.
Textbooks in Telecommunication Engineering

Tomasz P. Zielinski

Starting Digital
Signal Processing in
Telecommunication
Engineering

A Laboratory-based Course

@ Springer

Textbooks in Telecommunication Engineering

Series Editor

Tarek S. El-Bawab, PhD

Dean of Engineering and Applied Science
Nile University

Giza, Egypt

Telecommunications have evolved to embrace almost all aspects of our everyday
life, including education, research, health care, business, banking, entertainment,
space, remote sensing, meteorology, defense, homeland security, and social media,
among others. With such progress in Telecom, it became evident that specialized
telecommunication engineering education programs are necessary to accelerate the
pace of advancement in this field. These programs will focus on network science and
engineering; have curricula, labs, and textbooks of their own; and should prepare fu-
ture engineers and researchers for several emerging challenges. The IEEE Commu-
nications Society’s Telecommunication Engineering Education (TEE) movement,
led by Tarek S. El-Bawab, resulted in recognition of this field by the Accreditation
Board for Engineering and Technology (ABET), November 1, 2014. The Springer’s
Series Textbooks in Telecommunication Engineering capitalizes on this milestone,
and aims at designing, developing, and promoting high-quality textbooks to fulfill
the teaching and research needs of this discipline, and those of related university cur-
ricula. The goal is to do so at both the undergraduate and graduate levels, and glob-
ally. The new series will supplement today’s literature with modern and innovative
telecommunication engineering textbooks and will make inroads in areas of network
science and engineering where textbooks have been largely missing. The series aims
at producing high-quality volumes featuring interactive content; innovative presen-
tation media; classroom materials for students and professors; and dedicated web-
sites. Book proposals are solicited in all topics of telecommunication engineering
including, but not limited to: network architecture and protocols; traffic engineer-
ing; telecommunication signaling and control; network availability, reliability, pro-
tection, and restoration; network management; network security; network design,
measurements, and modeling; broadband access; MSO/cable networks; VoIP and
IPTV; transmission media and systems; switching and routing (from legacy to next-
generation paradigms); telecommunication software; wireless communication sys-
tems; wireless, cellular and personal networks; satellite and space communications
and networks; optical communications and networks; free-space optical communi-
cations; cognitive communications and networks; green communications and net-
works; heterogeneous networks; dynamic networks; storage networks; ad hoc and
sensor networks; social networks; software defined networks; interactive and multi-
media communications and networks; network applications and services; e-health;
e-business; big data; Internet of things; telecom economics and business; telecom
regulation and standardization; and telecommunication labs of all kinds. Proposals
of interest should suggest textbooks that can be used to design university courses,
either in full or in part. They should focus on recent advances in the field while cap-
turing legacy principles that are necessary for students to understand the bases of
the discipline and appreciate its evolution trends. Books in this series will provide
high-quality illustrations, examples, problems and case studies. For further informa-
tion, please contact: Dr. Tarek S. El-Bawab, Series Editor, Dean of Engineering and
Applied Sciences at Nile University (Egypt), telbawab@ieee.org; or Mary James,
Senior Editor, Springer, mary.james @springer.com.

More information about this series at http://www.springer.com/series/13835

telbawab@ieee.org
mary.james@springer.com
http://www.springer.com/series/13835

Tomasz P. Zielinski

Starting Digital Signal
Processing in
Telecommunication
Engineering

A Laboratory-based Course

@ Springer

Tomasz P. Zielifiski
Department of Telecommunications
AGH University of Science and Technology

Krakow, Poland

ISSN 2524-4345 ISSN 2524-4353 (electronic)
Textbooks in Telecommunication Engineering

ISBN 978-3-030-49255-7 ISBN 978-3-030-49256-4 (eBook)

https://doi.org/10.1007/978-3-030-49256-4

© Springer Nature Switzerland AG 2021, corrected publication 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-49256-4

oy =
=
= o
i .o
—
(a]
B
O =
SNE D
s 8 S
S v
, ==
2o

Starting Digital

Si

WWWWWWWIWWW

To my dearest wife and parents, with many
thanks for their love, priceless support in my
long-distance, all-life, professional run, and
great understanding.

And ... to all readers who would like to live
with DSP passion.

Foreword

When we were preparing sixteen years ago the first edition of professor Tomasz P.
Zielinski’s monograph, titled “Digital Signal Processing. From Theory to Use,”
for publication in Poland in 2005, I did not think that this book, that treats very
complex issues, would have such good readers’ success. It had turned out that it was
even more popular in our country than some world-renowned telecommunication
titles we had translated. Why? Because the merits of severe mathematical problems
were explained in so accessible way and it was directly shown how to use many
software solutions, presented in the book, in a variety of fascinating, different ap-
plications. It was the first book of this type in Polish technical literature in the field
of telecommunications. In this, I find the justification that this publication was ap-
preciated by readers so much. The book had two editions and it was systematically
reprinted (recently in 2014).

Apart from being appreciated by the reading market, in 2006 the book was
awarded for the best academic book presented at the 13th National Fair of Academic
Book ATENA 2006 in Poland and professor Tomasz P. Zieliniski got the award of
the Minister of Science and Higher Education in Poland as the book author.

Years go by. At present, 16 years later, professor Zielifiski wrote a new book. In
big part, it takes all the best from our previous, Polish monograph in its DSP part,
but with significant modification and even further simplifications. A completely new
software-defined digital telecommunication section has been added, containing
about 350 pages. Knowing professor Zielifiski writing style, I am fully convinced in
good readers’ reception of his new work.

Years go by and times are changing. The modern access to the information is
different than it was years ago. The Internet is cutting our knowledge, and thoughts,
into pieces. How to distinguish valuable ones? Where to find them? How to combine
all pieces together? Questions, questions! May be it will be more effective to start
our infinite queries from reading one good textbook?

ix

Foreword

I am proud that I can recommend this new book of such experienced Polish

author.

Editor-in-Chief

Wydawnictwa Komunikacji i EacznoSci
Warszawa

21 April 2020

Krzysztof Wisniewski

Preface

After almost 40 years’ long friendship with Digital Signal Processing (DSP) and
many, many years of teaching it, I have realized, finally, that most of my students,
more than 90% of them, are not interested in DSP. They are obliged only to take
DSP course and learn it in many different specializations, but they are more inter-
ested in some other topics. There is no sense to feel offended: the world surrounding
is so fascinating and beautiful. What should result from this observation for me as a
teacher? Of course, to fight for student attention and to try to make the course as at-
tractive as it could be. At university practice, attractive means: short, comprehensive,
fully understandable, and focused on applications, not on theoretical derivations.

I hope that this textbook fulfills the mentioned above, severe students conditions.
I have tried to make it as compact as possible, but still presenting all the primary
and important DSP concepts. The book is intended to cover in an attractive way
introductory material for:

— the first student DSP laboratory, i.e. introduction to signals, primary spectral
analysis, and digital filtering (Chaps. 1-9),

— the second student DSP laboratory, with important, special DSP topics and ap-
plications, including re-sampling, Hilbert transform and analytic signal, adap-
tive filters and modern spectral estimation methods as well as multimedia,
speech—audio—video signal processing (Chaps. 10-16), and

— the first DSP-based digital telecommunication laboratory, with an introduc-
tion to software-defined radio technology, digital modulation basics, single-
carrier and multi-carrier transmission fundamentals as well as digital receivers
of FM/RDS radio, DAB radio, DSL modems and 4G/5G digital telephony
(Chaps. 17-24).

Multimedia part (Chaps. 14-16) can be used as a bridge between general-purpose
and strictly digital telecommunication DSP applications.

All the chapters end with exercises aimed at involving the student into her/his
own funny bungee-jump experiments. Their difficulty is marked with “*, *%_ %>
Since “happy people do not count the time,” an attempt is made to attract student

xi

xii Preface

attention and interest and reach teaching goals by project-oriented, case study-based
self-education.

In order to make all the chapters self-contained, a short list of the most important
references and further readings accompanies each of them. The short list of refer-
ences offers students essential, DSP knowledge. The book intends to offer an easy
explanation for the most common DSP problems and to involve students into the fun
of DSP and not to lose them in the complex mathematical DSP at the beginning of
its course in their education. When being interested in DSP, a contemporary student
can find everything in the web. She/he even prefers to do it herself/himself—as their
private investigation, not as an official obligation. This is the book well-known phi-
losophy: less is more—Iless references, more joy and freedom, more self-studying,
more unforeseen surprises and exciting adventures. In this aspect, all important pa-
pers and books are left for future reading—which is desirable and recommended but
not obligatory.

In my opinion, a good explanation and understanding of a starting point is the
most important in teaching and learning. This book aims at being a different type of
introductory text on DSP with a more informal, friendly dialog.

My general intention was to make the book as short and simple as possible.
Because none of us have time for technical epics—the world is changing too fast.
Despite a very wide thematic scope, I had planned to write no more than 480 pages:
24 chapters with less than 20 pages each. Unfortunately, I did not succeed in re-
alization of this goal. The final book manuscript had about 800 pages. But, in my
opinion, the simplicity of book was not lost: all the chapters are really essential. So
how has this happened? It is the presentation that is responsible for making the book
immense. The book is full of diagrams, figures, exercises, and programs, which are
the heart of DSP. These programs give the readers a chance to see all the math in ac-
tion and help to understand definitively the underlying DSP concepts. Not all books
allow this. All of them tell how to do it, but only a few show how to write a program
solving a problem. Programs are used for the verification of a concept’s correctness.
Programs do not forgive mistakes. Everything should be considered in them: even
one simple error can cause unpredictable consequences. Everything is explained by
program in this book and this is its real strength, in my opinion.

Distinguishing between absolutely basic and complementary information is a
crucial task in our everyday life. Between what has to be done and what can be
done. Most students are obliged to take many courses, that are mainly focused on
fundamental concepts. In this book all important issues are highlighted with a gray
background and optional mathematical derivations are specially marked in order to
be easily skipped during the first reading. Additionally, all chapters are proceeded
by short introductions and ended with generalizing summaries—they help readers
to select and remember fundamental problems discussed in each chapter. Last but
not least, all new important terms appearing in the text that should be remembered
are marked with different colors—we can say that the knowledge is well labeled and
annotated. All of this, in my opinion, is a great help in fast acquiring and effective
knowledge consolidation.

Preface xiii

Finally, I would like to provide some logistic information which, in my opinion,
should be very important for most readers.

1. Book web page with programs. All programs from this book, and some others,
together with supported data, are available at the book web page:
http://kt.agh.edu.pl/~tzielin/books/DSPforTelecomm/.

2. Matlab/Octave version and toolboxes required. Most of the programs do not
use special Matlab functions and can be run in any Matlab/Octave version.
However, the proposed solutions are very often compared with Matlab ones,
and in such a situation the Signal Processing Toolbox is needed (or functions
from the SPT should be commented). In image processing chapter, many Image
Processing Toolbox are exploited. In analog filter design chapter, a few func-
tions from the Control Toolbox are used but they are not necessarily required
(impulse (), step()).

3. Loading data to Matlab. Due to changes in Matlab software, readers are asked
to carefully exchange, when necessary, the following new Matlab functions
audioread (), audiowrite(), audioinfo(), audiorecorder() tO old ones:
wavread (), wavwrite (), wavrecord(), etc.

4. Auxiliary functions. To allow readers to partially solve a problem of missing
toolboxes, some very important auxiliary functions are given on the book web
page in sub-folder/auxiliary. For example, very useful spectrogram () func-
tion for signal spectrogram calculation and visualization. Together, we could
increase these sub-sets significantly.

We wish you an enjoyable and fruitful reading.

Krakéw, Poland Tomasz P. Zielifiski
April 2020

http://kt.agh.edu.pl/~tzielin/books/DSPforTelecomm/

Acknowledgements

In the first place, I would like to thank a lot all my colleagues with whom I had a
pleasure to work during my whole, long, professional DSP life. We were discovering
and enjoying the DSP world together. This book could not have been written without
their inspiration and longstanding kind co-operation in different scientific projects.
I would like to especially thank Roman Rumian, Pawel Turcza, Krzysztof Duda,
Tomasz Twardowski, Jarostaw Bulat, Andrzej Skalski, Przemystaw Korohoda,
Dimitar Deliyski, Bogdan Matuszewski, Mirostaw Socha, Jacek Stepien, Rafat
Fraczek, Lukasz Zbydniewski, Marcin Wisniewski, Artur Kos, and Grzegorz
Cisek.

In this aspect, I specially appreciate my last 10 years of active co-operation with
Krzysztof Duda, my former Ph.D. student, at present Professor of the AGH Univer-
sity. Thank you, Krzysiek! It is a great pleasure for a teacher that his very talented
pupil still wants to conquer DSP peaks together.

Considering telecommunication part of this book ...

I would like to thank warmly my co-student and colleague Dr Roman Rumian,
the biggest hardware DSP guru at our AGH University. He had invited me to the
MPEG audio, real-time, fixed-point DSP implementation project in the middle of
1990s of the twentieth century. For me, it was an unforgettable lesson of the DSP
magic.

I would like to especially thank Doctors: Pawel Turcza, Jarostaw Bulat,
and Tomasz Twardowski for their very fruitful, stimulating, lasting 10-year co-
operation in the field of Digital Subscriber Line modems (at the beginning of the
twenty-first century).

I would like to express my special great gratitude to my friend Dr Tomasz Twar-
dowski for introducing to me a field of software-defined radio in the year 2011. I
could always count for his kind, patient, and comprehensive help during my first
steps in programming digital receivers of analog FM/RDS radio as well as DAB
digital radio. All the time, he is my high-prof telecommunication mentor. Thanks a

lot, Dear Tom!
XV

XVi Acknowledgements

I would like to especially thank Michael Hiner-Hoin who has allowed me to
use his Matlab programs of the DAB receiver as an example in this book. The code
is a result of his M.Sc. Thesis entitled “SW-Realisierung eines DAB-Empfingers
mit GNU Radio” defended in 2011 at School of Engineering (the Center for Signal
Processing and Communications Engineering) of the ZHAW Zurich University of
Applied Science, under the supervision of Prof. Dr Marcel Rupf. I would like to
express my gratitude to the ZHAW for the same agreement.

I would like to thank Dr Jarostaw Bulat for his longstanding, fantastic support
for our all DSP laboratories and student projects and continuous generation of many
fresh didactic ideas, especially, for his preparation and leading collective student
projects on software real-time FM radio and DAB receivers.

I want to especially thank Dr Marek Sikora from my department for his price-
less help, detailed explanation, and personal participation in the preparation of all
Matlab programs dedicated for a digital single-carrier receiver, which are presented
in this book. They represent at present a core of our laboratory on digital telecom-
munication fundamentals.

I would like also to highlight the great participation of my last Ph.D. student
Grzegorz Cisek in high-tech part of the books. Thank you, Grzegorz, for inviting
me for jointly discovering new wireless communication technologies, namely 4G-
LTE and 5G-NR, and for writing demonstration programs for these two standards.

I would like also to thank Joanna Marek, my B.Sc. student, for interesting me in
the analysis of amateur nano-satellite signals and supporting me with their record-
ings, done by her during Erasmus+ project realized at Institut Universitaire de Tech-
nologie 1 of Universite Grenoble Alpes in Grenoble, France.

Finally, last but not least, I want also to thank a lot ALL my colleagues from
Telecommunication Department, AGH University, Krakéw, Poland, for educating
me for the last 15 years in different aspects of digital telecommunication sys-
tems. With a special gratitude to Professors: Andrzej Dziech, Andrzej Jajszyk,
Wiestaw Ludwin, Andrzej Pach, and Zdzistaw Papir and Doctors: Jaroslaw
Bulat, Piotr Cholda, Michal Grega, Lucjan Janowski, Mikotaj Leszczuk, Marek
Sikora, and Jacek Wszolek.

Considering the book editing

First, I would like to appreciate my gratitude to Krzysztof Wisniewski, editor-
in-chief of Transport and Communication Publishers, Warsaw, Poland, for allowing
me to use in this book figures for my Polish textbook “Cyfrowe przetwarzanie syg-
natéw. Od teorii do zastosowan” (Digital Signal Processing. From Theory to Appli-
cations), published till now many times from 2005, which were graphically prepared
by myself.

I would like to express great thanks to my colleagues Jarostaw Bulat, Grzegorz
Cisek, Piotr Cholda, Marek Sikora, and Jacek Wszolek who have read selected
book chapters and carefully reviewed them.

Finally, I would like also to sincerely thank a lot all my students who were my
severe reviewers during final book editing. Thanks to their apt comments and sug-

Acknowledgements xvil

gestions large parts in this book were significantly improved. I specially appreci-
ate the help of Zuzanna Zajaczkowska, Maciej Jankowski, Michal Markiewicz,
Arkadiusz Pajor, Kamil Szczeszek, Maciej Hejmej, and Milosz Sabadach.

And finally, I would like to thank very, very much the Reviewers for their price-
less help in enhancing the book quality!

The original version of this book was revised: The copyright year has been changed from 2020 to 2021.
The correction to this book is available at https://doi.org/10.1007/978-3-030-49256-4_25

https://doi.org/10.1007/978-3-030-49256-4_25

Contents

1 Signals: Acquisition, Classification, Sampling 1
1.1 Introduction i 1
1.2 Digital Signal Processing Systemscc..... 1
1.3 Signal Classes .. .vvvn ittt e 7
1.4 Base-Band and Sub-Band Sampling 12
1.5 Analog Signal Reconstruction 17
1.6 SUMMATY oot e e 20
1.7 Private Investigations: Free-Style Bungee Jumps 20
Referenceso 21
2 Signals: Generation, Modulation, Parameters 23
2.1 Introduction i 23
2.2 Deterministic Signals i i 23
2.3 Random Signals.......... i 25
2.4 Sines and Instantaneous Frequency 30
2.5 Signal Parameters incl. Correlation Function.................. 33
2.6 SUMMATY .ttt e e e e e 37
2.7 Private Investigations: Free-Style Bungee Jumps 38
References 41
3 Signal Orthogonal Transforms................................... 43
3.1 Introduction 43
32 Orthogonal Transformation by Intuition: From Points in 3D to
VECtOr SPACES . . . v ettt et et 44
33 Orthogonal Transformation Mathematical Basics 46
3.4 Important Orthogonal Transforms 51
3.5 Transformation Experimentsc..o oo, 56
3.6 Optimal Discrete Orthogonal Transforms. 59

XixX

XX

Contents

3.7 SUMMAry 61
3.8 Private Investigations: Free-Style Bungee Jumps 62
References 64
Discrete Fourier Transforms: DtFT and DFT...................... 65
4.1 Introduction 65
4.2 Continuous Fourier Transform and Fourier Series.............. 66
4.3 Discrete-Time Fourier Transform: From CFT toDtFT 72
4.4 Window Functions i i 78
441 Practical Summary o oL 78
442 Mathematical Description 80
443 Application Example oo 84
4.5 Discrete Fourier Transform, 86
4.6 SUMMATY .ttt e e e e e 90
4.7 Private Investigations: Free-Style Bungee Jumps 91
Referenceso 92
Fast Fourier Transform, 93
5.1 Introduction i 93
5.2 Radix-2 FFT Algorithm 96
53 FFT Butterfliescoiiiiii i, 101
5.4 Fast Signal Samples Re-ordering............................ 103
5.5 Example: 8-Point Radix-2 DITFFT 104
5.6 Efficient FFT Usage for Real-Value Signals................... 107
5.7 FFT Algorithm with Decimation-in-Frequency 109
5.8 SUMMATY .ttt e e e e e 111
5.9 Private Investigations: Free-Style Bungee Jumps 113
Further Reading i i 114
FFT Applications: Tipsand Tricks 115
6.1 Introduction i 115
6.2 FFT Usage Principles ..ot 116
6.3 Fast Frequency Resolution Improvement 122
6.4 FFT of Noisy Signals: Welch Power Spectral Density 124
6.5 FFT of Time-Varying Signals 128
6.5.1 Short-Time Fourier Transform 128
6.5.2 Wigner—Ville Time-Frequency Signal Representation . . 131
6.6 Fast Convolution and Correlation Basedon FFT 133
6.6.1 Linear Convolution., 133
6.6.2 Circular Convolution, 134
6.6.3 Fast Linear Convolution. 135

6.6.4 Fast Overlap—Add and Overlap—Save Sectioned
Convolution. ..., 136
6.6.5 Fast Signal Correlation. 140

6.6.6 Fast Convolution/Correlation Example and Program . .. 140

Contents XX1

6.7 Fast DtFT Calculation via Chirp-Z Transform................. 143
6.8 Blackman-Tukey PSD Fast Calculation 144
6.9 Fast Estimation of Damped Sinusoids by Interpolated DFT 146
6.10 Summaryiii e 150
6.11 Private Investigations: Free-Style Bungee Jumps 151
Referencest e 152
7 AnalogFilters 155
7.1 Introduction 155
7.2 Analog LTI Systemsoo i, 156
7.3 RLC Circuit Example i 163
7.4 Analog Filter Design by Zeros and Poles Method 166
7.5 Butterworth, Chebyshev, and Elliptic Analog Filters 171
7.6 Frequency Transformation 175
7.7 Butterworth Filter Design Example.......................... 179
7.8 All Together Now: Unified Program for Analog Filter Design ... 181
7.9 Example of Hardware Design of Analog Filters 185
710 SUMMATY . ooett et e e 188
7.11 Private Investigations: Free-Style Bungee Jumps 189
Referenceso 191
8 IIRDigital Filters 193
8.1 Introduction 193
8.2 Discrete-Time LTI Systems, 195
8.3 Digital Signal Filteringooo ... 200
8.4 Z-Transform and Its Features 202
8.5 Digital Filter Transfer Function and Frequency Response 204
8.6 Example: Digital Filter Design by TF Zeros
and Poles Placement i 209
8.7 Digital Filter Design Using Bilinear Transformation 212
8.8 Digital IIR Butterworth, Chebyshev, and Elliptic Filters 217
8.9 IIR Filter Structures: Bi-quadratic Sections 218
.10 SUMMATLY ..ottt e 221
8.11 Private Investigations: Free-Style Bungee Jumps 225
References 226
9 FIRDigital Filters........ 227
9.1 Introduction 227
9.2 FIR Filter Description.c.cooiiiiiiiiiiineenn... 230
9.3 Window Method 236
9.4 Inverse DFT Method 244
9.5 Weighted Least-Squares Method 246
9.6 Min-Max Equiripple Chebyshev Approximation Method 250
9.7 Efficient FIR Filter Implementations. 252

9.8 Summary 254

XXii

10

11

12

Contents
9.9 Private Investigations: Free-Style Bungee Jumps 255
References 255

FIR Filters in Signal Interpolation, Re-sampling, and Multi-Rate
Processing. 257
10.1 Introductionuuieiiii i 257
10.2 Signal 1:K Up-Sampling—Simple Interpolation 259
10.3 Signal L:1 Down-Sampling—Simple Decimation.............. 262
104 Signal K:LRe-samplingcooiiiiiininnenn.. 263
10.5 Matlab Functions for Signal Re-sampling 265
10.6 Fast Polyphase Re-sampling 266
10.6.1 Polyphase Signal Decomposition 266
10.6.2 Fast Polyphase Interpolation 268
10.6.3 Fast Polyphase Decimation 272
10.7 Filters with Fractional Delay 274
10.8 Farrow Interpolator i 276
10.9 Asynchronous Sampling Rate Conversion 280
10.10 Multi-Resolution Signal Decomposition and Wavelet Filters. 280
10.10.1 Multi-band Filter Banks........................ ... 280

10.10.2 Two-Band Wavelet Filter Banks and Wavelet

Transformo i 281
10.10.3 Derivation of Wavelet Filter Equations 285
1011 SUMMArY . oovn et e e 290
10.12 Private Investigations: Free-Style Bungee Jumps 291
References 291
FIR Filters for Phase Shifting and Differentiation.................. 293
I1.1 Introduction it 293
11.2 FIRHilbertFilter........ ... o i i i 294
11.2.1 Hilbert Filter Basics oo, 294
11.2.2 Analytic Signal and AM-FM Demodulation Principle . . 296
11.2.3 Hilbert Filter Implementations 300
11.2.4 Hilbert Filter Applications: AM/FM Demodulation 305
11.3 FIR Differentiation Filters 309
11.4 Summary ... e 314
11.5 Private Investigations: Free-Style Bungee Jumps 314
Referenceso 315
FIR Adaptive Filters i, 317
12,1 IntroduCtionuuiiit i 317
12.2 Adaptive Filter Application Scenarios 320
12.3 Adaptive Filter Types ovvniii e 323
124 LMS Adaptive Filterscoov i 324
12.5 RLS Adaptive Filters 329

12.6 RLS Filters as Dynamic System Observers 332

Contents XXiii

13

14

15

127 EXETCISES v vttt ettt et e et e e e e e 334
12,8 Summary 340
12.9 Private Investigations: Free-Style Bungee Jumps 341
Referencest 342
Modern Frequency and Damping Estimation Methods 345
13,1 INtroduCtionuuiiiiinin i 345
13.2 SignalModel oo 346
13.3 Eigenvalue and Singular Value Matrix Decomposition. 349
13.4 Discrete Hilbert Transform Method 352
13.5 Parametric Modeling Methods: Solving Linear Equations 354
13.5.1 Initial Problem Setup L. 354
13.5.2 Generalization for Multi-component Signals.......... 355
1353 PronyMethod 356
13.5.4 Steiglitz—McBride Method: Self-Filtered Signal....... 358
13.5.5 Kumaresan-Tufts Method: Linear Prediction
with SVD . ..o 360
13.5.6 Matrix Pencil Method 362
13.5.7 Yule-Walker Method: Linear Prediction Using
Auto-Correlation Function 364
13.5.8 Pisarenko Method: Signal Subspace Methods......... 365
13.6 Interpolated DFT Methods 367
137 SUmMmaryiii e 369
13.8 Private Investigations: Free-Style Bungee Jumps 370
Referencesot 372
Speech Compression and Recognition 375
141 Introductionuuiiiiiiniinneiiianeeennnnn. 375
142 Speech COmMPressionouveun i, 377
143 Speech Compression Exercises 386
14.4 Speech Recognitionc.c.ouuiiiiiiiunnnnnnnn. 389
145 Summary ...t 399
14.6 Private Investigations: Free-Style Bungee Jumps 400
Further Reading i i 402
Audio Compression i 405
15.1 Introductionuuiiiiiiniine i, 405
15.2 Psycho-Acoustics of Human Hearing System 408
15.2.1 Fundamentals, 408
15.2.2 Basics of Signal-to-Mask Radio Calculation.......... 410
15.3 Psycho-Acoustical MP2Model 413
154 MP2FilterBank 416
15.5 Fast Polyphase Implementation of MP2 Filter Bank 421
15.6 Complete MP2 Matlab Encoder and Decoder 427
157 MP3 Coding Enhancementso .. 430
15.8 AAC Advanced Audio Codingc.coiiiiiin.... 432

159 Summaryt 435

XXiv

16

17

18

Contents
15.10 Private Investigations: Free-Style Bungee Jumps 436
Further Reading i 436
Image Processing oottt 439
16.1 INtroduCtionoioniiinn ettt 439
16.2 Image Representationoveuiiuuinneennnnnn... 441
16.3 2D Orthogonal Image Transformations 447
16.3.1 Definitions and Calculation 447
16.3.2 Interpretation.c.oveuneinneeineennnann. 450
16.3.3 Image Analysis and Filtering in Frequency Domain. . . . 452
16.4 2D Convolution and Image Filtering 457
16.5 Fundamentals of Lossless Image Compression 465
16.6 Image and Video COmMPressionc.ooeeumeeunnennn.n. 469
16.6.1 JPEG: StillImagesccoviiiiiiinnna... 470
16.6.2 MPEG: Moving Pictures 474
16.7 Image Watermarking........... 477
16.8 Summaryiiii e 480
16.9 Private Investigations: Free-Style Bungee Jumps 480
Further Reading o i i 481
Introduction to SDR: IQ Signals and Frequency Up-Down
Conversion 483
17.1 Introduction i 483
17.2 Frequency Allocation, 485
17.3 Service Frequency UP-DOWN Conversion 487
17.4 RF Signal Acquisition Hardware............................ 493
17.5 Investigating Signal Spectra.............cccoiiiiiieennnn. .. 497
17.6 Example: Calculating Spectra of IQ Signals 504
177 SUMMATY ..ot e 512
17.8 Private Investigations: Free-Style Bungee Jumps 513
References 514
Frequency Modulation and Demodulation 517
18.1 INtroduCtionttt 517
18.2 Frequency Modulation, 518
18.3 Frequency Demodulation 522
184 FM TeStng . ..ottt ettt e et 526
18.5 FM Demodulation Examples oo, 529
18.5.1 FM Radio Broadcasting 529
18.5.2 Amateur HAMRadio.............. 531
18.5.3 Airplane Azimuth Calculation from VOR Signal 531
18.5.4 Safe Mode Nano-Satellite Signal 534
18.6 SUmMMArY . ..ottt 537
18.7 Private Investigations: Free-Style Bungee Jumps 538

References 538

Contents XXV
19 Amplitude Modulation, Demodulation, and Carrier Recovery....... 541
19.1 IntroduCtionuiiitiui i 541
19.2 Amplitude Modulationo il 545
19.3 Amplitude Demodulation 550
19.4 Carrier Synchronization Importance 555
19.5 Carrier Recovery in Suppressed Carrier AM Modulation. 557
19.6 Carrier Recovery: Phase Locked Loop 561
19.6.1 Real-ValuePLLcoiiiiiiinnn. 561

19.6.2 Complex-Value PLL.............., 564

19.6.3 Using PLLProgramiiivinn.... 565

19.7 Carrier Recovery: Costas Loop i .. 568
19.8 Carrier Recovery Example: MPX Signal in FM Radio 573
199 Summary 580
19.10 Private Investigations: Free-Style Bungee Jumps 582
Referencesot 583
20 Introduction to Single-Carrier Digital Modulation Systems 585
20.1 Introductioniiiiiiiiiii 585
20.2 Basics of Single-Carrier Modulation. 587
20.3 Basics of Single-Carrier Transmission Systems. 590
204 Source Codingttt 593
20.5 Digital Modulation and Demodulation 595
20.5.1 Carrier States Definition and Generation 595

20.5.2 Carrier States Interpolation: Pulse Shaping Filters 599

20.5.3 Carrier States Interpolation: In Action 604

20.5.4 Carrier States Detection 613

20.6 Frequency Up-Down Conversion: Symbols and Bits per Second . 615
20.7 Disturbances and Obstacles oL, 621
20.8 SUMMATY ..ottt e 626
20.9 Private Investigations: Free-Style Bungee Jumps 627
References 628
21 Digital Single-Carrier Receiver 629
21,1 IntrodUCtiont itii e 629
21.2 Receiver Synchronization and Channel Equalization Program ... 631
21.3 Preambles Detection and Frame/Symbol Synchronization 635
21.4 Carrier Offsets Detection and Correction 641
21.5 Channel Estimation and Equalization 643
21.6 Decreasing Signal Sampling Ratio 652
21.7 Timing Recovery Methods 655
21.8 Real-World Examples L. 663
21.8.1 Decoding Bits from Nano-Satellites 663

21.8.2 Decoding RDS Datain FM Radio 668

21.8.3 Decoding Carrier States in TETRA Digital Telephony . 679

219 SUMMATY ..ottt 681
21.10 Private Investigations: Free-Style Bungee Jumps 682

References 684

XXVi

Contents

22 Introduction to Digital Multi-Carrier Transmission: With DSL

23

Modem Example i i 687
22,1 IntrodUCtionttt e 687
22.2 Concept of Discrete Multi-Tone Transmission................. 689
22.3 Examples of Multiple Carriers Technology 697
224 Transmission Channels oo i, 701
22.5 DMT/OFDM Modulator and Demodulator 704
22.6 Carrier Orthogonality Importance 713
2277 Transmission Disturbances and Distortions 715
22.8 DSL Modem Implementation Issues......................... 717

22.8.1 Channel Estimation/Identification 718

22.8.2 ADC Sampling Rate Estimation and Correction. 721

22.8.3 Time Equalization of the Channel 723

22.8.4 Frequency Equalization of the Channel 728

22.8.5 DMT/OFDM Symbol Synchronization 730

22.8.6 Influence of Disturbances 732

22.8.7 Bit Allocation and Channel Information Capacity 734

22.8.8 Choice of TEQ Equalizer.......................... 736
229 Programof DSLModem, 737
2210 SUMMATY .ottt ettt et e e e e e et 744
22.11 Private Investigations: Free-Style Bungee Jumps 746
Referenceso 747
Wireless Digital Multi-Carrier Transmission: With DAB Example . . . 749
23,1 IntroduCtionttt 749
23.2 Reading Recorded DAB Files 751
23.3 DAB Physical Layer: Samples and Carriers 754
234 Synchronization.ueuieeeeuninneeeennnnann 756
23.5 DQPSK-OFDM Demodulation 766
23.6 Removing Frequency Interleaving........................... 768
23.7 Structure of FIC and MSC Block 770
23.8 FICDecodingueiuiiiniiiiii .. 771
23.9 MSCDecodingcoviiiiiiiiiiiiiiiiiiiiii i 776
23.10 DAB+ Super Frame Decoding, .. 777
23.11 Final DAB Block Diagramsooiiiviiinaen... 779
23.12 Error CorrectioninDAB L. 783

23.12.1 Cyclic Redundancy Check Encoder and Decoder 783

23.12.2 Application of Reed—Solomon Coding 787

23.12.3 Convolutional Coding and Viterbi Decoder........... 789
2313 SUMMATY .ottt e ettt e e e et 795
23.14 Private Investigations: Free-Style Bungee Jumps 796

References 797

Contents

24 Modern Wireless Digital Communications: 4G and 5G Mobile
Internet Access (with Grzegorz Cisek as a co-author)
241 IntroduCtionouueeti ettt
242 LTE BaSiCS .ottt ittt ettt e it et
243 Decoding 4G LTE Physical Broadcast Channel................

243.1
2432
2433

2434

24.3.5
24.3.6

LTE Signal Recording and Its Spectrum Observation . .
Signal Pre-processing and Integer CFO Correction
Signal Auto-Correlation: Fractional Carrier

Frequency Offset Estimation and Correction.
PSS Signals: Frame Synchronization, CFO

Correction, and Channel Estimation.................
SSS Signals: Physical Radio Cell Identification
CRS Signals: PBCH Decoding

24.4 Experiments Using Synthesized LTE Signals
245 S5GNewRadio............. . o il

24.5.1
2452

24.6 Summary

Introductionto SGNRl
Exemplary Data Decoding.

2477 Private Investigations: Free-Style Bungee Jumps

References

Correction to: Starting Digital Signal Processing
in Telecommunication Engineering

XXvii

Chapter 1)
Signals: Acquisition, Classification, ecie
Sampling

Let’s try to climb mountain peaks! Do not send the SOS signal
seeing the first obstacle!

1.1 Introduction

In digital signal processing (DSP) a signal is a vector (or matrix) of numbers
taken from the real world. These numbers are acquired via sensors and Analog-
to-Digital Converters (ADC). They are called the signal samples—samples of
some known or unknown functions. During sampling a function value is dis-
cretized in time (in its argument) and quantized in amplitude (in its value). A
sinusoid, e.g. power supply voltage, and damped sinusoids, e.g. generated in
magnetic resonance, are the most frequently observed and the best known sig-
nals since they are solutions of second-order differential equations describing
many existing physical phenomena. The other well-known signal are electro-
cardiograms and fingerprints.

In each signal the information is hidden about object which generated it.
Most often signal analysis is focused on finding and extracting this informa-
tion. In shape of the ECG signals there is the information about state of our
heart. Fingerprint image allows to distinguish the person. Many signals are gen-
erated by people in some technical systems. Analysis of echoes of transmitted
radar signal, penetrating our neighborhood, tells us about surrounding objects
and their velocity. We have millions of sensors in the world and millions of
phenomena to track and to analyze.

1.2 Digital Signal Processing Systems

In Fig. 1.1 a simple diagram of digital signal acquisition and processing systems
is shown. Typically an observed real-world phenomena is continuous-time (analog),
e.g. our heartbeat (ECG) or speech signals. The low-pass (LP) filter should pass only

© Springer Nature Switzerland AG 2021 1
T. P. Zielinski, Starting Digital Signal Processing in Telecommunication

Engineering, Textbooks in Telecommunication Engineering,
https://doi.org/10.1007/978-3-030-49256-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49256-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-49256-4_1

2 1 Signals: Acquisition, Classification, Sampling

signals’ sinusoidal components having frequencies smaller than half of the sampling
frequency (called sampling rate also, i.e. number of signal samples taken per one
second). As a result each low-frequency sine, which is passed, after the sampling
has more than two samples per period. Without usage of the LP filter, sinusoids with
higher frequencies would be also present on the ADC input. They would be sampled
to sparsely, i.e. their samples might be taken once for a few signal periods only. As
a result, when no low-pass filter is used, high-frequency signals could look after
sampling as low-frequency ones. It is creating for us a signal ambiguity problem: is
an observed signal really a low-frequency one or it only looks to be such? From this
reason usage of low-pass filter is obligatory.

Coming back to Fig. 1.1: the low-pass filter before the analog-to-digital (A/D)
converter removes the unwanted high-frequency signal components, too high in re-
gard to chosen sampling rate, while the low-pass filter after the digital-to-analog
converter (D/A) smoothes jumps present in analog signal, resulting from converting
real values into integer ones via rounding. The first filter is called an anti-aliasing
one, while the second—a reconstruction one.

Input X(1n) e e Digital Signal............ v(n) Output
Analog Analog
Signal x(t Sio p
gnal x(1) vl Signal y(t)
Result
Analog AD Digital |
—» Low-pass [P —>
. Converter Processor
Filter L—p| DIA Analog
A —» Low-pass —»
: Converter .
H Filter
fsamplingl f
fsamplingZ
Input
Digital)
Signal x(n) x(®)............Analog Signal... W(f)
.. Analog
) Digital) D/A N e
Processor Converter .
Filter
4 i
P e h AN
fsamplingl AnalOg Ol.”‘t? ut
Processing Digital
H Signal y(n)
v
Analog -
Low-pass A/D L)) Digital |
; Converter Processor
Filter
A
fsampling 2

Fig. 1.1: Two digital paths of signal analysis and processing: (up) analog-digital-
analog, (down) digital-analog-digital

1.2 Digital Signal Processing Systems 3

The digital signal has a form of vector of numbers. These numbers are taken
from sensors: sensor values are discretized in time and quantized in value by an
A/D converter (ADC), like in computer sound cards. Next, they are processed by
digital computer. Calculation results can be shown/stored or inversely converted to
the analog world by the D/A converter (DAC). After the DAC the analog signals
have step-wise shapes: they take only values from a predefined set of numbers,
most values are missing. For example, the number “1” could represent the whole
interval [0.5 ...1.5), number “2”—interval [1.5...2.5) and so on. For this reason
the low-pass filter, called a reconstruction filter, should smooth the synthesized sig-
nal and remove these “steps.” Very often, in communication, the processing chain
is inverted: at the input we have digital sinusoid. It takes different states, i.e. dif-
ferent values of amplitude, phase, or frequency and it is carrying bits in “state”
numbers (e.g. state number 9, decimally, is equal to 1001, binary). In a transmitter
the digital signal is converted to its analog form, then transmitted, passed through
the communication channel (e.g. telephone/cable line, for DSL modems, or fiber),
back converted into the digital form in the receiver, synchronized, and analyzed.
This way the transmitted bits, 1001 in our example, are recovered in a receiver from
the state number of acquired signal.

The simplest example of a DSP acquisition system is a personal computer
equipped with microphone, AD converter, microprocessor, DA converter, and
speaker. We can record our speech or environmental sound using it, do some digital
processing (e.g. mixing and adding some special audio effects), and after that play
our recordings. During recording the computer hardware is expected specification
of the following parameters: sampling frequency/sampling rate (number of signal
samples taken per one second), e.g.

8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 96000, 192000, ...,
number of channels, one (mono) or two (stereo), and number of bits for one sample,
for example 8 or 16. Changing pressure of the acoustical longitudinal wave is caus-
ing motion of the microphone membrane. This motion is transformed into voltage,
also changing, which is processed by the low-pass filter removing signal compo-
nents having frequency equal or higher than half of the sampling frequency. Then
the AD converter is periodically taking samples of the signal (with earlier specified
sampling frequency), rounding their values in amplitude to some predefined levels,
and coding the level numbers as integer numbers with a sign. Then the stream of
such numbers is processed by a computer, stored, transmitted or ... converted back
to the analog form. In the last case the DA converter synthesizes analog voltages
corresponding to integer numbers, interpreting them as numbers of voltage levels,
and, finally, the analog signal is smoothed by the analog low-pass filter aiming at re-
moval of output voltage switching (“jumps”) resulting from the voltage quantization
(“leveling”) process.

There are plenty of DSP applications. For example, radar/sonar/USG echo-
graphic systems where technically generated electromagnetic or sound waves
are emitted, reflected by different objects, and later analyzed in order to find

4 1 Signals: Acquisition, Classification, Sampling

object characterization. Or digital telecommunication systems in which single
or multiple sines with different amplitudes, frequencies, and phase shifts are
synthesized, transmitted, and analyzed in receivers, since bits are hidden (car-
ried) in sine parameters. And so on, and so forth. After each A/D and before
each D/A converter, typically the DSP machinery is used.

Rounding operation, or signal binarization is performed in the following way. Typ-
ically each AD converter has some predefined input voltage range, for example
[—5V, 5V]. For example, having N = 8 output bits, the converter divides this range
into 2V = 256 intervals, enumerating them from —128 (= 1000000, binary) to 127
(=0111111; binary). In the C language it is a signed char variable, codded using
U2 two complement notation: 1 = 00000001,, —1 = 11111111, = —128 4+ 127,
the most significant bit is negative. In the discussed case the interval width in
volts AV = 10/256V. Let us assume that the input voltage is equal to 1.2345V or
—1.2345V. It will be coded as (very, very roughly speaking)

1.2345V
. d< 345

— | = d(31.6031999...) =32 =001 1.1
lOV/256) round (31.6031999...) = 32 = 00100000,, (1.1)

—1.2345V
- | = -31.6031) =-32=111 . 1.2
round(10V /256) round (-31.6031999...) 3 00000, (1.2)

One can say: binary representation is not important for me! I will do all cal-
culation in Matlab/Octave or Python where very precise 32- or 64-bit floating-point
number representation is used. Yes, it is true. All your calculation will be done really
with high precision but they could be performed upon data which have lost already
their precision during analog-to-digital conversion and have been rounded to near-
est signed integers! The floating-point computing will help us only with precision
of further computing.

For Inquisitive Readers 1t is important also to remark that the same bits after the
ADC can be interpreted not as integers but also as fractional numbers lying in the
range [—1, 1). It can be beneficial during signal multiplications since multiplying
integer numbers gives us a bigger number as a result (e.g. 2 -3 = 6) while multi-
plying fractions gives us a smaller number (e.g. 0.2 - 0.3 = 0.06). This nice feature
protects us against computational overflow. In fixed-point DSP processor the frac-
tional number representation can be used.

From Nj,-bit ADC, one can obtain only 2™ values being N,-bit binary sequences
of zeros and ones. For example, for 8-bit ADC we obtain 28 = 256 different 8-bit
patterns, changing from 00000000, to 111111115, and bits are numbered from O to
7 (Np — 1) from right (the least significant) to left (the most significant). From these
binary sequences one can obtain signed or unsigned integer values v; or fractional
values vy, creating summations of 2’s, taken to the positive or negative powers. For

1.2 Digital Signal Processing Systems 5

example in two’s complement (U2) notation, the following values are obtained:

Np—2 Np—2
vi=—bp, 1) 2™+ Y b2k, vy =sign(—by, 1))+ Y, b2 (DR
k=0 k=0

(1.3)
For N, = 3 bits and signed integers using U2 representation, the following bit
interpretation is used:

Binary 100, 101, 110, 111, 000, 001, 010, 011,
Meaning —4 —4+1 —4+2 —44+24+10 1 2 2+1
Value v; —4 -3 -2 -1 0 1 2 3

while for signed fractional values the following interpretation is valid:

Binary 100, 101, 110, 111, 000, 001, 010 011,
Meaning -1 —1+% —1+% —1+% 0 % % %-i—%
Value vy -1 —0.75 —0.5 —0.25 0 0.25 0.5 0.75

If you are interested in a Matlab program doing the above calculations, look at
lab01l ex_ binary.m at book repository.

Exercise 1.1 (Recording and Playing Speech). Let us do the first experiment.
We will record a few words, a fragment of our own speech, using computer
sound card and Matlab environment. After that we will look at the acquired sig-
nal shape and check values of the signal samples. Run the below program 1.1.
You should see a signal waveform more or less similar to the one presented in
Fig. 1.2 in its upper part. Perform tasks listed below.

¢ Record some voiced phonemes (a, e, i, 0, u) when vocal folds are working,
opening and closing, and unvoiced ones (s, ¢, h) when vocal folds are open
all the time. Check voiced plosives (d, g) and unvoiced ones (k, p). Test
complicated words and longer sentences. Zoom different signal fragments.
Look for periodic oscillatory fragments and noise-like speech intervals.

¢ Try to speak very loud (observe a clipping/saturation effect when signal
is going beyond the allowed voltage limit) and very weak (observe clearly
visible amplitude quantization levels).

e Record the same word using low sampling rate with small number of bits
per sample and very high sampling rate with many bits per sample. Can
you hear the difference? Hmm ... me not, unfortunately, ... “I am sixty
four” (as in the Beatles’ song). Do not worry: it was a joke.

6 1 Signals: Acquisition, Classification, Sampling

X0

‘4 i i i i
0 0.2 0.4 0.6 0.8 1

.1(5).

Fig. 1.2: Time waveforms of three signals: x; (#)—a recorded speech signal, x, (¢)—
a generated 5 Hz sinusoid sin(275¢) (in Matlab t=0:0.001:1; sin(2+pix5xt)),
x3(t)—a generated Gaussian noise (using Matlab function randn(1,1000)), with
mean value equal to 0 and standard deviation equal to 1, and assumed to have the
same time support as the sinusoid. Notice that time at horizontal axis is scaled in
seconds what is important for evaluation of signal duration and its frequency content

o Play recorded files with different frequencies allowed by the sound card.
Why the speaking is faster or slower?

o Add different recordings sampled with the same or different frequencies.
Listen to the result of your digital sound mixer.

¢ Try to find pitch frequency of your normal speech (frequency of vocal folds
opening and closing) using visual observation of the signal plot. Measure
the speech period in seconds and calculate its inverse. You should obtain
a number approximately in the range [80-250] Hz. Check different voiced
vowels (a, e, i, 0, u). Do special recordings speaking vowel “a” as a singer:
a bass, baritone, tenor, .. , soprano, alto, i.e. try to change pitch frequency
from low to high value.

W W J oUW N

W NN NNNNRNNDRRRRRRR R B 2
O W O J O U1 B W N KFF O W W J o6 U1 b W N B O

1.3 Signal Classes 7

Listing 1.1: Recording and playing sounds

% File 1lab0l ex audio.m
clear all; close all;

% Audio signal acquisition

fs = 8000; % sampling frequency (sanples per second) :

8000, 11025, 16000, 22050, 32000, 44100, 48000, 96000,
bits = 8; munber of bits per sanple: 8, 16, 24, 32

charmels = 1; % munber of charmnels: 1 or 2 (mono/stereo)

recording = audiorecorder(fs, bits, chamnels); % create recording dbject
disp(’Press any key and to record audio’) ; pause;

o°

oe

record(recording) ; % start recording
pause(2) ; % record for two seconds
stop (recording) ; % stop recording

play (recording) ; % listen

audio = getaudiodata(recording ’single’); % import data from the audio dbject

% Verification - listening plotting

sound(audio, £s) ; % play a recorded sound

x = audio; clear audio; % copy audio, clear audio
Nx = length(x) ; % get mumber of sanples

n= 0:Nx1; % indexes of samples

dt = 1/fs; % calculate sanpling period
t = dtsn; % calculate time stanmps

figure; plot(x,'bo-’); xlabel(’sample mmber n'); title(’xn)’); grid;
figure; plot(t,x,'b-"); xlabel('t (s)’); title(’x(t)’); grid;

% Write to disc and read from disc

audiowrite(’speech.wav’, %, £, 'BitsPerSample’ ,bits); % write the recording
[y, £s] = audioread(’speech.wav’) ; % read it from file
sound(y, £s) ; % play it again

-

1.3 Signal Classes

From functional analysis and signal theory point of view signals can be divided into
the following four groups (look at Fig. 1.3):

¢ continuous-time and continuous-value (CT-CV), e.g. pure analog speech, au-
dio, ECG signal, etc.,

o discrete-time and continuous-value (DT-CV), CT-CV signal after discretiza-
tion in time or space (sampling) but without value quantization, e.g. signal from
single CCD camera capacitor, with its charge induced by light, before AD con-
version, or set of signal samples generated in a computer with floating-point
high precision from a mathematical function,

¢ continuous-time and discrete-value (CT-DV), for example signal just after
the DA converter, before smoothing by low-pass, reconstruction filter, being
continuous but quantized in amplitude, e.g. digital music played from a compact
disc or Internet,

8 1 Signals: Acquisition, Classification, Sampling

o discrete-time and discrete-value (DT-DV), for example signal after any AD
converter, having specified number of bits (N-bits give 2"V states—quantization
levels) and working with some sampling frequency, e.g. digital multimedia:
speech, audio, image, video.

