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Preface

These proceedings contain all accepted submissions to the conference paper track
of the 29th International Conference on Inductive Logic Programming (ILP 2019).1

ILP is a type of symbolic machine learning in which logic of first or higher order is
used to represent both the data and the models (theories) learnt. The main conference
was held in Plovdiv, Bulgaria, over three days, 3–5 September 2019, and was followed
by two tutorials on 6 September 2019.

The ILP 2019 call for papers solicited several types of submissions. This volume
consists of 6 long conference papers of up to 15 pages, as well as 5 shorter, more
focused contributions of up to 9 pages. Successful submissions to the journal track
of the conference have formed the ILP 2019 special issue of the Machine Learning
Journal,2 which was edited by Dimitar Kazakov and Filip Železný. Eight late-breaking,
4-page long abstracts were presented at the conference, and made available on the
White Rose Research Online repository.3 The conference also included invited talks by
Atanas Kiryakov and Svetla Boytcheva (Ontotext) on reasoning over knowledge
graphs, and Preslav Nakov (QCRI/HBKU) on detecting fake news “before it was
written.” Presentations of three previously published articles (New Generation
Computing, IJCAI 2019, JELIA 2019) completed the picture of current ILP research.

The overall evidence is that the field has been advancing in a number of directions.
These include work on formalisms other than the most commonly used Horn-clause
subset of first order logic, e.g. the use of second order logic in meta-interpretive
learning, learning in description logics, or the efficient use of propositionalization. The
statistical relational learning and probabilistic logic programming paradigms have
continued to attract attention, and some of the underlying formalisms are being
extended to handle a broader range of data types. The common issue of high com-
putational complexity has also been addressed through the use of concurrency or more
efficient algorithms underlying the refinement operators. A general recent trend has also
been reflected in the application of ILP to Ethics in AI.

Two best student paper awards were awarded to contributions to these proceedings
thanks to the generous sponsorship of the Machine Learning Journal. The 2019 ILP
best student paper in the short papers (conference track) category was awarded to Yin
Jun Phua and Katsumi Inoue’s contribution Learning Logic Programs from Noisy State
Transition Data. The 2019 ILP best student paper award in the long papers (conference
or journal track) category was won by Stefanie Speichert and Vaishak Belle’s contri-
bution Learning Probabilistic Logic Programs over Continuous Data. Submissions
of the latter type were also eligible for the best paper award, which was sponsored by
our publisher, Springer. This award was received by Andrew Cropper and Sophie

1 https://ilp2019.wordpress.com.
2 https://link.springer.com/journal/10994/.
3 https://eprints.whiterose.ac.uk/.

https://ilp2019.wordpress.com
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Tourret for their article Logical Reduction of Metarules, which appeared in the ILP
2019 special issue of the Machine Learning Journal.

We would like to thank the members of the Organizing Committee, Bisera
Stoyanova (Medical University of Plovdiv, Bulgaria), Ivanka Vlaeva (South-West
University Neofit Rilski, Bulgaria), and Raina Hadjikinova (University of Food
Technologies, Bulgaria) for their tireless support; the Plovdiv University of Food
Technologies as represented by its Vice-Rector, Prof. DSc Nikolay Menkov, for
hosting the hands-on tutorials; and Ms. Svetla Malinova of the Ramada Plovdiv Tri-
montium Hotel for her professionalism and all-round assistance. The advice of old
hands at organizing ILP was very much appreciated, even if occasionally ignored to our
own peril. Lastly, but certainly not least, we are grateful to Springer for the sponsorship
and editorial support, which, along with the all-important contribution of all authors
and reviewers have made these proceedings and the whole conference possible.

September 2019 Dimitar Kazakov
Can Erten

vi Preface
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CONNER: A Concurrent ILP Learner
in Description Logic

Eyad Algahtani(B) and Dimitar Kazakov

University of York, Heslington, York YO10 5GH, UK
ea922@york.ac.uk, kazakov@cs.york.ac.uk

https://www-users.cs.york.ac.uk/kazakov/

Abstract. Machine Learning (ML) approaches can achieve impressive
results, but many lack transparency or have difficulties handling data of
high structural complexity. The class of ML known as Inductive Logic
Programming (ILP) draws on the expressivity and rigour of subsets of
First Order Logic to represent both data and models. When Description
Logics (DL) are used, the approach can be applied directly to knowledge
represented as ontologies. ILP output is a prime candidate for explainable
artificial intelligence; the expense being computational complexity. We
have recently demonstrated how a critical component of ILP learners
in DL, namely, cover set testing, can be speeded up through the use of
concurrent processing. Here we describe the first prototype of an ILP
learner in DL that benefits from this use of concurrency. The result is a
fast, scalable tool that can be applied directly to large ontologies.

