43)

The function pinv() calculates the matrix F pseudo-inverse.
The weighted LS solution is obtained when the following weighted error function

is used, with coefficients wk specifying the difference significance:

E =
L−1

∑
k=0

wk|A(Ωk)−Ad(Ωk)|2. (9.44)

When these weights are put one-by-one on the main diagonal of the square matrix
W, the weighted LS solution is defined by following equations:

FT WFh = FT Wap (9.45)

h =
(
FT WF

)−1
FT Wap. (9.46)

Exercise 9.6 (FIR Filter Design Using Weighted Least-Squares (WLS) Ap-
proach). Matlab code implementing the FIR filter design method using the
WLS technique is presented in Listing 9.6 but only for an exemplary low-pass
filter. Modify the program and allow calculation of HP, BP, and BS filter weights
also. Add to the program a figure of H(z) roots placements and plots of filter
magnitude and phase responses. Compare your filters with filters calculated by
the Matlab function firls(). See Fig. 9.9.

Listing 9.6: Matlab code of weighted least-squares (WLS) method of FIR filter de-
sign

�

1 % lab09_ex_wls.m
2 clear all; close all;
3

4 % Parameters
5 fs = 2000; % samplingfrequency (Hz)
6 f0 = 100; % cut-off frequency
7 M = 100; % half of the filter weights, N=2M+1
8 K = 4; % oversamplingorder in frequency domain
9 % P points of frequencyresponse Ad() for ang. frequencies 2*pi*p/P, p=0,1,...,P-1

10 P = K*2*M; % number of points (even; P >= N=2M+1)
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11 L1 = floor(f0/fs*P), % number of first FR samples equal gain=1
12 Ad = [ ones(1,L1) 0.5 zeros(1,P-(2*L1-1)-2) 0.5 ones(1,L1-1)];
13 Ad = Ad’;
14 % Chose weighting coeffs w(p), p=0,1,2,...,P-1, for Pass/Trans/Stop regions
15 wp = 1; % weight for PassBand
16 wt = 1; % weight for TransientBand
17 ws = 10000; % weight for StopBand
18 w = [ wp*ones(1,L1) wt ws*ones(1,P-(2*L1-1)-2) wt wp*ones(1,L1-1) ];
19 W = zeros(P,P); %
20 for p=1:P % matrix with weights on the main diagonal
21 W(p,p)=w(p); %
22 end %
23 % Find matrix F being solution of the matrix equation W*F*h = W*(Ad + err)
24 F = [];
25 n = 0 : M-1;
26 for p = 0 : P-1
27 F = [ F; 2*cos(2*pi*(M-n)*p/P) 1 ];
28 end
29 % Find h[n] minimizing error of W*F*h = W*Ad
30 % h = pinv(W*F)*(W*Ad); % method #1
31 h = (W*F)\(W*Ad); % method #2
32 h = [ h; h(M:-1:1) ]’;
33 figure; stem(-M:M,h); title(’h(n)’); grid; pause % figure

��
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Fig. 9.9: Magnitude responses of two FIR filters designed by weighted least-squares
method using the program 9.6: (left) frequency oversampling K = 1, (right) K = 4,
(top) without Kaiser window, (down) with Kaiser (β = 10)
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9.6 Min-Max Equiripple Chebyshev Approximation Method

In this section we learn one of the most powerful FIR filter design methods and
the most frequently used in professional applications. It is doing Chebyshev min-
max approximation of the filter frequency response, i.e. filter weights optimization
aiming at minimization of the maximum filter frequency response error. The Parks-
McClellan implementation of the Remez algorithm is presented here. In this algo-
rithm the designed filter frequency response Ad(Ω) (Eq. (9.14)) is approximated by
a sum of cosines taken with coefficients cn. The following cost function E(Ω) is
minimized:

E(Ω) =W (Ω)

[
M

∑
k=0

ck cos(Ωk)−Ad(Ω)

]
, (9.47)

where W (Ω) denotes non-negative weighting function, stressing significance of
user expectations for different frequency regions. The Remez algorithm is based
on the theorem specifying that a set of frequencies Ωm,m = 1,2, ...,M + 2, always
exists for which the error function (9.47) gives only values ±ε:

W (Ωm)

[
M

∑
k=0

ck cos(Ωmk)−Ad(Ωm)

]
= (−1)mε , m = 1, 2, ..., M+2 (9.48)

which are extreme. Let us assume that frequencies of these extremes are known.
In such situation, we obtain from Eq. (9.48) a set of M + 2 equations with M + 2
unknowns:

⎡
⎢⎢⎢⎢⎢⎣

1 cos(Ω1) · · · cos(MΩ1) 1/W (Ω1)
1 cos(Ω2) · · · cos(MΩ2) −1/W (Ω2)
...

...
. . .

...
...

1 cos(ΩM+1) · · · cos(MΩM+1) (−1)M+1/W (ΩM+1)

1 cos(ΩM+2) · · · cos(MΩM+2) (−1)M+2/W (ΩM+2)

⎤
⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎣

c0

c1
...

cM

ε

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

Ad(Ω1)
Ad(Ω2)

...
Ad(ΩM+1)
Ad(ΩM+2)

⎤
⎥⎥⎥⎥⎥⎦

(9.49)
Solving it, we obtain M + 1 approximation coefficients ck and amplitude of oscil-
lation ε . For consecutive angular frequencies Ωm of the error extreme, the approx-
imation error is equal to: −ε ,+ε ,−ε ,+ε , .... The angular frequencies Ωm are not
known. The Remez algorithm aims at their iterative approximate finding and, then,
at the end, solving the Eq. (9.49). The algorithm consists of the following steps:

1. initialization of M+2 values of Ωm,
2. solving the Eq. (9.49): finding coefficients ck,k = 0,1,2, ...,M and ε ,
3. checking whether the amplitude of error function E(Ω) for Ω from the interval

[0,π] is bigger than calculated ε; if not, then STOP,



9.6 Min-Max Equiripple Chebyshev Approximation Method 251

4. otherwise finding M+2 angular frequencies for which the error function E(Ω)
has extreme values, setting them as Ωm and returning to step 2.

Finding new extreme of the error function can be done by Lagrange interpolation
technique.

For filter length N = 2M+1 and symmetrical weights h(N − k) = h(k), we have
from Eq. (9.14):

A(Ω) =
M−1

∑
k=0

2h(k)cos(Ω(M− k))+h(M) =
M

∑
k=0

hk cos(Ω(M− k)) =
M

∑
k=0

hM−k cos(Ωk).

(9.50)

where

hk =

{
2h(k), k = 0,1, ...,M−1,

h(k), k = M.
(9.51)

When we set ck = hM−k, k = 0,1,2, ...,M, then the Eqs. (9.47)–(9.49) directly de-
scribe the problem of filter frequency response Ad(Ω) approximation by the filter
fulfilling condition (9.50). Therefore, after calculation of coefficients ck by Remez
algorithm, knowing that ck = hM−k and remembering Eq. (9.51), we finally obtain

h =
{cM

2
, ...,

c2

2
,

c1

2
, c0,

c1

2
,

c2

2
, ...,

cM

2

}
. (9.52)

Exercise 9.7 (Designing Min-Max Equiripple FIR Filters). The last exercise
in this chapter is very easy. Since success of the Parks-McClellan implemen-
tation of the Remez algorithm strongly depends on the quality of frequency
response interpolation, there is no possibility of taking a shortcut. Therefore it
is better, in my opinion, to test existing good algorithm implementations, then
spend hours on writing our own code offering, with big difficulties, worse re-
sults than other methods. Please, use Matlab function firpm(), generate filter
weights for the same design tasks as before in Exercises 9.4, 9.5, and 9.6, and
compare frequency responses of min-max filters (Fig. 9.10) with solutions of-
fered by methods already discussed. Extend this Matlab code:

M=100; N=2*M+1; % filter length
fs=2000; f0=100; fpass1 = f0-10; fstop1 = f0+10; % frequencies
wpass = 1; wstop = 1; % weights for passband and stopband
h = firpm(N-1, [0 fpass1 fstop1 fs/2]/(fs/2), [1 1 0 0],...
[wpass wstop]); % function call
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Fig. 9.10: Magnitude responses of two FIR filters designed by the Matlab function
firpm(), implementing the Parks-McClellan algorithm. Generated by code from
example 9.7: (left) wpass=1, wstop=1, (right) wpass=1; wstop=10000

9.7 Efficient FIR Filter Implementations

When talking about efficient FIR filter implementations, two things should be men-
tioned.

1. In order to ensure the desirable linear-phase response, the FIR filter weights
should have specific symmetry, i.e. be “the same” in absolute value sense:
h(N−k) = h(k) or h(N−k) =−h(k), where k = 0...N and N+1 denotes num-
ber of filter coefficients. This means that number of performed multiplications
can be reduced approximately by half by, first, doing addition (or subtraction)
of the corresponding signal samples associated with “the same” filter weights,
and, then, doing multiplication of the addition/subtraction results by half of the
number of weights only. For example, LP, HP, BP, and BS filters with N = 2∗M
we have

y(n) = h(M)x(n)+
M

∑
1

h(M+ k) [x(n+ k)± x(x− k)]. (9.53)

2. Since FIR digital filtering has a form of linear convolution of two discrete-time
signals, fast convolution algorithms, described in Sect. 6.6, can be applied in
this case. Of course, one should remember to choose appropriate modification
of the FFT-based circular convolution changing it into the linear one. A Reader,
interested in this subject, is asked to read again more carefully the Sect. 6.6 and
run programs presented in it.

When implementing FIR digital filters by means of fast convolution methods, a
special care has been taken during implementation of on-line real-time FIR filtering
using overlap methods, in particular when the filter impulse response is long and
should be cut into sections too, similarly to the incoming signal samples. Now we
will concentrate only on this subject and investigate it in Exercise 9.8.
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Exercise 9.8 (Fast FFT-Based Sectioned Convolution in Matlab). In
Sect. 6.6 fast convolution algorithms were described. Among others, the sec-
tioned overlap-add and overlap-save methods. At present, we will concentrate
only on the program of the overlap–save algorithm which was skipped before.
Its Matlab code is presented in Listing 9.7. Analyze it and run. Compare its out-
put with output of the Matlab function conv(). Specially analyze the second
part of the program in which partition of filter weights is done also. Thanks to
this operation the processing delay is significantly decreased which is beneficial
when filter impulse response is very long. Find in the Internet samples of im-
pulse response (IR) of any large acoustical object like cave or cathedral. Record
your speech and convolve it with the downloaded IR using different methods.

Listing 9.7: Fast FFT-based sectioned convolution in Matlab
�

1 % lab09_ex_fastconv.m - fast signal convolution (FIR filtering) using FFT
2 clear all; close all
3

4 N=2048; M=128; x = randn(1,N); h = randn(1,M);
5 y1=conv(x,h);
6

7 % continuation of lab06_ex_fastconv.m
8

9 % Method #5: Fast convolution by pieces - OVERLAP-SAVE method
10 N1 = 2*M; % length of one signal fragment
11 Lb = floor( (N-(M-1))/(N1-(M-1)) ); % number of signal fragments (blocks)
12 hz = [ h zeros(1,N1-M) ]; % appending zeros to h(n)
13 Hz = fft(hz); % FFT of h(n)
14 for k = 0 : Lb-1 % LOOP: fast conv of signal fragments
15 n1st = 1+k*(N1-(M-2)-1); % index of next signal fragmentbeginning
16 bx = x( n1st : n1st + N1-1 ); % cutting new samples of x(n) with overlap
17 Bx = fft( bx ); % fft of the x(n) fragment
18 by = real( ifft( Bx .* Hz) ); % fast convolution in frequency domain
19 y5(n1st+M-1+0 : n1st+M-1+(N1-M)) = by(M:N1); % remove first M-1 samples, store
20 end
21 Ny5 = length(y5); n5 = M:Ny5;
22 figure; plot(n5,y1(n5),’ro’,n5,y5(n5),’bx’); title(’y1(n) & y5(n)’);
23 error5 = max(abs( y1(n5)-y5(n5) ))
24

25 % Method #6: Fast convolution by pieces - OVERLAP-SAVE method plus h(n) partition
26 Nx = N; Nh = M; % signal length, filter length
27 Nb = 32; % partition length of h(n)
28 Lb = ceil(Nx/Nb); % number of signal fragments
29 Lh = ceil(Nh/Nb); % number of filter fragments
30 for k=1:Lh % FFTs of filter weight fragments
31 H(k,1:2*Nb) = fft( [h((k-1)*Nb+1:k*Nb) zeros(1,Nb)] ); % with zeros
32 end
33 bx = zeros(1,2*Nb); X = zeros(Lh,2*Nb); y6 = [];
34 for k = 0 : Lb-1 % FOR ALL SIGNAL FRAGMENTS
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35 bx = [ bx(Nb+1:2*Nb) x(k*Nb+1:k*Nb+Nb) ]; % take next signal fragment
36 X = [ fft(bx); X(1:Lh-1,:) ]; % calculate its FFT and store
37 XH = X.*H; % # fast
38 by = real( ifft(sum(XH)) ); % # convolution
39 y6 = [ y6 by(Nb+1:2*Nb) ]; % remove beginning, store result
40 end
41 Ny = min( length(y1), length(y6) ); n6 = Nh+1:Ny;
42 y1 = y1(n6); y6 = y6(n6);
43 figure; plot(n6,y1,’ro’,n6,y6,’bx’); title(’y1(n) & y6(n)’);
44 error6 = max(abs(y1-y6)), pause

��

9.8 Summary

FIR digital filters are one of the most frequently applied. They are ready-
to-use off-the-shelf solutions that are always present close to cash register at
each DSP mini-mark just near the corner. They are simple and effective like
rapid-drying glue. What is the most important about the FIR filters?

1. FIR digital filters are very simple: they calculate running weighted average
of input signal samples. They do not have a loop back and they are always
stable (finite input causes finite output). It is straightforward to guaran-
tee their linear-phase response: the filter weights should be symmetrical or
asymmetrical with respect to their center. The FIR filter is frequency selec-
tive when many signal samples, typically hundreds of them, are multiplied
by corresponding filter coefficients and this is their main drawback. How-
ever, for many low-frequency kHz applications, like acoustical ones, this
requirement is not computationally demanding even for low-cost DSP con-
trollers and processors. And for high-speed tasks very fast GHz processors
are available.

2. There are many methods for FIR filter design but even very simple ones,
like the window method, allow to design very good filters with negligi-
ble oscillations in the pass-band and very strong signal attenuation in the
stop-band. It is achieved by using appropriate windows for smooth tapering
the shape of theoretically derived weights, as in window method, or by us-
ing special optimization procedures, like minimization of maximum error
of fitting the desired filter frequency response (Chebyshev approximation
of filter frequency response using Remez/Parks-McClellan algorithm). The
sharpness of filter transition edge is always very easily obtained by increas-
ing the number of filter weights.

3. FIR digital filters are mainly used for modification of signal frequency con-
tent (pass or stop). But they can be also used as special task filters, for
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example, as special phase shifters (Hilbert filter) and differentiation filters.
Due to significance of this topic, it will be discussed in a separate chapter.

4. Inverse DFT method allows for design of FIR digital filters for amplitude
and phase correction (equalization) of non-ideal signal processing path, for
example, in measurement, acoustical and telecommunication systems.

5. FIR filtering has a form of discrete-time convolution of signal samples and
filter weights. For this reason, fast FFT-based convolution algorithms can
be used for its fast implementation. Their application is especially bene-
ficial for very long FIR filters. In case of very long signals and on-line
filtering, fast sectioned convolution methods should be used: the overlap–
add or the overlap–save. In order to decrease the delay introduced by them,
a long filter impulse response can be also divided into sections.

9.9 Private Investigations: Free-Style Bungee Jumps

Exercise 9.9 (Mastering the Perfectness: Do the Deeper Dive). Apply any type
of FIR digital filter in any practical signal processing example discussed so far in
these books, i.e. to speech, music, ECG, power supply voltage, ... everything you
want.

Exercise 9.10 (Flight to Unknown? What Is on the Other Side of the Moon?).
Find in Internet any recorded signal, do frequency analysis of it using DFT/FFT and
try to filter out some of signal components. In case of speech, music, or different
sounds hearing effects of filtration might be interesting. Dear Reader, the floor is
yours!
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Chapter 10
FIR Filters in Signal Interpolation,
Re-sampling, and Multi-Rate Processing

Who would not like to have a perfect micro-macro-scope for
seeing a single electron and the whole solar system? This is an
introduction to our dream of multi-resolution signal processing.

10.1 Introduction

In this chapter we discuss techniques of changing sampling ratio of signals
that have been already sampled by analog-to-digital converters, i.e. they have
a form of vectors of numbers. We are interested in having more samples per
second, i.e. in signal up-sampling—increasing the sampling ratio, and in having
less samples per second, i.e. in signal down-sampling—decreasing the sampling
ratio. Typically, integer-value K-times up-sampling and integer-value L-times
down-sampling are done. Let describe separately in the beginning these two
DSP blocks.

In a digital signal K-times up-sampler of integer order, we are calculating
new signal samples lying between samples that we already have. The old sam-
ples remain unchanged. The interpolation is done this way that, first, K−1 zeros
are put between each two old signal samples, and, then, the signal undergoes
low-pass smoothing operation, causing that the inserted zeros are adjusted to
the signal envelope. The low-pass filter cut-off frequency is equal to one-half of

the original signal sampling frequency
(

fs
2

)
, no surprise, the same time being

equal to 1
K of the new sampling frequency, being K time bigger:

(
K· fs

2

)
.

In a digital signal L-times down-sampler of integer order, we are leav-
ing every L-th signal sample, removing the remaining ones. Very simple, but
risky. The Nyquist sampling theorem specifies that the highest signal frequency
component should have more than two samples per period. We cannot violate
(breach) this rule during signal down-sampling, otherwise high-frequency sig-
nal components will look as low-frequency ones. In order to avoid this effect,
the signal frequency content should be reduced to the new sampling ratio be-
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ing L-times lower. This task performs our super-hero, this time having a form
of low-pass filter with 3 dB cut-off frequency fs

2L − fback. The slight frequency
value decrease by fback is needed since, in order to avoid aliasing, the filter stop-
band should start exactly from the frequency fs

2L and it is reached after a filter
some transition band. The down-sampling module is called a decimator in DSP
world.

When a cascade of K-times signal up-sampler and L-times signal down-
sampler is required, it looks initially that two signal processing scenarios are
possible but in fact only one of them is allowed. Let us explain it on the fol-
lowing example in which digital audio from DAB or DVB broadcast with 48
ksps (kilo-samples per second) should be changed into digital signal for ana-
log FM broadcast transmission, having 32 ksps. In this case K = 2 and L = 3.
In the first, correct method, signal is initially 2-times up-sampled from 48 to
= 2 ·48 = 96 ksps and then 3-times down-sampled from 96 to 96/3 = 32 ksps.
In the second, wrong approach, the signal is first 3-times down-sampled from
48 to 48/3 = 16 ksps and, then, 2-times up-sampled from 16 to 2 ·16 = 32 ksps.
One should remember that in this cascade, an interpolator should always pro-
ceed a decimator! Why? Because in decimator, in signal down-sampler, the
signal frequency band is reduced in order not to violate Nyquist sampling the-
orem, as stated above. And after the low-pass filter in decimator some signals
frequency components are lost for ever. The second important remark is that in
cascade of two low-pass filters, one in interpolator and one in decimator, only
the filter with more narrow bandwidth can be left, the second one is redundant
and can be removed.

We are very close to the introduction end. Is any further explanation still
required? Yes, it is. An issue of required interpolation/decimation low-pass fil-
ter length. There is no problem when interpolation and decimation ratios are
small, like 2, 3, 4, 5. The filter bandwidth is relatively high in such case and
the filter frequency response flatness in the pass-band and sharpness in the
transition band can be ensured with ease by short filters. However, we have
a problem when interpolation and decimation ratios are very high, because
in this case long filters are required. Let us explain the problem on exam-
ple of changing sampling rate of CD disc fs =44,100 Hz to sampling rate
of DAB radio fs =48,000 Hz. The common multiple of these frequencies is
equal to 7,056,000, i.e. we should up-sample 44.1 kHz signal K = 160 times
to 7.056 MHz and then down-sample the signal L = 147 times to 48 kHz. The
up-sampling/down-sampling ratios of high and low-pass filters of interpolator
and decimator are high and both filters have to be long. So what to do? Firstly,
we can resign from perfect frequency change and accept frequency very close
to 48 kHz, when such decision allows usage of smaller up/down re-sampling
ratios. Secondly, instead of using one long filter we could use cascade of a
few shorter filters and obtain the same result. For example, we can exchange
interpolation filters with up-sampling K = 160 by cascade of shorter filters with
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up-sampling K1 = 4,K2 = 4,K3 = 5, and K4 = 2, requiring less weights and less
computations.

The last hero of this chapter is polyphase filtering structure, very well-known
by everybody in the DSP City. In digital up-samplers, very often, carelessly, we
are multiplying filter weights by zero samples put between original signal sam-
ples. What is a sense of multiplying any number by zero? None. In turn, in
digital down-samplers, very often, carelessly, we are low-pass filtering a signal
and leaving every L-th sample only, removing the rest of calculated samples.
What is a sense to calculate something and do not use it? None. In polyphase
filtering we do only calculations which are needed! The filter weights are de-
composed into modulo K or L sequences, they are separately convoluted with
signal samples and individual results are combined together. This will be really
a big fun to see it in work! And we will have this pleasure in this chapter.

In Matlab we have the following functions for signal re-sampling:
iterp(), decimate(), resample(), and upfirdown(). It is a good
idea to do first some home experiments with them.

10.2 Signal 1:K Up-Sampling—Simple Interpolation

Signal K-times up-sampling aims at having K times samples more, i.e. K instead
of one. During up-sampling the sampling ratio is changed from fs1 to f f s2 = K fs1.
How it is done? The computational procedure is presented in Fig. 10.1. First, K −1
zeros (filled red dots in the figure) are inserted between every two original signal
samples and the such modified signal is processed by a low-pass filter with cut-off
frequency equal to the original signal frequency bandwidth, i.e. half of the original
sampling frequency f0 = fs1/2. From the chapter on FIR filters and description of
the window method, we know that weights of such filter are equal to:

Fig. 10.1: Block diagram of signal interpolator increasing K-times signal sampling
ratio. First, K − 1 zeros are appended between every two signal samples by an ex-
pander, then the signal is smoothed with a low-pass filter, passing only the original
signal bandwidth (having cut-off frequency equal to half of the original sampling
frequency fs1/2 and to 1

K of fs2/2 = K fs1
2 )
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Fig. 10.2: Graphical illustration of signal smoothing operation, performed by the
low-pass filter present in digital interpolator: inserted zeros are shifted up-or-down
to the signal envelope [21]

h(n) = K
sin
(

2π( f0
fs2
)n
)

πn
, f0 =

fs1

2
=

fs2
2

K
, n ∈ Z. (10.1)

Of course, the number of filter coefficients has to be limited. Therefore, in order
to ensure flatness of the filter frequency response in the pass-band and good filter
attenuation in the stop-band, the filter coefficients should be multiplied by a window
function w(n):

hw(n) = h(n) ·w(n), n =−M, ...,0, ...,M, (10.2)

for example, a Kaiser one, having frequency spectrum with low side-lobes level. The
low-pass filter is needed for smoothing the signal, which becomes impulsive after
zero insertion, and for restoring its original shape. Thanks to filtration the inserted
zeros are shifted up-or-down to the signal envelope which is presented in Fig. 10.2.

At present we try to justify the choice of the LP filter. Let us denote the signal,
with zeros added by an expander, as:

xz(n) =

{
x( n

K ), n = 0, ±K, ±2K, ...
0, otherwise

(10.3)

Now we calculate the DtFT spectrum of this signal, sampled with frequency K times
higher, i.e. fs2 = K fs1:

X

(
f

fs2

)
=

∞

∑
n=−∞

xz (n)e
− j2π f

K fs1
n
=

∞

∑
m=−∞

xz (m ·K) · e− j2π f
K fs1

(m·K)
=

∞

∑
m=−∞

x(m) · e− j2π f
fs1

(m)
= X

(
f

fs1

)
. (10.4)

Taking only every mK-th sample in summation (10.4) we avoid multiplication of
Fourier harmonics by zeros. We see that the spectrum is periodic with period fs1. In
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Fig. 10.3: Spectrum of 8 kHz speech after K = 4 expander, i.e. after zero insertion
only. New sampling ratio is 4-time higher and the speech spectrum repeats K = 4
times in the range 0–32 kHz

Fig. 10.3 a spectrum of 8 kHz speech signal after K = 4 time expander is shown. The
new frequency is equal to 32 kHz and in frequency range 0–32 kHz the signal spec-
trum repeats K = 4 times. Therefore its mirror copies/images have to be removed
by a low-pass filter with cut-off frequency fs1

2 , i.e. 1
K of the new Nyquist frequency

fs2
2 = K fs1

2 . Why the filter should have to reach the stop-band at the frequency fs1
2 ?

Because the original signal was sampled properly and there is no signal component
with frequency higher than fs1

2 .
A program implementing digital up-sampler (interpolator), in simple but not fast

way, is presented in Listing 10.1.

Exercise 10.1 (Testing Digital 1:K Up-Sampler). Use program 10.1. Gener-
ate different sums of sines and cosines and observe original and interpolated
signals. Knowing FIR filter delay, equal to half of its length, try to synchronize
input and output signals—display them in one figure. Use different values of:
interpolation order K, filter length M, and Kaiser window parameter β (function
fir1() allows it). Compare results with the Matlab function interp(). Do
one or two experiments with interpolation of real-world signals like speech or
music. Read them to Matlab using functions audioread() or wavread().
For example, up-sample 6 times your speech (or singing) recorded at 8 kHz to
48 kHz, and then add it to music sampled at 48 kHz. This is an example of
digital sound mixing: a Karaoke Bar example from the book beginning. Add
also samples of speech (or singing) and music without speech interpolation.
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Listing 10.1: Demonstration of simple signal up-sampling
�

1 % lab10_ex_interp.m - signal interpolation
2 clear all; close all;
3

4 K=5; M=50; N=2*M+1; Nx=200; ni = 1:200; % parameters
5 x = sin(2*pi*(0:Nx-1)/20); figure; plot(x); pause % signal and its plot
6 xz = zeros(1,K*Nx); % # zero
7 xz(1:K:end) = x; % # insertion
8 h = K*fir1(N, 1/K); % filter design
9 xi = filter(h,1,xz); % xi = conv(xz,h); % filtering

10 figure; plot(xi); pause % display result
��

10.3 Signal L:1 Down-Sampling—Simple Decimation

Signal down-sampling operation is very easy to explain from practical point of view:
if you want to have L-times samples less of the signal that has been already sampled
and to take only every L-th sample you have, i.e. to decrease L-times its sampling
ratio from fs1 to fs2 = fs1

L , you should first reduce the signal bandwidth L-times
according to the sampling theorem. Therefore, you should first use a low-pass filter
leaving only 1

L -th of the original signal frequency band equal to fs1
2 . After that, you

can take only every L-th sample and remove the rest. Block diagram of the digital
down-sampler is shown in Fig. 10.4.

The crucial difference between the low-pass filter used in interpolation and dec-
imation is that the decimation low-pass filter should reach its stop-band at the fre-
quency fs2

2 while the interpolation one—reach 3 dB decrease of its pass-band at

frequency fs1
2 . Therefore the decimation filter weights g(n) should be designed for

the slightly lower cut-off frequency f s1/2
L − fback:

g(n) =
sin
(

2π( f0
fs1
)n
)

πn
, f0 =

fs1
2

L
− fback, n ∈ Z. (10.5)

Fig. 10.4: Block diagram of signal decimator, decreasing L-times signal sampling
ratio from fs1 to fs2 = fs1

L . First, the signal bandwidth is reduced L-times (i.e. ad-
justed to the new sampling ratio according to the Nyquist theorem), then, only every
L-th signal sample is left
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Of course, weights from Eq. (10.5) have to be multiplied by a window function,
the same way as in case of interpolation filter (Eq. (10.2)): gw(n) = g(n) ·w(n).

Program in Listing 10.2 shows the simplest version of digital down-sampler.

Exercise 10.2 (Testing Digital L:1 Down-Sampler). Use program 10.2. Re-
peat all tasks from Exercise 10.1 exchanging 1 : K interpolation with L : 1 dec-
imation. At present, in Karaoke Bar, down-sample the music from 48 kHz to
8 kHz and add to your singing recorded at 8 kHz.

Listing 10.2: Demonstration of simple signal down-sampling
�

1 % lab10_ex_decim.m - signal decimation
2 clear all; close all;
3

4 L=3; M=50; N=2*M+1; Nx=L*500; nd = 1:200; % parameters
5 x = sin(2*pi*(0:Nx-1)/100); figure; plot(x); pause % signal and its plot
6 h = fir1(N, 1/L - 0.1*(1/L)); % filter design
7 xd=filter(h,1,x); % xd = conv(x,h); % filtering
8 xd = xd(1:L:end); % decimation
9 figure; plot(xd); pause % display result
��

10.4 Signal K : L Re-sampling

Till now we know only how to increase or decrease signal sampling ratio by integer
number of times. Why only only? We are also only doing single steps but can over-
come the distance of kilometers! The same is with interpolation and decimation:
you will only up-sample K =160 times a song from your CD player and only down-
sample the result L =147 times, and will change the sampling frequency of the song
160
147 -times: from 44.1 kHz to 48 kHz! Now the recording is ready to be broadcast in
DAB digital radio or added to the sound track of your favorite movie. In Fig. 10.5
there is presented a serial connection of K-order digital interpolator and L-order dig-
ital decimator, allowing implementation of many different signal re-sampling tasks.

Fig. 10.5: Block diagram of signal re-sampler, changing signal sampling ratio K/L-
times. In our example K = 2 and L = 3. It is a serial connection of K-times
up-sampler (interpolator) and L-times down-sampler (decimator). From two filters
working in a cascade, only the one with lower pass-band can be used [21]
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Fig. 10.6: Exemplary implementation of a high-order up-sampler (up) and down-
sampler (down) as a serial connection of several low-order devices: 160 = 4 ·4 ·5 ·2.
LP denotes a low-pass filter following the expander in the up-sampler and preceding
the reducer in the down-sampler [21]

What should be remembered? In a cascade connection an interpolator should
always proceed a decimator. When decimator is working first, its low-pass anti-
aliasing filter is always removing some high-frequency components of the sig-
nal. They are lost but could survive in the second scenario when the signal is
interpolated first. In such case, the interpolator LP filter, which is working first,
is removing only high-frequency copies of the signal spectrum resulting from
insertion of zero-value samples. The second fundamental rule is that only one
low-pass filter is sufficient, the one with the more narrow pass-band. The second
filter can be removed as shown in Fig. 10.5.

There is still one important issue to be addressed: the low-pass filter length. When
interpolation or decimation order is very high, and the LP filter pass-band, 1

K or 1
L ,

is very narrow, the FIR filter length has to be large in order to fulfilling frequency
response requirements (very sharp transition at low-frequency). Therefore it is com-
putationally more efficient to do interpolation/decimation in simple steps and use a
cascade of lower order interpolators/decimators with short filter. This approach is
illustrated in Fig. 10.6.

Exercise 10.3 (Testing Digital K:L Re-sampler). Use programs 10.1
and 10.2. Cascade the interpolator and decimator. Up-sample to 48 kHz the
first signal, originally sampled at 32 kHz, and down-sample to 32 kHz the sec-
ond signal, originally sampled at 48 kHz. Add signals at 32 kHz and 48 kHz.
Try to do the same with signals sampled at 44.1 kHz (160/147 up-sampler) and
48 kHz (147/160 down-sampler). Is the re-sampling very slow? Why? Use the
Matlab function resample(). What is going on?!
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10.5 Matlab Functions for Signal Re-sampling

In this short section we learn and test Matlab functions dedicated for signal interpo-
lation, decimation, and re-sampling. We apply them to real-world audio signals of
speech and music.

Exercise 10.4 (Matlab Functions for Signal Re-sampling). Use program 10.3
for processing a reach sound music. Compare in one plot signal waveforms,
original and modified. Do you hear the difference between them? Calculate
noise level (SNR) introduced by signal filtering.

Listing 10.3: Re-sampling in Matlab
�

1 % lab10_ex_reasampling_demo1.m
2 clear all; close all; subplot(111);
3

4 K = 3; % UP-sampling K times
5 L = 2; % DOWN-sampling L times
6

7 disp(’Speech reading from HD ...’);
8 %[x,fs,Nb ] = wavread(’speech.wav’); x=x’;
9 [x,fs ] = audio read(’speech.wav’); x=x’;

10

11 Nx=length(x);
12 dt=1/fs; t=dt*(0:Nx-1);
13 figure; plot(t,x); xlabel(’t [s]’); title(’x(t)’); grid; pause
14 soundsc(x,fs); pause
15

16 fsUP = K*fs; % new K-times higher samplingfrequency
17 fsDOWN = fsUP/L; % new L-times lower samplingfrequency
18

19 % Interpolation via appending zeros in FFT spectrum: M times UP
20 disp(’Speechinterpolation via FFT ...’); pause
21 K = 3; % UP-sampling order
22 N = 2̂ 14; % number of signal samples
23 Nz = (K-1)*N+1; % number of zeros to be added
24 y = x(1:N); % cut signal fragment
25 Y = fft(y); % perform its FFT
26 Y = [ Y(1:N/2) zeros(1,Nz) Y(N/2+2:N)]; % append zeros in the middle, ensure symmetry
27 yUP = K*real(ifft(Y)); % perform IFFT
28 figure; plot(dt*(0:N-1),y,’r.-’,dt/K*(0:K*N-1),yUP,’b.-’);
29 grid; xlabel(’t [s]’); title(’x(t) and xUP(t) - for FFT WITH ZEROS’); pause
30 soundsc(yUP,fsUP); pause
31

32 % Interpolation (K times UP) via Matlab function
33 disp(’Speechinterpolation via Matlab interp() ...’);
34 xUP = interp(x,K);
35 figure; plot(t,x,’r.-’,dt/K*(0:K*Nx-1),xUP,’b.-’);
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36 grid; xlabel(’t [s]’); title(’x(t) and xUP(t) - for INTERP()’);
37 soundsc(xUP,fsUP); pause
38

39 % Decimation (L times DOWN) via Matlab function
40 disp(’Speech decimation via Matlab decimate() ...’);
41 xDOWN1 = decimate(xUP,L);
42 figure; plot(t,x,’r.-’,dt/K*(0:K*Nx-1),xUP,’b.-’,L*dt/K*(0:K*Nx/L-1)+dt/K,xDOWN1,’g.-’)

;
43 grid; xlabel(’t [s]’); title(’x(t), xUP(t), xDOWN1(t)’);
44 soundsc(xDOWN1,fsDOWN); pause
45

46 % Re-sampling (K times UP and L times DOWN) via Matlab function
47 disp(’Speech resampling via Matlab resample() ...’);
48 xDOWN2 = resample(x,K,L);
49 figure; plot(L*dt/K*(0:K*Nx/L-1)+dt/K,xDOWN1,’g.-’,L*dt/K*(0:K*Nx/L-1),xDOWN2,’r.-’);
50 grid; xlabel(’t [s]’); title(’xDOWN1(t), xDOWN2(t)’);
51 soundsc(xDOWN2,fsDOWN); pause

��

10.6 Fast Polyphase Re-sampling

Every mountain has its own Mount Everest. In signal re-sampling the polyphase
(PP) signal decomposition and the polyphase implementation of interpolator and
decimator filters are widely used. They are the highest peaks of the Resampling
mountains. Why? Because formalism of their mathematical description is rather
high and typically not tolerated by “people from flatland.” Therefore our explanation
will be in half—mathematical and in half—experimental.

10.6.1 Polyphase Signal Decomposition

In polyphase K-order decomposition, signal samples x(n) are divided into K se-
quences xk(n), starting from different sample number k = 0,1,2, ...,K−1, and con-
taining every K-th signal sample:

xk(n) = x(k+m ·K), k = 0,1,2, ...,K −1, −∞ < m < ∞. (10.6)

For example, for K =4 decomposition we have (starting from m = 0):

x0(n) = x(0),x(4),x(8),x(12),x(16),x(20), ... (10.7)

x1(n) = x(1),x(5),x(9),x(13),x(17),x(21), ...

x2(n) = x(2),x(6),x(10),x(14),x(18),x(22), ...

x3(n) = x(3),x(7),x(11),x(15),x(19),x(23), ...
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Let us denote as x(z)k (n) the polyphase sequences with appropriate number of zeros
inserted between their elements. In our example we obtain

x(z)0 (n) = x(0), 0 , 0 , 0 ,x(4), 0 , 0 , 0 ,x(8), 0 , 0 , 0 ,x(12), ... (10.8)

x(z)1 (n) = x(1), 0 , 0 , 0 ,x(5), 0 , 0 , 0 ,x(9), 0 , 0 , 0 ,x(13), ...

x(z)2 (n) = x(2), 0 , 0 , 0 ,x(6), 0 , 0 , 0 ,x(10), 0 , 0 , 0 ,x(14), ...

x(z)3 (n) = x(3), 0 , 0 , 0 ,x(7), 0 , 0 , 0 ,x(11), 0 , 0 0 ,x(15), ...

Additionally, let x(zz)
k (n) denote the polyphase sequence x(z)k (n) with appropriate

number of leading zeros, appended in the beginning, in our example:

x(zz)
0 (n) = x(0), 0 , 0 , 0 ,x(4), 0 , 0 , 0 ,x(8), 0 , 0 , 0 ,x(16), ... (10.9)

x(zz)
1 (n) = 0 ,x(1), 0 , 0 , 0 ,x(5), 0 , 0 , 0 ,x(9), 0 , 0 , 0 ,x(13), ...

x(zz)
2 (n) = 0 , 0 ,x(2), 0 , 0 , 0 ,x(6), 0 , 0 , 0 ,x(10), 0 , 0 , 0 ,x(14), ...

x(zz)
3 (n) = 0 , 0 , 0 ,x(3), 0 , 0 , 0 ,x(7), 0 , 0 , 0 ,x(11), 0 , 0 0 ,x(15), ...

Any signal x(n), and filter weights h(n) also, is a summation of its polyphase
sequences:

x(n) =
K−1

∑
k=0

∞

∑
m=−∞

x(k+m ·K) =
K−1

∑
k=0

x(zz)
k (n). (10.10)

The DtFT spectrum of the PP-decomposed signal is equal to:
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(10.11)

i.e. it is a sum of DtFT spectra Xk(K f/ fs) shifted in phase. That is why the decom-
position is called a polyphase one. Spectra Xk(K f/ fs) consist of the original signal
spectrum and its K−1 copies, similarly as in Fig. 10.3. However, after their addition
all copies are canceled, which is shown in Exercise 10.5.

From now on, we are going down from mathematical mountain peaks to the math
“flatland.” Why the PP decomposition, with so strange equations, is so important
for us? Because thanks to it, in an easy way, we will avoid multiplication of filter
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weights by zeros inserted to signal during up-sampling as well as calculation of
signal values which are removed at decimator output.

Exercise 10.5 (DFT Spectra of Polyphase Signal Components). Use pro-
gram 10.4. Analyze its code. Observe the DFT spectrum of each PP signal
component and result of the spectra accumulation. Note that the final sum-
mation result is correct since the inner copies of the signal spectrum lying at
frequencies k fs

K , k = 1...K − 1 disappeared in result of spectra accumulation.
Repeat experiments for different test signals, also for speech and music.

Listing 10.4: Testing DFT spectra of polyphase signal components
�

1 % lab10_ex_pp_spectrum.m - DFT spectra of poly-phase (PP) signal components
2 clear all; close all; figure;
3

4 K=5; N=K*256; % parameters: PP order, signal length
5 x=cos(2*pi/32*(0:N-1)); % analyzed signal
6

7 % Signal spectrumcalculation
8 zer=zeros(1,N); Xsum=zer; % initialization
9 z=exp(j*2*pi/N*(0:N-1)); % correction

10 for k=1:K
11 k
12 if(1) % PP components have inserted zeros and start from the x(k) sample
13 xpp = zer; xpp(k:K:N)=x(k:K:N); % PP signal component
14 Xpp = fft(xpp); % its DFT/FFT
15 Xsum = Xsum + Xpp; % spectrumaccumulation
16 else % PP components have inserted zeros and start from the x(1) sample
17 xpp = zer; xpp(1:K:N)=x(k:K:N); % PP signal component
18 Xpp = fft(xpp); % its DFT/FFT
19 Xsum = Xsum + z.̂ (-k).*Xpp; % spectrumaccumulation
20 end
21 subplot(211); stem(abs(Xpp)); hold on;
22 subplot(212); stem(abs(Xsum)); pause
23 end

��

10.6.2 Fast Polyphase Interpolation

In this subsection we learn fast polyphase up-sampler implementation. An attempt
of its easy explanation is done in Fig. 10.7. FIR digital filtering relies on multi-
plication of signal samples with filter weights and on summation of multiplication
results. This is done by the filter in left up corner of the Fig. 10.7. The filter weights
h(n) can be represented as a summation of K polyphase sequences hzz

k (n), as in
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Fig. 10.7: Block diagram of signal polyphase interpolator increasing K-times sig-
nal sampling ratio: (left) the LP filter weights are decomposed into polyphase (PP)
components, (right) sample expander (embedding K − 1 zeros between every two
signal samples) can be shifted right after the PP filtering [21]

Eq. (10.10). Recalling, Eq. (10.10) is a consequence of signal decomposition pre-
sented in Eq. (10.9). Therefore, we can implement the filtering as: (1) a parallel fil-
tration of input signal by several PP sub-filters hzz

k (n), and (2) summation of individ-
ual filtration results. No unitary delays are required in such computational structure.
When, during filter h(n) partitioning, we use not PP components hzz

k (n) but hz
k(n), an

extra unitary delays (blocks [z−1]) have to added to the filter implementation, what
is presented in left part of Fig. 10.7. No surprise.

In digital interpolator, samples of the input signal x(n) come through expanders
where K − 1 zeros are inserted between each two original samples. Next, the zero-
expended input signal is filtered in parallel by K PP sub-filters hz

k(n) (preceded with
delays) and sub-filter outputs are added. Since zeros were inserted into the input
data stream and polyphase sub-filters, it is obvious that most of the multiplications
(by 0) are useless. How to avoid them? It can be strictly shown mathematically and
informally graphically that expanders, inserting zeros between input signal samples,
can be shifted to the right side, after the polyphase sub-filters. This is shown on right
side of Fig. 10.7. Why is it possible? Because after each PP sub-filter, only each K-th
sample is significant, the rest of them is equal to zero. Additionally, the significant
samples after the PP sub-filters lie in different time instants.

At present we will interpret computationally the diagram presented on the right
side of the Fig. 10.7. Each polyphase sub-filter hk(n) (without inserted zeros!) mul-
tiplies its weights with consecutive signal samples. Since these components are de-
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layed by one sample in relation to each other, the following operations are per-
formed:

1. the K − 1 zeros are inserted between each two sub-filter outputs (note K-time
expanders),

2. obtained signals are appropriately delayed with respect to each other (note uni-
tary delay blocks [z−1]),

3. all output sub-signals are summed.

Everything is done without multiplication by zeros! In alternative implementation,
one can only circularly take outputs of the PP sub-filters without any zeros insertion.
The above explanation is typical for most of textbooks.

Let us do something different. Let us assume that K = 4 and filter weights are
equal to h(k) = k, k = 0,1,2, ...,23, i.e. h = [0,1,2,3, ...,23]. In the beginning, at
time instants n = 20,21,22,23, we have the following organization of calculations,
confirming their polyphase structure:

0x(5)+4x(4)+ 8x(3)+12x(2)+16x(1)+20x(0) = y(20),

1x(5)+5x(4)+ 9x(3)+13x(2)+17x(1)+21x(0) = y(21),

2x(5)+6x(4)+10x(3)+14x(2)+18x(1)+22x(0) = y(22),

3x(5)+7x(4)+11x(3)+15x(2)+19x(1)+23x(0) = y(23).

All sub-filters have calculated their valid outputs. They all make use of the same
input samples [x(5),x(4),x(3),x(2),x(1),x(0)], and they are looking back. They are
using their own polyphase filter weights. y(20) is the first valid output sample. Out-
put of polyphase sub-filters is circularly switched.

And one more explanation. Let us look at the interpolation filtering in the
simplest possible way: as a convolution of two signals, one with inserted ze-
ros. Our problem is graphically illustrated in Fig. 10.8. Original signal samples
are marked as dark blue squares, inserted zeros—as white squares. Filter weights
[8,7,6,5,4,3,2,1,0] are shifted right. Its polyphase components are marked with
different background. We see that in each filter position only one set of polyphase fil-
ter weights (PP sub-filters) is used periodically/circularly: h0(n)[0,3,6],h1(n)[1,4,7],
h2(n)[2,5,8]. In consequence, it is possible to convolve the original signal samples
(without inserted zeros!) independently with three sets of polyphase weights. And
then build the output signal taking circularly samples from polyphase filter outputs,
i.e. first sample from sub-filter h0(n), first from h1(n), and first from h2(n), then
second samples from them, then third ones, and so on.

It is very interesting that after tones of explanations, the polyphase interpolation
program is one of the shortest in this book. It is presented in Listing 10.5.

Exercise 10.6 (Testing Polyphase Interpolator). Use programs 10.1 and 10.5.
Compare their outputs using some synthetic signals and some speech or
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Fig. 10.8: Convolution-based interpretation of filtering problem occurring during
signal interpolation—multiplications of filter weights with zeros inserted to the sig-
nal (white square boxes) should be avoided. Only multiplications with filter weights
marked with color background (inside boxes marked with dashed lines) are per-
formed. Weights of different PP filters are distinguished with different background
colors

audio recordings. Using Matlab functions tic(),toc() check computa-
tional speed of both approaches. Overlay in one figure the original and the
interpolated signal. Compare our design with Matlab function application:
xi=interp(x,K) and xi=resample(x,K,1).

Listing 10.5: Fast polyphase up-sampler implementation
�

1 % lab10_ex_iterp.m - continuation
2

3 % INTERPOLATION: Fast polyphase (PP) implementation - mults by zeros are removed
4 % K convolutions of PP filter weights with the original signal
5 xipp = zeros(1,length(x)); % outputinitialization
6 for k=1:K % LOOP START: PP filtering
7 xipp(k:K:K*Nx) = filter( h(k:K:end), 1, x ); % k-th PP componentfiltering
8 end % LOOP END
9 MaxERR_INTERPpp = max(abs(xi-xipp)), % error

10 figure; plot(ni,xi(ni),’ro-’,ni,xipp(ni),’bx-’); grid; xlabel(’n’);
11 title(’Interpolatedsignals - slow and fast (PP)’); pause

��
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Fig. 10.9: Block diagram of signal polyphase decimator decreasing L-times signal
sampling ratio: (left) the LP filter weights are decomposed into polyphase (PP) com-
ponents hz

l (n), (right) sample reducer (only every L-th sample is left, L−1 samples
lying in between are removed) can be shifted left before the PP filtering [21]

10.6.3 Fast Polyphase Decimation

In this subsection we learn fast polyphase down-sampler implementation. We had
already our Battle of Thermopylae—the description of fast polyphase up-sampler!
For this chapter one battle is enough. Now we will discuss the computational prob-
lem in more synthetic way. In case of signal down-sampling we would like to avoid
calculation of low-pass filter outputs which are rejected (decimated) on decimator
output.

In Fig. 10.9 the existing polyphase solution to the problem is explained. In the
upper-left part a standard, simple down-sampler is shown: first classical one-sample-
in one-sample-out low-pass filter is used which is followed by reducer leaving only
every L-th sample and removing all the others. Since the filter weights h(n) can
be expressed as summation of its L polyphase components hzz

l (n), l = 0,1, ...,L−1
(see Eq. (10.10)), the filter can be implemented with ease as a summation of L PP
parallel hzz

l sections. When we use the PP filter components hz
l (n), instead of hzz

l (n),
i.e. without preceding zeros, we have to add unitary delay elements [z−1] at the
input to parallel branches of the PP filter implementation. As a result we obtain
computation structure presented in left down diagram of the Fig. 10.9. Its drawback
is that filter computes samples that are removed by the reducer at the decimator
(down-sampler) output. However, thanks to mathematical discussion neglected here
and the parallel PP filter implementation, we can shift the L-time reducer to the
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Fig. 10.10: Convolution interpretation of filtering problem during signal
decimation—calculation of filtered values neglected on decimator output are
avoided due to filter weights shifts by L−1 samples, not by only one. L = 3 in our
example. Weights of different PP filters are distinguished with different background
colors

left before the PP filters. Thanks to this all sub-filters are working on decimated
input samples and only output signal samples needed on the decimator outputs are
calculated: all outputs of PP filters are added.

In turn, in Fig. 10.10 very simple convolutional interpretation of the problem is
presented. Since after low-pass filtering, aimed at signal bandwidth reduction, only
each L-th sample is left, there is no sense to calculate samples that are removed.
Therefore the filter weights should be shifted not by one sample but at once by L
samples, which is straightforward. Thanks to this calculation of unused samples is
avoided. However, due to filter weight shifts bigger than 1, simple usage of fast FFT-
based convolution algorithms becomes impossible in such case. The problem can
be solved when we decompose signal samples and filter weights into PP sections,
perform PP fast sub-filtering using FFT-based methods, and add outputs of PP filters.
Hurrah! In our example PP filters h0(n)[0,3,6],h1(n)[1,4,7],h2(n)[2,5,8] are used
and their weights are distinguished with different background colors.

Program of fast polyphase filtering is given in Listing 10.6. In order to obtain
the same result as for decimator from the program 10.2, L− 1 zeros are appended
to the input signal beginning, and vector x is replaced with xz. In consequence,
the k-th polyphase filter section h(k:L:end), k=1...K, is convoluted with the
polyphase signal components starting from the sample L-k+1, i.e. the following
filtration is done:
filter( h(k:L:end), 1, xz(L-k+1:L:end) ).

Exercise 10.7 (Testing Polyphase Decimator). Use programs 10.2 and 10.6.
Compare their outputs using some synthetic signals and some speech or
audio recordings. Using Matlab functions tic(),toc() check computa-
tional speed of both approaches. Overlay in one figure the original and
the decimated signal. Compare our design with Matlab function application:
xi=decimate(x,L) and xi=resample(x,1,L).
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Listing 10.6: Fast polyphase down-sampler implementation
�

1 % lab10_ex_decim.m - continuation
2

3 % DECIMATION: Fast polyphase (PP) implementation - samples to be removed are not
computed

4 % L convolutions of PP components of the original signal and the filter weights
5 xz = [ zeros(1,L-1) x(1:end-(L-1)) ]; % initialinsertion of L-1 preceding zeros
6 for k=1:L % LOOP START: separate PP filtering
7 xdppm(k,:) = filter( h(k:L:end), 1, xz(L-k+1:L:end) ); % k-th PP section
8 end % LOOP END
9 xdpp = sum(xdppm); % summation of PP components

10 MaxERR_DECIMpp = max(abs(xd-xdpp)), % error
11 figure; plot(nd,xd(nd),’ro-’,nd,xdpp(nd),’bx-’); xlabel(’n’);
12 title(’Decimated signals - slow and fast (PP)’); pause

��

10.7 Filters with Fractional Delay

In digital telecommunication systems digital-to-analog converters are used in trans-
mitters, analog signals taking some defined, strictly numbered states are passed
through different channels, wired or wireless, and finally are converted back to
digital form by analog-to-digital converters. The AD and DA converters, in TX
in RX, respectively, are not synchronized. They can work with slightly different
clocks (quartz oscillators) and they can have sampling time moments delayed with
respect to each other. In such situation signal interpolation should be performed in
a receiver: signal values in proper time moments should be calculated. During dig-
ital symbol synchronization procedures, we are interested also in taking samples in
symbol centers since thanks to this we increase symbol strength and decrease the
error rate.

In receivers different filters are used, typically band-pass (for service isola-
tion/extraction) and low-pass (for removing high-frequency components after signal
shifting to the base-band around 0 Hz). During filtering operation one can do also
fractional signal delay and interpolation, i.e. signal delay by a fraction of sample
number, for example, 0.25. In such case signal values are calculated not for indexes:
{n = 0, 1, 2, 3, ...} but for indexes {n = 0.25, 1.25, 2.25, 3.25, ...}. Is this difficult
to do? No, it is not. During designing a digital filter we should put only filter indexes
shifted appropriately.

It is important to notice that any FIR filter having odd number of samples n =
0,1,2, ...,2M has a central weight for index M and it delays output signal by M
samples. In contrary, any FIR filter with even number of weights n= 0,1,2, ...,2M−
1 does not have a central weight. Its axis of symmetry is between points M − 1
and M, in virtual sample with index M − 0.5, and such filter delays the signal by
M−0.5 samples, i.e. it is performing signal filtering and 0.5 interpolation the same
time. Its output samples lie 0.5 between original samples. This nice phenomenon
is further exploited in filters having a fractional delay, i.e. interpolating ones. For
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example in telecommunications during applications of raised cosine pulse-shaping
filters described in Chaps. 20 and 21.

We will not discuss this issue long. Let us give one simple example. We can
use theoretical impulse response h(k) of any FIR filter designed by the window
method from (Table 9.2), add to its index k a fractional shift parameter −0.5 ≤
Δ < 0.5 and obtain this way a filter doing its job but the same time performing
the interpolation task. The Δ -shift should be done also upon the window used. For
example, an interpolating low-pass filter with Kaiser window is defined as −M ≤
n ≤ M:

h(n) = 2
f0

fs

sin(Ω0(n−Δ))

Ω0(n−Δ)
·

I0

[
β
√

1− ((n−Δ)/M)2
]

I0 (β )
. (10.12)

In the described above low/band-pass filters with fractional delay, the filter im-
pulse response is calculated once for a chosen delay value and then used for joint
signal filtering and re-sampling. Filtered signal values are calculated in different
time stamps, sampling frequency is not modified. Of course, delay value can be
changed during filtering but the filter impulse response should be recalculated in
such situation.

Exercise 10.8 (Testing Filters with Fractional Delay). Analyze the pro-
gram 10.7. Run it. Observe in one plot output signals for different values of D
delay. Check magnitude and phase responses of filters with different fractional
delays—uncomment lines with plots and do required program modifications.
Add to the program possibility of testing discrete raised cosine low-pass filter,
defined by Eq. (20.17), and its square root modification (20.20), both defined in
Chap. 20 on digital single carrier transmission.

Listing 10.7: Signal interpolation during filtering
�

1 % lab10_ex_fractional_delay
2 % Filtering and interpolation the same time
3 clear all; close all;
4

5 N = 1000; M=50; % signal length, half of the fiter length
6 fs = 200; f0 = 50; fx = f0/10; % frequencies: sampling, filter cutoff, signal
7

8 dt = 1/fs; t = dt*(0:N-1); % time
9 x = sin(2*pi*fx*t); % input signal

10 n = 0 : 2*M; Nc = M; % filter indexes, central point
11

12 figure;
13 for D =-0.5 : 0.1 : 0.4 % we are checkingdifferentfractionaldelays
14 hLP = sin(2*pi*f0/fs*(n-(Nc+D)))./(pi*(n-(Nc+D))); % low-pass filter
15 if( D==0 ) hLP(Nc+1) = 2*f0/fs; end
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16 % figure; stem(hLP); title(’h(n)’); pause
17 beta=10; w = besseli( 0, beta * sqrt(1-(n-(Nc+D)).̂ 2/M̂ 2) )/besseli(0,beta);
18 % figure; plot(n,w,’bo-’); title(’Window function w(n)’); grid; pause
19 hD = hLP .* w; % h windowing
20 % f = 0:0.25:fs/2; z = exp(-j*2*pi*f/fs); H = polyval(fliplr(hD),z); % freq

response
21 % figure; plot(f,20*log10(abs(H))); grid; xlabel(’f (Hz)’); title(’|(H(f))|’); pause
22 % figure; plot(f,unwrap(angle(H))); grid; xlabel(’f (Hz)’); title(’ang(H(f))’); pause
23 y = conv(x,hD); % Matlab filteringfunction
24 y = y( 2*M+1 : end-2*M ); % cuttingtransients
25 ty = t(M+1:N-M)-D*dt; % sampling times of output signal
26 % plot(t(M+1:N),x(M+1:N),’k-’,ty,y,’o’); xlabel(’t [s]’); title(’ y(t)’);
27 % axis([(M+1)*dt,1,-1.25,1.25]); grid; hold on; pause
28 end

��

10.8 Farrow Interpolator

In the previous section we dealt with taking signal samples in different time mo-
ments at output of FIR digital filters. In this section we will learn very popular
Farrow structure in which signal resampling is performed separately, without filter-
ing.

Describing this method, we start with polynomial interpolation of a function and
Lagrange interpolation method. Let us assume that our discrete-time signal at each
moment has a value described by a polynomial:

x(t) = a0 +a1t +a2t2 + ...+aN−1tN−1, (10.13)

and that we have N signal samples:

x(tn) = xn, n = 1,2,3, ...,N. (10.14)

We can combine Eq. (10.13) written for all N signal samples (10.14) into one matrix
equation:

⎡
⎢⎢⎢⎣

1 t1 · · · tN−1
1

1 t2 · · · tN−1
2

...
... · · · ...

1 tN · · · tN−1
N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a0

a1
...

aN−1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

x1

x2
...

xN

⎤
⎥⎥⎥⎦ , Ta = x, (10.15)

and solve it with respect to vector of polynomial coefficients {an},n= 0,1,2, ...,N−
1: a = T−1x, in Matlab a=inv(T)*x. Then we can use coefficients {an} for cal-
culation of a signal value for any time t, using Eq. (10.13).

Polynomial (10.13) can be written as a summation of continuous-time Lagrange
polynomials Ln(t) of order N −1, multiplied by corresponding signal samples xn =
x(tn), n = 0,1,2, ...,N :
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x(t) =
N

∑
n=1

xnLn(t), Ln(t) =
∏k=1,...,N,k �=n (t − tk)

∏k=1,...,N,k �=n (tn − tk)
. (10.16)

Example: Quadratic Lagrange Interpolation Using Farrow Filters Let us
assume that t1 = −1, t2 = 0, t3 = 1, i.e. we want to interpolate signal around
t = 0: −1 < t < 1. Lagrange polynomials are in this case as follows:

L1(t) =
(t −0)(t −1)

(−1−0)(−1−1)
=

1
2

t2 − 1
2

t, (10.17)

L2(t) =
(t +1)(t −1)

(0− (−1))(0−1)
=−t2 +1, (10.18)

L3(t) =
(t +1)(t −0)

(1− (−1))(1−0)
=

1
2

t2 +
1
2

t, (10.19)

and signal interpolation is performed using the following equation:

x(t) = x(−1)

[
1
2

t2 − 1
2

t

]
+ x(0)

[−t2 +1
]
+ x(1)

[
1
2

t2 +
1
2

t

]
=

=

[
1
2

x(−1)− x(0)+
1
2

x(1)

]
· t2 +

[
−1

2
x(−1)+

1
2

x(1)

]
· t +[x(0)] .

(10.20)

The interpolation is correct in the neighborhood of a signal sample x(0). Gen-
eralizing Eq. (10.20), we can write interpolation formula of any signal sample
x(n) in the neighborhood −1 < t < 1:

x(n+ t)=

[
1
2

x(n−1)− x(n)+
1
2

x(n+1)

]
t2 +

[
−1

2
x(n−1)+

1
2

x(n+1)

]
t+[x(n)],

(10.21)

h2(n) =

[
1
2
,−1,

1
2

]
, h1(n) =

[
−1

2
,0,

1
2

]
, h0(n) = [0,1,0].

(10.22)

We see that one can use three digital filters defined by Eq. (10.22) and exploit
their outputs for computing signal values around the n-th signal sample.

Coefficients for digital filters, which are used for linear, quadratic, and cubic
signal interpolation using Lagrange polynomials, are given in Table 10.1. They can
be numerically calculated using program presented in Listing 10.8. Their usage is
demonstrated in program 10.9.
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Table 10.1: Coefficients of Farrow filters used in linear, quadratic, and cubic signal
interpolation by means of Lagrange polynomials

Interp.
order

Sample indexes Digital filter coefficients

1 [0,1] h1(n) = [−1,1], h0(n) = [1,0],
2 [−1,0,1] h2(n) = [ 1

2 ,−1, 1
2 ], h1(n) = [− 1

2 ],0,
1
2 ], h0(n) = [0,1,0],

3 [−1,0,1,2]
h3(n) = 1

6 [−1,3,−3,1], h2(n) = 1
6 [3,−6,3,0],

h1(n) = 1
6 [−2,−3,6,−1], h0(n) = 1

6 [0,6,0,0].

Exercise 10.9 (Signal Interpolation Using Farrow Filters). Use pro-
gram 10.8 for calculation of Lagrange polynomials for signal interpolation of
order N = 5. Find coefficients of associated Farrow filters. Add them to the
program 10.9 and compare with other methods.

Listing 10.8: Calculation of Lagrange polynomials and Farrow filter coefficients
�

1 % lab10_ex_lagrange.m
2 % Interpolationusing Lagrangepolynomial
3 clear all; close all;;
4

5 % ORIGINAL
6 %x = [ 0 1 ]; y=[0 0.5 ]; Sc=1; % for linear interpolation
7 x=[ -1 0 1 ]; y=[ 0 0.5 0.75 ]; Sc=1; % for quadraticinterpolation
8 %x=[-1 0 1 2]; y=[0 0.5 0.75 0.5 ]; Sc=6; % for cubic interpolation
9 xi = -1 : 0.1 : 3; % functionarguments of interest

10 [p,L,yi1] = lagrangeTZ(x,y,xi); % Lagrangeinterpolationfunction
11 yi2 = polyval(p,xi); % classicalpolynomialinterpolation
12 figure; plot(xi,yi1,’b-’,xi,yi2,’k-’,x,y,’ro’); title(’y(k) and y(n)’); % result
13 Lagrange = L, pause % coefficients of Lagrangepolynomials in rows
14 Farrow = L’, pause % coefficients of Farrow filters in rows
15

16 %#####################################
17 function [p,L,xi] = lagrangeTZ(t,x,ti)
18 % Lagrangeinterpolation
19 % Input: points (t(n),x(n)), required points for ti(k)
20 % Output: p - main polynomial, L - matrix with Lagrange polynomials,
21 % xi - interpolatedvalues.
22

23 % Calculatepolynomialcoefficients
24 N=length(t); L = zeros(N,N); p = zeros(1,N);
25 for n = 1:N
26 if(n==1) prodt(1) = prod(t(1)-t(2:N)); proots = t(2:N);
27 elseif(n==N) prodt(N) = prod(t(N)-t(1:N-1)); proots = t(1:N-1);
28 else prodt(n) = prod(t(n)-[t(1:n-1) t(n+1:N)]); proots=[t(1:n-1) t(n+1:N)];
29 end
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30 Ln = poly(proots)/prodt(n); % Lagrangepolynomialcoefficients for n
31 L(n,1:N) = Ln; % storing
32 p = p + x(n) * Ln; % calculation of polynomialcoefficients
33 end
34 % Calculateinterpolatedfunction values using Lagrangepolynomials
35 Ni=length(ti);
36 for k=1:Ni
37 xi(k)=0;
38 for n=1:N
39 if(n==1) dti = ti(k)-t(2:N);
40 elseif(n==N) dti = ti(k)-t(1:N-1);
41 else dti = ti(k)-[t(1:n-1) t(n+1:N)];
42 end
43 xi(k) = xi(k) + x(n)*prod(dti)/prodt(n);
44 end
45 end

��

Listing 10.9: Using Farrow filters for Lagrange signal interpolation
�

1 % lab10_ex_farrow.m
2 clear all; close all;
3

4 dx = pi/5;
5 xRef = 0 : pi/1000 : 10*2*pi; yRef = sin(xRef); % reference signal
6 xDec = 0 : dx : 10*2*pi; yDec = sin(xDec); % decimated signal
7

8 % Linear interpolation
9 D = 0.25; % delay

10 h1 = [ -1 1 ]; h1 = h1(end:-1:1); y1 = filter(h1,1,yDec);
11 h0 = [ 1 0 ]; h0 = h0(end:-1:1); y0 = filter(h0,1,yDec);
12 yL = D*y1 + y0;
13 xL = xDec - dx + D*dx;
14 % Quadraticinterpolation
15 D = 0.5;
16 h2 = [ 1/2 -1 1/2 ]; h2 = h2(end:-1:1); y2 = filter(h2,1,yDec);
17 h1 = [-1/2 0 1/2 ]; h1 = h1(end:-1:1); y1 = filter(h1,1,yDec);
18 h0 = [ 0 1 0 ]; h0 = h0(end:-1:1); y0 = filter(h0,1,yDec);
19 yQ = D*D*y2 + D*y1 + y0;
20 xQ = xDec - dx + D*dx;
21 % Cubic interpolation
22 D = 0.75;
23 h3 = 1/6 * [-1 +3 -3 1 ]; h3 = h3(end:-1:1); y3 = filter(h3,1,yDec);
24 h2 = 1/6 * [ 3 -6 3 0 ]; h2 = h2(end:-1:1); y2 = filter(h2,1,yDec);
25 h1 = 1/6 * [-2 -3 +6 -1 ]; h1 = h1(end:-1:1); y1 = filter(h1,1,yDec);
26 h0 = 1/6 * [ 0 6 0 0 ]; h0 = h0(end:-1:1); y0 = filter(h0,1,yDec);
27 yC = D*D*D*y3 + D*D*y2 + D*y1 + y0;
28 xC = xDec - 2*dx + D * dx;
29

30 figure; plot(xRef,yRef,’k-’,xDec,yDec,’bo-’,xL,yL,’gs-’,xQ,yQ,’r*-’,xC,yC,’mx-’);
31 grid; pause

��
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10.9 Asynchronous Sampling Rate Conversion

In real-time applications very often it is required to change signal re-sampling on
the run, i.e. asynchronously. Typically it is done as follows: first, a signal is very
densely interpolated, for example, 50 times. Then local three or four point Lagrange
polynomial interpolation is adapted in real-time.

Exercise 10.10 (** Hybrid Interpolation). Write a program for changing sam-
pling ratio from 44,100 samples per second to 48,000 samples per second (160
times up and 147 times down). First interpolate signal 10, 20 and 40 times using
classical DSP up-sampling procedure (zero insertion and filtering—remember
that fast polyphase version of this operation exists) and, then, locally interpolate
obtained signal using the Farrow filter technique.

10.10 Multi-Resolution Signal Decomposition and Wavelet
Filters

Filters and re-sampling can be used for decomposition of an all-band signal, poten-
tially having all frequency components, into summation of many sub-band signals,
having only components, belonging to separate frequency bands. For extraction (iso-
lation) of these sub-band components, many digital filters are used which work in
parallel or in cascade. They are called, as a team, a filter bank.

10.10.1 Multi-band Filter Banks

Let us assume that we have L separate band-pass analysis filters, each responsible
for different frequency range. Each filter reduces L times the signal bandwidth and
leaves only each L-th signal sample. In consequence, we have L sub-band signals,
having N

L samples, all together L · N
L = N samples: the same as before but decom-

posed into frequency sub-bands. In each sub-band time-resolution of the signal is
lower. Each sub-band signal can be further decomposed into sub-sub-band. Repeat-
ing this decomposition scheme, a multi-resolution signal representation is obtained.
When we: (1) insert zeros into the position of removed samples (using sample ex-
panders), (2) filter the zero-inserted sub-band signals by appropriate synthesis filters,
associated with the analysis ones, and (3) sum all obtained sub-signals, the original
signal is reconstructed. The signal was first decomposed into many sub-band parts,
then composed/built back. Since the L-channel analysis-synthesis filter banks are
discussed in chapter on audio processing/compression (precisely in Sect. 15.4), we
will not continue this story now.
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10.10.2 Two-Band Wavelet Filter Banks and Wavelet Transform

However, dyadic filter banks are worth to tell a few words more, because they lead
us to wavelet filters and wavelet transform—a very impressive mathematical con-
struction. In this section we will follow description presented in [11]. Let us assume
that we have a special pair of low-pass h0(k) and high-pass h1(k) filters, both half-
band ones, and perform a three-level, sub-band signal decomposition, according to
scheme presented in Fig. 10.11. Ω3 denotes the original signal bandwidth. After the
first filtering and down-sampling, we have a high-frequency sub-signal with spec-
trum Π2 (upper) and low-frequency sub-signal with spectrum Ω2 (lower). Next, the
low-band sub-signal is filtered once more by the same filter pair, and sub-sub-signals
with spectra Π1 and Ω1 are obtained. The low-frequency signal Ω1 is filtered next
and signals Π0 and Ω0 result. In consequence, we have got four sub-signals, having
spectra presented on upper part of the Fig. 10.12. It is important to observe that:
Ω3 = Π2 +Ω2, Ω2 = Π1 +Ω1, Ω1 = Π0 +Ω0. On the lower part of the Fig. 10.12,
we see the signal sub-space interpretation of the performed decomposition: a better
signal representation with more details is obtained, e.g. Ω1, when high-frequency
signal sub-space (with details), e.g. Π0, is added to low-frequency signal sub-space
(with smooth approximation), e.g. Ω0. When we take into account number of sam-
ples, having by signals in different sub-bands, the signal is decomposed into the
time–frequency (TF) grid presented in Fig. 10.13: lower frequency signal sub-bands
are more narrow and have less samples, while higher frequency sub-bands are wider
and have more samples. With each TF rectangular box in Fig. 10.13 only one sub-
band signal sample is associated. When: (1) it is multiplied by the corresponding
basis function of the wavelet decomposition, (2) this operation is repeated for all
sub-band samples, and (3) all scaled wavelets are summed, the original signal is re-
constructed. In Fig. 10.14 exemplary wavelet functions are shown associated with
the TF wavelet grid, presented in Fig. 10.13. This is the fundamental difference
between Fourier and wavelet signal analysis (representation): in the first method a
signal is decomposed into sum of permanently oscillating sines and cosines, while
in the second one into sum of oscillatory wavelets having limited time-support, i.e.
placed in different time instants.

As already mentioned above, the decomposed signal can be reconstructed from
sub-band sub-samples, i.e. wavelet coefficients. When we: (1) put zeros into posi-
tions of removed samples, (2) filter all sub-band signals back by the same filters,
but with weights time-reversed, and (3) add resultant samples, the original signal is
perfectly reconstructed (neglecting border samples). Dyadic synthesis filter bank is
presented in Fig. 10.15. Filters h0(−k) and h1(−k) from Fig. 10.11 are the same as
h0(k) and h1(k), their weights have only reversed order.

The two-tap Haar wavelet filters, called also the Daubechies D2, are the simplest
ones (k = 0,1):

h0(k) =

{
1√
2
,

1√
2

}
, h1(k) =

{
1√
2
, − 1√

2

}
. (10.23)
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Fig. 10.11: Dyadic analysis filter bank. Input signal is filtered in a cascade of half-
band low-pass (h0(−k)) and high-pass (h1(−k)) filters (“−k” denotes reversing or-
der of filter weights) [21]

Fig. 10.12: Resultant frequency response of filter bank from Fig. 10.11 (up) and
corresponding signal space interpretation (down) [21]

In turn, four-tap the Daubechies D4 filters are defined as follows (k = 0,1,2,4):

h0(k) =

{
1+

√
3

4
√

2
,

3+
√

3

4
√

2
,

3−√
3

4
√

2
,

1−√
3

4
√

2

}
, (10.24)

h1(k) =

{
1−√

3

4
√

2
, −3−√

3

4
√

2
,

3+
√

3

4
√

2
, −1+

√
3

4
√

2

}
. (10.25)
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Fig. 10.13: Time–frequency grid of signal decomposition using dyadic wavelet fil-
ter bank: less samples for low-frequency narrow-band sub-band signals and more
samples for high-frequency wide-band sub-band signals [21]

Fig. 10.14: Wavelet decomposition basis functions, corresponding to time–
frequency grid of wavelet coefficients, presented in Fig. 10.13. The analyzed signal
is summation of all wavelets scaled by sub-band signal samples, i.e. the wavelet
coefficients. To improve figure readability only every 16-th wavelet is shown [21]

In general, K weights of the low-pass wavelet filter h0(k) are solution of the
following set of K/2+1 equations with K unknowns (only for K even):

K−1

∑
k=0

h0(k) =
√

(2), (10.26)

K−1

∑
k=0

h0(k)h0(k−2l) = δ (l) l = 0,1,2, ...,K/2−1. (10.27)
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Fig. 10.15: Dyadic synthesis filter bank. Sub-band input signals are filtered in a
cascade of half-band low-pass (h0(k)) and high-pass (h1(k)) filters, and summed
[21]

For K = 2, the Haar filters are the only choice. For K = 4 we have K/2+ 1 = 3
equations and 4 unknowns. In the Daubechies D4 design, an additional equation is
added, ensuring the best smoothness of the signal decomposition basis functions,
i.e. approximation and detail wavelets. The high-pass filter coefficients h1(k) are
calculated from the low-pass filter coefficients h0(k):

h1 (k) =±(−1)kh0 (K −1− k) , (10.28)

where k = 0,1, ...,K−1 and K, even number, denotes order of the designed wavelet
system. Readers interested in details are kindly requested to follow the mathematical
derivation, presented below.

Exercise 10.11 (First Lesson on Signal Decomposition Using Wavelet Filter
Bank). Try to write personally a Matlab program for one-level wavelet analysis
and synthesis of arbitrary signal via signal filtering described above:

1. LP/HP analysis filters and ↓ 2 (2×) reducers,
2. followed by ↑ 2 (2×) expanders and LP/HP synthesis filters.

Make use of given weights of D2/D4 wavelet filters. Compare input and out-
put signal samples: is the wavelet-based signal decomposition fully reversible?
Find more wavelet filter coefficients in the Internet and use them also.
If you have a Wavelet Toolbox, become familiar with Matlab functions dwt()
and idwt(), performing one-level signal analysis and synthesis using dyadic
wavelet filter bank, with user-selected pair of LP and HP filters. Exploit both
functions for decomposition and reconstruction of an arbitrary signal. Compare
restored signal with output of your program.
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10.10.3 Derivation of Wavelet Filter Equations

This section is only for the brave! We will derive in it the wavelet filter equa-
tions (10.26), (10.27) from mathematical wavelet signal decomposition assump-
tions. We will follow math presented in [11]. In my opinion it is one of the most
fascinating and educating theoretical climbing in all DSP theory.

Wavelet Signal Decomposition as a Dyadic Filter Bank Let us assume that our
continuous-time signal x(t) can be approximated on the 0-th decomposition level by
a sum of time-shifted orthonormal functions φ(t):

x(t)≈ ∑
n

c0,nφ
(
20t −n

)
=∑

n
c0,nφ (t −n) , c0,n =

+∞∫
−∞

x(t)φ ∗ (t −n) dt.

(10.29)
On the 1-st signal decomposition level, the approximating functions are two times
faster/shorter, due to applied 2× time scaling, and the signal approximation is two-
times more detailed:

x(t)≈ ∑
n

c1,n
√

2φ
(

21t −n
)
= ∑

n
c1,n

√
2φ (2t −n) , c1,n =

+∞∫
−∞

x(t)
√

2φ∗ (2t −n) dt.

(10.30)

Using denotations already used by us during description of cascade dyadic sig-
nal filtering, we can say that functions φ(20t) and

√
(2)φ(21t) span, respectively,

the signal space Ω0 and Ω1, and Π0 is an orthogonal complement of Ω0 to Ω1:
Π0 = Ω1 − Ω0, what is presented in Fig. 10.12. Let us denote functions span-
ning the space Π0 as ψ(20t). They are orthogonal to φ(20t). The first are high-
frequency ones (signal (details)), while the second—low-frequency ones (signal
smooth (approximation)).

After performing signal decomposition further, the signal on the k-th decompo-
sition level (k > m0, m0—initial signal representation) can be expressed as:

x(t) = ∑
n

cm0,nϕm0,n (t)+
k−1

∑
m=m0

∑
n

dm,nψm,n (t), (10.31)

where

cm,n =

+∞∫
−∞

x(t)2m/2φ ∗ (2mt −n) dt, dm,n =

+∞∫
−∞

x(t)2m/2ψ∗ (2mt −n) dt.

(10.32)
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Coefficients cm,n describe the signal smooth approximation while dm,n—the
signal details. In wavelet signal representation concept, a signal is the sum-
mation of many shifted in time and frequency local approximation φ() and
detail ψ() functions, with finite time and frequency support, what is presented
in Figs. 10.13 and 10.14.

In multi-resolution dyadic signal decomposition, approximation wavelet of the
lower level has to be linear superposition of shifted approximation wavelets of the
higher level:

ϕ (t) = ∑
k

h0 (k)
√

2ϕ (2t − k). (10.33)

The similar equation has to hold for the detail wavelet:

ψ (t) = ∑
k

h1 (k)
√

2ϕ (2t − k). (10.34)

Filter h0(k) in Eq. (10.33) is a low-frequency one, while filter h1(k) in Eq. (10.34)
is a high-frequency one. Using settings t = 2mt and l = 2n+ k in Eq. (10.33), one
obtains

ϕ (2mt −n) = ∑
k

h0 (k)
√

2ϕ (2(2mt −n)− k) = ∑
l

h0(l −2n)
√

2ϕ
(
2m+1t − l

)
.

(10.35)
Taking into account definition (10.32) of coefficients (cm,n = cm(n)), we get

cm (n) =

+∞∫
−∞

x(t)2m/2

[
∑

l

h0(l −2n)
√

2φ ∗ (2m+1t − l
)]

dt =

= ∑
l

h0(l −2n)

⎡
⎣

+∞∫
−∞

x(t)2(m+1)/2φ ∗ (2m+1t − l
)

dt

⎤
⎦= ∑

l

h0(l −2n)cm+1(l).

(10.36)

In similar way the following relation is derived for coefficients dm,n = dm(n):

dm (n) = ∑
l

h1 (l −2n) cm+1 (l) . (10.37)

The last two equations (10.36), (10.37) confirm that the wavelet transform of a sig-
nal, i.e. its decomposition (10.31) into superposition of shifted approximation and
detail wavelets, can be realized in practice in dyadic filter bank with h0(n) and h1(n)
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filters (Fig. 10.11): we treat original signal samples as its approximation coefficients
cm(n) at the high-frequency approximation level and then filter them by LP and HP
filters and go to lower levels.

Finding Wavelet Filter Design Equations When one additionally assumes that:

+∞∫
−∞

ϕ(t)dt = 1, (10.38)

and put Eq. (10.33) into Eq. (10.38) with setting τ = 2t −n, she/he gets

∑
n

h0(n) =
√

2. (10.39)

It means that the filter has to pass the constant signal value. If additionally:

∑
n
(−1)nh0(n) = 0, (10.40)

the filter frequency response has 0 for Ω = π . Last two equations are fulfilled when:

∑
n

h0(2n) = ∑
n

h0(2n+1) =

√
2

2
, (10.41)

what tells us that the filter should have even number of taps. When we additionally
request orthogonality of approximation and shifted approximation wavelets:

+∞∫
−∞

ϕ(t)ϕ(t −n)dt = δ (n), (10.42)

and use Eq. (10.33), after setting τ = 2t −m we obtain from (10.42) :

∑
m

h0 (m)h0 (m−2n) = δ (n). (10.43)

Finally, when we request zero value of the detail wavelet integral (and high-pass
nature of the h1(k) filter):

+∞∫
−∞

ψ(t)dt = 0 (10.44)
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after some derivations, which are ... skipped (Hurrah!), we get

h1 (n) =±(−1)nh0 (N −1−n) . (10.45)

Conclusion Thanks to the above mathematical explanation of the multi-resolution
wavelet-based signal decomposition, we should be convinced that dyadic filter
banks with appropriate filters let us calculate in practice wavelet transform coef-
ficients of a signal. Additionally, we have derived Eqs. (10.39), (10.43), (10.45),
which are obligatory for design of arbitrary wavelet system. So now, please, dear
Reader, design a system of your dream.

Exercise 10.12 (Second Lesson on Signal Decomposition Using Wavelet Fil-
ter Bank).

1. Become familiar with the program 10.10, performing by-hand multi-level
wavelet signal analysis and synthesis. Try to understand its every line. Find
in the Internet coefficients of more wavelet filters and add them to the pro-
gram, for example, higher order Daubechies and Coifman filters. Run the
program: observe the reconstructed signal shape and note value of signal
reconstruction error. Add new test signals to the program, may be speech
or music? Listen to signals at different wavelet decomposition levels.

2. Note, how the approximation wavelet/function φ() from Eq. (10.31) is syn-
thesized: an unitary impulse is passed through a cascade of 10 interpola-
tors, each consisting of the “↑ 2” expander and the low-pass filter h0s(k).
Our signal is expressed as a summation of its shifted copies. Modify the
program and synthesize the detail wavelet/function ψ() from Eq. (10.31).
Compare calculated shapes of wavelet functions φ() and ψ(n) for different
wavelet filters. Find in literature, whether these shapes are correct. Since
they are wavelet-like, the described signal decomposition/approximation is
called the wavelet transform.

Listing 10.10: Discrete wavelet transform in Matlab
�

1 % lab11_ex_wavelets.m
2

3 % Parameters
4 niter = 3; % decompositionlevel = number of iterations
5 nx = 2̂ niter*32; % length of test signal
6 % LP synthesis filter coefficients h0s, e.g. Db4
7 h0s = [ (1+sqrt(3))/(4*sqrt(2)) (3+sqrt(3))/(4*sqrt(2)) ...
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8 (3-sqrt(3))/(4*sqrt(2)) (1-sqrt(3))/(4*sqrt(2)) ];
9 % Calculateremaining filters

10 N = length(h0s); n = 0:N-1;
11 h1s = (-1).̂ n .* h0s(N:-1:1); % HP synthesis filter
12 h0a = h0s(N:-1:1); h1a=h1s(N:-1:1); % LP and HP analysisfilters
13 % Synthesis of "approximation" wavelets - given
14 % Synthesis of "detail" wavelets - your homework!
15 c = 1;
16 for m = 1:10 % synthesis levels
17 c0=[];
18 for k = 1:length(c)
19 c0(2*k-1)=c(k); c0(2*k)=0; % 2-time expander
20 end
21 c = conv(c0,h0s); % LP wavelet filter
22 end
23 figure; plot( c ); title(’Approximationfunction/wavelet’); pause
24 % Test signal
25 % x=sin(2*pi*(1:nx)/32);
26 x=rand(1,nx);
27 % Wavelet analysis, discretewavelettransform
28 cc = x;
29 for m = 1:niter
30 c0 = conv(cc,h0a); % LP filtration
31 d0 = conv(cc,h1a); % HP filtration
32 k=N:2:length(d0)-(N-1); kp=1:length(k); ord(m)=length(kp); dd(m,kp) = d0( k );
33 k=N:2:length(c0)-(N-1); cc=c0( k );
34 end
35 % Wavelet synthesis, inversediscretewavelettransform
36 c=cc;
37 for m = niter:-1:1
38 c0=[]; d0=[];
39 for k = 1:length(c)
40 c0(2*k-1)=c(k); c0(2*k)=0; % 2-times expander
41 end
42 c = conv(c0,h0s); nc=length(c); % LP wavelet filter
43 for k = 1:ord(m)
44 d0(2*k-1) = dd(m,k); d0(2*k) = 0; % 2-times expander
45 end
46 d = conv(d0,h1s); nd=length(d); % HP wavelet filter
47 c = c(1:nd);
48 c = c + d;
49 end
50 % Final figures
51 n = 2*(N-1)*niter : length(c)-2*(N-1)*niter+1;
52 figure; plot(x); title(’Input’); pause
53 figure; plot(n,c(n)-x(n)); title(’Output-Input’); pause

��
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10.11 Summary

1. Signal interpolation (up-sampling) and decimation (down-sampling) have
extraordinary significance in our multi-task multi-resolution style of life
and problem solving. We would like to observe data in different scales,
switch between them in real-time, adapt scales. We are surrounded by
multi-resolution multimedia: speech, audio, images, video, ... We are us-
ing multi-rate (multi-speed) data transmission.

2. Interpolation and decimation do not look difficult at a first glance. Simple
zero-insertion and low-pass data smoothing is done in the first of them.
Simple signal bandwidth reduction by low-pass filtering and removal of
some samples is performed in the second case. But when we start think-
ing about computational optimization of these operations, things start to
become very difficult. Severe mathematical notation of polyphase signals
and systems are used. Problems are growing further when sub-band signals
decomposition and processing is addressed.

3. What to repeat once more? When used in a cascade, the interpolator is
always first before the decimator. Why? Because decimator is always fil-
tering out high-frequency signal components which are lost forever.

4. Application of fast polyphase versions of digital up-samplers and down-
samplers should be preferred. Why? Because there is no sense to multiply
filter weights by zeros or filter data and not to exploit results of calculations.

5. When signal re-sampling is of high-order, applied filters have to be long.
Therefore it is profitable to use a cascade of shorter filters. Computational
expense of such up/down-sampling is typically significantly lower.

6. One should remember that signal interpolation can be realized cost-less
during digital FIR filtration by slight shifting in time weights of the filter
impulse response. Additionally, in asynchronous sampling rate conversion
(ASRC), very important in synchronization parts of communication sys-
tems, the Lagrange interpolation polynomials are exploited in the form of
Farrow filter—the state-of-the-art solution in signal re-sampling.

7. Finally, we become familiar in this chapter with main concept of signal
analysis and synthesis by multi-channel (multi-band) filter banks, i.e. the
sub-band signal decomposition and its down-sampling in separate sub-
bands, as well as sub-band signal up-sampling and the original, all-band
signal reconstruction. As a concrete example, we have studied with more
details 2-band (dyadic) analysis and synthesis wavelet filter banks: we have
derived design equations of wavelet filters and we have found their connec-
tion with the wavelet signal decomposition (transform).
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8. However, in order to become familiar with modern implementation of re-
sampling in modern telecommunication systems, further reading is recom-
mended focused on usage of cascaded integrator-comb (CIC) recursive
filters [3, 9] for this purpose.

10.12 Private Investigations: Free-Style Bungee Jumps

Exercise 10.13 (UP-DOWN with Only One Low-Pass Filter). During two-level
combined UP and DOWN signal re-sampling we have been using a cascade of two
low-pass filters. But only one is enough, this having more narrow pass-band. Verify
this observation experimentally on one real and one synthetic signal. Compare in
one figure two re-sampling results which are obtained with the usage of two filters
and only one filter.

Exercise 10.14 (Mixing Digital Signals Sampled with Different Frequencies).
Record 3–5 sec of your speech with sampling frequency equal to 11.025 kHz.
Record 3–5 sec of music with sampling frequency equal to 44.1 kHz. Up-sample
speech to 32 kHz. Use Matlab function rat() to find required Up/Down ratio.
Down-sample music to 32 kHz. Use Matlab function rat() to find required Up/-
Down ratio. Add up-sampled speech to down-sampled music. Adjust gains to hear
both signals of them clearly.
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Chapter 11
FIR Filters for Phase Shifting and
Differentiation

To be or not be? To be universal or very narrowly specialized?
A short story about special task filters.

11.1 Introduction

In FIR digital filtering any output sample is calculated as running weighted
average of some last input samples. This operation is not only very simple but
also very effective in signal components attenuation when filter weights are
designed properly. A filter can have a few or even hundreds or thousands of
weights. Most often their values should ensure special filter behavior in fre-
quency domain, i.e. from its input to output the filter should pass only signal
components belonging to specified frequency bands. In previous two chapters
we were designing FIR low-pass, high-pass, band-pass, and band-stop filters
only. Why? Because they are the most frequently used, for example for sig-
nal de-noising (as in bio-medical applications where information signals are
very weak) or for separation of different signal frequency components (like in
telecommunication or radar signal receivers).

Different frequencies can be amplified/attenuated and delayed by a digital
filter in different way. We can exploit this nice feature and design filters pass-
ing only signals lying in predefined frequency bands (LP, HP, BP, BS). And we
widely do it. But we can also design digital filters having some specific fre-
quency responses and thanks to this performing some specific tasks which are
very useful in practice, for example, shifting signal components in phase or dif-
ferentiating a signal. This chapter is exactly devoted to these two types of FIR
filters. Weights of both of them are designed using the window method: first fil-
ter frequency response is specified, then it is transformed to time-domain using
the discrete-time Fourier transform (DtFT), next the calculated filter weights
are windowed and, finally, they are convoluted with a signal being processed.
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The Hilbert filter has a frequency response H(Ω) =− j = e− jπ/2 for Ω > 0
and H(Ω) = j = e jπ/2 for Ω < 0. It is an all-pass filter (except the DC compo-
nent), shifting all frequency components in phase −90 degrees. The filter allows
very easy amplitude and phase/frequency signal demodulation and is widely
used. How it works? Thanks to the Hilbert filter (transform) a complex-value
signal is created, called an analytic signal, having in its real part the original
signal and in the imaginary part the Hilbert filter output. Absolute value and
angle of each analytic signal sample are equal, respectively, to instantaneous
signal amplitude and instantaneous signal phase. In turn, signal frequency is
derived as numerical derivative of the calculated phase.

The differentiation filter has a frequency response equal to H(Ω) = jΩ , i.e.
it is, both, a plus 90 degree phase shifter ( j = e jπ/2) and an amplifier with gain
proportional to signal frequency. Signal differentiation is needed, for example,
in discrete-time automatic control systems and in telecommunication receivers.

11.2 FIR Hilbert Filter

11.2.1 Hilbert Filter Basics

Frequency response of the digital Hilbert filter is defined as (see Fig. 11.1):

HH(Ω) =

⎧⎨
⎩
− j, Ω > 0,

0, Ω = 0,
j, Ω < 0,

(11.1)

where Ω = 2π f
fs

, fs—sampling frequency. Since the following identities holds

− j = e− jπ/2, j = e jπ/2 (11.2)

the complex-value input harmonic signals x(n) with positive and negative angular
frequencies Ω0 and −Ω0 are shifted by this filter by −π/2 radians:

e jΩ0n → e jΩ0ne− j π
2 = e j(Ω0n− π

2 ), (11.3)

e j(−Ω0)n → e j(−Ω0)ne+ j π
2 = e− j(Ω0n− π

2 ). (11.4)

In consequence a cosine with angular frequency Ω0 is also shifted in phase by the
same angle:
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Fig. 11.1: Hilbert filter frequency response: (left) magnitude, (right) phase. fs de-
notes sampling frequency

cos(Ω0n) =
e jΩ0n + e j(−Ω0)n

2
→

e j(Ω0n− π
2 ) + e− j(Ω0n− π

2 )

2
= cos

(
Ω0n− π

2

)
= sin(Ω0n). (11.5)

Therefore we can conclude that Hilbert filter is minus 90 degree phase shifter, trans-
forming cosine signal into a sine one, independently of the cosine frequency. The
Hilbert filter magnitude and phase frequency responses are presented in Fig. 11.1.

Now let us calculate the inverse DtFT of the filter frequency response given by
Eq. (11.1):

hH(n) =
1

2π

π∫
−π

HH(Ω)e jΩndΩ =
1

2π

0∫
−π

je jΩndΩ +
1

2π

π∫
0

(− j)e jΩndΩ =

=
j

2π

[
1
jn

e jΩn

∣∣∣∣
0

−π
− 1

jn
e jΩn

∣∣∣∣
π

0

]
=

1
2πn

[
(e j0 − e− jπn)− (e jπn − e j0)

]
=

=
1

2πn
[2−2cosπn] =

1
πn

[1− cosπn] =
sin2 (πn/2)

πn/2
. (11.6)

The FIR Hilbert filter, as each FIR digital filter, is described by the following
input–output relation:

x(n) → [ filter weights hH(n) ] → y(n) =
∞

∑
k=−∞

hH(k)x(n− k) (11.7)

i.e. output signal samples y(n) are result of convolution of input signal samples x(n)
with filter weights hH(n), calculated in Eq. (11.6):

hH(n) =

{
1−cos(πn)

πn = sin2(πn/2)
πn/2 , n �= 0,

0, n = 0.
(11.8)
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Conclusion The Hilbert filter is not a typical frequency-passing and frequency-
stopping filter. It follows from Eq. (11.1) that it is the minus 90 degree phase
shifter. Theoretically, it should pass without amplitude change all signal com-
ponents with different frequencies (since |H( f )| = 1 for f �= 0 Hz), shifting
them only in phase by −π/2 radians. Only the signal mean value, the DC one,
is removed by the Hilbert filter (because |H( f )|= 0 for f = 0 Hz).

Exercise 11.1 (Hilbert Filter Impulse and Frequency Response). Use Mat-
lab program 11.1. Choose Hilbert filter. Observe its impulse response and fre-
quency response. Is the calculated frequency response similar to the theoretical
one which is presented in Fig. 11.1. Increase value of M. Is the filter magnitude
response less oscillatory now? Explain origin of the oscillations?

Listing 11.1: Generation of Hilbert and differentiation filter impulse response and
calculation of the filter frequency response

�

1 % lab11_ex_impulse_freq_response.m
2 clear all; close all;
3

4 % Generate and plot the Hilbert filter impulseresponse
5 M=20; n=-M:M; hH=(1-cos(pi*n))./(pi*n); hH(M+1)=0;
6 figure; stem(n,hH); title(’hH(n)’); grid; pause
7 % Generate and plot the differentiationfilter impulse response
8 M=20; n=-M:M; hD=cos(pi*n)./n; hD(M+1)=0;
9 figure; stem(n,hD); title(’hD(n)’); grid; pause

10 % Our choice: hH or hD
11 h = hH;
12 % Windowing
13 % w = blackman(2*M+1)’; figure; stem(w); pause, h = h .* w; figure; stem(h); pause
14 % Calculate filter frequencyresponse::
15 Om = 0 : pi/1000 : pi; z=exp(-j*Om); H=polyval(h(end:-1:1),z);
16 % Plot its magnitude and phase response:
17 figure; plot(Om,abs(H)); title(’abs( H(Om) )’); grid; pause
18 figure; plot(Om,unwrap(angle(H))); title(’angle( H(Om) )’); grid; pause
19 % Correct the phase shift resulting from impulseresponse shift by M samples right
20 figure; plot(Om,unwrap( angle( H.*exp(j*Om*M) ) )); title(’angle( H(Om) )’);
21 grid; pause

��

11.2.2 Analytic Signal and AM-FM Demodulation Principle

Combining input and output of the Hilbert filter, the so-called analytic signal is
obtained (see Fig. 11.2):
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Fig. 11.2: Computation of analytic signal using Hilbert filter

Fig. 11.3: Graphical illustration of the fact that analytic signal has spectrum equal
to zero for negative frequencies. Spectra denotation: X( f )—for the original signal,
XH( f )—for the Hilbert filter output, and Xa( f ) = X( f )+ jXH( f )—for the analytic
signal

xa(n) = x(n)+ j ·H [ x(n) ] = x(n)+ j · xH(n). (11.9)

Remembering that the Hilbert transform of cos(Ω0n) is sin(Ω0n):

H [cos(Ω0n)] = cos(Ω0n−π/2) = sin(Ω0n), (11.10)

and due to Euler equation e jα = cos(α)+ j sin(α), the analytic signal (11.9) asso-
ciated with the cosine is equal to the complex-value Fourier harmonic signal,

xa(n) = cos(Ω0n)+ j · sin(Ω0n) = e jΩ0n. (11.11)

DtFT spectrum of the analytic signal is equal:

Xa(Ω) = X(Ω)+ j ·XH(Ω) = X(Ω)+ j ·X(Ω)HH(Ω) =

= X(Ω) · (1+ j ·HH(Ω)) . (11.12)

For positive angular frequencies Ω > 0 we obtain

Xa(Ω) = X(Ω) · (1+ j · (− j)) = X(Ω) · (1+1) = 2X(Ω), (11.13)

while for negative ones Ω < 0 we have

Xa(Ω) = X(Ω) · (1+ j · ( j)) = X(Ω) · (1−1) = 0. (11.14)

This is a very important result which should be remembered! Analytic,
complex-value version of a real-value signal does not have negative frequency
components, i.e. “mirror,” complex-conjugated part is removed from the spec-
trum of a real-value signal. This phenomena is shown in Fig. 11.3. We can very
easily check it using Matlab fft() function.
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Exercise 11.2 (Analytic Signal Spectrum). Use Matlab program 11.2. A co-
sine with sinusoidal frequency modulation is generated in it: carrier 1000 Hz,
modulation index 200 Hz, modulating frequency 10 Hz. Note the difference be-
tween the spectrum of the original signal and its analytic version: in the second
negative frequency components are missing. Observe that the complex-value
signal xm, which imaginary part is negated in comparison to the analytic sig-
nal, has a spectrum containing only negative frequency components. Test this
feature on different signals, also with speech signals sampled with frequency
8000 Hz.

Listing 11.2: Generation of analytic signal and checking its frequency spectrum
�

1 % lab11_ex_analytic.m
2 clear all; close all;
3

4 fs = 8000; % samplingfrequency
5 Nx = 8000; % number of samples
6 dt = 1/fs; t = dt*(0:Nx-1); % sampling period, samplingmoments
7 fc = 1000; kf = 200; fm = 10; % carrier, modulation index, modulationfrequency
8 x = cos(2*pi*(fc*t + kf/(2*pi*fm)*sin(2*pi*fm*t))); % SFM signal
9 xa = hilbert( x ); % analytic signal, positivefrequencies

10 xp = x + j*imag(xa); % analytic signal, the same as above
11 xm = x - j*imag(xa); % negativefrequencies
12 % Spectra
13 X = fftshift( abs(fft(x)) )/Nx; % for original signal
14 Xa = fftshift( abs(fft(xa)) )/Nx; % for analytic signal with positive freqs only
15 Xm = fftshift( abs(fft(xm)) )/Nx; % for analytic signal with negative freqs only
16 % Figures
17 f0 = fs/Nx; f=f0*(-Nx/2:Nx/2-1);
18 figure
19 subplot(311); plot(f,X ); title(’|X(f)|’); xlabel(’(Hz)’); grid;
20 subplot(312); plot(f,Xa); title(’|Xa(f)|’); xlabel(’(Hz)’); grid;
21 subplot(313); plot(f,Xm); title(’|Xm(f)|’); xlabel(’(Hz)’); grid;
22 pause

��

The Hilbert filter (Hilbert transform) is mainly used for signal demodulation. Let
us assume that we have, for example, a signal as follows:

s(n) = A · (1+a(n)) · cos

(
2π

fc

fs
n+ϕ(n)

)
, (11.15)

being modulated in amplitude by signal a(n) (|a(n)| < 1) and in phase by signal
ϕ(n) (both modulating signals are low-frequency ones in comparison to the signal
carrier frequency fc). Let us calculate analytic signal for (11.15):

sa(n) = A · (1+a(n))e
j·
(

2π fc
fs

n+ϕ(n)
)
. (11.16)
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We see that absolute value |sa(n)| and angle �sa(n) of sa(n) are equal:

|sa(n)|= A · (1+a(n)), (11.17)

�sa(n) = 2π
fc

fs
n+ϕ(n), (11.18)

so they allow finding a(n) and ϕ(n) and, next, instantaneous signal frequency
finst(n) as the derivative of the found angle:

finst(n) =
fs

2π
Δ(�sa(n))

Δn
= fc +

fs

2π
Δϕ(n)

Δn
. (11.19)

For frequency modulation with signal x f (n) and modulation index k f , the phase
ϕ(n) is equal:

ϕ(n) =
2π
fs

k f

n

∑
k=0

x f (k). (11.20)

Therefore Eq. (11.19) takes the following form (derivative of the sum in last equa-
tion is equal to the last element of this sum):

finst(n) = fc + k f · x f (n), (11.21)

allowing for finding x f (n) when fc and k f are known. EUREKA! Signal demodula-
tion using Hilbert filter does not look very difficult.

Exercise 11.3 (Hilbert Filter Signal Demodulation). Use Matlab pro-
gram 11.3. Signal modulated jointly in amplitude and frequency is generated
in it. In the demodulation, first, analytic complex-value signal version is cal-
culated using the Matlab function hilbert(). AM demodulation makes use
of instantaneous value of analytic signal magnitude, while FM demodulation
exploits unwrapped analytic signal angle and its derivative. Analyze the pro-
gram code, admire its simplicity, note very small demodulation errors. Run
program for different values of AM and FM modulation parameters. Does the
program work correctly for all of them? Optional: change sampling frequency
to 44.1 kHz and try to do AM and FM modulation of the carrier 10 kHz using
speech signal sampled at 44.1 kHz. Listen to demodulated signals.
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Listing 11.3: Demonstration of signal demodulation using Hilbert filter
�

1 % lab11_ex_hilbert_demod_primer.m
2 clear all; close all;
3

4 fs = 8000; % samplingfrequency
5 Nx = 8000; % number of samples
6 dt = 1/fs; t = dt*(0:Nx-1); % sampling period, samplingmoments
7 fc = 1000; Ac = 10; % carrierfrequency and amplitude
8 kA = 0.5; fA = 5; % AM modulation: index, frequency
9 kF = 200; fF = 10; % FM modulation: index, frequency

10 xA = cos(2*pi*fA*t); % signal for AM
11 xF = cos(2*pi*fF*t); % signal for FM
12 % Modulation
13 s = Ac*(1 + kA*xA) .* cos( 2*pi*( fc*t + kF*cumsum(xF)*dt ) ); % SFM signal
14 % Demodulation
15 sa = hilbert( s ); % analytic signal, positivefrequencies
16 xA_est = ( abs(sa)/Ac - 1 ) / kA;
17 xF_est = ( diff( unwrap( angle( sa ) ) ) /(2*pi) - fc*dt ) / (kF*dt);
18 % Figures
19 figure
20 subplot(211); plot(t,xA,’r’,t,xA_est,’b’); title(’A(t)’);
21 subplot(212); plot(t(2:end),xF(2:end),’r’,t(2:end),xF_est,’b’); title(’f(t)’); pause
22 k = round(0.25*Nx) : round(0.75*Nx);
23 error_a = max( abs( xA(k) - xA_est(k) )), % amplitude demodulationerror
24 error_f = max( abs( xF(k+1) - xF_est(k) )), % frequencydemodulationerror

��

11.2.3 Hilbert Filter Implementations

Hilbert phase shifter can be implemented in time domain as a digital filter, IIR or
FIR, or in frequency domain using signal spectrum modification. At present we will
discuss the FIR filter implementation and the spectrum modification methods.

Time-Domain FIR Filter This implementation directly follows the methodology
of filter weights design used in the window method:

1. the Hilbert filter weights hH(n) are calculated analytically in Eq. (11.6),
2. they are multiplied by selected window function, deciding about the flatness of

the filter magnitude response in the pass-band and width of the filter transition

band, and weights h(w)H (n) are obtained,
3. the filter length is adjusted to ensure very wide pass-band and very sharp and

short filter transition bands, close to frequencies 0 Hz and fs/2,

4. the filter weights are shifted M samples right giving h(w)(M)
H (n),

5. the designed filter weights are convoluted with input signal,
6. samples of the input and output signals are synchronized.

Figure 11.4 illustrates the design issues for filter having N = 2M + 1 = 21 and 41
weights. Results for un-windowed theoretical Hilbert filter impulse response are



11.2 FIR Hilbert Filter 301

presented in the left column, while in the right column—results for the theoreti-
cal impulse response multiplied with Blackman window. In consecutive rows we
see: filter weights shifted right by M samples, filter magnitude response and filter

phase response (corrected after the right shift, i.e. for H(w)
H (n)). We see that usage

of window with bigger spectral side-lobes attenuation (the Blackman one) improves
linearity of the filter magnitude response in the pass-band (reduces oscillations), at
the cost of making the filter pass-band more narrow. Enlarging the filter length helps
to reduce this effect and increases the filter working frequency band. The filter phase
shift is equal to minus 90 degree, as expected.

Exercise 11.4 (Hilbert Filter in Time Domain). Modify program from List-
ing 11.1: uncomment lines 12 and 13, i.e. add to it the following Matlab com-
mands:

w = blackman(2*M+1)’; stem(w); pause, h = h .* w;
stem(h); pause

Try to obtain the same results as presented in Fig. 11.4. Then, increase filter
length (change value of M): observe that for longer filters the frequency re-
sponse becomes sharper but level of oscillations does not change. Change win-
dow to kaiser() with β = 10 and chebwin() with R = 120. Note flatness
of the filter magnitude response. The phase response is not changing. Do some
experiments with values of β and R. Analyze Listing 11.4 with Matlab code
of Hilbert filter implementation and analytic signal calculation in time domain.
Call the function with cosines with different frequencies and compare in one
figure real and imaginary parts of the function output. Cosine should be trans-
formed into a sine. Draw a plot plot(real(xa),imag(xa)). You should
see a circle when cosine frequency lies in the filter pass-band. Pay attention to
synchronization of real and imaginary parts of the analytic signal, performed in-
side the function. It is necessary due to delay of the Hilbert filter output caused
by the input buffer as well as to delay resulting from the filter weights shift.
This issue is addressed in next paragraph.

Listing 11.4: Hilbert filter in time domain
�

1 function xa = hilbertTZ1(x,M,beta)
2 Nx = length(x);
3 % Generation of the Hilbert filter impulseresponse
4 n=-M:M; hH=(1-cos(pi*n))./(pi*n); hH(M+1)=0;
5 % Windowing using Kaiser window
6 w = kaiser(2*M+1,beta)’; hH = hH .* w;
7 % Filtration
8 xi = conv(x,hH);
9 % Analytic signal with synchronization and removingtransient states

10 xa = x(M+1:Nx-M) + j*xi(2*M+1:Nx);
11 end

��
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Fig. 11.4: FIR Hilbert filter characteristics, (left)—for rectangular window, (right)—

for Blackman window. Up-down: filter impulse response h(w)(M)
H (n) (theoretical,

multiplied with the window function), filter magnitude response |H(w)(M)
H ( f )|, fil-

ter phase response �(H(w)
H ( f ))—for the non-shifted filter weights or shifted but

with filter output synchronized with its input. Filter length N = 2M + 1 = 21—
solid blue line, N = 2M+1 = 41—dashed red line. Sampling frequency is equal to
fs = 1000 Hz
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Fig. 11.5: Graphical illustration of synchronization of input and output samples of
an odd-length FIR filter. Denotations: x(n)—input signal (Nx = 7), h(−n)—filter
weights (N = 2M + 1 = 3), y(n)—output signal (Ny = Nx + N − 1 = 9). Corre-
sponding input–output samples: {x(2),x(3), ...,x(6)} and {y(3),y(4), ...,y(7)}, or
{x(M+1), ...,x(Nx −M)} and {y(N), ...,y(Nx)}

Fig. 11.6: Graphical illustration of synchronization of input and output samples of
an FIR filter for: (left) odd number of filter weights (N = 3), (right) even number of
filter weights (N = 4)

Synchronization of Filter Output with Input FIR filtering with N = 2M + 1
weights, implemented as convolution, introduce delay of M samples. Therefore in-
put and output samples of the FIR Hilbert filter should be synchronized/paired very
carefully. The first valid output sample has index N, since this is the first sample
for which the inner filter buffer is completely filled with input data. But due to the
performed M samples right shift of the theoretical Hilbert filter impulse response
(initially non-causal), the output is delayed M samples in relation to the input. There-
fore the y(N) output sample corresponds to the x(N −M) input sample, and so on
... The synchronization of input and output samples of any odd-length FIR filter is
presented in two figures, Figs. 11.5 and 11.6.
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Frequency-Domain Hilbert Filtering One can implement Hilbert filter in frequency-
domain modifying signal DFT/FFT spectrum according to Eq. (11.1), i.e. multiply-
ing its fragments by j,− j either 0 and calculating the inverse DFT/FFT:

x(n)
N−FFT−−−−−→ X(Ωk)

·H(Ωk)−−−−→ H(Ωk) ·X(Ωk)
N−FFT−1−−−−−−→ xH(n), (11.22)

where

n = 0,1,2, ...,N −1, k = 0,1,2, ...,N −1, Ω =
2π
N

k. (11.23)

We can also compute the analytic signal xa(n) for x(n) directly in frequency do-
main using Eqs. (11.12)–(11.14): 1) calculating the DFT/FFT signal spectrum, 2)
multiplying its appropriate fragments by weights W (Ωk), equal to 2 either 0, and 3)
performing the inverse DFT/FFT:

x(n)
N−FFT−−−−−→ X(Ωk)

·W (Ωk)−−−−→ W (Ωk)X(Ωk)
N−FFT−1−−−−−−→ xa(n). (11.24)

Exercise 11.5 (Hilbert Filter in Frequency Domain). Computation of ana-
lytic signal in frequency domain, described by Eqs. (11.22) and (11.24), is
implemented in two functions presented in Listing 11.5. Using the following
Matlab code:

x=rand(1,100); error = max( abs( hilbert(x) - hilbertTZ(x)))

check whether they give the same results as the Matlab function hilbert().

Listing 11.5: Matlab implementation of Hilbert filter in frequency domain
�

1 function xa = hilbertTZ2(x)
2 N = length(x); % input signal length
3 X = fft(x); % signal FFT, then its modification:
4 X(1)=0; X(N/2+1)=0; % # 0 for 0 Hz and fs/2
5 X(2:N/2) = -j*X(2:N/2); % # (-j) for positivefrequencies
6 X(N/2+2:N) = j*X(N/2+2:N); % # (+j) for negativefrequencies
7 xi = ifft(X); % inverse FFT of the modifiedspectrum
8 xa = x+j*xi; % creation of analytic signal
9 end

10

11 function xa = hilbertTZ3(x)
12 N = length(x); % input signal length
13 X = fft(x); % signal FFT, then its modification:
14 X(1)=X(1); X(N/2+1)=X(N/2+1); % # 1 for 0 Hz and fs/2 (unchanged)
15 X(2:N/2) = 2*X(2:N/2); % # 2 for positivefrequencies
16 X(N/2+2:N) = zeros(1,N/2-1); % # 0 for negativefrequencies
17 xa = ifft(X); % inverse FFT of the modifiedspectrum
18 end

��
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11.2.4 Hilbert Filter Applications: AM/FM Demodulation

In the beginning we do short recapitulation. Equations (11.17), (11.18), (11.19) have
fundamental importance for amplitude and phase signal demodulation. We will an-
alyze signal having the following form:

x(n) = A(n)cos(ϕ(n)). (11.25)

Doing signal demodulation we, first, calculate its analytic version of x(n):

xa(n) = A(n) · e j ϕ(n), (11.26)

and, then, recover from it signal amplitude and angle:

A(n) = |xa(n)|, (11.27)

ϕ(n) = �xa(n). (11.28)

Knowing ϕ(n) we can estimate instantaneous signal frequency, i.e. do it frequency
demodulation:

finst(n) =
fs

2π
Δϕ(n)

Δn
. (11.29)

The Hilbert filter can be used for the following specific AM and FM signal de-
modulations.

AM-DSB-LC Signal Demodulation In case of double-side-band (DSB) amplitude
modulation (AM) with a large carrier (LC), a cosine with carrier angular frequency
Ωc is modulated in amplitude by a real-value slowly varying signal (1+ x(n)):

y(n) = (1+ x(n))cos(Ωcn). (11.30)

After calculation of analytic signal for y(n), one obtains

ya(n) = (1+ x(n))e jΩcn. (11.31)

Computing absolute value of ya(n) allows to reconstruct (1+ x(n)) and find x(n):

|ya(n)|= 1+ x(n) → x(n) = |ya(n)|−1. (11.32)

AM-DSB-SC Signal Demodulation In case of DSB-AM with a suppressed carrier
(SC), a cosine with carrier angular frequency Ωc is modulated in amplitude by a real-
value slowly varying signal x(n). Therefore the modulated signal and its analytic
versions are equal:
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y(n) = x(n)cos(Ωcn), (11.33)

ya(n) = x(n)e jΩcn. (11.34)

In this case the demodulation is done in two steps. First, the signal carrier e jΩcn is
reconstructed from ya(n) (solving this carrier recovery task is presented in chapter
on AM modulation). Next, ya(n) is multiplied by the estimated carrier but with
negative angle:

ya(n) · e− jΩcn =
[
x(n)e jΩcn

]
· e− jΩcn = x(n) (11.35)

and signal x(n) is restored.

AM-SSB-U or AM-USB Signal Demodulation In case of single-side-band (SSB)
amplitude modulation using upper (U) side-band (denoted also as AM upper side-
band AM-USB), the analytic version (11.9) of the modulating signal xa(n) = x(n)+
jxH(n) is directly generated in a transmitter. Such signal does not have negative
frequency components, according to Eqs. (11.12)–(11.14), therefore it uses only
one, right, positive side-band. Next, the signal is multiplied by a complex-value
harmonic carrier e jΩcn, i.e. it is shifted-up in frequency to the angular frequency Ωc,
and, finally, its real part is left only:

y(n) = Re
{
(x(n)+ jxH(n)) · e jΩcn

}
= x(n)cos(Ωcn)− xH(n)sin(Ωcn). (11.36)

The right part of the last equation can be used directly, not the left part, in order to
reduce the number of performed calculations: there is no sense to calculate imagi-
nary part of the multiplication in the left equation part and after that neglect it. In a
receiver of the AM-SSB-U (AM-USB) modulated signal, first, analytic signal yH(n)
of the received signal y(n) is calculated, i.e. an imaginary part of the signal is re-
stored. Then, the signal carrier e jΩcn is reconstructed and, after its angle negation, it
is multiplied by yH(n) (the signal is shifted down in frequency to 0 Hz), and, finally,
the real part of the result is taken only:

Re
{
(y(n)+ jyH(n)) · e− jΩcn

}
= Re

{
(x(n)+ jxH(n)) · e jΩcn · e− jΩcn

}
= x(n).

(11.37)

AM-SSB-L or AM-LSB Signal Demodulation Demodulation of signal with sin-
gle side-band (SSB) amplitude modulation using lower (L) side-band (denoted also
as AM lower side-band AM-LSB), is exactly the same as for the upper side band
with the only one small difference: the Hilbert filter output is put into imaginary
part of the created complex-value signal with the negative sign, not the positive one:
xb(n) = x(n)− jxH(n). Due to this, the signal spectrum has only negative frequency
components (look at Exercise 11.2 and program 11.2).
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FM Signal Demodulation Let us assume that we have the following signal s(n)
( fc—carrier frequency, fs—sampling frequency):

s(n) = cos

(
2π

(
fc

fs
·n+ k f

fs

n

∑
k=0

x(k)

))
, (11.38)

modulated in frequency by signal x(n) around the carrier frequency fc and with
modulation index k f . Its demodulation consists of the following steps. First, the
analytic signal of s(n) is calculated:

sa(n) = e
j·2π
(

fc
fs
·n+ k f

fs

n
∑

k=0
x(k)

)
= e

j·2π
(

fc
fs
·n
)
· e j·2π

(
k f
fs

n
∑

k=0
x(k)

)
. (11.39)

Next, the carrier e j2π fc
fc

n is recovered (topic discussed in next chapters), negated in
angle and multiplied by the sa(n):

sBB
a (n) = sa(n) · e− j·2π

(
fc
fs
·n
)
= e

j·2π
k f
fs

n
∑

k=0
x(k)

. (11.40)

This way signal down-conversion in frequency to the so-called base band is done.
Then, angle of sBB

a (n) is calculated:

ϕ(n) = �sBB
a (n) = 2π

k f

fs

n

∑
k=0

x(k), (11.41)

and, finally, the modulating signal x(n) is found as a scaled phase derivative
(Eq. (11.19)):

x(n) =
1

2π
fs

k f

Δϕ(n)
Δn

. (11.42)

Since angle calculation of any complex-value number is limited to the interval
−π ≤ α < π and the angle in Eq. (11.41) can go beyond the limits, it preferable to
exchange equations (11.40), (11.41) with the following ones (a(n)—possible slowly
changing signal amplitude):

y(n) = sBB
a (n)

(
sBB

a (n−1)
)∗

= a(n)a(n−1)e j(ϕ(n)−ϕ(n−1)), (11.43)

�y(n) = Δϕ(n) = ϕ(n)−ϕ(n−1). (11.44)

This method is better since using the function angle() in Matlab we calculate di-
rectly the phase difference, which is changing now in smaller range, and uncertainty
concerning ±2π jumps in the function angle() (or atan2()) is avoided.

The Hilbert–Huang Signal Decomposition In publication [3] a new, very fresh
application of the Hilbert transform (filter) was proposed for tracking of time-
varying spectral content of multi-components signals, i.e. for time–frequency anal-
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ysis. First, signal is decomposed into many, individual, AM-FM modulated compo-
nents, using empirical mode decomposition method. Then, analytic, complex-value
version of each k-th signal component is found using the Hilbert filter. Finally,
each k-th analytic signal is AM-FM demodulated: AMk(t),FM(t). Trajectories of
AMk(t) and FMk(t) are called a Hilbert–Huang (HH) spectrum. In Matlab the func-
tion hht(.) can be used. In fact, in Exercise 11.3 we have performed the HH
analysis of one AM-FM modulated signal component.

Exercise 11.6 (Testing Prototypes of AM Demodulators Using the Hilbert
Filter). The described above AM demodulation schemes are implemented in
program 11.6. Run the program for three modulation options and observe the
signal spectra. Add to the program the fourth possible AM modulation type,
i.e. the single side-band left (SSB-L, LSB), making use of code of the pro-
gram 11.2. Record your own speech with sampling frequency 44.1 kHz and
repeat all tests. Observe carefully spectra of the modulated signals.

Exercise 11.7 (Testing Prototype of FM Demodulator Using Hilbert Filter).
Modify program 11.3. Set AM modulation index to 0: kA = 0. Change sampling
frequency to fs = 44.1 kHz and modulate in frequency a cosine carrier fc =
10 kHz using the same speech signal as in Exercise 11.6. Observe spectra for
different values of modulation index.

Listing 11.6: AM demodulators using Hilbert filter
�

1 % lab11_ex_hilbert_am.m
2 clear all; close all;
3

4 fc = 10000; % carrierfrequency
5 typeAM = 3; % 1=DSB-C, 2=DSB-SC, 3=SSB-U=USB
6 kA = 0.5; % modulation index for DSB-C
7

8 % Read or generatemodulatingsignal
9 [x,fs] = audioread( ’speech44100.wav’, [1,1*44100] ); % samples from-to

10

11 Nx = length(x); x = x=x.’;
12 dt=1/fs; t=dt*(0:Nx-1);
13 df=1/(Nx*dt); f=df*(-Nx/2:1:Nx/2-1);
14 figure; plot(t,x); grid; xlabel(’t (s)’); title(’x(t)’);
15 soundsc(x,fs); pause
16

17 % Carrieramplitudecalculation
18 if( typeAM == 1) a = (1+kA*x); end
19 if( typeAM == 2) a = x; end
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20 if( typeAM == 3) a = hilbert(x); end
21 % Carriergeneration with AM
22 if( typeAM ==1 ) y = a .* cos(2*pi*fc*t); end
23 if( typeAM ==2 ) y = a .* cos(2*pi*fc*t); end
24 if( typeAM ==3 ) y = a .* exp(j*2*pi*fc*t); y = real(y); end
25

26 % AM Demodulation of a cosine
27 ya = hilbert(y); % calculation of analytic signal
28 if( typeAM == 1) xest = (abs(ya)-1)/kA; end
29 if( typeAM == 2) xest = real( ya.*exp(-j*2*pi*fc*t) ); end
30 if( typeAM == 3) xest = real( ya.*exp(-j*2*pi*fc*t) ); end
31

32 % Results
33 figure; plot(t,x,’r’,t,xest,’b’); grid; xlabel(’t (s)’); title(’x(t) and xest(t)’);
34 soundsc(xest,fs)
35 n=1000:Nx-1000; max_err = max( abs( x(n) - xest(n) ) ), pause % error
36

37 figure; plot(f,fftshift(20*log10(abs(fft(x))/Nx))); grid; title(’|X(f)|’); pause
38 figure; plot(f,fftshift(20*log10(abs(fft(a))/Nx))); grid; title(’|A(f)|’); pause
39 figure; plot(f,fftshift(20*log10(abs(fft(y))/Nx))); grid; title(’|Y(f)|’); pause
40 figure; plot(f,fftshift(20*log10(abs(fft(ya))/Nx))); grid; title(’|Ya(f)|’); pause
41 figure; plot(f,fftshift(20*log10(abs(fft(xest))/Nx))); grid; title(’|Xest(f)|’); pause

��

11.3 FIR Differentiation Filters

Theoretical differentiation filter impulse response is calculated as inverse DtFT of
the required frequency response H(Ω) = jΩ (because Fourier transform of a signal
derivative is equal to the Fourier transform of the signal itself, multiplied by jΩ , in

analog world F
(

dx(t)
dt

)
= jω ·X(ω):

hD(n) =
1

2π

π∫
−π

( jΩ)(e jΩn)dΩ =
2

2π

π∫
0

( jΩ)( j sin(Ωn))dΩ =

− 1
π

π∫
0

Ω sin(Ωn)dΩ . (11.45)

Frequency response H(Ω) is asymmetrical around Ω = 0 and for its frequency
approximation in Eq. (11.45) only asymmetrical sinus functions are required. Addi-
tionally, since the integrated function has the same values for negative and positive
angular frequencies, it is possible to integrate only in the range [0,π] and multiply
the obtained result by 2. In Eq. (11.45) integration by parts can be applied:
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∫ b

a
u ·dv = u · v∣∣ba −

∫ b

a
v ·du, (11.46)

u = Ω , dv = sin(Ωn)dΩ → v =
∫

dv =
∫

sin(Ωn)dΩ =− 1
n

cos(Ωn).

(11.47)

from where we have

hD(n) =− 1
π

⎡
⎣Ω

(
−1

n
cos(Ωn)

)∣∣∣∣
π

0
−

π∫
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n
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⎤
⎦=

=− 1
π

[
π
(
−1

n
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)
+

1
n

(
1
n

sin(Ωn)

)∣∣∣∣
π

0

]
=

cos(πn)
n

. (11.48)

One should apply window w(n),n = −M, . . . ,0, . . . ,M to the calculated hD(n) and
then shift the result M samples right, exactly the same way we did in the case of
Hilbert filter time-domain implementation. In there are presented impulse and fre-
quency responses of two differential filters with length N = 2M + 1 = 21, are pre-
sented in Fig. 11.7: on the left side for the rectangular window and on the right side
for the Blackman window. For Blackman window the magnitude response is less
oscillatory but it has more narrow frequency range of the correct filter work (linear
characteristic is required). Increasing the filter length from N = 21 to N = 41 makes
the filter better in this aspect.

Exercise 11.8 (Testing Differentiation Filter). Use the program 11.1. Set
h=hD;. Use different values of M and different windows. Observe changes
in differentiation filter frequency response. Next generate a sine signal and do
it differentiation using function presented in Listing 11.7. Signal xD is a differ-
entiation result while signal xS is the input signal synchronized with it. Check
a few points of the filter frequency response.

Listing 11.7: Differentiation filter in time domain
�

1 function [xS,xD] = diffTZ(x,M,beta)
2 Nx = length(x);
3 % Generate the differentiationfilter impulseresponse
4 n=-M:M; hD=cos(pi*n)./n; hD(M+1)=0;
5 % Window it using the Kaiser window
6 w = kaiser(2*M+1,beta)’; hD = hD .* w;
7 % Filter the signal
8 xD = conv(x,hD);
9 % Synchronize and remove transient states

10 xS = x(M+1:Nx-M)
11 xD = xD(2*M+1:Nx);
12 end

��



11.3 FIR Differentiation Filters 311

-1

-0.5

0

0.5

1
hD

(w)(M)(n)

5 10 15 20
n

-0.5

0

0.5

hD
(w)(M)(n)

5 10 15 20
n

0 100 200 300 400 500
f (Hz)

0

1

2

3

|HD
(w)(M)(f)|

0 100 200 300 400 500
f (Hz)

0

1

2

|HD
(w)(M)(f)|

0 100 200 300 400 500
f (Hz)

-2

0

2

 HD
(w)(f) (rad)

0 100 200 300 400 500
f (Hz)

-2

0

2

 HD
(w)(f) (rad)

Fig. 11.7: FIR differentiation filter characteristics, (left) for rectangular window,

(right) for Blackman window. Up-down: filter impulse response h(w)(M)
D (n) (theoret-

ical, multiplied with the window function, shifted M samples right), filter magnitude

frequency response |H(w)(M)
D (Ω)|, filter phase frequency response �(H(w)

D (Ω))—
with window but without shift of the weights (or with shift correction). Filter length
N = 2M+1 = 21—solid line, N = 2M+1 = 41—dashed line
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Now we will analyze interesting practical application of the digital FIR differ-
entiation filter. In digital receivers of FM-modulated signals the following signal
demodulation method can be used. Let us repeat the FM modulation equation. Co-
sine carrier modulated in frequency by signal x(t) is given by

c(t) = cos(2π fct +φ(t)), φ(t) = 2πk f

t∫
0

x(t)dt, (11.49)

where k f the denotes modulation index. To recover x(t) having c(t), it is possible to
differentiate the signal c(t):

dc(t)
dt

=−(2π fc +2πk f x(t)
) · sin(2π fct +φ(t)) =−e(t) · sin(2π fct +φ(t))

(11.50)
and detect the slow-changing envelope e(t) of fast-changing sine. For this purpose
we can

1. calculate the signal derivative (Eq. (11.50)) and square it, obtaining

e2(t) · sin2(a) = e2(t) ·0.5(1− cos(2a)) = 0.5e2(t)−0.5e2(t) · cos(2a);
(11.51)

2. perform low-pass filtration of the result (11.51) and left this way only the first
low-frequency component:

0.5e2(t); (11.52)

3. multiply by 2 and calculate the square root of the result (11.52), obtaining:

e(t) = 2π( fc + k f x(t)); (11.53)

4. divide (11.53) by 2π , subtract fc, divide by k f and ... get the modulated signal
x(t).

In the above algorithm two filters are needed: a band-pass differential filter around
fc ± Δ/2 f and a low-pass filter with the cut-off frequency Δ f/2. Δ f should be
calculated using the Carson’s rule:

Δ = 2 fmax

(
k f

fmax
+1

)
. (11.54)

Exercise 11.9 (Testing Prototype of FM Demodulator Using Differentiation
Filter). Analyze program 11.8. Speech signal, sampled at 8 kHz, is up-sampled
K-times and then it modulates in frequency the 8 kHz cosine carrier. Then, the
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carrier is demodulated using differentiation filter method and down-sampled.
Compare the program code with equations presented above. Set different val-
ues of modulation index k f . Observe width of the modulated signal spectrum.
Test whether the Carson’s rule is fulfilled. Remember to adjust cut-off fre-
quency of the low-pass filter. Design differentiation filter using Matlab func-
tions firpm() and firls().

Listing 11.8: FM demodulator using differentiation filter
�

1 % lab11_ex_differentiation_fm1.m
2 clear all; close all;
3

4 Nx = 8000; % number of input 8 kHz speech samples to be processed
5 M = 200; N=2*M+1; % N=2M+1: length of used FIR filters (to be designed)
6 K = 5; % speech up-sampling ratio
7 fc = 8000; % carrierfrequency (to be changed by speech signal)
8 fs = K*fc; % samplingfrequency after up-sampling
9 Nfigs = 2̂ 14; nn = 1:Nfigs; % for figures

10

11 % GENERATION OF FM-MODULATED CARRIER
12

13 % Read speech 8kHz signal to be FM-broadcasted
14 [x, fx ] = audioread(’speech.wav’,[1,Nx]); x=x.’;
15 soundsc(y,fx); figure; plot(x); tittle(’x(n)’); pause
16 % Up-sampling signal to frequency fs
17 x = interp(x,K); Nx = length(x);
18 % Final frequencymodulation of the carrier by x(n)
19 fmax = 4000; % maximum signal frequency of speech (Hz)
20 DF = 5000; % 2*DF = requiredbandwidth of FM modulated signal (Hz)
21 kf = (DF/fmax-1)*fmax; % modulation index from Carson’s rule
22 x = cos( 2*pi*( fc/fs*(0:Nx-1) + kf*cumsum(x)/fs ) ); x=x.’; clear n;
23 % FM DEMODULATIONUSING DIFFERENTIATIONFILTER
24 y = x; clear x;
25 % Designing impulseresponse of the FIR differentiator using window method
26 n=-M:M; hD=cos(pi*n)./n; hD(M+1)=0; w = kaiser(N,10)’; hD = hD .* w;
27 % Differentiation
28 y = filter(hD, 1, y); y = y(N:end);
29 % Power of 2
30 y = y.̂ 2;
31 % Designing impulseresponse of the low-pass FIR filter
32 n=-M:M; hLP=sin(2*pi*4000/fs*n)./(pi*n); hLP(M+1)=2*(4000)/fs; hLP = hLP .* w;
33 % Low-pass filtration
34 y = filter(hLP, 1, y ); y = y(N:end);
35 % Decimation and square root
36 y = real( sqrt( 2 * y(1:K:end) ) );
37 y = (y - 2*pi*fc/fs)/(2*pi*kf/fs);
38 % Let the music play
39 soundsc(y,fx); figure; plot(y); tittle(’x(n)’); pause

��
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11.4 Summary

Simple weighted running averaging of signal samples allows not only fre-
quency low-high-band-stop filtration but also designing digital phase shifters
and digital differentiation filters. They were presented in this chapter. What
should be remembered?

1. Discussed filters have weights designed using the window method method-
ology: their impulse responses are calculated analytically and after that they
are appropriately windowed. The longer the filter is, the wider is frequency
band of filter operation, i.e. signal phase shifting or signal differentiating.
The window choice decides about the level of oscillations present in the
filter frequency response.

2. The Hilbert filter is passing all frequencies apart from a DC signal compo-
nent and is delaying them by minus π/2 radians. It is used for creation of
the so-called analytic complex-value signal, having in its real part the orig-
inal signal and in its imaginary part the Hilbert filter output. When the orig-
inal signal is modulated/changed (slowly) in amplitude and in frequency, it
can be very easily demodulated using its analytic version. For amplitude
demodulation we should simply track absolute values of the analytic sig-
nal complex numbers, while for frequency demodulation track their phase,
calculate its derivative, and scale the result.

3. Differentiation is very important mathematical operation. In discrete-time
automatic control of dynamic systems, know-how of its robust to noise,
real-time calculation is priceless. In courses on numerical analysis differ-
ent methods of data differentiation are discussed, typically making use of
difference equations and data approximation polynomials (e.g. in direct,
Lagrange or Newton form) or local data extensions (e.g. Taylor one). Typ-
ically as the easiest differentiation solution such weights are used: [−1,1],
[−1,0,1]/2 or [1,−8,0,8,−1]/12. But in DSP special differentiation filter
are designed having significantly more weights.

11.5 Private Investigations: Free-Style Bungee Jumps

Exercise 11.10 (FM Demodulation with Differentiation Filter Revisited). Mod-
ify program 11.8. Increase up-sampling order and modulate separately two or three
different cosine carriers with two or three independent speech signals. Before the
FM demodulation use should filter out the FM radio services which you are not in-
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terested in. Therefore a band-pass filter should be applied, leaving only an FM radio
station you would like to listen to.

Exercise 11.11 (FM Demodulation with Hilbert Filter Revisited). Modify the
program 11.8 the same way as described in Exercise 11.10. After the separation
of only one FM broadcast by a band-pass filter, do the FM signal demodulation
using the Hilbert filter method—like in the program 11.3.

Exercise 11.12 (* Traditional and Amateur AM Radio Receivers). Find in Inter-
net any signal of traditional AM-DSB radio broadcast or amateur AM-SSB radio
transmission. Try to demodulate it using program 11.6.
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10. T.P. Zieliński, Cyfrowe Przetwarzanie Sygnalów. Od Teorii do Zastosowań
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Chapter 12
FIR Adaptive Filters

Dinosaurs failed to survive because they could not adapt to
changing world. In contrary to our adaptive filter which knows
how to do it.

12.1 Introduction

There is no universal screwdriver but it is very annoying to have a drawer
full of different types of them and still could not find the right one. Some com-
promise is needed. An adaptive filter represents such a compromise: it is only
one filter but capable to adjust its weights according to changing circumstances,
changing signal features.

The classical non-adaptive FIR digital filtration can be interpreted as a local
weighted averaging some last input samples x(n):

y(n)=
M

∑
k=0

hkx(n− k)= hT x(n), y(n)= h0x(n)+h1x(n−1)+ ...+hMx(n−M),

(12.1)
where h and x(n) represent, respectively, vertical vector of filter weights and
vertical vector of last M+1 input signal samples:

hT = [h0, h1, ..., hM] , xT (n) = [x(n), x(n−1), ...,xM(n−M)] . (12.2)

In standard FIR filters, weights hk,k = 0...M, are fixed during usage and spe-
cially designed before their application (for example: LP, HP, BP, BS filters,
Hilbert phase shifter, digital differentiator).
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Fig. 12.1: Block diagram of the adaptive filter having two inputs: d(n), x(n),
and two outputs: e(n), y(n) [24]

Block diagram of an adaptive filter is shown in Fig. 12.1. Adaptive filter is
not a traditional filter having only one input and one output. It has two inputs
x(n) and d(n):

– x(n)—a signal to be filtered,
– d(n)—a reference (desired) signal, not processed by the filter,

and two outputs y(n) and e(n):

– y(n)—result of signal x(n) filtration,
– e(n)—a difference between signals d(n) and y(n): e(n) = d(n)− y(n).

Only the input signal x(n) is filtered by the filter Hn(z). Goal of filter weights
adaptation is to make the filtering result y(n) = H[x(n) ] equal to the sec-
ond filter input d(n), called the desired signal. Or at least make it similar
as much as possible. Difference between the expected signal d(n) and y(n),
being filtered x(n), represents the second filter output, so-called error signal
e(n) = d(n)−y(n). During its work, adaptive filter is changing the filter weights
h from sample to sample and minimizes a chosen cost function, having present
and past error values as its arguments. In the simplest case of an LMS filter, the
cost function has a form of squared momentum error e2(n).

FIR adaptive filter is described by Eq. (12.1) but its weights h, in contrary to
Eq. (12.1), are time-dependent: they can be different for different time index n.
Therefore we can add the time index n to the vector h:

hT (n) = [h0(n), h1(n), ..., hM(n)] , (12.3)

and still use the classical FIR filter equation (12.1) for FIR adaptive filter de-
scription. Vector of filter weights hk(n) is adapted/changed during the filter
work:
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h(n+1) = h(n)+Δh(n), new(n+1) = old(n) + change(n), (12.4)

attempting to ensure minimization of some chosen cost function J(n), associ-
ated with the error signal e(n). Choice of the function J(n) and its computer
implementation decides about the filter type: (normalized) least mean square
(NLMS), weighted least squares (WLS), and recursive weighted least squares
(RWLS)(RLS).

Adaptive filters are widely used in very important applications, for ex-
ample in: adaptive interference canceling (AIC), adaptive echo canceling
(AEC), adaptive noise canceling (ANC), adaptive signal/line enhancement
(ASE)(ALE), and adaptive telecommunication channel identification and
equalization.

When one reads about adaptive filters for the first time, immediately the
following question appears: what is the profit from making equal (or similar)
one signal (x(n)) to the other one (d(n))? But very, very wide field of adaptive
filter applications (presented wider in the next section) should confirm us that
this is a fruitful idea. The merit of the adaptive filtering relies on the concept
of adaptive correlation canceling (ACC) between two signals. In the most often
application scenario we have

– a signal of interest with additive disturbance, i.e. d(n) = s(n)+ z(n), for
example, airplane pilot speech plus engine purr acquired by microphone
located close to pilot lips,

– and a deformed copy of the disturbance x(n) = z̃(n), acquired by a different
sensor, for example, only motor purr acquired by a second microphone put
in the airplane cockpit but far away from the pilot.

Any digital filter is processing signals amplifying/attenuating and delaying
its frequency components. The role of the adaptive filter is to do the same with a
disturbance copy, i.e. filtering x(n) = z̃(n) and making the signal y(n) similar as
much as possible to the disturbance z(n) present in the signal d(n): y(n)→ ẑ(n).
Then, after subtracting y(n) from d(n) we are reducing the disturbance present
in the signal d(n):

e(n) = d(n)− y(n) = (s(n)+ z(n))−H [z̃(n)] = s(n)+(z(n)− ẑ(n)) . (12.5)

This is an adaptive filter magic. There are plenty of applications fitting to this
scenario. Adaptive interference (correlation) canceling can be applied in many
important real-world application scenarios. Examples of some other signals
d(n) are as follows:

– signal from the telecommunication receiver antenna containing an echo
from the transmitter antenna of the same device,

– signal from the microphone in the hands-free telephony system having an
echo of the signal from the loudspeaker,
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– ECG of a still unborn child with ECG of the mother, making the prenatal
diagnosis more difficult,

– speech of a diver with a sound of its heartbeat.

Are you already interested in adaptive filters? Very well!

12.2 Adaptive Filter Application Scenarios

Adaptive filters have a lot of applications, to mention only a few of them: adaptive
noise canceling headphones, adaptive echo canceling car speakerphone systems and
conference hand-free systems, adaptive echo canceling in telecommunication re-
ceivers (e.g. signal of transmitting antenna is captured by a receiving antenna), dis-
turbance of mother heartbeat present in an ECG signal of the baby during making
prenatal medical examinations, signal of a diver heartbeat present in its speech, burr
of pneumatic hammer adding itself to a speech of a worker. Adaptive processing is
also used for adaptive impulse response identification and correction, for example in
adaptive communication channel estimation and equalization, as well as for adap-
tive noise canceling (ANC) and speech enhancement in digital telephony (ALE—
Adaptive Line Enhancement).

Applications are many. How they are classified? For example this way.

Adaptive Interference Canceling (AIC) This is the most frequently used applica-
tion of adaptive filter (Fig. 12.2). The input signal d(n) consists of information part
s(n) and disturbing interference i(n) (burr, purr, wir, wirr), while the input signal
x(n) represents an available interference reference pattern ire f (n):

d(n) = s(n)+ i(n), (12.6)

x(n) = ire f (n). (12.7)

We would like to remove from d(n) the oscillatory interference i(n) which has added
to our signal s(n). It is assumed in the method that a reference pattern ire f (n) of
the interference is available. It is similar to i(n), because it is deliberately acquired
(recorded) the same time as i(n) was, but separately by another sensor (microphone).
The role of the filter is to adjust/fit ire f (n) to i(n), i.e. delay in time and scale in
amplitude, and then to subtract it from signal d(n):

e(n) = d(n)− y(n) = (s(n)+ i(n))−H[ire f ] = s(n)+(i(n)−H[ire f (n)]). (12.8)

The better the adaptation procedure of the filter H[.] is, the smaller is the last term
i(n)−H[ire f (n)] in Eq. (12.8) and the better is the interference canceling. Adaptive
noise canceling (ANC) is a special case of AIC.
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Fig. 12.2: Example of adaptive interference canceling (AIC), from left to right up-
down: x(n)—reference pattern of an interference—a sine, d(n)—impulsive oscil-
latory signal disturbed by interference copy (delayed sine, scaled in amplitude),
y(n)—filtered reference pattern of the interference, correlated with interference dis-
turbing our impulsive signal, e(n) = d(n)− y(n) error signal, i.e. our impulse with
partially subtracted disturbance. In the beginning, filter adaptation is visible

Adaptive Echo Canceling (AEC) This is a special case of AIC. At present inter-

ference i(n) is an echo i(echo)
re f (n) of some other signal ire f () which is available for

us:

d(n) = s(n)+ i(echo)
re f (n), (12.9)

x(n) = ire f (n). (12.10)

The best example is hands-free car-phone system where microphone is capturing
not only a voice of a driver but also sound from loudspeakers with voice of his/her
interlocutor. The loudspeaker signal is known.

Adaptive Signal/Line Enhancement (ASE)(ALE) In this example the adaptive
filter is working as a linear predictor: input signals d(n) and x(n) are copies of
the same noisy signal s(n) but x(n) is delayed in relation to d(n) by one or a few
samples:
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d(n) = s(n+P), (12.11)

x(n) = s(n). (12.12)

Trying to minimize the error between the reference signal d(n) and the filtered x(n),
the filter has to predict the next sample s(n+P) on the base of previous known
samples s(n),s(n− 1),s(n− 2), ...,s(n−M)]. Only deterministic, sine-like signals
can be predicted. Each sample of a sinusoid can be calculated as a linear superpo-
sition of its two previous samples taken with some weights with fixed values. In
these weights are hidden values of sinusoid parameters (amplitude, frequency, and
phase). If signal contains K sines, the predicting filter should have 2K weights. Sum-
marizing, the adaptive filter working in ASE/ALE scenario adjusts its weights to the
linear prediction coefficients and the filter frequency response has peaks around sine
frequencies which were found in a signal by the filter. As a result the signal compo-
nents are amplified: the signal-to-noise ratio becomes higher (see Fig. 12.3). Having
estimation of the LP coefficients, associated with the signal being processed, we can
compute and track its frequency spectrum. Why? Because after setting Ω = 2π f

fs
, a

frequency response of the recursive IIR digital filter having coefficients b = [1] and
a = [1, h]:

Hn(z)|z=exp( jΩ) = Hn(Ω) =
1

1+h1(n)e− jΩ +h2(n)e− j2Ω + ...+h2K(n)e− j2KΩ ,

(12.13)
can be used for estimation of the signal spectrum shape. This spectrum can be esti-
mated from sample to sample.

Adaptive Channel/Object Identification and Equalization (ACI/ACE) In this
application the signal d(n) is equal to output signal from some object, e.g. telecom-
munication channel, and signal x(n) is equal to the signal exciting the object/chan-
nel, e.g. pilot sequence p(n) in telecommunication systems:

d(n) = G[p(n)], (12.14)

x(n) = p(n). (12.15)

Adaptive filter H[x(n) ] tries to minimize the difference between the filtered x(n)
and d(n):

e(n) = d(n)− y(n) = G[ p(n) ]−H[ p(n) ]. (12.16)

This is obtained when H[.] is the same as G[.]. Therefore the filter is adapting its
weights to the object/channel weights: H[.]→ G[.] and object/channel identification
is performed. Knowing the transfer function G[.] of the channel we can built the
channel equalizer simply reversing the channel transfer function.
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Fig. 12.3: Example of adaptive signal/line enhancement (ASE)(ALE) using fil-
ter configuration as linear predictor. Impulsive oscillatory signal, the same as in
Fig. 12.2, contaminated with Gaussian noise, is de-noised by the filter. From left
to right up-down: x(n)—noisy signal delayed one sample, d(n)—original noisy sig-
nal, y(n)—filtered x(n) being prediction of d(n), e(n) = d(n)−y(n) prediction error
signal

12.3 Adaptive Filter Types

In adaptive filters, one input signal x(n) is filtered and subtracted from the other
input signal d(n), called the desired one:

e(n) = d(n)−H [ x(n) ] . (12.17)

The difference signal is called an error signal. Filter is changing its weights in dif-
ferent way depending on the cost function which it minimizes. The following cost
functions are used, incorporating in different way the momentum error values e(n):

• the squared momentum error only:

J(n) = e(n)2, (12.18)

leading in long time horizon to decreasing least mean squared error (LMS);
• cumulative least squared (LS) error from the filter start:
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J(n) =
n

∑
k=0

e2(k), (12.19)

• cumulative weighed least squared (WLS) error, forgetting past error values:

J(n) =
n

∑
k=0

λ n−ke2(k) = λ 0e2(n)+λ 1e2(n−1)+λ 2e2(n−2)+ ...+λ ne2(0),

(12.20)
where λ denotes a forgetting factor 0 � λ ≤ 1. For λ = 1 the filter remembers
everything from the start and reduces to the LS filter. The smaller λ , the shorter
is filter memory and faster its reactions, but lower noise robustness.