In Fig. 1.3 the CT-CV, DT-CV, CT-DV, and DT-DV versions of a pure sinusoidal
signal are presented. We will be training generation of different signals in the next
chapter. In this one we learn computer synthesis of the sine only, the King of the
Road in the DSP world, and use it for practical demonstration of discussed con-
cepts. The sine repeating fy times per second, for example 5 times, is given by the
following math formula:

x(t) =sin(2mfot), x(t) = sin(2n5t), (1.4)

and generated by the following Matlab program (assumed: signal duration = 1 s,
sampling rate = 1000 samples per second, i.e. sampling period equal to 1/1000 =
0.001 s):

CC DC
0571 0,5
0 0
05 -0,5
-1 : ' -1 ;
0 01 02 03 04 ! 0 4 8 12 16 n
Time (s) Sample number
1 1
CD DD
0,5

0o 01 02 03 04 ¢ 0 4 8 12 16 n

Time (s) Sample number

Fig. 1.3: Different representations of a sine signal repeating two times per second
(period 0.5 s, frequency 2 Hz): (CT-CV) (left up) continuous-time—continuous-
value x(¢), (CT-DV) (left down) continuous-time—discrete (quantized) value x,(t),
(DT-CV) (right up) discrete-time—continuous-value x(nT) = x(n) = x, and (DT-
DV) (right down) discrete-time—discrete (quantized) value x,(nT) = x4(n). T de-
notes sampling period. In left plots—wide solid line represents a signal, in right
plots—black dots represent a signal [15]

W oUW N R

S R e T i e
H O 0w o J o0 Utk W NN H o

1.3 Signal Classes 9

T=1; dt=0.001; t=0:dt:T; £0=5; x = sin(2+pi+f0xt); plot(t,x);

Let us check if the Eq. (1.4) defines the desired signal. Since for t = 1 s the sine
angle is equal to fj-th multiplicity of 2r—the sine period, i.e. sine repeats fj times
per second, in our case 5 times.

Exercise 1.2 (Discretizing Signals). Try to generate exactly the same signal
plots as presented in Fig. 1.3. Modify the Matlab code given in Listing 1.2.
Generate and discretize a sum of two sinusoids with different frequencies and
amplitudes not equal to 1.

Listing 1.2: Signal discretization

% File 1ab0l ex discretizattion.m

clear all; close all;

T=1;

fs1 = 1000; fs2 = 50; % sampling frequencies 1 & 2

dtl = 1/fs1; dt2 = 1/fs2; % sampling periods 1 & 2

N1 = ceil(T/dtl); N2 = ceil(T/dt2); % rmunbers of sanples to generate

nl = 0:N1-1; n2 = 0:N2-1; % vectors of sample indexes

tl = dtlsnl; t2 = dt2#n2; % vectors of sampling time moments

X1 = sin(2xpixlxtl) ; % sinusoid repeating 1 times per second
X2 = sin(2xpix1lxt2) ; % sampled with different frequencies

X min=-1.5; X maxel.5; X minmexsx maxex min; % ADC range in Volts

Nob=3; Ng=2"Nb; % number of bits, mmber of quantization levels
dx = x minmax/Ng; % width of the quantization level

x2q = dxxround (x2/dx) ; % quantization of signal value

K = fs1/fs2; x2qt = [];

for k=1:N2, x2qt = [x2qt, x2q(k)+ones(1,K) 1; end

figure; plot(tl,x1,’'b-",t2,x2,'bo’ ,t2,x2q '+’ ,t1l,x2qt,'k-") ;

xlabel('t (s)’); title(’x(t)’); grid;

(S

Additionally, having in mind signal generation, signals belong to the two main
groups:

o deterministic—a function describing a signal waveform (curve, shape) exits,
like sine, exponent, gaussoid, etc.,
o random, stochastic—a function describing a signal waveform is unpredictable.

In Fig. 1.4 detailed diagram of signal classification is presented.

The following signals belong to the deterministic class: periodic ones, quasi-
periodic (having periodic components but as a mixture not periodic, e.g. when a ratio
of periods of at least two signal components is an irrational number: 7,,/T,, # m/n,
where m, n are two integer numbers), modulated and impulsive with finite energy.

10 1 Signals: Acquisition, Classification, Sampling

Signals

D. Deterministic R. Random

I

D1. Periodic Non-stationary Stationary

Non-ergodic Ergodic

D2. Quasi-periodic ‘

H D3. Modulated

I

D4. Impulsive limited m time with bounded energy

‘ R1. Uniform distribution

R2. Normal distribution

DS. Impulsive un-limited in time with bounded energy

Other distributions

Fig. 1.4: Basic signal classification [15]

The random signals are divided into two groups: stationary and non-stationary.
Let us assume that we have built a matrix putting into its rows different sequences of
random samples taken from the same sensor. Figure 1.5 illustrates our explanation
using analog signals: in rows we have 4 different signal realizations. If the signal
is stationary, statistical signal parameters (like mean, variation, etc.), calculated for
each instant across many signal realizations are the same, in our case—means and
variations of the samples in each column are equal (in Fig. 1.5 parameters calculated
vertically). For non-stationary signals they are different. Stationary signals are addi-
tionally ergodic when statistical parameters calculated for every instant over many
signal realization are the same as for each signal realization in time. In our example,
when statistical parameters of each column are the same as of each row (in Fig. 1.5
parameters calculated vertically and horizontally should be the same). In this situa-
tion, one signal realization, one matrix row, is sufficient for derivation of statistical
description of the observed stochastic process.

Exercise 1.3 (Noise Stationarity/Ergodicity). Run the following Matlab code
and verify stationarity of the generated Gaussian noise:

N=1000; X=rand(N,N); mcols=mean (X); mrows=mean (X.’) ;
[mcols.’ mrows.’]

() denotes matrix transposition: converting rows into columns. Any Matlab
function performed upon a matrix is executed independently over each ma-
trix column. Therefore the mean () function calculates mean value of each
column of the matrix X. Exchange mean () function with var () function.

1.3 Signal Classes 11

Fig. 1.5: Graphical illustration of random process stationarity and ergodicity. Four
different realizations x (), k = 1,2,3,4, of the same analog random process X are
plotted horizontally. x;1,x;2,x,3 denote observed random variables in times #1,1;,13.
The process is stationary if: (1) statistical parameters (e.g. means, variations,...)
of random variables x;1,x:2,x;3 are the same and do not depend on ¢, (2) variable
correlation E [x,x;1]) = R(7) depends only on time shift T between variables but not
on t. The process is ergodic when statistical parameters across process realizations
(vertically) are the same as statistical parameters of each realization individually
(horizontally) [15]

The shape in time domain of the random signals is unknown (unpredictable) but
function describing probability of taken signal values (probability density function
(PDF), marked as P(x)) can be known. The most popular random signal is a Gaus-
sian noise (generated by Matlab function x=randn (1, N)). It is the most frequent
signal disturbance with P(x) described by the well-known Gaussian curve, having
maximum for x = O (it is the most probable noise value) and decaying on both sides
(depending on the noise variance). The uniform noise is an another noise exam-
ple that has uniform distribution of values in some interval [a, b] (Matlab function
x=rand (1,N) generates signal samples in the range [0, 1]). We will investigate
both types of noises in the next chapter, do not worry about not seeing their figures
at present.

Two of the most famous examples of a deterministic and a random signal, a
sinusoid and Gaussian noise, are presented in Fig. 1.2, as signals x(¢) and x3(¢),
together with a fragment of real speech x (¢). In the real speech we can distinguish
oscillatory/deterministic-like as well as noisy/random-like intervals. Consequently,
the theory works.

Going further, considering dimensionality, signal can be treated as a set (collec-
tion) of some elements (consisting of a single or multiple values) captured in one or
many dimensions. For example it can be

12 1 Signals: Acquisition, Classification, Sampling

¢ one-dimensional (1D), e.g. mono speech or audio samples changing in time,

e two-dimensional (2D), e.g. one picture from camera, i.e. pixel values changing
in x-y space coordinates,

e three-dimensional (3D), e.g. computer tomography (CT) data (so-called voxels)
changing in x-y-z space coordinates or movie as a sequence of 2D x-y pixel-
based pictures changing in time,

o four-dimensional (4D), e.g. 3D x-y-z field of temperature, pressure, or pollution
changing in time, functional/dynamic 4D CT as a 3D CT x-y-z data changing in
time,

e multi-dimensional.

Of course, no surprise, things can be becoming more and more complicated. In
the above list I have tried to present only examples of one-value function with in-
creasing number of arguments: time and space coordinates. But the function can
be a multi-value one: for one set of arguments the function could take not only
one but many values, which is the case in multi-channel sound systems (e.g. stereo,
5.1 or 7.1) or color images, e.g. RGB ones with Red, Green, and Blue components
per one pixel. Multi-value signals can come from multi-value sensors, for example
RGB color or NMR perpendicular x-y detectors, but can be also created artificially
like telecommunication IQ signals (In phase and Quadrature) which are addition-
ally interpreted as complex-value numbers for easier processing. Uff ... “What a
wonderful world!”

In the next section we will investigate in detail the signal sampling problem.

1.4 Base-Band and Sub-Band Sampling

It is easy to predict and see that the signal should be sampled sufficiently dense
in order not to lose its fast variations. How dense? The base-band signal the-
ory says: more than two samples for one period of the fastest signal periodic
component, i.e. its component having the highest frequency. In Fig. 1.6 we see
example of good and bad sampling.

But the above rule represents only part of the truth. In the second, more general
sub-band version it is said: if a signal of interest has only frequency components
lying in some limited band, it is sufficient to isolate it from surrounding lower
and higher frequency signals, and use sampling frequency two times bigger
than the width of the signal frequency bandwidth. Information about the signal
will not be lost. This phenomena will be shown in this section.

Till now we were treating signals as time functions. Therefore there is no problem
to do the following assignments (Ar—sampling period, distance between samples
in seconds (= 1/f;), fi—sampling frequency, number of samples per second (=

1/Ap)):

1.4 Base-Band and Sub-Band Sampling 13

X, (1) X,

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t (s) t(s)

Fig. 1.6: Example of correct (left) and incorrect (right) sampling with frequency
aliasing

1
t=n-At=n-— (1.5)

s
and to obtain discrete-time signals from all continuous-time signal functions pre-
sented till now in this chapter. For example, after these substitutions the signal (1.4)

has a form:

x(t) =A-sin(2nfor) — x(n-At)=A-sin <27rfon) , Fy= &. (1.6)
s Js
Equation (1.6) tells us that continuous-time sinusoids having different frequencies
fx and different sampling frequencies fy; but the same normalized frequency Fy:

h_h_ _S_pg (17)

fsl f:¥2 fsk
after time discretization have exactly the same sequence of samples, so they will
be completely none-distinguishable. As a consequence signal processing algorithms
designed for sinusoid with frequency f] and sampled with frequency f;; can be used
without no hesitation for processing of sinusoid with frequency f, and sampled with
frequency f;» (when Eq. (1.7) is fulfilled).

So now we can ask the question: is it all? Does the sampling represents only
discretization of a function argument, a function of time in our example? The answer
is: NO. In the real-world signal processing signal values are also discretized by AD
converters: in this context we are saying that the signals values are guantized. Due
to high-precision floating-point 32-bit or 64-bit number representation we generate
in computers quasi-DT-CV signals and perform quasi-perfect calculations on them,
concerning the signal values. But we can round them (as in Matlab Fixed-Point DSP
Blockset) and test the influence of number representation upon signal processing
results. In real-time DSP very often fixed-point processors are used with limited
precision of data representation and arithmetic. Let us remember that different signal
representations have been presented in Fig. 1.3.

14 1 Signals: Acquisition, Classification, Sampling

Let us go back to signal sampling. Let us assume that a signal is a sum of sinu-
soids with different frequencies and fi,x and fii, denote the highest and the lowest
of them. As already stated the signal sampling frequency f should fulfill one of the
following rules, so-called sampling theorems (Nyquist theorems):

Base-band version s = 2fwess (1.8)
Sub-band version fs > Af = fmax — fmin- (1.9)

Let us take the sine/cosine signal (1.6) having one frequency from the follow-
ing set of frequencies: fy+ kfs and —fy + kf; where k is any integer value:
k=0,£1,42,43 ... and 0 < fp < f,/2. Since the following trigonometric equiva-
lences holds

sin(k-27) =0, cos(k-2m) =1, (1.10)
sin(a £) = sin(a) cos(fB) £ sin(f) cos(ox) (L.11)
cos(a+) = cos(or) cos(B) Fsin(ox) sin(f) (1.12)

we can write the sine signal as

x(n) = sin (2nkfsfisf0n> = sin <2nkni27rj:(;n> =...

= sin (271:iffon) = +sin (27r]fcon> (1.13)

N N

and similarly the cosine one:

x(n) = cos (2717@%;;f0n> = cos <2nkn:t2n]fc(;n> =...

= cos (27rj;€0n) = cos (27rﬁn> . (1.14)

As we see all high-frequency signals (kfs + fo and kfs — fo,k =1,2,3,...), not ful-
filling Eq. (1.8), after sampling have exactly the same samples as the signal with low
frequency fp. In order to avoid this ambiguity/aliasing (So what do I see right now,
a high or low frequency?) we have to be sure that the signal being sampled fulfills
the Nyquist theorem. Therefore the analog signal is low-pass filtered before the A/D
converter as shown in Fig. 1.1, which removes all unwanted high-frequency signal
components. The cut-off frequency of the filter should be smaller than half of the
sampling frequency, i.e. the filter should pass only the components with frequencies

1.4 Base-Band and Sub-Band Sampling 15

Signal components

frequency
-

Fig. 1.7: Graphical illustration of a risk of signal components aliasing when sam-
pling frequency f; is too low in regard to all signal component frequencies. A low-
pass filter has to be used that removes all signal components having frequencies
higher than % and lower than 72f 2, which will be understandable after a few chap-
ters. Otherwise they will be leaked to the band [_Tﬁ, %] and will be visible as low-
frequency ones

lying in the band [0, f;/2) Hz. In Fig. 1.7 a risk of signal components misinterpre-
tation is graphically illustrated. The problem of described above signal ambiguity is
called a frequency aliasing phenomena in signal processing nomenclature.

The second possibility, used widely in telecommunication systems, is usage of
the band-pass filter in the frequency range [kf;/2, (k+ 1)fs/2), instead of the low-
pass filter before the A/D converter, and application of the same low sampling fre-
quency fy as before. At present the sub-band sampling rule (1.9) is used. Of course,
the signal observed in this case looks like a low-frequency one but knowing the
exact frequency band of the filter we know its frequency shift in respect to 0 Hz
(the DC constant value) and can correct the frequency measurement. Thanks to this
effect, sub-band high-frequency telecommunication signals can be processed with
lower sampling frequencies. That is a good news!

Remark: More on frequency Aliasing (Sampling Ambiguity) Effect The very good
example of sampling ambiguity is a car wheel turning backward during film watch-
ing. In reality the wheel is turning forward but we are taking pictures too rarely and
it looks on the movie that the wheel is turning back! One more example. Let us
assume that we are taking a picture of a black and white chess-board with a low-
resolution camera and we are frustrated obtaining completely white or completely
black images and not seeing the chess-board pattern. The camera image sampling
in space is too low: we have too less number of pixels per one chess-board square.
The other example. We are walking on the pavement with many holes but somehow
we are doing steps in such a way (sampling the pavement) that we are not falling
into them, we do not see them. In case of signal we prefer to see everything. Not to
observe any spurious/misleading effect like wheels “turning back” in a movie.

16

1 Signals: Acquisition, Classification, Sampling

Exercise 1.4 (Good and Wrong Signal Sampling or Function Generation).
Try to do a figure similar to Fig. 1.6 showing the original high-frequency signal,
for example 9000 Hz sine, properly sampled by you at f; = 48 kHz, and its
misleading low-frequency version obtained after wrong sampling with f; = 8
kHz. Listen to both signals using the Matlab function sound (%, £s) .

Exercise 1.5 (Wrong Re-sampling Music Files). Find in the Internet mu-
sic file with high sampling rate, at least 48000 samples per second, and
with high-frequency content. Take every 6-th sample of it and play the re-
sultant signal in Matlab/Octave environment at 8 kHz using the command
sound (x(1:6:end), 8000). Do you hear the difference? You should.

Exercise 1.6 (Testing Sampling Theorem—On the Path to Sub-Band Sam-
pling). For example let assume us that the sampling frequency f; = 1000 Hz
and the analyzed (co)sinusoid has frequency fo = 100 Hz. The (co)sinusoids
with the following frequencies (written using bold characters) will look exactly
the same (with £ sinus sign exception which is impossible to catch):

k k- fs=fo k- fs k- fs=+fo
0 —100 0 100
1 900 1000 1100
2 1900 2000 2100
3 2900 3000 3100
4 3900 4000 4100

Run the program presented in Listing 1.3. 11 sines and 11 cosines with different
frequencies kf; & fo are generated and displayed in one plot, separately sines
(up) and cosines (down). How many signals do we see and how many do we
expected to see? The signals perfectly overlay. Modify the program, changing
Jfo =100 Hz to 200 Hz, then to 50 Hz. Observe how the figures have changed.

W W J oUW N

N R N N i el i e e
N H O W © J o0 U1 B W N PR o

1.5 Analog Signal Reconstruction 17

Listing 1.3: Sampling and danger of signal uncertainty

N

% File lab0l ex sampling.m

% Sampling and signal aliasing (uncertainty)

clear all; close all;

fs = 2000; % sampling frequency

dt = 1/fs; % sampling period

Nx = 100; % nunmber of signal samples

n=0:Nx1l; % vector of indexes of signal sanples

t = dtsn; % vector of sampling instants (in seconds)

fx = 50; % frequency of power supply

figure;

fork =0 : 10
k % checking loop execution
X1 = 230%sqrt(2) + sin(2#pix (+4fx + kxfg)xt); % freg = +fx + k«fs
X2 = 230%sqrt(2) * sin(2#pix (-fx + kxfs)*t); % freg= -fx + kxfs
x3 = 230%sqrt(2) * cos(2#pix (+4fx + kxfe)xt); % freqg = +fx + k«fs
x4 = 230%sqrt(2) * cos(2#pix (-fx + kxfs)*t); % freg= -fx + kxfs
subplot(211); plot(t,x1,'bo-’,t,x2, ' r+-"); hold on; title(’Sines’);
suplot(212); plot(t,x3,’bo-’,t,x4, r+-"); hold on; title(’Cosines’);

end

S

Sub-band Sampling Repeating: to avoid the signal ambiguity effect it is neces-
sary to ensure that frequencies of all components of analog signal, being sampled,
are lower than half of the sampling frequency, in our Exercise 1.6—in the range
[0,...,500) Hz. Or ... yes, yes, we can try to ride round this drawback and even
make an advantage from it. Looking at the frequency values written in the Exer-
cise 1.6 one can do very important conclusion about the so-called sub-band sam-
pling: if one knows the bandwidth of the signal she/he could sample it with smaller
frequency according to the rule (1.9) and adjusts the sampling frequency accord-
ing to the bandwidth, not to the maximum frequency. Why is it possible? Because
when one knows that her/his signal is in some known frequency range, e.g. [2000
2500) Hz, even observing low-frequency signal, e.g. 100 Hz, is not misleading be-
cause, knowing the frequency shift 2000 Hz, the true signal frequency can be cal-
culated, e.g. (100+2000) Hz = 2100 Hz, and no ambiguity exists. This topic will be
further discussed in next chapters. In such case sampling frequency should be two
times bigger than the signal frequency band. This rule, the killer for most students,
is known as the general sub-band Nyquist sampling theorem.

1.5 Analog Signal Reconstruction

Freedom. Everybody would like to have a chance to go back. Can we go back to
the exactly the same analog signal from its samples, i.e. from discrete-time but
continuous-value (DT-CV) signal?

18 1 Signals: Acquisition, Classification, Sampling

The answer is YES if the sampling theorem frequency restriction (1.8) has been
fulfilled! If we assume that our analog signal is a sum of sinusoidal components with
different frequencies, and if the sampling frequency was more than two times bigger
than the highest signal frequency—it is possible to go back to the analog world.
Proof of this is not possible now (in some books it takes even several pages). But
we can demonstrate experimentally that such reconstruction is in practice possible.

The analog signal x(¢) is reconstructed, using it non-quantized samples x(nT),
T—sampling period, from the following formula:

3 sin (%(1 —nT))
x(t)=Y x(nT)W

n=—oco

(1.15)

The output analog signal is a sum of many analog functions Sinc(a) = sin(a)/a,a =
Z - (t—nT) (see Fig. 1.8), that are shifted in time by n- T and scaled in amplitude
by x(n-T) (i.e. centered at each signal sample and multiplied by its value). Sinc(a)
function is a sinusoid divided by its angle changing from minus to plus infinity:
—oo < g < oo, The function is equal to 1 for a = 0. It oscillates (as sine does) and it
is periodically crossing zero for a = k- 7 (as a sine). It is decaying also with increase
of the value of a. What is interesting, the Sinc(a) centered at one signal sample has
zero values at positions of all remaining samples. In consequence, in the sum it does
not change signal values in these time points. Deeper practical explanation of the
signal reconstruction from its samples offers the program 1.4.

e A
0.4 L
0.2 i

0] [\
02 / \
'0.4 T T T T

EY-AVAN > —

0.5 AN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

Fig. 1.8: Graphical illustration of analog signal reconstruction from its samples:
(up) Sinc function, (down) the sine reconstruction process: addition of many shifted
Sinc functions scaled in amplitude by sample values gives us a reconstructed signal
plotted with the thick line. In the figure an analog sinusoid is reconstructed from its
samples marked with “e” [15]

W W g 0 U W N

BW W W WWwWWwWwWwWweNNDNNDNDNNDNDR R R PR B B B oo
O W 0 3 0 U B W N KFHF O W OWNTO Ul bk WN K O WOWwJOo U & W N H o

1.5 Analog Signal Reconstruction 19

Exercise 1.7 (Illustration of Analog Signal Reconstruction). Analyze the
Matlab code presented in program 1.4, illustrating the idea of analog (CT-CV)
signal reconstruction from samples of discrete-time continuous-value (DT-CV)
signal. We would like to go back from signal with coarse sampling to signal
with finer sampling. Try to change values of program parameters in order to
make the reconstruction error lower. What is a source of the error?

Listing 1.4: Signal reconstruction after sampling

% File 1ab0l ex reconstruction.m

clear all; close all; hold off;

% Program paraneters

f0 =1; % frequency of signal x(n) [Hz]

fs = 100; % frequency of sampling [Hz]

N = 400; % mumber of signal x(n) samples

D = 10; % downrsampling ratio (D-times)

% Generation of sine x(n) with fx frequency

T = 1/fs; % sampling pericd for x(n)
t=0:T: (N-1)«T; % time instants for x(n)
X = sin(2xpixf0xt) ; % generation of sine x(n)
figure; plot(t,x,'b-’,t,x,'r0"); grid; title(’Sine sanpled with high frequency’) ;
% Sine downrsampling: only every D-th sanple is left

XD =x(1 : D : length(x)); % downrsampled sine x(n)

ND = length(xD); TD=D«T; tD=0 : TD : (ND-1)«ID;

figure; plot(t,x,'b-’,tD,xD,'r0o'); grid; title(’Sine sanpled with low frequency’) ;
figure; plot(tD,xD, 'b-’,tD,xD, 'ro’); grid; title(’Sine sampled with low frequency’) ;
figure; stem(xD,’'b’); title(’Sine sampled with low frequency’) ;

% Sinc(a) = sin(a)/a function

tt=-OF1)«T : T : (N1)«T; % time support of Sinc function
fSinc = sin(pi/TDstt) ./ (oi/IDxtt) ; % Sinc function generation

fSinc(N) = 1; % its value for arg=0 (division 0/0)
tz = [-tD(end:-1:1) tD(2:ND)] ; % instants of zero-crossing plus 0

z = [zeros(1,ND-1) 1 zeros(1,ND-1)]; % Sinc values at time tz
figure; plot(tt,£Sinc); %, 'b’,tz,z,’0); grid; title(’Sinc functiord) ;

% Reconstruction of the original signal from the decimated signal
figure;
y = zeros(1,N) ;
fork=1:ND
fSincl = £Sinc((N)- (k-1)#D : (2&N-1)- (k=1)+D) ;
vyl = xD(k) * £Sincl;
Y=Y +vyl;
subplot(311) ; plot(t,£Sincl); grid; title(’Next shifted Sinc function');
subplot(312); plot(t,yl); grid; title(’Next shifted and scaled Sinc function’);

41
42
43
44
45

20

1 Signals: Acquisition, Classification, Sampling

subplot(313) ; plot(t,y); grid; title(’Summed y(t) till now');
pause

end

figure; plot(t,y,'b’,t,x,'r"); grid; title(’Reconstructed signal’);

figure; plot(t,x(1:N)-y(1:N), 'b’); grid; title('Reconstruction error’);

1.6 Summary

There is no doubt that good understanding of the signal concept is ex-
tremely important in contemporary digital signal processing. In this first in-
troductory chapter we have tried to see signals diversity, their different origin,
types, shapes, features, applications. We have learned a little bit about signal ac-
quisition, including proper sampling. What is the most important? What should
be remembered?

1. Real-world signals are continuous-time functions/waveforms which are
sampled and after this, having already a form of vectors and matrices of
numbers, they are analyzed and processed by digital computers.

2. Sampling rate has to be carefully chosen in order not to lose the original
signal shape and, in consequence, information about its abrupt change or
frequency of repeating.

3. In Matlab we generate signals discretizing time variable and putting the
resultant vector of sampling instants into a signal function of interest. In
this chapter we did it only for sine/cosine signals.

4. Discrete-time signals, as sequences of numbers, can have very different
shapes and forms. They are classified as deterministic and random, one
or more-dimensional, real and complex-value, periodic, quasi-periodic and
non-periodic, impulsive or not, stationary or not, . ..

1.7 Private Investigations: Free-Style Bungee Jumps

Exercise 1.8 (What a Wonderful World of ... Sounds!). Find in the Internet files
of recorded sounds, read them into Matlab, observe their waveforms, and play them
inside the Matlab environment. Many different sounds you can find on this web
page: https://www.findsounds.com/. I am sure that you will be pleased.

Exercise 1.9 (* At Railway Station). Take your speech signal (a vector of speech
samples) and make a few delayed copies of it. For example, delay the vector by
100, 250, 500, and 750 elements. Scale delayed copies by 1, 0.5, 0.25, and 0.1,
respectively, add all of them, and listen to the result. Wow! Are you really at the
railway station?

https://www.findsounds.com/

References 21

Exercise 1.10 (* BALANGA Records Studio). Read any real audio signal with
music (a wav file). Zoom its different fragments. Observe changing frequency (os-
cillation) content. Play the signal using sound card. Observe that knowing sampling
frequency (and in consequence sampling period, distance between the samples) is
very important! Do specially some mistakes in specification of the sampling rate
during signal reproduction (playing). Add a few signal recordings to themselves.
Listen to the result. Cut and add different sound pieces. Try to obtain something
your boyfriend, girlfriend, or grandfather, even the laboratory assistant, will enjoy.

Exercise 1.11 (* Is My Heart Broken?). Find in the Internet an ECG heart ac-
tivity signal. E.g. take it from the page https://archive.physionet.org/cgi-bin/atm/
ATM. Choose, for example, MIT BIH Arythmia Database, Record: 100, Signals: all,
Length: 1 min, Time format: seconds, Data format: standard, Toolbox Plot: wave-
form, Toolbox export signals as .mat. Download file xxx.mat and xxx.info (ASCII).
Find signal periodicity looking at signal plot. How many heartbeats per second?

load ecgl00.mat; whos;

fs=360; N=length(val(l,:)); dt=1/fs; t=dt*(0:N-1);
plot(t, val(l,:)); xlabel ('t [s]’); title(’'ECG(t)’); grid; pause
References

1. L.F. Chaparro, Signals and Systems Using Matlab (Academic Press, Burling-
ton MA, 2011)

2. M.H. Hayes, Schaum’s Outline of Theory and Problems of Digital Signal Pro-
cessing (McGraw-Hill, New York, 1999, 2011)

3. E.C. Ifeachor, B.W. Jervis, Digital Signal Processing. A Practical Approach
(Addison-Wesley Educational Publishers, New Jersey, 2001)

4. VK. Ingle, J.G. Proakis, Digital Signal Processing Using Matlab (PWS Pub-
lishing, Boston, 1997; CL Engineering, 2011)

5. R.G. Lyons, Understanding Digital Signal Processing (Addison-Wesley Long-
man Publishing, Boston, 1996, 2005, 2010)

6. J.H. McClellan, R.W. Schafer, M.A. Yoder, DSP FIRST: A Multimedia Ap-
proach (Prentice Hall, Upper Saddle River, 1998, 2015)

7. S.K. Mitra, Digital Signal Processing. A Computer-Based Approach
(McGraw-Hill, New York, 1998)

8. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (Pearson Ed-
ucation, Upper Saddle River, 2013)

9. A.V. Oppenheim, A.S. Willsky, S.H. Nawab, Signals & Systems (Prentice Hall,
Upper Saddle River, 1997, 2006)

10. A. Papoulis, Signal Analysis (Mc-Graw Hill, New York, 1977)

https://archive.physionet.org/cgi-bin/atm/ATM
https://archive.physionet.org/cgi-bin/atm/ATM

22

11.

12.

13.

14.

15.

1 Signals: Acquisition, Classification, Sampling

J.G. Proakis, D.G. Manolakis, Digital Signal Processing. Principles, Algo-
rithms, and Applications (Macmillan, New York, 1992; Pearson, Upper Saddle
River, 2006)

S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing
(California Technical Publishing, San Diego, 1997, 1999). Online: http://www.
dspguide.com/

K. Steiglitz, A Digital Signal Processing Primer: With Applications to Digital
Audio and Computer Music (Pearson, Upper Saddle River, 1996)

M. Vetterli, J. Kovacevic, V.K. Goyal, Foundations of Signal Processing (Cam-
bridge University Press, Cambridge, 2014)

T.P. Zielinski, Cyfrowe Przetwarzanie Sygnalow. Od Teorii do Zastosowari
(Digital Signal Processing. From Theory to Applications) (Wydawnictwa Ko-
munikacji i £.acznosci (Transport and Communication Publishers), Warszawa,
Poland, 2005, 2007, 2009, 2014)

http://www.dspguide.com/
http://www.dspguide.com/

Chapter 2)
Signals: Generation, Modulation, Al
Parameters

In high mountains all steps are very important, the second also.
Welcome in Chap. 2!

2.1 Introduction

In the first chapter we were dealing with proper signal acquisition, rules
of good sampling, signal computer representation, and classification/interpre-
tation. We were observing and enjoying the real-world signals diversity. Now
we will do the deeper dive: we will generate the most important deterministic
and random signals, including amplitude and frequency modulated ones. Do-
ing this we will feel better the signal concept and will better understand the
signal anatomy. After that we learn about quantities and functions describing
signal features like its minimum, maximum and mean value, signal variance,
energy, power, RMS value, signal-to-noise ratio (SNR), and signal(s) correla-
tion function. The signal parameters (descriptors) are important because they
summarize the signal behavior in a set of a few numbers. We can track change
of these numbers in time. Having them in hand we can easily imagine the nature
of signal variability.

The outline of this chapter is as follows. We will start with generation of
deterministic signals, continue with random ones, than become familiar with a
concept of signal instantaneous frequency (IF) and generate signals with given
IF. Finally, we learn mathematical definition of the most important signal pa-
rameters and code for their calculation. Special attention will be given to auto-
and cross-correlation functions and their applications.

2.2 Deterministic Signals

Signals can be described by many functions. But some of them are more important
than the others. In Table 2.1 equations defining some of the most frequently occur-
ring or specially used deterministic signals are given. Sinusoid, a signal of power

© Springer Nature Switzerland AG 2021 23
T. P. Zielinski, Starting Digital Signal Processing in Telecommunication

Engineering, Textbooks in Telecommunication Engineering,
https://doi.org/10.1007/978-3-030-49256-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49256-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-49256-4_2

24 2 Signals: Generation, Modulation, Parameters

Table 2.1: Basic functions defining deterministic signals with their Matlab code

Signal type Math definition Matlab code

Sine, cosine x1(t) =A-sin(2rfot + ¢) x1=Axsin (2+pi*£0xt+£fi) ;

Cmplx harmonic x;(z) = A - e/27fot+0) x2=RAxexp (J* (2+pi*fOx
t+fi));

Exponential® x3(t)=A- et x3=Axexp (-t /T) ;

Damped sine® x4(t) =A- e T sin(27 fot + ¢) x4=x3.xsin (24pix
£0xt+phi) ;

1 (m)z

Gaussoid® xs(t)=A-e 2\ T x5=Axexp (- (1/2) %
((£-t0)/T)."2);

AM Modulated® x¢(t) = A(1+kama(2)) - sin (27 f,1) x6=Ax (1+kA*mA) . x

sin(2xpixfcxt) ;

t
FM Modulated® x;(¢) = Asin <2n (fCt +kp fmp(t)dt>> x7=Axsin (2«pix
0 (Ecxt+kFrcumsum (mF) xdt)) ;

4 Decaying exponent having value éA fort=T
b Gaussoid having maximum A for ¢ = fy and width approximately equal to 67 around it
¢ A, F—amplitude and frequency, k4 ,kr—amplitude and frequency modulation depths,
mg (t),mp (t)—amplitude and frequency modulation functions, f,.—carrier frequency

supply, is generated in a natural way by different resonant oscillatory circuits or res-
onant mechanical objects, for example a pendulum. Damped sinusoids are observed
in resonators with attenuation, e.g. in magnetic resonance. Signal modulated in am-
plitude, frequency, and phase are used in radio broadcasting and in many digital
communication systems.

Simple signals can be summed to each other or multiplied by themselves giving
as a result a new signal, more complicated, even a very sophisticated mixture of
signals. The power supply voltage consists of fundamental frequency component
(50 or 60 Hz) and its harmonics. Damped sine is an example of multiplication of
sine and exponential signal: we say that exponent is modulating sine in amplitude.
Gaussoids are used also for amplitude sine modulation: impulsive oscillatory signals
transmitted in radar/sonar systems can be created this way. In turn, a received signal
analyzed in radar/sonar systems is a sum of different copies of the transmitted signal,
reflected from different targets. And so on, and so forth.

Exercise 2.1 (Generation of Deterministic Signals). We can record real-
world signals like in Exercise 1.1 but it is also possible to generate them using
functions defining them, i.e. from their mathematical recipe. Such skill is very
important because in many applications, for example in radar echolocation or
digital telecommunication, we are digitally generating signals that are next con-
verted into analog form and transmitted. So, we can at present proudly say that,
in this exercise, we will deal with programmable signal generators.

W O J oUW N

N N e e e e e
N B O W ©® J o0 U1 b W NP o

2.3 Random Signals 25

In most cases typical signal generation is as easy as going for lunch to the
closest fast food bar: one should know the mathematical signal formula and
put numbers into it, especially #ime vector with all moments of sample taking
from the function. Listing 2.1 presents a Matlab code of such operation while
Figs. 2.1 and 2.2—waveforms of signals generated with its help, of course, after
slight modifications. As an exercise, please, modify the program and generate
these signals yourself.

Listing 2.1: Generation of deterministic signals

S

% File: 1ab02 ex deterministic.m
clear all; close all;

fs = 1000; % sanpling frequency (samples per second) :

N = 1000; munber of samples to generate

dt = 1/fs; % time between samples

n=0:N1; % vector of sample indexes

t =dt x n; % vector of sampling time moments

X1 = sin(2#0ix5+t); % sinusoid repeating of 5 times per second

x2 = exp(-t/0.1); % exponent with T=0.1s

x3 = exp(- (1/2)% ((£-0.5)/0.1)."2); % Gaussian centered at t=0.5s with T=0.1s
x4a = sin(2#pix (L00++90+cumsum(xl) xdt)); % signal modulated in frequency by x1
x4b = sin(2xpix (100%t-90/ (2#0ix5)+cos(2#0ix5%t))); % the same theoretically
X5 = 1/3xrandn(1,N) ; % NOBODY IS PERFECT! disturbing noise

oe

\

figure;

subplot(6,1,1); plot
subplot(6,1,2); plot
subplot(6,1,3); plot

((; grid; title(’x(t)’);

((

((
subplot(6,1,4); plot(x4a,

((

((

t,x1,'b.-");
t,x2,'b.-"); grid;
t,x3,’b.-"); ;
t .t
subplot(6,1,5); plot(t,x4b, b ’

subplot(6,1,6); plot(t,x5,’b.-), grid; xlabel('t [s]’);

2.3 Random Signals

When a signal does not have a specific shape, very often it has a specific distribution
of its values, i.e. some values are observed more frequently than the others and they
are more probable than the other values. The probability density function (PDF)
denoted as p(x) characterizes this feature: it tells what is the probability that a signal
will take a value belonging to a small interval around x. Therefore the PDF integral
should be equal to 1: the signal for sure should have some value:

26 2 Signals: Generation, Modulation, Parameters

/p(x)dx =1 (2.1)

For: (1) Gaussian noise having mean value equal to (%) and variance equal to (62),
and (2) noise with uniform distribution of values in the open interval a < x < b, the
PDF is defined as, respectively:

b—a
0 for other x values

(2.2)
In Fig. 2.3 both probability density functions defined in Eq. (2.2), the Gaussian and
the uniform, are plotted for predefined values of their parameters. At this moment,
it is important to stress that deterministic gaussoid, defined in Table 2.1, as a signal
shape, and signal probability density functions with a Gaussian shape, defined in
Eq. (2.2) and plotted in Fig. 2.3, concern and describe two completely different
things.

1
pG(x) - Wexp [_ 20-2

{1 for a<x<b

x, (0

%,(0)

) 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t(s)

0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t(s) t (s)

Fig. 2.1: Examples of mono-component deterministic signals: (left up) sinusoid
damped (attenuated) by exponent (7' =0.2): exp(—5¢)sin(2w10¢), (right up) si-
nusoid with Gaussian envelope (T =0.1581): exp(—20(r — 0.5)?) sin(2710¢), (left
down) sinusoid with linearly increasing frequency (LFM): sin(27-0.5-20¢%),
(right down) sinusoid being, both, modulated in amplitude and frequency: 10(1 +
0.5sin(272t)) sin(27(30¢ +25sin(272t) / (47)))

2.3 Random Signals 27

X]{t) xz{tj

0 0.2 0.4 0.6 0.8 1 “o 0.2 0.4 0.6 0.8 1
t(s) t(s)

Fig. 2.2: Examples of multi-component signals: (left) multi-sine signal x;(z) =
sin(275¢t) 4 0.5sin(2710¢) + 0.25sin(2730¢), (right) summation x,(¢) of three de-
layed oscillatory impulses with different frequencies and amplitude envelopes

0.4 0.6
1 px) 4 p(x)

0.3 —------ / \ 0.4

0.2 i / 02

0.1 1

| 0

X

0 T T T T T T T T x
-4 -2 0 2 4 2 -1 0 1 2

Fig. 2.3: Probability density functions for Gaussian noise with ¥ = 0, 62 = 1 (left),
and uniform noise in the interval [—1,1] (for a = —1,b = 1) (right) [19]

In this book we will deal with discrete-time random signals x(n), not x(z). These
signals are interpreted as a sequence of independent random variables, specified by
their PDF functions. When these functions are identical, the signal generation pro-
cess is called IID, Independent and Identically Distributed. In consequence, the pro-
cess/signal is also stationary—see Fig. 1.5 and its description in Chap. 1, including
definition of process stationarity. Finally, when one long discrete-time realization of
a stationary process, as a sequence of realizations of IID random variables (signal
samples), has a PDF identical to the PDF of all IID processes, then the process/sig-
nal is called ergodic—please, look once more the Fig. 1.5. In this case, one random
signal realization only is sufficient for finding all statistical features of the signal.
Such situation is assumed in the remaining part of this sub-chapter.

The central limit theorem specifies that sum of many independent random vari-
ables tends to the Gaussian (normal) PDF. For this reason such type of noise dis-
turbance is the most frequently observed in real-world measurements and it is typi-
cally used during DSP algorithm testing. Estimation of signal mean value (X), vari-
ance (O'XZ), and standard deviation (0y), based on signal samples, is addressed in
Table 2.2. Their definitions and Matlab implementations, which are given in it, can

28 2 Signals: Generation, Modulation, Parameters

Table 2.2: Basic signal features and their calculation in Matlab

Feature Math definition Matlab code
| N
Mean I=y X x(n) mean (x) ; sum(x)/length (x) ;
n=1
N
Variance ol = % S (x(n) — %) var (x); sum((x-mean(x))."2)/N;
n=1
.. 1 N 2
Deviation stdy = | go1 X (x(n) —%) std(x); sgrt(sum((x-mean(x))."2)
n=1 /(N-1);
Energy?® E.=T-Y x*(n) Txsum(x."2) ;
n=1
N
Power? P = :‘T = % Yy xz(n) sum(x."2) /length (x) ;

N
RMS value rmsy = /P, = Al, S x2(n) sqgrt (sum(x."2) /length (x))

SNR 10~10g10% (dB) 10%10g10 (Px/Pn) ;
N—k

Correlation? Ry [k] = é > x(n)y*(n+k) xcorr (x) ; xcorr(x,y);
n=1

4 T denotes sampling period, i.e. distance between signal samples (sampling frequency inverse ﬁ)

b C is a normalization constant equal to 1, N or N — k deciding on estimator features

be used for finding real-world noise parameter values. Additionally, special tests
should be performed for verification of the noise PDF type.

In Matlab pseudo-random sequences of numbers are generated by functions:
randn () and rand (). The first of them returns the pseudo-Gaussian noise (nor-
mal noise) with X = 0, 0 = 1, while the second—the pseudo-uniform noise in the
range [0,1]. In turn, the function px=hist (x,M) is responsible in Matlab for the
signal PDF estimation: it divides the signal value range [min(x), max(x)] into de-
sired number M of sub-intervals and calculated how many signal samples belong to
each of them. When called by hist (x, M), it only plots the estimated p(x) shape.
In Fig. 2.4 two noisy signals are presented, first having normal (Gaussian) PDF with
mean equal to 0 and standard deviation equal to 1, and the second—having uniform
PDF in the interval [0, 1]. In the figure histograms of both signals are shown also. In
the left figure we see Gaussian-like bell around 0, spreading in horizontal axis from
—3 to +3 (£ 3 standard deviation equal to 1), and in the right—a rectangular hat,
spreading in x axis from O to 1.

In Matlab language one can also very easily embed her/his signal in white Gaus-
sian noise ensuring required signal-to-noise ratio (SNR), defined in Table 2.2. For
this purpose, the function awgn (), Additive White Gaussian Noise (AWGN), is
used: x=awgn (x, SNR) . Additive—because noise is added to our signal, white—
because noise power is equally spread across (between) all frequencies, i.e. its fre-
quency spectrum is white, Gaussian—because the function PDF has Gaussian shape.
Here we can do short generalization of noise description: terms Gaussian/uniform

2.3 Random Signals 29

4 Gaussian noise x(n) Uniform noise x(n)
2 ' || M |' 7 I g
s ! ‘ ‘ | It
| L
%) Wil | I,
- |
-4 i . - 0 -
0 100 200 300 400 500 0 100 200 300 400 500
sample number n sample number n
15000 Histogram of Gaussian noise 5000 Histogram of uniform noise
4000
10000
3000
2000
5000 00
1000
(1] 0
-5 0 5 0 0.2 0.4 0.6 0.8 1

Fig. 2.4: Examples of pseudo-random signals and their histograms: (left) Gaussian
noise (function randn ()), (right) uniform noise (function rand ())

describe the probability of noise value distribution, while terms white/pink/blue—
stand for distribution of noise power between different frequencies (white—equal,
pink—decreasing 6 decibels per octave, blue—increasing 6 decibels per octave).
Increase/decrease 6 dB per frequency octave corresponds to 20 dB per frequency
decade (decade = 10-times increase/decrease).

We encourage Reader to further reading one of many random signal theory
books.

Remark: For ICT Funs In each computer language there are functions for pseudo-
random number generation. Typically first congruent (additive + multiplicative) re-
cursive number generator is used:

Xut1 = (a-x, +m)mod p (2.3)

giving uniformly distributed values in the range [1, p —1). In ANSI C the following
parameters values are used: p = 232, a = 1103515245, m = 12345. After division
by p numbers from the range [0,1) are obtained. Next these numbers are trans-
formed to desired distribution of values—for example they are put into the inverse
of cumulative distribution equation. In case of the normal distribution it is very easy
to implement Box—Muller transformation of numbers [0, 1). Look at Exercise 2.15.

30 2 Signals: Generation, Modulation, Parameters

Please, find additional information about the “Box—Muller transform” in ... as usual
... the Internet.

Exercise 2.2 (Probability Study of Random Numbers). Make use of the
following Matlab code for obtaining plots very similar to these presented in
Fig. 2.4:

N=10000; M=25;
xl=randn(1l,N); figure; plot(xl); figure; hist (x1,M);
x2=rand (1,N); figure; plot(x2); figure; hist (x2,M);

Please, observe consequences of changing values of N and M (histograms are
becoming smoother and closer to theoretical ones) with the increase of (N).
Run the program a few times and observe different signal shapes and different
values of signals parameters, for example minimum, maximum, and mean
values. Modify the code and generate: (1) pseudo-random Gaussian noise with
mean value equal to 10 and standard deviation equal to 3, (2) pseudo-random
uniform noise with values in the range (—2, 2).

2.4 Sines and Instantaneous Frequency

As already mentioned in Sect. 1.3 sinusoid is the most popular signal. Analog sinu-
soid repeating fy times per second is given by the formula:

x(t) = sin(2mfot) = sin(wpt), @y =27 fp. (2.4)

For example, sine sin(2710¢) repeats 10 times per second since for # = 1 s the sine
argument (angle) is equal to the 10-th multiplicity of the 27 being the sine period.
The sinusoid (2.4) with amplitude A and phase ¢ is defined as

x(t) = Asin(2rm for + ¢) = Asin(@(z)), (2.5)

where ¢@(¢), an argument of sine, is a function of time. When signal amplitude and
phase is changing in time (A(¢),¢(¢) instead of A, @), the sinusoid is modulated
in amplitude and phase. Frequency modulation concept will be introduced later.
In many applications, for example in all damped resonance systems, sinusoid is
damped (attenuated) by exponential function:

x(t) = Ae M sin(27 for + ¢). (2.6)

2.4 Sines and Instantaneous Frequency 31

%107 NMR - long fragment %10’ NMR - begining

(3%

0 0.5 1 1.5 2 0.005 0.01 0.015
Time (s) Time (s)

Fig. 2.5: One channel, real part, of recorded Nuclear Magnetic Resonance (NMR)
signal being summation of many damped sines with different frequencies and dif-
ferent attenuation: a long fragment and its zoomed beginning

Sinusoids and damped sinusoids occur very often not alone but in linear super-
positions (sums), like 50 Hz power supply voltage with its harmonics 100, 150, 200,
250, ... Hz:

K

x(t) =Y, Agsin(2mfit + ¢), 2.7
k=1

or multi-component resonance signals:

K
x(t) =Y, Are ™ sin(27 fit +). (2.8)
k=1

In magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) the
damped components are even complex-value ones: real and imaginary parts are
coming from two different perpendicular sensors:

x(t) = iAke%k’ej(Z”kam. (2.9)
k=1
In Fig. 2.5 real part of a NMR signal (2.9), consisting of 15 damped complex oscil-
lations, is presented.
In communication systems the signal (2.5) has varying (modulated) amplitude A
and phase ¢:

x(t) = A(f) sin2zfor + ¢ (1)) (2.10)

in order to encode the transmitted information in the changes of these parameters.
The instantaneous frequency of the sinusoid is defined as

_do() 1 do()

Ot (1) = =3 T ar

finst (I)

@2.11)

32 2 Signals: Generation, Modulation, Parameters

1.e. itis a time-derivative of its angle, divided by 2x. Let us apply definition (2.11) to
signal (2.4). The result is f,q(t) = fo—the correct value because signal frequency
is constant and equal to fy. Applying (2.11) to (2.10) gives

e, 1 de()
ﬁm(t)ffwzn—dt . (2.12)

Therefore in order to obtain from (2.10) a signal with the desired functional change
mp (t) of instantaneous frequency around fj:

f(t) = fo+ke-mp(t) (2.13)

one should set:

(1) = 2ﬂ~kF-/‘mp(t)dt, (2.14)
0

since the derivative of definite integral is equal to the function being integrated:

1 d

1
finst(t):fOJFE& 27c~kp~/mp(t)dt = fo+kr-mp(1). (2.15)
0

Plots shown in the second row of Fig. 2.1 present two signals modulated in fre-
quency. In the first of them, the instantaneous frequency starts from 0 Hz and it is
linearly increasing 20 Hz per second: finy = 0+ 20z, while in the second one—it
cosinusoidally oscillates around 30 Hz with depth 25 Hz, repeating up-down cycle
two times per second: f,x = 30+ 25cos(272t). In the second case, the signal is ad-
ditionally modulated in amplitude, i.e. its amplitude is changing in time according
to the formula: A(r) = 10- (1 +0.5sin(272t)).