Keywords: Inductive logic programming · Description logics ·
Ontologies · Parallel computing · GPGPU

1 Introduction

Graphic processing units (GPU) can be used with benefits for general purpose
computation. GPU-based data parallelism has proven very efficient in a number
of application areas [1]. We have recently proposed a GPU-accelerated approach
to the computation of the cover set for a given hypothesis expressed in ALC
description logic, which results in a speed up of two orders of magnitude when
compared with a single-threaded CPU implementation [2]. The present article
combines this approach with an implementation of a well-studied refinement
operator and a search strategy for the exploration of the hypothesis space. The
result is the first version of a GPU-accelerated inductive learner, further on
referred to as CONNER 1.0 (CONcurrent learNER).

In more detail, here we present the first complete description of the way
binary predicates (or roles in description logic parlance) are handled by our
cover set procedure, which is now extended beyond ALC to make use of car-
dinality restrictions (e.g. OffpeakTrain � ≤ 6 hasCar.Car) and data properties
(e.g. Bike � numberOfWheels = 2). We test the speed and accuracy of our
c© Springer Nature Switzerland AG 2020
D. Kazakov and C. Erten (Eds.): ILP 2019, LNAI 11770, pp. 1–15, 2020.
https://doi.org/10.1007/978-3-030-49210-6_1
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2 E. Algahtani and D. Kazakov

learner on a combination of synthetic and real world data sets. To emphasise the
low cost of adoption of this algorithm, we have run the tests on a commodity
GPU, Nvidia GeForce GTX 1070.

The rest of this paper is structured as follows: Sect. 2 covers relevant work,
Sect. 3 completes the previously published description of how the hypothesis
cover set is computed [2] with the algorithms handling value restriction and
existential restriction, and tests the speed of their execution. Section 4 extends
the list of operators with the algorithms for handling the cardinality restriction
and data property operators. Section 5 describes a complete GPU-accelerated
ILP learner in DL, CONNER, and evaluates its performance, while Sect. 6 draws
conclusions and outlines future work.

2 Background

CONNER lays at the intersection of ILP, parallel computation, and description
logics (Fig. 1). In this section, we review the notable overlaps between these
three areas. Algathani and Kazakov [2] can be further consulted for a suitable
overview of the basics of GPU architecture.

Fig. 1. Intersection of ILP, parallel computation and DL [3,5,8–10,16–24].

Arguably, the implementation of an ILP algorithm can be defined by the
ways it approaches hypothesis cover set testing, the application of its refinement
operator, and the search algorithm used to explore the hypothesis space. While
all three are amenable to parallelisation, here we focus our efforts in this direction
on the first component, and with a description logic as a hypothesis language.
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Description Logics (DL) is a family of subsets of first order logic that are
used to represent knowledge in the form of ontologies. ALC (Attributive Lan-
guage with Complement) is a commonly used subset of DL, which makes use of
propositional operators, as well as two binary operators, existential restriction
and value restriction. As ontologies continue to gain popularity, e.g. in the form
of linked open data, this strengthens the case for learners that can work directly
with this type of data. A few notable examples of ILP learners in DL follow.

DL-FOIL [3] is an adaptation of the classical ILP algorithm FOIL [4] to DL as
data and hypothesis language. It still uses a top-down refinement operator with
search guided by information gain, but the latter is modified to accommodate
the use of the Open World Assumption (OWA).

The DL-Learner [5] is a framework for learning in DL. The framework allows
the user to select from different reasoners to handle inference. It is also possible to
choose from four learning algorithms: OWL Class Expression Learner (OCEL),
Class Expression Learning for Ontology Engineering (CELOE), EL Tree Learner
(ELTL), and Inductive Statistical Learning of Expressions (ISLE). One can also
choose from different refinement operators. The framework provides facilities to
handle large datasets by the use of sampling.

APARELL [6] is an ILP algorithm for the learning of ordinal relations (e.g.
better than [7]) in DL. The algorithm borrows ideas from the Progol/Aleph pair
of algorithms about the way hypothesis search operates. APARELL processes DL
data directly from OWL ontologies, and can read any format which is supported
by the OWL API.

There have been several attempts to implement reasoners in DL using par-
allel computation [8,9]. The most relevant effort here is Chantrapornchai and
Choksuchat’s [10] recently proposed GPU-accelerated framework for RDF query
processing, TripleID-Q. The framework maintains a separate hash table for each
of the three arguments (subject, predicate, object) of the RDF triples. Each triple
is represented through the three hash keys (all integers) and stored in the shared
memory of the GPU. RDF queries are mapped onto that representation and the
data is split among multiple GPU threads to retrieve the matching triples in par-
allel. In this context, the work of Mart́ınez-Angeles et al. on the use of GPU to
speed up cover set computation for first-order logic ILP systems, such as Aleph,
should also be noted [11].

3 Concurrent, GPU-Accelerated Cover Set Computation

A GPU can manipulate matrices very efficiently. Here we complete the descrip-
tion of the GPU-powered approach first presented by Algahtani and Kazakov [2],
which aims at speeding up the calculation of the cover set of hypotheses expressed
in ALC description logic. We also present experimental results on the perfor-
mance of this algorithm.

DL allows one to describe concepts Ci defined over a universe of individuals
Ii, and to define roles relating individuals to each other. Concept membership
can be represented as a Boolean matrix M of size |C|×|I| (see Fig. 2). Using this
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representation, it is possible to employ data parallelism for the application of
logic operations to concepts. We have already shown how the three propositional
operators {�, �, ¬} can be implemented, and tested the speed with which they
are computed [2]. Here we describe the concurrent implementation of the value
restriction operator (∀r.C) and the existential restriction operator (∃r.C).