Adaptive filter names origin from criteria they minimize:

• LMS—the most popular, not demanding computationally but having slow con-
vergence when adaptation parameter μ value is set in risk-averse way;

• NLMS—normalized LMS is faster, due to normalization of filter weights
change by energy of last signal x(n) samples; not demanding computationally;

• LS—with faster convergence than NLMS but being significantly more complex
computationally; it is used only in stationary case for adjusting filter weight
values from initial ones to optimal ones,

• WLS—LS with forgetting factor 0 � λ < 1, which allows the filter to forget
past errors, i.e. to have shorter memory about the history, and thanks to this
to track an optimal local solution which can be slowly changing; the filter is
demanding computationally; for λ = 1 we have standard LS filter;

• RWLS or simply RLS—recursive, fast, computationally lighter version of WLS
adaptive filter—recommended for usage.

12.4 LMS Adaptive Filters

Derivation of Adaptation Rule In case of the LMS filters, the minimization of the
squared instantaneous error value e(n) is performed (Eq. (12.18)) which in longer
time horizon leads to the minimization of the mean squared error value (therefore
expectation operator E[.] is removed):

J(n) = e(n)2 =

[
d(n)−

M

∑
k=0

hk(n)x(n− k)

]2

. (12.21)

Since we are looking for a minimum of a non-negative convex function J(n), it is
sufficient to calculate its partial derivatives in respect to all coefficients hk(n), k =
0...M, i.e. gradients—directions of a function growth:
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dJ(n)
dhk(n)

= 2 · e(n) · d
dhk(n)

[d(n)−h0(n) · x(n−0)− ...−hM(n) · x(n−M)] ,

(12.22)

dJ(n)
dhk(n)

=−2∗ e(n) · x(n− k), (12.23)

and then to go in the opposite direction to the calculated gradient (minus sign) during
adaptation of filter weights:

hk(n+1) = hk(n)− dJ(n)
dhk(n)

, (12.24)

hk(n+1) = hk(n)+2 ·μ · e(n) · x(n− k), (12.25)

where μ denotes a speed adaptation coefficient/factor. Equation (12.25) can be writ-
ten in a matrix form, which is giving better insight into computational structure of
the filter weights update (at present neglecting scaling by 2 or incorporating it in μ
coefficient):

⎡
⎢⎢⎢⎣

h0(n+1)
h1(n+1)

...
hM(n+1)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

h0(n)
h1(n)

...
hM(n)

⎤
⎥⎥⎥⎦+μ · e(n)

⎡
⎢⎢⎢⎣

x(n)
x(n−1)

...
x(n−M)

⎤
⎥⎥⎥⎦ (12.26)

or simply:

h(n+1) = h(n)+μ · e(n) ·x(n), (12.27)

In the classical LMS adaptive filter μ has fixed value.

For complex-value signals the LMS filter equations are defined as (denotations:
()H—conjugation and transposition of vector of filter weights, ()∗—only conjuga-
tion):

e(n) = d(n)−hH(n)x(n) (12.28)

(1) h(n+1) = h(n)+μcomplexe∗(n)x(n) (12.29)

(2) h(n+1) = h(n)+μcomplexe(n)x∗(n). (12.30)

Optimal Solution (Wiener Filter) For stationary signals, one can directly calcu-
late optimal weights hopt to which the filter should converge. It can be done by (at
present, in order to simplify notation, (n) in h(n) is neglected):
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1. rewriting the cost function into the matrix form:

J(h)=E
[(

d(n)−hT x(n)
)2
]
=E
[

d2(n)
]−2E

[
d(n)hT x(n)

]
+E
[(

hT x(n)
)2
]
=

= E
[

d2(n)
]−2hT E [d(n)x(n)]+E

[
hT x(n)xT (n)h

]
=

= E
[

d2(n)
]−2hT r(n)dx +hT E

[
x(n)xT (n)

]
h =

= E
[

d2(n)
]−2hT r(n)dx +hT R(n)

xx h, (12.31)

where

– h—vector of filter weights,
– rdx—vector of cross-correlation between signals d(n) and x(n),
– Rxx—matrix of auto-correlation of signal x(n)

2. calculation of J(h) derivative in respect to vector h and setting it to zero:

dJ(h))
dh

=−2 · rdx +2 ·Rxx ·h = 0. (12.32)

3. solving the last equation is respect to h (so-called optimal Wiener filter):

hopt = R−1
xx · rdx. (12.33)

Stability Condition The filter adaptation is convergent when the following condi-
tion is fulfilled:

|1−μλk|< 1, k = 0,1,2, ...,M, (12.34)

where λk denotes the k-th eigenvalue of the auto-correlation matrix Rxx. Value of
speed adaptation coefficient μ has to fulfill the equations:

0 < μ <
2

λmax
, 0 < μ <

2
trace(Rxx)

, (12.35)

where λmax is the maximum eigenvalue of the auto-correlation matrix Rxx of signal
x(n). Larger values of μ offer faster adaptation convergence but they are more risky
from the point of view of filter stability, and make the filter more sensitive to noise
(the filter is fast and attempts to track a noise, offering noisy outputs).

During derivation of filter stability conditions the following terms are ob-
tained:

vk(n+1) = (1−μλk)
n+1vk(0), k = 0,1,2, ...,M. (12.36)

The slowest convergent term (the closest to 1) is associated with the smallest
eigenvalue λmin. After setting μ = 1/λmax one obtains (1− λmin/λmax)

(n+1).
The smallest the difference between the minimum and maximum eigenvalue is,
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the closer to 1 is the ratio λmin/λmax and the closer to 0 is (1−λmin/λmax)—
in such situation filter convergence is very fast. If λmin = 0, the filter is not
convergent at all. This tells that the convergence is faster for x(n) being a noisy
(random) signal, because for such signal the ratio λmin/λmax is close to 1 (a
signal has a lot of equally important components, not only a few strong ones).
Having this in mind, we should de-correlate (whiten) signal x(n) and make the
matrix (R)xx orthogonal.

Other LMS Filters The classical equation (12.27) of the LMS filter can be modi-
fied in different ways. For example, this is a more universal filter description:

h(n+1) = h(n)+μ(n) ·W(n) · e(n) ·x(n). (12.37)

As especially marked, the speed factor μ can be also a function of time index n and
adapted, as in the normalized LMS algorithm. The W(n) denotes a matrix which
was introduced in order to increase the adaptation speed, as in the LMS-Newton
algorithm. Specific proposed changes of the standard LMS filter are briefly listed
below.

Normalized LMS Filter The μ is changed during filter work, i.e. divided by en-
ergy of last M+1 samples of the signal x(n):

μ(n) =
μ

γ +‖x(n)‖2 =
μ

γ +xH(n)x(n)
=

μ
γ +∑M

k=0 x∗(n− k)x(n− k)
, (12.38)

which makes the adaptation faster and convergence more stable (the second stability
condition in Eq. (12.35) is always fulfilled).

Sign-LMS Filter In adaptation equations only sign of the error signal e(n) is used.

Leaky-LMS Filter When some eigenvalues of the auto-correlation matrix Rxx are
equal to zero, stability condition (12.34) is not fulfilled and the filter can be unstable.
Remedy for this is changing the adaptation equation to the following one:

h(n+1) = (1−μγ)h(n)+μe(n)x(n), 0 < γ � 1, (12.39)

where γ denotes very small leakage coefficient (e.g. equal to 0.05).

Partial-Update-LMS Filter Not all filter weights are updated in time n or update
does not take place at all for some value of n.

Set-Membership-LMS Filter Filter weights update is done only when error e(n)
exceeds some threshold.
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Frequency-Domain-LMS Filter Adaptation of filter weighs is done using not sig-
nal samples but their discrete Fourier transform coefficients. Signal samples are
de-correlated by the DFT and adaptation is faster. While FFT is used, this approach
is also computationally efficient and allows to adapt long filters. Therefore it is ca-
pable of modeling long impulse responses of real-world object, what is especially
important in room acoustics.

Sub-band-LMS Filter Signals d(n) and x(n) are decomposed into frequency sub-
bands and separate LMS filters are used in each sub-band.

Newton-LMS Filter Equation (12.37) is used with matrix W(n), being estimation
of the matrix R−1

xx . We can say that the optimal Wiener solution (12.33) is approx-
imated this way. Newton-LMS filters are very close conceptually to RLS adaptive
filters, which are presented in the next section. The RLS filters are significantly
better known and widely used than the Newton-LMS filter.

Exercise 12.1 (How Can I Work in This Whir!). The Matlab function
adaptTZ(), presented in Listing 12.1, implements standard and normalized
LMS adaptive filter (as well as RLS filter but do not interest in it now). Write a
main program calling this function. Try to implement any application scenario
of adaptive filtering. If you have no idea, record 3–4 s of your own speech,
sampled at 8 kHz, and generate a sinusoid s(n) with frequency 1 kHz, sampled
also at 8 kHz. Add sinusoid to the speech and use this signal as d(n). Multiply
sinusoid by 0.25 and delay it by 4 samples and use this signal as x(n): x=[0
0 0 0 0.25*s(1:end-4)]. Apply adaptive filter as correlation/interfer-
ence canceler to reduce the sinusoidal disturbance. Add figure to the func-
tion adaptTZ(), displaying filter frequency response in the adaptation loop
(f=0:fs/2000:fs/2; plot(abs(freqz(h,1,f,fs))). Exchange
sinusoid with SFM modulated signal: fc = 1000 Hz, Δ f = 500 Hz, fm = 0.5 Hz
(look at Chap. 2 on signal generation). Exchange SFM signal with recording
of burr of any working machine, e.g. hairdryer, vacuum cleaner, etc. You can
change filter length, μ value, use LMS or NMLS algorithm.
If you have problems with good value selection of filter length M and adaptation
coefficients, LMS: mi, NLMS: mi,gamma, please, look to Listing 12.2 and
find inspiration in it (even copy some fragments of it). You can also first do the
Exercises 12.5 or 12.5 before realization of the present task.
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Exercise 12.2 (Does Anybody Understand What I Am Telling?). Record
your own speech and add noise to it using the Matlab function randn(). Then
use the function adaptTZ() from Listing 12.1 and apply adaptive signal en-
hancement strategy, i.e. use the filter as linear predictor: d=[s(2:end)];
x=s(1:end-1);. Listen to signal before and after filtration. Calculate signal-
to-noise ratio before and after the filter. SNR is defined in Chap. 2 in Table 2.2.
Measure SNR after the convergence of the adaptation filter (for this purpose ob-
serve adaptation of filter weights). Try to find values of NLMS filter parameters
(filter length M and adaptation speed mi) offering the highest SNR value.
If you have problems with good value selection of filter length M and adaptation
coefficients, LMS: mi, NLMS: mi, gamma, please, look to Listing 12.2 and
find inspiration in it (even copy some fragments of it). You can also first do
Exercises 12.8 or 12.9 before realization of the present task.

Listing 12.1: Matlab function implementing NLMS and RLS adaptive filters
�

1 function [y, e, h] = adaptTZ(d,x,M,mi,gamma,lambda,delta,ialg)
2 % M-filter length, LMS: mi, NLMS: mi, gamma, RLS: lambda, delta
3 % Initialization
4 h = zeros(M,1); % filter weights
5 bx = zeros(M,1); % input buffer for x(n) samples
6 Rinv = delta*eye(M,M); % inverse of auto-correlationmatrix Rxx̂ {-1}
7 for n = 1 : length(x) % adaptivefiltering loop
8 bx = [ x(n); bx(1:M-1) ]; % take new sample of x(n) into the buffer
9 y(n) = h’ * bx; % filter x(n): y(n) = sum( h .* bx)

10 e(n) = d(n) - y(n); % calculate error e(n)
11 if(ialg==1) % LMS
12 h = h + mi * e(n) * bx; % update filter weights
13 elseif(ialg==2) % NLMS
14 energy = bx’ * bx; % energy of signal x(n)
15 h = h + mi/(gamma+energy) * e(n) * bx; % update filter weights
16 else % RLS
17 Rinv = (Rinv - Rinv*bx*bx’*Rinv/(lambda+bx’*Rinv*bx))/lambda; % update
18 h = h + Rinv * bx * e(n); % update
19 end
20 end

��

12.5 RLS Adaptive Filters

Recursive least squares (RLS) adaptive filters are used for minimizing the weighted
least squares (WLS) cost function (12.20) in very fast, recursive way. Forgetting
factor values, which are used, are in the range 0 � λ ≤ 1, typically slightly smaller
than 1, e.g. λ = 0.99. When λ = 1, the WLS filters give the best, robust to noise
LS estimate of h(n), based on the observation time interval from 0 to n. The smaller
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λ is, the WLS filters are more forgetting the past and more local. They can fastly
adapt to signal changes at the cost of being more sensitive to noise (output signals
have bigger variance in stationary states).

Since for λ = 1 the cost function (12.20) simplifies to (12.19), we will derive
adaptation equations for (12.20) as more universal.

Let us calculate derivative of (12.20) over single filter weight hk(n):

∂J(n)
∂hk(n)

= 2
n

∑
i=0

λ n−ie[i]
∂e(i)

∂hk(n)
=−2

n

∑
i=0

λ n−ie(i)x(i− k) =0. (12.40)

After writing in (12.40) equation of the adaptive filter error signal e(n), one gets

n

∑
i=0

λ n−i

{
d(i)−

M

∑
j=0

hk( j)x(i− j)

}
x(i− k) =0. (12.41)

After changing summation order and simple mathematical transformations, we have

M

∑
j=0

hk( j)

{
n

∑
i=0

λ n−ix(i− j)x(i− k)

}
=

n

∑
i=0

λ n−id(i)x(i− k). (12.42)

Since the last equation is valid for k = 0,1,2, ...,M, it can be written in the following
matrix form:

Rxx(n)h(n) = rdx(n) (12.43)

where

Rxx(n) =
n

∑
i=0

λ n−ix(i)xT (i), rdx(n) =
n

∑
i=0

λ n−id(i)x(i). (12.44)

We can summarize that in the weighted LS filter one should first calculate esti-
mates of Rxx(n) and rdx(n) using Eqs. (12.44), and then filter weights in moment n
as a solution of the Eq. (12.43):

h(n) = R−1
xx (n)rdx(n). (12.45)

Equation (12.45) has the same form as the optimal Wiener solution (12.33). Of
course, for next time stamp (n+1) filter weights are equal to:

h(n+1) = R−1
xx (n+1)rdx(n+1). (12.46)

The WLS adaptive filter is very demanding computationally, due to immense
matrix arithmetic growing in time when time index n becomes bigger and bigger.
The only solution is to organize calculations in recursive way, i.e. not to calculate
auto-correlation matrix and cross-correlation vector in Eqs. (12.44), starting from
n = 0, but to update their values which are already known for the time stamp (n):
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Rxx(n+1) = λRxx(n)+x(n+1)xT (n+1), (12.47)

rdx(n+1) = λrdx(n)+d(n+1)x(n+1). (12.48)

During filter initialization for n = 0, the matrix Rxx(0) is set as a diagonal matrix
with power of signal x(n) upon the main diagonal, and vectors h(0) and rrd(0) have
elements equal to zero. Next, Eqs. (12.47) and (12.48) are used.

In matrix algebra the following matrix theorem holds for a square matrix A and
vectors u and v with the same dimensions:

(
A+uvT )−1

= A−1 − A−1uvT A−1

1+vT A−1u
. (12.49)

After setting A= λRxx(n) and u= v= x(n+1), and using Eqs. (12.47) and (12.49),
we obtain

R−1
xx (n+1) =

[
λRxx(n)+x(n+1)xT (n+1)

]−1
=

= λ−1R−1
xx (n)−

λ−2R−1
xx (n)x(n+1)xT (n+1)R−1

xx (n)

1+λ−1xT (n+1)R−1
xx (n)x(n+1)

=

= λ−1R−1
xx (n)−

λ−1R−1
xx (n)x(n+1)xT (n+1)R−1

xx (n)

λ +xT (n+1)R−1
xx (n)x(n+1)

. (12.50)

Thanks to Eq. (12.50) complicated matrix inversion in (12.46) is avoided. The ma-
trix R−1

xx (−1) is set with a small value on its main diagonal. Matrices R−1
xx (0),

R−1
xx (1), R−1

xx (2) are calculated recursively.
And the final cut. Now, we will show how to calculate new filter weight values

at time (n+1) as modification of previous values from time (n). Using Eq. (12.46)
in Eq. (12.46), we get

h(n+1) = R−1
xx (n+1) · (λrdx(n)+d(n+1)x(n+1)) . (12.51)

At present we want to remove rdx(n) from the last equation. We calculate Rxx(n)
from Eq. (12.47) and put the result to Eq. (12.43), obtaining:

rdx(n) =
1
λ
[
Rxx(n+1)−x(n+1)xT (n+1)

]
h(n). (12.52)

Finally, we use Eq. (12.52) in (12.51):

h(n+1) = h(n)+R−1
xx (n+1)x(n+1)

[
d(n+1)−xT (n+1)h(n))

]
=

= h(n)+R−1
xx (n+1)x(n+1) [d(n+1)− y(n)] =

= h(n)+R−1
xx (n+1)x(n+1)e(n). (12.53)

As we see, the final recursive equation (12.53) of the WLS adaptive filter is very
similar to the Eqs. (12.26) and (12.27) of the LMS adaptive filter, with matrix W(n)
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added for increasing convergence speed of the filter. In the RLS filter the matrix
W(n) is replaced with R−1

xx (n) and μ = 1. What has a big sense, because the in-
creasing and decreasing the adaptation speed is NOW input signal dependent.

The following two equations summarize the RLS adaptive filter weights up-
date:

R−1
xx (n+1) = λ−1R−1

xx (n)−
λ−1R−1

xx (n)x(n+1)xT (n+1)R−1
xx (n)

λ +xT (n+1)R−1
xx (n)x(n+1)

, (12.54)

h(n+1) = h(n)+R−1
xx (n+1)x(n+1)e(n). (12.55)

I know that this section was extremely boring to most Readers. But the RLS adap-
tive filters are too important in real-world applications and should not be described
shorter only by simplifying rule of a thumb.

Exercise 12.3 (RLS vs. SledgeHammer! Fight of the Evening). Do the RLS
adaptive filters really track faster and more accurate signal changes than the
NLMS filter? Repeat experiments done in Exercises 12.1 and 12.2, but making
use of the RLS algorithm instead of the (N)LMS one. The RLS filter is im-
plemented also in the function adaptTZ() from Listing 12.1. Test different
values of forgetting factor λ ≤ 1 and initialization constant δ . How to choose
them? Try to find inspiration in the all-in-one program 12.2. Filter with value
of λ close to 1 (e.g. 0.999) is changing its weights very slowly. If this problem
is too difficult for you, then compare RLS and (N)LMS filters adaptation speed
solving easier problems 12.5 and 12.8, or slightly more difficult problems 12.6
and 12.9.

12.6 RLS Filters as Dynamic System Observers

A story which is just beginning is very important also. We can approximate real-
world dynamic systems as piece-wise linear time-invariant systems. Typically, we
know system input x(n) and system output d(n) samples, and assume that output
samples are result of convolution of input samples with samples of the system im-
pulse response h(n). Therefore we assume that the following matrix equation is
approximately valid:
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⎡
⎢⎢⎢⎣

xM xM−1 · · · x0

xM+1 xM · · · x1
...

...
. . .

...
xM+P xM+P−1 · · · xP

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

h0

h1
...

hM

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

dM

dM+1
...

dM+P

⎤
⎥⎥⎥⎦ , (12.56)

in matrix form:

Xh = d. (12.57)

The notation x(n) = xn was used. We have more equations than variables: P > M
which helps us decreasing error of h estimation. We solve the above equation in
respect to h in least squares (LS) sense. First, we multiply both sides of (12.57) by
the XT :

(
XT X

)
h = XT d. (12.58)

The matrix XT X is a square one and has an inverse. Now, we multiply both sides of
(12.58) by this inverse matrix:

(
XT X

)−1
XT Xh =

(
XT X

)−1
XT d,

I ·h =
(
XT X

)−1
XT d,

h =
(
XT X

)−1
XT d, (12.59)

where I is the square identity matrix with ones on its main diagonal.
The LS solution (12.59) has one very big drawback: when P value grows, multi-

plications of big matrices have to be done. Therefore initial solving the Eq. (12.57)
for P = M is recommended (number of equations and unknowns is the same). And
then only upgrading this solution should be done, after obtaining a new pair of val-
ues {x(n+1), d(n+1)} (first {x(M +1), d(M +1)}, then {x(M +2), d(M +2)},
and so on) and having an additional equation. In fact, this is a computational strategy
of the RWLS (RLS) adaptive filter algorithm (12.54), (12.55) with λ = 1. Therefore
this filter can be used for recursive calculation of h in the Wiener object identifica-
tion scenario (12.33), which is described also by Eqs. (12.56), (12.57).

Solution (12.59) minimizes the LS error:

J = (d−Xh)T (d−Xh) =
P

∑
k=0

e2(k). (12.60)

If we are interested in minimization of the weighted LS error:

J = (d−Xh)T W(d−Xh) =
n

∑
k=0

λ n−ke2(k), W =

⎡
⎢⎢⎢⎣

λ n 0 · · · 0
0 λ n−1 · · · 0
...

...
. . . 0

0 0 0 λ 0

⎤
⎥⎥⎥⎦ (12.61)



334 12 FIR Adaptive Filters

and in forgetting the oldest system equations, Eqs. (12.58) and (12.59) are replaced
with, respectively:

(XT WX)h = (XT W)d ↔ Rxxh = rdx, (12.62)

h =
(
XT WX

)−1
XT Wd. (12.63)

Such solution is found and track by RWLS adaptive filter described by Eqs. (12.54),
(12.55) with λ < 1.

Further elaboration of the dynamic system observer/tracker problem would lead
us to Kalman filter theory. For ambitious reader a demonstration program
lab12_ex_kalman.m is deeply hidden in the book archives, presenting our hero
in action.

Exercise 12.4 (My Name Is Holmes: Sherlock Holmes). Use RLS adap-
tive filter algorithm from the function adaptTZ()—Listing 12.1. Gener-
ate Nx =1000 samples of random noise sequence using the Matlab function:
x=randn(1,N). Use it as signal x(n) in adaptive filter. Write your own loop
for FIR signal filtering or use the Matlab function d=filter(h,1,x). Filter
the generated noise, i.e. the signal x(n). For the first Nx/2 samples use filter
weights h = [1,−0.5], for the second half—reversed weights h = [−1,0.5].
Use the filter output as the signal d(n) in adaptive filter. Modify function
adaptTZ()—it should return also some chosen filter weights, allowing ob-
servation of their change during adaptation, or plot selected filter weights in the
adaptation loop inside the function. Call the modified function adaptTZ().
Set M=2, 5, 10. Try different values of λ . Did the filter recognize properly
the filter h = [±1,∓0.5] used for filtering the signal x(n)? Solving this problem
you can copy some code from the Listing 12.2.

12.7 Exercises

When one understands philosophy of adaptive filter work, it is time to find an appli-
cation well fitting to adaptive filter usage. There are many such applications.

Adaptive filtering programs are not very long but they are extremely condensed:
a few line doing a lot. Typical are students questions: why this? and this? It is very
difficult to answer them without a piece of math because adaptive filters implement
in practice some complex mathematical optimization strategies which are severely
derived. But a typical final solution has a form of a few golden lines of code.

Therefore in this section, we will concentrate not on writing our own programs
(because the most probable is that they will not be better than existing ones), but
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on solving some interesting problems with the use of well-known and very good
adaptive filter algorithms. In the program 12.2 classical (N)LMS and RLS adaptive
filters are implemented and used for adaptive interference (correlation) canceling
as well as for adaptive signal enhancement by means of adaptive linear prediction.
It is possible to use synthetic, generated signals (pure sine, LFM and SFM signals
with optional envelopes: rectangular, linearly increasing, exponentially decaying,
impulsive Gaussian) as well as real signals read from disc, at present only some
speech recordings are offered. A Reader is encouraged to do 2-3 from 5 exercises
proposed below.

Exercise 12.5 (Interference Canceling for Generated Signals). Analyze
code of the program 12.2. Run it for the following settings:

isig=1; itask=1, env = 0,3, ialg = 1,2,3.

Observe results. Try to interpret them. Adaptive filter is working in this case
with synthetic signals as adaptive interference canceler:

d(n) = s(n) + osc2(n);
x(n) = osc1(n);

We would like to remove from d(n) the oscillatory interference osc2(n),
which is adding to our signal s(n). The signal osc1(n) is a reference inter-
ference pattern, similar to osc2(n), acquired (recorded) separately by another
sensor (microphone). The role of the filter is to adjust osc1(n) to osc2(n),
delay it in time and scale it in amplitude, and then to subtract it from d(n):

e(n) = d(n) - y(n) = (s(n) + osc2(n)) - filtered(osc1(n));

What is the maximum permitted values of mi? It is calculated using the Wiener
filter theory. Try different values of mi in the program, smaller and bigger. Is
the filter always stable? Are the final filter weights h(n) similar to the optimal
Wiener filter weights hopt(n)?

Exercise 12.6 (Interference Canceling for Real-World Signals). In this exer-
cise we will apply the adaptive interference canceler to our own speech signal.
We will make the following settings in the program 12.2:

isig=2; itask=1, ialg=1,2,3.

Record separately your own speech s(n) and disturbing sound of burr, purr,
whir, whirr osc1(n) of any machine/engine. Add a deformed (filtered) burr
to your speech. Try to reduce interference using adaptive filter. Modify the pro-
gram 12.2. Code for preparation of input signals for the adaptive filter could
have such form:

h = [ 0, 0.75, 0, 0.25 ];
x = vibro;

d = speech + filter(h,1,vibro);

Does the adaptive filter work properly? Change filtering algorithms and speed
adaptation parameters mi and lambd.
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Exercise 12.7 (Echo Canceling for Real-World Signals). In this exercise we
will test adaptive echo canceling (AEC), being a special form of adaptive in-
terference canceling (AIC). Working scenario is the same as above in Exer-
cises 12.5 and 12.6:

d(n) = speakerA(n) + echoB(n);

x(n) = speakerB(n);

which is typical for teleconference systems and hand-free phone systems, for
example, in a car. speakerA=sA denotes our speech, speakerB=sB is a
speech of a person we are taking to, our interlocutor, sent to a loudspeaker,
echoB is an echo of speakerB signal captured by a microphone.
Record two clear speech fragments sA(n) and sB(n) lasting approx. 5–10
sec or take them from the Internet. Create two signals:

d(n) = delayed_1sec( sA(n) ) + filtered( sB(n) );

x(n) = sB(n);

Delaying sA(n) is recommended to give a filter time for finding unknown
impulse response of a room. As filter weights use, for example, the following
values h = [ 0, 0, 1, 0, 0, 0.5, 0, 0, 0.25 ] . Has the adaptive filter
converged to h?
Try to find in the Internet impulse response of any room or use the supported
impulse_resp_11kHz.wav as h. Is the filter working properly for it?

Exercise 12.8 (Signal Enhancement for Generated Signals). Adaptive signal
enhancement (ASE) is used for years for enhancement of telecommunication
speech signals. It is known also as adaptive line enhancement (ALE). Its goal
is signal de-noising: the adaptive filter adjusts its frequency response to sinu-
soids present in the signal, decreasing this way level of noise and increasing the
signal-to-noise ratio. Run the program 12.2. Make the following settings:

isig=1; itask=2; env=1; ialg=1,2,3;.

Observe filtering results. Try to understand them and interpret. In this case we
have

d(n) = s(n);

x(n) = s(n-1);

and would like to predict s(n) having s(n-1). Since only deterministic com-
ponents of s(n) can be predicted, the filter adjusts peaks of its frequency re-
sponse to these components and improve this way the signal SNR (signal-to-
noise ratio).
Un-comment two figures in the adaptation loop:

subplot(211); stem(h); xlabel(’n’); title(’h(n)’);

subplot(212); plot(f,abs(freqz(h,1,f,fs)));

title(’|H(f)|’);
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Observe how the filter h(n) weights are changing and how the filter frequency
response moves its peaks towards the frequencies of signal components. How
much was the signal SNR improved by the ASE/ALE algorithm?

Exercise 12.9 (Signal Enhancement for Real Signals). Run the program 12.2.
Make the following settings:

isig=2; itask=2; ialg=1,2,3;.

Observe filtering results. Try to understand them and interpret. Apply the adap-
tive signal enhancement algorithm to recorded your own noisy speech signals.
You can also add noise in Matlab to clear noise-free recordings.

Listing 12.2: Program for testing adaptive (N)LMS and RLS filters
�

1 % lab12_ex_adapt.m
2 clear all; close all;
3

4 % Task (AIC, ANC) and algorithmselection (LMS, NLMS, RLS)
5 isig = 1; % 1=synthetic or 2=real signal
6 itask = 1; % 1=adaptiveinterferencecanceling (e.g. cross-talk)
7 % 2=adaptive signal de-noising using linear predictionmethod
8 ialg = 1; % adaptationalgorithm: 1=LMS, 2=NLMS (normalized LMS), 3=RLS
9

10 % LMS filter (Least Mean Squares)
11 M = 50; % number of adaptive filter coefficients (weights)
12 mi = 0.1; % adaptation speed coefficient ( 0<mi<1)
13 % NLMS filter (normalized LMS), faster convergence
14 gamma = 0.001; % not divide by zero constant, e.g. = 0.001
15 % RLS filter (recursive LS) - more-complex, faster convergence
16 lambd = 0.999; % RLS - forgettingfactor for Least-Squares cost function
17 Rinv = 0.5*eye(M,M); % RLS - inverse of Rxx matrix
18

19 % Generation of an LFM (linear frequencymodulation) test signal
20 if(isig == 1) % SYNTHETIC SIGNALS=========================================
21 env = 1; % choose informationsignal envelope:
22 % 0=rectangular, 1=alfa*t, 2=exp(-alfa*t), 3=Gauss,
23 fs = 1000; % samplingfrequency
24 Nx = 1*fs; % number of samples
25 A = 1; % signal amplitude
26 f0 = 0; % LFM: initial signal frequency
27 df = 100; % LFM: frequencyincrease [Hz/s], SFM: modulation index [Hz]
28 fc = 1; % SFM: carrierfrequency
29 fm = 1; % SFM: modulatingfrequency
30 f=0:fs/500:fs/2; % frequencies for plots
31 dt=1/fs; t=0:dt:(Nx-1)*dt; % time points for plots
32 s = A*cos( 2*pi* (f0*t + 0.5*df*t.̂ 2) ); % LFM SIGNAL
33 %s = A*cos( 2*pi* (fc*t + df/(2*pi*fm)*cos(2*pi*fm*t) ); % SFM SIGNAL
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34 % ENVELOPE choice:
35 if (env==0) w = boxcar(Nx)’; end % 0 = rectangular
36 if (env==1) alfa=5; w=alfa*t; end % 1 = alfa*t
37 if (env==2) alfa=5; w=exp(-alfa*t); end % 2 = exp(-alfa*t)
38 if (env==3) alfa=10; w=exp(-alfa*pi*(t-0.5).̂ 2); end % 3 = Gauss
39

40 s = s .* w; % SIGNAL WITH ENVELOPE
41 if (itask==1) % TEST 1 - interferencecanceling
42 P = 0; % no prediction
43 x = 0.1*sin(2*pi*200*t-pi/5); % interferencedelayed and attenuated
44 d = s + 0.5*sin(2*pi*200*t); % signal + interference
45 end
46 if (itask==2) % TEST 2 - de-noising by linear prediction
47 P = 1; % prediction order set to 1,2,3,...)
48 x = s + 0.25*randn(1,Nx); % signal + noise
49 d = [ x(1+P:length(x)) 0 ]; % signal x(n) speed-up by P samples (earlier)
50 end
51 else % REAL SIGNALS=======================================================
52 [s, fs] = audioread(’speech8000.wav’); s=s’;
53 [sA,fs] = audioread(’speakerA.wav’); sA=sA’;
54 [sB,fs] = audioread(’speakerB.wav’); sB=sB’;
55 P = 1; % delay in samples
56 if(itask==1)
57 s = sA; % reference for comparison
58 x = sB; Nx = length(x); % original echo signal
59 d = sA + 0.25*[ zeros(1,P) sB(1:end-P) ]; % added echo copy:
60 end % weaker (0.25), delayed (P)
61 if(itask==2)
62 x = s; Nx = length(x); % original noisy speech
63 d = [ x(1+P:length(x)) zeros(1,P) ]; % signal x speed-up by P samples
64 end
65 f=0:fs/500:fs/2; % frequencies for plots
66 dt = 1/fs; t = dt*(0:Nx-1); % time for plots
67 end %======================================================================
68

69 % Figures - input signals
70 figure;
71 subplot(211); plot(t,x); grid; title(’IN : signal x(n)’);
72 subplot(212); plot(t,d); grid; title(’IN : signal d(n)’); xlabel(’time (s)’); pause
73

74 % Calculation of optimal Wiener filter and limits for mi
75 for k = 0 : M
76 rxx(k+1) = sum( x(1+k:Nx) .* x(1:Nx-k) )/(Nx-M); % auto-correlation of x(n)
77 rdx(k+1) = sum( d(1+k:Nx) .* x(1:Nx-k) )/(Nx-M); % cross-correlation of d(n) and x(n

)
78 end
79 Rxx = toeplitz(rxx,rxx); % symmetricalautocorrelationmatrix of x(n)
80 h_opt = Rxx\rdx’; % weights of the optimal Wiener filter
81 lambda = eig( Rxx ); % eigenvaluedecomposition of Rxx
82 lambda = sort(lambda,’descend’); % sortingeigenvalues
83 disp(’Suggested values of mi’)
84 mi1_risc = 1/lambda(1), % limit #1 - inverse of max eigen-value
85 mi2_risc = 1/sum(lambda), pause % limit #2 - inverse of sum of all eigen-values
86 figure;
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87 subplot(211); stem( h_opt ); grid; title(’Optimal Wiener filter h(n)’);
88 subplot(212); stem( lambda ); grid; title(’Eigenvalues of matrix Rxx’);
89 % mi = mi2_risc/20;
90

91 % Adaptivefiltration
92 bx = zeros(M,1); % initialization of buffer for input signal x(n)
93 h = zeros(M,1); % initialization of filter weights (coefficients)
94 y = [];
95 e = []; figure;
96 for i = 1 : length(x) % Main loop
97 bx = [ x(i); bx(1:M-1) ]; % put new sample of x(n) into the buffer
98 dest = h’ * bx; % filtration of x(n) = prediction of d(n)
99 err = d(i) - dest; % prediction error

100 if (ialg==1) % LMS ########
101 h = h + ( 2*mi * err * bx ); % LMS - weightsadaptation
102 end
103 if (ialg==2) % NLMS ########
104 eng = bx’ * bx; % signal energy in bx
105 h = h + ( (2*mi)/(gamma+eng) * err * bx ); % weightsadaptation
106 end
107 if (ialg==3) % RLS #########
108 Rinv = (Rinv - Rinv*bx*bx’*Rinv/(lambd+bx’*Rinv*bx))/lambd; % new Rinv
109 h = h + (err * Rinv * bx ); % new weights
110 end
111 if(0) % Observation of filter weights and filter frequencyresponse
112 subplot(211); stem(h); xlabel(’n’); title(’h(n)’); grid;
113 subplot(212); plot(f,abs(freqz(h,1,f,fs))); xlabel(’f (Hz)’);
114 title(’|H(f)|’); grid; % pause(0.25)
115 end
116 y = [y dest];
117 e = [e err];
118 end
119

120 % Figures - output signals
121 figure;
122 subplot(211); plot(t,y); grid; title(’OUT : signal y(n) = dest’);
123 subplot(212); plot(t,e); grid; title(’OUT : signal e(n) = err’);
124 xlabel(’time [s]’); pause(0.25)
125 if (itask==1)
126 figure; subplot(111); plot(t,s,’r’,t,e,’b’); grid; xlabel(’time [s]’);
127 title(’Original (RED), filtrationresult (BLUE)’); pause(0.25)
128 end
129 if (itask==2)
130 n=Nx/2+1:Nx;
131 SNR_in_dB = 10*log10( sum( s(n).̂ 2 ) / sum( (d(n)-s(n)).̂ 2 ) ),
132 SNR_out_dB = 10*log10( sum( s(n).̂ 2 ) / sum( (s(n)-y(n)).̂ 2 ) ),
133 n=1:Nx-P;
134 figure; subplot(111); plot(t(n),s(n),’k’,t(n),d(n),’r’,t(n),y(n),’b’);
135 grid; xlabel(’time (s)’);
136 title(’Reference (BLACK), Noisy (RED), Filtered (BLUE)’); pause(0.25)
137 end
138 figure; subplot(111); plot(1:M+1,h_opt,’ro-’,1:M,h,’bx-’); grid;
139 title(’h(n): Wiener (RED), our (BLUE)’); xlabel(’n’); pause(0.25)

��
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12.8 Summary

What we should remember about FIR adaptive filters?

1. The adaptive FIR filter is a moving average filter but with weights being
changed during filter work, not fixed. It has two inputs and two outputs,
in contrary to the standard filter with only one input and one output. The
filtering goal is to adaptively process the first input signal x(n) and to make
it equal (or very similar) to the second input signal d(n), desired one.

2. Adaptive filter works as correlation canceler: it tries to adjust (correlate) its
first input signal x(n) to its deformed copy present in the second one d(n)
and subtract it, leaving only in the second signal its part which is uncorre-
lated with the first input. In typical application, we have a signal with ad-
ditive disturbance and disturbance reference, acquired by some other sen-
sor. For example, speech of an airplane pilot with engine burr1 and engine
burr2 recorded alone. The filter is adjusting burr2 to burr1 and subtracting
it from disturbed pilot speech, reducing the engine interference.

3. Adaptive filters performing correlation canceling can be exploited as lin-
ear predictors. It is sufficient to delay signal x(n) by one sample in relation
to signal d(n) and the filter, trying correlate both signal, has to predict the
sample d(n) = x(n) having x(n−1). Since noise could not be predicted, the
filter adjusted its frequency response peaks to sine-like components of x(n)
and amplify them, improving the signal-to-noise ratio (SNR). This way
adaptive signal enhancement is done, also in telecommunication lines—
adaptive line enhancement (ALE). Additionally, having linear prediction
(LP) filter, one can calculate signal x(n) spectrum since it is equal to fre-
quency response of the LP filter. Not only calculate but also track the spec-
trum shape, because LP coefficients are updated for every new input sample
of x(n),d(n) signals. Bravo! Possibility of spectral analysis of time-varying
signals is obtained.

4. Adaptive filters use different strategies for their weight correction, because
they minimize different measures of the error between the filtered signal
x(n) and the desired signal d(n): momentum, cumulative or weighted cu-
mulative error. For this reason, different types of adaptive filters are used:
least mean squares LMS (momentum), least squares LS (cumulative), and
weighted least squares WLS (weighted cumulative). In practice two types
of filters are the most important: LMS, eventually normalized, and RLS,
being fast version of the WLS adaptive filter.

5. In stationary conditions adaptive filter weights tend to optimal Wiener so-
lution: hopt = R−1

xx · rxd , where R−1
xx denotes inverse of the auto-correlation

matrix of the signal x(n) and rxd is vector of cross-correlation values be-
tween signals d(n) and x(n).
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6. Adaptive filters are changing their weights and try to reach the cost function
minimum in the steepest descent way. The weight update is in the direction
opposite to the local cost function gradient. But when the weights modifi-
cation is too big, the filter cannot reach the minimum and is jumping above
it. There are special constraints put on input signal x(n) and values of filter
parameters (e.g. μ in LMS filter) which ensure the filter convergence.

7. Adaptive filters are very widely used, to mention only: noise cancel-
ing headphones, acoustic noise control systems, echo canceling in: hand-
free car-phone systems and combined telecommunication transmitters-
receivers, telecommunication channels identification and equalization.

12.9 Private Investigations: Free-Style Bungee Jumps

Exercise 12.10 (Frequency Tracking Using Adaptive Linear Predictor). Use
program 12.2. Set parameters: isig=2; itask=2; ialg=1,2,3 , i.e. use the adap-
tive filter as a linear predictor. Set filter length M=10. Filter your own recorded
speech signal. Linear prediction coefficients a = [1,h] store into a special matrix.
Then, outside the filtering loop calculates consecutive momentum signal spectra
using the calculated LP vectors a: X=freqz(1,a,f,fs). Display matrix of cal-
culated spectra (their magnitudes!) and compare the plot with figure generated by
the Matlab function spectrogram(). Try to explain origin of their difference (in
spectrogram we have detail FFT-based spectrum showing harmonics of vocal folds
oscillations and vocal tract resonances, while in our method we are tracking only
change of spectrum envelope, i.e. vocal tract resonances—see chapter on speech
compression). You can also add the following line into the adaptation loop:
plot(f,abs(freqz(1,a,f,fs))); title(’|X(f)|’);
and display the momentum signal spectrum inside the loop. Try to apply the method
to AM-FM multi-components signals.

Exercise 12.11 (Removing Power Supply (Mains) Interference from ECG Sig-
nal). Use program 12.2. Take from the Internet an ECG heart activity signal, e.g.
from the page https://archive.physionet.org/cgi-bin/atm/ATM. Add to it a 50 Hz or
60 Hz sine, simulating a power supply (mains) interference. Try to remove the dis-
turbance using adaptive filter working as correlation canceler.

Exercise 12.12 (Removing Muscle Interference from ECG Signal). Use pro-
gram 12.2. Take from the Internet an ECG heart activity signal, e.g. from the page
https://archive.physionet.org/cgi-bin/atm/ATM. Add to it a low-pass filtered Gaus-
sian noise (randn()) simulating a disturbing muscles signal. Find in the Internet
information about the highest frequency of the muscles interference. Exploit adap-
tive filter as a correlation canceler and a linear predictor, and try to suppress the
interference. What adaptive filter structure is better in this application?

Exercise 12.13 (Removing Disturbances from Animal Sounds). Repeat exercise
(12.11) or (12.12) for any animal sound found in the Internet, for example, for birds

https://archive.physionet.org/cgi-bin/atm/ATM
https://archive.physionet.org/cgi-bin/atm/ATM
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song (canary.wav in Windows), blue whale sound (bluewhale.au in Matlab), dog or
wolf howl, etc.
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Chapter 13
Modern Frequency and Damping
Estimation Methods

To be or not be as a biological object described by the
second-order ordinary differential equation? Would you like to
emotionally oscillate like a damped sine?

13.1 Introduction

The need for frequency and damping measurement appears in many fields:
electrical (e.g., transients estimation in electronic circuits, analysis of magnetic
resonance signals, power quality measurement), mechanical, electromechani-
cal, optical, biological, human, economical and social, geophysical, astrophys-
ical, and chemical. The literature on this subject is extensive, and a signifi-
cant amount of time is required to get a complete and consistent view in this
field based on numerous different sources. There are many specialized compu-
tational environments with implemented standard estimation methods. Matlab
is a prime example of such a sophisticated program. However, using toolbox
functions for frequency and damping estimation is not always straightforward.

This chapter aims to provide a “Reader’s digest” of joint frequency and
damping estimation methods. It is constructed as a practical overview and tuto-
rial and should be useful in selecting a suitable method for the case investigated
by the Reader. For this reason, Matlab implementations of all described meth-
ods are given. The chapter is based on the method survey presented in [25]. For
further reading about spectral analysis of signals, for example, the following
interesting books can be recommended [5, 7, 10–13, 19].

The chapter is structured as follows. In Sect. 13.2, the measurement model
of a signal of interest is formulated. In Sect. 13.3, definitions of eigenvalue and
singular value matrix decompositions are given. In Sects. 13.4 to 13.6, the ap-
plication of the Hilbert transform, linear prediction (auto-regressive) parametric
modeling, and the interpolated discrete Fourier transform (DFT) for frequency
and damping estimation is presented, respectively.
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13.2 Signal Model

Since in this chapter several matrix equations with large matrices will be presented,
in order to simplify the notation, all signals will be denoted in it using two alternative
ways, i.e. as xn,yn and x(n),y(n). The assumed signal model, used in this chapter, is
as follows:

x(k)n = Ake−Dkn cos(Ωkn+ϕk) , n = 0, 1, 2, . . . , N −1, (13.1)

where (k) denotes signal component number, A > 0 signal amplitude, 0 < Ω < π
signal angular frequency in radians (Ωk = 2π fk

fs
and Ω = 2π rad corresponds to the

sampling frequency fs in hertz), π < ϕ ≤ π phase angle in radians, n index of the
sample, N the number of samples, and D ≥ 0 damping of the digital signal. Signal
of the form (13.1) represents an impulse response of object described by second-
order differential equation. Since many physical phenomena are described by it (for
example, RLC circuits, magnetic resonance), this chapter concerns many different
application fields. The signal Eq. (13.1) can be rewritten into the following form:

x(k)n =
Ak

2
e jϕk λk

n +
Ak

2
e− jϕk λk

∗n, (13.2)

where

λk = e−Dk+ jΩk , (13.3)

and (.)∗ denotes complex conjugation. In general, in real-world measurements sum-
mation of signals (13.1) appears

xn =
K

∑
k=1

x(k)n =
K

∑
k=1

(
Ak

2
e jϕk λ n

k +
Ak

2
e− jϕk λ ∗n

k

)
=

K

∑
k=1

(ckλ n
k + c∗kλ ∗n

k ), (13.4)

where ck is defined as

ck =
Ak

2
e jϕk . (13.5)

In some applications, such as in nuclear magnetic resonance (NMR), signals are
recorded in space by two perpendicular sensors and they are combined together into
one complex-value signal:

xn =
K

∑
k=1

Ake jϕk λ n
k , λk = e−Dk+ jΩk . (13.6)

We assume also that the analyzed signal can be embedded in the possible mea-
surement disturbance εn (e.g., noise, drift, interference), i.e.

yn = xn + εn, n = 0, 1, 2, . . . , N −1. (13.7)
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In summary, in this chapter we will analyze signals modeled by Eq. (13.4), but we
will begin our investigation with the one-component signal (13.1). We will estimate
values of Ωk,Dk,Ak, and ϕk based on the measured signal yn. We will concentrate
only on the damped signal, as undamped signal is a special case with Dk = 0. When
Ωk and Dk are known, finding values of Ak and ϕk is straightforward (which is shown
below); therefore, in most methods we only find values of Ωk and Dk. In turn, in
parametric modeling methods Ωk and Dk can be calculated from coefficients of the
linear self-prediction model; therefore, further discussion is terminated once those
coefficient are calculated. Efficiency of different frequency and damping estimators
can be compared with known Cramèr–Rao lower bounds that were calculated for
this measurement problem in [22].

At present, we show how to calculate values {Ak,φk}, k = 1 . . .K, having signal
samples xn, n = 0,1, . . . ,N − 1, and knowing values of Dk,Ωk, k = 1 . . .K. Writing
Eq. (13.4) in matrix form for each signal sample, we obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(λ1)
0 (λ ∗

1 )
0 · · ·

(λ1)
1 (λ ∗

1 )
1 · · ·

(λ1)
2 (λ ∗

1 )
2 · · ·

· · · (λK)
0 (λ ∗

K)
0

· · · (λK)
1 (λ ∗

K)
1

· · · (λK)
2 (λ ∗

K)
2

...
...

. . .

(λ1)
N−2 (λ ∗

1 )
(N−2) · · ·

(λ1)
N−1 (λ ∗

1 )
(N−1) · · ·

. . .
...

...
· · · (λK)

N−2 (λ ∗
K)

(N−2)

· · · (λK)
N−1 (λ ∗

K)
(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1

c∗1
c2
...

cK

c∗K

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2
...

xN−2

xN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (13.8)

Now it is sufficient to solve the above equation in least-squares sense in regard to c:

Lc = x → ĉ = (LT L)
−1

LT x (13.9)

and calculate amplitudes and phases of signal components from the following equa-
tion:

Âk = 2|ĉk|, ϕ̂k = ∠ĉk, (13.10)

resulting from Eq. (13.5).

Exercise 13.1 (Sum of Damped Sine Signal Model). I can imagine faces of
most Readers. In order to show that it is not a scientific thriller, let us do the fol-
lowing exercise. A program generating summation of 3 damped sinusoids and
finding its parameters from signal samples is presented in Listing 13.1. Ampli-
tudes and phases of the components are reconstructed assuming that dampings
and frequencies are known. But they are also computed using a method which
will be presented later. Please, analyze the program code, run it, and change
signal parameters. Among others, this is a problem of guitar tuning or magnetic
resonance imaging. Interesting, is not it?
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Listing 13.1: Signal model of sum of damped sinusoids
�

1 % lab13_ex_model.m
2 clear all; close all;
3

4 SNR = 120; % signal-to-noise ratio
5

6 % One damped sine component - testingequations
7 N = 100; n = 0:N-1; n=n’; % number of signal samples
8 A = 10; D = 0.1; Om = 0.5; phi = 0.2; % values of signal parameters
9 x = A*exp(-D*n) .* cos(Om*n+phi); % first signal equation (A,D,Om,phi)

10 figure; plot(x); title(’Single-damped’); pause % signal shape
11

12 c = A/2 * exp(j*phi); % c value
13 lamb = exp(-D+j*Om); % lambda value
14 xm = c * lamb.̂ n + conj(c)*conj(lamb).̂ n; % second signal equation (c,lambda)
15 error = max( abs( x-xm ) ), % error between signals x and xm
16 figure; plot(x-xm); pause % error
17

18 x = awgn( x, SNR); % optional noise addition
19 L = [ lamb.̂ n conj(lamb).̂ n ]; % matrix generation
20 c = pinv( L )*x; % solving matrix equation
21 A = 2*abs(c), % found A
22 phi = angle(c), pause % found phi
23

24 % Many components - at present three
25 A = [ 3, 2, 1 ]; % their: amplitudes
26 D = [ 0.1, 0.2, 0.3 ]; % dampings
27 Om = [ 0.25, 0.5, 0.75 ]; % frequencies
28 phi = [ 0.1, 0.2, 0.3 ]; % phase shifts
29 K = length(A); % number of components
30 x = zeros(N,1);
31 L = zeros(N,2*K);
32 for k = 1:K % signal generation
33 x = x + A(k)*exp(-D(k)*n) .* cos(Om(k)*n+phi(k));
34 end
35 figure; plot(x); title(’Multi-damped’); pause % signal shape
36 x = awgn( x, SNR); % optional noise addition
37 [Om, D] = fMatPen(x,K), pause % optional Om and D calculation
38 for k = 1:K % matrix L generation
39 L(:,2*k-1) = exp(-D(k)+j*Om(k)).̂ n;
40 L(:,2*k) = conj( exp(-D(k)+j*Om(k)) ).̂ n;
41 end
42 disp(’Results:’);
43 c = pinv( L )*x; % solving matrix equation
44 A = 2*abs(c), pi = angle(c), D, Om, pause % results

��
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Exercise 13.2 (Real-World Damped Oscillations). In programs
lab13_ex_real_spectroscopy.m and lab13_ex_real_sdr.m,
two damped oscillatory signals are simulated, originated from different
real-world measurement scenarios. The first signal comes from low-frequency
mechanical spectroscopy applied in material science for testing just manu-
factured new materials, while the second signal from software-defined radio,
where new carrier frequency oscillates after switching. Analyze code of both
programs and run them. In Fig. 13.1, both signals are shown.
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Fig. 13.1: Damped oscillatory signals originated from low-frequency mechanical
spectroscopy of materials (left) and software-defined radio—carrier frequency offset
after carrier switching (right)

13.3 Eigenvalue and Singular Value Matrix Decomposition

In this chapter we will use two fundamental matrix decompositions, the eigenvalue
and singular value ones. Therefore we start with the presentation of their definitions.

Eigenvalue Matrix Decomposition Let us assume that A is a square M×M matrix
[12]. An M-element vertical vector u is its eigenvector and γ associated eigenvalue
if they both fulfill the following equation:

Au = γu. (13.11)

The matrix multiplication is transforming the vector u into the same vector, only
scaled by γ . The matrix AM×M has maximally M different eigenvectors uk and con-
nected with them eigenvalues γk. The vectors defines only directions and have ar-
bitrary lengths, and therefore they are normalized to 1. Why? Because if vector uk
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fulfills (13.11), it is done also by all its multiplies. Eigenvalues are called a matrix
A spectrum. If Eq. (13.11) is written for all eigenvectors uk,k = 1,2, . . . ,M, and if
all equations are combined together, one obtains the following matrix formula (we
are assuming: γ1 ≥ γ2 ≥ γ3 ≥ . . .≥ γM):

AU = UD, U =
[
u1 u2 · · · uM

]
, D = diag(γ1,γ2, . . . ,γM) , (13.12)

where a square matrix U has vectors uk in its columns. Using Eq. (13.12), we can
now represent matrix A as:

A = UDU−1. (13.13)

If matrix A is a Hermitian matrix (with complex-conjugated symmetry: ai, j =
a∗j,i), its eigenvalues are real and eigenvectors are orthonormal (orthogonal and nor-
malized to 1). In this case the matrix inverse A−1 is equal to AH = (AT )∗, i.e. to its
transposition and conjugation. Therefore, from (13.13) we have

A = UDUH =
M

∑
k=1

γkukuH
k . (13.14)

In Eq. (13.14) the matrix A is a summation on first rank matrices ukuH
k , taken with

weights γk. If we limit the summation only to the first K, the biggest (principal,
dominant) eigenvalues:

Ã =
K<M

∑
k=1

γkukuH
k , (13.15)

we obtain the best least-squares approximation of A using a lower-rank matrix (the
Frobenius norm of their difference is the smallest).

Having EVD decomposition of the matrix A, it is very easy to calculate (find) its
inverse and approximation of this inverse:

A−1 = UD−1UH =
M

∑
k=1

1
γk

ukuH
k , Ã−1 =

K<M

∑
k=1

1
γk

ukuH
k . (13.16)

In Matlab we perform EVD matrix decomposition calling function
[U,D]=eig(A).

In signal processing applications, the EVD decomposition is typically applied
to symmetrical auto-correlation signal matrices, for example, used in LPC speech
codecs (14.9), RLS adaptive filters (12.45) and spectrum estimation methods us-
ing signal auto-correlation function (for example, Blackman-Tukey power spectral
density estimate (6.10)). In order to reduce noise influence on these matrices, they
are approximated using only dominant (principal) components in Eq. (13.15), as-
sociated with the biggest eigenvalues γk (with the smallest for matrix inversion). If
signal is a summation of K pure complex-value harmonics, only first K sub-matrices
should be used, while for 2K real-value sines, 2K first sub-matrices.
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Matrix Pencil of Two Matrices If we have two square matrices A and B with
dimensions M ×M, their generalized eigenvalue γ and generalized eigenvector u
have to fulfill the following equation [12]:

Au = γBu → (A− γB)u = 0 → A− γB = 0 → BpinvA− γI = 0,
(13.17)

where matrix Binv is a pseudo-inverse Moore–Penrose matrix to B

Bpinv = (BHB)
−1

BH . (13.18)

Set of matrices A − γB is called the Matrix Pencil. In Matlab generalized
eigenvectors uk and eigenvalues γk for two matrices A and B are calculated as
[U,D]=eig(A,B). We will use this method in damped sinusoid estimation prob-
lem.

Singular Value Matrix Decomposition [12] Let us assume that A is a rectangu-
lar matrix with dimensions M ×N and real-value or complex-value elements. Its
singular value decomposition (SVD) is defined as:

A =
K=min{M,N}

∑
k=1

γkukvH
k = USVH , (13.19)

Ã =
L<min{M,N}

∑
k=1

γkukvH
k . (13.20)

If we limit summation in (13.19) only to the first L < min(M,N) components, the
best least-squares approximation (13.20) of A is obtained by a lower-rank matrix.
In Matlab we call the function: [U,S,V]=svd(A,0). As a result, we obtain

1. Unitary matrix U (UHU = I) with dimensions M ×M, having in columns left
orthonormal (orthogonal and normalized) singular vectors uk, k = 1,2, . . . ,M;

2. Unitary matrix V (VHV = I) with dimensions N ×N, having in columns right
orthonormal singular vectors vk, k = 1,2, . . . ,N;

3. Matrix S with dimensions M × N that can have non-zero and non-negative
elements only on its main diagonal (σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σK ≥ 0, K =
min(M,N)).

The pseudo-inverse Apinv of matrix A and its best LS approximation Ãpinv can be
calculated using the SVD decomposition:

Apinv = (AHA)
−1

AH =
K=min{M,N}

∑
k=1

1
σk

vkuH
k , (13.21)

Ãpinv =
L<min{M,N}

∑
k=1

1
σk

vkuH
k . (13.22)

We will use these nice features in this chapter.
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Exercise 13.3 (SVD of an Image as a Breather). An interesting exercise is to
perform the SVD decomposition of any image and do its reconstruction from
the singular values and vectors, which is presented in the program 13.3. It gives
us a fruitful insight into the merit of EVD- and SVD-based approximation of
matrices using Eqs. (13.15), (13.20). Decompose your own image. Observe im-
age improvement after addition of successive order-one matrices σkvkuT

k .

Listing 13.2: SVD of an image matrix
�

1 % lab13_ex_svd_image.m - SVD-based image decomposition
2 clear all; close all;
3

4 [X,map] = imread(’lena512.bmp’); % read image
5 X = double(X); % change number represetation
6 image(X); title(’Our image’); % display image
7 colormap(map); axis image off; pause %
8

9 [U,S,V] = svd(X); % perform image SVD
10 image( U*S*V’ ); title(’SVD’); % show reconstructedresult
11 colormap(map); axis image off; pause % color map
12 mv = [1, 2, 3, 4, 5, 10, 15, 20, 25, 50]; % number of added rank-one images
13 for i = 1 : length(mv) % add approximationmatrices in a loop
14 mv(i) % how many rank-one images to add
15 mask = zeros(size(S)); % masking matrix
16 mask( 1:mv(i), 1:mv(i) ) = 1; % with 1s only on main diag beginning
17 image( U * (S.*mask) * V’ ); % masking, reconstruction, image display
18 axis image off;
19 pause
20 end

��

13.4 Discrete Hilbert Transform Method

Applying the Hilbert transform (HT) to estimating frequency and damping has been
reported in many publications; however, the HT was mainly used for measuring
damping, for example, in [1]. The HT shifts the signal in phase by −π

2 rad, e.g.
cos(Ωn) becomes sin(Ωn). An analytic signal (AS) is defined as a complex signal
with the input samples in its real part and their HT in the imaginary part, e.g. for
input cos(Ωn), we have e jΩn = cos(Ωn)+ j sin(Ωn). For discrete time signal of
the form (13.1), its AS version is (we are neglecting the index (k) since the Hilbert
method can be used only for one-component signals)

x(a)n = Ae−Dne jΩn+ϕ (13.23)
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and damping and frequency are given by (approximation of derivative):

Dn =−diff(ln
(
|x(a)n |

)
), D = mean(Dn), (13.24)

Ωn = diff(∠x(a)n ), Ω = mean(Ωn), (13.25)

where “diff” denotes the difference between two consecutive values as implemented
in the Matlab function diff(), and |x| and ∠(x) denote magnitude and angle of a
complex number, respectively. In computer implementation, analytic signal can be
calculated by convolution or modification of DFT coefficients. When Ω and D are
known, we find values of A and ϕ using Eqs. (13.8), (13.9), (13.10).

Matlab implementation of the AS (or Hilbert) estimation method of frequency
and damping is given in the function fHilbert() presented in Listing 13.3. The
calculated instantaneous frequency and damping have strong oscillations at the be-
ginning and the end of the observation interval. Therefore 1/4 of samples is dis-
carded at the beginning and the end of the computed data. In the last program line,
variable temp is used for damping estimation via line fitting, which is an option for
computing the mean value. The method is dedicated for a single damped sine. In
case of summation of several damped sine components, they should be first sepa-
rated by band-pass filters and then analyzed individually using the below function.

Listing 13.3: Simple damped sinusoid parameters estimation using Hilbert filter
(transform)

�

1 function [Om, D]=fHilbert(x,W);
2 % x = A*cos(Om*n+p).*exp(-n*D)
3 % W window 1-Hanning, 2-Blackman
4

5 N = length(x);
6 if(W==1) win = hanning(N)’; end % window choice
7 if(W==2) win = blackman(N)’; end %
8 Xh = hilbert(win.*x)./win; % Hilbert filter/transform
9 Om = diff( unwrap( angle(Xh) ) ); % angle differentiation

10 D = -diff( log(abs(Xh)) ); % logarithm of abs(), differentiation
11 ind = round( N/2-N/4 : N/2+N/4 ); % removing begin/end transients
12 Om = mean(Om(ind)); % frequency
13 D = mean(D(ind)); % damping
14 % temp = polyfit(ind,log(abs(Xh(ind))),1); D=-temp(1);

��

Exercise 13.4 (Application of Hilbert Method in Mechanical Spec-
troscopy). Apply the Hilbert method for estimation of parameters of
the damped sine obtained in mechanical spectroscopy—use program
lab13_ex_real_spetroscopy.m. Repeat experiments for different sig-
nal parameters.
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13.5 Parametric Modeling Methods: Solving Linear Equations

13.5.1 Initial Problem Setup

Let us assume in the beginning that we have only one damped sine component,
neglect the index (k), and write Eq. (13.1) for 3 consecutive signal samples:

⎧⎨
⎩

x(n) = Acos(Ωn+ϕ)e−Dn

x(n−1) = Acos(Ω(n−1)+ϕ)e−D(n−1)

x(n−2) = Acos(Ω(n−2)+ϕ)e−D(n−2)
(13.26)

After multiplication of the second equation by 2cos(Ω)e−D, the third equation by
e−2D, and after subtraction of the modified third equation from the modified second
equation, one obtains (after simple trigonometric transformations)

x(n) =−a1x(n−1)−a2x(n−2), (13.27)

where

a1 =−2cos(Ω)e−D, a2 = e−2D. (13.28)

It results from Eq. (13.27) that actual signal sample xn can be calculated as linear
prediction of two previous samples xn−1 and xn−2. In order to obtain the correct
value of amplitude, the following initial condition should be used:

x(−1) = 0, x(−2) =−AeD sin(Ω). (13.29)

In general, the signal xn (13.1) is an impulse response hn of the following linear
digital filter (u(n)—input, v(n)—output):

v(n) = b1u(n−1)−a1v(n−1)−a2v(n−2), (13.30)

b1 = Ae−D sin(Ω), a1 =−2e−D cos(Ω), a2 = e−2D, (13.31)

having a transfer function H(z) with complex poles (zeros of denominator) exactly
equal to λ and λ ∗ of the signal (13.2):

H(z) =
b1z−1

1+a1z−1 +a2z−2 =
b1z−1

(1−λ z−1)(1−λ ∗z−1)
, λ = e−D+ jΩ . (13.32)

In order to estimate frequency Ω and damping D, one should find such values
of coefficients a1 and a2 for given N noisy measurements {y0,y1, . . . ,yN−1}, where
yn = xn + εn, that the linear prediction model yn =−a1yn−1 −a2yn−2 fits best to the
measurement data yn.
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Many solutions for this optimization task are briefly summarized below. In gen-
eral, the typical calculation path for algorithms covered in this section is as follows:

1. Calculate coefficients a1,a2 of the signal self-prediction model,
2. Find complex roots λ = e−De jΩ and λ ∗ of the polynomial 1+ a1z−1 + a2z−2,

describing the denominator of the transfer function of the second-order digital
system (13.32); in Matlab function lambda=roots([1, a1, a2]);

3. Calculate Ω and D of the discrete-time signal:

Ω = ∠(λ ) , D =− ln(|λ |) , (13.33)

Ω = |Im(ln(λ ))| , D =−Re(ln(λ )) , (13.34)

4. Estimate signal amplitude and phase (using Eqs. (13.8), (13.9), (13.10)).

Having the transfer function H(z), one can calculate the frequency response set-
ting z = e jΩ ,0 ≤ Ω ≤ 2π , and find its greatest magnitude corresponding to angular
frequency Ω of the analyzed signal. However, estimation of damping is not possible
using just the magnitude of frequency response.

13.5.2 Generalization for Multi-component Signals

When the analyzed signal consists of K damped sine components, as in Eq. (13.3),
the same methodology as described above can be used (without a proof!). The next
signal sample is predicted by previous 2K samples:

x(n) =−a1x(n−1)−a2x(n−2)−a3x(n−3)− . . .−a2Kx(n−2K), (13.35)

and the signal is generated by the following filter (u(n)—input, v(n)—output):

v(n) = b0u(n)+ . . .+b2K−1u(n− (2K −1))−a1v(n−1)− . . .−a2Kv(n−2K),
(13.36)

having transfer function:

H(z) =
b0 +b1z−1 + . . .+b2K−1z−(2K−1)

1+a1z−1 +a2z−2 +a3z−3 . . .+a2Kz−2K . (13.37)

When we find coefficients {a1,a2,a3, . . . ,a2K} of the signal linear self-prediction
model (13.35), next we can calculate from them values of parameters λk =Dk+ jΩk,
describing components of our signal, as roots of the following polynomial:
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1+a1z−1 +a2z−2 +a3z−3 + . . .+a2Kz−2K =

(1−λ1z−1)(1−λ ∗
1 z−1) . . .(1−λKz−1)(1−λ ∗

Kz−1) = 0. (13.38)

Therefore, our only problem is to find a vector a of linear prediction coefficients
(LPC) of our signal, which is discussed in the next sections.

13.5.3 Prony Method

There are several methods used in digital filter design, for example, the Pade ap-
proximation procedure and the Prony least-squares auto-regressive model fitting,
for finding coefficients {bk,ak} of the digital filter difference equation (and thus the
transfer function H(z)) for the desired/given filter impulse response hn. In our case
hn = xn is a summation of damped sinusoids, and the calculated coefficients {ak}
are used to estimate their frequencies and dampings, as stated above in (13.33),
(13.34). Therefore, using the input–output relationship (13.30), (13.31) leads to the
well-known Prony digital filter design method that is derived below.

It follows that for single damped sine component (13.1), the linear equation to be
solved for a1 and a2 is

⎡
⎢⎢⎢⎣

y0

y1
...

yN−3

y1

y2
...

yN−2

⎤
⎥⎥⎥⎦
[

a2

a1

]
=−

⎡
⎢⎢⎢⎣

y2

y3
...

yN−1

⎤
⎥⎥⎥⎦ , Y ·a =−y, (13.39)

where Y is an (N − 2)× 2 matrix with the Hankel structure (the lower row is the
upper row shifted one position to the right). In practice estimation is based on a
large number of samples (as many as thousands) with the hope that measurement
noise will be averaged and cancelled this way, and thus the obtained result will be
more correct.

For N = 4, we have four measurements y0,y1,y2,y3, and Eq. (13.39) consists of
two equations with two unknowns:

[
y0 y1

y1 y2

][
a2

a1

]
=−

[
y2

y3

]
. (13.40)

In turn, for signal with K real-value damped components (13.3) we have to solve
the following equation in least-squares sense in regard to vector a:

⎡
⎢⎢⎢⎣

y0 . . . y2K−2 y2K−1

y1 . . . y2K−1 y2K
...

. . .
...

...
yN−2K · · · yN−2 yN−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1

a2
...

a2K

⎤
⎥⎥⎥⎦=−

⎡
⎢⎢⎢⎣

y2K

y2K+1
...

yN

⎤
⎥⎥⎥⎦ Y ·a =−y. (13.41)
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Let us left multiply both sides of the matrix equation Ya = −y, present in
Eqs. (13.39), (13.41), by the matrix YT , transposition of Y:

(YT Y)a =−YT y. (13.42)

Since the matrix (YT Y) is square, now we can calculate its inverse and write solution
of (13.42) as (in Matlab)

a =−
[
(YT Y)

−1
]

YT y, a = -pinv(Y)*y, (13.43)

in which:
(YT Y)

−1
YT = YI . (13.44)

is the pseudo-inverse of Y. In Matlab the matrix Y I can be computed directly from
its definition or using the built-in function pinv(Y). Knowing the vector a, we can
calculate roots λk of the polynomial associated with it from Eq. (13.38) and, finally,
compute Ωk and Dk using (13.33), (13.34) for each signal damped component.

In Matlab the optimal ordinary least-squares solution of (13.39), (13.41), which
takes into account features of the matrix Y, is given by a=-Y\y.

The above-described method is known as the Prony algorithm. Code of its Matlab
function is presented in Listing 13.4.

Listing 13.4: Damped sinusoid parameters estimation using Prony linear prediction
method (transform)

�

1 function [Om, D]=fProny(x,K)
2 % x - analyzed signal - sum of damped sinusoids
3 % K - assumed number of real damped sines (calling choose
4 N = length(x); % number of samples
5 P = 2*K; % prediction order
6 M = N-P; % max number of equations
7 FirstCol = x(1:M); LastRow = x(M:M+P-1); % for Hankel type matrix
8 Y = hankel( FirstCol, LastRow ); % matrix MxL
9 y = x(P+1:P+M).’; % vector Mx1

10 %a = -pinv(Y)*y; % classicalsolution
11 a = -Y\y; % Matlab optimized solution
12 p = log( roots( [1 fliplr(a’)] ) ); % polynomial roots
13 D = -real(p); Om = imag(p); % damping, frequency

��

Equations (13.39), (13.41) can be solved using the following Matlab functions:
arcov(), lscov(), prony(), stmb(). In the last two, transfer function
coefficients of the digital linear system having the given (predefined) impulse re-
sponse are to be found. The measured signal y, input to both functions, is treated
as an impulse response h of the system, while coefficients a of the transfer function
denominator, returned from the functions, are the solution of (13.39), (13.41). Dif-
ferent methods belonging to this group are closely related to algorithms of matrix
algebra and numerical analysis. The Burg estimation method (arburg()), using
simultaneous forward and backward linear prediction, is not appropriate for damped
sinusoids estimation and has not been tested.
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Exercise 13.5 (Prony Method). Call the Prony function in the program 13.2.
Compare obtained results with the fMatPen.m function output.

13.5.4 Steiglitz–McBride Method: Self-Filtered Signal

Our simulations have shown that the Steiglitz–McBride (STMB) method [18] (Mat-
lab stmb() function), being equivalent to the iterative quadratic maximum like-
lihood approach), gives very good results for estimating single damped sinusoid
embedded in white Gaussian noise. For the STMB method, Eq. (13.36) valid for
summation of several damped sinusoids can be written in the following matrix form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
v0 0 · · · 0

v1 v0 · · · ...

v2 v1
. . . 0

u0 0 · · · 0
u1 u0 · · · 0

u2 u1
. . .

...
...

...
. . . u0

...

...
vN−1

...

...
vN−2

. . .

. . .
· · ·

v0
...

vN−2K

...
uN−1

uN

...
uN−2

uN−1

. . .

. . .
· · ·

...
uN−2K

uN−2K+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

a2K

b0
...

b2K−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

v0

v1

v2
...

vN

⎤
⎥⎥⎥⎥⎥⎦

(13.45)

where un and vn denote filter inputs and outputs. If we write Eq. (13.45) as A ·
c = d, we should solve it with respect to vector c using concept of the pseudo-
inverse matrix: c = (AT A)−1AT d. Vector c is built in part from vector a of linear
prediction coefficients we are looking for. Having {a1,a2, . . . ,a2K}, we calculate
{λ1,λ2, . . . ,λ2K} from Eq. (13.38) as roots of linear prediction polynomial, and then
Ωk,Dk,k = 1 . . .K from (13.33), (13.34) for each k individually.

The idea of Steiglitz–McBride algorithm is as follows: if Eq. (13.36) and its
matrix version (13.45) are valid for unitary digital impulse as an input and analyzed
signal as an output, they should be also valid when both signals are passed through
the same filter. Therefore, both equations are solved several times, each time for
filter better adjusted to the signal components and better de-noising them. New filter
coefficients are calculated using the last, improved estimation of a. The algorithm
consists of the following steps:

1. Find initial estimate of coefficients a0 = [a1,a2, . . . ,a2K ]
T using the least-

squares Prony solution (13.43) of (13.41),
2. Pass the signal xn through the recursive IIR filter Ha(z):
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Ha(z) =
1

1+a1z−1 +a2z−2 + . . .+a2Kz−2K , (13.46)

using weights a recently calculated, i.e. de-noise the signal xn; treat result as
signal vn;

3. Pass the unitary impulse δ (n) (Kronecker delta function) by the same filter and
treat result as signal un;

4. Having vn and un, build Eq. (13.45) and solve it with respect to vector c;
5. Extract a from c and return to step 2 or stop.

During successive iterations, estimation of linear prediction parameters is im-
proved because in each next step the analyzed signal is better de-noised. Better is
our knowledge about the signal, better filter is designed for noise reduction. Initially
calculated coefficients a(0) are used in the first filter, the signal is filtered for the first
time, and the Eq. (13.45) is solved. Then new LP coefficients a(1) are determined,
and they are used in the second filter . . . , and so on.

The Matlab implementation of the Steiglitz–McBride method is given in List-
ing 13.5.

Listing 13.5: Damped sinusoid parameters estimation using Steiglitz–McBride lin-
ear prediction method (transform)

�

1 function [Om, D]=fSTMB(x,K,NI)
2 % x - analyzed signal
3 % K - number of damped components A*cos(Om*n+ph).*exp(-D*n)
4 % NI - number of iterations, for NI=0 the Prony method is used
5 % Om - estimated frequency [rad]
6 % D - estimated damping
7

8 N = length(x); % number of signal samples
9 P = 2*K; % prediction order

10 FirstCol = x(P:N-1); FirstRow = x(P:-1:1); % first row and column of Toeplitz matrix
11 X = toeplitz( FirstCol, FirstRow ); y = x(P+1:N).’; % signal matrix
12 a = X\y; % or inv(X’*X)*X’*y; or a = pinv(X)*y; % first Prony solution
13 a1 = [1; -a]; % first filter from Prony method
14 %a1 = [1; zeros(P,1) ]; % or simpler filterinitialization
15 delta = zeros(1,N); delta(1)=1; % unit impulse
16 while ( NI ) % iterativesolutionimprovement
17 v = filter(1, a1, x); % input filtering
18 u = filter(1, a1, delta); % impulsefiltering
19 V = toeplitz( v, [ v(1) zeros(1,P) ] ); % input matrix
20 U = toeplitz( u, [ u(1) zeros(1,P-1) ] ); % impulse matrix
21 VU = [ V(1:N,:) U(1:N,:) ]; % combining two matrices
22 A = VU(:,2:end); d = VU(:,1); %
23 c = A\d; % c = inv(A’*A)*A’*d; % c = pinv(A)*d; % solution, three alternatives
24 a1 = [ 1; -c(1:P) ]; % iterative update
25 NI = NI-1; % decreasecounter
26 end %
27 p = roots( a1 ); p = log(p); % roots, ln()
28 Om = imag(p); [Om indx] = sort( Om, ’ascend’ ); Om = Om(K+1:2*K); % angularfrequency
29 D = -real( p(indx(K+1:2*K)) ); % damping

��
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Exercise 13.6 (Steiglitz–McBride Method). Call the fSTMB.m function in
the program 13.2. Compare obtained results with the fMatPen.m function
output.

13.5.5 Kumaresan–Tufts Method: Linear Prediction with SVD

In this approach, proposed by Kumaresan and Tufts (KT) [8], a principal component
approximation of the pseudo-inverse matrix Y I (13.44), more robust to noise, is
used. The selected linear prediction order is greater than 2K and equals P, such that
min(P,N −P) > 2K, where K is assumed to be the number of sinusoids present in
the analyzed signal. Additionally, the backward not forward signal self-prediction
is exploited, i.e. yn = −b1yn+1 − b2yn+2 − . . .− bPyn+P instead of yn = −a1yn−1 −
a2yn−2 − . . .−aPyn−P. Therefore (13.41) is now replaced by

⎡
⎢⎢⎢⎣

y1 . . . yP−1 yP

y2 . . . yP yP+1
...

. . .
...

...
yN−P · · · yN−2 yN−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b1

b2
...

bP

⎤
⎥⎥⎥⎦=−

⎡
⎢⎢⎢⎣

y0

y1
...

yN−P−1

⎤
⎥⎥⎥⎦ ,YN−P,PbP =−yN−P (13.47)

and as before in (13.43):

b =−
[(

YT Y
)−1

YT
]

y =−YIy. (13.48)

In this approach the singular value decomposition (SVD) of the Hankel-type matrix
Y is performed:

Y =
min{P,N−P}

∑
k=1

σkukvH
k , (13.49)

where σk represents singular values of Y (σ1 ≥ σ2 ≥ σ3 ≥ . . .), and uk and vk are left
and right singular vectors of Y. The SVD of matrix Y produces a diagonal matrix
S of the same dimension as Y, with non-negative, non-increasing elements lying on
the main diagonal, and unitary matrices U and V so that Y = U ·S ·VT , as described
in Sect. 13.3. The SVD results are then used for computation of the pseudo-inverse
YI of Y:

YI =
min{P,N−P}

∑
k=1

1
σk

vkuH
k . (13.50)

The exact solution of (13.47) is given by
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b =−YIy =−
min{P,N−P}

∑
k=1

1
σk

vk

[
uH

k y
]
. (13.51)

In the Kumaresan–Tufts method, P = 3N
4 and the summation (13.51) is limited

to 2K(< P) terms, i.e. to the doubled number of expected real sinusoidal signals,
completing the principal component approximation of the pseudo-inverse matrix
YI . Next, zeros (roots) λk of the polynomial b0zP+b1zP−1+ . . .+bP−1z1+bP(b0 =
1) are found (in Matlab: roots([b0,b1,...,bP])), and only the 2K that lie
outside the unit circle are considered (|λk|> 1). Finally, as before, equations (13.33),
(13.34) are used to calculate Ω and D from λ , but the value of D has to be negated.
In turn, when the polynomial bPzP + bP−1zP−1 + . . .+ b1z1 + b0 is used, we are
looking for zeros inside the unit circle, and the value of D calculated from (13.33),
(13.34) is not negated.

In Listing 13.6 the function fKT() is presented, which implements the
Kumaresan–Tufts algorithm for real-value signals. It is a modified version of the
lpsvd.m function originated from matNMR software [20] (authored by Jacco D.
van Beek), working with complex-value data.

Listing 13.6: Damped sinusoid parameters estimation using Kumaresan–Tufts SVD-
filtered linear prediction method

�

1 function [Om, D]=fKT(x,K)
2 % Kumaresan-Tufts method
3 % x - analyzed signal
4 % K - assumed number of real damped sine components
5

6 inside = 1; % 1/0=inside/outside the unit circle
7 M = 2*K; % number of complexcomponents
8 N = length(x); % numer of signal samples
9 P = floor(N*3/4); % linear prediction order P = 3/4*N

10 Y = hankel( x(2:N-P+1), x(N-P+1:N) ); % backwardprediction data matrix
11 y = x(1:N-P)’; % backwardprediction data vector
12 [U,S,V] = svd(Y,0); % singular value decomposition
13 S = diag(S); % take only main diagonal
14 bias = mean(S(M+1:min([N-P,P]))); % bias compensation
15 b = -V(:,1:M) * (diag(1./(S(1:M)-bias)) * (U(:,1:M)’*y)); % LP coefficients
16 if(inside==1) % INSIDE THE CIRCLE
17 z = roots([b(length(b):-1:1);1]); % roots of poly
18 p=log(z); p = p( find(real(p)<0) ); % ln()
19 Om = imag(p); [Om indx] = sort( Om, ’ascend’ ); Om=Om(K+1:2*K); % ang. frequency
20 D = -real(p(indx(K+1:2*K))); % damping
21 else % OUTSIDE THE CIRCLE
22 z = roots([ 1; b]); % roots of poly
23 p=log(z); p = p( find(real(p)>0) ); % ln()
24 Om = imag(p); [Om indx] = sort( Om, ’descend’ ); Om=Om(1:K); % ang. frequency
25 D = real(p(indx(1:K))); % damping
26 end
27 % figure; plot(real(z),imag(z),’o’); pause, figure; plot(real(p),imag(p),’o’); pause

��
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Exercise 13.7 (Kumaresan–Tufts Method). Call the fKT.m function in the
program 13.2. Compare obtained results with the fMatPen.m function output.

The total least-squares (TLS) solution [12] of the discussed problem was also
proposed [15]. In this method, solving (13.47) is replaced with the minimization
task in respect of bP:

‖YN−P,PbP +yN−P‖2 → min, (13.52)

in which the noisy character of not just matrix YN−P,P but also of vector yN−P is
taken into account. Here the SVD is performed on the augmented matrix given be-
low (with added last column −yN−P):

[YN−P,P|−yN−P] = U ·diag(σ1 . . .σP+1) ·VT =
min(N−P,P+1)

∑
k=1

σkukvH
k , (13.53)

For σ1 ≥ . . .≥ σP > σP+1 > 0, the solution is simply computed as:

bP =
vP+1(1 : P)
vP+1(P+1)

, (13.54)

using elements of the vP+1 singular vector.

Exercise 13.8 (Fast TLS Method). Program fFastTLS.m, given in the book
repository, implements a fast Yuan–Torlak [24] total least-squares method, pro-
posed recently for a single damped sine embedded in strong noise. Call this
function in the program lab13_ex_real_sdr.m. Run the program for dif-
ferent levels of noise.

13.5.6 Matrix Pencil Method

Let us remember that the linear eigenvalue Matrix Pencil matrix problem was intro-
duced in Sect. 13.3. The Matrix Pencil algorithm for damped sinusoids estimation
consists of the following steps [6, 9, 16, 17]:

1. In the Matrix Pencil method P= �N/3�, the matrix YN−P,P in (13.47) is denoted
as Y1 and a new matrix Y0 is introduced:
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Y0 =

⎡
⎢⎢⎢⎣

y0 . . . yP−2 yP−1

y1 . . . yP−1 yP
...

. . .
...

...
yN−P−1 · · · yN−3 yN−2

⎤
⎥⎥⎥⎦ . (13.55)

2. Next, the matrix Y1 is decomposed by SVD and resultant singular vectors vk,uk

and values σk are used for calculation of the reduced 2K-rank pseudo-inverse
ỸI

1 of Y1 (see Eq. (13.22)):

ỸI
1 =

[
2K

∑
k=1

1
σk

vkuH
k

]
. (13.56)

3. Now the matrix ỸI
1 is used for defining a new matrix Z:

Z = ỸI
1 ·Y0. (13.57)

4. Then, the matrix Z is decomposed by EVD (see Sect. 13.3). Let us remember
that K denotes the number of signal sinusoidal components. Therefore, 2K the
biggest eigenvalues of the matrix Z are found. They are equal to roots λk of the
polynomial b0zP +b1zP−1 + . . .+bP−1z1 +bP (b0 = 1), and lie outside the unit
circle |λk|> 1).

5. Finally, as before in the Kumaresan–Tufts method, we use equations (13.33),
(13.34) to estimate Ωk and Dk from λk, and the value of Dk should be negated.

In Listing 13.7 a Matlab code of the Matrix Pencil algorithm is given. It is a
modified version of the itcmp.m function originated from matNMR software [20]
(author: Jacco D. van Beek), working with complex-value data. I like very much this
program. A lot of advanced mathematics and only a few lines of code. Very efficient
code! May be slow in execution but very robust to noise. For me it is a fantastic
example that education has a sense. As a programmer, I have seen a lot of lines of
code I did not understand. It is easier to write programs than to find really effective
solutions.

Listing 13.7: Damped sinusoid parameters estimation using Matrix Pencil solution
of the linear prediction problem (transform)

�

1 function [Om, D] = fMatPen(x,K)
2 % x - analyzed signal - sum of damped sinusoids
3 % K - assumed number of real damped sine components
4 M = 2*K; % number of complexcomponents
5 N = length(x); % number of signal samples
6 L = floor(N/3); % linear prediction order L = N/3
7 X = hankel(x(1:N-L),x(N-L:N)); % building Hankel matrix
8 X0 = X(:,1:L); X1 = X(:,2:L+1); % cuttingmatrices X0 and X1
9 [U,S,V] = svd(X1, 0); S = diag(S); % SVD of X1

10 p = log( eig( diag(1./S(1:M)) * ((U(:,1:M)’*X0)*V(:,1:M)) ) ); % EVD of X0
11 Om = imag(p); [Om indx] = sort( Om, ’ascend’ ); Om=Om(K+1:2*K); % ang. frequency
12 D = real(p(indx(K+1:2*K))); % damping

��
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Exercise 13.9 (Matrix Pencil Method). Run the program 13.2 several times
decreasing the SNR level: 120:−5:0 dB. Observe when the MatPen method
will stop to work properly. Compare different methods.

13.5.7 Yule–Walker Method: Linear Prediction Using
Auto-Correlation Function

It is interesting to observe that equations (13.39), (13.41):

(
YT Y

)
a =
(
YT y

)
(13.58)

after performing multiplication in brackets takes the following forms, respectively:

[
r0 r1

r1 r0

][
a1

a2

]
=

[
r1

r2

]
(13.59)

⎡
⎢⎢⎢⎣

r0 r1 · · · r2K−1

r1 r0 · · · r2K−2
...

...
. . .

...
r2K−1 r2K−2 · · · r0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1

a2
...

a2K

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

r1

r2
...

r2K

⎤
⎥⎥⎥⎦ , (13.60)

where

rk = ∑
n

y(n)y(n+ k), k = 0,1,2,3, . . .. (13.61)

Vector a, which is the solution of (13.59), (13.60):

Ryya =−ryy → a =−R−1
yy · ryy, (13.62)

minimizes the mean squared prediction error (MSE). The generalization of (13.60)
is known as the Yule–Walker equation [5, 14] and can be solved by the Matlab
functions aryule() and lpc(). An estimate of the auto-correlation function
rk (13.61) of yn needs to be found first, Ryy and ryy are calculated next, and finally the
equation Ryy ·a =−ryy (13.58) is solved. One of the many existing methods is used,
for example, one presented previously for solving (13.39), (13.41). However, in this
case, the matrix of the linear equation (Ryy) is square and symmetric in contrast to
Y, and new possibilities exist, e.g. iteratively solving the Eq. (13.62) for increasing
dimension of Ryy using the Levinson–Durbin algorithm (function levinson() in
Matlab). For example, such method is used for fast calculations of vocal tract filter
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coefficients in digital speech coders. Algorithms belonging to this group represent
well-known classical ARMA techniques.

Matlab implementation of auto-correlation-based estimation method (13.60) is
given in the function fLPcor() presented in Listing 13.8.

Listing 13.8: Damped sinusoid parameters estimation using Yule–Walker method—
linear prediction exploiting auto-correlation function

�

1 function [Om, D]=fYuleWalker(x,K,C)
2 % x - analyzed signal
3 % K - assumed number of real damped sines
4 % C - autocorrelationestimationmethod (choose 1,2,3 or 4)
5 N = length(x); % signal length
6 L = 2*K; % prediction order
7 M = N-L; % max numer of equations
8 if( C==1 ) r=xcorr(x,’biased’); end %
9 if( C==2 ) r=xcorr(x,’unbiased’); end %

10 if( C==3 ) r=xcorr(x,’coeff’); end %
11 if( C==4 ) r=xcorr(x,’none’); end % choose this option
12 R = r(N:end); % take only right part (symmetry)
13 FirstCol = R(1:M); LastRow = R(M:M+L-1); %
14 Y = hankel( FirstCol, LastRow ); % matrix MxL
15 y = R(L+1:L+M).’; % vector Mx1
16 a = -Y\y; % a = -pinv(Y)*y; % solving linear equation
17 p = log(roots( [1 fliplr(a.’)] )); % roots, ln()
18 Om = imag(p); [Om indx] = sort( Om, ’ascend’ ); Om=Om(K+1:2*K); % ang. frequency
19 D = -real(p(indx(K+1:2*K))); % damping

��

Exercise 13.10 (Yule–Walker Method). Call the fYuleWalker.m function
in the program 13.2. Compare obtained results with the fMatPen.m function
output.

13.5.8 Pisarenko Method: Signal Subspace Methods

Let us remember the self-prediction equation, valid for summation of damped sinu-
soids:

xn +
2K

∑
k=1

akxn−k = 0, xT a = 0, (13.63)

where (a0 = 1):

x = [xn, xn−1, xn−2, . . . ,xn−2K ]
T , a = [1, a1, a2, . . . ,a2K ]

T . (13.64)

After setting yn = xn + εn → xn = yn − εn in (13.63), which takes into account the
disturbance component adding itself to the signal xn, we obtain
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yTa = εTa, ε = [εn, εn−1, εn−2, . . . ,εn−2K ]. (13.65)

After setting yn = xn + εn → xn = yn − εn in (13.63), which takes into account the
disturbance component adding itself to the signal xn, we obtain:

yTa = εTa, ε = [εn, εn−1, εn−2, ...,εn−2K ]. (13.66)

After left-multiplication of Eq. (13.66) by y and calculation of expected values of
both equation sides, we have

E[yyT ]a = E[yεT ]a. (13.67)

We can re-write the right side of the above equation as follows:

E[yεT ]a = E[(x+ ε)εT ]a = (E[xεT ]+E[εεT ])a = E[εεT ]a = σ2
ε a (13.68)

because signal xn is uncorrelated with noise εn and E[xεT ] = 0. σ2
ε denotes the noise

variance. Finally, since E[yyT ] = Ryy, Eq. (13.70) takes the form:

Ryya = σ2
ε a. (13.69)

Therefore, the vector a of interest is an eigenvector of the square, symmetric auto-
correlation matrix Ryy, associated with eigenvalue σ2

ε (it should be remembered that
the eigenvalue problem for the given matrix A is solving the equation A ·v= λv;v �=
0—eigenvector of A, λ—corresponding eigenvalue of A). Due to eigenvalue σ2

ε , the
eigenvector a lies in the noise subspace and is orthogonal to eigenvectors lying in the
signal subspace, associated with bigger 2K eigenvalues. Roots of the polynomial,
defined by a, identify these eigenvectors that are signal components. Therefore, it is
necessary to perform the following steps:

1. Calculation of the estimate of the auto-correlation function ryy (13.61) of noisy
measurement signal yn as before, then building the auto-correlation matrix Ryy:

Ryy =

⎡
⎢⎢⎢⎣

r0 r1 · · · r2K

r1 r0 · · · r2K−1
...

...
. . .

...
r2K r2K−1 · · · r0

⎤
⎥⎥⎥⎦ , (13.70)

2. Performing eigenvalue decomposition (EVD) of the matrix Ryy, e.g. using func-
tion eig() in Matlab:

Ryy =
2K+1

∑
k=1

γkukuT
k , γ1 ≥ γ2 ≥ . . .≥ γ2K+1, (13.71)

3. Finding eigenvector v2K+1, associated with the smallest eigenvalue λ2K+1 =σ2
ε ,

and setting a = v2K+1,
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4. Calculating roots λk of the polynomial having coefficients [1;a] and extracting
from them frequencies of the signal components using Eq. (13.33) or (13.34).

However, due to scaling incorporated in EVD, only the signal frequency can be
found from roots {λ ,λ ∗} of the polynomial a: Ω = | imag(ln(λ )).

The signal subspace methods (Pisarenko, EV, Min-Norm, MUSIC, ESPRIT) are
very well presented in the literature [5, 12, 14, 25]. In program fPisarenko(),
only the Matlab code of the Pisarenko method is given. The other methods are
not discussed since using this algorithmic family is significantly inferior to the
SVD-based methods, making direct use of signal samples (e.g., Steiglitz–McBride,
Kumaresan–Tufts, Matrix Pencil).

Listing 13.9: Damped sinusoid parameters estimation using Pisarenko method—
only frequency is found

�

1 function [ Om ]=fPisarenko(x,K,C)
2 % x - analyzed signal - sum of damped sinusoids
3 % K - assumed number of real damped sines
4 % C - autocorrelationmethod estimation (1, 2, 3 or 4)
5 N = length(x); % signal length
6 L = 2*K; % 2K signal components
7 if( C==1 ) R=xcorr(x,’biased’); end % autocorrelationfunction
8 if( C==2 ) R=xcorr(x,’unbiased’); end %
9 if( C==3 ) R=xcorr(x,’coeff’); end %

10 if( C==4 ) R=xcorr(x,’none’); end % choose this option
11 R = R(N:end); % only right part due to symmetry
12 RR = toeplitz( R(1:L+1) ); % Toeplitz matrix
13 [V,D] = eig(RR); % EVD
14 [Dmin indx] = min(diag(D)); % minimum eigen-value and its index
15 a = V(:,indx).’; % minimum eigen-vector
16 z = roots(a); p = log(z); Om = imag(p); % roots of polynomial, then ln()
17 Om = sort( Om, ’descend’ ); Om = Om(1:K); % found frequencies

��

Exercise 13.11 (Pisarenko Method). Call the fPisarenko.m function in
the program 13.2. Compare obtained results with the fMatPen.m function
output. Remember that only frequencies of damped sines are estimated by it.

13.6 Interpolated DFT Methods

Only for completeness of the presentation, now we shortly repeat equations of the
Bertocco–Yoshida interpolated DFT algorithms [2, 23], presented already in part
in chapter on FFT applications. The method addresses also the problem of damped
sinusoid parameters estimation. Similar IpDFT algorithms are compared in [3]. In
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both methods, first N-point DFT (FFT) is calculated for signal xn. Then the biggest
magnitude value in the DFT spectrum is found, and let us denote it as Xk, and its
left and right neighbors: Xk−2, Xk−1 and Xk+1. After that both methods use different
strategy summarized in Table 13.1.

Program of Bertocco–Yoshida method was presented in Listing 6.8. The pro-
gram can be modified and used for finding more damped sine components in the
signal, but their DFT bins (around peaks) have to be found or specified explicitly.
In case of only one component, the algorithm can be further improved. When the
damped sine parameters are calculated, leakage from the negative frequency com-
ponent to the positive frequency one can be calculated and subtracted from DFT
coefficients, used for signal estimation [21]. Equation (13.2) is used for this pur-
pose. This leakage compensation procedure can be repeated a few times after each
estimate improvement. In Listing 13.10, Matlab code of Bertocco–Yoshida function
for one-component damped sine estimation is given. The program was proposed by
Duda–Zielinski in [4].

Table 13.1: Algorithms of Bertocco and Yoshida DFT-based damped sinusoid esti-
mation methods

No Bertocco method [2] Yoshida method [23]

1 R = Xk+1/Xk R = (Xk−2 −2Xk−1 +Xk)/(Xk−1 −2Xk +Xk+1)

2 λ = e jΩk (1−R)/(1−Re− j2π/N) —
3 D =−Re{ln(λ )} D = 2π

N Im{−3/(R−1)}
4 Ω = Im{ln(λ )} Ω = 2π

N Re{k−3/(R−1)}

Listing 13.10: Estimation of single damped sinusoid parameters using IpDFT
Bertocco–Yoshida algorithm with leakage compensation

�

1 function [we, de, Ae, pe] = fIpDFT_BY1_LC(x,NI);
2 % Leakagecorrection for BY1 interpolated DFT
3 % x - input signal x=A*cos(w*n+p).*exp(-d*n)
4 % NI - number of iterations, for NI=0 BY1 without LC is computed
5 % Estimated values:
6 % we - frequency (rad), de - damping, Ae - amplitude, pe - phase (rad)
7 N = length(x);
8 Xw = fft(x); % computation of DFT
9 [Xabs, ind] = max(abs(Xw(1:round(N/2))));

10 k = [ind-1 ind ind+1];
11 dw = 2*pi/N; % DFT frequency step
12 wkm1= (k(1)-1)*dw; % frequency of DFT bin with index k-1
13 wk = (k(2)-1)*dw; % frequency of DFT bin with index k
14 wkp1= (k(3)-1)*dw; % frequency of DFT bin with index k+1
15 [we, de, Ae, pe, lam] = BY1_in_LC(wkm1,wk,wkp1,Xw(k),N);
16

17 %% Leakagecorrection for negativefrequencies
18 wkk = [wkm1 wk wkp1];
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19 for iter=1:NI
20 for m=1:3;
21 Xw_correction(m) = ...
22 (Ae/2)*( exp(-j*pe)*(1-conj(lam)̂ N)/(1-conj(lam)*exp(-j*wkk(m))));
23 end
24 Xw_correction = Xw(k) - Xw_correction;
25 [we, de, Ae, pe, lam] = BY1_in_LC(wkm1, wk, wkp1, Xw_correction, N);
26 end
27

28 function [we, de, Ae, pe, lam] = BY1_in_LC(wkm1, wk, wkp1, Xw, N);
29 r = ( -exp(-j*wk)+exp(-j*wkm1) )/( -exp(-j*wkp1)+exp(-j*wk) );
30 R = ( Xw(1)-Xw(2) )/( Xw(2)-Xw(3) );
31 lam= exp(j*wk)*(r-R)/( r*exp(-j*2*pi/N)-R*exp(j*2*pi/N) );
32 we = imag(log(lam));
33 de = -real(log(lam));
34 if round(1e6*R)==-1e6 %% coherent sampling, d=0
35 Ae = 2*abs(Xw(2))/N;
36 pe = angle(Xw(2));
37 else
38 c = (1-lam̂ N)/(1-lam*exp(-j*wk));
39 c = 2*Xw(2)/c;
40 Ae = abs(c);
41 pe = angle(c);
42 end

��

Exercise 13.12 (Interpolated DFT Method). Call the interpolated DFT func-
tion from Listing 13.10 in the program 13.2 but only for one-component signal.
Compare obtained results with remaining functions. Change signal frequency
and damping and repeat a few times the experiment. Then apply the function
for estimation of damped sinusoid observed in mechanical spectroscopy—call
it from the program lab13_ex_real_spectroscopy.m.

13.7 Summary

What should be remembered?

1. Dumped sinusoids and their summations widely appear in surrounding
world because such signals are generated by objects described by second-
order differential equations that are plenty. Electrical, mechanical, and bi-
ological oscillators are the first examples. When we identify parameters of
oscillations, we can deduce how an object is built that generated them or in
what state it was, for example, in material spectroscopy/defectoscopy and
medical magnetic resonance.
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2. In case of damped oscillations, typically non-Fourier transform methods
are used, mainly linear prediction ones, exploiting the fact that next signal
samples are linear combination of the previous signal samples. One can
find frequencies and dampings of damped sinusoids from linear prediction
coefficients calculated for them.

3. Next sample of each real-value damped sinusoid can be predicted from its
previous 2 samples. When signal has K such components, 2K next samples
are required. In the presence of noise, we use more input–output relations
than 2 or 2K and build over-determined matrix equations that are solved in
mean squared error sense. We calculate LP coefficients from them.

4. Solving LP prediction equations is effective when the number of signal
components, damped sines, is known. This problem was not discussed in
this chapter. Final prediction error, Akaike information criterion, and min-
imization of description length are exemplary criteria helping us to choose
appropriate K—the number of embedded damped sines.

5. Linear prediction coefficients can be calculated using matrix equation with
signal samples (covariance approach) or samples of signal auto-correlation.
Described Prony, Steiglitz–McBride, Kumaresan–Tufts, and Matrix Pencil
methods belong to the first group, while Yule–Walker and Pisarenko meth-
ods to the second.

6. When some noise reduction technique is added to the covariance methods
(for example, filtering, SVD, EVD), they offer more robust, immune-to-
noise estimation of linear prediction parameters; however, they are more
time consuming. The Prony method, the simplest covariance approach, is
very noise sensitive.

7. Auto-correlation-based methods are used for symmetrical matrices only,
are more noise sensitive than covariance ones, and do not allow damping
estimation. However, they are easier to speed up, for example, using Levin-
son algorithm.

8. Knowing the signal model, we can also apply it to the DFT spectra of
damped sinusoids and calculate their parameters from them, for example,
using interpolated DFT approaches. Presented Bertocco–Yoshida method
is one of them.

13.8 Private Investigations: Free-Style Bungee Jumps

Exercise 13.13 (Piano and Guitar Notes Analyzer). At webpage https://www.
findsounds.com/, find sounds of single piano or guitar notes. Choose one piano and
one guitar sample, desirably of the same musical note. Display signal waveforms
and calculate and plot their DFT spectra (similar to the one presented in Fig. 13.2).
Use the IpDFT function for finding parameters of dominant damped sines, present
in both signals. Try to synthesize both signals as a summation of their oscillatory
components. Listen to generated signals. How much are they similar to the origi-

https://www.findsounds.com/
https://www.findsounds.com/
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nal recordings? As a starter, you can use a program lab13_ex_instrument_
tuning.m from the book repository. Is it possible to do the piano/guitar tuning
using our programs?

0 1 2 3 4
t (s)

-0.2

0

0.2

0.4
x(t)
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Fig. 13.2: Oscillatory damped signal of one piano note (left) and its DFT spectrum
(right)

Exercise 13.14 (Damped Sines from NMR). Nuclear magnetic resonance (NMR)
is used, among others, for chemical compounds recognition. In program
lab13_ex_nmr.m, placed in book repository, one NMR signal was shown to-
gether with its DFT spectrum (see Fig. 13.3). The signal is complex-value one and
has N = 216 samples and 22 damped sine components. Spectrometer Avance III 300
MHz of the Bruker company was used for its acquisition (sampling frequency equal
8971.291866028711 Hz). Then the file was read into the matNMR software and
converted into MAT file. Try to calculate parameters of one damped sine, present in
the signal, using interpolated DFT method.
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Fig. 13.3: Oscillatory signal with 22 damped sinusoids originated from nuclear mag-
netic resonance (left) and its DFT spectrum (right)
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Exercise 13.15 (All Together Now: For Single Damped Sine). Run program
lab13_ex_test_one_component.m from book repository. Run it for three
test signals and different SNR values. Compare results. What method is a winner
in your opinion? In fact, to have reliable results we should repeat experiments for
random phase shifts from the range −π to π and calculate mean values of frequency
and damping estimation errors. Are you interested in program modification? Bravo!

Exercise 13.16 (All Together Now: For Multiple Damped Sines). Run program
lab13_ex_test_multi_component.m from book repository for different
SNR values. Find SNR range for proper work of each method. Compare results.
Who is the winner? I do not believe!
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Chapter 14
Speech Compression and Recognition

Are you aware (mindful) of the fact that during your phone call
a speech of your interlocutor is synthesized from a few
numbers? What a dehumanized world!

14.1 Introduction

Multimedia: speech, audio, image, and video. For most people speech is
the least interesting. I do not agree with this opinion. For me it is the most
interesting. What does cause that we, people, understand each other? We are
biologically built the same way, but we are not perfect copies of each other.
We are smaller and bigger, for example. We have slightly different vocal folds
and vocal tracts, but we generate some more-or-less standard sounds that are
understood by our interlocutors. Wow! It is a real magic.

I am teaching signal processing for years. During lecture on speech com-
pression, I am always excited. It is interesting to see how much our speech
signal can be deformed in its shape but still to be very well perceived! It is
fantastic to observe how smartly information is hidden in speech waveforms
and how clever our mind is still understanding the speech content, even after
dramatic change of speech signal shape after using very aggressive, i.e. very
strong, compression.

Well. It is time to start.
Digital speech compression, used in digital telephony, is one of the best ex-

amples of DSP applications. Linear prediction coding (LPC) concept is ex-
ploited in it. Since all people have similar bodies, from the “life-functions”
points of view, we can built a universal model of speech articulation, fitting
relatively well to all of us. This model consists of parameters specifying two
things: vocal tract filter excitation and vocal tract filter frequency response, i.e.
filter frequency characteristics. Having a speech fragment, we have to find the
following:

• Whether vocal folds are working; if yes, with what frequency they are
opening and closing and injecting air-flow impulses to the vocal tract,
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• What is the actual frequency response of the vocal tract filter, having reso-
nance peaks, called formants.

Knowing answers to these two questions we should build a digital filter hav-
ing exactly the same frequency response as the acoustical vocal tract filter. Then
we can excite it with random noise or periodic sequence of quasi-impulses,
imitating original acoustical signal coming from vocal folds, and obtain syn-
thesized speech on the filter output. In general, excitation is speaker depen-
dent, while filter frequency characteristic is speech content dependent. When
we modify a filter excitation signal during speech synthesis, we can see that it
is difficult to recognize a speaker. In contrary, while we modify the filter, we are
changing a speech content, i.e. one phoneme to some other one, for example,
vovel “a” to “e.” Speech generated with working vocal folds is called voiced,
while for opened vocal folds—unvoiced.

The digital speech synthesis filter, typically IIR filter of order 10 (see
Fig. 8.5), has ten poles, which are capable of creating five peaks in the filter
frequency response—please remember the zeros-and-poles method of digital
IIR filter design. It is not without reason that the filter can create five spec-
tral peaks: human speech has exactly up to five local spectral maxims, i.e.
formants.

As already mentioned, a speech content, for example, vowels “a,” “b,” “c”
and consonants “h,” “k,” “s,” is hidden in a shape of speech spectrum envelope.
The same curve should have frequency response magnitude of speech synthesis
filter. Therefore, it is obvious that all speech recognition systems are tracking
the actual speech spectrum envelope (the synthesis filter frequency response)
and compare its shape with reference shapes, typical for individual phonemes
or . . . for phoneme doublets, or triplets, or even for whole words. In the last
two cases, history of spectral changes has to be remembered. Extra knowledge
about speech syntax helps additionally in decision-making. Cepstral and mel-
cepstral spectral coefficients are used as spectrum shape descriptors (recognized
features). Being concrete, approximately first fifteen low-frequency DCT coef-
ficients of logarithm of speech spectrum magnitude.

In Matlab, the following functions are useful for implementation of LP-
based speech coding/compression:

• randn()—vocal tract filter excitation for unvoiced speech,
• xcorr()—calculation of speech auto-correlation function,
• lpc()—calculation of LP coefficients for speech fragment,
• levinson()—fast calculation of LP coefficients,
• filter()—speech synthesis.
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14.2 Speech Compression

Speech Production and Its Modeling As already stated in the introduction, vocal
folds are muscles which are:

– permanently open for unvoiced speech like ‘c,” “f,” “h,” “s,” “t,”. . . ,
– most of the time closed but periodically opening in impulsive way during voiced

speech like “a,” “e,” “i,” “o,” “u,” “d,” “g,” “m,” “n,”. . . .

This acoustical signal of air-flow, coming from lungs, is passing through a vocal
tract cavity, oral, and nasal, which creates a resonance tube/chamber. During speak-
ing, we are opening mouth, moving the tongue, and permanently changing shape of
the vocal tract acoustical cavity and its resonant characteristics. What is spoken is
coded in natural way in speech resonance patterns: positions and heights of peaks of
speech spectrum envelope. Unvoiced-speech fragments are noisy-like, while voiced
speech fragments are oscillatory-like. A fragment of digital speech is presented in
Fig. 14.1. We see mainly voiced, oscillatory speech, except samples 3500–4000, be-
longing to unvoiced, noisy segment. In Fig. 14.2 are presented typical Fourier spec-
tra calculated for speech signals: one spectrum of the whole sentence/word (left)
and a sequence of shorter spectra, so-called short-time Fourier transform, calculated
for overlapping signal fragments (right). Both spectra belong to signal shown in
Fig. 14.1.

Having samples of digital speech, we divide it into fragments and for each frag-
ment, we find parameters describing the sound generated by the vocal folds. Mainly
we are interested in resonances of the vocal tract. Typically, 30 millisecond speech
fragments are used, windowed with Hamming function. They are overlapping 7.5
milliseconds (25%). Speech signal partitioning is shown in Fig. 14.3. Next, we build
a digital filter having frequency response the same as the vocal tract and excite it
with a signal which imitates sound generated by vocal folds. It is a random noise

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
sample number n

-0.4

-0.2

0

0.2

0.4
Speech x(n)

Fig. 14.1: Fragment of recorded human speech with oscillatory-like and noisy-like
intervals. In oscillatory voiced parts (almost everywhere), the vocal folds are rhyth-
mically opening and closing. In unvoiced noisy part (samples from 3500 to 4000),
vocal folds are open
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Fig. 14.2: Two types of frequency spectra calculated for speech signals: (left) mag-
nitude of the Fourier transform of the whole signal, (right) short-time Fourier trans-
form, a sequence of many Fourier spectra
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Fig. 14.3: Illustration of speech signal segmentation/partitioning: Hamming win-
dow with 240 samples is repeatedly shifted by 180 samples over the speech and
multiplied with it

(for unvoiced speech) or sequence of impulses with period T (period of vocal folds
opening and closing for voiced speech). A simplified scheme of speech production
and modeling is presented in Fig. 14.4.

The Vocal Folds Signal Vocal folds when speaking are in two states:

• opened all the time—unvoiced case,
• opening and closing periodically with some frequency, called a fundamental

one or a pitch period—voiced case.

In speech coding, we have to find a pitch period for each analyzed speech fragment.
It is assumed that a signal part is quasi-stationary when it has N = 240 samples
x(n), n= 0,1,2, . . . ,N−1, for sampling frequency fs = 8000 Hz. We calculate auto-
correlation function for the speech fragment:
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Fig. 14.4: Simplified model of speech production/synthesis [15]

R(k) =
N−1−k

∑
n=0

(x(n) · x(n+ k)), for k = 0,1,2, . . . ,N −1, (14.1)

find its maximum value for k > kmin (for example k > kmin = 20 for fs = 8 kHz), and
check whether it is greater than some threshold. If so, it means the speech is periodic
(voiced) and vocal folds are opening and closing with period equal to the argument
of the found auto-correlation peak maximum. If not, the vocal folds are opened all
the time and speech is unvoiced. We skip small values of k, because auto-correlation
function for any signal has always maximum value for k = 0. Additionally, pitch
period could be too small since the pitch frequency could not be too high, taking into
account human body constraints. Voiced phoneme “a” (left) and unvoiced phoneme
“sh” (right) and their auto-correlation functions (down) are presented in Fig. 14.5.
For “a,” the auto-correlation has side maximum for shift parameter k ≈ 70. This is
the “a,” period that is confirmed by visual observation of the signal waveform. For
“sh,” the auto-correlation has no side maximum, which is also correct because the
signal is not periodic.

The Vocal Tract Filter Digital speech synthesis filter is presented in Fig. 14.6. It
is described by the following equation (10 = 2 times 5 formants to be found):

s(n) = G · e(n)−
10

∑
k=1

aks(n− k), (14.2)

valid only for one stationary speech fragment, where e(n) denotes filter excitation,
G constant filter gain, s(n) synthesized speech, and ak auto-regressive filter coeffi-
cients. The speech synthesis filter is a recursive IIR digital filter with transfer func-
tion:
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Fig. 14.5: Phonemes “a” (left) and “sh” (right): their waveforms (up) and auto-
correlation functions (down)

H(z) =
G

A(z)
=

G
1+a1z−1 +a2z−2 + . . .+a10z−10 =

=
G

(1− p1z−1)(1− p∗1z−1) . . .(1− p5z−1)(1− p∗5z−1)
. (14.3)

It has ten poles, five p1, p2, p3, p4, p5 and their complex conjugates, and is capable
of creating five peaks in the filter frequency response (please, remember the zeros-
and-poles method of digital IIR filter design):

H(Ω) =
G

1+a1e− jΩ +a2e− j2Ω + . . .+a10e− j10Ω , Ω = 2π
f
fs
. (14.4)

It is not without reason that the filter can create five spectral peaks: human speech
has exactly up to five local spectral maxims called formants. In Fig. 14.7, frequency
responses of synthesis filters for voiced phonemes “a,” “e,” “i,” and “u” are shown.
We see different speech formants, resonant peaks, specific for each sound.

Calculation of Speech Synthesis Filter Coefficients Let P denote the speech lin-
ear prediction filter order. For a given speech fragment, we must find such vector of
speech synthesis filter coefficients:
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Fig. 14.6: Recursive speech synthesis filter. Denotations: e(n)—excitation, noise,
or sequence of impulses, s(n)—synthesized speech, ak—10 linear prediction filter
coefficients which are modeling the frequency response of vocal tract, and G—gain
[15]

a = [1,a1,a2,a3, . . . ,aP] . (14.5)

for which its frequency response (14.4) is the same as acoustical filter frequency
response of a speaker vocal tract. How to do it? In voiced-speech excitation, e(n) is
impulsive, i.e. for most time we have e(n) = 0. In such case, Eq. (14.2) takes a form
(assuming P = 10):

s(n) =−
P

∑
k=1

aks(n− k). (14.6)

This means that a speech signal is mostly self-predictive because each of its sample
is a linear superposition of last P samples, scaled by linear prediction coefficients a.
If we assume that a fragment of coded speech signal x(n) has N samples, we can

– write N − (P−1) equations of the form (14.6), but for x(n), not s(n),
– calculate errors between original speech samples and predicted ones,
– square all errors and sum them,
– finally find vector of prediction coefficients a as a solution of the following

least-squares error minimization:

J(a) = σ2 =
1

N −P

N−1

∑
n=P

err2(n) =
1

N −P

N−1

∑
n=P

[x(n)− x̂(n)]2 =

=
1

N −P

N−1

∑
n=P

[
x(n)+

P

∑
j=1

a jx(n− j)

]2

. (14.7)
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Fig. 14.7: Frequency response magnitudes of vocal tract filters calculated for voiced
phonemes: “a,” “e,” “i,” and “u” (in rows from left to right)

We calculate partial derivatives of Eq. (14.7) with respect (regard) to each coefficient
a j, set them to zeros, and solve obtained set of equations. The solution is as follows:

a =−R−1r, (14.8)

where matrix R and vector r are built from samples of the signal x(n) auto-
correlation function r(k):

a =

⎡
⎢⎢⎢⎣

a1

a2
...

aP

⎤
⎥⎥⎥⎦ , R =

⎡
⎢⎢⎢⎣

r(0) r(1) · · · r(P−1)
r(1) r(0) · · · r(P−2)

...
...

. . .
...

r(P−1) r(P−2) · · · r(0)

⎤
⎥⎥⎥⎦ , r =

⎡
⎢⎢⎢⎣

r(1)
r(2)

...
r(P)

⎤
⎥⎥⎥⎦ , (14.9)

r(k) =
1

N −P

N−1

∑
n=P

x(n)x(n+ k). (14.10)
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Knowing vector a of prediction coefficients, we can calculate (from Eq. (14.7))
the minimum value of cost function Jmin, being equal to variance of the estimation
error σ2

min:

Jmin = σ2
min = r(0)+aT r= r(0)+

P

∑
j=1

a jr( j). (14.11)

This value is used as filter gain G in our speech synthesis system, shown in Fig. 14.6.
In order to synthesize a speech fragment, we are exciting the IIR filter (14.3), having
already known parameters G and a, with a random noise or sequence of impulses
with period T .

Proof. We calculate derivatives of Eq. (14.7) in regard to coefficients ak and set
them to zero (for 1 ≤ k ≤ P):

∂J
∂ak

=
∂

∂ak

⎧⎨
⎩

1
N −P

N−1

∑
n=P

⎡
⎣x2(n)+2x(n)

P

∑
j=1

a jx(n− j)+

(
P

∑
j=1

a jx(n− j)

)2
⎤
⎦
⎫⎬
⎭= 0

1
N −P

N−1

∑
n=P

[
2x(n)x(n− k)+2

(
P

∑
j=1

a jx(n− j)

)
x(n− k)

]
= 0

1
N −P

N−1

∑
n=P

x(n)x(n− k)+
1

N −P

N−1

∑
n=P

[
x(n− k)

P

∑
j=1

a jx(n− j)

]
= 0

P

∑
j=1

a j

[
1

N −P

N−1

∑
n=P

x(n− j)x(n− k)

]
=− 1

N −P

N−1

∑
n=P

x(n)x(n− k)

P

∑
j=1

a jRxx(k, j) =−Rxx(k,0), k = 1, 2, . . . , P,

⎡
⎢⎢⎢⎣

Rxx(1,1) Rxx(1,2) · · · Rxx(1,P)
Rxx(2,1) Rxx(2,2) · · · Rxx(2,P)

...
...

. . .
...

Rxx(P,1) Rxx(P,2) · · · Rxx(P,P)

⎤
⎥⎥⎥⎦ ·
⎡
⎢⎢⎢⎣

a1

a2
...

aP

⎤
⎥⎥⎥⎦=−

⎡
⎢⎢⎢⎣

Rxx(1,0)
Rxx(2,0)

...
Rxx(P,0)

⎤
⎥⎥⎥⎦ . (14.12)

Last matrix equation is the same as Eqs. (14.8), (14.9). Why? Because Rxx(k, j) is
equal to r(k− j), defined in Eq. (14.10):

Rxx(k, j) =
1

N −P

N−1

∑
n=P

x(n− j)x(n− k) = r(k− j). (14.13)

After taking into account symmetry of the auto-correlation function, i.e. r(−m) =
r(m), Eq. (14.12) is the same as pair of equations (14.8), (14.9).
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Now, we will derive the Eq. (14.11). To do this, we put the solution a = R−1
xx r (14.8)

into the matrix equation of cost function (14.7) and obtain Eq. (14.11)):

Jmin =
1

N −P

N−1

∑
n=P

[
x(n)+

P

∑
j=1

a jx(n− j)

]2

=
1

N −P

N−1

∑
n=P

[
x(n)+aT x(n)

]2

Jmin =
1

N −P

N−1

∑
n=P

[
x2(n)+2x(n)aT x(n)+aT x(n)xT (n)a

]

Jmin =
1

N −P

N−1

∑
n=P

x2(n)+aT 1
N −P

N−1

∑
n=P

[
2x(n)x(n)+x(n)xT (n)a

]

Jmin=r(0)+aT [2r+Ra]=r(0)+aT [2r−RR−1r
]
= r(0)+aT r=r(0)+

P

∑
j=1

a jr( j).

Residual Excitation and Inverse Filter A digital filter inverse to H(z) is defined
as:

H−1(z) =
1

H(z)
→ H−1(z) ·H(z) = 1. (14.14)

Of course, passing any signal through the cascade of a filter H(z) and its inverse
H−1(z) does not change the signal (see left side of (14.14)) because undoing what
was done is returning us to the initial state. Let us create an inverse of the vocal tract
(speech synthesis) filter (14.3):

H−1(z) =
A(z)

G
=

1+a1z−1 +a2z−2 + . . .+a10z−10

G
. (14.15)

If we pass original speech through the inverse filter and then through the direct filter,
we obtain the same speech signal. Therefore output of the inverse filter, called the
residual signal, is the best excitation of the speech synthesis filter, because it ensures
perfect speech signal reconstruction. Therefore in some speech coders the residual
signal is computed and compressed for each speech frame. Compressing residual
signal instead of speech signal has a big sense, because for voiced speech this signal
is similar to periodic sequence of impulses and thanks to this it is easily coded (for
example, vector quantization technique can be used).

A time domain equation of the inverse filter is obtained by rewriting the speech
synthesis filter formula (14.2) but treating e(n) as output and s(n) as input:

s(n) = G · e(n)−
10

∑
k=1

aks(n− k) —original,

e(n) =
1
G

10

∑
k=0

aks(n− k) —inverse. (14.16)
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Fig. 14.8: Residual signals, output of inverse filters, for vowels (voiced phonemes)
“a,” “e,” “i,” and “u”

If we set s(n) = x(n), i.e. the speech to be coded, and pass the signals x(n) through
the inverse filter, the perfect excitation for the speech synthesis filter is attained.
EUREKA! After that, we can quantize it in a clever way and has almost perfect
synthesized speech. In Fig. 14.8, residual signals for voiced phonemes “a,” “e,” “i,”
and “u” are shown. As expected, they are somehow similar to our synthetic 0/1
excitation used for voiced speech.

Speech Compression in Digital Telephony Having coefficients of speech synthe-
sis filter and information about it excitation, we can synthesize a speech fragment.
In digital phone of A SPEAKER (content provider), pitch period and LPC filter co-
efficients are: estimated, quantized, and transmitted in real time. In digital phone of
A LISTENER (content user), the received data are de-quantized and speech is re-
produced using the known synthesis model (14.2) (synthesized excitation is passed
through the filter having given/sent LPC coefficients).

Signal processing during analysis (at speaker side) and synthesis (at listener side)
is done in overlapping blocks of signal samples, lasting approximately 30 millisec-
onds. For sampling frequency fs =8000 Hz, the block has 240 samples and overlaps
with 60 samples with the previous and next block (offset between blocks is equal to
180 samples).
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14.3 Speech Compression Exercises

Exercise 14.1 (Synthesis with Wrong Excitation Period). Run the pro-
gram lab14_speech_compress.m. Compare waveforms of input and
output signals (different fragments). A few times listen to the input
(soundsc(x,fs)) and to the output (soundsc(s,fs)). How big is the
difference? Next, during speech synthesis set a constant value of speech period
T = 80, 50, 30, 0. Simply uncomment the line:

% T = 80; % remove "%" and set: T = 80, 50, 30, 0
Now you hear what can be obtained from speech synthesis model when some
“cheating” is done. First, for non-zero value of T , we hear a robot-like speech,
then, for T = 0, a speech of a person with paralysis of vocal folds.

Exercise 14.2 (Using Different Prediction Orders). Return back to origi-
nal program settings (comment the line % T=80; % remove ...). Repeat
program execution for smaller linear prediction orders: Np=10,8,6,4,2.
The coding should still work, worse but with speech understanding. Compare
waveforms of original and synthesized speech. The difference is really very
big. Set Np=2 and T=80, T=0 during speech synthesis. Compare input and
output waveforms. Do you still understand the speaker? Wow! How good is our
hearing system!

Exercise 14.3 (Detail Understanding Speech Coding Algorithm). Return
back to original program settings. Set ifigs=1. Observe one-by-one four
sub-figures, presenting input data and partial analysis/synthesis results for each
speech segment:

– input speech fragment,
– its auto-correlation (see maximum for k = 0, then no peaks for noisy speech

and several peaks for oscillatory speech),
– frequency response of vocal tract filter (see 4 resonant peaks, so-called for-

mants),
– output (synthesized) speech fragment.

Compare value of speech period T , displayed on the screen, with index of the
auto-correlation function maximum. Observe how T value is changing. In your
opinion, is the calculated T value always correct? Well . . . Try to improve the
program . . . in the next exercise.
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Exercise 14.4 (Testing Correctness of the Voiced/Unvoiced Decision: At-
tempt of Improvement). Record your own speech samples for testing:

– voiced phonemes (vowels): “a,” “e,” “i,” “o,” “u,” . . .
– unvoiced phonemes (consonants): “c,” “f,” “h,” “k,” “s,” “sh,” . . .

First, try to make the sound as constant as possible. Next, try to change slightly
the intonation. Is the calculated T value constant and is it changing slightly as
expected? Try to identify the source of the error in PITCH DETECTION part
of the program (T =?). Modify the program if necessary.

Exercise 14.5 (Speech Parameters Quantization). Till now, we were testing
qualitative limits of the LPC-based speech coding: all calculated parameters
were coded in Matlab as double precision numbers. Perform quantization of
vector of parameters [T, gain, a1, a2, ..., a10] to 8-bit numbers
for the whole speech and store result to disc as binary numbers, for example,
in WAV format, not as *.mat files. Then read the data back, display them, and
play.
What is the compression ratio in this case? For 180 speech samples, 8-bit each,
we require 1400 bits. For 12 parameters, 8-bit each, describing the same speech
fragment, we require 96 bits. The compression ratio is about 15 times. Try to
quantize 12 parameters using less than 96 bits. How does it work?

Exercise 14.6 (Improving Excitation of Vocal Tract Filter Using Inverse
Filter and Residual Signal). Use your all voiced-speech recordings from
task 14.4. Calculate correlation function of the whole signal for each phoneme.
Use its coefficients for finding matrix R and vector r. Calculate prediction filter
coefficients [a1,a2,a3, . . . ,a10]—used in Eqs. (14.2), (14.3). Build the inverse
filter H−1(z) = 1

H(z) from the synthesis filter H(z)—see Eq. (14.14).

Experiment No. 1 Pass the original speech through the inverse of synthesis
filter H−1(z):
y = filter( [1 a1 a2 ...a10], 1, x ) / G.

Observe the result—the so-called residual signal. Now pass the signal back
through the synthesis filter H(z):
xs = G * filter( 1, [1 a1 a2 ...a10], y ).

You should obtain the original speech signal.
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Experiment No. 2 Repeat experiment 1, but now try to QUANTIZE the
residual signal. Observe that it is periodic and impulsive—very roughly sim-
ilar to an excitation sequence [. . .0 0 0 1 0 0 0 1 0 0 0 1 . . .], used in our
lab14_ex_speech_compress.m program. At present, knowing the con-
cept of residual signal, we see that our previous 0/1 excitation model was not
perfect. Therefore use residual signal as better excitation for each phoneme. Try
to quantize it or code it in some efficient way.

Listing 14.1: Speech compression and decompression using LPC-10 algorithm
�

1 % lab14_ex_speech_compress.m
2 % Speech compressionusing linear predictioncoding
3 clear all; close all;
4 ifigs = 0; % 0/1 - to show figures inside the processing loop?
5

6 % Parameters
7 Mlen=240; % length of analyzed block of samples
8 Mstep=180; % offset between analyzed data blocks (in samples)
9 Np=10; % prediction order (IIR-AR filter order)

10 where=181; % initial position of the first voiced excitation
11 roffset=20; % offset in auto-correlationfunction when find max
12 compress=[]; % table for calculatedspeech model coefficients
13 s=[]; % the whole synthesizedspeech
14 ss=[]; % one fragment of synthesizedspeech
15

16 % Read signal to compress
17 [x,fs]=audioread(’speech.wav’); % read speech signal (audio/wav/read)
18 figure; plot(x); title(’Speech’); % display it
19 soundsc(x,fs); pause % play it on loudspeakers (headphones)
20 N=length(x); % signal length
21 bs=zeros(1,Np); % synthesis filter buffer
22 Nblocks=floor((N-240)/180+1); % number of speech blocks to be analyzed
23

24 % MAIN PROCESSING LOOP
25 for nr = 1 : Nblocks
26 % take new data block (fragment of speech samples)
27 n = 1+(nr-1)*Mstep : Mlen + (nr-1)*Mstep;
28 bx = x(n);
29 % ANALYSIS - calculate speech model parameters
30 bx = bx - mean(bx); % remove mean value
31 for k = 0 : Mlen-1
32 r(k+1)=sum( bx(1:Mlen-k) .* bx(1+k:Mlen) ); % calculate auto-correlation
33 end % try: r=xcorr(x,’unbiased’)
34 if(ifigs==1)
35 subplot(411); plot(n,bx); title(’Input speech x(n)’);
36 subplot(412); plot(r); title(’Its auto-correlation rxx(k)’);
37 end
38 [rmax,imax] = max( r(roffset : Mlen) ); % find max of auto-correlation
39 imax = imax+(roffset-1); % its argument (position)
40 if ( rmax > 0.35*r(1) ) T=imax; else T=0; end % is the speech periodic?
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41 % if (T>80) T=round(T/2); end % second sub-harmonic found
42 T, % pause % display speech period T
43 rr(1:Np,1)=(r(2:Np+1))’; % create an auto-corr vector
44 for m=1:Np %
45 R(m,1:Np)=[r(m:-1:2) r(1:Np-(m-1))]; % build an auto-correlationmatrix
46 end % a = lpc(x,Np), levinson(x,Np)
47 a=-inv(R)*rr; % find coefficients of LPC filter
48 gain=r(1)+r(2:Np+1)*a; % find filter gain
49 H=freqz(1,[1;a]); % find filter frequencyresponse
50 if(ifigs==1) subplot(413); plot(abs(H)); title(’Filter freq response’); end
51 % compress=[compress; T; gain; a; ]; % store parameter values
52

53 % SYNTHESIS - generate speech using calculatedparameters
54 % T = 80; % remove "%" and set: T = 80, 50, 30, 0
55 if (T~=0) where=where-Mstep; end % next excitation=1 position
56 for n=1:Mstep % SYNTHESIS LOOP START
57 if( T==0) %
58 exc=2*(rand(1,1)-0.5); where=271; % random excitation
59 % exc=0.5*randn(1,1); where=271; % random excitation
60 else %
61 if (n==where) exc=1; where=where+T; % excitation = 1
62 else exc=0; end % excitation = 0
63 end %
64 ss(n) = gain*exc - bs*a; % filteringexcitation
65 bs = [ss(n) bs(1:Np-1) ]; % shifting the output buffer
66 end % SYNTHESIS LOOP END
67 s = [s ss]; % store the synthesizedspeech
68 if(ifigs==1) subplot(414); plot(ss); title(’Synthesizedspeech s(n)’); pause, end
69 end
70

71 % Finished!
72 figure; plot(s); title(’Synthesizedspeech’); pause
73 soundsc(s,fs)

��

14.4 Speech Recognition

The content of speech is carried in speech formants, i.e. resonant peaks present in
envelope of speech spectrum. These peaks are changing during speaking (their po-
sitions and heights). Since speech is modeled by a filter, frequency response magni-
tude of the speech synthesis filter gives us also information what was said. Speech
recognition is done in two steps:

• First, during training, algorithms are calculating and storing sequences of pa-
rameters describing speech spectral envelope of reference words, which is
changing; typically, as descriptors of the shape, cepstral or melcepstral coef-
ficients are used—they can be calculated directly from speech signal or from
linear prediction filter coefficients which are used for speech synthesis,
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• then, during recognition, sequence of parameters describing changing speech
spectral envelope of an unknown word is calculated and compared with known
sequences of parameters of reference words; a reference word having the most
similar sequence of spectral envelopes is chosen as a found solution; for exam-
ple, the dynamic time warping algorithm can be used for matching 2D matrices
of different dimensions.

Above statements were confirmed, in part, by experiments performed by us in the
previous section: we were drastically changing the speech synthesis filter excitation;
after that, we could not recognize the speaker but the speech content was perceived
well all the time. The filter itself was not being modified by us. We saw how the filter
frequency response was tracking the formant structure of speech and observed spec-
tral envelopes similar to the one presented in Fig. 14.7. We should remember that
automatic speech recognition (ASR) systems should allow calculation of parame-
ters describing local, peaky envelopes of speech spectrum, resulting from resonance
characteristics of human vocal tract. The melcepstral coefficients are the most fre-
quently used for this purpose.

Classical Speech Recognition Methodology In Listing 14.2, a simple Matlab pro-
gram, for creating limited vocabulary of words and testing recognition of these
words, is presented. First, values of our ASR system parameters are defined. Num-
ber of poles of filter transfer function Np is set to 10 (like in LPC-10 speech coders)
and number of cepstral coefficient Nc, used for spectral envelope description, is set
to 12. Time of recording, approximately 2–3 s, is defined by variable trec. Spectral
envelope is calculated for speech fragment lasting twind=30 milliseconds with
tstep=10 milliseconds offset between consecutive windows. Next, some exam-
ples of word vocabularies are given. The following main part of the program is
divided into two parts: creation of vocabulary and word recognition.
In the first part, vocabulary words are recorded and processed one by one. This sec-
tion starts with recording of words to be recognized (mywavrecorder() func-
tion). Then, simple voice activity detection (VAD) is performed, and silence parts,
present at the beginning and at the end of the recordings, are removed (better or
worse, you could improve it). Next, matrix Cref of word cepstra is calculated,
which describes how resonant peaks are changing in speech spectrum in time. The
matrix is stored into the archive CCref.
In the second part, one is checking recognition of any word from the vocabulary. A
word is chosen, recorded once more, cleared from silence fragments, accompanied
by its cepstral matrix Cx, and compared with matrices from the archive CCref.
Dynamic type warping (DTW) algorithm is used for finding the shortest path in
the grid of Euclidean distances between each pair of cepstra: any cepstrum from
Cx and any cepstrum from Cref, being part of the CCref archive. Word from the
vocabulary having the smallest accumulative distance is chosen as a recognized one.
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Listing 14.2: Matlab program for speech recognition using cepstral coefficients and
dynamic time warping

�

1 % lab14_ex_speech_recognition
2 % Isolated words recognition
3 clear all; close all;
4

5 global Mlen Mstep Np Nc % global parametersdescribed below
6 fs = 8000; % samplingfrequency (Hz)
7 Np = 10; % number of poles in predictionfilter transferfunction
8 Nc = 12; % number of calculatedcepstralcoefficients
9 trec = 2; % time of recording (s), 2 or 3

10 twind = 30; % time of observationwindow (ms)
11 tstep = 10; % time offset betweenconsecutivewindows (ms)
12 Mlen = (twind*0.001)*fs; % number of window samples (in one data frame)
13 Mstep = (tstep*0.001)*fs; % number of offset samples
14

15 words = {’zero’; ’one’; ’two’; ’three’; ’four’},
16 % words = {’start’; ’left’; ’right’; ’forward’; ’backward’; ’stop’},
17 % words = {’New York’; ’London’; ’Paris’; ’Berlin’; ’Warsaw’},
18 % words = {’John Brown’; ’Mark Smith’; ’Tom Green’; ’Betty Lewis’; ’Ann Margaret’},
19 M = length( words ); % number of words
20

21 % Creatingdatabase of referencerecordings
22 Cwzr = [];
23 for k = 1 : M
24 disp( strcat(’Press any key and AFTER 1 SEC say reference word:’, words(k)) );
25 % wz = wavrecord(trec*fs, fs, 1); % no of samples, sampling freq, 1 channel
26 ref = mywavrecord(trec, fs, 1); % no of seconds, sampling freq, 1 channel
27 ref = silence( ref, fs ); % remove silent parts (beginning, end)
28 [Cref, Nframes] = cepstrum( ref ); % calculate matrix of cepstral coeffs
29 [Nrow, Ncol] = size(Cref); % read its dimensions
30 CCref(1:Nrow,1:Ncol,k)=Cref ; Nref(k)=Nframes; % append it to database
31 end
32

33 % Recognition of words having reference pattern in the database
34 disp(’Now it is time for recognition. Press any ...’); pause
35 while( input(’ Recognition(1/0) ? ’) == 1 )
36 words
37 disp( ’Press any key and AFTER 1 SEC say a word to be recognized’ );
38 % x = wavrecord(trec*fs, fs, 1); % no of samples, sampling freq, 1 channel
39 x = mywavrecord(trec, fs, 1); % no of seconds, sampling freq, 1 channel
40 x = silence( x, fs ); pause % remove silent parts (beginning, end)
41 Cx = cepstrum( x ); % calculate matrix of cepstral coeffs
42 num = dtw( Cx, CCref, Nref ); % dynamic type warping of matrices
43 disp( strcat( ’Recognized word: ’, words(num) ) ); % recognitionresult
44 end

��

Voice Activity Detection: Silence Removal In Listing 14.3, an exemplary pro-
gram for voice activity detection in the recorded word is presented, very simple
and for sure not perfect. First, the mean value is subtracted, and signal normal-
ization takes place, i.e. division by the signal maximum absolute value. Next, en-
ergy of each sample (E) and energy of the whole signal (Eall) are computed.
Sample energies are sorted in descending order (sort()) and accumulated/in-
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tegrated (cumsum()). Then, the first sample of accumulated sum (Ecum) big-
ger than the chosen energy threshold (thres*Eall) is found (Neng). This way
all speech high-energy samples are found, with energy approximately equal to
100*tres=99 percentage of whole signal energy (Eall). Finally, high-energy
samples are sorted according their indexes, from the lowest to the highest one, and
only speech samples from ind(1) to ind(end) are taken. Of course, many other
different solutions are possible. You can try to find a better one.

Exercise 14.7 (Voice Activity Detection). Propose better method for voice ac-
tivity detection, more robust against impulsive disturbances occurring in the
beginning and end of a recording.

Listing 14.3: Matlab function for silence removal from speech recordings
�

1 function y = silence(x, fs)
2 % removingsilence from the beginning and from the end of recorded speech
3

4 N = length(x); n = 1 : N; % signal length
5 x = x-mean(x); xn = x/max(abs(x)); % mean value removal, normalization
6 thres = 0.99; % threshold (percentage of energy)
7 E = xn.̂ 2; % energy of each signal sample
8 Eall = sum( xn.̂ 2 ); % energy of all signal samples
9 [Esort ind] = sort(E,’descend’); % sorted energy of samples

10 Ecum = cumsum( Esort ); % cumulativeenergy of samples
11 Neng = max( find(thres*Eall>= Ecum) ); % find last sample > threshold
12 [ind dummy] = sort( n(ind(1:Neng)) ); % indexes of high-energy samples
13 ny = ind(1) : ind(end); % indexes the lowest - the highest
14 y = x( ny ); % copy only silence-free speech
15 if(1) % Figure for verification
16 yz = zeros(N,1); yz( ny(1):ny(end),1) = y; % append zeros
17 plot(n,x,’b-’,ny,y+2,’r.-’); axis([1,N,min(x),max(x)+2]); % plot in one
18 grid; title(’Before & After Signal Cutting’); figure(1) % figure
19 end

��

Calculation of Speech Descriptor/Feature: Matrix of Cepstral Coefficients
When we are sure that only samples of voice were selected from the recording, it
is time to start to think about finding a few numbers, describing the speech spec-
trum envelope. However at present, in the era of deep learning, also the whole not
pre-processed speech spectra could be used as feature vectors. The LPC filter coef-
ficients a define a speech synthesis filter which has a peaky frequency response with
a speech formant structure. However the coefficients a are not directly connected
with the filter frequency response shape and could be used directly for this shape
recognition. In ASR systems, cepstral coefficients are used as spectrum envelope
descriptors. They can be calculated from coefficients a. Signal cepstrum is defined
as follows:
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c(n) =
1
N

N−1

∑
k=0

ln

∣∣∣∣∣
N−1

∑
m=0

w(m)x(m)e− j2πkm/N

∣∣∣∣∣︸ ︷︷ ︸
C(k)

e± j2πkn. (14.17)

The speech fragment x(n) is multiplied with Hamming window function w(n). Then,
the discrete Fourier transform is performed, and logarithm, natural or decimal, of
absolute value of each Fourier coefficient is calculated. Finally, one more Fourier
transform is performed. We can shortly say that cepstrum is Fourier transform per-
formed over the logarithm of absolute value of the Fourier transform. In other words,
the second Fourier transform performs frequency analysis of the envelope of the first
Fourier transform. Its first coefficients tell us about low-frequency components of
this envelope, i.e. about its smooth peaks called formants. If two words have very
similar 12–16 cepstral coefficients, it means that their spectral envelopes are also
similar, and the words are very similar . . . may be they are even the same.

It is also important to stress usage of logarithm in the cepstrum definition. At
present, we know that speech can be synthesized by exciting a speech-dependent
digital filter in right way. Filter output is equal to convolution of its input with fil-
ter impulse response. Therefore, spectrum of the real (X( f )) or synthesized (S( f ))
speech is equal to multiplication of the excitation spectrum E( f ) with the filter fre-
quency response H( f ):

X( f ) = S( f ) = E( f ) ·H( f ). (14.18)

When we put Eq. (14.18) into Eq. (14.17), we get

c(n) = F−1 ( ln |H(Ω )E(Ω )|) = F−1 ( ln |H(Ω )|)+F−1 ( ln |E(Ω )|) . (14.19)

What do we see? Calculated cepstrum is summation of two cepstra. The first of
them, F−1(H(Ω)), comes from filter frequency response which is a low-frequency
one. The second of them is a cepstrum of filter excitation signal. For voiced speech,
the spectrum of sequence of impulses is also a sequence of impulses, i.e. it is pe-
riodic. Therefore, the second cepstrum, as a Fourier transform of periodic spectral
components, will show us the time repetition period of this components, i.e. the
fundamental speech frequency (pitch frequency). Figure 14.9 presents Fourier spec-
trum of a 240-sample-long fragment of the phoneme “a” (up) and cepstrum of this
signal (down). Over the DFT spectrum, two estimations of its envelope are over-
laid. They were calculated using the linear prediction coefficients (better fit) and
low-frequency cepstral coefficients (a little bit worse fit). We see that the first coeffi-
cients of the cepstrum are important for us since they give us information about the
spectrum envelope shape. In turn, the observed peak for n ≈ 70 tells us about the
pitch frequency value. Wow!

Q cepstral coefficients can be calculated from Eq. (14.17) but also from P linear
prediction coefficients, using the following equations:
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Fig. 14.9: DFT spectrum (up) and cepstrum (14.17) (down) calculated for 240 sam-
ples of phoneme “a” from Fig. 14.5, sampled at 8000 samples per second. Over the
DFT spectrum, its envelopes are overlaid, estimated using LPC and cepstral coeffi-
cients

c1 = a1, (14.20)

ck = ak +
k−1

∑
m=1

m
k

cmak−m, 2 ≤ k ≤ P, (14.21)

ck =
k−1

∑
m=1

m
k

cmak−m, P+1 ≤ k ≤ Q, (14.22)

wk = 1+
Q
2

sin

(
πk
Q

)
, 1 ≤ k ≤ Q, (14.23)

cwk = ck ·wk, 1 ≤ k ≤ Q, (14.24)

where wk denotes weighting coefficients and cwk cepstral coefficient after weight-
ing.

In Listing 14.4, calculation of cepstral coefficients using different methods is pre-
sented. Parameters Mlen=240, Mstep=80, Np=10, Nc=12 are global vari-
ables with values defined in the main ASR program 14.2. Signal pre-emphasis is
done (amplifying higher frequencies). LPC coefficients are calculated as during
speech compression. Cepstral coefficients are calculated from a, from Eq. (14.17)
and using Matlab function rceps().
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Exercise 14.8 (Calculation of Cepstral Coefficients). Use program 14.4.
Modify it. In cepstrum calculation loop, compute c, c1, c2 coefficients and
display them in one figure. For recordings of single voiced phonemes “a,” “e,”
“i,” . . . , observe whether cepstral coefficients are similar or not, and how much
they are changing. Set Nc = 128. Repeat observation for different phonemes
and check whether the upper limit Nc = 12 is correct. If it is too small, increase
Nc value, e.g. to 16.