Wow! Is it an easy DSP starter?! Yes, it is. It results from my teaching experience
that understanding the concept of signal instantaneous frequency is the main key
opening a door to understanding the concept of signal itself.

Exercise 2.3 (Generating Signals Modulated in Frequency). This is one of
the most important exercise of this book since the frequency is the basic signal
parameter. Use program from the Listing 2.1 and Matlab code from the Ta-
ble 2.1, and generate different signals modulated in frequency, for example the
following ones having:

o parameters as in two down plots of Fig. 2.1,

o frequency changing linearly from value f; to value f,, for example from
0.01 Hz to 100 Hz in 1 s,

o frequency changing sinusoidally £A f hertz around some given fj, for ex-
ample + 10 Hz around 10 Hz once per second,

2.5 Signal Parameters incl. Correlation Function 33

o frequency change described by slowly varying function fi,s(z) chosen
yourself, for example fi,s (t) = 10- .

Assume, for example, sampling frequency equal to 1000 Hz. Check visually,
whether the frequency requirements are fulfilled, observing the signal wave-
form/signature in each case and measuring period of oscillation (or counting
changing number of samples per signal period).

Exercise 2.4 (** Generating FM Signals with Violation of the Sampling
Theorem). This is a wonderful exercise. Understanding it means that you are
really very good in signal sampling and modulation, and you are ready for
climbing next chapters of this book. Use the program 2.1 and the Table 2.1.
Change sampling frequency to f; = 8000 Hz and number of samples to be gen-
erated to N = 5f; (5 s). Generate a signal having frequency 0.01 Hz at# =0s
and then increasing it linearly 4000 Hz per second. Plot the signal and hear it
(plot (t,x); sound(x, fs) ;. Why the signal shape is repeating? Why do you
hear the sound going periodically up-and-down? If it is too difficult for you, use
a Life-belt: a call to your friend from the Wheel of Fortune—call the special
Matlab function aimed at tracking of varying frequency content of a signal:

spectrogram(x,512,512-32,1024, fs, 'yaxis’) ;

You see 2D plot of frequency change in time. Observe the curve of frequency
change. Explain origin of a zig—zag shape.

Now generate a signal with sinusoidal frequency modulation: carrier frequency
fo = 7500 Hz, modulation depth A f = 500 Hz, modulating frequency f,, =
0.5 Hz (once per two seconds). Is not the signal oscillating to slowly in the
plot? Is not the played sound too low-frequency one? How do you explain this?
Now change sampling frequency to f; = 44.1 kHz and repeat last experiments.
Why at present the sound is a high-frequency one?

2.5 Signal Parameters incl. Correlation Function

Having a signal we can calculate many numbers describing (characterizing) it fea-
tures, like minimum, maximum, peak-to-peak (difference between maximum and
minimum) and mean values, signal energy, power (energy in time), root-mean-
square (RMS) value, variance, standard deviation (STD), and many others. Values
of these parameters help us to feel the signal nature without observing its shape.

34 2 Signals: Generation, Modulation, Parameters

We are like a doctor who is looking at blood analysis results instead of observing a
patient physiognomy. For more details see Table 2.2.

Signal-to-Noise Ratio (SNR), given in Table 2.2, is defined as a ratio of signal-to-
noise power, expressed in decibels. It is used for characterization of signal strength
in respect to embedded noise. SNR describes signal acquisition conditions and ef-
ficiency of performed, different DSP operations since we can compare the SNR
before and after the signal processing. A ratio R =)XC of two not-negative values y,x
is expressed in decibels with the help of the following equation:

2
R(dB) = 20-log,, (%) = 10-log,, (L) . (2.16)

In case of SNR, decimal logarithm of signal-to-noise power ratio is calculated and
multiplied by 10.

Instead of simple one-value signal parameters, we can also associate with each
signal a function having more values and describing it in some way. Signals can
be self-similar (repetitive, periodic) or similar to each other. Auto- and cross-
correlation functions are used for examination of this phenomena. Auto-correlation
of one N-sample long x(n) signal is defined in Table 2.2. Below definition of a cross-
correlation of two different signals x(n) and y(n), both having N samples, is given:

lN —k
Zx “(n+k), (2.17)

where a normalization constant C is equal 1, N or N —k (for each k the exact number
of samples taking part is accumulation is different and equal N — k). ()* denotes
complex conjugation if signal has complex values (otherwise it is omitted).

In the above definition the following operations are performed:

1. the first signal x(n) is not moved,

2. the second signal shift value is initialized: k = ko,

3. the second signal, y*(n) or x*(n) as a special case of y*(n), is shifted by k
samples,

4. both signals are multiplied,

5. multiplication results are accumulated and the sum is stored as R(k),

6. if necessary, value of k is changed and jump to step 3 is performed.

The distinctive maximum of the function R(k) tells us that after the shift of k samples
both signals x(r) and y*(n) are similar to each other or one signal x(n) is similar to
complex conjugation of its own shift (i.e. it is periodic) and k is the period.

Correlation function is used, for example, in

¢ speech analysis where auto-correlation is used for finding pitch period of vocal
cords opening and closing,

o radar systems where signal echoes (signal reflections coming back to transmit-
ter) are cross-correlated with the sent signal penetrating the neighborhood, and
moving object distance and velocity is found,

2.5 Signal Parameters incl. Correlation Function 35

¢ telecommunication systems where receiver is cross-correlating the received sig-
nal with known pilot sequence, aiming at data synchronization and channel
equalization.

Noise signal does not auto-correlate with itself for any k # 0 since there is no
connection between its present value and past/future values. Noise auto-correlation
function has a single peak for k = 0: the signal is only similar to itself with no shift.

Auto-correlation function of (co)sinusoid x(n) = Asin(27(fy/ fs)n) is equal to a
cosine:

2
R, (k) = A?cos (2717?31() (2.18)

because (co)sinusoid is periodically self-similar to itself.

Exercise 2.5 (Calculating the Signal Features (Descriptors)). Calculate sig-
nal features defined in Table 2.2 for sinusoid (with integer and fractional num-
ber of periods), mixture of sinusoids, speech signal, and white Gaussian noise
(with different lengths).

Exercise 2.6 (My AWGN: Embedding Signal in Gaussian Noise). In Octave
there is no awgn () function for signal embedding in additive white Gaussian
noise. Use SNR definition, presented in Table 2.2. Write a function adding to
a given signal x(n) the Gaussian noise, ensuring the SNR level requested by a
user.

Exercise 2.7 (My XCorr and Its First DSP Mission). Write code of your own
myxcorr () procedure, calculating auto- and cross-correlation function of two
signals x(n) and y(n)—use definition given in Table 2.2. Verify its correctness
comparing the function output with output of the Matlab function xcorr ().
Apply it to cosinusoid and verify validity of Eq. (2.18). Try to find your own
speech period, auto-correlating the signal with itself.

OK. I have changed my mind: in the second chapter still more father’s help is
expected and needed, I will help you with calculation of the signal auto-correlation
function. In Fig. 2.6 a fragment of voiced speech is shown, the waveform of the

a” vowel (240 samples for sampling rate 8000 samples per second), and plot of
its auto-correlation function, calculated for the shift parameter k changing in the

W © o0 U W N R

[R S R R N e e e
N HF O W ® J o0 Utk W NN HEH o

36 2 Signals: Generation, Modulation, Parameters

Speech phoneme "a Auto-correlation of "a"

i -1 i i L
0 0.01 0.02 0.03 -0.02 -0.01 0 0.01 0.02
t (s) T (8)

Fig. 2.6: Waveform of the vovel ‘a’ (left) and its auto-correlation (right)

range —180,...,0,...,180. One can observe that the signal is periodic with the pe-
riod approximately equal to 0.01 s (80 samples). The auto-correlation function is
symmetric (the same values are obtained for positive and negative values of k) since
the shift left and right of the second signal give the same result when signals being
correlated are the same. The auto-correlation function has the maximum value for
k = 0—the signal is the most similar to itself in such case—no surprise. The high-
est side-maxima are observed for shift equal to ~ £0.01 s which is true—it is the
signal period. The Fig. 2.6 was generated with the help of below program which
can be used for further experiments with correlation function testing in different
applications.

Listing 2.2: Calculation of auto/cross-correlation function in Matlab

% File: 1ab02 ex correlation.m

clear all; close all;

[x,fs] = audioread('A8.wav’, [1001,1240]); % your waveform

x=x(:,1)."; % first chammel only

Nx = length(x); n=0:Nx¢1; % find mumber of samples, sample numbers

dt = 1/fs; t = dtsn; % scale in seconds

K = 180; % how many shifts left and right

Y = X; % more general, ready for cross-correlation

R(K+l) = sum(x .+ conj(y)); % no shift, k=0

fork=1:K % MATN LOOP
R(K+14k) = sum(x(1 : Nxk) .» conj(y(l+k : Nx))); % shift left
R(K+1-k) = sum(x(1+k : Nx) .x conj(y(l : Nxk))); % chift right

end %

=-K: K;
figure

subplot(211); plot(t,x,'b.-");

xlabel ('t (s)’); title(’Signal fragment’); grid;
subplot(212); plot(k«dt, R, 'b.-");

xlabel (' \tau (s)’); title(’Signal autocorrelation’); grid;
\S

2.6 Summary

Exercise 2.8 (Scaling Auto-Correlation Function). Add normalization of the
auto-correlation function to the program 2.2, i.e. division by C value as in
Eq. (2.17). Observe its influence upon the function shape.

2.6 Summary

In this chapter we did a longer visit in the signals’ world, wonderful for

me and a strange Zoo, or an old-fashion museum, for many of my students.
We have generated different types of mono-component signals, deterministic
and random ones, as well as their mixtures. We study more carefully amplitude
and frequency signal modulation. We learn definition of sine instantaneous fre-
quency and signal correlation. We become familiar with the most important
signal parameters and their calculation. What should be remembered?

1.

Deterministic signals have known shapes that are described by some
mathematical function. Random signal have unknown shapes—they are
unpredictable—but their probability distribution functions (PDFs), in Mat-
lab histograms, are usually described by some specific functions, e.g. Gaus-
sian curve.

The most important deterministic signal is a sinusoid and sinusoid having
amplitude decreasing exponentially (so-called damped sinusoid). Such sig-
nals are generated by many real-world objects described by second-order
differential equations.

. The most important random signal is the Gaussian noise. The theory (cen-

tral limit theorem) says that when there are many opposed factors, the
Gaussian noise results.

. Signals typically occur in mixtures: several components added together

(e.g. radar echoes, many speaker talking simultaneously) or signal of inter-
est and disturbances (like in telecommunication systems when each service
is the disturber for all others).

. A special very important class of signals represent modulated ones. Any

signal can change (modulate) amplitude and/or frequency/phase of a sine.
In telecommunication systems the sine is a carrier and the modulating
signal—the information that is transmitted and should be correctly re-
ceived.

It is extremely important to remember that instantaneous frequency of a
single sine is equal to derivative of its angle divided by 27z. This knowledge
is priceless in signal generators and transmitters.

37

38 2 Signals: Generation, Modulation, Parameters

7. Generation of deterministic signals is not difficult. We simply calculate
values of functions that are defining the signals, e.g. sine, cosine, exponent,
Gaussian, ... In Matlab the situation is even simpler: we send to a function
a whole vector of argument values, typically time moments, and collect at
once all function values—signal samples.

8. Having a signal we can calculate numbers describing it: its minimum, max-
imum and mean value, variance, deviation, energy, power, RMS value,
signal-to-noise ratio (SNR), ... and many other. Each of them is a measure
of one important signal feature. A set of them all is significantly smaller
than a set of all signal samples but can give us an essential signal charac-
terization.

9. The auto-correlation function specifies self-similarity of a signal. It is de-
fined as an inner product (multiplication of corresponding elements and
summation) of original signal samples and the shifted ones calculated for
different shift values. Dominant values of the auto-correlation function for
certain shift values tell us that some signal components repeat after these
shifts, i.e. the shifts are their periods.

10. While introduced for the first time, the auto- and cross-correlation typi-
cally do not look for us as very important heroes of the DSP epic. But
they really are! They play very important role in signal frequency analysis
(power spectral density), signal detection (matched filter), and statistical
signal processing (Wiener and Kalman filter). During any call each mobile
phone calculates auto-correlation of the speech of any talker. How many
auto-correlations are calculated all around the world now?

2.7 Private Investigations: Free-Style Bungee Jumps

Exercise 2.9 (* NMR as Sherlock-Holmes). Generate the complex-value signal
(2.9) having now the form:

K
) = X Ace WP (), =T
k=1 Js

which is exploited for testing algorithms for analysis of Nuclear Magnetic Reso-
nance (NMR) signals [1]. Assume the following values of normalized frequencies,
amplitudes, and damping factors:

Fr = —0.205 -0.2 0.05 0.1 0.105 0.205
Ay =1.0 0.25 1.0 5.0 0.75 1
dy, =0.005 0.0 0.0 0.001 0.01 0.005

W O oUW N R

NN NNRE R R R R B B BB B
U™ WNKREOWOCIO U & WN R o

2.7 Private Investigations: Free-Style Bungee Jumps 39

Assumen=0,1,2,...,N—1,N = 2048. Add white Gaussian noise to the signal us-
ing Matlab functions: x=x+stdxrandn (size (x)) or x=awgn (x, SNR) (ad-
ditive white Gaussian noise with specified SNR). If, having a signal, we would find
parameters of its all oscillatory components, we could deduce objects which have
generated them. This way one can characterize ingredients of chemical compounds
which can be safe or dangerous for human being. The method is called a spec-
troscopy.

Listing 2.3: Synthesis of NMR signal

~
% File: Lab02 ex mmr.m
clear all; close all;
Nx = 2°11; % rumber of samples
K =6; % number of camponents
F =1 -0.205 -0.2 0.05 0.1 0.105 0.205];
A =[] 1 0.25 1 5 0.75 1 1;
d =1 0.005 0 0 0.001 0.01 0.005];
fi = zeros(1,K);
% Signal generation
figure
X = zeros(1,Nx) ; n = 0:Nx1;
for k=1:K
k
x1 = A(k) .x exp(-d(K)+n) .* exp(j*2#01«F (k) #n) ;
X =X+ X1;
subplot(211); plot(real (x1)); grid; title('x1l real’); axis tight;
subplot(212); plot(real (x)); grid; title('x real’); axis tight;
xlabel (“ sample nurer”) ; pause
end
X = awgn(x, 40, ‘measured’); % x = X + 0.0187xrandn(size(x)) ;
figure;
subplot(211) ; plot(real (x)); grid; title('real(x)’); axis tight;
subplot(212) ; plot(imag(x)); grid; title('imag(x)’); axis tight;
xlabel (* sanple number’) ; pause
-

Exercise 2.10 (* KARAOKE Piano Bar). Visit one of Internet pages with vir-
tual pianos (e.g. https://recursivearts.com/virtual-piano/, https://virtualpiano.net/)
and play the instrument for a while. After this analyze the below Matlab code. Do
you recognize the song? Now try to synthesize a musical track of your favorite
song for the nearest Karaoke Bar. Musical frequency scale is defined as follows (see
https://pages.mtu.edu/~suits/notefreqs.html):

e note Ay in k-th octave has frequency f,? =2K.27.5Hz, where k=0,1,2,3,...8;

« 12 notes {Ay,B]"" = BY,By,Cy,C""" = C}, Dy, D}'"? = D Ey, i, "7 =
Fk# , Gk,A{lm = Ai} of the k-th octave have the following frequencies, respec-
tively, for m =0,1,2,3,...,11: fi, = f-27/12,

https://recursivearts.com/virtual-piano/
https://virtualpiano.net/
https://pages.mtu.edu/~suits/notefreqs.html

W W J oUW N

WWwWwWwonNNNDNDNNDNNDNDRRRRRRRR R B
W N P O W © J 0 Ul b W N PFEF O WO-NOoO U B W NN H+H o

40 2 Signals: Generation, Modulation, Parameters

Listing 2.4: Virtual piano program

% File: Lab02 ex doremi.m
clear all; close all;

fs =8000; T =0.5;
dt = 1/fs; N = romnd(T/dt); t = dtx(0:N-1);

danp = exp(-t/ (T/2)) ;

% C D E F G A H

% do re mi fa sol la si

fregs = [261.6, 293.7, 329.6, 349.6, 391.9, 440.0, 493.9];

kb = [fregs; 2xfregs 1; % keybord;
temp = kb ; f=temp(:),

% Gama

mscale = [];

for k =1 : length(f)
X = damp . * sin(2xpixf (k) #t) ;
mscale = [mscale x];

end

soundsc (mscale, £s) ;

pause(T * (length(f)+1));

mysong =[]

for k =1 : lengthmyfreqgs)
X = danp .* sin(2#pixnyfregs(k)t) ;
mysong = [mysong x] ;

end

soundsc (mysong, £s) ;

NS

Exercise 2.11 (* Fire! Fire!). Using elaborate frequency modulation patterns try to
synthesize a very impressive alarm signal for your local fire brigade, your computer
laboratory, or your boyfriend/girlfriend.

Exercise 2.12 (* My First Digital Modem). Generate a random sequence of N bits
0/1 using Matlab command: round (rand (1, N)) . Modulate a sinusoid in ampli-
tude or frequency according to the bit values 0/1, i.e. high or low. Write a program
for bit recovery. Possibilities: AM: tracking local maximum/minimum, peak2peak
value, FM: tracking local speed of zero-crossing.

Exercise 2.13 (* How My Vocal Cords Are Working? Part 2). Repeat the Ex-
ercise 1.1 but now find the pitch period for different voiced phonemes using the
auto-correlation function. Calculate frequencies of vocal cords opening and closing.

Exercise 2.14 (* Is My Heart Still Broken? Part 2). Repeat the Exercise 1.11 but
now find periodicity of the ECG signal using the auto-correlation function. Calculate
the number of heartbeats per second.

W O 0 U W N R

WWWwWwWwwNo NN NDNNNNDRRRRRRRR R R
Ul b WD O VW oW O W oo W N R O

References 41

Exercise 2.15 (* Generation of Random Numbers). Generate random numbers
with uniform distribution in the interval (0,1) and then transform it into normal
distribution using Box—Muller method. Test the program given below.

Listing 2.5: Random number generation by hand

% File: Lab02 ex BoxMuller.m
clear all; close all;

% Uniform [0, 1]

r = rand mult(10000,123); % multiplicative generator

%r = rand multadd(10000,123); % multiplicative + additive generator
figure; plot(r, 'bx’);

figure; hist(x,20);

% Uniform [0,1] --> Normal(0,1)

N = 10000; rl = rand(1,N); r2 = rand(1,N);
nl = sqgrt(-2+log(rl)) .* cos(2#pixr2);

n2 = sgrt(-2+log(rl)) .* sin(2#pixr2);
figure;

subplot(211); hist(nl,20);

subplot(212); hist(nl,20);

function s=rand mult(N, seed)
a =69069; p = 2"12; s = zeros(N,1); % specially designed values
for i=1:N

s(i) = mod(seedra,p); seed = s(i);

end
s = s/p;
end

function s=rand miltadd(N, seed)
a=69069; m=5; p=2"32; s==zeros(N,1); % specially designed values
for i=1:N
s(1) = mod(seedxa,p) ;
seed = s(1) ;
end
s = s/p;
end

\S

References

1. E. Aboutanios, Y. Kopsinis, D. Rubtsov, Instantaneous frequency based spec-
tral analysis of nuclear magnetic resonance spectroscopy data. Comput. Electr.
Eng. 38, 52-67 (2012)

2. J. Bendat, A. Piersol, Random Data: Analysis and Measurement Procedures
(Wiley, New York, 1971; 4th 2010)

40

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

2 Signals: Generation, Modulation, Parameters

. L.F. Chaparro, Signals and Systems Using Matlab (Academic Press, Burling-

ton MA, 2011)

. MLH. Hayes, Statistical Digital Signal Processing and Modeling (Wiley, New

York, 1996)

. ML.H. Hayes, Schaum’s Outline of Theory and Problems of Digital Signal Pro-

cessing (McGraw-Hill, New York, 1999, 2011)

. E.C. Ifeachor, B.W. Jervis, Digital Signal Processing. A Practical Approach

(Addison-Wesley Educational Publishers, New Jersey, 2001)

. VK. Ingle, J.G. Proakis, Digital Signal Processing Using Matlab (PWS Pub-

lishing, Boston, 1997; CL Engineering, 2011)

. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory

(PTR Prentice Hall, Englewood Cliffs, 1993)

. R.G. Lyons, Understanding Digital Signal Processing (Addison-Wesley Long-

man Publishing, Boston, 1996, 2005, 2010)

J.H. McClellan, R.W. Schafer, M.A. Yoder, DSP FIRST: A Multimedia Ap-
proach (Prentice Hall, Englewood Cliffs, 1998, 2015)

S.K. Mitra, Digital Signal Processing. A Computer-Based Approach
(McGraw-Hill, New York, 1998)

A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (Pearson Ed-
ucation, Upper Saddle River, 2013)

A.V. Oppenheim, A.S. Willsky, S.H. Nawab, Signals & Systems (Prentice Hall,
Upper Saddle River, 1997, 2006)

A. Papoulis, Signal Analysis (Mc-Graw Hill, New York, 1977)

J.G. Proakis, D.G. Manolakis, Digital Signal Processing. Principles, Algo-
rithms, and Applications (Macmillan, New York, 1992; Pearson, Upper Saddle
River, 2006)

S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing
(California Technical Publishing, San Diego, 1997, 1999). Online: http://www.
dspguide.com/

K. Steiglitz, A Digital Signal Processing Primer: With Applications to Digital
Audio and Computer Music (Pearson, Upper Saddle River, 1996)

M. Vetterli, J. Kovacevic, V.K. Goyal, Foundations of Signal Processing (Cam-
bridge University Press, Cambridge, 2014)

T.P. Zielinski, Cyfrowe Przetwarzanie Sygnalow. Od Teorii do Zastosowari
(Digital Signal Processing. From Theory to Applications) (Wydawnictwa Ko-
munikacji i £.acznosci (Transport and Communication Publishers), Warszawa,
Poland, 2005, 2007, 2009, 2014)

http://www.dspguide.com/
http://www.dspguide.com/

Chapter 3)
Signal Orthogonal Transforms G

Everything can be taken to pieces and assembled back. A signal
also.

3.1 Introduction

This chapter is devoted to fundamental concept of signal decomposition into
some simpler components (into some smaller parts). We are very close to math-
ematical theory of functional analysis, i.e. representation of one function as a
result of weighted summation of some other basic functions. The basis func-
tions should be orthogonal to each other: their inner products (similarity to each
other) should be equal to 0. They are many sets of functions fulfilling this con-
dition, in consequence there are many orthogonal signal transformations, for
example discrete cosine transforms (DCTs), discrete sine transforms (DSTs),
discrete Fourier (DFT), Hartley, Haar and Walsh-Hadamard transform. In this
chapter we learn about general orthogonal signal analysis (looking for a signal
recipe/prescription, i.e. calculation of signal similarity coefficients/weights in
respect to some elementary signals) and orthogonal signal synthesis (summa-
tion of elementary signals scaled by calculated similarity weights). In computer
implementation both operations are straightforward: first a vector of signal sam-
ples has to be multiplied by an analysis orthogonal matrix having different basis
function in each row. Then the resultant vector of similarity coefficient is mul-
tiplied by a synthesis matrix being transposition and complex conjugation of
the first. For real-value transformations only matrix transposition is done which
shifts samples of basis functions from rows to corresponding columns. Wow!
Yes! In discrete case both direct and inverse orthogonal signal transformation
simplify to multiplication of a vector and by a rectangular matrix. When only a
few similarity coefficients are significant for a given signal, we are telling that
the transformation has compact support. It is the case when basis functions well
fit to signal components. When we synthesize a signal from modified similarity
coefficients, some filtering of signal content is done.

© Springer Nature Switzerland AG 2021 43
T. P. Zielinski, Starting Digital Signal Processing in Telecommunication

Engineering, Textbooks in Telecommunication Engineering,
https://doi.org/10.1007/978-3-030-49256-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49256-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-49256-4_3

44 3 Signal Orthogonal Transforms

3.2 Orthogonal Transformation by Intuition: From Points in 3D
to Vector Spaces

And now slowly, from the beginning. Each color can be treated, roughly speak-
ing, as a summation of three basics ones: red—green—blue (RGB). Each point in 3-
dimensional space XYZ has three coordinates/components (X,y,z). Could any signal
be represented as a linear superposition of some elementary (basic) components?
The answer is YES and there is infinite number of such representations. The only
question is how to choose good ones. For example, an RGB color can be coded using
YIQ, YUV, or YCbCr components that could better fit to some specific applications.
Similarly, using again the 3D space template, we could rotate our coordinate XYZ
system in 3D and a point (x,y,z), not lying upon axes 0-X, 0-Y, 0-Z, could have
simpler representation (xr, yr, 0) in the rotated system 0-Xr, 0-Yr, 0-Zr.

So, the question is what is used as RGB or XYZ in signal decomposition case?
Since in real world, in circuits and systems engineering, different frequency com-
ponents (sines) are treated (attenuated and delayed) in different manner, the most
important is frequency content of any signal. Therefore, our elementary basis func-
tions, playing a role of RGB colors in signal space, should be some frequency
patterns. Since signals are treated by us as functions, this reasoning leads us to
functional analysis—a branch of mathematics dealing with the problem of approx-
imation of one function by linear superposition of some other functions, obligatory
orthogonal. Orthogonality means that each two basic functions/signals are totally
independent, in some way perpendicular to themselves as axes 0-X, 0-Y, 0-Z in 3D.
The well-known Fourier series fulfills the orthogonality requirement and allows us
to decompose any continuous differentiable periodic function into an infinite sum-
mation of sines and cosines having frequencies being an integer multiple of funda-
mental frequency, inverse of a signal period.

Digital signals are N-element vectors of samples: [x,x3,x3,...,xy]. Therefore
vector spaces and linear algebra offer the best starting point for explanation and
understanding the concept of orthogonal signal decomposition (by analogy to XYZ
one).

Any signal, understood as a vector of samples, can be represented as a linear
superposition (summation) of some orthogonal vectors, treated as elementary func-
tions of the decomposition. Typically, the orthogonal vectors are obtained by sam-
pling some oscillatory functions, sines and cosines, with different frequencies. The
idea of orthogonal signal transformation is graphically explained in Fig. 3.1. Matrix
A, having in rows samples of elementary functions, into summation of which our
signal is decomposed, is multiplied by vector of signals samples X, x(n),n=1...N.:

§=A-x. 3.1)

Vector y represents a decomposition result: a signal recipe called a signal spec-
trum. It consists of coefficients telling us how much our signal is similar to each

3.2 Orthogonal Transformation by Intuition: From Points in 3D to Vector Spaces 45

(0] [ssssssssa] []] [1 [w]
¢ /\WJ ¢
= 129 = ®
A % coofl fa
o o o
o o o
o o L L J _O_

Analysis: y=AX Synthesis: x=BYy

Fig. 3.1: Graphical explanation of orthogonal signal analysis/decomposition (left)
and synthesis (right)

elementary function. When we take all elementary functions, scale them by these
coefficients and add, the signal is perfectly reconstructed:

x=Al.yg=A"T".y. (3.2)

Equation (3.1) describes orthogonal signal transformation (i.e. the signal analysis),
while Eq. (3.2) inverse orthogonal transformation (i.e. signal synthesis). Since in-
verse of an orthogonal matrix is obtained by complex conjugation of the matrix ele-
ments and the matrix transposition (rows becomes columns), during signal synthesis
the same elementary vectors are used as during analysis: the signal is synthesized as
a sum of weighted elementary functions. Only so much and so much.

When equality A~! = (A*) holds, the matrix A is more than orthogonal
only: it is orthogonal and the same time normalized, i.e. orthonormal. In such
case A~!. A =1, the identity matrix. In this chapter we will consider such case
only. When matrix A is only orthogonal, i.e. its rows and column are mutually
orthogonal, multiplication of the matrix and its transposed conjugation gives a
diagonal matrix with not all elements equal to 1 on the main diagonal. In such
case, some additional scaling of orthogonal forward (3.1) and backward (3.2)
transformations is required. It will be introduced in next chapter on discrete
orthogonal Fourier transform (DFT).

Many such signal decompositions (orthogonal matrices) exist. They are giving
us information about the signal content. Knowing the signal decomposition result,
we can remove (modify) some of its components and synthesize its filtered version.
This is like with a soup: having its recipe we can modify it, for example remove
cucumbers and increase number of tomatoes, and boil a different soup using the
modified prescription.

46 3 Signal Orthogonal Transforms

3.3 Orthogonal Transformation Mathematical Basics

Let X and y denote N-element vertical vectors of signal samples, real- or complex-
value ones:

X1 Y1
X2 Y2

X=1|.|, ¥=1|.], (3.3)
XN YN

They are orthogonal (independent, perpendicular) when their inner product (X,¥),
summation of multiplications of all corresponding elements is equal to zero:

(%,9) =21y} + 003+ Hxy =i on] || =5%=0. (34)
Xy

In Eq. (3.4) the mark “*” denotes complex conjugation, negation of imaginary
part of complex-value data, and *“()”—complex conjugation and additional vec-
tor transposition (changing orientation vertical <+ horizontal). Both vectors X,y are
orthonormal when additionally they have norm equal to 1 (perfect similarity to it-
self):

V]| = (¥, ¥) =1, (3.5)
Inner product can be treated as a measure of similarity: 1 = the same, 0 = completely
different. Unitary vectors &, = [1,0,0], &, = [0,1,0], & = [0,0, 1], defining axes 0-X,
0-Y, 0-Z in 3D space are orthogonal because their mutual inner products are equal
to 0 (1s are in different positions):

(&,8)=1-0+0-1+0-0=0,
(8:,8)=1-0+0-0+0-1=0,
(,&)=0-0+1-0+0-1=0.

Exercise 3.1 (Checking Vector Orthogonality). In this short program we are
checking orthogonality of two vector of numbers:

x=[1; -1; 21,

y = [3; 1; -1 1, pause
ol = sum(x . conj(y)), o2 = (y’') * X, pause

Change values of vector elements and run program a few times. Then make the
vectors longer. At present vectors are vertical. Make them horizontal. Modify
the program if it stops to work after the last change.

3.3 Orthogonal Transformation Mathematical Basics 47

Let us choose N orthonormal, vertical, basis vectors Vi, k = 1,2,3,...,N, N-
element each, and build matrix V, having conjugated vectors in rows (conjugation
if complex-value):

<H BoE L pF
Vi Vig V2 ViN
-H * * *
\b Vo1 V22 0 awN
V=1 .|=|. . . 1 (3.6)
oH * * *
VN VN1 VN1 T YNN

where vy, denotes n-th element of k-th vector. By definition it is an orthogonal
matrix since it has orthogonal rows. When we multiply vector X by this matrix we
do its orthogonal transformation:

X < x> Vi Viz i [a
<H o *
_ X5 <Vy,X> Vo Vap Vo | | X2
X = . = . == . . . (3'7)
X <Vl x> ViV e VE X
N N N1 VN1 N.N. N

Vector X consists of coefficients < Vf ,X>k=1,2,...,N, specifying similarity of
vector X to the elementary vectors Vf . Equation (3.7) can be written as:

X=V-k (3.8)

Multiplication of both sides of (3.8) by the inverse of matrix V results in

VIX=(V'V).x=I.x=x. (3.9)

Therefore the vector X can be always recovered from vector X of similarity coeffi-
cients for any matrix V having an inverse:

x=V1.X. (3.10)

Exercise 3.2 (Forward and Backward: Solving Inverse Equation).

Let us do a very simple experiment: we will generate a vector and a rectangular
matrix with random numbers. Then we will perform the vector transforma-
tion (3.8) and the inverse transformation (3.10), assuming that the matrix V has
an inverse:

N=100; x=randn(N,1); V=randn(N,N) ;
X = Vxx; xe = inv (V) *X;

error = max(abs(x - xe)),

What do we see? We came back perfectly! Concluding: there is no problem
with doing perfect signal analysis and synthesis using any matrix and its in-
verse, if it exists. But interpretation of the similarity vector X is difficult in this

48 3 Signal Orthogonal Transforms

case: the signal is reconstructed as sum of columns of matrix V~! scaled by co-
efficients X. If column of V~! would be equal to rows of V the situation would
be much more comfortable for us: the same functions would be used for the
analysis and synthesis. We could easily interpreted elements of X in such case.
For the non-orthogonal matrix V it is impossible. Run the program a few times
for different random data. Is the perfect signal reconstruction observed all the
time?

But we have assumed that V is an orthogonal matrix and as such it not only has
an inverse but this inverse is equal to transposition and conjugation of V (denoted
by operator (.)%):

v =vi = (v, (3.11)

Only orthogonal matrix V has this nice feature! So we see that during signal synthe-
sis from similarity coefficients X we are using the same vectors as for the analysis,
only transposed and conjugated:

N
x=(V)'-X, x=Y X (3.12)
k=1
and the same but more user-friendly:

. _ . - S
[} []
A -~ A
_ -~ g °
o= ® T iy — o (¢
= °
(XX W

Fig. 3.2: Graphical illustration of signal analysis (left) and synthesis (right) by
means of orthogonal transformations. During decomposition signal is multiplied
by a matrix having reference oscillatory signals in its rows. Calculated similarity
coefficients are used next for signal synthesis: vector with them is multiplied by a
matrix having basis functions in its columns—the columns are scaled by transform
coefficients and added

3.3 Orthogonal Transformation Mathematical Basics 49
X1 [vig vag v | [X0]
X2 vip V22 s N2 | [X2
=)
XN LVin Van o W] [XN
X1 V1,1 V2.1 VN1
X2 V12 V22 VN2
=X +X5 +...+Xn
XN VI,V | V2.N LVN.N

Therefore these coefficients have a big sense: our signal is represented as a summa-
tion of basis orthogonal vectors taken with some weights. Basic concept of orthogo-
nal signal transformation is once again repeated in Fig. 3.2 similar to Fig. 3.1. Like
in the army: permanent repeating makes masters from us!

So doing orthogonal signal transformation we are looking for signal X similar-
ity to vectors Vi, k = 1,2,3,...,N, and doing inverse transformation we are doing
synthesis of X using vectors Vi, k = 1,2,3,... N. Since the signal is represented
as a sum of vectors V;, we can say that during orthogonal transformation it is de-
composed into these vectors (spanned by these vectors). And we can choose them
(signal components we are looking for) in different ways. The best are vectors vy
similar to real-life (real-world) components, e.g. (co)sine oscillations. In Fig. 3.2
graphical illustration of forward and backward orthogonal signal transformations is
given.

In signal theory books matrix equations of direct and inverse orthogonal trans-
formation of signals/vectors are typically written in the following form:

N
ANALYSIS: X, = (x,v;) =¥ .x= 2 XoVi,s k=1,2,3....N, (3.13)

M=

SYNTHESIS: x= Y X,¥. (3.14)

k=1

In the above discussion we have assumed more general case when vectors V;
are complex-value. In such situation during analysis (3.7), (3.13) their conjugation
is used. The reason of this is that in the next chapter we will discuss with more
details the discrete Fourier transformations being a complex-value one. For real-
value orthogonal basis vectors, the conjugation is not used (there is no imaginary
part to be negated).

Soup Example Orthogonal transformations of signals and orthogonal signal de-
compositions are unpleasant concept for students. To make them more fasty I usu-
ally present to students a soup example. Let us assume that we have the soup com-
ponents: potatoes, tomatoes, cucumbers, onions ..., and that they are orthogonal.
Then we go to a bar and we eat fantastic soup. Of course, we are interested in its
recipe. So, what we are doing? We compare the soup as a whole with a reference

50 3 Signal Orthogonal Transforms

potato (some basic pattern) and find the similarity coefficient for potatoes, i.e. how
many they are in our soup, e.g. one and a half. Next, we repeat this operation for
all soup ingredients, and find in this way (analysis) a complete soup prescription.
Next, we go home and during a Sunday dinner we boil the soup (do it synthesis)
for our guests using its know recipe. The same is with a signal: we are finding its
ingredients and synthesizing it, even with slight modification of the recipe (e.g. with
a little bit less or more amount of some signal frequency components).

Exercise 3.3 (Forward and Backward: Usage of Orthogonal Matrix).

At present we modify the program in Exercise 3.2. We use orthogonal transfor-
mation matrix V of the DCT-IV transform, which will be defined later, and in
the backward signal synthesis we exchange its inverse with its joint transposi-
tion and conjugation, in Matlab denoted as () ’:

N=100; x=randn(N,1) ;

k=(0:N-1); n=(0:N-1) ;

V=sqrt (2/N) xcos (pi/N * (n’+1/2)x(k+1/2));
X =V' % x; xe =V * X;

error = max(abs(x-xe)), ortho = sum(V(:,10).*conj(V(:,20))),

If the signal reconstruction error is on the level of computational accuracy, let
us say 10713, we can conclude that time spent for reading equations in this
chapter was not lost at least! We can find with ease ingredients of our signal and
synthesize the signal back using them (i.e. boil the soup). In the last program
line we have checked orthogonality of the 10-th and 20-th column of the matrix
V. Please, check orthogonality of all pairs of matrix columns. Or alternatively,
multiply the matrix V and its transposed conjugation V¥ in Matlab ortho =
V'V, and see whether the identity matrix is obtained.

Exercise 3.4 (Testing Simple 3D Orthogonal Transformation). Let us do a
very simple experiment: we will rotate orthogonal unitary vectors of the 3D
coordinate system and check orthogonality of the rotated ones. To do verifi-
cation in one step we will build a matrix from input vectors (put them into
matrix columns), multiply it by any 3D rotation matrix, and check orthogonal-
ity of the resultant matrix. For orthogonal matrix the matrix multiplication by
its conjugated transposition should result in a diagonal matrix! In the case of
orthonormality (additional normalization)—only “1s” on the main diagonal are
allowed.

o

a = pi/4; ¢ = cos(a); s = sin(a); % rotation angle a
Rx = [1 00; 0cs; 0-scl; % 3D 0-X rotation matrix

V = eye(3), Vx = Rx*V, rotation, new 3D system vectors

o
5
3
s

ortho = Vx’*Vx, pause; checking results: diagonal or not?

Modify the program: add rotation matrices around O-Y and 0-Z axes. Cre-
ate more complex rotations multiplying rotation matrices by themselves:

3.4 Important Orthogonal Transforms 51

Rxyz=Rx*Ry*Rz. Check that in each case you can go back doing inverse
(backward) rotation, i.e. doing inverse orthogonal transformation with a matrix
being conjugated transposition of the direct (forward) transformation matrix.
At present let us do the final cut: let us transform any point (x) = (x,y,z) from
the first coordinate system to the second one and go back, i.e. do in chain the
forward and backward orthogonal transformation of a point in 3D space, i.e.
the vector u:

[

u= [1; 2; 3], pause % vector/signal

o

ux = (Vx’) * u; [u ux], pause % forward transformation

o

ub = Vx % ux; [ux ub], pause % backward transformation

It is a magic! Perfect reconstruction! Now do it for any 3D vector (signal): u
= randn (3, 1). It works for any square orthonormal matrix of any size! But
may be some matrices are better. Which ones and why? How to find them?

3.4 Important Orthogonal Transforms

Signal orthogonal transforms differ in selection of orthogonal functions that are
used for signal decomposition. Many functions can be used for this purpose: sines,
cosines, summation of sines and cosines, and different rectangular-shape sequences.
In Fig. 3.3 function shapes for several orthogonal transformations are shown for
N = 8. When basis functions are more similar to signal components, less number of
decomposition coefficients have significant values. We are telling in such situation
that a sparse signal representation is obtained and the decomposition functions offer
compact signal support. In this case signal components are well represented by de-
composition functions (since these functions are similar to signal components). And
this fact apart from existence of a fast algorithm should be used for the transform
selection. The most popular are discrete cosine transforms using sampled cosines
functions as elementary signals.

Definitions of the most important real-value discrete orthogonal transforms
are listed below where vy , and vk(n) denote n-th sample of k-th basic function and
k,n=0,1,2,...,N—1 for all transformations except DCT-I: k,n =0,1,2,... N.

52 3 Signal Orthogonal Transforms

1) discrete cosine transforms DCT-I, DCT-II, DCT-IIL, DCT-IV:

DCT-I: Vien =vi(n) =\/2/N-c(k) c(n)-cos [nNkn} , (3.15)
DCLIL v = vi(n) = \/2/N - ¢ (k) -cos {”"(”;l/z)} . 316
DCT-III: Vin = Vk(n) = /2/N-c(n)-cos {717(1(—4;\71/2);1] , (3.17)

DCTIV: v, = vi(n) = /2/N - cos [”(H 1/2]\),(”+ 1/2)} . 318)

where

c(m):{l/ﬁ’ m=0 or m=N (3.19)

I, 0<m<N

2) discrete sine transform:

2 k+1)(n+1
vlgn:\/k(n):\/N_'_lsin{ﬂ(J;VJ)F('I’JF)}7 (3.20)

3) discrete Hartley transform:

1 2 2 2 . /2
Viw = vi(n) = 7 (cos WnknJrsin A’;kn) ==/ sin (;kw Z) . (321

4) Hadamard transform (only values 1 and —1 divided by v/N):

(—1)fkm) (3.22)

3~

Vien = vi(n) =
where
M—1

fkn) = kini, M=Ilog,N, ki n=0,1,
i=0

k=hko+2ki+...+2" hpy,

n=ng-+2n; +...+2M_II’ZM,1,

5) Haar transform (only values +27/2 divided by v/N):

2 —1 q—1/2
1 2012, %§%< 2
von = 1/VN, Vin = 7 —opl2 CNZon o4 k=12, N-1,
0, other n

3.4 Important Orthogonal Transforms

53

DCT-I (cosines) DST (sines) izgzg?;? Haar transform
05 0.5 0.5 1

., UFTIITITY CRTIITH “PITTTINY feessesd
O 234567 01234567 01234567 To1234567
059% 05 0.5 1

s 7 11, Jret RIXX

. ‘lls il bééy

05———20 5 05 1
01234567 01234567 01234567 01234567
05 05 0.5 1

k=2 g ,3 3’ O"Te eT" O"TLLLLT" 0“?$$===
0.5 H‘ 0.5 u 0.5

01234567

01234567

01234567

-1
01234567

0.5 05 0.5 1
es ole tel [1T 11 eeet?
It e ISEY °
O3 234567 01234567 01234567 11234567
0.5§ TT 3 05 ’s 0.5 TT ! 1§
N DY) e L D L e Y T Y e
O3 234567 01234567 01234567 01234567
0.5 05 05 1
PR 0 0 A 4 e 20 22 Y O 20O
" 1 0l I
O3 234567 01234567 01234567 01234567
05 05§ T 05 Y 1
oo T TR OPT TR OMFTOTY LT

I

I

¢ oo o

-0.5
01234567

-0.5

01234567

-0.5

01234567

0.5

s 7T

0.5

Pttt

0 b

- 0.5“—T T o
okt 4 b]

0.5
01234567

0

¢ Lot

0

PR

0.5
01234567

0.5
01234567

701234567

Fig. 3.3: Vectors v,k =0,1,2,...,N — 1, for some real-value orthogonal transfor-
mations: cosine, sine, Hadamard, and Haar (vertically from left to right). REMARK:
for Hadamard transform vectors are presented in changed order: Vg, V4, Vg, V2, V3,
V7, Vs, V1, in order to obtain increasing frequency of oscillations [10]

W O oUW N R

e e
o Ul W N R O

54 3 Signal Orthogonal Transforms
where

N=2" k=2P4+qg—1, 0<p<m—1,
p=0 = ¢g=0,1, p#0 = 1<g<2".

For example for N =4 one has: k=0,1,2,3; p=0,0,1,1; ¢g=0,1,1,2.

Please, do not worry, be happy even seeing equations of the Haar transform. Not
all days are rainy.

Most orthogonal transforms have real-value signal decomposition functions.
They are mainly used in image and audio compression, like DCT in JPEG/M-
PEG and AAC standards. But one of the most important and the most frequently
used in the world transform for signal analysis and processing has complex-value
functions! It is more difficult for us but at the same time very useful, for exam-
ple in multi-carrier telecommunication (DAB, DVB-T, ADSL, Wi-Fi, LTE, 5G),
psycho-acoustical sub-band audio coding (MP3 and AAC standards), and general-
purpose signal analysis like in magnetic resonance (MRI, NMR) . This is the dis-
crete Fourier transform (DFT), the biggest Animal in the DSP forest! the real
King of the DSP road! being time-discretized version of the Fourier series equations

(j=v-D:

Vin = Vi(n) = %exp <j21\7,tkn) , k,n=0,1,2,..., N—1, (3.24)
Due to its importance it is individually presented in the next chapter.

Why the DFT is so important? Because it is shift invariant: the original signal and
its time-shifted version have the some magnitudes (absolute values) of the transform
coefficients. This is not the case for real-value orthogonal transformation and is
shown in next section.

All defined above discrete orthogonal transforms are implemented in the program
presented in Listing 3.1.

Listing 3.1: Orthogonal sine/cosine-like signal transformations

% 1ab03 ex transforms.m
clear all; close all;

N = 8; % for ortho checking N=8 (examples), for spectrumviewing e.g. N=100

% Orthogonal transformmatrices (basis function in colums k, n - samples runber)

k=0:N-1; n=0:N-1; % k-basis function index, n-b.f. sample index
% Coment the below two lines after understanding them
Indexes = n' %k, % outer product of argument vectors

CogMatrix = cos(n’ k), pause % function values for index matrix

k=(0:N-1); n=(0:N-1); nk = [1,N] ;

V1 = sgrt(2/ 1)) x cos(pisn’«k/ (1)) ; % DCT-I
V1nk, :)=V1(nk, :)/sart(2); Vi(:,nk)=V1(:,nk)/sqrt(2); % DCT-I
V2 = sgrt(2/N) * cos(pix @1/2)"+k/N); V2(:,1)=Vv2(:,1)/sqrt(2); % DCTII
V3 = sgqrt(2/N) » cos(pisn’* (k+1/2)/N); V3(1,:)=V3(1,:)/sqrt(2); % DCT-III

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

3.4 Important Orthogonal Transforms 55

V4 = sgrt(2/N) x cos(pi/N » (+1/2)" * (k+1/2)); % DCT-IV
V5 = sqrt(2/ M1)) * sin(pix @1)’ % (k+l)/ Q1)) ; % DST
V6 = sgrt(1/MN) x (cos(2#pi/Nen’ k) + sin(2xpi/N«n’ +k)) ; % Hartley
V7 = sqrt(1/N) » exp(j*2#01/N *n’+k); % DFT - only info, real() below for DET
Vv =V1; % our choice
ortho =V %V, % orthogonality test: 1s on main diag, Os elsewhere?
figure; % open figure
for k = 1:N % coment these four lines
k, stem(real(V(:,k))), pause % after seeing the transform
end % basis functions
% Choosing signal to be transformed forward and backward (vertical vector)
N1 = floor(N/2); N2=N-N1;
X1 = 5%V(:,2) + 104V(:,7); % #1: linear superposition of V colums
x2 = [x1(N); x1(1:N1)]; % #2: first signal shifted by one sanple
X3 = sin(2#pi/7+0) ; % #3: pure sine
x4 = [ones(N1,1); -ocnes(N2,1)]; % #4: rectangular wave
x5 = randn(N, 1) ; % #5: random Gaussian noise
X6 =...; % #6: now your turm
x = x1; % OUR CHOICE
figure; plot(n,real(x), 'ro-’); title('x(n)’); % signal plot
% Transformations % (.)’" - transposition and conjugation

(.
direct transformation (analysis)

o°

X = V' #x;

figure; stem(real(X)); title("X(k)’); % plot of transform coefficients
if(0) % possible "spectrum' modification
X(8) = 0; % remove unwanted components
figure; stem(real(X)); title(’Xm(k)’); % plot of modified transform coefficients
end %
xs = V#X; % inverse transformation (synthesis)
error = max(abs(x-xs)), % signal reconstruction error

figure; plot(n,real (x), 'ro-’,n,real(xs), ‘bx-"); title('xsn)’); % synthesized signal
-

Exercise 3.5 (First ORTHO Tests). In the beginning set N=8. First, observe
how tricky generation of the transformation matrix is: first matrix of all pairs
of index values is calculated, then this matrix is put as an argument to a ba-
sis function and the whole orthogonal matrix is obtained at once. Then, check
matrix orthogonality (look at multiplication of the matrix and its transposi-
tion V’ *V—the identity matrix should result). Next, set N=100 and observe
in the loop shape of the basis functions—columns of the matrix V. You should
see faster and faster oscillations. Comment the loop. Now observe shape of
the transform coefficients for different input signals (bigger values should be
concentrated around signal frequency components) and the shape of the recon-
structed signal—without coefficients modification it should be exactly the same
as the input one. Now turn on the spectrum modification and try to remove some
signal components. It can be well done when the signal is summation of trans-
formation matrix columns. Finally, implement N = 8 point Wash—Hadamard
transform interpreting properly Fig. 3.3.