Either restriction operator takes a role and a concept as input, and makes
use of the concept matrix M and another matrix, R, storing all role assertions
(see Fig. 2). The matrix is sorted by the role. As a consequence, all assertions
of a given role are stored in a contiguous range of rows. This facilitates a more
efficient GPU memory access pattern (namely, coalesced memory access). For
each role, the start and end row indices corresponding to its range of rows are
stored in a hash table, H, and can be retrieved efficiently using the role name
as key.

Algorithm 1 shows the implementation of the existential operator. Its first
step is to allocate memory for the output array result and set all values to 0
(representing False). This is done in a concurrent, multi-threaded fashion. The
range of rows in R storing all assertions of Role is then looked up in H (in
O(1) time). After that, the role assertions in R within the role range are divided
among a number of threads, and for each such assertion, a check in matrix M
is made whether IndvB belongs to Concept (i.e. the concept in the existential
restriction). The result of this step is combined through OR with the current
value in row IndvA of the output array result and stored back there.

This implementation avoids the use of conditional statement, which could
slow down the process. At the same time, it is important that an atomic OR is
used to avoid a race-condition situation between the individual threads.1

C1 C2 C3 IndvA Role IndvB DP1 DP2 DP3

Indv1 0 1 0 6 1 46 Indv1 3 2.5 1

Indv2 1 1 0 6 1 5 Indv2 7 3.7 1

Indv3 0 0 1 9 2 14 Indv3 0 -0.5 0

(a) Table M (b) Table R (c) Table D

Fig. 2. Main data structures in the GPU memory

The implementation of the value restriction operator ∀Role.Concept is anal-
ogous to the existential restriction, with the only difference being that all initial
values in the result array are set to 1 (i.e. True), and an atomic AND operator
is applied instead of OR.2

1 Here we use the CUDA built-in atomic function atomicOR(A,B), which implements
the (atomic) Boolean operation A := A OR B.

2 Note that this implementation returns the correct result for the following special
case: if �IndvB : Role(IndvA, IndvB) then IndvA ∈ ∀Role.Concept.
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Algorithm 1 Existential Restriction Cover Set (∃Role.Concept)
procedure ParallelExistentialRestriction(Concept,Role)

Given:

M: Boolean 2D matrix of size (individuals x concepts)

R: Integer 2D matrix of size (# of property assertions x 3) // each row

// representing a triple: subj,role,obj

HT: hash table // Role -> (Offsets for first and last entries in R)

Concept: Pointer to a column in M

Role: Integer

result: Boolean 1D array of size NumberOfIndividuals

Do:

parallel_foreach thread T_j

| for each individual i in result

| | set result[i] = 0

| endfor

endfor

set role_range := HT[Role] // get range of Role assertions in R from HT

parallel_foreach thread T_j

| foreach roleAssertion in role_range

| | set IndvA := R[row(roleAssertion),1] // first column of roleAssertion

| | set IndvB := R[row(roleAssertion),3] // third column of roleAssertion

| | set local_result := M[row(IndvB),Concept]

| | atomicOR(result[row(IndvA)],local_result)

| endfor

endfor

return result(1..numberOfIndividuals)

Table 1. Execution times for computing the cover sets of ∃has car.Long and
∀has car.Long (average of 10).

Data set size Execution time [ms]

Total number of
individuals

Total number of
has car assertions

Total number of
all role assertions

∃has car.Long ∀has car.Long

mean (stdev) mean (stdev)

50 30 149 0.49 (0.08) 0.48 (0.08)

410 300 1,490 0.56 (0.10) 0.50 (0.10)

4,010 3,000 14,900 0.50 (0.06) 0.51 (0.08)

40,010 30,000 149,000 0.55 (0.02) 0.55 (0.03)

400,010 300,000 1,490,000 0.97 (0.02) 1.02 (0.03)

4,000,010 3,000,000 14,900,000 4.82 (0.05) 5.85 (0.28)

8,000,010 6,000,000 29,800,000 10.55 (0.34) 11.38 (0.48)
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Fig. 3. Computing existential (∃) and value (∀) role restrictions

To evaluate the execution times of the two restriction operators, we use a
dataset consisting of multiple copies of Michalski’s eastbound/westbound trains
dataset [12], here in its DL representation [5]. The dataset consists of 12 concepts
(unary predicates), and 5 roles (binary predicates); these predicates describe 10
trains (5 eastbound and 5 westbound) and their respective cars. The results are
shown in Table 1 and plotted in Fig. 3. It should be noted that only the number of
assertions for the given role has an impact on the execution times when matrix
R is traversed: while matrix M grows with the number of individuals, access
time to each row remains the same as, internally, an individual is represented
directly with its row index in M . Also, the actual content of the assertions for
the role in question makes no difference, which is why this dataset is appropriate
here. The results show that the execution times remain virtually constant up to
a point, possibly until the full potential for parallel computation in the GPU is
harnessed, and then grow more slowly than O(n) for the range of dataset sizes
studied.