Listing 14.4: Matlab function for calculation of matrix of cepstral coefficients for
recorded speech

�

1 function [Cx, Nframes] = cepstrum( x )
2 % calculation of matrix of cepstralcoefficients
3

4 global Mlen Mstep Np Nc % global parameters
5 N = length(x); % number of signal samples
6 Nframes = floor((N-Mlen)/Mstep+1); % number of frames of samples
7 m = 1:Nc; w = 1 + Np*sin(pi*m/Nc)/2; % weightingcoefficients
8 x = x - 0.9375*[0; x(1:N-1)]; % initialfiltration (pre-emphasis)
9 Cx = []; % initialization

10 % MAIN LOOP
11 for nr = 1 : Nframes
12 % Taking a new frame (block) of speech samples
13 n = 1+(nr-1)*Mstep : Mlen + (nr-1)*Mstep; bx = x(n);
14 % Initial pre-processing
15 bx = bx - mean(bx); % remove mean value
16 bx = bx .* hamming(Mlen); % multiply with window function
17 % Calculation of cepstralcoefficients from predictionfilter coeffs
18 for k = 0 : Np % # auto
19 r(k+1) = sum( bx(1 : Mlen-k) .* bx(1+k : Mlen) ); % # correlation
20 end % # samples
21 rr(1:Np,1)=(r(2:Np+1))’; % auto-correlationvector
22 for m = 1 : Np %
23 R(m,1:Np)=[r(m:-1:2) r(1:Np-(m-1))]; % auto-correlationmatrix
24 end %
25 a = inv(R)*rr; a = a’; % coefficients of predictionfilter
26 a = [a zeros(1,Nc-Np)]; % appending zeros
27 c(1) = a(1); % calculation of cepstral coeffs
28 for m = 2 : Nc % from LPC coefficients
29 k = 1:m-1; c(m) = a(m) + sum(c(k).*a(m-k).*k/m); % cc=?
30 end
31 % Calculation of cepstralcoefficients from speech Fourierspectrum
32 % c1 = real( ifft( log( abs(fft(bx)).̂ 2))); % do it yourself
33 % c2 = rceps(bx); % Matlab function BAD
34 % c = c1; c = c’; c = c(2:Nc+1); % choice: c1 or c2?
35 % Weightingcepstralcoefficients
36 cw = c .* w; % multiply with weights
37 Cx = [Cx; cw]; % storing result
38 end

��
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Speech Recognition: Matching Matrices of Cepstral Coefficients At this stage,
we have a collection of reference patterns of cepstral coefficients for words from the
vocabulary and a CC pattern for unknown spoken word. The patterns have a form of
matrices with word cepstra stored in rows. Since a word duration can be different,
number of rows of each matrix can be different also. The second dimension, number
of column is the same and equal to the number of cepstral coefficients Nc = 12, used
for recognition. For each pair of matrices {unknown, reference} Euclidean distance
d(nx,nr) between each pair of cepstra is calculated, i.e. nx-th unknown and nr-th
reference (r is used as reference denotation):

d(nx,nre f ) =

√√√√ Nc

∑
k=1

(
Cx(nx,k)−Cre f (nre f ,k)

)2
, nx = 1 . . .Nx, nre f = 1 . . .Nre f .

(14.25)
The distance matrix created this way has Nx columns and Nr rows. In Fig. 14.10, its
example is shown, in which case the cepstra of one word are treated the same time as
unknown and reference cepstra. We observe the expected matrix symmetry and dis-
tance equal to zero for diagonal elements. Having such matrix for different words,
the shortest accumulated path from the element d(1,1) to the element d(Nx,Nr) is
calculated and is shown in Fig. 14.11. We are starting from the bottom-left corner
with element d(1,1) and are moving only one position: right (10), up (10), or diago-
nally (11), being aware of constraints (region surrounded with dashed lines) limiting
possible steps. Step is done in direction of an element having the smaller value (for
diagonal move, value of an element is doubled). Matrix elements lying on the chosen

Fig. 14.10: Exemplary matrix of Euclidean errors d(nx,nr) between cepstra of the
Polish word “dwa.” The same word is treated as unknown and reference word. Ma-
trix symmetry is observed [15]
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Fig. 14.11: Graphical illustration of dynamic time warping of two sequences of
features. Calculation of the shortest accumulative path (from bottom-left corner to
top-right corner) in the matrix of incongruity errors d(nx,nr) (errors between cepstra
of unknown word [horizontally] and reference word [vertically]) [15]

path are accumulated and treated as the shortest path measure, telling us about dis-
similarity of two words. The lower this value is, the smaller is difference between
words being compared. Finally, having accumulated distance measures between un-
known and all reference patterns, as recognized is chosen this pattern which has the
smallest accumulated distance. Equation, presented below, describes in detail the
movement and accumulation strategy:

g(nx,1) =
nx

∑
k=1

d(k, 1), nx = 1, 2, . . . ,Nx, (accumulation in in first row)

g(1,nr) =
nr

∑
k=1

d(1, k), nr = 1, 2, . . . ,Nr, (accumulation in in first column)

f or nx = 2, 3, . . . , Nx : (vertically)

f or nr = n(down)
r (nx), . . . , n(up)

r (nx) : (horizontally)

g(nx,nr) = min

⎧⎨
⎩

g(nx,nr −1)+d(nx,nr) (up)
g(nx −1,nr −1)+2 ·d(nx,nr) (diag)
g(nx −1,nr)+d(nx,nr) (right)

where 2 ≤ n(down)
r (nx) and n(up)

r (nx) ≤ Nr denote constraints of vertical movement,
which depend upon nx value. In order to obtain result independent from matrix sizes,
at the end accumulated distance is divided by

√
N2

x +N2
r .
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Exercise 14.9 (Dynamic Time Warping). Use program 14.5. Modify it. Un-
comment line number 16 and comment line 17. Before calculation of accumu-
lated (accum) distance g(), display the matrix d(nx,nr), for example, using
this code:

Xax = ones(Nx,1)*(1:Nr); Yax = (1:Nx)’*ones(1,Nr);
mesh(Xax,Yax,Z); xlabel(’nx’); ylabel(’nr’);
zlabel(’d(nx,nr)’);

axis tight; V=[-45 65]; view(V);

Repeat the same recognition experiment for different values of coefficient
Q—width of path limiting area, for example, for 0.1, 0.2, 0.5, 0.75. Does it
have influence on recognition efficiency? Can you generate a figure similar to
Fig. 14.11?

Listing 14.5: Matlab function for dynamic time warping of unknown cepstral matrix
with reference cepstral matrices of words being recognized

�

1 function [ number ] = dtw( Cx, Cref, Nref)
2 % word recognition via dynamic time warping (DTW) of matrices with cepstral coeffs
3

4 [ Nx, Nc ] = size(Cx); % number of: cepstral vectors, cepstral coeffs
5

6 for nref = 1 : length(Nref) % compare Cx with Cref of all referencepatterns
7 % Calculatedistance d(ns, nr) between signal (ns) and ref (nr) cepstra
8 Nr = Nref( nref ); % number of vectors with ref cepstra
9 Q = round( 0.2 * max(Nx,Nr) ); % coefficient of path width

10 d = Inf*ones(Nx,Nr); % init. of distance matrix
11 tg=(Nr-Q)/(Nx-Q); % init. of angle tangent
12 for nx = 1:Nx % for each cepstrum of the word
13 down(nx) = max( 1, floor(tg*nx-Q*tg)); % lower limit
14 up(nx) = min( Nr, ceil(tg*nx+Q)); % upper limit
15 % for nr = 1 : Nr
16 for nr = down(nx) : up(nx) % for each cepstrum of ref word
17 d(nx,nr)=sqrt( sum( (Cx(nx, 1:Nc) - Cref(nr, 1:Nc, nref)).̂ 2 )); % distance
18 end
19 end
20 % Calculation of accumulated (accum) distance g()
21 g = d; % initialization
22 for nx = 2:Nx, g(nx,1) = g(nx-1,1) + d(nx,1); end % accum of 1st column
23 for nr = 2:Nr, g(1,nr) = g(1,nr-1) + d(1,nr); end % accum of first row
24 for nx = 2:Nx % accum vertically (word)
25 for nr = max( down(nx), 2 ) : up(nx) % accum horizontally (ref)
26 dd = d(nx,nr); % distance: word "nx", ref "nr"
27 temp(1) = g(nx-1,nr) + dd; % go up
28 temp(2) = g(nx-1,nr-1) + 2*dd; % go over diagonal (right up)
29 temp(3) = g(nx,nr-1) + dd; % go right
30 g(nx,nr) = min( temp ); % choose accumulatedvalue
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31 end
32 end
33 glob(nref) = g(Nx,Nr)/sqrt(Nx̂ 2+Nr̂ 2) % accum value of the "shortest" path
34 end
35 [ xxx number ] = min( glob ); % number of ref with the lowest acc value

��

14.5 Summary

Professionally, as a researcher, I am not involved in high-tech speech pro-
cessing applications. But I like to deal with speech signals and teach basics
of signal processing on their example. Following are the most important key
points dealt in this chapter:

1. Speech signal fragments are divided into voiced ones, when vocal folds are
opening and closing, and into unvoiced ones, when vocal folds are open
all the time. If an auto-correlation function of speech fragment has a high
local maximum for some signal shift, it means that the signal is repeating
with period equal to the shift value and vocal folds are working with this
period, called a pitch period. Otherwise, the vocal folds are opened. Signal
from vocal folds is speaker dependent.

2. Vocal folds signal excites the vocal tract acoustical filter, consisting of oral
and nasal cavities, being a resonating tube. Frequencies and strength of its
resonances characterize a speech content. In speech processing language,
we tell that frequency response of speech synthesis filters has 4–5 peaks
called formants.

3. In speech compression algorithms, a speech signal is divided into segments
and analyzed. For each fragment, parameters describing excitation and vo-
cal tract filter are computed and then stored or transmitted. During decom-
pression, speech signal is synthesized piece-by-piece; synthesized excita-
tion is passed through a digital IIR filter imitating the vocal tract. Speech
synthesis model and parameters calculation are so good that we do not hear
the difference between original and synthesized speech.

4. Synthesis filter coefficients are found using linear prediction method. The
speech compression is an example of linear prediction coding (LPC) of sig-
nals. In order to better track the filter change, analyzed speech fragments
should overlap more. Alternatively, filter intermediate states can be found
during interpolation of line spectrum pairs (LSP) or line spectrum frequen-
cies (LSF), calculated from LPC coefficients. We do not interpolate LPC
coefficients, since interpolation of the filter frequency response is our goal.

5. To have higher compression ratio, calculated values of parameters of
speech synthesis model should be quantized. In order to reduce influence of
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this operation on the quality of synthesized signal, the synthesis filter uses
typically lattice structure which is more robust to filter weights rounding
(LPC coefficients are transformed to reflection coefficients which are quan-
tized).

6. Content of a speech (what was said) is present in speech formant (reso-
nance) structure which is changing in time. To recognize a word, we have
to calculate its parameters describing change of its spectrum envelope and
compare them with parameters of reference words. Typically, cepstral co-
efficients are used in this purpose, being result of discrete Fourier or cosine
transform, performed over logarithm of speech spectrum magnitude. To be
more precise, melcepstral ones, i.e. cepstral but calculated for mel acoustic
scale.

7. In the simplest automatic speech recognition (ASR) systems, matrices of
melcepstral coefficients, calculated for unknown words, are compared with
matrices of melcepstral coefficients, calculated for reference words, using
dynamic time warping (DTW) method. In more advanced methods, hid-
den Markov models (HMMs) are used for decision-making. At present, it
behooves only to use deep learning artificial intelligence approach technol-
ogy.

14.6 Private Investigations: Free-Style Bungee Jumps

Exercise 14.10 (** Linear Spectrum Pairs and Speech Synthesis Filter Interpo-
lation). Let us assume that we have a brilliant idea of interpolating states of speech
synthesis filter. Doing this, we expect to obtain smoother synthesized signal. But
how to do it? Interpolate separately every LPC coefficient? No. The correct solution
is as follows. We calculate coefficients of two filters P(z) and Q(z):

P(z) = 1+(a1 +a10)z
−1 +(a2 +a9)z

−2 + . . .+(a10 +a1)z
−10 + z−11,

Q(z) = 1+(a1 −a10)z
−1 +(a2 −a9)z

−2 + . . .+(a10 −a1)z
−10 − z−11,

for two consecutive speech segments. Then we find zeros of their transfer functions
(always lying on unitary circle) and interpolate them, separately for P(z) and Q(z),
between two speech states. Finally, we use Pi(z) and Qi(z), the interpolation result,
and calculate

Ai(z) =
Pi(z)+Qi(z)

2
,

Hi(z) =
G1 +G2

2Ai(z)
,
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Fig. 14.12: Speech synthesis filter in classical (up) and lattice (down) version. Gain
G is missing. Coefficients γ are calculated from coefficients a [15]

where Hi(z) is a transfer function of the interpolated filter. For sure, during long
winter evenings, you will find an hour or two to check efficiency of this approach.

Exercise 14.11 (** Speech Synthesis Lattice Filter). In high-tech speech com-
pression algorithms, the speech synthesis filter is typically implemented in a lattice
structure which is more robust to quantization of filter coefficients. Classical and
lattice implementation of the IIR speech synthesis filter, with missing gain G, is
presented in Fig. 14.12. Having the LPC coefficients a, one should calculate coeffi-
cients g (γ in Fig. 14.12) of the lattice filter, quantize them, and synthesize speech
using lattice processing scheme. More practical details are given in Listing 14.6. If
you are interested in this topic, try to apply this concept in our LP-based speech
encoder and decoder program 14.1.

Listing 14.6: Lattice version of speech synthesis filter
�

1 % lab14_ex_lattice.m
2 clear all; clf;
3

4 % LPC filter coefficients
5 a = [ 1-0.9 0.64-0.576 ]; N=length(a); aa=a(2:N); P=N-1;
6 % Reflectioncoefficients g(i) of lattice filter
7 ax(P,1:P)=aa(1:P);
8 for i=P:-1:1
9 g(i)=-ax(i,i);

10 for j=1:i-1
11 ax(i-1,j)=(ax(i,j)+g(i)*ax(i,i-j))/(1-g(i)̂ 2);
12 end
13 end
14 g, pause
15 % Filtered signal
16 Nx=100; n=0:Nx-1; x=sin(2*pi*n/12+pi/4);
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17 % Latticefiltration
18 e1=zeros(1,N);
19 for n=1:Nx
20 e0(N)=x(n);
21 for k=N:-1:2
22 e0(k-1) = e0(k)+g(k-1)*e1(k-1);
23 e1(k) = -g(k-1)*e0(k-1)+e1(k-1);
24 end
25 e1=[ e0(1) e1(2:N) ];
26 y(n)=e0(1);
27 end
28 % Figures - comparison with standardfiltrationalgorithm
29 yref = filter(1,a,x);
30 figure; plot(y); title(’Filter output’);
31 figure; plot(y-yref); title(’Difference with filter(1,a,x)’);

��

Exercise 14.12 (** Melcepstrum-Based ASR). In professional ASR systems,
mel-cepstrum is used instead of cepstrum for spectrum envelope description. The
signal is windowed as before, but after DFT the spectral coefficients are squared
and locally weighted. Since we hear higher frequencies worse, frequencies of DFT
coefficients are converted into mel scale having psycho-acoustical origin (m—in
mels, f—in herz):

m = 2595 · log(1+ f/700) , f = 700 ·
(

10m/2595 −1
)
. (14.26)

In the mel scale, the DFT local weights are triangular functions having width of
200 or 300 mels that are shifted up by 100 or 150 mels, respectively, to 2100 mels
(about 4000 Hz). After DFT coefficients weighting natural logarithm of the resultant
spectrum is computed and DCT-II transform is performed:

ck =

√
2
L
·

L

∑
l=1

ln
(
S̃(l)
)

cos

(
πk
L
(l −1/2)

)
, k = 1, 2, 3, . . . , q (14.27)

Are you interested in extension of our ASR system to mel-cepstrum-based one?
Bravo!
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Chapter 15
Audio Compression

Music has charms to soothe the savage breast, especially this
one which is streamed in the Internet :-)

15.1 Introduction

In this chapter introduction will be a little bit longer than usual. I have coded
MP2 encoder and decoder in assembler on a DSP fixed-point processor. It was
a long run, a lot of hard work and fantastic, new, engineering experience. So
now, it is difficult for me to close the subject in one paragraph only.

Audio signal compression is completely different than speech compression.
It sounds very strange but it is true. In speech compression we are modeling
acoustical voice production, the vocal folds/cords excitation and the vocal tract
filter. In audio compression we are modeling human hearing system. Why? Be-
cause, at first, in audio compression we can not model a sound source without
knowledge about its origin, and a set of different sound sources is infinite. At
second, since a listener of compressed audio is a human being, not a bat having
completely different hearing system then we, people, and therefore, knowing
human hearing system, we can avoid coding of sub-sounds which are not heard
by us. It sounds reasonably. But what we can win knowing the psycho-acoustics
of our ears and mind, the commander center? A lot, because single frequency
tone can mask in our head other tones and narrow-band noises having frequency
values close to it (tone is masking tone or noise). And vice versa, narrow-band
noise can do the same: mask tones and noises lying close to it in frequency.
When something is psycho-acoustically masked, is the sense to loose bits for
its coding? No, it is not. Therefore, a psycho-acoustical model of human hear-
ing system takes the central part in each modern audio coding algorithms. The
Fourier transform (FFT) of the sound samples is performed in it and masking
curves for all found tones and narrow-band noises are calculated. Then all the
masking curves are combined, and added to absolute threshold of hearing. As a
result a signal-to-mask-ratio (SMR) curve is obtained, having the extraordinary
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significance in audio compression. Why? Since only these frequency compo-
nents which are above the final masking curve will be heard by us! Having this
information, an audio compression algorithm allocates bits only for them.

Stop! How it is possible? How we can give bits separately to some signal
frequency components having all components mixed/added together! An now,
the second very important hero of the audio compression story appears on the
stage: sub-band signal decomposition, realized as a set of parallel filters sepa-
rating different frequency sub-bands, or, an orthogonal transform, namely the
modified discrete cosine transform (MDCT), doing the same but in different
manner. When the signal big river of all-together-now samples is converted
into many small creeks/streams of samples belonging only to some frequency
bands, signal quantization takes place. First, bits are allocated to frequency sub-
band samples proportionally to their psycho-acoustical significance. In conse-
quence, some frequency creeks/streams are given many bits and some of them
(oh, please, do not do it!) are obtaining ZERO bits. Then: (1) normalization of
sub-band samples to the range [−1,1] is done, and (2) their quantization takes
place. When fixed-point processors and fractional binary number representa-
tion is used, in the last stage, first, samples are multiplied by some constants,
depending on the number of allocated bits, and, next, left is only the speci-
fied number of most significant bits of the result. After that some additional
loss-less compression method can be applied (for example, Huffman coding as
in the MP3 standard). Finally, the bit-stream is formed, as a train with many
carriages, in compression language: with many frames. Each frame consists of
the header, describing the content, and the content itself: bits describing per-
formed normalization and quantization (here we have indexes to many tables
from standards) and quantized samples of many audio sub-band creeks/streams.
The bit-stream is transmitted or stored.

Ufff.

An audio decoder, first, should synchronize with data frames (train car-
riages), read header and find information how the decoding should be done (fre-
quencies, channels, compression levels, bit-rates, etc.). Then it decodes param-
eters describing bit allocation and normalization, and decodes audio samples of
each frequency sub-band. Finally, all sub-band data should be up-sampled and
added: all small creeks are joining and a big audio river is restored. The orig-
inal audio samples are not perfectly reconstructed because there is no sense of
such reconstruction: we do not hear the difference between the original and the
decoded sound, when all components above the masking threshold have been
fed with sufficient number of bits. It is a magic of psycho-acoustical audio cod-
ing! Our sense of hearing is not perfect and some audio frequency components
can be simply . . . (oh, please, do not . . . ) REMOVED, REJECTed, CANceled,
. . . I am sorry.

From historical point of view, audio signals were first coded using the AD-
PCM method. (PCM) denotes a pulse code modulation in which audio wave-
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forms are sampled and are written as a sequence of 8/16-bit samples. (D) means
differentially: the difference between a sample and its prediction based on pre-
vious samples was quantized. (A) denotes adaptive: the next sample prediction
was being changed in adaptive way. This compression method works well when
16-bit audio samples are coded as 4-bit ones, i.e. 4-times compression ratio is
offered easily.

Next begun the era of psycho-acoustical audio coding. The second world-
wide standard of audio coding, namely the MPEG-audio standard, was intro-
duced in the beginning of 90-ties of XX century, almost 30 years ago. In MPEG,
an audio stream is first processed by bank of 32 filters working in parallel, di-
viding a full-band sound into 32 frequency sub-bands. A prototype low-pass
filter with 512 weights is modulated by 32 cosines which are shifting the filter
frequency response to higher frequencies (sub-bands). After signal filtration by
32 filters, sub-band signals are sub-sampled 32 times, i.e. only each 32-th sam-
ple is left in each of 32 sub-channels. This way block of 1152 input samples
is converted to 32 sub-bands having 36 samples each. In parallel 1024-point
FFT is performed and psycho-acoustical analysis is done. Using its results, the
adaptive bit allocation for 32 sub-band signals is performed. Then, sub-band
samples are normalized, quantized according to bit allocation and put into the
bit-stream. In MP3 layer each of 32 sub-bands is further divided adaptively into
additional 6 or 18 sub-sub-bands (sub-creeks), respectively, for noisy and tonal
parts. Decision, 6 either 18, is made using calculated perceptual entropy of a
sound spectrum. At the last stage audio bits are losslessly coded using Huffman
coder with per-calculated code-books.

Advanced audio coding (AAC) is the third the most important audio com-
pression standard. It was proposed as a part of MPEG-2 extension in the middle
of 90-ties of XX century and was improved the years later, about year 2005,
with high-efficiency extensions HE-1 and HE-2. In AAC a different technique
for signal splitting into sub-bands is used. A 256-point (for noisy-like audio
parts) or 2048-point (for tonal-like audio parts) sine window is shifted along
the signal with 50% overlapping and the MDCT transform of corresponding
length is performed. Again, window is chosen adaptively according to a signal
nature, noisy or tonal. 128 or 1024 DCT coefficients are coded using the per-
ceptual model. Perceptual noise substitution is performed: decoder find area of
DCT coefficients of noise, calculate their parameters, and send them to decoder
which synthesize them in a block-based manner. Prediction techniques are ap-
plied in time–frequency MDCT coefficient patterns. In AAC HE-1, first high-
efficiency extension, a technique of spectral band replication (SBR) is used:
high-frequency DCT coefficients are synthesized in the decoder in clever way
using information sent from the encoder. In AAC HE-2 extension only one au-
dio channel is codded, the remaining ones are coded differentially in parametric
way.
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The latest ideas of sound compression relies of joint speech/audio coding: on
recognition of sound signal type and switching between different coders. Such
approach is applied in universal speech-and-audio coders (USAC).

What do you think? Will be this chapter interesting for you? If not, please,
go directly to the next one.

15.2 Psycho-Acoustics of Human Hearing System

15.2.1 Fundamentals

Human inner ear is built from cochlea which is spiral tube with increasing diameter
filled with some fluid. In its beginning, at the more narrow part, there are vibrating
stapes generating acoustical longitudinal wave consisting of different frequencies.
This wave excites the cochlea wall, called a basilar membrane which is a natural
sound spectrum analyzer. The membrane is frequency selective: its different parts
have different resonant frequencies and start to vibrate only when these frequencies
are present in the acoustical wave propagated in the fluid. When the cochlea diam-
eter is bigger, the resonant frequency is lower. Vibrating different parts of basilar
membrane activates different neurons and this information is transmitted to human
brain. But nothing is perfect. This is a mechanical system. When one membrane
part is excited with one strong frequency and vibrates with big amplitude, the side
membrane parts are also vibrating with the same frequency and side frequencies, if
present, are masked and not heard. They should be stronger if they want to win the
battle!

In Fig. 15.1 the frequency masking phenomena, taking place in our ears, is il-
lustrated. Strong frequency activates the basilar membrane and deforms it creating
characteristic tent: if excitation of side-band frequencies are below this tent, they are
not heard. In audio coders exactly this effect is exploited: bits are allocated only to
strong frequency components of a signal. A total masking threshold for frequencies
is calculated and bits are allocated to frequency components of a signal proportion-
ally to exceeding by them the masking level. The triangular masking curve, caused
by some frequency excitation and describing distribution of deformation energy of
basilar membrane, is presented in Fig. 15.2.

Since a strong sound is faster processed by our brain than a weak one, frequency
masking has to be analyzed not only in frequency axis but in time axis also. Strong
sound is masking in some extend also nearby frequencies which were BEFORE it,
i.e. earlier. Additionally, when amplitude of membrane oscillation is big, the return
to no-oscillation state takes more time, what causes that also some nearby frequen-
cies appearing AFTER the strong sound are masked. Both time effects of frequency
masking, the pre- and post-masking, are illustrated also in Fig. 15.1.

In bit allocation, general information about pressure of sound waves with differ-
ence frequencies should be taken into account also. There is no sense to loose bit
for coding UN-MASKED sound waves which are too weak to be heard. Absolute
threshold of hearing, evaluated for a statistically mean person, gives us the needed
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Fig. 15.1: Illustration of frequency masking effect: (left) statically in frequency do-
main, (right) dynamically frequency pre- and post-masking in time [12]
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Fig. 15.2: Shapes of some mathematical functions describing psycho-acoustical ef-
fects/phenomena of human hearing system [12]

information. Its curve is presented in Fig. 15.2. Threshold for 2 kHz is treated as
a reference one. We see that frequencies near 3 kHz are perceived the best, while
very low frequencies (below 250 Hz) and high frequencies (above 12 kHz) are much
poor heard by us. Absolute threshold of hearing is approximated by the following
equation:

Tabs( fkHz) = 3.64 · f−0.8
kHz −6.5 · exp

(
−0.6 · ( fkHz −3.3)2

)
+0.001 · f 4

kHz. (15.1)
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Fig. 15.3: Detail interpretation of frequency masking phenomena, helping in under-
standing meaning of psycho-acoustical model variables [12]

Our hearing system has not only different amplitude sensitivity for different
frequencies, but also different frequency resolution. We better distinguish low-
frequency sounds than high-frequency ones. This feature is described by width of
the so-called critical bands. Their measurement is performed in this way that white
noise is generated around an each frequency and width of its frequency band is in-
creased in order to obtain the same sound audibility level. The critical band width
increases with frequency what is shown in Fig. 15.2. When the overall audibility
band is divided into 25 critical non-overlapping bands, the so-called bark scale is
obtained. Width of a critical band is the following function of frequency (in kHz):

Δ fHz = 25+75 ·
(

1+1.4 · ( fkHz)
2
)0.69

, (15.2)

while transforming frequency to bark scale is given by formula:

b = 13 · arctg(0.76 · fkHz)+3.5 · arctg
(
( fkHz/7.5)2

)
. (15.3)

Why we spending our precious time on bark scale discussion? Because it is ex-
ploited in psycho-acoustical models used in audio compression! Of course, first a
signal FFT spectrum is calculated, but then it is transformed into bark scale when
signal masking is computed.

15.2.2 Basics of Signal-to-Mask Radio Calculation

In this section we learn basics of calculation of signal-to-mask ratio, used in the
MP2/MP3 standard. Equations presented below use variables which interpretation
is given in Fig. 15.3.
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Relative distribution of energy along basilar membrane, resulting from single
tone excitation, is given by the following formula (in decibels):

B(Δb) = 15.81+7.5 · (Δb+0.474)−17.5 ·
√

1+(Δb+0.474)2, (15.4)

where Δb denotes the frequency distance expressed in bark scale. The function
B(Δb) is called a spreading function, spreading excitation from one critical band
to neighboring ones. In Fig. 15.3 different excitations are marked with ↑. Analysis
is done only for the strongest E(k), which appeared in the k-th critical band. Its
energy excites also neighboring part of the membrane on both sides. A characteris-
tic tent, marked with light-gray color, is described by slopes S1(k) (left) and S2(k)
(right). The strong excitation is masking weaker ones, lying below the threshold
T (k) (area marked with dark-gray color) obtained by shifting E(k) down by O(k)
decibels (offset). Slopes S1(k) (left) and S2(k) are specified by

{
S1(k) = 31,
S2(k) = 22+min(0.23/ fkHz,10)−0.2EdB(k),

(15.5)

where EdB(k) denotes the excitation in decibels and fkHz its frequency in kHz. Offset
O(k) between excitation energy and threshold level is defined by

O(k) = α(k) · (14.5+ k)+(1−α(k)) ·β (k), (15.6)

where α(k) and β (k) denotes, respectively, tonality index and masking index in the
k-th critical band:

α(k) = min{SFM(k)/SFMmax, 1} , SFMmax =−60 dB, (15.7)

β (k) = 2+2.05 · arctg(0.25 fkHz)+0.75 · arctg

(
( fkHz)

2

2.56

)
. (15.8)

SFM in Eq. (15.7) denotes the spectral flatness measure, defined as ratio of geomet-
ric and arithmetic mean of squared samples of signal DFT spectrum (after window-
ing with Hanning window):

SFM (k) = 10log10

⎛
⎜⎜⎜⎝

[
Nk

∏
l=1

|Xk(l )|2
]1/Nk

1
Nk

Nk

∑
l=1

|Xk(l )|2

⎞
⎟⎟⎟⎠ . (15.9)

Each excitation is creating its own masking tent. All of them are added and the
overall masking threshold is calculated. After that, the absolute threshold of hearing
is taken into account. Signals lying below the total masking threshold are not heard.
They should not be coded. The signal-to-mask ratio (SMR) is defined as a difference
between the signal spectrum and the total masking curve. Sub-band signals should
obtain number of bits proportional to their SMR values.
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Fig. 15.4: Frequency masking example from exercise 1, in columns: (1) spectrum of
two-component signal, (2) membrane energy (dashed line) and frequency masking
curves (solid lines), (3) total masking threshold with absolute threshold, (4) cal-
culated signal-to-mask ratio, used for bit allocation, difference between the signal
spectrum and the total masking threshold [12]

Example of SMR calculation, for a signal consisting of two sinusoids with fre-
quencies 2500 and 5800 Hz and amplitudes equal to 1, is presented in Fig. 15.4. We
see (in columns):

– two-component signal spectrum,
– energy distribution along basilar membrane coming from each component to-

gether with resulting masking threshold,
– total masking threshold incorporating absolute masking threshold of our hear-

ing system,
– SMR curve as a result of subtraction of the signal spectrum and total threshold;

bits should be given only to frequencies having SMR higher than 0 decibels.

Exercise 15.1 (Basics of Psycho-Acoustics). Become familiar with program
lab15_ex_psycho_acoustics.m. Run it. Carefully observe each figure.
Compare program results with results presented in Fig. 15.4. Any frequency
is heard if its SMR value is higher than 0 dB. Find amplitude value of the
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first component for which its SMR=0. Repeat this operation for the second
component. Are found values the same? How do you explain this? Add a third
component to the signal.

15.3 Psycho-Acoustical MP2 Model

It is assumed that overall excitation E(k) of basilar membrane in any k-th critical
band depends on power of all signals S(l) = X2(l) which have appeared in any
critical band l = 1,2,3, . . . ,K. The signals affect the excitation in the k-th band with
the strength specified by the spreading function B(Δb) (Eq. (15.4)):

E(k) =
K

∑
l=1

El(k) =
K

∑
l=1

B(k− l)S(l) (15.10)

in matrix notation:
⎡
⎢⎢⎢⎣

E(1)
E(2)

...
E(K)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

B(0) B(−1) · · · B(K −1)
B(1) B(0) · · · B(K −2)

...
...

. . .
...

B(K −1) B(K −2) · · · B(0)

⎤
⎥⎥⎥⎦ ·
⎡
⎢⎢⎢⎣

S(1)
S(2)

...
S(K)

.

⎤
⎥⎥⎥⎦ (15.11)

In MP1/MP2 MPEG-audio psycho-acoustical model the following operations are
performed. Denotations from the standard are used.

1. Taking 1024 signal samples into the buffer: x(i), i = 1 . . .1024, with delay in-
corporating delay of the filter bank.

2. Multiplication with Hanning window:

xw(i) = x(i) ·h(i), h(i) = 0.5−0.5cos

(
2π(i−0.5)

1024

)
. (15.12)

3. Calculation of the 1024-point fast Fourier transform (FFT) of the signal, its
magnitude rω and phase fω .

4. Calculation of magnitude and phase prediction, r̂ω and f̂ω on the base of their
two last values from two last 1024-point data blocks, denoted as t −1 and t −2:

r̂ω = 2rω(t −1)− rω(t −2), f̂ω = 2 fω(t −1)− fω(t −2). (15.13)
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5. Calculation of spectral un-predictability measure cω :

cω =

√(
rω · cos( fω)− r̂ω · cos

(
f̂ω
))2

+
(
rω · sin( fω)− r̂ω · sin

(
f̂ω
))2

rω + |r̂ω | .

(15.14)

6. Calculation of energy and weighted spectral un-predictability in predefined
spectral bands:

eb =
ωhighb

∑
ω =ωlowb

r2
ω , cb =

ωhighb

∑
ω =ωlowb

cω r2
ω . (15.15)

7. Convolution of vectors of energy eb and sub-band un-predictability cb with
spreading function B(Δb) but in one-third bark scale, bark indexes are divided
by 3 (bmax—number of last critical bark-1/3 band, bb—auxiliary index):

ecbb =
bmax

∑
bb=1

B(bvalb,bvalbb,) · ebb, enb =
ecbb

bmax
∑

bb=0
B(bvalb,bvalbb)

, (15.16)

ctb =
bmax

∑
bb=1

B(bvalb,bvalbb) · cbb, cbb =
ctb

ecbb
. (15.17)

8. Calculation of tonality index in each sub-band, taking values from 0 to 1:

tbb =−0,299−0,43ln(cbb). (15.18)

9. Calculation of required signal-to-noise ratio in each sub-band, ensuring sound
un-masking:

SNRb = max{minvalb, (tbb ·T MNb +(1− tbb) ·NMTb)} , NMTb = 5.5 dB,
(15.19)

where NMTb (Noise is Masking Tone) denotes a constant, describing tone mask-
ing by narrow-band noise in sub-band b.

10. Transforming SNRb coefficient from decibel scale to linear scale and obtaining
required power coefficient of un-masking in each sub-band:

bcb = 10−SNRb/10. (15.20)

11. Finding energy threshold of un-masking:

nbb = enb ·bcb. (15.21)



15.3 Psycho-Acoustical MP2 Model 415

12. Calculation of energy threshold per one FFT coefficients:

nbω =
nbb

ω highb −ω highb +1
. (15.22)

13. Taking into account the absolute threshold of hearing, at present denoted by
absthrω , before as Tabs:

thrω = max
{

nbω , 10absthrω/10
}
. (15.23)

14. Calculation of signal-to-mask ratio (SMR) for each of 32 frequency channels
(outputs of 32 analysis filters):

SMRn = 10 · log10

(
epartn
npartn

)
, n = 1, 2, 3, . . . , 32, (15.24)

where epartb denotes the signal energy and npartn noise level in n-th frequency
channel:

epartn =
ωhighn

∑
ω=ωlown

r2
ω (15.25)

if(widthn) == 1) npartn =
ωhighn

∑
ω=ωlown

cω r2
ω ,

else npartn = min
{

thrωlown . . . thrωhighn
} · (ωhighn −ωlown +1) .

(15.26)

Exercise 15.2 (SMR Calculation in MP2 Psycho-Acoustical Model II). Be-
come familiar with program MP2psycho.m. Compare equations given in the
text with their program implementation, both in initialization and main part.
The program requires 2 · 1152 = 2304 samples of analyzed signal x(n), put
into the buffer bx, and information about the sampling frequency fs. Parameter
show=0/1 is switching ON/OFF display of selected variables. Analyze with
the MP2psycho() function two-component signal from Exercise 15.1. Call a
function in the following loop:

N=32*36;
for iter = 1 : LastFrame

bx1152 = x( 1+(iter-1)*N : N + (iter-1)*N );
bx2304 = [ bx1152 bx2304(1:N) ];
SMR = MP2psycho( bx2304, fs, show);
plot(SMR); title(’SMR (dB)’); pause

end
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Did you obtain the same result as before? At present everything is done ac-
cording to the model, before only some proof of concept was performed. Now,
change test signal to any monophonic audio file sampled at 44.1 kHz, for exam-
ple, a piece of music you like. Run the program. Observe SMR function values
in the loop. How many sub-bands have SMR bigger than 0 dB?

Exercise 15.3 (SMR Calculation in MP2 Psycho-Acoustical Model I).
Download from Internet [8] the Matlab code of MPEG psycho-acoustical model
I. Run the program Test_MPEG.m, observe displayed figures. A few times
modify parameters of the synthesized test signal and verify visually obtained
results. Then analyze the program and all functions, which are called by it. Try
to find in the Matlab code equations presented is this chapter.

15.4 MP2 Filter Bank

At present we are familiar with fundamentals of human hearing systems and psycho-
acoustical modeling of frequency masking effect. In order to use them in practice,
we should decompose a signal being compressed into sub-bands. For this purpose
in the MP2/MP3 coder M =32-channel filter bank is used. Its structure is presented
in Fig. 15.5. Input audio signal is filtered by M = 32 band-pass filters working in
parallel. Each of them pass only signal components belonging to different frequency
bands. After bandwidth reduction, each sub-band signal is down-sampled by a com-
pressor (reducer) which is leaving only each M-th sample and removing the rest
of them. At this stage, results from psycho-acoustical signal analysis are used and
available bits are allocated to sub-band signals being the most important perceptu-
ally. Then sub-bands signals are normalized and quantized, next coded into a bit-
stream. At the decoder part, the inverse operations are performed: re-quantization,
de-normalization, zero insertion between reconstructed sub-band samples (by ex-
panders), parallel filtration of all sub-band signals and summation of filtration re-
sults.

Input signal filtering is explained in Fig. 15.6 for M = 3 channel filter bank (FB)
with filter impulse responses having Lp = 8 samples. Vector of input samples x is
multiplied by a matrix of the FB, having in rows repeating blocks of 3 impulse re-
sponses of all filters. The blocks are shifted by 3 samples. This means that input
stream of all samples is converted into 3 sub-streams of sub-band samples, but hav-
ing 3 times less samples each. The total number of samples remains un-changed.

Most often the filter bank is built from one prototype low-pass filter p(n),
with frequency response P(Ω), which is up-shifted in frequency by real-value or
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Fig. 15.5: Graphical explanation of audio compression idea: (1) audio signal is de-
composed into many sub-bands by analysis bank of filters, (2) sub-band signals
are down-sampled, (3) normalized and quantized (not denoted), (4) up-sampled and
merged together using synthesis filter bank [12]

Fig. 15.6: Matrix interpretation of signal processing by an analysis bank of filters:
vector of signal samples x is multiplied by an analysis matrix H, having in rows
shifted (in time) blocks of impulse responses of M filters. In the figure M = 3 and
h0(n),h1(n),h2(n) denote 8-samples long impulse responses of three band-pass fil-
ters of three sub-bands [12]

complex-value modulation. The original low-pass filter should ensure obtaining re-
quired features by the whole FB. For example, the following cost functions should
be minimized by P(Ω):

1. linearity of the whole FB amplitude response:

E1 =

π/M∫
0

(∣∣∣P(e jΩ )
∣∣∣2 +

∣∣∣P(e j(Ω−π/M)
∣∣∣2 −1

)
dΩ , (15.27)
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Fig. 15.7: Prototype low-pass filter of the MPEG-audio standard (left) and its fre-
quency response (right), both use dashed line. Filter designed by us is plotted with
a solid line [12]

2. high signal attenuation in the stop-band, ensuring reduction of spectral leakage
between neighboring filters in the FB:

E2 =

π∫

Ωs=π/2M+Δ

∣∣∣P(e jΩ )
∣∣∣2dΩ . (15.28)

Very often the following weighted sum of cost functions E1 and E2 is minimized:

E = αE1 +(1−α)E2. (15.29)

Weights of low-pass prototype filter from the MP2/MP3 standard and its fre-
quency response are shown in Fig. 15.7. They are marked with dashed lines. Solid
line denotes an alternative filter, generated by our function prototype(). It was
designed by minimizing the design objectives and assuming that prototype is a
weighted sum of cosines.

In Fig. 15.8 characteristics of the whole analysis MP2/MP3 filter bank are pre-
sented. From top to bottom we see:

1. frequency responses of all 32 filters, covering the whole frequency band of
22.05 kHz for sampling frequency 44.1 kHz,

2. impulse response of the whole FB, very close (similar) to the delta Kronecker
impulse, delayed by Lp = 512 samples, i.e. the length of the prototype filter;
such response ensures near-perfect signal reconstruction introducing only signal
delay at the FB output,

3. frequency response of the whole FB which is very close to 1 in the whole fre-
quency range,

4. phase response of the whole FB being a linear one, i.e. delaying all frequencies
at the FB output by the same amount of time, i.e. by Lp = 512 samples.
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Fig. 15.8: Characterization of the MPEG-audio filter bank, from top to bottom: fre-
quency responses of all 32 filters, the overall FB impulse response, the overall FB
amplitude and phase response [12]
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In program 15.1 signal decomposition into sub-bands and its synthesis is im-
plemented in Matlab. The MP2 M =32-band analysis and synthesis filter bank is
realized. Due to un-perfectness of the prototype filter, signal-to-noise ratio caused
by sub-band signal splitting and reconstructing is on the level of 80 decibels.

Listing 15.1: Matlab implementation of the MP2/MP3 filter bank
�

1 % Lab15_ex_filterbank_simple
2 % MP2 filter bank
3 clear all; close all;
4

5 Nmany = 2000; % number of audio frames
6 N = 512; % filter length
7 M = 32; % number of sub-bands/channels
8

9 % Input signal
10 Nx = N+M*(Nmany-1); % number of signal samples
11 fs = 44100; % assumedsamplingfrequency
12 x = randn(1,Nx); % input signal
13 y = zeros(1,Nx); % output signal
14 %[x,fs]= audioread(’bach44100.wav’,[1,Nx]); x=x’;
15

16 % Filter bank matrices
17 p = 2*sqrt(M)*prototype(N); % prototype filter
18 figure; plot(p); title(’p(n)’); pause %
19 pmat = ones(M,1)*p; % matrix with prototype in each row
20 [n,k] = meshgrid(0:(N-1),0:(M-1)); %
21 C = pmat.*cos(pi/M*(k+1/2).*(n-M/2)); % analysis matrix with prototype
22 D = pmat.*cos(pi/M*(k+1/2).*(n+M/2)); % synthesis matrix with prototype
23 D = D’; %
24 % Checking FB frequencyresponse
25 figure;
26 K=5; KN=K*N; f = fs/KN*(0:KN-1);
27 figure; plot(f,20*log10(abs(fft(C’,K*N)))); xlabel(’f (Hz)’); grid; pause
28

29 % Analysis - synthesis, processing in M sub-bands
30 bx = zeros(1,N);
31 for m=1:Nmany
32 bx = [ x(m*M:-1:(m-1)*M+1) bx(1:N-M) ];
33 BX = C*bx’; % analysis filter bank
34 % processing in M sub-bands
35 by = D*BX; % synthesis filter bank
36 n1st = 1+(m-1)*M; nlast = N + (m-1)*M;
37 n = n1st : 1 : nlast;
38 y( n ) = y( n ) + by’;
39 end
40

41 % Output signal
42 Noffs=N-M+2; n1=1:(Nx-N)-Noffs+1; n2=Noffs:(Nx-N);
43 xr=x(n1); yr=y(n2);
44 figure; plot(n1,xr,’r’,n1,yr,’b’); title(’INPUT (red) OUTPUT (blue)’); pause
45 figure; plot(n1,xr-yr); title(’Difference IN-OUT’); pause
46 error_dB = 10*log10( sum(xr.̂ 2) / sum((xr-yr).̂ 2) ), pause

��
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Exercise 15.4 (MP2/MP3 Analysis-Synthesis Filter Bank). Become familiar
with program 15.1. Note shape of the prototype filter, its frequency response
and frequency responses of all filters in the analysis filter bank. Calculate and
display frequency response of the synthesis filter. Excite the analysis-synthesis
FB by Kronecker delta function, i.e. 1 and Nx − 1 zeros. Observe the impulse
response. Having it, calculate frequency and phase response of the FB. Did you
obtain plots similar to ones presented in Fig. 15.8? Change test signal to a frag-
ment of your favorite song. Do you hear the difference? Modify the program:
try to quantize sub-band signals. You can try to find an inspiration using the
regular, not simple, version of the same program, given in the book repository.

15.5 Fast Polyphase Implementation of MP2 Filter Bank

Reading this section is only recommended for very ambitious Readers and skipped
by the others. Therefore, if the audience is so much limited, why this section was
written at all? Because some difficult things are extremely important, has wide ap-
plications, increase our horizons and . . . are beautiful.

Banks of many analysis and synthesis filters do their fantastic work in audio com-
pression, splitting an audio signal into frequency sub-bands and allowing beneficial
quantization of many sub-signals driven by the psycho-acoustical model. However,
their usage has a very big drawback: immense computational cost of implemen-
tation. Many FIR filters with long vectors of weights, e.g. 32 filter with 512-taps
in our case, require a lot of multiplications and additions. But fortunately, calcula-
tions can be significantly reduced thanks to polyphase decomposition of, both, the
processed signal and the prototype filter weights. Situation is similar to relation-
ship between DFT and FFT: calculated is exactly the same result but in different
manner: significantly more efficiently by FFT. In a complex modulated filter bank
a low-pass prototype filter is up-shifted in frequency by modulating it by harmonic
complex-value exponents. Then, resultant impulse responses of band-pass filters
are convolved with a signal to be filtered. It turns out that this operation can be
significantly simplified. First, modulation signals can be grouped into a matrix and
modulation simplifies to the fast, inverse, discrete Fourier or cosine transform. Ad-
ditionally, thanks to polyphase decomposition, the size of the transformation can
be significantly reduced. In the discussed case of the MP2/MP3 filter bank—to the
DFT matrix with dimensions 64× 64 or to modified DCT matrix with dimensions
32×64. M = 32 is a number of sub-bands and number of polyphase components of
a prototype filter. Wow!

Since cosine is summation of two Fourier harmonic signals, one with positive
and one with negative frequency, the real-value cosine M-channel modulation can be
represented as a special form of the complex-value 2M-channel modulation and the



422 15 Audio Compression

same savings can be done for DCT as for DFT. In practice, corresponding samples
of polyphase signal and prototype filter components are multiplied and summed,
and then a fast modified DCT transform of a small size is performed. As mentioned
above, in the discussed case of MP2 coder M = 32, and 2M = 64-channel DFT
modulation is performed. After combining positive and negative frequencies, we
obtain M = 32 real-value channels and MDCT transformation/modulation matrix
with dimensions 32×64 (32 real-value filters having 64 samples in each polyphase
component).

To show how this impressive reduction is get, the mathematical derivation is
required. Non-interested Readers could skip the below part.

Proof. Let us perform the Z-transform of signal, writing it in polyphase version I:

X(z) =
∞

∑
m=−∞

x(m)z−m =
M−1

∑
k=0

(
∞

∑
n=−∞

x(nM+ k)z−(nM+k)

)
=

M−1

∑
k=0

z−k

(
∞

∑
n=−∞

x(nM+ k)
(
zM)−n

)
=

M−1

∑
k=0

z−kXI
k

(
zM). (15.30)

Doing the same for the polyphase version II, which is defined below, we could
write the signal Z-transform X(z) as a summation of Z-transforms of its polyphase
components XI

k (z) and XII
k (z), multiplied by z−k:

X(z) =
M−1

∑
k=0

z−kXI
k

(
zM) , XI

k (z) =
∞

∑
n=−∞

x(nM+ k)z−n (15.31)

X(z) =
M−1

∑
k=0

z−(M−1−k)XII
k

(
zM) , XII

k (z) =
∞

∑
n=−∞

x(nM+M−1− k)z−n. (15.32)

Let p(n), n = 0,1, . . . ,Lp − 1, denotes a low-pass prototype filter which will be
used for filter bank creation. Filter impulse response of the k-th sub-band is obtained
by prototype modulation:

hk(n) = p(n)W−kn
M , W = e− j 2π

M . (15.33)

The Z-transform of signal (15.33) is equal to:

Hk(z) =
∞

∑
n=−∞

hk(n)z
−n =

∞

∑
n=−∞

p(n)W−kn
M z−n =

∞

∑
n=−∞

p(n)
(

W k
Mz
)−n

=P(zW k
M).

(15.34)
Using Eq. (15.31), the Z-transform of the prototype filter can be written as summa-
tion of Z-transforms of its polyphase components:
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P(z) =
M−1

∑
l=0

z−lPI
l (z

M). (15.35)

Putting Eq. (15.35) into Eq. (15.34) gives

Hk(z) =
M−1

∑
l=0

z−lW−kl
M PI

l (z
MW kM

M ) =
M−1

∑
l=0

W−kl
M

(
z−lPI

l (z
M)
)
. (15.36)

Last equation has the following matrix form:

Hk(z) =
[
1 W−k

M W−2k
M · · · W−(M−1)k

M

]
⎡
⎢⎢⎢⎢⎢⎣

PI
0(z

M)
z−1PI

1(z
M)

z−2PI
2(z

M)
...

z−(M−1)PI
M−1(z

M)

⎤
⎥⎥⎥⎥⎥⎦
. (15.37)

When equations for all sub-band filters are combined together, one obtains

⎡
⎢⎢⎢⎢⎢⎣

H0(z)
H1(z)
H2(z)

...
HM−1(z)

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 W−1
M W−2

M · · · W−(M−1)
M

1 W−2
M W−4

M · · · W−2(M−1)
M

...
...

...
. . .

...

1 W−(M−1)
M W−2(M−1)

M · · · W−(M−1)2

M

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

PI
0(z

M)
z−1PI

1(z
M)

z−2PI
2(z

M)
...

z−(M−1)PI
M−1(z

M)

⎤
⎥⎥⎥⎥⎥⎦

(15.38)
or in more condensed form:

⎡
⎢⎢⎢⎢⎢⎣

H0(z)
H1(z)
H2(z)

...
HM−1(z)

⎤
⎥⎥⎥⎥⎥⎦
= W∗

⎡
⎢⎢⎢⎢⎢⎣

PI
0(z

M) 0 0 · · · 0
0 PI

1(z
M) 0 · · · 0

0 0 PI
2(z

M) · · · 0
...

...
...

. . . 0
0 0 0 · · · PI

M−1(z
M)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1
z−1

z−2

...
z−(M−1)

⎤
⎥⎥⎥⎥⎥⎦
. (15.39)

The last equation was a goal of our mathematical rock climbing. What we can de-
duce from it? That samples of polyphase signal components should be multiplied
by corresponding weights of polyphase prototype filter components and added, and
then the inverse Fourier transform should be performed (multiplication by matrix
W∗).

In similar way the signal synthesis equation can be derived. Synthesis sub-band
filters are defined by the equation:

gk(n) =W−k
M q(n)W−kn

M . (15.40)
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When Gk(z) denotes the Z-transform of the filter gk(n) and its polyphase compo-
nents of type II are marked as QII

l (z
M), the following equation is valid:

⎡
⎢⎢⎢⎢⎢⎣

G0(z)
G1(z)
G2(z)

...
GM−1(z)

⎤
⎥⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎢⎣

z−(M−1)

z−(M−2)

z−(M−3)

...
1

⎤
⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

QII
0 (z

M) 0 0 · · · 0
0 QII

1 (z
M) 0 · · · 0

0 0 QII
2 (z

M) · · · 0
...

...
...

. . .
...

0 0 0 · · · QII
M−1(z

M)

⎤
⎥⎥⎥⎥⎥⎦
. W

(15.41)
The overall analysis-synthesis filter bank operation is fully reversible and intro-

duce only a delay of m0 samples, when the following condition is fulfilled:

[G0(z) G1(z) . . . GM−1(z)]

⎡
⎢⎢⎢⎣

H0(z)
H1(z)

...
HM−1(z)

⎤
⎥⎥⎥⎦= cz−m0 . (15.42)

Using Eqs. (15.39), (15.41) in condition Eq. (15.42) one gets
⎡
⎢⎢⎢⎣

QII
0 (z)P

I
0(z) 0 · · · 0

0 QII
1 (z)P

I
1(z) · · · 0

...
...

. . .
...

0 0 · · · QII
M−1(z)P

I
1(z)

⎤
⎥⎥⎥⎦= cz−m0 I (15.43)

since W ·W∗ = I. Therefore, in order to have a pure delay FB, all PP components
of prototype filters p(n) and g(n) should fulfill the relation:

QII
k (z)P

I
k (z) = cz−m0 , k = 0,1, . . . ,M−1 (15.44)

and they are designed using it. Thanks to this signal perfect reconstruction at the FB
output is guaranteed. Ufff!

In Fig. 15.9 fast analysis-synthesis M-band filter bank, using polyphase signal
decomposition and small size, complex FFT modulation, is presented. In Fig. 15.10
it is extended to 2M bands. After combining complex-value harmonics, used for
modulation, with the same positive and negative frequency, the DCT-based filter
bank is obtained with modulation realized by real-value cosines—what it presented
in Fig. 15.11. Impulse responses of analysis and synthesis filters are defined in this
case as follows:
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Fig. 15.9: Fast polyphase version of M-band filter bank with DFT modulation [12]

Fig. 15.10: Fast polyphase version of 2M-band filter bank with DFT modulation
[12]

hk(n) = 2p(n)cos

(
π
M

(k+0,5)

(
n− L−1

2

)
+(−1)k π

4

)
(15.45)

gk(n) = 2p(n)cos

(
π
M

(k+0,5)

(
n− L−1

2

)
− (−1)k π

4

)
. (15.46)

Transformation matrices used in Fig. 15.11 are defined as:

t1(k,m) = 2cos
( π

M
(k+1/2)(m−M/2)

)
(15.47)

t2(k,m) = 2cos
( π

M
(k+1/2)(m+M/2)

)
. (15.48)
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Fig. 15.11: Fast polyphase version of M-band filter bank with DCT modulation [12]

In Listing 15.2 fast polyphase Matlab implementation of M-band analysis and
synthesis filter bank, originated from MP2/MP3 coding standard, is presented. Note
that at present cosine transformation matrices have significantly smaller dimensions,
not dimensions 32× 512 and 512× 32 but dimensions 32× 64 and 64× 32. Fast
algorithms exist for these matrix transformations.

Exercise 15.5 (Fast Polyphase Filter Bank Implementation). Modify pro-
gram 15.1. Use fast polyphase filter bank functions in it. Having signal decom-
posed into many sub-bands observe variability of sub-band samples. Try to find
a sub-band quantization mechanism offering high SNR of reconstructed signal.

Listing 15.2: Fast polyphase implementation of MP2 analysis and synthesis filter
banks

�

1 %##############################
2 function sb = analysisFB(x, M)
3 % M-band analysis filter bank in polyphase version
4

5 % Initialization
6 load enwindow.dat; pe=enwindow’; L=length(pe); % read MP2 prototype filter
7 n=0:2*M-1; % #
8 for k=0:M-1 % # polyphaseanalysis matrix
9 A(k+1,1:2*M) = 2*cos((pi/M)*(k+0.5).*(n-M/2)); % # dimensions: M x 2M

10 end % #
11

12 % Filter bank: analysis
13 sb = []; bx512 = zeros(1,L); % initialization
14 for k = 1 : length(x)/M
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15 bx512 = [ x(k*M:-1:(k-1)*M+1) bx512(1:L-M) ]; % M new samples into buffer
16 for m = 1 : 2*M
17 u(m) = sum( bx512(m:2*M:L).*pe(m:2*M:L) ); % polyphasefiltration
18 end
19 sb32 = A*u’; % cosine modulation
20 sb = [sb; sb32’]; % storing the result
21 end
22

23 %##############################
24 function y = synthesisFB(sb, M)
25 % M-band synthesis filter bank in polyphase version
26

27 % Initialization
28 load dewindow.dat; pd=dewindow’; L=length(pd); % read MP2 prototype filter
29 n=0:2*M-1; % #
30 for k=0:M-1 % # polyphasesynthesis matrix
31 B(k+1,1:2*M) = 2*cos((pi/M)*(k+0.5).*(n+M/2)); % # dimensions: M x 2M
32 end % #
33 MM=2*M; M2=2*M; M3=3*M; M4=4*M; Lp=L/MM; m = 0:Lp-1; % Lp = length of PP components
34

35 % Filter bank: synthesis
36 y=[]; bv=zeros(1,2*L); % initialization
37 ns = length(sb(:,1)); % number of samples in each sub-band
38 for k = 1 : ns %
39 v = B’*sb(k,1:M)’; % cosine demodulation
40 bv = [ v’ bv(1:2*L-M2) ]; % storing into buffer
41 for n = 1 : M % polyphasefiltration
42 ys(n) = sum( bv(n+M4*m).*pd(n+M2*m) ) + sum( bv(n+M3+M4*m).*pd(n+M+M2*m) );
43 end
44 y = [ y ys ];
45 end

��

15.6 Complete MP2 Matlab Encoder and Decoder

In Fig. 15.12 the main idea of MP2 audio (en)coder is reminded: a low-pass pro-
totype filter having 512 samples is modulated (up-converted in frequency) by 32
cosines and used as 32 band-pass filters. Impulse responses of these filters are shifted
over the audio signal with the step of 32 samples and multiplied with them. Sum-
mation of multiplication results gives us 32 samples in 32 sub-band after every 32
samples of input signal. This operation is repeated 36 times, therefore 36 ·32= 1152
input audio samples are required and they are coded in one joint block.

In Fig. 15.13 block diagrams of MP2 encoder and decoder are presented. At the
encoder input we see 32 analysis filters and 36 samples in each sub-band, divided
into three blocks with 12 samples each. Maximum absolute value in each dozed is
find first and, then, a first scale factor (SF) from the SF table which is greater than
this maximum. This stage ends with information about SFs of all dozens and with
decision which scale factors in each sub-band will be send if the sub-band will be
coded.
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Fig. 15.12: MP2 example of sub-band signal decomposition: impulse response of
a prototype low-pass filter, 512 samples long (shown on top), is first shifted-up in
frequency by 32 cosines, and next is shifted 36 times over the signal with step of
32 samples. This way 36 samples in 32 sub-bands are computed (matrix of points
shown in the bottom) [12]

Fig. 15.13: Block diagram of MP2 encoder (up) and decoder (down) [12]
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Fig. 15.14: Structure of MPEG-audio bit-stream [12]

In parallel 1024 samples are taken to the psycho-acoustical model where the
1024-point FFT is performed and 32 SMR coefficients are found, telling us about
psycho-acoustical significance of each sub-band. Having this information, bits are
allocated to the sub-bands in water-filling manner: (1) the sub-band with the highest
SMR obtains one bit, (2) its SMR is decreased by about 6 dB, (3) a number of still
available bits is calculated, and (4) again, next one bit is allocated to all samples in
the sub-band with the highest SMR . . . and so on, up to the moment when no bits
are available, or SMRs of all sub-bands are equal or lower than 0 dB. When bits are
allocated, sub-band samples, which will be transmitted, are divided by scale factors
(normalized to the range [−1,1]), and quantized. When any sub-band obtains small
number of bits, its samples are grouped into triples and coded together.

Finally, the new data frame is appended to the bit-stream. Its organization is pre-
sented in Fig. 15.14. The frame starts with 32-bit header consisting of 12 bits of
synchronization pattern and information bits, among others about the MPEG layer,
bit-stream value and sampling frequency. Then the CRC code is sent allowing detec-
tion of bit errors in the header. Next, indexes to bit allocation tables are transmitted,
information about scaling factors and indexes of scaling factors for each sub-band,
one, two or three of them. At the end quantized sub-band samples are stored as well
as possible auxiliary data.

The MP2 decoder is presented in bottom part of Fig. 15.13. All operations are
performed in reverse order. First frame synchronization is done and CRC code is
checked. If bit errors in the header are detected, the present frame is skipped and
last audio fragment is repeated. When header is error-free, the system information
is read. Knowing everything about operations performed in the coder, the decoding
is done: data are de-quantized, de-normalized, removed samples are replaced with
zeros and processed by synthesis filter.

Exercise 15.6 (Complete MP2 Encoder and Decoder Program). In archive
supporting this laboratory, there is a program lab15_ex_mp2.m and two
functions: MP2write.m and MP2read.m, in which complete MP2 encoder
and decoder are implemented. It is possible to specify sampling frequency of
audio recording and desired bit-stream value. The compressed data are stored
to disc as frame.mpg (last audio frame) and recording.mpg (all data). If last file



430 15 Audio Compression

Fig. 15.15: Windows used in MDCT transform in MP3 coding, performed after the
first 32-channel MP2 filter bank, in columns: long (36 points), short (12 points),
long-to-short (36 points), short-to-long (36 points) [12]

already exists, new bits are appended at its end. The compressed audio can be
played by different players, e.g. VLAN. Choose your favorite song. Compress
it. Play it inside the lab15_ex_mp2.m program and by any player. Compare
overlaid waveforms of original and decompressed signal. Note noise introduced
by the compression algorithm (look at SNR value). Become familiar with the
program. Set show=1. Observe data in different parts of compression and de-
compression programs. You can skip all operation except: (1) filter banks, (2)
filter banks and normalization. Note SNR values in these two cases.

15.7 MP3 Coding Enhancements

MP2 layer of MPEG standard ensures good audio quality for compression ratio 6–8
times. The MP3 layer is better, it is offering compression ratio 10–12 times. How is
it get? In MP3 each of the 32 sub-bands is decomposed further into additional 6 or
18 sub-bands, according to perceptual entropy of the signal spectrum, calculated by
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Fig. 15.16: Switching between short/long window length in MP3 adaptive filter
bank, according to psycho-acoustical entropy (PE) value of the signal spectrum [12]

the psycho-acoustical model. It is, however, done not by filter bank but by sliding
orthogonal modified DCT transform (MDCT). The sliding MDCT transform, used
in MP3, can be interpreted also as an additional M-band cosine modulated filter
bank with prototype filter equal to the sine window having Lp = 2M samples:

p(n) =
1√
2M

sin
[
(n+1/2)

π
2M

]
, n = 0, 1, 2, . . . , 2M−1. (15.49)

Such filter bank offers signal perfect reconstruction since its prototype filter fulfills
the PR requirement (15.44). In MP3 parameter M takes two values: 18 and 6, big-
ger for tonal signals and smaller for noisy ones. In consequence, the MDCT sine
windows have lengths 36 and 12 samples. In order to switch between long and short
windows, two transition windows have to be used: long-to-short one and short-to-
long one. All of them are presented in Fig. 15.15.

Decision what window should be used is taken by the psycho-acoustical model.
It calculates perceptual entropy (PE) of the signal spectrum. When PE is smaller
than 1800, long 36-point window is used, otherwise the short one. State diagram of
window length switching is presented in Fig. 15.16.

The sliding MDCT transform is performed on output of each filter of the analysis
filter bank. In Fig. 15.17 consecutive window positions are marked, and its transi-
tion from long window to short and back is presented. The window in each position
is multiplied by sub-band samples. Obtained data are multiplied next by the MDCT
matrix. Depending on its dimension, different number of additional sub-bands re-
sult: 18 for 36-point window or 6 for 12-point window. For tonal signals one obtains
samples in more sub-bands but less frequently, while for noisy signals in less sub-
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Fig. 15.17: Switching between short/long window length in MP3 adaptive filter bank
according to psycho-acoustical entropy (PE) value of the signal spectrum [12]

bands but more frequently. It is correct, since for long-lasting tones we prefer higher
frequency resolution of the analysis while for noisy signals better time resolution is
preferred.

The final illustration of the MP3 analysis filter bank is given in Fig. 15.18 where
all bricks are put together. We see one of 32 MP2 filters and 36 samples in its sub-
band (after sub-band signal decimation). Next, these samples, initially placed in
row of time–frequency plane, are exchanged with one of time–frequency matrices:
the one with 18 rows and two columns (samples in 18 frequency sub-bands and in
two time moments) or the one with 6 rows and 6 columns (samples in 6 frequency
sub-bands and 6 time moments). Number of all samples remains the same.

Since the AAC standard, briefly described below, use the same sub-band signal
decomposition technique, an exercise and program of the MDCT will be presented
in the next section.

15.8 AAC Advanced Audio Coding

Merits of the advanced audio coding have been already presented in the introduc-
tion. The standard is complex and multi-thread. In this section we only concentrate
on sub-band signal decomposition applied in it. The sliding MDCT approach is
used, exactly the same as in the MP3 second filter bank. But significantly longer
windows are used: 2048 and 256-point ones, first for tonal signals, the second for
noisy signals. Transition windows and switching strategy are the same as in the MP3
standard. In MP3 for tonal signals we have 576 sub-bands, in AAC we have 1024.
In MP3 192 sub-bands are used for noise, in AAC 128 sub-bands.
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entropy

Fig. 15.18: Adaptive filter bank of MP3 encoder: each of 32-channels of MP2 filter
bank is followed by the MDCT transform with variable length, offering sound divi-
sion into 18 additional sub-bands (for tonal sound) either into 6 sub-bands (for noisy
sound). In the first case 576 = 32 · 18 sub-bands are obtained this way. Perceptual
spectrum entropy controls the MDCT switching [12]

In program 15.3 demonstration of AAC coding strategy is presented. Structure of
the program is very similar to filter bank coding of the MP2 algorithm, implemented
in program 15.1. It is no surprise. Both methods represent a cosine modulated filter
bank but they use different parameters and modulation matrices with different sizes.
The overall methodology is the same.

Exercise 15.7 (MDCT-Based AAC Audio Coding). Become familiar with
program 15.3. Run it. Note perfect reconstruction of the original signal when
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no signal processing in sub-bands is done. Put attention to quantization of the
original signal (result xq) and signal quantization in sub-bands (result xqs).
Observe that the second method offers better SNR for decoded signal. Do cod-
ing of your favorite song. Apply your own quantization strategies. In the repos-
itory there is a program lab15_ex_aac_switching.m in which analysis
and synthesis windows are switched from long to short and back. Observe that
the original signal is again perfectly reconstructed.

Listing 15.3: Principles of sliding MDCT usage in AAC coding
�

1 % Lab15_ex_aac.m
2 % Principles of AAC coding using sliding MDCT transform
3 clear all; close all;
4

5 Nmany = 100; % number of frames
6 N = 2048; % window length
7 M = N/2; % window shift
8 Nx = N+M*(Nmany-1); % number of signal samples
9

10 % Input signal
11 %x = 0.3*randn(Nx,1); fs=44100;
12 [ x, fs ] = audioread(’bach44100.wav’); size(x), pause
13 x = x(1:Nx,1); x=x.’;
14 soundsc(x,fs);
15 figure; plot(x); pause
16

17 % MDCT and IMDCT transformationmatrices
18 [n,k] = meshgrid(0:(N-1),0:(N/2-1)); % indexes
19 win = sin(pi*(n+0.5)/N); % window
20 C = sqrt(2/M)*win.*cos(pi/M*(k+1/2).*(n+1/2+M/2)); % MDCT matrix with window
21 D = C’; % IMDCT matrix with window
22

23 % Bit allocation for sub-bands
24 b = [ 8*ones(M/4,1); 6*ones(M/4,1); 4*ones(M/4,1); 0*ones(M/4,1) ]; sc = 2.̂ b;
25 %b = 6*ones(M,1); sc = 2.̂ b;
26

27 % AAC analysis-synthesis with quantization in sub-bands
28 y = zeros(1,Nx); figure; % output signal
29 for k=1:Nmany %
30 n1st = 1+(k-1)*M; nlast = N + (k-1)*M; % next indexes
31 n = n1st : nlast; % samples from-to
32 bx = x( n ); % without window
33 BX = C*bx’; % MDCT
34 % plot(BX); title(’Samples in bands’); pause % plot of sub-band samples
35 BX = fix( sc .* BX) ./ sc; % quantization
36 % BX(N/4+1:N/2,1) = zeros(N/4,1); % some processing
37 by = D*BX; % IMDCT
38 y( n ) = y( n ) + by’; % without window
39 end %
40
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41 n=1:Nx;
42 soundsc(y,fs);
43 figure; plot(n,x,’ro’,n,y,’bx’); title(’Input (o), Output (x)’); pause
44

45 m=M+1:Nx-M;
46 max_abs_error = max(abs(y(m)-x(m))), pause
47

48 % Quantization of the original signal
49 b = 6; xq = fix( 2̂ b * x ) / 2̂ b;
50

51 % Comparison
52 xqs = y;
53 [X, f]=periodogram(x, [],512,fs, ’power’,’onesided’); X=10*log10(X);
54 [Xq,f]=periodogram(xq,[],512,fs, ’power’,’onesided’); Xq=10*log10(Xq);
55 [Xqs,f]=periodogram(xqs,[],512,fs,’power’,’onesided’); Xqs=10*log10(Xqs);
56 figure; plot(f,X,’r-’,f,Xq,’b-’,f,Xqs,’g-’);
57 xlabel(’f (Hz)’); title(’Power/frequency (dB/Hz)’); grid; pause
58

59 SNR1 = 10*log10( sum(x(m).̂ 2) / sum( (x(m)-xq(m)).̂ 2 ) ),
60 SNR2 = 10*log10( sum(x(m).̂ 2) / sum( (x(m)-xqs(m)).̂ 2 ) ),

��

15.9 Summary

Music takes important part of our life. Compression of digitized music is
very interesting from computer technology point of views: a lot of things have
to be taken into account and many tricks should be done to reduce the stereo
audio bit-stream from about 1.5 megabits per second to 50 kilobits per second,
i.e. about 30 times. What was the most important in this chapter?

1. Performing audio compression we exploit imperfections of human hearing
system. Mechanical features of our cochlea cause that strong vibrations of
some parts of basilar membrane with some frequencies do not allow vibra-
tions of neighboring parts with slightly different frequencies. This phenom-
ena is called the frequency masking. Since some frequencies, present in the
music, are not heard by us, because they are masked by stronger ones, there
is no sense to allocate bits to them during music coding. Therefore, the
mathematical psycho-acoustical models play a central role in audio com-
pression. They analyze sound and inform the remaining part of a program
about psycho-acoustical significance of each frequency sub-band of music.

2. In order to exploit the frequency masking effect, audio signal has to be
represented as a summation of many sub-signals, containing only fre-
quencies of separate frequency sub-bands. This signal decomposition is
done by bank of many band-pass filters, working in parallel, like in the
MP2/MP3 standard, or by modified discrete cosine transform (MDCT), as
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in the AAC standard. When samples of sub-band signals or MDCT co-
efficients are available, they are quantized inversely proportional to their
psycho-acoustical significance, i.e. less bits are given to less significant
signal components.

3. In audio compression standards there are a lot tables for different sampling
frequencies and compression ratios. Coefficients given in them describe
different relations, resulting from frequency masking effect which was in-
vestigated in the past by big teams of researchers. It is impossible to design
an effective compression algorithm without their usage.

4. Filter bank design for audio compression, like MP2/MP3, is not an easy
task. Firstly, a good low-pass prototype filter has to calculated, ensuring
small distortion error of the whole FB (flat magnitude response and linear
phase response) as well as good frequency selectivity and small spectral
leakage between sub-bands. Secondly, signal processing in the FB should
be organized in computationally efficient way, namely using polyphase fil-
ter structures. Since in FBs the prototype low-pass filter is modulated by
cosines, fast DCT transforms could be used, additionally of smaller sizes
thanks to polyphase signal decomposition.

5. Using long 256/2048-point MDCT transforms to signal decomposition into
sub-bands, instead of filter banks, turned out to be more elegant and ef-
fective way. Such approach is used in the modern advanced audio coders
(AAC). They make use of many additional data compression tricks, like:
prediction of MDCT coefficients, perceptual synthesis of noisy sub-band
during decoding, intelligent replication of low-frequency sub-bands in
high-frequency sub-bands during audio restoring, advanced differentially
coding of multi-channel audio.

15.10 Private Investigations: Free-Style Bungee Jumps

Exercise 15.8 (No More Exercises!). Turn on your old gramophone and hear to
some vinyl records. What pleasure!
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Chapter 16
Image Processing

Living in an epoch of pictures: only short message, visual icon,
funny animoi, please!

16.1 Introduction

We are living in crazy times. People start mutual relations from simple ges-
tures and mimics, and after years of civilization progress, they return back to
simple iconic interpersonal communication: :-)? :-(! In the epoch of short mes-
sage communication, in the era of shortcuts of thoughts and opinions, an image
creation, analysis, and processing is priceless.

What an image is? Signal is a 1D vector of numbers—samples of 1D func-
tion, while image is a 2D matrix of numbers—samples of 2D function. Signals
are acquired by 1D sensors, for example, microphones, while images are ac-
quired by 2D sensors called cameras, CCD or CMOS ones. CCD cameras are
built from capacitors which are separately charged by light with different wave-
lengths (RGB: Red, Green, and Blue). Thanks to this, color information is not
lost. In fact, triples of RGB capacitors create matries and performs spatial dis-
cretization of visual information. Both, microphones and cameras, are followed
by analog-to-digital converters which perform quantization of analog quantities
measured by them. At the output, we have vectors or matrices of numbers, that
is, a 1D or 2D signal. In case of images, these numbers are called pixels. Mak-
ing extension, in computer tomography (CT) or magnetic resonance imaging
(MRI) devices, human body is scanned by sensors in three dimensions XYZ
and 3D matrices are obtained. They consist of voxels. When CT is repeated
a few times, dynamic CT data are obtained that have a form of 4D matrices,
i.e. 3D CT repeated in time, and so on. Matrices with more and more dimen-
sions . . . But all of them are built from single numbers. When one understands
1D signal processing, she or he should have no problems with understanding
basics of multi-dimensional data processing, which is shown in this chapter.
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There are special mathematical and computational design tools for process-
ing 2D data, being 2D extensions of their 1D prototypes: (1) 1D orthogonal
DFT and DCT transforms are replaced with their 2D versions and (2) 1D con-
volution of vectors is extended to 2D convolution of matrices. If one can ride
a bicycle, after short time of training, riding a motorcycle should not be a big
problem for her or him. If you can drive a car, driving a truck or a bus would
not be also difficult for you. The same is with 2D signal processing: it is natural
extension of the 1D DSP.

During 2D DFT image transformation, first, each image row of pixels is re-
placed by its DFT spectrum. Then, DFT of each column of a matrix, resulting
from the first processing stage, is calculated. In summary, DFT of the DFT is
computed. In 1D signal spectral analysis, a 1D signal was represented as a sum
of 1D basis functions scaled by spectral coefficients. In 2D spectral analysis,
an image is expressed as a sum of basis images, scaled again by spectral coeffi-
cients. Basis images are generated by outer products of vertical transformation
vectors bk and their complex conjugation and transposition: bk ·bH

k . When we:

1. set some of the 2D DFT coefficients to zero,
2. perform inverse DFT transformations over columns of the modified spectral

matrix,
3. do inverse DFT transformations of the rows,

we are coming back from the 2D spectral coefficients of an image to the image
pixels. This way image content filtration is done in frequency domain. Basis im-
ages, which spectral coefficients were set to zero, are lacking after the described
image transformation. The situation is the same as in 1D signal processing: a
signal synthesized from its modified spectrum does not have spectral compo-
nents which were removed from the spectrum. In 2D processing, some images
are subtracted from the original image.

Similar correspondence exits between 1D and 2D convolution. As we re-
member, the FIR signal filtering had a form of convolution of two vectors: the
shorter one was shifted over the longer one and for each its position correspond-
ing samples of both vectors were multiplied and added. The resulting single
number was representing the output filter value for given position of the filter
weights. The situation is completely the same in case of convolution of images.
One smaller 2D matrix of filter weights is shifted over a bigger matrix with
image pixels and, for each position of the filter mask, its weights are multiplied
by corresponding image pixels lying below them. Then multiplication results
are summed, as before in 1D case. The calculated single value, the filter output,
is put into the output image, result of filtering, into the pixel lying below the
central weight of the filter. We can say that this value replaces pixel in the input
image. Choice of filter weights decides about realized image processing task:
image smoothing (de-noising) or contour/edges enhancement. Possible sets of
weights are typically defined in long tables.
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Calculated output pixels must not be obligatory a linear superposition of
input pixels, taken with some weights. Some non-linear, median, or morpho-
logical image filtering is also possible. It will be mentioned in this chapter. We
will also see an interesting example of multi-level, cascade image filtering using
a pair of symmetrical low- and high-pass filter. This way a so-called quad-tree
image decomposition is obtained: one approximation image and many multi-
resolution images with vertical, horizontal, and skew details.

Similarity of one image fragment (block of pixels) to the second image frag-
ment can be calculated using: (1) 2D cross-correlation function, or (2) mutual
information, an entropy-based measure, describing also image similarity. Since
image blocks can be deformed, one image block can be first pre-processed by
affine transformation (doing its shifting, scaling, and rotating) and then com-
pared with some other block.

Compression of still images is a special example of image processing. In
JPEG standard, an image is decomposed into non-overlapping blocks of 8× 8
pixels. Each of them is processed by 2D DCT transform and quantized. Bits of
non-zero pixels are next scanned in zig-zag manner using variable length integer
(VLI) coding and, finally, losslessly coded using entropy-based Huffman coder.
The procedure will be described.

It is no surprise that video compression, compression of moving pictures,
for example, movies, is more difficult than still pictures. Since consecutive film
frames could be very similar, there is no sense to code them individually. Only
the first picture of the block of seven pictures is coded as a whole. Next, 6
out of 7 are coded differentially. In addition, coded is not a simple difference
between two images but difference between one image and the second image
with compensation of block pixel movement (thanks to this, information to be
coded is even smaller). A few words about movie compression will be given
below.

So, it is time to start our movie! Dear Tom, turn off the light, please!

16.2 Image Representation

Nowadays digital images are permanently present in our everyday lives: in TVs,
pictures from cameras, Internet content, and others. There are a lot of different ap-
plications based on image acquisition and analysis (military, industrial, medical,
entertainment, etc.), and every day they are increasing in number. In Fig. 16.1, some
image examples are given and applications are mentioned.

What an image is? It is a matrix of numbers as presented in Fig. 16.2. In the sim-
plest case of monochromatic gray-scale images, the matrix consists of indexes of
level of gray color. For example, for 8-bit coding we have 28 = 256 integer numbers
from 0 to 255, describing how much gray is an image pixel in certain position, i.e.
in (row, column) of our matrix of numbers. “0” denotes perfectly black color, while
“255” perfectly white. In right matrix in Fig. 16.2, we see exactly such integer num-
bers. In turn, in Fig. 16.3 a sculpture of letter “H” is plotted as a 3D surface/mesh
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Fig. 16.1: Examples of images, in rows: (1) Cameraman—picture used in Matlab
for testing different algorithms, (2) surface of the Moon—cosmic exploration, (3)
satellite city image—remote supervision and security, (4) woolen cloth (microscopic
image)—production quality monitoring, (5) blood image—medical diagnostics, and
(6) fingerprint—personal authorization [17]
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Fig. 16.2: Image as a 2D M ×N matrix: (left) in general, (right) 6× 6 image with
an 8-bit gray-level coding (from 0 to 255), representing a black square (four central
elements with 0s surrounded by a dappled pattern) [17]

25

25

25

20
20 20

15

15
15

10

10

10

n
m 5

0x(
m

,n
)

100

200

5

10 15 20 25

5

5

Fig. 16.3: 25× 25 matrix of letter “H” sculpture, plotted as 3D surface/mesh (left)
and as an image with gray-scale color coding (right) [17]

(left) and as an image with gray-level coding. It is important to remember that pixel
marked as (0,0) or (1,1), alternatively, is located in the top-left (first row, first col-
umn) or bottom-left image corner (last row, first column).

Contemporary images are colored ones. Any computer color is superposition of
three basic colors: Red, Green, and Blue (RGB):

color = cR · R ⊕ cG · G ⊕ cB · B (16.1)

When each color is coded with 8 bits, we obtain a 24-bit number, describing one
color. Therefore we have 224 = 16 millions of available colors. In order to reduce
image files, combinations of RGB colors, occurring in an image, are tabulated, and
only smaller indexes to the color table (palette) are stored or transmitted for each
pixel, not color bits themselves. In Matlab, color palette has only 64 entries (i.e.,
Gray, Jet, HSV, Hot, Winter,. . . ). With single table index, only one combina-
tion of RGB colors is associated. Exemplary Matlab Gray palette is presented in
Table 16.1. The above-described GIF-style color system is rather an old one, but we
put an attention to it since it is used in Matlab.
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Table 16.1: Description of 64-element Gray-scale palette of Matlab—see
Eq. (16.1). Color numbers (No.) come from a graphics card, and cRGB values are
defined by Matlab

Palette index
Color (R)ed Color (G)reen Color (B)lue
No. cR value No. cG value No. cB value

0 0 0 0 0 0 0
1 4 0.015873 4 0.015873 4 0.015873
2 8 0.031746 8 0.031746 8 0.031746
3 12 0.047619 12 0.047619 12 0.047619
. . . . . . . . . . . . . . . . . . . . .
62 251 0.984127 251 0.984127 251 0.984127
63 255 1 255 1 255 1

There are many different standards of color decomposition. In digital TV and
digital media (i.e., DVD and blue-ray discs), each color is composed of: luminance
(Y ), measuring level of gray, as well as blue chrominance component (Cb) and red
chrominance component (Cr), together YCbCr, defined as:

Y = 0.299R+0.587G+0.114B

Cb = 0.564(B−Y ) =−0.1687R−0.3313G+0.5B (16.2)

Cr = 0.713(R−Y ) = 0.5R−0.4187G−0.0813B.

In image analysis, when one wants to extend dynamic range of an image to the
available color palette possibilities, a new color index is calculated using the equa-
tion:

indexnew = round

[(
indexold −min

max−min

)p

· pallete size

]
, (16.3)

where min and max denote found minimum and maximum color indexes in the
analyzed image, and the number of available colors in the palette is equal to size.

How images are acquired? In case of CCDs (Charge Couple Devices), imaging
sensor is a spatial matrix of capacitors which are charged by different RGB wave-
lengths of the light. Each pixel is built from a triple of capacitors, responsible for
different colors. Capacitor voltage is quantized using a 6–8 bit analog-to-digital
converter. A real-world image is analog and contains complete visual information.
A digital image is discretized in space, for example, the HD image has 1920×1080
or 1280×720 pixels. In addition, color values are quantized, and not all colors are
possible to obtain. In Fig. 16.4, acquisition of digital images is presented.

Each row of a digital image matrix is a 1D signal, describing change of color
along one line of observed scene. In Fig. 16.5, two examples of such scanning are
given. At the top, an artificial image of a house and tree, from Fig. 16.4, is scanned.
In the acquisition result, we can distinguish darker pixels of the house wall and
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Fig. 16.4: Illustration of digital image acquisition: discretization in space and quan-
tization in color [17]
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Fig. 16.6: Cinema film as a 3D data: sequence of 2D matrices (images) called film
frames [17]

window, as well as tree trunk. At the bottom, scanning is presented for real-world
image. In this case, one can notice brighter pixels of women hat and darker pixels
of her hair.

If 2D matrices of images are repeated, their sequence, namely a movie, is ob-
tained. A cinema film is a 3D matrix of color numbers—see Fig. 16.6—with num-
bers in all X, Y, and Z axes. If one can analyze and process a 1D signal, working
with multi-dimensional data should not represent a big problem for her or him.

Exercise 16.1 (Image Basics in Matlab). In Listing 16.1, a simple Matlab pro-
gram is presented, showing how to read an image into Matlab and display it.
User can select one of image lines and plot it next to the image. DFT and DCT
transforms are computed for the chosen line and compared. Run the program
and observe its different lines. Read different images. Make your own selfie
with your phone and read an image into the program. Find in Matlab manual
how to display separately different color image components, RGB or YCbCr.
Calculate FFT or DCT of one color of one image line.

Listing 16.1: Reading and displaying images in Matlab
�

1 % lab16_ex_image_basics.m
2 % Image basics
3 clear all; close all; figure;
4

5 % Initialization - read image
6 [x,cmap] = imread(’Cameraman.tif’); % read image to "x", color palette to "cmap"
7 imshow(x,cmap), title(’Image’); pause % display image using its palette
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8 [M, N] = size(x); % ask for number of rows and columns
9 x = double(x); % pixel values to double (gray scale)

10 MN = min(M,N); N=MN; x=x(1:N,1:N); % reduce image to square matrix
11

12 % Observation of one image line
13 Num = 150; K = 2; y = x; % line number, marker width, copy
14 line = x(Num,1:N); % take one matrix row
15 y(Num-K:Num+K,1:N) = 0*ones(2*K+1,N); % mark line with black color
16 figure;
17 subplot(121); imshow(y,cmap); title(’Image’); % display image
18 subplot(122); plot(line); title(’One line’); pause % show one line
19 figure;
20 subplot(211); plot( abs(fft(line))/N ); title(’|DFT|’); % line DFT
21 subplot(212); plot( dct(line)/sqrt(N) ); title(’DCT’); pause % line DCT

��

16.3 2D Orthogonal Image Transformations

16.3.1 Definitions and Calculation

A pair of 2D Fourier transforms of a 2D image matrix is defined as follows:

XDFT(k, l) =
M−1

∑
m=0

(
N−1

∑
n=0

x(m,n)e− j 2π
N nl

)
e− j 2π

M mk, (16.4)

x(m,n) =
1
N

N−1

∑
l=0

(
1
M

M−1

∑
k=0

XDFT(k, l)e
j 2π

M mk

)
e j 2π

N nl , (16.5)

where x(m,n) denotes an analyzed image matrix with dimensions M × N, and
XDFT (k, l) the transformation result, matrix of Fourier coefficients, having the same
size (0 ≤ m,k ≤ M−1 and 0 ≤ n, l ≤ N −1). Indexes (m,n) define pixel position in
an image, row and column number, respectively, while indexes k and l specify basis
function frequency in vertical and horizontal dimensions. The 2D DFT consists of
two series of 1D DFT presented in Fig. 16.7. First, each row of pixels is replaced
with its 1D DFT coefficients. Then, DFTs are calculated for each column of the
matrix, obtained in the first processing step.

As we remember, 1D DFT of a real-value signal is symmetrical in its real part and
asymmetrical in imaginary part. Therefore the 2D image DFT is also symmetrical
and asymmetrical (two possible equations):
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Fig. 16.7: Graphical interpretation of a 2D DFT image transformation: first image
rows are replaced by their 1D DFTs, and then columns of a new matrix, resulting
from the first processing level, are exchanged with their 1D DFTs [17]

X

(
N
2
± k,

M
2
± l

)
= X∗

(
N
2
∓ k,

M
2
∓ l

)
, 0 ≤ k ≤ N

2
−1, 0 ≤ l ≤ M

2
−1,

(16.6)

X (k, l) = X∗ (N − k, M− l) , 0 ≤ k ≤ N −1, 0 ≤ l ≤ M−1. (16.7)

Why symmetry of image DFT is so important? Because when we are doing image
filtration in frequency domain and modifying some Fourier coefficients of an image
(e.g., set them to 0), we obtain a real-value image after inverse 2D DFT only when
the image (a)symmetry was not perturbed by us!

The 2D discrete cosine transform of an image is defined as:

XDCT(k, l)=
M−1

∑
m=0

[
N−1

∑
n=0

x(m,n) ·β (l)cos

(
πl
N
(n+1/2)

)]
·α(k)cos

(
πk
M

(m+1/2)

)
,

(16.8)

x(m,n)=
N−1

∑
l=0

[
M−1

∑
k=0

XDCT(k, l) ·α(k)cos

(
πk
M

(m+1/2)

)]
·β (l)cos

(
πl
N
(n+1/2)

)
,

(16.9)

where constants α(k) and β (l) are equal to:

α(k) =

{ √
1/M, k = 0√

2/M, k = 1 . . .M−1
β (l) =

{ √
1/N, l = 0√

2/N, l = 1 . . .N −1.
(16.10)

The 2D DCT is computed exactly the same way as 2D DFT: first 1D DCT over
image rows and then over columns. Since 2D DFT and 2D DCT spectra are similar
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Fig. 16.8: DFT (top) and DCT (bottom) of image Cameraman, from left to right
in columns: (1) transformation of line 128, (2) transformation of all rows, and (3)
transformation of columns of matrix presented left (in figure 2) [17]

and DCT is significantly easier to compute without complex-value operations, the
2D DCT is preferred in image processing.

In Fig. 16.8, 2D DFT and 2D DCT image transformations are compared for the
image Cameramen. The 128th line of the image is transformed by 1D DFT and 1D
DCT, and then transformations of all image rows and all resultant columns are done.
As we see, the 2D DFT and 2D DCT spectra are very similar. Therefore DCT ones
should be preferred due to simpler calculations.

2D DCT application in image processing is beneficial also thanks to one very
important 2D DCT feature. When 2D image spectra are modified and inverse 2D
transforms are performed on them, images are filtered in frequency domain of trans-
form coefficients. Multiplication in frequency domain corresponds to convolution
in space domain of image pixels. Convolution realized by the sequence of opera-
tions 2D-IFFT(2D-FFT(image)*mask) is circular, while realized by 2D-IDCT(2D-
DCT(image)*mask) is symmetrical. Assuming symmetrical image extension for its
“unknown” part, done by convolution based on 2D-DCT, is better than assuming
circular image extension used by 2D-FFT since the first operation typically creates
smaller ringing effect (oscillations) on image borders.
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16.3.2 Interpretation

Both, 2D DFT (16.4), (16.5) and 2D DCT (16.8), (16.9), as 2D orthogonal transfor-
mations, can be represented as follows:

Y (k, l) =
M−1

∑
m=0

[
N−1

∑
n=0

x(m,n) ·b∗N(l,n)
]
·b∗M(k,m), YMxN = B∗

M ·XMxN ·B∗T
N ,

(16.11)

x(m,n) =
M−1

∑
k=0

[
N−1

∑
l=0

Y (k, l) ·bN(l,n)

]
·bM(k,m), XMxN = BT

M ·YMxN ·BN ,

(16.12)

where m,n are spatial and k, l are frequency indexes. BM and BN are orthogonal
transformation matrices with dimensions M ×M and N ×N, having in their rows
basis functions of the signal decomposition, e.g. for transformation of size M:

bDFT
M (k,m) =

√
1
M

exp

(
j
2πk
M

m

)
, (16.13)

bDCT
M (k,m) = α(k)cos

(
πk
M

(m+1/2)

)
. (16.14)

When we assume that all coefficients X(k, l) are equal to 0, except the coefficient
X(k0, l0) equal to 1, and perform the inverse transformation (16.12), the following
equation is derived:

Xk0,l0 = BT
M ·Yk0,l0 ·BN = Y (k0, l0) ·bT

M(k0) ·bN(l0) (16.15)

telling us that matrix bT
M(k0) · bN(l0) being the outer product of basis vectors

bM(k0) and bM(l0) is associated with non-zero coefficient X(k0, l0). Since orthogo-
nal transformations are linear, the transform of superposition of elementary matri-
ces X(k0, l0) (with only one non-zero element) is equal to sum of their transforms.
Therefore, we have

Y=
M−1

∑
k0=0

N−1

∑
l0=0

Yk0, l0 ⇒ X=
M−1

∑
k0=0

N−1

∑
l0=0

Xk0, l0 =
M−1

∑
k0=0

N−1

∑
l0=0

Y (k0, l0) ·bT
M(k0) ·bN(l0).

(16.16)
As we see, the M×N image X is a sum of scaled images B(k0, l0) with dimensions
M×N:

X =
M−1

∑
k0=0

N−1

∑
l0=0

Y (k0, l0) ·Bk0 ,l0 , Bk0 ,l0 = bT
M(k0) ·bN(l0). (16.17)
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Fig. 16.9: Elementary images Bk,l = bT
M(k) · bN(l) of 2D 8-point DCT transform:

each 8×8 image is represented as their weighted summation [17]

Elementary images are outer products of the 1D transformation basis functions/vec-
tors, i.e. the k0-th row of transformation matrix BM and the l0-th row of transforma-
tion matrix BN. They are multiplied by 2D spectral coefficients Y (k0, l0).

Figure 16.9 shows elementary 2D basis functions of the 2D 8-point DCT
transformation. We see simple images with vertical, horizontal, and diagonal
stripes, repeating with different frequencies. Each analyzed 8×8 image is rep-
resented as weighted summation of elementary images, scaled by correspond-
ing DCT coefficients:

IMAGE =
M−1

∑
k0=0

N−1

∑
l0=0

ck0,l0 · subimagek0,l0 . (16.18)

If some coefficient values ck0,l0 are set to zero, basis images associated with
them are removed from the processed image. For example, horizontal stripes
can disappear from your shirt. Wow! Please, do not do it!
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16.3.3 Image Analysis and Filtering in Frequency Domain

In this subsection, we calculate 2D DFT and 2D DCT of an exemplary image, ob-
serve the 2D spectra, modify them, and perform inverse transformations. We note
effects of image filtering realized this way. In order to better distinguish differences
in spectral DFT and DCT coefficients, the following scaling of its magnitude and
phase is done:

A(k, l )−min
k,l

(A)

max
k,l

(A)−min
k,l

(A)
·255, A(k, l ) = log10 (|Y (k, l )|+1) , (16.19)

B(k, l )−min
k,l

(B)

max
k,l

(B)−min
k,l

(B)
·255, B(k, l ) = �Y (k, l ) = atan(Im(Y (k, l )), Re(Y (k, l ))) .

(16.20)

In Fig. 16.10, magnitude and phase of the 2D DFT of the image Cameraman
are presented. Spectral coefficient Y (0,0), located at top-left matrix corner, repre-
sents the image mean value. The 2D spectrum is symmetrical and is described by
Eqs. (16.6), (16.7). If one wants to remove some 2D frequency components from
the image, she or he should put zero to symmetrical and asymmetrical pairs of spec-
tral coefficients associated with them. It is easier to do, when the (0,0) coefficient
is in 2D spectrum center, not in the corner. Therefore, before 2D DFT spectrum
modification, its quarter positions should be replaced, as shown in Fig. 16.11. Then,
the central spectrum part is multiplied by a symmetrical mask with filter weights,
and only the central spectral coefficients are left, describing low-frequency image
content. In Fig. 16.11, such masking of 2D DFT spectrum of Cameraman image
is presented in the second row. The filtering is continued in Fig. 16.12. Modified
image quarters are returned to their original positions and inverse image DFT is per-
formed. Since only low-frequency image components were left, the resultant image
is smoothed. After zooming, some pixel value oscillations, the so-called ringing ef-
fect, are observed. It is a consequence of applying sharp 0/1 filter mask in frequency
domain that has oscillatory sinc-like impulse response in pixel-space domain. 2D fil-
ters having smoothly decaying edges in frequency domain do not create such image
artifacts. A proof of this statement is presented in Fig. 16.13. In the upper row, cir-
cular Gaussian-shape low-pass filter mask is applied to Cameraman image, offering
its very nice softening. In the lower row, the inverse Gaussian-shape high-pass filter
mask is used causing edges enhancement in the image.

In Fig. 16.8, we have already seen that 2D DFT and 2D DCT spectra are very
similar with this difference that the DCT spectrum is NOT redundant (symmetri-
cal) and easier for calculation (without complex-value numbers). Therefore, the 2D
DCT, not DFT, is widely applied in image processing, especially in image and video
compression. In Fig. 16.14, the Cameraman image is filtered in domain of 2D DCT
coefficients using two different approaches: zonal filtering/coding (top) and thresh-
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Fig. 16.10: 2D DFT magnitude (left) and phase (right) of image Cameraman, shown
in Fig. 16.1 as the first one [17]

Fig. 16.11: Graphical explanation of the 2D DFT spectrum symmetry and spec-
trum squares re-ordering. Having (0,0) 2D DFT coefficient in the matrix center is
required before applying symmetrical filter masks that modify the image 2D DFT
content [17]

old filtering/coding (bottom). In the first method, DCT coefficients lying in a cho-
sen zone are left. In our example, low-frequency ones that are located in a triangle
placed at the top-left corner of the 2D DCT matrix. As we see, image smoothing is
achieved but with visible ringing effect (oscillations of pixel values)—due to sharp
0/1 edges of the 2D filter mask. In the second approach (second row of images),
only 2D DCT coefficients exceeding some threshold are left. In this case, quality of
the reconstructed image is much better.

Program in Listing 16.2 presents calculation of 2D DFT and 2D DCT transforms
of any image. Spectral coefficients are compared in both cases, modified, and used
for backward image synthesis.
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Fig. 16.12: Complete Cameraman image filtering in frequency domain. In rows: (1)
original image, (2) its 2D DFT, (3) centered DFT, (4) 0/1 square filter mask centered
at (0,0) DFT coefficient, (5) image DFT modified by the filter mask, (6) de-centered
DFT, (7) filtered image (the 2D IDFT result), and (8) zoomed image fragment [17]

Fig. 16.13: Cameraman image filtering by low- (top) and high-pass (bottom) 2D
circular Gaussian shape filters with softly decaying edges in frequency domain. All
operations are performed in the order presented in Fig. 16.12 [17]
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Fig. 16.14: Example of image filtering (compression) in domain of 2D DCT coeffi-
cients: (top) zonal filtering—only DCT coefficients from some matrix zone are left,
(bottom) threshold filtering—only DCT coefficients exceeding some threshold are
left [17]

Listing 16.2: 2D image transformations and their application to image filtering in
frequency domain

�

1 % lab16_ex_transforms.m
2 % 2D orthogonaltransforms of images
3 clear all; close all; figure;
4

5 % Initialization - read image
6 [x,cmap] = imread(’Cameraman.tif’); % read image to "x", color palette to "cmap"
7 imshow(x,cmap), title(’Image’); pause % display image using its palette
8 [M, N] = size(x); % ask for number of rows and columns
9 x = double(x); % pixel values to double (gray scale)

10 MN = min(M,N); N=MN; x=x(1:N,1:N); % reduce image to square matrix
11

12 % Transformationmatrices of 1D DCT (C) and 1D DFT (F)
13 c = [sqrt(1/N) sqrt(2/N)*ones(1,N-1)]; f = 1/sqrt(N); % normalizingcoefficients
14 n = 0:N-1; % indexes of samples
15 for k=0:N-1 % indexes of frequencies
16 C(k+1,1:N) = c(k+1) * cos( pi*k*(n+1/2) / N ); % basis functions of 1D DCT
17 F(k+1,1:N) = f * exp(j*2*pi/N*k*n); % basis functions of 1D DFT
18 end
19

20 % FILTERING using 2D DCT
21 K = 64; H = zeros(M,N); H(1:K,1:K) = ones(K,K); % frequency 0/1 mask
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22 X = conj(C) * x * conj(C).’; % 2D DCT - IN
23 X1 = dct2(x); X2=dct(dct(x’)’); % 2D DCT - Matlab
24 err1 = max(max(X-X1)), err2 = max(max(X-X2)), pause % errors
25 Y = X .* H; % filtering in freq domain
26 y = C.’ * Y * C; % 2D IDCT - OUT
27 y1 = idct2(Y); y2 = ( idct( idct( Y )’ ) )’; % 2D IDCT - Matlab
28 err1 = max(max(y-y1)), err2 = max(max(y-y2)), pause % errors
29 XdB = scaledB( X ); YdB = scaledB( Y ); % scaling in dB
30 figure;
31 subplot(221); imshow(x, cmap); title(’Image’); % below only display
32 subplot(222); imshow(XdB, cmap); title(’2D DCT’);
33 subplot(223); imshow(YdB, cmap); title(’2D DCT + Mask’);
34 subplot(224); imshow(y(1:128,65:192), cmap); title(’Filtered image’); pause
35

36 % FILTERING using 2D DFT (fftshift2D - re-ordering of 2D DFT coefficients)
37 K = 32; H = zeros(M,N); % frequency mask H (MxN)
38 H(M/2+1-K : M/2+1+K, N/2+1-K : N/2+1+K) = ones(2*K+1,2*K+1); % center = (M/2+1, N/2+1)
39 h = fftshift2D( real( ifft2( fftshift2D(H) ) ) ); % impulseresponse
40 figure;
41 subplot(121); imshow(255*H,cmap); title(’Freq Mask’); % show freq response
42 subplot(122); mesh(h); title(’Filter imp. response’); pause % show imp response
43 X = conj(F) * x * conj(F).’; % 2D DFT - IN
44 X1 = fft2(x)/N; % 2D DFT - Matlab 1
45 X2 = fft(fft(x’).’)/N; % 2D DFT - Matlab 2
46 err1 = max(max(X-X1)), err2 = max(max(X-X2)), pause % errors
47 Xp = fftshift2D(X); % 2D spectrumcentering
48 Yp = Xp .* H; % filtering = 2D DFT multiplied by filter H
49 Y = fftshift2D(Yp); % 2D spectrum de-centering (original order)
50 y = F.’ * Y * F; % inverse 2D DFT - IN
51 y1 = ifft2(Y)*N; % inverse 2D DFT - Matlab 1
52 y2 = (ifft(ifft(Y).’))’*N; % inverse 2D DFT - Matlab 2
53 err1 = max(max(abs(y-y1))), err2=max(max(abs(y-y2))), pause % errors
54 y1 = real(y1); % real part only, imaginary equal to 0
55 y1f = y1(1:128,65:192); % image fragment for display
56 XdB = scaledB( X ); XpdB = scaledB( Xp );
57 YdB = scaledB( Y ); YpdB = scaledB( Yp );
58 figure;
59 subplot(231); imshow(x, cmap); title(’1. Image IN’);
60 subplot(232); imshow(XdB, cmap); title(’2. 2D DFT’);
61 subplot(233); imshow(XpdB, cmap); title(’3. Centering’);
62 subplot(234); imshow(YpdB, cmap); title(’4. Filtering’);
63 subplot(235); imshow(YdB, cmap); title(’5. De-centering’);
64 subplot(236); imshow(y1f, cmap); title(’6. Image OUT’); pause
65

66 % 2D FILTERING using 2D Matlab convolutionfunction conv2()
67 L = 32; y2 = conv2(x, h(M/2+1-L:M/2+1+L, N/2+1-L:N/2+1+L),’same’);
68 figure;
69 subplot(121); imshow(y1,cmap); title(’Image after FREQ filter - cyclic conv’);
70 subplot(122); imshow(y2,cmap); title(’Image after CONV filter - linear conv’); pause

��
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Exercise 16.2 (Image as a Summation of Elementary Images). Modify pro-
gram 16.2. Having matrix of the 1D DCT transformation and its basis func-
tions lying in matrix rows, generate yourself a few elementary images of the
M = N = 512 2D DCT transformation, similar to ones presented in Fig. 16.9.
For this purpose, you can also use the Matlab x=idct2(X) function, for ex-
ample, with an argument M=512; X=zeros(M,M); X(3,3)=1.

Exercise 16.3 (Image Processing in Frequency Domain). Analyze code of
the program 16.2. Note different possibilities of 2D DFT and 2D DCT com-
putation. Carefully look at calculated 2D spectra, results of their modification
and images synthesized. Next, make a selfie using your phone. Read this im-
age into the program 16.2. Calculate its 2D DCT spectrum. Select a group of
coefficients with the highest values and synthesize an image associated with
them. Then, synthesize an image associated with low-value DCT coefficients.
Finally, make a photo of your shirt with vertical or horizontal stripes and pro-
cess the image.

16.4 2D Convolution and Image Filtering

Image filtering can be done by modification of 2D image spectra but also by di-
rect modification of image pixels. The situation is exactly the same as for 1D sig-
nals: they are filtered in two ways: (1) doing direct convolution of their samples
with filter weights or (2) by multiplication of DFT/DCT spectra of signals and filter
weights, and calculating the inverse transform of the multiplication result. What is
the conclusion for us from this observation? Instead of 2D spectra masking with
some weights of filter frequency response, we can calculate the inverse 2D trans-
formation of the weights, namely the 2D filter impulse response, and convolve an
image with it. 2D image filtering implemented as 2D convolution is presented in
Figs. 16.15 and 16.16. A pixel mask of 2D filter is moved above the image and
stopped over its each pixel. Then pixels lying below the mask are multiplied by filter
weighs, i.e. 2D filter impulse response, and summed. This way one pixel of the out-
put image is calculated, the one being in the center of the filter mask. Filter weights
can be chosen in some heuristic manner or as a result of inverse 2D transform of the
required filter frequency response. Typically, some windowing is applied to them
in image pixel domain in order to obtain their compact support (limited number of
weights is non-zero) and smooth weights transition.
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Fig. 16.15: Illustration of a 2D convolution: a small matrix of filter weights is shifted
over a big matrix of image pixels and multiplied by pixel values lying below. Mul-
tiplication results are summed. Calculated value is put to an output image pixel in
the position of filter weights center [17]
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Fig. 16.16: Illustration of image filtering using 2D convolution: input image pix-
els, selected by a moving mask, are multiplied by corresponding filter weights and
summed. Calculated value is put to the output image in the position of the moving
mask center [17]

The 2D linear convolution, realized in image pixel domain, is theoretically de-
scribed by the following equation:

y(m,n) =
∞

∑
i=−∞

∞

∑
j=−∞

x(i, j)h(m− i,n− j), (16.21)

while its frequency-domain version implements the circular (modulo-M, modulo-N)
version, exactly the same as for 1D signals:

y(m,n) =
M−1

∑
i=0

N−1

∑
j=0

x(i, j) ·h((m− i) mod M,(n− j) mod N). (16.22)

Theoretical 2D impulse responses can be calculated analytically using 2D inverse
DFT, for example, for low-pass filters with rectangular or radial support in frequency
domain, respectively:
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h( f 0)
LP (m,n) =

sin(2πm fm0/ fms)

πm
· sin(2πn fn0/ fns)

πn
, hLP(0,0) =

4 fm0 fn0

fms fns
,

(16.23)

h( f 0)
LP (m,n) =

R

2πR
√

m2 +n2
J1

(
R
√

m2 +n2
)
, R =

2π f0

fs
, (16.24)

where fms, fns denotes sampling frequencies in m,n directions, and J1(x) is the
Bessel function of the first type and first order. Weights (impulse responses) of HP,
BP, and BS filters are calculated using the following equations:

h( f 0)
HP (m,n) = δ (m,n)−h( f 0)

LP (m,n), (16.25)

h( f 1, f 2)
BP (m,n) = h( f 2)

LP (m,n)−h( f 1)
LP (m,n), (16.26)

h( f 1, f 2)
BS (m,n) = δ (m,n)−h( f 1, f 2)

BP (m,n). (16.27)

2D windows, used in 2D case for tapering theoretical impulse responses, are
typically outer products of 1D windows:

w2D(m,n) = w1D(m) ·w1D(n). (16.28)

For the 1D Gaussian window, its 2D perfectly radial (circular) version is obtained
from Eq. (16.28):

w2D(m,n) =

(
1√

2πσ
e−m2/2σ2

)(
1√

2πσ
e−n2/2σ2

)
=

1
2πσ2 e−(m2+n2)/2σ2

.

(16.29)
In Fig. 16.17, design of 2D filter weights, using the window method, is explained.

First, required filter frequency response is selected (top-left corner). Then, its the-
oretical impulse response (weights!) is calculated analytically (bottom-left corner).
Next, a 2D window is applied to the computed filter weights (bottom-right) and,
finally, the obtained filter frequency response is checked (top-right).

The 2D Gaussian function itself is a very good low-pass filter. After its differ-
entiation in m axis and n axis separately, nice filters for detection of vertical and
horizontal image edges are obtained. After calculation of second derivatives in both
directions and their combination, the Laplacian of Gaussian is derived, which is an
efficient filter for edge detection in all directions. Definitions of Gaussian function-
based filters are presented in Table 16.2. For example, g1m(m,n) denotes first deriva-
tive of the 2D Gaussian function g0(m,n) in regard to variable m and g2n(m,n) de-
notes second derivative in regard to variable n.

In image processing, application of large masks of filter weights is not possible
due to limited image size. Therefore, generally, standard filters of some specific
types are used for: smoothing, differentiating, and enhancing image edges. The most
popular filter weights are defined in Table 16.3.
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Fig. 16.17: Explanation of 2D filter design using window method: (top) required and
designed filter frequency response, (bottom) calculated theoretical 2D filter impulse
response and its windowed version [17]

Table 16.2: 1D and 2D filters originated from the Gaussian function (−K ≤ m ≤
K, −L ≤ n ≤ L)

Function 1D filter 2D filter

Gaussian g0(m) = 1√
2πσ exp

(
− m2

2σ2

)
g0(m,n) = 1

2πσ2 exp
(
−m2+n2

2σ2

)
First deriva-
tive

g1m(m) =− m
σ2 g0(m) g1m(m,n) =− m

σ2 ·g0(m,n), g1n(m,n) =− n
σ2 ·g0(m,n)

Second
derivative

g2m(m) = m2−σ2

σ4 g0(m) g2m(m,n) = m2−σ2

σ4 g0(m,n), g2n(m,n) = n2−σ2

σ4 g0(m,n)

Laplacian g2(m,n) = g2m(m,n)+g2n(m,n) = m2+n2−2σ2

σ4 g0(m,n)

In Fig. 16.18, application of filters derived from Gaussian function to Cam-
eraman image is presented. The Gaussian function parameters are as follows:
K = L = 4,σ = 1.4. In first row, we see result of low-pass filtration with original
2D Gaussian function and band-pass filtration exploiting its 2D Laplacian. In the
second row, first derivatives of the Gaussian function in direction m and n are used
as gradient filters, causing enhancement of vertical and horizontal image edges, re-
spectively. After taking pixels of both images to the power of two, their summation
and square root calculation, the third image is obtained, having all edges enhanced.
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Table 16.3: Definition of some linear and non-linear 2D filters

Filter type
Application Definition

Low-pass

Smoothing 1
9

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ 1

10

⎡
⎣1 1 1

1 2 1
1 1 1

⎤
⎦ 1

16

⎡
⎣1 2 1

2 4 2
1 2 1

⎤
⎦ 1

273

⎡
⎢⎢⎢⎢⎣

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

⎤
⎥⎥⎥⎥⎦

Differentiation

Edges—| Sobel:

⎡
⎣ 1 2 1

0 0 0
−1 −2 −1

⎤
⎦

⎡
⎣1 0 −1

2 0 −2
1 0 −1

⎤
⎦ Prewitt:

⎡
⎣ 1 1 1

0 0 0
−1 −1 −1

⎤
⎦

⎡
⎣1 0 −1

1 0 −1
1 0 −1

⎤
⎦

Differentiation

Edges �� Roberts:

[
1 0
0 −1

] [
0 1

−1 0

]
skew:

⎡
⎣1 1 1

1 −2 −1
1 −1 −1

⎤
⎦

⎡
⎣ 1 1 1
−1 −2 1
−1 −1 1

⎤
⎦

Double differentiation

Any edges

⎡
⎣ 0 −1 0
−1 4 −1

0 −1 0

⎤
⎦

⎡
⎣ 1 −2 1
−2 4 −2

1 −2 1

⎤
⎦

⎡
⎣−1 −1 −1
−1 8 −1
−1 −1 −1

⎤
⎦

⎡
⎢⎢⎢⎢⎣

−1 −1 −1 −1 − 1
−1 −1 −1 −1 −1
−1 −1 24 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎦

Laplacian of Gaussian

Any edges

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 1 2 1 0

1 2 −16 2 1
0 1 2 1 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 2 4
1 4 5

2 2 2
5 5 5
3 0 3

1 1 0
4 2 1
5 4 1

2 5 3
2 5 0
2 5 3

−12 −24 −12
−24 −40 −24
−12 −24 −12

3 5 2
0 5 2
3 5 2

1 4 5
1 2 4
0 1 1

3 0 3
5 5 5
2 2 2

5 4 1
4 2 1
1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Median

Impulse noise removal med

⎡
⎣x1 x2 x3

x4 x5 x6
x7 x8 x9

⎤
⎦= central value after sorting {min, max}

Morphological

Eroding/dilating min

⎡
⎣x1 x2 x3

x4 − x6
x7 x8 x9

⎤
⎦ max

⎡
⎣x1 x2 x3

x4 − x6
x7 x8 x9

⎤
⎦

In program 16.3, 2D images filtering fundamentals are put together. Filters de-
signed using the 2D window method as well as filters derived from the 2D Gaus-
sian function are presented and tested. Image smoothing and edge enhancement are
shown.
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Fig. 16.18: Filtering results of Cameraman image using 2D filters obtained from
2D Gaussian function. First row: low-pass filtration (by Gaussian) and band-pass
filtration (by its Laplacian). Second row: gradient filtering over rows and columns,
and a square root of summation of first two images (after taking them to the power
of two) [17]

Listing 16.3: 2D filters and their application to image filtration via 2D convolution
�

1 % lab16_ex_filter_design.m
2 % Design of 2D filters
3 clear all; close all; figure;
4

5 L = 15; % width of filter mask (square)
6

7 K = (L-1)/2; df = 0.5/K; % variables used for filter weights
8 m = ones(L,1)*(-K:K); % generation and figure description
9 n = (-K:K)’*ones(1,L); %

10 fm = ones(L,1)*(-0.5:df:0.5); %
11 fn = (-0.5:df:0.5)’*ones(1,L); %
12

13 % Read image to be processed
14 [x,cmap] = imread(’Cameraman.tif’);
15 imshow(x,cmap), title(’Image’); pause
16 [N, M] = size(x);
17 x = double(x);
18

19 % Filtersoriginated from the Gaussianfunction
20 sigma = 1.4; df = 0.5/K;
21 g0 = 1/(2*pi*sigmâ 2) .* exp( -(m.̂ 2+n.̂ 2)/(2*sigmâ 2) ); % Gaussianfunction
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22 g1m = -m/(sigmâ 2) .* g0; % derivative over "m"
23 g1n = -n/(sigmâ 2) .* g0; % derivative over "n"
24 g2 = (m.̂ 2 + n.̂ 2 - 2*sigmâ 2)/(sigmâ 4) .* g0; % second derivative over "m", "n"
25 figure;
26 subplot(221); mesh(m,n,g0); title(’Gaussian filter’);
27 subplot(222); mesh(m,n,g2); title(’Laplacian of Gaussian’);
28 subplot(223); imshow( conv2(x,g0,’same’),cmap );
29 subplot(224); imshow( conv2(x,g2,’same’),cmap ); pause
30 figure;
31 subplot(231); mesh(m,n,g1m); title(’Gradient "m"’);
32 subplot(232); mesh(m,n,g1n); title(’Gradient "n"’);
33 subplot(234); imshow( conv2(x,g1m,’same’),cmap );
34 subplot(235); imshow( conv2(x,g1n,’same’),cmap );
35 subplot(236); imshow( sqrt( conv2(x, g1m,’same’).̂ 2 + conv2(x, g1n,’same’).̂ 2 ), cmap )

;
36 pause
37

38 % 2D WINDOW METHOD
39 chka = 1; % 0 = rectangular mask, 1 = circular mask
40 w = hamming(L); w = w * w’; % 2D window
41 figure; mesh(m,n,w); colormap([0 0 0]); title(’2D Window’); pause
42

43 if(chka==0) % Rectangular freq response - imp. responses of two low-pass filters
44 f0=0.25; wc = pi*f0; sinc = sin(wc*(-K:K))./(pi.*(-K:K));
45 sinc(K+1)=f0; lp1=sinc’*sinc;
46 f0=0.50; wc = pi*f0; sinc = sin(wc*(-K:K))./(pi.*(-K:K));
47 sinc(K+1)=f0; lp2=sinc’*sinc;
48 else % Circular freq response - imp. responses of two low-pass filters
49 f0=0.25; wc=pi*f0; lp1=wc*besselj(1,wc*sqrt(m.̂ 2 + n.̂ 2))./(2*pi*sqrt(m.̂ 2+n.̂ 2));
50 lp1(K+1,K+1)= wĉ 2/(4*pi);
51 f0=0.50; wc=pi*f0; lp2=wc*besselj(1,wc*sqrt(m.̂ 2+n.̂ 2))./(2*pi*sqrt(m.̂ 2+n.̂ 2) );
52 lp2(K+1,K+1)= wĉ 2/(4*pi);
53 end
54

55 lp = lp1; % LowPass without 2D window
56 lpw = lp .* w; % with window
57 hp = - lp1; hp(K+1,K+1) = 1 - lp1(K+1,K+1); % HighPasswithout 2D window
58 hpw = hp .* w; % with window
59 bp = lp1 - lp2; % BandPasswithout 2D window
60 bpw = bp .* w; % with window
61 bs = - bp; bs(K+1,K+1) = 1 - bp(K+1,K+1); % BandStopwithout 2D window
62 bsw = bs .* w; % with window
63 for typ = 1 : 4 % show imp. response, its spectrum and filtered image
64 switch (typ) % choose filter type
65 case 1, h = lp; hw = lpw; % LP
66 case 2, h = hp; hw = hpw; % HP
67 case 3, h = bp; hw = bpw; % BP
68 case 4, h = bs; hw = bsw; % BS
69 end
70 figure;
71 subplot(221); mesh(m,n,h); title(’Filter h(m,n)’);
72 subplot(222); mesh(m,n,hw); title(’Filter hw(m,n)’);
73 subplot(223); mesh(fm,fn,abs( fftshift2D(fft2(h)) ) ); title(’|H(fm,fn)|’);
74 subplot(224); mesh(fm,fn,abs( fftshift2D(fft2(hw)) ) ); colormap([0 0 0]);
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75 title(’|Hw(fm,fn)|’); pause
76 figure;
77 subplot(121); y = conv2(x, h,’same’); imshow(y,[min(min(y)),max(max(y))]);
78 subplot(122); y = conv2(x, hw,’same’); imshow(y,[min(min(y)),max(max(y))]); pause
79 end
80

81 % FILER DESIGN IN FREQUENCY DOMAIN
82 % Work variables
83 N=L+1; df = 0.5/(K+1);
84 m = ones(L+1,1)*(-(K+1):K); n = (-(K+1):K)’*ones(1,L+1);
85 fm = ones(L+1,1)*(-0.5:df:0.5-df); fn = (-0.5:df:0.5-df)’*ones(1,L+1);
86 % 2D window - its shape and 2D spectrum
87 w = hamming(N); w = w * w’;
88 % Requiredfrequencyresponse - circular or rectangular
89 Q = round(K/2); % LP filter width
90 H = zeros(N,N);
91 for k = N/2+1-Q : N/2+1+Q
92 for l = N/2+1-Q : N/2+1+Q
93 if( (k-N/2-1)̂ 2 + (l-N/2-1)̂ 2 <= Q̂ 2) H(k,l) = 1; else H(k,l) = 0; end %

circular
94 end
95 end
96 % H(N/2+1-Q : N/2+1+Q, N/2+1-Q : N/2+1+Q) = ones(2*Q+1,2*Q+1); % rectangular
97 % Filter design and its testing
98 h = real( ifft2(fftshift2D(H)) ); h = fftshift2D(h); % impulseresponse
99 hw = h .* w; % with window

100 Hw = abs( fftshift2D( fft2( hw ) ) ); % 2D spectrum
101 y = conv2(x, hw, ’same’); % 2D filtration
102 % Figures
103 figure;
104 subplot(121); mesh( m,n,w ); title(’2D window 2D w(m,n)’);
105 subplot(122); mesh( fm,fn,abs( fftshift2D(fft2(w)) ) ); title(’|W(fm,fn)|’);
106 colormap([0 0 0]); pause
107 figure;
108 subplot(221); mesh(fm,fn,H); title(’Required |H(fm,fn)|’);
109 subplot(222); mesh(m,n,h); title(’2D filter h(m,n)’);
110 subplot(223); mesh(fm,fn,Hw); title(’2D filter freq response |Hw(fm,fn)|’);
111 subplot(224); mesh(m,n,hw); title(’2D filter with window hw(m,n)’);
112 colormap([0 0 0]); pause
113 figure;
114 subplot(121); imshow(y, cmap); title(’Image after filtering’); y = y(1:128,65:192);
115 subplot(122); imshow(y,[min(min(y)),max(max(y))]); title(’Image fragment’); pause

��

Exercise 16.4 (2D Filter Design and Image Filtering). Read carefully the
program 16.3. Run it and observe figures. Read your selfie and process it in the
program instead of the image Cameraman. Add to the program filter weights,
defined in the Table 16.3. Test them on your image.
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Exercise 16.5 (Object Recognition). Using code of the program 16.3, write a
new program. Make a photo of a license plate of a car. Filter the image and bina-
rize it. Try to recognize digits written on the plate. Build a code-book of digits.
Use 2D auto-correlation function for digit recognition. If needed, do normaliza-
tion of the license plate size and color. Read about affine image transformations.
Are they needed in this application?

Exercise 16.6 (Morphological Image Processing). Test the following Matlab
commands on your own photo x:
% binarization
indx=find( x>100 ); y=zeros(size(x));
y(indx)=255*ones(size(indx));
z = imerode( y, [ 1 1 1; 1 0 1; 1 1 1] ); % image erosion
z = imdilate( y, [ 1 1 1; 1 0 1; 1 1 1] ); % image dilation

Observe resultant images.

16.5 Fundamentals of Lossless Image Compression

Huffman Coding In lossless compression, long stream of bits is segmented into
smaller blocks of bits, having the same length, so-called symbols. Then, frequency
of symbol occurrence is analyzed, and those that appear more often obtain shorted
bit codes while occurring rarely—longer codes. Let us explain this idea using a
simple example. Let us assume that we have the following 10-element sequence of
4 symbols:

{a,a,b,a,a,c,d,d,a,a}.
Because symbols are 4, 2 bits are needed for their coding. “a” repeats 6 times,
“b” and “c”—1 time and “d”—2 times. In general, we can say that probabilities
of symbol occurrence are equal: pa = 0.6, pb = 0.1, pc = 0.1, pd = 0.2. In upper
part of Fig. 16.19, the symbols and their probabilities are written. Next, we are
looking for two symbols, having the lowest probabilities, and join them. In our
case, symbols “b” and “c” are combined, and a joint symbol “bc” with probability
pbc = pb + pc = 0.2 is obtained. The operation of two minimum elements selection
is repeated, and the joint symbol “bcd” with probability pbcd = pbc + pd = 0.4 is
obtained. Finally, two remaining symbols “a” and “bcd” are combined, and the joint
element “abcd” with probability pabcd = 1 results. This way the Huffman tree for
our data was constructed. Now, it is time for finding replacement codes for all sym-
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Fig. 16.19: Example of Huffman code design using a binary tree [17]

Table 16.4: Example of entropy-based lossless Huffman coding of binary symbol
sequence

Symbol Old code Repetition number Probability New code

a 00 6 0.6=6/10 0
b 01 1 0.1=1/10 100
c 10 1 0.1=1/10 101
d 11 2 0.2=2/10 11

bols. We are starting from the tree trunk and going into each symbol, located at the
end of tree branches. Turning left generates bit “0,” while going “right” bit “1.” In
consequence, on the path to symbol “b” one obtains the sequence “100.” This way
new codes are calculated for all symbols. Our design is summarized in Table 16.4,
where all old and new symbol codes are given.

What is the profit from coming from equal-length code-words to code-words of
different length, but statistically motivated? At present, shorter code is given to most
often occurring symbols.

Massage : a, a, b, a, a, c, d, d, a, a

Old code : 00 00 01 00 00 10 11 11 00 00 = 20 bits

New code : 0 0 100 0 0 101 11 11 0 0 = 16 bits
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Should we be happy or not? Rather YES. Entropy of memory-less source gives as an
information about minimum number of bits required for coding one symbol when
probabilities of symbols occurring are known:

E =−
Ns

∑
n=1

pnlog2(pn). (16.30)

In our case, we obtain

E =−0.6log2(0.6)−0.1log2(0.1)−0.1log2(0.1)−0.2log2(0.2) = 1.5709506;

therefore, we are very close to the theoretical minimum: 10 symbols with 1.571 bits
per symbol give 15.71 bits, and we used 16 bits.

In conclusion, the Huffman code of a given binary message is calculated as fol-
lows:

1. Divide a bit-stream to be coded into symbols, i.e. blocks of bits of equal length,
2. Find probability of symbol occurrence,
3. Build a Huffman tree and find replacements of all symbols,
4. Build a Huffman coding table with old and new code,
5. Analyze bit-stream symbol by symbol and replace bits of all symbols.

Huffman coder is not difficult. The decoder is much more complicated due to
necessity of bit-stream cutting into blocks of bits with different length. Huffman ta-
bles can be calculated and added to the bit-stream or can be pre-computed for bigger
data sets and be constant. In such case, they are known by encoder and decoder, and
they are not embedded in the bit-stream.

Lossless Huffman coding is very popular in image compression as the last step
of information packing. The same is true for audio coders, for example, MP3 and
AAC. We should understand it and remember about it!

Exercise 16.7 (Huffman Coding). Write function of Huffman encoder and de-
coder.

Arithmetic Coding The arithmetic coding is also a very efficient lossless coding
method. Since its patent has expired already, it is a sense to describe it also. Let
us assume that our alphabet of symbols consists of only four letters (symbols) “a,”
“b,” “c,” and “d” occurring with probabilities 0.6, 0.1, 0.1, and 0.2, as before. Let
us create for them a table of accumulated probability pa = [0, 0.6, 0.7, 0.8, 1.0].
Let us assume that each symbol has corresponding probability interval of real-value
numbers: “a”—[0, 0,6), “b”—[0,6, 0,7), “c”—[0,7, 0,8), “d”—[0,8, 1). These inter-
vals divide the whole range [0, 1) in specific proportions. If we choose any number
from this range, it will belong only to one interval and show the symbol, the interval
owner. If the selected interval will be divided ones more in the same proportions,
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and a new number will be chosen from it, this number will hit into a new interval
and select a new symbol. Interval after interval, or symbol after symbol. Repeating
this operation a few times, it is possible to define (choose) a sequence of symbols
having only one, precisely chosen starting number. Of course, during coding and
decoding the table of accumulated probabilities should be known since it defines
the division proportions.

Let us assume that we are coding the message “aad.” In the beginning, we are set-
ting down and up pointers to the whole range: down=0, up=1, and range=1. Then,
we are taking the first symbol from the message, “a” in our case, and read its prob-
ability bounds: [0, 0,6). Next, we use them for modifying our variables:

up = down+ range ·0.6, down = down+ range ·0, range = up−down.
(16.31)

At this moment, our variables have values: up = 0.6, down = 0, range = 0.6. Then,
we are taking the second message symbol, again “a,” and we are exploiting again
numbers [0,0,6) for the consecutive modification of our variable values, obtaining:
up = 0.36, down = 0, range = 0.36. Finally, we are taking the last symbol “d,”
reading its probability bounds [0,8,1) and modifying pointer values:

up = down+ range ·1 = 0.36, down = down+ range ·0.8 = 0.288. (16.32)

Therefore, the result of “aad” coding is any number from the interval [0.288,
0.36). In practice, a fractional number from this range is used and their bits are
sent. In our case, it is a number 0101 = 0

2−1 + 1
2−2 + 0

2−3 + 1
2−4 = 5

16 = 0.3125.
During decoding, symbols are reconstructed in similar way and in the same order
like during encoding.

In Huffman coding, each symbol obtains its own unique code and is coded sep-
arately. In arithmetic coding, symbols are coded together, in groups. Binary repre-
sentation of the message “aad” requires 6 bits: 3 symbols with 2 bits each. In case
of Huffman coding of the same message, we obtain 4 bits: 1(a)+1(a)+2(d) (look
at the code-book from the previous example), the same as for the arithmetic coder:
0101. However, for larger code-books and longer messages the arithmetic coding is
more efficient.

Listing 16.4: Arithmetic encoder and decoder in Matlab
�

1 % lab16_ex_arithmetic.m
2 % Arithmeticencoder and decoder
3

4 clear all; close all;
5

6 % Initialization
7 alphabet = [ ’a’ ’b’ ’c’ ’d’ ]; % alphabet of symbols (letters)
8 p = [ 0.6 0.1 0.1 0.2 ]; % symbol probabilities
9 pa = [ 0 0.6 0.7 0.8 1.0 ]; % accumulatedprobability to k-th symbol

10 Ns = length(alphabet); % number of symbols
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11

12 % Coding group of symbolstogether (one joint code-word is calculated)
13 num = [ 1, 1, 4]; % symbol numbers: 1,1,4 =a,a,d
14 down = 0; up = 1; % pointersinitialization
15 for k = 1 : length(num) % loop beginning
16 range = up-down; % new ’range’
17 up = down + range * pa( num(k)+1 ); % new ’up’
18 down = down + range * pa( num(k) ); % new ’down’
19 end
20

21 % Output bitstream = binary coded fractionalnumber from the range [down, up)
22 code = 0; dv = 1/2; bits = [0];
23 while( ~((code>= down) & (code < up)) )
24 if(code < down)
25 dv = dv/2; code = code + dv; bits = [ bits 1 ];
26 else
27 if(code < up)
28 break;
29 else
30 code = code - dv; bits( end ) = 0;
31 dv = dv/2;
32 code = code + dv; bits = [ bits 1 ];
33 end
34 end
35 end
36 code, bits, pause
37

38 % Decodingmessage (sequence of symbols)
39 pa_rev = pa(end:-1:1); alpha = [ 0 (Ns:-1:1) ]; numdecod = []; % initialization
40 down = 0; up = 1; range = up-down; %
41 for k = length(num) : -1 : 1 % loop beginning
42 x = (code-down)/range; % calculate number ‘x’
43 indx = find( pa_rev<= x ), indx = indx(1); % first x: pa_reverse<= x
44 up = down + range*pa_rev( indx-1 ); % new ‘up’
45 down = down + range*pa_rev( indx ); % new ’down’
46 range = up-down; % new ‘range’
47 numdecod = [numdecod alpha(indx) ]; % number of decoded symbol
48 end
49 disp(’Sent symbols’); num
50 disp(’Receivedsymbols’); numdecod

��

16.6 Image and Video Compression

Image and video compression are one of the main telecommunication engineering
tasks. Their methods and standards are developed for years. In this section, we learn
fundamentals of JPEG standard, concerning still image coding, and MPEG standard,
dealing with video coding.
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Fig. 16.20: JPEG encoder (top) and decoder (bottom) [17]

16.6.1 JPEG: Still Images

Encoder and decoder of the JPEG compression algorithm are presented in Fig. 16.20.
The whole still image is divided into non-overlapping blocks of 8×8 pixels x(m,n).
Each such block is transformed by 2D DCT. Next, each DCT coefficient of the
matrix XDCT(k, l) is quantized using corresponding element of a quantizer matrix
Q(k, l), having the same 8×8 dimensions:

Z(k, l ) =

⌊
XDCT(k, l )±�Q(k, l )/2�

Q(k, l )

⌋
, k, l = 0, 1, . . . , 7, (16.33)

where �x� denotes the biggest integer number lower or equal to x, i.e. the operator
�.�. In Eq. (16.33), sign ‘+’ is used for XDCT(k, l) ≥ 0 and sign ‘−’ otherwise. The
RGB components are transformed to YCbCr color system, and Eq. (16.33) is used
separately for image luminance Y and for chrominances Cb and Cr. Each color image
component has different quantization table:

QY =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 11 10 16
12 12 14 19
14 13 16 24
14 17 22 29

24 40 51 61
26 58 60 55
40 57 69 56
51 87 80 62

18 22 37 56
24 35 55 64
49 64 78 87
72 92 95 98

68 109 103 77
81 104 113 92

103 121 120 101
112 100 103 99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

QC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17 18 24 47
18 21 26 66
24 26 56 99
47 69 99 99

99 99 99 99
99 99 99 99
99 99 99 99
99 99 99 99

99 99 99 99
99 99 99 99
99 99 99 99
99 99 99 99

99 99 99 99
99 99 99 99
99 99 99 99
99 99 99 99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(16.34)
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After this operation many DCT coefficients are equal to zero, for example, rather
drastic, two successive blocks can look as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

520 50 0 0
20 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

−12 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

510 30 0 0
47 0 0 0
0 0 0 0

12 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16.35)

Because sparse matrices are typically obtained with the biggest values positioned
in the top-left corner, they are scanned in Zig–Zag manner as shown in Fig. 16.21.
The detailed description of coding will be presented later; at present, we aim at
qualitative description of coding and decoding process.

After scanning DCT coefficients, which survived quantization operation, they
are losslessly coded using Variable Length Integer (VLI) method and Huffman en-
tropy encoder. Finally, the binary file is created consisting of header, describing the
applied compression details: information about quantization tables, used Huffman
tables, and bits coding blocks of DCT coefficients. In the decoder, all operations are
performed in reverse order: (1) sparse blocks of DCT coefficient are reconstructed,
(2) zeros are put into empty spaces/positions left by non-coded DCT coefficients
(equal to zero), (3) the inverse 2D DCT transform is performed, and (4) some de-
blocking filtering is eventually applied.

At present, let us look more carefully to the encoding process. DC coefficients of
neighboring 8× 8 blocks (one value in top-left image corner) are typically big and
correlated—they represent mean values of blocks of pixels. For this reason, they
are treated specially: DC coefficient of the first block and differences between DC
coefficients of neighboring blocks are coded using the VLI method. Each number,
let us call it D, is replaced by a pair of bit sequences (B,Y ):

– B—four bits specifying the number of bits required for D magnitude coding
(from 0 to 11 bits for DC differences),

– Y —magnitude of D coded binary (only significant bits); if D is negative, its bits
are negated; Y is absent if D = 0.

Finally, the lossless Huffman coding is used (arithmetic coding is optional) but only
in regard to bits of Y . Different tables for different magnitude lengths are used.
In decoder, the most significant bit of Y is checked: if it is equal to 0, all bits are
negated.

The remaining DCT coefficients, called AC coefficients, are coded in each block
separately. Their values are scanned in zig–zag manner, shown in Fig. 16.21, i.e.
from the lowest to the highest frequency. Due to quantization, long sequences of
0s are separated by few non-zero values. In the beginning, 8-bit objects (Z,B) are
calculated:
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Fig. 16.21: Scanning 2D DCT coefficients of 8×8 blocks in JPEG standard [17]

– Z—(4 bits) number of 0s before a non-zero value (code RLC—Run Length
Coding),

– B—(4 bits) the smallest number of bits required for coding magnitude of non-
zero value, value changing from 1 to 10.

When sequences of zeros have more than 15 elements, they are artificially divided
into sub-blocks (15,0), in order to code the pair (Z,B) on 8 bits. Thanks to this, size
of used Huffman tables is limited. Record (15,0) denotes 16 zeros: 15 preceding
and 1 zero as an element value. Next, value of a non-zero element Y is coded: its
magnitude is written binary, most significant bits are left and all bits are negated,
if Y is negative. Then, the Huffman coding is used for the group of bits obtained
this way. Different tables are used for different lengths of magnitudes. As we see, a
pair (B,Y ) represents a VLI code of each non-zero AC DCT coefficient. Huffman
codes of objects (Z,B) and Huffman codes of non-zero AC elements are placed
one-by-one in the bit-stream.

In the decoder, all operations are performed in reverse order and re-quantization
of each 8×8 DCT block is done:

X̂DCT(k, l ) = Q(k, l ) · Ẑ(k, l ), k, l = 0, 1, . . . , 7, (16.36)

where Ẑ(k, l) denotes a result of entropy decoding. Reconstructed X̂DCT(k, l) is the
image luminance or chrominance. Error introduced by image compression and de-
compression can be measured using the PSNR (Peak Signal-to-Noise Ratio) defined
as:

PSNR = 10log10

(
MAX2

I

MSE

)
, (16.37)

where the maximum image pixel value MAXI and mean-square image reconstruc-
tion error MSE are equal to:
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MAXI = 2b, MSE =
1

MN

M−1

∑
m=0

N−1

∑
n=0

(xIN(m,n)− xOUT (m,n))2. (16.38)

Example: Simplified JPEG-Like Image Coding The quantization table con-
sists of one constant: Q(k, l) = c. Differences of DC DCT coefficients are coded
using only the VLI method: always 4 bits specifying required number of bits for
difference magnitude coding and the magnitude bits themselves. For example,
difference 7 written in binary is equal to 0111, and in VLI code: 0011 111. For
negative numbers, the magnitude bits are negated, e.g. for −7 we have 0011 000
(analogically, −1 → 0001 0, 6 → 0011 110). Let us assume that two first, con-
secutive 2D DCT blocks are given by Eq. (16.35). After zig-zag scanning, we
obtain

Block 1 : 520,50,20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−12,0, . . . ,0

Block 2 : 510,30,47,0,0,0,0,0,0,12,0, . . . ,0.

Now we are creating a pair (number of preceding zeros, non-zero value). The
pair (15,0) denotes a sequence of 16 zeros and the pair (0,0)—only zeros to the
end of block. We get

Block 1 : DC = 520,AC = (0,50),(0,20),(15,0),(6,−12),(0,0),

Block 2 : DC = 510,AC = (0,30),(0,47),(6,12),(0,0).

Coding block #1:
DC = 520: 520 - 0 = 520, binary sequence: 1010 1000001000
First four bits tell us that 10 bits are required for DC coding, then the DC value
is given. Because the value is positive, bits are not negated. Then AC coeffi-
cients are coded using many pairs (number of preceding zeros, next AC value).
Number of preceding zeros is coded using 4 bits zzzz. If sequence of 0s has more
than 15 elements, more pairs have to be used. For example, for 22 zeros two
pairs are exploited: (15,0) and (6,X), where X denotes a non-zero DC value.
The nextDCvalue is coded in two blocks: four bits bbbb, specifying the number
of bits required for DC coding, and variable-length block of bits xx . . .x with
DC value (the bits are negated for negative numbers). Below the coding result
is presented for our example:
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zzzz bbbb xx . . . . . .x

AC = (0,50) : 0000 0110 110010

AC = (0,20) : 0000 0101 10100

AC = (15,0) : 1111 0000

AC = (6,−12) : 0110 0100 0011

AC = (0,0) : 0000 0000

Coding block #2:
DC = 510: 510 - 520 = −10, binary sequence: 0100 0101
First four bits tell that −10 requires 4 bits for binary coding. Then, number 10 is
written in binary and all bits are negated (negative number): 1010 → 0101. DC
coefficients are coded differentially, only −10 is stored since 520−10 = 510—
the coded value.

Exercise 16.8 (JPEG-Like Image Compression). Write your own program:
(1) read any black-and-white image, for example, the Cameraman, (2) split
it into blocks 8× 8 pixels, perform 2D DCT on each block, (3) quantize DCT
coefficients, dividing them by corresponding elements from the quantization ta-
ble, according to Eq. (16.35), (4) perform inverse DCT of each block, (5) com-
pare original and decompressed image, and calculate PSNR (16.37). In step 3,
you can simply use single constant for quantization of all DCT coefficients.
If it is interesting for you, as an extra task, try to do the zig–zag scanning of
quantized DC coefficients of one 8×8 block and to code them into a bit-stream
using the VLI method. Check whether you can recover the quantized DCT co-
efficients from the bit-stream with no error. If you still have positive energy,
try to climb Kilimanjaro Peak and do the Huffman or arithmetic coding of the
bit-stream.

16.6.2 MPEG: Moving Pictures

The simplest method of moving pictures compression relies on application of JPEG
algorithm to each image of the sequence independently. Such solution is known
as Moving-JPEG. However, this approach is completely inefficient when images
are very similar to each other. A better idea is to compress one image as a still
picture using any JPEG-like method and a few preceding images only differentially,
i.e. only changes between them. Going further, higher compression of movies is
obtained when the pure difference between two consecutive images is replaced by a
difference between a new image and its prediction based on previous images, with
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Fig. 16.22: MPEG encoder [17]

Fig. 16.23: MPEG decoder [17]

compensated motion of block of pixels. Such approach is applied in MPEG standard
for moving pictures compression, used in digital TV and digital video discs.

In Figs. 16.22 and 16.23, block diagrams of MPEG encoder and decoder are pre-
sented. In MPEG standard, compression algorithm option is selected by encoder
control block. Joint coding of block of 7 images (frames) is one possibility (see
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Fig. 16.24: Explanation of motion estimation and compensation in MPEG stan-
dard: (left) one-directional “forward,” (right) two-directional “forward” and “back-
ward” [17]

Fig. 16.23). The first frame I (Intraframe) is coded independently from the rest,
in JPEG-like manner. The remaining frames are coded differentially: difference
between frame P1 (Predicted) and the frame I, difference between frames P2 and
P1, and difference between frames B (Bidirectionally predicted) and two reference
frames I and P1 or P2. Usage of still I frame aims at avoiding accumulation of errors
and simplification of scrolling the movie. Not pure but intelligent image subtraction
is done: for each macro-block of pixels (e.g., 16×16) of actual frame, coded differ-
entially in regard to one or two frames already coded, the most similar macro-block
is found in reference frame(s): only in one of previous frames or one in previous and
one in next frames. Then the found similar macro-block or macro-blocks are sub-
tracted from the actual frame. Searching of similar macro-blocks is called motion
estimation, while macro-block subtraction, the motion compensation. Found macro-
block shifts are stored as motion vectors. The motion estimation–compensation al-
gorithm is explained in Fig. 16.24.

In Figs. 16.22 and 16.23, presenting block diagram of MPEG encoder and de-
coder, the following denotations are used:

– DCT—2D discrete cosine transform,
– Q—quantizer,
– VLI—lossless coding using Variable Length Integers,
– MV—motion vector,
– I—frame coded without motion compensation,
– P1—frame coded differentially (predicatively) in respect to frame I, with for-

ward motion compensation,
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– P2—frame coded differentially (predicatively) in respect to frame P1, with for-
ward motion compensation,

– B—frames coded differentially with forward (from I) and backward (from P)
motion compensation.

In simplification, in MPEG encoder the following operations are done:

1. Frames I are coded using non-overlapping macro-blocks of pixels in a manner
similar to JPEG, e.g. 16×16 blocks of pixels are transformed by 2D DCT and
quantized (DCT +Q). Next, they are decoded (IDCT +Q−1) and ready to be
used by next frames during differential coding. Let Ir denote the reconstructed
image I.

2. Motion compensation of frame P1, in regard to frame Ir, is done, namely shifting
of macro-blocks from Ir and subtracting them from P1. The best motion vectors
(MV ), minimizing the difference, are found and stored. Obtained differential
image is coded the same way as frame I and next decoded—the image IP1r

is obtained. When we have difference IP1r between the frame P1 and shifted
macro-blocks of the frame Ir, and when the frame Ir and the motion vectors MV
are known, we can easily reconstruct the frame P1: P1r = IP1r +MV (Ir). The
MV (Ir) denotes an image obtained from image Ir as a result of shifting of its
macro-blocks using motion vectors MV .

3. Next, frame P2 is coded, making use of reconstructed frame P1, in the same way
the frame P1 was coded in regard to reconstructed frame I.

4. In the end, frames B1,B2,B3,B4 are coded differentially in regard to frames:
decoded I and decoded P1 either decoded P1 and decoded P2.

Exercise 16.9 (MPEG-Like Image Compression). Read any image into Mat-
lab. Convert it into black-and-white colors. Let us assume that the image has
dimensions 512×512. Use a 2D 256×256 observation window, shift it above
the image, and cut from it a sequence of frames, record a virtual movie. Then,
knowing details of JPEG standard and ideas of MPEG standard, try to code
your moving pictures performing DCT on their differences and quantizing the
result.

16.7 Image Watermarking

Data security and authorization/authentication is at present a very important topic.
At the end of this chapter, we learn how to add a watermark to our image. The wa-
termark is a pattern consisting of random non-overlapping blocks of squares filled
with numbers −1 either 1. It has the same dimension as an image to be watermarked.
The watermark is multiplied with small pseudo-random numbers and added to the
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Fig. 16.25: Block diagram of implemented image watermarking algorithm [17]

Fig. 16.26: Image watermarking results: (1) original image, (2) [−1/+1] watermark,
(3) watermark modulated by noise, and (4) image with added watermark [17]

image. In the watermark decoder, the image is first high-pass filtered, and its pixel
values are summed separately in the area of watermark blocks. As a result, a water-
mark [−1, +1] pattern should be recovered. If the image has been attacked, some
blocks could be distorted. Block diagram of the algorithm is presented in Fig. 16.25,
while results from its application in Fig. 16.26.