56 3 Signal Orthogonal Transforms

2171, L1 2110, Rl
ol S L el CHIE

0 eg0ee0000009)
0 p ®

Fig. 3.4: Example of signal decomposition using discrete cosine transform (DCT-I)
for N = 16. The analyzed signal is (left) perfectly equal to the third basis vector,
(right) equal to the third basis vector but circularly shifted one sample right. As
we see this very small shift has the dramatic influence upon the result: after shift
the spectrum of similarity coefficients is smeared, more vectors have to be used
for signal reconstruction. The DCT transform is not shift invariant. The DFT one,
discussed in the next chapter, is! [10]

3.5 Transformation Experiments

In this section we will demonstrate the most important features of the orthogonal
transform machinery using program 3.1.

Perfect Reconstruction The orthogonal signal transformation is perfect reversible.
Every signal, perfectly smooth like a sinusoid or perfectly rough like random noise,
will go back to itself perfectly after the direct and inverse orthogonal transformation.
It has been already presented in Exercises 3.3.

Perfect Signal Matching: Perfect Spectrum Compactness Since after the or-
thogonal signal decomposition any signal is represented as summation of scaled
orthogonal basis functions, it is no surprise that the signal spectrum is perfectly
sharp/compact when the signal components are exactly equal to scaled basis func-
tions only. In such case the orthogonal decomposition exhibits perfectly the signal
content because basis functions perfectly fits to themselves. Such situation is pre-
sented in left part of Fig. 3.4. The signal has one component being exactly equal to
the 3-rd basis function. Perfect fit! The audience applause!

Shift-Variance and Spectrum Smearing But the situation is completely different
when signal components are not equal to basis functions: the signal can consist of
only one pure sinusoid being out of the basis set either of only one basis function
but a little bit shifted in time and ... the Happy End disappears! The spectrum

3.5 Transformation Experiments 57

Xin®)

4 " " " i
0 20 40 60 80 100 2
sample number n sample number k

(k)

X
out

0.6

0 20 40 60 80 100 40 60 8
sample number n sample number k

Fig. 3.5: Example of signal components separation in domain of transforma-
tion coefficients: (up left) input signal with two-components, low-frequency, and
high-frequency ones, (up right) signal DCT-I spectrum, (down right) modified
spectrum—the high-frequency component is removed, (down left) synthesized
signal—only low-frequency component is synthesized

is smeared and analytic skills of orthogonal transforms are lost. In such case the
orthogonal transformation still offers the perfect signal reconstruction but the signal
spectrum (transform coefficients, similarity coefficients) is not compact. In right
part of Fig. 3.4 the same signal is analyzed but it is circularly shifted one sample
right. We observe that the spectrum compactness is completely lost. Seeing this the
students are leaving the lecture in silence muttering under breath: We lost our time
again!

Signal Components Separation in Domain of Transform Coefficients Having a
signal with several components we can

o calculate orthogonal transform coefficients (i.e. the signal spectrum),

o identify which coefficients belong to components of interest and which to dis-
turbers,

o set values of disturber coefficients to zero,

¢ synthesize signal from the modified signal spectrum.

This way we can separate some signal components from the rest, as a special case
we can minimize noise embedded in the signal. Figure 3.5 illustrates this procedure.

58

3 Signal Orthogonal Transforms

Exercise 3.6 (Testing Orthogonal Transformations). Use the program 3.1 to
test yourself all the listed above features of orthogonal transforms (in the be-
ginning disable spectrum modification option):

e choose different matrices V=vV1,V2, ...,V7 and check their orthogo-
nality (operation V’ %V should result in identity matrix with 1s on the main
diagonal and Os elsewhere);

¢ observe that each testing signal x=x1,x2, .. ., x5, independently from
its shape, is perfectly reconstructed;

 observe that for the first signal the spectrum is perfectly matched to signal
components (no surprise! it is summation of scaled columns of the V ma-
trix!) but for the second one, which is simply one-sample shifted version of
the first signal, the spectrum compactness is completely lost (no surprise,
these transforms are not time-invariant);

o observe that for the third signal, a pure sine, the spectrum has many non-
zero coefficients: many basis functions are required for representation of
signal having frequency not present in the basis functions set;

¢ now turn on the spectrum modification option and choose again the signal
number one; observe that setting to zero the 8-th coefficient cause removing
the basis function associated with it from the synthesized signal: filtration
of signal components can be realized this way.

e now you are ready to drive a car by yourself: cut-and-paste the program
code, computers allow a lot; for example increase value of N, analyze a
speech signal read from disc,

Exercise 3.7 (More Fun: Audio Compression Using 1D DCT). Record one
speech word, reach acoustically, with 11025 Hz sampling ratio, approximately
1-2 s. Perform the DCT upon it, DCT-IV manually or using the Matlab dct ()
function, then quantize the transform coefficients (see exercises in Chap. 1) and
perform the inverse DCT. Compare the original and synthesized speech in one
plot and by listening. Coefficients associated with lower frequencies could be
quantized less.

Exercise 3.8 (Mega Fun: Image Compression Using the 2D DCT Trans-
formation). 2D DCT image transformation is a cascade of 1D DCTs: first of
each image row, then of each column of the matrix resulting from the first
step. After the first operation image pixels are replaced by DCT coefficients.
Read any image to Matlab using function [img, map]=imread(’'x.y’) ;
and display it imshow (img, map). Convert it to gray scale if image is
in color img=rgb2gray (img) ;, then transform it into double precision
format: img=double (img) /255;. Set colormap (gray) . Perform the
2D DCT coeffs=dct2 (img) and display matrix of transform coefficients

3.6 Optimal Discrete Orthogonal Transforms 59

also as an image: imshow (abs (coeffs)). Modify the coefficient values,
for example leaving ones in the left-up corner or taking only the biggest of
them, and removing the rest. See result. Perform inverse DCT transformation
img=idct2 (coeffs) ; and compare synthesized image with the original
one. Repeat this operation for different DCT coefficient selections. In case of
any problems, look at the program 1ab03 ex image.m.

2D DCT transformation of M x N image can be manually done in Matlab
coeffs=U’+img+V where U and V are DCT matrices with dimensions
M x M and N x N, respectively, having basis functions in their column. Check
it. How to implement the inverse transformation in matrix form?

Conclusion: Take Things as They Are, Do Not Expect Impossible When the an-
alyzed signal is a linear superposition of some orthogonal vectors used by the trans-
formation (i.e. X = ¢, Vy + ¢;V; + ¢, Vi), the similarity coefficients, i.e. the signal
spectrum, give us perfect information about the signal content, i.e. coefficients ¢y, ¢;
and ¢;, (“the spectrum is compact”). When signal components do not perfectly fit to
the basis vectors used for the decomposition—the spectrum is smeared. Even slight
signal shift in time leads to interpretation problems-mash. We can explain this fact
using the 3D space analogy again: after some rotation of the coordinate system the
unitary vector & = [1,0,0] for sure will lose its perfect “energy” compactness and
after rotation more coordinates are necessary to describe it, e.g. €, = [0.8, 0.6, 0].
This is the same vector but represented in two different 3D coordinate systems (vec-
tor spaces)—one better and one worse. The DFT transform, which is discussed in
the next chapter, is in this context more robust—it is signal time-shift invariant (in
sense of spectrum magnitude).

3.6 Optimal Discrete Orthogonal Transforms

Important Mathematical Generalization This section has an off-road character
and should be absolutely skipped by Readers without math interests. An interesting
generalization of orthogonal signal decomposition is derived in it. Let us assume
that the analyzed signal vector X to be decomposed and orthonormal decomposi-
tion/basis vectors Vi, k = 1,2,3,... N, are vertical, as in Eq. (3.13). For random
signals with mean value equal to 0, decomposition coefficients:

X, = v % (3.25)
should be completely independent (uncorrelated), i.e.
H] _ - -H1 =
E[X.-X["] = {() (V%) }:v,?-E[x-xH}-VI:

E
_ _ fork # 1,
=V Rl ¥ {lk, for k=1, (3.26)

60 3 Signal Orthogonal Transforms

where () denotes the Hermitian transpose, E|[.]—the statistically expected value,
Ay—a constant, and R,,—the signal auto-correlation matrix with conjugate (Hermi-
tian) symmetry:

Elx;x]
Elxxi]

[r1x5) - Efxiay]
[x2x3] -+ Efxoxy]

E[xyxi] E[xnx3] - Efxnxy]

Rxx(o) RXX(*l) Rxx(*(N* 1))
Rxx(l) Rxx(o) Rxx(*(N*Z))
- : : : (3.27)
Ra(N—1) Ra(N—2) - Ru(0)

consisting of auto-correlation values R,(m). Signal samples x;, elements of the
vector X, are treated by us as independent and identically distributed discrete-time
variables. Since the basis functions are orthonormal:

o [0 k£L
ka.vl:{L kil, (3.28)

after left multiplication of Eq. (3.26) by Vi, one obtains the following formula:

RuVi = 4V, k=1,2,3,..., N. (3.29)

informing us that vectors ¥, should be eigenvectors and values Ay—eigenvalues of
the matrix Ry, and can be found by its eigenvalue decomposition (EVD):

N
R, = 2 A,kaV][j7 M>hL>A3> ... > Ay, (3.30)
k=1
Eigenvectors are unitary (orthonormal) and they optimally span (adjust) the vector
space for a concrete signal in directions of the signal energy concentration.

This result is very important. It tells us how to choose orthogonal decomposition
vectors for a random signal, aiming at maximum concentration of signal energy in
the smallest number of orthogonal transformation coefficients: as eigenvectors of
the signal auto-correlation matrix R,,. Of course, if computational expense of such
signal treatment is acceptable. Discrete orthogonal transform with optimal signal-
driven basis vectors chosen this way is called the Karhunen—Loeve transform. For
auto-regressive first-order AR(1) signals, fulfilling the relation:

x(n) = ax(n—1) +noise(n)/\/1—a? (3.31)

and having auto-correlation function of the form Ry, (m) = @™, the DCT-II transform
is a very close approximation of the described above optimal Karhunen-Loeve sig-
nal decomposition for value of a close to 1. For this reason, DCT-II is widely used
in image processing.

3.7 Summary

As a side conclusion, we can generalize this section saying that one should al-
ways try to choose such discrete orthogonal transformation which functions are the
most similar (best fitted) to an analyzed signal. Such procedure guarantees the most
compact signal decomposition, i.e. represented by left plot of Fig. 3.4, not the right

one.

3.7 Summary

In this chapter we studied discrete orthogonal transformations of discrete-

time signals. There are whole books dealing only with this one topic—so impor-
tant it is for signal analysis and processing. Now we will summarize in points
the most important things which should be remembered.

1.

Two vectors are orthogonal when their inner product is equal to zero (sum
of multiplied elements). A matrix is orthogonal when it is built from rows or
columns which are all orthogonal to themselves. Inverse of an orthogonal
matrix is equal to conjugation and transposition of its elements (the first
row becomes the first column, the second row becomes the second column,
and so on). Multiplication of the matrix and its inverse gives an identity
matrix with ones on the main diagonal: V.V = 1.

. Orthogonal transformation of a vector X of N signal samples is defined as

its multiplication with a rectangular N x N orthogonal matrix V¥ :
X=V".x

The matrix has in its rows so-called basis signals/function into which the
analyzed signal is decomposed. The transformation result X is a vector of
coefficients telling us about quantity of each basis function presence in the
analyzed signal. Thanks to this we are informed about a signal content: the
signal becomes for us a summation of scaled basis functions/signals.

. The transformation result can be used for signal synthesis/reconstruction.

In this case the vector of similarity coefficients X is multiplied by the matrix
V giving in a result:

V-X=V-Vi.x=I.5=%.

This is a consequence of the fact that an orthogonal matrix is used and its
inverse is equal to transposed conjugation.

Doing some modification of the transformation result before backward
transformation we can change the signal content, i.e. separate signal com-
ponents or reduce the noise.

. There are many orthogonal discrete transformations: DCT, DST, DFT, ...

The transformation is good in our application when only a few similar-
ity coefficients are significant, i.e. the vector of coefficient has compact
form. It is achieved only in the situation when basis functions are perfectly
matched to signal components. It almost never happens for real-word data.
Hmm. .. Uff...

61

W oUW N

e I S S R Y
(6 I S VI N =)

62 3 Signal Orthogonal Transforms

6. If decomposition coefficients have the same values after the signal shift,
the transformation is shift invariant. Unfortunately, only the complex-value
discrete Fourier transform has this nice feature (and only for magnitude of
its coefficients).

7. The Karhunen—Loeve transform is the optimal discrete orthogonal trans-
form for random data—it maximizes compactness of the transform coeffi-
cients. The DCT-II is close to KL transform for AR(1) signals.

3.8 Private Investigations: Free-Style Bungee Jumps

Exercise 3.9 (Writing Program of a Universal Ortho-Screwdriver). Matlab func-
tions are computer scripts having extension “.m” and starting with the reserved word
function. After it, in square brackets there are listed variables computed inside
the function while on the right, after the function name, in round brackets, there are
listed variables sent to the function. The function task is to compute values of output
variables using values of input variables. Matlab function recognizes each variable
size. In program 3.2 an example of simple function call is presented.

Modify the function code from Listing 3.2 written above. Name it as myortho . m.
The function should calculate different direct and inverse orthogonal transforms of
any signal x of arbitrary length. You should check the perfect reconstruction feature
for each transform. In case of DCT-IV and DFT compare your results with output
of Matlab functions dct () and ££t () (in the second one in Matlab no scaling of
basis functions is done).

Listing 3.2: Example of writing and calling functions in Matlab

~
% File lab03 ex function call.m
% Main program - scripts myprog.m
x = [1; 2; 3]; trans =1; direction =-1;
[X, M] =myfun(%, trans, direction),
% Function - script myfun.m
function [Y, N] = myfun(y, ortho direct)
N = length(y) ; % length of the input signal
if(ortho==1) A = eye); % definition of the
else A = rand(N,N) ; % transform matrix, basis functions in colums
end % end of if()
if(direct==1) A =2'; end % for direct transform
Y = Bxy; % signal transformation
end
S

Exercise 3.10 (* Periodicity/Frequency Hunter: Orthogonal Signal Analysis).
In Chaps. 1 and 2 we were reading and generating different signals, and trying to
find (calculate) a period of signal repetition. But inverse of the signal period is equal

3.8 Private Investigations: Free-Style Bungee Jumps 63

to repetition frequency. The orthogonal transformations can be used for frequency
analysis. Looking at basis functions of DCT transform, presented in Fig. 3.3, we see
that each next basis function (in the DCT matrix) has higher frequency of oscilla-
tions. Therefore if some transform coefficients are significantly bigger than the oth-
ers, we can conclude that our signal is mostly built from functions associated with
them, consequently it consists of frequencies of them. These way we can estimate
frequency of oscillations present in our data. Try to use this approach to estima-
tion of the following frequencies: generated artificially sinusoids (initial test), vocal
cords opening and closing (for different isolated vowels—record your own speech)
and heartbeat periodicity (file (ECG100.mat) from the first laboratory on signals).
Use your own function OrthoScrewDriver () or the Matlab function dct ().
Compare obtained results with visual finding of signal period from its time plot and
with period values calculated using the auto-correlation function.

Exercise 3.11 (* Frequency Killer: Orthogonal Signal Tailoring/Filtering).
Knowing coefficients of orthogonal signal components one can manipulate them: set
some of them to zero and increase values of some other ones. The same way as in the
cinema: you are passing only when you have a ticket! This way after the orthogonal
synthesis a different signal is obtained: it should be more useful for us since it was
personally failored by us. For example, noise or unwanted signal components can
be removed or reduced this way. Generate a signal consisting of a few sinusoids and
try to remove some of them in the domain of transform coefficients (setting their
values to zero). Do the same with fragments of speech or audio as well as our ECG
signals.

Exercise 3.12 (** Flip-Flop: Orthogonal Signal Transformations with Rectan-
gular Shape Functions). Try to write a Matlab code implementing Hadamard (3.22)
and Haar (3.23) orthogonal transforms for N = 27. Both of them have basis func-
tions with rectangular shapes. Note that the basis functions of the first transform
have a form of rectangular-shape oscillations having the same amplitude while in
the second transform the amplitudes are different, additionally the functions are im-
pulsive and try to detect not only frequencies of signal components but also their
time localization. First, generate basis functions for N = 8 and compare them with
these presented in Fig. 3.3. Then, in the second high-mountains task, try to write a
program for calculation of the Wash—Hadamard transform for any N = 2 equal to
a power of 2. Use the transform definition (3.22) or find in the Internet and apply
recursive generation rule of the WH orthogonal matrix.

Exercise 3.13 (*** Mount Everest of Orthogonality: Optimal Orthogonal Trans-
forms for Noisy Signals). What are optimal shapes of orthogonal basis functions

for noisy signals? How to find their collection, which do packing of the signal en-

ergy to the smallest number of them (how to ensure compactness of random sig-

nal spectrum?) If you are really interested in this story, look for its continuation

in many optimum signal processing books. May be the following Matlab functions

R=xcorr (x); Rxx=toeplitz(R); [V,D] = eig(Rxx) can helpyouto

find an answer?

64

3 Signal Orthogonal Transforms

References

1.

10.

V. Britanak, P.C. Yip, K.R. Rao, Discrete Cosine and Sine Transforms: Gen-
eral Properties, Fast Algorithms and Integer Approximations (Academic Press,
Boston, 2006)

. D.F. Elliott, K.R. Rao, Fast Transforms. Algorithms, Analyses, Applications

(Academic Press, New York, 1982)

. R.C. Gonzales, R.E. Woods, Digital Image Processing (Addison-Wesley Pub-

lishing Company, Reading, 1992; Pearson, Upper Saddle River, 2017)

. NJ. Jayant, P. Noll, Digital Coding of Waveforms (Prentice-Hall, Englewood

Cliffs, 1984)

. J.S. Lim, Tivo-Dimensional Signal and Image Processing (Prentice Hall, Up-

per Saddle River NJ, 1990)

. H.S. Malvar, Signal Processing with Lapped Transforms (Artech House, Nor-

wood, 1992)

. K. Rao, P. Yip, Discrete Cosine Transform (Academic Press, New York, 1990;

Elsevier 2014)

. G. Strang, The discrete cosine transform. SIAM Rev. 41(1), 135-147 (1999)
. R. Wang, Introduction to Orthogonal Transforms with Applications in Data

Processing and Analysis (Cambridge University Press, Cambridge, 2012)

T.P. Zielinski, Cyfrowe Przetwarzanie Sygnalow. Od Teorii do Zastosowar
(Digital Signal Processing. From Theory to Applications) (Wydawnictwa Ko-
munikacji i Lacznosci (Transport and Communication Publishers), Warszawa,
Poland, 2005, 2007, 2009, 2014)

Chapter 4)

Discrete Fourier Transforms: DtFT and Check or

DFT

Always there are many runners but typically the winner is the
same: DFT in the form of FFT!

4.1 Introduction

This chapter is devoted to practical computer-based frequency analysis
of discrete-time signals, i.e. vectors of signal samples, by means of Fourier
transform-based methods. We are assuming now that the analyzed signal is a
summation of different oscillatory components with different frequencies and
we are interested in finding them. From the chapter about orthogonal transforms
we remember that signal analysis (decomposition into simpler components) is
performed by calculation of signal similarity to some reference oscillations. The
similarity coefficients are calculated as inner products of the signal vector and
some reference vectors (sum of products of corresponding elements). In analog
signal theory the methodology is exactly the same but the inner product has a
form of infinite integral of the product of signal and reference function, cal-
culated for an infinite number of reference frequencies. One obtains this way
a signal spectrum being a continuous function of frequency. When values of
this function, i.e. signal similarity measures to some reference oscillations, are
multiplied by these oscillations, and all oscillations are added together in in-
finite integral over frequency—the signal is synthesized (reconstructed) from
its spectral description. The direct and inverse continuous Fourier transform
(CFT) act the same way in the analog world as discrete orthogonal transforms
in discrete-time world.

When the analog signal is periodic and repeats every T seconds, the signal
integration in CFT can be limited to one signal period only because all informa-
tion about the signal is in this time interval. Being periodic, the signal can have
only components with frequencies being multiplicities of the signal repetition
frequency fo = 1/T,i.e. fy = k- fo. Thanks to this, the analyzing integration and
final signal synthesizing integration from similarity coefficients are repeated not

© Springer Nature Switzerland AG 2021

T. P. Zielinski, Starting Digital Signal Processing in Telecommunication
Engineering, Textbooks in Telecommunication Engineering,
https://doi.org/10.1007/978-3-030-49256-4_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49256-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-49256-4_4

66 4 Discrete Fourier Transforms: DtFT and DFT

for all frequencies. In such case the CFT is taking a form of Fourier series (FS),
its special case.

When we are coming to discrete world, the CFT is changing to discrete-
time Fourier transform (DtFT) and the FS are replaced with discrete Fourier
transform (DFT).

In this chapter we learn only minimum amount of information concern-
ing CFT, FS, DtFT, and DFT. We become familiar with their definitions and
primary features. The main goal is to understand, from one side, the broth-
erhood relation between DtFT and DFT, and, from the second side, differ-
ences in their practical usage. In frequency analysis performed on a digital
computer, time-limited N-samples long signal has to be used in DtFT, simi-
larly as in DFT. For this reason the only difference between both transforms
relies on different frequency sets which are used by them. Let us assume that
sampling frequency is equal to f; and the analyzed signal has N samples. In
DFT one can only calculate similarity coefficients for N frequencies equal to
Si=k- fo,k=0,1,...,N— 1, N multiplicities of fy = f;/N, while in DtFT a
user does not have any restrictions in her/his frequency choice. It is interest-
ing that DSP users very often forget about DtFT which offers better spectrum
inspection than DFT.

Finally, we will make a link to the previous chapter on orthogonal trans-
forms. DFT is a special type of N x N orthogonal transform. In contrary to or-
thogonal transformations discussed before, it is using complex-value, not real-
value, harmonic oscillations as orthogonal basis functions to which the signal
is decomposed, cosine in the real part and sine in the imaginary part. Let us
repeat the definition of normalized DFT basis functions for smoother continu-
ation (k—function number and transformation matrix row number, n—sample
number and transformation matrix column number, k,n =0,1,2,...,N — 1):

1 .on 1 2r 2r
- = e/Whn— = j-sin [== . (41
Vin = vi(n) \/Ne N T (cos (7 kn) + j-sin (N kn)) 4.1

Due to its complexity, the transformation result is robust to signal shift in time
(delay), i.e. after this modification the absolute value of the signal transform
coefficients does not change after the signal shift. In this chapter we will derive
the DFT equation from the Fourier series analysis and show its relation to DtFT,
its older brother.

4.2 Continuous Fourier Transform and Fourier Series

Let us start from the beginning, from an analog world description. The continuous
Fourier transforms (CFT), direct and inverse, are defined as follows:

X(f)z/x(t)e*-fzﬂf’dr, (1) = / X(f)e? af, j=v=1. (42

4.2 Continuous Fourier Transform and Fourier Series 67

Again, during analysis, the continuous-time signal x(¢) is compared with complex-
conjugated continuous-time basis functions e~/?%/" now complex-value ones. It is
done by performing integration (summation) of their product. The integration is
convergent for limited energy signals only, for others—concept of generalized func-
tions (distributions) should be applied. During synthesis all basis functions e/27/!
are scaled by corresponding, calculated spectral coefficients X (f) and summed (in-
tegrated). Any signal is represented as infinite summation/integration of complex-
value harmonic signals of the form:

eIt = cos(2mft) + j-sin(27 ft) (4-3)

with different frequencies f. Pure cosine and sine signals with frequency fy have
the following Fourier spectral decomposition (representation):

eI2mfot 4 o= i2mfot e2Rfot _ o= 12mfot

cos(2m fot) = 3 , sin(27m fot) = 5 . (44

or:

1 . 1 _. —j . i
cos(2mfot) = Eeﬂ”fot + Eeijznfola sin(27 fot) = 72J e/2mht 4 187]27tf0t.
4.5)

They are summation of two harmonic signals (4.3), first with positive frequency fo
and second with negative frequency — fy. Fourier spectrum coefficients for cosine
and sine are, respectively, equal to [1/2,1/2] and [—0.5;,0.5/], first for positive
frequency, then for negative (amount of two basis signals, all remaining transform
coefficients are equal to zero). We are doing here deliberately very big simplifica-
tions not mentioning the Dirac Delta functions but aiming at more intuitive, less
formal presentation. Fourier spectra of pure cosine and sine with frequency fy are
presented in Fig. 4.1.

For real-value signals, the CFT spectrum has conjugate (Hermitian) symmetry in
respect to frequency f = 0 Hz, i.e. it is the same for positive and negative frequencies
in its real part and negated in its imaginary part:

X(—f)=X*(f). (4.6)
A Yool 4 Xl
0§ ______________ 9.5 0.5
| | £ (H2) ho f(Hg)
S L 4% |° |
0.5

Fig. 4.1: Fourier spectrum of cosine (left) and sine (right)—see Eq. (4.5)

68 4 Discrete Fourier Transforms: DtFT and DFT

This feature is inherited from functions of cos() and sin():

=

X(f) = / x(t)e 2ty = / x(t) cos(2m f)dt — j / x(t)sin@rfr)de . (47)

—oo

XRe(*f):XRe (f) le(ff):*XIm (f)

Spectra of pure cosine and sine signals, presented in Fig. 4.1, are the best exam-
ples of the CFT spectrum symmetry.

It is very informative to calculate the Fourier spectrum of a rectangular pulse
equal to 1 in the interval [—7, 7] and zero elsewhere:

oo T T
A o 1 .
Rr(f)= /rT(t)eﬂz”ﬂdt = / 1. e Mgy = —— =271 —
oo “r 7127rf -T

e 2T — 20T — j2sin(2wfT) sin(2mfT)

-j2zf —jp2nf nf
Value for f =0 we find calculating derivatives of nominator and denominator of the

final formula in Eq. (4.8) in respect to f:

=2Tsinc(2nfT). (4.8)

(2nT)cos(2nfT)

T £=0

Rr(f)l =0 = =2T. (4.9)

Signal of rectangular pulse and its Fourier spectrum are presented in Fig. 4.2. The
plots have been done using program 4.1.

Exercise 4.1 (Fourier Spectrum of the Rectangular Pulse). Run program 4.1
which is doing the Fourier spectrum visualization of a rectangular pulse. Ob-
serve oscillatory shape of this spectrum. Around f = 0 Hz the so-called spec-
tral main-lobe of the oscillations is located. On both sides of it the so-called

] SRR AT R

Fig. 4.2: Rectangular pulse and its Fourier spectrum

W O oUW N R

o
= o

4.2 Continuous Fourier Transform and Fourier Series 69

oscillatory spectral side-lobes are visible. Change the pulse duration. Ob-
serve that the shorter the pulse is, the wider is its spectrum. Note also that
the spectrum has values equal to zero for frequencies being multiplicities of

1/(T) : f =k-(1/(2T)).

Listing 4.1: Fourier spectrum of rectangular pulse

~
% lab04 ex rectpulse.m
clear all; close all;
T =1; t =-2«T : T/100 : 24T;
x = zeros(1,length(t)); indx = find(abs(t)<=T); x(indx)=ones(1,length(indx)) ;
figure; plot(t,x,'b-"); xlabel(’'t [s]’); title(’x(t)’); grid;
f0 = 1/T; f= -4«£0 : £0/100 : 4+f0;
X = sin(2#pixf+T) ./ (pixf);
X(ceil (length(X)/2)) = 24T;
figure; plot(f,X,'b-"); xlabel(’'f [Hz]’); title(’X(f)’); grid;
S

In DSP we deal with discrete-time signals taken from real-world objects. There-
fore it is very important to know which are theoretical spectra of the most popu-
lar continuous-time signals. Why? Since the same spectra should be obtained dur-
ing computer calculations performed upon discrete-time signal representations. In
Table 4.1 some spectra examples (definitions) are given.

We should also know which are spectral consequences of different operations
performed upon the signal. To find corresponding mathematical formulas one should
put the modified signal into CFT integral (4.2) and calculate it. This is a routine
exercise during analog circuits and signals (or signal theory) workouts. I recommend

Table 4.1: Continuous-time signals and their continuous-frequency CFT spectra

No Signal name Signal equation Spectrum equation
— 0 for |t| >T __ nsinoT
1 Rectangular pulse rr(r) = { 1 for [f|<T X(w) =22
ion si — _2
2 Sign signal x(1) = sign(r) X(0)= 7
3 Gaussian function x(t) = e’ X(0) = \/gg*wz/(“a)
. 0 t<0
4 One-side x(t) = {e"” ;>0 4>0 X(w) a+1]w
exponential -
. _ 0 t<0 _ Ay
5 Damped sine x(t) = Ae~sin(apr) >0 X(w) = ot
6 Damped cosine x(t) = 0 £<0 X () —A_atio
P ’ Ae % cos(mpt) t>0 (a+jo)*+a}
7 Cosine fragment x(t)=cos (wpt) - r7(¢) X(w) = sin((@—wp)T) | sin((o+p)T)

0—wy W+y

70

4 Discrete Fourier Transforms: DtFT and DFT

Table 4.2: Basic CFT features: signal processing and its spectral consequence

No Feature Signal manipulation Spectral consequence

1 Linearity ax(t) +by(t) aX(f)+bY(f)

2 Scaling x(at), a>0 ix (g)

3 Time reverse x(—t) X(—f)

4 Conjugation x*(t) X*(—f)

5 Time shift x(r —19) e 2 X (f)

6 Frequency Shift et (1) X(fF fo)

7 Multiplication x(t) - (1) S XWY(f—v)dv

8 Complex modulation eT12mhol x (1) X(fF /)

9 Cos() modulation x(t) cos(2mfot)) (X(f = fo) +X(f + fo)]
10 Sin() modulation x(1) sin(27 fot) SLIX(f = fo) =X (f+)]
11 Convolution J x(t)y(t—1)dT X(f)-Y(f)

12 Correlation J x(2)y*(r+7)dt X(f)-Y*(f)

13 Derivative dx(r) (2mf)" - X (f)

14 Energy—Parseval eq. J x(2)x*(¢)dt I X(HX*(Hdf

to do it for one or two signal modifications. Examples could be found in many
textbooks. The most important CFT features are listed in Table 4.2.

At present, as an example, we will derive a few important spectral relations which

will be very often used later in this book (@ = 27 f):

1.

signal time shift—results only in signal spectrum phase change (after introduc-
ing new variable T =t — g, from where t = T+ 1y):

/x(t —19)e IO dr = /x(’r)eij“’(”lo)dr = /00 /x(r)eijmdr =e /X (w);

—oo

(4.10)

complex modulation—causes frequency shift of the signal spectrum to the
modulation frequency:

=

/(eijZHfOtx(t)) o J2Tft gy /x(t)e—ﬂ”(f*fo)tdt:X(f$f0); (4.11)

—oo

. convolution of two signals—results in multiplication of their spectra, which

is extremely important in signal filtering (new variable A = ¢ — 7, from where
t=14+A):

4.2 Continuous Fourier Transform and Fourier Series 71

/ (/ x(‘c)y([r)d‘c)ejw’dt: / (/ x(r)ejmd‘c> Y(A)e I (A +d) =
[/ x(‘L’)ej“”dT} : [/ y(x)efwld/xl =X(f)Y(f); (4.12)

—oo

4. multiplication of two signals—results in convolution of their spectra, ex-
tremely important in spectral analysis (we show that inverse Fourier transform
of convolution of two signal spectra is equal to multiplication of these signals,
i.e. we will present an inverse proof; using new variable u = f — v, from where
f=v+u:

=

/ /X f=v)dv | e df =

/X(v)eﬂ”‘”dv - /Y(u)eﬂm”du =x(t)y(t); (4.13)

5. signal energy—Parseval’s equation—integration of squared signal in time do-
mains is equivalent to the integration of its squared Fourier spectra in the fre-
quency domain, important in signal power and spectral density analysis:

/ (1) (1)t / / X(f)e? i f | x*(r)dr =

—oo —oo

= oo

:/X(f) / “(0)e s | df = /X (f)df. (4.14)

—oo —00

Fourier series use the same methodology as CFT but are dedicated to analysis
and synthesis of periodic signals: only one signal period T is analyzed (multiplied
with the reference and integrated, the result is divided by T') and only frequencies

being multiplies of the signal repetition frequency kfy = k%,k = —oo,...,00, are
checked:
T oo |
/ Je kR gr w1y = Y XN = o (415
k=—o0
0

The Fourier series equations are written also in the so-called trigonometric ver-
sion:

72 4 Discrete Fourier Transforms: DtFT and DFT

~1\
’ﬂ\

T T
/ cos (2n(kfo)t)d / sin (27 (kfo)t) dt (4.16)
0 0

x(t) =ap+2 2 [arcos (27 (kfo)t) + by sin (27 (kfo)t)] = 4.17)
k=1

+oo
=Xo+2 Y, |Xk|cos (2m(kfo)r + <Xk)
k=1

—b
Xy =ap— jbr, |Xi| = \/a,%—i—b,%, <X = arctg <ak> .
k

4.3 Discrete-Time Fourier Transform: From CFT to DtFT

Presentation of the continuous Fourier transform, given above, is very important for
us because in computer-based frequency analysis a discretized CFT version is very
widely used. Let us rewrite the CFT into more computer-friendly form. Denoting
sampling frequency as f;, sampling period as At = 1/ f;, sampling time as t = n- At,
and exchanging infinite integral with infinite summation, Eq. (4.2) of the forward
CFT takes the following form:

oo oo
X(f)= /X(t)e‘ﬂ”f’dt = X(f)= Y, x(n-Ap)e PHA) - (4.18)

N=—oo
—oo

Going further, we can write final equations for DtFT and its inverse as (defining
Q= 27:%):

.. f o < 7./'27tin_ Ry —jQn
Analysis: X (=) = Y x(n)e TE =Y x(n)e /", (4.19)

fS N=—o0 N=—oc0
1 2 f
Synthesis: x(n) =7 / X(;) TR (4.20)
i

In (4.19) X <Ti) can be calculated for any value of frequency f, being a continuous

. . . . _jnda . Do
variable, but there is no need for this because the function e /2" %" is periodic in
respect to f and has period f;:

f f

(Fkfe) | fa o
P Ly S R S 1 4.21)

4.3 Discrete-Time Fourier Transform: From CFT to DtFT 73

Therefore, it is sufficient to calculate X (-) for —fs/2 < f < fy/2orfor 0 < f < f;.
In the first case the inspection of the spectmm is more intuitive and easier for inter-
pretation because pairs of positive and negative frequency components are visible
in the spectrum. Going back to the sampling Exercise 1.4 presented in Chap. 1, for
fs = 1000 Hz and f; = 100 Hz we see in the spectrum signal components —100
Hz and 100 Hz, not 100 Hz and 900 Hz (see equations (1.13) and (1.14)). In fact
during discretization of CFT we are sampling not only analyzed signals but also the
reference functions cos() and sin(). When their frequency is too high, the sampling
theorem is not fulfilled, and the high-frequency reference signals are under-sampled
and look as low-frequency ones and, as such, they fit to the analyzed low-frequency
signal again. From this reason the DtFT spectrum is periodic and there is no need
for its whole computation.

When we have only N signal samples, after dividing (4.19) by N, one obtains the
following equation:

(f> S —jomkn
X(%) =5 X xm)e 5" —f/2<f<fi/2, (4.22)
Is N n=0

which offers properly scaled signal amplitude spectrum (for example, the cosine
spectrum has two peaks equal to 1/2 for frequencies fo and — fp). In DtFT (4.22) we
can sample (discretize in frequency) the spectrum as dense as we want, significantly
denser than in the DFT method, being discussed later in this chapter, where the
frequency step A f = f,/N is always used. From this reason (4.22) should be treated
as a basic tool for spectral zooming and allows us to see details invisible in DFT. It
is building a bridge between digital and analog signal theory.

It is very important also to note that, analogically to CFT and its Eqgs. (4.6), (4.7),
the DtFT spectrum X () = Xg.() + Xjm() has conjugate symmetry also around the
frequency f = 0 Hz—it is the same in its real part Xg. () and negated in its imaginary

part X, ():
Xre (;f) ~ Xge (;) Xim (ff) X (Jf) 23)

Fundamentals of frequency analysis of signals by means of DtFT, discretized in
frequency, are summarized in Fig. 4.3. A pure cosine is analyzed in it. Signals are
presented on the left side, while on the right their CFT and DtFT spectra. We see on
the left side, one after the other: continuous-time cosine, a continuous-time rectan-
gular window—a function, one of many possible, used for cutting a cosine fragment,
result of their multiplication, i.e. the signal fragment to be analyzed, and, finally, its
time-discretized version. The CFT spectrum of a cosine cos(27 fyt) is equal to %
for —fy and fj (see Eq. (4.5)). The CFT spectrum of the rectangular cutting func-
tion has an oscillatory shape described by gm() function (see Eq. (4.8)). The CFT
spectrum of a cut cosine consists of two coples of the CFT spectrum of rectangular
window, shifted to frequencies — fy and fp (due to modulation feature of the CFT

74 4 Discrete Fourier Transforms: DtFT and DFT

A X(0)

VVe

-0 | W9

! S 0) A o)

v

0 T mﬂﬂfm- w;

A (1y=x(H)w(7) A X ()=X(0)* (o)

M
0 \/ \/ \/T Al o
\xu(/n\) /.\ /l | (o)
TV Y

v

v

2w, -0 0 0, 20,

X, ()]

0 o ®p-) M)

Fig. 4.3: Graphical illustration of fundamental principles of digital spectral analysis:
(left) signals, (right) their spectra. In consecutive rows: (1) infinite cosine and its the-
oretical Fourier spectrum, (2) rectangular window and its theoretical Fourier spec-
trum, (3) multiplication of cosine and rectangular window and its spectrum (convo-
lution of two above spectra marked with “*”), (4) sampled signal and its periodic
spectrum, (5) sampled one period of the repeating spectrum [11]

W © J oUW N

R e e
o Ul W N R O

4.3 Discrete-Time Fourier Transform: From CFT to DtFT 75

transform—see feature 9 in Table 4.2). After signal discretization in time with sam-
pling frequency f;, the continuous-frequency DtFT spectrum is obtained in which
the CFT spectrum is repeated with period f;—due to Eq.(4.21). Since the DtFT
spectrum is periodic, only its one period can be calculated. In Fig. 4.3 this is one
DtFT spectrum period from [0, f;) Hz, the same as in the discrete Fourier transform
(DFT) presented in the next section. In computer implementation some sampling of
the frequency axis has to be chosen, which is presented also. When different win-
dow function is used for cutting a signal fragment, the observed signal spectrum has
different shapes but its peaks are still located at signal frequency components. In
Exercise 4.2 we will apply and test some exemplary window functions (rectangular,
Hanning, and Chebyshev) during signal DtFT analysis.

Short Summary Since during DtFT-based frequency analysis, signal is multi-
plied with some windowing function, the DtFT spectrum of the signal fragment
is a result of convolution of the signal spectrum and spectrum of the window—
see Eq. (4.13). Signal discretization causes spectrum periodic repeating (sam-
pling frequency is the period)—due to Eq. (4.21). Therefore, the DtFT spectrum
of a discrete signal should be calculated only in the frequency range [fg, %)
for complex-value signals or in the range [0, %) for real-value signals—due to
its conjugate symmetry (4.23).

In program 4.2 the Matlab code of the DtFT algorithm is presented. It will be
used as a frequency detective for performing some initial experiments, recognition
of DtFT features, and validation of the presented above mathematical material. We
will start from the DtFT analysis of a pure cosine fragment cut by exemplary win-
dow: rectangular, Hanning, or Chebyshev. Do Exercise 4.2. Look at plots shown in
Fig. 4.2, presenting DtFT spectra being solutions/results of the consecutive exercise
tasks.

Listing 4.2: Matlab program for DtFT calculation

% lab04 ex dft dtft amalysis.m
clear all; close all;

N = 100; % muber of samples: 100 --> 1000
fs = 1000; dt=1/fs; t=dtx (0:N-1); % sampling ratio

df = 10; % sanpling step in DEFT: 10 --> 1
fmax = 2.5xfs; % sanmpling range in DtFT: 2.5 --> 0.5
fx1 = 100; % frequency of signal component 1

fx2 = 250; Ax2 =0.001;

o\°

frequency and anplitude of signal component 2
250 --> 110, 0.001 --> 0.00001

o°

% Signal

X1 = cos(2xpixfxlxt) ;

X2 = BAx2#cos(2+pixfx2xt) ;

x=Xx1; %+ x2;

figure; stem(x); title('x(n)’); pause

oe

first component

25(Hz --> 110Hz, 0.001 --> 0.00001
x1, x1+x2, 20+1ogl0(0.00001)=-100 dB
analyzed signal

o oe

o°

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

76 4 Discrete Fourier Transforms: DtFT and DFT

% Windowing
wl = boxcar(N)’ ; % rectangular window
w2 = harming(N)’ % Hanning window
w3 = chebm.n(N,l 0)'; % Chebyshev window, 80, 100, 120, 140
w=wl; % wl --> w2, w3 (80, 100, 120, 140)
figure; stem(w); title('w(n)’); pause % window
X=X .%x W; $ X=X, W, X.*%W
figure; stemx); title('xw(n)’); pause % windowed signal
% DFT - later in this chapter (red circles)
% k=0:N-1; n=0:N-1; F = exp(-J*2#pix (k' #n1)); X = (1/N) «Fxx;
f0 = f£s/N; f1 = £0x(0:N-1); % DFT freg step = £0 = 1/ (N«dt)
for k = 1:N

X1(k) = sum(X .x exp(-J*2%01/Nx (k-1) % (0:N-1))/ N;

% X1(k) = sum(X . % exp(-j*2+pi/Ne (/fs (0 N 1)))/ N

end
$X1 = NwX1/sum(w) ; % scaling for any window
% DtFT - already discussed (blue line)
£2 = -fmax : df : fmax; % df = 10 --> 1; first this freq. range
for k = 1 : length(£f2)

X2(k) =sum(x .* exp(-J*24pix (E2(k)/fs) *(0:N-1))) / N;
end
$X2 = NwX2/sum(w) ; % scaling for any window
% Figures
figure; plot(fl,absX1), 'ro’,£2,abs(X2), 'b-");
xlabel(’f (Hz)'); grid; pause
figure; plot(£1,20xlogl0(abs(X1)), 'ro’,£2,204logl0@bs(X2)), 'b-") ;
xlabel(’f (Hz)'); grid; pause

\S

Exercise 4.2 (DtFT of a Cosine with Rectangular Window). Use pro-
gram 4.2 for computing DtFT spectrum of a simple cosine signal. Choose
Jfx1 =100 Hz as a signal frequency and f; = 1000 Hz as sampling frequency.
Generate N = 100 signal samples. Choose x=x1.

1. Analyze the signal wusing DtFT in the frequency range
[— fmaxs - -» fmax)s fmax = 2.5f; with the frequency step df = 10 Hz,
equal to DFT step fy = f . We are expecting two sharp peaks at fre-
quencies f = —100 Hz and f = 100 Hz since, due to Eq. (4.5), after
discretization our signal has the form:

f

1271: —]271:

cos (27:’%;1) - J;e . (4.24)
S

Why we see only two peaks in DFT and much more peaks in DtFT, pe-
riodically repeating around multiplies of the sampling frequency f;? Be-
cause DFT calculates the signal spectrum only in the range [0, f;) with the

4.3 Discrete-Time Fourier Transform: From CFT to DtFT 77

step fo and we see only two components of the cosine: f,; = 10fp and
fs— fx1 = fs — 10fp. In DtFT situation is different. Due to equations (4.21),
the generated reference signals of higher frequencies kfs £ f,1 have ex-
actly the same samples as for the low frequencies & f;; and for them the
perfect fit is valid also. Conclusion: the frequency range [—0.5f;, . ..,0.5f;]
is all we need. For real-value signals, having symmetrical spectra, even
[0,...,0.5f;] is enough.

. Now decrease the DtFT spectrum sampling 10 times, other words set
df = 1Hz. Wow! What happens! Take it easy: now you see repeating spec-
trum of rectangular pulse (4.8) shown in Fig. 4.2, at present its absolute
value is calculated. But why I did not see it before?! Since the rectangular
pulse spectrum is oscillatory, it is crossing through zero and we before, by
chance, took only samples at those zeros and at spectral peaks. But why
the spectrum of rectangular pulse is present in the spectrum of the cosine?
Where the rectangular pulse is hidden in math equations? We analyze not
the WHOLE cosine but its N-samples long FRAGMENT, cut by the rect-
angular pulse. Therefore two analog time-infinite signals are multiplied:
cosine and rectangular pulse, and the resultant spectrum is equal to convo-
lution of their individual spectra (see multiplication feature in Table 4.2 and
Eq. (4.13)). For this reason we see spectrum of the rectangular pulse in the
position of cosine spectral peaks. We can also apply in this case the cosine
modulation feature from the same table: multiplying any signal w(n) by
cosine with frequency f;; shifts the signal spectrum to cosine frequencies:
fx1 and — f;1 and scale them by 1/2. In discrete-time case:

+oo ' . | .
#(£) = Z. e (ax)] F =] 5 e e

Nn=—oco n=—oco

i , +fxl _
% Z W(n)eijzn(ffif)n:%W (f ffxl)+%w (f‘;fxl) (4.25)

n=—oo

Because we sample the DtFT spectrum in wider frequency range then the
DFT spectrum is sampled, we have many copies of the cosine spectrum, in
consequence, we see many copies of the rectangular pulse spectrum.

. I do not want to watch the same film many times? No problem. We are
changing frequency range of interest to [—0.5f;,...,0.5f;] remaining the
small frequency step d f = 1 Hz of DtFT spectrum sampling. Run the pro-
gram. Are you satisfied? Yes, but if I had the second very weak signal fre-
quency component lying apart, I would not see it in the spectrum because it
would be hidden by big spectral oscillations coming from the strong signal!

. Yes, you are right! Add a second weak cosine component to the signal:
x=x1+x2, for example, with frequency fy» = 250 Hz and very small am-
plitude A,» = 0.001. Run the program. The second component is not visi-

78 4 Discrete Fourier Transforms: DtFT and DFT

ble! I knew! I knew! Yes, as usual, you knew how to complaint but I know
... how to solve the problem.

5. Multiply the two-component signal with samples of Hanning window func-
tion x=x.xw;, i.e. exchange the rectangular window with the Hanning
window. In Matlab: w2=hanning (N) ; w=w2 ;. This function has lower
level of spectral side-lobes than the rectangular window (look at Fig. 4.2)
at the price of wider spectral main-lobe. Run the program. Now the sec-
ond frequency component is visible. But if the second component would be
very, very weak indeed, having only A> = 0.00001 (107, ten micro-volts)?

6. No problem. We are choosing adjustable Chebyshev window function hav-
ing side-lobes on the level of Ay = 1077, 20log;(As) = —140 dB. In Mat-
lab: w3=chewin (N,140) ; w=w3. Run the program. The second com-
ponent is now seen. Wow! But now the spectral peaks are very wide! If the
second component had a frequency very close to the first one, for example,
fio = 110 Hz, I would not see it!