4 Extending the Hypothesis Language

This section describes how the hypothesis language has now been extended to
include cardinality and data property (also known as concrete role) restrictions.
The result is a type of description logic referred to as ALCQ(D).

4.1 Cardinality Restriction Support

The cardinality operator restricts for a given role the allowed number of asser-
tions per individual. A cardinality restriction can be qualified (Q), or unquali-
fied (N), where N is a special case of Q. In Q, any concept can be used in the
restriction. While in N , only the Top Concept is used. There are three kinds of
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cardinality restrictions: the minimum (≥), maximum (≤), and the exactly (==)
restriction. Algorithm 2 implements the first of these three.

Algorithm 2 Qualified Cardinality Restriction Cover Set
procedure ParallelCardinalityRestriction(Concept,Role,n)

Given:

M: Boolean 2D matrix of size (individuals x concepts)

R: Integer 2D matrix of size (individuals x 3) // Storing (subj,role,obj)

H: hash table // Role -> (Offsets for first and last entries in R)

Concept: Pointer to a column in M

Role: Integer

n: restriction number

result: Boolean 1D array of size NumberOfIndividuals

Do:

parallel_foreach thread T_j

| for each individual i in result

| | set result[i] = 0

| endfor

endfor

set role_range := H[Role] // retrieve range of Role assertions in R from H

parallel_foreach thread T_j

| foreach roleAssertion in role_range

| | set IndvA := R[row(roleAssertion),1] // first column of roleAssertion

| | set IndvB := R[row(roleAssertion),3] // third column of roleAssertion

| | set local_result := M[row(IndvB),Concept]

| | atomicAdd(result[row(IndvA)],local_result)

| endfor

endfor

parallel_foreach thread T_i

| foreach individual I_j in thread T_i

| | result(row(I_j)):= result(row(I_j)) >= n // OR =< n OR == n

| endfor

endfor

return result(1..numberOfIndividuals)

It first clears the result array (just as in the existential restriction). It then
uses the CUDA atomic addition atomicAdd(A,B) to increment the counter of the
corresponding IndvA for every assertion matching the role and concept. The val-
ues in the result-array are then compared with the cardinality condition, and
the counter for each individual is replaced with 1 or 0 (representing True/False)
according to whether the condition in question has been met. The condition in
this last loop determines the type of cardinality restriction: min (≥), max (≤),
or exactly (==).
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4.2 Data Property Restriction Support

Data properties (or concrete roles) map individuals on to simple values. In this
implementation, we (currently) limit the range of values to numerical ones: inte-
ger, float and Boolean; supporting other types like Strings, is considered for
future work. In order to handle such properties in the GPU, the individuals and
their data properties are mapped on to a matrix, D (see Fig. 2), in a way similar
to matrix M . Each cell in the new 2D matrix, is of float datatype, as it is inclu-
sive to integers and Booleans. As with the cardinality restrictions, there are three
kinds of data property restrictions: min, max, and exactly. Algorithm 3 shows
how the minimum data property restriction is implemented, with the other two
requiring only a trivial variation.

Algorithm 3 Data Property Restriction Cover Set
procedure ParallelDataPropertyRestriction(Property,Value)

D := 2D matrix (individuals x data properties)

parallel_foreach thread T_i

| foreach individual I_j in thread T_i

| | result(row(I_j)) := D(row(I_j),column(Property)) >= Value //OR =< OR ==

| endfor

endfor

return result(1..numberOfIndividuals)

In Algorithm 3, a parallel for loop will iterate through all individuals, and
the result—array will be set to 1 for all individuals matching the condition or to
0 otherwise. For the maximum and exactly restriction types, the condition will
be changed to ≤ (for maximum), and == (for exactly).

5 CONNER: All Together Now

The work described in this section was motivated by the desire to incorporate
our approach to computing the DL hypothesis cover set in a learner in order to
gauge the benefits this approach can offer.

5.1 TBox Processing

Every ontology consists of two parts, the so called ABox and TBox. Both of
these need to be processed to establish correctly the membership of individuals
to concepts. It is possible to employ off-the-shelf reasoners for this purpose.
Indeed, this is the approach employed by DL-Learner. While it is expected that
CONNER will make the same provision in the next iteration of its development,
we have decided to use our own implementation here in order to have full control
over how the planned tests are run. The implementation described below is
somewhat limited, but sufficient for the test data sets used.
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The ABox explicitly lists individuals belonging to a given concept or relation.
These are easily processed and matrices M and R updated accordingly. The
TBox provides intensional definitions of concepts (C ≡ . . . ) and their hierarchy
(e.g. C1 ⊂ C2). Here we only handle subsumption between single concepts. This
information is processed by a dedicated multi-pass algorithm which updates
matrix M , and is repeated until no further changes in concept definitions occur.
Cyclic references are also detected and flagged up as an error. For instance, if
the membership of the concept Man is defined extensively, through the ABox,
and the TBox contains the statement Man ⊂ Person, the individuals in Man will
also be marked in matrix M as belonging to the concept Person after the TBox
is processed (Fig. 4). The TBox needs only be processed once, when the ontology
is imported, and represents no overhead on any subsequent computations. The
hierarchy of concepts derived from the TBox statements is then used by the
refinement operator to generate candidate hypotheses.