Listing 16.5: Watermarking algorithm implemented in Matlab
�

1 % lab16_ex_watermarking.m
2 clear all; close all;
3

4 % Parameters
5 K = 32; % block size for one watermark bit (K x K pixels)
6 gain = 1; % watermark gain
7

8 % Read image to be watermarked
9 A = imread(’lena.bmp’);

10 B = double(A); [M, N] = size(B);
11

12 % Addition of watermark
13 Mb = (M/K); Nb=(N/K); % number of blocks in row and column
14 plusminus1 = sign( randn(1,Mb*Nb) ); % random sequence of numbers +1/-1
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15 Mark = zeros( size(B) ); % watermark: chessboard with +1/-1 pattern
16 for i = 1:Mb
17 for j = 1:Nb
18 Mark( (i-1)*K+1 : i*K, (j-1)*K+1 : j*K ) = plusminus1(i*j);
19 end
20 end
21 Noise = round( randn(size(B)) ); % noise (modulatingsignal)
22 MarkNoise = gain * Noise .* Mark; % watermark = gain * noise * mark(+/-1)
23 B = uint8( B + MarkNoise ); % image + watermark, conversion to 8 bits
24

25 % Figures
26 figure, subplot(1,2,1), imshow(Mark,[]); title(’Watermark’)
27 subplot(1,2,2), imshow(MarkNoise,[]); title(’Watermark * noise’)
28 figure, subplot(1,2,1); imshow(A,[]); title(’Original image’)
29 subplot(1,2,2); imshow(B,[]); title(’Image with watermark’)
30

31 % Watermarkdetection
32 B = double(B); % conversion to double precision
33

34 % High-pass filtering
35 L = 10; L2=2*L+1; % 2D filter size (L x L)
36 w = hamming(L2); w = w * w’; % 2D Hamming window
37

38 f0=0.5; wc = pi*f0; [m n] = meshgrid(-L:L,-L:L); % 2D
39 lp = wc * besselj(1, wc*sqrt(m.̂ 2 + n.̂ 2) )./(2*pi*sqrt(m.̂ 2 + n.̂ 2)); % low-pass
40 lp(L+1,L+1)= wĉ 2/(4*pi); % filter
41 hp = - lp; hp(L+1,L+1) = 1 - lp(L+1,L+1); % high-pass filter without window
42 h = hp .* w; % with 2D window
43 B = conv2( B, h, ’same’); % image filtering
44

45 % Bit (+1/-1) detection in each pixel block of the watermark
46 Demod = B .* Noise; % noise demodulation
47 MarkDetect = zeros( size(B) ); % pixel summation in blocks
48 for i=1:Mb
49 for j=1:Nb
50 MarkDetect((i-1)*K+1:i*K, (j-1)*K+1:j*K) = \ldots
51 sign( sum( sum( Demod((i-1)*K+1:i*K, (j-1)*K+1:j*K) ) ) );
52 end
53 end
54 errors = sum(sum( abs(Mark-MarkDetect) ))
55

56 % Figures
57 figure, subplot(1,2,1); imshow(Demod,[]); title(’Demodulation’)
58 subplot(1,2,2); imshow(MarkDetect,[]); title(’Detection’)

��

Exercise 16.10 (Watermarking in 2D DCT Transform Domain). Write a
program in which a watermark is added to the image DCT transform coeffi-
cients. Compare visually the original and the watermarked image.
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16.8 Summary

It was a very long run. Many interesting views. A lot of possibilities to own
experiments. What should be remembered?

1. Image processing is not so difficult as one can think at a first moment. It
is a straightforward extension of 1D signal processing into the 2D case.
There are 2D orthogonal transforms, 2D FIR filters, 2D convolution, and
correlation. In Matlab, there are many ready-to-use functions. But these
functions can be built also with ease using their 1D versions.

2. 2D DCT is an image processing king, not the 2D DFT! It is real value and
faster to compute and offers similar spectra. It is used in almost all image
compression standards.

3. Classical filter design methods are not so important in image processing.
Due to limited image size, all filters should be shorter. Typically, weights
of basic filter types are pre-computed and given in tables. They are ready
to use. The question is only in what sequence they should be applied and
used for image smoothing or differentiation.

4. In telecommunication, still image compression standards (like JPEG) and
video compression standards (like H.264/MPEG-4 AVC) are very widely
used and understanding image/video compression basics is absolutely nec-
essary. DCT is used as a basic tool for de-correlation of spatial information.
For video, differential coding is applied.

5. At present, the most intellectually demanding is automatic image under-
standing, authentication, and authorization (watermarking, etc.).

6. In image processing very impressive is an immense field of its applications,
which is rapidly growing due to very fast increase of computational power
of contemporary computers, notebooks, tablets, and smart phones.

16.9 Private Investigations: Free-Style Bungee Jumps

Exercise 16.11 (* 2D Wavelet Transform Using Haar Filters). Separately filter
the same image in rows, first using the low-pass approximation Haar filter hLP =[

1√
(2)

, 1√
(2)

]
, then using the high-pass wavelet Haar filter hHP =

[
− 1√

(2)
, 1√

(2)

]
.

Leave every second sample. You will obtain two images two times more narrow,
LP one (image approximation) and HP one (image details). Next, repeat the LP
and HP filtering, separately, but on columns of two images, resulting from the first
processing stage. At this moment, you should have four images: LP-LP (A-A, ap-
proximation), LP-HP (A-D, details vertical), HP-LP (D-A, details horizontal), and
HP-HP (D-D, details diagonal). An example of similar decomposition is presented
in Fig. 16.27. You could continue doing the same decomposition but only of the LP-
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Fig. 16.27: Graphical illustration of one level 2D wavelet transform (decomposition)
of an exemplary image [17]

LP (A-A) image. To turn back, you should insert one zero between each two image
pixels in rows or columns, respectively, and filter images in reverse order using the

following synthesis filters: hLP =

[
1√
(2)

, 1√
(2)

]
and hHP =

[
1√
(2)

,− 1√
(2)

]
. Do you

obtain exactly the same image as the original one? Calculate PSNR introduced by
the described image processing operation. The 2D wavelet transform of any image
allows its multi-resolution analysis and processing.
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Chapter 17
Introduction to SDR: IQ Signals and
Frequency Up-Down Conversion

First steps on a new land are always dangerous and very
difficult! R. Crusoe

17.1 Introduction

Digital communication systems are carrying bits. But all signals transmit-
ted in different media (by air, twisted-wires, coaxial-cables, fiber-cables, . . . )
are analog: their values are continuously varying in time and in space. So how
the bits are transmitted? It is assumed that at one moment the analog signal is
taking one state, for example 5 (101), from limited number of states, for ex-
ample eight: 0, 1, 2, 3, 4, 5, 6, 7, in binary system respectively: 000, 001, 010,
011, 100, 101, 110, 111. The signal state is changing, mainly synchronously.
Typically it is a sinusoid which is periodically switching values of its param-
eters: amplitude, frequency, and/or phase. Different sinusoid states are called
its constellation points. Digital transmitter generates continuous pulses of one
(single-carrier) or many (multiple-carrier) sinusoids in different states. Digital
receiver does synchronization to the pulse beginning and measures parameters
of obtained sinusoid. Knowing these values the receiver is finding an actual
sinusoid/carrier state (constellation point value), e.g. 5-th, binary 101, in our
example, and recovers the transmitted sequence of bits, e.g. 101. Of course,
this is the simplest explanation. In order to avoid hard (BUNG-BUNG!) sinu-
soid switching, resulting in spreading the signal spectrum around the carrier and
increasing its interference to neighbor transmissions, each sinusoid has to pass
softly from one state to the other. For this reason, its parameters are smoothed
by so-called pulse shaping filter.

So in digital communication mostly modulated sinusoids are used and dif-
ferent services exploit sinusoids having different frequencies. Each transmit-
ter (radio and television broadcasting stations, cellular telephony base-stations,
etc.) emits only its own signals which are not disturbed a lot since different
services are using sinusoids (information carriers) with different frequencies.
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Each receiver should acquire only sinusoids with frequencies of its interest (us-
ing band-pass filtration) and decode their states (by signal demodulation)—
recovering this way the bits transmitted.

Observation of frequency spectra of received signals should give us infor-
mation about existing data transfers—we should see some spectral peaks asso-
ciated with different services. Knowing modulation rules applied to sinusoidal
frequency carrier(s) in the transmitter, one can recover information hidden in
change of the sinusoidal carrier amplitude, frequency, and/or phase.

Each wireless service has allocated a separate frequency band with some
frequency guard intervals on both sides (silence/zero zones), see Fig. 17.1, re-
ducing cross-interference from/to neighboring services and allowing easier ex-
traction of a service content. In order to decode the service data, one should
know not only the service frequency band but also how it is used, e.g. number
of carriers (one or many), exact carrier frequencies, types of carrier modulation
used (amplitude, phase, jointly amplitude and phase, frequency, etc.), duration
of one transmitted carrier state called a symbol, all allowed carrier states (carrier
constellation points), sequences of symbols that are used for channel estimation
and time (frame) synchronization, etc. There are many open-source programs
which automatically decode service content after appropriate band-pass filtra-
tion (service extraction/isolation) of a received radio-frequency (RF) signal and
its A/D sampling (A/D conversion).

In this chapter we become familiar with IQ telecommunication signals and
their exemplary spectra. Since the sinusoid modulation is so important in dig-
ital communications we will digitally acquire and demodulate two analog sig-
nals: a mono FM-modulated radio broadcast signal and a mono AM-modulated
speech, present in the VOR signal (VHF Omni direction Radio Range), trans-
mitted to an airplane by the radio navigation ground station. These two exam-
ples will help us to face/focus/localize main problems related to understanding
the digital transmission. We learn an IQ complex-value representation of sig-
nals returned by hardware receivers.

The SDR technology is introduced in many books, for example in the fol-
lowing ones: [2–4, 6, 7, 12, 14, 17]. In the end of this chapter a short list of
digital communication textbooks is also recommended for further reading.

Fig. 17.1: Illustration of frequency allocation principle: each wireless service S1,
S2, . . . , S9 uses different frequency band which is separated from neighbor services
with non-used frequency guard zones
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As already stated, wireless services use different frequency bands that are separated
by not exploited frequency null zones—see Fig. 17.1. In order to extract the trans-
mitted information, a receiver should know exactly what frequencies are used and in
what manner: how they are carrying analog content (via AM, PM, and/or FM mod-
ulation) or digital content via PSK, BPSK, QPSK, DQPSK, QAM, FSK, GMSK,
. . . modulations.

Frequency is more precious than a gold since its resources are limited. Inter-
national and national organizations specify general regulations for radio-frequency
usage, national commissions grant rights for existence of many governmental and
commercial services like public emergency services, radio and television broadcast-
ing, telephony, etc. Only in order to have imagination about the problem complexity,
the official frequency allocation table for the USA in year 2016 is shown in Fig. 17.2.
It specifies frequency predestination in the band 8.3kHz–275GHz. It is interesting
to note that modern instruments in year 2019 can work with frequencies in the band
up to 400GHz, so with frequency about 100GHz higher then in year 2016. The
technological progress in the RF technology is really impressive!

In Table 17.1 there are specified some services existing in the band from 0.1MHz
to 5GHz (central frequencies and bandwidths). Some of them are interesting for us
as a potential source of real-world signals to be investigated during our laboratory,
the others are only listed in order to present the diversity of radio-frequency appli-
cations.
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Fig. 17.2: Official frequency allocation table for the USA in year 2016, from 8.3
kHz to 275 GHz. Please, observe how many pieces has the cake [9]
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Table 17.1: Some RF services, their frequency bands, and modulation used (DD
denotes Demodulate and Decode)

Service Description Modulation BW
(kHz)

Band
(MHz)

Algorithms

AM radio Analog radio,
long/short-
waves

AM 15 0.1–30 AM demod

HAM amateur
radio

Analog radio AM-SSB 5 0.1–30 PLL, Hilbert

DRM radio Digital radio OFDM 10 0.1–30 Sync, channel, demod
HD radio Digital radio OFDM 10 0.1–30 Sync, channel, demod
RTTY Telex FSK 3 0.1–30 Filters, DD
HF FAX Weather

pictures
FSK 3 0.1–30 Sync

FM radio
stereo, MPX

Analog radio FM 200 60–170 PLL, FM demod

FM RDS Digital radio
text

BPSK 6 60–170 Costas, PLL, DD

NOAA APT SAT weather
pictures

FM/AM 40 137 Demod

AIS Ship
identification

GMSK 25 162 Detect, demod

DAB Digital radio OFDM/DQPSK 2000 170–230 Sync, channel, demod
by FFT, Viterbi decoder,
de-interleaving,
Reed–Solomon

TETRA Security
mobile

DQPSK 25 400 Demod

Remote
control

My gadgets AM OOK, FSK 1 434 Bit timing

DVB, ISDB,
DTMB

Digital TV OFDM/QAM 8000 400–800 Sync, channel, demod

LTE Mobile OFDM (TDMA,
FDMA,
CDMA)

20000 850, 1800 Demod

GSM Mobile GMSK 200 900, 1800 Demod
UMTS Mobile CDMA 5000 900, 1800,

1900, 2100
Demod

ADS-B Aircraft
identification

PPM 1000 1090 Detect, demod

GPS Location BPSK 2000 1227, 1575 CDMA-like
Inmarsat Areo SAT to aircraft PSK 0.8, 1.6,

10500
1545, 1547 Detect

Bluetooth Short range
wireless

GFSK, DPSK,
freq hops

1000 2400 Demod

Inmarsat Areo SAT to ground
station

PSK – 3600, 3629 Detect

WiFi 802.11
a/g/n/ac

WLAN OFDM 20000 2400, 5000 Demod
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17.3 Service Frequency UP-DOWN Conversion

Typically, a signal to be transmitted is prepared around 0 Hz, in so-called frequency
base-band, and then converted up to the higher target frequency fc. The base-band
(BB) signal version can be real-value one, like in AM double side-band radio or
ADSL/VDSL/SDSL modems, or complex-value one, like in FM and DAB radio,
DVB-T broadcast, LTE and 5G down-link. When only one sinusoid is used for
bit transmission, a single-carrier communication is used. If many sinusoids are ex-
ploited in parallel, a multi-carrier/multi-tone transmission takes place. In the last
case, applied sinusoids should be orthogonal to each other in order to minimize data
cross-talk between them. Orthogonal Frequency Division Multiplexing (OFDM) is
an official name of the multi-carrier communication. As already stated the OFDM
signal can be real-value in the base-band (R-OFDM), like in telephone/cable DSL
modems, or complex-value one (C-OFDM), like in DAB, DVB-T, LTE, and 5G. In
order not to lose generality, here we will denote the BB signal as a complex-value
signal since its imaginary part can be also equal to zero:

x(t) = xRe(t)+ jxIm(t). (17.1)

For AM suppressed carrier (SC) and large carrier (LC), FM and real-value (R) and
complex-value (C) OFDM, the signal is equal, respectively:

AM-SC : x(t) = m(t) (17.2)

AM-LC : x(t) = (1+ kAm(t)) (17.3)

FM : x(t) = exp

⎡
⎣ j2π

⎛
⎝0 · t + kF

t∫
0

m(t)dt

⎞
⎠
⎤
⎦ (17.4)

R-OFDM : x(t) = a0 +2
N/2−1

∑
k=1

ak cos(kω0t +ϕk) (17.5)

C-OFDM : x(t) =
N/2−1

∑
k=−N/2

cke j(kω0)t = A(t)e jϕ(t) (17.6)

In (17.5) we recognize trigonometric Fourier series of a real-value signal, having
obligatory conjugate-symmetrical spectrum around DC: X(− f ) = X∗( f ) (for ex-
ample an ADSL modem case with DMT signaling), while in (17.6)—a complex
Fourier series without spectral symmetry restrictions (for example a DAB radio and
4G-LTE/5G-NR case with OFDM signaling). Different states of individual carriers
are specified by coefficients {ak,ϕk} and ck.

At present the signal conversion, from the base-band to the carrier frequency fc

and back to the base-band, will be described. Spectral consequences of all operations
are presented in Fig. 17.3. In the transmitter the signal s(t) to be sent to an antenna
is built from x(t) in the following way:
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FREQ-UP : xUP(t) = x(t) · c(t) (17.7)

REAL : s(t) = Re(xUP(t)), (17.8)

where c(t) is a complex-value harmonic oscillation of the service carrier:

c(t) = e jωct = cos(ωct)+ j · sin(ωct). (17.9)

Multiplication in operation FREQ-UP causes shifting the signal x(t) spectrum to the
carrier frequency fc (Fig. 17.3a), while taking the REAL part of the result, which is
necessary for signal transmission, causes creation of a complex-conjugated copy of
the shifted spectrum in negative frequencies (Fig. 17.3b). Why mirror spectrum for
negative frequencies appears? Because Fourier spectrum of any real-value signal is
conjugate-symmetric in regard to 0 Hz, and our signal becomes a real-value one.
Both operation can be combined into one less complex computationally, known as
quadrature frequency up-shifter:

Re{x(t) · c(t)}= Re{[xRe(t)+ jxIm(t)] · [cos(ωct)+ j · sin(ωct)]}=
= Re{[xRe(t)cos(ωct)− xIm(t)sin(ωct)]+ j [xRe(t)sin(ωct)+ xIm(t)cos(ωct)]}=
= xRe(t)cos(ωct)− xIm(t)sin(ωct)

resulting in the very important equation of the quadrature frequency up-converter
(modulator):

TX : s(t) = xRe(t)cos(ωct)− xIm(t)sin(ωct) (17.10)

In the receiver signal from the antenna is first band-pass filtered in order to sepa-
rate the required service s(t) from the RF background (Fig. 17.3c). Next, the result is
multiplied by the complex-value carrier with negative angular frequency −ωc scaled
by 2 in amplitude:

FREQ-DOWN: rd(t) = s(t) ·2e− jωct = 2s(t)cos(ωct)+ j · [−2s(t)sin(ωct)]
(17.11)

what shifts the signal spectrum down by −ωc (Fig. 17.3d). The scaling by 2 is justi-
fied in the proof presented below. After putting Eq. (17.10) into (17.11) the follow-
ing complex-value signal is obtained (Fig. 17.3e):

rd(t) = [xRe(t)+ j · xIm(t)]+ [xRe(t)− j · xIm(t)] · e− j2ωct . (17.12)
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Fig. 17.3: Graphical illustration of frequency Up-Down conversion of telecommu-
nication service

We see that the first term in (17.12) is the same as the base-band signal x(t) in the
transmitter, and should be remained, while the second term is high-frequency one
(with doubled carrier frequency) and therefore should be removed. This is done by
a low-pass filter (Fig. 17.3e):

LP FILTER: x̂(t) = LPFilter [rd(t)] .) (17.13)
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Using (17.11) in (17.13) we are obtaining the very important equation for the
quadrature frequency down-converter and signal demodulator:

RX: x̂(t) = LPFilter [2s(t)cos(ωct)]+ j ·LPFilter [−2s(t)sin(ωct)] .
(17.14)

After the filter, the signal is approximately the same as in the transmitter base-
band (Fig. 17.3f). Therefore we can happily conclude that signal processing TX-RX
chain has finished in our example with full success.

Proof (Some Extra Math). Here Eq. (17.14) will be proved and Eq. (17.12) will be
derived from Eq. (17.11):

2s(t) [cos(ωct)] =

= 2{[xRe(t)cos(ωct)− xIm(t)sin(ωct)]cos(ωct)}=
= 2
{

xRe(t)cos2(ωct)− xIm(t)sin(ωct)cos(ωct)
}
=

= 2

{
xRe(t)

[
1
2
(1+ cos(2ωct))

]
− xIm(t)

[
1
2

sin(2ωct)

]}
=

= xRe(t)+ xRe(t) [cos(2ωct)]− xIm(t) [sin(2ωct)]

2s(t) [−sin(ωct)] =

= 2{[xRe(t)cos(ωct)− xIm(t)sin(ωct)] · [−sin(ωct)]}=
= 2
{−xRe(t) [cos(ωct)sin(ωct)]+ xIm(t)

[
sin2(ωct)

]}
=

=−2

{
xRe(t)

[
1
2

sin(2ωct)

]
+ xIm(t)

[
1
2
(1− cos(2ωct))

]}
=

= xIm(t)− xRe(t) [sin(2ωct)]− xIm(t) [cos(2ωct)] .

After low-pass filters one obtains

x̂Re(t) = LPFilter [2s(t)cos(ωct)]

x̂Im(t) = LPFilter [−2r(t)sin(ωct)]

which proofs the Eq. (17.14).
Now, we can put calculated equations for 2s(t)cos(ωct) and −2s(t)sin(ωct) into
Eq. (17.11) and get the Eq. (17.12):
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2s(t)cos(ωct)−2 j · s(t)sin(ωct) =

= {xRe(t)+ xRe(t) [cos(2ωct)]− xIm(t) [sin(2ωct)]} . . .

+ j · {−xRe(t) [sin(2ωct)]+ xIm(t)− xIm(t) [cos(2ωct)]}=
= [xRe(t)+ j · xIm(t)]+ xRe(t) · [cos(2ωct)− j · sin(2ωct)]︸ ︷︷ ︸

(∗) exp(− j2ωct)

. . .

− xIm(t) · [sin(2ωct)+ j · cos(2ωc)t]︸ ︷︷ ︸
(∗∗) j·exp(− j2ωct)

=

= [xRe(t)+ j · xIm(t)]+ [xRe(t)− j · xIm(t)] · e− j2ωct

��

Frequency UP and DOWN signal conversion is demonstrated in Matlab pro-
gram 17.1 but only for FM modulated signal.

Listing 17.1: Matlab program demonstrating service UP-DOWN frequency conver-
sion

�

1 % lab17_ex_Service_UpDown_short.m
2 clear all; close all;
3

4 % FM modulated signal
5 Nx = 2000; % number of signal samples
6 fs = 2000; % samplingfrequency [Hz]
7 fc = 400; % carrierfrequency [Hz]
8 fm = 2; df = 50; % FM modulationfrequency and depth
9 dt = 1/fs; t = dt*(0:Nx-1); % time

10 xm = sin(2*pi*fm*t); % modulatingsignal
11 x = exp( j *( 2*pi*0*t + 2*pi*df/fs*cumsum(xm) ) ); % FM modulated signal
12

13 % Frequency UP and REAL part
14 c = cos( 2*pi*fc*t ); s = sin( 2*pi*fc*t );
15 xUp = x .* (c + j*s); % Frequency UP
16 xUpReal = real( xUp ); % REAL part
17 % xUpReal = real(x).*c - imag(x).*s; % quadraturemodulator
18

19 % Frequency DOWN - quadraturedemodulator
20 xDownCos = 2*xUpReal.*c;
21 xDownSin = -2*xUpReal.*s;
22 xDown = xDownCos + j*xDownSin;
23

24 % Ideal LowPass Filter in frequency domain
25 df=fs/Nx; K = floor(fc/df);
26 XDownFilt = fft(xDown);
27 XDownFilt(K+1:Nx-K) = zeros(1,Nx-2*K);
28 xDownFilt = ifft( XDownFilt );
29

30 % ERROR after frequency UP & DOWN
31 ERROR_SIGNAL = max( abs( x - xDownFilt ) ), pause

��
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Fig. 17.4: Block diagram of the analog transmitter and receiver (frequency UP-
DOWN signal conversion)

Exercise 17.1 (Frequency Up-Down Conversion of Base-Band Service). A
Reader is kindly asked to modify the program 17.1. First, please, carefully
analyze the program 17.1. Its longer version is given in the book repository.
Add plots of spectra after each signal processing. Experimentally verify cor-
rectness of the Fig. 17.3 for the FM signal. Then, generate AM-SC, AM-LC,
R-OFDM, and C-OFDM signals, defined by equations (17.2), (17.3), (17.5),
and (17.6), respectively, and compare their spectra with Fig. 17.3. Some signal
propositions are suggested in the longer version of the program. For example,
for OFDM signals set: N = 8, f0 = 25,ω0 = 2π f0,ak = k,ϕk = kπ/N,ck =
(N/2+ k+1)e jkπ/N .

In order to simplify the mathematical derivation, the analog TX-RX transmission
scheme was discussed so far. Its functional block diagram is presented in Fig. 17.4.
In modern digital communication systems, signals in the base-band are processed
digitally while up-down service conversions in frequency are realized in analog or
digital manner. Very often an intermediate signal processing frequency shelf is used:
the base-band signals are first shifted to an intermediate frequency and later to the
target one. These two frequency shifts can be: (analog+analog), (digital+analog),
or (digital+digital). Two-step signal processing makes the system design easier and
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results in more flexible telecommunication devices. Software Design Radio (SDR)
represents more digital designs. In the next section some practical solutions of SDR
receivers will be presented. Only some because possibilities are many. In the next
section we will investigate more deeply all digital, software implementation of sig-
nal processing TX-RX chain presented in this section.

17.4 RF Signal Acquisition Hardware

In order to do any practical experiments with decoding of RF transmitted data we
need an antenna and signal receiver/recorder. We should prefer not expensive and
flexible solutions. The best choice is usage of the so-called software defined radio
(SDR) technology in which hardware is digitally controlled and programmable—
thanks to this a program can be changed easily (on demand). Each such device
should have, in simplification (see Fig. 17.5):

1. an antenna working in wide frequency band,
2. a low noise amplifier (LNA),
3. an analog band-pass (BP) filter with width Δ f , allowing passing only frequen-

cies of the interest lying around selected central frequency ( f0); Δ f and f0

should be tunable,
4. analog mixer/heterodyne—shifting down frequencies from the band [ f0 −

Δ f/2, f0 +Δ f/2] to the so-called base-band around DC (0Hz); this operation
is done by multiplying the BP filtered signal by a generated voltage controlled
oscillation (VCO) having frequency f0, precisely − f0,

5. an analog low-pass filter with the cutting frequency ±Δ f/2, passing only sig-
nals around DC (0Hz),

6. analog-to-digital converter with sampling rate higher than the signal bandwidth
of interest ( fs > Δ f ),

Fig. 17.5: Block diagram of a simple software digital receiver
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7. DSP or/and FPGA processor for further data processing: some additional sub-
band digital filtration, shifting a selected frequency sub-band to DC by digital
signal mixing with numerically controlled oscillator (NCO) and sample rate
reduction; NCO, called also a digital sine synthesizer (DSS), is digital version
of the VCO,

8. main processor for service decoding.

The presented above RF receiver structure is an educational one. In fact, it can be
optimized and re-designed. There are many possibilities. This introductory section is
not focused on technical details—details will be presented later. Now it is important
to note only that the frequency down-conversion, realized by analog and/or digital
mixer, can be done in so-called quadrature manner. A signal to be shifted down in
frequency is multiplied in parallel by signals from two oscillators, cosine and minus
sine, and not one but two signals are obtained in lower frequencies, a so-called in-
phase (for cos()) and in-quadrature (for −sin()) component.

In this course we will make use of signals recorded by two SDR platforms, sup-
ported by programs from Matlab Communication Toolbox:

• RTL-SDR USB stick, a commercial FM, DAB, and DVB-T receiver, having
open-source Linux and Windows drivers and many signal/spectrum visualiza-
tion/recording programs (Gqrx—Linux, SDRSharp—Windows);

• Analog Devices Learning Module (ADALM) called PLUTO, dedicated to self-
learning or university-teaching of digital communication fundamentals on the
example of wireless transmission, also having support under Linux (Gqrx, ADI
IIO Oscilloscope) and Windows (SDRSharp, ADI IIO Oscilloscope).

Both devices are shown in Fig. 17.6. They send data to a PC computer using USB
interface. Main information about their parameters is summarized in Table 17.2.
Details concerning inner operations performed by the devices will be presented later
during explanation of frequency up-down service shifting. At present we will only
become familiar with their inner schematics which confirm the given above general
description of RF receiver design.

Functional block diagram of the RTLSDR USB stick is presented in Fig. 17.7.
The stick is using intermediate frequency fIF =10.7MHz and analog-to-digital con-
verter with sampling frequency fAD =28.8 MHz. In the following description, to
make explanation simpler, it is assumed that we are decoding an analog FM ra-
dio service having carrier frequency fc =100MHz and frequency bandwidth Δ f =
fSERV =0.2MHz around FM radio station. In the analog section of the RTLSDR the
following operations are done:

• signal amplification using a low noise amplifier (LNA),
• selection of frequencies of interest lying in the band [ fc −Δ/2, fc +Δ f/2] =

[99.9, 100.1] by a band-pass (BP) filter,
• shifting them down by a cos() mixer, working with frequency fRF = fc − fIF =

100–10.7 = 89.3 MHz frequency, to the intermediate frequency fIF = 10.7 MHz;
frequency down-conversion is done in non-quadrature manner using only cosine
oscillator,
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(a) (b)

Fig. 17.6: Two very cheap software defined radio hardware platforms. (a) RTL-SDR
USB stick (FM/DAB/DVB-T) [10]. (b) Analog Devices PLUTO active learning
module—figure from [11]

Table 17.2: The most important parameters of two software defined radio hard-
ware platforms: RTL-SDR (Elonics E4000 RF tuner + RTL2832U AD converter
and down-sampler) and ADALM-PLUTO (AD936x RF transceiver + Xilinx Zynq
7000 SoC AD converter and down-sampler)

Analog devices learning
Feature RTLSDR USB stick module PLUTO

Number of RX channels 1 1 (AD936x has 2)
Number of TX channels 0 1 (AD936x has 2)
Number of ADC bits 8 12
Number of DAC bits 0 12
TX band – 47MHz–6GHz
RX band 52MHz–2200MHz (gap

1100–1250)
70MHz–6GHz

Tunable channel bandwidth 250kHz–3.2MHz 200kHz–56MHz

• removing signals with frequencies higher than fAD/2 = 14.4 MHz by means of
low-pass (LP) filtering; it is necessary since the mixer generates also unwanted
high-frequency components which has to be eliminated,

• adjusting signal amplitude by means of automatic gain control (AGC) circuit.

In digital section of the RTLSDR the following tasks are performed:

• converting the signal into its digital form using an analog-to-digital converter
(ADC) working with frequency fAD = 28.8 MHz,

• shifting the digital signal down in frequency in quadrature manner using co-
sine() and sine() numerically controlled oscillators (NCOs) working with inter-
mediate frequency fIF ≈ 10.7 MHz,
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Fig. 17.7: Functional block diagram of the NooElec RTLSDR mini receiver—figure
from [18]

Fig. 17.8: Functional block diagram of Analog Devices AD9361 RF Agile
Transceiver—figure from [1]

• fractional re-sampling of I(n) and Q(n) signal components and synchronization
of NCOs frequency with signal intermediate carrier fIF ,

• low-pass signal filtration in the range [−Δ f/2,Δ f/2] = [− fSERV/2, fSERV/2] =
[0.1, 0.1] MHz and sample rate reduction to fSERV = 200kHz.

In turn block diagram of the ADALM-PLUTO one channel receiver module is
presented in Fig. 17.8. As we can see in this case the signal conversion scenario is
different:

• the system does not use intermediate frequency and directly converts the service
to the base-band,
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• there is no band-pass filter on the input,
• analog quadrature cos()/sin() mixer is used with fRF tuned in the band 70MHz—

6GHz—a Phase Splitter block is obtaining an appropriate control signal,
• signal after the mixer is passing through an analog low-pass filter which is tuned

to the service frequency band in the range 200kHz–56MHz,
• next we have two analog-to-digital converters sampling in parallel analog sig-

nals I(t) (the cos() path) and Q(t) (the -sin() path); the converters work with
sampling rate changing in the range 25–640 Msps,

• since sampling rate after ADCs is higher than the service bandwidth, i.e. the IQ
signals are oversampled, their decimation takes place in the digital part of the
receiver: low-pass filtering and sample rate reduction are done.

17.5 Investigating Signal Spectra

So, where to go now? Let us assume that we have an SDR signal receiver/recorder.
We know a little bit how it is built. So, it is time to ride a bicycle (!) and observe
spectra of some RF services, using available programs.

In this section we will investigate real-world spectra of some wireless services.
The analyzed signals have been acquired by the RTL-SDR USB stick and ADALM-
PLUTO module. Signal spectra have been calculated and displayed by SDRSharp
and ADI IIO programs.

FM Analog Radio FM radio is broadcasted in frequency range 88–108 MHz. In
Fig. 17.9 an FFT frequency spectrum magnitude of several FM radio stations is
presented. The signal was captured by RTLSDR dongle with ratio 3.2 mega sam-
ples per second (msps) ( fs = 3.2 MHz) around frequency 101.6 Hz, therefore the
spectrum width is equal to 3.2 Hz (1.6 MHz below and above the 101.6 Hz). In the
momentum FFT spectrum (upper figure) we see more than 10 spectral peaks/sta-
tions. In the STFT spectrogram (lower figure), i.e. the time-varying FFT spectrum
history plotted as an image, we can observe more than 10 time-varying frequency
modulation curves associated with many FM radio stations. In the laboratory part of
this chapter we will try to recover mono audio signal of one FM radio station.

Avionics VOR Omni Directional Range Signal [15] Avionics radio navigation
signals are transmitted in different frequency bands, also in the range 108–138 MHz.

In Fig. 17.10 a 1 MHz-wide FFT spectrum near frequency 112.5 MHz is shown—
the signal was captured by the RTLSDR dongle and its spectrum was calculated and
displayed by the SDRSharp program. It is seen that some narrow-band signals are
transmitted all the time: we observe relatively strong, well-visible lines in the STFT
spectrogram (lower figure). Around frequency 112.8 MHz, marked with cursor, a
three-component signal is observed having strong spectral peak and two weaker
side-peaks, which is typical for double side-band amplitude modulation with large
carrier (AM-DSB-LC), we are right: carrier of the VOR Omni Directional Range
signal is not suppressed and modulated in amplitude by sum of three components:
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Fig. 17.9: FFT spectrum magnitude of an RF signal captured by the RTL-SDR USB
stick around frequency 101.6 MHz in the frequency range of 3.2 MHz: (up) mo-
mentum, mean spectrum, and (down) short-time Fourier transform, the FFT spectral
history, plotted as time–frequency image showing spectrum change in time. One can
observe curves of changing instantaneous frequencies of many FM radio broadcasts.
Brighter colors denote higher spectrum values

30 Hz sine (having azimuth dependent phase), 300–3300 Hz voice control signal,
and 9960 Hz sine reference. The reference is modulated in frequency by 30 Hz si-
nusoid with modulation depth equal to 480 Hz. In the laboratory part of this chapter
we will recover the voice component.

Nano-Satellite Signal in Safe, Slow Mode [16] Amateur satellites (AMSAT) have
a form of very small, cheap nano-cubes, 10× 10× 10 centimeter large, which are
positioned at low earth orbit (LEO). They circle the earth during about 90 min and
a ground station has a contact with them about 7–10 min. They use safe/slow-speed
and high-speed telemetry transmission systems. In the first mode, for the down-link
carrier frequencies around 145 MHz and frequency modulation are used. 200 bits
are transmitted per second in packets lasting about 10 s. Data are transmitted under
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voice (DUV) control information. In Fig. 17.11 spectrum of the received IQ nano-
sat signal is shown. In the central part of the spectrogram (down) we see beginning
of a new 10 s data packet. In its middle part a voice description is given about a
transmission mode. We can hear it during laboratory experiments.

DAB Digital Radio The momentum FFT spectrum magnitude and the time-varying
STFT spectrogram of a digital audio broadcasting (DAB) radio in mode I are pre-
sented in Fig. 17.12. The signal was captured in Krakow, Poland, by the RTLSDR
dongle with sampling ratio equals 2 mega samples per second (MSPS) around
the frequency 229.069 MHz, therefore width of the observed spectrum is equal to
2 MHz. DAB radio is an example of multi-carrier digital data transmission which
exploits Orthogonal Frequency Division Multiplexing (OFDM) signaling. In the up-
per momentum FFT spectrum we see a spectral hat of many sines/carriers carrying
binary data in parallel, being precised—1536 carriers in the standard. They have
different phase angles in consecutive data blocks (OFDM frames): their phases are
changed from block to block using so-called differential quadrature phase shift key-
ing (DQPSK) method. The phase shifts are equal to (+45, −45, 135, −135) degrees
and they denote a different pair of transmitted bits (00, 01, 10, 11), i.e. one sine is
carrying only 2 bits. Note that some frequencies lying on both sides of the spec-
tral hat (precisely 256 in the standard) are not used by the DAB service and serve
as guard frequency bands between two neighboring DAB radio emitters. In DAB
blocks (OFDM frames) 2048 signal samples are synthesized at once, performing
the 2048-point inverse FFT algorithm upon specially pre-set Fourier coefficients (ck

in Eq. (17.6): 1536 carrier coefficients, with phase shifts between DAB frames, and
2*256=512 coefficients of two guard side-bands, set to zero. In Fig. 17.12 one can
observe in the STFT spectrogram that carriers are generated all the time, with the
exception of the NULL Symbol separating the DAB frames and added for synchro-
nization issues.

3G UMTS E-GSM Telephony In our next experiment we will observe spectrum
of the up-link signal (from a phone to a base-station), in the frequency band 880–
915 MHz during telephone call making use of 3G UMTS signaling named E-GSM.
The signal was acquired by the ADALM-PLUTO device in the range 885–935 MHz.
In Fig. 17.13 three spectra of captured signals are presented. One can observe that
the signal transmitted by the phone has a spectral bandwidth equal to approximately
5 MHz. The spectrum is changing in time, during a telephone call and without it.
In 3G UMTS bits are carried NOT by many orthogonal sinusoids (OFDM tech-
nique), exploiting the allocated frequency band slice-by-slice, BUT by a set of
pseudo-random orthogonal signals, each having the spectrum spreaded along the
whole available band, i.e. covering 5 MHz in the discussed case. Such orthogonal
band-frequency signals are generated in the following way. First, a set of orthogo-
nal signals is chosen, for example orthogonal Walsh sequences taking only values
1, −1. For brevity, we can assume that bit 1 corresponds to transmission of the
original Walsh signal/code while bit 0 to the transmission of the negated code. Dif-
ferent codes are allocated to different users. Then, each code is multiplied by some
spreading/scrambling sequence, e.g. Barker and Gold code specific for each user.
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Then codes of one user are collected into pairs and interpreted as in-phase I(n)
and in-quadrature Q(n) signals. Next, these signals are used for quadrature phase
shift modulation of the target service frequency using the QPSK technique. In the
receiver the acquired signal is de-scrambled, correlated with orthogonal code tem-
plates and codes polarities (+/–) as well as transmitted bits are detected. Such user
access to the channel and bit signaling is called CDMA (Code Division Multiple
Access).

Fig. 17.13: FFT spectra magnitudes of three 3G UMTS E-GSM signals displayed by
ADI IIO oscilloscope program and captured by the AD ADALM-PLUTO module:
(up, middle) without telephone call and (down) during it. Observed signals have
frequency bandwidth equal to about 5 MHz. Spectra are scaled in decibels

Wi-Fi Networks Finally, we will observe the Wi-Fi signal spectrum. Again, the
signal has been acquired by the ADALM-PLUTO device, this time in the range
2425–2475 MHz with sampling ratio 50 megasamples per second (MSPS). An Inter-
net video has been streamed via wireless network and watched on the PC computer
screen. Three different signal spectra observed in the ADI IIO oscilloscope program
are shown in Fig. 17.14. One should notice that the spectrum shape is changing in
time. The observed spectrum width is equal to about 20 MHz which is in agreement
with the standards:

• 802.11a/g—20 MHz (all 64 sub-carriers of OFDM), used 16.25 MHz (52 used
sub-carriers of OFDM),

• 802.11b/g—22 MHz.

In the first case the OFDM signaling is used, similarly as in DAB, and bits are trans-
ferred in parallel using 52 sub-carriers with spacing 312.5 kHz (sampling rate 20
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mega samples per second, 64-point FFT). In the second case CCK/DSSS (Comple-
mentary Code Keying, Direct Sequence Spread Spectrum) is used, i.e. orthogonal
spectrum-spreading sequences and binary phase shift keying (BPSK) modulation,
similarly to the 3G UMTS example presented above.

Summarizing we can conclude that surrounding us electro-magnetic (EM)
field is a real treasure of different EM waves which are carrying different ana-
log and digital messages that are hidden in changing-in-time frequencies, am-
plitudes, and phases of the waves.

Fig. 17.14: FFT spectra magnitudes of three Wi-Fi signals displayed by ADI IIO
oscilloscope and captured by the AD ADALM-PLUTO module during watching
video via WLAN. Scaled in decibels

Hmm . . . . So we see a very tasty cake. But how to take a piece of it? How to
decode personally (by hand) data of a simple service? How it works? Now we will
try to come into the RF engineer’s bakery or kitchen.

17.6 Example: Calculating Spectra of IQ Signals

Now it is time to do a next step and to calculate the signal spectrum personally. To
make things easier, we will do it off-line: first record an IQ signal using existing pro-
grams (e.g. SDRSharp, Gqrx, or ADI IIO Oscilloscope), then read the recorded file
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into Matlab/Octave, do some computing and display the result. Before the record-
ing we should specify: (1) central (carrier) frequency of interest ( fc), (2) the width
of its neighborhood (Δ f ) equal to the sampling rate, (3) required signal amplifi-
cation/gain or choosing automatic gain control (AGC) option, and (4) number of
bits required for each I(n) and Q(n) signal sample. We will analyze four complex-
value IQ signals of: (1) the FM radio, (2) the digital DAB radio, (3) the slow-mode
nano-satellite FM down-link, and (4) the airplane VHF Omni direction Radio Range
(VOR) airplane navigation signal, used for short and medium positioning range. On
the Internet WebSDR page http://websdr.org you can decode and record personally
signals from many RF receivers available on-line. After downloading them you can
continue signal processing on your home computer. One of such signals is displayed
in the program also.

In all cases, after recording, first we should read and display in Matlab samples
of I/Q signals and then calculate and observe their power spectral density estimates,
based on the DFT spectrum. Simple program performing these first initial steps is
shown in the Listing 17.2.

Listing 17.2: Program for simple analysis of recorded RF signals in Matlab/Octave
�

1 % lab17_ex_IQ_DFT.m
2 clear all; close all;
3

4 m=128; cm_plasma=plasma(m); cm_inferno=inferno(m); % color maps for gray printing
5 cm = plasma;
6

7 % Read recorded IQ signal - choose one
8 % FileName = ’SDRSharp_DABRadio_229069kHz_IQ.wav’; T=1; demod=0; % DAB Radio signal
9 % FileName = ’SDRSharp_FMRadio_101600kHz_IQ.wav’; T=5; demod=1; % FM Radio signal

10 % FileName = ’SDRSharp_NanoSat_146000kHz_IQ.wav’; T=0; demod=2; % Nano Satellite
11 FileName = ’SDRSharp_Airplane_112500kHz_IQ.wav’; T=5; demod=3; % VOR airplane
12 % FileName = ’SDRWeb_Unknown_3671.9kHz.wav’; T=0; demod=4; % speech from WebSDR
13

14 inf = audioinfo(FileName), pause % what is ‘‘inside’’
15 fs = inf.SampleRate; % sampling rate
16 if(T==0) [x,fs] = audioread(FileName); % read the whole signal
17 else [x,fs] = audioread(FileName,[1,T*fs]); % read only T seconds
18 end %
19 whos, pause % what is in the memory
20 Nx = length(x), % signal length
21

22 % Reconstruct the complex-value IQ data, if necessary add Q=0
23 [dummy,M] = size(x);
24 if(M==2) x = x(:,1) - j*x(:,2); else x = x(1:Nx,1) + j*zeros(Nx,1); end
25 nd = 1:2500;
26 figure(1); plot(nd,real(x(nd)),’bo-’,nd,imag(x(nd)),’r*--’); xlabel(’n’); grid;
27 title(’I(n) = (o) BLUE/solid | Q(n)= (*) RED/dashed’); pause
28

29 % Parameters - lengths of FFT and STFT, central signal sample
30 Nc = floor( Nx/2 ); Nfft = min(2̂ 17,2*Nc); Nstft = 512;
31

http://websdr.org
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32 % Power SpectralDensity (PSD) of the signal
33 n = Nc-Nfft/2+1 : Nc+Nfft/2; % indexes of signal samples
34 df = fs/Nfft; % df - step in frequency
35 f = df * (0 : 1 : Nfft-1); % frequency axis [ 0, fs ]
36 fshift = df * (-Nfft/2 : 1 : Nfft/2-1); % frequency axis [ -fs/2, fs/2 ]
37 w = kaiser(Nfft,10); % window function used
38 X = fft( x(n) .* w ); % DFT of windowed signal
39 P = 2*X.*conj(X) / (fs*sum(w.̂ 2)); % Power SpectralDensity (dB/Hz)
40 Pshift = fftshift( P ); % circularlyshifted PSD
41

42 % Parameters for Short Time FourierTransform (STFT) of the signal
43 N = Nstft; df = fs/N; ff = df*(0:1:N-1); ffshift = df*(-N/2:1:N/2-1);
44

45 figure(2)
46 subplot(211); plot(f,10*log10(abs(P))); xlabel(’f (HZ)’); ylabel(’(dB/Hz)’)
47 axis tight; grid; title(’PSD for frequencies [0-fs)’);
48 subplot(212); spectrogram(x(n),kaiser(Nstft,10),Nstft-Nstft/4,ff,fs);
49 colormap(cm); pause
50

51 figure(3)
52 subplot(211); plot(fshift,10*log10(abs(Pshift))); xlabel(’f (HZ)’); ylabel(’(dB/Hz)’)
53 axis tight; grid; title(’PSD for frequencies [-fs/2, fs/2)’);
54 subplot(212); spectrogram(x(n),kaiser(Nstft,10),Nstft-Nstft/4,ffshift,fs);
55 colormap(cm); pause
56 subplot(111);

��

So now we are in the most risky moment of this chapter! Will the theory work
in practice, or, as sometimes happens, something suddenly will go wrong. DFT and
STFT spectra, calculated in Matlab/Octave for four recorded IQ signals, are shown
in Figs. 17.15 and 17.16.

In the first figure DFT spectra of analog FM radio (left) and digital DAB
radio—a multi-carrier OFDM transmission (right), are presented. In the first row
results obtained from the Matlab fft() function are shown while in the sec-
ond row—from the spectrogram() function. In next two rows corresponding
spectra shifted circularly by the fftshift() function are presented. Why the
circular spectrum rotation (right by N/2 spectral bins/lags) is necessary? Since
the N-point FFT procedure is calculated for frequencies changing in the range
[0, . . . , fs) ( f = ( fs/N)∗ (0,1,2, . . . ,N −1) while we are interested in the frequency
range [− fs/2, . . . , fs/2) ( f = ( fs/N) · (−N/2, . . .0, . . . ,N/2−1). Importance of this
change is especially visible in case of the DAB signal (right column in the figure)
for which the spectral hat of the OFDM is clearly visible only after the shift. In
consequence, carriers are scanned for bit recovery in proper order only after the
frequency shift of the spectrum. Both signals are complex and for this reason their
spectra are not symmetric around 0 Hz. In fact, after processing, the central fre-
quency of the spectrum is lost. We should remember that for FM radio it is equal
to 101.6 MHz—such was our central frequency during RF signal recording using
SDR-RTL stick and program SDRSharp (with the bandwidth 3.2 MHz). In case of
DAB radio the central frequency of recording was chosen 229.069 MHz and band-
width 2.048 MHz.
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Fig. 17.15: Magnitudes of FFT and STFT spectra, scaled in decibels/Hz, calculated
in Matlab/Octave for two recorded IQ signals, respectively in columns: (left) sam-
pled analog FM radio and (right) digital DAB radio. In first two rows we see original
FFT and STFT spectra while in the next two rows—their versions circularly shifted
(centered at 0 Hz)

Remembering the spectrum shift necessity, in Fig. 17.16 only circularly shifted
magnitudes of FFT and STFT spectra of a VOR avionic signal (left) and an slow-
speed nano-satellite signal (right) are shown. In this case a Reader should notice
that after rotation spectra are not symmetric around the 0 Hz frequency since both
signals are complex-value ones.

The fact that obtained figures are the same as ones observed in the SDRSharp
and ADI IIO oscilloscope programs should confirm us that our experiments are
going in right direction. At present we know how to start RF signals analysis in
Matlab, i.e. how to: (1) read signals, (2) plot them, (3) calculate their Fourier spec-
tra, (4) scale them, and (5) display. To give a Reader an additional motivation to
continue our RF journey, we will quickly demodulate the mono FM radio, the FM-
modulated signal from nano-satellite and the AM-modulated VOR avionic signal.
Matlab code given below in Listings 17.3, 17.4, and 17.5 is continuation of the pro-
gram lab17_ex_IQ_DFT.m, presented in Listing 17.2.
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Two Very Important Things Have to Be Stressed Now
Generalized Sub-Band Nyquist Sampling After any DSP course student typ-
ically remember that signal sampling should be more than two times bigger
than maximum signal frequency. During acquisition of an IQ signal it is not
fulfilled. Why? Because in this case the generalized Nyquist sampling theorem
is applied. It says that if we limit the signal frequency band with band-pass
filter, and remember its parameters, the sampling can be: (1) more than two
times higher than the filter band in case of real-value signal acquisition, or (2)
higher than this band for complex-value signal acquisition, as in case of SDR
equipment using quadrature modulators and demodulators. Of course, the ac-
quired signal has lower frequencies than in reality. But we are not interested
in absolute frequency values but in relative differences of carrier modulation
frequencies in regard to the carrier frequency. And this relative values are the
same.

Service Central Frequency and Bandwidth During signal acquisition two
strategies are possible.

1. Precisely selecting the service frequency and service bandwidth. Thanks
to this the acquired bit-stream is smaller and computational requirements
lower. For example, instead of recording IQ signal of many FM radio sta-
tions it is sufficient to record only one, exactly the one to be listened to.
Figure 17.17 illustrates this two strategies. On the left side, we see STFT
spectrum of many FM radio stations which are present in IQ signal sam-
pled at 3.2 MHz. On the right side, we see the STFT spectrum of only one
station which is present in our IQ signal sampled at 250 kHz. In the first
case significantly more bits are processed but user can choose the broadcast
in digital program, i.e. in software.

2. Wider frequency bandwidth. When the first acquisition strategy is used, we
have many RF services in our digital IQ data. In such case service of inter-
est should be converted to 0 Hz, i.e. up or down shifted in frequency, and
then low-pass filtered, i.e. separated from the rest. The frequency conver-
sion, shown in Fig. 17.18, is performed exactly in the same way as during
service up-conversion from the base-band to the target frequency and back,
i.e. by complex-value modulation. If we assume that after DFT spectrum
centering around DC, the service of interest has frequency f0, the following
frequency shift should be performed, mathematically and in Matlab:

x(n) = x(n) · e− j2π f0
fs

n, n = 0,1,2, . . .Nx −1, (17.15)

x = x .* exp(-j*2*pi*f0/fs*(0:Nx-1)’);

Since spectra of sampled signals, calculated via DFT, are periodic, with pe-
riod fs, the linear spectrum shift is visible is our frequency band as circular
shift.
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Fig. 17.17: Illustration of two IQ signal acquisition strategies: (left) wide bandwidth
with many services, (right) low bandwidth with one service only

Fig. 17.18: Illustration of concrete RF service selection by means of frequency con-
version (complex modulation) of acquired IQ signal: (left) STFT of original IQ
signal, (right) STFT spectrum after frequency shift (conversion, modulation)

All remaining details will not be given now—they will be explained in next chap-
ters. All Readers are kindly invited to the next part of our nuMAT/sciMAT story.

Listing 17.3: Simple program for mono FM radio decoding in Matlab/Octave
�

1 if(demod==1) % FM demodulation and mono FM radio decoding
2 bwSERV=200e+3; bwAUDIO=25e+3; % Parameters
3 D1 = round(fs/bwSERV); D2 = round(bwSERV/bwAUDIO); % Downsamplingratios
4 f0 =-0.59e+6; x = x .* exp(-j*2*pi*f0/fs*(0:Nx-1)’); % Station? shift in freq

-0.59?
5 x = resample(x,1,D1); % Resample down to service freq
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6 x = real(x(2:end)).*imag(x(1:end-1))-real(x(1:end-1)).*imag(x(2:end)); % FM demod
7 x = resample(x,1,D2); % Resample down to audio freq
8 soundsc(x,bwAUDIO); % Listening
9 end
��

Listing 17.4: Simple program in Matlab/Octave for FM demodulation of speech
signal sent from nano-satellites in safe/slow transmission mode

�

1 if(demod==2) % FM demodulation and NanoSat voice control signal decoding \cite[Mare19]
2 fAudio = 48e+3; Down= round(fs/fAudio); % parameter values
3 f0 = 1.98e+4; x = x .* exp(-j*2*pi*f0/fs*(0:Nx-1)’); % carrier? shift spectrum
4 h = fir1(500,12500/fs,’low’); x = filter(h,1,x); x = x(1:Down:end); % filtration
5 dt = 1/fAudio; x = x(2:end).*conj(x(1:end-1)); x=angle(x)/(2*pi*dt); % FM demod
6 soundsc(x,fAudio); % Listening
7 end
��

Listing 17.5: Simple program for VOR voice control decoding in Matlab/Octave
�

1 if(demod==3) % AM demodulation and VOR voice control signal decoding \cite[VOR13]
2 fc = 2.9285e+5; % carrier? your choice after spectruminspection
3 fam = 10000; % frequency width of AM modulationaround fc
4 f1 = fc-fam/2; f2 = fc+fam/2; df = 500; % Band-Pass filter h design
5 h = cfirpm(500,[-fs/2 (f1-df) (f1+df) (f2-df) (f2+df) fs/2]/(fs/2),@bandpass);
6 x = conv(x,h,’same’); % Band-pass filtration
7 x = sqrt( real(x).*real(x) + imag(x).*imag(x) ); % AM demodulation
8 x = decimate(x,round(fs/fam)); %[U,D] = rat(fs/fam); x = resample( x, U, D );
9 soundsc(x,fam); % Listening

10 end
��

Exercise 17.2 (Observing Spectra of Recorded IQ Signals). Install and run
the program SDRSharp or Gqrs. Switch to the IQ file mode (Source panel).
Open one-by-one all IQ recordings available in the book repository. Start spec-
tra calculation and visualization using PLAY � button. Change service fre-
quency to be observed, clicking on big digits displayed on the upper panel (on
their lower or upper parts—frequency decrease or increase, respectively). Set
appropriate AM or WFM demodulation (Radio panel). Listen to decoded au-
dio. Next, analyze the program 17.2 and run it several times, selecting different
input files. Observe signal spectra. Listen to decoded audio.
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17.7 Summary

This introductory chapter aims at simple explanation of RF telecommuni-
cation signals up-conversion from the base-band to the target frequency and
back to the base-band. This is essential operation in wireless communications.
Nowadays it is widely realized using the software defined radio technology.
The SDR basics of the basics were presented, I hope that in a Reader-friendly
manner. What should be remembered?

1. Different telecommunication services should co-exist and should not dis-
turb themselves. Therefore they should be “orthogonal” to each other:
they should use different frequency slots (FDM -frequency division mul-
tiplexing), different time slots (TDM—time division multiplexing), dif-
ferent time–frequency slots (TFDM, hopping frequencies), or different
time/frequency/time–frequency slots in different geo-positions (SDM—
spacial division multiplexing).

2. In communication system information/data are mainly carried by
sine()/cosine() oscillations. The message is hidden in the oscillation pa-
rameters, it is changing them, i.e. modulating signal amplitude, phase, and
frequency. In the receiver, jumps of the sine()/cosine() parameter values
should be recovered and information coded in them should be extracted,
demodulated. One or many oscillating carriers are used (single-carrier and
multi-carrier transmissions).

3. Since the information is coded in changing states of one or many oscilla-
tions, each RF service transmitter modulates some low-frequency carriers
in the base-band around the DC (0 Hz) and then converts/shifts them up
to higher, target frequencies by signal mixers, but into different frequency
bands. The information is not changed: higher frequencies are modulated
exactly in the same manner as lower frequencies in the base-band.

4. The RF receiver is extracting signals from the frequency band of interest
using a band-pass filter, and is doing the reverse frequency conversion of
the signal, its down-conversion to the base-band. In the BB all service carri-
ers are demodulated, i.e. modulating functions/numbers are recovered and
transmitted information is decoded.

5. A base-band signal, synthesized in the transmitter, can have real or
complex-values. Using complex-value signals simplifies frequency modu-
lation and demodulation in the base-band, allowing the same time existence
of negative frequencies. It is important to remember that after frequency up-
conversion, the signal in the channel has always real values. It results from
the fact that only the real part of a complex-value output of the quadrature
mixer is emitted by antenna.

6. In the receiver the base-band signal is real-value (when only cos() down-
frequency mixer is used) or complex-value (when quadrature cos() and –
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sin() mixers are used and two signals are combined into a vector of complex
numbers).

7. Therefore after up (TX) and down (RX) frequency conversions of the
complex-value signal, assuming distortion free environment, one should
obtain in the receiver exactly the same signal as transmitted one, for exam-
ple FM or DAB radio.

17.8 Private Investigations: Free-Style Bungee Jumps

Exercise 17.3 (Up-Down Frequency Conversion of Pure Mono Speech/Music
Services). Extend program from Listing 17.1: use mono speech/music recordings as
signals to be transmitted, add plots of signal spectra, and check whether the signal
processing presented in Fig. 17.3 really holds in each test.

Exercise 17.4 (Service Selection in Existing Wide-Band IQ Recordings). Use
programs 17.2 and 17.3. Try to recover mono signals of all available FM stations
present in the IQ file SDRSharp_FMRadio_101600kHz_IQ.wav. Find (read)
station carrier frequencies and shift services to 0 Hz. If you have the RTLSDR stick
or PLUTO module, record your own IQ file and do the same using your file.

Exercise 17.5 (Voice Control in Airplane Azimuth Detection). Try to find some
other VOR signals in the IQ file SDRSharp_Airplane_112500kHz_IQ.wav
and to decode their voice control audio. Use SDRSharp program. Work in IQ file
mode (in source panel). In the upper bar set service frequency to 112.79285 MHz.
Switch to AM decoding (in radio panel). If you have the RTLSDR stick or PLUTO
module, find a new VOR signal in the range 108–138MHz (good antenna is re-
quired!), then record it and decode. Try to find airplane navigation signals on servers
given in WebSDR http://websdr.org/.

Exercise 17.6 (Visiting WebSDR). Go to the page WEBSDR http://websdr.org,
choose any RF signal server, choose the service type/bandwidth (CW, CW-N, LSB,
LSB-N, USB, USB-N, AM, AM-N, FM), choose an RF service-by shifting the
observation window using mouse, adjust the frequency edges of the window with
mouse, hear the demodulated signal as audio one, record it into a file as WAV, down-
load the file, read data into Matlab/Octave, show the signal samples, calculate and
show the signal frequency spectrum.

http://websdr.org/
http://websdr.org
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Chapter 18
Frequency Modulation and
Demodulation

War and peace, love and hate, up and down during bicycle ride:
do not be surprised that frequency of your heartbeat is
changing!

18.1 Introduction

We live because our hearts are beating all the time and pump the blood with
oxygen to all parts of our bodies. But the heartbeat-rate is changing due to our
emotional (“war and peace”) and physical (“up and down,” “faster or slower”)
stress. We can say that the frequency of heartbeat is modulated/changed by
some real-world signals/events. Frequency modulation (FM), faster or slower
repetition of something, is very popular in our everyday life. Wheels of our
cars and bicycles are rotating with different speed before the mountain pass and
after it.

In telecommunication people generate oscillatory sine signals called carri-
ers and deliberately change their oscillation frequencies proportionally to some
value—they modulate a carrier in frequency. When one is tracking the oscil-
lation frequency change and recovering the value used in the transmitter for
frequency shift, he is doing carrier demodulation. Value causing frequency
change can change itself, even oscillates. In telecommunication we are trans-
mitting functions that modulate our carriers. In analog FM radio it is a multiplex
MPX signal consisting of audio and RDS binary data. In digital RTTY amateur
radio, transmission bits are hidden in a carrier jumps from one frequency to the
other. Frequency shift keying (FSK) methods are very popular in digital data
transmission inside the human body, like in autonomous gastroscopic capsules.
Carrier frequency can be softly changing from one value to the other using
Gaussian function formula—such frequency modulation is known as Gaussian
Minimum Shift Keying. It was widely used in the past in old 2G GSM digital
telephony. Nowadays it is exploited in, for example: digital data links between
mobile devices and satellites, remote control devices and Bluetooth standard.
So the FM is still alive!
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A crucial issue in FM modulation and demodulation is concept of instanta-
neous signal frequency, defined as a time derivative (divided by 2π) of an angle
ϕ(t) of the real-value cos(ϕ(t)) or complex-value exp( j ·ϕ(t)) oscillators. Do-
ing an FM modulation we should ensure an appropriate change of this angle,
making it a sum of two components: the first one (ϕ1(t) = 2π fct) associated
with the carrier frequency and the second term (ϕ2(t) = 2π · Δ f · ∫ t

0 x(t)dt),
responsible for the carrier frequency change and being dependent upon modu-
lating function x(t). Frequency demodulation relies on recovering the function
x(t) from the carrier angle ϕ(t). It is a very simple task for complex-value ana-
lytic signals of the form exp( j ·ϕ(t))—only an angle of a complex -value num-
ber has to be computed using four quadrant arctan(Im(y(t)),Re(y(t))) function,
and then its derivative (change in time) should be found. In case of real carriers
with fc �= 0, the situation is only a little bit different: first the complex-value
analytic version of the signal should be computed using the Hilbert transform
and then the signal angle.

In this chapter we will understand the demodulation procedure of the mono
FM radio broadcasting, presented in Chap. 17. We will also become familiar
with some FM modulation patterns used in amateur radio and find our position
in respect to airport using VOR signals transmitted from airport to airplanes.

18.2 Frequency Modulation

In this chapter the following notation is used:

x(t),x(n)—analog and digital signal used for modulation,
y(t),y(n)—analog and digital signal being modulated (modulation result),
I(t), I(n)—real part of y(.), in-phase component,
Q(t),Q(n)—imaginary part of y(.), quadrature component.

Instantaneous frequency of a real-value signal (1) and a complex-value analytic
signal (2) of the form:

y1(t) = cos(ϕ(t)), y2(t) = e j·ϕ(t) = cos(ϕ(t))+ j · sin(ϕ(t)) (18.1)

is defined as derivative of its phase angle divided by 2π :

finst(t) =
1

2π
dϕ(t)

dt
. (18.2)

If we would like to generate a signal with instantaneous frequency changing in some
predefined way, we should express ϕ(t) as a function of finst(t) from Eq. (18.2):

dϕ(t) = 2π finst(t)dt ⇒ ϕ(t) =
t∫

0

dϕ(t) = 2π
t∫

0

finst(t)dt (18.3)
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and put the result into Eq. (18.1), which gives

y1(t) = cos

(
2π
∫ t

0
finst(t)dt

)
, y2(t) = exp

(
j ·2π

∫ t

0
finst(t)dt

)
. (18.4)

Modulation of a signal carrier frequency fc using a function x(t) with a predefined
frequency modulation depth (Δ f ) expressed in Hz is described by the following
equation:

finst(t) = fc +Δ f · x(t). (18.5)

The function x(t) is typically changing its values in the range [−1, 1], therefore
the maximum change of signal frequency is equal to ±Δ f . After putting Eq. (18.5)
into signals in Eqs. (18.4) one obtains, here only for exp( j ·ϕ(t)):

y(t) = exp

(
j ·2π

(
fct +Δ f ·

∫ t

0
x(t)dt

))
. (18.6)

When fc =0 Hz, the modulation is done in the base-band. For linear (LFM) and
sinusoidal (SFM) frequency modulation, Eq. (18.6) simplifies to Eqs. (18.7) and
(18.8):

LFM: x(t) = α · t, y(t) = exp
(

j ·2π
(

fct +0.5αt2)) , (18.7)

SFM: x(t) = sin(2π fmt), y(t) = exp

(
j ·2π

(
fct − Δ f

2π fm
cos(2π fmt)

))
.

(18.8)

In equations (18.7) and (18.8) exponent can be replaced with cosine ( j should be
removed). A Reader is asked to analytically check whether Eqs. (18.7) and (18.8)
fulfill the phase differentiation principle (18.2).

Computer implementation of Eq. (18.6) is not difficult in Matlab:

y = exp( j *2*pi*(fc*t + df*cumsum(x)*dt) );

using the cumsum(x) function of cumulative summation of vector x elements:

cumsum(x) = [x1, x1 + x2, x1 + x2 + x3, . . .].
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While multiplied by uniform spacing dt, this is the simplest numerical approxima-
tion of a function integral in some limited interval, assuming zero-order interpo-
lation of a function between its samples. In other words, integral in Eq. (18.6) is
calculated via additions of rectangular areas lying below the signal curve.

Function (18.6) is not linear in respect to signal x(t) and difficult to analyze in
general case. Its Fourier spectrum bandwidth BW around fc depends on the chosen
modulation depth Δ f and maximum frequency of the signal x(t). This relation is
approximated by the Carson’s rule:

BW = 2 fmax

(
Δ f
fmax

+1

)
. (18.9)

Knowing available BW and fmax of the signal x(t), we can calculate required value
of Δ f from the equation:

Δ f =

(
BW

2 fmax
−1

)
· fmax (18.10)

which will be used by us in our FM radio Matlab programs.
The frequency modulation is highly non-linear. Due to this even for a very

simple case when the carrier frequency is modulated by a single pure cosine
x(t) = cos(2π fmt), the resultant FM modulated signal can have many frequency
components:

y(t)=Ac cos

(
2π fct +

Δ f
fm

sin(2π fmt)

)
=

∞

∑
n=−∞

AcJn

(
Δ f
fm

)
cos(2π( fc +n fm)t)

(18.11)

so its spectrum can be very wide. In Eq. (18.11) Jn() is the Bessel function of the
1-st kind and order n, in Matlab besselj(n,delta).

Proof (A Little Bit of Our Sweet Math).

At present we will discuss a special case of Eq. (18.6) for a real-value cosine carrier
cos(.) instead of the complex-value exponential one exp( j.) and for cosine modu-
lating function x(t) = cos(2π fmt). In such case one obtains

y(t) = Ac cos

(
2π fct +

Δ f
fm

sin(2π fmt)

)
= Ac cos(2π fct +δ sin(2π fmt)) ,

(18.12)
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where δ denotes Δ f/ fm. Using trigonometric equality cos(α +β )= cos(α)cos(β )−
sin(α)sin(β ) we can rewrite the above expression into the following form:

y(t) = Ac cos(2π fct)cos(δ sin(2π fmt))−Ac sin(2π fct)sin(δ sin(2π fmt)) (18.13)

and even transform it further:

y(t)≈ Ac cos(2π fct)−Acδ sin(2π fct)sin(2π fmt) (18.14)

and further:

y(t)≈ Ac cos(2π fct)+
Acδ

2
cos(2π( fc + fm)t)− Acδ

2
cos(2π( fc − fm)t) (18.15)

since for small δ values we can do in Eq. (18.13) the following substitutions:

cos(δ sin(2π fmt))≈ 1, sin(δ sin(2π fmt))≈ δ sin(2π fmt)

and the following replacement can be done in Eq. (18.14):

−sin(α)sin(β ) = 0.5 · cos(α +β )−0.5 · cos(α −β ).

Approximation (18.15) is only valid for small δ values. For bigger ones Eq. (18.11)
should be used.

��
In Fig. 18.1 first three Bessel functions Jn(δ ) are shown for n = 0,1,2: the 0-th,

damped cosine-like, is the highest one for δ = 0, and the others, damped sine-like,
are decreasing with the increase of n. The plot was obtained using the following
Matlab program:

d=0:0.05:25;;
J0 = besselj(0,d); J1 = besselj(1,d); J2 = besselj(2,d);;
plot(d,J0,‘k’,d,J1,‘b’,d,J2,‘r’); xlabel(’d); title(‘J(d)’);
grid; pause;

In turn in Fig. 18.2 two spectra of SFM signals are shown. Calculated values Jn(δ )
are marked in it with red circles. In both cases carrier frequency is equal to fc =
1000 Hz while modulating frequency is equal to fm = 100 Hz. In the left figure Δ f
is equal to 0.001 Hz and in the right one—10 Hz. We can observe that increase of
Δ f value results in widening the spectrum which is symmetrical around fc.



522 18 Frequency Modulation and Demodulation

Fig. 18.1: Shape of three first (n = 0,1,2) Bessel functions for δ = Δ f
fm

. With the
increase of n they have smaller amplitudes and they are decaying for bigger values
of δ

Fig. 18.2: Two Fourier spectra magnitudes of SFM modulated signals. Calculated
values of Jn(δ ) are marked with red circles where δ =Δ f/ fm. Values of parameters:
fc =1000Hz, fm =100Hz, (left): Δ f =0.001Hz, δ =0.00001, (right): Δ f =10Hz,
δ =0.1

18.3 Frequency Demodulation

Frequency demodulation of the complex-value Euler-function signals of the
form (18.6) is done using Eq. (18.2) and it is not difficult because angles of the
complex number are directly accessible (function angle() in Matlab)) and
derivative of the signal phase can be easily calculated. In case of a real-value
signal, y1(t) in Eq. (18.1), one should first calculate its complex-value analytic
version, i.e. y2(t) in (18.1):

y(a)1 (t) = cos(ϕ(t))+ j ·Hilbert(cos(ϕ(t)))︸ ︷︷ ︸
sin(ϕ(t))

= e j·ϕ(t) = y2(t) (18.16)



18.3 Frequency Demodulation 523

using the Hilbert filter/transform, being the −π/2 radians phase shifter, and
then find derivative of the complex-value signal angle, as before. Therefore in
this section only frequency demodulation of analytic signals is presented.

Exercise 18.1 (Angle Estimation of a Complex-Value Signal). In the begin-
ning, we remember the problem of angle estimation of complex-value num-
bers (already known to us as phase unwrapping of filter frequency responses).
In Listing 18.1 a complex-value signal is generated: x(n) = e j·φ(n),φ(n) =
3π sin

(
2π
200 ∗n

)
,n = 0,1, . . . ,400. The signal angle φ(n) is recovered from sig-

nal samples using Matlab functions phi1=atan2(imag(x),real(x))
and phi2=atan(x). Obtained results for both functions are the same—
they are presented using solid line in the left plot of Fig. 18.3. However, they
are wrong: the unwanted angle wrapping is observed since the arctan() func-
tion returns only values in the range [−π,π). After application of the Matlab
unwrap(phi) function, adding missing ±2π jumps, the calculated angle is
corrected which is shown in left plot. Do some experiments: change function
describing the angle value.

Listing 18.1: Calculation of a complex-value signal angle
�

1 % lab18_ex_unwrap.m
2 % Example of signal angle wrapping and un-wrapping
3 clear all; close all;
4

5 n = 0:400;
6 phi = 3*pi*sin(2*pi/200*n);
7 x = exp( j*phi );
8

9 phi1 = atan2( imag(x), real(x) );
10 phi2 = angle( x );
11 error = max(abs( phi1 - phi2 )),
12 figure; plot(n,phi,’k--’,n,phi1,’b’); grid;
13 xlabel(’n’); ylabel(’[rad]’); title(’\phi (n): original and calculated’); pause
14

15 phi1 = unwrap( phi1 );
16 figure; plot(n,phi,’k--’,n,phi1,’b’); grid;
17 xlabel(’n’); ylabel(’[rad]’); title(’\phi (n): original and calculated’); pause

��

For a discrete-time signal y(n) estimation of its angle derivative can be calculated
using one of many existing formulae.

Arctan Methods with Phase Unwrapping In the first group of methods we first
calculate the signal angle from its tangent using 4 quadrant arctan(Q, I) function:

ϕ±2π(n) = arctan(Q(n), I(n)), (18.17)
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Fig. 18.3: Illustration of angle computation problem for complex-value signals:
(left) original signal angle (dashed line) and its calculation using arctan() function
(solid line)—the angle wrapping is observed, (right) estimated angle after applica-
tion of Matlab unwrapping procedure—the angle is perfectly reconstructed

where

Q(n) = Im(y(n)), I(n) = Re(y(n)). (18.18)

Since the arctan(.) function returns the angle only from the interval [−π,π) and the
changing signal angle can also drift outside this rage, we can obtain ±2π jumps in
the calculated phase estimate. For this reason its unwrapping is required (i.e. jumps
removal—see Fig. 7.2 in chapter on analog filters and description of the Matlab
function unwrap()):

ϕ(n) = unwrap(ϕ±2π(n)) . (18.19)

After that we are finding derivative of the computed angle using 2-point, 3-point, or
any multi-point differentiation estimator, even using a differentiation filter. Below
the simplest 2-point and 3-point derivative estimator are used:

f̂ (2p)
inst (n)≈ 1

2π
ϕ(n)−ϕ(n−1)

Δ t
, (18.20a)

f̂ (3p)
inst (n)≈ 1

2π
ϕ(n+1)−ϕ(n−1)

2Δ t
. (18.20b)

Arctan Methods Without Phase Unwrapping In order to avoid unwanted wrap-
ping of the angle estimate, one can use an alternative, less risky approach. Instead
of calculation of an angle of a complex-value number (first) and its local derivative
(then), one could do some mathematical operations on y(n) samples, described be-
low, and compute some temporal complex-value number having directly an angle
equal to the signal phase difference. Such difference should be smaller than values
that are subtracted and occurrence of phase wrapping effect would be less probable.
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This computational trick is done in two frequency demodulation formula presented
below:

1
2π

∠(y(n)y∗(n−1))
Δ t

=
1

2π

∠
(

e j(ϕ(n)−ϕ(n−1))
)

Δ t
≈ f̂ (2p)

inst (n), (18.21a)

1
2π

∠(y(n+1)y∗(n−1))
2Δ t

=
1

2π

∠
(

e j(ϕ(n+1)−ϕ(n−1))
)

2Δ t
≈ f̂ (3p)

inst (n), (18.21b)

where ∠(c(n)) denotes an angle of a complex number c(n), c∗(n)—its complex con-
jugation and Δ t—sampling period (inverse of a sampling frequency fs). In Matlab
last two equations have one line implementations:

finst2p=(1/(2*pi))*angle( y(2:end).*conj( y(1:end-1)) )/dt;
finst3p=(1/(2*pi))*angle( y(3:end).*conj( y(1:end-2)) )/(2*dt);

Fast Methods Without Arctan Computation In [3] the following fast method is
described in which the necessity of arctan(.) function computation is avoided. In
frequency demodulation methods we have to calculate derivative of the signal y(t)
angle (18.2) which is itself calculated using arctan(.) function:

finst(t) =
1

2π
d
dt

[arctan(r(t))] , r(t) =
Q(t)
I(t)

=
Im(y(t))
Re(y(t))

. (18.22)

Our sweet mathematics tells us that the following two equations hold

d
dt

[arctan(r(t))] =
1

1+ r2(t)
· d

dt
[r(t)] ,

d
dt

[r(t)] =
dQ(t)

dt I(t)− dI(t)
dt Q(t)

I2(t)
.

(18.23)
Therefore Eq. (18.22) can be written as:

finst(t) =
1

2π
· 1

1+Q2(t)/I2(t)
·

dQ(t)
dt I(t)− dI(t)

dt Q(t)

I2(t)
, (18.24)

which finally gives

finst(t) =
1

2π

dQ(t)
dt I(t)− dI(t)

dt Q(t)

I2(t)+Q2(t)
. (18.25)

Function derivatives can be estimated in (18.25) using first or second order interpo-
lation formula:

dF(t)
dt

≈ F(n)−F(n−1)
Δ t

,
dF(t)

dt
≈ F(n+1)−F(n−1)

2Δ t
. (18.26)
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For the first, simpler estimator one obtains

finst(n) =
1

2π ·Δ t
I(n)Q(n−1)−Q(n)I(n−1)

I2(n)+Q2(n)
. (18.27)

Application of Eq. (18.27) requires slower-variability of the φ(t).
The arctan-function-less FM demodulation methods have the following simple

Matlab realizations (without normalizing division by [I2(n)+Q2(n)]:

finst4=(1/(2*pi))*(real(y(1:N-1)).*imag(y(2:N))-...
imag(y(1:N-1)).*real(y(2:N)))/dt;

finst5=(1/(2*pi))*(real(y(2:N-1)).*(imag(y(3:N))
-imag(y(1:N-2)))-...

imag(y(2:N-1)).*(real(y(3:N))-real(y(1:N-2))) ) / (2*dt);

In order to “demystify” the presented above equations and the program code,
we will perform ourselves some FM (de)modulation examples below and observe
graphically an FM modulation and demodulation magic.

18.4 FM Testing

A simple Matlab program for testing the described above frequency modulation and
demodulation algorithms is presented in Listing 18.2. Integration in Eq. (18.6) is
implemented by Matlab cumsum() function. Five different demodulation methods
are coded. A Reader can modulate a real-value or a complex-value harmonic car-
rier using artificially generated sinusoid with arbitrary frequency, either using any
recorded audio signal. Figure 18.4 presents results from complex-value carrier mod-
ulation using pure 2 Hz sine while Fig. 18.5 using a speech signal. Both signals are
sampled at 11.025 kHz and have values in the range [−1, 1]. They modulate har-
monic complex-value carrier 0 Hz or 4 kHz. The modulation depth in both cases is
the same and equal to 1 kHz.

We should do the following remarks. The STFT spectra of modulating signals,
the 2 Hz sine and speech, are not symmetrical around 0 Hz because the signals are
complex-value ones. The speech spectrum is significantly wider than the spectrum
of 2 Hz sine, no surprise. However, widths of the spectra of modulated carrier do not
differ so much in both cases. Why? Because the modulation depth is responsible for
the spectrum width and it is the same (1 kHz). Nevertheless, the spectrum of carrier
modulated by speech is wider due to presence of higher frequencies in this signal—
consequence of Carson rule (18.9). It is also important to observe that shapes of
spectra for modulated carriers 0 Hz and 4 kHz are the same: the second is an exact
copy of the first shifted up in frequency. Spectra of sampled signals are periodic in
frequency which is also visible in both figures, especially for 0 Hz carrier modulated
by 2 Hz sine.



Fig. 18.4: FM modulation example: (left up) sine signal, modulating the carrier, hav-
ing frequency 2 Hz and sampled with fs =11.025 kHz, (left down) its STFT time–
frequency spectrum, (right up) the STFT spectrum of the FM modulated complex-
value carrier 0 Hz and (right down) the STFT spectrum of the FM modulated carrier
fc =4 kHz. The modulation depth in both cases is equal to Δ f =1 kHz

Fig. 18.5: FM modulation example: (left up) speech signal, modulating the carrier,
sampled with fs =11.025 kHz, (left down) its STFT time–frequency spectrum, (right
up) the STFT spectrum of the FM modulated complex-value carrier fc =0 Hz, and
(right down) fc =4 kHz. The modulation depth in both cases is equal to Δ f =1 kHz
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Listing 18.2: Simple program for testing in Matlab the presented frequency modu-
lation and demodulation techniques

�

1

2 % lab18_ex_fm.m
3 % Example of FM modulation and demodulation
4 clear all; close all;
5

6 % Modulatingsignal m(t)
7 [x,fs] = audioread(’GOODBYE.WAV’); % read speech from file
8 Nx = length(x); % number of signal samples
9 x = x(:,1)’; % take only one channel, 1 or 2

10 dt=1/fs; t=dt*(0:Nx-1); % time
11 df=1/(Nx*dt); f=df*(0:Nx-1); % frequency
12 x = cos(2*pi*2*t); % alternativemodulatingsignal
13 figure; plot(t,x); xlabel(’t [s]’); grid; title(’x(t)’); pause
14 figure; spectrogram(x,256,192,512,fs,’yaxis’); title(’STFF of x(t)’); pause
15

16 % FM modulation
17 fc=0; % carrierfrequency: 0 or 4000 Hz
18 BW = 0.9*fs; % availablebandwidth
19 fmax = 3500; % maximummodulatingfrequency
20 df = (BW/(2*fmax)-1)*fmax, pause % calculated freq modulation depth
21 df = 1000; % arbitrary chosen frequencymodulation depth
22 y = exp( j *2*pi*(fc*t + df*cumsum(x)*dt) );
23 figure; plot(f,abs(fft(y)/Nx)); grid; xlabel(’f [Hz]’); title(’|Y(f)|’); pause
24 figure; spectrogram(y,256,192,512,fs,’yaxis’); title(’STFT of y(t)’); pause
25

26 % FM demodulationmethods
27 ang = unwrap(angle(y)); fi1=1/(2*pi)*(ang(2:end)-ang(1:end-1)) / dt;
28 fi2 = 1/(2*pi)*angle( y(2:Nx).*conj( y(1:Nx-1) ) ) / dt;
29 fi3 = 1/(2*pi)*angle( y(3:Nx).*conj( y(1:Nx-2) ) ) / (2*dt); fi3=[fi3 0];
30 fi4 = 1/(2*pi)*(real(y(2:end-1)).*(imag(y(3:end))-imag(y(1:end-2)))-...
31 imag(y(2:end-1)).*(real(y(3:end))-real(y(1:end-2))) ) / (2*dt); fi4=[fi4 0];
32 fi5 = 1/(2*pi)*(real(y(1:end-1)).*imag(y(2:end))-imag(y(1:end-1)).*real(y(2:end)))/dt;
33 figure; nn=1:length(fi1);
34 plot(nn,fi1,’r’,nn,fi2,’g’,nn,fi3,’b’,nn,fi4,’k’,nn,fi5,’m’); pause
35 xest = ( fi2 - fc ) / df ;
36 xest = xest(1:end-1); % recoveredmodulatingsignal
37 x = x(2:end-1);
38 figure; plot(t(2:Nx-1),x,’r-’,t(2:Nx-1),xest,’b-’); xlabel(’t [s]’);grid; pause
39 figure; spectrogram(xest,256,192,512,fs,’yaxis’); title(’STFT of xest(t)’); pause
40

41 % ERROR after frequency MOD & DEMOD
42 ERROR_SIGNAL = max( abs( x - xest ) ), pause
43 soundsc(x,fs); pause
44 soundsc(xest,fs); pause

��
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Exercise 18.2 (Testing FM Modulation and Demodulation Algorithms).
Add more modulating signals to the program 18.2, for example, sum of sinu-
soids with different frequencies, sinusoid with linearly increasing frequency,
different sound signals. Observe figures. Verify demodulation correctness.
Compare quality of demodulation algorithms.

Exercise 18.3 (FM Bandwidth. Is the Carson’s Rule Always Valid?). Use
program 18.2 and check validity of formula (18.10): change value of Δ f and
observe the spectrum of the signal modulated by human speech, using the
spectrogram() Matlab function. The spectrum width should become wider
after increase of Δ f .

Exercise 18.4 (How Many Trees Are in an SFM Forest? Checking Bessel
Formula for FM Signals). Run program 18.2. Use signal from line 13 ( fm =10,
100, 1000 Hz), set fc =4000 Hz in line 14 and Δ f = 1000 in line 22. Ob-
serve Fourier spectra generated in lines 24–25. This is a case of sinusoidal fre-
quency modulation (18.8) in which the resultant, modulated signal is described
by Eq. (18.11). Check experimentally validity of this formula. Try different
values of Δ f .

18.5 FM Demodulation Examples

18.5.1 FM Radio Broadcasting

The FM radio, still alive despite wind and rain technological storms, is for us a very
good example of frequency modulation application. It is also a very good wireless
service for testing our understanding of software-based telecommunication technol-
ogy. In this chapter digital quadrature complex-value IQ FM radio demodulator was
discussed. We could apply with ease the described above demodulation algorithms
at the mono FM receiver program (Listing 17.3), presented in Chap. 17, and test
them. A Reader is encouraged to do this.

Exercise 18.5 (Swing, Swing: FM Demodulation Methods). Extend the Mat-
lab code from Listing 17.3: please verify all described above FM demodulation
methods, specified by Eqs. (18.20), (18.21a) and (18.25).

In analog times the FM radio was demodulated also using real-value signal pro-
cessing and signal differentiation. In Chap. 11 on special FIR filters in Sect. 11.3
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x(n) m(n)BP Filter Diff
•(.)2

Filter[fc ± kf /2]
LP Filter

to fc

Fig. 18.6: Functional block diagram of the FM demodulator using digital differenti-
ating filter

discrete-time version of this alternative frequency demodulation method was dis-
cussed as an example of FIR differentiation filters application. Described algorithm
was implemented in Matlab program 11.8. Let us briefly repeat the method expla-
nation. The real-value FM signal is defined as:

y(t) = cos

(
2π
(

fct +Δ f
∫ t

0
x(t)dt

))
. (18.28)

After its differentiation we obtain

z(t) =
dy(t)

dt
=−[2π fc +Δ f · x(t)] · sin

(
2π
(

fct +Δ f
∫ t

0
x(t)dtx

))
. (18.29)

In Eq. (18.29) a high-frequency signal sin(.), with frequency changing around fc,
has slowly changing amplitude/envelope a(t) = [2π fc +Δ f · x(t)], depending on the
modulating signal x(t). This envelope a(t), and after that the signal x(t), can be
extracted from signal z(t) (18.29), calculating in a cascade the following operations:

1. squaring the signal z(t) (18.29), result of y(t) differentiation,
2. low-pass filtering—removing 2 fc (2α) component of:

a2(t) · sin2(α) = a2(t)
1
2
(1− cos(2α)) =

1
2

a2(t)− 1
2

a2(t)cos(2α), (18.30)

3. calculating the square root of the result:
√

1
2

a2(t) =
1√
2

a(t). (18.31)

All together we can describe as:

√
LPFilter [z2(t)] =

1√
2
[2π fc +Δ f x(t)] . (18.32)

The whole demodulator is presented in Fig. 18.6. The differentiation filter should
work only around carrier frequency fc, suppressing other frequencies. Such effect
can be obtained pairing the differentiation filter with appropriate band-pass filter.
The LP filter is removing the high-frequency component having frequency 2 fc.
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Exercise 18.6 (FM Radio Demodulation Using Signal Differentiation). An-
alyze the program 11.8. Modify it. First, adjust its parameter values for process-
ing music signals sampled at 44100 or 48000 Hz. Then, try to use the method
for demodulation of one mono FM radio signal present in complex-value IQ
recording SDRSharp_FMRadio_101600kHz_IQ.wav consisting of many
stations. Choose one station apart from 0 Hz, separate it using a band-pass filter,
take a real value, and apply the method.

18.5.2 Amateur HAM Radio

FM modulation is widely used in amateur radio transmission. Examples of different
FM modulated HAM signals and their spectra are presented in http://www.w1hkj.
com/modes/index.htm. They should impress us with their diversity. In Fig. 18.7
STFT of some HAM-FM spectra are shown. Their careful inspection should give
us additional confirmation about FM flexibility.

Exercise 18.7 (Beautiful FM Patters in HAM Radio Transmission). Ob-
serve frequency change in WebSDR services available at page http://websdr.
org. Download some FM modulated signals from page http://www.w1hkj.com/
modes/index.htm. Calculate their spectrograms, i.e. short-time Fourier trans-
form. Observe different FM patterns. Do some literature investigations. Try to
recover bits that are coded by different frequency values (states).

18.5.3 Airplane Azimuth Calculation from VOR Signal

Airplanes perform self-estimation of their azimuth angle in respect to an airport
using the VOR signals emitted at the airport [5]. The VOR carrier is modulated in
amplitude by a hybrid signal containing three components:

• a 30 Hz signal which phase is azimuth dependent and has to be found, using a
signal with reference phase which is also transmitted,

• a speech control signal in the band [300–3500] Hz,
• a 9.96 kHz signal modulated in frequency (with 480 Hz depth) by the 30 Hz

signal having reference phase for the azimuth signal.

http://www.w1hkj.com/modes/index.htm
http://www.w1hkj.com/modes/index.htm
http://websdr.org
http://websdr.org
http://www.w1hkj.com/modes/index.htm
http://www.w1hkj.com/modes/index.htm
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Fig. 18.7: Examples of STFT spectra of some FM modulated amateur radio signals.
Modulation names are given in figure titles

In this measurement task, first, amplitude demodulation should be performed and
then the frequency demodulation. Program for amplitude demodulation has been
already presented in Chap. 17. Since the double side-band AM with carrier trans-
mission is used in this case, the AM demodulation is not difficult because it does
not require any carrier synchronization: only band-pass filtration of the IQ signal
around the VOR service and complex number magnitude calculation are necessary.
After AM demodulation the following tasks should be performed:

1. LP filtration and extraction of the 30 Hz azimuth signal,
2. BP filtration of the 9.96 kHz frequency modulated carrier,
3. doing the FM demodulation and extraction of the 30 Hz reference signal: first

the signal Hilbert transform is used for the complex-value analytic signal com-
putation and then the angle estimation is performed,

4. LP filtration (smoothing) of the reference signal,
5. estimation of the phase shift between the azimuth and the reference signal.

Program with all calculations is given in Listing 18.3. Figure 18.8 presents re-
sults obtained with its help which are wider described in the figure caption. The FM
modulated 9.96 kHz component is well visible in the PSD and STFT spectra of the
amplitude demodulated VOR signal (left column: second and third figure). Calcu-
lated instantaneous frequency of the 9.96 kHz signal (second column, first figure),
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being the reference 30 Hz sinusoid, is de-noised and scaled, and compared with
the 30 Hz azimuth signal (second column, second figure). Estimated phase shift be-
tween 30Hz azimuth and reference sines is approximately equal to 1.214 radians
and is fluctuating (last figure in second row). During method calibration (set 1 in
if(.) for VOR test signal synthesis) very small amplitude oscillations (of order
of 0.0025 radians) are observed in the calculated instantaneous phase shift. They
are caused by usage of Hilbert transformer implemented in frequency domain (with
rectangular window) instead of in time-domain, in the form of Hilbert filter.

Listing 18.3: Demonstrative Matlab program for computing azimuth angle of air-
plane position in respect to airport in which FM demodulation of 9.96 kHz carrier
is performed and the reference 30Hz signal is found

�

1

2 % lab18_ex_airplane.m
3

4 % Read a recorded IQ signal - two VOR avionicssignals
5 FileName = ’SDRSharp_Airplane_112500kHz_IQ.wav’; T=5; demod=3; fc = 2.9285e+5;
6 % FileName = ’SDRSharp_Airplane_112849kHz_IQ.wav’; T=5; demod=3; fc =-5.5353e+4;
7

8 % ... code from programlab16_ex_IQ_DFT.m
9

10 if(demod==3) % airplaneazimuthdecoding using VOR signal
11

12 M = 501; M2=(M-1)/2; % filter length
13 fam = 25000; dt=1/fam; % frequency width of AM modulationaround fc
14 f1 = fc-fam/2; f2 = fc+fam/2; % Band-Pass filter h design
15 h = cfirpm(M-1,[-fs/2 (f1-df) (f1+df) (f2-df) (f2+df) fs/2]/(fs/2),@bandpass);
16 x = conv(x,h); x=x(M:end-M+1); % Band-pass filtration of VOR
17 x = sqrt( real(x).*real(x) + imag(x).*imag(x) ); % AM demodulation
18 x = decimate(x,round(fs/fam)); % [U,D] = rat(fs/fam); x = resample( x, U, D );
19 x = x - mean(x); % mean subtraction
20

21 if(0) % only for verification test
22 N = length(x); t=dt*(0:length(x)-1);
23 x = sin(2*pi*30*t) + cos(2*pi*(9960*t-480/(2*pi*30)*cos(2*pi*30*t)));
24 x = x’;
25 end
26 xc = x;
27

28 % Low-pass filtration of 30 Hz azimuth signal
29 hLP30 = fir1(M-1,50/(fam/2),’low’); % design of filter coefficients
30 x = conv(x,hLP30); x = x(M2+1:end-M2); % filtering
31 x = x - mean(x);
32 x_azim = x(2:end-1)/max(x); % 2,-1 due to finst computation
33

34 % Extraction of 30 Hz signal with reference phase
35 hBP10k = fir1(M-1,[9000,11000]/(fam/2),’bandpass’); % BP filter design
36 x = conv(xc,hBP10k); x=x(M2+1:end-M2); % separation of FM component
37 x = unwrap( angle ( hilbert(x) )); % angle calculation
38 x = x(3:end)-x(1:end-2); % 3-point difference
39 x = (1/(2*pi))*x/(2*dt); % f instantaneous
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40 x = conv(x,hLP30); x=x(M2+1:end-M2); % LP filtration / denoising
41 x = x - mean(x); % remove mean value
42 x_ref = x/max(x); % normalizeamplitude to 1
43

44 % Phase shift estimation
45 phi_inst = angle( hilbert(x_azim).*conj(hilbert(x_ref)) );
46 phi_estim = mean( phi_inst ), pause
47

48 end
��

Exercise 18.8 (Testing Algorithm of Airplane Azimuth Detection). Add
plots to the program 18.3. You should obtain similar ones to the presented in
Fig. 18.8. Possible differences can result from different filter parameters. Try to
change them. Test different frequency demodulation algorithms.

18.5.4 Safe Mode Nano-Satellite Signal

The last FM demodulation example presented in this section will concern a signal
transmitted from nano-satellite in safe, low bit-rate mode [6]. In the analyzed record-
ing, the satellite signal is modulating in frequency the 146.02 MHz carrier. 200 bits
are sent per one second in packets lasting 10 s and repeated once per two minutes.
Binary frequency shift keying is used, i.e. the carrier frequency jumps down (−1)
and up (+1) 200 times per second and this way bits 0/1 are transmitted, respectively.
In the middle of the packet voice control is added to the digital data signal, causing
additional frequency modulation of the carrier.

In Matlab program 17.4 [4], given in Chap. 17, the signal frequency demodu-
lation was presented. Results obtained with its use are shown in Fig. 18.9. In first
column we see STFT spectra magnitudes of the following signals: (1) the origi-
nal IQ(n) signal sampled at 192 kHz, (2) signal down-converted in frequency to
0 Hz, (3) signal low-pass filtered around 0 Hz (with filter cut-off frequency equal
to 12500/2=6250 Hz), and down-sampled to frequency 48 kHz. We can see carrier
frequency jumps lasting about 10 s. In the middle of the bit packet we see additional
carrier modulation caused by transmitted voice (DUV—data under voice technol-
ogy).

In the second figure column, a recovered modulated signal is shown. In the upper
figure the whole signal. In the middle figure, only signal fragment when bit trans-
mission starts. We observe signal up-and-down (1/0) hops but embedded in very
strong noise. In the bottom, a central part of the signal is shown where both bits and
control voice are transmitted.
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Fig. 18.8: Results obtained from the program 18.3 for airplane azimuth angle com-
putation. First column: (1) Power spectral density (PSD) fragment of IQ(n) signal—
spectrum of VOR avionics signal, i.e. of AM modulated carrier, (2) PSD of a re-
covered signal modulating the carrier in amplitude—we can see some transmission
around 9.96 kHz, (3) STFT of the recovered signal—we can see 30 Hz sinusoidal
frequency modulation of the 9.96 kHz carrier. Second column: (1) calculated instan-
taneous frequency of the 9.96 kHz carrier—30Hz reference sinusoid, (2) azimuth
(solid line) and reference (dashed line) 30 Hz sinusoids, de-noised and scaled in
amplitudes, (3) calculated instantaneous phase shift between these two sinusoids—
estimation of azimuth angle of airplane position in respect to the airport
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Fig. 18.9: Results obtained from the program 17.4 performing frequency demodula-
tion of nano-satellite IQ signal sampled at 192 kHz (in slow-speed safe mode). First
column: (1) STFT of the recorded IQ(n) signal, (2) STFT of signal converted to
0 Hz, (3) STFT after low-pass filtration and signal down-sampling to 48 kHz. Sec-
ond column: (1) whole demodulated signal x(n), (2) first fragment of x(n)—start of
bit transmission, (3) second fragment of x(n)—data transmitted together with voice
signal (DUV—data under voice)

Exercise 18.9 (Testing Algorithm of FM Demodulation of Nano-Satellite
Signal). Matlab code of FM demodulation of nano-satellite signal (in safe,
slow-speed mode) was presented in Chap. 17 in the program 17.4 [4] as a
start-up SDR example. Add figures to it. Run the program. You should obtain
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similar plots to presented in Fig. 18.9. Test different frequency demodulation
algorithms. Change bandwidth of the low-pass filter. Make it smaller to better
de-noise the signal and better see the transmitted bit pattern.

18.6 Summary

In this chapter frequency modulation and demodulation fundamentals were
presented. What is the most important?

1. In frequency modulation we are interested in appropriate changing of in-
stantaneous frequency of an oscillatory carrier according to the formula:
finst(t) = fc+Δ f ·x(t), where fc is nominal carrier frequency, x(t) is mod-
ulating function (signal), and Δ f is modulation depth. Roughly speaking,
we deliberately cause drift (fluctuation) of the carrier frequency around its
nominal value.

2. To obtain this goal we have to change in proper way a phase angle ϕ(t)) of
a real-value cos(ϕ(t)) or a complex-value exp( j ·ϕ(t)) carrier signal.

3. The required phase angle is a sum of two terms: the first one 2π fct, asso-
ciated with the carrier frequency, and the second one 2π · Δ f · ∫ t

0 x(t)dt,
responsible for the carrier frequency change and being dependent upon
modulating function x(t).

4. During demodulation we should first recover/restore the whole angle ϕ(t)
of the sine oscillator (for example, an angle of a complex-value sample
of the base-band IQ(t) signal), then calculate its time derivative equal to
2π fc +2π ·Δ f ·x(t), next divide the result by 2π and obtain an estimate of
the instantaneous oscillator frequency finst(t) = fc +Δ f · x(t). Finally, the
modulation function value is found from equation x(t)= ( finst(t)− fc)/Δ f .

5. Spectral bandwidth of the FM signal can be calculated using Carson’s
rule (18.9) and depends on the modulation depth Δ f and the maximum
modulating frequency fm.

6. In case of sinusoidal frequency modulation with single tone, the bandwidth
of the resultant signal can be precisely estimated using formula (18.11)
with Bessel functions for δ = Δ f/ fm.

7. Frequency modulation is not the hottest topic nowadays but it is still used
in transmission of data between mobile equipment and satellites as well as
short-range Bluetooth and remote control devices.
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18.7 Private Investigations: Free-Style Bungee Jumps

Exercise 18.10 (Being Inquisitive Like Albert Einstein: Instantaneous
Frequency). Analytically check whether Eqs. (18.7) and (18.8) fulfill the phase
differentiation principle (18.2).

Exercise 18.11 (Straightening the Wheel: Unwrapping the Phase). Generate
a vector of samples of the signal x(n) = exp( j ·2π · (0 : N −1)/(N/10)) ,N =
1000. Calculate angle of each complex-value signal sample using angle() or
atan2(Q,I) Matlab function. Plot the phase change. Apply the Matlab function
unwrap() to the vector of calculated angles and plot in one figure the function
input and output. How do you comment this experiment?

Exercise 18.12 (Beautiful FM Patterns for the Tate Gallery). Modify program
18.2 and use spectrogram(), i.e. the Matlab function for calculation and display
of time-varying signal spectra. Set fs = 8000 Hz. Generate one second of a real-
value (cos(.)) and a complex-value (exp( j.)) signal with:

• linear increase of frequency (18.7), for α = fs/8, fs/4, fs/2,
• sinusoidal change of frequency (18.8), for fm = 1Hz and Δ f = fs/8, fs/4.

In both cases first use fc = 0, then fc = fs/4.

Exercise 18.13 (Frequency Keying and Bit Transmission). In this chapter we
were discussing carrier frequency modulation done by an arbitrary signal. Gener-
ate a signal in which frequency is switched between two values. Let the first of them
denotes sending bit 0 while using the second—sending bit 1. Periodically send the
same sequence of bits this way. Try to decode bits after frequency demodulation of
the signal. Please, send bits of ASCII codes of your name. Calculate and observe
spectrogram of the generated signal. You should see that the signal spectrum is be-
coming wider during abrupt frequency changes. Try to switch frequency only when
the carrier has maximum amplitude (i.e. built the signal with fragments of multiple
periods of cosines)—this will ensure continuity of the carrier shape. Observe the
spectrogram. Try to drift smoothly between two signal frequencies using cosine-
like frequency change trajectories: from 1 to −1 and back from −1 to 1. Observe
the spectrogram.
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Chapter 19
Amplitude Modulation, Demodulation,
and Carrier Recovery

Mamma, why ocean’s waves are once low and once high? Oh,
Johnny, the ocean is like you: it is once whispering and once
shouting.

19.1 Introduction

Each oscillation is characterized by frequency, amplitude, and phase (its
starting angle). In the previous chapter we were analyzing problem of changing
signal/carrier frequency in some predefined functional way (frequency modu-
lation) and the problem of recovering this modulating function from the mod-
ulated signal (frequency demodulation). Performing this UNDO operation, we
were playing a role of Sherlock Holmes and were asking the question: which
modulation function was used? Which function is changing the frequency of
my perfect sine?

Remark In digital communication the number of modulating functions is lim-
ited and finding the function and its number, for example 5 (binary 0101) out of
[0, 1, 2, . . . , 15], is equivalent to recovering the transmitted bits, in our example
0101. Of course, immediately a new question appears: why not to start chang-
ing other parameters of the sinusoid, for example, amplitude and/or phase, and
increase this way the number of allowed carriers states, their possible numbers
and number of bits transmitted by means of one sinusoid. Such idea leads us
directly to concept of amplitude and phase modulation and . . . . to new ques-
tions. How many states should we assign for each sinusoid parameter? To use
all of them together or may be only these which are less influenced (modified)
by a communication channel? Answers to these and similar questions will be
addressed in next chapters of this book dealing with digital transmission.

In this chapter we will learn about analog amplitude modulation, e.g. AM
radio broadcast: in the transmitter the carrier amplitude is changed/modulated
in analog way by a continuous function which shape is to be recovered in the
receiver. Understanding the analog AM modulation will help us easily catch
the concept of the digital AM modulation since carriers are modulated and
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demodulated in the same way in both transmission techniques, only modulating
functions are different. In fact, the digital AM modulation is analog in its phys-
ical realization—term digital means only ON/OFF switching between allowed
predefined functions that are used for modulation.

The AM modulated signal has a form:

y(t) = a(t) · c(t), (19.1)

where c(t) is a real-value or complex-value carrier with frequency fc, equal to:

c(t) = e j2π fct = cos(2π fct)+ j sin(2π fct), (19.2)

c(t) = cos(2π fct), (19.3)

and a(t) is a carrier amplitude, changing in time and depending upon modulat-
ing signal x(t). Therefore the AM modulation is straightforward: in the trans-
mitter we are generating a(t) using a transmitted signal x(t) and then multiply
a(t) with the carrier c(t). The a(t) is equal to:

Suppressed Carrier : a(t) = x(t), (19.4)

Large Carrier : a(t) = 1+ΔA · x(t), (19.5)

where ΔA denotes the modulation depth. After putting Eqs. (19.4), (19.5) into
Eq. (19.1) one obtains

Suppressed Carrier : y(t) = x(t) · c(t), (19.6)

Large Carrier : y(t) = 1 · c(t)+ΔA · x(n) · c(t). (19.7)

In the second method the carrier is large, un-suppressed, because it is present
as a separate component in the modulated signal (first term in Eq. (19.7)), while
in the first method it is not the case. Since transmission of the carrier requires
extra energy, the first suppressed carrier method is preferred.

When carrier c(t) is the complex-value signal (19.2), we can also use a
complex-value signal x(t) for its modulation. Otherwise, x(t) is a real-value
signals.

Multiplication of any signal a(t) by the carrier c(t) causes shift of its spec-
trum A( f ) to the carrier frequency fc—this is the well-known Fourier transform
feature. When the carrier is a complex-value harmonic signal c(t) = e j2π fct , the
spectrum A( f ) is only shifted to the carrier frequency fc:

Y ( f ) = A( f − fc). (19.8)
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For the real-value carrier cos(2π fct), the spectrum A( f ) is shifted to the carrier
frequency fc and to its negation − fc (i.e. copied and centered at both frequen-
cies):

Y ( f ) = 0.5A( f − fc)+0.5A( f + fc), (19.9)

since a cosine is a result of divided by 2 summation of two complex-value
harmonics with frequencies fc and − fc: cos(2π fct) = 0.5e j2π fct +0.5e− j2π fct .

When y(t) is a complex-value signal, only samples of its real part yRe(t):

yRe(t) = Real(y(t)) (19.10)

are sent to an antenna in a telecommunication transmitter. Taking only the real
part of y(t) causes changing shape of signal spectrum from (19.8) to (19.9):
spectrum copy appears for negative frequencies.

Amplitude demodulation relies on reconstructing signal x(t) from y(t) given
by Eqs. (19.6), (19.7). The large carrier modulation method has much more
simpler demodulator. In the receiver:

1. the signal yRe(t) is band-pass filtered around fc—the decoded service is
separated from remaining services,

2. obtained signal yBP
Re (t) is transformed into its analytic complex-value ver-

sion using the Hilbert transform H(.) (what removes the signal spectrum
for negative frequencies),

3. envelope of the complex-value analytic signal is found as magnitude of its
samples:

â(t) = |yBP
Re (t)+ jH

(
yBP

Re (t)
) |. (19.11)

Then x(t) is recovered from â(t). No carrier synchronization procedure is re-
quired.

In contrary, in order to demodulate the signal in the suppressed carrier
method, we have to shift back the spectrum A( f − fc) to 0 Hz, recover sig-
nal â(t) and reconstruct signal x(t) from it using (19.4). This is done by (1)
band-pass filtering, (2) calculation of a complex-value analytic version of the
received signal, as before for large carrier, and (3) multiplying the signal by
the same complex-value carrier as in the transmitter but conjugated:

x̂(t) =
[
yBP

Re (t)+ jH
(
yBP

Re (t)
)] · e− j2π fct . (19.12)

Alternatively, the second approach can be used, derived in Chap. 17 during
mathematical analysis of service up-down conversion in software defined radio
technology. In it: (1) analytic version of the received signal is calculated, (2) it
is down-shifted in frequency to 0 Hz by the conjugated carrier, which should be
known, and (3) low-pass filtered. For suppressed carrier we have
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x̂(t) = LowPassBW{ [yRe(t)+ jH (yre(t))] · e− j2π fct }. (19.13)

But it is easy to say: multiply by the same cosine as in the transmitter! How to
find this cosine? How a receiver should calculate the proper carrier c(t) know-
ing signal y(t)? This task is called a carrier synchronization issue and it rep-
resents the basic problem of AM demodulation of signals do not having the
carrier given explicit!

In case of DSB modulation with suppressed carrier, during demodulation
the carrier synchronization problem is solved by: (1) squaring y(t), i.e. calcula-
tion of:

y2(t) = x2(t)cos2(2π fct +ϕ) = x2(t) · 1
2
(1+ cos(2π(2 fc)t +2ϕ) , (19.14)

(2) filtering the result with very narrow band-pass filter around (2 fc), and (3)
using TWO adaptive phase locked loops (PLLs) for finding and tracking TWO
parameters: doubled frequency 2 fc and doubled phase 2ϕ of the carrier sig-
nal c(t). Knowing these parameters we can divide them by 2 and synthesize
(generate) correct signal c(t) and next use it for signal demodulation:

y(t) · c(t) = x(t) · cos2(2π fct +ϕ) =
1
2

x(t)+
1
2

x(t) · cos(2π(2 fc)t +2ϕ) .
(19.15)

In this method, first, we are doing adaptive carrier synchronization and, then, we
are exploiting the recovered carrier to down-shifting the signal y(t) in frequency
to the base-band. In alternative approach, the adaptive Costas loop, these two
things are done together: carrier recovery/synchronization and frequency down-
shifting.

Concluding, dealing with AM demodulation we will become familiar in this
chapter with AM carrier synchronization methods which are extremely impor-
tant in modern digital telecommunications. Why? Because the frequency up and
down signal conversion (from the base-band to a target frequency and back), de-
scribed in Chap. 17, is done exactly by the DSB-SC carrier amplitude modula-
tion and demodulation! And we have to synchronize with not perfectly known
carriers in our receivers. Since synchronization should be flexible and robust
to noise and to different disturbances/interferences, adaptive solutions are pre-
ferred. And this is the second very big Hero of this chapter, apart from the AM
modulation: practical application of adaptive system theory in telecommunica-
tion receivers.

The third Hero is efficiency of spectrum allocation for single services, i.e.
minimization of each service frequency width aiming at allocation of more
services in the available frequency band. Using only the lower or the upper
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frequency side-band in respect to the carrier, not both of them together, is an
example of such economical resource management. Such approach is widely
exploited in amateur radio. In this chapter we will learn about single side-
band (SSB) modulation schemes, exploiting only lower (SSB-L, LSB) or upper
(SSB-U, USB) carrier side-band.

And the last remark. In Chap. 17 we have discussed the up and down fre-
quency conversion scheme of complex-value I(t) + j ·Q(t) signals, which is
used in software-defined radio transmission. It was making use of a complex-
value carrier e j·2π fct and was realized by so-called quadrature, cos(.) and
−sin(.), modulation and demodulation. In the present chapter we will see its
connection to the other AM techniques.

So lets the AM modulation story begin!

19.2 Amplitude Modulation

In Sect. 17.3 of Chap. 17, during presentation of up and down service fre-
quency conversion, we have described general form of quadrature amplitude
modulation and demodulation, i.e. modulation of a complex-value carrier by a
complex-value signal (in special case a real-value one). At present we will spe-
cially concentrate on amplitude modulation and demodulation of a real-value
carrier by a real-value signal, with special application to FM radio software
receiver (DSB-SC) and HAM amateur radio (USB, LSB). However, we will
repeat also the most general AM complex-value modulation method.

In this chapter we will use the same notation as for the FM modulation: x(t),x(n)—
real-value analog and digital signal used for modulation and y(t),y(n)—corres-
ponding real-value modulated signals.

AM is defined by Eq. (19.1) as multiplication of complex-value carrier c(t) (19.2)
or real-value carrier (19.3) by a function a(t) (19.4), (19.5) which can be interpreted
as a carrier amplitude changing in time. In amplitude modulation a transmitted sig-
nal is changing amplitude of the carrier signal. We are distinguishing four common
AM modulation types:

• DSB-LC—double side-band with large carrier,
• DSB-SC—double side-band with suppressed carrier,
• SSB-U, USB—single side-band—upper band,
• SSB-L, LSB—single side-band—lower band.
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Additionally, we then can distinguish a special type of DSB-SC for complex-value
signals and denote it as DSB-SC-CX. It is our name and abbreviation. Their modu-
lators are defined as follows:

DSB-LC: y(t) = [1+dA · x(t)] · cos(2π fct), (19.16)

DSB-SC: y(t) = [x(t)] · cos(2π fct), (19.17)

SSB-U: y(t) = Re
{
[x(t)+ j ·H[x(t)]] · e j·2π fct } , (19.18)

SSB-L: y(t) = Re
{
[x(t)− j ·H[x(t)]] · e j·2π fct } , (19.19)

DSB-SC-CX: y(t) = Re
{
[xRe(t)+ j · xIm(t)] · e j2π fct} . (19.20)

where x(t), xRe(t), and xIm(t) are real-value modulating signals and H[.] denotes
the Hilbert filter (−90 degree phase shifter transforming each cos() function into
sin()). For xIm(t) = 0 the modulation DSB-SC-CX is equivalent to DSB-SC. After
multiplication and taking the real part of the result only, the equations for SSB-U,
SSB-L, and DSB-SC-CX can be written in simpler forms:

SSB-U: y(t) = x(t)cos(2π fct) −H [x(t)]sin(2π fct), (19.21)

SSB-L: y(t) = x(t)cos(2π fct) +H [x(t)]sin(2π fct), (19.22)

DSB-SC-CX: y(t) = xRe(t)cos(2π fct) − xIm(t) sin(2π fct). (19.23)

As we see, the above equations have a form of Eq. (17.14). Therefore, these AM
modulators are described by block diagrams presented in Figs. 17.4, 17.5 (in their
transmitter part). No surprise, at present the AM carrier modulation is mainly used
for frequency service up-conversion from the base-band to the target frequency.

Matlab program presented in Listing 19.1 implements the described above AM
modulators. It was used for generation of waveforms (signatures) of AM mod-
ulated signals y(t) presented in Fig. 19.1. In this case a carrier with frequency
fc =10 kHz was used and it was modulated in amplitude by pure cosine with fre-
quency fm =2 kHz. Sampling frequency fs was equal to 55.125 kHz, 5-th multi-
plicity of frequency 11.025 kHz. In case of DSB-SC-CX, the cosine 2kHz was used
for the xRe(t) signal, while a cosine with frequency 4 kHz—for the xIm(t) signal in
Eqs. (19.20), (19.23).

Listing 19.1: Simple program for testing in Matlab standard amplitude modulation
techniques

�

1

2 % lab19_ex_am_short.m
3 % Example of AM modulation and demodulation
4 clear all; close all;
5
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6 sig = 1; % signal type: 1=speech, 2=cos, 3=cos+cos, 4=SFM
7 mod = 1; % AM type: 1=DSB-LC, 2=DSB-SC, 3=SSB-U=USB, 4=SSB-L=LSB, 5=DSB-SC-CX
8 demod = 1; % 1 = Hilberttransform demodulator, 2 = quadraturedemodulator
9 nosynch = 0; % 0/1 carriersynchronization in frequency down-conversion

10 disturb = 0; % 0/1 disturbance - second AM service using frequency (2*fc)
11 noise = 0; % 0/1 presence of noise
12 fc = 10000; % AM carrierfrequency
13 dA = 0.5; % AM modulation depth for DSB-LC
14 Nwin = 256; Nover = Nwin-32; Nfft = 2*Nwin; % for STFT plot
15

16 % Modulatingsignal x(t)
17 [x,fss] = audioread(’speech.wav’); % read mono audio from file, fs=11025 Hz
18 K=5; x = resample(x,K,1); fs=K*fss; % upsample K-times for frequency-UP
19 N = length(x); % number of signal samples
20 dt = 1/fs; t = dt*(0:N-1)’; % time
21 df=fs/Nfft; f=df*(-Nfft/2:Nfft/2-1); % frequencies for STFT display
22 % alternativesignals for tests
23 if(sig==2) x = cos(2*pi*2000*t); end % 1x cos
24 if(sig==3) x = cos(2*pi*2000*t) + cos(2*pi*3000*t); end % 2x cos
25 if(sig==4) x = cos(2*pi*(2000*t + 1000/(2*pi*5)*sin(2*pi*5*t))); end % SFM
26

27 % Create base-band signal for AM modulation of the carrier: x(t) --> a(t)
28 if(mod==1) a = (1+dA*x); end % DSB-LC
29 if(mod==2) a = x; end % DSB-SC
30 if(mod==3) a = x + j*imag(hilbert(x)); end % SSB-R = USB
31 if(mod==4) a = x - j*imag(hilbert(x)); end % SSB-L = LSB
32 if(mod==5) x = x + j*sin(2*pi*4000*t); a=x; end % DSB-SC-CMPLX
33

34 % Carrier AM modulation - frequency-up conversion: y(t) = a(t)*c(t)
35 c = exp( j*2*pi*fc*t );
36 y = real(a).*real(c) - imag(a).*imag(c); % y = real( a .* c ); % the same

��

In modulation the most important question is how spectrum of the modulated
signal y(t) depends on the spectrum of the modulating signal x(t) and carrier fre-
quency fc. This relation follows directly from the Fourier transform modulation
feature (multiplication of two signals) . A Reader is asked to remember it. As an
example, we will derive spectra of signals ((19.16)–(19.20)) when carriers are mod-
ulated in amplitude by a pure cosine:

x(t) = xRe(t) = cos(2π fmt), xIm(t) = sin(2π fnt). (19.24)

These spectra are equal to:
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Fig. 19.1: Examples of AM signals: carriers fc =10 kHz are modulated by a pure co-
sine fm =2kHz: (up-left) DSB-LC, (up-right) DSB-SC, (down-left) SSB-L, (down-
right) DSB-SC-CX—real part. Sampling frequency fs =55.125 kHz. For DSB-SC-
CX a sine 4 kHz is used as xIm(t) in (19.20), (19.23)

DSB-LC: y(t) =
dA
2

cos(2π( fc − fm)t)+ cos(2π fct)+

+
dA
2

cos(2π( fc + fm)t), (19.25)

DSB-SC: y(t) =
1
2

cos(2π( fc − fm)t)+
1
2

cos(2π( fc + fm)t), (19.26)

SSB-U: y(t) = Re
{

e j2π fmt · e j2π fct}= cos(2π( fc + fm)t), (19.27)

SSB-L: y(t) = Re
{

e− j2π fmt · e j2π fct}= cos(2π( fc − fm)t), (19.28)

DSB-SC-CX: y(t) = Re
{

e j2π fmt · e j2π fct}= cos(2π( fc + fm)t). (19.29)

When coming from set of equations (19.16)–(19.20) to (19.25)–(19.29), the follow-
ing identities were exploited:
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Fig. 19.2: Examples of FFT and STFT spectra magnitudes of AM signals from
Fig. 19.1: carriers fc =10 kHz are modulated by a pure cosine fm =2 kHz: (up-
left) FFT for DSB-LC, (up-right) FFT for DSB-SC, (middle-left) FFT for SSB-L,
(middle-right) FFT for DSB-SC-CX, (bottom-left) STFT for SSB-L, (bottom-right)
STFT for DSB-SC-CX. Sampling frequency fs =55.125 kHz. For DSB-SC-CX a
sine 4 kHz is used as xIm(t) in (19.20), (19.23)

cos(α)cos(β ) =
1
2
[cos(α +β )+ cos(α −β )] , (19.30)

− sin(α)sin(β ) =
1
2
[−cos(α −β )+ cos(α +β )] , (19.31)

cos(α)± j · sin(α) = e± j·α , (19.32)

e jα e jβ = e j(α+β ). (19.33)
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The derived equations can be concluded as follows (look at spectra presented in
Fig. 19.2):

• the DSB-LC modulated signal consists of a carrier fc and two side-band copies
of the modulating signal lying symmetrically on its both sides at frequencies
fc + fm and fc − fm,

• the DSB-SC modulated signal does not have a carrier fc, only two side-band
copies of the modulating signals as in DSB-LC case (is equal to DSB-LC with-
out carrier component),

• the SSB-U (USB) modulated signal is a copy of the modulating signal up-
shifted in frequency to the frequency fc + fm (not shown, similar to SSB-L),

• the SSB-L (LSB) modulated signal is a copy of the modulating signal up-shifted
in frequency to the frequency ( fc − fm),

• signal resulting from complex quadrature DSB-SC-CX modulation has double
side-band components around fc belonging to two signals xRe(t) and xIm(t) ,
which side-bands can overlap.

This result obtained for AM modulation by a pure cosine signal (19.24) can be
generalized with ease for any real-value signal with frequency limited spectrum.
This statement is verified by Fig. 19.3 presenting short-time Fourier spectra (Matlab
function spectrogram(.)) of the carrier fc =10 kHz. It is modulated in am-
plitude by a cosine with frequency fm =2 kHz which is . . . additionally modulated
sinusoidally in frequency: depth 1 kHz and modulation frequency 5 Hz. Sampling
frequency is equal to 55.125 kHz (5-th multiplicity of 11.025 kHz). For DSB-SC-
CX the signal xIm(t) is a pure cosine having frequency 4 kHz. Yes, cosine not sine,
because in general case of DSB-SC-CX modulation (19.20) xRe(t) and xIm(t) can
be completely different signals! All modulation schemes, apart from SSB-L, being
very similar to SSB-U, are compared. The Matlab program from the Listing 19.1
was used for computations and plots generation.

Exercise 19.1 (AM Modulation). Analyze carefully the program 19.1. Run its
long version lab19_ex_am_long.m for 4 modulating signals: speech, one
cosine, summation of two cosines, and cosine with sinusoidal frequency modu-
lation (SFM). Observe signal spectra. Change frequency values of modulating
signals and note the spectra difference. Add an LFM signal as an additional
modulation option. Change its starting frequency value and speed of frequency
increase. Check whether the program allows carrier modulation by music sam-
pled at 44,100 Hz. If not, do appropriate changes.

19.3 Amplitude Demodulation

Multiplication of signal x(t) by a carrier with frequency fc causes shifting the
Fourier spectrum X( f ) of the signal to carrier frequency, i.e. fc Hz up. In order
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Fig. 19.3: STFT spectra of a carrier modulated by a sinusoidal FM signal, not a pure
cosine: (up-left) DSB-LC, (up-right) DSB-SC, (down-left) SSB-U, (down-right)
DSB-SC-CX. Description: 10 kHz carrier was modulated in amplitude by SFM sig-
nal (central frequency 2 kHz, modulation depth 1 kHz, modulation frequency 5 Hz).
Sampling frequency fs =55.125 kHz. For DSB-SC-CX the signal xIm(t) is a pure
cosine having frequency 4 kHz

to shift back the spectrum down by − fc Hz, one of two approaches should be used.
In the Hilbert filter AM demodulator sequence of operations is as follows:

(A) calculation of analytic version of the signal using the Hilbert transform H (y(t)):
signal spectrum for negative frequency is removed,

(B) signal multiplication by the complex-value harmonic carrier but with negative
frequency − fc: signal spectrum of interest is shifted to 0 Hz,

(C) low-pass filtering around 0 Hz with filter bandwidth (BW) adjusted to length of
the signal spectrum X( f ): side services lying apart from DC are removed.

Therefore the Hilbert filter-based demodulator can be summarized by the following
equation:

â(t) = LPFBW{ [y(t)+ jH (y(t))]︸ ︷︷ ︸
A

·e− j2π fct

︸ ︷︷ ︸
B

}

︸ ︷︷ ︸
C

. (19.34)
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Fig. 19.4: STFT spectra of 10 kHz carrier modulated in amplitude by speech: (up-
left) DSB-LC, (up-right) DSB-SC, (down-left) SSB-U, (down-right) DSB-SC-CX.
Description: sampling frequency fs =55.125 kHz, for DSB-SC-CX the signal xIm(t)
is a pure cosine having frequency 4 kHz

The Hilbert filter-based demodulator can be used also is slightly modified version:

(A) band-pass signal filtering around the service frequency fc, obtaining signal
yBPF(t): other services are removed,

(B) calculation of analytic version of the signal using the Hilbert transform
H (yBPF(t)): the service spectrum for negative frequency is removed,

(C) signal multiplication by the complex-value harmonic carrier but with negative
frequency − fc: signal spectrum for positive frequencies is shifted back to 0 Hz.

The following set of equations describes this method:

â(t) = [ yBPF(t)︸ ︷︷ ︸
(A)

+ jH(yBPF(t)︸ ︷︷ ︸
(A)

)

︸ ︷︷ ︸
(B}

] · e− j2π fct

︸ ︷︷ ︸
(C)

(19.35)

The AM demodulation can be alternatively done using the quadrature AM de-
modulation technique which was derived in Chap. 17:

(A) real-to-complex and frequency down signal conversion,
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(B) low-pass filtering around 0 Hz with filter bandwidth (BW) adjusted to length of
the signal spectrum X( f ): side services lying apart from DC are removed.

â(t) = LPFBW{ 2y(t) · cos(2π fct)−2 j · y(t) · sin(2π fct)︸ ︷︷ ︸
(A)

}

︸ ︷︷ ︸
(B)

(19.36)

It was described by Eq. (17.14) and graphically presented in Figs. 17.4, 17.5.
The final result of all presented above demodulators is the same: an estimation of

the signal a(t) is found. Having the signal â(t) it is very easy to estimate the service
signal x(t) from it:

DSB-LC: x̂(t) =
|â(t)|−1

ΔA
, (19.37)

DSB-SC, SSB: x̂(t) = Re(â(t)) , (19.38)

DSB-SC-CMPLX: x̂(t) = â(t). (19.39)

A simple Matlab program doing the AM carrier demodulation is presented in
Listing 19.2. It is a continuation of the Matlab code from Listing 19.1. Consecu-
tive steps of A( f ) spectrum recovering using described above AM demodulation
methods (19.34), (19.35), (19.36) are illustrated in Fig. 19.5. Having correct spec-
trum we can find a(t) and then x(t). The DSB-SC-CX modulation was tested. The
modulating signal was complex-value: it had speech in real part and cosine 4 kHz
in imaginary part—its STFT was presented in Fig. 19.4 (in left down corner). Two
SFM signals were added and simulated neighboring services. Looking at the ob-
tained results we can conclude that all approaches succeeded in reconstruction of
signal a(t) STFT spectrum.

Listing 19.2: Simple program for testing in Matlab the presented amplitude demod-
ulation techniques

�

1

2 % lab19_ex_am_short.m - continuation - Example of AM demodulation
3 % ...
4

5 % Possibleservice using frequency (2*fc) (optional)
6 if(disturb == 1)
7 y = y + real(a).*cos(2*pi*(2*fc)*t) - imag(a).*sin(2*pi*(2*fc)*t);
8 end
9 % Additive noise

10 if(noise == 1) y = y + 0.025*randn(N,1); end
11 % Possible lack of synchronizationbetweenfrequency up-shifter and down-shifter
12 if(nosynch == 1)
13 c = exp( j*(2*pi*(fc+100)*t + pi/4) ); % carrier used for freq down-conversion
14 end
15

16 % Carrier AM demodulation - frequency-down conversion
17 if(demod==1)
18 yH = hilbert( y ); % Hilbert filter - analytic signal



554 19 Amplitude Modulation, Demodulation, and Carrier Recovery
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Fig. 19.5: Illustration of STFT spectrum recovery of a(t) signal discussed in
three AM demodulation methods: (first column) spectrum of modulated signal
and quadrature demodulation (19.36), (second column) Hilbert #1 demodulation
(19.34), (third column) Hilbert #2 demodulation (19.35). Magnitude of STFT spec-
tra is shown

19 a1 = yH .* conj( c ); % frequency-down conversion to base-band
20 end
21 if(demod==2)
22 a1 = 2*y.*real(c) - 2*j*y.*imag(c); % quadraturedemodulator
23 end
24 M = 100; h = fir1(2*M,(fss/2)/(fs/2),kaiser(2*M+1,12)); % LP filter design
25 a2 = conv(a1,h); a2=a2(M+1:end-M); % filtering
26

27 % Recovering x(t) from a(t)
28 if(mod==1) xdem = (abs(a2)-1)/dA; end
29 if(mod==2 | mod==3 | mod==4) xdem = real(a2); end
30 if(mod==5) xdem = a2; end
31 n = 500:N-500+1; t=t(n); x=x(n); xdem=xdem(n); % with or without it
32

33 % ERROR of demodulation
34 ERROR_Demod_SIGNAL = max( abs( x - xdem ) ), pause
35 ERROR_Demod_SPECTRUM = max( abs( fft(x) - fft(xdem) ) )/N,

��
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Exercise 19.2 (AM Demodulation). Analyze carefully the program 19.2. Run
its long version lab19_ex_am_long.m for 4 modulating signals: speech,
one cosine, summation of two cosines, and cosine with sinusoidal frequency
modulation (SFM). Compare spectra of original and recovered signals. Note
time and frequency errors introduced by signal processing. Propose your own
modulating signals. Check whether they are recovered correctly. Check how the
demodulation result will change when frequency and phase of the carrier used
in the receiver differ from the transmitter carrier (use setting nosynch=1).
Modify the program: try to obtain figures similar to Fig. 19.5 when a few AM
modulated services are present. At present you can add one extra AM service
working at frequency 2 fc setting disturb=1.
Observe signal spectra and demodulation results when modulated signals are
embedded in noise (use setting noise=1).
Modify the program: make necessary changes allowing carrier modulation by
music, sampled at 44.1 kHz. Use the summation of left and right audio channel
as a modulating signal for DSB-LC, DSB-SC, SSB-L, and SSB-U modulation
schemes. For complex-value modulation DSB-SC-CX use left audio channel as
xRe(t) and right audio channel as xIm(t).

19.4 Carrier Synchronization Importance

Now we will ask a very important question! What are the consequences of using
in AM modulation and demodulation scheme a cosine with slightly different fre-
quency and phase in the frequency up-shifter (in transmitter) and down-shifter (in
receiver)? At present, as an example, we will analyze only the case of AM-DSB-SC
modulation. Let us repeat definitions of the up-converted and up-down-converted
versions of the transmitted signal x(t), respectively, y(t) and z(t):

y(t) = x(t) · cos(2π fct), (19.40)

z(t) = y(t) · cos(2π( fc +Δ f )t +φ), (19.41)

where Δ f and φ denote frequency and phase shift difference between transmitter
and receiver. Due to Fourier transform modulation property, frequency spectra of
both signals are given by the following equations, respectively:
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Y ( f ) =
1
2
[X( f + fc)+X( f − fc)] , (19.42)

Z( f ) =
1
2

[
e jφY ( f +( fc +Δ f ))+ e− jφY ( f − ( fc +Δ f ))

]
, (19.43)

where X( f ) denotes spectrum of signal x(t). Putting Eq. (19.42) into (19.43) one
gets

Z( f ) =
1
2

{ 1
2

e jφ [X(( f + fc)+( fc +Δ f ))+X(( f − fc)+( fc +Δ f ))]+ . . .

+
1
2

e− jφ [X(( f + fc)− ( fc +Δ f ))+X(( f − fc)− ( fc +Δ f ))]
}
,

Z( f ) =
1
4

{
e jφ X( f +2 fc +Δ f )+ e jφ X( f +Δ f ) + . . .

+ e− jφ X( f −Δ f )+ e− jφ X( f −2 fc −Δ f )
}
. (19.44)

Spectrum Z( f ) consists of four copies of X( f ) shifted in frequency and changed in
phase. After low-pass filtering (LPF) with cut-off frequency adjusted to the signal
x(t) bandwidth, the high-frequency components lying around frequencies ±2 fc are
removed and we obtain

LPF [Z( f )] =
1
4

{
e jφ X( f +Δ f )+ e− jφ X( f −Δ f )

}
. (19.45)

When Δ f �= 0 two scaled copies of the spectrum X( f ) are slightly shifted in fre-
quency in regard to each other and their summation does not allow exact X( f ) re-
construction. For Δ f = 0 the spectrum (19.45) simplifies to:

LPF [Z( f )] =
1
4

{
e jφ X( f )+ e− jφ X( f )

}
=

1
2

X( f )cos(φ) (19.46)

and corresponds to the signal:

x̂(t) =
1
2

x(t)cos(φ). (19.47)

As we see, lack of carrier frequency synchronization in the receiver causes severe
degradation of signal x(t) recovery, while lack of the carrier phase synchronization
only results in unknown attenuation of the received signal caused by cos(φ) com-
ponent in Eq. (19.47).

Exercise 19.3 (AM Demodulation with Frequency and Phase Synchroniza-
tion Error). Use the programs 19.1 and 19.2. Set nosynch=0 in the first of
them, while in the second modify values of Δ f = 100 and φ = π/4 in the
program line c = exp( j*(2*pi*(fc+100)*t + pi/4) ). For fre-
quency down-shifting use in the demodulator a cosine with slightly different:
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(A) phase only, (B) frequency only, and (C) phase and frequency together. Ob-
serve the difference between transmitted and received signal. Listen to both
signal using headphones or loudspeakers. When you set φ = π/2 in test A,
cos(φ) = 0 and the x̂(t) = 0 according to Eq. (19.47). Do you observe this ef-
fect?

19.5 Carrier Recovery in Suppressed Carrier AM Modulation

We can conclude from the above discussion that amplitude modulation and demod-
ulation algorithms are not very difficult: in the modulator the signal spectrum A( f )
(or X( f )) is up-shifted in frequency to the frequency fc of the carrier, while in de-
modulator it is back down-shifted to the base-band. The success of the whole opera-
tion depends on the perfect realization of the frequency up-down conversion. Since
hardware is not perfect, frequency of the up-shifter is not perfectly known and sta-
ble. Therefore receiver should estimate the actual carrier frequency and phase for the
frequency down-shifter from the high-frequency signal y(t), obtained from antenna.

In this section usage of a real-value carrier is assumed:

c(t) = cos(2π fct). (19.48)

Additionally, in the below discussion we will concentrate only on AM-DSB-SC
modulation technique (19.17) in which carrier is suppressed in the transmitter (TX):

yT X (t) = x(t) · c(t) = x(t) · cos(2π fct). (19.49)

Why only on AM-DSB-SC? Because for AM-DSB-LC with large carrier (19.16)
signal down-conversion is not required for finding the modulating function: simply,
Eq. (19.11) can be used.

Due to channel time delay D as well as signal attenuation G and phase shift ϕ
introduced by the channel around frequency fc (we are assuming a narrow trans-
mission bandwidth), a signal obtained from the receiver (RX) antenna will have the
following form:

yRX (t) = Gx(t −D) · cos(2π fc(t −D)−ϕ)+ e(t) =

= xD(t) · cos(2π fct +φ)+ e(t), (19.50)

where

xD(t) = Gx(t −D), (19.51)

φ =−2π fcD−ϕ, (19.52)
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Fig. 19.6: Block diagram of real-value AM-DSB-SC modulation and demodulation

and e(n) denotes noise. The phase shift φ is unknown. At present, we do not consider
the carrier frequency change caused by the Doppler shift.

If we could generate in the receiver, exactly the same carrier as in Eq. (19.50),
with the same frequency and phase, and multiply the received signal with it, we
would obtain

yRX1(t) = yRX (t) · cos(2π fct +φ) =

= xD(t) · cos2(2π fct +φ)+ e(n) · cos(2π fct +φ). (19.53)

Using trigonometric identity:

cos2(α) =
1
2
+

1
2

cos(2α), (19.54)

Eq. (19.53) can be rewritten as:

yRX1(t) =
1
2

xD(t)+
1
2

xD(t) · cos(2π(2 fc)t +2φ)+ e(n) · cos(2π fct +φ). (19.55)

After a low-pass filtration (LPF) the second high-frequency (2 fc)component and the
third noise component are strongly attenuated and can be neglected. Therefore after
LPF we are obtaining the transmitted signal xD(t) scaled by 1

2 :

yRX2(t) = LPF [ yRX1(t) ] = LPF [ yRX (t) · cos(2π fct +φ) ]≈ 1
2

xD(t). (19.56)

Figure 19.6 illustrates described above real-value AM-DSB-SC modulation and de-
modulation scheme.
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But how to recover the correct carrier cos(2π fct +φ) needed by the frequency
down-converter of the receiver described by Eq. (19.53)? Let us take the received
signal yRX (t) to the power of two (neglecting the noise):

y2
RX (t)≈ x2

D(t) · cos2(2π fct +φ) (19.57)

and use Eq. (19.54) again:

y2
RX (t)≈

1
2
· x2

D(t) · [1+ cos(2π(2 fc)t +2φ)] . (19.58)

At present we assume that x2
D(t) consists of mean value mx2 and some oscillations

vx2(t) around it:

x2
D(t) = mx2 + vx2(t). (19.59)

Using Eq. (19.59) in (19.58) we get

y2
RX (t)≈

1
2
· [ mx2 + vx2(t)+mx2 · cos(2π(2 fc)t +2φ)+ . . .

+ vx2(t) · cos(2π(2 fc)t +2φ) ]. (19.60)

Now we are using a very narrow band-pass filter (BPF) around frequency 2 fc to: (1)
pass the third signal component with frequency (2 fc), (2) remove the first compo-
nents, and (3) suppress the second and the fourth component.

c(2 fc)(t) = BPF(2 fc)

[
y2

RX (t)
]≈ 0.5 ·mx2 · cos(2π(2 fc)t +2φ +ψ ). (19.61)

Angle ψ results from the filter delay, it is known and can be taken into account
(compensated) easily.

Remark In Eq. (19.60) the second component vx2(t) is a low-frequency one in com-
parison to the frequency 2 fc, while the fourth component has a spectrum around
frequency 2 fc but without it, since it represents AM-DSB-SC modulation of the 2 fc

carrier by the signal vx2(t).
When the doubled carrier c(2 fc)(t) (with 2 fc and 2φ ) is extracted with success

from the received signal yRX (t), one should synthesize a cosine well fitting to it
(synchronized with it).

Fig. 19.7: Block diagram of possible carrier recovery module for AM-DSB-SC de-
modulator presented in Fig. 19.6
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Typically, an adaptive double phase locked loop (PLL) algorithm, described in
the next section, is used for recovering, both, the cosine frequency and phase. When
working on discrete-time signals, all digital PLL is applied and finding original val-
ues of carrier parameters from its multiples is straightforward. After the carrier re-
covery, summarized in Fig. 19.7, it is used for signal demodulation using equations
(19.48)–(19.56) and diagram presented in Fig. 19.6.

Exercise 19.4 (Carrier Recovery in AM-DSB-SC Modulation). Investigate
AM-DSB-SC modulation. Use program lab19_ex_am_long.m, the long
version of the program lab19_ex_am_short.m presented in Listing 19.1,
and observe spectrogram of the signal y2(t) for different modulated signals
x(t). Is it possible to see spectra of signal components present in Eq. (19.60)?
Note that the doubled carrier is very well visible in the spectrogram of single-
component modulated signals, like one cosine and the SFM signal, and com-
pletely invisible for speech, a time-varying multi-component signal. Extend the
program: check whether this is true also when fft() of the long fragment of
the signal y2(t) is computed. Design a band-pass filter for separation of a dou-
bled carrier 2 fc. Apply the filter and observe it output signal. Try to estimate
frequency 2 fc and phase 2φ +ψ of the doubled carrier cos(2π(2 fc)t +2φ +ψ)
from the calculated FFT spectrum. Knowing their values, try to synthesize the
correct carrier cos(2π( fc)t +φ) and to use it for signal demodulation. Check
the demodulation result. Some help: (1) find phase 2φ +ψ as an angle of the
fft() peak at frequency 2 fc, (2) find ψ as an angle of used BP filter frequency
response fregz() for frequency 2 fc, (3) subtract calculated values and take
modulo π of the result. An angle obtain this way is equal to φ since all angle
calculation of a cosine are done modulo 2π and our angle has doubled value.

Remark The AM-DSB-LC demodulation could be also processed in traditional way
with service down-conversion in frequency described by Eq. (19.53). Because in
AM-DSB-LC the carrier is present in a received signal, it can be separated by narrow
band-pass filter centered at ( fc). Since filters are not ideal, the resultant signal can
be noisy and disturbed by transmitted information. Therefore the adaptive digital
double phase locked loop (PLL), described below, could be used for generation
of cosine well fitting to the result of filtering. The synthesized carrier should have
proper values of frequency and phase. Finally, it is used for service down-conversion
(19.53).
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19.6 Carrier Recovery: Phase Locked Loop

19.6.1 Real-Value PLL

In this section we will design digital double PLL module, used in carrier recovery
algorithms. In order to make derivation more general and easier to apply in different
scenarios, we will change denotation of variables. Let an input signal to the PLL
module be described by the following equation:

s(n) = cos

(
2π

fc

fs
n+α

)
+ e(n), (19.62)

where e(n) denotes noise. The PLL task is to synthesize output signal c(n) of the
form:

c(n) = cos

(
2π

fc

f s
n+β

)
(19.63)

having samples of s(n) and knowing values of fc and fs. We are assuming that
amplitudes and frequencies of signals s(n) and c(n) are the same, different are only
their phase angles at the adaptation beginning. The amplitude assumption A = 1
is not restrictive since the signal s(n) amplitude can be always normalized to this
value. The PLL algorithm should adjust value of the phase β to value of the phase α ,
i.e. synchronize signal c(n) with s(n), minimizing a cost function having minimum
exactly for β = α .

Let us use the squared error cost function defined as:

J = E
[
(s(n)− c(n))2

]
, (19.64)

where E[.] denotes expectation value. Putting Eqs. (19.62), (19.63) into (19.64) and
setting Ωc = 2π fc

fs
one obtains

J = E
[
( [cos(Ωcn+α)− cos(Ωcn+β )]+ e(n) )2

]
=

= E
[
[cos(Ωcn+α)− cos(Ωcn+β )]2

]
+E
[
e2(n)

]
+ . . .

−2 ·E [ [cos(Ωcn+α)− cos(Ωcn+β )] · e(n) ] . (19.65)

The last term in Eq. (19.65) equals zero and can be removed since mean values
of noise and cos() function are equal to zero. Having this in mind and using the
following trigonometric equality for the first term:

[cos(Ωn+α)− cos(Ωn+β )]2 = (1− cos(2Ωn+α +β )) · (1− cos(α −β )) ,
(19.66)
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we can rewrite Eq. (19.65):

J = E [1− cos(α −β )]−E [cos(2Ωcn+α +β ) · (1− cos(α −β ))]+

+E
[
e2(n)

]
. (19.67)

Expectation value of the middle term in last equation equals 0. Therefore, finally,
we get

J = (1− cos(α −β ))+E
[
e2(n)

]
, (19.68)

and we can conclude that the cost function J has really minimum for β = α and the
minimum is only one for −π � α −β < π .

Now we remove the expectation operator in the cost function:

J(n) = [s(n)− c(n)]2 . (19.69)

Minimizing adaptively momentum value of J(n), in longer time horizon we are
performing minimization of a least mean squared (LMS) error between two signals,
similarly as in already discussed LMS adaptive filters. In order to find argument of
the cost function minimum, we calculate derivative of J(n) in regard to the phase β :

∂J(n)
∂β

= 2 · [s(n)− c(n)] · ∂c(n)
∂β

=

2 · [s(n)− c(n)] · sin

(
2π

fc

fs
n+β (n)

)
, (19.70)

and change value of β (n) into direction of the cost function minimum, i.e. go oppo-
site to its gradient/derivative (direction of its growth):

β (n+1) = β (n)−μ
∂J(n)

∂β
=

= β (n)−μ ·2 · [s(n)− c(n)] · sin

(
2π

fc

fs
n+β (n)

)
, (19.71)

where μ denotes adaptation speed coefficient. We are using the stochastic gradient
minimization technique. Setting formula of c(n) (19.63) to Eq. (19.71) we get

β (n+1) = β (n)−2μ sin

(
2π

fc

fs
n+β (n)

)
s(n)+

+2μ sin

(
2π

fc

fs
n+β (n)

)
cos

(
2π

fc

fs
n+β (n)

)
. (19.72)
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At present, thanks to the formula 2sin(α)cos(α) = sin(2α), we can rewrite the
above equation into the following form:

β (n+ 1) = β (n)− 2μ sin

(
2π

fc

fs
n+β (n)

)
s(n) + μ sin

(
2π

2 fc

fs
n+2β (n)

)
.

(19.73)

Since the last term in Eq. (19.73) has mean value equal to zero, it does not influence
the adaptation convergence and can be removed:

β (n+1) = β (n)−2μ sin

(
2π

fc

fs
n+β (n)

)
s(n). (19.74)

Now we introduce an angular frequency Ωc and entire angle θ(n) of the car-
rier c(n):

Ωc = 2π
fc

fs
, θ(n) = Ωcn+β (n), (19.75)

and add Ωc(n+1) to both sides of the PLL adaptation Eq. (19.74). In consequence,
the following final PLL adaptation form is to get

θ(n+1) = θ(n)+Ωc −2μ sin(θ(n))s(n), (19.76)

and a synthesized/recovered carrier is equal to:

c(n) = cos(θ(n)). (19.77)

The signal frequency fc can be found using DFT/FFT. However, when we are
interested in adaptive tracking the input signal frequency, another approach, is pre-
ferred.