7. No problem. Let us make use of the scaling feature of the CFT given in
Table 4.2, in consequence being the feature of the DtFT also. Making the
signal longer (for a < 1) leads to its spectrum narrowing. For example,
the window 10 times longer has the DtFT/DFT spectrum 10 times more
narrow. Therefore, we will increase now the length of our signal vector 10
times, setting N = 1000. Run the program. Yes, it works. But now ... after
the window usage, amplitudes of spectral peaks are not correct! For cosine
1/2 is expected!

8. Yes. I admire your curiosity! Now we have to change the spectrum nor-
malization. Since windows are reducing amplitude of oscillations in signal
fragment being analyzed, we should compensate this effect! We will ex-
change dividing the spectrum by N, which is correct for the rectangular
window, by sum of window samples, which is correct for any window (for
rectangular one we have N as before). In Matlab: uncomment the line: X =
N+X/sum(w) ; You see! Now the spectrum scaling is corrected.

9. But ... Bang! Time is over! ... You are the game winner. The worst thing
pupil can do is not asking questions!

4.4 Window Functions

4.4.1 Practical Summary

It turned out in the previous section how important are functions used for
cutting signal into fragments which are called windows! For signals being sum-
mations of pure tones we observe in their spectra only scaled and shifted copies

4.4 Window Functions 79

After step | After step 2

0.6 T 0.6 T

0.4 ... 04 ...

02f e i i 1)) STSRSRS H} SEVIIR 1Y RPN [} ST

0 0 - - .

-2000 -1000 0 1000 2000 -2000 -1000 0 1000 2000

f (Hz) f(Hz)

After step 3 After step 5

0.6 . 0 .

-500 0

-500 0 500 500
f (Hz) f (Hz)

After step 6

After step 8

-200
60

100 120

f (Hz)

500 0 80
f (Hz)

500 140

Fig. 4.4: DtFT spectra calculated for signals in consecutive steps (points) of Exer-
cise 4.2: initially for cosine 100 Hz, N = 100 samples, f; = 1000 Hz. After step 1:
spectrum of rectangular window not visible, after step 2: window spectrum is visi-
ble after decreasing frequency step df from 10 Hz to 1 Hz, after step 3: reduction
of frequency range due to spectrum periodicity, after step 5: addition of the second
signal component with frequency 250 Hz and amplitude 0.001 and using Hanning
window, after step 6: changing amplitude of the second component to 0.00001 and
using Chebyshev window with side-lobes level of —140 dB, after step 8: chang-
ing second component frequency to 110 Hz and increasing number of samples to
N = 1000, additionally improving spectrum scaling

of windows spectra (Fig. 4.4). Therefore one should choose windows very care-
fully: they should help us in spectral analysis, do not create troubles. The good

80 4 Discrete Fourier Transforms: DtFT and DFT

window should have both: very narrow spectral main-lobe (similar to rectangu-
lar window) and a very big attenuation of the spectral side-lobes (in contrary to
the rectangular window). The narrow spectral main-lobe allows to distinguish in
the spectrum signal components having similar frequency values, while highly
attenuated spectral side-lobes of the window spectrum makes possible to see in
the spectrum, both, very strong and very weak components (with very large and
very small amplitudes).

Window tailoring is a great DSP art! There are many window functions
with precisely specified, fixed shapes: rectangular, triangular (Bartlett), Ham-
ming, Hanning, Blackman, Blackman—Harris, and many others. There are also
flexible windows with adjustable shapes: Chebyshev and Kaiser windows are
the most popular among them. The latter allows to change the shape of the
window and its spectrum in a controlled way and make a compromise between
frequency spectrum resolution (width of the window main-lobe) and amplitude
spectrum resolution (attenuation of the side-lobes). A special type of windows,
flat-top ones, is designed to have a very flat main-lobe peak at the cost of in-
creasing its width. Such windows allow very precise amplitude measurements
of many signal components (for example, of power voltage supply harmonics)
but they require their significant separation in frequency.

In this chapter the DtFT spectrum of the rectangular window is derived
and it is shown how a big family of cosine-based windows is designed (Ham-
ming, Hanning, Blackman, etc.), summarized in Table 4.3. Design equations of
Chebyshev and Kaiser windows are presented also with an explanation of their
usage. In Fig. 4.5 different window shapes (up) and their DtFT spectra (down)
are compared. Easy riders can skip the mathematical part, which follows, and
go directly to Exercise 4.3 using program from Listing 4.3.

4.4.2 Mathematical Description

Rectangular Window Let us start with the rectangular window.

I, n=0,1,2,...., N—1,
wr(n) = {O, other n. (4.26)

After introduction of a new variable—angular frequency:

Q =2xnf/fs, (4.27)
and putting Eq. (4.26) into the DtFT definition (4.19), we obtain

oo N—1 N—1
Wr(Q2)= Y, wg(n)e /= D wg(n)e /9 = D 1.e /9, (4.28)
n=0 n=0

N=—o0

4.4 Window Functions 81

After multiplying both sides of Eq. (4.28) by ¢~/ and rewriting the equation we
have

N N—1
e*]QWR(Q) — 2 e /N — 2 e 4 _|_e*JQN — e IR0 WR(Q) +67JQN 1.
n=1

n=0
(4.29)
Now we can calculate the value of Wg(£2):

Wr(Q)-(1—e) =1—¢ /N (4.30)

| — o= JON —JON/2 (,jON/2 _ ,~jON/2

Wi () = e;_(z:e ' (e' e)

1—eJ g*JQ/2 (e/Q/2 —6*19/2)
_ o J2N-1)/2 sin(2N/2) @31)
sin(Q/2) '

In a similar way it can be derived that DtFT spectrum of the odd-length rectangu-
lar window wgs(n),n=—-M,...,—1,0,1,....M, N = 2M + 1, symmetrical around
n =0, is equal to:

sin(2(2M+1)/2)
Wrs(2) = . 4.32

RS() sin (Q/Z) ()
Since wgg(n) is obtained by shifting wg(n) M samples left, e.g. wg (n+ M), therefore
Wis () is equal to Wx(£2) multiplied by ¢/*¥. Of course, absolute values of both
spectra are the same: |Wg(€2)| = [Wgs(£2)|. A main spectral lobe of the rectangular
window (i.e. distance between first zero-crossings on both sides around 2 = 0) is
equal to 47 /N, since from Eq. (4.31) we have (first zeros of the sin() function)

QIN2=rm = Q=2r/N
OHN2=-n = Q=-2n/N
AQR = .Ql —.Qz =47T/N.

In practice we analyze not infinite signals but their shorter or longer fragments.
Some special functions are used for cutting long signal into fragments. They are
called “window” functions because we are looking at signals “through” them. The
window functions are extremely important in signal theory, especially in spectral
analysis and filter design.

Cosine Windows In the beginning we ask fundamental question: what window
functions are used and what are their spectra? A big family of so-called cosine-
type windows is obtained by multiplication of N samples long rectangular window
by sum of K cosines with different angular frequencies (£2) and amplitudes (Ay)
(n=—co,...,—1,0, 1, ..., Hoo):

82 4 Discrete Fourier Transforms: DtFT and DFT

1 21k
w(n) = wg ZAkcos (n) =wr(n zAk(eijJrz —ij>7 ‘Qk:Nﬂl-
k=0 —
(4.33)
The DtFT (4.19) of (4.33) is equal to:
K A)
W(Q)= 2 k 2 WR i) 4 2 wa(n)- e @2 | =
k=0 n=—oo P——,
> 5 (Wa(Q =) + Wa(Q +) (4.34)
k=0

due to transformation linearity: spectrum of sum of signals is equal to sum of their
individual spectra. Since the window spectrum (4.34) is a sum of scaled (by Ay) and
shifted (£ = 2mk/(N — 1)) spectra of the rectangular window (4.31), (4.32), such
weights (Ay) are chosen which minimizes side-lobe oscillations in final spectrum
W (). Definitions and spectral parameters of the most popular cosine windows are
given in Table 4.3.

Table 4.3: Definitions and parameters of the most popular non-parametric digi-
tal window functions. Denotations: A,;—width of the main-lobe of the spectrum
around Q = 0 (rad/s), Ag—relative attenuation of the highest side-lobe in relation
to W(0)

Window name, Matlab function Definition w(n),n=0,1,2,... .N—1 A Ay

Rectangular, w=boxcar () 1 %” 13.3dB
Triangular, bartlett () 1— 202 8 26.5dB
Hanning (Hann), hanning () % (1 cos (1\2,””1)) SW” 31.5dB
Hamming, hamming () 0.54 —0.46cos (,%,””I) SW” 42.7 dB
Blackman, blackman () 0.42—0.50cos (2%) +0.08cos (224) 1z 58.1dB

Window spectral features are characterized by the shape of its DtFT spectrum.
The best window should have a very narrow peak around frequency O Hz (the so-
called main-lobe) and highly attenuated spectral side-peaks, lying elsewhere (the
so-called side-lobes). The first feature is measured by A,,; (width of the main-lobe),
the second by Ay; (attenuation of the highest spectral side-lobe). It is impossible to
fulfill both criteria at the same time. The rectangular window has the sharpest main-
lobe but, unfortunately, a very high level of spectral side-lobes. Different designers
of other windows have tried to increase the side-lobes attenuation at the price of
making the spectral main-lobe wider, but as least as possible. In Table 4.3 a few
window functions are defined and values of their A,; and Ay are given. We see
that the more cosine terms the window has, the larger its width A,,; is (multiplicity
of 4w /N—the size of the rectangular window is shifted K times) and the bigger

4.4 Window Functions 83

Windows w(n)

Rect |
Hamm
Hann
Black |-
Kaiser
Cheb

-100

-150
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
f[Hz]

Fig. 4.5: Exemplary shapes (up) and their DtFT spectra (down) for the following
windows (they are becoming more peaky in the upper plot): rectangular, Hamming,
Hanning, Blackman, Kaiser with f = 12 and Chebyshev —120 dB. Windows are
ordered from the lowest to the highest attenuation of spectral side-lobes (oscillatory
ripples observed in window spectrum) obtained at the cost of widening the spectral
main-lobe (spectral peak around 0 Hz)

attenuation Ay, is. Exemplary shapes of windows (up) and their DtFT spectra (down)
are presented in Fig. 4.5. Since window functions are real-value ones their spectra
are always symmetrical around 2 = 0.

Special Adjustable Windows Apart from mentioned above fixed-shape
non-parametric windows having fixed spectral features there are two very impor-
tant parametric windows which can change their shape and spectral characteristics.
The first one is the Dolph—Chebyshev window defined as follows (N = 2M + 1):

wpc[m+(M+1)]=C

Rk k 21k
+22TN1<ﬁcosn)cos frim , —M<m<M,
Y = N

N
(4.35)
where Y denotes the required relative height of maximum spectrum side-lode in
relation to the height of the spectrum main-lobe (e.g. ¥ = 0,01 or 0,001, which

84 4 Discrete Fourier Transforms: DtFT and DFT

corresponds to relative attenuation of the side-lobe Ay = 20log,o(y) = 40 dB or
60 dB) and parameter 3, depending on 7, is given by

1 1 1
B = cosh (N 1cosh*l)/) = cosh (N lcosh*l (1OAS’/2O)> . (4.36)

Ty_1(x) is Chebyshev polynomial of the (N — 1)-th order:

_f cos((N—1)cos7'x), |x[<1
Tyx) = {cosh ((N—1)cosh™'x), |x| > L. (4.37)
The Kaiser window, for N even or odd, is defined by formula:
I | (r=v-1/2 2
o(B “\Tv-D)2
wg(n) = , 0<n<N-1, (4.38)
) I (B)
where Ip(f3) denotes Bessel function of the 0-th order:
= [w2r]
x
Ih(x)=1 +/;1 7z 1 : (4.39)

In literature one can find equations connecting required values of A,,; and Ay; with
values of Kaiser window parameters 3 and N:

0 Ay < 13.26 dB
B =1 0.76609(Ay —13.26)>* 40,09834 (A — 13.26), 13.26 < Ay < 60 dB
0.12438 (A +6.3) 60 < Ay < 120 dB
(4.40)
247(Ay +12)
N=[K], kK="000 200 4.41
(KT, 5.4, b (4.41)

where [K| denotes the smallest integer value equal to or greater than K. In Matlab
we have functions kaiser () and chebwin ().

4.4.3 Application Example

Exercise 4.3 (DtFT of Different Windows). First, choose any window and cal-
culate its DtFT spectra for different lengths, for example, N = 50, 100, 200, 500,

W o0 U W N R

BB W W WWWWWWWWNNNNNDNNDNNDNNDRERRRRRRRR R
H O W 0 00 U1 B W N KHFHF O W W JO0 U1l b W N KF O WO-NOoO U W NN H o

4.4 Window Functions 85

1000, 2000. Plot all spectra in decibels in one figure. What is your conclusion?
Next, calculate the DtFT spectra for Kaiser window for the value of 3 chang-
ing from 0 to 14 with step 2. Plot all spectra in decibels in one figure. What
is your conclusion? Finally, repeat Exercise 4.2 using in it the Chebyshev win-
dow. Change the signal length as well as frequencies and amplitudes of its two
components. Try to obtain a compromise between the A,,;; and A;.

Listing 4.3: DtFT spectra of different windows

o°

lab04 ex windows.m
DtFT of windows, window importance in frequency analysis

oe

clear all; close all;

M = 100; % one-side nunber of window sanples

N = 241; % all samples

n=-M:M % sample indexes

text={'Rect’, 'Triang , 'Ham , ‘Harm' , ‘Black’, ‘Kaiser’, ’Chel }

% Window functions i.e. "windows" in colums of matrix W

w(:,1) = boxcar(N) ; w(:,2) =bartlett();

w(:,3) = hamming(N) ; w(:,4) = hanning(N) ;

w(:,5) = blackman() ; w(:,6) = kaiser(N,10);

w(:,7) = chelbwin(N,120);

[N, Nw] = sizeW); % N window length, Nw number of windows
figure

plot(n,real(w)); xlabel('n’); title('Windows w(n)’); grid;
axis([- M+10) M+10-0.1 1.1]); legend(text); pause

% Normalization required for correct interpretation of amplitude spectrum
w = w ./ repmat (sun(w),N,1); % normalization (in colummn) to sum(w)=1

% DEFT of windows

f=-1/10 : (1/N)/20 : 1/10; % normalized freq (£/fs)
for k = 1:length(f)
bk(1:N) = exp(-J*2#ixf(k)+n); % reference Fourier harmonics

Wk, 1:Nw) = bk(1:N) % w(1:N,1:Nw); % DtFT coeffs for all windows (in cols)
end
figure
subplot(211); plot(f,real(W)); title('Real (DLFT)’); grid;
subplot(212) ; plot(f,imagW)); title(’Imag(DtFT)’); xlabel(’f [Hz]’); grid; pause
figure
subplot(211) ; plot(f,absW)); title(’Abs(DtFT)’); grid;
subplot(212); plot(f,angleW)); title(’Angle(OtFT)’); xlabel('f [Hz]’); grid; pause
figure
subplot(111) ; plot (£, 20+logl0@bs(W))) ; xlabel('f [Hz]’); title(’ [W(E|");
grid; axis(min(f) max(f) -160 20]);
legend(text) ; pause

42
43
44
45
46
47
48
49
50
51
52
53
54

86 4 Discrete Fourier Transforms: DtFT and DFT

% Windowed signal
X = 2%C0os(240ix1/2040) ; % signal
X =w .+ repmat(x’,1,Nw); % its miltiplication with many different windows
for k = 1:length(f)
bk = exp(-jx2#pixf (K)xn);
X(k, :) =bk * x;
end
figure
subplot(111) ; plot(f,20xloglOf@bs(X))); xlabel('£ [Hz]’); title(’ |X(E]");
grid; axis(min(f) max(f) -160 201);
legend(text)

% Repeat the program for different values of N: 50, 100, 200, 500
S

Windows Application Summary The window spectrum should have narrow “main-
lobe” to allow seeing in it two separate peaks for frequencies €2; and £2;, which can
lie very close to each other. Otherwise, we might observe one broad peak instead of
two narrow ones because of their fusion.

The window spectrum should also have high attenuation of side-lobes in the situ-
ation when amplitudes Ay and A; of two cosine components differ a lot and spectral
peak of the weaker component could be lost/missed in high spectral side-lobes (in
the grass) of the stronger component.

4.5 Discrete Fourier Transform

DFT represents discretization result of the Fourier series (4.15) which is defined
in analog world for periodic signals (fundamental frequency fy = 1/T, T—period,
T=N-At,t =n-At):

T
1 ; 1 i)
— —j2n(kfo)t gy oy = . —2r(ksg g) (mA) Ao
X T/x(t)e dt A7 ’gbx(n At)e N At =...
5 -

1Nfl f:y

:NZx(n)e*/%"’m, fi=k-fo=k k=0,1,2...N—1. (4.42)
n=0

N7

Equation (4.42) and its inverse can be written in matrix form as orthogonal transfor-
mation pair:

Pl
Il

Analysis : F-x, (4.43)

Synthesis : x=F1.X=(F)" X, (4.44)

4.5 Discrete Fourier Transform 87

well-known for us from Chap. 2. The transformation matrix F is defined as, for
example, also for N = 4:

1 1 . 1 11 1 1
o 21 . . .
1 e dwll .. eiwlW-D) 1 e i F 11 o= i%12 %13
Fy=1. : . : , Fy= | e i %21 - %22 23|
: . ’ ’ . : S2m S2m S2m
1 e JFWN=1)1 . —jFN-1)-(N-1) e 730 i %32 o=i%33

(4.45)

so it has in its rows conjugated orthogonal harmonic vectors, with different scal-
ing than in Eq. (4.1). In non-vector form and with changed normalization, equa-
tions (4.43) and (4.44) have the following form:

x(n)e I ¥R k=0,1,2,...,N—1, (4.46)

M=

1
Analysis: X (k) = N

n

X()el ¥k n=0,1,2,....N—1. (447

M=

Synthesis : x(n) =

~
I|

1

In Eq. (4.46) the signal is compared (correlated) with conjugation of harmonic
Fourier basis function, while in Eq. (4.47) it is represented as a sum of basic func-
tions scaled by spectral (“‘similarity”) coefficients X (k), calculated in Eq. (4.46).

First, the main student problem, after calculation of the signal DFT spectrum
using Eq. (4.46), is how to connect calculated spectral coefficients X; with real-
world frequencies when the frequency is missing in these equations! But we know
how long the signals are (N samples) and which is the sampling frequency (f;), so
as a result we know also the time duration of signals: T = N - At = N/ f;. In first row
(k = 0) of matrix F we have only ones, in the second (k = 1)—one period of cos() in
real part and one period of -sin() in imaginary part, in the third (k = 2)—two periods,
later three, four, five, ..., N — 1 periods. Therefore, since we know T, we should
deduce that X is a mean value of the signal, spectral coefficient X| corresponds to
frequency 1- fo =1/T, Xo—to 2- f, X3—t0 3 - fp, and so on. This sounds reasonable
since in Fourier series coefficients are also calculated for frequencies k - f.

That is it! Now a reader should do some computer experiments and ... find visu-
ally with surprise conjugate symmetry of the DFT spectrum: X;,k=0,1,2,... ,N —
1. Yes, indeed, the spectrum of our speech has such symmetry! This is typically
the second student surprise! We analyze, for example, a real-value signal having
only one frequency component but in the spectrum we see two peaks: one in its
first half and one in the second half. This phenomena results from the fact that for
k=1,2,3...,N —1 the following relations hold:

88 4 Discrete Fourier Transforms: DtFT and DFT
Xy_r=Xi* = real(Xy_y) =real(Xy), imag(Xy_;)= —imag(X;) (4.48)

Additionally the DFT spectrum always has zeros in imaginary part for k = 0 and
k=N/2:

imag(Xo) = imag(Xy/,) = 0. (4.49)
Why the DFT spectrum has conjugate symmetry? What is the sense of computing
something twice? The first answer is that conjugated Fourier harmonics which are
used for signal decomposition in Eq. (4.46) are the same for k and N — k, only
conjugated. For the k-th harmonic we have

IR 01,2, N—1, (4.50)
while for the (N — k)-th:
e I HWN=kn _ = j2n 4 j 5 kn

s 4.51)

Therefore the calculated DFT coefficients have also the same values, only complex-
conjugated:

N 2 2 .
Z)cos <Nkn) fjf Zx sin (Nkn> =a—jb (4.52)

n=1
| N
X(N—k)= N 2) cos (kn) +j— Zx sin (kn) =a+jb. (4.53)

The second explanation of the spectrum (a)symmetry phenomena is that real-
value cosine and sine functions can be expressed as a summation of two Fourier
harmonics used for signal decomposition:

% kn 4~ j¥E(N—k)n
cos <2nkn> _er e 7) (4.54)
N 2
o eijnie jN(N k)n
in| —kn| = 4.
sin < N n) 27 , (4.55)

therefore, since the DFT transform is linear, when analyzing real-value signals we
have two symmetrical peaks in the DFT spectrum with complex-conjugated values.

Exercise 4.4 (DFT of a Cosine with Rectangular Window). Make use of the
Matlab program 4.2 in which the DFT algorithm is also implemented. In figures
generated by the program, the DFT spectra are marked with red circles and
compared with the DtFT spectra, denoted by blue solid line. In the beginning,
try to obtain the same plots as presented in Fig. 4.6. Set the following values of

4.5 Discrete Fourier Transform 89

program parameters: sampling ratio f; = 1000 Hz, number of signal samples
N = 50, only component x1, in the beginning with frequency 100 Hz, than
with 110 Hz. Check validity of the DFT spectrum (a)symmetry (Eq. (4.48)).
Next, apply different windows to the signal. Again check the DFT spectrum
(a)symmetry.

After step 3
06 T !

1000
f (Hz)
After step 3
0.6 T T T T
o
0 RARA %0
-500 -110 0 110 500 1000

f (Hz)

Fig. 4.6: DtFT and DFT spectra of two cosines, blue line and red dots, respectively:
(up) signal with fo = 100 Hz: perfect DFT match to the cosine frequency, (down)
signal with fy = 110 Hz: the worst DFT match to the cosine frequency. Values
of parameters: sampling frequency f; = 1000 Hz, N = 50 samples, DFT spectrum
discretization step A f = fy = f;/N = 20 Hz. Observe symmetry of the DFT spec-
trum marked with red circles. Notice the different shapes of correct DtFT spectrum
marked with blue solid line (two shifted spectra of the rectangular window)

90 4 Discrete Fourier Transforms: DtFT and DFT

4.6 Summary

Signal processing consists of two fundamental branches: frequency analysis
and signal filtering (noise reduction and rejections of some signal components).
This chapter has been focused on fundamentals of frequency analysis by means
of Fourier transform—it has a crucial significance in our DSP course. You
should understand everything in it. If you do not, I am very sorry, read this
chapter again and again ... before the examination. Yes, you can. Personally,
some papers I was reading repeatedly even 10 years. With final success. What
should be remembered?

1. Most frequency analysis methods are very similar: one compares a signal
with reference frequency components (oscillations) multiplying it with the
references and accumulating single products. This is valid in analog and
digital world, done by Fourier integrals and summations.

2. DtFT is a discretized continuous Fourier transform and DFT is a result
of the discretization of Fourier series. In computer implementation both
transforms are very similar: they use the same signal samples and treat them
in almost the same manner. The only difference is that in N-sample DFT the
signal spectrum is computed for precisely specified set of N frequencies:
fi=k- fo,k=0,1,2,....,(N—1), where fy = 1/T is the inverse of the
analyzed signal duration. In DtFT the choice of frequencies is completely
free. For real-value signals we are typically choosing frequency values in
the range [0, f;/2). The DtFT offers better visualization of the theoretical
signal spectrum due to its possible more dense sampling.

3. The DtFT is more application flexible but the DFT is faster due to the ex-
istence of very fast DFT implementations (FFT algorithms are presented
in the next chapter). DtFT calculation can be speed up by using fast im-
plementations of the chirp-Z transform (usage of three FFTs, not discussed
here)—never the less the method is slower than the DFT.

4. One should always remember that in practice frequency analysis is per-
formed upon a signal fragment, not on the whole signal. What is the conse-
quence of this fact? That a fragment curting operation has a very big influ-
ence on the final result! Simply taking signal samples from—to means that
we are multiplying a signal with an observation window function having a
value equal to “1” from—to and “0” elsewhere.

5. If two signals are multiplied, the Fourier spectra are convoluted. Due to this,
the signal windowing performed during signal fragment cutting causes that
the theoretical spectrum of the time-infinite signal is convoluted with the
window spectrum modifying it. Therefore, one should choose very care-
fully the window function during spectral analysis.

6. Increasing K-times the length of the analyzed signal, one improves K-times
the DFT frequency resolution, no matter what the window function is used.

4.7 Private Investigations: Free-Style Bungee Jumps 91

As a consequence, signal components having near frequencies are better
distinguished.

7. Using windows with a low level of spectral side-lobes, one improves am-
plitude resolution of the spectrum by the cost of decreasing its frequency
resolution. But the frequency resolution can be always improved by signal
enlargement.

8. There are many window functions. The best should offer the most nar-
row spectral main-lobe (good frequency resolution) and the lowest level
of spectral side-lobes (good amplitude resolution). In practice, Kaiser and
Chebyshev windows are very often used due to their adjustable shapes and
changeable spectral features.

4.7 Private Investigations: Free-Style Bungee Jumps

Exercise 4.5 (Am I An Enrico Caruso? Finding Frequency of Vocal Cords Os-
cillation). Use DtFT and DFT detectives for finding the frequency of your vocal
cords opening and closing for different vowels.

Exercise 4.6 (In the Wonderful World of Sounds). From the Internet web page
FindSounds (https://www.findsounds.com/) take 2-3 signals of different origin and
use DtFT and DFT for finding their frequency content. Scale frequency axis in hertz.
Overlay two spectra in one plot.

Exercise 4.7 (Did You Break My Heart? What Is the Frequency of My Heart-
beat?). Take from the Internet an ECG heart activity signal, e.g. from the page
https://archive.physionet.org/cgi-bin/atm/ATM. Calculate the frequency of the heart-
beat using DtFT and DFT.

Exercise 4.8 (Steel Factory Secrets). Analyze signals of supply voltages and cur-
rents recorded for operating arc furnace. Take them from the file Lload (' UI .mat ") ;
whos, given at the book web page. Do spectral DtFT analysis for interesting parts
of the spectra. Estimate frequencies and amplitudes of fundamental frequency 50
Hz (close to 50) and its harmonics 100, 150, 200, 250, ... Hz.

Exercise 4.9 (Clear Water, Clear Power Supply). Please, analyze recorded power
supply voltage signal tu.dat which is used for testing algorithms for monitoring
electric power quality (https://grouper.ieee.org/groups/1159/). First, extract time and
voltage values from matrix columns:

load(’tu.dat’); t=tu(:,1); u=tu(:,2); plot(t,u);).

Then, estimate frequencies and amplitudes of fundamental frequency 50 Hz (close
to 50) and its harmonics, if they are present.

Exercise 4.10 (Mysteries of NMR Laboratory). Do frequency analysis of pseudo-
NMR signal synthesized in first additional exercise after Chap. 2.

https://www.findsounds.com/
https://archive.physionet.org/cgi-bin/atm/ATM
https://grouper.ieee.org/groups/1159/

92

4 Discrete Fourier Transforms: DtFT and DFT

References

10.

11.

. L.F. Chaparro, Signals and Systems Using Matlab (Academic Press, Burlington

MA, 2011)
FJ. Harris, On the use of windows for harmonic analysis with the discrete
Fourier transform. Proc. IEEE 66(1), 51-83 (1978)

. VK. Ingle, J.G. Proakis, Digital Signal Processing Using Matlab (PWS Pub-

lishing, Boston, 1997; CL Engineering, 2011)

. R.G. Lyons, Understanding Digital Signal Processing (Addison-Wesley Long-

man Publishing, Boston, 1996, 2005, 2010)

. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (Pearson Ed-

ucation, Upper Saddle River, 2013)

A.V. Oppenheim, A.S. Willsky, S.H. Nawab, Signals & Systems (Prentice Hall,
Upper Saddle River, 1997, 2006)

A. Papoulis, Signal Analysis (McGraw Hill, New York, 1977)

. J.G. Proakis, D.G. Manolakis, Digital Signal Processing. Principles, Algo-

rithms, and Applications (Macmillan, New York, 1992; Pearson, Upper Saddle
River, 2006)

S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing
(California Technical Publishing, San Diego, 1997, 1999). Online: http://www.
dspguide.com/

M. Vetterli, J. Kovacevic, V.K. Goyal, Foundations of Signal Processing (Cam-
bridge University Press, Cambridge, 2014)

T.P. Zieliniski, Cyfrowe Przetwarzanie Sygnalow. Od Teorii do Zastosowar
(Digital Signal Processing. From Theory to Applications) (Wydawnictwa Ko-
munikacji i Lacznosci (Transport and Communication Publishers), Warszawa,
Poland, 2005, 2007, 2009, 2014)

http://www.dspguide.com/
http://www.dspguide.com/

Chapter 5)
Fast Fourier Transform Check or

Salute! Your Majesty Fast Fourier Transform - the DSP King
(Kong)!

5.1 Introduction

Discrete Fourier transform (DFT) is the orthogonal transform defined in pre-
vious chapter by Eqgs. (4.46), (4.47) in which reference oscillatory signals are
complex-value Fourier harmonics. The forward DFT (transforming signal sam-
ples x(n) to spectral coefficients X (k)) and the inverse DFT (transforming back
spectral coefficients to signal samples) are defined with very similar equations
being different only in the sign of the exponent and /i\, scaling of the first sum:

N—1
X(k) =~ Y x(n)e JCH/Nkn, ZX Ye IR/ 0.1, N~ 1.

1
N n=0

(5.1

Therefore fast algorithms, designed for the forward DFT, can be used also

for the inverse DFT (IDFT) after change of the exponent sign and the overall

scaling.

Warning! It is important to note that scaling by % is done inside Matlab
function x=ifft (X) of the second IDFT equation, not in the first DFT one
X=fft (x). We prefer putting scaling in the first of them since this is cor-
rect when DFT is derived from Fourier series—see Eq. (4.42). For such scal-
ing, mathematically correct values of spectral coefficients are obtained. In this
chapter the scale factor - is completely neglected in order to unify algorithms

N
for DFT and IDFT calculation.

© Springer Nature Switzerland AG 2021 93
T. P. Zielinski, Starting Digital Signal Processing in Telecommunication

Engineering, Textbooks in Telecommunication Engineering,
https://doi.org/10.1007/978-3-030-49256-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49256-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-49256-4_5

94

5 Fast Fourier Transform

Both algorithms, of DFT and IDFT, can be written using matrix notation typ-
ical for all orthogonal transforms (see previous chapter): the transform matrix
with dimensions N X N, having in rows sampled conjugated reference oscilla-
tory basis functions, is multiplied by a vertical vector of signal samples. There-
fore the DFT computation requires calculations of N> complex-value multipli-
cations and N - (N — 1) complex-value additions. As an example we will cal-
culate DFT coefficients, without 4 scaling, for signal x(n) = [1,2,3,4] having
N = 4 samples:

X(0) :fx(n)e*ﬂz"/‘*ﬂ)" = x(0) 4+ x(1) +x(2) +x(3) = 10,
n=0
X(l) _ z sdlim —j(2m/4)1n (0)6‘0 —l—x(l)e*j(z”/“) +x(2)e7j(2”/4)2

+x(3)e I3 = 1 — 234 j4=-24j2,
3
X(Z) _ Z x(n)e—j(Zn/4)2n _ x(O)eO +x(l)e—j(2ﬂf/4)2 +x(z)e—j(Zn:/4)2~2

+x(3)e RT3 — 1 243 _4="22,

X(3) _ Z x(n)e—j(Zﬂ/4)3n _ X(O)EO +x(1)e—j(2n/4)3 +x(2)e—j(2n/4)3~2
n=0

+x(3)e IR/ — 1 4 23— ja=-24j2.

The resultant DFT spectrum is equal to X (k) = [10, -2+ j2,—2,—2 — j2].
The first value, equal to 10, is the sum of signal samples, the following ones
are coefficients measuring the analyzed signal similarity to complex-value sig-
nals with reference frequencies (their real part specifies similarity to the cosine,
while imaginary part to the sine). Let us write the same calculations in matrix
form:

X(0) 11 1 17 [x(0) 111 1]t 10
X()| (1 —j—1 j| x| _|1—j-1 j]| |2 -24j2
X T {1=1 11| [x@)| [1-1 11| |3] 7| 2
X(3) 1 j —1—j| [x(3) 1 j —1—j| |4 -2:2

Fast DFT calculation algorithms make use of the observation that values
in the transformation matrix are repeating (since sin() and cos() functions are
periodic) and they are multiplied many times by the same signal samples. Such
situations are identified and removed: multiplications are done only once and
their results used a few times. For example, let us see how the fast algorithm
works in the discussed case of N =4 DFT:

5.1 Introduction
x©O)7] 11 1 17 [x(0)
X[_|1=j-1 j| [x(1)] _
x2)| T [1-1 121 |[x@)] = (5-2)
X(3) 1 j —1—j| [x(3)
11 11
(1= [x(0)] | =g g | [RD]
S| k@) T2 k3] T -3
= -
1 17 (1 11
|1 -1 [x(0)] —j 1-1] [x(1)] _
Sl @) Tt Lc(3) = C
= W 1 -1
1 17 1 11
T _j 1-1|[2]
_ B M_ (5:5)
L i J
[4 1 6 10
|2 il -2 |24y
== o A = (5.6)
= j 2 242

First, Eq. (5.3)—the signal samples are grouped into even- and odd-indexed
ones and the 4 x 4 transformation matrix is replaced by two sub-matrices 4 x 2.
Additionally, Eq. (5.4)—odd-indexed signal samples multiplication by the sec-
ond sub-matrix is re-organized: first multiplication is done by the simplified
matrix, then the obtained result is corrected: each calculated value is multiplied
by different correction term. .x in Eq. (5.4) denotes, as in Matlab, multiplica-
tion of corresponding values of two vectors or matrices, first-by-first, second-
by-second, ... and so on. Now we see that lower 2 x 2 matrices are the same
as the upper ones (marked with bold font and blue color). Therefore it is suffi-
cient to multiply signal samples by upper 2 x 2 matrices only (bold/blue ones),
then copy the result and put it down. For this reason in Eq. (5.5) elements of
lower matrices are missing and in Eq. (5.6) two calculated values (bold/blue)
in the upper part are copied down and marked in red! Finally, the same result is
obtained as in Eq. (5.1) but faster. In the original algorithm we do 4> =16 mul-
tiplication. In the fast version: 2-2% = 8 plus 4 multiplications with corrections,
all together 12 operations.

This savings does not seem to be significant. However when the signal vec-
tor is long, for example, has N = 1024 samples, and the data partition into
even- and odd-indexed signal samples is repeated many times, to the moment
of obtaining vectors having two samples only, the savings are really impressive:
about 200 TIMES FASTER (in general not N - N multiplications are performed

95

96 5 Fast Fourier Transform

but only % log,(N)). It is like to drive a car with speed 200 kilometers per hour
instead of 1 kilometer per hour only. Or like pay only 1 euro/dollar instead of
200 euro/dollars. Who would like to move as a turtle? Or overpay. Do you not
want?

Let us now look to the heart of the radix-2 FFT algorithm. After recursive
multi-level partition of signal samples into even- and odd-indexed ones, two-
element vectors are obtained and % 2-point DFTs are performed upon them.
Then: (1) 2-point DFT spectra are combined into 4-point ones, (2) 4-point DFT
spectra into 8-point DFT spectra, (3) 8-point to 16-point, and so on, up to the
reconstruction of the DFT spectrum of the whole signal.

So, ..., the text of this chapter is yours.

5.2 Radix-2 FFT Algorithm

Fast Fourier Transform (FFT) is a fast algorithm for computation of discrete Fourier
transform (DFT) discussed in Chap. 4. In turn DFT represents itself an orthogonal
transformation of the form:

Xnx1 = Wysn - Xnxis (5.7)

where Xy« is a vertical vector of N signal samples, Wy is an orthogonal N x N
transformation matrix (with orthogonal rows), and Xn«1 is a vertical N-element
vector of calculated DFT spectrum coefficients. In case of DFT, the matrix-based
Eq. (5.1) has the following form:

X(0) 1 1 1 x(0)
X(1) 1 e JWIL L iFLIN-1) x(1
=1. . : :) (5.8)
X(N—-1) e JRWN=D1 . ,—jFN-D-N-1)| |x(N—1)

while the non-matrix one is defined as (we are at present neglecting division by N
in comparison to Eq. (4.46):

N—1
X(k)= 3 x(me I ¥ k=0,1,2,....N—1. (5.9)
n=0

At the first look there is no possibility to do calculation faster: N-element vertical
vector should be multiplied by N x N-element matrix. This is the task! However the
matrix elements (k—row/oscillation index, n—column/sample index):

W k,n] = exp <—j3\7;kn) ; (5.10)

5.2 Radix-2 FFT Algorithm 97

repeat (they have the same values due to periodicity of sin()/cos() functions) and
some of them are multiplied by the same signals samples. These repeated multipli-
cations should not be performed: the previous arithmetical results should be copied
only. Savings offered by this strategy is very big. Instead of performing N - N mul-
tiplications (e.g. for N = 1024 we have 1024 - 1024 = 1048576), only 10240 multi-
plications have to be done (approximately) or even two times less if some additional
trick is done. Therefore we are taking about decreasing the number of multiplica-
tions more than 100 times or even 200 times. This is like driving 200 km per hour,
not 1 km per hour. Wow! So how is it done. This chapter is giving an answer to this
question. To be precise, we are talking now about radix-2 decimation-in-time FFT
algorithm. There are many other FFT algorithms, for example, radix-4, split-radix,
prime-factor, ...
Let us introduce the following denotations:

Wy=e %, (Wy)"=Wn=eiFh (5.11)

Next, let us do in Eq. (5.9) summations of multiplications of W/\i" with even (n =2r)
and odd (n = 2r+ 1) samples of x(n) separately:

N/2-1 o N/2-1 .
X(k)y= Y x2r)e ¥ 1N x(2r 4+ 1)e IV k=0,1,2,... N-1.
r=0 r=0
(5.12)
We can replace multiplication by 2 in exp(.) by dividing by N/2:
Nj2-1 oy, L. Nj2-l oy,
X(k)= 3, x(@rje VR 4e INE ¥ x(2r1)e VEY, k=012, N~ 1.
r=0 r=0
(5.13)

Now we see that we have obtained summation of N/2-point DFTs of even
and odd signal samples (and the odd DFT result is multiplied by correction term
exp(—j2nk/N)). With the only difference that k is not changing in the range
0,1,2,...,N/2—1 as in N/2-point DFT but in the range 0,1,2,...,N — 1 as in
the N-point DFT. But we can observe that for values of k bigger then N/2 —1 (i.e.
N/2+4+k, k=0,1,2,...,N/2 — 1), we obtain the same result as for values smaller
then N/2 (i.e. k):

e IRRWNPH _ pmr RER iR ko0, N a4

What does result from this “discovery”? Is it a real “treasure” or not? Yes, it
is! One can perform two DFTSs upon two two-times shorter N /2-point vectors of
samples (even and odd), copy each of calculated DFT vectors two times, making
them this way two times longer (enlargement k from N/2 — 1 to N — 1), multiply the
second vector associated with odd samples by the correction term exp(—j27k/N),
and do final summation of vectors (even and odd parts, respectively):

98 5 Fast Fourier Transform

(e _ <(€) g _ <(0)
XN/2><1 = Wn/2xn/2- XN/2x17 XN/2><1 = W22 XN/2x 1 (5.15)
.2m
e Iw0

< (e) —j%1 < (0)
- X IN X
XN><1 — _1(\é§2><1 + * _I(\Q/)ZXI (516)

X X

N/2x1 : N/2x1
e IFWN-1)

- in Eq. (5.16) denotes, as in Matlab, multiplication of corresponding values of
two vectors or matrices. Let us calculate the obtained speed-up! As we see, now
in Eq. (5.15) we multiply two times matrix with dimensions N/2 x N/2 by N/2-
element vector, which gives 2N? /4 = N? /2 multiplications, while the initial matrix
equation (5.8) requires two times more, N> multiplications. Of course, we should
not forget about N additional multiplications required for correction of the DFT
of odd samples, however, in comparison with N 2 /2 multiplications, the increase is
insignificant.

Equations (5.15), (5.16) look serious and with dignity. But their graphical inter-
pretation presented in Fig. 5.1 is very simple. It convincingly confirms our step-by-
step calculations presented in Egs. (5.2)—(5.6), leading to the fast FFT algorithm.
Lower parts of even and odd matrices, in figure white, are exactly the same as their
upper parts, therefore calculated upper results can be copied down and about 50
percents of multiplications are not performed. In Matlab program 5.1 we are per-
forming operations presented in Fig. 5.1. Wow! How simple is the computational
trick used in radix-2 DIT FFT!

Even Odd

FI- R

Fig. 5.1: Graphical illustration of reduction of number of multiplications in the DIT
radix-2 FFT algorithm after one-level even/odd samples partitioning. Multiplication
of even-/odd-indexed samples by “white” sub-matrices with red “x” is not per-
formed since “white” sub-matrices are the same as upper “blue” ones—result of
the upper matrix-vector multiplications is simply copied. “.*” denotes element-by-
element multiplications as in Matlab

W W J oUW N

[
o

5.2 Radix-2 FFT Algorithm 99

Listing 5.1: First step in the radix-2 DIT FFT algorithm

% lab05 ex partitionl.m
% One-level FFT : first sanple re-ordering
clear all; close all;

N = 100; X = rand(1,N);

Xm = fft(x);

Xe = fft(x(1:2:N)) ;

Xo = fft(x(2:2:N)) ;

X =[Xe Xe] + exp(-j*x2#01/MNx (0:1:N-1)) .% [Xo, Xo1;
error = max(abs(X - Xm)),

-

Exercise 5.1 (Matrix Interpretation of Speeding-Up Calculations in Radix-
2 DIT FFT). In the introduction we have presented, as an example, matrix anal-
ysis of the 4-point DFT calculation. It was shown that after sample grouping
into even- and odd-indexed ones, the square transformation matrix is replaced
with two smaller matrices having the same elements in their lower parts as in
upper parts. Set N =4, 8,16 in program 5.1 and verify this observation. Use the
DFT transformation sub-matrices for calculation of spectra Xe and Xo. Check
result correctness.

So, if approximately two times reduction of multiplication number is obtained
only by simple separating of even and odd signal samples and performing two-
times shorter DFTs on them, WHY not to continue and why not to divide signal
samples once more: do partition of even samples into even and odd (even—even,
even—odd) and odd samples into even and odd (odd—even, odd—odd). After that we
will have four vectors four times shorter and four N/4-point DFTs will be perform
with corrections. Such proceeding offers complexity of 4(N?/16) = N? /4 plus 2N
multiplications. So now not 2 but 4 times reduction of multiplication number is get
in comparison to Eq. (5.7).

In radix-2 algorithm repetitive partitioning data to even/odd samples is repeated
to the moment when N/2 vectors having only 2 samples are obtained. Then N/2
times 2-point DFT spectra are computed. Next N/2 2-point spectra are combined
with corrections and give N /4 4-point spectra, then N /4 4-point spectra are com-
bined to N /8 8-point spectra, 8-point to 16-point, ... etc., to the moment when the
final N-point DFT spectrum is reconstructed. On each algorithm level one performs
N complex multiplications (due to required correction of N samples) and in bottom
level N/2 times 2-point DFTs are done:

xo)] [t 1 x(0)] 1 1] [x(0)

[Xm} L e x(n)] T {1 1] (1)) G4
representing only addition and subtraction of two samples with no multiplication.
Summarizing the total number of multiplication, we have N corrections (multiplica-

W W T oUW N R

WWwWwWwWwwwwwwNonononNnNnNNnNDRRRRRRR R B &
W © J O U1 B W N KFHF O W W J o0 U1l & WNKFEF O WOwwmNNOoO Ut W NN H o

100 5 Fast Fourier Transform

tions) done on each spectra combining level. The number of such levels is equal to
the number of even/odd sample partitions minus 1, i.e. log, (N) — 1. Minus 1, since
the decomposition is stopped for vectors with 2 samples upon which 2-point DFTs
are executed. Therefore, when we neglect the simplicity of the 2-point DFT level
and assume the regular algorithm structure, Nlog,(N) number of multiplication is
required. For N = 1024 the speed-up is more than 100 times while compared to N?!

The following program 5.2 presents two-level fast radix-2 DFT computation and
it is an introduction to the divide even/odd philosophy of the FFT.

Listing 5.2: First two steps in the radix-2 DIT FFT algorithm

% lab05 ex partition2.m

clear all; close all;

N=64;

x = randn(1,N) ;

X = fft(x);

% One-level decamposition

X1 = x(1:2:end); % even sanples
X1 = fft(x1);

X2 = x(2:2:end); % odd sanples
X2 = fft(x2);

Xr=[X1X1] +exp(-j*2#0i/Mk (0:N-1)) .x [X2X2];
error merual 1 = max(abs(X-Xr)), pause

% Two-level decomposition

x11 = x1(1:2:end); % even even sanples

X11 = fftx11);

x12 = x1(2:2:end); % even odd samples

X12 = fftx12);

X1 = [X11 X11] + exp(-J*2#01/ @/2)% (0:N/2-1)) .x [X12X12];
x21 = x2(1:2:end); % odd even sanples

X21 = fft(x21);

x22 = x2(2:2:end); % odd odd sanples

X22 = fft(x22);

X2 = [X21X21] + exp(-jw2#pi/ (O/2)% (0N/2-1)) .% [X22X221;

Xr= [X1X1] + exp(-J»2%01i/M (0:N1)) .+ [X2 X2];
error merual 2 = max(abs(X-Xr)), pause

% Calling our recursive multi-level FFT function

Xr = myRecFFT(x) ;

error recursive = max(abs(X-Xr)), pause

% Calling our norrrecursive FFT function
Xr = myFFT (%) ;

error nonrecursive = max(abs(X-Xr)), pause
S

W O 0 U W N R

e
N H O

5.3 FFT Butterflies 101

Finally, the program 5.3 presents a recursive implementation of the complete
FFT algorithm with all even/odd decomposition levels. It should be used as a test for
checking understanding of the radix-2 FFT philosophy based on even/odd partition
of signal samples. It is important to notice how simple the program is (!) thanks to
the fact that now not we but Matlab is responsible for memory management inside
each function call and for exchange of results between the function successive calls.

Listing 5.3: Radix-2 DIT FFT algorithm implemented as recursive function

N
function X = myRecFFT(X)
% My recursive radix2 FFT function
N = length(x) ;
if (Ne=2)
X(1) = x(1) +x(2); % # 2-point DFT
X(2) = x(1) - x(2); % # on the lowest level
else
X1 = myRecFFT(x(1:2:N)); % call itself on even samples
X2 = myRecFFT(x(2:2:N)); % call itself on odd samples

X=[X1X1] +exp(-J*2#p1/Nx (0:N-1)) .x [X2X2]; % conbine spectra

end
L

5.3 FFT Butterflies

So, is that all about the famous FFT? Absolutely NO. Two important issues still are
not discussed. The first is an additional simple observation which can offer addi-
tional reduction of the FFT computational time by half. Does it sound impossible?

In the FFT algorithm one longer spectrum is reconstructed repeatedly from two
two-times shorter spectra. Shorter even and odd spectra, in the first decomposition
stage, were denoted in our programs as X; (k),X»(k), k=0,1,2,...,N/2— 1, while
the spectrum reconstructed from them as X (k), k =0,1,2,...,N — 1. Let us denote
shorter spectra as X, (k) and X, (k). After this, Eq. (5.13) describing the final spec-
trum reconstruction can be rewritten as (k=0,1,2,...,N/2—1):

X (k) = Xe(k) + e T FE X, (k), (5.18)
X(N/24k) = Xe(k) +e IR N2 x (k) = X (k) + e e TRk X, (k). (5.19)

Since ¢ /T = —1, the second correction (5.19) differs only from the first one (5.18)
with sign:
X(N/2+k) = Xe (k) — e I 7k X, (k). (5.20)

Eureka! The second term calculated in Eq. (5.18) is added to the first term in
Eq. (5.18) and subtracted in Eq. (5.19). Therefore only one multiplication can be
done instead of two:

X (k) = eI TR X, k), (5.21)

102 5 Fast Fourier Transform

and after its result should be added and subtracted from X, (k), k=0,1,...,N/2—1:

X (k) = X (k) + X9 (k), (5.22)
X(N/2+k) = X (k) — X9 (k) (5.23)

This way the overall number of multiplication is reduced by half to (1/2)Nlog,(N)
since % not N corrections are done (one correction is used two times, one time
negated). This twin operations is called the FFT butterfly: two numbers are coming
into the module in which the second of them is corrected (Eq. (5.21)) and then added
(Eq. (5.22)) and subtracted (Eq. (5.23)) from the first one, which gives two output
numbers.