Fig. 4. Example of processing the TBox

5.2 Refinement Operator and Search Algorithm

CONNER borrows the top-down refinement operators used in DL-Learner. The
operator used with ALC is complete, albeit improper ([13], pp. 69–70). Figure 5
shows a sample ALC refinement path produced by this operator for a data set
discussed in this section. When the hypothesis language is extended to ALCQ(D),
i.e., to include cardinality restrictions and data properties, the corresponding
operator is no longer complete ([13], pp. 72–73).

The original operator is capable of producing a hypothesis consisting of a sin-
gle clause (making use of the disjunction operator, when needed). A refinement
step of the type � → C�C�· · ·�C is used to produce a disjunction of concepts
that are all subsumed by C, e.g. moving from Car � Car to Petrol � Electric
(potentially excluding Diesel). Here the number of copies of C appears to be
part of the user input reminiscent of, say, the limit on the maximum length of the
target clause used in Progol. We have experimented with alternatives, such as
cautious learning where the above step is omitted from the refinement operator,
and the disjunction of all consistent clauses found is used in the final hypothesis.

The refinement operator can be used under the closed world assumption
(CWA), where test examples not covered by the hypothesis are labelled as nega-
tive examples. An example of such use was employed when the DL-Learner was
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tested by its author on Michalski’s trains ([13], pp. 143–146). We have done the
same to replicate the results, but we also implement the open world assumption
(OWA), which is more commonly used with DL. In this case, two hypotheses
H+ and H− are learned for the target class and its complement (by swapping
the positive and negative examples). Test data is labelled as a positive, resp.
negative example when either hypothesis is true, and an “I don’t know” label is
produced when neither or both hypotheses are true.

The learner uses informed search with a scoring function derived from the
one used in the OCEL algorithm of the DL-Learner [13]:

ocel score(N) = accuracy(N) + 0.5.acc gain(N) − 0.02.n (1)

Here acc gain(N) is the increase in accuracy w.r.t. the parent of N , where N
is the candidate hypothesis (e.g. conjunction of concepts and/or restrictions),
and n is an upper bound on the length of child concepts, which we set to be
equal to the number of concepts in the ontology. We extend this function to take
into account the length of a hypothesis (i.e. #concepts + #operators) and its
depth which represents (here) the refinement steps taken to reach the current
hypothesis, not necessarily its depth in the search tree. Thus the scoring function
in CONNER is:

conner score(N) = 10 ∗ ocel score(N) − length(N) − depth(N) (2)

The parser currently used to parse the hypotheses tested is Dijkstra’s
shunting-yard algorithm. The effect of its use here is equivalent to using a binary
parse tree, so all conjunctions and disjunctions of three and more concepts are
handled as series of applications of the given operator to a pair of concepts.
This simplifies the parsing task, but results in a significant drop in performance
when compared to simultaneously computing conjunctions or disjunctions of K
concepts in the given hypothesis (cf. [2]). A more sophisticated parser or the
use of lazy evaluation [2] can be employed with potential benefits, but are not
discussed here for reasons of space. We do use memoization [14] in the evaluation
of each hypothesis, where partial computations are stored and reused.

5.3 Evaluation

The overall run time of the learner is first tested under the CWA on data consist-
ing of multiple copies of the Michalski train set (in its DL version distributed with
DL-Learner’s examples). While the task results in a relatively limited hypoth-
esis space, this artificial data strains the cover set algorithm exactly as much
as any real world data set with the same number of instances and assertions.
The results are shown in Table 2 and Fig. 6. All experiments are deterministic
and the results of multiple runs on the same data are remarkably consistent, so
presenting results of single runs was deemed sufficient. Figure 5 shows the search
path to the solution found. The solution itself is listed again in Table 3.
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Fig. 5. A sample ALC refinement path to a solution: Michalski’s trains
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Table 2. Learning time vs size of data set (multiple copies of Michalski’s trains)

#Size (by factor) Training
examples

All individuals #Role
assertions

Time [ms]

1x 10 50 149 227

10x 100 410 1,490 233

100x 1,000 4,010 14,900 292

1,000x 10,000 40,010 149,000 291

10,000x 100,000 400,010 1,490,000 712

100,000x 1,000,000 4,000,010 14,900,000 2,764

200,000x 2,000,000 8,000,010 29,800,000 4,836

Fig. 6. Plot of results in Table 2: learning time vs size of data set

To confirm that all components of the learner have been correctly imple-
mented, and to further test its speed, another artificial data set in the style
of Michalski’s trains (here with four cars each) has been generated and used
in a second set of experiments.3 There are 21,156 unique trains (5,184 east-
bound and 15,972 westbound) in the data set, which are represented through
105,780 individuals and 148,092 role assertions. Table 4 shows the average run
times of the learner for data sets of varying size using 10-fold cross-validation.
Under CWA, out-of-sample accuracy of 100% was achieved for all reported sam-
ples except for one of the samples of the lowest reported size. The hypothesis
found in most cases is Train� ∃has_car(Big� ∃inFrontOf.Rectangle). The
rule ∃has_car.Rectangle� ∃has_car(Big� ∃inFrontOf.Rectangle) is found
by the DL-Learner as its first solution when applied to all data. The two hypo-
theses are functionally equivalent.