When carrier frequency fc of the input signal s(n) is not precisely known, it is
very probable that the synthesized signal (19.63) has wrong frequency fc +Δ f and
still the following phase difference between two signals (19.62), (19.63) is present:

φ(n) = 2π
Δ f
fs

n (19.78)

after adjusting value of β to the value of α . This phase error increases linearly and
has to be compensated also. To solve this problem, the same adaptation mechanism
as before can be used but as a second adaptation step. This time, adaptation of Ωc

in Eq. (19.76) is done.
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Fig. 19.8: Block diagram of the digital double PLL carrier synchronization algo-
rithm. Having samples of signal cos( (Ωc +ΔΩ)n+φ ) the overall momentum co-
sine angle θ(n) = (Ωc +ΔΩ)n+φ) is tracked

The double-loop PLL algorithm, resulting from Eq. (19.76) and capable of
synchronization to the carrier phase and frequency, is described by the follow-
ing set of equations (Δ(n) denotes the update term):

Δ(n) =−2 · sin(θ(n)) · s(n), (19.79)

θ(n+1) = θ(n)+Ω(n)+μ1Δ(n), (19.80)

Ω(n+1) = Ω(n)+μ2Δ(n). (19.81)

Block diagram of the PLL-based carrier synchronization algorithm is presented
in Fig. 19.8. In this implementation μ1 is multiplied by Δ(n) in Eq. (19.80) and
μ2 by Δ(n) in Eq. (19.81).

19.6.2 Complex-Value PLL

At present we would like to extend our result to the case of complex-value PLL loop
when signals s(n) (19.62) and c(n) (19.63) are complex and defined as:

s(n) = exp( j ·Ωcn+α)+ e(n), (19.82)

c(n) = exp( j ·Ωcn+β ) . (19.83)
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In the real-value PLL the update term Δ(n) is equal (19.79). Putting into this equa-
tion the signal model s(n) = cos(Ωcn+α) (19.62) (without noise) and replacing
θ(n) with its full version Ωcn+β (n), we get

Δ(n) =−2sin(Ωcn+β (n)) · cos(Ωcn+α). (19.84)

Additionally using equality 2sin(a)cos(b) = sin(a+b)+ sin(a−b) we obtain

Δ(n) =−sin(2Ωcn+β (n)+α)− sin(β (n)−α). (19.85)

Since the mean value of the first term is equal to zero, it has no statistical influence
upon adaptation result. Important is only the second term. For small value of the
difference we have sin(β (n)−α) = (β (n)−α). Therefore:

Δ(n)≈−(β (n)−α). (19.86)

When actual value of the synthesized signal angle β (n) is greater (or smaller) than
the carrier angle α , the update Δ(n) has negative (or positive) sign, what was ex-
pected.

By analogy to Eq. (19.84), in case of complex-value signals (19.82), (19.89), we
can use in PLL equations (19.79)–(19.81) the following update value Δθ(n):

Δ(n) =−2Im
[
e j·θ(n) · s∗(n)

]
(19.87)

since after assuming θ(n) = Ωcn+β (n) and using s(n) = e j(Ωcn+α), the Eq. (19.87)
simplifies to:

Δ(n) =−2 · sin(β (n)−α). (19.88)

It has the same form as Eq. (19.86).

19.6.3 Using PLL Program

A Matlab program of the double PLL synchronization block, adjusting, both, carrier
phase and frequency, is presented in Listing 19.3. The PLL loop values of parame-
ters are set in it to ones corresponding to 19 kHz pilot synchronization in FM radio
multiplex signal sampled at 250 kHz. The PLL adaptation process to the FM radio
pilot, for real-value and complex-value signals, is presented in Fig. 19.9, respec-
tively. A crucial issue of the program right usage is proper choice of adaptation
constants μ1 and μ2 (see Eqs. (19.80), (19.81) and Fig. 19.8). Their values should
ensure PLL adaptation convergence to the correct fc value even despite significant
initial difference Δ f (known as PLL bandwidth or PLL lock frequency). Addition-
ally, their choice decides about the convergence speed and variance around the found
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minimization solution. Derivation of formulas for selection of μ1 and μ2 values lies
out of the scope of this book. Final mathematical rules are defined by the following
equations [9]:

d =

√
2

2
, Ω =

Δ f
fs

d + 1
4d

, μ1 =
4 ·d ·Ω

1+2 ·d ·Ω +Ω 2 , μ2 =
4 ·Ω 2

1+2 ·d ·Ω +Ω 2 ,

(19.89)

where Δ f denotes chosen PLL frequency bandwidth (frequency lock), i.e. allowed
maximum difference between initial value of PLL frequency and input signal fre-
quency, guaranteeing convergence of adaptation.

n 104

1.898

1.899

1.9

104
fPLL(n)

0 0.5 1 1.5 2 0 0.5 1 1.5 2
n 104

1.898

1.899

1.9

104
fPLL(n)

Fig. 19.9: Exemplary PLL adaptation process to FM radio 19 kHz pilot in case of
real-value (left) and complex-value (right) signals. fs = 250 kHz

Note that the signal s(n), used in the adaptation loop for Δ(n) calculation, is
divided by its maximum value, i.e. its amplitude is normalized to 1, as was assumed
during algorithm derivation.

Listing 19.3: Matlab program implementing the PLL loop
�

1

2 % lab19_ex_PLL.m
3 clear all; close all;
4

5 % PLL parameters
6 fs = 250000; % samplingfrequency
7 fc = 19000; phc = pi/4; % carrierfrequency and phase
8 fPLLstart = fc-25; dfreq = 100; % initial PLL freq., freq. lock (synchrobandwidth)
9 ipll = 1; % 1=real PLL, 2=complex PLL

10

11 % Signal generation
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12 N = 50000; n=0:N-1; A = 0.1; % number of samples, sample indexes
13 dt=1/fs; t=dt*n; % sampling period, samplingmoments
14 if(ipll==1) s = A * cos(2*pi*fc*t + phc); end % real input signal
15 if(ipll==2) s = A * exp(j*(2*pi*fc*t + phc)); end % complex input signal
16

17 % Calculation of adaptationconstants
18 damp = sqrt(2)/2; % standarddamping
19 omeg = (dfreq/fs) / (damp+1/(4*damp)); % variable
20 mi1 = (4*damp*omeg) / (1 + 2*damp*omeg + omeg*omeg); % adapt speed const #1
21 mi2 = (4*omeg*omeg) / (1 + 2*damp*omeg + omeg*omeg); % adapt speed const #2
22

23 % PLL
24 omega = zeros(1,N+1); omega(1) = 2*pi*fPLLstart / fs;
25 theta = zeros(1,N+1);
26 smax = max(abs(s));
27 for n = 1 : N % PLL adaptation loop
28 if( ipll==1 ) delta = -2*sin(theta(n)) * s(n)/smax;
29 else delta = -2*imag( exp(j*theta(n)) * conj(s(n))/smax );
30 end
31 theta(n+1) = theta(n) + omega(n) + mi1*delta;
32 omega(n+1) = omega(n) + mi2*delta;
33 end
34 c = cos( theta(1:N) ); % recovered carrier
35 sr = real(s) / smax;
36 figure; plot(1:N,sr,’r-’,1:N,c,’b-’); title(’s(n) and c(n)’); grid; pause
37 figure; plot(1:N,sr-c,’r-’); title(’s(n)-c(n)’); grid; pause
38 figure; plot(theta); title(’\theta(n) [rad]’);grid; pause
39 figure; plot(omega*fs/(2*pi),’b-’); xlabel(’n’); title(’f_{PLL}(n) [Hz]’); grid; pause

��

Exercise 19.5 (Testing PLL Loop). Test PLL loop program 19.3. You should
see plots similar to these presented in Fig. 19.9. Generate a cosine signal
(choosing ipll=1;) and let PLL to synchronize with it. Run the program.
Change value of the PLL frequency bandwidth Δ f (dfreq). Note that after it
increase, the adaptation constants μ1 and μ2 become larger. Observe that bigger
values of adaptation coefficients change the PLL features, increasing, both, con-
vergence speed and frequency variance of the generated cosine in steady-state
(after PLL synchronization). Set different values of the cosine carrier parame-
ters: (1) phase, (2) frequency, (3) phase and frequency. Add different level of
white Gaussian noise (randn()) to the s(n) signal and check the PLL conver-
gence. Test the complex PLL setting ipll=2.

Exercise 19.6 (Carrier Recovery in AM-DSB-SC Modulation Using Dou-
ble PLL Loop). Continue Exercise 19.4. Use programs 19.2 and 19.3. Apply
program of the PLL module to recover the carrier using method presented in
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Fig. 19.7. Take into account delay introduced by the band-pass filter. After syn-
chronization with the doubled carrier divide the calculated angle θ(n) by 2 and
use it for the recovery of the original carrier. After that perform signal frequency
down-conversion. Compare demodulated signal with the original one. Listen to
both signals.

19.7 Carrier Recovery: Costas Loop

At present we learn the second method of the AM-DSB-SC signal demodulation
which is an alternative to one presented in Fig. 19.6. In the previous approach the
carrier was first recovered, using method presented in Fig. 19.7 exploiting the PLL
loop, and then applied to signal down-conversion (demodulation) in frequency. In
the new technique, which is described now, called the Costas loop, order of these
two operations is reversed: (1) first, a signal frequency down-shifting to the base-
band (around 0 Hz) is done using an un-synchronized carrier, (2) then an adaptive
carrier correction is performed and modulated signal is recovered.

Let us remember the problem formulation: having a signal y(n), obtained by the
receiver (result of band-pass filtering a signal from the antenna):

y(n) = x(n) · cos(Ωcn+α) , (19.90)

we would like to recover signal x(n). In the Costas method this task is performed in
the following steps:

1. analytic version of signal y(n) is computed using Hilbert filter/transform:

ya(n) = y(n)+ j ·H [y(n)] = x(n)cos(Ωcn+α)+ j ·x(n)sin(Ωcn+α) = x(n) ·e j(Ωcn+α); (19.91)

2. the signal is down-converted in frequency to the base-band, using angle β (n)
which is estimated adaptively:

ybb(n)= ya(n) ·e− j(Ωcn+β (n)) = x(n) ·e j(Ωcn+α) ·e− j(Ωcn+β (n)) = x(n) ·e j(α−β (n));
(19.92)

3. real part of the result is calculated:

yRe
bb (n) = Re [ybb(n)] = x(n) · cos(α −β (n)); (19.93)



19.7 Carrier Recovery: Costas Loop 569

4. after adaptation of β (n) value, the difference ε = α −β (n) is close to zero and
cos(ε)≈ 1, therefore we have

x̂(n)≈ yRe
bb (n). (19.94)

At present our problem is finding efficient adaptation of value of β (n) to value
of α . In this purpose let us define a cost function:

J(β (n)) =
Re [ybb(n)] · Im [ybb(n)]

ybb(n)y∗bb(n)
=

x(n)cos(α −β (n)) · x(n)sin(α −β (n))
x2(n)

.

(19.95)
Using equality 2sin(a)cos(b) = sin(a+b) + sin(a−b), the last equation simpli-
fies to (in our case a = b = α −β (n)):

J(β (n)) =
1
2

sin(2(α −β (n))) . (19.96)

Since sin(a) ≈ a for small value of the angle a, for small value of the difference
α −β (n) we obtain

J(β (n))≈ 1
2

2(α −β (n))≈ (α −β (n)). (19.97)

We see that the cost function is approximately equal to the angle difference! There-
fore we can directly use it as an angle error (phase error) for adaptation of β (n)
value:

β (n+1) = β (n)+μ · J(β (n)), (19.98)

where μ denotes an adaptation speed constant. When α > β , β value is increased,
in contrary—decreased. Finally, applying Eq. (19.95) to Eq. (19.98) we obtain the
searched adaptation rule:

β (n+1) = β (n)+μ · Re [ybb(n)] · Im [ybb(n)]
ybb(n)y∗bb(n)

. (19.99)

Choice of μ is the same as in the already discussed PLL loop.
It has to be marked that the function (19.96), for one period of the sine, is equal

to zero for angle difference equal to 0 and π . Therefore the adaptation can catch
one of these two states. Since e jπ =−1 this means that the demodulated signal x(n)
can have a negated sign also. In analog transmission this is not a problem while in
digital case special pilot signals should be sent to solve the ambiguity 0/π phase
problem.

The last equation describes adaptive update of the phase shift of cosine frequency
down-shifter used in Costas method: β (n) of the down-shifter is adjusted to α of the
carrier component present in the received signal y(n). The equations correspond to
Eq. (19.74) of the PLL adaptation. Both equations can be written in the following
form (using the PLL loop notation):

β (n+1) = β (n)+μ ·Δ(n), (19.100)
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where

Δ(n) =−∇PLL(n) =−2sin(Ωcn+β (n))s(n) (19.101)

Δ(n) = ∇Costas(n) =
Re [ybb(n)] · Im [ybb(n)]

ybb(n)y∗bb(n)
. (19.102)

When we allow in the Costas loop that carrier present in signal y(n) has slightly
different angular frequency than Ωc:

y(t) = x(n)cos((Ωc +ΔΩ)n+α) , (19.103)

we should add the second adaption mechanism for frequency tracking exactly the
same way as it was introduced in case of the PLL loop. Therefore we can generalize
equations (19.80), (19.81) derived for the PLL to the Costas loop case:

θ(n+1) = θ(n)+Ω(n)+μ1 ·Δ(n) (19.104)

Ω(n+1) = Ω(n)+μ2 ·Δ(n), (19.105)

where Δ for Costas loop is specified by Eq. (19.102). Since the adapted function
(carrier angle) and applied adaptation scheme is the same in PLL and Costas loops,
differing only in definitions (19.104), (19.105) of the Δ(n) function used, (19.101)
or (19.102), values of adaptation constant μ1 and μ2 are selected using the same
equations (19.89).

Final Costas loop carrier synchronization and simultaneous signal demodulation
algorithm are presented in Fig. 19.10. Matlab program implementing it is given in
Listing 19.4.

Listing 19.4: Matlab program implementing carrier synchronization and signal de-
modulation using the Costas loop

�

1 % lab19_ex_dem_Costas.m
2 clear all; close all;
3

4 % Parameters
5 isignal = 1; % 1=const, 2=fm, 3=speech, 4=bpsk, 5=qpsk
6 fs = 240000; dt=1/fs; % sampling frequency, sampling period
7 fpilot = 19000; % FM radio pilot frequency
8 fc = 3*fpilot; dfreq = 100; % Costas loop: carrier frequency, frequency locking
9

10 % Choice of modulatingsignal
11 if(isignal==1) % const value
12 N=100000; x = 5*ones(1,N);
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Fig. 19.10: Block diagram of the digital double Costas carrier synchronization
algorithm and simultaneous signal demodulation. Having samples of the sig-
nal x(n)cos((Ω +ΔΩ)n+φ) the overall momentum cosine angle θ(n) = (Ω +
ΔΩ)n+φ) is tracked

13 elseif(isignal==2) % FM signal
14 N = 100000; t = dt*(0:N-1);
15 x = cos( 2*pi*(5000*t - 4000/(2*pi*5)*cos(2*pi*5*t)) - pi/7);
16 elseif(isignal==3) % speech
17 [x, fx ] = audioread(’DANKE.WAV’); x=x.’; x=[x x]; x = interp(x,round(fs/fx));
18 elseif(isignal==4 | isignal==5) %
19 frds = fpilot/16; Nrds = round( fs / frds );
20 if(isignal==4) % BPSK - two symbols sin() and -sin()
21 Nsymb = 2;
22 xsymb(1,:) = sin(2*pi*(0:Nrds-1)/Nrds); % bit 1
23 xsymb(2,:) = -sin(2*pi*(0:Nrds-1)/Nrds); % bit 0
24 else % QPSK - four symbols cos(Om*n+phi),
25 Nsymb = 4; % phi = pi/4, 3*pi/4, 5*pi/4, 7*pi/4
26 xsymb(1,:) = cos(2*pi*(0:Nrds-1)/Nrds + pi/4); % bits 00
27 xsymb(2,:) = cos(2*pi*(0:Nrds-1)/Nrds + 3*pi/4); % bits 01
28 xsymb(3,:) = cos(2*pi*(0:Nrds-1)/Nrds + 5*pi/4); % bits 10
29 xsymb(4,:) = cos(2*pi*(0:Nrds-1)/Nrds + 7*pi/4); % bits 11
30 end
31 x = []; % DIGITAL SIGNAL SYNTHESIS
32 for k = 1:100 % building a sequence
33 x = [ x xsymb( ceil(Nsymb*(rand(1,1))),: ) ]; % of signalscorresponding
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34 end % to symbols (one by one)
35 figure; plot(x); title(’x(t) - modulatingsignal without PSF’ ); pause

%
36 hpsf = firrcos( 6*Nrds, frds, 0.35, fs,’rollof’,’sqrt’); % PSF filter design
37 x = filter( hpsf, 1, x ); % low-pass filtering - bandwidthreduction
38 end
39 N = length(x); n=0:N-1; t = n*dt; % sample indexes, samplingmoments
40 figure; plot(x); title(’x(t) - modulatingsignal’); pause
41

42 % Modulation AM-DSB-SC - frequency-up conversion
43 ph = 2*pi*(fc+25)*t + pi/4; % carrier errors: frequency 25Hz, phase pi/4 radians
44 c = cos( ph ); % carrier samples
45 y = x .* c; % modulated signal, input to the Costas loop
46

47 % Disturbances
48 % y = y + 0.01*randn(1,N); % additive noise
49 % D=75; n=D+1:N; y =[y(n) y(1:D)]; x=[x(n) x(1:D)]; c=[c(n) c(1:D)]; % delay
50

51 % Calculation of adatationconstants
52 damp = sqrt(2)/2; % standarddamping
53 omeg = (dfreq/fs) / (damp+1/(4*damp)); % variable
54 mi1 = (4*damp*omeg) / (1 + 2*damp*omeg + omeg*omeg), % adapt speed const #1
55 mi2 = (4*omeg*omeg) / (1 + 2*damp*omeg + omeg*omeg), % adapt speed const #2
56

57 % Costas loop - joint frequency-down conversion and demodulation
58 y = hilbert( y ); % real to analytic signal
59 %y = y .* exp(-j*(2*pi*(fc)*t+pi/3)); fc = 0; % test base-band adjustment only
60 omega = zeros(1,N+1); omega(1) = 2*pi*fc/fs;
61 theta = zeros(1,N+1);
62 for n = 1 : N % Costas adaptation loop
63 bb(n) = y(n) * exp(-j*theta(n)); % base-band signal
64 delta(n) = real( bb(n) ) .* imag( bb(n) ) / (bb(n).*conj(bb(n))); % error
65 theta(n+1) = theta(n) + omega(n) + mi1*delta(n); % 1-st update
66 omega(n+1) = omega(n) + mi2*delta(n); % 2-nd update
67 end
68 cest = cos( theta(1:N) ); % recovered carrier
69 xest = real( bb ); % demodulatedsignal
70

71 % Figures
72 n=1:N;
73 figure; subplot(211); plot(real(bb)); subplot(212); plot(imag(bb)); pause
74 figure; plot(n,theta(n),’r-’); title(’theta(n)’); grid; pause
75 figure; plot(n,ph(n)-theta(n),’r-’); title(’ph(n)-theta(n)’); grid; pause
76 figure; plot(n,c(n)-cest(n),’b-’); title(’c(n)-cest(n)’); grid; pause
77 figure; plot(n,x(n),’r-’,n,xest(n),’b-’); title(’x(n), xest(n)’); grid; pause
78 figure; plot(n,x(n)-xest(n),’b-’); title(’x(n)-xest(n)’); grid; pause
79 figure; plot(omega*fs/(2*pi)); title(’fc(n)’); grid; pause

��

Exercise 19.7 (Testing Costas Loop). Analyze Costas loop program 19.4.
Compare it with the PLL loop program 19.3. At present the nominal working
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frequency of the loop is equal to fc = 19,000 Hz and their bandwidth (locking
frequency range) set to Δ f = 100 Hz. Run the program with different values of
frequency and phase of the carrier present in signal y(n) (now their values, set in
line 44, are equal to 19,025 Hz and π/4, respectively). Check in figures whether
carrier synchronization is correctly performed in all cases. How fast is it done?
Check correctness of signal demodulation—recovering of x(n) from y(n). Did
you observe the case of finding minimum of sin(α −β (n)) for angle difference
equal to π? In such situation recovered x(n) has negated sign. Change value of
the Costas loop frequency bandwidth Δ f (dfreq). Note that after it increase
the adaptation constants μ1 and μ2 become larger. Observe that bigger values
of adaptation coefficients change the Costas loop features: increase, both, con-
vergence speed and frequency variance of the generated cosine in steady-state
(after synchronization).
Repeat experiments for different modulated signals (isignal=1,2,
3,4,5). Note that demodulation works also for speech and for two signals sim-
ulating digital transmission of bits (a sequence of predefined symbols, in our
case short sines/cosines with the same frequency but different phase shifts—
binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK)).
Finally check whether the Costas loop adaptation is robust to noise (uncomment
line 49) and signal delay (uncomment line 50).

Exercise 19.8 (Carrier Recovery and AM-DSB-SC Demodulation Using
Double Costas Loop). Using program lab19_ex_am_short.m, presented
in Listings 19.1 and 19.2, generate an AM-DSB-SC signal. Add to the pro-
gram the Costas loop carrier synchronization and signal demodulation, exploit-
ing code from Listing 19.4. Frequencies and phase shifts of cosine frequency-
up (transmitter) and frequency-down (receiver) converters should be slightly
different but the Costas algorithm should adjust them. Compare original and
demodulated signal.

19.8 Carrier Recovery Example: MPX Signal in FM Radio

As an example of application of AM modulation and demodulation with carrier
recovery task we will exploit very didactic composition (generation) and decompo-
sition of MPX (multiplex) signal used in FM radio [2]. The signal is summation of
four components from which two represent AM-DSB-SC signals (stereo extension
and RDS data [7]) that should be demodulated. In order to do this the carrier re-
covery problem should be solved efficiently in both cases. At present we deal only
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Fig. 19.11: Frequency spectrum of MPX signal used in FM radio. Denotations:
L—left channel, R—right channel, RDS—digital radio data system. L-R signal is
modulating in amplitude the 38 kHz carrier (doubled pilot) while RDS signal—the
57 kHz (tripled pilot). The AM-DSB-SC modulated signals L-R and RDS have to
be recovered from the MPX signal, i.e. demodulated

with AM demodulation of stereo extension signal. In the next two chapters we will
learn basics of digital modulation and demodulation on the example of the RDS data
transmission: we will be using the same real-world data but experimenting only with
the RDS signal.

In the beginning let us introduce the following notation concerning signals used
in FM radio:

• x1(t)—first audio channel (left L), bandwidth to 15 kHz;
• x2(t)—second audio channel (right R), bandwidth to 15 kHz;
• xm(t) = x1(t)+ x2(t)—audio monophonic signal (summation L+R);
• xs(t) = x1(t)− x2(t)—stereo extension signal (subtraction L-R);
• xrds(t)—digital RDS signal with text (BPSK modulation, 1187.5 bits (and sym-

bols) per second) [7];
• p(t) = cos(2π fpt)—cosine 19 kHz pilot signal used in receiver for synchro-

nization.

Let additionally α(t) denotes an angle of the pilot signal as:

α(t) = 2π fpt, fp = 19kHz. (19.106)

The FM radio multiplex signal, used for modulating the radio station frequency
carrier, is defined as:

x(t)= 0.9·xm(t)+0.1·cos(α(t))+0.9·xs(t)·cos(2α(t))+0.05·xrds(t) ·cos(3α(t)).
(19.107)

Its spectrum is shown in Fig. 19.11. The signal consists of: monophonic sig-
nal (L+R), pilot 19 kHz, stereo extension signal (L-R) up-shifted to frequency
2 fp = 38 kHz (by means of doubled pilot), and RDS bits with text up-converted
in frequency to 3 fp = 57 kHz (using tripled pilot). The last two components
represent AM-DSB-SC modulation, analyzed with details in this chapter: low-
frequency signals xs(t) and xrds(t) are modulating in amplitude high-frequency car-
riers cos(2α(t)) = c38(t) and cos(3α(t)) = c57(t). The pilot signal is added to the
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Fig. 19.12: Spectra of recorded IQ file containing only one FM radio station. From
top to bottom, from left to right: (1) IQ signal accumulated FFT spectrum, (2) its
time-varying STFT spectrogram, (3) decoded MPX signal spectrum (left), (4) de-
coded audio signal spectrum (right)

MPX since a receiver can reconstruct from its carriers c38(t) and c57(t) which are
necessary for back-shifting of the up-converted signals L-R and RDS to 0 Hz.

The RDS bits b(n), sent in RDS signal, are [7]: (1) coded differentially: d(1) =
b(1); k = 2 : Nrds : d(k) = |b(k)− d(k− 1)|, (2) replaced with one period of sin()
for d(k) = 1 and −sin() for d(k) = 0, both signals lasting 1/16 of the pilot period,
(3) low-passed filtered (filtering is aiming at reduction of too wide signal bandwidth
caused by sin()/−sin() switching). In big simplification, neglecting differential cod-
ing and signal low-pass filtering, we can say that RDS signal is a sinusoid with
frequency 1187.5 Hz in which values (samples) of some periods are negated. Such
signal was generated by us in program 19.4 as isignal==4 (see lines 23–24 and
32–35) and used for carrier modulation and demodulation using Costas loop. Gen-
eration, acquisition, and decoding of RDS data will be discussed in next chapters as
an example of digital modulation and bit transmission. At present, we are becoming
familiar with the complete MPX signal structure but are interested only in digital
decoding of the stereo audio from sampled MPX signal.

Discretized FM radio signals can be acquired by many cheap RTL-SDR devices
and ADALM-PLUTO modules using dedicated programs (SDR Sharp or GQRX
SDR and ADI IIO). Frequency bandwidth of recorded IQ files is equal to sampling
frequency which is used. One FM radio station occupies about 200 kHz. Using sam-
pling frequency 2 MHz, 2.048 MHz, or 3.2 MHz we can have many stations in our
recording and for further processing select only one of them as it was presented in
programs 17.2 and 17.3. In Fig. 17.9 FFT and STFT spectra, of one IQ recording
with many FM radio stations, were shown. Now, in Fig. 19.12 some spectra of dif-
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ferent IQ file are presented. In this case the sampling frequency is equal to 250 kHz
and only one FM broadcast is captured. In the upper figure an accumulated FFT
spectrum of the IQ signal is shown, while in the middle part the IQ signal spectro-
gram is presented (the sequence of shorter spectra visualizing IQ signal frequency
change in time). In bottom, on the left side, the MPX signal spectrum is shown,
while on the right side the spectrum of the decoded audio signal. In Fig. 19.13 only
spectrum of the MPX signal is shown. We clearly see, from left/lower to right/higher
frequencies: (1) the L+R component around 0 Hz, (2) 19 kHz sharp peak of the pilot,
(3) symmetrical spectrum of L-R component shifted to 38 kHz, and (4) spectrum of
RDS data up-shifted to 57 kHz.

In this section we apply our knowledge, acquired in this chapter, to decode the
FM radio stereo signal from recorded IQ data. From last two chapters we already
know how to perform frequency demodulation of the IQ signal and to obtain the

Fig. 19.13: Spectrum of an FM radio MPX signal

MPX hybrid signal. At present we are interested in frequency down-shifting of the
L-R signal from 38 kHz to 0 Hz and in recovering L(t) and R(t) audio channels
using these equations:

L(t) = 0.5 · [xm(t)+ xs(t)] = 0.5 · [(L+R)+(L−R)] , (19.108)

R(t) = 0.5 · [xm(t)− xs(t)] = 0.5 · [(L+R)− (L−R)] . (19.109)

In the next chapter we will decode the RDS bits, while in the following one-recover
text coded with the bits. A nice plan, does it?

In decoding L(t)−R(t) signal two topics are of crucial importance: (1) recovery
of the suppressed 38 kHz carrier, (2) careful taking into account delays introduced
by all used filters, since left and right audio channels will be recovered correctly
from Eqs. (19.108), (19.109) only when components L+R and L−R are delayed
by the same time. And processing path of the signal L−R seems to be more difficult
and longer.



19.8 Carrier Recovery Example: MPX Signal in FM Radio 577

0 1 2 3 4
sample number 106

1.898

1.9

1.902

1.904

1.906
[H

z]
104 fpilot(n) - Method 2

0 1 2 3 4
sample number 106

3.8

3.801

3.802

3.803

3.804

[H
z]

104 fstereo(n) - Method 3

0 1 2 3 4
sample number 106

7.598

7.6

7.602

7.604

[H
z]

104 2*fstereo(n) - Method 4

Fig. 19.14: Comparison of frequency adaptation in methods B, C and D

In present example we will perform AM demodulation of stereo extension
xs(t) = L(t)−R(t) = x1(t)−x2(t) signal (left minus right audio channel), using four
different approaches, presented below from the simplest one to the most difficult:

(A) Raising filtered pilot 19 kHz to the square: (1) extracting pilot signal via nar-
row band-pass filter around 19 kHz, (2) raising result to the square, (3) signal
normalization to zero mean and amplitude 1, (4) optional wide band-pass filtra-
tion of MPX signal around 38 kHz (extracting L−R signal) or only MPX sig-
nal synchronization with recovered carrier 38 kHz, (5) down-shifting the signal
L−R using the recovered carrier 38 kHz;

(B) PLL synchronization with the 19 kHz pilot signal: (1) extraction of the
19 kHz pilot signal cos(α(n)) via band-pass filtering, (2) synchronization with
its angle α(n) using the PLL method, (3) generation of the doubled carrier
cos(2α(n)) knowing the angle α(n), and (4) exploiting this signal for the sig-
nal xs(t) down-conversion from 38 Hz to 0 Hz;

(C) Costas loop working at frequency 38 kHz upon stereo extension component
xs(t) extracted by the band-pass filter [22, 54] kHz;

(D) PLL synchronization at 76 kHz with the band-passed filtered (L(t)−R(t))2

signal: (1) band-pass [22, 54] kHz filtering of stereo extension L− R signal
around 38 kHz, (2) raising result to the square, (3) very narrow band-pass signal
filtering around 76 kHz, (4) using PLL for synchronization with obtained signal
cos(4α(n)) being doubled 38 kHz carrier, (5) generation of the 38 kHz carrier
cos(2α(n)) knowing the angle 4α(n), and (6) using it for down-conversion of
the stereo extension signal xs(t) to 0 Hz.

All presented above methods are implemented in Matlab program given in List-
ing 19.5. The program is working on recorded (I(n),Q(n)) files containing samples
of only one analog FM radio station ( fs = 192 . . .256kHz). Values of parameters
are declared in the script fmradio_params.m included in the program begin-
ning and not shown. Impulses responses of FIR digital filters, used in the program,
are designed also in this script. They are denoted using self-descriptive names like
hLPaudio, hBP19, hBP38, hBP76,...—low-pass (LP), band-pass (BP),
around 19 kHz, 38 kHz, 76 kHz.

In Fig. 19.14 frequency adaptation in PLL/Costas loops of the methods B, C and
D is shown. In the methods B and C the adaptation convergence is comparable and
very fast, however in the Costas loop variance of the final frequency estimate is
significantly bigger. In the method D the adaptation speed is the slowest one.
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Listing 19.5: Matlab program of software decoder of stereo FM radio
�

1

2 % lab19_ex_fmradio_decoder_stereo.m
3 clear all; close all;
4

5 method = 1; % L-R demodulationmethod:
6 % 1=pilot̂ 2, 2=BP(pilot)+PLL, 3=Costas L-R, 4=(L-R)̂ 2 + PLL
7 BP = 1; % 0/1 - testingnecessity of using BP filter in methods #1,2
8 fmradio_params % file with parameters: frequency values, filter weights, etc.
9

10 [y,fs] = audioread(’FMRadio_IQ_250kHz_LR.wav’); % read Goodbye+Danke, L, R, LR
11 y = y(:,1) + sqrt(-1)*y(:,2); % [I,Q] --> complex [I+j*Q]
12

13 % DECODING MONO L+R SIGNAL
14 dy = (y(2:end).*conj(y(1:end-1))); % calculation of instantaneousfrequency
15 y = atan2(imag(dy), real(dy)); clear dy; % frequencydemodulation
16 ym = filter( hLPaudio, 1, y ); % low-pass filtration of L+R (mono) signal
17 ym = ym(1:fs/faudio:end); % leaving only every fs/faudio-th sample
18 disp(’LISTENING MONO: Left + Right’); sound(ym,faudio); pause % listening to L+R
19 w = ym-mean(ym); w=w/max(abs(w)); audiowrite(’FM_mono.wav’,w,faudio); clear w;
20

21 % DECODING L-R SIGNAL
22 if(method==1) % pilot raised to the square and normalized
23 p = filter(hBP19,1,y); % band-pass filtering around 19 kHz
24 p = p.̂ 2; % raising to the square
25 p = p - mean(p(3*L+1:23*L)); T=fs/fstereo; % mean subtraction
26 eng = sum( p(3*L+1:3*L+1+round(100*T)-1).̂ 2 ) / round(100*T); A = 2*sqrt(eng/2);
27 c38 = p/A; % normalization to-1/+1
28 if(BP==1) y38 = filter(hBP38,1,y); % optional band-pass filtering
29 else y38=[ zeros(L/2,1); y(1:end-L/2) ]; % only delay
30 end; offs=L/2; % introducedoffset
31 ys = 2*y38.*c38; % frequency-down conversion
32 ys = filter(hLPaudio,1,ys); % low-pass filtering
33 end
34 if(method==2) % pilot + PLL
35 p = filter(hBP19,1,y); % extracting 19 kHz pilot
36 theta = zeros(1,length(p)+1); omega = theta; omega(1) = 2*pi*(fpilot+50)/fs;
37 mi1 = 0.0011; mi2 = 5.6859e-07; p=p/max(abs(p)); %#
38 for n = 1 : length(p) %#
39 pherr = -p(n)*sin(theta(n)); %# double PLL on 19 kHz
40 theta(n+1) = theta(n) + omega(n) + mi1*pherr; %#
41 omega(n+1) = omega(n) + mi2*pherr; %#
42 end %#
43 c38(:,1) = cos(2*theta(1:end-1)); %# carrier 38 kHz
44 if(BP==1) y38 = filter(hBP38,1,y); % band-pass filtering 38 kHz
45 else y38=[ zeros(L/2,1); y(1:end-L/2) ]; % or delay
46 end; offs = L/2; % introducedoffset
47 ys = 2*real(y38.*c38); clear p y38 c38 theta; % 38 kHz --> 0 kHz
48 ys = filter( hLPaudio, 1, ys ); % low-pass filtration of L-R
49 figure; plot(fs*omega/(2*pi)); title(’fpilot(n)’); pause; clear omega;
50 end
51 if(method==3) % Costas loop working on 38 kHz
52 y38 = filter(hBP38,1,y); offs=0; % band-pass filtering 38 kHz
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53 y38 = hilbert( y38 ); % analytic signal
54 theta = zeros(1,length(y38)+1); omega=theta; omega(1)=2*pi*(2*fpilot+25)/fs;
55 mi1 = 0.0011; mi2 = 5.6859e-07; %#
56 for n = 1 : length(y) %# Costas loop
57 bb(n) = y38(n) * exp(-j*theta(n)); %# base-band signal
58 delta(n) = real( bb(n) ).*imag( bb(n) ) / (bb(n).*conj(bb(n))); % error
59 theta(n+1) = theta(n) + omega(n) + mi1*delta(n); %# 1-st update
60 omega(n+1) = omega(n) + mi2*delta(n); %# 2-nd update
61 end %#
62 ys = real( bb ); ys = ys’; clear bb delta theta %# frequency-down L-R
63 figure; plot(fs*omega/(2*pi)); title(’fstereo(n)’); pause; clear omega
64 end
65 if(method==4) % (L-R)̂ 2 + PLL
66 y38 = filter(hBP38,1,y); offs = L/2; % extracting L-R signal, band-pass around 38kHz
67 y76 = y38.̂ 2; % raising to the square
68 y76 = filter(hBP76,1,y76); % narrow band-pass filtering around 76kHz
69 theta = zeros(1,length(y76)+1); omega = theta; pherr=theta; omega(1) = 2*pi*(4*fpilot

+25)/fs;
70 mi1 = 5*0.0028; mi2 = 5*3.8527e-06; y76=y76/max(abs(y76)); %#
71 for n = 1 : length(y76) %#
72 pherr(n) = -y76(n)*sin(theta(n)); %# double PLL
73 theta(n+1) = theta(n) + omega(n) + mi1*pherr(n); %# on 76 kHz
74 omega(n+1) = omega(n) + mi2*pherr(n); %#
75 end %#
76 c38 = cos( theta(1:end-1)/2 ); %# 76 kHz --> 38 kHz
77 c38 = [c38(L/2+1:end)’; zeros(L/2,1)]; clear pherr theta % delay compensation
78 ys = 2*real(y38 .* c38); % freq-down, two choices: +/-2 (sin(a)=0 for a=0, +pi)
79 ys = filter( hLPaudio, 1, ys ); clear y38 c38; % low-pass filtration of L-R signal
80 figure; plot(fs*omega/(2*pi)); title(’fc(n)’); pause; clear omega
81 end
82 ys = ys(1:fs/faudio:end); % leaving every fs/faudio-th sample of (L-R)
83

84 % DECODING L,R FROM (L+R) AND (L_R)
85 % Time synchronization of L+R and L-R signals (taking into account delay of L-R)
86 delay = offs/(fs/faudio); ym = ym(1:end-delay); ys=ys(1+delay:end);
87 % Recovering L and R channel
88 n=1:min(length(ym),length(ys));
89 y1 = 0.5*( ym(n) + ys(n) ); y2 = 0.5*( ym(n) - ys(n) ); clear ym ys;
90 figure; subplot(211); plot(y1); title(’y1’); subplot(212); plot(y2); title(’y2’); pause
91 % De-emphasis: flat freq-response to 2.1 kHz, then decreasing 20 dB / decade
92 % y1 = filter(b_de,a_de,y1); y2 = filter(b_de,a_de,y2);
93 % Listening to L and R channelseparately
94 z = zeros(length(y1),1);
95 disp(’LISTENING: Left channel’); sound([y1 z ],faudio);
96 figure; plot(y1); title(’L’); pause;
97 disp(’LISTENING: Right channel’); sound([z y2],faudio);
98 figure; plot(y2); title(’R’); pause
99 disp(’LISTENING: Stereo’); sound([y1 y2],faudio); pause

100 % Writing stereo signal to disc
101 maxi = max( max(abs(y1)),max(abs(y2)) );
102 audiowrite(’FM_Radio_stereo.wav’, [ y1/maxi y2/maxi ], faudio ); % clear y1 y2;

��
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Exercise 19.9 (Testing Software Receiver of Stereo FM Radio). Analyze
code of the program 19.5. Run it for each implemented demodulation method
of the stereo extension signal L − R set (method=1,2,3,4). Observe fig-
ures presenting trajectories of carrier adaptation if PLL/Costas loop is ap-
plied. Initial values of loop frequencies are deliberately set apart from ex-
pected ones to observe speed of adaptation process convergence. Observe
left and right channel of decoded audio. Listen to it. In the beginning pro-
cess WAV file FMRadio_IQ_250kHz_LR.wav. In left channel the word
Goodbye is stored, while in the right the word Danke. Note that after de-
coding each word is in correct channel. Then exchange letters LR in the
IQ file name to one letter L (only Goodbye), and next to one letter R
(only Danke). After decoding we should have a very weak signal in the
empty channel. Otherwise we have a cross-talk between channels resulting
from wrong frequency down-conversion of the signal (L−R) or wrong syn-
chronization of the signals L + R and L − R. Next, change decoded signal
to FMRadio_IQ_250kHz_Calibrate.wav. Observe how fast PLL and
Costas loops adapt for it. Finally, change the input IQ file to real radio recording
SDRSharp_FMRadio_96000kHz_IQ_one.wav, done by RTLSDR don-
gle. Note how long the adaptive loops converge to the correct frequency value
and observe fluctuations around this value in the steady-state.

Exercise 19.10 (Understanding DSP Operations in Software FM Radio Re-
ceiver). Modify code of the program 19.5. After each important DSP operation
plot a signal fragment of the processing result and its spectrogram using the
following commands:
n=n1st:nlast; plot(y(n)); pause
spectrogram(y(n),256,240,1024,fs,‘yaxis’); pause
Try to understand what is going on!.

19.9 Summary

In this chapter the amplitude modulation and demodulation basics were pre-
sented. It looks at a first glance that the problem is very simple and solutions
are well-known. However I spent relatively long time writing the chapter. Why
does it happen? Because there are many modulation variations, many demodu-
lation methods dedicated to different types of modulating signals and different
carrier recovery techniques. What should be remembered?
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1. In amplitude modulation a signal which is transmitted (coded) is changing
amplitude of a carrier signal. Two signals are multiplied: a modulating sig-
nal x(t) with information (a content) and a modulated signal c(t) being a
transmission medium (a container): y(t) = x(t) · c(t).

2. Signal x(t) can be real-value or complex-value. In turn, pure cosine
cos(2π fct) or complex harmonic signal e j2π fct can be used as a carrier. If
the multiplication result is complex, its real part is only taken, simplifying.

3. If the signal x(t) is real-value and the carrier is a cosine, the most popular
AM with double side-bands results (AM-DSB). Why double side-bands?
Because spectrum of the real-value signal has complex-conjugated sym-
metry around 0 Hz. Multiplication by the cosine shifts this spectrum to
frequencies fc and − fc, i.e. two shifted copies of it are obtained, each with
double side-bands resulting from the signal spectrum symmetry. Since the
carrier component alone is absent in the signal and in the spectrum, the
modulation is called as suppressed carrier one: AM-DSB-SC.

4. If the carrier c(t) is multiplied not by x(t) but by (1+ δ · x(t)),0 < δ < 1,
in the AM modulated signal the carrier is present explicitly: y(t) = c(t)+
δx(t)c(t) (the first term). The corresponding component is present also in
the modulated signal spectrum. In this case AM-DSB with large carrier is
get.

5. Amplitude modulation is used, for example, in AM radio, amateur radio,
multiplex signal of FM radio, up and down frequency conversion in wire-
less communication and digital bit transmission in the form of quadrature
amplitude modulation (QAM). The QAM technique is exploited in ADSL,
DVB-T, DAB, LTE, . . .

6. Frequency and phase synchronization of receiver down-shifting cosine with
transmitter up-shifting cosine is the most difficult part of AM technique
implementation. In literature many possible approaches are proposed, most
of them are strictly dedicated to the modulation signal type.

7. Typically, phase locked loops (PLL) and Costas loops are used for carrier
synchronization. In case of Costas loop, the carrier synchronization is com-
bined with frequency down-shifting (demodulation). Both loops are adap-
tive, they can synchronize only up and down carrier phases or, both, phases
and frequencies.

8. In PLL and Costas approaches special filter loops are used that allow, ei-
ther, faster tracking of phase/frequency changes or smaller variation of
phase/frequency estimates in signal steady-states. Optimal values of loop
filter parameters are derived from theoretical stability criteria of discrete-
time recursive systems.

9. In this chapter we used the MPX signal of FM radio for testing different
existing possibilities of carrier recovery in software receivers of discretized
AM modulated signals.
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19.10 Private Investigations: Free-Style Bungee Jumps

Exercise 19.11 (More MUSIC, More FUN!). Using program 17.2 you can read
into Matlab a wide-band IQ file with many FM radio station and select for further
processing only one them. Modify the program 19.5 and add to it this nice fea-
ture also. Test result of your work on the IQ recording SDRSharp_FMRadio_
101600kHz_IQ.wav. In fact you could decode many FM broadcasts in parallel,
individually for each of your family member. Even do their streaming in your home
network.

Exercise 19.12 (My Favorite Song Coded as IQ FM Radio Broadcast). Short de-
scription of the FM radio MPX signal was given in this chapter. But if you are more
interested in this topic, please, analyze code of the program fmradio_encoder_
stereo_RDS.m given in the archive. You can skip generation of the RDS signal,
we will analyze it later. At present concentrate only on the synthesis of the IQ FM
radio-like signal with your favorite song. Store the IQ data to disc. Check whether
program from Listing 19.5 allows it decoding. If not, because of some frequency
differences, do appropriate program extensions. If you have the ADALM-PLUTO
module you can even broadcast your Ode to Joy in real life. But, of course, using
only non-restricted frequency band!

Exercise 19.13 (0,0,0,1,1,1: Does Anybody Hear Me!). In the Costas loop pro-
gram 19.4 we have generated two digital signals, BPSK and QPSK, being very
similar to the RDS signal used in the FM radio. Write your name as a sequence
of 8-bit ASCII codes of letters used. Combine all bits together, one-by-one. Code
each bit using one period of 1 kHz sine: “1” as a sine and “0” as minus sine.
You will have 1000 symbols (bits) per second. Combine all (+)(−)sines together,
create one long signal. Repeat this signal a few times. Now take the program
fmradio_encoder_stereo_RDS.m and exchange the RDS code fragment
with your own program. Use signal coding your name for modulating in amplitude
the RDS 57 kHz carrier. Store result as a new IQ FM radio file. Now extend the pro-
gram 19.5: add the special Costas loop module for demodulation of the 57 kHz car-
rier. Observe the shape of the decoded signal. Do you see flip-flopping (+)(−)sines.
Could you decode consecutive bits? Could you combine bits into letters? Could you
decode your name? If you do, the game is over: you pass the examination with very
good result!

Exercise 19.14 (SDRSharp Likes GQRX and Vice Versa). Install SDRSharp (un-
der Windows) or GQRX (under Linux) program and run supported IQ FM Radio
WAV files by them. Change View options in FFT Display plug-in. Acti-
vate/enable IF/MPX/Audio options in Zoom FFT plug-in.

Exercise 19.15 (RTLSDR or ADALM PLUTO). If you have SDR hardware,
please, do some your own recordings of FM radios and try to decode different ser-
vices using our Matlab programs.
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Chapter 20
Introduction to Single-Carrier Digital
Modulation Systems

2+2=4 and no more: Bits transmitted by a carrier signal in each
moment are equal to the carrier state number, written binary.

20.1 Introduction

Digital information is sent using analog signals. Wow! The main difference
between analog signal carrying analog content and analog signal with digital
content results from the fact that, in the first case, an analog signal value, mod-
ulating an analog carrier, lies in some range but is completely arbitrary (for
example, unpredictable speech or music), while in the second case the mod-
ulating analog signal can take only a finite number of states, called symbols,
i.e. it is synchronously switched from one state to another state. For example,
the modulating signal can be only a constant value equal to A0 (bit 0) or A1

(bit 1) (amplitude information, 2-PAM Pulse Amplitude Modulation), a frag-
ment of a sine (bit 1) or minus sines (bit 0) (phase shift information, BPSK
Binary Phase Shift Keying), or can have only frequency f0 (bit 0) or f1 (bit
1) (frequency information, BFSK Binary Frequency Shift Keying). In order to
avoid abrupt signal changes, which increase width of signal spectrum, smooth
transition between modulating signal states is required, for example, in GMSK
(Gaussian Minimum Shift Keying) signal frequency is changed from one value
to the other using the Gaussian function trajectory.

Typically, people are thinking that bits are transmitted one at a time, as in
the example given above. This is not always true. When modulating signals
can take more states than 2, for example, X = 4,8,16,64,256, . . . states, we are
obtaining X-level-PAM/PSK/FSK modulations with X states having different
amplitude, phase, or frequency value. We can increase number of states allow-
ing a signal to change the same time two of its parameters, for example, both
amplitude and phase, obtaining joint amplitude-phase modulation, known as
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quadrature amplitude modulation (QAM): 4-QAM (2 bits), 16-QAM (4 bits),
64-QAM (6 bits), 256-QAM (8 bits), . . . In this case one fragment of analog
signal, modulated by the other analog signal, is carrying at once 2, 4, 6, 8,
. . . bits, respectively. In telephone and cable modems one analog carrier signal
with some chosen frequency can be modulated by some other analog signal tak-
ing even 215 = 32,768 different states (32768-QAM) and carrying at once 15
bits. Of course, the only problem is in distinguishing these states in the receiver.
When the states are numerous, their amplitudes, phases, and frequencies have
values which are lying very close to each other and any transmission distur-
bance (e.g. noise, signal amplitude, and phase change, caused by the commu-
nication channel, cross-talk from neighboring frequencies/services, frequency
drift due to the Doppler effect) can change them and stop our dream on trans-
mission of gigabits per second.

In this chapter we will talk only about data transmission using a single
carrier having one frequency, like in digital old-fashioned digital GSM tele-
phony (Global System for Mobile Communications). But bits can be sent also
using many frequency carriers transmitted in parallel (DMT—Discrete Multi-
Tone, OFDM—Orthogonal Frequency Division Multiplexing) which increases
achievable bit-rates. Such approaches are used nowadays in modern telecom-
munication standards of digital audio broadcasting (DAB), terrestrial digital
video broadcasting (DVB-T), digital 4G (LTE) and 5G (NR) telephony, high-
speed digital subscriber line (xDSL) cable and telephone modems, and many
others. The multi-carrier transmission technique will be studied by us in last
chapters of the book.

Now we learn single-carrier transmission basics. We will code an exemplary
text using carrier state numbers of an arbitrary amplitude-phase modulation. We
will up-convert the signal to the target frequency, simulate it passing through a
transmission channel, down-convert it to the base-band and decode. After each
operation we will observe signals, their eye-diagrams and phasor plots, as well
as signal spectra, and carefully track their changes. We will identify sources of
transmission problems—we will try to solve them in the following chapter on
digital single-carrier receivers.

In this chapter digital frequency modulation, frequency shift keying, is not
discussed. However . . . Since instantaneous frequency is defined as a derivative
of sine/cosine (or complex-value harmonic) angle divided by 2π , the presented
here digital, quadrature, amplitude-and-phase signal (de)modulation can be also
exploited with success for digital frequency (de)modulation. In this case, am-
plitude is set to one and carrier phase is changed only, for example, linearly
and flipped-flopped digitally (derivative of changing signal phase corresponds
to changing signal frequency).

These books present in a student-friendly way introduction to the contem-
porary software-based single-carrier digital transmission systems [2–8, 10, 11,
13, 19].
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20.2 Basics of Single-Carrier Modulation

Let us concentrate now on a joint, digital, quadrature amplitude and phase modu-
lation (QAM) of a single carrier. Such technique is very frequently used. A single
cosine is used in it but its amplitude and phase shift are changed in regular time in-
tervals. Number of carrier states is limited. Knowing the actual carrier state number,
we can write it in binary positional system and recover bits transmitted at that mo-
ment. For example, carrier state number 9 out of 16 states corresponds to sending
bits 1001. Typically, most people imagine that amplitude and phase of the cosine
carrier are constant in predefined intervals (of symbol duration) and a carrier signal
is composed of such smaller pieces witch are connected together:

ycut(n) = [. . . ,yk−1(n), yk(n), yk+1(n), . . .] . (20.1)

The k-th carrier state is distinguished by unique pair of amplitude Ak and phase shift
φk values (cos(α +β ) = cos(α)cos(β )− sin(α)sin(β ):

yk(n) = Ak cos

(
2π

fc

fs
n+φk

)
= (20.2)

= Ak cos(φk)cos

(
2π

fc

fs
n

)
−Ak sin(φk)sin

(
2π

fc

fs
n

)
= (20.3)

= Ik cos

(
2π

fc

fs
n

)
+Qk sin

(
2π

fc

fs
n

)
, (20.4)

where in-phase Ik and in-quadrature Qk components are equal to:

Ik= Ak cos(φk), (20.5)

Qk=−Ak sin(φk). (20.6)

Such explanation is correct only in half. A signal generated this way has a very
wide frequency spectrum around frequency fc in the carrier cut positions, which
disturbs services using carriers with neighboring frequencies. In order to limit this
possible frequency cross-talk from one service to another, the built cut-and-past
sequence of symbols should be next band-pass filtered by the so-called channel
filter reducing the signal spectrum width around frequency fc:

y(n) = BPF( f c) [ ycut(n) ] . (20.7)
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Digital carrier modulation is most often realized in alternative way by interpo-
lation of sequence of carrier amplitudes {Ak} and phase shifts {φk} (20.2) or, in
consequence, by interpolation of sequences of {Ik},{Qk} components (20.4). In
this approach typical algorithm of an amplitude-phase digital carrier modulator has
the following form:

1. carrier states, specified by amplitudes Ak and phases φk, are coded using (Ik,Qk)
values, for example:

(
Ak = 1, φk =−π

4

)
: = 1e− j π

4 =
1√
2
− j · 1√

2
= Ik + jQk,

(
Ak+1 = 2, φk+1 =

3π
4

)
: = 2e j 3π

4 =
−2√

2
+ j · 2√

2
= Ik+1 + jQk+1;

2. knowing signal sampling period Δ t and carrier state (symbol) duration T , number
of samples per one state/symbol is calculated: N = T

Δ t ;
3. then N −1 zeros are inserted (appended) between each two values Ik and Ik+1 of

the in-phase component, in our example assuming N = 4:

I0(n) =

[
. . . ,0,0,0,

1√
2
,0,0,0,

−2√
2
,0,0,0, . . .

]
,

and between each two values Qk and Qk+1 of the in-quadrature component, in
our example:

Q0(n) =

[
. . . ,0,0,0,

−1√
2
,0,0,0,

2√
2
,0,0,0, . . .

]
;

4. next, signals I0(n) and Q0(n) are filtered separately using a low-pass, interpo-
lating, sinc-like filter, called a pulse shaping filter (PSF); smoothed, up-sampled
signals I(n) and Q(n) are obtained this way (a,b,c, . . . denotes interpolated val-
ues):

I(n) = PSF[I0(n)] =

[
. . . ,a,b,c,

1√
2
,d,e, f ,

−2√
2
,g,h, i, . . .

]
,

Q(n) = PSF[Q0(n)] =

[
. . . ,k, l,m,

−1√
2
,n,o, p,

2√
2
,q,r,s, . . .

]
;

5. finally, interpolated signals I(n) and Q(n) are used for quadrature amplitude-
phase carrier modulation as described in Eq. (19.20)(19.23) in the previous chap-
ter:



20.2 Basics of Single-Carrier Modulation 589

y(n) = I(n) · cos

(
2π

fc

fs
n

)
−Q(n) · sin

(
2π

fc

fs
n

)
, (20.8)

= Re

⎡
⎢⎣(I(n)+ j ·Q(n)) · e j2π fc

fs
n︸ ︷︷ ︸

z(n)

⎤
⎥⎦ . (20.9)

This way information about transmitted bits is up-converted in frequency by a
digital modulator.

In a digital carrier demodulator, first, a complex-value signal z(n) is recovered
from y(n) by means of Hilbert filter (z(n) = y(n)+ jH[y(n)]), then frequency down-
conversion of information signal is done, and, finally, the same low-pass pulse shap-
ing filter (matched filter) is used (see Eqs. (19.34), (19.36) and (17.14)) for removing
unwanted high-frequency signal components:

Î(n)+ j · Q̂(n) = PSF

⎡
⎢⎣(y(n)+ j Hilbert[y(n)])︸ ︷︷ ︸

z(n)

·e− j2π fc
fs

n

⎤
⎥⎦= (20.10)

= PSF

[
2y(n)cos

(
2π

fc

fs
n

)]
− j·PSF

[
2y(n)sin

(
2π

fc

fs
n

)]
(20.11)

Finally, the carrier amplitude A(n) and phase φ(n) are reconstructed using the fol-
lowing equations:

Â(n) =
√

Î2(n)+ Q̂2(n), (20.12)

φ̂(n) = atan

(−Q̂(n)

Î(n)

)
. (20.13)

From instantaneous values (Â(n), φ̂(n)) carrier state estimates (Âk, φ̂k) are found
and carrier state numbers are deduced, for example, state number 9 out of 16 states.
State numbers written binary give us transmitted bits: 9 corresponds to bits 1001 in
our example.

In digital communication a term constellation diagram is used for naming a set
of all possible carrier states. These states are marked as points in polar radius-angle
(Â(k), φ̂(k)) coordinate system or in rectangular x-y (Cartesian) real-imaginary
(Î(k), Q̂(k)) coordinate system. They are like stars in the sky: we would like to see
them as separated points in constellations consisting of many points. If a Reader
prefers to see a graphical example of carrier states constellation diagrams just now!,
looking at Figs. 20.5 and 20.6 is recommended.

Synthesis of signals I(n) and Q(n), used for generation of the cosine carrier, and
carrier digital modulation by I(n)/Q(n) components are not difficult. In contrary
to the demodulation, in which the carrier recovery (estimation of carrier frequency
and phase) should be performed using any method presented in the chapter on AM
(de)modulation. For example, by means of the PLL or the Costas loop. After this,
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signals Î(n) and Q̂(n) should be recovered. In this chapter we will assume perfect
knowledge of carrier parameters in the receiver. We will show only consequences
of wrong carrier usage. Carrier recovery methods are discussed in the next chapter.

In case of digital transmission, we are not interested in recovery of all (I(n),Q(n))
samples. Especially these lying between original samples of carrier states (Ik,Qk)
added by interpolation. We want to extract only the carrier states (Ik,Qk), their
numbers and their binary representations. Therefore we should synchronize with
positions of the samples (Ik,Qk). This operation in telecommunication language is
called timing recovery. In this chapter we assume perfect symbol synchronization
in the receiver. We will see only consequences of wrong symbol sampling. In the
next chapter we learn three timing recovery methods: early-late-gate, Gardner, and
Mueller–Müller.

Signal passing through a telecommunication channel is attenuated and delayed,
therefore influence of channel disturbance has to be estimated and corrected in the
receiver. Without these, calculated carrier states numbers and bits extracted from
them could be erroneous. In order to minimize channel influence, bits can be coded
not in carrier states but in their changes, for example, in phase shift difference be-
tween two consecutive carrier states. Differential coding methods help us to cope
with slow unknown carrier modifications caused by the channel but at the price of
higher noise sensitivity and lower bit through put, due to the fact that carrier differ-
ence depends on two noisy measurements, not on only one.

20.3 Basics of Single-Carrier Transmission Systems

In the previous section we have described concept of the digital modulation of a sin-
gle signal, the carrier. Now, let look at the transmission problem from the telecom-
munication system perspective: a stream of bits is divided into smaller blocks, con-
sisting of 2, 3, 4 . . . bits each. Next, resulting binary numbers are interpreted as
numbers of different amplitude/phase (Ak,φk) carrier states, characterizing different
in-phase Ik and in-quadrature Qk components. Then, the Ik,Qk components are in-
terpolated using a pulse shaping filter (PSF)—thanks to this the carrier is smoothly
passing from one state to the other. The synthesized digital, modulated carrier is
converted to analog signal (D/A) and transmitted through the telecommunication
channel. Essential in this aspect are Eqs. (20.2)–(20.4), illustrated in the upper part
of the Fig. 20.1. In the receiver, signal of our service is separated from other ser-
vices by a band-pass filter, sampled by analog-to-digital (A/D) converter and de-
modulated. Obtained signals I(n) and Q(n) have two components: a low-frequency
one (demodulated) and a high-frequency one (unwanted, with doubled frequency).
The former have to be removed. For this purpose the same low-pass pulse shaping
(matched) filter is used, as in the transmitter. Then, signal is down-sampled, car-
rier states Ik,Qk are recovered and transmitted bits are found. The receiver part is
summarized in lower part of Fig. 20.1.
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Fig. 20.1: Simplified block diagram of digital modulator (frequency up converter)
and demodulator (frequency down converter) used in telecommunication systems

Well, bits are recovered. But how a bit-stream is formatted? General bit-stream
creation is presented in Fig. 20.2. First, information to be sent should be coded
and compressed (source coding and compression). In this place different cod-
ing&compression standards are used, depending on information type: text, speech,
audio, images, video, . . . Then, typically, some extra redundant bits are added (chan-
nel coding, forward error correction), allowing data error detection and eventual
error correction in the receiver. Many different error correction codes exist, to men-
tion only the cyclic redundancy check (CRC), low-density parity check (LDPC),
polar and Reed–Solomon codes. Finally, in order to find beginning of our data in
the bit-stream (frame synchronization), some synchronization bit pattern/stamp is
put in front of our data. It is called a header or a preamble. Structure of an exemplary
transmitted packet of bits is shown in Fig. 20.3. The header could be also protected
against errors. In the receiver data are processed in reverse order: first the header is
found, then data are extracted.

The header is used for many purposes. First, for finding the bit packet begin-
ning in the bit-stream (frame synchronization). Carrier states of the header should
represent a sequence of state numbers having very sharp auto-correlation function,
typical for random signals. This feature allows robust header detection in the pres-
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ence of noise. Different method of pseudo-random numbers (codes) generation can
be used, only to mention Barker and Gold codes and maximum length sequences
(MLS). Since the header bits are known, associated with them I(n),Q(n) sequences
are known also. Therefore, the receiver can use them for finding the packet/frame

Fig. 20.2: Simplified block diagram of bit-stream generation in digital telecommu-
nication systems

Fig. 20.3: Simplified diagram of one digital packet of transmitted bits

beginning: it calculates a cross-correlation function between the received IQ(n) sig-
nal and the header IQ(n) signal and looks for the function maximum. When the sent
header signal is matched with the received header signal, not only the frame position
is found but also positions of all header symbols are localized. Therefore, thanks to
the header usage, apart from the frame synchronization, a symbol synchronization
is realized also. Adjusting moment of carrier sampling to correct symbol position in
constellation diagram of carrier states is called a symbol timing recovery.

When the header position is found, and channel input and corresponding output
are known, the receiver can estimate a channel amplitude/phase influence (chan-
nel estimation) and remove it from the received signal (channel equalization and
correction). Additionally, the header can be used also for estimation of frequency
and phase errors of frequency down-converter, used in the receiver (carrier syn-
chronization, carrier recovery), as well as for estimation of an A/D frequency
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sampling error (manifesting as carrier frequency offset). Ufff . . . Our sweet header.
So small but so important.

In the second part of the header some system information can be transmitted
telling how the receiver should interpret the data content part, e.g. data type, com-
pression standard used, etc.

20.4 Source Coding

In previous chapters on speech, audio, and images we have learned fundamental
of multimedia coding. There are many different standards. (A)CELP voice coders
(vocoders) are very popular for speech, MP2 and MP3 as well as AAC coders are
frequently used for audio, while JPEG and MPEG standards are used for image and
video compression. We will not discuss further this topic now.

One of the simplest examples of source coding is text description using ASCII
character tables. We will use it in our demonstration programs in this chapter. Let
us assume that we would like to transmit the following, well-known text:

Hello World!

In computer systems letters are written in ASCII code. In this code our “Hello
World!” message is equal (original, then written decimally, hexadecimally, and bi-
nary):

Text H e l l o W o r l d !
Dec 72 101 108 108 111 32 87 111 114 108 100 33
Hex 48 65 6C 6C 6F 20 57 6F 72 6C 64 21

Bin
0100
1000

0110
0101

0110
1100

0110
1100

0110
1111

0010
0000

0101
0111

0110
1111

0111
0010

0110
1100

0110
0100

0010
0001

In consequence, a stream of bits to be send is equal (only its beginning):

Text H e l l o
Bin 01001000 01100101 01101100 01101100 01101111 00100000

At present decision should be made how many bits will be transmitted together using
one carrier state. It depends how many carrier states are available in the code-book.
Choosing one state from the code-book having two states only, we can sent only 1
bit at any moment, e.g. choice of the first carrier state corresponds to transmitting
bit 0, while choice of the second—to transmitting bit 1. If the code-book consists of
4 different states, we are choosing 1 state out of 4 possible states (0, 1, 2 or 3) and
we can sent 2 bits at once (00, 01, 10 or 11). For 8 state code-book, the states have
numbers {0, 1, 2, 3, 4, 5, 6, 7} and transmitting bits are equal {000, 001, 010, 011,
100, 101, 110 or 111}. Generally, more carrier states the code-book has, more bits
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are transmitted at once by a single carrier. Concluding, original bit-stream (b) in our
example can be divided into many different ways:

(b) : 010010000110010101101100011011000110111100100000 . . .

(8) : 01001000, 01100101, 01101100, 01101100, 01101111, 00100000, . . .

(6) : 010010, 000110, 010101, 101100, 011011, 000110, 111100, 100000, . . .

(4) : 0100, 1000, 0110, 0101, 0110, 1100, 0110, 1100, 0110, 1111, 0010, . . .

(3) : 010, 010, 000, 110, 010, 101, 101, 100, 011, 011, 000, 110, 111, 100, . . .

(2) : 01, 00, 10, 00, 01, 10, 01, 01, 01, 10, 11, 00, 01, 10, 11, 00, 01, 10, 11, . . .

(1) : 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, . . .

e.g. into packets of 8 bits, 6 bits, 4 bits, 3 bits, 2 bits, and 1 bit. Having concrete
packet of bits, one should go to the code-book, read parameters of associated carrier
state, and synthesize the carrier using given modulation parameters, for example,
having bits 0101 (binary) we should synthesize the carrier in its state number 5
(decimally) out of 16 defined in the code-book. Any sequence of bits can be divided
into smaller, regular pieces of bits as described above.

Matlab is a computer language for number crunching, not for bit manipulation,
therefore a low-level information processing is not very well supported in it. In
Listing 20.1 two specially written functions are presented for conversion of text,
written as a sequence of ASCII codes of characters, into a sequence of carrier state
numbers. Carrier numbers are coded using Nbits, therefore their values are changing
from 0 to 2Nbits −1.

Listing 20.1: Matlab functions for conversion of text to carrier state numbers and
back

�

1 function [numbers, bitsnum, bitschar] = text2numbers( text, Nbits )
2 % text to IQ state numbersconversion
3 bitschar = dec2bin( double(text), 8 ); % text array, letters in rows,’0’/’1’
4 [rows,cols] = size( bitschar ); % matrix size
5 N = rows*cols; % number of all bits
6 work = reshape( bitschar’,[ 1, N] )’; % bits in one column
7 Nadd = Nbits-rem(N,Nbits); % lacking bits for the last state
8 for k=1:Nadd, work=[work;’0’]; end % appending’0’ bits at the end
9 bitsnum = reshape( work’,[ Nbits, (N+Nadd)/Nbits] )’; % bits of all states

10 numbers = bin2dec( bitsnum ); % state numbers: from 0 to 2̂ Nbits-1
11 return
12

13 function text = numbers2text( numbers, Nbits )
14 % IQ state numbers to text conversion
15 text = dec2bin( numbers, Nbits ); % state numbers as strings of bits
16 [rows,cols] = size( text ); % size of matrix of characters?
17 text = reshape( text’,[ rows*cols, 1] )’; % one big stream of chars’0’/’1’
18 N=length(text); N=N-rem(N,8); text = text(1:N); % remove appended bits
19 text = reshape( text’,[ 8, N/8 ] )’; % strings of bytes
20 text = strcat( char( bin2dec( text) )’ ); % conversion to text
21 return

��
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Exercise 20.1 (Conversion of Text to Carrier States Numbers and Back).
Shortly analyze both functions presented in the Listing 20.1. Simple bit opera-
tions are performed in them which require many lines of code. Write and run the
following short program (or find program lab20_ex_text.m in the archive):

text = ’Hello!’, Nbits = 4;

[numbers, bitsnum, bitschar] = text2numbers( text, Nbits ),

pause

numbers2text( numbers, Nbits), pause

Analyze the displayed result. Change number of bits to 1, 2, 3, . . . Change text
to your name.

20.5 Digital Modulation and Demodulation

There are many different digital modulation methods. Our goal is not to describe all
of them in very serious, systematic, encyclopedia-like manner. No. Our intention is
only to explain an idea of digital modulation and to present a few simple illustrat-
ing examples. When digital modulation principles are understood, learning complex
modulation is not so difficult.

20.5.1 Carrier States Definition and Generation

How different carrier states are defined? There are many possibilities. The carrier
can change its amplitude, phase, and even frequency. In this chapter we will concen-
trate only on amplitude, phase, and joint amplitude-phase carrier modulation using
Eqs. (20.2)–(20.4). Different carrier states are defined by different pairs (Ak,φk)
(20.2), or resulting from the pairs (Ik,Qk) (20.4):

(Ak,φk) → (Ik,Qk) = ( Ak cos(φk),−Ak sin(φk) ) (20.14)

Typically, possible carrier states are defined using diagrams (constellations) of avail-
able carrier parameter values, marked with points/dots. The idea is explained in
Fig. 20.4. Carrier states, available in amplitude-only 2-PAM, 4-PAM, and 8-PAM
modulations, are shown in Fig. 20.5 together with carrier constellation points for
the phase shift-only 8-PSK modulation. In turn, in figure Fig. 20.6—carrier states
for joint amplitude-and-phase 4-QAM and 16-QAM modulations are presented. One



596 20 Introduction to Single-Carrier Digital Modulation Systems

can conclude that in the 4-QAM modulation carrier has the same amplitude in each
state and it is distinguishable only by the phase shift. In fact, the 4-QAM is equiva-
lent to the 4-PSK modulation. In telephone and cable modems, the QAM constella-
tion can have even 215 = 32,768 points.

It is important to remember that neighboring carrier states in IQ constellation
diagrams differ by one bit only. Code having this nice feature is called a Gray code.
Thanks to it, when a neighboring state is detected in a receiver due to transmission
obstacles, only one bit is lost. This is a very good news because in 4-QAM trans-
mission all 4 bits could be lost, for example, when states “0111” (7) and “1000” (8)
are located next to each other. Losing 1 bit is not a tragedy. When some redundant
bits are added to the bit-stream (forward error correction, e.g. CRC, LDPC) some
small amount of bit errors can be detected and eventually corrected.

When telecommunication channel is disturbing amplitude and phase of transmit-
ted signals, and its influence changes slowly in time, it can be beneficial to send
bits not in carrier states but in their changes. For example, in the π/4-DQPSK
differential quadrature phase shift keying of the carrier, the carrier phase shift—
between two states—by the angle: π/4, 3π/4, 5π/4, 7π/4 corresponds to sending
bits 00, 01, 11, 10.

When phase φk in Eqs. (20.2)–(20.4) is a linear function of n (e.g. φk = 2π Δ fk
fc

n),
the carrier can change its frequency and different frequency switching (keying)
methods can be realized, for example, Minimum Shift Keying (MSK).

Drown in color Figs. 20.5 and 20.6, showing constellation diagrams of some
digital modulations, can be easily obtained using a program presented in the List-
ing 20.2. The program can be used also for generation of valid {Ik,Qk} sequences
for several implemented modulation schemes. For example, we can code the text
“Hello World!” with its help.

Fig. 20.4: Explanation of one carrier state (Ak,φk) = (Ik,Qk) marked as a point/dot
in state constellation diagrams
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Fig. 20.5: Constellation diagrams of carrier states for amplitude modulations 2-
PAM, 4-PAM, 8-PAM (left) and phase shift modulation 8-PSK (right)

Fig. 20.6: Constellation diagrams of carrier states for joint amplitude-phase modu-
lations 4-QAM and 16-QAM
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Listing 20.2: Matlab functions for generation of I(k) and Q(k) components and their
decoding for a few digital modulations with example usage

�

1 % lab20_ex_IQpoints.m
2 % Text conversion to carrier states numbers and (Ik,Qk) components and back
3 clear all; close all;
4

5 text_in = ’Hello World! 01234567890abcdefgh’,
6 modtype = ’4QAM’; % 2PAM, 4PAM, 8PAM, BPSK, QPSK, DQPSK, 8PSK, 4QAM, 16QAM
7 do_texttransmit = 1; % 0/1 optionalfurtherprocessing
8 do_decode = 1; % 0/1 optional text decoding
9

10 % Definition of constellationpoints of carrier states
11 [IQcodes, Nstates, Nbits, R ] = IQdef( modtype );
12 phi = 0:pi/100:2*pi; c=R*cos(phi); s=R*sin(phi);
13 figure; plot(c,s,’k-’,real(IQcodes), imag(IQcodes),’ro’,’MarkerFaceColor’,’red’);
14 xlabel(’I(k)’); ylabel(’Q(k)’); title(’Possible IQ(k) states’); grid; pause
15

16 % Coding our message using carrier states
17 numbers = text2numbers( text_in, Nbits ), pause % text to IQ state numbers
18 %numbers = floor( Nstates*(rand(100,1)-10*eps) ); % random states
19 IQk = numbers2IQ( numbers, modtype, IQcodes ); % IQ state numbers to IQ values
20 figure;
21 subplot(211); stem(real(IQk),’b’); grid; xlabel(’k’); title(’I(k)’);
22 subplot(212); stem(imag(IQk),’r’); grid; xlabel(’k’); title(’Q(k)’); pause
23

24 % Data transmission - our next exercise
25 % IMPORTANT: set "if(0)" in the beginning of the programlab20_ex_pulse_shaping.m
26 if( do_texttransmit ) lab20_ex_pulse_shaping, end % our next exercise
27

28 % Text decoding - our next exercise - carrier state decoding
29 if( do_decode == 1 )
30 numbers = IQ2numbers( IQk, modtype ) % find carrier state numbers
31 text_out = numbers2text( numbers, Nbits ), pause % convert them to text
32 end
33

34 %#################################################################
35 function IQk = numbers2IQ( numbers, modtype, IQstates )
36 % State numbers to IQ values
37 if( isequal( modtype, ’DQPSK’ ) ) % differentialcoding only for DQPSK
38 IQk(1) = exp(j*0); % initial IQ state
39 for k = 1:length(numbers)-1 % loop
40 IQk(k+1) = IQk(k) * IQstates( numbers(k)+1 ); % next IQ state
41 end
42 else IQk = IQstates( numbers+1 );
43 end
44 end

��

Exercise 20.2 (IQ Constellations of Digital Modulations). Analyze code
from Listing 20.2. Set do_texttransmit=0 and do_decode=0 and com-
ment its last two lines. Run the program for all implemented modulations. Ob-
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serve patterns of available carries states and shapes of generated IQ signals.
Check whether number of observed signal levels is correct. Write an equation
connecting number of constellation points with number of bits carried by one
symbol (one carrier state). Add 64-QAM modulation scheme. Find its defini-
tion in the Internet.

20.5.2 Carrier States Interpolation: Pulse Shaping Filters

Now, we should try to realize practically the carrier changing. How to do it? In a
sharp flip-flop, bang-bang manner or with smooth transitions between carrier states.
Should the carrier be in one state for a while or should it be continuously and
softly drifting between predefined states. In the first case, values of carrier ampli-
tude and phase {Ak,φk} are constant for several values of n in Eqs. (20.2)–(20.4),
while in the second case—they are changing permanently from sample to sample:
{Ak(n),φk(n)}.

In fact, we are dealing now with a problem of amplitude and phase carrier in-
terpolation. Having samples of {Ik,Qk} (or {Ak,φk}), we are interested in values
lying in-between them. Sampling theorem specifies that analog signal can be recon-
structed from its samples when sampling frequency is more than two times greater
than the maximum analog signal frequency. In our situation, if we are interested
only in K − th times up-sampling, the following reconstruction formula should be
used (10.1):

x(n) =
∞

∑
k=−∞

xz(k)hI(n− k), n =−∞, . . . ,0, . . . ,∞, (20.15)

where xz(k) denotes original sequence of carrier states x(k), with K − 1 zeros put
between each two samples, and hI(n) is an interpolation filter. Below two completely
different interpolation filters are defined, having opposite features, the rectangular
one hRECT(n) and the sinc one hSINC(n):

hRECT(n) =

{
1, 0 ≤ n < K −1
0, otherwise

, hSINC(n) = K
sin
( π

K n
)

πn
. (20.16)

The rectangular filter hRECT(n) is the easiest zero-order, K-times interpolation
filter that simply repeats the last signal sample K − 1 times. It is simple in imple-
mentation however it offers low-quality interpolation. Additionally, due to jumps
present in output signal values, spectrum of the interpolated signal is wide, what
will be shown later.

In turn, an impulse response of the hSINC(n) filter is equal to a sinc() function,
an ideal interpolation, Nyquist function. It offers perfect signal and its spectrum re-
construction. However, since hSINC(n) strongly oscillates and slowly decays on both
sides around n = 0, number of required multiplications and additions are numerous
and its usage is unpractical. In the below part, we will denote hSINC(n) as h(n).
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In FIR filter window design method a special window w(n) was used for enforc-
ing faster h(n) decay—see Eq. (10.2). The window has a big influence upon the
frequency spectrum of the resultant function h(n)w(n). In our present application,
the window will decide about the I(n),Q(n) signal spectrum, and, in consequence,
about our service spectrum after its conversion from the base-band to the target
frequency. For this reason the raised cosine window is used in telecommunication
applications, which spectrum edge has a shape of a raised cosine. Such spectrum is
beneficial since two neighboring telecommunication services do not disturb them-
selves a lot and their power spectra are complementary: they are adding to 1 due to
equality: cos2(α)+ sin2(α) = 1. Weights of the raised cosine (RC) discrete inter-
polation function (pulse shaping filter) are defined as follows:

hRC(n)=h(n)w(n)=K
sin
( π

K

(
n− M

2

))
π
(
n− M

2

) · cos
( π

K r
(
n− M

2

))
1−4r2

(
n− M

2

)2
/K2

, n = 0,1,2, . . . ,M

(20.17)

where M is an RC filter order and r denotes an roll-off parameter responsible for
speed of the spectrum decay (0 ≤ r ≤ 1, 0 = maximally sharp, 1 = maximally
smooth). We have h(M

2 ) = 1 and h(n0) =
r
2 · sin

( π
2r

)
for values n0 zeroing denomi-

nator of the second component in Eq. (20.17).
In digital single-carrier telecommunication systems, presented in Fig. 20.1, low-

pass filter is used two times: first, in the modulator, for interpolation of carrier states
{Ik,Qk} and obtaining smooth signal {I(n),Q(n)}, and then, in the demodulator, for
removing high-frequency (2 fc) components after frequency down-shifting. We are
interested in having perfectly interpolated signal not after the first filter but
after the second low-pass filter in the receiver.

When two filters are working in a cascade, one after the other, the resultant
impulse response is equal to convolution of their individual impulse responses.
In consequence, the frequency response of the resultant filter is equal to multi-
plication of individual filter frequency responses:

H12(Ω) = H1(Ω) ·H2(Ω), Ω = 2π
f
fs
. (20.18)

In our application, the component filters are the same (HSRRC(Ω) = H1(Ω) =
H2(Ω)) and the resultant filter should be a perfect raised cosine interpolation
filter (HRC(Ω) = H12(Ω)). Therefore from Eq. (20.18) we obtain

HRC(Ω) = HSRRC(Ω) ·HSRRC(Ω) ⇒ HSRRC(Ω) =
√

HRC(Ω). (20.19)

We see that the filter, used in the transmitter and in the receiver, should have
frequency response equal to the square root of a required one, i.e. raised cosine
in our case. Such filter is called a square root raised cosine filter.
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Impulse response of the square root raised cosine (SRRC) filter is defined as
(n = 0,1,2, . . . ,M):

hSRRC(n)=
4r
π
·sin

(
π
K
(1− r)

(
n− M

2

))
·
cos
( π

K (1+ r)
(
n− M

2

))
+ K

4r(n−M/2)

1−16r2
(
n− M

2

)2
/K2

.

(20.20)

When weights of the SRRC filter are calculated from the above equation, one should
choose values of parameters do not zeroing denominator of the second component.

Remark Analog version of the raised cosine interpolation (pulse shaping) filter is
defined as, similarly to (20.17):

hRC(t) =
sin(πt/T )

πt/T
· cos(πrt/T )

1−4r2t2/T 2 (20.21)

and has Fourier spectrum given by:

HRC( f ) =

⎧⎨
⎩

T, 0 ≤ | f |< 1−r
2T

T
2

[
1+ cos

(πT
r

(| f |− 1−r
2T

))]
, 1−r

2T ≤ | f | ≤ 1+r
2T

0, | f |> 1+r
2T

. (20.22)

In digital communication systems realized in fully analog way, impulses having
amplitudes equal to values of components Ik and Qk are filtered by analog fil-
ters hSRRC(t) and resultant analog signals modulates analog carriers. Discrete-time
impulse response hRC(n) (20.17) can be obtained performing IDFT upon the dis-
cretized equation (20.22), while hSRRC(n) (20.19)—by IDFT of a square root of
Eq. (20.22). Equation (20.22) explains why discussed filters are called raised cosine
and square root raised cosine—due to their Fourier transform shape.

��

In Fig. 20.7 impulse and frequency responses of a few discrete-time raised co-
sine filters with different value of the roll-off factor r are shown. They were cal-
culated using program presented in Listing 20.3. For increasing value of r, impulse
responses are less oscillatory and faster decaying. The same time their frequency re-
sponses have wider transition bands and higher attenuation. In the figure filters for
10-th order interpolation are presented. It should be observed that all filter impulse
responses are crossing horizontal axis in exactly the same points being multiplic-
ities of 10 (without value of 0). In turn, filter frequency responses have the same
attenuation for normalized frequency equal to 0.05. Because the filter frequency
characteristic is symmetric in respect to 0 Hz (only positive frequencies are shown),
the filter has width equal to 1/10 = 2 ·0.05. Impulse and frequency responses of the
corresponding SRRC filters are shown in Fig. 20.8.
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roll-off factors r (left) and their frequency responses (right)

Listing 20.3: Calculation of raised cosine and square root raised cosine filters in
Matlab

�

1 % lab20_ex_rcos.m
2 % Raised cosine (RC) and square root RC (SRRC) pulse shaping filters (PSF)
3 clear all; close all;
4

5 psf = ’sqrt-rcos’; % ’rcos’, ’sqrt-rcos’
6 r = 0.5; % roll-off factor
7 Nsymb = 10; % number of samples per symbol, interpolationorder
8 Ksymb = 4; % number of symbols per PSF filter
9 Npsf = Ksymb*Nsymb; % filter length

10 n = 0 : Npsf; Nc = Npsf/2; % indexes of filter samples, index of the central sample
11

12 if( isequal( psf, ’rcos’) ) % definition of raised cosine
13 hpsf = sin(pi*(n-Nc)/Nsymb) ./ (pi*(n-Nc)/Nsymb) .* ...
14 cos(pi*r*(n-Nc)/Nsymb) ./ (1-(2*r*(n-Nc)/Nsymb).̂ 2);
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15 hpsf(Nc+1) = 1;
16 n0 = find( abs(1-(2*r*(n-Nc)/Nsymb).̂ 2 ) < sqrt(eps) );
17 hpsf(n0) = r/2 * sin(pi/(2*r));
18 elseif( isequal( psf, ’sqrt-rcos’) ) % definition of sqrt of raised cosine
19 n0 = find( abs(1-(4*r*(n-Nc)/Nsymb).̂ 2) < 5*eps ), pause
20 if( prod(size(n0)) > 0 ) disp(’Div by 0. Change parameters’); end
21 hpsf = 4*r/pi * ( cos(pi*(1+r)*(n-Nc)/Nsymb)+(Nsymb./(4*r*(n-Nc)) ) ...
22 .* sin(pi*(1-r)*(n-Nc)/Nsymb) ) ./ (1-(4*r*(n-Nc)/Nsymb).̂ 2);
23 hpsf(Nc+1) = (1+r*(4/pi-1));
24 end
25 hpsf = hpsf/Nsymb; % normalization
26

27 if(1) % Comparison with Matlab
28 if( isequal( psf, ’rcos’) ) type = ’normal’; else type = ’normal’; end
29 fs = 1; fcut = 1/(2*Nsymb)
30 hpsf0 = firrcos( Npsf, fcut, r, fs,’rolloff’,type); % MATLAB function
31 error = max(abs(hpsf-hpsf0)), pause
32 end

��

Exercise 20.3 (RC and SRRC Filter Basics). Analyze program from List-
ing 20.3. Run it and its longer version (from the book repository) for the RC and
SRRC filter. Choose the same filter parameters for which Figs. 20.7 and 20.8
were obtained. Add figures to the programs. Try to obtain the same figures as
in the book.

Exercise 20.4 (Testing RC/SRRC Filter Length). Choose r=0.35;
Nsymb=24; Ksymb=6. Observe shapes and frequency responses of RC/S-
RRC filters when number of symbols per PSF filter (Ksymb) is becoming
lower (2, 4) and bigger (8, 10, 12). Plot results in one figure. From FIR filter
design we should remember that increasing filter length improves sharpness of
the filter transition edge.

Exercise 20.5 (RC Filter as a Convolution of Two SRRC Filters). Design RC
and SRRC filters using the Matlab function firrcos() and check whether
convolution of two hSRRC(n) filters gives the hRC(n) filter.

Exercise 20.6 (Design of Raised Cosine Filters in Frequency Domain). Try
to calculate impulse responses of RC and SRRC filters by means of IFFT of
their predefined spectra, given by equation 20.22. Remember about required
spectrum symmetry in its real part and asymmetry in its imaginary part. For
your inspiration: code presented in the next chapter in Listing 21.8 allows de-
sign of the SRRC filter with r = 1 for the Radio Data System (RDS). Copy its
appropriate fragment and use for testing. Set fs=228000, Ks=8.

Exercise 20.7 (Using Pulse Shaping Filters). Apply designed filters hRC and
hSRRC to interpolation of sequences Ik and Qk, generated in the program 20.2.
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Use the Matlab function upfirdown() or personally insert zeros to both sig-
nals and filter the signals (see programs from chapter on resampling):

IQ0 = zeros( 1, length(IQk)*K ); IQ0(1:K:end) = IQk; IQn =
conv( IQ0, hRC);

Notice that fast polyphase interpolation algorithm can be used and zeros
insertion and multiplication by zeros can be avoided! Plot obtained, in-
terpolated sequences I(n) and Q(n) separately, e.g. stem(real(IQn))
and stem(imag(IQn)). Then plot I(n) as a function of Q(n):
plot(real(IQn),imag(IQn));—you will see phasor-diagrams.
And the last difficult task, which can be skipped at present: (1) try to divide each
sequence into many, non-overlapping, consecutive fragments, having the same
number of samples equal to the symbol length (K), and (2) display all of them
together in one figure using the reshape() function—you should obtain eye-
diagram. If you have problems, continue reading and observe figures presented
below. Than go back to this exercise and finish it.

20.5.3 Carrier States Interpolation: In Action

This is the most important section in this chapter!
Well . . . Having a cake nothing remains to be done, only to eat it. So, at present

it is a time for demonstration of pulse shaping filters in action. This is in fact expla-
nation of interpolation procedure, very well-known to us. If you do not agree, you
should go back to Chap. 10 on re-sampling.

In Fig. 20.9 a zero-order interpolation is used for K = 5 times signal up-sampling.
In the upper plot a sequence Ik is shown, next K −1 = 4 zeros are inserted between
each two Ik values, then interpolation filtering takes place and its result is presented.
In this case a rectangular interpolation pulse shaping filter is used, shown in the
bottom plot. As we see, each Ik value is repeated K = 5 times. Obtained signal is
boxy, has abrupt changes, and one can expect that due to this its spectrum is wide,
what will be shown later.

In Fig. 20.10 the up-sampling procedure is repeated for the same input signal but
only different pulse shaping interpolator is used: the raised cosine one, shown in the
bottom plot. What should be noticed? First, the obtained signal (on the third plot)
is much smoother than before and for sure its spectrum is more narrow, what will
be shown later. Next, it is important to observe that the filtering operation, realizing
the data interpolation, does not change the original Ik samples marked with filled
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circles. Why? Because in our pulse shaping filter each K = 5-th sample is equal to
0 (what is valid for all K-order interpolation/up-sampling filters).

Figures 20.9 and 20.10 should learn us that after interpolation resultant sig-
nals can have different shapes. More oscillatory the interpolating filter is, more
oscillatory the interpolated signal is also. Since this signal modulates the carrier,
the carrier state detection becomes more difficult in the receiver. The same time
oscillatory-shape filters ensure spectrum compactness and narrow service band-
width. In Fig. 20.11 this phenomena is further demonstrated. This time two raised
cosine pulse shaping filters are used with different roll-off factors r = 0.35 (left) and
r = 0.75 (right). In this case 4-QAM modulation is exploited and two signals are in-
terpolated: I(n) (middle plots) and Q(n) (bottom plots). As we see, for r = 0.75 the
less oscillatory result is obtained at the cost of wider signal spectra (to be shown
later). We have to choose the pulse shaping filter which is better in our specific
application.

In digital communication signal its quality is very often checked by observation
of some specific signal plots that are called an eye-diagram and a phasor-diagram.
Both of them are demonstrated in Fig. 20.12 for signals from Fig. 20.11, e.g. 4-
QAM, K = 5. In first two rows eye-diagrams of signals I(n) and Q(n) are shown
for raised cosine pulse shaping with r = 0.35 (left) and = 0.75 (right). Both signals
are cut into K = 5 samples long, consecutive fragments and displayed with overlay
in one figure. Since both signals are coding carrier values “1” and “−1,” in the cen-
tral part of all plots we see many lines passing perfectly through these two values.
We see “open eyes” of the modulating signals telling us that the modulation pattern
is perfectly visible and there will be no problem with its detection in the receiver.
When “eyes are closed”, we should start to worry. In turn, sequences Q(n) are dis-
played as functions of sequences I(n) in bottom plots of the Fig. 20.12. If Q(n)
were a sine sin(Ωn) and if I(n) were a cosine cos(Ωn), we would see a circle since
sin2(α)+ cos2(α) = 1. But signal curves are more complex and observed phasor
shapes are more sophisticated. What is important to remember that, for high-quality
transmission, lines in phasor plots are crossing exactly in points (Ik,Qk), “1” and
“−1” in our example, and they are also telling us that everything is under control.

Finally, in Fig. 20.13 we can admire beauty of different communication patterns:
two eye-diagrams (for 2-PAM and 4-PAM) as well as four Q(n) = f (I(n)) phasor
plots (for QPSK, DQPSK, 8PSK, and 16QAM modulations) are presented for K =
25 order interpolation. Now all curves are very smooth due to very high interpolation
order. Such detail interpolation helps a receiver to find crossing points, carrier states,
and bits sent at the cost of expensive sample throughput.

Fancy figures, presented in this section, were obtained with the help of a Matlab
program given in Listing 20.4. The program can be used individually or with collab-
oration with the program 20.2, in which text coding is done. In the second case, the
text “Hello World!” is processed by pulse shaping filters, and even converted up and
down in frequency. In order to do this, a user should set do_texttransmit=1;
in the program 20.2, and do_updown=1 in the program 20.4.
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Fig. 20.9: Explanation of I(n) signal generation in 4-QAM modulation (the same is
valid for Q(n) signal): (1) I(k) values, (2) signal Ik(n) after zero insertion, (3) resul-
tant I(n) signal after pulse shaping using the rectangular filter, (4) the rectangular
pulse shaping filter which was used
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the pulse shaping filter, raised cosine with r = 0.35, which was used
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Listing 20.4: Matlab program demonstrating application of pulse shaping filters to
IQ carrier states

�

1 % lab20_ex_pulse_shaping: IQk --> IQ0 --> IQ(n) --> IQk
2

3 % When THIS program IS NOT CALLED from lab20_ex_IQpoints.m, SET 1 IN IF()
4 if( 0 ) % 0/1 Optionalstartingprogram from these data
5 clear all; close all;
6 modtype = ’4QAM’; % 2PAM, 4PAM, 8PAM, BPSK, QPSK, DQPSK, 8PSK, 4QAM, 16QAM
7 Nsymbols = 250; % number of symbols to transmit
8 [IQcodes, Nstates, Nbits, R ] = IQdef( modtype );
9 numbers = floor(Nstates*(rand(Nsymbols,1)-10*eps)); % symbol generation

10 IQk = numbers2IQ( numbers, modtype, IQcodes );
11 end
12

13 do_figures = 1; % 0/1 plottingfigures
14 do_updown = 0; % 0/1 frequency up-down conversion
15 do_disturb = 0; % 0/1 addition of disturbances
16 rctype = ’sqrt’; % raised cosine filter type: ’normal, ’sqrt’
17 r = 0.35; % PS filter roll-off factor
18 K = 24; Ns = 8; % samples per symbol, symbols per PS filter
19 fs = 240000; % samplingfrequency in Hz: 1, 250e+3, 240e+3
20 fcar = 50000; % carrierfrequency in Hz
21

22 fcut = fs/(2*K); % PSF cut-off frequency
23 Npsf = Ns*K+1; Mpsf=(Npsf-1)/2; % PSF filter length and its half
24

25 numbers = floor( Nstates*(rand(2*Ns,1)-10*eps) ); % 2*Ns random carrier states
26 dummy = numbers2IQ( numbers, modtype, IQcodes ); % prefix and postfix
27 IQdum = [ dummy IQk dummy ]; % appending pre&postfix
28

29 IQ0 = zeros( 1, length(IQdum)*K ); IQ0(1:K:end) = IQdum; % zero insertion
30 hpsf = firrcos(Npsf-1, fcut, r, fs,’rolloff’,rctype); % ’normal’ or ’sqrt’
31 IQn = conv( IQ0, K*hpsf ); IQn = IQn(Mpsf+1 : end-Mpsf); % pulse shaping in TX
32

33 if( do_updown ) % Frequency UP and DOWN, channel and disturbances are in-between
34

35 % Frequency UP conversion in TX
36 N = length(IQn); n = 0:N-1; % signal length, sample indexes
37 y = real(IQn).*cos(2*pi*fcar/fs*n) - imag(IQn).*sin(2*pi*fcar/fs*n);
38

39 % See into the programlab20_ex_single_carrier.m for more details
40 % 1) Digital to analog conversion (DAC) and analog signal transmission.
41 % 2) Channel is filtering our signal (h = unknown channel impulse response)
42 % 3) In analog part, channel and amplifiers add noise, Signal-to-Noise-Ratio (SNR).
43 % 4) In the receiver, signal from antenna is amplified and band-pass filtered (BPF).
44 % 5) Then analog to digitalconversion (ADC) takes place with sampling ratio
45 % equal to the BPF filter bandwidth.
46

47 % Frequency DOWN conversion in RX
48 df = 0; dphi = 0; % carrierfrequency and phase offsets
49 IQnn = 2* y .* exp( -j*( 2*pi*(fcar/fs + df/fs)*n + dphi ) );
50 end
51
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52 % Disturbances - additive noise, channel gain and phase shift, RX carrier offsets, ADC
error

53 if( do_disturb )
54 SNR=160; chanG=1; chanPh=0; carDf=0; carDph=0; ADCppm=100*1e-6;
55 % SNR=20; chanG=0.25; chanPh=pi/7; carDf=0.001; carDph=pi/11; ADCppm=100; % Params
56 % noise
57 s = IQnn(Mpsf : end-Mpsf+1);
58 scale = sqrt( sum( s.*conj(s) ) / (2*length(s)*10̂ (SNR/10)) ); clear s
59 IQnn = IQnn + scale * (randn(1,N)+j*randn(1,N)); % noise addition with proper SNR
60 % IQnn = awgn( IQnn, SNR, ’measured’ ); % alternativenoise addition
61 % channelinfluence
62 IQnn = IQnn .* ( chanG * exp(j*chanPh ) ); % equivalentchannel in the BB
63 % carrierfrequency and phase offsets
64 carDf = carDf - ADCppm/(1+ADCppm)*fcar/fs;
65 IQnn = IQnn .* exp(j*(2*pi*carDf*(0:length(IQn)-1)-carDph)); % carrier offsets
66 if( do_figures )
67 figure, spectrogram(IQnn,Nf,Nf-64,fshift,fs); title(’STFT(IQ(n))+Noise)’); pause
68 end
69 end
70

71 IQnn = conv( IQnn, hpsf ); IQnn = IQnn(Mpsf+1:end-Mpsf); % pulse shaping in TX
72 IQnn = IQnn( 2*Npsf-1: 1 : end-(2*Npsf-1)+1 ); % signalsynchronization
73 IQkk = IQnn( 1: K : end ); % symbol extraction
74

75 IQk = IQkk; % when we are going back to the programlab20_ex_IQpoints.m
��

Exercise 20.8 (Pulse Shaping in Action: Proof of Concept). Analyze code
of the pulse shaping program 20.4 which full version, with added figures,
is given in the archive. Set 1 in the first if() when you prefer to run
only this program or set 0 when you will call it from the program 20.2
lab20_ex_IQstates.m. In such situation in the pulse shaping program
beginning data initialization is not performed. Otherwise it is done. Set
do_disturb=0. Then set do_updown=0 and do_updown=1—results
should be almost identical. Run the program for all supported modulations and
carefully observe each figure. Change values of program parameters and try
to obtain similar figures to shown in this chapter. Add the rectangular pulse
shaping filter:

hpsf = [zeros(1,Ns/2*K) ones(1,K) zeros(1,(Ns/2-1)*K+1)]/K;

having the same length as RC and SRRC filters. Observe signal spectra. They
should be significantly wider. Decrease number of samples per one symbol—
spectra should become wider independently from the PS filter type. Change
value of the roll-off parameter r of the (SR)RC filters. Observe changes in eye-
diagrams and phasor-diagrams.
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20.5.4 Carrier States Detection

Having in mind fancy plots of eye-diagrams and phasor-diagrams of I(n) and Q(n)
signals, it is not difficult to explain the digital demodulation issue: (1) a receiver
should sample signals I(n) and Q(n) in good moments, exactly in the positions of
Ik and Qk symbol values, i.e. at crossing points of Q(n) = f (I(n)) phasor functions,
(2) calculate carrier state numbers having points (I(k),Q(k)), and (3) extract bits
from the state numbers. At this moment, we are not addressing the sampling syn-
chronization problem (so-called symbol timing recovery), it will be discussed later.
Now we aim at carrier states finding.

This task is solved as follows. The phasor Q(n) = f (I(n)) plane, i.e. the carrier
state plane, is divided into smaller pieces, into a grid, and for each point (I(k),Q(k))
the closest, reference (Ik,Qk) point is found. Bits are extracted from its number.
Listing 20.5 presents a function for carrier state decoding for some selected modu-
lations. More examples are given in the complete version of the function, available
in the book repository.

Listing 20.5: Decoding of carrier state numbers from detected constellation IQ
points for exemplary digital modulations

�

1 functionnumbers = IQ2numbers( IQ, modtype )
2

3 % from (I,Q) values to carrier state numbers
4

5 N = length(IQ);
6

7 if( isequal(modtype,’4PAM’) ) % checking only I in predefined
8 k = 1; % intervals: -2, 0, 2
9 for ns = 1 : N

10 I = real( IQ(ns) );
11 if( I < -2 ) numbers(k) = 0; % lower the -2
12 elseif( -2 <= I && I < 0 ) numbers(k) = 1; % from-2 to 0
13 elseif( 0 <= I && I < 2 ) numbers(k) = 3; % from 0 to 2
14 else numbers(k) = 2; % greater then 2
15 end
16 k = k + 1;
17 end
18 end
19 if( isequal(modtype,’4QAM’) || isequal(modtype,’QPSK’) ) % checking I and Q
20 k = 1; % positions in +/- quadrants
21 for ns = 1 : N
22 I = real( IQ(ns) );
23 Q = imag( IQ(ns) );
24 if( I>0 && Q>0 ) numbers(k) = 3; end % +/+ right-up
25 if( I>0 && Q<0 ) numbers(k) = 2; end % +/- right-down
26 if( I<0 && Q>0 ) numbers(k) = 1; end % -/+ left-up
27 if( I<0 && Q<0 ) numbers(k) = 0; end % -/- left-down
28 if( I==0 || Q==0 ) disp(’ZERO’); pause; end
29 k = k + 1;
30 end
31 end
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32 if( isequal(modtype,’DQPSK’) ) % checking I and Q phase shifts in +/- quadrants
33 IQdiff = IQ(2:end) .* conj( IQ(1:end-1)); % finding phase shift
34 k = 1;
35 for ns = 1 : length(IQdiff)-1
36 I = real( IQdiff(ns) );
37 Q = imag( IQdiff(ns) );
38 if( I>0 && Q>0 ) numbers(k) = 0; end % +/+ right-up
39 if( I<0 && Q>0 ) numbers(k) = 1; end % -/+ left-up
40 if( I>0 && Q<0 ) numbers(k) = 2; end % +/- right-down
41 if( I<0 && Q<0 ) numbers(k) = 3; end % -/- left-down
42 if( I==0 || Q==0 ) disp(’ZERO’); pause; end
43 k = k + 1;
44 end
45 end
46 if( isequal(modtype,’16QAM’) ) % checking I and Q
47 k = 1; % first two higher (MSB) bits of I
48 for ns = 1 : N % then two lower (LSB) bits of Q
49 I = real( IQ(ns) ); % II
50 if( I < -2 ) numbers(k) = 0; % 00
51 elseif( -2 <= I && I < 0 ) numbers(k) = 4; % 01
52 elseif( 0 <= I && I < 2 ) numbers(k) = 12; % 11
53 else numbers(k) = 8; % 10
54 end
55 k = k + 1;
56 end
57 k = 1;
58 for ns = 1 : N
59 Q = imag( IQ(ns) ); % II + QQ
60 if( Q < -2 ) numbers(k) = numbers(k)+0; % ?? + 00
61 elseif( -2 <= Q && Q < 0 ) numbers(k) = numbers(k)+1; % ?? + 01
62 elseif( 0 <= Q && Q < 2 ) numbers(k) = numbers(k)+3; % ?? + 11
63 else numbers(k) = numbers(k)+2; % ?? + 10
64 end
65 k = k + 1;
66 end
67 end
68 end

��

Exercise 20.9 (Extraction of Carrier States Numbers from (Ik,Qk) Points).
Analyze code of the function IQ2numbers.m from the Listing 20.5, which
full version is given in the book repository. Set do_texttransmit=0 and
uncomment two last lines in the program 20.2. Run the program. Check whether
the function IQ2numbers.m allows correct text decoding for all implemented
modulation schemes. Add encoding and decoding of one extra modulation
which is not supported at present. More bits to transmit, more carrier states
are required. May be 64-QAM will satisfy your bit throughput needs?
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20.6 Frequency Up-Down Conversion: Symbols and Bits per
Second

If we think that everything goes right, for sure we do not notice something. And in
our case? For sure we have neglected errors introduced by up and down frequency
conversion of the signal and consequences of its passing through a disturbing chan-
nel. In this section we will concentrate on some important aspects of signal trans-
mission.

First, we will investigate shape of power spectral density (PSD) of the modulating
signal I(n)+ jQ(n). In Fig. 20.14 the PSD of a 4-QAM signal for different pulse
shaping filters is presented: rectangular and three raised cosine filters with roll-off
factor r equal to 0.05, 0.35, and 0.75. Sampling frequency is equal to 250 kHz, 5
samples per symbol are used and filters have 41 samples (as in our previous figures).
We clearly see benefits of using the RC filter with r = 0.35: it represents a good
compromise between narrow filter bandwidth (sharpness) and very good attenuation
in the stop-band. Application of the rectangular filter gives horrible results.
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Fig. 20.14: Power spectral density of 4-QAM signal I(n)+ jQ(n) for different pulse
shaping filters, in rows from left to right: (1) rectangular, (2) raised cosine (RC)
r = 0.05, (3) RC r = 0.35, (4) RC r = 0.75. Sampling frequency 250 kHz, 5 samples
per symbol, filter has 41 samples (as in our previous figures)
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Fig. 20.15: Power spectral density of a real-value 2-PAM signal I(n) (left, symmet-
rical with respect to 0 Hz) and a complex-value 4-QAM signal I(n)+ jQ(n) (right,
unsymmetrical) for the same raised cosine pulse shaping filter with r = 0.35

If the filter is already selected, the next question typically concerns modulation
choice: using only pulse amplitude modulations (PAM) or joint amplitude-phase
ones (PSK or QAM). In Fig. 20.15 PSDs of two modulating signals are shown, first
for 2-PAM and second for 4-QAM modulation (for the same transmitted data). The
transmission parameters are the same as before ( fs = 250 kHz, K = 5 samples per
symbol, L = 41, fsymb = 250/5 = 50 kHz). Both spectra have very similar shapes,
but in the first case the spectrum is symmetric around 0 Hz and only 1 bit is transmit-
ted per one symbol (50 kilo-bits per second (kbps) are offered, i.e. 50,000 symbols
carrying 1 bit only). For 4-QAM modulation, due to signal complexity, the spectrum
symmetry is not observed and two bits are transmitted by one symbol. Distance be-
tween constellation points is similar, therefore noise sensitivity in both modulations
should be similar also. It looks that 4-QAM is a winner in this game offering the
same symbol rate per second but two times higher bit-rate per second. With its us-
age we can get 100 kilobits per second (50,000 symbols carrying 2 bits each). So,
what will we choose? I am choosing the 4-QAM.

At present, let us observe signal PSDs during up and down frequency shift, pre-
sented in Fig. 20.16. In this 4-QAM example the sampling and carrier frequencies
are equal, respectively, fs = 240 kHz and fc = 40 kHz. We have 24 samples per
symbol (modulating signal frequency and bandwidth are equal to fsymb = 240/24 =
10 kHz) and the RC filter (r = 0.35) is 8 symbols and 8 ·24+1 = 193 samples long.
Higher oversampling offers significantly more narrow spectrum with 10 kHz band-
width and 5 more transmission channels than before when service bandwidth was
equal to 50 kHz. But at present we have only 10,000 symbols per second carrying
2 bits each, therefore bit-rate of 20 kbits per second is get. Before we had 100 kbits
per second but only one service, not five. As we see, nothing is lost in the nature.

Let us come back to Fig. 20.16. The PSD of the base-band complex-value
I(n)+ jQ(n) signal is not symmetrical around 0 Hz. After signal frequency-up con-
version (multiplication by e jΩcn), the signal spectrum is shifted to the positive carrier
frequency fc. But because only the real part of the shift result is left, mirror copy of
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Fig. 20.16: 4-QAM carrier modulation. Power spectral densities of the following
signals, in rows from left to right: (1) original I(n)+ jQ(n) in the base-band, (2)
after frequency UP conversion, (3) after frequency DOWN conversion, (4) after
low-pass pulse shaping filter in the receiver. Sampling frequency 240 kHz, carrier
frequency 40 kHz, 24 samples per symbol, PSF filter length has 8 · 24+ 1 = 193
weights

the spectrum appears for negative frequencies. The PSD spectrum of any transmitted
signal, the modulated carrier, looks very similarly.

In the receiver, the signal is down-converted in frequency (multiplied by e− jΩcn),
therefore its spectrum is shifted left by −Ωc, what is seen in left down plot in
Fig. 20.16. Now, the low-pass pulse shaping filter is used to leave only the origi-
nal signal component lying the base-band around 0 Hz. As a result spectrum pre-
sented in the right down plot is get. The base-band signal is further processed in the
receiver.

At this processing stage we should perfectly recover the transmitted I(n)+ jQ(n)
signal and obtain from it the carrier states Ik and Qk and transmitted bits. In the left
part of the Fig. 20.17 eye-diagrams, phasor-diagrams, and constellation points for
the transmitted (TX) and received (RX) I(n)+ jQ(n) signals are shown. The same
RC filter was used for pulse shaping in RX and TX. Wow! A big surprise! Transmit-
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Fig. 20.17: (up-down) Eye-diagram, phasor-diagram, and constellation points only
of I(n)+ jQ(n) signals in the transmitter (TX) (left) and in the receiver (RX) (right)
for 4-QAM carrier modulation. Raised cosine shaping filter was used in RX and
TX. Sampling frequency 240 kHz, 24 samples per symbol, PSF filter length has
8 ·24+1 = 193 weights
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ted patterns are perfect (left side), the received ones—very poor (right side)! Why
and how did it happen?

Why SRRC, Not RC? The answer is very simple. We used in the receiver
the raised cosine (RC) pulse shaping filter. It perfectly interpolates the carrier
states in the TX (left side of the figure). But after its second application in the
RX (right side of the figure), the magic is breaking up, due to the fact that
impulse response of a filter, resulting from convolution of two interpolation
filters, is not anymore an interpolation filter! This is shown in Fig. 20.17. How
to solve this problem? To use in the receiver and in the transmitter the same
SRRC filter which convoluted with itself becomes the perfect interpolating RC
filter. Now, in the transmitter (left side of Fig. 20.18), signal patterns are poor
(badly interpolated), while in the receiver (right side of Fig. 20.18) they are
perfect.

And, at the end, we will investigate two plots, which are very important in
this section. In Fig. 20.19 two modulated carriers y(n) for the 16-QAM modu-
lation are presented: in the upper part—for rectangular pulse shaping filter, in
the bottom part—for raised cosine filter. Typically, students, asked during ex-
amination about single-carrier digital modulations, draw a signal similar to one
shown in the upper plot (or in Fig. 20.9). If the upper figure is in 99% remem-
bered as an example of digital modulation, it means that only bang-bang carrier
switching is well understood. In practice, the carrier smoothly comes from one
state to the other reducing this way required transmission bandwidth. Therefore
the second figure is correct.

Exercise 20.10 (Frequency UP and DOWN Conversion: Observing Spec-
tra). Plots of frequency spectra, presented in this section, were obtained with
the help of the pulse shaping program 20.4. Turn on the option do_updown=1
in it and run the program for the following values of sampling frequency fs and
IQ signal interpolation orders K: fs = 50,100,200 kHz and K = 5,10,20. This
time concentrate on spectral shapes: its widths (service bandwidth) and side-
lobe attenuation (service separation). Try to obtain spectra similar to ones pre-
sented in Figs. 20.14–20.16. Notice service localization in different processing
stages: (1) after the transmitter PS filter, (2) after the frequency up-conversion,
(3) after the frequency down-conversion, (4) after the receiver PS filter. Add
rectangular pulse shaping filter to the program:
hpsf = [zeros(1,Ns/2*K) ones(1,K) zeros(1,(Ns/2-1)*K+1)]/K;

and repeat experiments.
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Fig. 20.18: (up-down) Eye-diagram, phasor-diagram, and constellation points only
of I(n)+ jQ(n) signals in transmitter (TX) (left) and in the receiver (RX) (right) for
4-QAM carrier modulation. Square root raised cosine shaping filter was used in RX
and TX. Sampling frequency 240 kHz, 24 samples per symbol, PSF filter length has
8 ·24+1 = 193 weights
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Fig. 20.19: Modulated carriers for the 16-QAM scheme for: (up) rectangular pulse
shaping, and (down) raised cosine pulse shaping (r = 0.35, 24 samples per symbol,
8 symbols per PSF, 6 samples per carrier period). Red dots marked points of pre-
defined carrier states. For rectangular filter they denote first samples of a new state.
For the RC filter, the carrier is turning left/right in them into a next state

20.7 Disturbances and Obstacles

So, is everything going right? If it seems to us that yes, for sure we have forgotten
about something. About what?

Presence of Noise The world is noisy. RF signals are disturbing themselves. Many
independent noisy sources give in result a Gaussian noise. Weak signals should be
amplified. Amplifier can be low-noise but not perfectly. During amplification noise
is amplified also. In order to have reliable transmission model we have to embedded
our signals in noise with correct probability density function and power. Typically
additive white Gaussian noise (AWGN) generators are used and appropriate signal-
to-noise ratio (SNR) is ensured (in Matlab: x=awgn(x,SNR)). In upper part of
Fig. 20.20 we see constellation points of 4-QAM modulation (left), perfectly recov-
ered in the receiver, and fuzzy constellation pattern in the presence of noise (right).
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Influence of the Channel The simplest linear channel is characterized (described)
by its impulse response h(t) (its response to impulse on the input). Impulse con-
sists of all frequencies. Knowing channel response to all frequencies we know what
channel is doing with of each them—how attenuate and delay each of them. In fact
this information is included in channel frequency response, i.e. Fourier transform
of the impulse response: H( f ) = FT[h(t)]. In order to have reliable transmission
model we should at least convolve our IQ signal, up-converted in frequency, with
the sampled channel impulse response h(n) (in Matlab: y=conv(y,h). Or, after
assuming the very narrow bandwidth of it, at least multiply the IQ signal in the
base-band by |H( fc)|e jφ( fc), i.e. complex-value scaling factor incorporating chan-
nel attenuation and phase shift at frequency fc (represented by |H( fc)| and φ( fc),
respectively). Our signal will be down-converted in frequency but attenuated and
shifted in phase by the channel. In the Fig. 20.20, in the second row of plots, on
the left, we see 4-QAM constellation diagram deformed by channel: attenuated and
rotated. If our information is coded in carrier amplitude and phase, we have a big
problem: channel influence has to be estimated (channel estimation) and corrected
(channel equalization).

Imperfect Receiver Elements In the receiver we have filters separating us from
near-by frequency services. How good are they?
For sure the most critical parts of the receiver are the frequency down-converter
and the analog-to-digital converter. Frequency and phase of the down-converter
should be exactly equal to the acquired signal carrier. If carrier of the received
signal is equal to e j(Ωcn+φ), the down-converter should multiply the received sig-
nal by e− j(Ωcn+φ) (notice the negation sign!). But what will happen when down-
converter parameters are different: e− j((Ωc+ΔΩ)n+φ+Δφ)? Carrier frequency offset
ΔΩ will cause permanent constellation rotation (see plot in second column and row
in Fig. 20.20, with constellation points lying on a circle), while carrier phase offset
will rotate the constellation once. And again we have a big problem! Both carrier
offsets should be estimated and eliminated.
The ADC converter can work with wrong sampling ratio giving samples to fast
or two slow. If we are assuming that the sampling is correct, but it is not, we are
applying to signal too low or too high frequency of the down-converter, and again
we have a frequency carrier offset and observe circles in constellation diagrams (last
plot in the Fig. 20.20. The AD converter error is specified in parts per million (ppm).
Error equal ppm = 100 · 10−6 means that we can expect 100 samples more or less
for 1 million samples given us by the ADC. For example, for sampling frequency
fs = 200 kHz we will have 20 samples more or less per one second. Therefore
offset of the carrier frequency will be equal to 20 hertz. Generally if our carrier is
incorrectly sampled:

y1(n) = exp

(
j2π

fc

(1+ ε) fs
n

)
(20.23)



20.7 Disturbances and Obstacles 623

-1 0 1
I(n)

-1.5

-1

-0.5

0

0.5

1

1.5

Q
(n

)
No disturbance: Q(n)=f( I(n) )

-1 0 1
I(n)

-1.5

-1

-0.5

0

0.5

1

1.5

Q
(n

)

With noise: Q(n)=f( I(n) )

-1 0 1
I(n)

-1.5

-1

-0.5

0

0.5

1

1.5

Q
(n

)

With channel: Q(n)=f( I(n) )

-1 0 1
I(n)

-1.5

-1

-0.5

0

0.5

1

1.5
Q

(n
)

With frequency offset: Q(n)=f( I(n) )

-1 0 1
I(n)

-1.5

-1

-0.5

0

0.5

1

1.5

Q
(n

)

With phase offset: Q(n)=f( I(n) )

-1 0 1
I(n)

-1.5

-1

-0.5

0

0.5

1

1.5

Q
(n

)

With ADC freq error: Q(n)=f( I(n) )

Fig. 20.20: Observed carrier constellation points for I(n) + jQ(n) signal with 4-
QAM modulation disturbed in different way, plots left-right up-down: (1) for the
original signal in TX, (2) with channel noise SNR=0 dB, (3) after fading channel
(attenuation, phase shift), (4) with carrier frequency offset in RX, (5) with carrier
phase offset in RX, (6) with ADC frequency sampling error in RX
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we have to solve the following equation:

fc

(1+ ε) fs
=

fc

fs
+ x → x =

( −ε
1+ε
)

fc

fs
(20.24)

and correct sampled signal:

y2(n) = y1(n) · exp

(
j2π

ε
1+ ε

fc

fs
n.

)
(20.25)

Therefore the absolute CFO error caused by ADC sampling rate error ε = ADCppm
is equal to:

Δ fc =
−ε

1+ ε
· fc. (20.26)

Therefore in our simplified simulations, the ADC sampling error will be represented
as additional carrier frequency offset (CFO). Optionally, we can resample the signal
what is more time-consuming.

Exercise 20.11 (ADC Sampling Ratio Error). Analyze program presented in
Listing 20.6.

Listing 20.6: Simplified modeling in Matlab ADC sampling ratio error and its cor-
rection

�

1 % lab20_ex_adc.m
2

3 N=1000; n=0:N-1; % number of signal samples
4 fs=1e+6; % samplingfrequency
5 fc=1e+5; % carrierfrequency
6 ADCppm = 100 % ADC error in ppm
7 A = ADCppm*1e-6; % error scaling
8 x1 = exp(j*2*pi*fc/fs*n); % error-free signal
9 x2 = exp(j*2*pi*fc/((1+A)*fs)*n); % erroneous signal with CFO

10

11 x1c = x2 .* exp(j*2*pi*A/(1+A)*fc/fs*n); % CFO correction
12 error = max( abs( x1 - x1c ) ), pause % correction error

��

In Fig. 20.21 we see how harmful the transmission disturbances can be, when
occurring together, for 4-QAM and 16-QAM modulations. Due to length of this
chapter, we will try to show solutions to all listed above transmission obstacles
in the following chapter.

But now, a few exercises. Using program 20.4 we can simulate problems ap-
pearing in the single-carrier transmission: channel disturbances, noise presence, and
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Fig. 20.21: Observed carrier constellation points for I(n)+ jQ(n) signals with 4-
QAM (left) and 16-QAM modulation (right) disturbed by the all factors appearing
together

receiver imperfections: offsets of carrier frequency and phase as well as ADC fre-
quency sampling error using Eq. (20.23). In order to do it, it is sufficient to turn
on the option do_dsturb=1 in the program. The ADCppm error is simulated by
changing the carrier frequency.

Exercise 20.12 (Rainy Days: Problems in Single-Carrier Transmission).
Analyze fragment of the program code in Listing 20.4 which is inside the if(
do_disturb==1) xxx; end conditional field. Recognize parameters of
different disturbances, find where they are used. Initially set their values to:

SNR=160; chanG=1; chanPh=0; carDf=0.; carDPh=0;

Then change each value individually to the one used in Listening 20.4. Run the
program, observe figures. Compare input and output values of Ik and Qk (last
figure). You can also execute the frequency up-down pulse shaping program
from the lab20_ex_IQpoints.m code and observe how well the text is de-
coded in the presence of different transmission imperfections. What disturbance
is the most harmful? Then increase number of disturbances acting together and
repeat experiments.
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20.8 Summary

First round of the single-carrier marathon has ended. What should be re-
membered?

1. Bits are sent as numbers of predefined carrier states. Transmitted single
sine/cosine is changing its frequency, amplitude, and phase, possible com-
binations are limited and precisely numbered. In the receiver, carrier pa-
rameters are measured (estimated), a carrier state number is found, bits are
extracted from it.

2. Choosing modulation type we should take into account transmission con-
ditions and select changing this carrier parameter which is the most robust
to channel destruction. Channel features are characterized by its impulse
response and resulting from its frequency response. Magnitude and phase
frequency responses of a channel tell us how our carrier will be attenu-
ated and delayed by a channel. Additionally, a channel can be noisy. And
interference from side services could exist.

3. To limit the service bandwidth, switching the carrier state should not be
abrupt because discontinuous signals have wide spectra. Wide service spec-
trum could disturb neighbor spectra of near-by services. For this reason the
carrier has to pass smoothly from state to state. This effect is obtained by
carrier states interpolation by a pulse shaping filter.

4. Raised cosine (RC) pulse shaping filter also should be remembered. It is
a very good, low-pass interpolation filter, limiting frequency bandwidth of
the single-carrier transmission. Its frequency response has a shape of raised
cosine. If it is so perfect, why the square root of RC filter is used in the
transmitter? Because in the receiver the second low-pass filter has to be ap-
plied, and we are interested in having perfect interpolation of carrier states
at the end of processing path, not only in the transmitter. Cascade of two
SRRC filters, one in the transmitter and one in the receiver, gives as a result
a perfect RC interpolation filter during symbol decoding.

5. But always something is for something! The smoothly changed carrier
states are more difficult to detect. This is the price paid for limiting the
service bandwidth. Therefore special procedures have to be designed to
sampling the carrier in the correct moment. They are called timing recov-
ery methods. They will be discussed in the following chapter. In this one,
perfect time synchronization was assumed.

6. Apart from signal deformations caused by a transmission channel and prob-
lems with carrier sampling in proper moments, there are also hardware im-
perfections which make the transmitted bits recovery difficult. For example,
during signal frequency down-converting in the receiver, wrong carrier fre-
quency and phase can be used which results in deformation of the carrier
state constellation grid. The A/D converter can work also with wrong sam-
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pling ratio causing the phase error also. Methods solving these problems
are presented in the next chapter.

7. Finally, in single-carrier communications different definitions/quantities
are used, and we have to be familiar with them, to mention only the most
important: symbols as carrier states, constellations/grids of carrier states,
and different measures of transmission quality: bits per second, symbols
per second, eye-diagrams, phasor-diagrams.

8. In good transmission systems the I(n)+ jQ(n) signals are crossing in the
same points in eye-diagrams and phasor-diagrams. In such situation we are
telling that these eye/phasor-diagrams are open, because we see free space
between carrier line trajectories.

20.9 Private Investigations: Free-Style Bungee Jumps

Exercise 20.13 (Speech/Audio Transmission). In this chapter we have transmitted
text as exemplary data. Record short fragment of your own speech. Modify the pro-
grams and transmit the speech in place of the “Hello World!” message. Check the
speech quality in the receiver when no disturbance is present. After that inject every
disturbance separately, increase its level and listen to the decoded signal. Test dif-
ferent digital modulation schemes, i.e. 2-PAM . . . 16-QAM. Exchange speech with
an audio file of your favorite song and repeat the experiment.

Exercise 20.14 (Image Transmission). At present try to transmit any image. May
be your own photo. Modify the programs. Check the received image quality in
disturbance-free conditions. Next add every disturbance separately, increase its level
and evaluate the decoded image quality visually.

Exercise 20.15 (** 64-QAM and 256-QAM Encoder and Decoder). Add to the
functions, presented in this chapter, possibility of encoding and decoding 64-QAM
and 256-QAM modulations. Apply them to transmission of a longer text message.
Observe eye and phasor-diagrams when disturbances are absent and present. Check
number of transmission errors in both cases. Display the decoded text.

Exercise 20.16 (*** Frequency Shift Keying). Instantaneous frequency is defined
as a derivative of a signal phase. Set carrier amplitude to one and code sent bits
in linearly increasing or decreasing carrier phase. Each carrier symbol should have
different phase change. In order to limit the signal spectrum, filter the sequence
of carrier symbols, with abrupt changes in connection points, by a low-pass pulse
shaping filter (channel filter). Try to decode the binary message.
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Chapter 21
Digital Single-Carrier Receiver

The telecommunication receiver drama: putting together all
pieces of a broken crystal vase.

21.1 Introduction

A digital telecommunication receiver is much more complicated than a dig-
ital transmitter. The transmitter works in sterile conditions up to the D/A con-
verter. Then different obstacles begins:

1. transmitter hardware imperfections: wrong D/A sampling ratio, wrong up-
converter frequency in the transmitter,

2. channel disturbances: signal attenuation, delay, Doppler frequency shift
and interference from some other signals/services,

3. receiver hardware imperfections (wrong down-converter frequency and
phase in the receiver, wrong A/D sampling ratio, hardware thermal noise).

Seeing clear constellations of carrier states in the receiver is only a dream in the
beginning. A lot of hard work has to be done to obtain an acceptable picture.

Receiver synchronization and channel equalization are crucial tasks in all
telecommunication receivers, in the discrete-time ones also. I hope that at
present, after reading the previous, introductory chapter on single-carrier trans-
mission, all of us are totally convinced of that. These topics are very difficult
and well explained only by the greatest telecommunications guru. Unfortu-
nately, it is not me. I would like to apologize for that! Nevertheless, I will try to
do my best in a few following pages.

In digital telecommunication standards, generation of bit-streams and cor-
responding discrete-time I(n),Q(n) signals, sent to AD converters, is perfectly
specified. Receiver algorithms, dealing with bit recovery from the I(n),Q(n)
signals, are very well documented also, but mainly for the noise&disturbance-
free scenarios. In such case, all transmitter blocks are un-do step-by-step in the
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receiver in reverse order. Synchronization procedures, required for real-world
transmission conditions, typically are not part of a standard. Telecommunica-
tion equipment vendors compete in the market in solving problems better. I
remember very well my first attempts in decoding DAB radio IQ signals. Ev-
erything went well for clear transmitter IQ streams. In contrary to real-world
IQ DAB recordings with carrier offsets and wrong sampling frequency of AD
converters for which software, used by me, collapsed. Recently, I had similar
situation with synthetic and recorded LTE signals: for the first of them, I saw
very well sharp grids of QAM constellation points, while for the second only
thousands of stars in the sky.

Dr Marek Sikora from Telecommunication Department, AGH Technical
University of Science and Technology, Krakow, Poland, for His priceless help
with preparing programs for this chapter!

My next comment: universal solutions are not optimal. In digital telecom-
munication systems numerous modulation types as well as numerous synchro-
nization and error correction codes are used. It is not a problem to modulate and
code in the transmitter the original, clean data. The problem is to perform effi-
ciently in the receiver: synchronization, demodulation, and error correction of
the disturbed, dirty data. There are many possible un-do operations for each do.
It is impossible in this book to discuss all existing solutions which can be used
in the receiver. No. Our goal is to explain only source of the problem, its conse-
quences and first intuitive software emergency exits from the signal processing
point of view. When the issue and its first, simple solution are well understood,
it is much easier to analyze more difficult state-of-the-art algorithms. Unfor-
tunately, the advanced algorithms are not discussed in this book—this is not
our intention. There are many good books addressing professional high-tech
telecommunication solutions. But they are very difficult to understand for the
beginners.

In this chapter we analyze an example of a Wi-Fi-like bit packet transmis-
sion, in which regular bit-stream is proceeded by a synchronization pattern,
e.g. Barker or Gold code, which is used for complete identification of exist-
ing problems and their solution: frame/symbol synchronization, frequency and
phase carrier frequency offset estimation and correction as well as channel es-
timation and equalization. We will use Gardner and Mueller–Müller timing re-
covery methods with optional Farrow filter interpolator and test influence of
signal oversampling (number of samples per symbol) for bit detection quality.

The slow-mode AMSAT nano-satellite down-link signal and RDS FM ra-
dio signal will serve us in this chapter as examples for testing different DSP
algorithms used in digital single-carrier receivers. We will decode bits of both
signals which are using the BPSK modulation. The RDS signal demodulation
makes use of the PLL or Costas loop and one of the three symbol timing recov-
ery methods: early-late-gate, Gardner, and Mueller–Müller.
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The following books [2, 3, 5–7, 9, 10, 13, 15, 16, 18] present design of
software receivers for single-carrier transmission systems in student-friendly
way, while these two monographs [11, 12]—in advanced way

21.2 Receiver Synchronization and Channel Equalization
Program

We will try to attack difficult topics mentioned in the introduction using simple
examples and simple, intuitive solutions. What do you think: is it a good idea to
discuss difficult topics using a simple example? Yes? Therefore in the beginning
of this section I will present a complete, exemplary, working program of a single-
carrier receiver and will refer to it in the following subsections during describing
specific issues. A full version of the program, with some extra figures, is available
in the book repository. Since the program is well commented and self-presenting,
it will be not described now line by line. Its analysis is a Reader’s task. In com-
parison with our previous stand-alone programs 20.2 and 20.4, program presented
in the Listing 21.1 uses simple functions in the transmitter part, which should be
well recognized at present, and concentrate on the receiver synchronization code.
Here algorithms of exemplary solutions are explicit given. The program is coding
and decoding carrier state numbers for implemented digital modulation types and is
calculating number of transmission errors.

In the program the following denotations are used:

• IQk—complex-value carrier states I(k)+ jQ(k),
• IQn—samples of interpolated complex-value signals I(n)+ jQ(n),
• numX—numbers of carrier states coding a variable X,

In the program user can choose:

• different modulation type (modtype()),
• RC or SRRC pulse shaping filter used in TX and RX (rctype()),
• doing frequency UP/DOWN conversion or not, together with channel simula-

tion at target frequency (do_updownchan()),
• adding disturbances in the base-band or not (do_disturb()), allowing also

channel modeling as one complex-value tap,
• doing synchronization in the RX or not (do_synchro()), with synchroniza-

tion algorithm selection—none, using pure pilot signals or their differential
versions—and carrier frequency offset algorithm selection—simple or polyno-
mial fitting (do_cfoequ),

• doing IQ signal decimation in the RX or not (do_decim()), with decimation
order selection (Mdecim).

The following functions are used in order to reduce the code length:

• IQdef()—generation of possible carrier states (IQcodes) for a chosen mod-
ulation type,
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• modtype2header()—generation of carrier state numbers of the header for
a chosen modulation,

• numbers2IQ()—conversion of carrier state numbers to carrier states IQk,
taking only values specified by IQcodes,

• IQ2numbers—conversion of IQk states to carrier state numbers,
• IQ2psf()—passing IQk carrier states through a pulse shaping filter and ob-

taining smooth, transmitted IQn signals,
• IQ2disturb()—addition of disturbances and receiver imperfections in the

base-band.

Exercise 21.1 (Understanding the Single-Carrier Transmission Program).
Analyze code of program presented in Listing 21.1. Try to understand: (1) trans-
mitter part, (2) frequency up-down converter part, (3) disturbance addition part,
(4) signal decimation in the receiver. Run the full version of the program avail-
able in the book repository. Observe figures, notice encountered numbers of
transmission error. Change modulation type, switch ON/OFF different DO op-
tions.

Listing 21.1: Exemplary Matlab program of a single-carrier receiver
�

1 % lab21_ex_receiver.m
2 % Testingsynchronizationprocedures in single carrier receiver
3 clear all; close all;
4

5 modtype = ’4QAM’; % 2PAM, 4PAM, 8PAM, BPSK, QPSK, DQPSK, 8PSK, 4QAM, 16QAM
6 rctype = ’sqrt’; % ’normal, ’sqrt’: raised cosine filter type for TX and RX
7 Ndata = 250; % number of carrier states (symbols) to be transmitted
8 K = 24; Ns = 8; % PSF: samples per symbol, symbols per pulse shaping filter (PSF)
9 r = 0.35; % PSF: filter roll-off factor

10 fs = 240000; % samplingfrequency in Hz: 1, 250e+3, 240e+3
11 fcar = 40000; % carrierfrequency in Hz
12

13 do_updownchan = 0; % 0/1 frequency up-down conversion plus channelsimulation
14 do_disturb = 0; % 0/1 addition of disturbances in the baseband
15 do_synchro = 0; % 0/1/2: 0 = none, 1 = using x(n),s(n), 2=using xD(n),sD(n)
16 do_decim = 0; % 0/1 signal decimation in the receiver
17 do_cfoequ = 2; % 0/1/2 freq carrier offset estimation: 0=none, 1=simple, 2=polyfit
18 do_chanequ = 3; % 0/1/2/3 channelcorrectionmethods: 0=none, 1=ZF, 2=LS/MSE, 3=NLMS

filter
19

20 %chan = [ 0.5,-0.25, 0.1,-0.1 ]; % channel impulseresponse in baseband symbol-spaced
21 chan = [ 1 ]; % perfect channel
22 SNR=160; chanG=1; chanPh=0; carDF=0.0000; carDPh=0; ADCdt=0; % No disturb
23 %SNR=40; chanG=0.25; chanPh=pi/7; carDF=0.0002; carDPh=pi/11; ADCdt=0.5; % Disturb
24 Mdecim = 1; % decimation order, Mdecim = 1, 2, 3, 4, 6, 8, 12, 24
25 Mdelay = 0; % decimation delay: in samples before decimation
26
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27 % Old transmission part - as before
28 Npsf = K*Ns+1; Mpsf = (Npsf-1)/2;
29 [IQcodes, Nstates, Nbits, R ] = IQdef( modtype ); % take carrier IQ codes
30 % IQk of Header
31 [numHead, Nhead ] = modtype2header( modtype ); % take header IQ numbers
32 IQkHead= numbers2IQ( numHead, modtype, IQcodes ); % calculate IQ states
33 % IQk of Data
34 numData = floor( Nstates*(rand(Ndata,1)-10*eps) ); % generate random IQ numbers
35 IQkData = numbers2IQ( numData, modtype, IQcodes ); % calculate IQ states
36 % Numbers ALL, IQk ALL
37 num = [ numData’ numHead’ numData’ numHead’ numData’ ]; % ALL transmitted IQ numbers
38 IQk = [ IQkData IQkHead IQkData IQkHead IQkData ]; % ALL transmitted IQ states
39 % IQn of Header only (pulse shaping)
40 IQnHead = IQ2psf( IQkHead, K, Ns, r, ’normal’); % IQn of Header
41 % IQn of everything (pulse shaping)
42 [IQn, hpsf ] = IQ2psf( IQk, K, Ns, r, rctype ); % IQn of ALL
43

44 if(0) % 0/1 Testing symbol timing recoverymethods
45 alg = 1; % 1/2/3/4/5 timing recoveryalgorithm
46 for Mdelay = 1 : 1 : K
47 Mdelay
48 IQnn = IQn( 1+Mdelay : Mdecim : end ); n1st = 1;
49 [ ns, IQs ] = timing_recovery( IQnn, alg, K/Mdecim, n1st );
50 end
51 end
52

53 % Optionalfrequency UP and DOWN conversion in TX plus channelsimulation
54 if( do_updownchan )
55 if( length( chan ) > 1 ) % when more than one channel/filter weight
56 chan = resample(chan,K,1); % upsamplingchannel impulseresponse
57 figure; plot(chan); title(’h(n)’); pause
58 end
59 df = 0; dphi = 0; % CFO added in the base-band OR df = carDF*fs; dphi = carDPh;
60 IQn = IQupchandown( IQn, fcar, fs, chan, df, dphi );
61 end
62

63 % Addition of disturbances in the base-band
64 if( do_disturb )
65 IQn = IQdisturb( IQn, SNR, chanG, chanPh, carDF, carDPh, ADCdt, Npsf );
66 end
67

68 % Possible signal down-sampling in the receiver
69

70 if( do_decim )
71 if(M>1)
72 M = Mdecim; % copy initial programparameter
73 IQn = [ zeros(1,Mdelay) IQn ]; % signal delay
74 IQn = resample(IQn, 1, M); % low-pass filtering and decimation
75 IQnHead = resample(IQnHead, 1, M); % low-pass filtering and decimation
76 % IQnHead = IQnHead(1:M:end); % only decimation
77 hpsf = M*hpsf(1:M:Npsf); K=K/M; Npsf=(Npsf-1)/M+1; Mpsf=(Npsf-1)/2;
78 N = length(IQn); N = floor(N/K)*K; n = 1:N; IQn = IQn(n);
79 end
80 else M=1;
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81 end
82

83 % Low-pass pulse shaping filter in the receiver
84 IQn = conv( IQn, hpsf );
85

86 s = IQnHead; % IQn of synchronizationheader
87 x = IQn; % IQn of received signal in the base-band
88

89 % Auto correlationfunction
90 sD = s(2:end) .* conj(s(1:end-1)); % sD(n)
91 ms = mean(numHead); Css1 = conv( numHead-ms, numHead(end:-1:1)-ms ); % auto corr

NumHead
92 ms = mean(s); Css2 = conv( s-ms, conj(s(end:-1:1)-ms) ); % auto corr s(n)
93 ms = mean(sD); Css3 = conv( sD-ms, sD(end:-1:1)-ms ); % auto corr sD(n)
94

95 % Cross correlationfunction
96 Cxs = conv( x-mean(x), conj(s(end:-1:1)-mean(s)) ); % cross corr of s(n) with x(n)
97 xD = x(2:end) .* conj( x(1:end-1)); % signal xD(n)
98 CxDsD = conv( xD-mean(xD), sD(end:-1:1)-mean(sD) ); % cross corr of sD(n) with xD(n)
99

100 if( do_synchro == 0 ) % NO SYNCHRONIZATION
101

102 IQn = IQn( 2*Npsf-1 : end - (2*Npsf-1)+1 ); % remove transients
103 received = IQ2numbers( IQn(1:K:end), modtype ); % decimate
104 errors = sum( received ~= num( Ns + 1 : end-Ns ) ), pause % errors
105

106 else % SYNCHRONIZATION
107

108 Nsync = length( IQnHead );
109 if( do_synchro==1) % less robust to noise, using x(n), s(n)
110 [dummy, nmax ] = max( abs( Cxs ) ); % maximumposition
111 n1st = nmax - Nsync + (Npsf-1)/2 + 1, % 1st header symbol
112 else % more robust to noise, using xD(n),sD(n)
113 [dummy, nmax ] = max( abs( CxDsD ) ); % maximumposition
114 n1st = nmax - Nsync + (Npsf-1)/2 + 2, % 1st header symbol
115 end
116

117 % Use only header symbols for frequency offset and phase shift estimation
118 nsynch = n1st : K : n1st+(Nhead-1)*K; nhead = Mpsf+1 : K : Mpsf+1+(Nhead-1)*K;
119 work = IQn( nsynch ) .* conj( IQnHead( nhead ) ); % # the same
120 % work = IQn( nsynch ) .* conj( IQkHead ); % #
121 if( do_cfoequ == 0 ) df=0; dph=0; end
122 if( do_cfoequ == 1 ) % simple frequency carrier offset estimator
123 df = mean( angle( conj( work(1:end-1) ) .* work(2:end) ) ); % simple version
124 df = df / (2*pi*K); dph = 0;
125 end
126 if( do_cfoequ == 2 ) % phase polynomialfitting method
127 phi0 = angle(work(round(Nhead/2))); work=work.*exp(-j*phi0);
128 % phi0=0;
129 ang = unwrap( angle(work) ); nn = 0 : K : (Nhead-1)*K;
130 temp = polyfit( nn, ang, 1); df = temp(1)/(2*pi); dph = temp(2)+phi0;
131 figure;
132 plot( nn,ang,’b-’,nn,temp(2)+temp(1)*nn,’r-’); grid; title(’Angle’); pause
133 if( carDF == 0) allPhase_estim = dph, expected = (chanPh+carDPh), end
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134 chanPh = 0; carDPh = 0;
135 end
136 % Do frequency offset and phase correction - from channel and freq-down converter
137 IQn = IQn( n1st : length(IQn) ) .* exp(-j*(2*pi*df*(0:length(IQn)-n1st)+dph));
138 N=length(IQn); n=1:N; ns=1:K:N;
139 % Results
140 carOffs_estim = df/M, expected = carDF, pause
141

142 % Amplitude and phase correction - using header for channelestimation & correction
143 % Knowing input and output, we can estimate a channel and correct it
144 IQkHeadEstim = IQn( 1 : K : 1+(Nhead-1)*K ); % detected header states
145 if( do_chanequ==0 ) gain=1;dph = 0; end % no corrector
146 if( do_chanequ==1 ) % one-tap corrector
147 gains = IQkHeadEstim .* conj(IQkHead) ./ abs(IQkHead).̂ 2; % compared with known
148 gain = mean(real(gains)) + j*mean(imag(gains)); % mean channel "gain"
149 IQn = IQn / gain; % signal correction
150 end
151 % ... methodsdo_chanequ==2 and do_chanequ==3
152 % Results
153 if( carDF == 0) allPhase_estim = angle(gain), expected = chanPh+carDPh, end
154 chanGain_estim = abs(gain), expected = chanG, pause
155 % Errors
156 received = IQ2numbers( IQn( 1 : K : (Nhead+Ndata)*K ), modtype );
157 % errors = sum( received’ ~= [ numHead; numData ] ), pause
158 errors = sum( received(Nhead+1:Nhead+Ndata)’ ~= [ numData ] ), pause
159 end % end of synchronizationusing header

��

21.3 Preambles Detection and Frame/Symbol Synchronization

Transmission correction technology is nothing new. To trust in a measurement
equipment we have to calibrate it. Calibration relies on measuring some reference
quantity which is known, checking what the device is showing and changing the de-
vice setup (like gain and delay in oscilloscopes), in order to see on the display what
is expected. The same is true for telecommunication apparatus: some signals known
for receivers (i.e. headers, pilots) should be transmitted and the receivers, having re-
ceived data and knowing the transmitted ones, should estimate values of disturbing
parameters. These values should be used next, for a given period of time, for cor-
rection of all received data. Therefore, in front of unknown data bits some known
preamble/header bits should be sent, giving receiver a chance for disturbance esti-
mation. Usage of such headers has an additional benefit. When we detect them, they
can be used not only for adjustment of receiver parameters but also for finding the
data frame beginning (frame recovery)—since data are after the header—and even
for finding symbol position in received signals (symbol timing recovery)—since a
header consists of symbols also. Wow, wow, wow! Like in the movie “Little Big
Man.” All thanks to our small, very useful header!
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A good preamble/header is such a sequence of carrier states numbers which is
converted by a pulse shaping filter into a signal I(n)+ jQ(n) having very sharp auto-
correlation function, i.e. with high, distinctive maximum for zeroth shift and small
values for others shift arguments. Having this feature, a header well fits/matches to
itself and its position in the received signal can be found precisely. Signals with
good/sharp auto-correlation functions are essential in all echography techniques,
radars, and sonars, where we correlate reflected signals with transmitted ones in
order to find copies of transmitted signals. Then we calculate distance and velocity
of an object from which transmitted signals were reflected.

Sequence of numbers describing preambles also well correlates with itself allow-
ing precise finding preamble position in the detected sequence of carrier states. This
way beginning of our own data can be found, i.e. data frame recovery/synchroniza-
tion is performed.

Numerous good synchronization sequences (headers/preables) are used in telecom-
munication receivers, among them codes of Barker and Gold, complementary/max-
imum length sequences and Zadoff–Chu sequences. Values of exemplary pream-
bles, proposed for use in our tests, are given in Listing 21.2 as a part of our target
single-carrier transmission program given in the repository (lab20_ex_single
_carrier.m).