As an example let us write all butterfly equations of the one-level fast radix-2

DIT DFT algorithm:
X(0) = X (0) + e/ ¥9X,(0),
X (4) = Xe (4) + e~ X, (4) = X (0) — e T ¥0%,(0),

X(1) =X (1) +e I ¥ 1X,(1),
X(5) = Xo(5) + eI ¥5X,(5) = Xe (1) — e I 1 X, (1),
X(2) = Xe(2) + eI ¥2X,(2),
X(6) = X (6) + eI FOX, (6) = Xo(2) — e I ¥ 2X,(2),
X(3) =X.(3) + e ¥3X,(3),
X(7) = Xe(7) + eI ¥ X, (7) = Xe(3) — e I 73X, (3),

The FFT butterfly computation is presented in Fig. 5.2. The name butterfly is
used since in module figure/diagram we see characteristic butterfly contour/shape.

X(k) X(k) Xo(k) X(k)
wk !
] [
1 1
X, (k) X(k+N/2) X, (k) X(k+N/2)
N2k Wy -1
o A

Fig. 5.2: Computational structure of the basic decimation-in-time (DIT) radix-2 FFT
algorithm, the so-called butterfly. (left) full version with two multiplications, (right)
simplified version with only one multiplication. Values close to arrows denote multi-
plication by them. Wy is defined by Eq. (5.11). Thanks to equality: W,"/*™) = —wk
only one multiplication is done instead of two [11]

5.4 Fast Signal Samples Re-ordering 103

5.4 Fast Signal Samples Re-ordering

The second important issue in the FFT algorithm is changing samples position due
to dividing them into two sets: even- and odd-indexed. Since moving data in com-
puter memory requires also processor cycles, as multiplications, it may look that
we won a lot, reducing the number of multiplications, but at the cost of significant
increasing sample movement. If we could directly put the input signal sample to its
target position (obtained after many even/odd sample partitions), we would benefit
a lot. Therefore let us look more carefully at the partition process.

Let us assume that we are calculating 8-point FFT upon signal samples having
values equal to sample numbers, and perform two-level even—odd sample sorting
and four 2-point DFTs. Consecutive steps of samples re-ordering are presented in
Fig. 5.3.

What do we observe? That the input sample position index, written binary, after
many even/odd partitions, is equal to the original index but written in bit-reversed
manner. For example, sample with binary position 011b (3) can go directly to binary
position 110b (6) which is marked in figure with red dotted line. Therefore, only one
move in computer memory is required for each signal sample which significantly
simplifies the sample re-positioning. Look at Fig. 5.3. In the lowest level of the
FFT algorithm the series of four 2-point DFTs takes place upon two neighboring
data (short blue lines at the bottom of partition diagram are presented), next four 2-
point DFT spectra are combined into two 4-point DFT spectra (two blue lines in the
middle of the diagram), and, finally, 4-point spectra are combined into one 8-point
DFT spectrum (one blue line in the upper part).

Signal sample indexes

Original (binary) 000 001 010 01 a 100 101 110 111
Original (decimal) 0] 2 3,.°4 5 6 7
After 1-st even/odd (decimal) 0 2 4 ,"'6 1\\ 3 5 7
After 2-nd even/odd (decimal) 0 4% 6 1 Sv. 3 7
r Y

After 2-nd even/odd (binary) 000 100 010 110 001 101 011 111

Fig. 5.3: Graphical illustration of two-level even/odd signal samples sorting before
the 8-point radix-2 DIT FFT algorithm. It is assumed that signal samples have values
equal to their indexes. Each sample goes finally to the new position having index
with reversed bits, for example, the sample number 4 (100b) goes to the position 1
(001b) which is marked with red dotted line. Horizontal blue lines connect samples
being in the same block of butterflies (the same sub-spectrum)

104

5.5 Example: 8-Point Radix-2 DIT FFT

5 Fast Fourier Transform

In this section we will summarize our present knowledge about the FFT in all-in-
one example. We will draw complete FFT block diagrams of the 8-point radix-2
decimation-in-time FFT algorithm and analyze programs implementing them. In
Fig. 5.4 first two even/odd decomposition levels of the algorithm are presented.
They lead to the final 8-point FFT computation shown in Fig. 5.5. The FFT pro-
gram implementing it is written in two versions, as data block-oriented and single
butterfly-based.

XZ)’I(O)
x(0) —»
XZn(l)
x(2) —*| DFT
N=4 |X2,(2)
x(4) —>
X2n(3)
X(6) —»
x(1) —p
Xowni(1)
x(3) —»{ DFT
N=4 X2n+l(2)
X(5) —»
X(7) ——»]
x(0) — | DFT
N=2
x(4) —™
w0
x(2) —*| DFT 1
— Wi
X(6) N=2 4
x(1) —»| DFT
N=2
x(5) —
w,°
x(3) —»| DFT
N=2 wy!
X(7) ——»

X(0)
X(1)
X(2)

X(3)

X(0)
X(1)
X(2)

X(3)

Fig. 5.4: Consecutive derivation of 8-point decimation-in-time radix-2 FFT algo-

rithm leading to diagram presented in Fig. 5.5 [11]

W O 0 U W N R

A e s
® 90Uk WN R O

5.5 Example: 8-Point Radix-2 DIT FFT 105

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

Fig. 5.5: Final block diagram for the decimation-in-time radix-2 FFT algorithm for
N=28][11]

Listing 5.4: Radix-2 DIT FFT algorithm in Matlab—data blocks approach

% lab05 ex blocks.m
% Radix2 decimation in time (DIT) FFT algoritlm
clear all; close all;

N=8; % munber of signal sanples (power of 2 required)
x=0:N-1; % exemplary analyzed signal

Nbit=log2(N); % rumber of bits for sample indexes, e.g. N=8, Nbit=3

% Samples reordering (in bitreverse fashion)

n = 0:N-1; % indexes

m = dec2bin(n) ; % bits of indexes
m=m(:Noit:-1:1); % reverse of bits
m = bin2dec(m) ; % new indexes
yml) = x@wl); % data reordering
Y, pause % check result

% All 2-point DFTs
yv=1[11; 1-1] » [y(1:2:N); y(2:2:N) 1; y=y(:)’;

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

W W g o0 U W N

WWWwWwWwwNo NN NDNNNDRRRRRRRR R R
U0 A W N KR OWWO®CUOoO U R WNREOWIOO U R WM R o

106 5 Fast Fourier Transform

% Butterflies i.e. spectra reconstruction
NlevaNbit; % nmunber of levels
Nfft=2; % initial Nfft value after 2-point DFTs
for levw=2Nlev % LEVELS
Nfft = 2Afft;
Nolocks = N/Nfft;
W = exp(-j*2%p1/Nffts (0:Nfft-1)) ;
for k = 1:Nblocks % butterflies
yl=y(1 + (k-1)«Nfft : Nfft/2
y2 = y(NEft/2+1 + (k-1)«Nfft : Nfft
v(1 + (k-1)NEft : Nfft + (k-1)-NEft)
end
end
ERROR = max(abs(fft(x) - y)), pause

(k-1)NEft) ;
(k-1)NEfL) ;
[yviyl] +W . [y2y2];

+ +

Listing 5.5: Radix-2 DIT FFT algorithm in Matlab—single butterfly-based approach

% lab05 ex butterfly in a locp.m
% Radix2 decimation in time (DIT) FFT algorithm
clear all; close all;

o°

N=8; munber of signal sanples (power of 2 required)
x=0:N-1; exenplary analyzed signal
Nbit=log2(N); % rumber of bits for sample indexes, e.g. N=8, Nbit=3

o°

%Sanples reordering (in bitreverse fashion)
for n=0:N-1
nc =n; % old sample position - copying
m=0; % new sample position - initialization
for k=1Nbit check all bits
if (rem(n, 2)==1) check low significant bit
m=m+ 2" MNbitk); accunulate "m" using bitreversed weight
n=n-1; decrement by 1
end
n=ry/2; % shift all bits one position right
end
y(ml) = x(ncl); % copy sample into new "bitreversed" position

o° o o oo

o°

end
Y, pause % check result

% Butterflies
NlevNbit; % runber of levels
for lev=1:Nlev % LEVELS

bw=2" lew1); % butterflies width

nbb=2" (lew1); % number of butterflies per block
sko=2"1ev; % shift between blocks
nbl=N/2"1lev; % number of blocks

correction coefficient

oe

Weexp (-j*2%pi/2"lev) ;
for busl:mbb % BUITERFLIES
Wo=W" (bu-1) ; % correction for given butterfly
for bl=1:mbl % BLOCKS
up =1 + (owrl) + (bl-1)xsbb; % up sanple index

36
37
38
39
40
41
42
43

5.6 Efficient FFT Usage for Real-Value Signals 107

down = 1+ow + (bwrl) + (bl-1)*xsbb; % down sanple index
temp = Wb * y(down) ; % temporary value
y(@own) = y(up) - temp; % new down sanple
yup) =yp) + temp; % new up sanple
end
end
end
ERROR = max(abs(fft(x) - y)), pause
S

5.6 Efficient FFT Usage for Real-Value Signals

Fourier harmonic signals, being oscillatory basis functions in DFT, have complex-
values. Our analyzed signal can be also a superposition (summation) of Fourier har-
monics (e.g. like in NMR, in OFDM multi-carrier transmission). However, the most
often, our signal has real-value samples and spectrum with conjugate symmetry in
which half of the coefficients is repeated (with complex conjugation). The second
half is calculated but is useless: the first half is for us sufficient, they contain the
whole information about the signal.

We can exploit the DFT spectrum symmetry (valid for real-value data only) in
two ways, perform one N-point DFT (FFT) but calculate:

1. two spectra of two real-value signals having N samples each,
2. one spectrum of a real-value signal having 2N samples.

Case 1: One FFT, Two Signals We have two real-value signals x;(n) and x;(n)
having N samples. Their DFT spectra X; (k) and X» (k) are also N samples long. Let
us create a complex signal having x; () in its real part and x,(n) in the imaginary
part:

x(n) = x1(n) + jxa(n) (5.24)

Due to transform linearity, the DFT of x(n) is equal to:
X (k) =X (k) + j%a (k) (5.25)

Making use of the DFT spectrum symmetry (in respect to the N /2-th spectral coef-
ficient) in real part and its asymmetry in the imaginary part, we can reconstruct the
spectra X; (k) and X, (k) from X (k) (k=1,2,...,N—1):

Re(X(0) +X(N=K) Im(X(k) ~X(N k)

X (k) = 5 5 , (5.26)
Xa(k) = Im (X (k) +2X(N—k)) _Re (X (k) —2X(N—k)) . (5.2

The following trick is used: the symmetrical values are removed when symmetrically
subtracted (values from the beginning and corresponding values from the end) and
they are amplified by 2—when symmetrically added (values from the beginning

W W J oUW N R

NN NNRER R B BB R BB B
Ul B W N F O W oo NJ oUW N R O

108 5 Fast Fourier Transform

and corresponding values from the end). The inverse rule is valid for asymmetrical
data. Mean signal value is always in the real part of the k = 0 DFT coefficient:
X1(0) = Re(X(0)), X2(0) = Im(X (0)).

Case 2: One FFT, Signal Two Times Longer In this case we divide a signal hav-
ing 2N samples into even- and odd-indexed ones, exactly the same way as in the
radix-2 DIT FFT algorithm discussed before, put them into real and imaginary parts
of x(n) as x (n) and x»(n), and perform N-point FFT. After this we reconstruct spec-
tra X; (k) and X, (k) using Egs. (5.26), (5.27). Finally, the whole signal spectrum is
reconstructed from its even and odd spectra using Eq. (5.13), the same way as in
program 5.1.

Exercise 5.2 (Two-Times Faster FFT Spectra Calculation for Real-Value
Signals). In program 5.6 we address computing two DFT spectra in one FFT
call. Spectrum of the first signal has been already calculated with success. Fin-
ish the program, writing a code for computing spectrum of the second signal.
After that add a new functionality to the program: assume that two input signals
are even and odd samples of one two-times longer signal. Reconstruct spectrum
of this signal.

Listing 5.6: Calculation of two DFT spectra using one FFT call

% lab05 ex 2inl
clear all; close all;
N=16;

x1 = randn(1,N) ; % Signals
x2 = randn(1,N);
x3(1:2:24) = x1; x3(2:2:2) = x2; % even and odd sanples

X1 = fftx1); % Their DFT spectra
X2 = fft(x2);
X3 = fft(x3);

% Exploit this symmetry

x12 = x1 + j*x2; % Artificial complesxevalue signal
X12 = fft(x12); % Its DFT gpectrum

X12r = real (X12) ;

X12i = imag(X12) ;

% Reconstruction of X1 from X12

X1r(2:N) = X12r(2:N)+X12r(N:-1:2))/2; % using symetry of Real (X1)
X1i(2:N) = (X12i(2:N)-X121(N:-1:2))/2; % using asymmetry of Imag(X1)
Xlr(l) = X12r(1);

X1i(1) = 0;

Xlrec = X1r + j*X1i;

error X1 = max(@bs(X1 - Xlrec)), pause

26
27
28
29
30

5.7 FFT Algorithm with Decimation-in-Frequency 109

% Reconstruction of X2 from X12

% ... tobe done
% Reconstruction of X3 from X1 and X2
% ... tobe done

5.7 FFT Algorithm with Decimation-in-Frequency

In the second big family of fast Fourier transform algorithms, not input signal sam-
ples are re-ordered as even-/odd-indexed ones but the calculated spectra coefficients.

Let us first calculate even spectral coefficients (r =0,1,2,..., % — 1)
N—1 o
2r) =Y. x(n)e /W Crin — (5.28)
=0
N/2-1 . N—1 o
= Y x(n)e TN L T x(n)e IV = (5.29)
n=0 n=N/2
N/2-1 N2y -
_ 2 (=X (2r) n+ z (+I’l> e un(%""") = (530)
n=0
N/2—-1 . N/2 1 N)
= Y x(n)e Wy Z (+n) IR~ (531)
n=0
N/2—1 N - 2m
=y {x(n) +x (2 +n>} e Inp (5.32)
n=0

In Eq. (5.29) we divide summation in Eq. (5.28) into two parts (to sample N/2 — 1
and above). In Eq. (5.30) we change denotation of sample index in the second sum
and obtain the same summation limits as in the first sum. Then in Eq. (5.31) we
calculate the exponent argument in the second sum, exploiting equality e /2" = 1.
Since it simplified to the exponent of the first sum, we combine two sums into one
in Eq. (5.32). As a result we obtain N /2-point DFT performed upon summation of
the first and the second half of the signal samples (having N /2 samples each).
Now let us do calculation of the odd spectral coefficients:

N

X(2 N 20,1,2,..., 2 — 1 5.33

r+ 2 x b r b b b) 2 ()
N/2 1

_ Z () 2 (2r4+1) i1+ 2 F@2r+1)n (5.34)

n=0 n= N/2

110 5 Fast Fourier Transform

N/2-1 N1 N s
_ Z x(n)e—j%”(%-&-l)n + Z X (+n> efjW”(ZrJrl)(%Jrn) _
n=0 n=0 2
(5.35)
N/2-1
N 2
=y {x(n)—x(—i—n)} e I @rtln (5.36)
n=0 2
N/2-1
(21 N _ 27 (\p
= 2 [eJZN" (x(n)—x(z +n>)] e INn, (5.37)
n=0
In Eq. (5.35) we have exploited the following substitution:
e IN@INY pmi2mrgmin — . (5.38)

Now, the X (2r + 1) spectrum is obtained as a result of N/2-point DFT performed
upon subtraction of the first and the second half of signal samples but initially mul-
tiplied by exp(—j2m/Nn), where n =0,1,2,... .N/2—1.

Concluding, in radix-2 decimation-in-frequency FFT algorithm we are perform-
ing two-times smaller N /2-point DFTs on summation and (corrected) subtraction of
the first and the second half of the signal samples. Data re-ordering procedure is re-
peated recursively. In Fig. 5.6 first decomposition level of N = 8 DIF FFT algorithm
is presented, while in Fig. 5.7—the whole algorithm.

x(0) — > X0

x(1) DFT —» X(2)
N=4

x(2) > X(4)

x(3) — X(6)

x(4) e X()

x(5) DFT —» X(3)
N=4

x(6) — X(5)

x(7) — X(7)

Fig. 5.6: First decomposition level of the N = 8-point decimation-in-frequency
radix-2 FFT algorithm leading to diagram presented in Fig. 5.7 [11]

5.8 Summary 111

x(0) X(0)
x(1) X(4)
x(2) X(2)
x(3) X(6)
x(4) X(1)
x(5) X(5)
x(6) X(3)
x(7) —> X(7)

Fig. 5.7: Final block diagram for the decimation-in-frequency radix-2 FFT algo-
rithm for N = 8 [11]

Exercise 5.3 (DIF FFT: With First Two Decomposition Levels). Write Mat-
lab program implementing DIF FFT algorithm with first two decomposition
levels only, for arbitrary signal having 27 samples. Make use of diagrams pre-
sented in Figs. 5.6 and 5.7.

5.8 Summary

In this chapter we dealt with the fast Fourier transform algorithms. They
are really very fast, not 5, 10, or even 100% (2-times) faster—they are about
200000% faster, YES! 200 TIMES! for signals having N = 1024 samples.
Wow! How is it possible? During DFT calculation we multiply a vector of
signal samples with matrix of samples of frequency basis/reference functions.
How could any savings be done in such strictly defined mathematical opera-
tion?! Yes, it is possible to reduce the number of multiplications since the ma-
trix elements are equal to sampled values of sine and cosine periodic functions,
which are repeating and therefore they are repeatedly multiplied by the same
signal samples. There is no sense to repeat some multiplications: it is more
practical to copy the result calculated already. Exploiting this idea further leads
to radix-K FFT algorithms in which divide-by-K concept is used: (1) signal is
recursively decomposed into K fragments (e.g. even/odd samples for K = 2)
until obtaining K-sample long sub-signals, (2) then many short K-point DFT

112 5 Fast Fourier Transform

spectra are computed, and (3) the spectra are combined in recursive way (e.g.
2-point to 4-point, 4-point to 8-point, etc.), up to the reconstruction of the whole
signal DFT spectrum. So something that looks impossible, becomes possible.
What we should remember about the FFT?

1. All decimation-in-time FFT algorithms exploit the divide-and-conquer
methodology: (1) they recursively divide input samples into smaller groups,
for example, by 2, by 2, by 2...,orby4,by 4 ..., (2) when the further divi-
sion is impossible they calculate DFT spectra of very short sample vectors
(e.g. with 2 or 4 elements), and after that (3) they are recursively combin-
ing smaller spectra, e.g. initially 2- or 4-point, into longer ones, e.g. 4- or
8-point, and so on: 8-, 16-, 32-, 64-point, ..., finally doing reconstruction
of the whole signal DFT spectrum.

2. Samples partition can be fixed, e.g. into 2 or 4 groups at each sample de-
composition level (radix-2, radix-4 algorithms) or can be changed from
level to level as it is done in split-radix algorithms, for example, first into
2 groups, then into four groups, next into 3 groups, etc. Algorithms with
bigger radix values offer better computational speed-up but restrict the sig-
nal to have a length being power of 4, 8, ... Split-radix algorithms can be
better adjusted to signal length.

3. In FFT algorithms are used the so-called butterflies—computation blocks
with two inputs and outputs. Calculations are done in-place: input values
are replaced by output values and no memory allocation problem exists.
The second input number is first corrected in the block and then added and
subtracted from the first one. The name butterfly is used since in module
figure/diagram we see characteristic butterfly contour/shape.

4. In the simplest radix-2 N-point DIT FFT algorithm input samples are
first re-ordered (result from recursive data partitioning) and then we have
log, (N) calculation levels. Each level consists of blocks of butterfly mod-
ules. In the beginning we have always N /2 blocks with one butterfly hav-
ing width of one sample. In each next level: number of blocks is two times
lower, number of butterflies in each block is two times bigger, and butterfly
width is two times larger.

5. Implementation of radix-2 DIT FFT algorithm in any computer language
is very simple: first we do sample re-ordering (in some DSP processors
a special bit-reversed addressing mode should be turned on), then we have
three nested loops (level, block, and butterfly number) inside which a single
butterfly module is executed.

6. Apart from decimation-in-time (DIT) FFT algorithms, there are used also
decimation-in-frequency (DIF) FFT algorithms. They offer the same com-
putational speed-up but their philosophy is different: one recursively di-
vides not signal samples but calculated spectral coefficients into groups,
in the simplest case of radix-2 DIF—into even and odd numbered. In DIF
FFTs the input signal samples have not to be initially re-ordered (advan-

5.9 Private Investigations: Free-Style Bungee Jumps 113

tage) but, at the price of this, the FFT spectral coefficients are obtained in
wrong sequence (drawback). But there are applications in which wrong or-
der of calculated spectral coefficients is not important. Fast signal filtering
and correlating in frequency domain are such examples explained in the
next chapter.

7. As already stated in the motto of this chapter: the FFT is a King of a DSP
highway! It is so fast that it is used not only for signal frequency analy-
sis (in next chapter) but also it is exploited as a computational hammer in
other DSP tasks, when-ever and where-ever it is possible. For example, in
fast implementations of digital non-recursive signal filtering having a form
of digital convolution of signal samples with filter weights or signal cor-
relation. These two operations have similar representation: multiply-and-
accumulate the result. Fast signal filtering or signal correlation in frequency
domain are performed as follows: instead of time-consuming signal con-
volution/correlation in time domain three FFTs are performed, two direct
done separately upon two signal vectors and one inverse performed upon
the resultant multiplication of two signal FFT spectra.

5.9 Private Investigations: Free-Style Bungee Jumps

Exercise 5.4 (Need for Speed). In 99.9% Matlab is not your favorite computer lan-
guage. You a master of Basic, C, C++, Fortran, Java, Julia, Pascal, Python,... For
sure you have a Need for Speed! Therefore make yourself a little fun and imple-
ment any FFT program from this chapter in your language. At the end compare the
calculated FFT spectrum with the Matlab result.

Exercise 5.5 (Dancing with the Stars: One Step Forward and One Step Back-
ward). Performing in a cascade the direct (forward) and the inverse (backward)
FFT algorithm, we should return perfectly to the same signal (with error on the
level 10~ of the signal amplitude). Write a program of inverse FFT modifying any
Matlab code of direct FFT. FFT and inverse FFT programs should differ only in
the exponent sign. Check your implementation using the Matlab function 1fft ().
Next, perform FFT and inverse FFT upon any signal and check the results: are both
signals the same?

Exercise 5.6 (** Radix-2 DIF FFT: On the Other Side of the Moon). Write uni-
versal Matlab program for arbitrary N = 27 implementing radix-2 FFT algorithm
with decimation-in-frequency (DIF) with all even/odd decomposition levels.

Exercise 5.7 (* DCT-II via FFT). Write Matlab program for calculation of orthog-
onal transform DCT-II presented in Chap. 2 (c(k=0) = /1/N, c(k > 0) = 1/2/N):

2+ 1)k
XPCT (k Zx (W) 0<k<N—1, (539

114

5 Fast Fourier Transform

with the FFT use. Equation connecting both transforms is as follows:

XPCT (k) = Re [c (k)e I ® . FFTy(x(n)| (5.40)

where signal £(n) is equal to:

f(n)=x(2n), ¥(N—-n—-1)=x(2n+1), n=0,1,2,...,N/2—1. (5.41)

Check correctness of your implementation (outputs of both programs).

Further Reading

10.

11.

. R.E. Blahut, Fast Algorithms for Digital Signal Processing (Addison-Wesley,

Reading, 1985)

. C.S. Burrus, T.W. Parks, DFT/FFT and Convolution Algorithms. Theory and

Implementation (Wiley, New York, 1985)

. PM. Embree, C Algorithms for Real-Time DSP (Prentice Hall, Upper Saddle

River, 1995)

. H.K. Garg, Digital Signal Processing Algorithms: Number Theory, Convolu-

tion, Fast Fourier Transforms, and Applications (CRC Press, Boca Raton, 1998)

. MLH. Hayes, Schaum’s Outline of Theory and Problems of Digital Signal Pro-

cessing (McGraw-Hill, New York, 1999, 2011)

. V.K. Ingle, J.G. Proakis, Digital Signal Processing Using Matlab (PWS Pub-

lishing, Boston, 1997; CL Engineering, 2011)

. R.G. Lyons, Understanding Digital Signal Processing (Addison-Wesley Long-

man Publishing, Boston, 1996, 2005, 2010)

. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (Pearson Ed-

ucation, Upper Saddle River, 2013)

J.G. Proakis, D.G. Manolakis, Digital Signal Processing. Principles, Algo-
rithms, and Applications (Macmillan, New York, 1992; Pearson, Upper Saddle
River, 2006)

S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing
(California Technical Publishing, San Diego, 1997, 1999). Online: http://www.
dspguide.com/

T.P. Zielifiski, Cyfrowe Przetwarzanie Sygnalow. Od Teorii do Zastosowarn
(Digital Signal Processing. From Theory to Applications) (Wydawnictwa Ko-
munikacji i Lacznosci (Transport and Communication Publishers), Warszawa,
Poland, 2005, 2007, 2009, 2014)

http://www.dspguide.com/
http://www.dspguide.com/

Chapter 6)
FFT Applications: Tips and Tricks e

Having an F1 car or the X-Wing spacecraft it would be a big sin
not to use it at full speed!

6.1 Introduction

This chapter aims to do comprehensive, short introduction to important FFT
applications in field of digital signal processing. Since the FFT is really, re-
ally fast, about 100 times faster than regular DFT for 1000 signal samples,
one should exploit its speed not only in spectral analysis, that is its primary
usage, but also as a computational “hammer” for calculation of functions con-
nected with signal spectrum. For example, for signal convolution and correla-
tion. We start with demonstration of proper scaling of DFT amplitude spectrum
and of its zooming possibilities, realized by appending additional zeros to an
analyzed signal and performing the FFT. Zeros can be also appended to the sig-
nal spectrum—after IFFT we are obtaining interpolated signal. We will advise
also to show only first half of the FFT spectrum for real-value signals since the
second half is symmetric in its real part while asymmetric in the imaginary part.
We will stress significance of the window function choice for the FFT spectrum
amplitude and frequency resolution and show proper spectrum scaling when
window is used.

In the first part of Chap. 4 on DtFT and DFT, we have discussed features
of the discrete-time Fourier transform spectrum, result of discretization of the
continuous Fourier transform. It was stressed that DtFT offers more flexible
spectrum visualization (from-to any frequency with arbitrary frequency step)
but at the cost of more time-consuming computing implementation. But a fast
algorithm for DtFT calculation exists also. It makes use of three (I)FFTs and is
known as chirp-Z transform. We learn about it.

When the signal is contaminated in noise or it is changing its deterministic
content in random manner, like during bit transmission, we should calculate
power spectra. How the power spectral density (PSD) function is defined? How

© Springer Nature Switzerland AG 2021 115
T. P. Zielinski, Starting Digital Signal Processing in Telecommunication

Engineering, Textbooks in Telecommunication Engineering,
https://doi.org/10.1007/978-3-030-49256-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49256-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-49256-4_6

116 6 FFT Applications: Tips and Tricks

it can be calculated? We will answer these questions. It will turn out that the
PSD calculation requires computation of correlation function which is widely
used in statistical signal processing. We will calculate it fast by means of FFT.

Since the correlation function computation is almost the same as calculation
of signal convolution, we will derive algorithms for fast signal convolution us-
ing the FFT. It will be used by us in next chapters for fast non-recursive FIR
digital signal filtering. Wow!

Next, signal frequencies of signal components can vary in time, like in
speech, audio, AM and FM modulated signals. Calculation of one FFT sig-
nal spectrum for many signal samples is not a good solution in this case.
The spectrum will be smeared because, for sure, the changing signal compo-
nents will not fit well to the constant-frequency Fourier harmonics. As a con-
sequence, many spectral coefficients will be furned on and the spectrum will
be smeared. Solution to this is assuming that signal components are not chang-
ing very fast, cutting signal into smaller fragments, calculating FFT spectra for
them, and putting all spectra together into one matrix for precise inspection of
the spectrum change. Such repetitive calculation of FFT on overlapping signal
fragments is called short-time Fourier transform (performed on short consecu-
tive signal parts). In Matlab the spectrogram() function implements the
STFT.

Finally, we will end chapter with description of one interpolated DFT algo-
rithm. What is the difference between DFT spectrum interpolation (zooming)
by DtFT and interpolated IpDFT algorithms? In IpDFT one derives mathemat-
ical equations for DFT spectrum values. Then take a few of them around the
spectral peak, solve set of some equations, and calculate frequency of one sig-
nal component. This is completely different approach than DtFT. Better fre-
quency estimates are obtained for signals which mathematical model is known,
in our case for summation of damped sinusoids. In this method not only sine
frequency can be found but also its damping which is very important in different
resonance spectroscopy methods.

So this is a chapter with a lot of DSP cookies.

6.2 FFT Usage Principles

Butterfly FFT algorithms, not very difficult, give the same result as slow direct mul-
tiplication of DFT matrix with a vector of signal samples but they are significantly
faster. For this reason the FFT should replace DFT in all our programs. The classical
TV advertisement says: “There is no sense to over-pay for the washing powder: buy
cheaper one if you do not see the difference in action.” But how to use FFT properly,
efficiently, and flexible?

In this section, in the chapter beginning, we briefly summarize the general prin-
ciples of proper FFT usage, on the base of [15]. In most cases we use DFT/FFT
for obtaining signal amplitude spectrum, i.e. for measuring amplitudes of single fre-

6.2 FFT Usage Principles 117

quency components of the signal. Having these amplitudes known, we can calculate
later the signal power spectrum, its power spectral density and amplitude spectral
density. In previous chapters, we have discussed only a problem how to calculate
correct signal amplitude spectrum from the DFT/FFT result. At present we will deal
with the other spectra also.

Repeating the DFT Definition Let us assume that an FFT procedure is implement-
ing the DFT definition with correct amplitude scaling for the rectangular window
(see Eq. (4.42)):

X(k) =~ 3 x(n)e I ¥ k=0,1,2,... . N1, 6.1)

where x(n),n=0,1,2,...,N—1, is an analyzed signal, X (k),k=0,1,2,...,N—1—
its amplitude FFT spectrum, and e~/ (27/N)kn__the n-th sample of k-th Fourier basis
function (reference oscillatory signals). When in Eq. (6.1) the following operations
are performed: (1) + scaling is removed, (2) positions of X (k) and x(n) are ex-
changed, (3) summation is performed over k for n =0,1...N — 1, and (4) sign in
the exponent is changed from “—" to “+,” Eq. (6.1) becomes a definition of the
inverse Fourier transform :

N—1
x(n)= 3 X()e/ T n=0,1,2,...,N—1. 6.2)
k=0

For this reason fast algorithms designed for direct FFT can also be used for inverse
FFT after slight modifications. After performing Eqgs. (6.1), (6.2) in a cascade, one
obtains exactly the same signal (with negligible computational error). It is ensured
by scaling the result by %, now performed in the first Eq. (6.1), however, typically
done in the second equation in software implementations. Choice of the proper spec-
trum scaling, not only by number %, will be further discussed by us in this chapter.

Direct or Inverse FFT FFT is implemented in different languages and libraries.
Very often names FFT and DFT are used in them interchangeably. Very often the
same function can be used for direct (forward) and inverse (backward) FFT which
differs only in sign of the exponent: —1 for direct and 1 for inverse. Typically, we are
calling one FFT function in this way X=£fft (x,direction) specifying whether
direct or inverse FFT is to be computed. In Matlab there are two separate func-
tions which are called as follows: X=£fft (x); x=ifft (X); .Performing FFT
and inverse FFT in cascade, one should return back the same signal. Try it in your
favorite language or in Matlab.

Choosing FFT Length From one side, since frequency discretization (step) in di-
rect DFT is equal to sampling frequency divided by number of analyzed samples
N, ie. Af = f;/N, we are interested in increasing the number of analyzed signal
samples N in order to have better spectrum resolution, i.e. smaller A f. From the
other side, well remembering the most known radix-2 decimation algorithms, we

118 6 FFT Applications: Tips and Tricks

feel that we are obligated to prefer FFT lengths N being powers of 2: 256, 512,
1024, 2048, ... What is the problem? If the signal sampling frequency is already
given and the number of signal samples has to be power of 2, it is very difficult to ob-
tain well-rounded frequency resolutions like 0.25, 0.5, 1, 2, 5, 10 Hz. Hmm ... But
we should remember that there are many different data-partition FFT approaches,
not only radix-2 one. Fast procedures from the most popular and frequently used
FFTW library (http://www.fftw.org/) are optimized for different signal lengths, for
example, ones being equal [15]:

N=2%3".5¢.79.11¢.13/, (6.3)

where numbers a,b,c,d are arbitrary none-negative integers and the sum e + f is
equal O either 1. It is wise to know this.

Describing Frequency Axis When FFT spectral coefficients are already calcu-
lated, typically the first biggest problem rely on connecting frequency values with
them. What frequency is this and this and ... ?!. Coefficients X (1),X2),X(3),...,
X(N) are associated with frequencies being multiplicities of the fundamental fre-
quency fy = fs/N, ie. to: 0, fo,2f0,3/0,-..,(N — 1) fo. For example, for f; =
1000 Hz and N = 100 we have: 0, 10,20, ...,990 Hz.

Meaning of Spectral Coefficients After euphoria of knowing what frequency
components are present in my signal, the next question arises: how much of each
of them we have? DFT/FFT is an orthogonal transformation. The signal is decom-
posed into summation of some elementary functions being references of certain fre-
quencies. If properly scaled, the FFT coefficients are amplitudes of these reference
signals. Properly? In most cases we should divide the FFT result by N, in Matlab
also, obtaining: X=£fft (x) /N; plot (fs/Nx(0:N-1),abs (X)) .

Using Only First Half of the FFT Spectrum In case of real-value signal it is a

good practice to display only first half of the calculated FFT spectrum since the

second half have complex-conjugated values, which are confusing for non- experi-

enced user. In Matlab: X=fft (x) /N; plot (fs/N%(0:N/2), abs(X(1:N/
2+1)). In such case, it has a sense also to change the FFT scaling: divide the spec-

trum not by N but by N/2: in Matlab: X=2+fft (x) /N; . With this modification

we will see only one peak for each sine/cosine being exactly equal to the signal

amplitude, not half of it.

FFT Normalization for Rectangular Window Typically, FFT procedures return
spectral coefficients X (k) defined by Eq. (6.1), therefore, with no normalization.
Alternatively, they divide X (k) by v/N, N either N/2. Performing a sequence of
direct and inverse FFT we should go back to the same signal. If not, we should
check the scaling implemented in our subroutines. In direct FFT there are three
possibilities. In the first case, the inner product of signal and reference frequency
function is not normalized: analyzing a cosine with amplitude equal to one we ob-
tain two spectral peaks with height N/2. In this way work functions from FFTW
package and math libraries of most languages, including Matlab using FFTW. In

http://www.fftw.org/

6.2 FFT Usage Principles 119

the second case, mathematically the most correct, the inner product result is di-
vided by \ﬂN) offering orthonormality of the DFT transform (inner product of
each basis function with itself is equal to 1). Such normalization is used in Math-
ematica language. When analyzing a unitary cosine we obtain two spectral peaks
with heights v/N /2. In the third normalization strategy, the FFT coefficient can
be divided by N and cosine has two spectral peaks equal to 1/2 (for positive and
negative frequency). This is mathematically correct and practically good result dur-
ing signal analysis. Necessity of negative frequencies existence results from com-
plexity of Fourier basis functions (Fourier harmonics). But during practical fre-
quency analysis, for engineers, these cosine representation as summation of 1/2
of the positive frequency harmonic and 1/2 of the negative frequency can be treated
as making things more difficult than they in reality are. Therefore in the fourth
method, division by N can be replaced by division by N/2 and our cosine has
in the spectrum two peaks with amplitudes 1—what is correct when we observe
only one half of the FFT spectrum connected with positive frequencies. In Matlab:
X=2+fft (x) /N; plot (fs/N«+(0:N/2),abs (X(1:N/2+1) .

FFT Normalization for Arbitrary Window In order to obtain amplitude signal
spectrum, i.e. correct amplitudes of its frequency components, the FFT result should
be scaled. In the simplest situation when no extra window function is used, only the
rectangular one, we should simply divide the spectrum by N and multiply it by 2
in order to obtain correct amplitude spectrum in positive frequency range. But, as
we remember from chapter on DtFT and DFT, one should multiply signal fragment
with deliberately chosen window function w(n) (and additionally use sufficiently
long signal fragment, i.e. high value of N) in order to ensure required amplitude
and frequency resolution of the spectrum. In such case the scaling of FFT amplitude
spectrum has to be changed to general formula:

Xampl=2*fft (x) /sum(w) ; .

Power Spectrum and Power Spectral Density The last question to be answered
before FFT usage is what kind of FFT spectrum we are interested in: amplitude,
power, power spectral density, or amplitude spectral density [15]. In different appli-
cations and for different signals different FFT spectra are preferred. First, we should
specify our expectations. Signal power and RMS value were defined in Table 2.2.
One can analytically or computationally verify that sine with amplitude A has a
power equal to %A2 and the RMS value equal to the square root of the power %A.

Basic equalities and Matlab commands for primary spectral analysis are given in
Table 6.1. We start from signal x(n) windowing and computation of its FFT, then
we take absolute value of the result and receive |X (k)|. Signal amplitude spectrum
(AS) X45(k) is obtained by multiplying calculated |X (k)| by 2 (taking into account
negative frequencies) and normalizing the result—division by summation of win-
dow w(n) coefficients (division by N is correct only for rectangular window). The
signal power spectrum Xpg(k), as described above, is simply squared Xus(k) divided
by 2.

Density spectra are calculated in similar way. The amplitude spectral density (ASD)
Xasp(k) is only differently normalized than X45(k), by square root of summation

W W J oUW N R

B R R PR
=W NN R o

120 6 FFT Applications: Tips and Tricks

Table 6.1: Mathematical definition and computation in Matlab of amplitude
and power spectrum (AS, PS) as well as amplitude and power spectral den-
sity (ASD, PSD) for signal x(n) multiplied by window function w(n),n =
0,1,2,...,N —1 . Values of spectral coefficients computed in Matlab are valid

for k=1,2,3,...,N/2+1 and they correspond to frequencies kfs/N,k =
N
0,1,2,..., 5
Quantity Math definition, k =0... g Matlab code
N-1 2m
DFT Eq. (6.1), IDFTI X(k) =3 x(n)w(n)e ¥ X_fFt (x.+w); Xa =
n=0 abs (X) ;

N-1
Window Sum S1= 3 wn) Sl=sum(w) ;

n=0

—1

Window Energy Sy=3Y w(n S2=sum(w."2) ;

n—
Ampl Spectrum (AS) Xas(k) =2 ‘ngﬂ %) Xas=2#Xa / S1;

2
Power Spectrum (PS) Xps(k) = XAé(k) (V?) Xps=Xas. 2 / 2;
Ampl Spectral Density (ASD) Xasp(k) =2 lxjgg)zl (\)}%) Xasd=2xXa /
sgrt (£sxS2) ;
2

Power Spectral Density (PSD) Xpsp (k) = XASé’(k> <¥{—2) Xpsd=Xasd."2 / 2;;

not of window coefficients but their squared values, the sum is additionally multi-
plied by the sampling frequency f;. The power spectral density (PSD) Xpgp (k) is a
squared X45p (k) divided by 2, as before.

A complete all-in-one program for computation of all signal spectra defined in
Table 6.1 is presented in Listing 6.1. Signal components have amplitudes 1 and
/2. Calculated spectra are shown in Fig. 6.1. The AS spectrum shows these values.
The PS spectrum, as expected, gives values % and 1. Correct are also plots of ASD
and PSD.

Listing 6.1: Computation of different FFT spectra

% lab06_ex fft usage.m
clear all; close all;

% Signal

N=5000; £5=10000; x1sb=0.001; % N=5000=(273) (574)=8+625 = fast alg.
dt=1/fs; t=dtx (0:N-1);

X = 14sin(24pix10004t) + Sqrt(2)ssin(2+pis3501.12344t) ;

% Noise - altemative: SNR=80(?); x = awgn(x,SNR, ‘measured) ;
x = floor(x/x1sb + 0.5) xxlsb; noise level = xlsb/sqrt(6xfs),

% Windowing
wl = rectwin(N)’ ; w2 = harm(N)’ ; w3 = kaiser(N,12)’ ; w4 = flattopwin()’ ;
w = w4;

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

6.2 FFT Usage Principles 121
X =X .%x W

% ctral estimation

X = fft(x); Xa = abs(X) ; % FFT without scaling no division (by sgrt(N),N)
XN = X/N; % FFT with typical division by N (rectangular wind)
Xas = 2xXa/sun(w) ; % Anpl spectrum (AS) - correct for any window

Xps = Xas."2/2; % Power spectrum (PS) - correct for any window
Xasd = 2#Xa/sqrt (Esxsum(w.*2)) ; % Anplitude spectral density (ASD) - as above

Xpsd = Xasd."2/2; % Power spectral density (PSD) - as above

% PS = AS'2/2; ASD=AS/sqrt (ENBW) ; PSD = ASD'2/2 = PS/ENBW = AS"2 /ENBW;
S1 = sum(w) ; S2 = sum(w."2); ENBW = £5+S2/S1"2, NENBW = NxS2/31"2,

err asd = max(abs(XasdXas/sqrt (ENBW))),

err psd = max((@bs Xpsd) -Xas. “2/ENBW)), pause

% Figures

k = 1:N/2+1; % indexes of nonnegative frequencies

f0 = fg/N, £ = £0 » (k-1); % nonenegative frequencies (1st spectrum half)

figure; % change stem() to semilogy()

subplot(221); stem(f (k) ,Xas(k)); xlabel(’f(Hz)’); ylabel(’ [V]’); title('AS")
subplot(222) ; stem(f (k) ,Xasd(k)) ; xlabel('fHz)’); ylabel(’ [V/\surdHz]'); title('ASD');
subplot(223); stem(f (k) ,Xps(k)); xlabel(’f(Hz)’); ylabel(’ [V'2]"); title('PS’);
subplot(224) ; stem(f (k) ,Xpsd(k)) ; xlabel(’fHz)’); ylabel(’ [V'2/Hz]’); title('PSD');
pause

Exercise 6.1 (Standard FFT Usage for Different Signal Spectra Calcula-
tion). Carefully analyze code of the program 6.1. Read all comments. Run the
program. You should see plots presented in Fig. 6.1. In the beginning make
an extra copy of the last figure and replace in it the function stem () with the
function semilogy () (only this). Run the program. Notice low level of noise.
Next modify amplitudes and frequencies of two signal components. Calculate
expected theoretical values (using Table 6.1) and check figure correctness. In-
crease value of x1sb—voltage corresponding to the low significant bit of the
AD converter—and make this way level of noise higher. Observe spectra. In-
crease the x1sb once more, check result and return to the initial x1sb setting.
Observe that till now you were using the Matlab flattopwin () function
as a window. It has very wide spectral main-lobe and relatively low level of
spectral side-lobes letting you, both, correct measurement of signal component
amplitudes (reduction of spectral leakage effect), even in the case when they
differ a lot (high dynamic range). Change the window to rectangular and Hann.
Observe spectral peaks at present. Are their heights correct or not? Make one
component being significantly weaker than the other, e.g. decrease its amplitude
1000 times. Observe spectra.

122 6 FFT Applications: Tips and Tricks

Amplitude spectrum Amplitude spectral density
A4 F
8 0.4 %
1 —
N
— I
>, >
-~
0.5 5 2.02 §
0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
f (Hz) f (Hz)
Power spectrum Power spectral density
N4 N4
08 0.1
0.6 N
. I
NZ, N\
0.4 2.0.05
2
0 8 o)
0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
f (Hz) f (Hz)

Fig. 6.1: Different signal spectra calculated in program 6.1, from (up-left) to (down-
right): amplitude spectrum (AS), power spectrum (PS), amplitude spectral density
(ASD), and power spectral density (PSD). Linear scale

6.3 Fast Frequency Resolution Improvement

We can very easily increase frequency resolution (zoom) of the DFT spectrum as a
whole. How to do it? In discrete-time Fourier transform we analyze N signal sam-
ples assuming zeros before and after them. So the result will be the same when we
perform FFT procedure on vector of N signal samples with some (K — 1)N zeros
appended at the end. This way we increase the signal length artificially and the FFT
function sees the K - N samples and build the DFT matrix with dimensions KN x KN
instead of N x N. So we have now KN frequency reference functions spanning the
range [0, f;) which result in frequency resolution f;/(KN) instead of f;/N, i.e. K
times higher (with frequency step K times smaller). The spectral window, if neces-
sary, should have the length N and do weighting of original signal samples only. The
program 6.2 is demonstrating the described DFT zooming trick.Plots presented in

6.3 Fast Frequency Resolution Improvement 123

o Amplitude spectrum Amplitude spectral density
10 i i [1
N
— I
= 2
>
—10°
10°
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
f (Hz) f (Hz)
Power spectrum Power spectral density

10®

[V3/Hz]

10710

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
f (Hz) f (Hz)

Fig. 6.2: Different signal spectra calculated in program 6.1, from (up-left) to (down-
right): amplitude spectrum (AS), power spectrum (PS), amplitude spectral density
(ASD), and power spectral density (PSD). Logarithmic scale

Fig. 6.2 have been generated with its use. In order to make things simpler the FFT
is computed for a pure sine signals with two different frequencies: 20 Hz (left) and
22 Hz (right). Frequency discretization in original FFT is equal to f; /N = 5Hz while
with K = 25 times signal enlargement by zero appending—25 times less, i.e. 0.2Hz.
Improvement in spectrum shape is tremendous: theoretical spectrum of rectangu-
lar window is clearly visible (blue small dots). Without zero appending the spectral
result can look very different—compare FFT red dots in both figures.

It is important to remember that in the FFT Matlab function additional zeros
are automatically appended at the signal end on request, i.e. when we specify FFT
length M bigger then original signal length N. In such case, M — N zeros are ap-
pended. In Matlab for rectangular window we should write

X=fft (x,M) /N); plot(fs/Mx(0:M-1),abs(X)) .

It is important to observe that all spectra calculated in the previous section can
be zoomed since each of them represent a scaled version of the amplitude spectrum
which can be zoomed, as shown in this section (Fig. 6.3).

W W T oUW N R

e s
w N B O

124 6 FFT Applications: Tips and Tricks

Zoomed DFT via FFT (20 Hz) 0.6 Zoomed DFT via FFT (22 Hz)

Y : : Al

Fig. 6.3: DFT (red circles) and DtFT (blue dots) spectra of a signal having only one
sinusoid: 20 Hz left and 22 Hz right. Higher frequency resolution DtFT spectrum is
obtained after increasing signal length by appending zeros at the end and calculating
longer FFT

Listing 6.2: FFT spectrum with denser frequency sampling

% lab06_ex dft zoom.m
clear all; close all;

N=20; k=25; £s=100; % FFT length resolution increase sanpling frequency
dt=1/fs; t=dtx(0:N-1); % sanpling period, sanpling time morents

X = sin(2xpix22+t) ; % signal

w = rectwin(N)’ ; % window: rectwin(),harmning() ,blackman(),flattopwin(), . .
X = X.H*W; % signal windowing

X = £ft(x) /sumWw) ; % FFT without appending zeros

Xz = fft([x,zeros(l, (K-1)+«N)])/sum(w); % with zeros; or X=fft (x,KxN) /sum(w)

f = £5/N % (0:N-1); fz = £/ (Kl)x (0:K«N-1); % frequency axis

figure; plot(f,abs(X), ro’,fz,abs(Xz), 'b.’, 'MarkerFaceColor’ , 'xr’); xlabel('f (Hz)');
title(’'Zoomed DFT via FFT'); grid; pause

\S

Exercise 6.2 (Zoomed FFT by Appending Extra Zeros). Run the pro-
gram 6.2. Choose different windows. Change N to 50 and 100. Add logarith-
mic scaling of spectral coefficients. Show only coefficients for non-negative
frequencies. Multiply spectrum by 2 in this case. Add calculation of power
spectral density—see Table 6.1.