3 The dataset is available from https://osf.io/kf4h6/.

https://osf.io/kf4h6/
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Table 3. Solution to Michalski’s trains task in DL and FOL

Description Logic First Order Logic

∃has car(Closed � Short) eastbound(X) ← has car(X,Y )∧ closed(Y) ∧ short(Y)

Table 4. Learning time vs sample size (21,156 unique trains, 10-fold cross-validation)

Proportion of data used for training [%] 0.09 0.9 90

Time [ms]: mean (stdev) 34,106 (90,035) 1,492 (700) 1,862 (66)

Out-of-sample accuracy [%]: mean (stdev) 97.64 (0.80) 100 (0.00) 100 (0.00)

We have also tested CONNER on the well-known mutagenesis ILP
dataset [15] in its DL representation, using 10-fold cross-validation, with the
following results:

Under CWA: accuracy = 82.61 (8.70)%

Under OWA: precision = 96.00 (4.63)%,
recall = 80.43 (9.22)%,

F-score = 87.24 (6.27)%.

6 Conclusion and Future Work

This article completes the implementation of the first working prototype of the
CONNER algorithm. The results suggest that this GPU-powered ILP learner in
DL has a lot of potential to scale up learning from ontologies. We have demon-
strated how GPGPU can be used to accelerate the computation of the cover set
of a hypothesis expressed in ALC and ALCQ(D) description logics. The results
add to our previous findings (cf. [2]) that even the use of a commodity GPU can
provide the ability to process data sets of size well beyond what can be expected
from a CPU-based sequential algorithm of the same type, and within a time that
makes the evaluation of hypotheses on a data set with 107–108 training examples
a viable proposition.

Future work should consider provisions for the use of external, off-the-shelf
reasoners. However, extending the in-house facilities in this aspect is expected to
play an important role when the use of concurrency in the search, and its possible
integration with cover set computation are considered. Finally, it should be said
that the use of DL as hypothesis language simplifies the task of parallelising
the cover set computation when compared to a Horn clause-based hypothesis
language. It is clear that some of the problems traditionally tackled through
learning in first-order logic can be effectively modelled in DL, and a broader
evaluation of the trade-off between expressive power and potential speed up
that this choice offers would certainly also provide useful insights.
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Abstract. We introduce a new application for inductive logic program-
ming: learning the semantics of programming languages from example
evaluations. In this short paper, we explore a simplified task in this
domain using the Metagol meta-interpretive learning system. We high-
light the challenging aspects of this scenario, including abstracting over
function symbols, nonterminating examples, and learning non-observed
predicates, and propose extensions to Metagol helpful for overcoming
these challenges, which may prove useful in other domains.

1 Introduction

Large systems often employ idiosyncratic domain specific languages, such as
scripting, configuration, or query languages. Often, these languages are specified
in natural language, or no specification exists at all. Lack of a clear specifica-
tion leads to inconsistencies across implementations, maintenance problems, and
security risks. Moreover, a formal semantics is prerequisite to applying formal
methods or static analysis to the language.

In this short paper, we consider the problem: Given an opaque imple-
mentation of a programming language, can we reverse-engineer an inter-
pretable semantics from input/output examples? The outlined objective is not
merely of theoretical interest: it is a task currently done manually by experts.
Krishnamurthi et al. [7] cite a number of recent examples for languages such as
JavaScript, Python, and R that are the result of months of work by research
groups. Reverse-engineering a formal specification involves writing a lot of small
example programs, then testing their behaviour with an opaque implementation.

Krishnamurthi et al. [7] highlights the importance of this research challenge.
They describe the motivation behind learning the semantics of programming lan-
guages, and discuss three different techniques that they have attempted, showing
that all of them have shortcomings. However, inductive logic programming (ILP)
was not one of the considered approaches. A number of tools for computer-aided
semantics exploration are already based on logic or relational programming, like
λProlog [10] or αProlog [1], or PLT Redex [6].
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Inductive logic programming seems like a natural fit for this domain: it pro-
vides human-understandable programs, allows decomposing learning problems
by providing partial solutions as background knowledge (BK), and naturally sup-
ports complex structures such as abstract syntax trees and inference rules, which
are the main ingredients of structural operational semantics (SOS) [14]. These
requirements make other popular learning paradigms, including most statistical
methods, hard to apply in this setting.

In this short paper we consider a simplified form of this task: given a base
language, learn the rules for different extensions to the language from examples of
input-output behavior. We assume that representative examples of the language
behaviour are available – we are focusing on the learning part for now. We assume
that we already have a parser for the language, and deal with its abstract syntax
only. We also assume that the base language semantics (an untyped lambda-
calculus) is part of the background knowledge.