Listing 21.2: Examples of some synchronization headers
�

1 function [ synch, Nsynch ] = modtype2header( modtype )
2 % Generation of synchronizationheaders for differentmodulations
3

4 switch modtype
5 case {’2PAM’,’BPSK’ }
6 synch = [ 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 ...
7 1 1 0 0 0 1 0 0 1 1 0 1 0 1 ]; % pseudo random binary sequence
8 %synch=[ 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 ]; % Gold 32
9 %synch=[ 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 ]; % Gold #2, 30

10 %synch=[ 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 ]; % Gold #3, 30
11 %synch=[ 1 1 1 1 1 0 0 1 1 0 1 0 1 ]; synch = [ synch synch synch ] % 3x Barker13
12 case {’4PAM’,’QPSK’,’DQPSK’,’4QAM’}
13 %synch=[ 3 0 0 1 2 1 3 0 3 2 2 1 3 0 0 1 2 1 3 ]; synch=[synch synch(end:-1:1)]; % STS
14 synch=[ 0 3 0 0 0 0 0 0 0 3 3 3 0 0 0 0 0 3 0 0 3 3 3 0 3 3 0 0 0 3 3 0 ]; % Gold 32
15 % synch=[ 3 3 3 0 0 0 3 0 0 3 3 0 3 0 3 3 3 0 0 0 3 0 0 3 3 0 3 0 3 3 ...
16 % 3 3 0 0 0 3 0 0 3 3 0 3 0 3 ]; % pseudo random binary sequence
17 % Nsynch=99; synch = floor( Nstates*(rand(1,Nsynch) - 10*eps) );
18 case {’8PAM’,’8PSK’}
19 synch = [ 1, 5, 1, 3, 6, 1, 3, 1, 1, 6, 3, 7, 7, 3, 5, 4, 3, 6, 6, 4, 5, 4, 0, ...
20 2, 2, 2, 6, 0, 7, 5, 7, 4, 0, 7, 5, 7, 1, 6, 1, 0, 5, 2, 2, 6, 2, 3, ...
21 6, 0, 0, 5, 1, 4, 2, 2, 2, 3, 4, 0, 6, 2, 7, 4, 3, 3, 7, 2, 0, 2, 6, ...
22 4, 4, 1, 7, 6, 2, 0, 6, 2, 3, 6, 7, 4, 3, 6, 1, 3, 7, 4, 6, 5, 7, 2, ...
23 0, 1, 1, 1, 4, 4, 0, 0, 5, 7, 7, 4, 7, 3, 5, 4, 1, 6, 5, 6, 6, 4, 6, ...
24 3, 4, 3, 0, 7, 1, 3, 4, 7, 0, 1, 4, 3, 3, 3, 5, 1, 1, 1, 4, 6, 1, 0, ...
25 6, 0, 1, 3, 1, 4, 1, 7, 7, 6, 3, 0, 0, 7, 2, 7, 2, 0, 2, 6, 1, 1, 1, ...
26 2, 7, 7, 5, 3, 3, 6, 0, 5, 3, 3, 1, 0, 7, 1, 1, 0, 3, 0, 4, 0, 7, 3 ];
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27 case{’16QAM’}
28 synch = [ 8 8 8 2 2 2 8 2 2 8 8 2 8 2 8 8 8 2 2 2 8 2 2 8 8 2 8 2 8 8 ...
29 8 8 2 2 2 8 2 2 8 8 2 8 2 8 ]; % pseudo random binary sequence
30 otherwise disp(’Unknownmodulation type’);
31 Nsynch=99; synch = floor( Nstates*(rand(1,Nsynch) - 10*eps) );
32 end
33 synch = synch’; Nsynch=length(synch);

��

At present we will look more carefully to one arbitrary chosen synchronization
header. The Wheel of Fortune is rotating and . . . Bonk! . . . the 32-element binary
Gold code is selected. Since we will exploit the 4-QAM modulation with 4 states
(00, 01,10, 11), we are changing 0/1 elements of the code to two opposite modula-
tion states 0 (00) and 3 (11). Results of our inquiry are presented in Fig. 21.1. Co-
variance functions (correlation functions of sequences with subtracted mean values)
were calculated using Matlab conv() function and not scaled. In the first plot the
header sequence values (0/3) are shown (left up). In the second plot (right up), the
auto-covariance function of the sequence is depicted. Next, in the left-center plot,
absolute values of the auto-covariance function of the K = 24-times up-sampled
and SRRC filtered Gold sequence are shown (8 symbols per PSF filter, r = 0.35).
Let us denote this interpolated synchronization sequence as s(n). In turn, in right-
center plot, similar auto-covariance function is presented but calculated for artifi-
cially created signal sΔ (n) = s(n)s∗(n− 1) which allows proper detection of the
header position even in the presence of bigger carrier frequency offsets, which will
be shown later. Finally, in two bottom plots, results from synchronization pream-
ble application are shown in noise/disturbance-free scenario. In the first case, in
left-bottom plot, cross covariance between the synchronization signal s(n) and the
received signal r(n) is shown, while in the second right-bottom plot—cross covari-
ance between the synchronization signal sΔ (n) and the differential received signal
rΔ (n) = r(n)r∗(n−1), calculated similarly as sΔ (n).

As we see, for un-correlated random sequences, all auto covariance functions
have well distinguished peaks for shift k = 0. Thanks to this feature, one can localize
precisely the header position in the received signal which is seen in two bottom
plots.

Figure 21.1 shows that, in low-noise and without carrier frequency offset, both
synchronizations techniques can be used for header detection and data frame syn-
chronization. However, the situation changes completely when strong carrier fre-
quency offset occurs. Such case is presented in Fig. 21.2 for offset equal to 0.1%
of the carrier value. Now, using the signal s(n) for synchronization failed (left plot)
while exploiting the signal sΔ (n) ended with full success (right plot).

At present, fully convinced in efficiency of some header detection methods, we
derive mathematical explanation of the observed experimentally phenomena. Let us
denote the IQ(n) synchronization signal as s(n):

s(n) = A(n)e jφ(n). (21.1)

Let us assume additionally that our transmission is narrow-band, around frequency
fc, and the channel disturbance is described by one complex-value number, i.e. the
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Fig. 21.1: Example of synchronization header usage in noise/disturbance-free
situation: (left up): 32-element Gold binary synchronization sequence, (right
up): its covariance function, (right-middle) auto-covariance function of PSF-
interpolated header s(n), (right-middle) auto-covariance function of sequence
sΔ (n) = s(n)s∗(n− 1), (left-bottom) header position detection using signal s(n)—
cross covariance with the received signal r(n), (right-bottom) header position de-
tection using signal sΔ (n)—cross covariance with the received signal rΔ (n) =
r(n)r∗(n−1)
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Fig. 21.2: Example of synchronization header usage in a presence of strong carrier
offset (0.1% of the frequency carrier value): (left) header position is not detected
using the reference signal s(n) and cross covariance with the received signal r(n),
(right) header position is detected using the reference signal sΔ (n) and cross covari-
ance with the received signal rΔ (n) = r(n)r∗(n−1)

channel scales only transmitted data in amplitude (gain G) and shift them in phase
(angle α):

h(n) = Ge jα . (21.2)

Imperfect receiver adds to the received signal two offsets: a carrier frequency offset
(ΔΩc) and a carrier phase offset (β ):

c(n) = e j(ΔΩcn+β ). (21.3)

In consequence, the received signal is mathematically described as follows (first
the transmitted signal s(n), then the one-tap channel impulse response h(n), finally
the receiver down-converter error c(n)):

r(n) = c(n) · h(n) · s(n) = GA(n − M) · e j(ΔΩc(n−M)+φ(n−M)+α+β ), (21.4)

where M denotes the signal delay expressed in signal samples.

Frame Synchronization Method #1: Sensitive to Carrier Frequency Offset We
know what synchronization signal s(n) was sent and should find its position in the
received signal r(n). Let us calculate cross-correlation function of these two signals:

R̂sr(k) =
N−1

∑
n=0

r(n)s∗(n− k) =

=
N−1

∑
n=0

(
GA(n−M)e j(ΔΩc(n−M)+φ(n−M)+α+β ) ·A(n− k)e− jφ(n−k)

)
=

= Ge j(α+β )e− jΔΩcM
N−1

∑
n=0

(
e jΔΩc(n)A(n−M)A(n− k)e j(φ(n−M)−φ(n−k))

)
. (21.5)

When carrier frequency offset is missing or it is very small (e jΔΩcn ≈ 1), we have
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R̂sr(k)≈ Ge j(α+β )e− jΔΩcM
N−1

∑
n=0

(
A(n−M)A(n− k)e j(φ(n−M)−φ(n−k))

)
=

= Ge j(α+β )e− jΔΩcMRss(k−M). (21.6)

As we see, absolute value of the cross-correlation function Rsr(k) will have max-
imum for k = M (index of Rss(k−M) maximum), when the synchronization signal
s(n) finds itself in the signal r(n). The method can be used for very small carrier
frequency offset and frequent repetition of the header.

Frame Synchronization Method #2: Robust to Carrier Frequency Offset Al-
ternative solution for bigger carrier offsets is as follows. A differential version sΔ (n)
of the sent header (synchronization) signal s(n) (21.1) is defined:

sΔ (n) = s(n)s∗(n−1) = A(n)A(n−1)e j(φ(n)−φ(n−1)) (21.7)

together with the differential version rΔ (n) of the received signal r(n) (21.4):

rΔ (n) = r(n)r∗(n−1) =

= G2A(n)A(n−1) · e j(ΔΩcn+φ(n)+α+β )e− j(ΔΩc(n−1)+φ(n−1)+α+β ) =

= G2A(n)A(n−1) · e j(ΔΩc+φ(n)−φ(n−1)). (21.8)

Auto-correlation of the signal sΔ (n) is equal:

R̂sΔ sΔ (k) =
N−1

∑
n=0

sΔ (n)s
∗
Δ (n− k) =

=
N−1

∑
n=0

(
A(n)A(n−1)e j(φ(n)−φ(n−1))A(n− k)A(n− k−1)e j(φ(n−k)−φ(n−k−1))

)

(21.9)

while cross-correlation of the signals sΔ (n) and rΔ (n) can be expressed as:

R̂rΔ sΔ (k) =
N−1

∑
n=0

rΔ (n)s
∗
Δ (n− k) =

=
N−1

∑
n=0

(
G2A(n−M)A(n−M−1) · e j(ΔΩc+φ(n−M)−φ(n−M−1))A(n− k)A(n− k−1)e j(φ(n−k)−φ(n−k−1))

)
=

= G2e jΔΩc
N−1

∑
n=0

(
A(n−M)A(n−M−1) · e j(φ(n−M)−φ(n−M−1))A(n− k)A(n− k−1)e j(φ(n−k)−φ(n−k−1))

)
=

= G2e jΔΩc RsDsD(k−M). (21.10)

Absolute value of the RrΔ sΔ (k) function does not depend on ΔΩc and has maxi-
mum when signal sΔ (n) finds itself in the signal rΔ (n), i.e. for k = M, index of the
RsDsD(k−M) maximum.
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Exercise 21.2 (Where Does a Synchronization Header Start?). More care-
fully analyze code of the program presented in Listing 21.1, in the part concern-
ing the header definition, its addition to the bit-stream and finding its occurrence
in the received signal. Initially run program in disturbance-free scenario:

do_updownchan=0;do_disturb= 0;do_synchro = 1; do_decim=1;

Observe shapes of auto and cross-correlation functions calculated for dif-
ferent headers, proposed for different modulations inside the function
modtype2synchro. Choose different sequences if more are available. Gen-
erate and test longer headers using the program line (add it if necessary):

Nsynch=99;synch = floor( Nstates*(rand(1,Nsynch)-10*eps) );.

The longer the header is, the larger peaks should have the correlation functions
and more robust to noise the header detection could be possible. Turn on the
option do_disturb = 1. Then set different levels of disturbances in the
line:

SNR = 40; chanG = 0.25; chanPh = pi/7;
carDF = 0.0001; carDPh = pi/11; ADCdt=0.5;

and run the program several times, checking visually shapes of the correlation
functions and the calculated value n1st—found first header sample. It should
be the same for headers having the same length.

21.4 Carrier Offsets Detection and Correction

After matching position of the synchronization signal s(n) (21.1) to the received
signal r(n) (21.4) in the receiver, multiplication of the received and the sent header,
conjugated and appropriately delayed, should us give:

d(n) = r(n)s∗(n−M) = GA2(n−M) · e j(ΔΩc(n−M)+α+β ), (21.11)

allowing identification of Ωc and α +β from the angle: θ(n) = ΔΩcn+α +β of
the complex value (21.11).

Frequency Carrier Offset Estimation Method In this method only ΔΩc value is
estimated. Angles α and β are eliminated from Eq. (21.11) by calculating a tempo-
rary variable z(n):

z(n) = d(n)d∗(n−1) = G2A2(n−M)A2(n−M−1) · e jΔΩc . (21.12)

Next, we compute angles of z(n) for many indexes n and average results, obtaining
relatively good estimator of the carrier frequency offset:
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ΔΩc = mean(�z(n)) . (21.13)

The method can be further improved when only z(n) values corresponding to IQk

symbols of the synchronization sequence are used in Eq. (21.13):

ΔΩc = mean(�z(n) |n=k ) . (21.14)

This way we avoid problems of complex numbers with small real or imaginary part.

Joint Frequency Carrier Offset and Phase Offsets Estimation Method We can
calculate many samples of d(n) (21.11), than its angles θ(n), and finally perform
least-squares polynomial line fitting:

θ(n) = ΔΩc(n−M)+α +β = ΔΩcn+α +β −ΔΩcM︸ ︷︷ ︸
γ

, (21.15)

to the known points {n,θ(n)}. This way we can find optimal values of ΔΩc and γ .
In this method the phase offset problem is solved at the same time.

Both carrier frequency offset estimation methods, presented above, are imple-
mented in the program 21.1. But they can be used ONLY when signals s(n) and
r(n) are already synchronized! Results presented in Fig. 21.3 confirm their useful-
ness.
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Fig. 21.3: Confirmation of CFO estimation methods efficiency. IQ scatter plots of
detected 4-QAM carrier states for three cases, from left to right: no CFO correction,
CFO correction using the simple method (mean value of the angle), CFO correction
using polynomial fitting of the angle curve. CFO is the only imperfection, K = 7
samples per symbol, pulse shaping filter SRRC with r = 0.35

Exercise 21.3 (Carrier Frequency Offset Detection). Continue Exer-
cise 21.2. Choose your favorite modulation, use the proposed header or gen-
erate yourself a random sequence of arbitrary selected length, run the program
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systematically increasing level of disturbances (noise, carrier offsets), choose
different header synchronization methods (r(n)s∗(n) and rΔ (n)s∗Δ (n)) and car-
rier frequency offset estimation methods (simple or (polyfit()). Observe final
eye and phasor-diagrams of the enhanced received signal. Check how many
transmission errors are found in each case.

21.5 Channel Estimation and Equalization

Repetition of Channel Basics Signal phase shift corresponds to signal time delay:

cos(ω0t −φ0) = cos

(
ω0

(
t − φ0

ω0

))
, e j(ω0t−φ0) = e

jω0

(
t− φ0

ω0

)
. (21.16)

Signal acquired in the receiver is a result of convolution of the transmitted signal
x(t) with channel impulse response h(t). Convolution of signals in time domain is
equivalent to signal spectra multiplication in frequency domain:

y(t) =

∞∫
−∞

x(τ)h(t − τ)dτ =

∞∫
−∞

h(τ)x(t − τ)dτ ⇔ Y ( f ) = X( f )H( f ). (21.17)

For single frequency complex-value input signal:

x(t) = e jωt , (21.18)

the channel output is equal:

y(t) =

∞∫
−∞

h(τ)x(t − τ)dτ =

∞∫
−∞

h(τ)e jω(t−τ)dτ =

⎡
⎣

∞∫
−∞

h(τ)e− jωτ dτ

⎤
⎦ e jωt =

H(ω)e jωt = |H(ω)|e j(ωt+�H(ω)) (21.19)

i.e. the signal is changed in amplitude by channel gain/attenuation and shifted in
phase (delayed), according to Eq. (21.16). Different signal frequency components
are processed (attenuated and delayed) by channel in different way. When channel
has linear-phase response �H(ω) = −αt all signal frequencies are delayed by the
same time α:

y(t) = |H(ω)|e jω(t−α). (21.20)

Because cos(ωt) = 0.5(e jωt + e− jωt), the last equation holds also for real-value
signals:

y(t) = |H(ω)|cos(ω(t −α)). (21.21)
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Channel Estimation and Equalization: Zero Forcing Method Since the channel
changes amplitudes and phases of passed sinusoidal signal components, which are
passing through it, information contained in these quantities is modified/destroyed.
In order to recover it, we have to estimate channel frequency response (Fourier trans-
form of the channel impulse response h(t)):

Ĥ( f ) = |Ĥ( f )|e j�Ĥ( f ), (21.22)

and equalize the channel, i.e. remove (minimize, reduce) its influence upon the chan-
nel output y(n):

Y ( f )

Ĥ( f )
=

X( f )H( f )

Ĥ( f )
≈ X( f ). (21.23)

Having X( f ) we can recover bits contained in the signal.
In example presented in this chapter, after header synchronization and carrier

recovery (carrier frequency offset estimation and removal), the transmission channel
has to be estimated and equalized. How is it done in our example? At this processing
stage we know sent carrier states (Is

k ,Q
s
k) = As

ke jφ s
k of the synchronization header

and have received carrier states (Ir
k ,Q

r
k) = Ar

ke jφ r
k of the header. If the bandwidth of

the transmitted signal is very small (around fc), we can assume that all frequency
components in this bandwidth are attenuated by G = |H( fc)| and delayed by α =
∠H( fc). Therefore:

IQr
k = G · e jα · IQs

k. (21.24)

For each transmission symbol we can calculate

IQ(r)
k ·
(

IQ(s)
k

)∗

IQ(s)
k ·
(

IQ(s)
k

)∗ =
GkAke j(φk+αk)Ake− jφk

Ake jφk Ake− jφk
= Gke jαk , k = 1,2,3, . . . ,Nheader.

(21.25)
The method is forcing to zero the detection error for each IQ(s)

k reference pilot
state—what gives the method name. As a channel estimation result, a mean value
of found Gk and αk is taken:

G = mean(Gk), α = mean(αk). (21.26)

Channel influence is removed from the received IQ(n) signal samples by a simple
correction:

IQ(r)
n

Ge jα =
GAne j(φn+αk)

Ge jα = Ane jφn = IQ(s)
n = I(n)+ jQ(n). (21.27)

As we see, values of the sent I(n) + jQ(n) signal can be theoretically perfectly
recovered. Hmm. . .

In Fig. 21.4 IQ scatter plot of the received signal is shown for noisy channel
(SNR=10 dB) with gain equal to 0.25 and phase shift −π

4 . Four different cases are
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considered: no channel estimation and correction as well as channel estimation and
correction using three methods: ZF, presented above, as well as LS/MSE and adap-
tive NLMS filter, discussed below. As we see all methods succeeded to remove the
channel distortion from the received signal. User can also apply the channel to an up-
converted version of the transmitted signal, using the function IQupchandown.m.
In this case a multi-tap channel can be simulated. What is left for Reader for home
exercise.
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Fig. 21.4: Results of channel corrections for different methods, in rows from left to
right: (1) no correction, (2) ZF corrector, (3) LS/MSE corrector, (4) NLMS corrector
(μ = 0.05). Simulation conditions: 4-QAM, K = 8 samples per symbol, Ns =8 sym-
bols per PSF filter (square root raised cosine, r=0.35), SNR=10 dB, 1-tap channel:
gain=0.25, phase shift=−π

4

Exercise 21.4 (Channel Estimation and Equalization—ZF Method). Con-
tinue Exercise 21.3. Set do_updownchan=0. At present concentrate on short
program fragment performing channel estimation and equalization, chosen by
setting: do_chanequ=1. It implements channel correction using Eq. (21.27).
Change a few times values of channel gain and phase shift (for example, set
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chanG=0.1; chanPh=pi/9; Run the program. Observe consequences of
channel distortion on eye and phasor-diagrams of the uncorrected received sig-
nals. Compare them with diagrams obtained for the signals when channel was
equalized.
Now set do_updownchan=1, chan=[0.5,−0.25,0.1,−0.1] and
simulate channel at target high frequency. Check how the ZF method works
in this case.

Exercise 21.5 (Channel Simulation Methods).
Analyze fragment of a program presented in the Listing 21.3. Its full version
is given in the book repository. Three channel simulation methods are imple-
mented and compared:

1. complete, with frequency up-down conversion and signal convolution with
channel impulse response at high, target frequency,

2. simplified, but giving exactly the same results, without signal frequency
up-down conversion but with down-shifting the channel impulse response
to the base-band and performing channel convolution in the base-band,

3. the simplest one, as a one-tap complex-value signal modifier.

Test different available channel impulse responses. Change number of samples
per symbol and observe modification of exploited transmission bandwidth and
different errors given by the simplest channel simulation method.

Listing 21.3: Testing channel simulation methods in Matlab
�

1 % lab21_ex_channel.m
2 % Testing channelsimulationmethods
3 clear all; close all; figure;
4

5 % TESTING CHANNELSIMULATION##############################################
6 % Frequency UP conversion in TX
7 N = length(IQn); n = 0:N-1; % signal length, sample indexes
8 y = real(IQn).*cos(2*pi*fcar/fs*n) - imag(IQn).*sin(2*pi*fcar/fs*n);
9 %y = 0.5 * IQn .* exp(j*2*pi*fcar/fs*n); % alternative

10 Y = freqz( y, 1, f, fs );
11 plot(f,abs(H),’b’,f,abs(Y),’r’); grid; xlabel(’f (Hz)’); title(’H(f), Y(f)’); pause
12 % Channelsimulation in high frequency
13 y = filter( h,1,y);
14 % Frequency DOWN conversion in RX
15 IQnn = 2 * y .* exp( -j*( 2*pi*fcar/fs*n ) );
16 % Pulse shaping in RX
17 IQdown1 = conv( IQnn, hpsf ); IQdown1 = IQdown1(Mpsf+1:end-Mpsf); % pulse shaping in TX
18



21.5 Channel Estimation and Equalization 647

19 % Channelsimulation in the base-band
20 hdown = h .* exp( -j*( 2*pi*fcar/fs*(0:length(h)-1) ) );
21 hdown = conv( hdown, hpsf );
22 IQdown2 = conv( IQn,hdown ); IQdown2 = IQdown2(Mpsf+1:end-Mpsf);
23

24 % Other simplifiedmethod - one point deformation, good for small signal bandwidth
25 IQdown3 = IQn .* chanGain * exp(j*chanPhase); % equivalentchannel in the BB
26 IQdown3 = conv( IQdown3, hpsf ); IQdown3 = IQdown3(Mpsf+1:end-Mpsf);
27

28 figure;
29 plot(1:length(IQdown1),real(IQdown1),’ro-’,...
30 1:length(IQdown2),real(IQdown2),’bx-’,...
31 1:length(IQdown3),real(IQdown3),’gs-’); grid; title(’Compare I(n)’); pause

��

Channel Estimation and Equalization: Least-Squares Method At present we
will interpret the channel estimation and correction problem from the linear al-
gebra point of view, i.e. we will solve in least squares (LS) sense a matrix equa-
tion, describing data transmission through a linear time-invariant channel. Let
hn,n = 0 . . .M−1, denote M taps of a channel impulse response, un—input signal,
and vn—output signal. The input–output matrix relation, describing the transmis-
sion, is as follows:

⎡
⎢⎢⎢⎣

uM−1 · · · u1 u0

uM · · · u2 u1
...

. . .
...

...
uN−1 uN−2 · · · uN−M

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

h0

h1
...

hM−1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

vM−1

vM
...

vN−1

⎤
⎥⎥⎥⎦ , Uh = v. (21.28)

When we are synchronized and when we know which signal samples in the receiver
are connected with the header (pilot) states and which states where transmitted, we
can use the above equation as a template and apply it for header (pilot) samples only.
Therefore, we solve this equation, taking into account that data has complex-values
now:

Uh∗ = v → h∗ = (UHU)
−1

UH ·v. (21.29)

In such case the vector h represents decimated channel impulse response (with
number of samples per symbol as the decimation order). To simplify correction
of unknown transmitted data, which are sent after the header, we can inverse the
Eq. (21.28):

⎡
⎢⎢⎢⎣

vM−1 · · · v1 v0

vM · · · v2 v1
...

. . .
...

...
vN−1 vN−2 · · · vN−M

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

g∗0
g∗1
...

g∗M−1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

uM−1

uM
...

uN−1

⎤
⎥⎥⎥⎦ , Vg∗= u, (21.30)

and directly calculate from it the correction filter g:

g∗ = (VHV)-1VH ·u. (21.31)
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Having weights g calculated from Eq. (21.31) for the header (from input–output
relation), next we can use them for estimation of transmitted data u using received
data v (from new input–output relation) using Eq. (21.30): u = Vg∗. Many different
LS methods can be used for solving linear equation (21.30). Details can be found in
Chap. 13. In Listing 21.4 Matlab code, implementing the LS/MSE channel correc-
tor, is given. In Fig. 21.4 result of its application is presented.

Listing 21.4: Channel estimation and correction using LS solution of matrix input–
output equation written for pilot states

�

1 % lab21_ex_receiver.m - fragment
2 if( do_chanequ==2 ) % solving linear input-output equation in LS (MSE) sense
3 M = 9; % channel length (in number of symbols)
4 L = Nhead; % number of input symbols
5 v = IQkHeadEstim; % values of output symbols
6 V = toeplitz(v(M:L),v(M:-1:1)); % matrix with output signal
7 u = IQkHead(M:L).’; % input symbols
8 g = (V\u), % channel inverse filter
9 v = IQn( 1+(Nhead-1-(M-2))*K : K : 1 + (Nhead+Ndata-1)*K); % data to correct

10 L = length(v); % number of input data
11 V = toeplitz(v(M:L),v(M:-1:1)); % matrix with input data
12 IQkDataEstim = V*g; % data correction
13 [ IQkHeadEstim(1:10).’ IQkHead(1:10).’ ], pause % compare IQ header
14 [ IQkDataEstim(1:10) IQkData(1:10).’ ], pause % compare IQ data
15 rxData = IQ2numbers( IQkDataEstim, modtype ); % IQ to state numbers
16 [ rxData(1:15).’ numData(1:15) ], % numbers in and out
17 errors = sum( rxData.’ - numData ), pause % error
18 figure;
19 plot( IQkDataEstim,’r*’); grid; title(’Q(n) = f( I(n) )’); pause
20 return
21 end

��

Channel Estimation and Equalization: Adaptive Least Mean Squares (LMS)
Filter Instead of using the matrix block-based solution (21.31), one can apply also
the LMS complex-value adaptive filters for channel inverse filter calculation:

errn = un −
[
vn vn−1 . . . vn−(M−1)

] ·

⎡
⎢⎢⎢⎢⎣

g(n)0

g(n)1
...

g(n)M−1

⎤
⎥⎥⎥⎥⎦

∗

(21.32)

⎡
⎢⎢⎢⎢⎣

g(n+1)
0

g(n+1)
1

...

g(n+1)
M−1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

g(n)0

g(n)1
...

g(n)M−1

⎤
⎥⎥⎥⎥⎦+μcmplx · err∗n ·

⎡
⎢⎢⎢⎣

vn

vn−1
...

vn−(M−1)

⎤
⎥⎥⎥⎦ . (21.33)
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The LMS algorithm can be replaced by: (1) normalized LMS algorithm (second
term in Eq. (21.33) is divided by energy of last M samples of signal vn, i.e. by the
En = ∑M−1

k=0 vn−kv∗n−k) or (2) more computationally extensive but faster converging
RLS algorithm. Details can be found in Chap. 12 on adaptive filters.

The adaptive channel correction filters can be also applied during regular data
transmission, not only for pilots. When disturbances are not big or when the sys-
tem is already roughly equalized and our signal vn is close to a correct constella-
tion point, we can use the difference between observed and correct carrier state as
an error for adaptive filter weights improvement. In such case un in Eq. (21.33) is
replaced by recognized (predicted) constellation point �vn�. Algorithms using this
approach are called decision-directed.

In Listing 21.5 Matlab code, implementing the NLMS adaptive filter as the chan-
nel corrector, is given. Since the header used in our program is short, we allow the
filter to adapt longer time using the transmitted data also (the are known to it). In
Fig. 21.4 result of the program application is presented. In turn, in Fig. 21.5 adapta-
tion of the first filter tap is presented, for the same simulation.

0 100 200 300
sample index n

0

1

2

3

4
g1(n)

Fig. 21.5: Adaptation of the first weight of NLMS adaptive filter (μ = 0.05) during
simulation which results are presented in Fig. 21.4

Listing 21.5: Channel estimation and correction using LMS adaptive filter
�

1 % lab21_ex_receiver.m - fragment
2 if( do_chanequ==3 ) % NLMS adaptive filter of symbols - weightsadaptationusing

header
3 u = [ IQkHead IQkData ]; % sent
4 v = IQn( 1 : K : 1+(Nhead+Ndata-1)*K ); % received
5 bv = zeros(1,M); g = zeros(1,M); mi=0.1; ghist = []; % initialization
6 for n = 1 : length(u) % filter loop
7 bv = [ v(n) bv(1:M-1) ]; % input to buffer
8 uest(n) = sum( bv .* conj(g) ); % estimated value
9 err(n) = u(n) - uest(n); % error
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10 g = g + mi * conj(err(n)) * bv / (bv*bv’); % filter weights update
11 ghist = [ ghist g(1) ]; % history
12 end %
13 figure; plot( abs(ghist) ); title(’ghist(n)’); pause % figure
14 rx = IQ2numbers( uest, modtype ).’; % received state numbers
15 tx = [ numHead; numData ]; % transmittedstate numbers
16 errors = sum( rx(end-Ndata/2:end) - tx(end-Ndata/2:end) ), pause % error
17 figure;
18 plot( uest(end-Ndata/2:end),’r*’); grid; title(’Q(n) = f( I(n) )’); pause
19 return
20 end

��

Exercise 21.6 (Channel Estimation and Equalization: LS and
NLMS Adaptive Filter Methods). Continue Exercise 21.3. Set
do_updownchan=1. At present concentrate on program fragment per-
forming channel estimation and equalization using: (1) LS (matrix-based),
and (2) NLMS (adaptive filter-based) methods. They are, respectively, chosen
by settings: do_chanequ=2 and do_chanequ=3. Run the program for
different values of chan coefficients. Observe consequences of channel dis-
tortion on eye and phasor-diagrams of uncorrected received signals. Compare
them with diagrams obtained for signals when channel is equalized. Compare
efficiency of equalizer do_chanequ=1 (ZF), do_chanequ=2 (LS), and
do_chanequ=3 (NLMS). Use different values of μ . Change the NLMS filter
to LMS and test it. You can also try to use the RLS adaptive filter which is
converging fast and its application is beneficial for short headers.
Now set do_updownchan=1, chan=[0.5,-0.25,0.1,-0.1] and sim-
ulate channel at target high frequency. Check how LS and NLMS methods work
in this case.

Phase Delay and Group Delay Group delay is an important parameter characteriz-
ing signals in analog communication channels. Let us assume that we are interested
in the following modulation scheme:

x(t) = xm(t) · e j2π fct , X( f ) = Xm( f − fc), (21.34)

where xm(t) denotes a modulation signal, which has very narrow frequency spec-
trum (bandwidth) in comparison with carrier frequency fc. The signal is passed by
a channel having frequency response H( f ) = G( f )e jϕ( f ). Since we are interested
in channel activity around carrier frequency fc, we express value of ϕ( f ) around fc

using the Taylor series:

H( f ) = G( f ) · e j(ϕ( fc)+( f− fc)Φ( fc)), Φ( fc) =
dϕ( f )

d f

∣∣∣∣
f= fc

, (21.35)
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assuming that the channel gain G( f ) is constant in the neighborhood of fc. Fourier
transform of the channel output is equal to:

Y ( f ) = X( f )H( f ) = Xm( f − fc) ·G( f )e j(ϕ( fc)+( f− fc)Φ( fc)) =

=
[
Xm( f − fc)e

j( f− fc)Φ( fc)
]
·G( f )e jϕ( fc) =

=
[
Xm( f − fc)e

− j2π( f− fc)tg
]
·G( f )e− j2π fctp =

=
[
Xm( f − fc)e

− j2π f tg
] ·G( f )e j2π fc(tg−tp), (21.36)

where tp and tg, signal phase delay and group delay, are defined as:

tg =−Φ( fc)

2π
=− 1

2π
· dϕ( f )

d f

∣∣∣∣
f= fc

, tp =−ϕ( fc)

2π fc
. (21.37)

Spectral relation (21.36) corresponds to the following time relation:

y(t) = xm(t − tg)e
j2π fc(t−tg) · e j2π fc(tg−tp) �g(t) = xm(t − tg)e

j2π fc(t−tp) �g(t),
(21.38)

where � denotes a convolution and g(t) is an inverse Fourier transform of G( f ).
We have assumed that G( f ) has constant value G around fc. Since spectrum of our
modulating signal is very narrow around fc, the rest of channel frequency response,
outside the fc neighborhood, is not significant for the calculation result. Therefore
we can assume gain G in the whole frequency range. In such situation g(t) = Gδ (t)
(the Dirac delta function) and Eq. (21.38) simplifies to:

y(t) = G · xm(t − tg) · e j2π fc(t−tp). (21.39)

For real-value cosine-modulation we have

y(t) = G · xm(t − tg) · cos(2π fc(t − tp)). (21.40)

At present we can do physical interpretation of times tg and tp. The tg is called a
group delay, i.e. a delay of signal xm(t) (carrier envelope in (21.34)). In turn, the tp

is called a phase delay, i.e. a delay of the complex signal carrier in (21.34). In fact,
during simulation of a telecommunication channel in the base-band by means of
one-tap data modifier, we were only taking into account the carrier delay, neglecting
the group delay what is correct for flat channel phase response in the neighborhood
of frequency fc.

Exercise 21.7 (Phase Delay and Group Delay). It is impossible to include all
programs inside the book. In the webpage of the book one can find a program
lab21_ex_gdelay.m for simulation of analog transmission channels with
very narrow-band carrier modulation. Become familiar with this program. Run
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it for Gaussian window and raised cosine window as a modulation function. In-
put signals xm(t) and x(t) are plotted in black. The expected signal after channel
passing and its expected envelope are plotted in blue. Real signal of the channel
output is drown in red and should overlap with blue curves. Notice values of
shifts ng and np, corresponding to tg and tp. You should see delay of the car-
rier envelope and delay of the carrier itself when these values are bigger than 1.
Change filter taps. Change value of carrier frequency: choose different point of
channel phase response.

21.6 Decreasing Signal Sampling Ratio

Our single-carrier transmission program, used in this chapter, is an educational one.
Despite its simplicity, it should give Reader a chance to learn several things at once:
fundamental transmission techniques, appearing problems and their solutions. From
this point of view, it meets our needs. However, up to now, its implementation was
unpractical and unrealistic in one aspect: all developed solutions worked well, more
or less, but had been tested only for very oversampled signals, i.e. having many
samples per one carrier symbol. Now we can reduce the signal sampling rate in the
receiver, setting do_decim=1 and Mdecim=2,3,4,6,8,12 in the program,
and analyze exemplary results of the program usage for different signal decimation
ratios. In Fig. 21.6 recovered I(k) and Q(k) carrier states are presented for 4-QAM
modulation (in one plot since only values 1 and −1 are expected). If two distinctive
lines of values 1 and −1 are visible, it means that the applied algorithms succeeded
to recover correctly all carrier states. In turn, when we see widening clouds of points,
problems with carrier states decoding are becoming bigger and bigger. In Fig. 21.6
we see that after decimation of the received signal the obtained results are still sat-
isfactory. Being precise: they are the same, what is very strange! May be something
was forgotten by us? Will we use a Phone-A-Friend? Hmmm . . . Yes, yes. We have
not taken into account in our simulation a time offset of the ADC sampling (in
fraction of the sampling period) as well as a time offset in respect to the symbol
maximum during its down-sampling. After considering these two occurring phe-
nomena and repeating the simulation, results presented in Fig. 21.7 were obtained.
Originally, we had 24 samples per symbol, after down-sampling only 3 samples per
period. We have assumed 50% time offset in ADC sampling and signal delay by 1,
2 and 4 samples before its re-sampling. Since we were taking every 8-th sample,
now we had 12.5%, 25%, and 50% delay in respect to the symbol maximum. As
we see, the obtained results are significantly worse now. We can conclude that it is
much better when we are synchronized with the symbol positions.
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We should remember that signals in efficient receivers are drastically down-
sampled, and only a few samples per symbol are used in them, from 1 to 3–5
during the symbol recognition. If necessary, missing samples are obtained by
means of interpolation. But this is beginning of completely new story. We will
later tackle the problem briefly during presentation of real-world examples.
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Fig. 21.6: Detected I(k) and Q(k) values of carrier states for 4-QAM modulation and
different signal decimation orders Mdecim=2,4,6,8 in the receiver. From left to
right and up-down, number of samples per one symbol period is equal: 12, 6, 4, 3.
Simulated transmission conditions were as follows: SNR = 10 dB, chanG = 0.25,
chanPh = π/7, carDF = 0.0001, carDPh = 0, without sampling time offset (!).
Noise sequence was the same in all simulations
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Fig. 21.7: Detected I(k) and Q(k) values of carrier states for 4-QAM modulation
and Mdecim=8 times signal decimation in the receiver (coming from 24 samples
per symbol to 3 samples per symbol). From left to right and up-down, for different
values of sampling time offsets in respect to the symbol maximum: (1) precisely in
the symbol maximum, (2) with 12.5% delay (1 sample of 8), (3) with 25% delay (2
samples of 8), (4) 50% delay (4 samples of 8)

Exercise 21.8 (Decreasing Number of Samples per Symbol in the Re-
ceiver). Use program from Listing 21.1 and try to obtain plots similar to ones
presented in the Fig. 21.6. Set do_decim=1, Mdecim=2,3,4,6,8,12.
Test algorithm robustness to single disturbance, adding one disturbance after
the other. Increase the disturbance level. Catch the value for which first trans-
mission errors occur. Are these thresholds the same for all decimation schemes?
Check whether your conclusions are valid for other modulation techniques, for
example, 8PSK or 16QAM. Do program modification, allowing simulation of
sampling time offsets, discussed in the text:

ADdt=0.5; n=1:N; IQ(1,n)=interp1(n-1,IQ(1,n),n+ADdt,’spline’);

SYMdt=0.5; IQ = resample(IQ(1+round(SYMdt*Mdecim):N),1,Mdecim);

After the modification, try to generate plots similar to shown in the Fig. 21.7.
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21.7 Timing Recovery Methods

For demonstration of different problems, arising in digital single-carrier commu-
nication, and for presentation of different templates of possible solutions, we have
used a transmission example similar to a Wi-Fi packet sending. In such application
the header (preamble) is used for many different purposes: carrier recovery, channel
estimation and equalization, frame and symbol synchronization, i.e. timing recov-
ery. In telecommunication technology there are many different methods dedicated
for different modulations that are used, different channels types, . . . etc. It is im-
possible to present all existing solutions. In next chapters on multi-carrier digital
transmission, some methods used in multi-carrier scenario will be presented.

At present, to complete the view of single-carrier systems, we learn some addi-
tional timing recovery methods which are used for finding states of one carrier. Why
are they important? Because together with carrier recovery methods, presented in
the chapter on amplitude modulation (PLL and Costas loops), they can be applied
to a signal transmitted without a header/preamble.

The early-late-gate, Gardner and Mueller–Müller timing recovery methods are
very popular in case of BPSK, QPSK (4-QAM), and DQPSK modulations.

Early-Late-Gate Method The early-late-gate method will be presented with more
details in the following section in which demodulation of nano-satellite signal is
described. At present, we can shortly summarize it as a method in which slope of
the IQ(n) signal is tested in its real part and imaginary part. After taking a sample
near the IQ(n) signal maximum (peak (+1)) and its two, left and right neighbors, we
should observe: (1) a positive signal slope (left), (2) a maximum peak (in the center),
or (3) a negative signal slope (right). Degree of slope of positive and negative slopes
inform us that we are taking signal samples too early, correctly or too late than
required, and that the next symbol sampling should be performed later, as before or
earlier. When two neighbors of the central sample have similar values, the sampling
step is correct and should be repeated. Of course, for the IQ(n) signal minimum
(peak (−1)) interpretation of slope signs is reversed (overall positive means “too
late” while overall negative—“too early”). We should have at least 5 samples per
symbol in order to perform the slope detection.

Gardner Method In the Gardner timing recovery method at least two samples per
symbol are required. In this approach we are looking for such value of n for which
the following cost functions (four possibilities) are equal to 0:

C1(n) = [Re{x(n+N)}−Re{x(n)}] ·Re{x(n+N/2)}, (21.41)

C2(n) = [Im{x(n+N)}− Im{x(n)}] · Im{x(n+N/2)}, (21.42)

C3(n) = [Re{x(n+N)}−Re{x(n)}] ·Re{x(n+N/2)}+ ...

....+[Im{x(n+N)}− Im{x(n)}] · Im{x(n+N/2)}, (21.43)

C4(n) = Re{[x∗(n+N)− x∗(n)] · x(n+N/2)}, (21.44)

where N denotes the number of samples per symbol. An idea leading to proposition
of these cost function is as follows:
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1. when two neighbor symbols, separated by N samples, have the same values
(both are equal to +1 or to −1), their difference is equal to zero—therefore they
are subtracted in all cost functions causing their zeroing,

2. when two neighbor symbols have opposite values (−1 and +1) there is a small
value (desirable 0) which is lying in-between them—therefore their difference
is multiplied in all cost functions by this value causing their zeroing.

The last cost function is not sensitive to carrier frequency offset when the offset
is small in comparison with symbol frequency and approximately constant during
symbol period (e j(ΔΩcn+Δφc) = e jθ = const), what can be proofed:

[(xR(n+N)− jxI(n+N))−(xR(n)− jxI(n))]e
− jθ · (xR(n+

N
2
)+ jxI(n+

N
2
))e jθ=

= xR(n+
N
2
)[xR(n+N)− xR(n)]+ xI(n+

N
2
)[xI(n+N)− xI(n)]+ . . .

. . .+ j

{
xR(n+

N
2
)[xI(n)− xI(n+N)]+ xI(n+

N
2
)[xR(n+N)− xR(n)]

}
. (21.45)

The real part of Eq. (21.45) gives Eq. (21.43).

Mueller–Müller Method In the Mueller–Müller method zero of the following cost
function is searched:

C5(n) = Re[x(n+N)]sign{Re[x(n)]}−Re[x(n)]sign{Re[x(n+N)]}+ ...

...+ Im[x(n+N)]sign{Im[x(n)]}− Im[x(n)]sign{Im[x(n+N)]}. (21.46)

The method requires minimum one sample per symbol. Its justification is as follows:

1. if two neighbor symbols are the same (both +1 or both −1), their values and
signs are the same and their subtraction is equal to zero,

2. if two neighbor symbols are different, the cost function is equal to 0 also, for
example, for a=1 and b=−1 we have

a · sign(b)− sign(a) ·b = 1(−1)−1(−1) = 0. (21.47)

In order to check shapes of the defined above cost functions and to verify whether
they are equal to zero when index n of IQ(n) is equal to the symbol position k of
IQ(k), we have generated IQ(n) sequence for 4-QAM modulation and calculated
mean values of two cost functions (21.44) (Gardner) and (21.46) (Mueller-Müller)
for different values of the index n, in respect to symbol maximum position k =
0,N,2N, . . .:

Cmean
x (n) = ∑

m
Cx(n+mN), n = 0,1,2, . . . ,N −1, (21.48)

where N denotes the number of samples per symbol. Obtained results are presented
in Fig. 21.8. As we see, in both methods cost functions are equal to zero for n = 0
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and N
2 . Therefore, one should find initially the approximate symbol position using

some other criterion, for example, sign change of I(n) or Q(n) signals ((1)→ (−1)
or (−1) → (1)) and then locally, adaptively search for the exact symbol position
looking for cost function zeroing. Figure 21.8 was generated by the program 21.6,
presented below.
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Fig. 21.8: Mean values (21.48) of Gardner (21.44) (left) and Mueller-Muller (21.46)
(right) cost functions for symbol position detection. N = 100 samples per symbol

One can use the above presented cost functions for adaptive selection of these
IQ(n) values, which are expected to be carrier states IQ(k). As an adaptive tracker
one can exploit the same adaptive filter which was used for the carrier recovery in
the PLL and Costas loops, described in chapter on AM (de)modulation. In Figs. 21.9
and 21.10 results of such adaptation, performed for the Gardner method, are shown.
Both figures were obtained in the program 21.6. In our experiment, one symbol had
24 samples and symbol sampling offset was equal to 8 samples. In the first figure, we
can validate the adaptation procedure, observing how values of program variables
were changing:

– partition(n) is adapting to value bigger than 0.3, what is correct since
1
3 24 = 8,

– error(n) is converging to 0 while sample offset(n) is moving to 8
(Bravo!)

In Fig. 21.10 we can compare results of initial, wrong sampling of IQ(n) with offset
8, on the left side, and correct, after symbol timing recovery, on the right side.

Of course, the above presented synchronization methods to symbol position,
without usage of the synchronization header, are very useful. However, they were
implemented by us in inefficient way with high signal oversampling. This inconve-
nience can be omitted by reducing the sampling rate and applying any interpolation
procedure, for example, by using an efficient Lagrange interpolator using Farrow
filters, described in the chapter on signal re-sampling. Let us try to implement this
technique in our case. Now we can have only two samples per symbol in the Gard-
ner method and estimate true position IQ(k) of any symbol using surrounding it
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IQ(n) samples, for example, quadratic interpolation with 3 samples. Prediction pro-
cedure of the next symbol position should be adaptive and robust to high variance
of an input information. For this purpose we can apply the same robust adaptive
tracker (filter) which was used in the PLL and Costas loops, described in the chap-
ter on amplitude modulation. Both above mentioned techniques, the Farrow inter-
polator and the adaptive tracker have been implemented in the function presented
in Listing 21.6. When the IQ(n) signal has more than two samples per symbols,
interpolation is not performed: samples IQ(n) lying close to carrier states IQ(k) are
adaptively selected only. When the IQ(n) signal has 2 or 1 sample per symbol, the
Gardner and the Mueller–Müller methods are combined with Farrow interpolators.
Results from the program usage are presented in Figs. 21.11 and 21.12 for Gard-
ner+Farrow solution. As we can see, even for such small number of samples per
modulation symbol results are satisfactory: carrier states have been well recovered
and the adaptation process has converged to the correct solution.

One should remember that the detection curves of the Garner and Mueller–
Müller methods are equal to zero in two points (see Fig. 21.8) therefore some good
initial guess of the approximate symbol position is required. I am very sorry. I will
not continue further this story.

Exercise 21.9 (Timing Recovery University). Analyze code of the function
presented in Listing 21.6. IQ denotes a signal sent to it, alg=1,2,3,4,5
is selected algorithm number, Nsps denotes number of samples per symbol
and n1st is a number of the first IQ sample to be processed. In first part of the
function, a user can plot detection curves for five cost functions C1(n)−C5(n)—
Eqs. (21.41)–(21.44) and (21.46). In order to do this, if(1) should be set. In
the remaining part of the function only algorithms 3–5 are available only. When
Nsps>2, the Gardner and Mueller–Müller algorithms without signal interpola-
tion are used. For Nsps=2 the Gardner procedure with the Farrow interpolator
is used, while for NSps=1 the Mueller–Müller method and the Farrow filters.
Add the following code to the program lab21_ex_receiver.m just after
calculation of the IQn signal:

if(1) % 0/1 Testing symbol timing recovery methods
alg = 1; % 1/2/3/4/5 timing recovery algorithm
for Mdelay = 1 : 1 : K

IQnn = IQn(1+Mdelay : Mdecim : end); n1st = 1;
[ns,IQs] = timing_recovery(IQnn,alg,K/Mdecim,n1st);

end
end

Run the program. Observe figures. Change values of the following
parameters: modtype = ’BPSK’, ’4QAM’, rctype=’normal’ and
Mdecim=1,2,4,8,12,24.
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Fig. 21.9: Exemplary results from adaptive timing recovery using the Gardner
method. N = 24 samples per symbol. Correct symbol sampling offset equal to 8
is found: partition= 1

3 ·24 = 8, error=0 and offset=8

Listing 21.6: Matlab function for testing Gardner and Mueller-Muller symbol timing
recovery algorithms

�

1 function [ns, IQs] = timing_recovery( IQ, alg, Nsps, n1st )
2 % Calculation of symbol positions (ns) and carrier states values (IQs)
3

4 N = length(IQ); I = real(IQ); Q = (imag(IQ));
5 % Adaptationparameters
6 damp = sqrt(2)/2; % adaptation loop damping
7 band = (0.5*pi/500) / (damp+1/(4*damp)); % adaptation loop bandwidth
8 mi1 = (4*damp*band) / (1 + 2*damp*band + band*band); % adaptation coeff 1
9 mi2 = (4*band*band) / (1 + 2*damp*band + band*band); % adaptation coeff 2

10

11 % Checkingdetectioncharacteristics of all timing recoverymethods
12 if(1) % select 0/1 NO/YES
13 N = floor(N/Nsps)*Nsps; mN = 1 : Nsps : N-4*Nsps+1;
14 for n=0:2*Nsps-1
15 if(alg==1) % Gardner - frequency offset sensitive
16 a = (I(n+Nsps+mN) - I(n+mN)) .* I(n+Nsps/2+mN);
17 cost(n+1) = mean(a);
18 end
19 if(alg==2) % Gardner - frequency offset sensitive
20 a = (Q(n+Nsps+mN) - Q(n+mN)) .* Q(n+Nsps/2+mN);
21 cost(n+1) = mean(a);
22 end
23 if(alg==3) % Gardner - frequency offset sensitive
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Fig. 21.10: Phasor plots Q(k) = f (I(k)) (up) and I(k),Q(k) values (down) of esti-
mated carrier states for wrong symbol sampling with 8 sample offset (left) and for
correct sampling after adaptive timing recovery using the Gardner method (right).
N = 24 samples per symbol

24 a = (I(n+Nsps+mN) - I(n+mN)) .* I(n+Nsps/2+mN);
25 b = (Q(n+Nsps+mN) - Q(n+mN)) .* Q(n+Nsps/2+mN);
26 cost(n+1) = mean(a + b);
27 end
28 if(alg==4) % Gardner - frequency offset not sensitive
29 cost(n+1) = mean(real((conj(IQ(n+Nsps+mN))-conj(IQ(n+mN)) .* IQ(n+Nsps/2+mN)))

);
30 end
31 if(alg==5) % Mueller & Muller
32 a = I(n+mN).*sign(I(n+Nsps+mN)) - I(n+Nsps+mN).*sign(I(n+mN));
33 b = Q(n+mN).*sign(Q(n+Nsps+mN)) - Q(n+Nsps+mN).*sign(Q(n+mN));
34 cost(n+1) = mean(a + b);
35 end
36 end
37 figure; plot(0:2*Nsps-1,cost,’b.-’); xlabel(’n’); ylabel(’C(n)’);
38 title(’Detection curve’); grid; pause
39 end
40

41 % Adaptive timing recovery for highly over-sampled signals
42 if( Nsps > 2 ) % big Nsps: choosing best sample
43 k=1; ns(1) = n1st; offs = 0; adap1 = 0; adap2 = 0;
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44 for n = n1st : Nsps : length( IQ )-2*Nsps
45 if(alg==3) % Gardner
46 a = (I(n+Nsps+offs) - I(n+offs)) .* I(n+(Nsps)/2+offs);
47 b = (Q(n+Nsps+offs) - Q(n+offs)) .* Q(n+(Nsps)/2+offs);
48 err = -(a + b);
49 end
50 if(alg==4) % Gardner
51 err = -real((conj(IQ(n+Nsps+offs)) - conj(IQ(n+offs))) .* IQ(n+(Nsps)/2+offs));
52 end
53 if(alg==5) % Muller & Muller
54 a = I(n+offs).*sign(I(n+Nsps+offs)) - I(n+Nsps+offs).*sign(I(n+offs));
55 b = Q(n+offs).*sign(Q(n+Nsps+offs)) - Q(n+Nsps+offs).*sign(Q(n+offs));
56 err = -(a + b);
57 end
58 adap2 = adap2 + mi2 * err; % 1-nd update
59 adap1 = adap1 + adap2 + mi1 * err; % 2-st update
60 while(adap1 > 1) adap1 = adap1 - 1; end % # wrapping to interval (-1,1)
61 while(adap1 < -1) adap1 = adap1 + 1; end % # (mapping)
62 offs = round( adap1 * Nsps ); % offset calculation as % of Nsps
63 partition(k) = adap1; % for figure
64 error(k) = err; % for figure
65 offset(k) = offs; % for figure
66 k = k+1; % index update
67 ns(k) = n+Nsps+offs; % storing symbol position
68 end
69 IQs = IQ(ns); % estimated carrier states
70 k = n1st : Nsps : length(IQ)-1; % for figures
71

72 end % Nsps > 2
73

74 % Adaptive timing recovery for criticalsampling - signal interpolation
75 if( Nsps == 1 || Nsps == 2 ) % Nsps = 1 or 2: Muller (1) or Gardner (2) method
76 % Farrow filtration for Lagrangequadraticpolynomialinterpolation
77 x2 = filter( [ 1/2 -1 1/2], 1, IQ ); x2 = x2(3:end); % sample before
78 x1 = filter( [ 1/2 0 -1/2], 1, IQ ); x1 = x1(3:end); % sample central
79 x0 = filter( [ 0 1 0 ], 1, IQ ); x0 = x0(3:end); % sample after
80 adap1 = 0; adap2 = 0; k = 1;
81 for n = n1st+1 : Nsps : length(x0)-1
82 xm1 = x2(n-1) * adap1*adap1 + x1(n-1) * adap1 + x0(n-1);
83 xc0 = x2(n) * adap1*adap1 + x1(n) * adap1 + x0(n);
84 xp1 = x2(n+1) * adap1*adap1 + x1(n+1) * adap1 + x0(n+1);
85 if(Nsps==1) % Muller
86 a = real(xc0).*sign(real(xp1)) - real(xp1).*sign(real(xc0));
87 b = imag(xc0).*sign(imag(xp1)) - imag(xp1).*sign(imag(xc0));
88 err = -(a + b);
89 end
90 if(Nsps==2) % Gardner
91 err = (real(xp1)-real(xm1))*real(xc0) + ...
92 (imag(xp1)-imag(xm1))*imag(xc0);
93 end
94 adap2 = adap2 + mi2 * err; % 1-nd update
95 adap1 = adap1 + adap2 + mi1 * err; % 2-st update
96 IQs(k) = xc0; % carrier state value
97 partition(k) = adap1; % for figure
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98 error(k) = err; % for figure
99 offset(k) = 0; % for figure

100 ns(k) = n+adap1; % storing symbol position
101 k = k+1; % index update
102 end
103 end % Gardner & Muller

��
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Fig. 21.11: Exemplary results from adaptive, fractional timing recovery using the
Gardner method and the Farrow filter interpolator. N = 2 samples per symbol
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Fig. 21.12: Phasor plots Q(k) = f (I(k)) (up) and I(k),Q(k) values (down) of esti-
mated carrier states for wrong sampling (left) and for correct sampling (right) after
adaptive timing recovery using the Gardner method and the Farrow filters interpo-
lator. N = 2 samples per symbol)
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21.8 Real-World Examples

At present we will apply our knowledge, acquired in this chapter, to demodulation
of three real-world digital signals:

• a safe mode nano-satellite signal using digital BPSK modulation, transmitted
together with voice (DUV—data under voice technique),

• an RDS (Radio Data System) signal using digital bi-phase BPSK modulation
with differential coding,

• synchronization continuous down-link burst signal of the TETRA standard us-
ing π/4-DQPSK modulation.

Two first IQ signals were already FM-decoded by us in Chap. 17 on software de-
fined radio (see listings: 17.2, 17.3 and program 17.4). Additionally, in Chap. 18 on
FM modulation, we dealt with the multiplex (MPX) FM radio signal demodulation
in Sect. 18.5.1 and learn nano-satellite signal morphology in Sect. 18.5.4. Finally, in
Chap. 18 on AM demodulation, we did carrier synchronization (via PLL and Costas
loops) and decoded stereo FM radio signal in program 19.5. In this section we will
extract the RDS 57 kHz component from the MPX FM radio signal, shift it to the
0 Hz (to the base-band), decode RDS bits, and sent them to RDS bit parser.

21.8.1 Decoding Bits from Nano-Satellites

In this subsection we will try to write a simple Matlab bit decoder for the Fox-
Telem AMSAT (Radio Amateur Satellite Corporation) ground station, receiving
save-mode signals from Fox-I satellites [17].

As mentioned above, the save-mode nano-satellite signal was already tackled
by us. A Reader is asked to see Fig. 18.9 and its short description in the text of
Sect. 18.5.4. At present we will concentrate on real-value BPSK signal demodula-
tion and bit recovery only. Let us recall: the sampling frequency is equal to 48 kHz,
one BPSK symbol has 240 samples and 200 bits are sent per second. We analyze
one voice beacon with embedded data. It consists of the following parts, transmitted
one-by-one: (1) 10 bits of a synchronization header, (2) 960 data bits, (3) second
10 bits of synchronization pattern, (4) 960 data bits, (5) one more 10 bit synchro-
nization pattern. In the beacon beginning, one starting bit is sent (0 or 1, it depends
what synchronization header is used). In the middle part of the digital signal, voice
is overlaid, describing the transmission type. In Fig. 21.13, in the first column of
plots we see: (1) the whole signal, (2) it first part with starting bit transmission (no-
tice very strong noise!), (3) central signal part were low-frequency digital signal
and voice information overlaps. In plots of the second column, there are shown:
(1) detected carrier states for square root raised cosine pulse shaping filter with roll-
off parameter r =0.5 and having length equal to two BPSK symbols (positive values
corresponds to bit 1, while negative to bit 0), (2) beginning of the filtered signal with
marked detected carrier states (notice a peaky curve of the BPSK modulation—long
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sequences of the same value 1 or −1 do not occur because data are scrambled), (3)
central part of the filtered signal with marked detected carrier states—here voice
works as disturbance).
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Fig. 21.13: Detection of bits transmitted in a nano-satellite signal, in the first col-
umn: (1) the whole signal, (2) its first part with starting bit transmission, (3) its cen-
tral part with starting voice message; in second column: (1) detected carrier states
in the whole signal, (2) beginning of the low-pass filtered signal with detected car-
rier states, (3) central part of the signal when voice transmission starts with detected
carrier states

How bit positions were detected? First, we found visually the first positive (+1)
peak of the starting symbol. Next, knowing that one BPSK symbol has 240 samples,
we jump forward 240 samples and check the signal value: the positive value means
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occurrence of bit 1 while negative one of bit 0. After decision taking, we are check-
ing two neighborhood samples which are lying on both sides of the carrier state
sample. If the central sample is positive and bigger than its neighbors, our symbol
timing is correct (we are in the peak maximum). Therefore our next jump is again
equal to regular 240 samples. But if the next sample is bigger than the central one,
it means that our central sample estimate is before the peak (we are too early, we
are sampling too fast) and jump value should be increased by 1 to 241 samples. In
contrary, when the left neighbor is bigger than the central carrier sample estimate,
it means that we are sampling too slow (we are too late) and the jump value should
be decreased by 1. The same idea is used when “negative” peak is found: at present
the central point should be lower than its left and right neighbors. Therefore we are
checking this relation: minimum (OK), negative slope (too early) or positive slope
(too late). No surprise that the method is known as early-late-gate symbol timing re-
covery. It is illustrated in Fig. 21.14 and implemented in the program 21.7. Results
presented in Fig. 21.13 positively validate the algorithm.

When bit positions are detected, we start searching synchronization bit patterns
0011111010 and 1100000101—look at the program 21.7. In Fig. 21.13, in the
second and third plot of the second column, we can recognize both synchronization
words (look for sequence of five zeros 00000 and five ones 11111). When the syn-
chronization words are found, we have to check whether they are separated by 960
bits: 96 words with 10 bits each. We have exactly this number of bits what confirms
correctness of header detection. In 10 bit words are coded 8 bit bytes (code 8b10b).
We should recover the bytes using a look-up table. If a received 10 bit word is miss-
ing in the table, it means that bits were corrupted. Then, recovered 96 bytes together
with side information about encountered errors are passed to the Reed–Solomon de-
coder which extracts 64 bytes from 96 bytes and tries to perform error correction.
Finally, header is decoded and digital information sent from satellite is extracted.
Our program 21.7 stops after detection of synchronization words and after checking
numbers of received bits. The program is presented without any cutoffs because it
demonstrates all important steps in IQ signal processing: data reading, plotting, ser-
vice selection and separation (down-shifting in frequency and band-pass filtering)
and signal demodulation (pulse shaping filtering and symbol timing recovery).
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Fig. 21.14: Illustration of the early-late-gate symbol sampling synchronization
method: (up) for symbols with positive values, (down) for symbols with negative
values. (left) too early symbol sampling—increasing of the sampling step is re-
quired, (middle) correct sampling—the sampling step remains unchanged, (right)
too late symbol sampling—decreasing of sampling step is necessary

Listing 21.7: Early-late-gate symbol timing recovery in analysis of nano-satellite
signal

�

1 % lab21_ex_nanosat.m
2 clear all; close all;
3

4 m=128; cm_plasma=plasma(m); cm = plasma; % color maps for gray printing
5

6 % Read recorded IQ signal - choose one
7 FileName = ’SDRSharp_NanoSat_146000kHz_IQ.wav’; % file to be read
8 [x,fs] = audioread(FileName); % reading, fs=192 kHz
9 Nx = length(x), % signal length

10 x = x(:,1) - j*x(:,2); % IQ signal formation
11 % FM demodulation and NanoSat voice control signal decoding
12 faudio = 48000; Down= round(fs/faudio); % parameter values
13 f0 = 1.98e+4; x = x .* exp(-j*2*pi*f0/fs*(0:Nx-1)’); % carrier? spectrumshifting
14 figure;
15 N = 512; df = fs/N; ffshift = df*0.125*(-N/2:1:N/2-1);
16 spectrogram(x,kaiser(N,10),N-N/4,ffshift,fs);
17 colormap(cm); pause
18 h = fir1(500,12500/fs,’low’,chebwin(501,120)); % low-pass filter design
19 x = filter(h,1,x); x = x(1:Down:end); % filtration
20 dt = 1/faudio; x = x(2:end).*conj(x(1:end-1)); y=angle(x)/(2*pi*dt); % FM demod
21 %soundsc(y,faudio); % listening
22 figure; plot(y); grid;
23 title(’Digital signal in time domain - all samples’);
24 xlabel(’sample number’); ylabel(’Signal values’); pause
25

26 % Bits decoding###########################################################
27 % fsymb = 200Hz = 200 symbols per second, Nsps = 240 samples per symbol
28 fsymb = 200; % symbol rate [Hz], 200 symbols per second
29 r = 0.5; % PSF: 0.5 - roll-off factor of RC filter
30 Nspan = 2; % PSF: 2 - number of symbols per RC filter
31 Nsps = faudio/fsymb; % PSF: nominal number of samples per symbol, equal 240
32 % Taking signal fragment, first or second voice beacon
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33 n = 170000:655000; % selectedmanually voice beacon, visual inspection
34 y = y(n); y = y-mean(y); % cutting signal fragment
35 % Low-pass square root raised cosine pulse shaping filter (PSF) design
36 h = firrcos(Nspan*Nsps, fsymb, r, faudio,’rollof’,’sqrt’); % PS filter
37 % Low-pass filtering
38 ypsf = conv(y,h);
39 ypsf = ypsf - mean(ypsf);
40 % Removing filter delay - transients
41 Nh = length(h); Nskip = (Nh-1)/2;
42 ypsf = ypsf(Nskip+1:end-Nskip);
43

44 % Manual selection of the position of the starting symbol (-1 or +1)
45 % It is present just before the first synchronizationword of the beacon
46 Nmax = length(ypsf); n = 1:Nmax;
47 indstart = 9383; % 9383/9384startingposition of the voice beacon
48

49 % Adaptive bits detection - changing step +/-1, approx. 240 samples long
50 bstring = ’’; % message (bits) received, written to string - at present nothing
51 bpos = []; % indexes of bit positions, at present nothing
52 pos = indstart; % position of the starting bit "0"(-1) or "1"(1), found manually
53 m = 1; % workingvariable for indexing vector elements
54 ybits = []; % vector of signal values at bit positions, to be filled
55 while( pos + 1 <= Nmax )
56 ybits(m) = ypsf(pos);
57 bpos = [ bpos pos ];
58 if( ypsf(pos) > 0) % bit "1=+1", should be maximum
59 bstring=strcat( bstring, ’1’);
60 if ( ypsf(pos-1)<ypsf(pos) && ypsf(pos)<ypsf(pos+1) )
61 pos = pos+1; % increaseposition by one, you are early, positive slope
62 elseif (ypsf(pos-1)>ypsf(pos) && ypsf(pos)>ypsf(pos+1) )
63 pos = pos-1; % decreaseposition by one, you are late, negative slope
64 end
65 else % bit "0=-1", should be minimum
66 bstring=strcat( bstring, ’0’);
67 if ( ypsf(pos-1)<ypsf(pos) && ypsf(pos)<ypsf(pos+1) )
68 pos = pos-1; % decreaseposition by one, you are late, positive slope
69 elseif (ypsf(pos-1)>ypsf(pos) && ypsf(pos)>ypsf(pos+1) )
70 pos = pos+1; % increaseposition by one, you are early, negative slope
71 end
72 end
73 pos = pos + Nsps; % do next step, after positioncorrection
74 m = m + 1; % increase index of detected bits
75 end
76

77 % Searching for synchronizationwords
78 synchro1 = ’1100000101’;
79 synchro2 = ’0011111010’;
80 % bstring(100:109)=synchro1; bstring(200:209)=synchro2; % for test
81 for n = 1 : length(bstring)-9
82 result1(n) = strcmp( bstring(n:n+9), synchro1 );
83 result2(n) = strcmp( bstring(n:n+9), synchro2 );
84 end
85 figure;
86 n = 1 : length(bstring)-9;
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87 plot(n,result1,’ro’,n,result2,’bo’); grid; xlabel(’n’);
88 axis([ n(1), n(end), 0, 1.1 ] );
89 title(’Detection of SynchronizationWords’);
90 pause
91

92 % Finding bit positions and number of bits betweensynchronizationwords
93 ind1 = find( result1 == 1 ); % 1st bit of sync word #1
94 ind2 = find( result2 == 1 ); % 1st bit of sync word #2
95 ind = sort( [ ind1, ind2 ] ); % sorting them
96 i1 = ind(1)+10; i2 = ind(2)-1; % indexes of 1st and last bit in 1st data block
97 len1 = i2-i1+1, % number of bits in the first data block
98 i3 = ind(2)+10; i4 = ind(3)-1; % indexes of 1st and last bit in second data block
99 len2 = i4-i3+1, % number of bits in the second data block

��

Exercise 21.10 (Decoding Data from AMSAT Nano-Satellites). Analyze
code of the program presented in Listing 21.7. Play a while with it. Run it
for different pulse shaping filters. May be we could perform bit decoding more
efficiently using a down-sampled signal, at present we have 240 samples per
symbol. If you are a fun of nano-satellite transmission, you might interest in
further bit processing (10 bits to 8 bits conversion, Reed–Solomon decoder,
. . . ).

21.8.2 Decoding RDS Data in FM Radio

Introduction Radio Data System (RDS) [7] used in FM radio, which is almost
everywhere available in the world at present, will be our next digital transmission
example in this chapter. It is old but still working. We will test on it our practical
understanding of bit transmission using a single carrier TX-RX knowledge acquired
till now. Principles of creating MPX hybrid signal, which is used for frequency
carrier modulation in FM radio, were presented in Sect. 19.8. Performing decoding
real-world stereo FM broadcast was tested by us in the program 19.5. In this section
we will concentrate on:

1. creation of MPX signals with left and right audio channels and with pseudo-RDS
0/1 data,

2. generation in the base-band of an FM radio IQ(n) signal, i.e. modulating in fre-
quency 0 Hz complex-value carrier by the MPX samples,

3. FM demodulation of an artificially created or practically recorded FM radio
IQ(n) signals and extracting from them transmitted RDS bits without their in-
terpretation/parsing (however, there are available programs which allow doing it
and, of course, we will use them).
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In this section the simplest solutions will be presented. More complex are left
for home exercises. Because here we summarize some part of our telecommunica-
tion knowledge, decoding of stereo signal also will be done by the accompanying
programs but not presented in listings in the book.

FM Radio Parameters In order to FM radio signal processing, its synthesis and
analysis, coding and decoding, we should choose values of some important param-
eters and prepare required filters. It is done in program fmradio_params.m,
presented in Listing 21.8. We assume sampling ratio equal to 250 kHz because
RTLSDR USB stick, which we are using, offers this value as the lowest avail-
able sampling frequency—we would like to use our programs to decode real-world
recordings also. In consequence, in order to avoid difficult signal re-sampling in the
receiver, we choose sampling ratio of audio signal in the RX equal to 25 kHz, ten
times lower value.
In FM radio high frequencies of transmitted audio are pre-emphasized in a trans-
mitter and de-emphasized in a receiver. We design only pre/de-emphasis filters for
audio frequency 25000 Hz, thinking about decoding of read-words recordings. Dur-
ing tests of IQ(n) FM radio signals generated by us, we can use the de- and pre-
emphasis filters or do not. Reader could make encoder and decoder program more
flexible in this aspect.
In RDS square root raised cosine filter with roll-off factor r = 1 is used. For sampling
frequency 250000 Hz and RDS symbol frequency 19000/16=1187.5 Hz, we have
250000/1187.5=210.5263 samples for symbol. Choosing fs = 228 kHz, we would
obtain 192 samples per symbol which would offer simpler signal generation. In
Listing 21.8 the PSF filter is designed by us in frequency domain and compared with
Matlab function design—the difference is very small. Variable phasePSF denote
the filter delay which should be taken into account during signals synchronization
in the receiver.
Finally, in the program four band-pass filters are designed for central frequencies:
19, 38, 57, and 76 kHz, multiplicity of 19 kHz, the pilot frequency.

Listing 21.8: Initialization Matlab program of software FM radio transmitter and
receiver

�

1 % FM radio_params.m
2 % FM Radio - initialization
3 % Parameters
4 fs = 250000; % samplingfrequency of one FM radio station (to be changed)
5 fpilot = 19000; % frequency of the pilot, 19000 Hz
6 fsymb = fpilot/16; % frequency of RDS symbols 1187.5 Hz, 19000/16
7 fstereo = 2*fpilot; % frequency of L-R signal carrier, 38000 Hz
8 frds = 3*fpilot; % frequency of RDS signal carrier, 57000 Hz
9 faudio = 25000; % frequency of audio signal (assumed, can be changed)

10 L = 500; % length of used FIR filters
11 Ks = 6; % number of symbols in PSF filter
12 dt = 1/fs; % sampling period
13 K = L/2; % half of the filter length
14 % Pre-emphasis and de-emphasisfilters (for TX and RX) - for frequency faudio
15 f1 = 2120; tau1 = 1/(2*pi*f1); w1 = tan(1/(2*faudio*tau1));
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16 b_de = [w1/(1+w1), w1/(1+w1)]; a_de = [1, (w1-1)/(w1+1)];
17 b_pre = a_de; a_pre = b_de;
18 % Pulse shaping filter (PSF) for RDS symbols
19 Tsymb = 1/fsymb; % time duration of one RDS symbol
20 Nsymb = round(fs/fsymb); % number of samples per RDS symbol
21 Npsf = Ks*Nsymb; % number of samples of PSF filter
22 if(rem(Npsf,2)==1) Npsf=Npsf+1; end
23 df = fs/Npsf; f = 0 : df : 2/Tsymb; Nf=length(f); % spectrum
24 H = zeros(1, Npsf); H(1:Nf) = cos(pi*f*Tsymb/4);
25 H(end:-1:end-(Nf-2)) = H(2:Nf);
26 hpsf1 = fftshift(ifft(H)); hpsf1=hpsf1/max(hpsf1); % imp. response #1
27 hpsf2 = firrcos( Npsf, fsymb, 1.0, fs,’rolloff’,’sqrt’); % imp. response #2
28 hpsf2 = hpsf2/max(hpsf2); hpsf2 = hpsf2(1:end-1);
29 n1=1:length(hpsf1); n2=1:length(hpsf2);
30 % figure; plot(n1,hpsf1,’ro-’,n2,hpsf2,’bx-’); grid; pause
31 hpsf = hpsf2;
32 phasePSF = angle( exp(-j*2*pi*fsymb/fs*[0:Npsf-1]) * hpsf’ ); % phase shift
33 % Low-pass (LP) filter for recovery of L+R signal
34 hLPaudio = fir1(L,(faudio/2)/(fs/2),kaiser(L+1,7));
35 % Narrow band-pass (BP) filter for separation of pilot signal (around 19 kHz)
36 fcentr = fpilot; df1 = 1000; df2 = 2000;
37 ff = [ 0 fcentr-df2 fcentr-df1 fcentr+df1 fcentr+df2 fs/2 ]/(fs/2);
38 fa = [ 0 0.01 1 1 0.01 0 ];
39 hBP19 = firpm(L,ff,fa); % in Octave firls()
40 % Narrow band-pass filter for separation of RDS signal (around 57 kHz)
41 fcentr = frds; df1 = 2000; df2 = 4000;
42 ff = [ 0 fcentr-df2 fcentr-df1 fcentr+df1 fcentr+df2 fs/2 ]/(fs/2);
43 fa = [ 0 0.01 1 1 0.01 0 ];
44 hBP57 = firpm(L,ff,fa); % in Octave firls()
45 % Wide band-pass (BP) filter for separation of L-R signal (around 38 kHz) ...
46 % Narrow band-pass filter for separation of 2*fstereocomponent (around 76 kHz) ...

��

Exercise 21.11 (Digital Filter Design for Software FM Radio Receiver). Plot
frequency responses, magnitude, and phase, of all filter used in software FM
radio receiver, including pre/de-emphasis and pulse shaping filters.

FM Radio Encoder Matlab program for generation of IQ(n) signal of one FM
radio station is presented in Listing 21.9. The signal can be transmitted into the air
by any talented SDR TX-RX hardware, for example, by the ADALM PLUTO, in
any free frequency band. After that we could receive the signal by less capable SDR
RX-only equipment, for example, RTLSDR dongle. At present we analyze code of
the program 21.9.

1. We start with including the file fmradio_params.m with chosen parameter
values and designed filter coefficients.

2. Reading audio signals. Then we read two monophonic recordings x1, x2, one
for left and one for right channel. They can have different lengths and different
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sampling frequencies fx1, fx2. Of course, we can use one stereo signal. If
you prefer such option, modify the program.

3. Processing audio signals. Next, two monophonic signals are re-sampled to fre-
quency faudio, default 25000 Hz, and are aligned in length. Then each of
them is pre-emphasized with short IIR filter and both are up-sampled to the tar-
get FM radio service frequency. We have chosen 250000 Hz, however, frequen-
cies 256, 228, 192 kHz are also acceptable. Warning: activation of the signal
pre-emphasis option cause generation of spurious frequency around 16 kHz in
the MPX signal. What is the reason?

4. Processing RDS bits. This section of the program is for us the most important
in present chapter [7]. In part A, knowing service and symbol frequencies, we
calculate number of samples per one RDS symbol (Nsps=fs/fsymb) and
then number of RDS symbols which can be send with an audio signal having
Nx samples: Nrds=ceil(Nx/Nsps). We decide to transmit an RDS-like bit
pattern which is easy to check: four 1s, three 0s, two 1s, and one 0: [1 1 1 1
0 0 0 1 1 0. Finally, we repeat this pattern many times in loop. In part B we
encode bit-stream differentially, simply subtracting next rds(k) bit from the
bit r(k−1) already coded. In part C each bit r(k) equal to 0 is replaced by a
bi-phase sequence [−1,1], and bit r(k) equal to 1 by a sequence [1,−1].
Next, in part D, the most difficult, appropriate number of zeros are inserted
between each two values of the vector resulting from the previous step: vector
brds is replaced with sparse vector uprds. First, a long vector uprds having
only zeros is created, then values of brds are copied into appropriate positions
of uprds, i.e. when the function sin(2*pi/Tsymb*t) changes its sign.
Finally, in part E, the signal is processed by a pulse shaping filter hpsf and
synchronized with pilot (i.e. filter delay is removed). In this program section,
real-value 0/1 carrier states I(k), corresponding to RDS data, are transformed
into a smooth I(n) signal.

5. Generation of MPX signal. Now an MPX signal is synthesized, which consists
of: mono x1+x2 component, 19 kHz pilot cos(alpha), stereo x1-x2 com-
ponent multiplied by the doubled pilot cos(2alpha) (38 kHz), and RDS sig-
nal prds, multiplied by the tripled pilot cos(3alpha) (57 kHz). All signals
are appropriately scaled.

6. FM modulation. At the end, frequency modulation depth df is calculated using
the Carson rule and complex-value carrier exp(j2*pi...) with frequency
0 Hz (base-band) is modulated in frequency using the Matlab cumsum() func-
tion. Result is stored to a file as a target I,Q signal of the FM radio broadcast,
to be transmitted by an SDR hardware.

In Fig. 21.15 creation of RDS-like I(n) signal is presented: r(k)—RDS bits dif-
ferentially encoded, brds(k)—corresponding bi-phase sequence, uprds(n)—
bi-phase sequence with inserted zeros, prds(n)—final I(n) signal after pulse
shaping with square root raised cosine filter r = 1.
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Fig. 21.15: Illustration of RDS signal generation. The following signals are pre-
sented, in columns: r(k), brds(k), uprds(n), and prds(n), generated
in the program 21.9

Exercise 21.12 (Investigating Signals in FM Radio Encoder). Present ver-
sion of the program, offered in the book repository, displays only the MPX
signal and the IQ(n) signal of the modulated carrier together with their spectra.
Add plots in the initial part of the program: (1) investigate how are changing
spectra of audio signals after two up-sampling steps, from fx through faudio
to fs, (2) using stem() function, observe temporary signals after each pro-
cessing step during creation of the RDS signal prds—you should obtain plots
presented in Fig. 21.15. Observe that switching signal pre-emphasis ON, causes
generation of some spurious 16 kHz component in the MPX signal. Investigate
this problem.
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Listing 21.9: Matlab program for preparation of IQ(n) base-band signals of one FM
radio station

�

1 % lab21_ex_FMradio_encoder_stereo_RDS.m
2 clear all; close all;
3

4 FMradio_params % read parameters from the included file
5

6 % Read two monophonic audio signals - audioread or wavread
7 [x1, fx1 ] = audioread(’GOODBYE.WAV’); x1=x1.’; % plot(x1);
8 [x2, fx2 ] = audioread(’DANKE.WAV’); x2=x2.’; % soundsc(x1,fx1);
9 % Re-sampling to FM radio audio frequency - faudio

10 [N1,D1] = rat(faudio/fx1,1e-6); x1 = resample(x1,N1,D1);
11 [N2,D2] = rat(faudio/fx2,1e-6); x2 = resample(x2,N2,D2);
12 Nx1=length(x1); Nx2=length(x2); Nx = max( Nx1, Nx2 );
13 x1 = [ x1 zeros(1,Nx-Nx1) ]; x2 = [ x2 zeros(1,Nx-Nx2) ]; % append zeros
14 % x2 = zeros(1,Nx); % for testing cross-talk betweenchannels in the receiver
15 % Filters were designed for faudio=25000 Hz, our signals can have differentfrequency
16 % Pre-emphasis, flat freq response to 2.1 kHz, than increasing 20 dB per decade
17 x1 = filter(b_pre,a_pre,x1); x2 = filter(b_pre,a_pre,x2);
18 % Up-sampling to FM radio servicefrequency - fs
19 [N,D] = rat(fs/faudio,1e-6); x1 = resample(x1,N,D); x2 = resample(x2,N,D);
20 % RDS BITS #########################################
21 % A. Generation of dummy RDS bits for encoding
22 Nx = length(x1); Nsps=fs/fsymb; Nrds = ceil(Nx/Nsps); rds = [];
23 for k=1:ceil(Nrds/10), rds = [ rds 1 1 1 1 0 0 0 1 1 0 ];
24 end
25 % rds = round(rand(1,Nrds)); % for test
26 % B. Differentialencoding of RDS bits
27 Nrds = length(rds); r = 0;
28 for k=2:Nrds, r(k)=abs(rds(k)-r(k-1));
29 end
30 % C. Generation of bi-phase impulses: -1 -> +1, +1 -> -1,
31 bip = [-1 1; 1 -1 ]; brds = bip( r+1,: ); brds=brds’; brds=brds(:);
32 % D. Zero insertion (appending) between-1/+1 impulses
33 Nr = ceil(fs/fsymb *length(r)); uprds = zeros(1,Nr); t = dt*(0:Nr-1);
34 clk = abs(diff(sign(sin(2*pi/Tsymb*t))))/2; clk = [clk 0];
35 indx=1;
36 for n=1:Nr
37 if(clk(n)==1) uprds(n)=brds(indx); indx=indx+1;
38 end
39 end
40 % E. Signal smoothing using pulse shaping filter (PSF), synchro with pilot
41 prds = conv( uprds, hpsf); prds = prds(Npsf:Npsf+Nx-1);
42 clear t clk r brds uprds;
43 % RDS BITS #########################################
44 % Generation of multiplex (MPX) signal of FM radio
45 n=0:Nx-1; alpha = 2*pi*fpilot/fs*n;
46 x = 0.9*(x1+x2)+0.1*cos(alpha)+0.9*(x1-x2).*cos(2*alpha)+0.05*prds.*cos(3*alpha);
47 % Final frequencymodulation of the complex carrier in the base-band
48 BW = 160000; % overall FM radio bandwidth > 2*fmax=2*60000 Hz
49 fmax = 60000; % maximummodulatingfrequency
50 df = (BW/(2*fmax)-1)*fmax, % from Carson’s bandwidth rule
51 beta = df/fmax, % modulation index
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52 fc = 0; % carrierfrequency of FM radio in the base-band
53 x = exp( j*2*pi*( fc/fs*n + df*cumsum(x)/fs ) ); x=x.’; % FM modulation
54 I = real(x); Q = imag(x); % I, Q components
55 audiowrite(’FMRadio_IQ_250kHz_LR.wav’,[I Q],fs); % store result
56 % audiowrite(’FMRadio_IQ_250kHz_L.wav’,[I Q],fs); % store result

��

FM Radio Decoder Matlab program for decoding IQ(n) signal of one FM radio
station is presented in Listing 21.10. IQ file can be generated by us or taken from
any SDR receiver, for example, from RTLSDR USB stick or ADALM PLUTO. At
present we analyze the program code.

1. Reading IQ file. Program starts with selection of an IQ file to be processed and
reading it. The IQ data should be synthesized or recorded (by SDR hardware)
earlier by us. The only problem frequently occurring here is that different Mat-
lab versions use different audio reading functions: wavread() in the past and
audioread() at present.

2. Restoring IQ signal. Frequency demodulation. After reading the data y, the two-
column matrix of numbers [I; Q] is converted into a complex-value signal
IQ(n) = I(n)+ jQ(n). Then, frequency demodulation is performed, i.e. instan-
taneous signal frequency is calculated as the signal phase derivative. No extra
signal scaling is done.

3. Decoding monophonic L+R signal. This is the easiest task, a starter in our menu.
We should only leave the low-frequency part of our signal, i.e. remove the re-
maining stuff: pilot, stereo L-R, and RDS. Audio of FM radio signal is typi-
cally sampled at 32 ksps (32 kHz) therefore the filter cut-off frequency should
be smaller than 16 kHz. We are using 25000 sps sampling ratio and cut-off fre-
quency equal to 90% of the faudio/2=12500 kHz.

4. Carrier/pilot recovery. In order to go further, to decode stereo and RDS signals,
we should recover their carriers having frequencies 38 kHz and 57 kHz, respec-
tively, i.e. the second and third multiplicity of the 19 kHz pilot frequency. The
pilot is transmitted. We are lucky: not always in telecommunication transmission
this is the case. Therefore, we will use a well-known to us the double PLL loop,
investigated in chapter on AM, and synchronize it with pilot signal, extracted
from the MPX signal by means of very narrow, 2 kHz wide, band-pass filter.
At this stage the most important is selection of PLL loop adaptation constants
mi1 and mi2, deciding about its dynamic features (convergence and its speed
as well as variance in steady-state solution). Appropriate equations were given
in chapter on AM. After computation of the pilot angle theta, we calculate
cosines with the following angles: theta/16 (for RDS 1187.5 Hz timing re-
covery), 2theta (for frequency down-conversion of the 38 kHz L-R signal),
and 3theta (for frequency down conversion of the 57 kHz RDS signal). Now
we can check the PLL loop convergence and estimate time when all carriers have
correct frequencies.

5. Decoding L−R stereo extension signal. To enjoy the music, we are down-
converting to 0 Hz the L−R signal, multiplying it with the recovered 38 kHz
carrier and then low-pass filtering the result with the same LP filter which was
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used for the L+R signal. Having signals (L+R) and (L−R) we are adding and
subtracting them, obtaining signals 2L and 2R. Right. But this is true only when
signals (L+R) and (L−R) are not shifted in time in respect to each other due to
different delays in their processing paths. When number of filters and their delays
in both paths are the same, reconstruction of audio channels is perfect. For this
reason usage of band-pass filter for extraction of L-R signal from the MPX signal
is optional. When it is done, clearness of the signal (L−R) is better but one more
filter is used in the (L−R) signal processing path and the signal (L+R) should be
delayed by the same amount also before addition and subtraction of (L+R) and
(L−R). We can avoid using the hBP38 filter at the cost of application of better
and longer the hLPaudio filter. We can test both options.

6. Decoding RDS bits. This is our main story [7]. Beginning is typical, without
problems—only blue sky (part A): optional band-pass filter around RDS fre-
quency 57 kHz. Why optional? Because we have in reserve a low-pass pulse
shaping filter hpsf playing now a role of hLPaudio filter. After that we per-
form signal down-conversion using the c57 carrier, recovered by PLL, and re-
move the doubled carrier component 2 · 57 =114 kHz with use of a low-pass
pulse shaping filter. Please, add spectra computation to the program to observe
these star wars. In part B first clouds appears: at present we have the I(n) RDS
signal but we have to sample it in proper places to recover carrier states and
transmitted bits. Therefore, the symbol timing recovery should be done. The eas-
iest but not very robust way for doing this is finding in the signal two camel-like
humps, both positive or both negative and notice that this is a place of change of
transmitted bit value. After positive cammel, bit 1 starts, after negative bit 0. Hav-
ing correct position of one bit, we could jump forward one symbol length, read
signal value, decode the next bit, and adjust length of next jump using the early-
late-gate method, already used by us in case of nano-satellite signal. A Reader is
encouraged to implement this idea. We will not risk and apply a robust coherent
bit detection. Carrier c1, synthesized after the PLL loop, is synchronized with
the RDS bit transmission. However, it is 16 times slower than the pilot and we do
not know for which of pilot cycle the RDS symbol starts. To find this, we corre-
late signal y with c1 with a time shift equal to a multiplicity of the pilot period.
Correlation maximum tells us when the RDS symbol begins. Now, in part C we
use a concept of coherent detection: modulated carrier (signal y) is multiplied by
recovered carrier (signal c1). When 1 (+1) is transmitted, both signals are syn-
chronized sines, when 0 is sent (−1)—the signal y is equal to minus sine. In the
first multiplication, result is positive (+1), in the second negative (−1). Having
this in mind, in part D we apply to the signal y a moving filter with 1s only,
having length equal to the symbol period. And we filter the signal y. In part E,
we are finding zero-crossing locations of the carrier c1 for its positive (maxi2)
and negative (maxi1) slopes. Then, we check what is standard variation of sig-
nal y in these points, and select this set of points, maxi1 or maxi2, for which
variation is bigger. Here we are! We have found positions of our RDS symbols.
Clouds disappeared! Blue sky won. In parts F, G, and H we are finishing the
game. First, we are recovering bits 0/1 from bi-phase sequences (±1)→ (∓1).



676 21 Digital Single-Carrier Receiver

Next, we remove differential encoding. Finally, we store detected bits for further
processing by other programs. Lucy in the sky with diamonds!

Some signals, illustrating idea of coherent symbol detection, are presented in
Fig. 21.16. All plots were generated by the program 21.10 for data acquired by
the RTLSDR USB stick. In the upper plot we see the received signal y after pulse
shaping and the carrier c1 synchronized with it after step B. In the middle plot,
signal y after multiplication with c1 and integration is shown (look at the program)
together the carrier c1 and points of its zero crossing. Finally, in the bottom plot,
the detected carrier states are presented for longer signal fragment.
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Fig. 21.16: Illustration of RDS bits detection. The following signals are presented:
(up) signal y(n) after the pulse shaping low-pass filter and synchronized with it
carrier c1(n), (middle) (1) carrier c1(n) and points of its positive and negative
zero-crossings, (2) locally integrated multiplication of signals y(n) and c1(n) in
the interval of RDS symbol duration (see program), (bottom) detected carrier states
of RDS signal
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Exercise 21.13 (Investigating Signals and Spectra in the FM Radio De-
coder). Analyze in detail code of the program 21.10. Run it for different avail-
able IQ files. Switch ON/OFF using of band-pass filters hBP38 and hBP57.
Add spectra plots to observe spectral results of all signal modifications. Ob-
serve how fast is the PLL loop convergence (variable omega). Change values
of mi1 and observe results of it.

Exercise 21.14 (RDS Bits Parser). Use the program 21.10 for processing
FM/RDS IQ files (with one station only), recorded by the SDRSharp program.
The decoded RDS bits are stored to the file FM_Radio_RDS.txt. Apply the
program RDS.m from RDS_parser.zip to recover text from the RDS bits.
Have a look to the RDS standard [7] and try to add a new functionality to the
program RDS.m, i.e. decode and display more information transmitted by the
RDS service.

Exercise 21.15 (My Own FM Broadcast). Prepare you own FM/RDS IQ file
using the program FMradio_encoder_stereo_RDS.m. As RDS bits sent
periodically ASCII codes of “Hello World!” or any text of your choice. Decode
the text in the end of the program 21.10.

Listing 21.10: Complete Matlab program for decoding stereo FM radio and RDS
bits (without their interpretation)

�

1 % lab21_ex_FMradio_decoder_stereo_RDS.m
2 clear all; close all;
3

4 FMradio_params % readingparameters from the included file
5

6 % READ IQ SIGNAL - synthesized or recorded
7 [y,fs] = audioread(’FMRadio_IQ_250kHz_LR.wav’); % synth
8 % [y,fs] = audioread(’SDRSharp_FMRadio_96000kHz_IQ_one.wav’,[1,1*250000]); % record
9

10 % FM DEMODULATION
11 y = y(:,1) - sqrt(-1)*y(:,2); % IQ --> complex
12 dy = (y(2:end).*conj(y(1:end-1))); % calculation of instantaneousfrequency
13 y = atan2(imag(dy), real(dy)); clear dy; % frequencydemodulation
14

15 % DECODING MONO L+R SIGNAL
16 ym = filter( hLPaudio, 1, y ); % low-pass filtration of L+R (mono) signal
17 ym = ym(1:fs/faudio:end); % leaving only every fs/faudio-th sample
18 disp(’LISTENING MONO: Left + Right’); sound(ym,faudio); pause
19 w = ym-mean(ym); w=w/max(abs(w)); audiowrite(’FM_mono.wav’,w,faudio); clear w;
20

21 % CARRIERRECOVERY
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22 p = filter(hBP19,1,y); % extracting 19 kHz pilot
23 theta = zeros(1,length(p)+1); %#
24 omega = theta; omega(1) = 2*pi*fpilot/fs; %# double PLL on 19 kHz
25 mi1 = 0.0025; mi2 = mi2̂ 2/4; p=p/max(abs(p)); %# see chapter on AM
26 for n = 1 : length(p) %#
27 pherr = -p(n)*sin(theta(n)); %#
28 theta(n+1) = theta(n) + omega(n) + mi1*pherr; %#
29 omega(n+1) = omega(n) + mi2*pherr; %#
30 end %#
31 c1(:,1) = cos(theta(1:end-1)/16);
32 c1PSF(:,1) = cos(theta(1:end-1)/16+phasePSF); % RDS 19 kHz / 16 = 1187.5 Hz
33 c38(:,1) = cos(2*theta(1:end-1)); % L-R carrier 38 kHz
34 c57(:,1) = cos(3*theta(1:end-1)); clear p; clear theta; clear freq; % RDS carrier 57

kHz
35

36 % DECODING STEREO
37 if(1) ys = filter(hBP38,1,y); delay = (L/2)/(fs/faudio); % extraction of L-R signal
38 else ys=y; delay=0; end %(optional BP filtrationaround 38 kHz)
39 ys = real(ys .* c38); clear c38; % L-R signal: 38kHz --> 0kHz
40 ys = filter( hLPaudio, 1, ys ); % low-pass filtration
41 ys = ys(1:fs/faudio:end); % leaving every fs/faudio-th sample
42 ym = ym(1:end-delay); ys=2*ys(1+delay:end); % synchronization of L+R and L-R
43 clear ymm yss;
44 y1 = 0.5*( ym + ys ); y2 = 0.5*( ym - ys ); clear ym ys; % recovering L and R
45 y1 = filter(b_de,a_de,y1); y2 = filter(b_de,a_de,y2); % de-emphasis
46 % disp(’LISTENING TO STEREO’); soundsc([y1’; y2’],faudio); pause
47 maxi = max( max(abs(y1)),max(abs(y2)) );
48 audiowrite(’FM_Radio_stereo.wav’,[ y1/maxi y2/maxi ],faudio); clear y1 y2;
49

50 % DECODING RDS \cite{IEC99}
51 % A. Initialoperations
52 if(1) y = filter(hBP57,1,y); c1 = c1PSF; end % extraction of RDS (optional BP filter

)
53 y = y .* c57; clear c57; % frequencyconversion: 57kHz-->0kHz
54 y = filter( hpsf, 1, y ); % low-pass filer - SRRC pulse shaping
55 % B. Signal correlation with clock c1 shifted 16x by 1/fpilot (exact timing recovery)
56 nstart = 20000; Nmany = 50*210; % skipping time of PLL loop adaptation
57 for n = 1 : round(fs/fpilot) : round(fs/fsymb)+1;
58 synchro(n)=sum((y(nstart+n-1:nstart+n-1+Nmany-1).* c1(nstart:nstart+Nmany-1)));
59 end
60 [v, indx] = max(synchro); % finding maximum
61 y = y(indx:end); c1=c1(1:end-indx+1); % final signalsynchronization
62 % C. Signalmultiplication with synchronizedcarrier - coherentdetection
63 y = y .* c1; y = y/max(y);
64 % D. Moving average of last fs/Tsymb samples
65 h = ones(1,round(fs/fsymb))/round(fs/fsymb); y = filter(h,1,y);
66 % E. Finding negative and positive slopes of synchronizedclock
67 N = length(c1); M=5; M2=(M-1)/2; maxi1 = []; maxi2 = [];
68 for n = M2+1:N-M2
69 if( (c1(n-2)>0) && (c1(n-1)>0) && (c1(n+1)<0) && (c1(n+2)<0) ) % negative slope
70 maxi1 = [ maxi1 n ];
71 end
72 if( (c1(n-2)<0) && (c1(n-1)<0) && (c1(n+1)>0) && (c1(n+2)>0) ) % positive slope
73 maxi2 = [ maxi2 n ];
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74 end
75 end
76 if( std(y(maxi1)) > std(y(maxi2)) ) maxi=maxi1; else maxi=maxi2; end % best fitting?
77 % F. Changing signal levels: {-1, +1} --> {0,1}
78 SCRX = (-sign( y( maxi ) )+1)/2; clear c1 maxi maxi1 maxi2;
79 % G. Differentialdecoding with taking into account bi-phase signal nature
80 SCRX = abs(SCRX(2:end) - SCRX(1:end-1)); SCRX = SCRX(2:2:end)
81 % H. Storing detected bits to disk for furtheranalysis by outside program
82 save FM_Radio_RDS.txt SCRX -ascii

��

21.8.3 Decoding Carrier States in TETRA Digital Telephony

TETRA (TErrestrial Trunked Radio) TETRA (1995) [4] is a special-purpose digital
telephony system designed for government, emergency, safety, transport, and mili-
tary applications. It uses π/4-DQPSK (Differential Quaternary Phase Shift Keying)
modulation already known to us. The symbol frequency is equal to 18 kHz. The
square root raised cosine PSF filter with roll-off factor r = 0.35 is applied. In this
section we will recover carrier states of synthetic IQ TETRA signals, simulating
different real-world transmission conditions:

• increasing level of noise (files: XX_-22.mat,...,XX_20.mat),
• different fading channels: FLAT, TU50 Typical Urban channel at 50 kph,

HT200 Hilly Terrain channel at 200 kph.

In our case we are interested in finding 19-elements STS synchronization header
which is present in synchronization continuous down-link burst TETRA signal. We
would like to decode 129 carrier states which are after it. For noisy signals we know
values of the first data block.

For TETRA signals decoding, we will use the code presented in Listing 21.1—
we will only slightly modify it. Since core of the program lab21_ex_tetra.m
is the same, it is not presented here—Reader can take it from the book repository.
In Fig. 21.17 results from analysis of the file TETRA_423.4125MHz_0.mat are
presented: power spectral density of the signal, cross-correlation function between
the signal and the STS-19 header, and detected carrier states. In Fig. 21.18 the same
characteristics are presented for the file TETRA_423.4125MHz_tu50.mat. As
we see in both cases the program 21.1 allowed us to recover correctly, more or less,
the IQ constellation points, without and with very big problems, despite the fact
that no timing recovery procedure is implemented in it. It should convinced us that
always it has a sense to make an effort and write a little bit more universal program
because it can be used later, after minor modifications, to variety of special cases.
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Fig. 21.17: Analysis of noisy TETRA signal, from left to right in columns: (left
up) signal PSD, (left down) signal and header cross-correlation function, (up-right)
decoded phasor-diagram, (down-right) decoded constellation points

Exercise 21.16 (Testing Demodulation of TETRA Signal). Analyze code of
the program lab21_ex_tetra.m. Run it for all supported files. Choose dif-
ferent CFO and channel correction method (with exception of the NLMS filter).
Observe that the last signal, for hilly terrain at high speed, is not correctly de-
coded. Change value of K, i.e. the number of samples per symbol. Observe that
result of decoding is changing. Why? Try to solve this problem.
For signals embedded in noise only, data block after the first STS-19 synchro-
nization header is known and given in the program, therefore we can find
number of transmission errors for it, i.e. number of wrong decoded carrier
states. 129 symbols after the STS-19 header has precisely defined role. They
are grouped into packets consisting of: 15, 108, 1, 5 symbols. Observe carriers
states after different STS headers and find which symbols are changing their
values.



21.9 Summary 681

-50 0 50
Frequency (kHz)

-180

-160

-140

-120

-100

Po
w

er
/fr

eq
ue

nc
y 

(d
B

/H
z) Power Spectral Density

-1 0 1

-1

-0.5

0

0.5

1

Q(n) = f( I(n) )

0 5 10 15
k 105

0

0.05

0.1

0.15
|Cxs(k)|

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Q(n) = f( I(n) )

Fig. 21.18: Analysis of typical urban TETRA signal, from left to right in columns:
(left up) signal PSD, (left down) signal and header cross-correlation function, (up-
right) decoded phasor-diagram, (down-right) decoded constellation points

21.9 Summary

The second round of the single-carrier marathon has ended. What should be
remembered?

1. Since our information is sent in amplitude and phase of a carrier and chan-
nel is modifying them, we have to estimate the channel parameters and
correct their influence in the receiver. If channel is fast varying, channel
estimation and equalization have to be repeated permanently. Pilot sig-
nals, the pseudo-random signals known to receivers, are used for channel
de-conspiracy. Having input and output, channel impulse and frequency
response can be calculated. For narrow-band single-carrier transmission
channel influence can be simplified to signal attenuation and delay.

2. Even without channel disturbance signal demodulation is not a simple un-
do of the modulation. First, the carrier parameters are not changed in the
transmitter in abrupt way because such ON/OFF carrier switching will
make the carrier spectrum wider and disturbing neighbor services. Carriers
are changing their states smoothly. To be precise, signal between the carrier
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states is interpolated using the so-called pulse shaping filters. When carrier
shape is so smooth, how to distinguish that carrier is already in its bit-
symbol state, important for us, not in a transition part. This is a task for tim-
ing recovery methods. In this chapter we have used Barker and Gold codes
as synchronization patterns (preambles/headers) for symbol and frame syn-
chronization in packet-based transmission. We have also become familiar
with three timing recover methods which do not require a special synchro-
nization templates: the early-late-gate, Gardner, and Mueller–Müller tech-
niques. They attempt to adaptively sample-and-hold the symbol position in
the IQ(n) signal by tracking the zero value of special cost functions.

3. During frequency up-conversion in the transmitter and frequency down-
conversion in the receiver, the same carrier should be synthesized. But it
is impossible. Some frequency and phase shift errors are present. The re-
ceiver should recognize the transmitter carrier in the received data and to
synchronize with it. Without this, all transmission magic will collapse. This
is a task for different carrier recovery methods. To remind only the PLL and
Costas loops. We investigated them in the previous chapter on amplitude
modulation but they were used also in this chapter.

4. As we see in digital telecommunication we have a lot of recoveries, to
mention only the channel, timing, and carrier ones. In order to perform ev-
erything in a smart and efficient way, periodically are transmitted synchro-
nization headers, preambles, pilots: special, unique signals having sharp
auto-correlation functions. Thanks to this, they are easy to found and dif-
ficult to mask. Therefore they are used for identification and correction of
all possible transmission disturbances. We have used Gold and Barker se-
quences and outputs from pseudo-random generators.

5. Digital single-carrier receivers have to be computationally efficient also.
The winner should do the job with the lowest computational effort. There-
fore I(n)+ jQ(n) signals should be highly decimated and we should have
a few samples per symbol only for the carrier state detection. Missing sam-
pled should be interpolated. For this purpose the Farrow filter interpolators
are used. Nevertheless . . . the bit detection robustness has to maintained.

21.10 Private Investigations: Free-Style Bungee Jumps

Exercise 21.17 (* Channel Estimation: Robust Solutions of the Transmission
Input–Output Equation). Use program lab21_ex_equ_mse_nlms.m from
the book repository. Analyze its code, run it, observe figures. Try to apply different
algorithmic solutions for solving matrix input–output transmission equation more
robust to noise. Some of existing algorithms are presented in Chap. 13 on damped
sinusoid estimation, together with programs which can be easily modified to our
new task. In Matlab there are also functions ready to use. Try to apply them.
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Exercise 21.18 (* Channel Estimation: Usage of the RLS Adaptive Filter). Use
program lab21_ex_equ_mse_nlms.m from the book repository. Try also to
implement RLS adaptive filter as a channel corrector. You can find its code in
Chap. 12. Compare its convergence with the NLMS filter. The RLS filter should
be faster.

Exercise 21.19 (** Confidential RDS Transmission). Replace standard bi-phase
BPSK RDS modulation scheme with some other, multi-level, phase shift modulation
method (described in the previous chapter—see functions IQdef(),
numbers2IQ(), IQ2psf(), IQ2numbers(), for example, by the QPSK
(4-QAM). You can implement generation of an I(n)+ jQ(n) RDS signal similarly
as in the program 21.1 and then replace in the FM/RDS encoder the following com-
mand (in line 46):
x = 0.9*(x1+x2)+ ... + 0.05*prds.*cos(3*alpha)

with
x = 0.9*(x1+x2)+ ... + 0.05*(I.*cos(3*alpha)-Q.*sin(3*alpha))

Add your code to programs of FM radio encoder and decoder. Modify the coherent
RDS symbol detector for the QPSK case. Test the program. Try to improve it.

Exercise 21.20 (** RDS Decoding with Costas Loop Demodulation and Early-
Late-Gate Symbol Tracker). In the FM radio decoder program, we have used the
standard RDS decoding procedure. The pilot was used and coherent detection. Try
to write a program in which Costas loop will do the RDS signal down-conversion
(blind carrier recovery) and early-late-gate method will be applied for symbol detec-
tion (blind timing recovery). You can think about signal down-sampling from 210
samples per symbol to significantly lower value. If this task is too difficult for you,
analyze code of two programs, presented in the book repository:

• rdsbits_decoder_costas_earlylate.m.
• rdsbits_decoder_decim_costas_earlylate.m.

In the second program 14-times signal decimation is done but, as a consequence,
the RDS symbol detection is less robust. Compare codes of both programs. Run
them. Use RDS.m program from RDS_parser.zip to decode text from RDS
bits stored to the file FM_Radio_RDS.txt.

Exercise 21.21 (*** RDS Decoding with Costas Loop and Gardner/
Muller Method). Try to solve the RDS bit detection problem, combining the
Costas loop and Gardner or Mueller–Müller method for finding symbol timing.
For very small number of samples per symbol you can think about signal inter-
polation using Farrow filters. Try to use Matlab code fragments from the program
timing_recovery.m.

Exercise 21.22 (** Timing Recovery in TETRA). Add Gardner or Gardner and
Mueller–Müller timing recovery procedure to the program lab21_ex_tetra.m.
For small number of samples per symbol implement the Farrow filter interpolator.
We test all modules in timing recovery subsection of this chapter.
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Chapter 22
Introduction to Digital Multi-Carrier
Transmission: With DSL Modem
Example

Old is still alive: a simple story about times of first big
telecommunication breakthrough when DMT won by knockout
with a 56k telephone modem

22.1 Introduction

In this chapter we will be talking about modems: joint modulators-and-
demodulators. Do you remember the late nineties of the twentieth century? I
did. I was using slow 56 kilo-bit per second (kbps) telephone modem and asym-
metric digital subscriber line (ADSL) modems appeared. They offered 256,
512, 1024, 2048, 4096, and 8192 kbps! Wow. At present the same technology
with new telephone and cable lines and short distances can offer even 80 Mbps.
The same multi-carrier technique is used at present in power line communica-
tion (PLC) home modems, with HomePlug technology, offering approximately
100 Mbps. As we see, the wired, copper line transmission is still alive. It is true
that nowadays fiber optics solutions are preferred due to its significantly higher
bit-rates (giga and tera bits per second), but when the backbone copper cable
infrastructure is present, why not to use it?

We are starting presentation of the multi-carrier telecommunication technol-
ogy from ADSL modems because they were first using multi-carrier technol-
ogy and solutions used in them represent a golden standard in some sense. In
the next chapters of the book, we will switch to multi-carrier wireless solutions
which are extremely important because they offer mobility for user and things
(IoT—Internet of Things).

In single-carrier transmission, one cosine carrier is choosing one state from
predefined table of possible states, differing in frequency, amplitude, and phase.
Tracking carrier states in the receiver, we are finding their numbers and extract
bits coded in them. It is straightforward that using more carriers with different
frequencies, transmitted the same time (in parallel), leads to increase of the total
transmission bit-rate. This is an idea. How to synthesize many parallel carriers?
By using the inverse discrete Fourier transform: carrier amplitudes and phase
shifts are coded in Fourier transform coefficients, one coefficient decides about
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one carrier (or two of them as in ADSL modems), then the inverse DFT (FFT)
is performed, and, here we are, we have a multi-tone (multi-carrier) signal, i.e.
a summation of many orthogonal components with different frequencies. And
each of them is carrying bits. The bit-rate grows with number of carriers. In first
ADSL modems we had 512 complex carriers, 2048 in PLC modems, 4096—in
VDSL modems. All of them around 0 Hz (base-band), excluding bandwidth
0–4000 kHz for analog speech/fax transmission.

Since a DSL modem transmit data in the base-band, no frequency up-
conversion is performed. Therefore the signal can be only a real-value one.
If such, its spectrum is symmetrical around 0 Hz (X(− f ) = X∗( f )) and there-
fore bits can be allocated only to signal components with positive frequencies.
If 512-point IDFT is used, maximally 256 sub-carriers are available. And this
is the main difference between multi-carrier wired and wireless transmission:
in wireless one all complex-value carriers are used, 512 in our example, then
signal is up-converted in frequency and real part of the result is taken. The same
was in the single-carrier communication (see Exercise 17.1 and program 17.1).
The second main difference, which should be remembered, is that the single
carrier smoothly passes from state to state due to carrier states interpolation
done by the pulse shaping filter. In multi-carrier transmission the situation is
different: all carriers, parallel in frequency, are synthesized at once by means of
one IFFT procedure: we obtain one signal, block of samples, being summation
of all carriers. Each carrier in this block is in one state only, all the time. Next
IFFT gives us a next block of samples of a real-value signal to be transmitted.
Block after block after block ... Yes, multi-carrier transmission is block-based,
carriers are changing their states in bung-bung manner, not smoothly as a single
carrier with the PSF-based states interpolation.

Channel impulse response is convolving with transmitted signal, which con-
sists of separate blocks. The impulse response is looking back, to the past signal
samples. Therefore, on the block edges/borders, channel impulse response is
multiplied with samples of the previous data block and an inter-symbol (block)
interference (ISI) occurs! In order to mitigate this effect some samples from
the block end are copied into its beginning: a cyclic prefix (CP) is created.
The CP causes that channel influence is limited to one data block only, when
correct block beginning is found. For this purpose a special block synchroniza-
tion algorithms are required. CP simplifies also performing frequency channel
equalization.

When number of carriers grows, the signal bandwidth becomes wider. For
ADSL, sampling frequency is equal to fs = 2.208 MHz, signal bandwidth is
equal to 2.208/2 = 1.104 MHz, and carrier spacing is equal to 1104000/256 =
4312.5 Hz. Lower carriers are not used. Some carriers are used for down-link
(more) and some for up-link (less). Some carriers are used in duplex mode for
both, up- and down-link. When copper wire is long, higher frequencies are more
attenuated. If the signal is weak, noise is more disturbing and number of avail-



22.2 Concept of Discrete Multi-Tone Transmission 689

able carrier states decreases. During modem initialization central office (CO)
and user modems are choosing optimal number of states for each sub-carrier
on the base of estimated SNR for it. Number of states varies from to 2 to 215,
i.e. modulation is changed from 4-QAM up to 32768-QAM. Bit allocation is
performed in the beginning and remains unchanged during modem work. And
this is the main difference between wired and wireless multi-carrier transmis-
sion: in wire-line transmission carriers deliver different number of bits, while in
wireless one, due to different, reflection-like channel characteristics all carriers
deliver the same number of bits (the same modulation is used for all carriers). In
wireless case, bit allocation is not performed for a single carrier but in a mean
sense for all carriers together: 4-QAM or 256-QAM for all of them, depend-
ing on transmission conditions. Wrong bits from carriers more attenuated by a
channel are corrected then.

During ADSL modem start-up, situation is similar to our example from the
chapter on single-carrier transmission. In the beginning, sequence required for
channel estimation and design of its corrector is transmitted. Receiver uses it for
the design of time (TEQ) and frequency (FEQ) channel equalizers. First of them
is used for shortening the impulse response of the overall transmission path,
while the second for calculation of channel attenuation and phase shift of each
carrier. Then a random synchronization pattern (preamble) is sent, just before a
regular bit transmission, and next bits themselves. In DSL transmission signal
is not up- and down-converted in frequency; therefore, there is no frequency
and phase carrier offset problem. However, when analog-to-digital converter in
the receiver is working with wrong sampling frequency, amplitudes and phases
of all carriers are wrongly interpreted. Additionally cross-talk between them
occurs since their orthogonality is lost. This is a severe problem which has to
be solved to ensure the high bit-rate.

The goal of this chapter is to learn basic problems and solutions existing
in multi-carrier transmission, called discrete-multi-tone (DMT) in copper line
DSL world and orthogonal frequency division multiplexing (OFDM) in wire-
less services. ADSL is only an example [4, 5]. In fact, the chapter is a general
introduction to DMT/OFDM technology.

The following books present in detail the DSL technology: [3, 7, 10, 11]. In
turn, in [13, 19] a Reader can find not only a brief description but also exem-
plary laboratory experiments dealing with multi-carrier transmission, in partic-
ular with ADSL modems [13].

So let us start our flight. ”Here captain is speaking. Please, fasten your seat
belts.”

22.2 Concept of Discrete Multi-Tone Transmission

Typically, multi is obtained as repetition of single. This is also true in transition
from single-carrier communication systems to multi-carrier ones. Before, one sine
was periodically changing its parameters, i.e. it was modulated in amplitude, phase,



690 22 Introduction to Digital Multi-Carrier Transmission: With DSL Modem Example

and frequency. It was taken different states. The states were numbered. Bits were
transmitted in these numbers. At present we have many sines. They cannot change
frequencies lest they overlap in frequency and become indistinguishable. They can
change their amplitudes and phases only, i.e. change simpler carrier states described
by the QAM modulation. We transmit them simultaneously through the channel
and receive simultaneously. Thanks to multi-technology, number of transmitted bits
is increased in a receiver.

Typically, after such introduction, all listeners imagine direct parallel application
of the single-carrier transmission with: (1) carrier states, (2) their pulse shaping in
the base-band in TX, (3) up and down signal conversion in frequency, (4) pulse shap-
ing in RX, and (5) carrier states detection. But in such scenario, the up-down high-
frequency conversion, resource-consuming and expensive, is repeated many times
for each sub-carrier! So, it is impractical. Therefore, let us generate the summation
signal in the base-band: let us up-convert each IQ(n) component to a different, low
frequency lying around 0 Hz (in the so-called base-band), then sum them all and
up-convert the combined signal to a target, high frequency. Then, in the receiver,
down-shift the summation signal back from high frequency to the base-band, and
demodulate each sub-carrier. In the base-band we can use sub-carrier spacing equal
to 1 kHz, can have 1000 sub-carriers, and exploit 1 MHz bandwidth (1 kHz times
1000). After frequency up-conversion of the base-band, combined signal to the tar-
get frequency, let us say 1 GHz, we still use the same bandwidth equal to 1 MHz.
The method is more efficient than the first one in which single carriers are individ-
ually converted up-and-down in frequency, but creation of the summation signal in
the base-band and its backward base-band decomposition is still very confusing: a
lot of low-frequency up-down shifts are required!

So, how is it done! The answer is simple: via FFT—fast Fourier transform. The
combined base-band signal is generated using inverse FFT, while its decomposition
using direct FFT. In the transmitter, sent bits decide about X(k), i.e. about ampli-

tude and phase of each k-th Fourier harmonics x(n) = e j 2π
N kn, n,k = 0,1, ...,N − 1.

Performing IFFT in the transmitter, we synthesize a signal being summation of
many Fourier harmonics taking different states. In turn, performing FFT of the
summation signal in the receiver, we find Fourier X(k) coefficients of signal har-
monic components, i.e. their states and bits. Since Fourier harmonics are orthogonal
to each other, this multi-carrier FFT-based transmission technique has two names
in two different areas of its application: digital multi-tone (DMT) in copper-wire
modems (modulators–demodulators) and orthogonal frequency division multiplex-
ing (OFDM) in wireless radio communication. Names are different, but the method
is the same.

In Fig. 22.1 very simplified comparison of single-carrier and multi-carrier digital
transmission is done. Instead of repeating many individual single-carrier schemes, a
joint multi-carrier signal is generated in the base-band using the inverse fast Fourier
transform (IFFT). It is next optionally up-converted in frequency, passed through the
communication channel, wired or wireless, optionally down-converted in frequency,
and then decomposed into single carriers using the FFT.
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Fig. 22.1: Simplified comparison of single-carrier and multi-carrier digital trans-
mission, with optional base-band signal up- and down-conversion in frequency. For
single carrier a quadrature amplitude modulation (QAM) was selected only as an
example. IQ denotes in-phase and quadrature carrier components/states

We start in this chapter our discussion from digital subscriber line (DSL) tele-
phone or cable transmission because it is a simpler one as a precursor of OFDM
which was developed later. Why simpler?

Firstly, because signal is transmitted in the base-band: no frequency up-down
conversion is performed since each user has its own pair of twisted-wires. As a con-
sequence, signal realness is required. It causes that the signal spectrum is conjugate-
symmetric around the 0 Hz and bits can be allocated only to half of the complex-
value Fourier harmonics (carriers), typically to positive frequencies only.

Secondly, transmission conditions in DSL are easier: channel impulse response
is constant during transmission as the telephone line is at it is. In wireless commu-
nication situation is completely different: user can move all the time, even very fast
in difficult environment with many reflections, channel characteristics are changing
permanently and have to be estimated and corrected all the time, for example, per 1
millisecond. In home asymmetric DSL modems (asymmetric because we are more
taking from the net then giving to it), the channel is estimated only once, during the
modem start-up, and equalized all the time but using parameters calculated at the
beginning. When something has changed and transmission crashed, modem restart-
ing is required, as usual in programmable electronics devices when one of more
if() instructions is missing.

What should be remembered? The multi-carrier communication is block-
oriented. We do not have in it many carriers smoothly passing from one state to
the other with the help of pulse shaping filter. No. Carriers are in one state in
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time duration of one DMT/OFDM symbol, i.e. one IFFT output. Since signal
switching is abrupt, an extra analog channel filtering of the summation signal
is required to reduce the transmission bandwidth.

In Fig. 22.2 concept of multi-tone transmission is presented graphically: many
sub-carriers with different frequencies are used simultaneously. Typically, dis-
tance between sub-carriers is equal to a few, over a dozen or several dozen kilo-
hertz (sampling frequency divided by FFT size): 4.3125 kHz in 512-point ADSL
(2.208 MHz/512), 24.4140625 kHz in HomePlug Green power line communica-
tion (PLC) systems (50 MHz/2048, 75 MHz/3072), 1 kHz in 2048-point digital
radio DAB (2.048 MHz/2048), 3.90625 kHz in digital terrestrial television DVB-T
(8 MHz/2048), and 15 kHz in LTE (1.92 MHz/128, 3.84 MHz/256, 7.68 MHz/512,
15.36 MHz/1024, 23.04 MHz/1566, 30.72 MHz/2048). Many modern services ex-
ploit multi-carrier transmission. This chapter stands for introduction to all of them.

Fig. 22.2: Graphical illustration of discrete multi-tone (DMT) transmission
concept—data are transmitted simultaneously using many carriers which are mod-
ulated in amplitude and phase (QAM) [14]

In Fig. 22.3 signal generation in DMT/OFDM systems is explained:

1. stream of bits is divided into smaller bit packets,
2. bit packets are allocated to different carriers and interpreted as numbers of

allowed carrier states; corresponding IQ(k) values in constellation points are
found,

3. many sub-carriers Ωk are generated, each in its specific (I(k),Q(k)) state,
4. all sub-carriers are summed.

There are different strategies for bit allocation to individual sub-carriers depend-
ing on channel type. In DSL and PLC wire-line modems, signal-to-noise ratio (SNR)
is estimated for each sub-carrier and sub-carriers having bigger SNR obtain more
bits (exact equation will be given later). This strategy results from the fact that fre-
quency response of a wire-line is very fast decaying in frequency, i.e. it is signifi-
cantly lower for higher frequencies. Therefore, typically, each low-frequency carrier
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Fig. 22.3: Discrete multi-tone (DMT) in action: bit-stream is cut into portions of bits,
bits denote numbers of IQ(k) states taken by different carriers, QAM modulated
carriers are synthesized and summed [14]

can code 10–15 bits (210–215-QAM), while high-frequency one only a few bits (22–
25-QAM). On the contrary, wireless radio channels have relatively flat frequency
response (FR) in the whole frequency range. The FR is as a whole better or worse,
with many notches, and the same number of bits is allocated to each carrier de-
pending on the overall received signal quality. Errors occur for sub-carriers strongly
attenuated by the channel but they are corrected using special coding.

Fig. 22.4: Discrete multi-tone (DMT) transmission formally as a pipeline of the fol-
lowing operations: QAM—quadrature amplitude modulation, IDFT—inverse dis-
crete Fourier transform, CP—addition of cyclic prefix, D/A—digital-to-analog con-
verter, A/D—analog-to-digital converter, TEQ—channel time equalizer (channel
shortening), CP−1—CP removal, DFT—discrete Fourier transform, FEQ—channel
frequency equalizer, QAM−1—QAM demodulation [14]

Figure 22.4 concludes the discussion presented in this section. A simplified block
diagram of multi-carrier base-band modem is shown in it (ADSL, HomePlug PLC,
and coaxial cable). Incoming bits are divided into groups, allocated to sub-carriers,
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and interpreted as their (I(k),Q(k)) QAM states. Then inverse N-point DFT (FFT) is
performed and the so-called cyclic prefix (CP) is added to each DSL/OFDM group
of samples (some samples from each block end are copied to the block beginning—
purpose of this operation will be explained later). Then signal samples are arranged
serially, one-by-one, and sent to D/A converter, amplifier, and antenna. Transmit-
ted signal is passing through disturbing channel with some constant or time-varying
impulse response, noise, and disturbances (cross-talk, narrow-band, and impulsive
interference). In the receiver all operations are reversed. Signal from antenna and
low-noise amplifier is given to the input of A/D converter. In order to correctly de-
code transmitted data, the channel impulse response has to be estimated—which
allows frequency equalization (FEQ) of the channel influence. Additionally, a spe-
cial digital FIR filter, called a TEQ filter, can be designed optionally and applied
to the input signal—it causes shortening of the overall impulse response of the
transmission path to the length of the cyclic prefix. After synchronization to the
DMT/OFDM symbol beginning, the cyclic prefix is removed and the N-point di-
rect FFT is performed. Next, the obtained Fourier spectrum is divided by estimated
frequency response of the overall signal transmitter-receiver path, including TEQ,
and this way the transmission frequency equalization (FEQ) is done. Finally, carrier
state numbers are extracted from FFT coefficients and transmitted bits are recovered
from them. Hurrah!

Diagram from Fig. 22.4 can be easily made more general. After addition of fre-
quency up-conversion module before or after the D/A converter in the transmitter
and frequency down-conversion module before or after the A/D converter in the re-
ceiver, one obtains a multi-carrier scheme used for wireless radio communications.
Why before or after? It depends on technology used. In software defined radio so-
lution: before the D/A and after the A/D.

Let us describe a TEQ role in a few words. In case of wire-line links, telephone
or cable, a channel impulse response can be very long. We intent to extract carrier
states from one DMT/OFDM symbol but impulse response is looking back to the
past and it sees also samples of the previous symbol. A DMT/OFDM inter-symbol
interference (ISI) occurs! In order to remove it, we copy an ending fragment of
any frame and put it into its beginning, cheating this way the impulse response:
now it sees only samples of the present frame and there is no ISI. But doing this,
repeating the signal, we are transmitting less bits. Therefore, we are interested to
make the copy as short as possible. And this is a task of the TEQ filter. Since the
incoming data are filtered by it in the receiver, the overall impulse response of the
whole transmission path is changed. The task of the added filter is to make it shorter
than the length of the cyclic prefix (number of copied samples). For this reason,
the filter is called a TEQ one, since it causes time equalization (shortening) of the
channel. The TEQ filter is missing in multi-carrier OFDM wireless transmission
because impulse response of the wireless channel is short and length of the used
cyclic prefix is sufficiently adjusted to it. Additionally, wireless channel is changing
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all the time and permanent TEQ designing could be cumbersome in such application
scenario.

Exercise 22.1 (Generation of Multi-carrier Signal and Its Up-Down Fre-
quency Conversion). Use long version of program 17.1 from the book repos-
itory. Set isignal=2;, i.e. the complex-value OFDM. Observe signal spec-
trum after each processing step. Note that the multi-sub-carrier signal can be
recovered after the up-down frequency conversion. Now change exp(.) to
cos(.) in the signal generation loop. This is the case of base-band multi-
carrier transmission: we can also convert the signal up and down in fre-
quency, losing however the half of the bandwidth used, because the spectrum is
conjugate-symmetric. Finally, set Nx=2048 and generate the summation signal
x(n),n = 1, ...,2048, performing the 2048-point IFFT of some random complex
values X(k),k = 1, ...,2048, with exception of X(1) = 0 and X(1025) = 0:
X = zeros(1,Nx);
X([2:Nx/2, Nx/2+2:Nx]) = randn(1,Nx-2) + j*randn(1,Nx-2);

Convert the signal x(n) up-down in frequency. Observe spectra. Perform FFT
upon the received signal. Compare received and transmitted Fourier coeffi-
cients. How big the errors are? Then, change values of Fourier coefficients X(k)
for negative frequencies: they should be conjugate versions of coefficients for
positive frequencies:
X( Nx:-1:Nx/2+2 ) = conj( X(2:Nx/2) );

Perform IFFT upon X(k): the generated signal x(n) should have only real val-
ues. Check it. Convert the signal in frequency up and down. Perform FFT of
the received signal. Check errors between transmitted and received signals, x(n)
and y(n), as well as between their spectra, X(k) and Y (k). In the last experiment,
you have synthesized one DMT/OFDM symbol, transmitted it, and received.

Magnitude DFT spectra presented in Fig. 22.5 demonstrate idea of wireless
transmission of multi-carrier signal. First, the multi-component complex signal
is created in the base-band (a), then up-shifted in frequency (b), next only real
part of the result is left (c). Then the signal is down-shifted in frequency by
multiplication with the cosine (giving I(n), the real part of the result) and by
sine (giving Q(n), the imaginary part). Spectrum of the complex signal (I(n) +
jQ(n) is shown in plot (d), while the spectrum after low-pass signal filtration in
plot (e). Presented spectra were obtained for option isignal=2 from program
lab17_ex_Service_UpDown_long.m given in the book repository. It is a
long version of the program from Listing 17.1, in which the second signal is gen-
erated in the base-band as summation of 5 complex-value Fourier harmonics. In all
plots only magnitudes of DFT signal spectra are presented.
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Fig. 22.5: Illustration of the concept of multi-carrier signals and their wireless trans-
mission. Description in the text. (a) Base-band. (b) Freq. up. (c) Real. (d) Freq.
down cos+sin. (e) LP filter
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22.3 Examples of Multiple Carriers Technology

In Table 22.1 some important technical parameters of digital subscriber line (DSL)
and power line communication (PLC) technology are summarized and compared
with two existing alternative broadband Internet access solutions, like LTE 4G tele-
phony (multi-carrier based also) and fiber optics links. Given values are approximate
(illustrative) only and aim at showing existing similarities and differences between
technologies. All of them, including new fiber optics links, exploit frequency divi-
sion multiplexing (FDM), in particular orthogonal FDM (OFDM)—data are trans-
mitted on carriers having different frequencies, i.e. many tones or waves.

Table 22.1: Short summary of DSL (typical channel spacing 4.3125 kHz) with rough
comparison with other available multi-carrier technologies: PLC, LTE 4G, and fiber
optics

Standard Downstream
(Mbit/s)

Upstream
(Mbit/s)

FFT/Prefix length Max sampling
(MHz)

Max distance
(km)

ADSL 6.144 0.640 512/32 1.104 5.5
ADSL2 8 0.800 512/32 1.104 5.5
ADSL2+ 16 0.800 1024/64 2.208 4.0
VDSL 52 2.3 2783/174 12 1.2
VDSL2 100 100 1783/112−8192/512 8.5–35 0.2–1.3
G.fast 500 500 2048/320,4096/320 106, 212 0.25
PLC Indoor 100 100 128/32,3072/417 50, 75 0.10
LTE 4G 100 30 128/var−2048/var 1.92–30.72 3–6
Fiber 1000 1000 – – 10–60

Telephone DSL Modems As already mentioned, multi-carrier transmission in tele-
phone lines will serve in this chapter as an illustration example. In digital subscriber
line (DSL) modem channel is assumed as constant but its parameters are estimated
and both, time and frequency, channel equalization take place (TEQ and FEQ). Ad-
ditionally, bit allocation is performed according to the estimated SNR for each sub-
carrier. A wrong sampling ratio of the A/D converter in the receiver causes loss of
the signal orthogonality and appearance of inter-channel (inter sub-carrier) interfer-
ence (ICI) which should be eliminated or at least significantly reduced. Inter-symbol
interference (ISI) can be present in DSL transmission also, when channel impulse
response, even after shortening, is longer than a cyclic prefix. In fact, only channel
time-varying and up-down carrier frequency offset problems (resulting from pure
electronics precision and stability (ppm) as well as existing Doppler effect) are miss-
ing in this transmission scenario. But they will be discussed by us in the following
chapters.

Because the simplest DSL modem will serve for us at present as the main ex-
ample of multi-carrier transmission, it will be briefly introduced now. DSL con-
nection can be symmetric (SDSL), with similar bit-rate in down-link (to me) and
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up-link (from me), and asymmetric (ADSL) when the down-link is bigger. The sec-
ond possibility is offered for private home users who are mainly digital content
consumers, while the first one—for companies requiring fast links in both direc-
tions. Both modems are almost identical differing only in details (different values
of parameters). DSL is dedicated for last mile connection between traditional tele-
phone central office and our office or home. Copper wires are used as a transmission
medium. DSL methodology is exploited also in cable TV infrastructure making use
of copper coaxial cables. The idea of DSL modem operation was described above:
(1) transmission in the base-band, (2) many orthogonal carriers which are summed
using the IFFT, (3) in each signal block, obtained from IFFT, last samples are copied
to the block beginning, giving a cyclic prefix aimed at reduction of inter-block (inter-
symbol) (ISI) interference.

Fig. 22.6: ADSL copper wire modem connection with central office: old analog
phone (low frequencies) and new data link (high frequencies) use special analog
low-pass and high-pass filters in order to co-exist and do not disturb one another
[14]

In Fig. 22.6 connection between home ADSL modem and telephone central of-
fice (CO) of plain old telephone service (POTS) is shown. Analog telephone copper-
wire line connects our home and CO. There is a low- and high-frequency POTS
splitter on both sides, separating analog speech signal (low-pass filter to 3400 Hz)
and digital data (high-pass filter above 4800 kHz). In the ADSL standard sampling
frequency is equal to 2.208 MHz. Since N = 512 carriers are used, the sub-carrier
spacing is equal to 2.208 MHz/512=4.3125 kHz—see Fig. 22.7. Because transmis-
sion is in the base-band, without up-down frequency conversion, the signal has to
be real-value, not complex-value. Its spectrum is conjugate-symmetric around 0 Hz
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and bits can be allocated only to one half of it—the negative part of the spectrum is
determined by the positive part. In the positive part, the DC and first 5 sub-carriers
are not used: here there is an analog phone connection to 4 kHz and separation zone
to 26 kHz. In the upper part of the spectrum two scenarios can be applied: (1) using
separate carriers for transmitting (carriers 6–28) and receiving (36–256) with sepa-
ration zone between them (29–35), or (2) using duplex mode in which all available
carriers (6–256) are used for receiving data, while carriers (6–32) are additionally
used for transmitting. In the first scenario, extra filters are used for separation of
down-link and up-link. In the second scenario, the separation zone is missing and
echo canceling (EC) techniques have to be applied for carriers working in frequency
zone with duplex. The second technique is more challenging from DSP point of view
but it is preferred because it offers bigger bit-streams in the down-link: for lower fre-
quencies channel attenuation is lower, SNR is bigger and more bits are carried by
low-frequency sub-carriers.

Fig. 22.7: Frequency division/usage in ADSL modems: (up) separate bands for
transmitting and receiving with safety zone, (down) partial overlapping of trans-
mission and receiving bands—necessity of echo canceling algorithms [14]

During initialization both linked modems inform themselves about transmission
will. Modem asking for a connection is sending a 32 ms signal using one of the
four frequencies: 189.75 kHZ, 207 kHz, 224.25 kHz, or 258.75 kHz. During the
first 16 ms the signal is transmitted with power level −4 dBm and during the next
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16 ms—with power level −28 dBm. Acceptation is sent back using one of the three
frequencies: 34.5, 43.125, or 60.375 kHz. Then a specially formed preamble/header
signal is transmitted which allows both modems to identify the channel (its impulse
and frequency response) and to design TEQ filter, shortening channel impulse re-
sponse in time, as well as FEQ frequency equalizer. At this stage A/D sampling
ratio is estimated and corrected, most often in hardware. Then, the second training
signal is transmitted which is used for ADSL synchronization, i.e. finding begin-
ning of N-point DMT/OFDM symbols. FFT is periodically computed for precisely
selected blocks of N-samples and SNR is calculated for each sub-carrier. Having
this knowledge both modems, after short discussion over coffee, make decision how
many states can take each carrier, i.e. how many bits it can carry. And regular trans-
mission starts: carrier states are found and bits are extracted from them.

What problems are existing in DSL data transmission? Channel is strongly at-
tenuated and delaying transmitted signal (for higher frequencies and longer lines).
Physical side taps, present in DSL lines, give strong notches in channel frequency re-
sponses. Near-band and impulsive disturbances exist. Near-end (NEXT) and far-end
(FEXT) cross-talk appear between modems using copper twisted-pair wires in the
same shielded cable. Long channel impulse response causes interference between
transmitted consecutive DMT/OFDM symbols. Sampling ratio of a cheap A/D con-
verter can be wrong, causing loss of sub-carrier orthogonality and very strong inter-
carrier (inter-channel) interference (ICI). Everything happens in the simplest DSL
modem connection.

Remark Signal power is measured in telecommunication in dBm, i.e. in decibels
referred to 1 milliwatt. If P denotes signal power expressed in watts, its power level
in dBm is defined as:

SdBm = 10log10(1000 ·P), P =
1

1000
·10SdBm/10. (22.1)

Signal 1 mW has a power level equal to 0 dBm. Stronger signals have more,
weaker—less than 0 dBm. In turn, dBm/Hz denotes power level referred to 1 mW
for 1 hertz of signal bandwidth:

SdBm/Hz = 10log10

(
1000 ·P

Δ f

)
, P =

Δ f
1000

·10SdBm/Hz/10. (22.2)

The G.Fast The G.Fast is an incoming new, advanced, broadband DSL technology.
Typically sub-carrier spacing in ADSL is equal to 4.3125 kHz or 8.6250 kHz. In
G.fast it is equal to 51.75 kHz due to significantly higher sampling ratio (106 or 212
MHz) which results in almost flat channel for each tone, easier to equalize. High
bit-rate is obtained, thanks to usage of advances signal processing techniques but
service distance is limited to a few hundreds of meters since sampling frequency is
very high and signal is stronger attenuated for longer lines. It is not last mile but
street-to-home technology.
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Power Line Communication (PLC) PLC can be outdoor or indoor, but in some
countries only indoor transmission is permitted and its called HomePlug in such
case. It is divided into AV standard for fast home Audio-Video networks or GP
standard for general-purpose usage. In comparison with ADSL, the time equaliza-
tion of the channel is not performed in PLC, only longer symbol prefix is used. Ad-
ditionally, due to turning on/off of different home electronic devices and changing
channel features, channel estimation and equalization have to be performed in PLC
more often, not only during modem restart. But not permanently like in wireless
transmission.

22.4 Transmission Channels

In each telecommunication system, features of a channel used for transmission are
extremely important. In the simplest approach the channel is modeled as a linear
time-invariant system, characterized by its impulse response h(t) (system output for
delta Dirac function excitation) and corresponding frequency response H( f ), equal
to Fourier transform of h(t):

H( jω) =

∞∫
−∞

h(t)e− jωtdt, ω = 2π f . (22.3)

Fig. 22.8 Model of ADSL
channel: linear-time invariant
system—an output signal y(t)
is result of convolution of an
input signal x(t) and a channel
impulse response h(t) [14]

The simplest convolutional transmission model is presented in Fig. 22.8: output
signal y(t) is a result of convolution of input signal x(t) with the channel impulse
response h(t):

y(t) =

∞∫
−∞

x(τ)h(t − τ)dτ. (22.4)

If two signals are convoluted, their spectra are multiplied:

Y ( jω) = X( jω) ·H( jω). (22.5)
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Fourier spectrum of each transmitted signal with arbitrary frequency f0 is modified
by the channel in the following way:

Y ( f0) = |X( f0)| · |H( f0)| · e j(∠X( f0)+∠H( f )). (22.6)

In DSL each received sub-carrier will have different amplitude and phase than the
transmitted one. We have to know |H( f )| and ∠(H( f )) in the receiver in order to
correct Y ( f ) and obtain estimation of X( f ):

X̂( f ) =
Y ( f )
H( f )

. (22.7)

In software realization, when N-point DFT is exploited for Fourier spectrum cal-
culation, DFT coefficients X(k) of the transmitted signal x(n) are recovered from
the following equation:

X(k) = X(k · f0) =
DFT [y(n)]
DFT [h(n)]

, f0 =
fs

N
, k = 0,1,2, ...,N −1. (22.8)

Summarizing Copper-wire telephone line transmission channel can be mod-
eled as a linear time-invariant filter. If the channel impulse response is chang-
ing in time, as in wireless mobile channels, the filter becomes time-variant and
channel estimation and equalization become much more difficult. Pilot signals
known to receiver are used, for estimation of actual channel frequency response
H( f ). Knowing H( f ) of a channel and having Y ( f ) of a received signal, one
can find X( f ) of a transmitted signal: X( f ) = Y ( f )/H( f ).

If communication channels are so important, let us have a look at their exemplary
impulse responses and frequency responses. In Fig. 22.9 characteristics of a few
twisted-pair copper-line telephone channels are shown, on the left side for lines
without the high-pass POTS splitter and filter, and on the right side—with the high-
pass filter. We can observe a significant change in shape of the impulse responses
and almost invisible change in their spectra (only in their very beginning). We should
notice also the spectrum smoothness (with some notches) and the fast spectrum
decaying in frequency, causing a decrease of number of bits which can be allocated
for high-frequency sub-carriers.
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Fig. 22.9: Characteristics of several telephone lines without (left) and with (right)
high-pass filter (POTS splitter): (up) impulse responses h(t), (down) corresponding
frequency responses H( f ). Notice time delay of h(t) and notches present in H( f )

In Fig. 22.10 two power line channels are presented, both medium quality, first
long, 350 m, outdoor (top) and second short, indoor (bottom). This is a moment
for big reflection: how different are observed impulse responses! The first is long-
lasting and smooth. The second is short lasting and highly impulsive. Looking at
their frequency responses, presented in bottom plots, we see that the first is fast
decaying, allowing bit transmission only in a very narrow low-frequency band and
requiring precise bit allocation. In turn, the second frequency response has many
notches but it is not decaying. This transmission PLC channel is very similar to wire-
less channels, for example, to the channel EVA from LTE 4G standard, presented in
Fig. 22.11. Impulse responses of both channel are impulsive, both have not-decaying
frequency responses with notches. In wireless transmission all sub-carriers use the
same number of states, i.e. the same number of bits is allocated to each of them,
based on overall signal strength. For this reason, since errors occur, transmitted are
not only the original bits but also some additional, redundant bits, protecting the
original ones against errors (forward error correction (FEC) code “3/4” means that
the original bits represent 75% of all sent bits). It looks that this should be also a
recommended scenario of bit allocation for the PLC indoor transmission.
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Fig. 22.10: Characteristics of two medium quality power lines: (left) long 350m
outdoor, (right) shorter 100m indoor: (up) impulse responses, (down) corresponding
frequency responses [14]
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Fig. 22.11: Impulse response (exactly: statistical power density profile of channel
filter taps) of an exemplary wireless channel EVA from the LTE 4G standard 3GPP
TS 36.104 (left) and its frequency response (right) [14]

22.5 DMT/OFDM Modulator and Demodulator

In digital communication game we fight against channel, interfering signals, and
hardware imperfection of transmitter and receiver elements: should be A but unfor-
tunately B is set. In this section we learn the first multi-carrier transmission prob-
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lem arising from channel disturbing, i.e. the DMT/OFDM inter-symbol interference
(ISI). And we become familiar with its solution: addition of the so-called cyclic
prefix (CP), the repeated part of each DMT/OFDM signal/symbol.

In Fig. 22.12 the ISI problem is explained graphically and the solution is intu-
itively derived. The figure consists of four plots. In the first one, at the top, we see
blocks of signal samples (marked as a diamond, left triangle, rectangle, and right
triangle), synthesized by IFFT from specified carrier states for each DMT/OFDM
symbol. The DMT/OFDM symbol is summation of many individual sub-carriers
being in different states. Above the symbol chain, we see an impulse response of a
channel which is convoluting with our signal, looking to its past. We can observe
that impulse response beginning can lie above one symbol but its tail—above the
previous symbol. Received signal yk(t) (for the k − th symbol) depends not only
upon the transmitted symbol xk(t) but also on its predecessor xk−1(t). Wow!

In order to eliminate this unwanted inter-symbol interference (ISI) we could
transmit every symbol twice and perform FFT in the receiver only for the second
symbol, after symbol synchronization. Such situation is shown in the second fig-
ure. Symbol coping is done and impulse response standing at the beginning of the
second transmitted symbol looks back and see ... the same symbol. DFT and FFT
are discrete versions of the Fourier series. In Fourier series signal periodicity is as-
sumed. Copying does not change the result: our signal after the channel is artificially
made periodic and FFT of the second symbol gives us the correct value Yk( f ). When
the impulse response is shorter than the symbol length, and when we are not syn-
chronized perfectly and take, for the FFT calculation, the end of the first (copied)
symbol also, the FFT result in magnitude will be the same—only phase shift of
spectral coefficients will occur but this effect can be easily corrected, which we will
investigate later.

So, are we happy? Not completely. Repeating each DMT/OFDM symbol twice,
we have reduced two times the bit-rate! How counteract this? To make a shorter
signal copy which is shown in the third figure: at present only some limited number
of last samples of the DMT/OFDM symbol is copied to the symbol beginning which
is presented in the third plot of Fig. 22.12. It is possible, because in the receiver
a special digital filter was designed, the so-called TEQ channel equalizer (Time
EQualizer), and incoming samples y(n) were filtered by it. Therefore, transmitted
data were convoluted with two filters:

1. the physical channel impulse response h(t),
2. a designed impulse response e(n) of the TEQ FIR digital filter—to be discussed

later in Sects. 22.8.3 and 22.8.8.

Effective impulse response he(n) of the whole ADSL channel is, in such case, equal
to convolution of both impulse responses, h(t) and e(n). The TEQ e(n) is specially
designed in ADSL to make the he(n) short: having maximally 32 plus 1 sample (first
sample of he(n) is overlapping with the first sample of a new DMT/OFDM symbol).
Thanks to the TEQ usage, only the last 32 samples of the DMT/OFDM symbol have
to be copied to the symbol beginning, not 512. The repeated DMT/OFDM symbol
part, in ADSL 32-samples long, is called the cyclic prefix (CP). Connection between
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length of the shortened channel impulse response he(n) and the cyclic prefix length
is shown in last, fourth plot in Fig. 22.12.

Why TEQ equalizer is not always used in multi-carrier transmission? Because
design of a TEQ filter is not simple. Some TEQ design examples are presented
in Sects. 22.8.3 and 22.8.8. The filter depends on h(t) and when the channel is
changing very fast it is no sense, and time, to design new TEQ filters permanently.
Telephones lines are not-varying and TEQ is designed only during modem initial-
ization. In PLC indoor communication and in wireless channels, impulse responses
are time-varying, very impulsive (look at figures of the previous section), and diffi-
cult to make shorter. But there is no need for doing this because they are not long.
Therefore only prefix with sufficient length is added to each DMT/OFDM symbol.

Till now, very intuitive explanation of frequency channel equalization (FEQ) and
time channel equalization (TEQ) in base-band DMT/OFDM systems was presented
as well as the main concept of signal generation in their transmitters and signal anal-
ysis in their receivers. At present, we can re-draw block diagram of the DMT/OFDM
signal processing path, presented in Fig. 22.4, with more understanding in an en-
larged form, connecting in pairs corresponding modules of the transmitter and re-
ceiver. This is done in Fig. 22.13. Spectra and signals are denoted in it as in the
program which will be used later by us for simulation of a working ADSL modem.

Going one step further, in Fig. 22.14 only ADSL modem transmitter is shown
with precise description of:

1. QAM bit allocation to positive-frequency sub-carriers (1–255) only,
2. conjugate-symmetric, carrier states copying to negative frequencies (257–511),
3. performing N = 512-point FFT algorithm and addition of a 32-point cyclic pre-

fix (544 samples result),
4. data serialization,
5. and their converting to analog signal.

In turn, in Fig. 22.15 a receiver of the base-band ADSL modem is presented. We
have in a cascade:

1. an A/D converter,
2. effective impulse response channel shortening by the TEQ filter to 33 samples

or less,
3. synchronization with DMT symbol beginning,
4. serial-to-parallel samples re-organization,
5. removing the cyclic prefix (first 32 samples),
6. performing 512-point FFT,
7. leaving only positive sub-carriers (1–255),
8. performing their correction (FEQ channel equalization),
9. recovering sub-carrier states (de-QAM), their numbers and bits transmitted.

In the remaining part of the chapter we will discuss selected technical issues
connected with modem implementation.