6.4 FFT of Noisy Signals: Welch Power Spectral Density

In Sect. 6.2 general FFT application rules were presented. In part, computation of
signal power spectrum and its power spectral density were described. But presented

6.4 FFT of Noisy Signals: Welch Power Spectral Density 125

solutions were more applied than statistically correct. Only one FFT procedure was
executed and all resulting amplitude and power spectra were calculated. Such ap-
proach is good for deterministic signals but not for noisy ones. In case of noise,
individual spectra differ a lot, and several of them have to be computed and aver-
aged in order to obtain reliable estimate of noise power or power spectral density.
This section is devoted to this problem: how to apply FFT in case of noisy signals?

In high math theory, the signal power spectral density is defined as Fourier trans-
form of the signal auto-correlation function. The cross-correlation function between
two signals with finite energy is defined by formula:

e

Ry(7) = / X0y (i =) dr 6.4)

—oo

and their cross power spectral density is defined as Fourier transform of the first:
Py(f) = / Ryy(T)e " Tdr. 6.5)

After setting y(n) = x(n), the auto-correlation function of the signal x(n) is obtained
and its power spectral density. Considering two signals we are making discussion
deliberately a little bit deeper. After time discretization the Eq. (6.5) takes the form:

Py (f/fs) = Z Ry —127r 1 fs)m (6.6)

Let us assume that we have only one signal x(n) with N samples. We can first
calculate estimates of its auto-correlation function for —N+1<m <N —1:

—1—
lN |m]

Ridm)=5 Z) (n—m), ©7)
) 1 N—1—|m|
o (m) = | x(n)x*(n—m), (6.8)
- I’I’l| n=0
and then estimate of its PSD:
v N-1 _
W)=Y Rulm)e 2rUlmm (6.9)
m=—(N—1)

(1)

Estimator Ry, (m) is biased (has an offset in respect to the true, correct value),
while the estimator R (m) is un-biased. However R (m) has bigger variance than
I?}(ol()(), i.e. its scatter around the expected value (mean) is bigger. In turn, the PSD
estimator P’ (f/fs) is not consistent since its variance does not tend to zero with
the increase of signal length N to infinity.

126 6 FFT Applications: Tips and Tricks

There are different methods coping with this drawback.

In Blackman—-Tukey method the Fourier transform is performed upon the win-
dowed auto-correlation function estimator, i.e. Ry, (m) multiplied by chosen window
function w(n) (Hamming, Hann, or some other):

N—1
P)ﬁ,’ﬁ (f/fs) = 2 w(m) R, (m) e~ 2n(f/f)m. (6.10)
m=—(N—1)

It is interesting to mark that this method, directly implementing the PSD definition,
was in the past available in Matlab but at present it is not. Since it is computation-
ally attractive and very educational we will discuss it later after introducing fast

computation of convolution/correlation by FFT.
In Welch method, nowadays the most frequently used approach for PSD esti-
mation, relation between the PSD and the so-called periodogram 1/(2N + 1)|Xn

(f/fs)|?, the squared DtFT, is exploited:
’ L (e (f
] = e ()% ()|

6.11)
Please note that we were calculated periodograms, squared FFT spectra, in Sect. 6.2.
In Welch approach many windowed periodograms (windowed, squared FFTs) are
calculated and averaged. Input sequence of N signal samples x(n) is divided into L
fragments x() (n) with M samples, which overlay or not in dependence on the offset
(step) D:

N .2nnf

Y, x(n)e ! E

n=—N

f)
PolL)=timE|——
”(fs N | 2N 1

xD(n)=x(n+1D), 0<I<L—1, 0<n<M-—1. 6.12)

Next each data fragment is multiplied with window function w(n) (e.g. Hamming),
the DtFT is computed, the result is squared and divided by sum of squared window
coefficients:

5(1) LIS o 2 ’ S
BN =52 D myw(n)e=22IBm =3 w(n) (6.13)
W | n=0 n=0

The final PSD estimator is a mean value of calculated modified periodograms:

BL(f) =~ 2 BY(). (6.14)

When D = M consecutive signal fragments do not overlay (Bartlett method), in turn
for D = M /2 they overlay in fifty percents.

How to implement the Welch method? It is not difficult, especially its Bartlett
version in Matlab. A code example is presented in Listing 6.3—being a continua-
tion of the program 6.1. The signal amplitude and power spectral densities are calcu-

W O oUW N R

[S I S
w N = O

14
15
16
17
18
19
20
21
22

6.4 FFT of Noisy Signals: Welch Power Spectral Density 127

lated. Since in Matlab each operation (function) which is performed upon a matrix
is executed over matrix columns, we can put consecutive (one-by-one) signal frag-
ments into signal matrix X columns (line 7) using function reshape (), create a
window matrix W having repeated window function w(n) in each column using func-
tion repmat () (line 8), then multiply both matrices X. W (line 9), then perform
f£t () on the matrices product (line 9) and, finally, square the result, multiply it by
2, normalize by doubled energy of window coefficients multiplied by sampling fre-
quency f;, and calculate mean value of all columns (spectra). Uff... Last operation
is performed via matrix transposition (() . ’), calling function sum () and division
by M. This way the signal amplitude spectral density is obtained. Next, it is squared
and divided by 2 giving the signal power spectral density.

In Fig. 6.4 there are presented two calculated mean FFT spectra of signal ampli-
tude and power. The Welch spectra averaging concept is applied. We can see with
ease the difference between these mean spectra and spectra presented in Fig. 6.2—
the noise floor is significantly smoother and on the expected level.

Listing 6.3: Calculation of noise-robust amplitude and power spectra using FFT

~
% lab06_ex welch.m contimuation of lab06 ex fft usage.m
M =100; NM=N+M; n = 0 : NM-1; t=dtx (0:NM-1);
X = 1#xsin(2401*10004t) + sqrt(2)xsin(2#0ix3501.12344t); % two sines
%% = 14sin(2#pix (10004t + 0.5x504t.72)); % LFM signal: increase of 50 Hz/s
x = floor(x/x1sb + 0.5)xxlsb; % noise addition
X = reshape(x,N,M) ; % matrix with signal fragments in M colums
W=repmat(w, 1, M); % matrix with the same window in M colums
Xa = abs(fft(X.sW)); % FFT of each colum of X.#W, then abs()
Xasd2 = 2#Xa/sqrt (fsssum(w.”2)); % Amplitude Spectral Density (ASD)
Xpsd2 = Xasd2.”2/2; % Power Spectral Density (PSD)
Xasd2 = sumasd2. ') /M; Xpsd2 = sumXpsd2. ') /M; % cols (spectra) --> rows, mean of

Trows

% Figures
% Mean amplitude spectrum and mean power spectrum (for many signal fragments)
figure
subplot(121) ; semilogy(f (k),Xasd(k), £ (k) ,Xasd2(k),’'q’);
xlabel('f (Hz)’); ylabel(’ [V/\surdHz]]’); title('Anmplitude SD');
subplot(122) ; semilogy(f (k) Xpsd(k) , £ (k) Xpsd2 (k) , ‘g’) ;
xlabel('f (Hz)'); ylabel(’ [V'2/Hz]]"); title(’Power SD');
pause

S

Exercise 6.3 (Welch PSD Calculation and Verification). Carefully analyze
code of the program 6.3. At present signal amplitude and power spectral den-
sities are calculated, i.e. ASD and PSD, respectively. Add calculation of av-
erage amplitude and power signal spectra, AS and PS. Become familiar with
pwelch () or periodogram () Matlab functions. Use them, set their pa-
rameter values and try to obtain results that are similar to received in the pro-
gram 6.3.

128 6 FFT Applications: Tips and Tricks

Amplitude SD Power SD
5 5
jun)
s <
21075 ek T " - 210710 ke PERTT-TATTATE | PAHY s
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
f (Hz) f (Hz)

Fig. 6.4: Amplitude (left) and power (right) spectral densities after averaging of 100
FFT spectra (narrow blue solid curve). Noise level becomes significantly smoother
after mean DFT spectrum calculation in comparison to the single DFT spectrum
computing (light green dashed line)

6.5 FFT of Time-Varying Signals

6.5.1 Short-Time Fourier Transform

An analyzed signal can vary in time. For example, sine signal can have slowly
changing amplitude, frequency, or phase, i.e. it can be modulated in amplitude,
frequency, or phase, like telecommunication carriers. Our speech signal has per-
manently changing frequency content. In this case, only one spectrum calculated
for the whole signal changing in time can be misleading! It offers mean values of
signal components parameters inside the observation window—we cannot see in it
trajectories of changes. In order to track frequency changes of the signal in time we
should use the so-called short-time Fourier transform:

1. cut the signal into many, shorter overlapping fragments using any window,

2. calculate FFT spectrum of each fragment and collect all of them into one matrix,

3. display matrix values in 3D (mesh () , surf ()) or as color/gray-scale image
(imagesc () (gray-levels),

4. observe how the signal spectrum is changing in time—observe frequency and
amplitude modulation curves of individual signal components.

The applied window should not be too long and too short since:

e for too long window more average than instantaneous spectrum is obtained,
with smearing in time axis,

o for too short window the obtained instantaneous spectrum has too low-frequency
resolution and visual smearing in frequency axis is observed.

In program 6.4 the above-described procedure is implemented in Matlab in simpli-
fied form: the signal is cut into non-overlapping fragments. In program 6.3, being

6.5 FFT of Time-Varying Signals 129

a continuation of the programs 6.1, the signal was cut also into fragments, many
spectra were computed and then they were averaged. We aimed at noise suppres-
sion then. At present all calculated spectra are important for us and we are not
averaging them: we deliberately observe in them signal change in frequency do-
main. Figure 6.5 presents a STFT spectrum: a sequence of many amplitude spectra
computed for shorter signal fragments and stored as a 2D time—frequency matrix.
The STFT spectrum was computed for cosine signal changing its frequency linearly
from 1000 Hz to 3500 Hz during 50 s of signal observation. In left figure the spec-
trum is plotted as a 3D mesh while in right one as color image. The signal frequency
change is very well visible in both plots. It is not the case when only one spectrum of
the whole signal is computed, which demonstrates Fig. 6.6. In the left plot one am-
plitude spectrum, calculated for the whole very long signal, is shown, while in the
right one one mean amplitude spectrum of many consecutive signal fragments. In
both cases the spectrum is wide and tells us that signal consists of many frequencies
what is misleading. In fact the signal has only one sinusoidal component changing
its frequency in time (Fig. 6.5).

4000

frequency (Hz)

. 40
2000 20

freq (Hz) 0 time (s) 0 100 20 30 40 50
time (s)

Fig. 6.5: Short-time Fourier transform spectrum |X (7, f)| of cosine signal changing
its frequency linearly from 1000 Hz to 3500 Hz during 50 s of signal observation,
calculated using Hann window. (left) 3D mesh plot, (right) visualized as color image

Amplitude spectrum Mean amplitude spectrum

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
f (Hz) f (Hz)

Fig. 6.6: Amplitude spectra calculated for cosine signal changing its frequency lin-
early from 1000 Hz to 3500 Hz during 50 s of signal observation, calculated using
Hann window. (left) amplitude spectrum calculated for the whole long signal, (right)
mean amplitude spectrum of many consecutive signal fragments

W O J 0 U W N

W WD NNNDNNDNNDNDRRRRRRR B B2
H O 0w 0 3 0 Ul & W N KFEF O W WO Ul & W NN K O

130 6 FFT Applications: Tips and Tricks

Listing 6.4: STFT calculation: sequence of short FFT amplitude spectra—
continuation of Listing 6.4

oe

lab06 ex stft.m continuation of 1lab06 ex welch.m

o\°

X = reshape(x,N,M) ; % put signal fragments into M colums of matrix X

W=repmat(w, 1, M); % put the same window w into M colums of matrix W
Xa = abs(fft(X.-W)); % perform FFT of each colum of X.+W, then abs()
figure

Xas = 2xXa(1:N/2+1,1:M) /sun(w) ; % absolute values, positive frequencies scaling
t =dtx (/2 : N : N/2+(M-1)+N) ;

mesh(t, £,204logl0Xas)) ; view(-40,70); axis tight; % ASmatrix as a 3D mesh
cl=colorbar(’location’ , ‘EastOutside’) ; set(get(cb,’Ylabel’),’String’,’V (dB)’);
xlabel (‘time (s)’); ylabel(’'frequency (Hz)'); pause

figure

imagesc(t, £,20+logl0(Xas)) ; % AS matrix as an image

clo=colorbar(’location’ , ‘EastOutside’) ; set(get(chb,’Ylabel’), 'String’,’V (dB)’);
xlabel (‘time (s)’); ylabel(’frequency (Hz)’); pause

% For camparison - one mean spectrum of many short signal fragrents

Xas = 2#Xa/sum(w) ; % many amplitude spectra (AS)
Xasm = sum(Xas') /M; % mean AS, cols --> rows, sum of rows
figure

subplot(111); semilogy(£ (k) ,Xasm(k),’b’); xlabel('f (Hz)’); title('Mean AS');
pause

% For camparison - one spectrum of very long signal fragment

w = hann(NM)’ ; % very long window

Xasl = 2xabs(fft (x. #w)) /sum(w) ; % one AS of the whole long signal

k = 1:1NW/2+1; f=Fs/NMk (0:NM1); % frequencies of AS coefficients

figure

subplot(111) ; semilogy(£f (k) ,Xasl(k), 'b’); xlabel('f (Hz)’); title(’One long AS');

Mathematically, for discrete-time signals, the short-time Fourier transform is de-
fined as:

=

X(n.f) = ﬁ S (sl)] M 0<F<fi/2 (615)

A window w(m) has non-zeros values only for m = 0,1,2,...,N — 1. The value n
denotes the window shift, i.e. after it the shifted window w(m — n) has non-zero val-
ues form=n,n+1,n+2,...,m+ (N — 1) and signal samples having these indexes
are weighted by the window and transformed with FFT.

6.5 FFT of Time-Varying Signals 131

25
E 2 =
: =
[
. / ;/
1 /

10 15 20 10 15 20 10 15 20
ts] t[s] ts]

fHZ

Fig. 6.7: Window length influence upon STFT time—frequency resolution: (left) win-
dow too short, (center) optimal window length, (right) window too long. Sum of two
LFM signals with Gaussian time-envelopes is analyzed [27]

The FFT and window length N should be very carefully chosen. Too short or
too long window causes unwanted STFT spectrum smearing in direction of the fre-
quency axis (too short) or the time axis (too long), which is shown in Fig. 6.7.

Exercise 6.4 (STFT Calculation and Verification). Carefully analyze code of
Listing 6.4 which is continuation of the program 6.3. At present a signal is
cut into non-overlapped fragments and only signal amplitude spectrum is cal-
culated. Become familiar with spectrogram () Matlab function. Use this
function, set its parameter values, and try to get plots which are similar to ones
obtained in the program 6.4. Next, try to add signal fragments overlapping—
perform FFT not in the matrix form but in the loop, one-by-one over signal frag-
ments. Change window length and its overlap. Observe changes in the STFT
spectrum. Read any speech signal, then calculate and display its STFT spec-
trum.

6.5.2 Wigner-Ville Time—Frequency Signal Representation

The short-time Fourier transform is only one example of the so-called time—frequency
distributions (TFD), intend to track the signal spectrum change. Most of them be-
long to the Cohen’s TFD family [9]. A special role in it plays the Wigner—Ville
TFD, which is a perfect tool for analysis of mono-component signals with linear
frequency modulation. It was proposed by Wigner [25] for real-value signals, and
extended to complex-value signals by Ville. Such signals are widely used in radar
signal processing. The continuous-time Wigner—Ville TFD (WVD) is defined as a
continuous-time Fourier transform, performed over variable 7, upon a WV signal
kernel:

132 6 FFT Applications: Tips and Tricks

oo

X(1,0) = / xx(t,7)e0%dT, xx(r,T) = x (z + %) X (z - %) . (6.16)
and repeated for many values of 7. For a complex-value signal with linear frequency
modulation, the WV kernel is equal to:

x(t) = el(@i+0.501%) = xx(t,7) = ell@tanT (6.17)

and the WVD magnitude has maximum at instantaneous angular signal frequency
(@ + ar), regardless the ¢ value. For this reason, the repeated WVD tracks perfectly
the instantaneous signal frequency. In discrete-time implementation the WVD is
computed as follows:

1. calculation of a complex-value, analytic signal corresponding to a real value,
analyzed signal, using the Hilbert transform (discussed in the chapter on special
filters; in Matlab: xa=hilbert (x) ;

2. cutting the signal into fragments N-samples long, in Matlab:
xf=xa(n:n+(N-1)) ;

3. calculation of the WV kernel of each signal fragment, in Matlab:
xx=xf.xconj (xf(end:-1:1));

4. performing FFT upon each WV kernel, in Matlab: X=fft (xx) /N;

5. collecting all FFT spectra into a matrix and displaying absolute values of matrix
elements.

Mono-component signals different than the LFM ones, and multi-components
signals, have the so-called cross-terms in the WVD spectrum. There are many meth-
ods for their suppression. If you are interested how it is done, take any book on
time—frequency signal analysis.

Exercise 6.5 (Wigner-Ville Distribution of Signals Modulated in Fre-
quency). Modify program 1ab06 ex wvd.m from the book repository. Gen-
erate a signal with linear frequency modulation (LFM) and calculate its WVD.
Check whether the frequency change is properly tracked. Propose correct scal-
ing of the frequency axis—due to signal multiplication the observed frequency
is two times higher. Repeat experiment for different speed of frequency change,
starting from small values. Apply different windows to the WV kernel. Use
different values of N. Compare obtained WVD spectra with STFT spectra.
Now, calculate WVD for a signal with sinusoidal FM, i.e. SFM, and for a two-
component signal: LFM plus SFM. Finally, return to the LMF signal and omit
calculation of the analytic signal version. What has changed? Why?

6.6 Fast Convolution and Correlation Based on FFT 133

6.6 Fast Convolution and Correlation Based on FFT

One of the most important laws in analog signal theory tells: “Considering
time and frequency: convolution in one domain corresponds to multiplication
in the other domain and vice versa.” For example, convolution of two signals
in time results in multiplication of their frequency spectra while multiplication
of two signals causes convolution of their spectra. These relations hold also
for discrete-time signals. Therefore, instead of convoluting two long signals in
time domain, for example, input samples and weights of very long FIR digital
filter, it is better to calculate their DFT spectra using fast FFT algorithms, mul-
tiply them and compute the inverse FFT. The result will be exactly the same but
computational effort—significantly smaller. Such signal convoluting by their
spectra multiplication is called fast convolution and it is widely used for fast
implementation of FIR digital signal filtering (see Chap. 9). Since computa-
tionally correlation of two signals is very similar to convolution of two signals
(with the only difference that the second signal is not time-reversed but com-
plex conjugated), fast convolutions algorithms and programs can be with ease
apply to efficient correlation computing. In this section we learn how all of this
it is done, of course thanks to our sweet FFT.

6.6.1 Linear Convolution

Linear convolution of two signals x(n) and h(n), i.e. two sequences of samples, is
defined as:

oo

y(n)= Y x(k)h(n—k). (6.18)
k= —oo
Graphical illustration of signal linear convolution is presented in left part of
Fig. 6.8. Two signals are convoluted, x(k) = [2,1,1,2], having N = 4 samples, and
h(k) =[1,2,3], consisting of M = 3 samples. Order of operations is as follows:

1. first, the second signal is reversed in time: h(k) — h(—k)—third row from the
top,

2. then, many times shifted right by 1 sample: h(—k) — k(1 —k),h(1 —k) — h(2—
k),h(2—k) — h(3 —k),...—the following rows are obtained,

3. after every shift, the second signal samples are multiplied with corresponding
samples of the first signal x(k)[2,1,1,2] (i.e. samples being in the same position)
in the sample-by-sample manner: x(k)h(n — k) for every value of k, e.g. forn =2
and shifted signal A[2 — k] we have

X(2)h0)=1-1=1, x(1)h(1)=1-2=2, x(0)h(2)=2-3=6, (6.19)

134 6 FFT Applications: Tips and Tricks

a) Linear convolution b) Circular convolution
x{k] AEE x(k] 2[1]1]2]o0 o
hlk] 1)23] i hlk] 1[2]3]o0 0 0
hl-k] [3]2]1 i hl-k) 1/o 0 o[3]2
hl1-k] 2 i h[1-k] 2[1]0 o 03]
h[2-k] a2k h[2-k] 3|2/1|0 0 0}
hi3-k] HEEIEIE! h[3-k] i0[3]2[1]0 o
hl4—k] 3|21 hla—k) io of3[2|1]0}
h[5—k] 3[2]1] hi5—k] 0o0o0[3[2]1
yln] 2 .Hﬂ vin] ﬂﬂﬂ.. l
n —3—210123455n 0123 45 n

Fig. 6.8: Linear (left) and circular modulo-6 (right) convolution of two sequences
of samples: x(k) = [2,1,1,2],N =4, and h(k) = [1,2,3],M = 3. In both cases the
convolution result is the same, has K = N+ M — 1 = 6 samples, and is equal to
y(n) =1[2,5,9,7,7,6]. For clarity of presentation, we are neglecting signal synchro-
nization problem

4. finally, all products are summed (accumulated) giving a convolution result y(n)
for each shift n of (k). This way one obtains N +M — 1 samples of y(n). For
example, for n = 2 we have (see Fig. 6.8):

x(2)h(0) +x(1)A(1) +x(0)h(2) = 1+2+6 =9. (6.20)

Since linear convolution plays a very important role in digital signal filtering, its
understanding is crucial in our course. For this reason, in Fig. 6.9 one additional,
very simple graphical explanation is presented in which two vectors x(k) and h(k),
consisting of three 1s, are convolved. The second is reversed, shifted forward, mul-
tiplied by the first, and mult results are accumulated. Only first three output samples
¥(0), ¥(1), and y(3) are computed. They represent sum of one, two, and three 1s. It
is a last chance to catch a train to London. The train’s going.

6.6.2 Circular Convolution

Circular convolution modulo-K of two signals, x(k) having N samples and A (k) with
M samples (N > M), is defined as:

2 x(k)h ((n—k)modK), (6.21)

6.6 Fast Convolution and Correlation Based on FFT 135

x(k) x(k) x(k)
1

4-3-2-101 23456 4 -3-2-101 23456 .10 1 23 456
h(-k) h(1-k) h(2-k)
1 1
AO—O—LL{O—O—O—O—H—} AO—O—O—L}—LO—O—O—O—O—} 5
4 -3-2-101 23 456 4 -3-2-101 23 456 .10 1 23 456

432101 23456 432101 23456

Fig. 6.9: Linear convolution of two vectors x = [1,1,1] and h = [1,1,1]. Only three
first output samples y(0), y(1), and y(3) are computed [27]

where h((n—k) mod K) denotes circular modulo-K shift n position right of the signal
h(—k). Let us assume that K = N+ M — 1 and both signals x(k) and h(k) are initially
enlarged with padding zeros, appended at their ends, to the length N+ M — 1. Then
they are convoluted in circular manner: the second signal is reversed in time (in
circular modulo-K manner), shifted one sample right (also in modulo-K fashion),
multiplied by the first signal, then all products are accumulated. This operation and
its result are presented in Fig. 6.8 (right side). As we see, exactly the same values
are obtained as for the linear convolution. If N — M zeros are appended only to the
second signal and the modulo-N convolution is performed, the first M — 1 samples
of the signal y(n) are wrong. But the remaining ones are correct.

Exercise 6.6 (Halo! My name Is Linear Convolution: Linear Not Circu-
lar!). Check manually calculation of linear and circular convolution of two sig-
nals, presented graphically in Fig. 6.8. Correct results are given in the bottom
of the figure. Linear and circular convolutions are not well distinguished by stu-
dents. This is like with my person: I am from Poland but recognized as coming
from Holland.

6.6.3 Fast Linear Convolution

The DtFT of signal y(n), result of convoluting two signals x(n) and h(n), is equal to
(using denotation: m = n —k):

136 6 FFT Applications: Tips and Tricks

=3 (i x(k)h(n—k>> I =S 2(k)e I h(m)e I =
k

k=—co —=—o00 m—=—oo

= X(Q)H(Q), (6.22)

Nn=—oo

i.e. to multiplication of DtFT spectra of convoluted signals x(k) and ki (k). Therefore,
instead of using Eq. (6.18), one can calculate vector of signal samples y(n) from
Eq. (6.22), performing inverse DtFT upon product X (Q)Y ():

y(n) = IDTFT(Y()) = IDTFT (DFT (x(r)) . * DFT (h(n))) . (6.23)

When DtFT and inverse DtFT are replaced by fast FFT and inverse FFT, the so-
called fast convolution result:

y(n) = IFFT (X(k)H(k)) = IFFT (FFT (x(n)). * FFT (h(n))) (6.24)

where .x denotes, as in Matlab, multiplication of corresponding elements of two
equal-length vectors, sample-by-sample. Fast convolution is beneficial for long sig-
nals: time-consuming signal convolving in time domain is replaced by three FFTs,
two direct and one inverse. However the shorter signal should be appended with
padding zeros at its end to the length of the longer signal. Or both signals have to be
enlarged with zeros to the same length but bigger. What signal length is optimal?

Block of samples y(n) calculated in Eq. (6.24) using DFTs, represents result not
of the linear convolution of signals x(k) and h(k) but of the circular one. When
only N — M zeros are appended to the second signal, the first M — 1 samples of the
convolution result are wrong, because after initial time-reversion of the signal h(k)
its M — 1 samples hits to last samples of the signal x(k) and are multiplied with them.
In order to avoid this effect, both signal have to be appended with zeros minimum
to the length N + M — 1, as explained above in Fig. 6.8. We will test in detail the
described algorithm of fast convolution of two signals in Exercise 6.7. This way
an FIR digital signal filtering, addressed in Chap. 9, can be implemented in a fast
way. It is possible because such filtering has a form of convolution of signal samples
x(n) with specially designed filter weights /(n). This operation, calculation of local
weighted signal average, can cause removal of some frequencies from the processed
signal.

6.6.4 Fast Overlap-Add and Overlap—Save Sectioned Convolution

In Eq. (6.24) FFTs are performed upon blocks of signal samples. There are two
drawbacks of the data-block signal processing. From one side, it can cause a long
time delay of out samples in respect to input samples. From the second side, in real-
time signal filtering (convolving), when signal samples are permanently coming in,

6.6 Fast Convolution and Correlation Based on FFT 137

we would wait forever for end of data stream. Therefore cutting signal into smaller
fragments and implementation of fast convolution in real-time over smaller vectors,
data pieces, is necessary. In this section two fast sectioned convolution methods
will be described, in which fast FFT-based convolution concept is applied, but for
separate, consecutive signal fragments, not to the whole signal.

Fast Overlap-Add Method In this method zeros are appended to all, non-
overlapping input signal sections, changing block-based circular convolution to the
linear one. Due to this, the output signal sections are longer, they overlap and have
to be added. The computational procedure is graphically illustrated in Fig. 6.10, im-
plemented in program 6.5 and tested in Exercise 6.7. Let us assume that a shorter
signal h(k) has M = 7 samples. A longer signal x(n), with L = 46 samples, is cut
into non-overlapped fragments having N = 10 samples, its last 6 samples are ne-
glected. In the beginning, N — 1 =9 zeros are appended to the (k) end, the &, (n)
is get, and (N +M — 1 = 16)-point FFT over h,(k) is performed. Then M — 1 =6
zeros are appended to each, consecutive, N-samples long fragment of signal x(n),
and short xj;(n),...,xs;(n) sub-signals are obtained. Next (L + M — 1) = 16-point
FFT is computed upon each short data block. Obtained results are multiplied with
already computed FFT of h,(k) (in sample-by-sample manner, starting from the
first samples) and inverse FFTs of the multiplication results are calculated for all
sub-signals. N +M — 1 = 16 samples of the output sub-signals y;.(n),...,ys,(n) are
obtained this way. Then they are combined (partially added): first (M — 1) = 6 of
the next block are added to the last (M — 1) samples of the previous block, already
calculated, and the remaining next N samples of the next block are appended to the
end of y(n) calculated till now.

Fast Overlap—Save Method In this method zeros are not appended to the input
signal sections and sectioned circular, not linear, convolutions are performed. For
this reason, first M — 1 samples of each calculated output signal block are wrong!
Because they should be taken from the end of a previous block, the input signal
sections have to overlap. Graphical method illustration of the fast overlap—save con-
volution method is presented in Fig. 6.11. Let us assume that a filter 4(n) has M
weights and it is artificially extended to the length N by appending N — M zeros to
its end. In turn, the filtered x(n) consists of L samples and it is divided into frag-
ments having N samples, but overlapping with M — 1 samples. Because we are not
appending M — 1 zeros to signal fragments and applying the fast FFT-based convo-
lution concept to signal sections, the first M — 1 samples of each partial convolution
result are wrong, since circular—not linear—convolution is performed. The solu-
tion is to discard these samples and use the M — 1 last samples calculated for the
previous signal fragment. But it is only possible when the processed input signal
blocks overlap with M — 1 samples. Therefore, such overlapping is done.

138 6 FFT Applications: Tips and Tricks

QTTTQ he(n)

o 9900080000

I'T?‘rl“l'l“lr‘ﬂi”‘rl“ EELALL

X1n)

}'.,?T?,!'.‘L“"’ ViAn)

T‘—A—l—t‘—ﬂﬂw X2,(1)

Vo)

X3,(n)

)"m"w" V3An)

X4,(n)

“-W’—m‘”{ Van)
}",?T”Qq‘“L“‘i",ﬁ””."“u““vm‘”‘ ()

Fig. 6.10: Graphical illustration of fast overlap—add convolution (by sections) of two
discrete-time sequences: x(n), e.g. signal to be filtered, and i(n), e.g. filter weights.
Denotations: M = 7—length of h(n), N = 10—length of x(n) fragment (both sig-
nals without appended zeros), /. (n)—filter weights appended with N — 1 =9 zeros,
x1z(n), x22(n), x3;(n), xa.(n)—consecutive N = 10-element fragments of input sig-
nal x(n), appended with M — 1 = 6 zeros and overlapping with M — 1 = 6 samples,
viz(n), y2:(n), y3;(n), y4.(n)—consecutive fragments of the output signal y(n), all
resulting from inverse FFT, which are combined (added when overlapping) [27]

6.6 Fast Convolution and Correlation Based on FFT 139

I I hx(n)

T‘T’Ji'*fy'iTJT‘T‘”*TL'*ﬂ*‘f*ﬂj'WJ o

x1(n)

By 9
® l‘bl lb‘l

'l”lr‘ﬂj.h‘r xa(n)

. .’??TT? yz(n)
[y E.'

x3(n)

'l"lnﬂj-” T‘ xa(n)

o
WF:.WLLLLH ! ()

Fig. 6.11: Graphical illustration of fast overlap—save convolution (by sections) of
two discrete-time sequences: x(n), e.g. signal to be filtered, and %(n), e.g. filter
weights. Denotations: M = 7—length of h(n), N = 16—length of x(n) fragment
(both without appended zeros), /. (n)—filter weights appended with N — M =9 ze-
ros to the length N=16, x;(n), x2(n), x3(n), x4(n)—consecutive N = 16-element
fragments of input signal x(n), overlapping with M — 1 = 6 samples, y; (1), y2(n),
v3(n), ya(n)—results of inverse FFTs (yx(n) = IFFT(FFT(x;(n)).* FFT(h;(n)))):
their fragments, presented on gray background, are put one-by-one giving the out-
put signal y(n), the final filtering result [27]

140 6 FFT Applications: Tips and Tricks

6.6.5 Fast Signal Correlation

Correlation and convolution differ only in time-reversion and complex conjugation
of the second signal: in convolution (see (Eq. (6.18))) the time-reversion of the sec-
ond signal is done—summation over k is performed—but its complex conjugation is
not applied, while in the correlation (see Eq. (6.25)) the time-reversion of the second
signal does not take place—summation over # is performed—but its conjugation is
applied (setting n — k = m):

rop(k) = Ej x(n)y*(n—k), (6.25)

Ry (Q) = i (f x(n)y*(n—k)) e Ik = (6.26)
k=—o0 \n=—00

= i x(n)e /2" i y (m)e™ ™ = X (Q)Y*(Q), (6.27)

ry, (k) = IDEFT (R, (Q)) = IDIFT (X(Q) .+ Y*(Q)), (6.28)

where .x denotes element-by-element vector multiplication (as in Matlab).
In Eq. (6.25) we consider more general form of correlation of complex-value
signals—()* denotes complex conjugation of the second signal (such correlations
we perform, for examples, in telecommunication applications as complex-value
matched filters). We see in Eq. (6.27) that in the DtFT spectrum of the correlation
result, the second signal spectrum is conjugated while for signal convolution (6.22)
it is not. Conjugation of the signal frequency spectrum is equivalent to conjugation
of the signal itself and its reversion in time (see Table 4.2). Concluding: in order to
obtain correlation while computing convolution we should only do time-reversion
and conjugation of the second signal before the convolution. Therefore all fast algo-
rithms designed for convolution can be used also for fast correlating complex-value
signals. User has only to do time-reversion and conjugation of the second signal
before the procedure call. That is it! In Matlab:

rxy = conv(x,conj (y(end:-1:1)) ;

6.6.6 Fast Convolution/Correlation Example and Program

All details discussed in this section concerning optimal FFT usage for fast signal
convolution and correlation are presented in program 6.5 written in Matlab. User
should read it very carefully. This section, albeit does not looking as being con-
nected to the chapter subject, is very close connected to spectral analysis. Firstly,
fast convolution will be used in the next section to fast computing of DtFT offering

W O o0 U W N R

NN NNNNNRERRRRRRRRB R
0k WN RO WU U R WN R O

6.6 Fast Convolution and Correlation Based on FFT 141

selective (from-to) frequency spectrum zooming. Secondly, the correlation function
is widely used in spectral analysis of random (noisy) signals because power spec-
tral density is defined as Fourier transform of it (see Egs. (6.4), (6.5)). Later in
this chapter we will calculate Blackman—Tukey PSD estimator exploiting the signal
auto-correlation function.

Exercise 6.7 (Fast and Last ConvCorr Train to London!). Analyze the pro-
gram 6.5. Choose short testing signal, setting sig=1;. Run the program, ob-
serve figures. The correct convolution result is y(n) = [1,2,3,3,3,2, 1]. Note,
that enlarging only the second signals with zeros does not work. Appending ze-
ros to both signals to the length (N + M — 1) offers good result. See, that even
for so short signals fast correlation methods works also. Now set sig=2. For
this option overlap—add convolution methods are switched on. Display signals
vy (calculated new output fragment) and y4 (the whole convolution result cal-
culated so far) inside the loop. The overlap—save fast convolution method is not
implemented in the program. Please, write its Matlab code. Check its correct-
ness calculating an error in respect to the Matlab conv () function.

Listing 6.5: Fast convolution and correlation using FFT

% lab06 ex fastconvcorr.m Fast signal convolution and correlation using FFT
clear all; close all

sig = 2; % 1/2, signal: l=short, 2=long
if(sig==1) Ne5; M=3; x=ones(1,N); h=ones(1,M); % signals tobe

else N=256; M=32; x = randn(1,N); h = randn(1,M); % covolved
end

n=1:N+M1; mn = 1:N; % sanple indexes

figure;

subplot(211); stemx); title('x(n)’);
subplot(212); stem(h); title('h(n)’); pause

o°

Conv by Matlab function
yl = conv(x,h);
figure; stem(yl); title('yl(n)’); pause

o°

Fast conv - WRONG!

hz = [h zeros(1,N-M)]; % append N-M zeros to the shorter signal only
y2 = ifft(fft(x) .+ f£ft(hz)); % fast conv, first M-1 sanples are wrong
figure; plot(nn,yl@mmn), 'ro’ ,nn,y2mnn), ‘bx’); title('yln) & y2m)’);

error2 = max(abs (yl(M:N)-y2(M:N))), pause

o°

Fast conv - GOCD!

hzz = [h zeros(1,N-M) zeros(1,M-1)]; % append zeros to the length N+M-1
xz = [x zeros(1,M-1)]; % append zeros to the length N+M-1
v3 = ifft(fft(xz) .» fftthzz)); % fast conv, all samples are good
figure; plot(n,yl, 'ro’,n,y3,'bx’); title('yl(n) &y3[®)’);

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

142 6 FFT Applications: Tips and Tricks

error3 = max(abs(yl-y3)), pause

% Fast conv by pieces - OVERLAP-ADD method

oe

o°

if(sig>1) % only for long signal
L=V % signal fragment length
K = N/L; % number of signal fragments
hzz = [h zeros(1,I-M) zeros(1,M-1)]; % append zeros to the shorter signal
Hzz = fft(hzz); % its FFT
v4 = zeros(1,M-1); % output signal initialization
for k = 1:K % LOOP
m=1+ (k1)L : L + (k-1)*L; % select samples indexes
= [x(m) zeros(1,M1) 1; % cut signal fragment
= fft(xz) .x Hzz; % # fast convolution - spectra mult
yy:ifft(YY); % # inverse FFT

v4 (end- (M-2) :end) = y4(end- (M-2) :end) + yy(1:M-1); % output overlap-add
v4 = [v4, yy(M:I+M-1) 1; output append

end

figure; plot(n,yl,'ro’,n,y4,'bx’'); title('yl(n) &y4®)’);

errord = max(abs(yl-y4)), pause

end

oe

Fast cross-correlation by fast cowvolution

Rl = xcorr(x, h);

R2 = conv(%, conj(h(end:-1:1)));

Kmax=max (M,N) ; Kminemin(M,N) ; R2 = [zeros(1,KmaxKmin) R2] ;
m=-Kmnaxl) : 1 : (Kmaxl);

figure; plot(mR1,'ro’ ,mR2, 'bx’); title('R1(n) & R2([n)’);
error5 = max(abs(RI-R2)), pause

Fast computation of the first M coeffs of the autocorrelation function

Rl = xcorr(X, X); % Matlab auto-correlation function
xz = [x zeros(1,M-1)]; % add M-1 zeros on the end of signal
X = fftxz); % calculate (N+M-1)-point FFT

X = X.xconj (X) ; % calculate |X(k) |2

R2 = 1fft(X); % calculate inverse (N+M-1)-point FFT

R2 = real R2(1:M)) ; % choose correct values, scale
m=1:M; figure; plot(m,RL(N:N«M-1),’ro’ ,mR2(m), 'bx’'); grid;
title(’Autocorr Rxx(m) : Matlab (RED), WE (BLUE)’); xlabel('m’); pause
error6 = max(abs(RI(MN:N«M-1) - R2(m))), pause

Exercise 6.8 (Virtual Concert Hall). Read from disc one of acoustical impulse
responses (room, bathroom, cathedral,. . .). Check sampling frequency. Record
your speech, about 5-10 s, with the same sampling ratio. Perform fast convolu-
tion of both signals. Listen to the result. Wow!

6.7 Fast DtFT Calculation via Chirp-Z Transform 143

6.7 Fast DtFT Calculation via Chirp-Z Transform

As demonstrated in Chap. 4, the discrete-time Fourier transform (DtFT) offers pre-
cise Fourier spectrum zooming for any frequency range [f1, f»] with arbitrarily cho-
sen step A f but at the price of significant computational increase.

Let us assume that we would like to calculate DtFT coefficients X (k) of signal
x(n),n=0,1,2,...,N—1, for M frequencies f;, starting from f; and with step A f:

N—I o
X(k)= Y x(n)e TR fi=fo+k-Af, k=0, .., M—1. (629)
n=0

Equation (6.29) requires NM complex multiplications. For big values of N and M it
is beneficial to use the chirp-Z transform (CZT), exploiting FFT. After introduction
of two new variables A and W:

I (iy Af
A=e 7R, w=e P (6.30)
Eq. (6.29) takes the form of CZT:
N—1
X(k)= Y x(n)A"W>*' k=0,..,M—1 (6.31)
n=0

Since the following equality holds 2kn = n* 4+ k> — (k—n)?, Eq. (6.31) can be written
as:
N 2 2
X(k)=wy [x(n)A"W” } w01, .. M—1. (632
n=0 ~——

R y2(n)

Since in Eq. (6.32) two sequences of samples:

vi(n) = x(mA"W"™, (6.33)
2

ya(n) =W, (6.34)

are convolved, Eq. (6.32) can be calculated efficiently in frequency domain using
three fast FFTs, two direct and one inverse:

X(k) = W¥ - IFFT (FFT (¥, (n)) . * FFT (¥2(n))). (6.35)

Result of circular convolution (6.35) is the same as result of linear convolu-
tion (6.32) when in (6.35) not signals y;(n) and y,(n) are transformed but their
modified versions y; (n) and y,(n). The first signal is calculated from Eq. (6.33) for
0<n<N-—1and M — 1 zeros are appended at its end. It is obvious why it is done:
standard signal conditioning before performing circular convolution which should
result in linear convolution. The second signal is calculated from Eq. (6.34) for

W O 0 U W N R

T N T T N N N N T N N S e e T o S O =
W © J O U1 b W N K O W 0 J o6 U1 b W N K O

144 6 FFT Applications: Tips and Tricks

n=[0,1,....(M—1),—(N—1),—(N—2),...,—2,—1], so it is prepared for time-
reversion after which its samples n = 1,...,M go to end and hit zeros added to the
first signal. Remaining details are presented in program 6.6.

Listing 6.6: Fast DtFT calculation

~
% lab06 ex dcft.m
clear all; close all
N =256; M = 32; % muber of signal sanples, mumber of frequency bins
fs = 128; % sampling ratio (Hz)
fd=5; fu=29; % down and up frequency (fromto)
daf = (fu-fd)/ M1); % step in frequency
f=1£fd:df : fu % frequencies of interest
x = rand(1, N); % analyzed signal, randomnoise [0, 1]
NM1 = N+HV-1;
A = exp(-Jj*2#p1 « £d/fs); % for first frequency
W= exp(-J*2%0i * ((Fu-f£d)/ (2% M-1)) /Es)); % for frequency step
vyl = zeros(1,NM1) ; k=0:N-1; y1(k+1)=(@W."k)."k) .%x(k+1); % init of y1
k=1[0:M1, -(N1):1:-1]; y2 = W." (-k."2); % init of y2
Y1l = £fft(y1); % # fast circular convolution
Y2 = £ft(y2); % # of signals yl and y2
Y = Y1.4Y2; S #
y = iffe(¥)/ 0/2); 5 #
k=0:M-1; XcztN(k+l) = ylal) .+ W."(k."2)); % phase correction
n = 0:N-1; Xref=xxexp(-j*x2#pisn(:)*f/fs)/ N/2); % reference - matrix def
error = max(@bs(XcztN - Xref)), % error
figure;
subplot(2,1,1); plot(f,real XcztN),'r.-’); grid on; hold on;
plot(f,real Xref), 'bo-") ;
subplot(2,1,2); plot(f,imagXcztN),'r.-’); grid on; hold on;
plot(f,imagXref), 'bo-"); pause
\S

Exercise 6.9 (Spectral Microscope). Apply fast DtFT algorithm to signal an-
alyzed in program 6.2. Interpolate very dense its Fourier spectrum around the
signal frequency peak. Add calculated fragment of the signal spectrum to figure
plotted in Exercise 6.2. Mark spectrum samples with magenta circles.

6.8 Blackman-Tukey PSD Fast Calculation

Having fast algorithm for computation of signal auto-correlation, we can calculate
efficiently the Blackman—Tukey PSD estimator defined by Eq. (6.10) and compare
it with Welch PSD. This is done in program 6.7.

W W J O U s W N

L T T U L U U S U U N O S S S I S I S R S R S S S e e e T R e e
O Ul B W N O W oo 00U WD R O W OO0 W N R O W oo UT s W NP O

6.8 Blackman-Tukey PSD Fast Calculation

Listing 6.7: Fast calculation of Blackman—Tukey PSD estimator

145

% lab06_ex psd.m
clear all; close all

% lab06 _ex psd.m BlackmanTukey PSD compared with Welch PSD
clear all; close all; subplot(111);

% Parameters
N = 256; f£s = 1000;
M = N/4;
df = fs/N, f=0:df: (N-1)+df;
dt=1/fs; t=0:dt: (\1)xdt;
tRe- (N-1)sdt:dt: (F1)4dt; k=1:N/2+1;

o°

munber of samples, sanpling ratio
munber of camputed AutoCorr coeffs
PSD spectrum frequencies

ime stamps for signal

ime stanps for auto-correlation

o° oo

oe

t
t

o°

o°

Generation of analyzed signal - sinusoid 100 Hz in noise
X = sin(2+pix25.54t) + 0.1lsrandn(1,N); % signal + Gaussian noise
figure; plot(t,x); grid; axis tight; title('x(n)’); xlabel(’time [s]’); pause

oe

Fast computation of the first M coeffs of the auto-correlation using FFT
xz = [x zeros(1,M-1)]; appending M-1 zeros

X = fft(xz); X = X.xconj (X); R = ifft(X); FFT, |X(k)|"2, IFFT

R = real (R(1:M)) /N; coeffs of interest, scaling

o o°

o°

o°

PDS estimation - BlackmanrTukey method = Fourier transform of signal autocorr
w = harming(2+M-1) ; w=w (M:24M-1) ; w=w' ; choose window

RW=R .x w; multiply autocorr with window

s = [Rw(1:M) zeros(1l,N-241) Rw(M:-1:2)]; % input to FFT is symmetrical

Pl = real(fft(s))/fs; the FFT result, real-value vector
figure; subplot(211); plot(f(k),P1(k),’'b’); grid;

o° o o°

o°

title('BlackmanTukey estimation of PSD'); xlabel('f [Hz]’); ylabel('V'2 / Hz');

o°

PSD estimation - Welch method = averaging periodograms of signal fragments
Nfft = N; Nwind = 2«M; Noverlap = Nwind/2; lengths: FFT, window, overlap

oe

Nshift = NwindNoverlap; % window shift

M = floor((N-Nwind) /Nshift)+1; % munber of signal fragvents

w = hamning(Nwind) ’ ; % window choice

P2 = zeros(1,Nfft); % initialization

for m=1:M % mumber of the signal fragment

n = 1+ 1) Nshift : Nwind+ (m-1)Nshift;
X = fft(x(n) .» w, NEfft);

oe

which sanples?
FFT of windowed fragment

o°

P2 = P2 + abs(X)."2; % accunulate
end % end of loop
P2 = P2/ (EssMxsum(w. *w)) ; % PSD normalization

subplot(212); plot(f(k),P2(k)); grid; title(’'Welch estimation of PSD');
xlabel (£ [Hz]’); ylabel('V'2 / Hz') ; pause

146 6 FFT Applications: Tips and Tricks

Exercise 6.10 (Discovering Noisy Sounds). Analyze code of the program 6.7.
Run it increasing level of noise up to the moment when you completely
loose your signal. Observe both, signal and spectrum shape. Then, take from
web page FindSounds some noisy sounds, read them to the program and
analyze.

6.9 Fast Estimation of Damped Sinusoids by Interpolated DFT

If an analyzed signal is a mixture of cosines, like in Eq. (4.33), its DFT spectrum is
specified by Eq. (4.34). Let us assume now more general and more universal signal
model, than the above one, in which each cosine signal component has phase shifts
¢y and is attenuated by an exponent with damping factor dj:

K
x(n) = ZXk(n), xi(n) =Agcos(n+ ¢)e %, n=0,1,2,...,N—1. (6.36)

After defining a complex-value signal s () of the form:
sp(n) = ApelPedin o tithn — Akejq)’%,?, N = e~ UHi%, (6.37)

each signal component x(n) in Eq. (6.36) can be expressed as summation of a
corresponding signal s (n) (6.37) and its complex conjugation, divided by two:

1

x(n) = 5 (s (n) +s¢(n)) - (6.38)

In consequence we can rewrite Eq. (6.36) into the following form:

K
2% n) +si(m) = Z(AZ" 3]+ e f@«x*") (6.39)

k=1

In chapter on DFT we have derived spectrum of the rectangular window (equa-
tions from (4.28) to (4.31)). In similar way we can calculate now the DFT spectrum
of complex signal si(n) defined by Eq. (6.37), and obtain

-2

SK(R) = Al — % .
k() k€ l—lke*J“Q

(6.40)

6.9 Fast Estimation of Damped Sinusoids by Interpolated DFT 147

I am leaving this derivation for an ambitious/interesting reader. As a consequence
the DFT spectrum X (£2) of each signal x;(n) (6.38) is equal to:

A . 1-AY . 1-AN
_ JOk k —Jj% k
X (Q) = > (e 1= Jpe 72 +e I l,:‘ej’z) . (6.41)

At present we are in the turning point of the story. If maxima of the DFT spectrum
of signal defined by Eq. (6.36) is well separated, it is possible to estimate £2; and
dy, of each signal component from three DFT samples X (m — 1), X (m),X (m+ 1),
corresponding to DFT angular frequencies €2,,_1, €2, €2,,+1, lying around the peak
|X (m)] in the DFT magnitude spectrum, i.e. close to £2.