We investigated the applicability of meta-interpretive learning (MIL) [12],
a state-of-the-art framework for ILP, on this problem. In particular we used
Metagol [3], an efficient implementation of MIL in Prolog. Our work is based on
previous work on MIL [4]. We especially relied on the inspiring insight of how
to learn higher-order logic functions with MIL [2]. Semantics learning is a chal-
lenging case study for Metagol, as interpreters are considerably more complex
than the classic targets of ILP.

We found that Metagol is not flexible enough to express the task of learning
semantic rules from examples. The main contribution of the paper is showing
how to solve a textbook example of programming language learning by extending
Metagol. The extension, called MetagolPLS, can handle learning scenarios with
partially-defined predicates, can learn the definition of a single-step evaluation
subroutine given only examples of a full evaluation, and can learn rules for
predicates without examples and learn multiple rules or predicates from single
examples.

We believe that these modifications could prove to be useful outside of the
domain of learning semantics. These modifications have already been incorpo-
rated to the main Metagol repository [3]. We also discuss additional modifica-
tions, to handle learning rules with unknown function symbols and to handle
non-terminating examples, which are included in MetagolPLS but not Metagol.

All source code of MetagolPLS and our semantics learning scenarios are avail-
able on GitHub: https://github.com/barthasanyi/metagol PLS.

2 A Case Study

Due to space limits, we cannot provide a complete introduction to Metagol and
have to rely on other publications describing it [12]. Briefly, in Metagol, an ILP
problem is specified using examples, background knowledge (BK), and meta-
rules that describe possible rule structures, with unknown predicates abstracted
as metavariables. Given a target predicate and examples, Metagol attempts to
solve the positive examples using a meta-interpreter which may instantiate the

https://github.com/barthasanyi/metagol_PLS
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meta-rules. When this happens, the metarule instances are retained and become
part of the candidate solution. Negative examples are used to reject too-general
candidate solutions.

First we give a formal definition of the general problem. Let L be the set of
abstract syntax trees represented as Prolog terms. Let L ⊂ L be the language
whose semantics we wish to learn, and let V ⊂ L be the set of values (possible
outputs). Let the behaviour of the opaque interpreter be represented as a func-
tion: I : L → V ∪{⊥}, where ⊥ represents divergent computations. The function
can be assumed to be the identity function on values: ∀v ∈ V, I(v) = v. We do
not have the definition of I, but we can evaluate it on any e ∈ L term.

We assume that a partial model of the interpreter is defined in Prolog: let B
be the background knowledge, a set of Prolog clauses, which contains a partial
definition of the binary eval predicate. We wish to extend the eval predicate so
that it matches the I function. Let H be the hypothesis space, a set of clauses
that contains additional evaluation rules that may extend B.

The inputs are L, I, B and H. The expected output is H ⊂ H, such that

1. ∀e ∈ L, v ∈ V : I(e) = v =⇒ B ∪ H � eval(e, v)
2. ∀e ∈ L, v ∈ V : I(e) 	= v =⇒ B ∪ H � eval(e, v)
3. ∀e ∈ L : I(e) = ⊥ =⇒ ∀v ∈ V : B ∪ H � eval(e, v)

Note that in this learning scenario we cannot guarantee the correctness of
the output, as we assumed that I is opaque and we can only test its behaviour
on a finite number of examples. We can merely empirically test the synthesized
rules on suitable terms against the implementation, possibly adding terms to
the examples where we get different results, and restarting the learning process.
This actually matches the current practice by humans, as one reason for the
tediousness of obtaining the semantics is that the existing implementation of
the language is usually not intelligible.

As a case study of the applicability of Metagol to this general task, we chose
a classic problem from PL semantics textbooks: extending the small-step struc-
tural operational semantics of the λ-calculus with pairs and its selector functions
fst and snd. By analysing this problem we show how can we represent learning
tasks in this domain with MIL, and what modifications of the framework are
needed.

In this case the language L contains λ-terms extended with pairs and selec-
tors, and the background knowledge B is an interpreter (SOS semantics) in
Prolog implementing the λ-calculus:

step ( app ( lam (X , T1 ) ,V ) , T2 ) :− substitute (V , X , T1 , T2 ) .
step ( app (T1 , T2 ) , app (T3 , T2 ) ) :− step (T1 , T3 ) .

eval (E1 , E1 ) :− value ( E1 ) .
eval (E1 , E3 ) :− step (E1 , E2 ) , eval (E2 , E3 ) .

Here, substitute is another BK predicate whose definition we omit, which per-
forms capture-avoiding substitution. The step predicate defines a single evalua-
tion step, e.g. substituting a value for a function parameter. The value predicate
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recognizes fully-evaluated values, and the eval predicate either returns its first
argument if it is a value, or evaluates it one step and then returns the result of
further evaluation.

We wish to extend our calculus and its interpreter with pairs: a constructor
pair that creates a pair from two λ-terms, and two built-in operations: fst and
snd, that extract the corresponding components from a pair. We want to learn
all of the semantic rules that need to be added to our basic λ-calculus interpreter
from example evaluations of terms that contain pairs. For example, we wish to
learn that the components of the pair can be evaluated by a recursive call, and
that a pair is a value if both of its components are values.