In the program presented in Listing 22.1, the idea of DSL modem can be tested.
Number of Kiter DMT symbols are transmitted, having N samples each with
cyclic prefix P samples long. The symbols can be defined directly in time domain
(inputType=1) or in frequency domain (inputType=2) as in DSL modems.
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Fig. 22.12: Explanation of a cyclic prefix addition to each data block and neces-
sity of this operation, from top to bottom: (1) transmission without a prefix, (2)
maximum prefix—doubling the transmitted symbol for long channel impulse re-
sponse, (3) short prefix—cyclic copying a signal fragment from the data block end
to the beginning, (4) short prefix—cyclic convolution of the transmitted data with
the channel impulse response shortened by the TEQ equalizer [14]
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Fig. 22.13: Complete diagram of the ADSL modem with IFFT modulator and FFT
demodulator. Denotations: S/P—serial-to-parallel, P/S—parallel-to-serial [14]

Signal is passing through a channel, user can choose taps of its impulse response (at
present there are 4 taps and P=4, i.e. length of the CP is sufficient to eliminate the
inter-symbol interference). Signal can be contaminated by different disturbances,
at present only by additive white Gaussian noise. Now, perfect synchronization is
assumed in the receiver. Received signal is partitioned into consecutive fragments
having P+N samples each, which are put into columns of a matrix y1p. After that,
first P rows of the matrix, with cyclic prefixes, are removed. Then fft() upon
columns of y1 matrix is performed, result is divided by channel frequency response
H, calculated earlier, and this way the channel influence is removed, i.e. frequency
channel equalization (correction) is done. At the end, we are going back to time do-
main and compare samples of equalized, received signal y1e (matrix having sam-
ples of DSL symbols in its rows) with transmitted samples. When DSL signal is
defined in frequency domain, error is calculated also in frequency domain.

Listing 22.1: Matlab program for testing idea of base-band multi-carrier DSL trans-
mission

�

1 % lab22_ex_dsl_idea.m
2 clear all; close all;
3

4 inputType = 1; % 1=signal, 2=spectrum
5 Kiter = 10; % number of DMT symbols
6 N = 16; P = 4; % symbol and cyclic prefix lengths
7 nstd = 0; % channel noise standarddeviation
8 h = [ 1, 0.5, 0,-0.25 ]; Nh = length(h); % channel impulseresponse
9 H = fft( [h zeros(1,N-Nh)] )/N; H = H.’; % channelfrequencyresponse

10 plot( 20*log10(abs(H)) ); title(’|H(k)|’); % its figure
11 Nx = Kiter*(N+P); % transmittedsignal length
12 x = []; x1ref = []; S1ref = []; % initialization
13 for k = 1 : Kiter % DMT signal generation
14 if(inputType==1) x1 = randn(1,N); % # real time-domain signal
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Fig. 22.14: Block diagram of the ADSL transmitter and data passing through the
channel [14]

15 else % @
16 S0 = randn(1,N/2-1) + j*randn(1,N/2-1);% @ half of the DFT spectrum
17 S1 = [ 0 S0 0 conj( S0(end:-1:1) ) ]; % @ its Hermitiansymmetry
18 x1 = ifft( S1 ); % @ real signal from IDFT
19 S1ref = [ S1ref, S1.’]; % @ storing carrier states
20 end
21 x1p = [ x1(1,N-P+1:N), x1 ]; % one symbol plus prefix
22 x = [ x, x1p ]; % chain of DMT symbols
23 x1ref = [ x1ref, x1’ ]; % storingtransmittedsignals
24 end % end of signal generation loop
25 y = conv(x ,h); y = y(1:Nx); % signal is coming through the channel
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Fig. 22.15: Block diagram of the ADSL receiver [14]

26 y = y + nstd*randn(1,Nx); % the channel is noisy, change nstd value
27 y1p = reshape(y,N+P,Kiter); % in columns RX signals with prefixes
28 y1 = y1p( P+1:N+P,1:Kiter); % removingprefixes
29 Y1e = fft(y1)/N ./ repmat(H,1,Kiter); % channelequalization
30 if(inputType==1) % FOR INPUT SIGNAL
31 y1e = ifft( Y1e ); % going back to time domain
32 error1 = max( max( abs( x1ref - y1e ))), % error in the receiver
33 else % FOR INPUT SPECTRUM
34 error2 = max( max( abs( S1ref - Y1e ))), % error in freq domain
35 end

��
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Exercise 22.2 (Testing Idea of the Base-Band Multi-Carrier DSL Trans-
mission).

(1) Analyze program 22.1. Run it for two types of input signals. Observe neg-
ligible errors. Change length of the cyclic prefix. Notice that for P ≥ 3,
the channel influence is perfectly removed because channel has 4 taps and
cyclic prefix with length 3 is sufficient. Observe that for P=1,2 errors oc-
cur. After noise addition (e.g. nstd=0.1) the received signal is different
than the transmitted signal.

(2) Modify the program. Define carrier states in frequency domain as 4-QAM
(±1∓ j):
S0=(2*round(rand(1,N/2-1))-1)+j*(2*round(rand(1,N/2-1))-1);

and detect them in the receiver. Observe sent and received carrier constel-
lation points with sufficient and too short cyclic prefix length. For this pur-
pose add appropriate figure:
Y1e = Y1e([2:N/2, N/2+2:N],:); Y1e=Y1e(:);
plot(real(Y1e(:)),imag(Y1e(:)),’bo’); grid; title(’I=f(Q)’);

Repeat experiment for different levels of noise.
(3) Now, set long prefix and absent noise (simply comment the noise addition

instruction). After channel convolution add to the signal sinusoid having
frequency different than transmitted carriers, i.e. a narrow-band interfer-
ence:
y = y + 0.05*sin(2*pi/N*10.5*(0:Nx-1));

At present, the disturbing sine has frequency exactly in the middle between
the 10-th and 11-th carrier. Observe result. It should be significantly worse.
Change amplitude and frequency of the sine.

(4) At present, simulate wrong sampling ratio of the receiver A/D converter:
step=(Nx-1)/Nx; % step=0.99999;
y(1:Nx)=interp1([0:Nx-1],y(1,1:Nx),[0:step:(Nx-1)*
step],’spline’);

The ADC is working with faster sampling ratio and it is giving us Nx
samples in time of transmitted Nx − 1 samples—one transmitted sam-
ple is lost! Observe constellation points of the carriers. Than set also
step=0.99999, 0.9999, 0.999, 0.99. Wow! Where are our
constellation points?!

(5) Finally, de-synchronize receiver delaying the signal after channel noise ad-
dition by one sample: y=[ 0 y(1:end-1) ]. Observe in the receiver
carrier constellation points which should rotate: the phase shift is caused
by the time shift of the signal and should be different for different carri-
ers. Check it. Take a break. Switch off the computer. Go for a walk to the
nearest forest. Enjoy its beauty.
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Plots which should be observed during realization of Exercise 22.2 are presented
in Fig. 22.16. States of all carriers are observed in one plot. Because 4-QAM modu-
lation is used, four points: (1+ j), (1− j), (−1+ j), and (−1− j) should be visible.
Should be. But are not.
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Fig. 22.16: Exemplary figures of I = f (Q) 4-QAM constellation points which
should be seen by a Reader during realization of Exercise 22.2. All carrier states
are presented in one plot. In columns for: (1) sufficiently long CP P=3, (2) too
short CP P=2—ISI occurs, (3) noise with nstd=0.1, (4) disturbing sinusoid
(A = 0.1,k = 10.5), (5) for wrong ADC sampling rate step=0.999—ICI occurs,
(6) for synchronization error/delay equal to 1 sample
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22.6 Carrier Orthogonality Importance

Results of doing Exercise 22.2 from the last section should make us think more
carefully about orthogonality concept exploited in multi-carrier transmission. When
vectors of two signals are orthogonal, their inner product is equal to 0. DFT con-
sists of calculating many inner products between a received signal and predefined
set of Fourier harmonics. If the received signal is a superposition of these harmon-
ics, scaled in amplitude and shifted in phase, there are no detection problems in the
receiver: each signal component, scaled and shifted, is orthogonal to other harmon-
ics of the DFT detector and it is not seen/measured by them. All inner products are
equal to zero except the one, in which the received Fourier harmonic is compared
with its own DFT reference. The result tells us about the amplitude and phase of the
concrete received sub-carrier. This ideal carrier state detection scenario fails in case
of losing signal orthogonality.

Let us perform Exercise 22.3, checking signal detection in DMT/OFDM trans-
mission scenarios with many orthogonal carriers.

Exercise 22.3 (Testing Orthogonal Signal Detection Realized in Multi-
Carrier Transmission). Let us assume the following experiment. In a
DMT/OFDM receiver we calculate DFT of a received signal. Now, in our ex-
periment, we are taking from DFT only one Fourier harmonic and calculate its
inner product with the input signal. We would like to check which input signals
will influence the DFT coefficient associated with the tested DFT harmonic
reference and how much. Therefore, in a loop we are generating cosines with
different frequencies and calculate their inner products with the selected DFT
harmonic. Finally, we collect results of all inner products in one plot. Program
doing this is given in Listing 22.2. Analyze it. Run it. Choose complex-value
or real-value signal components inside the loop. Change frequency of the har-
monic of interest. Are you surprised or not? How do you conclude this exercise?

Listing 22.2: Matlab program for checking quality of different signal components
detection realized by the DFT frequency analyzer

�

1 % lab22_ex_ortho.m
2 clear all; close all;
3

4 N = 20; % number of orthogonal complex-value carriers, their lengths
5 fs = 20; % samplingfrequency
6 k = 5; % number of the carrier which value is checked
7 df = fs/1000; % frequencyresolution
8

9 dt = 1/fs; t = 0 : dt : (N-1)*dt; % sampling period, samplinginstants
10 f0 = 1/(N*dt); fk = k*f0; % fundamental and checked carrierfrequency
11 b = exp( -j*2*pi*fk*t ); % reference Fourier harmonic of the carrier
12 w = boxcar(N)’; % "no window"
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13 %w = hanning(N)’; % window used optionally
14 f = 0 : df : fs; % frequencies of received signal components
15 for m = 1 : length(f) % analysis / detection loop
16 x = exp( j*2*pi*f(m)*t ); % component in a received signal
17 % x = cos( 2*pi*f(m)*t ); % component in a received signal
18 X(m) = sum( b .* (w.* x) )/N; % its inner product with the referenceharmonic
19 end
20 figure; plot( f, abs(X),’b-’,f(1:f0/df:end),abs(X(1:f0/df:end)),’ro’);
21 grid; xlabel(’f (Hz)’); title(’|X_{k}(m)|’); pause

��
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Fig. 22.17: Plots generated in example 22.3, showing values of inner products
between the Fourier harmonic number 5 taken from 20-point DFT and mono-
component signals with frequency changing linearly from 0 Hz to fs = 20 Hz: (left)
for complex-value input, (right) for real-value one

Figure 22.17 presents plots obtained in Exercise 22.3 when the received signal
has complex values (left) and real values (right). We see that the inner product op-
eration does not see signals which are orthogonal to the searched DFT harmonic
exploited in the inner product, i.e. the remaining DFT harmonics; however, it sees
all components having frequencies in-between. And this is a bad news! Noise from
the whole frequency band and any non-orthogonal disturbing sine/cosine will in-
fluence all DFT coefficients, in our case—all the carriers! Now, we can understand
the results presented in Fig. 22.16, showing how harmful the noise and narrow-band
signals are for clearness of carrier state constellations. At present, the importance
of correct ADC sampling ratio is understood also: while the sampling frequency is
wrong, frequencies of received signal components do not overlap with frequencies
of the DFT analyzer and inner product of any DFT harmonic with the signal is sen-
sitive to all signal components, because these components are no longer orthogonal
to the Fourier harmonic signal whose presence is verified! When orthogonality is
lost, the detection performance is also lost. This effect is illustrated in Fig. 22.18.
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Fig. 22.18: Graphical illustration how other carriers and disturbances influence the
detection of constellation state of any carrier [14]

22.7 Transmission Disturbances and Distortions

The aim of this section is to convince us that each transmission, even looking to
us so simple like ADSL, is faced with many problems. Everything is easy at the
stage of drawing diagrams on sheet of paper, especially when the diagrams are to
be implemented by somebody else. In real word we are living in a jungle of many
co-existing physico-chemical phenomena, fighting against each other, which are in-
dependent from us, and there is no easy answer or one solution only. Signal analysis
and processing are performed usually in combat conditions.

Attenuation Attenuation in wire-lines depends on signal frequency and wire re-
sistance. Since higher signal frequencies are much stronger attenuated (as in RC,
resistance-capacitance circuit), maximum signal frequency used in DSL cannot be
extremely high, typically it is equal to 2.208 MHz. Situation is additionally compli-
cated by using inductive coils in some telephone lines. In turn, bigger wire resistance
causes bigger signal attenuation. Resistance decreases with wire diameter (wider
wires are better) but increases fast with cable length (shorter wires are better). For
this reason, the DSL technology is typically used as a last mile connection, about
1.6 km; however, longer links to 10 km happen also. Copper is a good conductor.
Wire technology production is important also.

Change of Twisted-Pair Diameter Typical telephone connection is built from a
few sections (fragments) with different wire diameters. Thin wires are used closer
to CO since cables have more twisted-pairs then. Because wave impedance depends
on wire thickness, in places of wire connections impedance mismatch can occur,
causing signal reflections.

Branches Unfinished branches of old subscriber lines, not used at present, occur
very often. They cause also signal reflections: some energy of the transmitted signal
can pass into the branch, reflects from its end and go back to branch beginning.
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From this point, the reflection can go back to the transmitter as an echo and go
forward to the receiver as a disturbance. Reflection adds to the signal. When its wave
delay is equal to 180 degrees, some signal frequency components may be strongly
attenuated, even completely canceled. It happens when branch length is equal to odd
multiple of wavelength quarter.

White Noise Additive noise, present in receivers of ADSL modems, has typically
Gaussian probability density function and flat power spectrum (AWGN additive
white Gaussian noise). It is adding evenly to a signal in the whole frequency range.
AWGN origins from quantization noise, thermal phenomena existing in analog parts
of transmitter and receiver and electromagnetic disturbances coming from environ-
ment. Typically its power level is assumed as −140 dBm/Hz.

Impulsive Noise It sources are difficult to specify precisely. It is generated by com-
mutative and signaling devices, also by electrostatic charge. It is characterized by
short, impulsive signal shape (duration from 30 to 150 μs) and big amplitude (from
5 to 20 millivolts). Impulses appear typically 1–5 times per minute. Due to its big
amplitude, the impulsive noise is very harmful to DSL modems.

FEXT and NEXT Cross-Talk Cross-talk between working DSL modems of dif-
ferent types, but using the same frequency band, even only in small part, is the
most dangerous disturbance in wire-line base-band transmission. Cross-talk means
that transmission in one copper twisted-pair disturbs transmission in some other
twisted-pair in the same cable. The cross-talk takes place in distribution part of the
connection when wires of big, infrastructure CO cables are changed (crossed) to in-
dividual subscriber links. Cross-talk are divided into far-end (FEXT) and near-end
(NEXT).

FEXT During FEXT, transmitter and receiver having cross-talk are on opposite
ends of the same cable. Typically, FEXT occurs between modems of the same type,
e.g. ADSL. FEXT increases with line length. However, in comparison with NEXT,
it is less harmful because far-end cross-talk has to pass through the line, so it is also
attenuated. FEXT is a dimensionless value, estimated using the following equation:

FEXTN =

(
N
49

)0.6

kd f 2|H ( f )|2, (22.9)

where k = 8 · 10−20 is an empirical constant, d denotes loop length expressed in
feets (1 ft=0.305 m), f is frequency in hertz, and H( f )—loop frequency response.

NEXT NEXT cross-talk between modems is significantly more harmful. It occurs
only when transmitter and receiver are working on the same end of the infrastructure
cable and are using different twisted-pair wires. They are close to each other: the
cross-talk is not passing through the line, is not attenuated and therefore is strong.
NEXT, a dimensionless value again, is estimated by the following equation:

NEXTN =

(
N
49

)0.6 1

1.134 ·1013 · f
3
2 , (22.10)
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where N denotes number of disturbing lines (maximum 49), and f is frequency of
disturbing signal in hertz.
NEXT cross-talk increases when distance between twisted-pairs becomes lower and
distance of their interaction increases. NEXT is dual: both twisted-pairs are infected.
In multi-pair cable all wires can disturb each other. Pairs having lower twist are more
robust to cross-talk.
When ADSL modem is working in FDM mode (with frequency division between
transmitter and receiver), the NEXT does not occur (since different frequencies are
transmitted and received by two modems being on the same side of a cable) but
FEXT does (since the same frequencies are transmitted by different modems on one
side of the cable). In ADSL modems with echo cancellation, both NEXT and FEXT
are present, due to the fact that the same frequencies are used, in some band, for TX
and RX. The situation is more complicated when twisted-wires of the same cable
are used also by different technologies, like ISDN or HDSL.

22.8 DSL Modem Implementation Issues

Having in mind a complete program of ADSL transmission model, which will be
presented at the end of this chapter, we will discuss now step-by-step, mathemati-
cally, all DSP algorithms which are used in it, in order to do their software imple-
mentation in the modem program. The short outline of this section is as follows:

1. channel estimation will take place: channel is disturbing transmitted data, we
have to know it in order to perform correction of the received signal;

2. ADC sampling ratio is estimated and corrected (in hardware) since DMT/OFDM
systems are very sensitive to losing carrier orthogonality—due to this an inter-
carrier interference (ICI) is minimized;

3. channel time equalizer (TEQ) is designed in order to shorten the impulse re-
sponse of the overall transmission path to the length of cyclic prefix and to
avoid inter-symbol interference (ISI);

4. knowing the channel and having TEQ filter designed, the final channel fre-
quency equalizer (FEQ) is calculated;

5. at present, DMT/OFDM symbol synchronization takes place, using, for exam-
ple, the Schmidl–Cox algorithm;

6. next, we can observe constellations of carrier states and test influence of differ-
ent disturbances upon carrier states detection;

7. at the moment when we are feeling the blues, signal-to-noise (SNR) ratio for
each sub-carrier is calculated and maximum available number of bits is allo-
cated to the sub-carrier;

8. finally, having everything ready, regular transmission can start.

We end this section with short discussion about available strategies of TEQ filter
design: what its length should be preferred, short or long?
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22.8.1 Channel Estimation/Identification

Telecommunication channel constant in time, like DSL, is modeled as a linear
time-invariant (LTI) filter. When channel is varying not very fast, we can always
assume local validness of the LTI model and identify it in some specified time
slots. What does the phrase channel identification mean? To find it impulse re-
sponse h(t) or frequency response H( f ), both connected by Fourier transform (FT):
H( f ) =FT (h(t)),h(t) =FT−1(H( f )). Frequency response of any processing mod-
ule/block/object tells us how this module modifies amplitude and phase of each in-
put frequency component. To check it, we should excite the module with signal hav-
ing all frequencies and observe the module output: Fourier transform of the output
(state of each frequency component at the module output) divided by Fourier trans-
form of the input (state of each frequency component at the module input) specifies
change of each frequency component done by the module and it is called the module
frequency response. In order to succeed, the input signal should contain all frequen-
cies. Only the ideal Dirac delta function and ideal white noise have such feature.
The Dirac function is very difficult to realize in practice; therefore, channel identifi-
cation is realized technically by exciting with pseudo-random digital sequences, e.g.
maximum length sequences. In Fig. 22.19 such 512-samples long sequence is pre-
sented in the left plot, while in the right plot its auto-correlation function, which is
almost perfectly impulsive. Since signal power spectral density (PSD) is defined as
the Fourier transform of the signal auto-correlation function, we can expect almost
perfectly flat PSD of our signal, which was our goal.

Fig. 22.19: Channel identification sequence (left) and its auto-correlation function
(right) [14]
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The excitation sequence is known to the receiver: knowing channel input and out-
put, the channel impulse response is found using Eqs. (22.7), (22.8). In ADSL N =
512-point DFT is used. Spectral coefficients X(0) and X(256) are set to zero and
X(1)...X(255) to random states of 4-QAM modulation. Coefficients X(511)...X(257)
are equal to complex conjugation of coefficients X(1)...X(255), respectively. Then
IFFT is calculated and resultant signal x(n), presented in Fig. 22.19, is transmitted
many times, without a cyclic prefix, which is shown in Fig. 22.20.

czas

y(n)

czas

h(n)

FFT FFT

przypadek 1 przypadek 2

Fig. 22.20: Illustration of the circular shift of the impulse response h(n), calculated
from Eq. (22.11) (presented on gray background), depending on acquisition time of
the signal y(n) fragment sent to the FFT analyzer (in the second case the shift is
missing) [14]

Receiver, initially, is not synchronized with the beginning of repeated signal sam-
ples. It is taking consecutive blocks of N signal samples and calculating DFT of
each of them. Next, it adds results of all N-point FFTs and, according to Eq. (22.8),
divides it by N-point FFT of the transmitted signal (k = 0,1, ...,N −1, f0 =

fs
N :

Ĥ(k f0) =

1
M

M
∑

m=1
FFTN [ym(n)]

XN(k)
, ĥ(n) = FFT−1

N

[
Ĥ(k f0)

]
. (22.11)

This way estimation of channel frequency response H(k f0) is obtained and its in-
verse FFT gives us estimation of the channel impulse response ĥ(n) = hest(n). The
hest(n) is presented in Fig. 22.21, on the left side for subscriber line without high-
pass POTS splitter and on the right side with this high-pass filter. In both plots we
see two impulse responses. The ones located in figure central parts (marked with
solid lines) are obtained from the first FFT in Fig. 22.19, which is not synchronized
with received signal blocks. Impulse responses present in figures beginning (marked
with dashed lines) come from the second FFT in Fig. 22.19, which is synchronized
with signal blocks.
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Fig. 22.21: Results of h(n) estimation from Eq. (22.11) for: (left) telephone line
alone, (right) line with high-pass filter [14]

Exercise 22.4 (DSL Channel Estimation and Correction). In program 22.1
ideal DSL transmission has been simulated. Signal was passing the channel
and it was perfectly corrected in the receiver because RX knew the channel fre-
quency response. Modify the program and implement in it channel estimation
procedure based on Eq. (22.11). In case of difficulties, try to find inspiration in
program 22.7, presented at the end of this chapter.

Exercise 22.5 (Reverberation Signal Generation for Channel Identifica-
tion). In programs 22.1 and 22.7 Matlab pseudo-random number generator is
used for synthesis of a signal used for channel identification. Replace it with the
reverberation signal generated by code, presented in Listing 22.3. Check shape
of the signal auto-correlation function. Notice that vector num is a random se-
quence of numbers {1,2,3,4}.

Listing 22.3: Matlab program for generation of reverberation signal used for channel
identification in ADSL modems

�

1 % lab22_ex_reverb.m
2 clear all; close all;
3

4 N = 512;
5 b = zeros( N, 1 ); b( 1:9 ) = 1; % initialization
6 for i = 10:length(b)
7 b(i) = xor( b(i-4), b(i-9) ); % recursivecalculations
8 end
9 for i = 1:N/2-1
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10 num( i ) = ( 2 * b( 2*(i-1)+1 ) + b( 2*(i-1)+2 ) ) + 1; % random numbers 1,2,3,4
11 end
12 coder = [ -1-j, -1+j, +1-j, +1+j ]; % QPSK/4-QAM constellationpoints
13 S0 = coder( num ); % their random selection
14 S1 = [ 0 S0 0 conj( S0(end:-1:1) ) ]; % spectrum
15 x1 = ifft( S1 ); % real value signal
16

17 figure; plot( real(S1), imag(S1),’bo’); grid; title(’I=f(Q)’); pause
18 figure;
19 subplot(211); plot( real(x1) ); grid; title(’Re(x(n))’)
20 subplot(212); plot( imag(x1) ); grid; title(’Im(x(n))’); pause
21 figure; plot( real(xcorr( x1 )) ); grid; title(’Auto-correlation of x1(n)’); pause

��

22.8.2 ADC Sampling Rate Estimation and Correction

In the fifth plot of Fig. 22.16 we can see how harmful is losing carrier orthogonality
due to wrong sampling ratio of the ADC converter in the DMT/OFDM receiver.
Total drama, not romantic comedy! Therefore, the sooner the better, we have to
check sampling frequency value and sent the command to the hardware (This is
captain speaking!) to correct it.

Let us assume situation presented in Fig. 22.19 when the same frequency-reach
signal blocks are transmitted many times and we expect to have N samples per block.
Let us assume also ADC sampling ratio error εs and frequency offset error εc, typical
for OFDM systems with frequency up-down conversion. Frequency carrier offset,
resulting from service frequency up-down conversion, is absent in DMT systems
but presented here the Sliskovic method [9], developed for OFDM systems, is more
general and allows also its estimation.

Let X(k) denote sent carrier states. When transmission is ideal and channel is
perfect, not deforming the signal, two consecutive DMT/OFDM symbols are repre-
sented in time domain by the following samples:

y(n) =
1
N

N−1

∑
k=0

Xke j 2π
N kn, n = 0,1, ...,2N −1. (22.12)

Even with the imperfect channel, samples y(n) are deformed the same way and
should be the same in N-samples long blocks. In the presence of ADC sampling and
carrier frequency errors, respectively, εs and εc, DFT of the first N-sample block of
y(n) is equal to:

Y1(k) =
N−1

∑
n=0

y(n)e− j 2π
N n (k(1+εs)+εc), k = 0,1, ...,N −1. (22.13)
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For DFT of the second block of y(n) we have

Y2(k) =
2N−1

∑
n=N

y(n)e− j 2π
N n (k(1+εs)+εc) =

N−1

∑
n=0

y(n+N)e− j 2π
N (n+N) (k(1+εs)+εc).

(22.14)
It can be easily shown that both DFT are connected by the following equation:

Y2(k) = Y1(k) · e− j2π(k(1+εs)+εc) = Y1(k) · e− j2πke− j(kεs+εc) = Y1(k) · e− j(kεs+εc).
(22.15)

We see that having values Y1(k),Y2(k) for two indexes k, we obtain a set of two
equations with two unknowns εs and εc which can be solved. In fact two pilot signals
are sufficient during normal modem work. However, during initialization, we have
many block of samples and many k values available, and we can find sampling
frequency error precisely solving over-determined set of many equations in the mean
square sense. Knowing the error, we have to do signal re-sampling in software or
adjust hardware sampling.

Exercise 22.6 (Simulation of Wrong Signal Sampling and Correcting This
During Signal Spectrum Calculation). We would like to check validity of
Eqs. (22.13–22.15). Analyze program 22.4. We generate in it signal x correctly
sampled and signal xe incorrectly sampled by ADC and with carrier frequency
offset (i.e. with errors). After that we calculate DFT of both signals. Next, we
would like to obtain the spectrum of the second signal modifying DFT of the
first signal. With success. Finally, we intend to modify DFT of the second sig-
nal and obtain spectrum of the first signal. With success. Run the program for
different values of k0, ppm and cfo. Notice that wrong signal sampling can
be corrected during signal spectrum computation.

Listing 22.4: Matlab program demonstrating how to simulate ADC sampling rate
error expressed in ppm for arbitrary signal

�

1 % lab22_ex_ADCppm1.m
2 clear all; close all;
3

4 N=64; % number of signal samples
5 k0 = 25; % frequency index of tested harmonic
6 ppm = 10000e-6; cfo = 0.25; % assumed ADC ppm error and CFO error
7 x = exp( j*2*pi/N*k0*(0:N-1)); % signal 1 well sampled
8 xe = exp( j*2*pi/N*( k0*(1+ppm)+cfo )* (0:N-1) ); % signal 2 wrong sampled
9 Xref = fft(x)/N; % spectrum of reference signal 1

10 Xe1 = fft(xe)/N; % spectrum of reference signal 2
11

12 for k=0:N-1 % spectrum of signal 1 with DFT error
13 Xe2(k+1) = sum( x .* exp( -j*2*pi/N*(k*(1-ppm)-cfo)*(0:N-1) ) )/N;
14 end
15 figure; plot(1:N,abs(Xref),’ro’,1:N,abs(Xe1),’bo’,1:N,abs(Xe2),’b*’); grid; pause
16



22.8 DSL Modem Implementation Issues 723

17 for k=0:N-1 % spectrum of signal 2 with DFT correction
18 Xcor(k+1) = sum( xe .* exp(-j*2*pi/N*(k/(1-ppm)+cfo)*(0:N-1) ) ) / N;
19 end
20 figure; plot(1:N,abs(Xref),’ro’,1:N,abs(Xcor),’g*’); grid; pause

��

Exercise 22.7 (Estimation of ADC Sampling Rate Error). In Exercise 22.2
we have modified program 22.1 and simulated wrong sampling rate of AD con-
verter in the receiver. At present, add to program 22.1 the Matlab code from
Listing 22.5, in which the ADC error is specified in ppm (parts per million).
Try to implement the method of sampling rate error estimation, described in
this section. In case of difficulties, see how it is done in program 22.7. Note
that in program 22.5 signal has not 10000 samples but 10001 because for
ADCppm=100 we have: 100 ·10−6 ·10000 = 1.

Listing 22.5: Matlab program demonstrating how to simulate ADC sampling rate
error expressed in ppm for arbitrary signal

�

1 % lab22_ex_ADCppm2.m
2 clear all; close all;
3

4 y = sin(2*pi/100*(0:10000)); % input signal
5 Ny = length(y), % its length
6 ADCppm =-100; % ADC ppm error (+/-) in the receiver
7 Nppm = Ny + (ADCppm*1e-6)*Ny; % more signal samples after faster/slower sampling
8 yi = interp1( [0:Ny-1], y(1,1:Ny), [0 : Ny/Nppm : (Ny-1)],’spline’);
9 Nyi = length(yi), % signal length after interpolation

10 figure; plot(1:Ny,y,’ro’,1:length(yi),yi,’bx’); grid;
11 title(’y(n) (o) and yADC(n) (x)’); pause

��

22.8.3 Time Equalization of the Channel

Choosing in this chapter the DSL modem as an example of multi-carrier transmis-
sion was motivated by two facts: (1) in this technology channel is equalized in time
also (TEQ) and effective impulse response of the overall signal transmission path
is made shorter and (2) bit allocation is performed according to SNR of each sub-
carrier. At present, we will focus on TEQ design.

Time duration of the DSL impulse response can be very long. Coping all
DMT/OFDM blocks as remedy against the inter-block (inter-symbol) interference
(ISI), as shown in Fig. 22.12, is not an effective solution since bit-rate is signifi-
cantly reduced in it. In order to allow usage of a shorter signal copy, P =32 samples
instead of N =512, energy of the shortened-by-TEQ channel impulse should con-
centrate in P+ 1 = 33 consecutive samples only (i.e. in the most effective part of
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it). For this purpose signal in the receiver is passed by additional digital FIR filter
e(n), specially designed and called the TEQ, which causes that the resultant impulse
response of serial connection of the channel h(t) (after discretization h(n)) and the
designed TEQ filter e(n) has a significant part of its energy concentrated in small
number of consecutive samples, e.g. 33 in the discussed case. Maybe it looks strange
at a first glance that an impulse response of a cascade of two filters can be effectively
shorter than the longer impulse response of the filter pair, but it is possible. Let us
consider a slowly varying and slowly decaying impulse response and the filter with
weight [1,−1]: subtracting neighbor weights of the first filter gives very small value
for similar filter coefficients. This is the trick!

Our optimization problem is explained in Fig. 22.22. We aim at pushing almost
all energy of the shortened impulse response he(n):

he(n) =
+∞

∑
k=−∞

h(k)e(n− k) (22.16)

into a rectangular window which is non-zero only for P+1 samples.
There are many methods for TEQ design, for example, [2]. Matlab code of their

program implementation is available here [1]. Below the Tkacenko–Vaidyanathan
eigen-filter TEQ design method [12] is presented. The following cost function is
minimized in it:

J =

∑
n/∈window

h2
e(n)

∑
n∈window

h2
e(n)

=
∑
[
hIF

e (n)
]2

∑
[
hsignal

e (n)
]2 −−−−−−−−−→

e(n)=?, eeT=1
min . (22.17)

Energy of he(n) samples, lying outside the rectangular window, is minimized in
nominator of Eq. (22.17), i.e. hIF

e (n) in Fig. 22.22, the interference part. The same
time, energy of he(n) samples lying inside the window is maximized, i.e. hsignal

e (n)
in Fig. 22.22. The following derivation is an important lesson showing that with-
out mathematics there is no sense to dream about impressive bit-streams in DSL
transmission.

Let us introduce the following denotations (Lhe = Lh +Le −1):

• h(n)—original channel impulse response, n = 0,1, ...,Lh −1,
• e(n)—TEQ filter, n = 0,1, ...,Le −1,
• he(n)—shortened channel impulse response, n = 0,1, ...,Lhe−1, having energy

concentrated in P+1 consecutive samples,
• H—channel matrix with dimensions Lhe ×Lhe:

H =

⎡
⎢⎢⎢⎢⎣

h(0) h(1) · · · h(Lh −1) 0 · · · 0

0 h(0) h(1) · · · h(Lh −1) · · · ...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 h(0) h(1) · · · h(Lh −1)

⎤
⎥⎥⎥⎥⎦

Lhe × Lhe

(22.18)
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Fig. 22.22: Illustration of channel impulse response partition into three parts: pre-
cursor, cursor (window), and post-cursor. Signal energy in cursor (window) part is
maximized during optimization [14]

• W1—matrix with dimensions Lhe×Lhe, having on its main diagonal rectangular
window with length P+ 1, shifted down D elements, which cut fragment of
he(n) for its energy maximization (0D—zeros matrix with dimensions D×D,
IP+1—square unitary matrix with dimensions (P+1)× (P+1), etc.):

W1 =

⎡
⎣0D 0 0

0 IP+1 0
0 0 0Lhe−D−(P+1)

⎤
⎦

Lhe × Lhe

(22.19)

• W0—matrix with dimensions Lhe ×Lhe, having on its main diagonal elements
reversed in regard to matrix W0, i.e. ones are exchanged with zeros and vice
versa:

W0 =

⎡
⎣ID 0 0

0 0P+1 0
0 0 ILhe−D−(P+1)

⎤
⎦

Lhe ×Lhe

(22.20)

Assuming that the vector e(n) is horizontal, the vectors he(n), hsignal
e (n), and

hIF
e (n) can be calculated from the following matrix equations:
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he = eH, (22.21)

hsignal
e = heW1, (22.22)

hIF
e = heW0. (22.23)

In consequence, the cost function (22.17) can be rewritten as:

J =
hIF

e

(
hIF

e

)T

hsig
e

(
hsig

e

)T =
heW0(heW0)

T

heW1(heW1)
T =

heW0WT
0 hT

e

heW1WT
1 hT

e
. (22.24)

Since W0WT
0 = W0 and W1WT

1 = W1, after using Eq. (22.21), the last equation
can be rewritten as:

J =
heW0hT

e

heW1hT
e
=

eHW0HT eT

eHW1HT eT . (22.25)

If we assume that matrix HW1HT is of full rank and positive defined, it is equal to
multiplication of two matrices (Cholesky decomposition):

HW1HT = GT
1 G1, (22.26)

where matrix G1 is an upper triangular matrix. Therefore:

J =
eHW0HT eT

eGT
1 (G1eT )

. (22.27)

After setting:

v = G1eT , (22.28)

we can express e as a function of vector v and matrix G:

e = vT (G−1
1

)T
(22.29)

and use Eqs. (22.28) and (22.29) in Eq. (22.27):

J =
vT
(
G−1

1

)T HW0HT G−1
1

v

vT v
=

vT Tv
vT v

. (22.30)

From lectures on numerical analysis we remember (I do not doubt!) that vector v
minimizing Eq. (22.30) is an eigenvector vmin of matrix T:

T =
(
G−1

1

)T
HW0HT (G−1

1

)
, (22.31)

associated with the smallest eigenvalue λmin. Therefore the game is over: we should
calculate the matrix T, perform its eigenvalue decomposition, find λmin and vmin,
and use it in our ADSL modem joy, after so long climbing!
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In Fig. 22.23 results from described algorithm usage are shown. On the left side
we see long, estimated channel impulse response ĥ(n) and its shortened version
ĥe(n) for DSL line without high-pass filter, and on the right side—with the high-
pass filter. As we see, after channel time equalization (TEQ), both shortened impulse
responses have energy concentrated in a smaller number of samples than the ADSL
cyclic prefix plus 1 (P+1 =33).

Fig. 22.23: Graphical illustration of the overall channel (telephone line) impulse re-
sponse shortening by means of designed digital TEQ filter (time equalizer). Deno-
tations: ĥ(n)—impulse response to be shortened, which was estimated in the previ-
ous section, ĥe(n)—shortened impulse response (with energy concentrated in P+1
samples). Rectangular window is shown in which energy of the shortened impulse
response he(n) was maximized. Optimal rectangular window delay is a parameter
to be chosen [14]

Exercise 22.8 (Time Equalization of the DSL Channel). Analyze the func-
tion presented in Listing 22.6. Find in it all equations given in the text. Design
coefficients {b,a} of a digital low-pass IIR Butterworth filter having two poles
only, cut-off frequency equal to 100 kHz and working with sampling frequency
fs = 2.208 MHz. Filter with its help the Kronecker impulse, i.e. 1 in the be-
ginning and many 0s after it. Try to shorten the impulse response to P = 32
samples using the TEQ filter. Next take from the book repository any refer-
ence csaloopX.time impulse response (or from http://users.ece.utexas.edu/
~bevans/projects/adsl/) and repeat the experiment. Call the function with differ-
ent values of the D parameter. Compare results.

http://users.ece.utexas.edu/~bevans/projects/adsl/
http://users.ece.utexas.edu/~bevans/projects/adsl/
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Listing 22.6: Matlab function for TEQ filter design using Tkacenko–Vaidyanathan
method [12]

�

1 function [e] = AdslTEQ(h, Le, Lp, D)
2 % h - DSL (channel) impulseresponse to be shortened
3 % Le - chosen length of the shorteningfilter - TEQ equalizer
4 % Lp - chosen length of the impulseresponse after shortening (P-prefix)
5 % D - chosen delay of the shortened impulse response (in samples)
6 % e - calculatedweights of the TEQ equalizer
7

8 disp(’Designing TEQ equalizer ...’);
9

10 Lh = length(h); Lz = Lh+Le-1-D-Lp;
11 H = zeros(Le, Lh+Le-1);
12 for i=1:Le
13 H(i,i:i+Lh-1) = h; % convolutionalchannel matrix
14 end
15 W1 = zeros(Lh+Le-1, Lh+Le-1); % matrix with zeros
16 W0 = zeros(Lh+Le-1, Lh+Le-1); % matrix with zeros
17 rect=[zeros(1,D),ones(1,Lp),zeros(1,Lz)]; % vector [ ...0001111000... ]
18 W1 = diag(rect); % 1s in the center
19 W0 = diag(1-rect); % 0s in the center, 1s outside
20 E1=H*W1*H’; % h(n) energy in the window
21 G1 = chol(E1); %
22 E0=H*W0*H’; % h(n) energy outside the window
23 T = inv(G1)’*E0*inv(G1); %
24 [V,D] = eig(T); % eigenvaluedecomposition of T
25 LambdaMin = min(diag(D)); % minimumeigenvalue
26 LambdaMinIdx = find(diag(D)==LambdaMin); % its position
27 e = V(:,LambdaMinIdx)’ * inv(G1)’; % final solution, weights of TEQ filter

��

22.8.4 Frequency Equalization of the Channel

TEQ digital filter (corrector) e(n) is designed considering only time channel fea-
tures. But as a filter, it has a frequency response E(k)= FFT [e(n)] (k is frequency in-
dex) which changes the overall frequency response of the whole transmission path:

Ĥe(k) = Ĥ(k)E(k), k = 0,1, ...,N −1, (22.32)

where Ĥ(k) is frequency response of the already estimated original channel impulse
response ĥ(n):

Ĥ(k) = FFT
[
ĥ(n)

]
. (22.33)

After TEQ equalization (filtering) - ADD of y(n) by e(n), we calculate in the re-
ceiver the FFT of the resultant signal ye(n) obtaining:

Ye(k) = FFT [ye(n)] . (22.34)
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For any k, values of Ye(k) are equal to states S(k) of the k-th carrier which are
modified in amplitude and phase by corresponding value Ĥe(k):

Ye(k)︸ ︷︷ ︸
output

≈ Ĥe(k)︸ ︷︷ ︸
line

· S(k)︸︷︷︸
input

+Ξ(k)︸︷︷︸
noise

. (22.35)

States S(k) can be recovered from Ye(k) by FEQ equalization of Ye(k):

Ŝ(k) ≈ 1

Ĥe(k)
Ye(k) = FEQ(k) ·Ye(k). (22.36)

Figure 22.24 presents exemplary shapes of frequency responses |E(k)|, |Ĥ(k)|,
and |Ĥe(k)| (left) and a shape of |FEQ(k)| as an inverse of |Ĥe(k)| (right). Mul-
tiplication of |FEQ(k)| and |Ĥe(k)| gives us 1 in linear scale (0 in decibels) for
all frequencies, i.e. distortion-less overall signal processing path. We observe some
notches (frequencies of very strong signal attenuation) in |Ĥe(k)|. It is important to
ask the question of their origin: do they come from the channel either from the TEQ.
If they are caused by the TEQ filter, some additional constraints should be applied
during TEQ design in order to avoid very strong signal attenuation by it. It will be
shown later that signal attenuation leads to significant reduction of ADSL modem
throughput.

We can use the TEQ filter design example to stress that digital filters do
not always have 0/1 frequency responses. In the same applications, very often
in measurement systems, they should reverse the frequency response of a non-
ideal device/channel/object, i.e. to correct non-ideal device frequency response.

Fig. 22.24: Illustration of successive computational steps leading to design of FEQ
equalizer. Frequency responses (amplitude-frequency characteristics) of: H(k)—
telephone line, E(k)—TEQ equalizer, He(k)—telephone line with TEQ equalizer,
FEQ—FEQ equalizer. â denotes estimated value of a [14]
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22.8.5 DMT/OFDM Symbol Synchronization

So, we have a channel already equalized. In time and in frequency. At present, we
want to recover carrier states and extract bits from their numbers. In order to do this
we have to synchronize with the DMT/OFDM frame beginning. Below two methods
are presented, the first originated from the DSL technology, and the second, the
Schmidl–Cox technique—coming from the wireless world.

Synchronization Using Cyclic Prefix Cyclic prefix is an all-in-one solution. It has
helped us already to remove ISI between DMT/OFDM symbols and allowed easy
FEQ channel equalization, thanks to artificially created signal periodicity: linear
convolution has taken a form of circular one and the channel was equalized doing
simple DFT/IDFT operations. But ... the CP can be also additionally used for symbol
synchronization. CP is a repeating part of any DMT/OFDM symbol. When we cor-
relate P samples of the received, equalized signal ye(n) with itself, but with the shift
equal to symbol length N, the correlation function maximum tells us about the CP
beginning. In Fig. 22.25 concept of the CP usage for symbol detection is explained,
while in Fig. 22.26—values of the calculated correlation function are shown. As we
see, the maximum is present for the shift d = 32, i.e. exactly for the CP length.

To be precise, in the CP symbol synchronization method maximum of the fol-
lowing cost function is searched for d = 1,2,3, ...,N +P:

J(d) =
Q(d)
R(d)

, (22.37)

where functions Q(d) and R(d) are defined as:

Q(d) =
P−1

∑
m=0

ye (d +m)ye (d +m+N) (22.38)

R(d) =
P−1

∑
m=0

|ye (d +m)|2 +
P−1

∑
m=0

|ye (d +m+N)|2. (22.39)

Division by R(d) is only a normalization. Values of Q(d) and R(d) can be calculated
iteratively, e.g.:

Q(d +1) = Q(d)− ye(d)ye(d +N)+ ye(d +P)ye(d +P+N). (22.40)

Synchronization Using Schmidl-Cox Method The second symbol synchroniza-
tion method comes from OFDM wireless transmission and was proposed by Schmidl
and Cox [8]. Its concept is explained in Fig. 22.27. A special DMT/OFDM synchro-
nization symbol is formed which consists of a cyclic prefix and two identical parts
(sub-signals) having N/2 samples each. At present, we calculate correlation func-
tion of N/2 signal samples with the N/2 shift and its maximum tells us about the
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Fig. 22.25: Illustration of the cyclic prefix usage for the DMT/OFDM symbol syn-
chronization: end of each symbol is correlated with its cyclic prefix which should
be identical! [14]

Fig. 22.26: Exemplary shape of the averaged synchronization cost function (22.37)–
(22.39) (for 100 realizations) in case of the lack and presence of additive white
Gaussian noise with power level −110 dBm/Hz (both functions overlap) [14]

Fig. 22.27: Illustration of the Schmidl-Cox method of DMT/OFDM symbol syn-
chronization: in the first and in the second half of each symbol, with cyclic prefix,
the same signal is transmitted which is correlated with itself [14]

beginning of the first signal block, i.e. about the DMT/OFDM symbol beginning.
Results of the method usage are presented in Fig. 22.28.

In the Schmidl-Cox method in cost criteria (22.37) the following functions are
used for d = 1...N:
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Fig. 22.28: Exemplary shape of the averaged synchronization cost function (22.37),
(22.41), (22.42) (after 100 realization) in case of the lack and presence of additive
white Gaussian noise with power level −110 dBm/Hz (both functions overlap) [14]

Q(d) =
N/2−1

∑
m=0

ye (d +m)ye (d +m+N/2) , (22.41)

R(d) =
N/2−1

∑
m=0

|ye (d +m+N/2)|2, (22.42)

which can be calculated recursively:

Q(d +1) = Q(d)+ y(d +N/2)y(d +N)− y(d)y(d +N/2). (22.43)

22.8.6 Influence of Disturbances

At present, a little bit tired after a few mathematical expeditions, and after complet-
ing TEQ and FEQ channel equalization and DMT/OFDM symbol synchronization,
we can check how that is all work together? We are sending bits using all avail-
able sub-carriers by means of 4-QAM modulation and observing carrier constella-
tion points in the receiver for different levels of noise. We see plots presented in
Fig. 22.29. With the noise increase, we observe clouds of detected states that be-
coming bigger and bigger. It is obvious that we can make the constellation grid less
dense (more spare) for stronger noise in order to avoid incorrect states interpretation.
However, less points mean lower number of transmitted bits.

In the second experiment, very short, we assume noise-less transmission condi-
tions, perfect synchronization but FEQ corrector missing. We see in Fig. 22.30 that
constellation points are significantly rotated (left, states are specially, didactically
enlarged in amplitude) and heavily, both, rotated and strongly attenuated (right). We
see how dramatic consequences are caused by the FEQ absence.
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Fig. 22.29: Detection of 4-QAM constellation points of one frequency carrier in
case of FEQ usage. Additive white Gaussian noise is present having the following
power level: −120,−110,−100,−90 dBm/Hz (in turn horizontally) [14]

Fig. 22.30: Detection of 4-QAM constellation points of one frequency carrier in
case of FEQ missing. Additive white Gaussian noise has power level −120 and
−90 dBm/Hz (in turn horizontally) [14]
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22.8.7 Bit Allocation and Channel Information Capacity

Are you ready, Teddy? Yes, I am. And we are ready also, after channel equaliza-
tion, symbol synchronization and some test drives, to transmit pilot data upon each
sub-carrier, known to the receiver, and calculate SNR for each sub-carrier. Why is
it needed? Because, as we see in the last section, number of bits, which can be
allocated to any sub-carrier, depends on the noise level in concrete transmission
sub-channel. The exact formula specifying total number of bits b, transmitted by the
DSL modem in one DMT symbol, is defined by the following formula:

b = ∑
k

bk = ∑
k

log2

(
1+

SNRk

Γ

)
, SNRk =

Px,k

Pn,k +PISI,k
, (22.44)

where k denotes sub-carrier number, bk number of bits transmitted by the k-th sub-
carrier (in DSL modem limited to 2...15 bits), and SNRk signal-to-noise ratio for
the k-th sub-carrier, i.e. transmitted pilot power Px,k divided by the power of distur-
bances (summation of power of noise Pn,k and power of inter-symbol (ISI) interfer-
ence PISI,k). Because transmitted bits can be additionally coded using some forward
error correction (FEC) methods, some transmission errors can be found and cor-
rected in the receiver. This is taken into account in Eq. (22.44) by using Γ scaling
factor, depending on: (1) a coding gain G of the FEC used, (2) assumed margin
of safety M and assumed bit error rate (BER). In ADSL case, convolutional codes
and Viterbi decoder are exploited, and the following values of parameters are used
(G = 4.2 dB, M = 6 dB, BER = 10−7) for Γ calculation:

Γ = 10(9,8+M−G)/10 = 14,4544. (22.45)

Because pilot signals are transmitted, known to the receiver, the transmitted state
Sm(k) of the k-th sub-carrier in the m-th DMT symbol is known. Let Ŝm(k) denote
the received value. Therefore SNRk for the carrier k-th is equal to:

SNRk =
∑
m
[Sm(k)]

2

∑
m

[
Sm(k)− Ŝm(k)

]2 . (22.46)

Usage of a bit allocation procedure is explained in Fig. 22.31. In the upper part,
we see calculated SNRk for each sub-carrier for DSL line without a high-pass POTS
splitter (left) and with it (right). Different noise levels are considered, varying from
−300 dBm/Hz to −100 dBm/Hz. One can observe how strong is the noise influence
upon the SNR. In the lower part of the figure, we see results from bit allocation for
both DSL lines and for all levels of noise. For weak noise even 15 bits are allocated
for single carriers. For strong noise, number of bits allocated to high-frequency sub-
carriers is decreasing very fast, even they are not used at all.

Of course, choice of the bit allocation algorithm represents a topic for special
discussion. Maybe it is a water-filling one, as in the MPEG audio standard where
bits are allocated to sub-band signals after the M = 32 channel filter bank.
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It is interesting, how long we have walked forward and forward without ask-
ing and answering the question about the channel information capacity. What
does the Shannon communication theory say?
Information capacity, measured in bits per second, of continuous, memory-less,
ideal channel with bandwidth B hertz, disturbed by additive Gaussian noise with
power spectral density N0

2 is equal to:

C = B log2

(
1+

P
N0B

)
, (22.47)

where P denotes mean power of the transmitted signal. What does it mean?
We can increase C, increasing P and B and decreasing N0. Using Eq. (22.47)
one can derive bit-rates Rb for different real modulation systems. Dividing this
value by B, one obtains their spectral efficiency. The bigger, the better. This al-
lows a comparison of different modulation schemes in regard to spectrum width
usage. Different transmission systems are also compared using energy per bit

Fig. 22.31: Exemplary SNR functions (up) and bit allocations (down) for a
telephone line without a high-pass POTS splitter (left) and with it (right).
Additive white Gaussian noise is present having the following power levels:
−300,−140,−120,−100 dBm/Hz [14]
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to noise power spectral density ratio Eb/N0, required for ensuring requested
bit-error-rate (BER). Link budgets allow to choose telecommunication system
components and values of their parameters, for example, size of carrier constel-
lation states, ensuring required BER. There are many good Telecomm Books
covering these topics in detail. We are DSP-oriented!

22.8.8 Choice of TEQ Equalizer

In this section, we will go back once more to the TEQ filter design problem.
The TEQ filter, shortening channel impulse response, modifies also the chan-
nel frequency response. It is improving something, worsening something else. In
Fig. 22.32 TEQ with different lengths (Le = 2,8,16) is designed in noise-less con-
ditions. On the left plot we see residual signal which remained after shortening
operation. The worst is short TEQ Le = 2, leaving more channel impulse response
energy out of the required rectangular window. It is also the worst in the right plot
offering the lowest SNR. However the situation is changing in Fig. 22.33, where
TEQ was designed in the presence of strong −110 dBm/Hz noise. Here only two
TEQ lengths are considered: Le = 2 (solid line) and Le = 8 (dashed line). The short
TEQ has less-notchy frequency response (left) and it offers also less-notchy SNR
curve, in general overlapping with SNR characteristics for TEQ Le = 8. As we see,
typically, many circumstances should be considered. There are no simple answers!
No free lunches. Always carefully look around.

Fig. 22.32: Application of TEQ filters having different lengths in case of telephone
line with high-pass filter when noise is not present. (left) error of shortening, (right)
corresponding SNR. Denotations: TEQ Le = 2 (thin solid line), 8 (dashed line), 16
(thick solid line)—from bottom to top in the right plot [14]
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Fig. 22.33: Application of TEQ filters having different lengths in case of telephone
line with high-pass filter for noise −110 dBm/Hz. (left) frequency response of the
TEQ equalizer alone, (right) SNR of the whole transmission path. Denotations: TEQ
Le = 2 (solid line), 8 (dashed line)—frequency response with notches [14]

22.9 Program of DSL Modem

We are ending one of the last chapters of this book. We were climbing for months,
week by week, higher and higher, seeing more and more. It is time for something
spectacular. In this section we will analyze a program written by group of my former
co-workers, now friends, more than 15 years ago. The work lasted several months,
with block delay and synchronization problems, and missing many small details
which made the mission impossible for a long time. Thanks a lot Paweł Turcza,
Jarek Bułat, Tomek Twardowski, and Krzysiek Duda!

General Comments The program is presented in Listing 22.7. It is widely com-
mented and self-explaining/presenting. However, some of its initial general descrip-
tion is recommended. In the beginning, values of all program parameters are set
and all vector/matrix initialization are done. The program consists of a main loop
repeating Niter times, in which one-by-one are executed operations performed
by two co-working ADSL modems, one transmitting (signal x) and one receiving
(signal y). In one iteration one DMT/OFDM frame is transmitted and received. In
order to consider the channel impulse response, convoluting with the transmitted
signals, and to synchronize all blocks, the transmitter output and the receiver input
are buffered (variables bx and by). Last three DMT symbols are stored. In fact valid
is the fourth symbol in the receiver.

In order to distinguish what should be executed during actual iteration of the
main loop, special flags are turned ON/OFF. In the beginning, their values are as
follows:
ADCCorrect=1; ChanEstim=0; Synchronization=0; SNREstim=0.

The flag value is checked inside the loop, and when 1 is set, the specified operation
is executed, in the beginning ADC Correction only. When one task has finished
its work, it is setting its own flag to 0 and a flag of the next task to 1, i.e. when the
ADC correction is done, we have
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ADCCorrect=0; ChanEstim=1; Synchronization=0; SNREstim=0;

Because one modem task can require execution of several iterations, each task has a
counter which is initially set to some value: CounterADC=50, CounterChan
=50, CounterSynchro=50, and CounterSNR=50, telling how many main
loop iterations are required for this task. During loop executions counters are de-
creased. When 0 is reached, some final decision is taken by the task (estimation
of: ADC frequency error, channel impulse response, symbol synchronization, and
SNR for each sub-carrier) and modem is switched to the next operation. First, ADC
frequency sampling error is estimated, then channel estimation task is performed,
ending with TEQ and FEQ design, next DMT symbol synchronization is done, and,
finally, SNR for each sub-carrier is estimated and number of bits is allocated to each
sub-carrier, according to Eqs. (22.44 and 22.46).

Each task requires different transmitted data. During ADC and channel testing,
in the beginning, special reverberation DMT symbols are transmitted, synthesized
from random 4-QAM carrier states. The cyclic prefix is not added. During DMT
symbol synchronization, a pseudo-random signals are synthesized directly in time
domain and transmitted as DMT symbols with the cyclic prefix. Pseudo-random
noise takes uniformly values from the range

√
(3) · [−1,1]. During SNR estimation

standard DMT symbols with cyclic prefix are sent, but they are synthesized from
4-QAM carrier states only. Reader can extend the program, adding to it: (1) regular
transmission of data with higher-level QAM modulations (exploiting the calculated
bit allocation), (2) decoding the received bits, and (3) calculation of symbol error
rate and bit error rate.
The following disturbances are simulated: wrong ADC sampling ratio, additive
noise, and narrow-band interference.

ADC Error Estimation and Correction The method described in Sect. 22.8.2 is
implemented. Since the same DMT symbols are transmitted one-by-one without
cyclic prefix, having two spectra we can calculate the phase shift (22.15) between
them:

φ(k) = k · εs + εc, (22.48)

for each carrier k, and find parameters (εs,εc) of the line (22.48) performing line
fitting to the set of points (k,φ(k)). Figure presenting the line fitting result can be
uncommented in the program. This operation is repeated many times and calcu-
lated values εs and εc, in the program ppm and cfo, are averaged, after removing
of extreme values (outliers). When error of ADC sampling rate is known, it is as-
sumed in the program that it is corrected in hardware. Therefore, in the beginning
we should: (1) set, for example, ADCppm=10, (2) check whether the correct value
was estimated, (3) observe terrific plots of carrier state constellation points and 0
bits allocated, (4) set ADCppm=0 and perform next exercises. Simpler program
lab21_ex_ADCppm3.m, given in the book repository, allows to check correct-
ness of the described ADC sampling ratio estimation. Analyze it and run, if neces-
sary.
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Channel Estimation and Correction Channel estimation and correction is the
next task of the receiver in the main loop. Equation (22.11) is implemented: ac-
cumulated are many N-point FFT spectra (due to this operation noise influence is
suppressed) and the result is divided by the known spectrum of transmitted reverber-
ation signal. Frame synchronization is not required at the moment: its lack causes
only that the channel impulse response, calculated by IFFT from the estimated chan-
nel frequency response, is circularly rotated. This effect can be easily eliminated by
de-rotation of hest samples. When the long channel impulse response is known,
the TEQ filter e can be designed for shortening it. Next, the shortened channel im-
pulse response is computed he=conv(e,hest) and its FFT is calculated, i.e.
HE—the frequency response of the shortened channel. The channel estimation is
finished, its flag is turned off and synchronization flag is turned on. Plots of hest,
he, and HE are displayed in the program.

DMT Symbol Beginning Synchronization DMT symbol beginning synchroniza-
tion is in the program realized using the cyclic prefix method (22.37)–(22.39)—
uniform pseudo-random noise is sent as DMT symbols equipped with the pre-
fix. The detection function is calculated for many symbols and averaged. It max-
imum informs us about the cyclic prefix position. Knowing it we can calculate
SynchDelay of the DMT symbol beginning and correct phase of HE taking into
account the time delay information. Inverse of HE gives us a FEQ which will be used
for correction of received spectra of DMT symbols during regular bits/data trans-
mission. Plot of the frame beginning detection function is shown in the program.

SNR Estimation and Bit Allocation Procedure SNR estimation and bit allocation
procedure starts then. Just before the regular transmission, number of bits should be
allocated to each sub-carrier, depending on its SNR value. During the modem start-
up only known 4-QAM carrier states are transmitted and SNR for each carrier is
calculated. Transmitted signal is obtained from the IFFT of the spectral require-
ments. The cyclic prefix is added to each DMT symbol. In the receiver, we are
already synchronized and have calculated channel influence correction. Therefore,
only FFTs are performed on selected samples of the received signal and FFT results
are divided by FEQ. Knowing transmitted Fourier coefficients S0 and received ones
R, the SNR for each sub-carrier is computed and allowed number of its bits is found
from Eq. (22.44). In this part of the program, constellation points of 4 carriers are
plotted and final results of bit allocation are shown.

Regular Transmission Regular transmission follows. It is not implemented—
remains as an exercise.

Program 22.7 is not short. Somebody can say that it is much too long. Most of us
started our game of life having approximately 3–3.5 kg and 50 cm. At present, our
weight is bigger than 50 kg and height larger than 150 cm (I do not want to offend
my wife, I am over 80 kg/180 cm). We have grown up. As our knowledge during
this course, I hope of the manuscript. After 700 pages of the manuscript, I propose
you a DSP star wars.
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Listing 22.7: Matlab program for demonstration of work of DSL modems
�

1 % lab22_ex_adsl.m
2 % Simulation of multi-carriertransmission used in ADSL modems
3 clear all; close all;
4

5 % PARAMETERS
6 Le = 16; % length of the TEQ equalizer
7 Lp = 32; % length of the cyclic prefix (CP)
8 N = 512; % length of the DMT/OFDM frame, FFT size
9 Np = N + Lp; % length of the DMT/OFDM frame with cyclic prefix

10 fs = 2.208e6; % samplingfrequency [Hz]
11 NoiseDbmHz =-160; % power level of noise [dBm/Hz]
12 SignalDbm = 23; % power level of input signal in the receiver [dBm]
13 f0 = 100.5*fs/N; % frequency of narrow-band disturbance
14 A0 = 0; % amplitude of narrow-band disturbance: 0 or 50
15 CodingGain = 4.2; % coding gain [dB]; e.g. without Viterbi enc/dec=0, with it=4.2
16 CodingMargin = 6; % SNR margin [dB]
17 FilterTel = 1; % 1 = high-pass filter, 0 = without it
18 ADCppm = 0; % ADC ppm error in receiver, e.g. -5,0,5
19 CounterADC = 50; % number of loops for ADC sampling error estimation
20 CounterChan = 50; % number of loops for impulseresponseestimation
21 CounterSynchro = 50; % number of loops for synchronization
22 CounterSNR = 50; % number of loops for SNR calculation and bit allocation
23 TransmitDelay = 100; % number of samples of the transmissiondelay
24 NR1 = 20; NR2 = 80; % indexes of pilot carriers, may be used in the receiver
25 NR3 = 60; NR4 = 120; % indexes of data carriers, observed in the receiver
26 rand(’state’,0); randn(’state’,0); % initialization of random generators
27 SignalPower = 0.001 * 10̂ ( SignalDbm/10 ); % to linear scale
28 NoisePower = 0.001 * fs/2 * 10̂ ( NoiseDbmHz/10 ); % to linear scale
29 % Reading impulse response of the transmission line
30 if(FilterTel == 0) h = load(’DSLine.dat’)’; % csaloop2 from [Arslan]
31 else h = load(’DSLineHP.dat’)’; % csaloop2 with high-pass filter
32 end
33 % Generation of trainingsequence for channel impulseresponseidentification
34 QAM4 = [ 1+j, -1+j, 1-j, -1-j ]; % 4-QAM constellation: 00, 01, 10, 11
35 number = floor((4-eps)*rand(1,N/2))+1; % random sequence of numbers { 1, 2, 3, 4 }
36 X = QAM4( number ); % generation of the spectrum half
37 X( 1 ) = sqrt(2); X( 257 ) = sqrt(2); % DC and fs/2 are not used
38 X( 258:512 ) = conj( fliplr( X(2:256) ) ); X = X.’; % conjugatesymmetry
39 x = real( sqrt(N/2)* ifft(X) ); st = x/std(x); % transmitted time signal
40 Swe = X; % its spectrum
41 Swy = zeros(N,1); % accum. for receivedspectra
42

43 % ####################################################################################
44 % MAIN LOOP - BEGINNING ############################################################
45 % ####################################################################################
46

47 Niter = CounterADC+CounterChan+CounterSynchro+CounterSNR; % all iterations
48 nr = 2 : N/2; % numbers of used frequencycarriers with data
49 Nb = N; % DSL/OFDM frame length
50 bx = zeros(3*Nb,1); by = bx; % input and output buffer for TX and RX signal
51 bye = zeros(2*Nb,1); % buffer for signal after TEQ equalizer
52 S = zeros(N,1); S1 = S; % the last sent frame and one frame before
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53 sig = zeros(N/2-1,1); err = sig; % accumulators for signal and error energy
54 scSUM = zeros(1,N+Lp); % accumulator for the synchronizationfunction
55 QamHistory = []; % for constellationstates for the carrier NR-th
56 CopyCounterChan = CounterChan; TxDelay = TransmitDelay; % set initial values
57 ADCCorrect=1; ChanEstim=0; Synchronization=0; SNREstim=0; % controlparameters
58 ppm = zeros(1,CounterChan); cfo = zeros(1,CounterChan); cnt = 0;
59 n0 = 1; % first sample of narrow-band disturbance
60 Nmax = Niter*Np; % maximum number of signal samples
61 nnorm = 0:Nmax-1; n1n = 1; % signal sample indexes without ADCppm
62 %Nppm=Nmax+(ADCppm*1e-6)*Nmax; nppm=0 :Nppm/Nmax: (Nmax-1)*Nppm/Nmax; n1p=1; % ADCppm
63 Nppm=Nmax+(ADCppm*1e-6)*Nmax; nppm=0 :Nmax/Nppm: (Nmax-1)*Nmax/Nppm; n1p=1; % ADCppm
64 dfref = ADCppm*1e-6*fs,
65

66 for iter = 1:Niter % ------------------------------------------------------------
67 % Generation of data to be transmitted
68 if( ADCCorrect==1 || ChanEstim==1) s = st; end % ADC & Channelestimation
69 if( Synchronization == 1 ) % Synchronization
70 s = sqrt(3)*(2*rand(N, 1)-1); % uniform noise in [-1, 1]
71 end
72 if( SNREstim == 1 ) % Data transmission:
73 % disp(’###’); iter, pause
74 S0 = S1; S1 = S; % remember two last sent spectra
75 number = floor((4-eps)*rand(1,N/2-1))+1; % random sequence of: 00, 01, 10, 11
76 S = QAM4( number ); % generation of the first spectrum

half
77 S(NR1-1) = 1+j; S(NR2-1) = -1-j; % optional states of pilot signals
78 S = [0 S 0 conj(fliplr(S))]; S =S.’; % if conjugatesymmetry: ifft(S) is

real!
79 s = real( sqrt(N/2)* ifft(S) ); % inverse FFT, scaling
80 end
81 s = s * sqrt( SignalPower ) * sqrt( 10̂ ( CodingGain/10 ) );
82 % Adding cyclic prefix
83 if( ADCCorrect || ChanEstim == 1 ) x = s; % Channelestimation: without the

prefix
84 else x = [ (s(N-Lp+1:N)); s ]; % Synchronization and TX: add prefix
85 end
86 % Convolution with the original (un-shortened) channel impulseresponse
87 bx = [ bx(Nb+1 : 3*Nb); x ]; % put data into the buffer
88 y = conv( bx(Nb+1-TxDelay : 3*Nb- TxDelay ),h ); % convolution
89 y = y(Nb+1 : Nb+Nb); % cut the result
90 % ADC sampling error in the receiver
91 y(1:Nb,1)=interp1(nnorm(n1n : n1n+Nb-1),y(1:Nb,1),nppm(n1p : n1p+Nb-1),’spline’);
92 n1n = n1n + Nb; n1p = n1p + Nb;
93 % Adding noise (dBm/Hz) and narrow-band disturbance
94 noise = sqrt( NoisePower ) * randn(Nb,1);
95 y = y + noise;
96 nband = A0*sin(2*pi*f0/fs*(n0:n0+Nb-1)’); n0 = n0+Nb;
97 y = y + nband;
98 % Receiver: data scaling, taking into the buffer
99 y = y / ( sqrt( SignalPower ) * sqrt( 10̂ ( CodingGain/10 ) ) );

100 by = [ by(Nb+1 : 3*Nb); y ];
101 % TEQ - channel impulse responseshortening
102 if( ADCCorrect == 0 && ChanEstim == 0 ) % after channel

estim
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103 ye = conv(by(1+ReceiveDelay : 2*Nb+ ReceiveDelay),e); % conv with TEQ
104 ye = ye(Nb+1 : Nb+Nb); % cut the result
105 bye = [ bye(Nb+1 : 2*Nb); ye ]; % store in the

buffer
106 end
107

108 % ADC SAMPLING RATE ESTIMATION AND CORRECTION ###########################
109 if( (ADCCorrect == 1 ) && (iter > 4) ) % check condition
110 CounterADC = CounterADC-1 % decrement the counter
111 Y1 = fft( by(1:N) ); Y2 = fft( by(N+1:2*N) ); % spectra of two consecutive

...
112 Y21 = Y2 .* conj(Y1); % symbols, should be the

same
113 ang = fftshift( angle( Y21 ) ); % check phase increase
114 Ksize = 30; kf = (-Ksize : Ksize)’; % neighborhoodaround 0Hz
115 angi = ang( (N/2+1)+kf ); % angles around 0Hz
116 coef = polyfit(kf, angi, 1); ppm1=coef(1)/(2*pi); cfo1=coef(2); % pause
117 cnt = cnt+1; ppm(cnt)=ppm1; cfo(cnt)=cfo1; % store ppm and cfo
118 % figure; plot(kf,angi,’b-’,kf,coef(2)+coef(1)*kf,’r-’); title(’Angle(n)’);

pause
119 % Y1=sum(by(1:N).*exp(-j*2*pi/N*(k/(1-ppm1)+cfo1)*(0:N-1)))/N; % correction
120 if(CounterADC==0) % end of ADCCorrect
121 Koffs = round(0.25*cnt); % number of skipped ppms
122 ppm=sort(ppm); ppm=-mean(ppm(Koffs:end-Koffs+1)), % ppm estimation
123 cfo=sort(cfo); cfo=mean(cfo(Koffs:end-Koffs+1)), % cfo estimation
124 pause % do hardware ppm correction
125 ADCCorrect=0; ChanEstim=1; iterADCCorrect = iter; % next operation
126 end
127 end
128

129 % ESTIMATION OF THE CHANNEL IMPULSE RESPONSE AND SYSTEM DELAY ############
130 if( (ChanEstim == 1) && (iter > iterADCCorrect + 4 )) % check condition
131 CounterChan = CounterChan-1 % decrement the counter
132 Swy = Swy + fft( by(1:N) ) /sqrt(N/2); % accumulate the spectrum
133 if(CounterChan==0) % end of ChanEstim
134 hest = real( ifft( Swy ./ Swe ) )/CopyCounterChan; hest=hest’; % h=?
135 [ hmax, nrmax] = max(abs(hest)); % find maximum
136 K=15; n1st = nrmax-K; ReceiveDelay = n1st-1; %
137 if(n1st<=0) n1st = n1st + N; end %
138 hest = [ hest(n1st:end) hest(1:n1st-1)]; % rotate circularly
139 figure; plot(hest); title(’hest(n)’); pause % figure
140 [ e ] = AdslTEQ(hest, Le, Lp, 0); % design TEQ filter
141 he = conv(e, hest); % shorten hest(n)
142 figure; plot(he); title(’he(n)’); pause % figure
143 he = he(1:N); % leave N samples
144 HE = fft(he).’; % FFT of he(n)
145 figure; plot(fs/N*(0:N-1),20*log10(abs(HE))); title(’|H(f)|’); pause
146 Nb = Np; bx=zeros(3*Nb,1); by=zeros(3*Nb,1); bye=zeros(2*Nb,1); % set
147 ChanEstim = 0; Synchronization = 1; iterChanEstim = iter; % next
148 end % end of CounterChan = = 0
149 end % ChanEstim == 1
150

151 % SYNCHRONIZATION#############################################################
152 if( (Synchronization == 1) && (iter > iterChanEstim + 4) ) % condition
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153 CounterSynchro = CounterSynchro-1 % decrement counter
154 for n = 0 : N+Lp-1 % synchrofunction
155 q = sum(bye(n+1:n+Lp).*bye(n+N+1:n+N+Lp)); %
156 r = sum(bye(n+1:n+Lp).̂ 2) + sum(bye(n+1+N:n+Lp+N).̂ 2);
157 sc(n+1)=q/r;
158 end
159 scSUM = scSUM + sc; % accum synchro function
160 if (CounterSynchro == 0) % end of synchronization
161 figure; plot(scSUM); title(’SYNCHROfunction’); % optional figure
162 SynchDelay = find(scSUM == max(scSUM)); % find argument of max
163 SynchDelay = SynchDelay + Lp/2, pause % take prefix into account
164 HEC = HE .* exp(j*2*pi/N *(0:N-1)’*(SynchDelay-Lp)); % correction
165 FEQ = 1./HEC; % FEQ
166 Nb = Np; bx=zeros(3*Nb,1); by=zeros(3*Nb,1); bye=zeros(2*Nb,1); % set
167 Synchronization = 0; SNREstim = 1; iterSynchronization = iter; % next
168 end % CounterSynchro = = 0
169 end % Synchronization = = 1
170

171 % SNR ESTIMATION ######################################################
172 if( (SNREstim == 1) & (iter > iterSynchronization + 4) ) % condition
173 r = bye(1+SynchDelay : N+SynchDelay); % synchronize, remove prefix, received
174 R = sqrt(2/N) * fft(r); % FFT
175 R = R .* FEQ; % FEQ correction
176 % figure;
177 % subplot(211); plot(nr,real(R(nr)),’ro’,nr,real(S0(nr)),’bx’); grid;
178 % subplot(212); plot(nr,imag(R(nr)),’ro’,nr,imag(S0(nr)),’bx’); grid; pause
179 SRerr = S0 - R; % reconstruction error
180 sig = sig + S0(nr).*conj(S0(nr)); % accumulatesignal energy in sub-

bands
181 err = err + SRerr(nr).*conj(SRerr(nr)); % accumulate error energy in sub-bands
182 QamHistory = [ QamHistory; R(NR1) R(NR2) R(NR3) R(NR4) ];% NR-th sub-carriers
183 end % SNREstim == 1
184

185 end % main loop -------------------------------------------------------------
186 % ####################################################################################
187 % MAIN LOOP - END ###################################################################
188 % ####################################################################################
189 % Figures: SNR in sub-bands, received values for the NR-th carrier (4-QAM is sent)
190 SNR = (sig + eps) ./ (err + eps); SNRdB = 10*log10( SNR );
191 figure; plot(nr, SNRdB,’b’); title(’SNR [dB]’); xlabel(’Channel number’); pause
192 figure;
193 subplot(221); plot(real(QamHistory(:,1)),imag(QamHistory(:,1)),’bx’); title(’4QAM-1’)

;
194 subplot(222); plot(real(QamHistory(:,1)),imag(QamHistory(:,2)),’bx’); title(’4QAM-2’)

;
195 subplot(223); plot(real(QamHistory(:,3)),imag(QamHistory(:,3)),’bx’); title(’4QAM-3’)

;
196 subplot(224); plot(real(QamHistory(:,4)),imag(QamHistory(:,4)),’bx’); title(’4QAM-4’)

;
197 pause
198 % Do yourselfdetection of constellationstate (number), i.e. do the de-QAM
199 % ........................................................................
200 % Figure: ALLOCATION OF BITS for sub-carriers
201 gamma = 10 ^ ( (9.8 + CodingMargin - CodingGain)/10 );



744 22 Introduction to Digital Multi-Carrier Transmission: With DSL Modem Example

202 ab = log2( SNR/gamma+1 ); ab = floor( ab ); % log2( snr/gamma +1 )
203 idx = find( ab > 15 ); ab( idx ) = 15; % no more than 15 bits per channel
204 idx = find( ab < 2 ); ab( idx ) = 0; % no less than 2 bits per channel
205 figure; plot(nr, ab,’b’); xlabel(’channel number’); ylabel(’number of bits’); pause
206 BitsPerSymbol = sum( ab ), BitsPerSecond = BitsPerSymbol * fs/Np, pause

��

Exercise 22.9 (Testing ADSL Modem Program). Analyze program 22.7.
First, carefully read section in which values of all important modem parame-
ters are initialized. Then, concentrate on the main TX-RX loop. Find the section
where different transmitted signals are set according to actual modem initializa-
tion level. Notice, when cyclic prefix is added and when is not. Then find where
signal is convoluted with the channel impulse response and disturbances are in-
jected. Observe that after channel estimation and TEQ design, the TEQ is used
during DMT symbol synchronization and, next, during data transmission. Ana-
lyze program fragments were: (1) ADC sampling error is estimated (we assume
that it is corrected by hardware), (2) channel is estimated and TEQ&FEQ are
designed, (3) DMT symbol synchronization is done, (4) data transmission starts
for bit allocation. Run the program. Observe all figures—uncomment them.
Set ADCppm = 10. Notice severe degradation of carrier constellations and al-
location of 0 bits. Check correctness of ppm estimation. Set again ADCppm
= 0. Increase noise level NoiseDbmHz=−140,−130,.... Observe grow-
ing clouds of points in received constellation grids. Exchange the line he =
conv(e, hest); with he=hest; and see how important is time chan-
nel equalization. Return to the original version. Now comment the line %R =
R .* FEQ; and see how important is frequency channel equalization. Test
some other DSL channels using their impulse responses from book repository
(csaloopX.time).

22.10 Summary

Multi-carrier transmission is in attack. Almost all new high-speed Internet
access and multi-media delivery standards used many carriers. The New Radio
5G technology also. This chapter is an introductory only. It aims not at detailed
technical presentation but at more intuitive explanation of FFT-based multiple
carrier transmission. What should be remembered?
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1. In multi-carrier transmission technology, a signal consisting of many
amplitude-and-phase QAM-modulated sub-carriers is synthesized by the
inverse fast Fourier transform. Sent bits decide about the Fourier coeffi-
cients, i.e. all carrier states. For example, transmitting any carrier in its state
number 7 from 16 states available in 16-QAM modulation means that bits
0111 are sent since this is a binary representation of the decimal number 7.

2. The multi-carrier transmission is block-based. The IFFT output is a sum-
mation of long-lasting Fourier harmonics which are all the time in one state.
This is a different situation than in the single-carrier transmission, already
known to us, where carrier states are smoothly interpolated by the pulse
shaping filter and each carrier is permanently on the run from one state to
the other. We must have very precise timing recovery methods to sample
the single carrier exactly when it passes through its state.

3. While each multi-carrier transmitter uses IFFT for signal generation, each
multi-carrier receiver exploits FFT for signal analysis and demodulation.
After synchronization with each block beginning: the FFT is performed,
states of all carriers are found and bits extracted from them (as numbers
of carrier states). Slight synchronization errors result in rotation of QAM
constellations. How many IFFTs and FFTs are executed at this moment all
around the world!

4. Channel impulse response (CIR) convolves with transmitted signal across
the DMT/OFDM blocks/symbols and the inter-symbol interference (ISI)
occurs. In order to mitigate this effect, part of each block, longer than CIR,
is transmitted twice: last block samples are copied to block beginning in the
form of cyclic prefix. After this operation, despite channel filtering, result
of this filtering depends only on the samples of one DMT/OFDM block: the
inter-symbol interference is canceled. The cyclic prefix is very important!

5. Cyclic prefix makes a signal ... cyclic. Signal convolution realized in fre-
quency domain by means of DFT/IDFT is also cyclic. Thanks to the CP
usage, not only ISI is canceled, but channel frequency equalization (FEQ)
becomes very easy also: FFT of a synchronized block of received signal
samples is simply divided by FFT of the estimated channel impulse re-
sponse!

6. Usage of cyclic prefix causes bit-rate reduction because portion of copied
samples should be longer than the impulse response which in DSL systems
is ... long. Transmitting something twice is not a big fun. Therefore, in DSL
systems the channel impulse response is artificially shorten by the special,
digital, channel time equalization (TEQ) filter which is put into the signal
processing path in the receiver.

7. Only known channels can be equalized. We cannot un-do unknown do. So,
channel impulse response and frequency response have to be estimated.
Special pilot signals are sent, known to receiver. Knowing input (sent) and
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having output (received) signals, the receiver can estimate signal change
introduced by the channel and use it for correction of unknown transmitted
data.

8. In multi-carrier transmission orthogonal signals are used. When their or-
thogonality is lost in the receiver, for example, due to incorrect ADC sam-
pling ratio, all carriers interfere with each other and the inter-channel in-
terference (ICI) appears. At all cost orthogonality has to be recovered,
by hardware (clock change) or software solution (signal interpolation). In
wireless systems the carrier frequency offset and the Doppler effect cause
orthogonality loss and ICI existence.

9. When everything what can be estimated and adjusted is already done, only
noise remains. We have to estimate signal-to-noise ratio for each sub-
carrier and allocate the number of bits proportionally to the SNR: sub-
carrier less disturbed by the noise obtains more bits to ... carry. In DSL
channels high frequencies are more attenuated and typically ... carry less
bits.

22.11 Private Investigations: Free-Style Bungee Jumps

Exercise 22.10 (SNR and Bit-Rate Curves for Different Noise Levels). Run pro-
gram of complete ADSL modem with perfect ADC sampling. Increase the noise
level NoiseDbmHz=−160,−150, ...,−80. Store SNR and bit-allocation curves for
all sub-carriers and then plot them all in two separate figures. Calculate allowed
bit-rates and plot them in one figure also. Check different channels.

Exercise 22.11 (Noise Level, Channel Estimation, and TEQ/FEQ Design). For
stronger noise, it is more difficult to estimate reliably the channel frequency re-
sponse and correct TEQ and FEQ. Set strong noise NoiseDbmHz=−80,−90. Run
the modem program many times, increasing the number of main loop iterations for
channel estimation, i.e. CounterChan=1,5,10,20,50. Calculate, store, and
plot in one figure all: (1) estimated channel impulse responses hest (Fig. 22.1), (2)
all designed TEQ filters e (Fig. 22.2), (3) all shortened channel impulse responses
he (Fig. 22.3), (4) all frequency responses HE of the shortened channels (Fig. 22.4).

Exercise 22.12 (Schmidl-Cox Synchronization Method). Implement the Schmidl-
Cox method [8] and use it for DMT symbol synchronization in the complete ADSL
modem program.

Exercise 22.13 (* Text Transmission by ADSL Modem). At present the ADSL
modem program does not transmit bits, only performs the modem initialization.
Add bit transmission and detection to it. Send any text of arbitrary length using only
4-QAM modulation. Having the program, calculate number of errors. Check how
this number grows with the increase of noise level.
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Exercise 22.14 (* 16-QAM Modulation in ADSL Modem). Perform bit allocation
for the ADSL modem. If 2 or 3 bits are allocated, use 4QAM, for bigger number
of bits use 16QAM. Send any bit-stream, detect the bits, and find number of errors
for each sub-carrier. Repeat experiment for different levels of noise and plot all
error curves in one plot (i.e. number of errors for each sub-carrier for different noise
levels).
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Chapter 23
Wireless Digital Multi-Carrier
Transmission: With DAB Example

The best way to understand how something work is to
disassemble it into pieces and ... assemble it ... hmm ... back

23.1 Introduction

Digital radio broadcasting (DAB/DAB+) standard is result of European
project Eureka started in 1986. Its first version was finished in 1995 and it was
using MP2 layer of MPEG-1 audio standard from 1992 (only with frequency
48 kHz). Not all first DAB installations in Europe were successful due to high
building cost of new infrastructure and listeners non-interest due to similar au-
dio quality to the analog FM radio. In response, new technological solutions
were added to the standard and in 2006 an enhanced DAB+ version appears. It
allowed using the newest extension of the modern high-efficiency advanced au-
dio coder (AAC-HE2) and packet transmission with multimedia services, e.g.
Slide Show. The DAB+ is described in the ETSI EN 300 401 standard being
permanently upgraded. Despite these efforts acceptance of DAB technology is
not high. It results from decrease of general radio popularity among young peo-
ple and rapid increase of usage of other multimedia services, especially Internet
multimedia streaming, i.e. Internet radio and television, audio and TV podcasts,
music and video servers. Nevertheless, in many countries digital radio broad-
cast is available and we can use its signal for practical learning different DSP
algorithms which are widely allied in telecommunication systems, not only the
wireless ones. In this book we will decode exemplary recorded IQ files of DAB
multiplex signal.

The DAB multi-carrier transmission and signal processing is similar to the
DSL one, described in the previous chapter. The biggest difference is that the
synthesized IQ(n) signal is in the transmitter up-converted in frequency and
emitted in a wireless RF way, and in the receiver—down-converted to the base-
band. This up-down operation is a potential source of carrier frequency offset
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(CFO) in the receiver, which is absent in the DSL modem. The CFO has to
be obligatory estimated and corrected. The second important difference is that
channel in DAB can be time-varying due to allowed receiver mobility (for ex-
ample, when DAB is listened in a car moving with a high speed or in urban
environment). Despite these new problems, the reception of DAB transmission
is relatively robust, due to small bit-rate with high error correction and simple
but effective solutions implemented in it:

1. the DAB bit-stream is not high, equal to about 1.7 megabits per second,
and secured by strong 3/4 forward error correction (FEC) coding,

2. very robust, low-level differential phase shift keying modulation is used in
it (DQPSK) with only two bits per sub-carrier,

3. channel estimation is not necessary, even in the presence of Doppler ef-
fect, due to specially chosen values of transmission parameters (frequency
band around 200 MHz, sampling frequency 2.048 MHz, OFDM sym-
bol having 2048 samples equipped with additional long prefix with 504
samples, differential modulation).

The applied differential modulation helps us to reduce the channel influence
upon the transmitted data, even in the case of relatively fast channel varia-
tions. In turn, long cyclic prefix, longer than the channel impulse response,
eliminates inter-symbol interference (ISI) and helps not to lose sub-carrier
orthogonality.

Error detection and correction is a very important part of each telecommu-
nication systems. In this chapter this topic will be covered on the example of
the DAB standard. The cyclic redundancy check coding (CRC) as well as con-
volution coding with Viterbi decoding will be shortly described. Details of the
Reed–Solomon encoder and decoder application in the DAB radio will be pre-
sented also.

We will learn DAB+ digital radio using text of the ETSI EN 300 401 stan-
dard entitled “Radio Broadcasting Systems: Digital Audio Broadcasting (DAB)
to mobile, portable and fixed receivers” (2006). It will be a big lesson for us to
see how telecommunication standards look like: how many details they contain
and how difficult to read they are.

This chapter will have a different structure from the rest of the book. Since
the Matlab program implementing DAB decoder is not short, it is cut into pieces
and presented part-by-part with minimum required explanation. The bottom-up
approach will be used: we will analyze the data and methods in order of their
appearing, and then do the generalization in form of block diagrams.

In this chapter we will use a Matlab program of DAB radio receiver written in
2011 by Michael Häner-Höin as his M.Sc. Thesis “SW-Realisierung eines DAB-
Empfängers mit GNU Radio” [5] at School of Engineering (the Center for Signal
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Processing and Communications Engineering) of the ZHAW Zurich University of
Applied Science https://www.zhaw.ch/en/university/, under supervision of Prof. Dr
Marcel Rupf. The program was made available at GitHub repository and used by my
students in 2014-16 in real-time SDR DAB radio project https://sdr.kt.agh.edu.pl/
sdrdab-decoder, under permission of ZHAW. The Matlab DAB code was extended
by myself from mode I to modes II, III, and IV, as well as from DAB to work-
ing DAB+ decoder. However, the most important was addition of missing time and
frequency synchronization procedures, i.e. carrier and timing recovery methods. I
would like to thank a lot the ZHAW for possibility of using its programs in the past
and starting my DAB students projects from so high level as well as for possibility
of using the Matlab DAB code, with my extensions, in this book.

DAB standard is very well described in [4, 6]. Its norms are available online
[2, 3]. OFDM and digital wireless transmission are simulated in Matlab
in [19].

23.2 Reading Recorded DAB Files

IQ signals of the DAB radio, processed by us in this chapter, were recorded by
RTLSDR USB stick with the use of SDRSharp program. Next, recorded files, long
two-column IQ matrices are read into Matlab, combined into one complex-value
I(n)+ jQ(n) vector and decoded. Since the DAB sampling frequency is equal to
2.048 MHz we should record the IQ file exactly with this frequency. It is available in
the USB stick. Otherwise, after reading into Matlab the signal has to be re-sampled
to the DAB sampling frequency. In Fig. 23.1 a 150 ms fragment of I(n) and Q(n)
signals is shown. We clearly see one DAB frame, about 100 ms long, separated from
the rest by two NULL zones.

In the first part of this chapter we will use the program lab23_ex_dab_fic.m.
It is a simpler version of the program lab23_ex_dab_all.m which will be used
by us later. It allows only decoding information about available services from one
DAB frame, it is not decoding an audio broadcast. The program will be cut into
pieces and presented slice-by-slice as an illustration to the DAB presentation per-
formed in the text. First part of the program is given in the Listing 23.1. In the begin-
ning values of control program parameters are set, DAB parameters are initialized,
and required tables are generated. At present meaning of the parameters will not be
described, it will be understand by us later. Then one of two available DAB record-
ings can be chosen: a clear DAB IQ signal, prepared for a transmitter but not trans-
mitted, and recorded real-world DAB signal with severe disturbances. When sterile
DAB signal is used, we can artificially add to it by a function disturbDAB()
some typical anomalies: wrong ADC sampling ratio, carrier frequency offset, chan-
nel simulation, and noise.

https://www.zhaw.ch/en/university/
https://sdr.kt.agh.edu.pl/sdrdab-decoder
https://sdr.kt.agh.edu.pl/sdrdab-decoder
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Fig. 23.1: In-phase I(n) and in-quadrature Q(n) components of DAB+ digital ra-
dio: (top) short fragment of I(n), (center) short fragments of Q(n), (bottom) long
fragment of I(n)—one DAB frame, lasting about 100 ms, is visible in the middle,
separated on both sides by two NULL zones

Listing 23.1: Reading IQ file of DAB+ radio signal
�

1 % lab23_ex_DAB_fic.m
2 % Simple Matlab program for decodingserviceinformation from one DAB frame
3

4 % Masterthesis
5 % ZurcherHochschule fur AngewandteWissenschaften
6 % Zentrum fur Signalverarbeitung und Nachrichtentechnik
7 % (c) Michael Haner-Hoin, 12.4.2011 ZSN, info.zsn@zhaw.ch
8 % Extended:
9 % AGH University of Science and Technology, Krakow, Poland

10 % (c) Tomasz Zielinski, 31.12.2019,tzielin@agh.edu.pl
11

12 clear all; close all; fclose(’all’);
13
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14 % --------------------------
15 % PROGRAM CONTROLPARAMETERS
16 % --------------------------
17 CorrectADC_ON = 1; % 0/1 CORRECT ADC samplingfrequency by re-sampling
18 CorrectFreqOffset_ON = 1; % 0/1 CORRECT carrierfrequency offset (CFO)
19 CorrectTimeSynchro_ON = 1; % 0/1 CORRECT time synchro using known DF (delta freq)
20 Disturbances_ON = 0; % 0/1 ADD disturbances
21

22 % --------------------------
23 % GENERAL DAB PARAMETERS
24 % --------------------------
25 fs = 2.048e6; % samplingfrequency used in the DAB algorithm
26 NSymbPerFrame = 76; % L, number of OFDM symbols per one DAB frame
27 NCarrPerSymb = 1536; % K, number of transmittedcarriers
28 NSampPerFrame = 196608; % Tf, duration of the transmissionframe (in samples)
29 NSampPerNull = 2656; % TNULL, duration of the Null symbol (in samples)
30 NSampPerSymb = 2552; % Ts, duration of OFDM symbols
31 Nfft = 2048; % Tu, the inverse of the carrier spacing
32 NSampPerPrefix = 504; % delta, duration of the guard interval
33

34 NFIBsPerFrame = 12; % (FIC) number of FIBs per one DAB frame (non-interleaved)
35 NCIFsPerFrame = 4; % (MSC) number of CIFs per one DAB frame (time-interleaved)
36 NSymbPerFIC = 3; % (FIC) number of OFDM frames per one FIC
37 NFIBsPerCIF = 3; % (FIC) number of FIBs per one CIF
38

39 NSampPerData = NSymbPerFrame*NSampPerSymb; % DAB frame length without NULL
40

41 % Generation of Phase Reference Symbol (used for frame synchro) (ETSI pp. 147-149)
42 [specPhaseRef, sigPhaseRef] = PhaseRefGen( 0 );
43 % Generation of a FrequencyInterleaving and De-interleavingTables (ETSI pp. 157-161)
44 [FreqInterleaverTab] = FreqInterleaverTabGen( Nfft );
45 [FreqDeinterleaverTab] = FreqDeinterleaverTabGen( FreqInterleaverTab, Nfft );
46 % Generation of trellis for polynomial (ETSI, page 129-130, below fig. 72)
47 VitTrellis = poly2trellis(7,[133 171 145 133]); % 7 = delay, then octal numbers
48

49 % Read an IQ file for FIC decoding
50 Nframes = 3; % number of read DAB frames
51 if(1) % synthesized, disturbance-free
52 ReadFile = fopen(’DAB_PolishRadio_TX_IQ.dat’, ’rb’);
53 x = fread( ReadFile, [2, Nframes * NSampPerFrame], ’float’ );
54 x = x(1,:) + j*x(2,:); x = x.’ / 2̂ 15;
55 fclose( ReadFile );
56 else % recorded, with strong disturbances
57 ReadFile = ’DAB_PolishRadio_RX_IQ.wav’; % file name
58 n1st = 1; nlast = n1st + Nframes * NSampPerFrame-1; % samples from-to
59 [x, fs] = audioread( ReadFile, [n1st, nlast] ); % read
60 x = x(:,1) - j*x(:,2); % complex IQ
61 end
62 figure; plot(real(x)); xlabel(’n’); title(’Real(x(n))’); grid; pause
63

64 % #########################################################################
65 % Optionaladdition of disturbances
66 if( Disturbances_ON ) x = disturbDAB( x ); end

��
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Exercise 23.1 (Reading DAB+ IQ Files, Observing Signal Samples). Add
figures to the program 23.1 displaying IQ samples of the DAB signal. Find
zones where signal samples have low energy. How long (in samples) are these
zones and how many samples are between them. Notice difference between
clear IQ data in transmitter (TX) and receiver (RX), i.e. presence of noise. Ob-
serve also that low-energy zones are of two types in the IQ RX file: silent ones,
where only noise is present, and oscillatory ones—with deterministic tones.
Calculate 2048-point FFT and find frequencies of these tones. Calculate and
display FFT spectrum of the signal in high-energy intervals.

23.3 DAB Physical Layer: Samples and Carriers

Frequency Domain Initially DAB had 4 different application modes, at present
only mode I remained, working in the band III (175–240 MHz). Each DAB multi-
plex signal is sampled with frequency 2,048 MHz, has the 2.048 MHz bandwidth,
and consists of 2048 sub-carriers distant 1 kHz apart (2.048 MHz/2048). Complex-
value time signal I(n)+ jQ(n) of single DAB multiplex, used in the base-band, is
obtained by means of the N =2048 (1536+512)-point inverse FFT from the pre-set
IQ(k) sub-carrier states. Differential Quadrature Phase Shift Keying (DQPSK) mod-
ulation is exploited. Only central 1536 sub-carriers are used, symmetrical around
0 kHz: 768 left (negative frequencies) and 768 right (positive frequencies). Re-
maining 512 side sub-carriers, 256 for negative frequencies and 256 for positive
frequencies, are set to zero. They are used as separating zones between neighbor
DAB multiplexes. As a result, in practice, only 1.536 MHz bandwidth is exploited.
Of course, bits are allocated to used sub-carriers only. In Fig. 23.2 spectrum of a
multiplex DAB signal is shown. In fact, it is typical to all wireless OFDM services.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
f [MHz]

-20
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20

40
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]
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Fig. 23.2: Frequency spectrum of recorded DAB+ signal: the OFDM hat, consisting
of 1536 sub-carriers lying 1 kHz apart, is clearly visible. Sampling frequency is
equal to fs = 2.048 MHz and NFFT length—2048 samples
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For example, for terrestrial digital video broadcasting (DVB-T2) the OFDM hat has
different widths and spacing, depending on the sampling frequency (1.7, 5, 6, 7,
8, 10 MHz) and FFT size used (1k, 2k, 4k, 8k, 16k, 32k, e.g. 1k = 1024). In this
case the following modulation types are available: QPSK, 16-QAM, 64-QAM, and
256-QAM. In LTE 4G digital telephony, for down-link signal, sampling frequency
varies from 1.30 MHz to 30.92 MHz, FFT size from 128 to 2048, and modulation
from QPSK, 16-QAM, 64-QAM, and 256-QAM (recently).

Exercise 23.2 (FFT Spectrum of the DAB+ Signal). Calculate and compare
2048-point FFT spectra of the TX and RX DAB IQ files. Cut signal fragments
in the middle of high-energy signal parts. Display the spectra in two ways:
(1) in separate two figures and (2) in one figure with overlay. Observe noise
components and frequency shift of the RX spectrum.

Time Domain In Fig. 23.1 a time-domain DAB signal was presented, precisely
its real I(n) and imaginary Q(n) components. At present, we can describe it with
more details. The DAB frame starts with a pre-amble having a form of zeroth (no-
data) symbol, the so-called NULL symbol. The NULL symbol has 2656 samples
(1297 μs). From time to time, typically every second DAB frame, a weak tonal sig-
nal is transmitted inside the NULL zone, allowing transmitter identification (TII—
transmitter identification information). After the NULL, there are 76 time OFDM
symbols, each having 2552 samples (1246 μs): this is an IFFT result (2048 sam-
ples) of actual sub-carrier states, with 504 last samples copied to the beginning as
a cyclic prefix (CP) (guard interval (GI)). The CP protects us against inter-symbol
interference, as explained in the previous chapter, and simplifies carrier frequency
offset estimation. The overall DAB frame has 2656+ 76 · 2552 = 196608 samples
and lasts about 100 μs. Because the differential QPSK modulation is exploited, only
phase shifts of each sub-carrier from OFDM symbol-to-symbol are important. Due
to the DQPSK usage, the first transmitted OFDM symbol stands for starting Phase
Reference (this is its name!) for the second symbol. There are four phase shifts al-
lowed per sub-carrier (± 1

4 π and ± 3
4 π) and each sub-carrier carries two bits only

(4 = 22). The PR symbol, with precisely defined time and frequency pattern, is used
in DAB receiver for time and frequency synchronization also. The Phase Reference
symbol, the first OFDM symbol of the DAB frame, is followed by 75 regular OFDM
symbols carrying bits: first 3 belong to the fast information channel (FIC), describ-
ing the multiplex content, and next 72 symbols to the main service channel (MSC)
with multimedia data. Logical structure of the DAB frame is shown in Fig. 23.3.

Thanks to differential coding, the channel is not to be obligatory estimated and
corrected in DAB. It is possible due to carefully chosen sampling frequency value
as well as appropriate FFT and CP lengths, taking into account the expected channel
impulse response length (CP) and a receiver mobility—Doppler effect (FFT).
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Fig. 23.3: Structure of the DAB/DAB+ frame. Denotations: FIB—Fast Information
Block, FIG—Fast Information Group, CIF—Common Interleaved Frame, MP2—
layer 2 of MPEG-2 audio coder, SF—Super Frame of DAB+ with AAC audio cod-
ing. Each FIB block is followed by 16-bit CRC protection

Exercise 23.3 (Sequence of DAB+ Signal FFT Spectra). Calculate a se-
quence of 2048-point FFT spectra of the TX DAB+ signal: (1) find the first
sample after the NULL zone, skip first 504 samples and calculate FFT of the
next 2048 samples, (2) repeat this operation (504 samples skipping and FFT
computing) 76 times. Plot all spectra (abs(),real(),imag() in a loop,
one after the other with delay of 0.5 s (pause(0.5)). How do you conclude
this experiment? Notice that the first spectrum after the NULL zone is all the
time the same—this is a spectrum of Phase Reference signal.

23.4 Synchronization

Synchronization techniques applied in DAB for synchronization purposes are de-
scribed in many papers, for example, in [1, 4, 8, 12, 13, 15].

Initial DAB Frame and OFDM Symbol Synchronization The NULL symbol is
used in DAB receiver for coarse finding of 100 μs DAB frame beginning. We are
looking for a minimum of summation of signal samples absolute values inside a
time window 2656 samples long:

NNULL−1

∑
n=0

|x(n0 −n)| −−−→
n0=?

min, (23.1)

i.e. tracking envelope of this cost function is performed. In Fig. 23.4 two types of
NULL symbols are presented, with and without TII transmitter identification, their
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Fig. 23.4: Processing of recorded NULL signals, (left) without transmitter identifi-
cation information (TII) and (right) with TII. First row: I(n) signal samples, second
row: signal spectra, third row: detection curves Acc(m), fourth row: beginning of
Phase Reference signals with marked the first PR sample (with circle)
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FFT spectra and calculated DAB frame beginning detection curves. In both cases
it is not difficult to find the curve minimum. Detection curves and first samples of
DAB frames were calculated by the program 23.2.

Listing 23.2: Finding NULL symbols in DAB IQ signal
�

1 % lab23_ex_DAB_fic.m - continuation, x denotes a signal being decoded
2

3 % Detection of first two NULL symbols: sum(abs(samples(...)))
4 xabs = abs(x);
5 NSampPerSynchro = NSampPerFrame + NSampPerNull;
6

7 % First DAB frame
8 acc = zeros(1,NSampPerSynchro); acc(1) = sum( xabs(1:NSampPerNull) );
9 for n = 1 : NSampPerSynchro;

10 acc(n+1) = acc(n) - xabs(n) + xabs(n+NSampPerNull);
11 end
12 [~, imin] = min(acc);
13 i1st = imin, % first sample of DAB #1 frame w/ NULL
14

15 % Second DAB frame
16 ADCppmMAX = 400; % assumed maximum ADC ppm error
17 M = round( 0.5 * ADCppmMAX * NSampPerFrame/fs ); % maximum possible offset
18 i2nd = imin + NSampPerFrame - M; % first sample index to test
19 acc = zeros(1,2*M); acc(1) = sum( xabs( i2nd : i2nd + NSampPerNull-1 ) );
20 for n = 1 : 2*M-1
21 acc(n+1) = acc(n) - xabs(i2nd+n) + xabs(i2nd+n+NSampPerNull);
22 end
23 [dummy imin] = min(acc); clear xabs;
24 i2nd = i2nd + imin, % first sample of DAB #2 frame /w NULL

��

Exercise 23.4 (Using NULL Symbol for Finding DAB Frame Begin-
ning). Try to replace absolute value detector (xabs(n)) with energy one
(x(n)*conj(x(n))). Add different impairments to the clear TX DAB sig-
nal using function x=disturbDAB(x), and observe the detection function
shape.

ADC Sampling Ratio Estimation and Correction Yes. I was personally program-
ming the Matlab software decoder. And everything worked perfectly well for clear
IQ multiplex files, prepared for RF emission. But attempts of running programs
upon real SDR recordings have failed immediately. Why? Because of the carrier fre-
quency offset. And it was corrected. For a while everything looked fine ... until a next
crash occurred. This time problems were caused by a wrong ADC sampling ratio.
Instead of 196608 samples per DAB frame, I had 7 to 15 samples more: error from
70 to 150 ppm. And it was enough to stop the game. The ADC sampling rate can be
corrected in hardware and we did it in our C++ real-time DAB+ student project
(google sdrdab or go directly to https://sdr.kt.agh.edu.pl/sdrdab-decoder/). Or in

https://sdr.kt.agh.edu.pl/sdrdab-decoder/
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software, performing time-consuming interpolation of a very long I(n)+ jQ(n) sig-
nal. In Matlab program the spline interpolation is done.

Listing 23.3: Software correction of wrong ADC sampling ratio by signal interpo-
lation

�

1 % lab23_ex_DAB_fic.m - continuation
2

3 % ADC correction of the first DAB frame starting from NULL symbol
4 if( CorrectADC_ON )
5 NSampPerFrameADC = i2nd - i1st, % found frame length
6 if( NSampPerFrameADC ~= NSampPerFrame ) % comparison with expected length
7 step = NSampPerFrameADC / NSampPerFrame;
8 x(i1st : i1st+NSampPerFrameADC+NSampPerNull-1), ...
9 [0:step:NSampPerFrameADC+NSampPerNull-1]’,’spline’); % signal resampling

10 end
11 else
12 x = x( i1st : i2nd-1 );
13 end

��

Exercise 23.5 (Checking Influence of the Wrong ADC Sampling Rate). Use
the function x=disturbDAB(x) for modification of TX IQ signal, simulat-
ing wrong ADC sampling rate (expressed in ppm). Compare 2048-point FFT
spectrum of the Phase Reference symbol (first 2552 samples of the DAB frame,
skip first 504 of them) before and after this modification.

Phase Reference Symbol Definition As we remember, carrier and timing recover-
ies require special synchronization patterns (preambles, headers). The first OFDM
symbol, transmitted in DAB frame, is a header-type one. It is called a Phase Ref-
erence (PR) and is precisely defined (see Fig. 23.5). Its name results from its main
application in DAB radio: since differential phase modulation is used (namely, the
DQPSK), the PR symbol is used as a phase reference for the first data OFDM sym-
bol transmitted after it. The Phase Reference signal has sharp auto-correlation func-
tion, which can be exploited for time synchronization, as well as impulsive auto-
correlation of its FFT—useful for integer frequency shift (offset) estimation.

Exercise 23.6 (Phase Reference Symbol). Compare in one plot samples of PR
signals which are present in two DAB+ IQ files, TX and RX. Compare them
also to reference IQ samples, generated by the function PhaseRefGen(). Do
the same for 2048-point FFT spectra. Correlate samples of both IQ signals, TX
and RX, with PR samples returned by the function PhaseRefGen(). Use
function conv(). Is it possible to find the DAB frame beginning using the
correlation results?
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Fig. 23.5: Phase reference OFDM symbol, up-down: (1) real part of 2552
(504+2048) signal samples, (2) real part of FFT coefficients, (3) magnitude of signal
auto-correlation, (4) magnitude of FFT spectrum auto-correlation
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Carrier Frequency Offset Estimation and Correction The Phase Reference
symbol, the first, true OFDM symbol in each DAB frame, having strictly defined
structure, is for us priceless. Apart from being the starting phase reference for all
used sub-carriers, switched in phase, it can be also used for additional time OFDM
symbol synchronization as well as for fractional carrier frequency offset estimation
(CFO), i.e. value of carrier de-tuning from nominal value measured in a fraction of
the FFT lag (e.g. 0.12345 · f0, f0 =

fs
NFFT

).
After simplifying assumptions that: (1) the channel impulse response is constant

and short in comparison to the CP length, (2) noise is absent, and (3) all operations
performed in the receiver are ideal inverses of operations done in the transmitter,
then the last samples of the received signal x(t) and the cyclic prefix should be
almost the same. Because the same were transmitted in signal s(t), this is the CP
concept. However, when the frequency fdown of signal down-conversion to the base-
band, done in the receiver, is different than the frequency fup of signal up-conversion
from the base-band to intermediate or target frequency, done in the transmitter, we
have a problem. In such case, the received signal is equal to:

x(n) = s(n)e j2π fup− fdown
fs

n = s(n)e j2π Δ f
fs

n. (23.2)

Let us assume that we multiply last samples of an OFDM symbol by corresponding
samples of the CP, but with complex conjugation. In ideal case, the same samples
are multiplied, only delayed by the OFDM symbol length N equal to the FFT length.
If fs denotes sampling frequency, f0 = fs/N is a fundamental FFT frequency and a
frequency shift error is equal to Δ f = Δk · f0, where Δk ∈ R, we should obtain

z(n) = x(n) · x∗(n−N) = |s(n)|2 · e j2π Δ f
fs

ne− j2π Δ f
fs
(n−N) = |s(n)|2 · e j2π Δ f

fs
N =

= |s(n)|2e
j2π Δ f

f0 = |s(n)|2 · e j2π Δk f0
f0 = |s(n)|2 · e j2π(Δk). (23.3)

Δk, being a real-value number, denotes the overall carrier frequency offset errors
expressed in multiplicity of fundamental DFT frequency f0. For example, Δk =
3.456 tells us that carrier frequency is shifted up 3.456 · f0 Hz, i.e. 3 DFT bins
(integer shift) plus 0.456 of the DFT bin (fractional shift). In general, when Δk has
integer part kΔ and fractional part εΔ :

Δk = kΔ + εΔ , (23.4)

the integer and fractional CFO errors in hertz are equal to:

Δ fint = kΔ · f0, kΔ ∈ Z, (23.5)

Δ ffract = εΔ · f0, 0 < ΔεΔ < 1. (23.6)

We can calculate εΔ (23.4) from Eq. (23.3):
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�z(t)
2π

=
2πεΔ

2π
= εΔ (23.7)

and then use it for calculation of Δ ffract from Eq. (23.6). In Eq. (23.7), during cal-
culation of �z(t), we cannot distinguish integer multiplicities of 2π caused by Δk,
and only fractional CFO drift εΔ can be found.

The described above auto-correlation-based CFO estimation method was pro-
posed in [10] for repeated OFDM symbol. In [14] the method was extended for
cyclic prefix application. It was proofed in both works that the maximum likelihood
version of Eqs. (23.3), (23.7), minimizing noise influence upon the estimation error
of the angle in Eq. (23.3), has the following form (N—FFT length, P—CP length,
L = P+N, K < P):

εΔ =

�
L
∑

n=L−K
x(n)x∗(n−N)

2π
. (23.8)

Knowing fractional CFO we can remove it, multiplying the received IQ signal (23.2)
with the following complex correction signal (notice the minus sign in its exponent):

x(1)(n) = x(n) · e− j2π εΔ
fs

n ≈
(

s(n) · e j2π kΔ +εΔ
fs

n
)
· e− j2π εΔ

fs
n ≈ s(n) · e j2π kΔ

fs
n.

(23.9)

The correction eliminates very severe blur (smear) of the received OFDM symbols
caused by fractional CFO, but the integer CFO, giving the circular spectrum shift,
can still be present. Typically, it is estimated now by: (1) FFT calculation of the
received PR symbol, (2) circular correlating this spectrum with the theoretical (ex-
pected) PR spectrum for several left/right shifts, and (3) looking for the maximum
and its argument. Alternatively, fast cross-correlation algorithm is used using FFT:
(1) instead of cyclic spectra correlation, signal y(1)(n) (23.9) of the received, par-
tially corrected PR is multiplied with the complex conjugation of its reference tem-
plate, (2) then FFT of the multiplication result is performed, and (3) its maximum is
found: the maximum argument is equal to kΔ and informs us about the integer spec-
trum shift. The required correction Δ fint (23.5) is realized upon the signal y(1)(n)
obtained from Eq. (23.9):

x(2)(n) = x(1)(n) · e− j2π kΔ
fs

n ≈ ≈ s(n) · e j2π kΔ
fs

n · e− j2π kΔ
fs

n ≈ s(n). (23.10)

Results of carrier frequency offset estimation, obtained for the RX DAB signal,
are presented in Fig. 23.6. The calculated instantaneous fractional CFO error, pre-
sented in left figure, is noisy, but it is averaged during computation of Eq. (23.8).
The integer CFO error detection, presented in right figure, is not difficult: the sig-
nal spectrum is shifted 20 FFT bins in direction of negative frequencies. Here three
peaks dominate. In presence of impairments not always the central one is the high-
est, nevertheless, its position should be selected as a correct result.
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Fig. 23.6: Carrier frequency offset (CFO) estimation results: (left) instantaneous
fractional CFO estimated from cyclic prefix of PR symbol—see Eq. (23.7), (right)
integer CFO found from cross-correlation of theoretical and received PR symbol

Listing 23.4: Carrier frequency offset estimation
�

1 % lab23_ex_DAB_fic.m - continuation
2

3 % ESTIMATION of CFO fractional part: df_fract
4 Ncut = 25; % Assumed max time offset error +/-
5 icp = (i1st+Ncut : i1st+NSampPerPrefix-Ncut-1)’; % CP indexes
6 isymb = (i1st+Ncut+Nfft : i1st+NSampPerPrefix-Ncut-1+Nfft)’; % SYMBOL indexes
7 z = sum( conj(x( icp )) .* x( isymb ) ); % correction using cyclic prefix
8 df_fract = angle(z)/(2*pi),
9 % df_fractCOMPENSATION of the PHASE REFERENCE symbol

10 icpsymb = (i1st : i1st + NSampPerPrefix+Nfft-1)’; % CP+SYMBOL indexes
11 s = x(icpsymb) .* exp(-j*2*pi/Nfft*df_fract*(icpsymb)); % CFO correction
12

13 % ESTIMATION of CFO integer part: df_int
14 % Multiplication in time domain = cyclic convolution (corr) in frequency domain
15 % Cyclic correlation of signal spectrum with the PhaseRefspectrum --> find maximum
16 M = 20; % M = 10? 20? max search region = [-M, +M] around 0 spectrum shift
17 isymb = (NSampPerPrefix+1 : NSampPerPrefix+Nfft)’;
18 XC = fft( s( isymb ) .* conj( sigPhaseRef( isymb ) ) ); % fft( multiplication in

time )
19 XC = [ XC(end-M+1:end); XC(1:1+M) ];
20 [ val, indx ] = max( XC );
21 df_int = indx - (M+1), % pause
22

23 % SUMMATION
24 df = df_int + df_fract;

��
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Exercise 23.7 (Carrier Frequency Offset Estimation). Calculating the frac-
tional carrier frequency offset (CFO) we do not explicitly use the information
about the PR symbol values. The method can be used for any OFDM symbol.
Therefore, apply it for all 75 OFDM DAB symbols with data, for TX and RX
signals. Compare individual values and average them for one DAB frame. You
can disturb the given TX DAB signal using the disturbDAB() function, in
respect to CFO, and try to estimate the fractional CFO error from the signal. Is
it possible to estimate the integer CFO using any OFDM symbol with unknown
data?

Improvement of OFDM Symbol Synchronization After the ADC sampling ratio
correction and carrier frequency offset correction, the Phase Reference time signal
can be used additionally for enhancement of the DAB frame beginning estimate, ini-
tially calculated using the NULL symbol only. We can calculate cross-correlation
between the known, sent PR signal, and its received copy. The operation can be
performed in time domain for limited number of signal shifts, or in frequency do-
main using fast convolution/correlation FFT-based procedure. In the second case,
sequence of the following operations is performed:

1. cut the IQ(n) signal fragment, considered at present as the Phase Reference,
2. calculate its FFT,
3. multiply the spectrum with conjugation of the expected PR spectrum,
4. calculate IFFT of the multiplication result,
5. look for the maximum of cross-correlation function magnitude, telling us about

a time shift of our PR estimate.

Matlab code of the PR-based DAB frame beginning synchronization is presented in
Listing 23.5.

Listing 23.5: Improvement of synchronization with Phase Reference—better timing
recovery

�

1 % lab23_ex_DAB_fic.m - continuation
2

3 % START: Extra time synchronizationusing PHASE REFERENCE SYMBOL
4 % Frequency offset correction of the Phase Reference Symbol
5 s = x( icpsymb ) .* exp(-j*2*pi/Nfft*df*( icpsymb ));
6 % TIME OFFSET CALCULATION IN FREQ DOMAIN - mult in freq --> conv/corr in time
7 S = fft( s( isymb ) );
8 work = ifft( S .* conj( specPhaseRef ) ) / NSampPerSymb; % ifft( mult in freq )
9 M=7; work=[ work(end-M+1:end); work(1:M+1) ]; % Assumed max +/- 7

10 [ dummy indx ] = max(abs(work(1:2*M+1)));
11 ioffsA = indx-(M+1),
12 % TIME OFFSET CALCULATION IN TIME DOMAIN - direct signal correlation in time domain
13 M = 7; XC = []; Nsymb = NSampPerSymb; % Assumed max +/-7
14 XC(M+1) = sum( s .* conj(sigPhaseRef) )/Nsymb;
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15 for m = 1 : M
16 XC( M+1+m ) = sum( s(1+m:Nsymb) .* conj(sigPhaseRef(1:Nsymb-m)) )/(Nsymb-m);
17 end
18 for m = 1 : M
19 XC( M+1-m ) = sum( s(1:Nsymb-m) .* conj(sigPhaseRef(1+m:Nsymb)) )/(Nsymb-m);
20 end
21 [ dummy ioffsB ] = max(abs(XC));
22 ioffsB = ioffsB - (M+1), pause
23 % CORRECTION of DAB frame beginning (without NULL)
24 ioffs = round( (ioffsA + ioffsB)/2 ); % use mean value
25 i1st = i1st + ioffs;
26 % FINAL CFO CORRECTION OF THE WHOLE LONG DAB FRAME WITHOUT NULL WITH PHASEREF
27 x = x(i1st : i1st + NSampPerData-1) .* exp(-j*2*pi/Nfft*df*(0 : NSampPerData-1)).’ ;

��

The method was applied to the RX DAB signal, obtained results are presented in
Fig. 23.7: in left plot for direct time-domain cross-correlation implementation, and
in right plot for fast frequency-domain cross-correlation implementation. The results
are almost identical: only (almost) due to different scaling applied.

Exercise 23.8 (Time Synchronization Using Phase Reference Symbol).
Check efficiency of the PR-based DAB frame synchronization method using
TX DAB signal disturbed by the function disturbDAB().

Final Verification of Applied Time/Frequency Synchronization Methods There
are many references dealing with time and frequency synchronization methods ded-
icated exactly for DAB+ radio, simply google DAB+ synchronization, for exam-
ple, BBC DAB White Paper. However, general methods designed for OFDM sys-
tems can be applied also, like described CFO estimation using the cyclic prefix or
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Fig. 23.7: Verification of the Phase Reference signal beginning by means of cross-
correlation of the received and transmitted PR signals. Results for: (left) direct time-
domain and (right) fast frequency-domain calculations
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Fig. 23.8: Verification of time & frequency synchronization signal processing algo-
rithms applied in the receiver. Comparison of the Phase Reference signal recovered
in the receiver for two different input IQ signals: (left) non-distorted transmitter
signal, (right) recorded, distorted signal. Denotation: circles—transmitted values,
crosses—received values

OFDM symbol synchronization exploiting special synchronization patterns like the
Phase Reference. Final synchronization results obtained in our case are presented
in Fig. 23.8. For recorded real-world signal (right) strong channel influence is ob-
served. It has hower minor significance for data decoding due to differential phase
modulation which is used in DAB.

23.5 DQPSK-OFDM Demodulation

After taking decision about the position of the first Phase Reference sample, we
skip 504 samples of the cyclic prefix and calculate FFT of the next 2048 samples,
belonging to the PR. This operation is repeated 76 times for 76 OFDM symbols,
i.e. skipping the 504 samples and calculating 2048-point FFT. As a result we obtain
76 spectra, take FFT coefficients of the used 1536 sub-carriers around 0 kHz only
and compute their phase shifts, i.e. 75 values for each sub-carrier (k = 1 . . .75, n =
1 . . .1536):

ΔX(k,n) = X(k+1,n) ·X∗(k,n). (23.11)

From ΔX(k,n) values we could immediately decode the sent bits:

Real(ΔX)> 0 & Imag(ΔX)> 0 → 00, (23.12)

Real(ΔX)> 0 & Imag(ΔX)< 0 → 01, (23.13)

Real(ΔX)< 0 & Imag(ΔX)< 0 → 10, (23.14)

Real(ΔX)< 0 & Imag(ΔX)> 0 → 11, (23.15)
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but we are not doing this. We left calculated numbers ΔX because we intend to use a
better, soft not hard, version of the Viterbi forward error correction (FEC) decoder.
In the transmitter some additional bits are added using convolutional FEC encoder.
In the decoder we can exploit the added data redundancy and correct some limited
amount of transmission errors. What will be explained later.

Listing 23.6: Signal demodulation—recovery of carrier IQ states
�

1 % lab23_ex_DAB_fic.m - continuation
2

3 % FFT
4 Ncp = NSampPerPrefix; Ncar = NCarrPerSymb; % shorter names
5 offs = 0; % take a few last CP samples
6 X = zeros( [NSymbPerFrame, Ncar] ); % creating empty array for all FFTs
7 for nsymb = 1 : NSymbPerFrame % processing all OFDM symbols
8 i = (nsymb-1) * NSampPerSymb; % index of the first sample
9 s = x( 1+i : Ncp+Nfft+i ); % samples of one whole OFDM symbol

10 s = s( Ncp+1-offs : Ncp+Nfft-offs ); % take only Nfft part minus offs
11 S = fft( s ); % FFT of the selectedsamples
12 S = fftshift( S ); % negativefrequencies to the left
13 X( nsymb, 1 : Ncar/2 ) = S( Nfft/2-Ncar/2+1 : Nfft/2 ); % store to FFT

array
14 X( nsymb, Ncar/2+1 : Ncar ) = S( Nfft/2+2 : Nfft/2+Ncar/2+1 ); % used carriers

only
15 end
16 DX = X( 2:NSymbPerFrame, : ) .* conj( X( 1:NSymbPerFrame-1, :) ); % phase shift
17

18 figure; plot(angle(DX(:,:)),’b*’);
19 xlabel(’symbol k’); title(’Phase Shifts’);
20 grid; pause
21 figure; plot(real(DX(:,100)),imag(DX(:,100)),’b*’);
22 xlabel(’I’); title(’Q(k)=f(I(k))’); grid; pause

��

In Fig. 23.9 calculated phase shift angles ∠ΔX(k,n) (23.11) for all DAB+ sub-
carriers in one frame are shown (left)(± 1

4 π and ± 3
4 π are expected) as well as

complex-values of ΔX(k,n) for one sub-carrier only in one DAB+ frame (right).

Exercise 23.9 (Observing States of DAB Carriers). Run the FIC decoder pro-
gram for disturbance-free TX DAB signal. Switch off all synchronization meth-
ods. Observe all constellation points of all carriers in one DAB frame. Then use
function disturbDAB to inject all available impairments individually (one-
by-one) and in mixtures. Observe changing constellation shapes. What distur-
bances are the most harmful in your opinion? Finally, turn on, one-by-one,
all the synchronization procedures and observe improvement of carrier state
visibility—you should obtain plots similar to ones presented in Fig. 23.10.
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Fig. 23.9: Phase shift angles of all DAB+ sub-carriers in one frame (left) as well as
complex-values I(k)+ jQ(k) of ΔX (23.11) for one sub-carrier only in one DAB+
frame (right)

Exercise 23.10 (Testing Efficiency of Synchronization Procedures for
Recorded DAB Signal). Run the FIC decoder program for the recorded
disturbance-full RX DAB signal. Initially, switch off all synchronization proce-
dures. Observe all constellation points of all carriers in one DAB frame. Then,
turn on, one-by-one, all the synchronization procedures and observe improve-
ment of carrier state visibility—you should obtain plots similar to ones pre-
sented in Fig. 23.10.

23.6 Removing Frequency Interleaving

Signal passing through a telecommunication channel is disturbed: attenuated, de-
layed, and interfered. Apart the wide-band noise, disturbing all sub-carriers all the
time, two types of disturbances are typical for DAB: (1) very strong, narrow-band,
notch-like attenuation of selected frequencies and (2) short impulses very harmful
for all sub-carriers but only from time to time. In DAB+ there is no channel iden-
tification and correction. All carriers obtain 2 bits and take one from available four
states. There are added some redundant bits allowing correction of limited amount
of errors (to be discussed later) but occurring information gaps (loss) in frequency
and time domain should not be very big. In order to ensure this, transmitted bits
are interleaved in frequency and time. Frequency interleaving, performed in DAB+
for all sent data, means that consecutive bits are not transmitted linearly, sub-carrier
after sub-carrier, but are randomly mixed (scrambled) between sub-carriers. A spe-
cial hashing table is used. Thanks to this, if a channel frequency response has a
deep notch attenuating several sub-carrier, the error is uniformly distributed along
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Fig. 23.10: OFDM signal spectrum (left), phase shifts of all carriers (center) and
Q(k) = f (I(k)) plot for one carrier (right) for (up-down in rows): (1) original in-
put IQ signal, (2) IQ signal after ADC sampling rate correction only, (3) carrier
frequency offset correction only, (4) ADC and CFO correction together

the frequency axis after hashing and it is easily eliminated using error correction
methods.

Being concrete, values of ΔX(k,n), calculated from Eq. (23.11) for each k
(OFDM symbol number), are exchanged in regard to n (sub-carrier number) in a
way described in the standard. Frequency interleaving (hashing), done in the trans-
mitter, is now removed in the receiver. Next the data-stream is formatted in the
following way:
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Real(ΔX(k,n)) for k = 1, n = 1 . . .1536 (first) (23.16)

Imag(ΔX(k,n)) for k = 1, n = 1 . . .1536 (next) (23.17)

. . .

Real(ΔX(k,n)) for k = 75, n = 1 . . .1536 (first) (23.18)

Imag(ΔX(k,n)) for k = 75, n = 1 . . .1536 (next) (23.19)

Listing 23.7: Frequency de-interleaving and DQPSK de-mapping
�

1 % lab23_ex_DAB_fic.m - continuation
2

3 % Frequency de-interleaver - using FreqDeinterleaverTabtable
4 DeintDX = zeros( size( DX ) );
5 for r = 1 : length( FreqDeinterleaverTab(:,4) )
6 DeintDX( :, FreqDeinterleaverTab(r,4) ) = DX(:,r);
7 end
8

9 % D-QPSK demodulation: complex --> real, imag
10 % D-QPSK symbol de-mapped - from 2D matrix to 1D vector, ETSI pp. 157 &&&&&&
11 DataFIC = zeros(1, NSymbPerFIC*NCarrPerSymb*2); % 3*1536*2
12 for f = 1 : NSymbPerFIC % FIC DATA from OFDM symbols, first real, then imag
13 DataFIC( 1+(f-1)*NCarrPerSymb*2 : (f)*NCarrPerSymb*2 ) = ...
14 [ real(DeintDX(f,:)) imag(DeintDX(f,:)) ];
15 end

��

23.7 Structure of FIC and MSC Block

Detail logical structure of DAB+ frame has been shown already in Fig. 23.3. Data of
the first 3 out of 75 OFDM symbols (all together 3 ·1536 sub−carriers ·2 Re/Im =
9216 numbers/bits) contains so-called fast information channel (FIC) about avail-
able services. Next 72 OFDM symbols contain the so-called main service channel
(MSC) with service data. Access to the FIC is fast, because above 5 DAB frames
long time-interleaving is only applied to the MSC. The MSC data are therefore bet-
ter secured against impulsive disturbances than the FIC data. When un-recoverable
errors are found in actual FIC, the data should be neglected and previously decoded
service settings are used.

The FIC data are divided into 12 blocks called FIBs (Fast Information Blocks),
having 768 numbers (bits) each. 12 FIBs are grouped into 4 parts having three suc-
cessive FIBs (3 ·768 = 2304 numbers (bits)). Each part is associated with one from
four CIF blocks (Common Interleaved Frame), into which the MSC multimedia data
are put, and describes the CIF content. The overall MSC data section has 221184
numbers (bits) (72 symbols × 1536 sub-carriers × 2 Re/Im numbers), and one CIF
is equal to 1

4 of the MSC, i.e. 55296 numbers (bits).
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23.8 FIC Decoding

De-puncturing Bits sent in the transmitter are subject to the so-called channel cod-
ing in which some extra, redundant bits are added to an original bit message. There
are many methods for generation of the redundant bits. In DAB 1/4 convolutional
coding is used, increasing 4 times number of transmitted bits, i.e. in a group of 4
bits only 1 bit is original and 3 are defending it against errors. The coding principle
is explained in Fig. 23.11. Input bits bi are stored, delayed, and shifted in a buffer,
and convolved with 4 binary patterns:

• 1 011 011, octally 133,
• 1 111 001, octally 171,
• 1 100 101, octally 145,
• and once more 1 011 011, octally 133.

Additions present in Fig. 23.11 are realized as binary exclusive OR operation,
named as XOR (the addition result is equal to 1 only when two added bits are
different). In the DAB convolutional coder the input bit-stream is replaced by 4
synthesized bit-streams, in which the original bits are hidden. If the 4× redundancy
is too high, the 4 generated bit-streams are punctured in a controlled way, i.e. some
bits are removed from them in specially defined way, known for encoder and de-
coder. This operation is presented in Fig. 23.12: not transmitted bits are marked
with ×. Then left bits are scanned vertically in columns (in direction of dashed lines
ended with arrows) and transmitted. Thanks to this redundancy level can be changed
and user has a choice: to send less data better secured or more data worse secured.
Therefore, in DAB number of services and their quality can vary.

DAB decoder is putting zeros into the received bit-stream at positions where bits
were removed (punctured) by encoder. The operation is called de-puncturing. As
a result, after appropriate zero insertion in the DAB receiver, each 1/4 part of the
received FIC increases its length from 2304 to 3096 numbers (bits).

Viterbi Decoder of Convolutional Channel Coding and Error Correction Next,
from each FIC quarter having 3096 numbers (bits), sent bits are recovered using
“soft” or “hard” Viterbi decoder. In the first case, Real() and Imag() real-value num-
bers are the decoder input while in the second case sequence of bits 0 and 1. Due to
4-times oversampling, 3096/4=774 bits are obtained. 6 last bits are removed—these
are transient bits. Their number (6) is equal to the number of delay elements in con-
volutional encoder used in the transmitter (see Fig. 23.11). After this operation we
obtain from FIC 4 blocks, each having 768 bits.

Bit De-scambler, Bit Energy De-dispersal Next, each block is de-scrambled
b=XOR(b,prbs): its bits are XOR-ed with corresponding bits of the same pseudo-
random binary sequence (PRBS) which was exploited during data scrambling in the
transmitter. XOR, logical exclusive OR operation performed upon two bits, gives 1
as a result, only when two elements/operands are different, i.e. for {0,1} or {0,1}.
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Fig. 23.11: Convolutional encoder exploited in DAB+ radio using the following,
binary patterns: 1 011 011, 1 111 001, 1 100 101, and, one again, 1 011
011, respectively, octally 133, 171, 145, and 133

Fig. 23.12: Explanation of bit-stream puncturing and de-puncturing applied in
DAB+ radio: some bits are removed in the encoder (marked with ×) and restored
with 0s in the decoder. Bits are scanned vertically along dashed lines and transmitted

When two binary sequences are XOR-ed, their bits are added modulo-2. XOR per-
formed after XOR results in coming back to the original bit sequence. XOR-ing bits
of the sequence in the encoder causes dispersal of the transmitted bits energy, i.e.
removal of long sequences of the same bit. Repeating this operation in the decoder
results in restoring possible long sequences of the same bits. PRBS sequence, used
in DAB encoder and decoder, is generated by a shift register with a loop back: next
bit is calculated using the polynomial x9 + x5 +1, see Fig. 23.13.
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Fig. 23.13: Diagram for generation of pseudo-random binary sequence (PRBS) used
for energy dispersal in DAB radio

Fig. 23.14: Diagram for generation of cyclic redundancy check (CRC) code used in
DAB+ radio

CRC Verification At present, we have 4 FIC blocks with 768 bits after bit energy
de-dispersal. Each block is divided into 3 equal parts and 12 blocks with 256 bits
result. They are called Fast Information Blocks (FIBs). Last 16 bits of each 256-bit
block are checked: this is a CRC (Cyclic Redundancy Check) code, added to block
of first 240 bits in the encoder. The added 16-bit code represents remainder of two
polynomial division: the first represented by the codded 240 bits, and the second
equals to g(x) = x16 + x12 + x5 +1. When we will calculate in the receiver the CRC
code for the first 240 bits of each 256-bit block and when we will obtain the last 16
bits of the block, it means that there is no error. In such case, we can process the
240 bits further, otherwise we skip them. In the DAB standard, diagram presented
in Fig. 23.14 is recommended for the CRC algorithm implementation. One example
of CRC coding and decoding is presented in the end of this chapter.

FIG Decoding Bits obtained this way are divided into blocks called Fast Informa-
tion Group (FIG), with variable length. First 3 bits define block type (from 0 to 7),
next 5 bits block length in bytes, then the main data are placed. For FIG type “0”
(see Fig. 23.15) we have in a data field: 1 bit C/N (Current/Next configuration 0/1),
1 bit OE (this/Other Ensemble 0/1), and 1 bit P/D (Programme/Data service 0/1).
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Fig. 23.15: Description of FIG type number 0 from the standard [2]

For P flag, the radio programme identifier is written on 16 bits, then 5 bits define
data type (Extension, from 0 to 31), and finally the regular data are put. In particular,
for Extension=1, there are 24-bit or 32-bit long bit packets in the data field:

• 6 bits with a number identifying a service (SubChId),
• 10 bits with starting address of the service in MSC (SubChStartAddr, binary

number without sign in the range 0–863, pointing to the first 64-bit block CU
(Capacity Unit) with audio bits),

• 1 bit specifying remaining number of bits (Short/Long 0/1, i.e. 7/15 bits),
• if 7 bits follows, the DAB service is sent and MP2 audio coding is used:

– 1 bit for switching tables in the standard (0/1 =table 6/reserved),
– 6 bits denote selected option in the table (from 0 to 63: SubChSize in CU,

Protection Level, Audio Bit-rate),

• if 15 bits follows, the DAB+ service is sent and AAC audio coding is applied:

– 3 bits for choosing the Option of audio coding,
– 2 bits specifying the error Protection Level,
– 10 bits defining SubChSize (see tables 7 or 8 in the standard).

In similar way other information is decoded. All details are given in the ETSI EN
300 401 standard. We are especially interested in values of parameters which are
necessary for decoding concrete audio broadcasting, transmitted in system DAB+:
SubChID, SubChStartAddr, SubChSize, and Protection. Parameter values are sent
in the FIC block while audio samples in the MSC block, transmitted just after the
FIC (see Fig. 23.3).
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Listing 23.8: FIC decoding
�

1 % lab23_ex_DAB_fic.m - continuation
2

3 % Constants for FIC
4 NSampAfterTimeDepunct = 3096; NSampAfterVit = NSampAfterTimeDepunct/4-6; % 768;
5

6 % Put bits of FIBs corresponding to one CIF in separate row -------------------
7 NficbitsPer1CIF = NSymbPerFIC*NCarrPerSymb*2/NCIFsPerFrame; % 2304/2304/3072/2304
8 FIC = zeros(NCIFsPerFrame, NficbitsPer1CIF);
9 for r = 0:NCIFsPerFrame-1

10 FIC(r+1,:) = DataFIC( r*NficbitsPer1CIF+1 : (r+1)*NficbitsPer1CIF );
11 end
12

13 % De-puncturing using special function-------------------------------------
14 DataDep = [ depuncturing( FIC(:,1:2016),16 ) depuncturing( FIC(:,2017:2292),15 ) ...
15 depuncturing( FIC(:,2293:2304),8 )];
16

17 % Viterbi decoder using Matlab function vitdec() ------------------
18 DataVit = zeros(NCIFsPerFrame,NFIBsPerCIF*256+6); % Bitvector + Tail
19 for f=1:NCIFsPerFrame % Matlab. +/-real or {-1,+1}
20 DataVit(f,:) = vitdec( DataDep(f,:), VitTrellis, 1, ’trunc’, ’unquant’);
21 end
22 DataVit = DataVit(:,1:end-6); % Tail removing
23

24 % Energy dispersal using special functionEnergyDispGen()------------
25 DataEnerg = zeros(size(DataVit));
26 for m=1:NCIFsPerFrame
27 DataEnerg(m,:) = xor( DataVit(m,:), EnergyDispGen( NFIBsPerCIF*256 ) );
28 end
29

30 % FIBs building-----------------------------------------------------------
31 FIB = reshape( DataEnerg’, 256,NFIBsPerFrame )’;
32

33 % CRC checking of FIBS----------------------------------------------------
34 DABFrameNr = 1; % only one frame is analyzed
35 FIBCRCCheck = zeros(1,NFIBsPerFrame);
36 for k = 1 : NFIBsPerFrame
37 FIBCRCCheck(k) = CRC16( FIB(k,:) ); % specialfunction CRC16()
38 end
39 if sum(FIBCRCCheck) == NFIBsPerFrame % 12?
40 disp(’CRC OK’); % FIGs building from FIBS
41 for FIBNr = 1 : NFIBsPerFrame % to 12
42 pos = 1;
43 while pos < 241
44 if FIB(FIBNr,pos:pos+7) == [1 1 1 1 1 1 1 1], break, end
45 % FIG type and length finding
46 Type = BinToDec( FIB(FIBNr,pos:pos+2), 3 );
47 FIGDataLength = BinToDec( FIB(FIBNr,pos+3:pos+7), 5 ); % in bytes
48 % FIG building (reconstruction) using specialfunctionFIGType()
49 FIGType( DABFrameNr, FIBNr, Type, FIGDataLength, ...
50 FIB(FIBNr, pos+8:pos+8+8*FIGDataLength-1) )
51 pos = pos + (1+FIGDataLength)*8;
52 end
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53 end
54 disp(’##################################Ready !’);
55 % disp(’PRESS ANY KEY !’); % pause
56 else
57 disp([’CRC Fail! Frame: ’,num2str( DABFrameNr )]);
58 end

��

23.9 MSC Decoding

Program of MSC Decoder Decoding the audio broadcast, i.e. the MSC informa-
tion of the DAB and DAB+ frame, is very similar to the FIC decoding. The only
big difference relies on application of time-interleaving, which is not used for FIC,
aiming at strong protection against impulsive disturbances. For this reason a Mat-
lab program of the MSC decoder is not presented here, inside the book, however,
it is given in the book repository. First, DAB and DAB+ decoding, up to time de-
interleaving operation, are performed together. After that, based on UEP flag value,
DAB and DAB+ are processed in similar way but with different parameter values
(for de-puncturing and Viterbi decoder). In DAB decoder, after energy de-dispersal,
samples of MP2 are obtained and stored, while in DAB+ the resultant bit-stream
should be further processed as a so-called Super Frame.

Exercise 23.11 (Main Service Channel Decoding). In our DAB+
decoder, the function decodeMSC(), called from the program
lab23_ex_dab_fic_msc.m and given explicit in the program
lab23_ex_dab_all.m, is responsible for Main Service Channel han-
dling. A Reader should continue reading this section, looking for the
corresponding Matlab code and analyzing it: (see Figs 23.16 and 23.17)

Time De-interleaving After reading from FIC the information about radio pro-
grams available in DAB+ signal, we are choosing one service and start reading their
bits from the Main Service Channel (MSC) block, built from 4 Common Interleaved
Frames (CIFs). The bits are located exactly in the same position in each block, start-
ing from SubChStartAddr address and having SubChSize size, expressed in Capac-
ity Units (CUs), having 64 bits. First, we are removing time-interleaving of these
bits, which was done in the transmitter in order to defend the data against impulsive
disturbances. In DAB 19 last CIFs from 5 last 5 DAB frames (lasting 100 μs each)
are interleaved, giving a delay of about 0.5 s.

De-puncturing After that, similarly like in the FIC block, data puncturing per-
formed in the transmitter is removed. The convolution encoder used in TX for chan-
nel coding is the same: it increases the data size 4 times. But the data puncturing
method is different than in FIC, additionally different for DAB standard (Unequal
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Error Protection UEP with step changes, tables 30 and 31) and DAB+ standard
(Equal Error Protection EEP with exactly linear changes, tables 33–36). Zero val-
ues are inserted into positions of the punctured data removed in the TX.

Viterbi Decoding Next soft Viterbi decoder is used for optimal recovery of sent
bits, separately for data obtained from 4 CIF blocks. Size of the input data is dif-
ferent. It depends on compression level of audio signal and level of applied error
protection.

De-scrambling Finally, similarly as for FIC, resultant bits are logically XOR-ed
with bits of the PRBS sequence: this way bits energy dispersal, done in TX, is re-
moved, i.e. long sequences of the same bit are restored. In case of DAB radio, this
is the last processing step: the bit sequence is sent now to the MP2 audio decom-
pression algorithm. However, for DAB+ standard, bits do not represent a pure audio
track and have to be decomposed further. For DAB+, our onion has more layers.
The most upper one is called a Super Frame.

23.10 DAB+ Super Frame Decoding

Super Frame Structure As mentioned above, for the DAB+ standard the bit pro-
cessing continues. Bits read from 5 consecutive CIF blocks give a Super Frame (SF),
created in the transmitter (see Fig. 23.16). In receiver we have to find the super frame
beginning. Super Frame has a header consisting of:

• 16 bits of the Fire code, calculated in the TX using the polynomial (x11 +
1)(x5 + x3 + x2 + x+1) and protecting 9 bytes lying after it,

• 8 bits specifying AAC coding parameters, among others sampling ratio, spectral
replication, parametric stereo, surround mode configuration,

• num_aus equal to 2, 3, 4, or 6, specifying number of 12-bit blocks, defining
starting addresses au_start[n] of blocks with audio samples (their number
results from AAC settings),

• eventual 4 padding zeros; their presence can be predicted from preceding val-
ues.

After the header, AAC bit packets are located, starting from addresses au_start[n].
Each of them has 16-bit CRC code, computed with the use of the same polynomial
as in FIC: x16 + x12 + x5 +1. CRC code of the first AAC bit packet can be used for
finding Super Frame beginning, i.e. the first of its CIFs.

Exercise 23.12 (Super Frame Decoding). In our DAB+ decoder, the function
decodeSuperFrame() is responsible for Super Frame synchronization, its
error correction, re-packing AAC bit-stream into ADTS container, and storing
decoded radio program into a file. A Reader should continue reading the below
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Fig. 23.16: Structure of the DAB+ Super Frame with AAC audio collected from
five CIF blocks. Denotations: FireC—Fire Code, AU—Audio Unit, CRC—Cyclic
Redundancy Check

Fig. 23.17: Graphical explanation of Reed–Solomon error protection coding in
DAB+ digital radio: (1) data bytes are put column-wise into a matrix having 110
elements in each row, (2) then RS algorithms encode individually each row and
adds 10 protecting bytes to it

part of this section, looking for the corresponding code in the function and
analyzing it (see Figs. 23.16 and 23.17).

Super Frame Synchronization Super Frame synchronization is described in [3].
It can be realized also in the following way [5]. We are assuming that a chosen CIF
is the first one in a Super Frame. We correct its beginning using the Fire code. Then,
we decode values of au_start[n]. If they do not increase linearly, we jump to
the next CIF. Otherwise, we take the first audio block and check it CRC. If it is
correct, we have just found the first CIF of the Super Frame. Otherwise, we go to
the next CIF.

Reed–Solomon Decoder At the Super Frame end, there are some bits added in the
transmitter for the overall SF error protection. The Red-Solomon (RS) (120,110,t =
5) encoder is used for this purpose: each sent 110 bytes of the super frame are
protected by 10 bytes (110+10=120). Generator used in the encoder is equal to:

G(x) =
9

∏
i=0

(
x+α i) . (23.20)
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Galois field GF(28) is exploited with α1 = 2 and polynomial P(x) = x8 + x4 + x3 +
x2 +1. This is the most difficult part of the book: number-theoretic math known as
number group theory. I am sorry. Not this time. And not me.
If we want to make use of protecting bits in the receiver, we should write consecu-
tively all SF bytes into a matrix having 120 elements (bytes) in each row, but putting
them up-down into the consecutive matrix columns. Then the Reed–Solomon de-
coder program must be called for each matrix row. Each input row should be ex-
changed with the RS output. Next, the repaired Super Frame is get by scanning
the resultant matrix again by columns. Only first 110 columns should be taken,
redundant part is removed. As RS decoders we can use programs for very popu-
lar RS(255,245,t = 10) option, e.g. used in satellite transmission. In such case, we
should add 135 zero bytes in the beginning of each matrix row (135+120=255), then
call the decoder program and take 110 last elements from each row of the resultant
matrix. In Matlab there is a special RS encoding and decoding function. In the end
of this chapter, in special subsection, its usage in DAB+ receiver is presented.

Packing Audio Bits to a Chosen Container, e.g. ADTS At this stage, we know
starting addresses au_start[n] of corrected, AAC compressed, audio blocks
and have to re-pack them into any popular AAC transport stream, the so-called
container, supported by used multimedia decompressing library. We have chosen
ADTS standard. Re-packing is done in block-to-block mode. We are checking CRC,
last 16 bits, of each block. AAC is packed into the ADTS transport stream which is
played by different media players.

Playing Audio VideoLAN program can be used, for example, for listening to re-
covered AAC bit-streams.

A function decodeSuperFrame(), given in the book repository, is responsi-
ble for DAB+ super frame processing (synchronization and error checking), ACC
audio samples extraction, re-packing them into ADTS container and storing to disc.
A Reader is encouraged to analyze its code personally.

23.11 Final DAB Block Diagrams

In this chapter we have started from the bottom, we have been carefully collecting
together many details and just now ... we have reached a top. It is time to see the
final panorama of DAB+ digital radio and to make general conclusions.