Let us define ratio R as:

X(m—1)—X(m)

Re= Xy —Xm+ 1)’

(6.42)

and put Eq. (6.41) into Eq. (6.42). When the second component in (6.41) is neglected
(for the negative frequency), we obtain

1—)vkefjgm+l _efjgm +e7ij—l (6 43)
= ———F— V. r= - - .
1—)Lke*]Qm—l ’ —e*]Qerl +e_jQ/11 ’

Ry

From Eq. (6.43) one can calculate A; as the only unknown value:

— I r—R
M=e re—12/N _ Rgi2%/N’ (6.44)
and remembering its definition in (6.37)
A = e~ Uitk (6.45)
we can calculate next values of € and d; from Ay:
dk = —Re [ln(lk)] 9 Qk =Im [ln(?tk)] o (646)

The above derivation was first done by Yoshida et al. [23].
Again, when the second component in Eq. (6.41) is neglected (for the negative
frequency), signal amplitude A; and phase ¢y are easy to be estimated:

1—AN

= = - "k
A =12X[m]/c|, ¢ =angle(2X[m]/c), where c¢= (e i (6.47)

148 6 FFT Applications: Tips and Tricks

To Remember Algorithms similar to the described above, are called in liter-
ature interpolated DFTs. They have a very important feature that parameters
of signals modeled by Eq. (6.36), i.e. being a sum of damped sinusoids, can
be precisely recovered from them using a few FFT/DFT samples lying around
spectral peaks of individual signal components. Before, in the beginning of this
chapter, we have been interpolating shape of FFT spectrum by performing FFT
upon signal with appended zeros. Now, a different type of interpolation is per-
formed: we are exploiting some FFT samples for more precise calculation of
the frequency value of one signal component using known signal model. The
frequency lying in between the FFT spectrum bins of its peak. In-between. In-
terpolation!

There are many different IpDFT algorithms. The Bertocco—Yoshida one was de-
scribed here. In other algorithms different numbers of DFT samples lying around
spectral peaks are used. The DFT spectrum can be also calculated for windowed
signals, e.g. using Hanning window. It is possible to estimate many signal com-
ponents from their DFT/FFT peaks when signal component peaks are well sep-
arated in DFT spectrum. If not, in order to minimize influence of spectral leak-
age from one component to the other, an iterative leakage compensation can be
applied [11, 26].

In program 6.8 Bertocco—Yoshida IpDFT algorithm without leakage correction
is implemented. The analyzed damped cosine signal is presented on the left side
of Fig. 6.12, while on the right side beginning of the signal DFT spectrum mag-
nitude. Values of signal amplitude, damping, frequency, and phase are correctly
estimated.

DFT spectrum |X(f)|

Fig. 6.12: Damped cosine signal analyzed by the IpDFT algorithm (left) and begin-
ning of its DFT spectrum magnitude (right)

W O J oUW N

WWwWwWwwwwweoNnnnNnnnNNNNNDRERRRRRB R R R R
<N o0 Uk W NN OV oUW HE O W NI o0U R WD R O

6.9 Fast Estimation of Damped Sinusoids by Interpolated DFT

149

Listing 6.8: Matlab implementation of Bertocco—Yoshida interpolated DFT algo-

rithm
~
% 1ab06 ex ipdft.m Interpolated DFT/FFT
clear all; close all;
% Test signal
N=256; £5=100; % nurber of samples, sanpling ratio [Hz]
Ax=6; x=0.5; fx=4; pre=3; % signal amplitude damping frequency, phase
dt=1/(fs); t=(0:N-1)»dt; % sampling time
x = Iookexp(-chart) . +cos (2xpixfamt+px) ; figure; plot(t,x); pause % signal generation
% Interpolated DFT for meximum absolute DFT peak
Xw = fft(x); figure; plot(abs(Xw)), pause % computation of DFT/FFT
[Xabs, ind] = max(absXw(1l:round(N/2)))); % find maximum and its index
kml = ind-1; k=ind; kpl = ind+1; % three DFT samples around max
dw = 2%pi/N; % DFT frequency step
wkml= (kml-1)+dw; % angular frequency of DFT bin with index k-1
wk = (k -1)*dw; % angular frequency of DFT bin with index k
wkpl= (kpl-1)+dw; % angular frequency of DFT bin with index k+1
r = (-exp(-J+wk) +exp(-J#wkml))/ (-exp(-Jwwkpl) +exp(-Jawk)); % eq. (6.43)
R = (Xwkml)-Xw(k))/ (Xw(k)-Xwkpl)); % eq. (6.42)
lambda = exp(j*wk) * (r-R) / (rxexp(-J*2+01/N) -Reexp (j*2+401/N)); % eq. (6.44)
we = imag(log(lambda)) ; % estimated angular frequency
de = -real (log(L)); % estimated damping
fe = wexfs/ (2#01) ; % angular frequency --> frequency
de = de«fs; % normalized danping (de/fs) --> danmping (de)
if round(1e6+R)==-1e6 % CCHERENT SAMPLING dx=0
Re = 2%abs(Xw(k))/N; % estimated anplitude
pe = angle(Xw(k)) ; % estimated phase
else % NON-COHERENT' SAMPLING
¢ = (1-lambda’N) / (1-lambdakexp (-jxwk)) ; % eq. (6.47)
c = 2&xXw(k) /c; % eq. (6.47)
Ae = abs(c) ; % estimated amplitude
pe = angle(c) ; % estimated phase
end
result = [Re, de, fe, pe 1, % display results
errors = [Ae-Ax, de-dx, fe-fx, pepx], pause % show errors
S

Exercise 6.11 (Testing IpDFT Algorithm). Analyze code of the program 6.8.
Run it. Observe figures. Are the estimated signal amplitude and frequency cor-
rect? They should be. Take a sound recording of single piano, guitar, or trumpet
note from FindSounds web page. Read it into the program. Cut-off silence part
from the recording beginning and end. Choose three FFT points lying around
one spectrum peak. May be the first one? Or the highest one? What parameters
has a damped sine you have selected? Do you trust in this result? How to verify

its correctness?

150 6 FFT Applications: Tips and Tricks

Hmm... Hmm... This DSP course has been promised to be easy! Yes, it is.
This was the most difficult derivation in this chapter. But it was extremely important
for us, since in engineer’s practice precise estimation of each damped sine param-
eters (Ag, fx, 9k, di) is very often priceless because such signals widely occurs in
surrounding us world (due to physical damped resonance phenomena). We should
also observe that IpDFT technique is different than DFT zooming realized by ap-
pending zeros to the signal end. In IpDFT we exploit the signal model, use it for a
few DFT points (three in the described method), create a system of equations, and
solve it. The solution obtained this way has very good accuracy and it is computa-
tionally fast due to the FFT usage. All four signal parameters are computed.

6.10 Summary

So our FFT cruiser, after a long voyage, after many intellectual storms, is
finally sailing into a port. A lot places, views, and memories. What should stay
unforgettable?

1. FFT has many faces. It can be used not only in spectral analysis but also
as computational hammer in many other applications, for example, for fast
calculation of signal convolution and correlation.

2. In the kingdom of spectral estimation, FFT can be applied to calculation of
four different spectra types, appropriate for different usage, e.g. amplitude
and power spectrum ((V) and (V?), respectively), amplitude and power
spectral density ((V/+/(Hz)) and (V2/Hz)). Their definitions should be
remembered.

3. Noisy random signals and signals with strong noise background require
different FFT treatment. In their case, spectral density functions should
be preferred and many FFT spectra of different signal fragments have to
be calculated and averaged. Such signal processing minimizes variation of
noise spectrum and ensures more reliable (consistent) estimation of noise
level. PSD estimation using the Welch method, averaging windowed peri-
odograms, is the most prominent example in this FFT application area.

4. Time-varying signals require also calculation of many FFT spectra of
consecutive shorter signal fragments. However, not for the purpose of
mean spectrum calculation. The spectra are stored one-by-one into time—
frequency matrix and they are displayed all as a 3D mesh or color image
which allows observation of the spectrum change in time.

5. The whole DFT spectrum of N-sample long signal can be zoomed K times
after appending K(N — 1) zeros at the signal end and after performing
longer, KN-point FFT.

6.11 Private Investigations: Free-Style Bungee Jumps 151

6. We can zoom also not the whole DFT spectrum but its selected part only
(from one frequency to the other frequency with a chosen step) using the
chirp-Z transform exploiting three FFTs.

7. As already mentioned, the FFT is widely used for fast calculation of signal
convolution and correlation. Both operations are extremely important in
DSP: the first one describes always stable, non-recursive signal filtering,
while the second one finds application in detection of one signal hidden
inside the other signal (echo detectors, telecommunication receivers).

8. Interpolated FFT algorithms, exploiting damped sine signal model, should
be used for fast and precise estimation of parameters of such signals.

9. Everybody should bless the FFT king!

6.11 Private Investigations: Free-Style Bungee Jumps

Exercise 6.12 (Looking for a Needle in a Bottle of Hay). Generate a sinus. Add
a weak white Gaussian noise to it—use randn () function. Calculate and observe
power FFT frequency spectrum. Then step-by-step increase the level of noise, stop
when a sine peak is not visible in the spectrum. Then increase the signal length,
calculate more power spectra and their average. Find how many spectra should be
averaged in order to see again the signal peak.

Exercise 6.13 (Steel Factory Secrets: Revisited). Apply your present knowledge
to spectral analysis of supply voltages and currents recorded for operating arc
furnace, previously processed in Exercise 4.9. Read signals from files load
(*UI.mat’); whos. Calculate the amplitude FFT spectrum of the whole signal,
then its Welch PSD estimate (psd()) and time—frequency spectrogram
(spectrogram()). Try to estimate frequencies and amplitudes of fundamental
frequency 50 Hz (close to 50) and its harmonics 100, 150, 200, 250, ... Hz.

Exercise 6.14 (Piano Sound Spectrogram: Describing the Beauty). In one of pre-
vious exercises you generated a piano-like sound signal. At present use your own
short-time Fourier transform program or the spectrogram () Matlab function
and do inverse engineering: find sequence of frequencies hidden in your piano mas-
terpiece. You can also take any recording from the Internet, for example, from Find-
Sounds web page (https://www.findsounds.com/). Adjust properly: window length,
window shift, FFT length (zero padding) in order to better see the frequency change.

Exercise 6.15 (Speech Spectrogram: Emotion Detector). Frequency of vocal cords
opening and closing (pitch frequency) become higher during emotional speaking.

Record a few times the same word, increasing level of excitement, astonishment,

fear, ... Calculate and compare their spectrograms. Do you see no change? May

be you are cold-blooded cad? Adjust properly: window length, window shift, FFT

length (zero padding) in order to track better change of pitch frequency.

https://www.findsounds.com/

152 6 FFT Applications: Tips and Tricks

Exercise 6.16 (Is My Heart Still Broken? Part 3). Apply fast correlation algo-
rithm, described in this section, for estimation of heartbeat periodicity in ECG
recording analyzed in Chaps. 1 and 2 in Exercises 1.11 and 2.14.

References

1. F. Auger, P. Flandrin, Improving the readability of time-frequency and time-
scale representations by the reassignment method. IEEE Trans. Signal Process.
43(5), 1068-1089 (1995)

2. F. Auger, P. Flandrin, P. Goncalves, O. Lemoine, Time-Frequency Toolbox. On-
line: http://tftb.nongnu.org/

3. S. Bagchi, S.K. Mitra, The Nonuniform Discrete Fourier Transform and Its Ap-
plications in Signal Processing (Kluwer, Boston, 1999)

4. J. Bendat, A. Piersol, Engineering Applications of Correlation and Spectral
Analysis (Wiley, New York, 1980, 1993)

5. R.E. Blahut, Fast Algorithms for Digital Signal Processing (Addison-Wesley,
Reading, 1985)

6. B. Boashash (ed.), Time-Frequency Signal Analysis and Processing. A Compre-
hensive Reference (Elsevier, Oxford, 2003)

7. C.S. Burrus, T.W. Parks, DFT/FFT and Convolution Algorithms. Theory and
Implementation (Wiley, New York, 1985)

8. W.H. Chen, C.H. Smith, S. Fralick, A fast computational algorithm for the dis-
crete cosine transform. IEEE Trans. Commun. 25, 1004-1009 (1977)

9. L. Cohen, Time-Frequency Analysis (Prentice Hall, Englewood Cliffs, 1995)

10. L. Cohen, P. Loughlin (eds.), Recent Developments in Time-Frequency Analysis
(Kluwer, Boston, 1998)

11. K. Duda, T.P. Zieliniski, Efficacy of the frequency and damping estimation of a
real-value sinusoid. IEEE Mag. Instrum. Meas. 48-58 (2013)

12. D.E. Elliott, K.R. Rao, Fast Transforms. Algorithms, Analyses, Applications
(Academic Press, New York, 1982)

13. P. Flandrin, Time-Frequency/Time-Scale Analysis (Academic Press, San Diego,
1999)

14. P. Flandrin, Explorations in Time-Frequency Analysis (Cambridge University
Press, Cambridge, 2018)

15. G. Heinzel, A. Rudiger, R. Schilling, Spectrum and spectral density esti-
mation by the Discrete Fourier transform (DFT), including a comprehensive
list of window functions and some new flat-top windows, Technical Report,
Max-Planck-Institut fur Gravitationsphysik (Albert-Einstein-Institut), Teilin-
stitut Hannover, 2002. Online: https://pure.mpg.de/rest/items/item_152164_1/
component/file_152163/content

16. F. Hlawatsch, F. Auger (eds.), Time-Frequency Analysis: Concepts and Methods
(Wiley, Chichester, 2008, 2013)

http://tftb.nongnu.org/
https://pure.mpg.de/rest/items/item_152164_1/component/file_152163/content
https://pure.mpg.de/rest/items/item_152164_1/component/file_152163/content

References 153

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

V.K. Ingle, J.G. Proakis, Digital Signal Processing Using Matlab (PWS Pub-
lishing, Boston, 1997; CL Engineering, 2011)

R.G. Lyons, Understanding Digital Signal Processing (Addison-Wesley Long-
man Publishing, Boston, 1996, 2005, 2010)

A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (Pearson Ed-
ucation, Upper Saddle River, 2013)

J.G. Proakis, D.G. Manolakis, Digital Signal Processing. Principles, Algo-
rithms, and Applications (Macmillan, New York, 1992; Pearson, Upper Saddle
River, 2006)

D.S. Qian, D. Chen, Joint Time-Frequency Analysis (Prentice Hall, Upper Sad-
dle River, 1996)

K. Shin, J.K. Hammond, Fundamentals of Signal Processing for Sound and
Vibration Engineers (Wiley, Chichester, 2007)

S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing
(California Technical Publishing, San Diego, 1997, 1999). Online: http://www.
dspguide.com/

P. Stoica, R. Moses, Introduction to Spectral Analysis (Prentice Hall, Upper
Saddle River, 1997)

P. Wigner, Quantum-mechanical distribution functions revisited, in Perspectives
in Quantum Theory, ed. by W. Yowgram, A. van der Merwe (Dover, New York,
1979)

R.C. Wu, C.T. Chiang, Analysis of the exponential signal by the interpolated
DFT algorithm. IEEE Trans. Instrum. Meas. 59(12), 3306-3317 (2010)

T.P. Zielinski, Cyfrowe Przetwarzanie Sygnalow. Od Teorii do Zastosowar
(Digital Signal Processing. From Theory to Applications) (Wydawnictwa Ko-
munikacji i Lacznosci (Transport and Communication Publishers), Warszawa,
Poland, 2005, 2007, 2009, 2014)

http://www.dspguide.com/
http://www.dspguide.com/

Chapter 7)
Analog Filters AT

Fresh salad versus old wine, or old Cadillac, or vinyl records.
There is no hard rule that newer things are always better!

7.1 Introduction

Talking about old-fashioned analog filters is always very difficult to me.
Young audience expects the hottest news from first magazine pages. Unfortu-
nately, analog filter theory is not the hottest topic. But this knowledge is still
priceless, like old good wine, old good Cadillac, or old good vinyl records.
Why?

Our world is analog. Our speech and our heart bit. When we are interfacing
our DSP systems with a real world, we have to:

o firstly—on input, before the A/D converter—remove in analog way all fre-
quency components lying out-of-band in our sampling scheme,

o secondly—on output, after the D/A converter—smooth in analog manner
our continuous-time but discrete-value (step-like) signals.

Both operations require analog filters. Therefore, at least these two types of
analog filters are absolutely necessary for us, DSP enthusiasts.

The second motivation for analog filter introducing in DSP book is that the
theory of high-quality analog filter design is very well established and exist pos-
sibilities for very easy transformation of analog filter designs to digital ones, for
example, using the bilinear transformation. Thanks to this analog filter design
experience can be applied also in DSP core.

In this chapter only the simplest linear time-invariant analog systems/filters
are presented. But such filters are used in more than 99% of all analog filter ap-
plications. Analog filters represent connections of passive elements (resistors,
inductors, capacitors), like in RLC circuit, which can be additionally accompa-
nied by electronic operational amplifiers. Each analog filter has the so-called
impulse response, i.e. response to Dirac impulse occurring on its input. Theo-
retical Dirac impulse consists of all frequencies. In the filter impulse response

© Springer Nature Switzerland AG 2021 155
T. P. Zielinski, Starting Digital Signal Processing in Telecommunication

Engineering, Textbooks in Telecommunication Engineering,
https://doi.org/10.1007/978-3-030-49256-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49256-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-49256-4_7

156 7 Analog Filters

there are present only these frequencies that the filter can pass. The Fourier
transform of the impulse response is called the filter frequency response—it
tells us how much each input frequency component will be gained/attenuated
by the filter and how much delayed.

Having the analog filter structure and its passive element values, we can
write a mathematical equation describing the filter (consisting of derivatives
and integrals of flowing currents) and then transform it into differential equa-
tion of higher order—calculating derivatives of its both sides. The final analog
filter differential equation is connecting output filter voltage (and its deriva-
tives) with the input voltage (and its derivatives). The Laplace transform allows
us to change (transform) this differential equation into filter transfer function,
while the Fourier transform into filter frequency response. Filter design task
is to choose proper transfer function coefficients being also coefficients of the
filter differential equation. Having values of these coefficients and knowing re-
lation between them and passive RLC filter elements, one can solve set of equa-
tions and find values of the elements. Next, the only task is to go the nearest
Electronic Store and to buy elements with the closest values to the designed
ones.

Generally, in this chapter we make a short but consistent walk from analog
LTI system theory to the design of concrete analog circuits. We become familiar
with analog low-pass filters designed by Butterworth, Chebyshev, and Cauer
(elliptic filter). We learn how to transform analog low-pass filter into another
low-pass filter or high-pass, band-pass, or band-stop filter.

This will be a simple story. But I hope that different panorama views we will
see during our analog trip will be unforgettable for some Readers.

7.2 Analog LTI Systems

Linear time-invariant (LTT) analog systems are specified by differential equations
defining relation between input signal x(¢) and its derivatives (multiplied by coeffi-
cients b,,) and output signal y(¢) and its derivatives (taken with coefficients a,,):

x(t) = | Differential EQUATION | = y(1). (7.1)
E.g.
dx(t) dxM(r) dy(t) dy (1)
box(t) + by 7 +..+by o —y(t)—i—alT—i—...—l—aN it (7.2)

Coefficients {b,,,a,} depend on the system structure (its element connection) and
values of passive elements used (R, L, C—resistance, inductance, capacitance). The
Laplace transform (with complex variable s) is defined as:

7.2 Analog LTI Systems 157

oo
L(x(1)) = X(s) = / x(t)edr (7.3)
and has two features very important for us:
A (1) / 1
L (-) —X(s), L / X(n)dt | = ~X(s). (7.4)
s

—00

The first of them is true for zero initial conditions.

Calculation of the Laplace transform of both sides of the differential equation of
the analog system (7.2), having in mind features (7.4), results with the following
system transfer function (TF):

[bo—i—bls] +bys® + ... +szM] X(s)= [1 +ais' +ars® + ... —l—aNsN] Y(s), (7.5)
Y(s) bo+b1s' +bas® + ...+ bysM
X(s) l+ais'+ars®+...+aysV

H(s) = (7.6)

Having differential equation describing the system, we can write with ease its trans-
fer function, for example:

dx*(t) dx(1) dy'(t) L dy*(t) dy(1)
7 6 5 - 2 3 4
M) +6= 37 +5— 57 =) +2= 0 3=+
7+ 652 + 553
~ H(s) + 057+ 5

T 1425 1352145

and, vice versa, from system transfer function deduce its differential equation:

H(s) = 24 35! +45?
145524654+ 756
dx(t) | dx*(1) dy*(t) | dy*(t) _dy°(r)
2 3 4 = 5 6 7)
=)+ dt + dr? y(O) + dr? + dtt + dr®

Designing an analog filter relies on choosing values of {R,L,C} elements and
structure of their connection. After this we obtain a concrete differential equation
with coefficients {b,,,a,}. They precisely describe the filter and its filter transfer
function. After setting:

s=jo=j2rf (7.7)

the Laplace transform changes to continuous Fourier transform:

+o0

F(x(1)) = X (@) = / (t)e 7@ d (7.8)

—oo

and the system TF to the system frequency response (FR):

158 7 Analog Filters

Y(@) _ bo+bi1(jo) +b2(jo)* + .. +by(jo)”

H(w) = . 7.9
(@) X(0) 1+4a(jo) +a(jo)+.. +av(jo)" 7.9)

The complex number H(®), @ =2xf:
H(w) = |H(w)| - /) (7.10)

is telling us what the system will do with a given frequency f. Its magnitude |H(w)|:

M(w)=|H(0)| = \/Re (H(w))* +1Im (H(w))* (7.11)

gives us information how the system will amplify/attenuate the signal with angular
frequency @ = 27 f, while its angle ZH(w):

®(0) = /H(w) = tan™! (W) (7.12)

gives information about the signal phase shift, i.e. its time delay on the system out-
put.

Analog or digital frequency filter design relies on constructing a circuit or
program which pass from its input to its output only selected band of frequen-
cies. The filters, as frequency selectors, are classified into: low-pass (only low
frequencies are passed), high-pass (high frequencies), band-pass (mid-range
frequencies from-to), and band-stop (all frequencies except a specified band).
In Fig. 7.1 all these filters types are shown as well as desirable (linear) and
undesirable (non-linear) filter phase response. When filter phase response is a
linear function of frequency in the pass-band, all frequencies which are passed
by the filter are delayed by the same amount of time and signal shape in the
pass-band is not changed (this issue is discussed below).

A M(o) D(w) [0

NL

Fig. 7.1: (left)—frequency filter types in respect to frequencies which are passed:
Low-Pass (LP), High-Pass (HP), Band-Pass (BP), and Band-Stop (BS), (right)—
linear (L), desirable, and non-linear (NL), undesirable, filter phase response [7]

7.2 Analog LTI Systems 159

A A
Do) unwrap(Paan(®))

B N N N N N N

Fig. 7.2: Illustration of phase response calculation problem. Phase (angle of complex
number) can be calculated only in the range [—7,7), in Matlab using functions
angle () ,atan2 () —then the phase unwrapping is necessary (unwrap ()) [7]

Angle of a complex number can be computed only in the range [, 7). For
this reason filter phase response, calculated using Matlab functions angle () ,
atan2 (), is wrapped and the unwrap () function must be used—see
Fig. 7.2.

Now let us look at analog systems from slightly different perspective. Let us
deduce an equation relating output signal y(¢) with input signal x(¢) for the linear
time-invariant (LTT) system. In system theory circuits are characterized by their im-
pulse response, i.e. response to an ideal input impulse, e.g. Dirac delta function,
which Fourier spectrum is equal to 1 for all frequencies. Therefore, when one does
frequency analysis of the system response to perfect impulse, she/he knows what
frequencies the system is passing and how they are deformed by the circuit. Let
us now analyze step-by-step relation between an input signal (left, blue) and LTI
system output (right, red):

INPUT — OUTPUT

o(t) = h(r) (impulse response definition)
O(t—1) = h(t—r1) (delayed by 7 due to time-invariance)
x(1)o(t—1) = x(t)h(t — 1) (delayed and scaled by constant x(7))

oo

oo +
/x(r)5(t —17)dT — /x(r)h(r —1)dt (sum of delayed and scaled signals)

x(t) = y(1) (generalization of input and output)

In summary:

160 7 Analog Filters

(7.13)

Therefore, the LTI system output y(¢) is result of convolving input x(¢) with
system impulse response A(t):

+o0

) = / (D)t —T)d. (7.14)

—o0

Performing continuous Fourier transform (7.8) on both sides of Eq. (7.14) and us-
ing setting £ =¢ — 7, we obtain the fundamental frequency consequence of signal

convolution:
Y(@) = / (/ x(r)h(z—r)dr) IOl gy

—oo \—oo

- / (/ x(r)e‘j“”dr> h(E)e 98 (dE +dT) = ...
_ (/x(r)e‘j"”df) (/h(g)e—fwidg) — X(w)-H(o). (7.15)

—oco

In summary, Fourier transform Y (w) of the LTT signal output is equal to mul-
tiplication of Fourier transform X () of the input signal and system frequency
response H(w) (Fourier transform of the system impulse response):

Y(w)=X(0) H(o). (7.16)

If H(ap) = 0 for any angular frequency @y, this frequency is removed by the system:
Y (wp) = 0 despite value of X (wy). Similarly, if H(wy) = 1 for any angular frequency
ay, this frequency is passed unchanged by the system since for it Y (ay) = X (ay),
despite value of X ().

If harmonic signal:

x(1) = e (7.17)
is processed by the LTI system described by Eq. (7.14):

(5= / h(T)x(i—1)dT= / h(7)ed ™) g7 — [/ h(r)ej“"’fdr} I — (@) e/

—oo —oo —oo

(7.18)

7.2 Analog LTI Systems 161
the system output is equal to:
y(1) = H(ay) - /™ = [M(CO()) .ejd’(wo)} TN = M () - /(P () (7.19)

It is the input signal scaled in amplitude by M (@) and shifted in phase by @(ay),
i.e. shifted in time by Ar = 2.
y(t) = M(ay) -/ ®0A) Ar = LEO(ZO)' (7.20)

Assuming that 7 = % is the sinusoid period, we can connect the phase shift
@ (ay) of any sinusoid with its time delay Az:

¢’(%)=At'wo=At‘27rfo:%‘2n. (7.21)

Coming back to our LTI system. The phase response is negative when the system
is delaying an input. When it is additionally linear:

D(0)=—a- o, (7.22)
Eq. (7.19) takes the following form:
y(t) = M(ay) -AeT®=%), (7.23)

which is telling us that the input signal is delayed at output by «. This delay does
not depend on signal frequency. So, if the system is linear, all his K components
with different amplitudes and frequencies will be delayed by the same value o:

M (o) Ape! =) (7.24)

M=

y(t) =

k=1

and, for M(awy) =1, k=1,2,...,K, the whole signal will be only delayed by « on the
system output and its shape will not be changed. This signal processing feature is very
important in many applications. For example in ECG analysis, because a medical
doctor is specially interested in signal shape while investigating heart work anoma-
lies, or in Hi-Fi acoustics where audiophiles do not want to lose space localization
of sound sources (our ears localize sound source by triangulation and relative delay
of the same sound in both ears).

Conclusion Linear phase response in the pass-band is a desirable feature of an
LTI system. It guarantees that the passing signal is delayed only and does not
have shape distortion.

W O J oUW N R

NN NN NNRERE R B R B RBBRBRBB
J 00k WN RO WU U A WN R O

N
@

162 7 Analog Filters

Exercise 7.1 (LTI System: Frequency Response, Impulse Response). In program 7.1
a simple analog LTI system is analyzed with a=[1,2], b=[3,4,5] in Matlab:

1s' +2

HO = 30 a5

Different filter characteristics are computed and plotted: its frequency and phase re-
sponse in frequency domain as well as its impulse and step response in time domain. In
Fig. 7.3 only system frequency and phase responses are shown. They allow us to verify
amplification/attenuation and phase shift of different signal frequency components on
the system output. Slightly modify values of system transfer function {b,a} coefficients
and observe changing shapes of system responses (plot them in the same figure). Fi-
nally, concentrate on frequency system response and try to find such values of {b,a} for
which system is passing from input to output only high-frequency input components,
e.g. higher than 1 Hz. Spend only 5 min on this task. You should accept an eventual
failure. Nothing is perfect. This LTI system design method for sure is not.

Listing 7.1: Analysis of simple analog LTI system/filter

% lab07 ex lti.m
clear all; close all;

b=1[1, 2];
a=[3, 4, 5];
f=0:0.01:10;
t=0:0.01:10; time of interest

f0=1; radius (wO=2+pixf0) for circle in s=j+w domain
[H h] =2aFigs(b,a,£f,t,1); % figures for analog filter

o°

coefficients {b} of the TF nominator polynomial
coefficients {a} of the TF denominator polynomial
frequencies of interest

1]
o° o°

o\°

o°

function [H,h] = AFigs(b,a, £, t,£0)

% Position of zeros and poles
z = roots(b)/ (2#01) ; p = roots(a)/ (2#01); % scaling for frequency
phi = 0:pi/1000:2%01; si = fOxsin(phi); co = £0xcos(phi) ;

figure; plot(real(z),imag(z), ' ro’ ,real(p),imag(p), b+’ ,co,si, 'k-');

xlabel('real()’); xlabel('imag()’); title('TF Zeros (o) & Poles (%)’); grid; pause

% Frequency response

w = 2#01xf; s = Jww; % angular frequency, Laplace transform variable

H = polyval(b,s) . foolyval(a,s); % frequency response H(f) = H(s=j*2#pixf)

% H = fregs(b, a, 2#pixf) ; % Matlab function

% Figures

figure; plot(f,absH)); xlabel('f (Hz)’); title(’ |H(f)|’); grid; pause

figure; plot(f,204logl0(abs(H))); xlabel('f (Hz)’); title(’ [H(f)| (@B)’); grid; pause

figure; semilogx(E,20+loglO(@bs(H))); xlabel('f (Hz)’); title(’ [H(E)| @B)’); grid;
pause
figure; plot(f,angle()); xlabel('f (Hz)’); title(’\angle H(f) (rd)’); grid; pause

29
30
31
32
33
34
35
36
37
38
39
40

7.3 RLC Circuit Example 163

% Impulse response - functions impulse() and step() from Control Toolbox

sys=tf(b,a);
figure
subplot(211); impulse(sys), % plot impulse response h(t)
subplot 212); step(sys), pause % plot step response u(t); test also:
= impulse(sys,t) ; % calculate impulse response h(t)
flgure, plot(t,h); grid; xlabel('t (s)’); title('Impulse response h(t)’); pause
u = step(sys,t) ; % calculate step response u(t)

figure; plot(t,u); grid; xlabel('t (s)’); title(’Step response u(t)’); pause

end

\S

0 [H(D)| (dB) o < H(f) (rd)
O
B T R R TR TR PRP PR PP E PP
CLSE
102 107! 10° 10! 0 1 2 3 4 5
f (Hz) f(Hz)

Fig. 7.3: Frequency response (left) and phase response (right) of an LTI system
analyzed in Exercise 7.1

7.3 RLC Circuit Example

Let us analyze the RLC circuit—sequential connection of resistance R, inductance
L, and capacitance C—presented in Fig. 7.4. The input voltage u(¢) causes flow of
a current i(r), which generates voltages ug (), ur(¢), and uc(z) upon elements R,L,C
that are proportional: to the current for R, to the current derivative for L, and to the
bounded integral from O to ¢ for C. From Kirchhoff voltage law, the sum of this
voltages is equal to the input voltage u;,(r) while the output voltage u,, () is equal
to the capacitor voltage uc(¢) only:

in(t) = ug(t) + ur (1) + uc(t) = R-i(z) +Ld;(tt)4 é O/ i(1)dt (7.25)

13
O/ (7.26)

Uout (t = uC

@) \

164 7 Analog Filters

up(?) u(7)

i(f)

Fig. 7.4: Sequential connection of R, L,C elements, the RLC circuit [7]

After performing the Laplace transform (7.3) of both sides of Egs. (7.25), (7.26) and
after using Laplace transform features (7.4):

Uin(s) =R-I(s)+sL-I(s)+ é (s) = [R+SL+ é] -1(s) (7.27)
Uous) = Uels) = | 5| 169 (7.28)

one obtains the transfer function of RLC circuits:

1

Hy =Yl @ ' (7.29)
Un(s) R+Ls+g 1+RC-s+LC-s?
and its frequency response after using equality (7.7):
1
H(w) = Ynl@) 1 = .22 . (130

Un(®) 14RC-(jo)+LC-(jo)* 1=+ E(jo)+(jo)

Eq. (7.30) tells us what the circuit is doing with input signal component with angular
frequency . We can vary value of © in (7.30), calculate H(w), and plot it.

After introduction of the following new variables: @my—circuit resonance angular
frequency of un-damped oscillations and {—circuit damping, as well as A,d, ©;—
amplitude, damping and angular frequency of circuit impulse response, having a
form of damped sinusoid:

@ =1/VIC, &=(R/L)/(a), A= J% d=Eoy, @ =182
(7.31)
we get from Eq. (7.31):
2
H(w) = % — Ao (7.32)

W} +26wp(jo) + (jo)? (d+jo)+of

The following signal has the continuous Fourier transform (7.8) equal to (7.32):

(7.33)

hr) = Ae 4singt for >0,
n 0 for t <0,

7.3 RLC Circuit Example 165

therefore (7.33) represents the impulse response of the RLC circuit. In Fig. 7.5 there
are presented frequency and time characteristics for the RLC circuit from Fig. 7.4,
having transfer function (7.32), un-damped resonance frequency ay = 1, and damp-
ing & =0.3.

What the RLC filter will do with arbitrary one frequency component, for example,
fo =10 Hz one?

Input: x(¢) =sin(27- fo-1) =sin(2w-10-7)
Output: y(¢) = |H(fo)|-sin(2m- 101+ Z(H(fy))) =A-sin(2z-10-1+ @)

The output signal amplitude is A = |H(fy)| and the new phase is ¢ = Z(H(fp))-

[HGjw)|

O(jo) [rd]

Fig. 7.5: Frequency and time characteristics of RLC circuit from Fig. 7.5, with trans-
fer function (7.32), having un-damped resonance frequency wy = 1 and damping
£ =0.1,0.3,0.5. From left to right, up to down: magnitude response (amplifica-
tion/attenuation), response for Dirac impulse function, phase response (delay), re-
sponse for unitary step excitation [7]

W © o0 U W N R

A e s
o J 0 Ul bk W N o

166 7 Analog Filters

Exercise 7.2 (RLC Circuit). In program 7.2 there are computed and visualized different
characteristics of an exemplary RLC circuit. Values of its elements are chosen arbitrarily.
Run the program and observe figures. Calculate the angular frequency @, and ®; as
well as circuit damping & and signal impulse response damping d. Change RLC values
in order to obtain lower and higher circuit damping &. Plot figures similar to Fig. 7.5.
Finally, try to change {R, L,C} values and to obtain a low-pass filter with cut-off angular
frequency wsgg = 1 rad/s.

Listing 7.2: Analysis of analog RLC circuit

&~

% 1ab07 ex rlc.m

clear all; close all;

R =10; % resistance in chms

L = 2%x10™ (-3); % inductance in henrys

C = 5«10"(-6); % capacitance in farads

w0 = 1/sgrt(IxC); £0 = w0/ (2%p1), % undunped resonance frequency
ksi = (R/L)/ (2#w0), % should be smaller than 1

wl = wOssart(1-ksi™2); f£1 = wl/(2%pi), pause % damped resonance frequency
b=1[11; % coeffs of nominator polynomial

a=[IxC, R¥C, 1]; % coeffs of denominator poly (from the highest order)
%z = roots(b), p = roots(a), gain = b(1)/a(l), % coeffs --> roots, gain
%[z,p,9ain] = tf2zp(b,a), % the same in one Matlab function

£=0:1:10000; t=0:0.000001:2.5¢-3; £0=0;
[H h] =2aFigs(b,a,£f,t,£0); % figures for analog filter

7.4 Analog Filter Design by Zeros and Poles Method

In analog filter design we would like to obtain filter frequency response character-
ized by

e good flatness in the filter pass-band, i.e. gain close 1,
e good sharpness of the filter transition from pass-band to stop-band,
¢ very high attenuation in the stop-band, i.e. gain ~ 0.

However, it is difficult to propose “good/compact” equations for choosing such
values of polynomial coefficients {b,,,a,}, which ensure required frequency features
of the filter. It is much easier to design system with a required H(f), designing roots
{zm, pn} of the transfer function (TF) polynomials:

7.4 Analog Filter Design by Zeros and Poles Method 167

Y(s) _ bm-(s—z)(s—22) .- (s —2m)
H(s) = —2 = . (7.34)

O=X6 vl p) o)
Why? Because system transfer function H(s), given by Eq. (7.34), becomes the
system frequency response (system frequency characteristics) after setting (7.7)

s=jo=j2rnf:

V(o) by (jo—z1)(jo—2)-..-(jo—zu)
X(0) ay-(jo—p1))(jo—p2)-..-(jo—pn)

The analog filter design by TF zeros-poles placement is illustrated in Fig. 7.6.
For given value of o we have in Eq. (7.35) many complex-value vectors:

H(w)=

(7.35)

O
)

JO —2m = Bpel®, jo—p,=A,el?, (7.36)

and we can express magnitude and phase of the filter frequency response Eq. (7.35)
as follows:

M .
by 11 Bmejem (
H(jo) = M(w)e/®©) = "1 = : (1.37)
an 1 Ane'iq)"
1

n=

From Egq. (7.37) the frequency response magnitude and phase are equal to:

1 m@) 4 1mes)
21
) jo Jax
p1 .
Re(s) s Re(s)
pl*/ pl*AA
Z1*
Ml jow i jo

=L

Fig. 7.6: Tllustration of analog filter frequency response H(®) calculation in “s
plane: (left) magnitude response, (right) phase response. The filter transfer function
H (s) has zeros marked with blue dots (e) and poles marked with red crosses (x) [7]

168 7 Analog Filters

M
bM H Bm M N
Mo)=—""— @)=Y 0u— 0 (7.38)
ay [T An "=
n=1
Therefore, the filter amplification/attenuation for a given frequency is proportional
to the ratio of two products of complex vector magnitudes: product of distances of
jo to all TF zeros z,, divided by product of distances of jw to all TF poles p,. In
turn, filter phase shift for a given frequency is difference of two sums of complex
vector angles: sum of angles of TF zeros minus sum of angles of TF poles.

When frequency is changing, the jo = j2xf is moving along the imaginary axis
in the complex-value plane. Therefore, it is easy to put on its way zero zy = j27f;
or pole p; = j2xnf; and turn to zero any term in the nominator and denominator of
(7.35): (jo—2z¢) =0 or (jo— p;) =0. This causes complete removal of signal with
frequency f; on the system output and infinite amplification by the system (division
by zero) of signal with frequency f;. Since we want to avoid infinite amplification,
we put the TF pole close to imaginary axis at left half-plane: p; = —§, + j27f;, where
& is a small number, and we divide in (7.35) by small number: as a result the TF
value is high (amplification!) but not infinite. The analog system stability requires
placement of the TF poles in the left half-plane of complex variable s (— &, negative
real part!) because only in such situation the system impulse response decays to
zero after some time. From the system stability point of view, position of TF zeros
is arbitrary.

For Questioning The LTI system with transfer function (7.34) has impulse response
of the form:

0 dar<0,

crePd dla t >0, (7.39)

where p; denotes roots of the TF denominator polynomial. When we assume that
they are complex-value, i.e. p; = oy + jw,, we obtain

0 dla t <0,
hk(t) - { Cke<6k+jwk)t dla ¢ Z 0. (740)

Because roots occur in complex-conjugated pairs (explanation why is given below),
we have (for ¢; = uy + jvg, Br = atan (%))

I () + 1) (£) = ce(OO 4 (i1 — 2, [12 432 0O . cos (apt + B) . (741)

Each pair of impulse response components /;(¢) and h,((*)(t) is decaying only when
o, < 0. Therefore TF roots p; can lie only in left half-plane of Laplace variable s.

7.4 Analog Filter Design by Zeros and Poles Method 169

Single Frequency Attenuate/Amplify Analog Filter Design If we want to sup-
press signal with frequency f; on the system output, it is sufficient to set in
Eqgs. (7.34), (7.35):

u=j2rfi, =2 (7.42)

since for jo = j2rf) the term (jo —z;) = 0. If we want to amplify signal with fre-
quency f> on the system output, it is sufficient to set:

p1=—-0+2nfs, p2=p] (7.43)

since for jo = j2n f> the term (jow — p;) = 6 and we will be dividing in Eq. (7.35) by
a small number 6 causing that the TF value for frequency f, will be high, the higher
the smaller & is. The very important question is why in Egs. (7.42), (7.43) zp =z} and
p2 = pj, so why we need a pair of conjugated zeros and a pair of conjugated poles
to remove (f}) and amplify (f>), single frequency components? Because practical
system realization requires polynomial with real-values coefficients {b,,,a, } and this
is obtained when zeros and poles occur in conjugated pairs:

(s—(c+jd)) (s— (c— jd)) = * —s(c— jd) — s(c+ jd) + (c+ jd)(c— jd) = ... (7.44)
=1-82=2c-s+ (> +d?). (7.45)

We see that roots ¢ + jd of the polynomial (7.45) of complex variable s are complex,
but polynomial coefficients [1,—2c,c? +d?] are real.

Simple Band-Pass Filter Design Example Having in mind all above recommen-
dations, let us try to propose by TF zeros & poles placement of an analog filter,
amplifying signal components having angular frequency close to wy = 10 rd/s and
attenuating the remaining ones. To achieve this goal, we can place three TF poles
close to @y in the left half-plane of complex variable s and one TF zero left and right
to them:

pra=—05%795 psa=—1+j10; pse=—05+j105
21p==%j5, z34==%jl5

and obtain the following transfer function:

(s = j5)(s +J5)
(s+0.5—79.5)(s+0.5479.5)(s+1—j10)(s+ 1+ j10) "
(s—j15)(s+j15)
"(s4+0.5—j10.5)(s+0.5+j10.5)°

H(s)=

W W J oUW N

e e
® 90 Uk WN RO

170 7 Analog Filters

[H(H)| (dB H(f)| (dB)
50 :

0

-50F Lo T

-50

=100

-100

-150H

0 2000 4000 6000 8000 10000
f(Hz)

-150

0 2000 4000 6000 8000 10000
f (Hz)

Fig. 7.7: Frequency responses of two filters designed in Exercise 7.3: (left) the am-
plifier (1000 and 2000 Hz) and attenuator (3000 and 4000 Hz) of selected frequen-
cies, and (right) band-pass filter in the frequency range from 1000 Hz to 2000 Hz
(7]

Exercise 7.3 (Design of Analog Filters by TF Zeros & Poles Placement). In pro-
gram 7.3 three different analog filters are designed using the ZP method. The first of
them is simple analog amplifier and attenuator of selected frequencies. The second and
the third have ambitions to be a low-pass and band-pass analog filters. Obtained fre-
quency responses of the first and second filter are shown in Fig. 7.7. Run the program.
Do recommended exercises. Finally, try to design a good low-pass filter for cut-off an-
gular frequency wzgg = 1 rad/s.

Listing 7.3: Design of analog filters by appropriate placement of transfer function
zeros and poles in complex s-plane

% 1ab07 ex zp design.m
clear all; close all;

task = 1; % l=Renmove/Anplify, 2=LP, 3=BP
if (task==1) % Sinple ZP design: remove 3000, 4000 Hz, amplify 1000, 2000 Hz
z = j*2%pix [3000 4000] ; z=[zconj(z) 1;
p=1[-10-10] + j*2#0ix[10002000 1; p= [pconj) 1;
b =poly(z); a =poly();
b = 100%b / abs(polyval(b, j*2%0ix2000) / polyval(a,j*2%0ix2000)) ;
end
% Design filter rejecting 1500 Hz and amplifying 3000 Hz.

if (task==2) % ZP design of LowPass filter [0 - 1000 Hz]
z = J*2#0ix [2000 3000 1; z=[zconj@ 1;
p = [-2000 -2000 -400] + j*2+4pix [400 7001000 1; p = [pconj(p) 1;
b =poly(z); a =poly(p);
b =b / absfpolyval(b,0) / polyval(a,0));

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

7.5 Butterworth, Chebyshev, and Elliptic Analog Filters 171

end
% Using ZP method design a good analog HighPass filter for [2000 ...] Hz.

if (task==3) % ZP design of BandPass [1000 Hz - 2000 Hz]
Z = J*2#0ix [250 500 2500 2750 1;

z=[zconj(z) 1;

p = [-450-2000 -3500 -2000 -400] + j*2#pix [1000 1250 1500 1750 2000] ;
p=[pconj) 1;
b

b

=poly(z); a =poly();
=D / abs(polyval(b,j*2%pix1500) / polyval(a,j+*2#pix1500));

% Figures
f=0:1:10000;
t=0:1e5 : 50e3; time of interest

£0 = 1000; radius (wO=2#pixf0) for circle in s=jxw domain
[H h] =AFigs(b,a£f,t,1); % figures for analog filter

o\°

frequencies of interest

o°

o\°

Conclusions Proper placement of roots “z;” of the nominator polynomial (ze-
ros of transfer function) is used for frequency attenuation. Their position is not
limited. Proper placement of roots “p,” of the denominator polynomial (poles
of transfer function) is used for frequency amplification. Position of TF poles
is allowed only in left half-plane because then the system impulse response de-
cays to zero. Manual “zeros & poles placement” design method of the H(s) is
simple but very time-consuming.

Uff! We have just finished the introduction.

7.5 Butterworth, Chebyshev, and Elliptic Analog Filters

Standard analog filters are designed to pass only signal components with frequencies
(see Fig. 7.8): lower than fy (low-pass, LP), higher than f, (high-pass, HP), only in
the range from frequency f; to frequency f, (band-pass, BP), or out of this frequency

Low-Pass High-Pass
Filter Filter

Frequency (Hz)

Fig. 7.8: Standard analog filter types: what frequencies will be passed?

172 7 Analog Filters

+ Mirw)
143,
1 _\/\
1-3,
8 b
I »
0 ®, O o [rd-Hz]
0 5 £ / [Hz]

Fig. 7.9: Technical specification of requirements in analog filter design: §,, ;—
allowed level of ripples in the pass-band and in the stop-band, w,, w,—angular fre-
quencies of the pass-band end stop-band beginning (giving filter transition width)

(7]

range (band-stop, BS, in some frequency range). Typically a so-called normalized
low-pass prototype filter is designed first (always for @y = 1), then it is transformed to
any other filter type using frequency transformations. Using one more transforma-
tion, e.g. the bilinear one, an analog filter can be transformed into a digital filter.

Typical specifications used in analog filter design are presented in Fig. 7.9. The
magnitude frequency response of the filter should fits into the runnel of requirements,
concerning allowed oscillations in the pass-band (8,) and stop-band (&;) as well as
width of the transition band (w; — m,).

Exist special mathematical rules for appropriate placement of TF zeros & poles
in low-pass (@y = 1) prototype filters. We can choose the following prototype filters:

¢ Butterworth—only poles (on circle), no oscillations in |H(f)|, not sharp,

e Chebyshev type 1—only poles (on ellipse), oscillations in pass-band, sharper,

e Chebyshev type 2—poles & zeros, oscillations in stop-band, sharper,

e Cauer—Elliptic—poles & zeros, oscillations in pass-band and stop-band, very
sharp.

In Fig. 7.10 different LP prototype filter (v = 1) design strategies are shown in
consideration of TF zeros and poles placement. In turn, LP prototype filter frequency
responses, designed by different methods, are shown in Fig. 7.11. More oscillations
the filter has in the pass-band and in the stop-band of its magnitude response, the
sharper transition edge it has. Butterworth (no oscillations, non-sharp) and elliptic
(oscillations everywhere, very sharp) filters are mutual reverses.

7.5 Butterworth, Chebyshev, and Elliptic Analog Filters 173

The Analog Filter Design Procedure Consists of the Following Steps

1. filter specification: first, we choose a Low-Pass filter prototype (Butterworth,
Chebyshev 1/2 or Cauer—elliptic), its parameters (e.g. number N of TF poles
and oscillation levels), and target frequency characteristics (Low-Pass, High-
Pass, Band-Pass, Band-Stop),

2. design of prototype filter zeros & poles: then, we d