In Figs. 23.18 and 23.19 creation of DAB multiplex signal is summarized. In-
dividual audio services: data, DAB MP2, and DAB+ AAC, are processed sepa-
rately and combined together into the Main Service Channel (MSC) which is time-
interleaved and accessed with delay of about 0.5 s. In parallel information about
digital content is collected in Fast Information Channel, not time-interleaved and
faster accessed, protected always by strong forward error protection (FEC 1/3) and
CRC16 (FIBs). Then IQ carrier states of MSC and FIC are joint with Phase Ref-
erence IQs and multiplexed. Finally, the following operations take place: frequency
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Fig. 23.18: DAB+ encoder: FIC (service information), and MSC (service content)
creation

Fig. 23.19: DAB+ encoder: IQ signal generation of DAB+ multiplex—combining
carrier states of Phase Reference (synchronization pattern), FIC (service informa-
tion) and MSC (service content)

interleaving, series of many FFTs, DAB frame formatting, NULL symbol insertion
and signal transmission.

Algorithm of DAB/DAB+ decoder is summarized in Fig. 23.19. It starts with
NULL symbol detection, ADC sampling rate estimation and correction, carrier
frequency offset estimation, and time synchronization using the Phase Reference
symbol, FFT calculation, frequency de-interleaving and soft DQPSK carrier states
demodulation. Then FIC (service information) and MSC (digital content) are pro-
cessed separately. In case of FIC, data are de-punctured, processed by Viterbi de-
coder, energy dispersal is removed, FIB blocks—protected by CRC—are un-packed
and FIGs are decoded. In case of MSC, first time-interleaving is undone, then data
are: de-punctured, Viterbi decoded, and de-dispersed. At this moment the DAB



Fig. 23.20: Block diagram of DAB+ decoding algorithm
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algorithm stops: the MP2 stream is ready to play. However the DAB+ algorithm
continues further. The Super Frame, composed of 5 CIFs, is synchronized, corrected
by Fire code and Reed–Solomon decoder, CRC of audio units are checked and AAC
audio data are re-packed from DAB+ container into any other format if necessary,
for example, to ADTS. It is important to note that, despite the same processing path,
de-puncturing and Viterbi decoder have different parameters for DAB and DAB+
(see Fig. 23.20).

The last but not least is Table 23.1 presenting DAB/DAB+ main parameters val-
ues and offering the last encyclopedia view of this chapter.

Table 23.1: DAB+ Specification from [6]

Parameter Value Time duration

DAB frame 196608 samples 96 ms
NULL symbol 2656 samples 1297 μs
OFDM symbol w/o CP 2048 samples 1000 μs
FFT 2048 –
Sub-carrier used 1536 –
Sub-carrier spacing 1 kHz –
Cyclic prefix (CP) 504 samples 246 μs
OFDM symbol w/ CP 2552 samples 1246 μs
OFDM symbols: 76 –
– Phase Reference 1 –
– with FIC (info) 3 –
– with MSC (media) 72 –
FIC (Fast Info Chan):
– FIBs in DAB frame 12 –
– FIBs for 24 ms 3 –
MSC (Main Serv Chan):
– CIFs in DAB frame 4 –
– CIFs for 24 ms 1 –
Bits per:
– OFDM symbol 3.072 kbit –
– DAB frame 230.4 kbit –
Bit-rate (w/o PR):
– FIC (FEC 1/3) 96 kbit/s –
– MSC (overall) 2.304 Mbit/s –
– MSC (max per serv) 1.824 Mbit/s –
Max echo delay – 300 μs
Max propag. path diff. 90 km (1.2 CP)
Max RX velocity:
– urban 260 km/h –
– countryside 390 km/h –
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23.12 Error Correction in DAB

As we see, error detection and correction methods represent a very important part
of the DAB standard. Let us recapitulate:

• convolutional error protection and correction of FIC and MSC bit-streams,
• CRC error detection of FIBs in FIC,
• CRC error detection of Audio Units in DAB+/AAC Super Frame,
• Fire code protection of first 88 bits of DAB+/AAC Super Frame allowing error

detection and correction of the Super Frame beginning (capable of detecting
and correcting most single error burst of up to 6 bits),

• Reed–Solomon error detection and correction of the whole Super Frame.

Error correction coding is not a topic of this book. We are interested in funda-
mental digital signal processing methods applied in modern digital telecommunica-
tion systems, mainly in source coding, digital modulation, channel estimation and
correction as well as synchronization techniques. Error protection and data encryp-
tion/security lie outside our interests and scope of the book.

However, when error coding methods are so important and widely used, we
should understand their merits. A goal of this short section is to introduce error
protection fundamentals and practical application from a user point of view. For
further reading the book [9] is recommended as a very valuable source of practical
information.

23.12.1 Cyclic Redundancy Check Encoder and Decoder

Addition of a parity bit, causing that the overall number of 1s in our message is
even, is the simplest method of error detection. For example, 0 should be appended
to the end of a message 01010101 (four 1s) and 1 to a message 01010111 (five
1s). When in the received message the number of bits is odd, it means that error
occurred and information should be re-transmitted.

Cyclic redundancy check is not so simple as parity error addition, nevertheless
it is one of the simplest and practically efficient in realization method. The idea is
not very difficult also. A transmitted sequence of bits (a binary number) has to be
divided in the transmitter by a properly selected binary divisor and a binary division
reminder is appended to the transmitted bits. In the receiver, obtained bits are di-
vided by the same divisor, know to the transmitter. If the division result is the same
as bits appended to the message, sent and obtained in the RX, it is assumed that
obtained data are error-free. Binary numbers (objects) and their division (operation
upon them) can be described by mathematical theory of groups/fields of polyno-
mials which helps to find good divisors. For example, the following divisors and
polynomials represent CRC pairs:
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1 0 0 0 0 0 1 0 1 x8 + x2 +1

1 0 0 0 1 1 1 0 1 x8 + x4 + x3 + x2 +1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 x16 + x15 + x2 +1

1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 x16 + x12 + x5 +1

and the last one is used in DAB for FIC, MSC, and AU in Super Frame protection.
From the point of view of a user (as we in DAB standard at present), when the
divisor is already chosen, application of the CRC technology is not difficult.

Exercise 23.13 (CRC by hand). Let us look at Fig. 23.21. In general, the CRC
encoder and decoder have a form presented in Fig. 23.14 but for polynomial
x3 + x2 + 1 (divisor 1101) it simplifies to the diagram shown in Fig. 23.21.
The binary adder

⊕
is modulo 2 and implemented as xor() function. Let us

assume that we code the data input equal to 1111. Initially bits b0b1b2, stored
in a shift register, are set to zero. In the first table presented on the right side,
the coding operation is tracked: we see consecutive shift register contents. After
the last input bit coming in, the shift register is filled with three 1s: it is the divi-
sion reminder. These bits are appended to the end of the input message: 1111
111 and transmitted. In the receiver the same algorithm is used for CRC de-
coding, only input is different, at present three bit longer. In the second table
presented on the right side, consecutive contents of the shift register are shown.
After four clock cycles, content of the shift buffer is exactly the same as during
coding (what is marked with a dashed line rectangle): the divisor is the same,
there is no transmission error. After processing the last, the seventh input bit,
the shift buffer (b0b1b2) is filled with zeros, indicating the lack of errors. In
Fig. 23.21 bottom, two manual binary number divisions are performed, both in
CRC coder and decoder. They confirm correctness of CRC=111 and the overall
CRC methodology. First, in encoder, the divided sequence 1111 is appended
with P− 1 zeros (number of polynomial taps minus one) and a series of di-
visions takes place. Then, in decoder, the calculated CRC is appended to the
error-protected bit sequence and, again, a series of divisions is performed.

As an exercise, please, verify correctness of all calculations performed in
Fig. 23.21.

Exercise 23.14 (CRC by computer). In Listing 23.9 two implementations of
CRC encoder and decoder are presented. The first one, CRCeasy(), attempts
to realize manual binary polynomial division, as in calculations presented in
bottom part of Fig. 23.21. The second implementation, CRCuniversal(),
programs diagrams from Figs. 23.14 and 23.21. It is possible in it to comple-
ment last P−1 input bits, as it is done in DAB radio, as well as set initial values
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Fig. 23.21: Graphical illustration of CRC encoding and decoding

of the shift buffer—in DAB with 1s. Analyze the code. Run the program. No-
tice final 0s in CRC variable informing us about error absence. Introduce 1 or
2 errors in error protected bit-streams. Check whether they are detected by the
CRC decoder. Change coded bits and the polynomial to ones used in Fig. 23.21.
Using the program check whether data presented in figure tables are correct.

Listing 23.9: Matlab program for testing CRC coding and decoding
�

1 % lab23_ex_crc
2 % Testing CRC error protection
3

4 % Bit sequence to be coded
5 N = 32; Bits = round( rand(1,N) ); % e.g. [ 1 1 0... 1 1 0 1];
6 Bits = [ 1 1 1 1 ]; N = length( Bits ); % in our example
7

8 % Generatingpolynomials
9 % x̂ 16 + x̂ 12 + x̂ 5 + 1 % CRC-16

10 % Polynomial = [ 1 1 0 1 ]; % Test - our example
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11 Polynomial = [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1]; %
12 P = length( Polynomial );
13

14 % Encoder and decoder demo with binary number division
15 disp(’Easy’);
16 CRC = CRCeasy( [ Bits zeros(1,P-1)], Polynomial),
17 CRC = CRCeasy( [ Bits CRC ], Polynomial ), pause % should be [ 0 0 ... 0]
18

19 % Encoder and decoder with shift buffer
20 disp(’Universal encoder’);
21 CRC = CRCuniversal( [ Bits ], Polynomial, zeros(1,P-1), 0 ),
22 disp(’Universal decoder’);
23 CRC = CRCuniversal( [ Bits CRC ], Polynomial, zeros(1,P-1), 0 ), pause
24

25 %#########################################
26 function CRC = CRCeasy( Data, Polynomial )
27 D = length( Data );
28 P = length( Polynomial );
29 N = D-(P-1);
30

31 n1st = 1;
32 while( Data(n1st) == 0 ) n1st = n1st+1; end
33 CRC = Data( n1st : n1st+P-1);
34 for n = n1st : N
35 % n
36 if( CRC(1)==1 ) CRC = xor( CRC, Polynomial ), % xor-ing
37 else CRC = xor( CRC, zeros(1,P) );
38 end, % pause
39 if(n < N) CRC = [ CRC(2:P) Data(n+P) ], % shifting
40 else CRC = CRC(2:P);
41 end, % pause
42 end
43

44 %##############################################################
45 function [ CRC ] = CRCuniversal( Data, Polynomial, CRC, cFlag )
46 % Data - input bit message
47 % Polynomial - used, with 1s on the most/least significant bits
48 % CRC - initial CRC values in the shift buffer, all 1s or all 0s
49 % cFlag - 0/1 complement flag: optionalcomplement of last (P-1) input bits
50

51 P = length( Polynomial ); % polynomiallength
52 Polynomial = Polynomial( 2 : P-1 ); % remove MSB and LSB 1s
53

54 % Optionalcomplement of (P-1) last input bits
55 if( cFlag == 1 )
56 Data(end-(P-2):end) = xor( Data(end-(P-2):end), ones(1,P-1) );
57 end
58

59 % CRC calculation - buffer shifting and data xor-ing
60 % CRC, % initial value
61 for i = 1 : length(Data)
62 if( xor( CRC(1), Data(i) ) == 1)
63 CRC = [ xor( Polynomial, CRC(2:end) ) 1 ];
64 else
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65 CRC = [ CRC(2:end) 0 ];
66 end
67 % CRC, pause % in fig.23.21 order of bits is reversed
68 end

��

23.12.2 Application of Reed–Solomon Coding

Reed–Solomon coding concept is similar to CRC: input data are divided by a poly-
nomial and a division remainder is appended to the original data. However, byte-
based, 8-bit Galois field theory and arithmetic is exploited, not a bit-based one. The
method allows not only the error detection, but also their correction, up to some
error level. Mathematical derivation of RS encoder and decoder principles and al-
gorithms are as climbing the Mount Everest for city dwellers. I have done it with
students once or two times. But each effort, after doing something else, is a starting
from the beginning, like from the sea level. Therefore, here we will concentrate only
on RS decoder application in DAB radio, as an example of practical RS coding us-
age and demonstration of its very big efficiency. Our intention is to interest a Reader
in answering the question: how on Earth is it done?.

In program in Listing 23.10 one Super Frame, extracted from the TX IQ DAB
file, is decoded by the RS encoder (see Fig. 23.17). The data are error-free but we are
artificially adding some number of errors (ErrPerRS) to each RS-coded 120 bytes.
And then checking whether the injected error were detected and corrected. Input
bits of a Super Frame are re-packed into bytes. Then, the number of obtained bytes
(Nlen) is divided by 120 and number of rows (Nrows) of the matrix, presented
in Fig. 23.17, is computed. Then each Nrows-th element of the byte-stream is
taken (i.e. each matrix row) and decoded. Bytes returned by the RS decoder replace
corresponding bytes in the input bytes-stream. Finally, output bit-stream is formed.

Listing 23.10: Matlab program for testing Reed–Solomon decoder in DAB+ appli-
cation scenario

�

1 % lab23_ex_rs.m
2 % Reed-Solomon in DAB
3 clear all; close all;
4

5 ErrPerRS = 5; % injected errors per 120 bytes, per one RS
6

7 load SuperFrameIN.dat; % data coming from the functiondecodeMSC()
8 BITS = SuperFrameIN; % new, shorter name
9 NBitsPerCIF = 2688; % number of bits per one CIF

10 RSpoly = rsgenpoly(255,245,285,0); % 285 = 100011101 = x̂ 8+x̂ 4+x̂ 3+x̂ 2+1
11

12 % Reformating bit-stream to byte-stream
13 BYTES = ( reshape(BITS(1:5*NBitsPerCIF)’,8,[])’ * [128 64 32 16 8 4 2 1]’ )’;
14

15 % Main Reed-Solomon loop - processing Nrows-th polyphase sequences, i.e. matrix rows
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16 Nlen = length(BYTES); Ncols=120; Nrows=Nlen/Ncols;
17 for k = 1 : Nrows % for each polyphasesequencehaving 120 bytes each
18 % Take data
19 DataIN = BYTES(k:Nrows:end); % take 120 bytes, k-th polyphasesequence
20 % Add errors
21 DataINCopy = DataIN;
22 for m = 1 : ErrPerRS % consecutiveerrors
23 pos = round( rand(1,1)*119 )+1; % random error position
24 val = gf( round(rand(1,1)*255), 8 ); % Galois field error
25 oldval = gf( DataIN(pos),8 ); % Galois field old value
26 newval = oldval + val; % Galois field new value
27 DataIN(pos) = double( newval.x ); % modification of the input
28 end
29 % RS decoder
30 if(0) % RS: Original code, Matlab only
31 [DataOUT, num_errs] = rsdec( gf( DataIN, 8), 120, 110, RSpoly);
32 else % RS: Longer code that is shortened, Matlab and Octave
33 [DataOUT, num_errs] = rsdec( gf([ zeros(1,135) DataIN], 8), 255, 245, RSpoly);
34 DataOUT = DataOUT(136:245);
35 end
36 DataOUT = double( DataOUT.x );
37 % Checkingcorrectionresults
38 RS_ERRORS_BEFORE = num_errs, % in bytes
39 ERRORS_AFTER_RS = sum( sum( abs( DataINCopy(1:110) - DataOUT ) ) ),
40 % Put corrected bits back into the bit-stream
41 start = 1+(k-1)*8;
42 step = Nrows*8;
43 for m = 1:length(DataOUT)
44 BITS(start+(m-1)*step + 0 : 1 : start+(m-1)*step + 7) = DecToBin( DataOUT(m), 8

);
45 end
46 end % of Main RS loop

��

Exercise 23.15 (Testing Reed–Solomon Decoder in DAB Scenario). Analyze
Matlab code presented in the Listing 23.10. Run the program. Step-by-step in-
crease number of errors: find the moment when errors are not corrected. Use
long and shortened version of the RS decoder. Then add displaying some ex-
tra information to the function decodeSuperFrame(), i.e. the number of
RS-found errors (num_errs) and the number of RS-changed bytes (sum(
abs( DatIN(1:110) - DatOUT) )). Choose TX IQ DAB input in the
program lab23_ex_dab_all.m. Disturb the IQ data using the function
disturbDAB(). Run the program and observe number of errors found by
the RS decoder. Finally, switch to the RX IQ DAB input file. Do not disturb the
data. Again, observe the number of reported errors.
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Fig. 23.22: Analyzed examples of convolutional coder

23.12.3 Convolutional Coding and Viterbi Decoder

In this subsection we briefly present a concept of convolutional error protection
coder and Viterbi decoder using a simple example. Our coder of interest is presented
in Fig. 23.22. Answer of the coder to the input sequence of bits 0 1 1 1 is equal to
00 11 00 01. Let us assume that in a receiver error occurred on the first position:
10 11 00 01.

In the beginning we should build a transition diagram between our coder states
which is presented in Fig. 23.23. We are assuming that in the previous coder state
bits x0x−1x−2 of the shift register are equal to [0 0 0], [0 0 1], ..., [1 1 1],
i.e. to the values specified on the left side. Bit x1, coming in, can have a value 0 or
1, and bits x0x−1x−2 are changing their values to new ones shown on the diagram
right side. When x1 = 0, a solid line to a new state goes up, for x1 = 1—a dashed
line goes down. In square boxes connected with lines are given values of bits y1y2

being a coder output for all possible transitions.
At present we analyze step-by-step the Viterbi decoder work for the discussed

example. Let us start from Fig. 23.24. In its upper part, received pairs of bits are
shown in square boxes with gray background. Because shift buffer in the trans-
mitter was filled initially with zeros, in the receiver decoder we are starting from
the state 000 and goes up (solid line) and down (dashed line) to the next allowed
state. In square boxes, connected with lines, we have expected values of bits y1y2,
at present 00 and 11. We compare them with obtained bits y1y2 (bold numbers
upon gray background, at present 10) and calculate accumulated metrics of bit pat-
terns similarity (1=the same, 0=different) for each available path. We write result
on the right side of the plot, individually for each path. At present we have values
(1) and (1).

Now we switch to Fig. 23.25. New pair of bits y1y2 is equal to 11. Four possible
transitions are possible, marked with lines, expecting input pairs of bits: 00, 11, 11,
00 (up-down). We again calculate similarity measures and accumulate metrics for
all possible coder states paths, obtaining (1)(3)(3) and (1) (please, calculate them on
hand).
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Fig. 23.23: Transition state diagram of the Viterbi decoder for the discussed example

Fig. 23.24: Step #1 of the Viterbi decoder in our example
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Fig. 23.25: Step #2 of the Viterbi decoder in our example

We continue the same operations in Figs. 23.26 and 23.27, for new bit pairs 00
and 01, respectively. We plot available state connections and accumulate metrics
of all paths. In Fig. 23.26 we have 8 different paths ending in 8 different coder
states having the following metrics (up-down): (3)(4)(3)(2)(1)(4)(5)(2). In turn, in
Fig. 23.27 we have 16 possible paths, two to each state (with some regular up-
down pattern)—the best one is marked with yellow/gray background. When we
use this path, go back and associate bit 1 with each state higher then 011 and bit
0—otherwise, we obtain the following sequence of decoded bits: 0111, which is
correct.

When we continue decoding, the last transition lattice will be repeating. There-
fore, in some algorithms, the exact starting in neglected: we directly start from the
last lattice diagram, being in fact the diagram presented in Fig. 23.23, perform more
steps than required (about 5 · (Nbu f f er −1), and use the best path to go back to one
bit of interest and to decide about its values.

When bits are on input, the so-called hard decoding takes place. When real values
are on input (bits probable values), the soft decoding is used.

In Listing 23.11 the presented convolutional coding example and the hard Viterbi
decoder are implemented.
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Fig. 23.26: Step #3 of the Viterbi decoder in our example

Fig. 23.27: Step #4 of the Viterbi decoder in our example
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Listing 23.11: Matlab program for testing convolutional coding and Viterbi decod-
ing

�

1 %lab23_ex_viterbi.m;
2 clear all; close all;
3

4 x = [ 0 1 1 1 ]; % input
5 g = [ 1 1 0 1; % filter #1
6 1 1 1 1 ]; % filter #2
7

8 Mtaps = length(g(1,:)); % number of coefficients/delays
9 Kfilt = length(g(:,1)); % number of filters

10 MaxIndx = 2̂ (Mtaps-1)-1; %
11 mult = 2.̂ [(Mtaps-2):-1:0]; % used for binary to decimalconversion
12

13 % Lattice diagram of analyzedconvolutionalencoder
14 y0ref = zeros(2̂ (Mtaps-1),Kfilt); y1ref = y0ref; % reference states
15 transit = zeros(2̂ (Mtaps-1),3); % transition table
16 for indx = 0: MaxIndx
17 xbuf = str2num( reshape(dec2bin(indx,Mtaps-1), Mtaps-1, 1 )); xbuf=xbuf’; % pause
18 for k = 1 : Kfilt
19 y0ref(indx+1,k) = mod( [ 0 xbuf ] * g(k,:)’, 2); % up
20 y1ref(indx+1,k) = mod( [ 1 xbuf ] * g(k,:)’, 2); % down
21 end
22 transit(indx+1,1:3) = [ indx, [0 xbuf(1:Mtaps-2)]*mult’, [1 xbuf(1:Mtaps-2)]*mult

’];
23 end
24 y0ref, y1ref, transit, pause
25

26 % Encoder
27 % x(n) --> y12(n)
28 xbuf = zeros(1,Mtaps);
29 yout = [];
30 for n = 1 : length(x)
31 xbuf = [ x(n) xbuf(1:Mtaps-1) ];
32 for k = 1 : Kfilt
33 y(1,k) = mod( xbuf * g(k,:)’, 2); % convolutionmodulo 2
34 end
35 yout = [ yout; y(1,1:Kfilt) ];
36 end
37 yout
38

39 % Optionaladdition of errors
40 yin = yout;
41 if( yin(1)==0 ) yin(1)=1; else yin(1)=0; end % errors
42 %if( yin(end)==0 ) yin(end)=1; else yin(end)=0; end % errors
43 yin, pause
44

45 % Decoder
46 npoints = 1; step = 2̂ (Mtaps-1);
47 metric = zeros(2̂ (Mtaps-1),2); % accumulatedmetrics
48 path = zeros(2̂ (Mtaps-1),length(x)+1); % path history, initialized
49 path(1,1) = 1; % starting point
50 for ndata = 1 : Mtaps-1 % first steps, incomplete tree
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51 for indx = 1 : 2̂ (Mtaps-1)
52 if( path(indx,ndata) ~= 0 )
53 path( transit(indx,2)+1, ndata+1 ) = indx;
54 path( transit(indx,3)+1, ndata+1 ) = indx;
55 val0 = sum( y0ref(indx,:)==yin(ndata,:) );
56 val1 = sum( y1ref(indx,:)==yin(ndata,:) );
57 metric( transit(indx,2)+1,2 ) = val0 + metric( indx,1 );
58 metric( transit(indx,3)+1,2 ) = val1 + metric( indx,1 );
59 end
60 end
61 [metric(:,2), path],pause
62 metric(:,1) = metric(:,2);
63 end
64 for ndata = Mtaps : length(x) % next steps, regular tree
65 for indx = 1 : 2 : 2̂ (Mtaps-1) % two branches DOWN and UP
66 val0A = sum( y0ref(indx,:) ==yin(ndata,:) ) + metric( indx,1 );
67 val0B = sum( y0ref(indx+1,:)==yin(ndata,:) ) + metric( indx+1,1 );
68 val1A = sum( y1ref(indx,:) ==yin(ndata,:) ) + metric( indx,1 );
69 val1B = sum( y1ref(indx+1,:)==yin(ndata,:) ) + metric( indx+1,1 );
70 % [ val0A, val0B], [ val1A, val1B ], pause
71 idown = (indx+1)/2; iup = idown + 2̂ (Mtaps-1)/2;
72 if( val0A > val0B ) % down
73 metric( idown, 2 ) = val0A;
74 path( idown, ndata+1 ) = indx;
75 else
76 metric( idown, 2 ) = val0B;
77 path( idown, ndata+1 ) = indx+1;
78 end
79 if( val1A > val1B ) % up
80 metric( iup, 2 ) = val1A;
81 path( iup, ndata+1) = indx;
82 else
83 metric( iup, 2 ) = val1B;
84 path( iup, ndata+1) = indx+1;
85 end
86 end
87 [metric(:,2), path], pause
88 metric(:,1) = metric(:,2);
89 end
90

91 % Decision taking
92 [dummy,pos] = max(metric(:,1));
93 for p = 0:ndata-1
94 if( pos >= 2̂ (Mtaps-2) ) bits(p+1) = 1; else bits(p+1)=0; end
95 pos = path(pos,end-p),
96 end
97 bits = bits(end:-1:1), pause

��
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Exercise 23.16 (Convolutional Coding and Viterbi Decoder). In List-
ing 23.11 Matlab program for convolutional coding and hard Viterbi decoder
are implemented. Analyze the code. Run the program. Change input bits and
filter coefficients. Modify the program and implement soft Viterbi decoding.

23.13 Summary

In this chapter we explore details of DAB+ digital radio standard. DAB
signal is easily accessible in many countries and therefore it was used in our
course for further mastering and testing our DSP telecommunication skills.
What should be remembered?

1. Telecommunication standardization documents, including DAB norm and
many others, are as thick cookery books. They are very condensed and
difficult to read. It is interesting to notice that on hundreds of pages, filed
with closely related equations, diagrams and tables, only one recipe of only
one technical meal is presented. In this chapter we become familiar with
one telecommunication standard from the beginning to the end.

2. DAB radio makes use of OFDM technology. It exploits 1536 carriers
with 1 kHz spacing (1.536 MHz bandwidth) in Band III (174–240 MHz).
2.048 MHz sampling frequency and 2048-point (I)FFT are used. The DAB
symbol has 2048+504=2552 samples, including the cyclic prefix. Since
differential modulation is used (4-state DQPSK) a transmission channel is
not estimated and corrected. Special NULL and Phase Reference symbols
are used for synchronization purposes.

3. The DAB multiplex frame has a length of about 100 miliseconds and con-
sists of 75 informative OFDM symbols: 3 first of them describe the digital
content (fast information channel), next 72 carry digital data. MP2 audio
coder is used in DAB radio while AAC and AAC+ in DAB+.

4. DAB+ is equipped with typical defense tools against channel impairments:
time and frequency interleaving, CRC error correction, Fire code as well as
punctured convolutional and Reed–Solomon channel coding. In fact, brief
presentation of these method application, using the DAB example, was the
most distinctive feature of this chapter.

5. Error correction coding is not easy to explain. Group theory and advanced
polynomial algebra are applied for development of good codes and efficient
coders and decoders. Since we are DSP-oriented, only fundamental issues
of error correction usage were shown in this chapter: CRC encoding and
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decoding, Viterbi decoder of convolutional codes, and practical application
of Reed–Solomon encoder and decoder.

23.14 Private Investigations: Free-Style Bungee Jumps

Exercise 23.17 (Testing CRC16 in DAB Scenario). In Exercise 23.14 and pro-
gram 23.9 we were testing concepts of CRC error detection. At present test CRC
exactly in DAB scenario. Generate random sequence of 240 values 0/1, use CRC16
DAB polynomial, calculate 16 bits of the CRC code, append the code to be protected
message, introduce some errors, and check whether the CRC decoder is informing
you about errors.

Exercise 23.18 (Testing CRC in RDS FM Radio Scenario). In Chap. 21 we have
written programs for detection of RDS bits, coded by bi-phase BPSK. But how to
interpret them? RDS bit-stream consists of frames which are built from 4 blocks
A, B, C, and D with 26 bits each: 16 original bits plus 10 CRC error protection
bits (polynomial x10 + x8 + x7 + x5 + x4 + x3 + 1 is used). The whole RDS frame
has 104 bits. In DAB+ we do synchronization with Super Frame checking CRC
code of audio blocks. The same technique can be used for finding beginning of
RDS ABCD blocks. After having them, we are decoding bits of a packet of interest,
for example, name of a radio station. Apply CRC programs/functions, presented in
this chapter, for finding beginnings of ABCD blocks in RDS bit-streams, calculated
in the program 21.10. After that you could start to think about decoding the radio
station name. And answer how to do it, you will find in the RDS standard [7] You
can also try to find help in the file RDS_Parser.zip, supporting chapter 21 in
the book repository.

Exercise 23.19 (** Testing Viterbi Decoder in DAB Scenario). In Exercise 23.16
and program 23.11 we were testing concepts of convolutional coding and Viterbi
decoding. Now perform tests exactly in DAB scenario. Generate a random stream
of 3072 bits, use DAB + convolutional coding filters, code your message, puncture
obtained four bit-stream in arbitrary way. Introduce some transmission errors into
four bit-streams. Then, put zeros in place of punctured values, perform Viterbi de-
coding, and compare the output bit-stream with the input one. Looking for help,
see how it is done in functions DABViterbiTZ() and DABViterbiTZinit()
called by the program lab23_ex_dab_all.m.

Exercise 23.20 (** Fire Code Implementation and Testing). First 16 bits of the
DAB+ Super Frame represent a Fire code, added in the encoder, which protects
72 bits (= 9 · 8) located after it. We have not discussed in this chapter the prob-
lem of Fire code generation and usage for error protection. Personally, I did some
experiments in the past but I was not very satisfied with obtain results. May be
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somebody would like to continue my work. In the book repository there is a pro-
gram lab23_ex_firecode, a function CRC16FireCodeCorrect() and
FireCodeData.dat for tests. After success, the Fire code functionality could
be added to our DAB software.
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Chapter 24
Modern Wireless Digital
Communications: 4G and 5G Mobile
Internet Access (with Grzegorz Cisek as a
co-author)

Where are my binoculars? Living in a labyrinth of thousands of
options and settings.

24.1 Introduction

I am sure that this chapter will be very interesting for many Readers. New
times are coming with powerful 5G gadgets. Gadgets equipped with very ad-
vanced technologies and offering completely new functionalities. But how do
they work from the signal processing point of view? This chapter aims at an-
swering this question in the simplest possible way: by decoding physical broad-
cast channel (PBCH) of the 4G LTE mobile digital telephony signal. Having a
Matlab program of the PBCH signal receiver, we will test it on synthetic and
recorded (real-world) LTE signals. Finally, at the chapter end, after some gener-
alization, a short introduction to the 5G wireless communication standard will
be presented.

Legacy digital telephony technologies, like GSM and TETRA, made use of
one carrier only. In GSM (Global System for Mobile Communication) bit 1
was represented by one period of sine lasting T microseconds, while bit zero
by two periods of sine, but also lasting together T microseconds (2 times higher
frequency). Since the signal was changed during zero-crossing, its phase conti-
nuity was ensured this way. Finally, the signal was filtered by Gaussian weights
and minimum shift keying (MSK) modulation was being changed to Gaussian
MSK (GMSK). In TETRA (Terrestrial Trunked Radio), used by government
agencies and public emergency services (police forces, fire departments, ambu-
lance), the differential quadrature phase shift keying π/4-DQPSK of one carrier
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was used. Since only one carrier was used by one user in GSM and TETRA,
the available bit-stream was limited in these two services.

In response to growing need for significantly higher throughput of mobile
digital links, the multi-carrier technology, initially developed for DSL modems
and DAB digital radio broadcasting, was applied with success in mobile tele-
phony in the form of 4G Long Term Evolution (LTE) standard. In many aspects
the multi-tone transmission used nowadays in modern mobile communications,
called Orthogonal Frequency Division Multiplexing (OFDM) here, is very sim-
ilar to DSL and DAB, already known to us. Main differences come from: (1)
user mobility, (2) very fast channel variability (in regard to DSL), (3) different
user access to the channel (dynamic sharing frequency resources between many
users, in contrary to DSL and DAB)—in other words OFDMA (orthogonal fre-
quency division multiple access), and (4) much more available application sce-
narios (for example, Internet of Things (IoT)).

How does the digital telephony work? In this chapter we will recover the
broadcast PBCH signal of the LTE telephony standard. The PBCH contains
essential information about a physical radio cell, for example, frequency band-
width and system time (frame number), which is absolutely necessary for user
equipment (UE) to connect to the network. The PBCH is the first signal which
is decoded by a phone after power on.

As in DSL and DAB, a time-domain signal is a sum of many carriers and it is
obtained by means of inverse FFT of complex-value Fourier coefficients. Their
magnitudes and angles are defining carrier states, i.e. amplitudes and phase
shifts. Each carrier can take only limited number of states and transmitted bits
are equal to the carrier state number written binary, for example, state number
7 out of 16 means that bits 0111 are sent. Neighbor states should have given
numbers which differ by one bit only (Gray code) in order to minimize bit er-
rors caused during carrier state decoding. Time duration of each IFFT output is
precisely defined. The synthesized signal is called an OFDM symbol. Precisely
defined number of its last samples is copied to the signal beginning as a cyclic
prefix (CP), already known to us. Typical carrier spacing in LTE is equal to
15 kHz. Due to different bandwidths used (i.e. 5, 10, 20 MHz), different num-
ber of carriers is exploited (300, 600, 1200, respectively), the IFFT has different
lengths (512, 1024, 2048) and the OFDM symbol also. To observe the IQ signal
spectrum we should calculated it via FFT, center it around 0 Hz and display

X=fft(x(1:Nfft))/Nfft;
X=fftshift(X);
f=(fs/Nfft)*(-Nfft/2:Nfft/2-1);
plot(f,20*log10( abs(X) );

The digital telephony frame is a sequence of OFDM symbols (IFFT outputs
with inserted cyclic prefixes). One 4G LTE frame lasts 10 milliseconds and
consists of ten 1 millisecond long sub-frames, each composed of two time slots.
In consequence, one LTE frame has 20 slots lasting 0.5 milliseconds each. Since
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each slot is built from 7 OFDM symbols, the LTE frame has 140 symbols. Each
OFDM symbol exploits 300, 600, or 1200 carriers. Brr... Too many numbers
per a sentence! Let start from the beginning.

In LTE we are using a precisely defined time–frequency grid. Each carrier
carries symbols delivering bits in number of their states. But the frequency
bandwidth is shared between many users and they obtain a right to use some
number of carriers in specified time, both in down-link (to me) and in up-link
(from me). The smallest allocation amount of resources is called a Resource
Block (RB), in LTE 12 consecutive carriers in 7 consecutive OFDM symbols.
A user smart-phone has to obtain information from the base-station about re-
sources allocated to it. In the beginning a smart-phone read an information from
a SIM card where LTE frequency bands are located, scan them, acquire an
IQ signal and look for some system/control information transmitted in broad-
cast mode. After reading the base-station physical cell identification, it reads
the broadcast physical channel (PBCH) information and start dialog with the
base-station office in order to obtain resource blocks for personal data up-down
transmission. In this chapter, we will recover states of PBCH carriers.

To do this we have to perform a set of time/frequency synchronizations and
system information decoding. First, during PBCH decoding, we assume that
signal frequency bandwidth is equal to 1.4 MHz, i.e. estimate and correct the
integer carrier frequency offset, i.e. integer multiplicity of FFT carrier spacing
(15 kHz in LTE). Then, find primary synchronization signals (PSS), the Zadoff–
Chu sequences, transmitted in the 6-th (0...6) OFDM symbol of the 0-th and 10-
th slot of the LTE frame. Next, find the secondary synchronization signal (SSS)
transmitted in the OFDM symbols just before the PSS symbols. Both searches
exploits the cross-correlation function as a computational engine. When num-
bers of detected PSS and SSS signals are known, it is possible to calculate
the physical radio cell identification (PCI) number and use it for generation of
cell-specific reference signals (CRS) sent from different transmitter antennas.
Correlating these antenna-specific pilot signals with the received signal we can
find a number of antennas. Knowing this number, as well as transmitted and
received CRS signals, we can:

1. estimate a channel frequency response in time–frequency grid points occu-
pied by the CRS sub-carriers,

2. interpolate this channel estimate for remaining TF points,
3. correct all data (equalize the channel) for different antenna ports,
4. perform appropriate space–time signal decoding, the Alamouti one in our

case.

In case of Alamouti space–time diversity coding, in the transmitter the same
two signals are sent one-by-one by two antennas—but in different order and
with sign negation. Then, in the receiver, they should be recovered from signals
acquired by 1 or 2 receiver antennas. This space–time information diversity
makes the transmission more immune to noise.
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Since the broadcast PBCH information, sent to the smart-phone, is located
in 4 OFDM symbols transmitted (located) just after the PSS symbol in the first
LTE sub-frame, we perform the above-described CRS-based channel equaliza-
tion and decoding in regard to the PBCH information. This will be the last step
of our practical LTE signal decoding lesson: we will see a clear, more or less,
scatter plot of PBCH carrier constellation points of the QPSK modulation. Bits
can be recovered from them. And our dialog with a base-station starts.

Many modern TeleDSP topics are explained through Matlab exercises in
[19]. Flexible contemporary telecommunication systems allow many options
and settings. Too many to describe even 0.1% of them in an introductory book
like this. But we hope that description how our smart-phones do initial syn-
chronization with down-link LTE data and how they recover first bits of the
very important broadcast information from it, presented in this chapter, helps
us to understand philosophy of modern mobile digital telephony and, wider,
modern wireless communication. After laboratory on DAB, my students were
faced with LTE transmission standard in their professional work and I heard
their opinion: “Wow, it is so similar!” I am sure that after reading this short
description of the first steps performed by the 4G wireless receiver, the 5G one
will be also very familiar to us. This chapter will end short DSP characterization
of the incoming 5G New Radio standard. We will become 5G Ready!

When I am traveling in Krakow by a crowded bus and everybody around
me are using their phones, I am thinking: “how on earth is it possible?!" But I
see with my own eyes that it is possible. Even if students have problems with
decoding an LTE signal acquired by ADALM-PLUTO hardware in university
laboratories.

24.2 LTE Basics

Detail information concerning the 4G LTE telephony can be found in ETSI stan-
dards [9, 11]. Essential LTE characterization is also given in the book [27].

In the 4G LTE digital telephony, the down-link uses standard OFDMA mod-
ulation like in DSL and DAB, the discrete multi-tone one, while up-link—the
DFT-spread OFDMA, called also a linearly-precoded OFDMA (LP-OFDMA) and
a single-carrier frequency division multiple access (SC-FDMA). The abbreviation
OFDMA (Orthogonal Frequency Division Multiple Access) in contrary to OFDM
(Orthogonal Frequency Division Multiplexing), used in DSL and DAB, allows dy-
namic carrier allocation to different users: OFDMA = OFDM + Access. Parameters
of the LTE down-link and up-link are summarized in Table 24.1.

First important information concerns the service bandwidth: 5, 10, and 20 MHz
are the most frequently used. The carrier spacing Δ f is assumed to be equal to
15 kHz and we are using 300, 600, or 1200 carriers, respectively. When we, for ex-
ample, multiply 1200 carriers times 15 kHz, an approximate 18 MHz service band-
width is obtained. The 2 MHz difference between declared 20 MHz and practically
used 18 MHz is utilized for band-pass signal filtering and as frequency separation
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zone between different wireless services. The total number of carriers is increased to
512, 1024, or 2048, the nearest power of 2. After multiplication of the DFT length by
15 kHz, we obtain sampling frequency equals 7.68, 15.36, and 30.72 MHz. There-
fore, during IQ signal synthesis in the base-band, we are:

1. specifying values of 512, 1024, or 2048 Fourier coefficients (carrier values/s-
tates),

2. performing inverse fast Fourier transform (IFFT) with appropriate length, ob-
taining 512, 1024, or 2048 samples of complex-value IQ signal,

3. inserting a cyclic prefix to the signal,
4. sending signal samples to quadrature modulator and D/A converter, working

with frequencies 7.68, 15.36, or 30.72 MHz.

The cyclic prefix length, normal or extended, is specified in Table 24.2. 12 consec-
utive carriers lying in 7 consecutive IQ OFDM symbols constitute one Resource
Block (RB) that is individually allocated to different users. It is the smallest alloca-
tion resource in LTE. Channels with different bandwidths use different number of
RBs.

Table 24.1: 4G LTE down-link and up-link specification

LTE Mode 1 2 3 4 5 6

Channel bandwidth BW [MHz] 1.4 3 5 10 15 20
Sub-carrier spacing [kHz] 15 15 15 15 15 15
Number of sub-carriers used 72 180 300 600 900 1200
FFT/IFFT size 128 256 512 1024 1536 2048
Sampling rate [MHz] 1.92 3.84 7.68 15.36 23.04 30.72
Number of RBsa in frequency 6 15 25 50 75 100
Signal samples per slot 960 1920 3840 7680 11520 15360

aResource Block = 12 carriers in 7 OFDM symbols

Table 24.2: Cyclic prefix length in LTE down-link in microseconds

Scenario First symbol in RBa Next symbols in RB

Normal CP, Δ f =15 kHz, 7 symbol/slot 5.21 μs 4.69 μs
Extended CP, Δ f =15 kHz, 6 symbol/slot 16.67 μs 16.67 μs
Extended CP, Δ f =7.5 kHz, 6 symbol/slot 33.33 μs 33.33 μs

aResource Block

The 10 millisecond long LTE frame is presented in Fig. 24.1. It consists of ten 1
millisecond long sub-frames, each having two time slots. The total number of time
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Fig. 24.1: Frame structure used in 4G LTE digital telephony

slots is, therefore, equal to 20 and the slots are numbered from 0 to 19. Each slot is
built typically from 7 OFDM IQ symbols/signals (6 in case of extended cyclic pre-
fix), numbered from 0 to 6. In the 5-th and 6-th OFDM symbols of time slots number
0 and 10, Secondary (SSS) (first) and Primary (PSS) (then) Synchronization Signals
are sent. In first four OFDM symbols of time slot number one, the Physical time slot
number one, the Physical Broadcast Channel (PBCH) information is transmitted to
all phones: it carries the Master Information Block (MIB) message, which encap-
sulates the most essential cell configuration parameters and must be decoded by the
mobile before the network connection can be established. Our goal in this chapter is
to see clear QPSK constellation points of the PBCH data for an LTE signal recorded
by ADALM-PLUTO SDR receiver.

In Fig. 24.2 a more detail view of the first two time slots of the LTE frame
is presented. Data are changing in time (horizontally, time slots and OFDM sym-
bol numbers) and in frequency (vertically, carrier numbers in Resource Blocks and
numbers of RBs). What is important to observe? In the upper figure only 8 cen-
tral RBs (around 0 Hz in the base-band) are shown. Dots “•••” means that there
are RBs up and down, for higher and lower frequencies. In fact, we are interested
at present only in 6 central RBs, i.e. in 72 central sub-carriers, lying 15 kHz apart
from each other, 36 for positive and 36 for negative FFT frequencies. On the bottom
figure only 12 of them are shown, i.e. from −36 to −25. In the 5-th time slot, the
SSS signal is sent, while in the 6-th—the PSS signal. The PSS signal allows initial
LTE frame synchronization and initial channel equalization, while the SSS signal
is used, in conjunction with PSS, for identification of the actual physical radio cell
number. In the following 4 time slots, the PBCH data are transmitted using QPSK
modulation. Unused time–frequency cells (slots) are marked with “X.” In TF points
“A1,” “A2,” “A3,” and “A4” the LTE base-station Cell-Specific Reference Signals
(pilots)(CRS) are sent by different transmitter antenna ports. They allow: (1) iden-
tification of number of antenna ports, used by the base-station (CRS signal in “Ak”
point is present or not), (2) channel identification and channel equalization for each
antenna port. Reference CRS signals are sent permanently by the base-station. They
should be generated in the mobile receiver for cross-correlation purposes but it is
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Fig. 24.2: Position of PSS (primary) and SSS (secondary) synchronization signals in
the LTE radio frame as well as positions of physical cell-specific reference signals
(CRS) from transmitter antennas A1, A2, A3, and A4 (antenna ports 0–3 in the
standard)

possible only after identification of the physical radio cell identifier (from PSS and
SSS). Our goal in this chapter is to decode the PBCH carrier states.

The bottom diagram of Fig. 24.2 is a very good resume of modern telecommu-
nication technology: repeat it 100 times vertically (100 RBs for NFFT = 2048) and
look for a needle in a haystack!

At present, let us look at the 4G LTE telephony from the system point of view,
top-down perspective. LTE coverage is divided into physical cells, supervised by
base-stations. Control signals are physical cell-dependent, including the Zadoff–
Chu primary synchronization PSS sequences, secondary synchronization SSS se-
quences, and CRS pilots of different antenna port. Data are transmitted to many
users at the same time but different users exploit different carriers (frequencies) in
different time slots. The frequency allocation is dynamic and a user phone/equip-
ment is permanently instructed by a down-link data control information (DCI).
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Carrier states are carrying bits. These bits belong to different streams called
channels, having different destination. Transmission is bi-directional, down (to the
user smart-phone) and up (to the base-station). In this chapter we are interested in
down-link mainly. Here we have:

1. the Physical Broadcast Channel (PBCH), constant in time, which allows a
phone configuration according to the base-station instructions,

2. the Physical Downlink Control Channel (PDCCH) dynamically informing a
phone about resources allocated to it (for example, about time–frequency re-
source blocks to be used),

3. the Physical Downlink Shared Channel (PDSCH) containing data transmitted
to the user,

4. Physical HARQ Indicator Channel (PHICH) carrying ACK/NACK acknowl-
edge information for Up-link transmission (1 bit),

5. Physical Control Format Indicator Channel (PCFICH) informing phone about
PDCCH format (number of OFDM symbols), transmitted in each sub-frame.

Simplified diagram of 4G LTE down-link transmitter is shown in Fig. 24.3.

Fig. 24.3: Simplified down-link LTE transmitter diagram: PSS—primary synchro-
nization signal, SSS—secondary SS, CRS—cell-specific reference signal

The control PDCCH and data PDSCH channels are coded in different way (see
Fig. 24.4). The PDCCH data are attached with CRC, convolutionally encoded (then
for sure Viterbi decoded in the receiver), scrambled, time-interleaved, and used for
only two-bit QPSK modulation. In turn, the PDSCH data are attached with CRC,
turbo coded, interleaved and they are exploiting higher order QAM modulations
(16, 64, 256). In PDSCH rate matching is more complex than in PDCCH. The
AMC (Adaptive Modulation and Coding) technique is used: number of redundancy
bits, added to the original ones and defending them against errors, is dynamically
changed and depends on transmission conditions. Additionally the HARQ (Hybrid
Automatic Repeat reQuest) protocol is exploited: during transmission only a part of
a code-word is sent. When a receiver has failed to decode the code-word, its another
part is sent. During decoding, the receiver makes use of all previous unsuccessful
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decoding attempts. This method, called IR (Incremental Redundancy), was used in
3G-HSPA also.

Fig. 24.4: Physical Downlink Control Channel (PDCCH) and Shared Channel
(PDSCH) encoding in 4G LTE standard (pre-coding and layer mapping are also
performed but not shown)

The 4G LTE receiver diagram, the simplest one, is presented in Fig. 24.5. First,
we should find the LTE frame beginning in the input IQ base-band signal. For this
purpose we should calculate the cross-correlation function between the received
signal and the reference three Zadoff–Chu sequences, known to the receiver (one
of them was used by transmitter for the primary synchronization signal (PSS) gen-
eration). When we synchronize with the OFDM symbol of the PSS signal, we can
use its cyclic prefix (CP) for initial carrier frequency offset estimation, exactly the
same way as we did in DAB radio. After that, knowing the index of the transmitted
and received PSS (NPSS

ID = 0,1,2), we can perform initial estimation of a channel
frequency response. Then, knowing already the channel, we can go to the OFDM
symbol before the PSS, to the secondary synchronization signal SSS, equalize it us-
ing the PSS-based channel estimation (optionally) and decode. Since the SSS can
take only one of 168 different forms, we find its number NPSS

ID = 0...167, and use it
for calculation of physical radio cell identification:

NCELL
ID = 3∗NSSS

ID +NPSS
ID (24.1)

Knowing NCELL
ID of the physical wireless cell we can generate the cell-specific ref-

erence synchronization signals (CRS) (marked as A1, A2, A3, and A4 in Fig. 24.2).
And after this, use them for: (1) determination of number of transmitting base-
station antenna ports, and (2) local, in time and frequency, channel equalization
during decoding the control (PDCCH) and data (PDSCH) bit-streams. Implemen-
tation of channel interpolation for non-CRS TF bins can be linear over frequency
axis and zero-hold-order over time axis (using last estimate)—the standard does not
restrict it. The regular work of the down-link receiver is presented in Fig. 24.5. Af-
ter initial synchronization, the PSS and SSS signals are tracked all the time in order
to allow a phone performing handover to another base-station with stronger sig-
nal. The cyclic prefix of each OFDM symbol can be used for permanent adaptation
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of the carrier frequency offset. When a base-station registers a phone as an active
player in the game and at least 4× 4 MIMO antenna system is used, it can send to
the phone user-equipment specific reference signals (UERS), which is not marked
in Figs. 24.3 and 24.5 since it is optional in the standard.

Fig. 24.5: Simplified down-link LTE receiver diagram: CRS—cell-specific ref-
erence signals, PDCCH—physical downlink control channel, PDSCH—physical
downlink shared channel

The main difference between 4G LTE down-link (from base-station) and up-link
(from our phone) transmitter relies on the fact that the base-station IFFT takes into
account data transmitted to all users over all available carriers—data for different
users are transmitted using different resource blocks RBs (12 consecutive carriers
in 7 OFDM symbols). In case of up-link transmitter, each phone performs its own
IFFT, which should be synchronized with other phones IFFTs, and sends “up” only
data of one user exploiting allocated RBs (specified carriers in specified time slots).
These data are cut into blocks, extra processed by DFT, allocated to target Fourier
coefficients, and finally performed by IFFT. Due to the DFT usage and special spec-
tral data allocation, peak transmission power is reduced. Difference between down-
link (CP-OFDMA) and up-link (Single-Carrier FDMA) FFT usage is presented in
Fig. 24.6.

Physical Antenna vs. Antenna Port Typically distinguishing between a phys-
ical antenna and an antenna port concept, used in 3G/4G/5G standards, is one
of the biggest problems for a novice in digital telephony world. For this reason,
the earlier we clear the difference between these two terms, the better for fur-
ther reading. The antenna port, defined in the 4G-LTE and 5G-NR standards,
does not directly correspond to the physical antenna on which the radio signal
is transmitted or received. It is a logical concept that puts together (combines)
different data streams and reference signals. More strictly speaking, the mobile
terminal can assume that all the signals conveyed over the same antenna port
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Fig. 24.6: Block diagram explaining the difference between CP-OFDMA used in
4G LTE down-link transmitter and SC-FDMA used in 4G LTE up-link transmitter.
N > M and K denotes modulation order. Each input data symbol in SC-FDMA
makes use of M ·Δ f = M ·15 kHz

undergone the same radio propagation conditions. Based on this, the mobile
can determine which data stream can be equalized using a particular reference
signal. In case of LTE down-link, PBCH, PDCCH, and PDSCH channels are
sent over the same set of antenna ports as the CRS signal. Thanks to this the
channel impulse response estimate based on the CRS can be used to equalize
the aforementioned channels. In practice, signals mapped to the same logical
antenna port are transmitted using the same physical antenna (or multiple an-
tennas). In some specific cases, signals mapped to different antenna ports may
be still transmitted on the same physical antennas, but the mobile terminal is
not allowed to make such assumption.

More on SC-FDMA and PAPR At this point, the reader is probably asking
the questions: Why there are different waveforms used in LTE down-link and
up-link? What is the benefit of using SC-FDMA in up-link direction? I am not
convinced after above one sentence long explanation!

To answer the questions, let us start from the beginning. In OFDMA systems,
modulation IQ symbols are mapped to corresponding sub-carriers in frequency
domain prior to IFFT. The IFFT is in fact a linear transformation, so the result-
ing time-domain signal is likely to have non-constant amplitude with occasional
higher peaks. To characterize a signal in term of its relative peak amplitude, the
Peak-to-Average Power Ratio (PAPR) metric is commonly used, expressing
the ratio between the highest peak value xpeak to an average Root-Mean-Square
(RMS) signal level xrms over an arbitrary period:

PAPR =
|xpeak|2
xrms

2
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Occurrence of high peaks is very undesirable, as it leads to signal distortion
occurring in the analog circuitry of the transmitter. One of the components that
is most vulnerable to high-energy peaks in the signal is the power amplifier due
to its high non-linearity characteristics. Therefore, the higher the PAPR is (or
in other words: the higher energy peaks are occurring in the signal), the higher
is the signal distortion due to circuit non-linearity, which in turn lowers the
probability of successful information decoding at the receiver.

Thanks to the additional DFT spreading stage at the transmitter, SC-FDMA
is characterized by a much lower PAPR than OFDMA scheme. This is achieved
at a cost of negligible performance degradation [16]. In turn, utilization of SC-
FDMA technique in LTE up-link allows the mobile phone manufacturers to
equip less expensive power amplifiers into the devices, which reduces the total
price that have to be paid for a new mobile phone. Secondly, lower PAPR allows
the mobile phone to transmit with reduced power, so it can operate longer on a
single battery charge.

OFDM vs. OFDMA And important remark at the end of this section. In
OFDM technique channel is divided in frequency for many users once forever,
i.e. one user exploits the same frequency. In turn, in OFDM Access (OFDMA)
technology, used in 4G LTE and 5G NR, the carrier allocation to users is
changed dynamically.

24.3 Decoding 4G LTE Physical Broadcast Channel

In this chapter we write a Matlab program for DSP processing an base-band IQ
LTE signal, recorded by ADALM PLUTO, and displaying constellation points of
the Physical Broadcast Channel (PBCH) signal. Its location in time–frequency grid
of the LTE frame is presented in Fig. 24.2. In order to obtain this goal we will have
to extract PSS and SSS, primary and secondary synchronization signals, from the
LTE signal and find a physical radio cell ID as intermediate tasks.

There are several references telling us in synthetic way how this should be done
[6–8, 13, 22–25, 27]. Of course, we can also try to extract directly the required
information from the ETSI standards [9, 11].

24.3.1 LTE Signal Recording and Its Spectrum Observation

To perform this, we should first choose an LTE provider. In this web page we
have listed all European countries and different telephony vendors. We have cho-

https://en.wikipedia.org/wiki/List_of_LTE_networks_in_Europe
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sen Poland, Py Telecom and its 5 MHz LTE service in B20 800 MHz frequency
band (on the green background). In table 5.5-1 “E-UTRA operating bands” of the
3GPP TS 36.101 standard (ver. 13.4) and on this web page we have found exact
frequency specification of the B20 band:

B20, FDD, 800 MHz, up-link 832–862 MHz, down-link 791-821 MHz, channels 5,
10, 15, 20 MHz.

Then we have used ADALM PLUTO, observe the signal spectrum in the down-
link frequency range, find the local spectrum minimum, which should be visible for
the not used DC LTE carrier, and took decision to record an IQ signal using cen-
ter frequency 804 MHz and sampling frequency equal to 30.72 MHz. Then after
spectrum calculation and its more careful observation in Matlab, we repeat record-
ing for the center frequency equal to 803.505 MHz. For this frequency our goal
was reached: the LTE spectral “hat” was centered around 0 Hz in the base-band,
additionally the spectrum had local minimum at the 0 Hz spectral bin which is the
case of LTE since it is not using the DC carrier. This file is processed in the next
subsections.

The analyzed IQ LTE signal, sampled at 30.72 MHz, has 2,457,600 samples and
consists of 8 LTE frames of the 5 MHz LTE service, lasting together 80 millisec-
onds. Its spectra are presented in Fig. 24.7. In the upper-left figure we see an FFT
result of the whole signal as a function of frequency. In the bottom-right plot one
can observe a spectrum resulting from averaging sixteen 2048-point FFTs—only
its central part is shown with the LTE service. The signal spectrogram (STFT) and
Welch PSD complement the figure.

Listing 24.1: Matlab program for PBCH decoding in LTE signal
�

1 % lab24_ex_4g_lte.m
2 clear all; close all;
3

4 do_LPfilter = 0; % 0/1 low-pass filtration, passing only used carriers PBCH
carriers

5 do_disturbing = 0; % 0/1 disturbing the signal
6 do_ADCcorrect = 0; % 0/1 correcting ADC sampling rate
7 do_plots = 1; % 0/1 displayingfigures
8

9 % Load input signal: real-world recorded or synthesized
10 load(’LTE_803.505MHz_30.72MHz_Short.mat’); y = samples; clear samples;
11 % load(’LTE20.mat’); y = new.’; clear new;
12 fs=30.72e6; fs_lte=7.68e6; THR=15; REPEAT=0;
13

14 % Observe high-resolutionsignal spectrum
15 N = length(y); % signal length
16 %y = y .* exp( -j*2*pi*(0 : N-1) * ( 5*df_lte )/ fs ); % TEST integer CFO
17 plot_freq(y, fs); title(’Input signal spectrum’); pause % function call
18 figure; pwelch(y,2048,2048-1024,2048,fs,’centered’); pause % PSD Welch
19

20 % Observe low-resolutionsignal spectrum
21 Nfftup = Nfft*fs/fs_lte; Ncut = 16*Nfftup; df = fs/Nfftup;
22 plot_freqbins(y(1:Ncut), Nfftup); title(’|Y(k)| before shift, 15kHz step’); pause

https://en.wikipedia.org/wiki/LTE_frequency_bands
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Fig. 24.7: Spectrum of IQ LTE signal sampled at fs =30.72 MHz: (up-left) one
FFT of all 2,457,600 IQ signal samples, around 0 Hz we see a 5 MHz LTE service,
(up-right) Welch power spectral density, (down-left) short-time Fourier transform,
(down-right) 2048-point FFT, averaged 16 spectra, only central part of the spectrum
with the LTE service is shown

23

24 functionplot_freq(x, fs)
25 N = length(x); % signal length
26 X = abs( fftshift (fft(x)) ) / N; % FFT calc., centering, magnitude, scaling
27 f = (fs/N * (-N/2 : N/2-1) ) / 1e+6; % frequency axis in MHz
28 figure;
29 plot(f, 20 * log10(X), ’b’); xlim( [f(1), f(end)] ); grid;
30 xlabel(’Frequency [MHz]’); ylabel(’Magnitude [dB]’);
31 end

��

Exercise 24.1 (Observing LTE Spectra). Run program
lab24_ex_4g_lte.m for all supported MAT and TXT files with LTE
signals, real-world and synthesized. Observe four types of spectra: one long
FFT, averaged sixteen 2048-point FFTs, Welch PSD, and STFT spectrogram.
Analyze code of the function plot_freqbins(x, Nfft).
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Fig. 24.8: Zooming LTE signal spectrum from Fig. 24.7: (left) spectrum of the
recorded IQ signal with no integer carrier frequency offset (CFO), (right) spectrum
of the signal with integer CFO equal 5 FFT bins left, added artificially

24.3.2 Signal Pre-processing and Integer CFO Correction

Integer CFO Estimation and Correction Observing spectrum of a recorded sig-
nal allows us to find and correct the integer carrier frequency offset (CFO), if it
is present. It is demonstrated in Fig. 24.8, presenting a zoomed spectrum from the
Fig. 24.7. In the left plot the integer CFO is not observed since the spectrum has
local minimum at frequency 0 Hz. In turn, in the right plot we see the integer CFO
equals minus 5 FFT bins, which was artificially added to the IQ signal by means of
its multiplication with the signal:

e− j2π Δ f
fs
·(0:N−1) = e− j2π k f0

fs
·(0:N−1) = e

− j 2π
Nf f t

k·(0:N−1)
, (24.2)

where fs = 30.72 MHz, Nf f t =2048, f0 =
fs

Nf f t
= 15 kHz, k=5, Δ f = k · f0 =75 kHz,

N—number of signal samples. Of course, the injected integer CFO can be corrected
by the sign-reversed signal multiplication:

e j2π Δ f
fs
·(0:N−1) = e j2π k f0

fs
·(0:N−1). (24.3)

Listing 24.2: Matlab program for PBCH decoding in LTE signal (cont.)—integer
CFO

�

1 % lab24_ex_4g_lte.m - continuation
2

3 % Calculate or choose requiredintegerspectrum shift, then perform it upon the signal
4 Kmax = 20; % select search size
5 s = reshape( y(1:Ncut), Nfftup, Ncut/Nfftup ); % create a signal matrix
6 S = fftshift( fft(s) / Nfftup ); % do FFTs of its columns
7 S = mean( abs(S.’) ); % accumulate all spectra
8 kcentr = Nfftup/2+1; % index of spectrum center
9 [val, indx ] = min( S(kcentr-Kmax:kcentr+Kmax) ); % find minimum and its position

10 SHIFT = indx-Kmax-1, % 1234? % choose/calculate shift value
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11 y = y .* exp( -j*2*pi*(0 : N-1) * (SHIFT*df) / fs ); % do integer shift
12 % y = y .* exp( -j*2*pi*(0 : N-1) * (-1250)/ fs ); % do fractional shift?
13

14 % Observespectrum of the resultant signal
15 plot_freqbins(y(1:Ncut), Nfftup); title(’|Y(k)| after shift, 15kHz step’); pause

��

Exercise 24.2 (Integer CFO Observation and Correction). Run program
lab24_ex_4g_lte.m for the recorded LTE signal. Uncomment line TEST
integer CFO. Set different spectrum shift value, i.e. integer multiples of df.
Observe results. Write better function for automatic finding of the spectrum
shift that makes use of the overall width of the LTE “hat.”

Signal Re-sampling and Low-Pass Filtration In our example in the IQ signal
three LTE services are present: one 5 MHz (in the middle, around 0 Hz) and
two 10 MHz (one in negative frequencies and one in positive frequencies). We
have to extract the service of interest from the signal. For this purpose the Matlab
resample() function is used. It performs two things in our case: (1) the low-pass
filtration reducing the signal bandwidth 4 times from 30.72 MHz to 7.68 MHz, and
(2) 4:1 signal decimation from sampling frequency 30.72 MHz to 7.68 MHz. Then,
we can further reduce the signal bandwidth from 7.68 MHz to 5 MHz—in our ser-
vice only 300 central carriers are used out of 512 (the (I)FFT length). In Fig. 24.9,
in two upper plots the following signal PSD spectra are shown: (1) after 4-times
bandwidth reduction and down-sampling, (2) after additional low-pass filtering. In
the bottom plot a mean 512-point FFT spectrum of the signal is presented—16 FFT
spectra are computed and averaged.

Listing 24.3: Matlab program for PBCH decoding in LTE signal (cont.)—signal
re-sampling and low-pass filtration

�

1 % lab24_ex_4g_lte.m - continuation
2

3 % Signal re-sampling - when actual samplingfrequency is not a standard one
4 if( fs ~= fs_lte )
5 y = resample( y, 1, fs/fs_lte ); fs = fs_lte; % LP filtering and down-sampling
6 N = length(y); % new signal length
7 plot_freq(y, fs); title(’Down-sampled’); pause
8 end
9

10 % Optional low-pass filtration - passing only carriers used by LTE or PBCH
11 if( do_LPfilter )
12 Mtaps = 125; % number of filter weights
13 % freq = [0, Nsc * df_lte, BW_lte, fs] / fs; % only used LTE sub-carriers
14 freq = [0, 72 * df_lte, 4*72*df_lte, fs] / fs; % only PBCH sub-carriers
15 gain = [ 1 1 0 0 ]; % gains
16 weights = [ 1 0.8 ]; % bands significance
17 h = firls( Mtaps-1, freq, gain, weights); % least-squares design
18 y = conv(y, h, ’same’); % filtering
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19 plot_freq(y,fs); title(’Filtered’); pause % result
20 plot_freqbins(y(1:Ncut), Nfft); title(’Filtered’); pause
21 end

��

Exercise 24.3 (Signal Low-Pass Filtration). Design different taps of low-pass
filters using Matlab functions fir1(), fir2(), firls(), firpm().
Add to the program plotting filter frequency response. Design filters passing
only central 72 FFT frequency bins, not 300 bins, i.e. only the PBCH part.
Observe how remaining part of the program accepts more narrow signal band-
width.
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Fig. 24.9: Spectra of IQ LTE signal: (up-left) PSD after down-sampling
from 32.72 MHz to 7.68 MHz, (up-right) PSD after low-pass filtration with
BW=5 MHz—leaving only 300 carriers used, (down) averaging sixteen 512-point
FFT spectra
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24.3.3 Signal Auto-Correlation: Fractional Carrier Frequency
Offset Estimation and Correction

The fractional carrier frequency offset is the most harmful for OFDM-based signal
transmission because it leads to losing carrier orthogonality. Additionally, time syn-
chronization procedures making use of special sent synchronization patterns usu-
ally work better when the CFO is compensated. We are assuming that the integer
CFO has been already removed by us during signal acquisition—using spectrum in-
spection and correction. At present we should take care of the fractional CFO only.
Since Cyclic Prefix is used in LTE OFDM symbols, we can exploit it for: (1) OFDM
symbols localization, as described in the Chap. 22 on DSL, and (2) fractional CFO
estimation, as described in the Chap. 23 on DAB. In the first task, we are looking
for maxims of the following auto-correlation-based cost function (see Eqs. (22.37),
(22.38), (22.39) in Chap. 22 on DSL):

J(n) =
Q(n)
R(n)

, (24.4)

Q(n) =
NCP−1

∑
m=0

y(n+m)y∗
(
n+m+Nf f t

)
, (24.5)

R(n) =
NCP−1

∑
m=0

|y(n+m)|2 +
NCP−1

∑
m=0

∣∣y(n+m+Nf f t
)∣∣2. (24.6)

Their arguments indicate first samples n1cp of the OFDM symbol cyclic prefixes.
In the second task, we are calculating the fractional CFO for each OFDM symbol
using its CP, which the first sample n1cp has been already found (see Eq. (23.8) in
DAB chapter):

Δ f = f0 ·
angle

(
1

Ncp

n1cp+Ncp−1

∑
n=n1cp

y∗(n)y(n+Nf f t)

)

2π
, (24.7)

where f0 =
fs

Nf f t
. In order to obtain a noise-robust fractional CFO estimate, initially

we should calculate CFO for many OFDM symbols, find the mean value, and slowly
adapt it using new CFO estimates. The fractional CFO correction is realized by
multiplication of the IQ signal y(n) with:

e− j2π Δ f
fs
·(0:N−1). (24.8)

In upper plot of Fig. 24.10 the calculated cost function RCP(n) is shown. Its max-
ims tell us about cyclic prefix positions in the IQ signal. Having these knowledge,
we can calculate fractional CFO for different OFDM frames (see bottom plot in
Fig. 24.10) and average obtained results. In our case frequencies −1189.1 Hz and
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Fig. 24.10: Fractional CFO estimation using CP-based auto-correlation of the LTE
signal defined by Eq. (24.6): (up) auto-correlation, we observe repeating peaks of
cyclic prefix self-matching: we can use them for time synchronization with OFDM
symbols and for estimation of fractional carrier frequency offset, (down) estimated
fractional carrier frequency offset

−1221.6 Hz were found this way, the first when the additional low-pass filter was
used, the second—without the filter.

Listing 24.4: Matlab program for PBCH decoding in LTE signal (cont.)—signal
auto-correlation function and fractional CFO estimation and correction

�

1 % lab24_ex_4g_lte.m - continuation
2

3 % 3. Signal Auto Correlation - fractionalcarrierfrequency offset estimation
4

5 Ryy=[];
6 for n = 1 : Nframe % find correlationcoefficients
7 n1 = n:n+Ncp2-1; n2 = n1 + Nfft;
8 a1 = abs( sum( y(n1) .* conj( y(n2) ) ) );
9 b1 = abs( sum( y(n1) .* conj( y(n1) ) + sum( y(n2) .* conj( y(n2) ) )));

10 Ryy(n) = (a1*a1) / (b1*b1);
11 end
12 figure; plot(Ryy); grid; title(’Original Ryy(k)’); pause
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13 for k = 1 : 20 % find 20 max peaks
14 [val,indx(k)] = max(Ryy); % find max
15 Ryy( indx(k)-Nsymb2 : indx(k)+Nsymb2 ) = zeros(1,2*Nsymb2+1); % zero around
16 end
17 indx = sort(indx);
18 for k = 1 : 20 % use CP for fractional CFO estimation
19 n1 = indx(k):indx(k)+Ncp1-1;
20 CFO_cp(k) = fs/Nfft*mean( angle( conj( y(n1) ) .* y( n1+Nfft ) ) / (2*pi));
21 end
22

23 if( do_plots ) % Fractional CFO
24 figure; plot( indx(1:20), CFO_cp(1:20),’bo-’ ); grid;
25 xlabel(’sample index n’); ylabel(’[Hz]’); title(’\Delta f (n)’); pause
26 end
27

28 CFO = mean( CFO_cp ), pause % fractional CFO estimation
29 y = y .* exp(-j*2*pi*(0:length(y)-1)*(CFO/fs)); % fractional CFO correction
30 CFO = 0; % alreadycorrected

��

Exercise 24.4 (Signal Auto-Correlation Function and Fractional CFO Esti-
mation and Initial Correction). Set do_disturbing=0. Run the program
lab24_ex_4g_lte.m for different synthesized LTE signals and observe
auto-correlation function shapes as well as plotted fractional CFO detection
curves. Set do_disturbing=1, ADCppm=0, G0=0, G1=0, G2=0,
npwr=−160 (see Listing 24.11). Run the program changing cfo=0, 100,
500, 1000, 2000, 5000. Then systematically increase the noise power
npwr=−100,−80,−60,−40,−20 and repeat experiment with growing frac-
tional cfo.

24.3.4 PSS Signals: Frame Synchronization, CFO Correction, and
Channel Estimation

The primary synchronization signal (PSS) is sent two times per LTE frame, in the
beginning and in the middle, in time slot number 0 and 10, both time in OFDM
symbol number 6. Only 62 carriers around DC are exploited which is shown in
Fig. 24.2. The PSS signal is used for LTE frame synchronization, necessary channel
estimation and equalization for SSS signal decoding, and physical LTE radio cell
identification from Eq. (24.1). Knowing the physical wireless cell identity (PCI) al-
lows for physical broadcast channel (PBCH) decoding.

Introduction to Zadoff–Chu Sequences The ZC sequences [4, 12] were success-
fully adapted to 4G LTE due to their unique properties, succeeding the Walsh–
Hadamard codes used in the legacy 3G communication. They are applied in several
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places in the LTE standard, mostly for synchronization purposes, including PSS
sequence in down-link, Physical Random Access Channel (PRACH) used for asyn-
chronous initial cell access in up-link direction, as well as user-specific reference
signals for PUSCH channel. Moreover, the Zadoff–Chu sequences are also used in
other fields of study, e.g. radar signal processing.

A Zadoff–Chu sequence of length NZC is given as a series of complex numbers
with constant, unitary magnitude, so the values differ only by the phase. Subsequent
element in the sequence is determined by the following equation:

xu(n) = e
− j πun(n+1+2q)

NZC , (24.9)

where u ∈ {0,1, . . . ,NZC − 1} is a base sequence index. Remark that LTE standard
assumes q = 0 for all its applications.

The Zadoff–Chu sequences exploit four important properties:

1. If NZC is a prime number, the sequence is cyclic with period NZC:

xu(n+NZC) = xu(n). (24.10)

2. Auto-correlation of a Zadoff–Chu sequence with its shifted version is equal to
0 if the cyclic shift is not a multiplication of the sequence length NZC:

xu(n)x∗u(n+ c) =

{
0 if mod(c,NZC) �= 0

1 otherwise
. (24.11)

3. If NZC is a prime number, Fourier transform of the Zadoff–Chu sequence is also
a Zadoff–Chu sequence with different root index u, but conjugated and scaled.

4. Cross-correlation between two Zadoff–Chu sequences of prime length NZC is
constant and equal to:

xu1(n)x∗u2
(n+ c) =

√
1

NZC
, (24.12)

if the absolute difference between the root indices |u1 − u2| is relatively prime
to NZC.

Zadoff–Chu PSS Sequences and Their Generation After initial fractional CFO
correction of the recorded IQ LTE signal, three Zadoff–Chu sequences are generated
in the LTE receiver, which are used for primary synchronization. First their 64-point
DFT spectra S(k) are specified for a root parameter u = 25,29,34, according to the
following formula [11]:

Su(k−31) = exp− jπuk(k+1)/63, k = 0,1, ...,30,32,33, ...,62. (24.13)
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Fig. 24.11: Characterization of Zadoff–Chu PSS synchronization sequence number
1: (up) 512-samples long IQ signal z1(n), synthesized from 62 Fourier coefficients
Z1(k), (down-left) phasor plot of all 62 Fourier coefficients Z1(k), i.e. imaginary
part as a function of real part, (down-right) auto-correlation function of the time
sequence

Su(k),k =−32...31, represent values of DFT coefficients, from the lowest negative
to the highest positive frequency. Su(−32) and Su(0) are equal to 0. Then, the spec-
trum is appended on both sides with zeros to the length Nf f t , 512 in our example,
and the inverse FFT is performed.

In Fig. 24.11 Zadoff–Chu sequence number one is characterized. In the upper
plot we see real part (solid line) and imaginary part (dotted line) of the time sequence
(Nf f t = 512 samples). In the bottom-left plot values of the ZC spectrum coefficients
are presented as a phasor-diagram, i.e. imaginary part as a function of real part.
In turn, in the bottom-right plot magnitude of the time-domain auto-correlation is
drawn, demonstrating good time localization properties of the sequence (high and
sharp main-peak, low side-peaks).
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Listing 24.5: Matlab program for PBCH decoding in LTE signal (cont.)—PSS signal
generation

�

1 % lab24_ex_4g_lte.m - continuation
2

3 % PSS generation in frequency domain - Zadoff-Chu sequences
4 ZC = zeros(Nfft,3); % NFFT=512 (226-288), NFFT=1024 (482-544)
5 Nc = Nfft/2+1; % NFFT=1536 (738-800), NFFT=2048 (994-1056
6 n = (0:62)’;
7 ZC(Nc-31:Nc+31,1) = exp( -j*pi*25*n.*(n+1)/63 ); % from ZC definition
8 ZC(Nc-31:Nc+31,2) = exp( -j*pi*29*n.*(n+1)/63 );
9 ZC(Nc-31:Nc+31,3) = exp( -j*pi*34*n.*(n+1)/63 );

10 ZC(Nc, 1:3) = zeros(1,3);
11

12 % Going to time domain
13 for nn = 0 : 2
14 ZCC(:,nn+1) = ifftshift( ZC(:,nn+1) );
15 end
16 zc = ifft( ZCC )*sqrt(Nfft);

��

Exercise 24.5 (PSS Signal Generation and Observation). Run the program
lab24_ex_4g_lte.m. Observe plots from Fig. 24.11 for all Zadoff–Chu
sequences, number 1, 2, and 3.

Cross-Correlation of the PSS Sequences with LTE Signal: LTE Frame Syn-
chronization Calculated three PSS synchronization sequences, for u = 25,29,34,
are then cross-correlated with the analyzed LTE signal:

Rysu(k) = ∑
n

y(n) · s∗u(n+ k). (24.14)

One of the calculated cross-correlation functions should have bigger magnitude
maxims. Since their arguments inform us about the PSS signal positions in the IQ
signal, they allow timing recovery of the LTE frame. In Fig. 24.12 signal cross-
correlations with the first and the third PSS synchronization sequences are shown.
We see that the third PSS sequence is present. Due to our observation, we can choose
the first physical radio cell identification number NPSS

ID , making use of the following
rule (u—ZC Zadoff–Chu sequence root):

PSS = 1, u = 25 → NPSS
ID = 0,

PSS = 2, u = 29 → NPSS
ID = 1, (24.15)

PSS = 3, u = 34 → NPSS
ID = 2.
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Fig. 24.12: LTE signal cross-correlation with PSS synchronization sequences
Zadoff–Chu: (left) with PSS #1: decision=absent, (right) with PSS #3: deci-
sion=present

Remark The PSS sequence can be used also for integer CFO estimation. Hav-
ing this in mind, one should synthesize several ZC time-domain sequences from
their spectra shifted a few DFT bins left and right, and correlate all of them
with the LTE signal. The best correlating sequence will inform us about the in-
teger CFO also in such case. Additionally, the PSS signals have a mirror sym-
metry (su(n) = su(Nf f t − n),n = 1,2, ...,Nf f t − 1, see Fig. 24.11) which can
be exploited for timing synchronization. Last not least, knowing positions of
OFDM symbols with PSS, we can calculate number of samples between them
and find whether the ADC sampling rate is correct. In our program we exploit
this knowledge doing, if necessary, a signal interpolation. In our smart-phones
the ADC sampling rate is corrected in hardware.

Listing 24.6: Matlab program for PBCH decoding in LTE signal (cont.)—cross-
correlation of PSS signal with LTE signal

�

1 % lab24_ex_4g_lte.m - continuation
2

3 % PSS: signal cross-correlation with Zadoff-Chu (zc) sequences
4 for k = 1:3
5 Rpss(:,k) = abs( conv( y.’, conj( zc(end:-1:1,k)) ) );
6 end
7

8 % Choosing the best sequence (with the highest Rpss), findingarguments of its peaks
9 % DetectionN_PSS_ID

10 [dummy, PSS_ID ] = max( max( Rpss ) );
11 Rpss = Rpss(:,PSS_ID); zc = zc(:,PSS_ID); ZC = ZC(:,PSS_ID).’;
12 PSS_ID = PSS_ID-1,
13 threshold = THR; % 0.85*max(Rpss); % <--- CHOOSE THRESHOLD
14 counter = 1;
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15 for m=2:length(Rpss)-1
16 if( (Rpss(m) > threshold) & (Rpss(m) > Rpss(m-1)) & (Rpss(m) > Rpss(m+1)) )
17 imax(counter) = m; counter = counter+1;
18 end
19 end
20

21 % Final calculations
22 PSS_idxs = imax - Nsymb2;
23 SSS_idxs = PSS_idxs - Nsymb2;
24 display(’PSS beginnings:’); PSS_idxs’
25 pause
26 display(’Frame/HalfFrame lengths:’); (PSS_idxs(2:end)-PSS_idxs(1:end-1))’,

��

Exercise 24.6 (PSS Signal Cross-Correlation with LTE Signal). Set
do_disturbing=0. Run the program lab24_ex_4g_lte.m for differ-
ent synthesized LTE signals and observe the PSS-vs-LTE cross-correlation
function shapes. Set do_disturbing=1, ADCppm=0, G0=0, G1=0,
G2=0, npwr=-160 (see Listing 24.11). Run the program changing cfo=0,
100, 500, 1000, 2000, 5000. Then systematically increase the noise
power npwr=−100,−80,−60,−40,−20 and repeat experiment with growing
fractional cfo. Then add channel influence: G0=0.5, G1=0.1, G2=0.02.

Using PSS for CFO Estimation, Its Update and Local Signal Correction PSS is
robust to moderate level of the fractional CFO. Once the PSS is found, we can use it
for the fractional CFO estimation (24.7), update of the stored fractional CFO value,
which is shown in left plot of Fig. 24.13, and eventually do local CFO correction.
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Fig. 24.13: Two examples of additional PSS sequence usage for: (left) adaptive car-
rier frequency offset estimation, (right) channel estimation for 62 FFT bins around
0 Hz
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Using PSS for Channel Estimation Knowing transmitted and received PSS signal
we can find local channel estimate valid for central 62 carriers around DC:

ĤPSS(k) =
Y (k)
Su(k)

= Y (k)S∗u(k), k =−31, ...−1,1, ...31. (24.16)

Exemplary channel estimate calculated this way is shown in Fig. 24.13 (right).

Listing 24.7: Matlab program for PBCH decoding in LTE signal (cont.)—cross-
correlation of PSS signal with LTE signal

�

1 % lab24_ex_4g_lte.m - continuation
2

3 % Next iteration
4 PSS_idx = PSS_idxs( iter ), % position of the next PSS
5 n1sss = SSS_idxs( iter ); % position of the next SSS
6

7 % CFO estimation using PSS
8 n = PSS_idx+Ncut1 : PSS_idx+Ncp2-1-Ncut2; % sample numbers
9 CFO_pss = fs/Nfft * angle( sum( conj(y(n)) .* y(n+Nfft) ) ) / (2*pi);

10 CFO = alpha*CFO + (1-alpha)*CFO_pss, % estimationupdate
11 display( sprintf( ’Estimated CFO: %f Hz’, CFO ) );
12 CFO_history(iter+1) = CFO; % store it
13

14 % CFO correction of the LTE frame half (using calculated CFO) - starting from SSS
15 n = n1sss : n1sss + Nframe2-1; % sample numbers
16 y( n ) = y( n ).* exp(-j*2*pi*(0:Nframe2-1)*(CFO/fs)); % CFO correction
17

18 % Channelestimation using PSS
19 PSS_td = y( PSS_idx+Ncp2 : PSS_idx+Ncp2+Nfft-1 ); % OFDM symbol samples
20 PSS_fd = fftshift( fft( PSS_td ) ) / sqrt(Nfft); % FFT
21 Hest = PSS_fd( k_pss ) .* conj( ZC( k_pss ) ); % LS channelestimate

��

24.3.5 SSS Signals: Physical Radio Cell Identification

The secondary synchronization signal (SSS) is sent in the beginning and in the mid-
dle of the LTE frame in sub-frames 0 and 5: exactly in the 5-th OFDM symbol, just
before the PSS sequence, of time slots number 0 and 10. It uses only 62 carriers
around DC as shown in Fig. 24.2. It is used for physical radio cell identification
according to Eq. (24.1). Knowing it, the phone can decode the physical broadcast
channel (PBCH).

SSS Sequences and Their Generation The SSS signal can have 168 different
forms numbered from 0 to 167. Together with possible 3 PSS signals it gives 504
different combinations, 504 possible physical cell ID identifiers (PCIs). The SSS
sequence is a concatenation of two binary sequences D(2k) and D(2k+ 1) which
are defined in different way for frame 0 (time slot 0) and frame 5 (time slot 10) [11]:
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subframe 0 :

{
D0(2k) = sm0(k) · c0(k)

D0(2k+1) = sm1(k) · c1(k) · zm0(k)
(24.17)

subframe 5 :

{
D1(2k) = sm1(k) · c0(k)

D1(2k+1) = sm0(k) · c1(k) · zm1(k)
(24.18)

m0,m1,k = 0,1,2, ...,30

In the above equations, given in the LTE standard, the vectors D0(.) and D1(.) rep-
resent Fourier coefficients of 62 SSS sub-carriers that are next mapped to DFT bins
−31, ...,−1,1, ...31, exactly the same way as it was done for PSS sequences (see
Eq. (24.13)). All sequences, i.e. sm0(k) and sm1(k), zm0 and zm1(k) as well as c0(k)
and c1(k), have 31 elements and they are built from maximum length sequences
(MLS). They are generated in similar way as pseudo-random binary sequences
(PRBS) (−1,1) in DAB program (see Fig. 23.13): first base sequences s(k),z(k) and
c(k) are synthesized using different polynomials (x2+1, x3+1 and x4+x2+x1+1,
respectively), and then they are cyclically shifted:

smi(k) = s((k+mi) mod 31), i = 0,1,

zmi(k) = z((k+(mi mod 8) mod 31), i = 0,1,

c0(k) = c((k+NPSS
ID ) mod 31),

c1(k) = c((k+NPSS
ID +3) mod 31).

Note, that sequences c0(k) and c1(k) depend on already found NPSS
ID , equal to 0, 1,

or 2.

Listing 24.8: Matlab program for PBCH decoding in LTE signal (cont.)—SSS signal
generation

�

1 function [d_sf0, d_sf5] = lte_sss_gen(N_1_id, N_2_id)
2

3 assert( ismember(N_1_id, 0:167 ), ’invalid N_1_id: allowed range is 0 to 167’);
4 assert( ismember(N_2_id, 0:2 ), ’invalid N_2_id: allowed values are 0, 1 or 2’);
5

6 % generate m0 and m1
7 % (NOTE: can use Table 6.11.2.1-1 directly as LUT instead of below calculations)
8 q_p = floor(N_1_id / 30);
9 q = floor((N_1_id + q_p*(q_p+1)/2) / 30);

10 m_p = N_1_id + q*(q+1)/2;
11 m0 = mod(m_p, 31);
12 m1 = mod(m0 + floor(m_p/31) + 1, 31);
13

14 % generate s0 and s1 sequences
15 [s0, s1] = sss_seq_scrambler([0,2], m0, m1);
16

17 % generate c0 and c1 sequences
18 [c0, c1] = sss_seq_scrambler([0,3], N_2_id, N_2_id+3);
19

20 % generate z0 and z1 sequences
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21 [z0, z1] = sss_seq_scrambler([0,1,2,4], mod(m0,8), mod(m1,8));
22

23 % generate SSS sequences for subframe 0 and 5
24 d_sf0 = zeros(62,1);
25 d_sf5 = zeros(62,1);
26 n = 0:30;
27

28 d_sf0(1+2*n) = s0(n+1) .* c0(n+1);
29 d_sf0(1+2*n+1) = s1(n+1) .* c1(n+1) .* z0(n+1);
30

31 d_sf5(1+2*n) = s1(n+1) .* c0(n+1);
32 d_sf5(1+2*n+1) = s0(n+1) .* c1(n+1) .* z1(n+1);
33 end
34

35 % Helper function - generator for s, c and z sequences
36 function [seq0, seq1] = sss_seq_scrambler(polynomial, shift0, shift1)
37 x = zeros(31,1); x(4+1) = 1;
38 for i = (0 : 25)+1
39 for p = polynomial
40 x(i + 5) = mod(x(i + 5) + x(i+p), 2);
41 end
42 end
43 y = 1 - 2*x;
44 seq0 = circshift(y, -shift0);
45 seq1 = circshift(y, -shift1);
46 end

��

Signal Cross-Correlation with SSS Sequences and Physical Cell Identification
After LTE timing recovery using PSS sequences, we can find and cut an LTE signal
fragments, corresponding to OFDM symbols with SSS signals. Next, correlation
coefficients between appropriate IQ samples and all SSS signals are calculated (two
sequences D0, j and D1, j in 168 different versions for j = 0...167):

C(i, j) =

√√√√√
∣∣∣∣∣∣
[

∑
k∈SSS,k �=0

YSSS(k)

ĤPSS(k)
·D∗

i, j(k))

]2
∣∣∣∣∣∣, i = 0,1, j = 0, ...,167. (24.19)

Note that in Eq. (24.19) the correlation coefficient is calculated in frequency domain
and that the LTE OFDM symbol spectrum is equalized by ĤPSS(k) in part belonging
to the SSS carriers. Next, the biggest correlation coefficient is found. Its number
NSSS

ID allows to find the physical radio cell ID from Eq. (24.1) and helps to distinguish
LTE frame 0 from frame 5 and active frame synchronization. Exemplary calculated
correlation coefficients for SSS sequences for frame 0 (left) and frame 5 (right) are
presented in Fig. 24.14. We observe that the SSS signal number 111 is detected for
frame 0. Therefore, the NCELL

ID = 335.
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Fig. 24.14: Results of LTE signal cross-correlation with 168 SSS secondary syn-
chronization sequences (0...167) for LTE sub-frame number 0 (left) and number 5
(right). Calculated correlation coefficients are presented

Listing 24.9: Matlab program for PBCH decoding in LTE signal (cont.)—cross-
correlation of SSS signal with LTE signal

�

1 % lab24_ex_4g_lte.m - continuation
2

3 % Extraction of SSS sequence and it equalizationusing the estimated channel
4 SSS_td = y(n1sss+Ncp2 : n1sss+Ncp2+Nfft-1); % OFDM symbol samples
5 SSS_fd = fftshift( fft( SSS_td ) ) / sqrt(Nfft); % FFT
6 SSS_fd = SSS_fd( k_pss ) ./ Hest; % correction
7

8 % Detection of N_SSS_ID and subframe number using the SSS
9 [SSS_ID, subframe, SSS_corr] = lte_sss_detect( SSS_fd.’, PSS_ID );

10 if( do_plots )
11 figure;
12 plot(0:167, SSS_corr(:,1), ’r’, 0:167, SSS_corr(:,2), ’b’);
13 title(’SSS detection’); xlabel(’N̂ {(1)}_{ID}’); ylabel(’Correlation’);
14 legend(’Subframe 0’, ’Subframe 5’); pause
15 end
16 % Calculating the physical radio cell indentifier
17 Ncell_ID = 3 * SSS_ID + PSS_ID;
18 display(sprintf(’N_cell_ID: %0d; Subframe: %0d; Sample: %0d’, ...
19 Ncell_ID, subframe, PSS_idx)),
20

21 %##################################################################
22 function [N_SSS_ID, subframe, R] = lte_sss_detect(rx_seq, N_PSS_ID)
23 R = zeros(168, 2);
24

25 % calculatecorrelation with each of 168*2 sequences
26 for nid1 = 0 : 167
27 [d_sf0, d_sf5] = lte_sss_gen(nid1, N_PSS_ID);
28

29 R(nid1+1,1) = sqrt( abs( sum( rx_seq .* conj(d_sf0) ) .̂ 2 ) );
30 R(nid1+1,2) = sqrt( abs( sum( rx_seq .* conj(d_sf5) ) .̂ 2 ) );
31 end
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32

33 [v,i] = max(R.̂ 2);
34

35 if v(1) > v(2)
36 subframe = 0;
37 N_SSS_ID = i(1)-1;
38 else
39 subframe = 5;
40 N_SSS_ID = i(2)-1;
41 end
42 end

��

24.3.6 CRS Signals: PBCH Decoding

Knowing the PCI, physical cell ID, we can calculate the cell-specific reference sig-
nals (pilots) (CRS) and use them for antenna port number detection and channel
identification. In Fig. 24.2 these special-task carriers are marked as A1, A2, A3, and
A4. Having the channel estimate and knowing number of the transmitter antenna
ports we can think about decoding the physical broadcast channel data, sent in 4
OFDM symbols after the PSS and exploiting central 72 sub-carriers (once again see
Fig. 24.2).

PBCH Signal Demodulation Aiming at PBCH decoding, we start with finding 4
OFDM symbols possessing it. Next we synchronize with symbol beginnings, per-
form 4 FFTs, and store selected spectral coefficients, i.e. 72 PBCH carrier states
values.

CRS Signal Generation Next we generate the CRS signals. They are QPSK-
modulated sub-carriers with pseudo-random IQ states which depend on the phys-
ical radio cell number NCELL

ID and are generated using Gold sequence. Details can be
found in the program.

Using CRS Signals for Number of Antenna Ports Detection The exact number
of antenna ports used by the base-station transmitter is coded in PBCH. In order to
avoid blind data decoding for different antenna configuration, we use CRS signals
for detection of the antenna port number. We correlate transmitted and received
states of CRS carriers for each antenna port Ak, k = 1,2,3,4, individually:

CAk =

∣∣∣∣ ∑
k∈CRS

Y (k)X∗
Ak
(k)

∣∣∣∣√∣∣∣∣ ∑
k∈CRS

Y (k)Y ∗(k)
∣∣∣∣+
√∣∣∣∣ ∑

k∈CRS
XAk(k)X

∗
Ak
(k)

∣∣∣∣
, k = 1,2,3,4. (24.20)
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In our example the following values of correlation coefficients were obtained:

CA1 = 1.0773, CA2 = 1.0405, CA3 = 0.2520, CA4 = 0.1887,

indicating that transmitter was using two antenna ports to transmit CRS signal.

Using CRS Signals for Channel Equalization Knowing transmitted and received
states of CRS signals (i.e. DFT coefficients), we can calculate channel estimate in
CRS signal positions:

Ĥ(kCRS) =
Y (kCRS)

SCRS(kCRS)
= Y (kCRS) ·S∗CRS(kCRS), (24.21)

and then interpolate this estimate in frequency (linearly) and in time (repeating the
last value). Channel estimation described by Eq. (24.21) is known as least squares
(LS), i.e. least-square error between transmitted and received values is minimized
when this formula is used. This is the simplest and the least efficient/precise method
of channel estimation but sufficient for BPCH decoding due to low-order modula-
tion used (QPSK) and high data redundancy.

Listing 24.10: Matlab program for PBCH decoding in LTE signal (cont.)—final
operations

�

1 % lab24_ex_4g_lte.m - continuation
2

3 % PBCH is in the first sub-frame only
4 if subframe == 0
5

6 % startingpositions of 4 PBCH symbols
7 PBCH_idxs = PSS_idx + Ncp2 + cumsum([Nfft+Ncp1, Nfft+Ncp2, Nfft+Ncp2, Nfft+Ncp2]);
8 % OFDM demodulation of 4 PBCH symbols, extraction of center 72 REs
9 % (resourceelements) (TS36.211 sec. 6.6.4, 1 RE = 1 subcarrier)

10 % (TS36.211 sec. 6.6.4)
11 PBCH_grid = zeros(72,4); % initialization
12 for n_sym = 1 : numel( PBCH_idxs ) % for 4 PBCH
13 PBCH_td = y( PBCH_idxs(n_sym) : PBCH_idxs(n_sym)+Nfft-1); % samples
14 PBCH_fd = fftshift( fft(PBCH_td) ) / sqrt(Nfft); % FFT
15 PBCH_grid(:,n_sym) = PBCH_fd( k_pbch ); % store
16 end
17 % figure; plot(real(PBCH_grid),imag(PBCH_grid),’o’); grid; title(’PBCH_grid’); pause

,
18

19 % symbol numberscontaining CRSs (Cell-Specific Ref Signals) for a given antenna
port

20 l_crs_ant = [0, 0, 1, 1];
21

22 % constants
23 N_PBCH_symb = 4; % number of PBCH symbols
24 N_PBCH_RB = 6; % number of Resource Blocks used by PBCH
25 N_ap_max = 4; % maximum number of antenna ports
26

27 % pre-allocate memory
28 x_crs = zeros( N_PBCH_RB *2, N_ap_max); % CRS transmitted (ref)
29 y_crs = zeros( N_PBCH_RB *2, N_ap_max); % CRS received
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30 k_crs = zeros( N_PBCH_RB *2, N_ap_max); % CRS indexes
31 H_est_crs = zeros( N_PBCH_RB *2, N_ap_max); % H estimated for CRS
32 H_est_PBCH = zeros( N_PBCH_RB*12, N_ap_max); % H estimated for PBCH
33 CRS_corr = zeros( N_ap_max, 1 ); % correlation of TX and RX CRS
34

35 % Iterate for all four antenna ports
36 for ant = 1 : N_ap_max
37 % Generate ideal CRS for slot 1 and current antenna port
38 [x_crs(:,ant), k_crs(:,ant)] = lte_crs_gen( N_PBCH_RB, Ncell_ID, 1, ...
39 l_crs_ant(ant), ant-1, cp_type);
40 % De-map CRS from the received signal
41 y_crs(:,ant) = PBCH_grid( k_crs(:,ant)+1, l_crs_ant(ant)+1 );
42

43 % Find correlationcoefficientbetween CRS TX and RX
44 % CRS_corr(ant) = abs( corr( x_crs(:,ant), y_crs(:,ant) ) );
45 CRS_corr(ant) = abs( sum( conj(x_crs(:,ant)) .* y_crs(:,ant) ) ) / ...
46 ( sqrt( abs( sum( conj(x_crs(:,ant)) .* x_crs(:,ant)) ) * ...
47 sqrt( abs( sum( conj(y_crs(:,ant)) .* y_crs(:,ant)) ) ) ));
48

49 % Estimatechannel (least squares) on pilot sub-carriers
50 H_est_crs(:,ant) = conj(x_crs(:,ant)) .* y_crs(:,ant);
51

52 % Interpolate to non-pilot frequencies
53 H_est_PBCH(:,ant) = lte_interp_crs_hest( H_est_crs(:,ant) ); % better
54

55 end
56

57 display(sprintf(’CRS xcor for PBCH: AP0=%1.4f, AP1=%1.4f, AP2=%1.4f, AP3=%1.4f’,...
58 CRS_corr(1), CRS_corr(2), CRS_corr(3), CRS_corr(4)));
59

60 % Determine REs that are occupied by PBCH by removing the CRS sub-carriers
61 PBCH_grid_RE_idx = ones( N_PBCH_RB*12, N_PBCH_symb ); % init: all 1s
62 for ant = 1 : N_ap_max % for all ant ports
63 PBCH_grid_RE_idx( k_crs(:,ant)+1, l_crs_ant(ant)+1 ) = 0; % 0s for CRS
64 end %
65

66 % Un-map PBCH modulationsymbols and channelestimates from the RE grid
67 y_pbch = PBCH_grid( PBCH_grid_RE_idx ~= 0 ); % take non-zero PBCH
68 h_pbch = zeros( length(y_pbch), N_ap ); % initializeh_pbch
69 for ant = 1 : N_ap % for antenna ports
70 H_est_PBCH_ant = repmat( H_est_PBCH(:,ant), [1,N_PBCH_symb] ); % copy to N_ap

cols
71 h_pbch(:,ant) = H_est_PBCH_ant( PBCH_grid_RE_idx ~= 0 ); % only for RE
72 end
73 size(y_pbch), size(h_pbch), pause
74

75 % Equalize TX diversity and do layer de-mapping to get constellationsymbols
76 PBCH_IQ = lte_eq_and_demap_tx_div( y_pbch, h_pbch(:,1:N_ap) );
77

78 figure; scatterplot( PBCH_IQ,[],[],’bx’ ); title(’Scatter for PBCH’); pause
79

80 end % of subframe==0
��
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Exercise 24.7 (PBCH in LTE Subframe 0). A proverb says that “the devil is
in the details.” Look inside all functions that are called in the Listing 24.10 and
analyze their code. Find where they are described, if at all, in the book. If you
are brave enough, propose your own solutions, modify the code, and verify its
correctness running the program.

Shortly About MIMO and Alamouti TX Diversity Scheme The multi-
antenna techniques in modern wireless communications can be used in differ-
ent ways depending on the needs and system capabilities. The most common
MIMO (multiple input-multiple output data streams) modes of operations are:

• Spatial Multiplexing—where a signal with high data rate is split into a mul-
tiple lower-rate streams and then each of them is transmitted using a sep-
arate antenna. This allows for increasing of peak throughput of the system
by a factor equal to a number of transmit antennas.

• Diversity coding—where a signal is coded using space–time or space–
frequency redundancy-adding code and then emitted from each antenna.
The coding paired with a very simple post-processing in the receiver allows
for increase of the SNR without a need for explicit channel knowledge at
the transmitter.

• Beam-forming—where the same signal is emitted from each of the transmit
antennas with prior phase and amplitude adjustment. The beam-forming
allows for maximization of the antenna gain in a given direction, provid-
ing spatial separation between different users and increasing the range of
the transmission. However, unlike the diversity coding technique, beam-
forming requires explicit knowledge of the channel state at the transmitter.

In LTE standard, PBCH channel is transmitted on multiple antennas using
space–frequency diversity coding technique, which is a form of transmit diver-
sity scheme proposed by Siavash Alamouti in 1998 [2]. By applying a simple
pre-coding at the transmitter in configuration with two transmit and a single
receiving antennas, a similar SNR gain may be achieved as in case of a sin-
gle transmit and two receiving antennas. Due to this fact, the scheme allows to
increase the probability of successful information decoding at the mobile ter-
minal without increasing its complexity (price), just by exploiting an additional
transmit antenna at the base-station.

Equalization of TX Space Diversity: Alamouti Coding and De-coding In Re-
lease 8 the LTE transmitter can use 1, 2, or 4 antennas at the same time. If there
are 2 or 4 antennas, the same signal is encoded to produce multiple streams trans-
mitted simultaneously from the antennas. They use the same FFT sub-carriers but
sent them in different states. Let us assume the following situation, presented in
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Fig. 24.15: a transmitter has two antennas, A1 and A2, and a receiver, our phone or
ADALM-PLUTO module, only one, marked as RX. Both transmitter antennas use
two neighboring sub-carriers in one OFDM symbol, i.e. with frequencies f1 and
f2 = f1 +15 kHz.

Fig. 24.15: Graphical illustration of space data coding using two transmitting an-
tennas A1 and A2 and one receiving antenna RX: (up) for frequency f2. (down) for
frequency f1. Complex-value numbers V and U are transmitted as states of sub-
carriers used ( f1 and f2) but with possible negation and complex conjugation

The channel frequency responses for each antenna (n = 1,2) and each frequency
(k = 1,2) is a complex-value number:

HAn( fk) = |HAn( fk)|e j∠HAn ( fk)
. (24.22)

They have the following values:

– HA1( f1) - H( f ) for path A1 → RX and frequency f1,
– HA1( f2) - H( f ) for path A1 → RX and frequency f2,
– HA2( f1) - H( f ) for path A2 → RX and frequency f1,
– HA2( f2) - H( f ) for path A2 → RX and frequency f2.

The antenna A1 transmits the carrier f1-th in state U , while antenna A2 in state −V ∗:

Carrier( f1) : Y ( f1) = HA1( f1) ·U−HA2( f1) ·V ∗. (24.23)
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The same time the antenna A1 transmit the carrier f2 in state V , while the antenna
A2 in state U∗:

Carrier( f2) : Y ( f2) = HA1( f2) ·V +HA2( f2) ·U∗. (24.24)

After complex conjugation of the last equation one obtains

Carrier( f2) : Y ∗( f2) = H∗
A1
( f2) ·V ∗+H∗

A2
( f2) ·U . (24.25)

Now we combine Eqs. (24.23), (24.25) into a matrix formula:
[

Y ( f1)
Y ∗( f2)

]
=

[
HA1( f1) −HA2( f1)
H∗

A2
( f2) H∗

A1
( f2)

]
︸ ︷︷ ︸

H

[
U
V ∗

]
(24.26)

Let multiply the matrix H from Eq. (24.26) by its conjugated transposition:

H
(

HT
)∗

=

[
HA1( f1)H∗

A1
( f1)+HA2( f1)H∗

A2
( f1), HA1( f1)HA2

( f2)−HA1( f2)HA2
( f1)

H∗
A1
( f1)H∗

A2
( f2)−H∗

A1
( f2)H∗

A2
( f1), HA1( f2)H∗

A1
( f2)+HA2( f2)H∗

A2
( f2)

]

(24.27)

If for each antenna, the channel frequency response is similar for the frequencies f1

and f2 (it should be because the frequencies are close to each other):

HA1( f1)≈ HA1( f2), HA2( f1)≈ HA2( f2), (24.28)

then the following simplification can be done for Eq. (24.27):

H
(
HT )∗ ≈C

[
1 0
0 1

]
, C = HA1( f12)H

∗
A1
( f12)+HA2( f12)H

∗
A2
( f12), (24.29)

where denotation f12 is used only for reminding that the H( f ) is assumed to be
valid for both frequencies f1 and f2. The last result tells us that the matrix H is
almost orthogonal. Therefore its inverse is equal to its appropriately scaled conju-
gated transposition, i.e. Hermitian transposition (.)H , and the Eq. (24.26) can be
solved easily:

[
U
V ∗

]
=

1√
C

[
HA1( f12) −HA2( f12)
H∗

A2
( f12) H∗

A1
( f12)

]H [
Y ( f1)
Y ∗

2 ( f2)

]
=

1√
C

[
H∗

A1
( f12) HA2

( f12)

−H∗
A2
( f12) HA1( f12)

][
Y1

Y ∗
2

]

(24.30)
In the LTE standard, all carriers used by PBCH in 4 consecutive time slots (see

Fig. 24.2), excluding the antenna pilots (CRS signals), are put together into a long
vector—one-by-one slot-after-slot. This is shown in Fig. 24.16. In 4 time slots (TS)
we have 6 resource blocks (RB) with 12 sub-carriers, i.e. together 288. Exclud-
ing 2T S · 6RB · 4 = 48 pilots, 240 sub-carriers remain: 120 carrier pairs using the
above-described frequency/space diversity coding scheme which originates from
the Alamouti method.
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Fig. 24.16: Graphical illustration of exploiting antenna space–frequency diversity
during PBCH decoding: PBCH data are transmitted as complex-values U and V by
pairs of two neighboring PBCH sub-carriers of PBCH time slots, scanned down-up,
and slot-by-slot

To Remember In fact the above-described new signal processing functionality
of the LTE digital telephony, the multi-antenna support, is a characteristic mark
of the standard and new telecommunication era that is coming. In this direction
goes further the 4G LTE successor, the 5G New Radio, allowing better support
and usage even up to 64 transmitting and 64 receiving antennas in the most
advanced beam-forming option (64 in base-stations, a phone has typically 1–2
antennas). Thanks to it a 5G user will have a specially designed for him/her,
optimal, directional radio beam improving the signal reception.

Exercise 24.8 (Testing Alamouti Transmission Scheme). Write program that
implements Eqs. (24.23), (24.24), and (24.30). Assume some complex-values
HAk( fl), k = 1,2, l = 1,2, U and V , and calculate Y ( f1) and Y ( f2) from the
first two equations. Then recover U and V from the third equation. Try to fulfill
conditions (24.28).

Observing PBCH Signal Constellation Points And now, the final view of our
risky LTE climbing. Somebody will say: our Show-Time or Happy-Hours. Obtained
PBCH scatter plots are presented in Fig. 24.17. On the left—without fractional CFO
estimation and correction, on the right—with it. In the correct right plot we can
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distinguish well separated four carrier states of the QPSK modulation. We can hope
that thanks to the added data redundancy and after Viterbi decoder number of errors
will be negligible.
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Fig. 24.17: Scatter plots of found PBCH channel QPSK constellation points in the
beginning of carrier frequency offset adaptation (left) and after some time (right)

24.4 Experiments Using Synthesized LTE Signals

Till now we were analyzing first algorithmic steps of the LTE decoder, leading to ex-
tracting information of the physical broadcast channel (PBCH). This allows a phone
to establish a connection with a base-station and be granted system resources, i.e.
resource blocks (RBs) of 12 sub-carriers in consecutive 6 or 7 time slots. We were
focused on identification of existing problems and their the easiest solutions. At
present, having the whole path described and program working, we would like to test
robustness of our solution in more sterile conditions and observe PBCH scatter plots
for different types of impairments individually. Our intention is comparing quantity
of scatter plot degradation for different disturbances and verification of efficiency of
algorithmic constellation points repairing. In order to have an unambiguous conclu-
sions, we will use clear, synthetic IQ LTE signals which support ADALM-PLUTO
SDR modules. The files consist of only one LTE frame which can be transmitted
in a loop by the PLUTO hardware in free-access frequency bands. The files include
5, 10, and 10 MHz LTE services (LTE5.mat, LTE10.mat, LTE20.mat) and
only QPSK carrier modulation. In order to turn on the signal disturbing, user should
set do_disturbing=1 in the LTE program beginning and then choose values
of disturbance parameters in the code fragment, presented in Listing 24.11. Scatter
plots Q(k) = f (I(k)), obtained from LTE transmission simulation for PBCH sub-
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carriers for different disturbances (impairments), are presented in Fig. 24.18. As we
see, fractional carrier frequency offset is the most harmful, however, scatter plot
degradation due to multi-path fading channel and incorrect ADC sampling rate is
also significant and non-acceptable for 16-QAM and higher-level modulations. The
scatter plot for all disturbances occurring the same time is not plotted, since it is very
similar to the fractional CFO scatter. Correction algorithms work satisfactory in all
cases and sub-carrier states can be recovered even when all disturbances occur the
same time (see the plot in left-down corner). Below all plots are shortly commented.

Listing 24.11: Matlab program for PBCH decoding in LTE signal (cont.)—addition
of disturbances (distortions)

�

1 % lab24_ex_4g_lte.m - continuation
2

3 if(do_disturbing)
4 % Parameter values
5 cfo=0; npwr=-160; ADCppm=0; G0=1; G1=0; G2=0; D0=0; D1=10; D2=25;
6 npwr=-30; % noise power [dB]:-160, ...,-60,-50,-40,-30,-20
7 % cfo=1245; % carrierfrequency offset (CFO) [Hz]
8 % ADCppm=200; % ADC error [ppm]: from-400 to +400
9 % G0=0.5; G1=0.25; G2=0.1; D0=0; D1=10; D2=25; % Multi-path: gains, delays

10

11 % Disturbingsignal
12 NADC = round((1+ADCppm/1000000)*N); step = N/NADC; % ADC error
13 if( step ~= 1 )
14 disp(’ADC ERROR -> generation !’);
15 NADC = length(0:step:N-step);
16 y(1,1:NADC)=interp1( [0:N-1], y(1:N), [0:step:N-step], ’spline’ );
17 N = NADC; y(NADC+1:end)=[];
18 end
19 y = exp(j*2*pi*rand) * G0*[ y(end-D0+1:end) y(1:end-D0) ] + ... % multi-path
20 exp(j*2*pi*rand) * G1*[ y(end-D1+1:end) y(1:end-D1) ] + ... %
21 exp(j*2*pi*rand) * G2*[ y(end-D2+1:end) y(1:end-D2) ]; %
22 y = y .* exp( j*2*pi*cfo/fs*(0:N-1)); % CFO
23 y = y + 10̂ (npwr/20) / sqrt(2) * (randn(1,N)+j*randn(1,N)); % AWGN
24 end

��

Noise Noise is very unwanted. It is not only influencing the FFT output, making the
IQ scatter more cloudy, but also it makes estimation of the carrier frequency offset
and momentum channel frequency response significantly more difficult. In conse-
quence, it causes CFO and channel estimation errors, wrong corrections, and wrong
constellation point positions. Amplified thermal noise of a receiver and interference
from neighbor physical radio cells are the main noise sources.

Fading Channel The channel attenuates and delays the LTE signal frequency sub-
carriers in different manner, according to its frequency response. Original, trans-
mitted amplitudes and phases of sub-carriers are lost. It is absolutely necessary
to estimate the channel impulse/frequency response permanently when the chan-
nel is dynamically changing. In LTE approximately one per 35 microseconds (due
to user mobility). In our experiment the channel has significantly attenuated the sig-
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Fig. 24.18: PSD spectrum of the investigated 20 MHz LTE synthetic signal for signal
not distorted (left) and distorted by all impairments occurring the same time

nal amplitude. Additionally its multi-path nature causes significant broadening of
the scatter plot constellation points. Both effects are very harmful and they cause
application of higher order QAM modulations impossible. Therefore, the channel
was estimated and compensated (see right plot in the second row in Fig. 24.19): at
present the scatter plot is sharper and properly scaled.

Carrier Frequency Offset This is the most dangerous impairment in regard to
scatter plot smearing. Since all signal components are shifted in frequency, the LTE
sub-carriers no longer represent orthogonal DFT harmonics. Therefore, the DFT
coefficients capture energy of many LTE sub-carriers and their values and IQ con-
stellation points become fuzzy. After precise CFO estimation and correction, this
effect can be almost completely canceled.

Wrong ADC Sampling Rate Wrong ADC sampling rate also causes losing sub-
carrier orthogonality in DFT, and has to be corrected absolutely. The ADC sampling
rate can be estimated by counting number of samples between PSS synchronization
signals. If they are too many or too less, the signal can be interpolated/resampled
(what is very time-consuming) or sampling frequency has to be properly adjusted
in ADC hardware (what is preferred). The same situation was in DAB radio, as you
remember.

Exercise 24.9 (Disturbances). In the program lab24_ex_4g_lte.m
choose an input file with a synthetic IQ LTE signal (LTE5.mat, LTE10.mat
or LTE20.mat). Set do_disturbing=1. Then, one-by-one, turn ON
one disturbance only: noise, fractional carrier offset, channel and ADC
ppm error. Run the program, increase the disturbance level, and try to ob-
tain plots shown in Fig. 24.19. Next, check how the situation will change
when disturbances exist together which is typical. At the end, choose file
LTE_TM3p1_10MZ_18p22dBFS.txt with 16-QAM data embedded in
weak noise. Observe displayed scatter plots. Start adding disturbances.
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Fig. 24.19: Results from 20 MHz LTE transmission simulation, using synthetic
IQ files with only QPSK sub-carrier modulation. PBCH scatter plots for: (first
row) noise power −30 dB (left) and −20 dB (right), (second row) fading chan-
nel G0=0.5; G1=0.25; G2=0.1; D0=0; D1=10; D2=25 not corrected
(left) and corrected (right), (third row) fractional carrier frequency offset 1234 Hz
without correction (left) and with correction (right), (fourth row) 400 ppm ADC
sampling rate error without correction (left) and all disturbances occurring together
(noise −30 dB) with correction (right)
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24.5 5G New Radio

The 5G New Radio standard is an attempt of incorporating in one normalization act
as many mobile services of the future as possible. We can say that 5G is a common
operational shell for different use cases of mobile, wireless data exchange, i.e. it
is a supervisor which is managing radio-frequency resources and giving access to
them for all users: state, institutional, and public. It is like a computer operation
system granting many programs time-multiplexed or parallel access to a processor,
memory, and input/output devices.

24.5.1 Introduction to 5G NR

Fulfillment of growing new needs requires new technical solutions. The 5G New
Radio standard [10] addresses the following important new use cases: [18, 26]

1. enhanced Mobile Broadband (eMBB)—e.g. high-speed Internet access for
browsing, high-definition video streaming, and virtual reality—10–20 Gbps
peak throughput, 100 Mbps guaranteed, 10000× bigger traffic, 100× network
energy saving, support for high user mobility (500 km/h),

2. ultra Reliable Low Latency Communications (uRLLC)—e.g. for autonomous
vehicles, remote surgery, industry automation—ultra responsive, reliable and
available (99.9999%), low latency (below 1 ms in air, 5 ms end-to-end (E2E)),
extremely low error rates, low to medium data rates (50 kbps–10 Mbps), high-
speed mobility,

3. massive Machine-Type Communication (mMTC)—e.g. massive Internet of
Things—high density of devices, long range, low data rate (1–100 kbps),
machine-to-machine (M2M) ultra low cost, asynchronous access, 10 years bat-
tery life.

Apart from them, in between on the cross-roads, smart homes and mission critical
applications are located. In general—data exchange everywhere and anytime super-
vised by one joint wireless telecommunication framework. In Fig. 24.20 a scope of
5G application fields is summarized.

In order to get the requested, challenging, new functionalities, significant new
technical solutions had to be applied in the 5G NR. In Table 24.3 the 5G NR is com-
pared with legacy 3G and 4G digital telephony standards. We can briefly conclude
that it differs from 4G using:

• new, higher frequency bands in millimeter wave spectrum, up to 37–52 GHz,
• wider channel bandwidths, up to 400 MHz in frequency bands above 6 GHz

and up to 100 MHz below 6GHz,
• filtered OFDM [1] generalization of CP-OFDMA and SC-OFDM,
• new channel coding techniques, i.e. LDPC [21] and polar codes [3],
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Fig. 24.20: New fields of 5G applications

and offering:

• bigger throughput, up to 20 Gbps in down-link and 10 Gbps in up-link,
• smaller latency down to 1 millisecond.

In Table 24.3 first releases of the 3G (R99) and 4G LTE (R8) standards are in-
cluded also in order to compare what was offered when both standards appeared.
Later 3G offered 2×2 MIMO systems and 4G (LTE) 8×8 and even 32×32 MIMO.
In LTE for MIMO bigger than 4×4 user-equipment specific reference signals (UE-
RS) are used instead of physical cell-specific ones (CRS), similarly as in 5G.

Since 5G is using filtered OFDM (f-OFDM), in Fig. 24.21 the new modulation
method is compared with the classical OFDM used in 4G LTE. Both techniques
exploit the cyclic prefix and bandwidth shaping filters. In 4G LTE one IFFT is per-
formed and a wide-band filter is used, while in 5G—multiple IFFTs are calculated
which are followed by filters with different non-overlapping pass-bands (arbitrarily
wide separating zones are used between them). Thanks to this the harmful influence
of out-of-band interference (disturbances) is significantly reduced in 5G. But what
is more important: different 5G services can have different sub-carrier spacing and
different length of OFDM symbols.

From the signal processing perspective, the 5G is addressing and solving signal
processing tasks listed in Fig. 24.22. Below we only comment the most important,
new or significantly enhanced ones.
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Table 24.3: Comparison of 3G (Release 99), 4G LTE (Release 10), and 5G New
Radio (Release 15) digital telephony

3G WCDMA 3G HSPA+ 4G LTE 5G NR

Year of public. 2000–2001 2007 2011 2019
Freq bands (GHz) 0.6–3.5 0.6–3.5 0.6–6 0.6–6, 24–30, 37–40
Channel BW (MHz) 5 5 1.4–20 5–100 (<6 GHz),

50–400 (>6 GHz)
Peak downlink
(Mb/s)

0.384 28 900a 20,000

Peak uplink (Mb/s) 0.384 11 50 10,000
Latency (ms) 150 50 10 1
Modulation QPSK QPSK-64QAM BPSK-64QAM BPSK-256QAM

Multiple access CDMA CDMA
CP-OFDMA CP-OFDMA
SC-FDMA SC-FDMA,f-OFDM

Error correction Turbo, Conv Turbo, Conv Turbo, Conv LDPC, Polar codes
Antenna config. 1×1 2×2 MIMO � 8×8 MIMO massive

MIMO,ant.�
64×64

a—valid for aggregation of three 20 MHz services and 64-QAM

Fig. 24.21: Comparison of 4G CP-OFDM (up) with 5G f-OFDM (down)

• 5G NR physical layer better exploits existing beam-forming possibilities: all
synchronization signals are User-Equipment (UE) specific. At present, maxi-
mum number of MIMO layers is the same in 4G and 5G. Number of antennas
is not restricted by 4G and 5G standards.
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Fig. 24.22: 5G NR signal processing tasks

• Usage of the new f-OFDM modification, in which several IFFT outputs are
sub-band filtered and combined with other bandwidth parts (BWP), together
with appropriate separating zones, allows integration of different type services
inside 5G. This makes the standard more universal/flexible.

• When very high frequencies, millimeter waves, are used, an analog TX hard-
ware is more non-linear and a transmitted signal should be adaptively pre-
distorted before the digital-to-analog converter (DAC). This way momentum
non-linear characteristic of analog power amplifier is compensated.

• For millimeter waves (> 6 GHz) a phase noise, caused by frequency jitter, is a
significant problem which has to be efficiently solved [20].

In 5G many different signals and data transmission channels are used in down-
link and up-link. Each of them has precisely defined role in the system. Main 5G
signals and data channels are characterized in Table 24.4, which are given: their
names, modulation used, coding applied, and purpose of usage. We can observe that:
(1) synchronization and network access signals use low-level modulations (BPSK,
QPSK), (2) synchronization signals are not coded (there is no sense doing this—we
are only interested in analog values of carrier states), (3) control channels are coded
with polar codes (in 4G—convolutional codes), while shared channels use LDPC
(in 4G—turbo codes).

Finally, in Table 24.5 and in Fig. 24.23, physical 5G down-link and up-link spec-
ification is given [15]. We see in the table that the standard provides a support for the
4G set-up: Δ f = 15 kHz, sampling rate 30.72 MHz, time slot duration 1 millisec-
ond and its division into 14 OFDM symbols, OFDM symbol duration 66.67μs and
cyclic prefix length equal to 4.69μs. Increase of sub-carrier spacing 2n times causes
the same increase of slots in sub-frame. It is clearly visible in Fig. 24.23 where 5G
frames are shown for different Δ f values (resulting from sampling frequency used).



24.5 5G New Radio 843

24.5.2 Exemplary Data Decoding

The Physical Broadcast Channel (PBCH) data decoding is similar in 4G and 5G. The
5G base-station has to generate the Synchronization Signal Block (SSB) consisting
of [15, 17]:

1. the primary PSS synchronization signal, being a modulated maximum length
sequence (MLS) having 127 samples (not Zadoff–Chu sequence as in 4G LTE);
there are 3 different PSS sequences defined,

2. the secondary SSS synchronization signal, being also a MLS sequence having
127 samples; there are 336 different SSS sequences defined,

3. the BPCH broadcast signal, delivering some necessary 5G NR system informa-
tion to a user equipment.

Together PSS and SSS defines 1008 = 3 ·336 different physical radio cell identities.
After detection and decoding PSS and SSS, user equipment, a phone, is calculating
the physical cell number and using it for generation of specific pilots exploited for
PBCH synchronization. In 5G all pilot signals are cell or user specific, similarly like
in 3G and 4G. Thanks to them a phone can achieve down-link time and frequency
synchronization with OFDM symbols and acquire time instants of the PBCH chan-
nel.

The PBCH, similarly to LTE, carries the basic 5G NR system information which
is required to connect with the base-station. PBCH has its own pilots. It is send in
only one antenna port (no TX diversity is applied, the signal is linearly precoded
using beam-forming) and coded by polar codes. It is transmitted many times during
radio frame using different beams. As a result, a user phone recognizes the best
beam for it during access to the network.

In 5G PBCH makes use of 20 central Physical Resource Blocks (PRBs) of
OFDM symbol and 20 · 12 = 240 sub-carriers. Sequence in the SSB block is as
follows: PPS (127 sub-carriers), then one complete PBCH symbol, then SSS in the
middle and PBCH around it (4 RBs on both sides), then again one complete PBCH
symbol. In separate OFDM time–frequency cells (slots) of PBCH, specific pilot sig-
nals are sent by only one antenna port. In general, the 5G PBCH decoding procedure
is very similar to this trained by us during analysis of the LTE signal.

In 4G LTE 2×2, 4×4, and 8×8 antenna arrays were used. In 5G choice is sig-
nificantly bigger. Below 6 GHz maximally 8×8 antenna arrays are allowed, while
generally—up to 64× 64. It is important to stress that the standards 4G and 5G do
not limit number of physical antennas. Some limiting numbers are given only when
practical consideration are taken into account. In 64× 64 MIMO, the base-station
have 64 transmit and receive antennas, while a single user equipment—significantly
less, 2 or 4. These very large antenna arrays in the base-station are referred to as
massive MIMO. It is considered as one of development [14].

For millimeter, i.e. shorter, waves antenna dimensions are lower and application
of bigger antenna arrays is more practical. Gain and phase of each antenna is ad-
justed, in the most optimistic scenario—even for single user. Thanks to this, RF
beams in different directions can be stronger and RF reception power is increased
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Table 24.5: 5G New Radio physical down-link and up-link specification

Sub-carrier spacing Δ f [kHz] 15 30 60 120

OFDM symbol duration [μs] 66.67 33.33 16.67 8.33
Cyclic prefix duration [μs] 4.69 2.34 1.17 0.586
Slot duration (14 symbols) [μs] 1000 500 250 125
Slots in sub-frame 1 2 4 8
Sampling rate 30.72 61.44 122.88 245.76

Fig. 24.23: Frame structure used in 5G New Radio

in a particular direction, which allows for a spatial separation of users. In 5G SSB
signals of the PBCH are transmitted periodically on multiple beams and the mobile
terminal can select the best beam for it during initial physical cell access. Beam-
forming is performed in both direction, up-link and down-link, but usually only
in the base-station. It consists of antenna signal scaling in amplitude and shifting in
phase, therefore it is simple in implementation even for large antenna arrays. In con-
trary to Alamouti coding, the beam-forming operation is transparent for a phone—it
does not have to know that beam-forming is utilized.

It is important to note that MIMO 2× 2, 4× 4, etc., denote number of parallel
data streams on input and output, not the number of antenna used. Both 4G LTE and
5G NR allow usage up to 8 data layers, the bigger amount is not practical. However
antenna arrays which are used can have bigger dimensions. It is not restricted by
standards, but practical implementation aspects, like resulting antenna array size or
hardware design complexity.
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Another story is transmission and decoding data in down-link and up-link shared
channels. On this web page a Matlab program simulating the physical up-link trans-
mission is given. Its description is presented in this paper [5], available at https://
github.com/gc1905/5g-nr-pusch The block diagram, describing all operations per-
formed in the program, is presented in Fig. 24.24. It is only informative and its goal
is to give us a general idea what will be going on in our future 5G phones.

PUSCH/PDSCH Decoding The most difficult signal processing part of a 5G
phone deals with synchronization, channel estimation and correction as well as ef-
ficient error checking and correction issues. In the transmission simulation program
used by us, the PUSCH data are recovered using algorithm which block diagram
is presented in Fig. 24.25. Result obtained with its use is shown in Fig. 24.26. The
following scatter plots of Q(k) = f (I(k)) are presented: for input data (left), for un-
corrected data (center), and for synchronized and channel equalized data (right). As
we see—“nothing is easy.” If we want to live on Mars, first we have to reach it.

Exercise 24.10 (5G NR Is Coming). A Matlab program with simulation of up-
link shared transmission of user data (physical up-link shared channel (PUSH))
is given at this web page. Two main files have names run_5gnr_codec.m
(LDPC encoder/decoder without front-end base-band processing layer, mod-
ulation mapper and de-mapper) and run_5gnr_sim_sweep.m (full simu-
lation). Algorithmic solutions, implemented in the program, were briefly de-
scribed in this chapter. In wide form, they are presented in the paper [5] avail-
able at this ResearchGate page. Analyze code of both programs. Then look
inside functions that are called by them, and into sub-functions called by func-
tions... Visit all sub-folders and read names of all subroutines present in them—
their names are self-presenting. Then run the programs. Observe figure when
they are plotted. Find them in this this paper.

24.6 Summary

Modern digital telephony is a part of complex system of completely con-
nected digital world including: smart home, autonomous vehicles, Internet of
Things, intelligent automated industry, sensor networks, mission critical and
extremely high data-rate applications. It is a part of human dreams about ev-
erything possible “just now and here!” It is a part of yesterday science-fiction
becoming reality today. It is realization of our dreams about convenient and
safe life. How to conclude all of this? What is the most important?

https://github.com/gc1905/5g-nr-push
https://github.com/gc1905/5g-nr-pusch
https://github.com/gc1905/5g-nr-pusch
https://github.com/gc1905/5g-nr-pusch
https://www.researchgate.net/publication/334131904_Prototyping_Software_Transceiver_for_the_5G_New_Radio_Physical_Uplink_Shared_Channel
https://www.researchgate.net/publication/334131904_Prototyping_Software_Transceiver_for_the_5G_New_Radio_Physical_Uplink_Shared_Channel
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Fig. 24.24: Simplified diagram of physical down-link (PDSCH) and up-link
(PUSCH) shared channel data/signal processing in 5G New Radio
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Fig. 24.25: Algorithm of PUSCH channel data recovery implemented in this pro-
gram
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Fig. 24.26: Simulation result of PUSCH data recovery using algorithm from
Fig. 24.25 and (left) original scatter, (middle) scatter after LS channel equalization,
(right) scatter after MMSE channel scatter equalization

1. Our world is in permanent progress and nowadays solutions will not be
used forever. After 5G we will have 6G, 7G, and so on. Therefore it is cru-
cial to have good understanding of existing technical telecommunication
problems and wide knowledge about many methodologies of their solving.
The methods will change but their philosophy—not necessarily.

2. Advanced contemporary and future telecommunication systems will have
many users and layers, options, and different application scenarios. To en-
sure all their features anytime and anywhere for everybody, front-end sig-
naling will be becoming bigger and bigger. More bricks in the wall will
be used. More players will be in the game. We should understand general
concepts of all main operations, in order not to be imprisoned by a single
equation or a single program line.

3. The 4G LTE and 5G NR technology represent a natural further develop-
ment of concepts originated from telephone and cable discrete multi-tone
modems, having in mind multiple access, user mobility, and channel fast
variability.

4. In order to ensure achievement of very ambition objectives, in 4G LTE
and 5G NR many control and synchronization signals are transmitted (for
example, the physical radio cell-specific reference signals (CRS) in LTE
are sent every 35 μs) and channel estimation and equalization is done con-
tinuously. There are numerous synchronization signals in 5G and they are
different than in DSL and DAB, but general concept of their generation,

https://github.com/gc1905/5g-nr-push
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detection, and usage remain the same. The same is true for channel estima-
tion: methods are the same, only their realization is different. Channel is
estimated in specified points in time–frequency grid, for selected carriers
(pilots) and selected time slots, then interpolated and applied to remaining
data carriers. Statistical signal processing, with its means and covariances,
helps us to cope with many transmission distortions and track the chan-
nel changes. Concluding: we have to “un-do” what channel and imperfect
hardware “did” with our signals.

5. The MIMO antenna technique, already present in late 3G (HSPA+) and
widely applied in 4G LTE telephony, is significantly enhanced in 5G New
Radio. Different transmitter antennas sent the same data using different car-
riers (i.e. the same IQ state is transmitted a few times) and this frequency
carrier (space) diversity increases the system noise robustness even when
the receiver has one antenna only (MISO—multiple inputs, single output).
In case of several RX antennas (MIMO)—the BER is much more reduced.
Thanks to advanced MIMO techniques, base-station may offer even a spe-
cial signal beam-forming for a single user. And this is a completely new
DSP story, may be worthy writing another book.

6. The 5G New Radio is coming. But we should not be afraid of. Details are
different, but, from signal processing perspective, the techniques applied
are similar and should not be difficult for us. In this chapter operations per-
formed by the 5G transmitter and receiver were briefly described and link
to a Matlab program [5], simulating the data link was indicated (see https://
github.com/gc1905/5g-nr-pusch this web page). We should not worry! We
are 5G Ready.

24.7 Private Investigations: Free-Style Bungee Jumps

Exercise 24.11 (*** Going Forward with a Smile). Dear Reader. Everything
has an end. Our together DSP journey also. After hundreds of pages, equa-
tions, figures, and diagrams. After hours of reading. After writing and running
many programs. It is time to go forward alone, to taste sweet fruits of your
new knowledge, to formulate your own tasks, to look for treasures hidden in
signals around us. It is time for better understanding surrounding world, for
being a technical detective and private investigator similar to Sherlock Holmes
and Philip Marlowe, for live with passion, for enjoying beauty of work and for
searching it.

https://github.com/gc1905/5g-nr-pusch
https://github.com/gc1905/5g-nr-pusch
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I liked a lot The Muppet Show News with a charming announcement: “There
are no news today.” Impossible in our speeding forward world, inventing new
and new gadgets. Science and technology rush ahead and our dreams and ex-
pectations together with them. This which was impossible yesterday, today is
our everyday reality allowing us efficient functioning in cyberspace.
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bit-reverse sample partitioning, 103
bits per second, 616
Blackman-Tukey

fast algorithm, 144
power spectral density, 126

butterfly in FFT, 101
Butterworth prototype filter, 179

C
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convolutional coding, 789
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application, 682
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DAB digital radio
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FIG decoding, 773
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SF structure, 777
SF synchronization, 778
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linear prediction, 354
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filter, 262
principles, 262
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direct, 257, 262
fast, 272
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deterministic signal, 9, 23
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DFT
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FM demodulation, 311
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down-sampling, 257, 262, 266, 272
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introduction, 687

DtFT discrete-time Fourier transform, 72
DtFT fast algorithm, 143
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E
early-late-gate method, 655, 666
eigenvalue, 349
eigenvalue decomposition EVD, 349
eigenvector, 349
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f-OFDM (filtered), 841
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FEC forward error correction, 591
FEQ channel equalization, 728
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FFT fast Fourier transform

applications, 115
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usage principles, 116
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filter weights, 425
polyphase implementation, 421
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prototype filter, 416
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demodulation
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summary, 537
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decoder, 573
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software decoder, 674
software encoder, 670
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forward error correction, 591
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Fourier spectrum
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Parseval’s equation, 71
symmetry, 67

Fourier transform
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discrete DFT, 66

fractional delay filters, 274
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frame synchronization, 591, 638, 639
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instantaneous, 30, 31, 518
intermediate, 492
up-down conversion, 489
up-down conversion example, 615

frequency equalization, 728
frequency masking phenomena, 408
frequency response

analog filter, 156, 157
digital filter, 197, 206

frequency transformations, 177

G
G fast modem, 700
Gardner method, 655
Gaussian, 24
Gold codes, 592, 636, 638, 682
group delay, 650
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Haar filters, 281, 480
hardware of the RF receiver, 493
HARQ, 806
header, 591, 682
hearing system basics, 408
Hilbert filter

AM-PM demodulation, 299, 353
analytic signal, 297
characterization, 294
definition, 294
FIR weights, 295
FM demodulation, 299, 353
frequency-domain implementation, 303
in-out synchronization, 303
signal demodulation examples, 305
time-domain implementation, 300

Hilbert-Huang signal decomposition, 307
histogram, 28
HomePlug modem, 687
Huffman coding, 465

I
IID random variables, 27
image

2D DCT transformation, 448
2D DFT transformation, 440, 447
2D convolution, 440
2D wavelet transform, 480
acquisition/discretization, 445
as a sum of elementary images, 450
compression in 2D DCT domain, 455
compression JPEG, 469
compression via DCT, 441
filtering in frequency domain, 454
filtering via 2D convolution, 458
processing basics, 439
representation as a matrix, 443
RGB coding, 443
watermarking, 478
YCbCr coding, 444

impulse response
of a digital filter, 196
of an analog filter, 155

Incremental Redundancy, 807
instantaneous frequency, 30, 31, 518
integer values, 5
intermediate frequency, 492
interpolated DFT, IpDFT, 146, 367
interpolation

filter, 260
operation, 259

interpolator
direct, 257

Farrow structure, 276
fast, 269

ISI inter-symbol interference, 705

J
JPEG

DCT quantization tables, 470
encoder and decoder, 470
image compression, 469
zig-zag 2D DCT scanning, 472

K
Karhunen-Loève transform, 60
Kumaresan-Tufts LP-SVD method, 360

L
Laplace & Fourier transform relation, 157
Laplace transform, 157
lattice AR filter, 401
LFM modulation, 519
linear prediction

interpolated DFT method, 367
Kumaresan-Tufts LP-SVD method, 360
Matrix Pencil covariance method, 362
Pisarenko method, 365
Prony method, 356
signal modeling, 354
Steiglitz-McBride method, 358
total least squares TLS, 362
Yule-Walker auto-correlation method, 364

linear spectrum pairs LSP, 400
LMS adaptive filter

adaptation rule, 324
frequency-domain-LMS, 328
leaky-LMS, 327
Newton-LMS, 328
normalized-LMS, 327
optimal Wiener solution, 325
partial-update-LMS, 327
set-membership-LMS, 327
sign-LMS, 327
stability condition, 326
sub-band-LMS, 328

lossless coding
arithmetic, 467
Huffman, 465

LP-SVD method, 360
LTE 4G digital telephony

Alamouti TX diversity scheme, 831
basics, 802
down-link receiver diagram, 808
down-link transmitter diagram, 806
fractional CFO correction, 816
frame structure, 804
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LTE 4G digital telephony (cont.)
Hybrid Automatic Repeat reQuest HARQ,

806
Incremental Redundancy, 807
integer CFO correction, 813
introduction, 800
PBCH decoding, 828
PSS synchronization sequences, 819
PSS-based CFO estimation, 823
PSS-based frame synchronization, 821
PSS/SSS synchro signal position, 805
SC-FDMA vs. CP-OFDM, 809
spectrum, 812
SSS synchronization sequences, 824
SSS-based radio cell identification, 826

LTI linear time-invariant system
analog, 156
digital, 195

M
magnitude frequency response

analog filter, 158
digital filter, 197, 207

matrix
pencil, 351
pseudo inverse, 351

Matrix Pencil AR method, 362
maximum length sequence, 592, 718, 825
mean, 28
modem, 687
modulation

AM, 24, 541
AM DSB double side band, 545
AM SSB single side band, 545
AM summary, 580
FM, 24, 519
FM Bessel functions, 520
FM Carson’s rule, 520
FM summary, 537
LFM, 519
SFM, 519

motion compensation in MPEG video, 476
MP3 layer of MPEG audio, 430
MPEG audio

FB fast DCT-based version, 424
FB fast FFT-based version, 425, 426
FB filter weights, 425
FB frequency response, 419
FB polyphase implementation, 421
FB prototype filter, 416
FB transformation matrix, 425
filter bank, 416
frame, bitstream, 429

MP2 encoder/decoder diagram, 428
MP2 MP3, 407
MP2 sub-band decomposition, 428
MP3 enhancements, 430
MP3 MDCT prototype filters, 430
MP3 MDCT sub-band decomposition, 433
MP3 window switching, 432
prototype filter frequency response, 418
psycho-acoustical model, 413
signal-to-mask ratio, 415
spectral un-predictability measure, 414
tonality index, 414

MPEG video
decoder, 475
encoder, 475
motion compensation, 476

MSE mean square error, 473
Mueller-Müller method, 656
multi-carrier transmission

basics, 487, 687, 689, 693, 745
examples, 697

multi-dimensional signal, 11
multi-resolution signal decomposition, 280
multi-tone transmission, 487
multiplexing of services, 512

N
nano satellite bit decoding, 663
nano-satellite signal, 534
NEXT cross-talk, 716
NLMS adaptive filter, 327
noise

as a disturbance, 621
Gaussian, 26
uniform, 26

non-stationary signal, 10
Nyquist sampling theorem, 14, 509

O
OFDM, 487, 689
orthogonal

frequency division multiplexing, 487
DCT cosine transform, 52
DFT Fourier transform, 54
DST sine transform, 52
Haar transform, 52
Hadamard transform, 52
matrix, 48
transform definition, 44, 47
transform examples, 51
vectors, 46

orthogonality importance, 713
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orthonormal vectors, 46
overlap-add/save convolution, 137, 252

P
PAPR peak-to-average power ratio, 809
parametric modeling, 354
Parks-McClellan method, 250
Parseval’s equation, 71
perfect reconstruction, 56, 281, 424, 431
phase delay, 650
phase frequency response

analog filter, 158
digital filter, 197, 207
linear, 161
time delay, 161

phase wrapping/unwrapping, 158
phasor-diagram, 610
pilot, 682
Pisarenko AR method, 365
pitch period, 378
pixel, 439
playing sounds, 7
PLC modem, 687, 700
PLL phase locked loop

algorithm, 564
application, 682
general, 561
program, 565

PLUTO, 494–496
polyphase

decimator, 272
filters, 266
interpolator, 269

power
definition, 28
spectral density, 120
spectrum, 120

power spectral density, 124, 126
preamble, 591, 682
probability density function, 26
Prony method, 356
PSNR peak signal to noise ratio, 472
PSS LTE sequences, 819
psycho-acoustical model, 413
psycho-acoustics basics, 408
pulse shaping filter, 588, 599

Q
QAM modulation principles, 587
quadrature

demodulator/down-converter, 490, 492, 493
modulator-demodulator program, 491
modulator/up-converter, 488, 492

quantization, 8

R
radio frequency

allocation, 485
bands, 486
services, 486
transmitter and receiver, 492
up-down conversion, 489, 492

raised cosine pulse shaping, 600
random number generator, 29
random signal, 9, 25
RDS FM radio bit decoding, 668
re-sampling

fractional, 258
M/N, 263
polyphase, 266

receiver
analog, 492
hardware, 493
software digital, 493

recording sounds, 7
recovery

carrier, 557, 561, 568
symbol timing, 592

reducer, 262
Reed-Solomon coding, 787
Remez algorithm, 250
residual signal in LPC, 385
RGB, 443
RLC circuit example, 163
RLS adaptive filter

dynamic observer/trucker, 332
weight update, 332

RMS root-mean-square value, 28
RTL-SDR, 494, 495

S
sampled signal, 8
samples per symbol, 652
sampling, 12

sub-band, 17, 509
theorem, 14

sampling ratio
down, 257, 262
estimation and correction, 721
up, 257, 259
up-down, 263

SC-FDMA single carrier FDMA, 808
Schmidl-Cox method, 730
service

bandwidth, 509
central frequency, 509

SFM modulation, 519
short-time Fourier transform, 128
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definition, 1
AM demodulation, 543
AM modulation, 24, 541
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classification, 7
damped sinusoid, 24, 30, 346
deterministic, 9, 23
discrete-value, 8
ergodic, 10
exponent, 24
FM modulation, 24
Gaussian, 24
harmonic, 24
multi-dimensional, 11
non-stationary, 10
orthogonal transformation, 44
parameters, 28
quantized, 8
random, 9, 25
reconstruction, 18
sinc, 18
sinusoid, 13, 24, 30
stationary, 10
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correlation, 28
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mean, 28
power, 28
RMS, 28
SNR, 28, 34
variance, 28

sinc function, 18
single carrier

carrier recovery, 589
demodulator, 589
header/preamble, 635
modulation basics, 587
modulator, 588
receiver program, 631
timing recovery, 590
transmission basics, 585, 590, 626

single-carrier
transmission basics, 487

singular value decomposition SVD, 351
sinusoid, 8, 13, 24, 30
SMR signal-to-mask ratio, 405, 410, 411
SNR signal-to-noise ratio, 28, 34
software defined radio, 493
software digital receiver, 493
source coding, 591, 593
spectral flatness measure, 411
spectrum

calculation for IQ signals, 504
compactness, 56

spectrum example
3G UMTS GSM telephony, 500
4G LTE digital telephony, 812
avionics VOR signal, 497
DAB radio, 500, 754
FM radio signal, 497
nano satellite signal, 498
Wi-Fi, 503

speech
cepstral coefficients, 394
cepstrum, 393
compression principles, 375, 399
dynamic time warping, 396
formants, 376
inverse synthesis filter, 384
lattice synthesis filter, 401
linear spectrum pairs LSP, 400
melcepstral coefficients, 376, 402
modeling, 377
pitch period, 378
recognition, 389
recognition principles, 376, 400
residual signal, 385
synthesis, 379
synthesis filter, 381
synthesis filter coefficients, 380, 382
unvoiced, 376–378
voice activity detection, 391
voiced, 376–378

spreading function, 411, 413
square root raised cosine pulse shaping, 601
square root RC - why not RC, 619
SSB AM single side band, 545
SSS LTE sequences, 824
stationary signal, 10
Steiglitz-McBride method, 358
STFT, 128
sub-band

sampling, 17
sub-band signal decomposition, 406
sub-space AR method, 365
symbol synchronization, 592

using cyclic prefix, 730, 739
using Schmidl-Cox method, 730

symbols per second, 616
synchronization

ADC sampling ratio, 721
carrier, 557, 561, 568
frame, 591
headers/preambles, 636
symbol, 655



Index 861

T
TEQ channel equalization, 694, 705, 723, 736
TETRA terrestrial trunked radio, 679
time delay, 161
time equalization, 694, 723
time-frequency analysis, 128, 307
timing recovery, 592, 682

early-late-gate method, 655, 666
Garder method, 655
Mueller-Müller method, 656

tonality index, 411
transfer function

analog filter, 156, 157
digital filter, 194, 205

U
U2 notation, 5
up-sampling, 257, 259, 268
USAC universal speech/audio coding, 408

V
variance, 28
video

acquisition/discretization, 446
compression, 441

Viterbi decoder, 789
VLI variable length integer coding, 471
voice activity detection, 391
voxel, 439

W
watermarking images, 478
wavelet

filters, 280–282
transform, 281
transform 2D, 480

Welch
fast algorithm, 126
power spectral density, 126

Wiener filter, 325
Wigner-Ville distribution, 131
window method, 236
windows, 78

Blackman, 82
Dolph-Chebyshev, 83
Hamming, 82
Hanning, 82
Kaiser, 84, 241
rectangular, 80
sum of cosines, 81
triangular/Bartlett, 82

WVD, 131

Y
YCbCr, 444
Yule-Walker AR method, 364

Z
Z transform

definition, 194, 203
examples, 203
features, 203
relation to DtFT, 195, 206
two main features, 194

Zadoff-Chu sequences, 818
zig-zag 2D DCT scanning, 472
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