Our main contribution was interpreting this learning problem as a task for
ILP. We include the whole interpreter for the λ-calculus in the BK. In MIL
the semantic bias is expressed in the form of meta-rules [13]. Meta-rules are
templates or schemes for Prolog rules: they can contain predicate variables in
place of predicate symbols. We needed to write meta-rules that encompass the
possible forms of the small-step semantic rules required to evaluate pairs.

Substitution is tricky on name binding operations, but fairly trivial on any
other construct, and can be handled with a general recursive case for all such
constructs. We assumed that we only learn language constructs that do not
involve name binding, and included a full definition of substitution in the BK.

In general, we consider examples eval(e,v) where e is an expression and v is
the value it evaluates to (according to some opaque interpreter). Consider this
positive example (Metagol’s search is only guided by the positive examples):

eval ( app ( lam (x , fst ( var (x ) ) ) ,
pair ( app ( lam (x , pair ( app ( lam ( z , var (z ) ) , var (x ) )

, var (y ) ) ) , var (z ) ) , var (x ) ) ) ,
pair ( var (z ) , var (y ) ) )

which says that the lambda-term (λx.fst(x)) ((λx. ( (λz.z)x, y)) z, x) evaluates
to (z, y). Using just this example, we might expect to learn rules such as:

step ( fst ( pair (A , B ) ) ,A ) .
step ( pair (A , B ) , pair (C , B ) ) :− step (A , C ) .
value ( pair (A , B ) ) :− value (A ) , value (B ) .

The first rule extracts the first component of a pair; the second says that evalu-
ation of a pair can proceed if the first subexpression can take an evaluation step.
The third rule says that a pair of values is a value. Note that the example above
does not mention snd; additional examples are needed to learn its behavior.

Unfortunately, directly applying Metagol to this problem does not work.
What are the limitations of the Metagol implementation that prevents it from
solving our learning problem? We compared the task to the examples demon-
strating the capabilities of Metagol in the official Metagol repository and the
literature about MIL, and found three crucial features that are not covered:

1. For semantics learning, we do not know in advance what function symbols
should be used in the meta-rules. Metagol allows abstracting over predicate
symbols in meta-rules, but not over function symbols.
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2. Interpreters for Turing-complete languages may not halt. Moreover, nonter-
mination may give useful information about evaluation order, for example
to distinguish lazy and eager evaluation. Metagol does not handle learning
nonterminating predicates.

3. In semantics learning, we may only have examples for a relation eval that
describes the overall input/output behavior of the interpreter, but we wish to
learn subroutines such as value that recognize when an expression is fully eval-
uated, and step that describes how to perform one evaluation step. Metagol
considers a simple learning scenario with a single learned predicate with exam-
ples for that predicate.

In the following we investigate each difference, and show amendments to the
Metagol framework that let us overcome them.

3 Overview of MetagolPLS

3.1 Function Variables in the Meta-rules

As a first-order language, Prolog does not allow variables in predicate or function
positions of terms. The MIL framework uses predicate variables in meta-rules.
In Metagol meta-rules can contain predicate variables because atomic formulas
are automatically converted to a list format with the built-in =.. Prolog operator
inside meta-rules.

We demonstrated that function variables can be supported in a similar
vein in the meta-interpretive learning framework, converting compound terms
to lists inside the meta-rules. We added a simple syntactic transformation to
MetagolPLSto automate these conversions.

As an example, consider a general rule that expresses the evaluation of the
left component under a binary constructor. In this general rule for the fixed
step predicate there are no unknown predicates. But we do not know the binary
constructor of the abstract syntax of the language, which we wish to learn from
examples. With logic notation, we can write this general rule as the following:

∃H ∀L1, L2, R : step(H(L1, R), H(L2, R)) ← step(L1, L2)

where H stands for an arbitrary function symbol. Using lists instead of compound
terms, we can write this meta-rule in the following format:

metarule ( step2l , [ step , H ] , ( [ step , [ H , L1 , R ] , [ H , L2 , R ] ]
:− [ [ step , L1 , L2 ] ] ) ) .

3.2 Non-terminating Examples

Interpreters for Turing-complete languages are inherently non-total: for some
terms the evaluation may not terminate. Any learning method must be able to
deal with non-termination, but due to the halting problem it is impossible to
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do exactly: any solution will be either unsound or incomplete. Nevertheless, a
pragmatic approach is to introduce some bound on the evaluation. We added
a user definable, global depth limit to Metagol. By using this approach we lose
some formal results about learnability, but it seems to work well in practice.

Non-termination can also distinguish lazy and eager evaluation strategies. To
able to separate the two evaluation strategies, we used a three-valued semantics
for the examples. We distinguished non-termination from failure: in addition to
the traditional classification of the examples into positive and negative ones, we
introduced a third kind: non-terminating examples.

A non-terminating example means that the evaluation exceeds the depth
limit; positive or negative examples are intended to succeed or finitely fail within
the depth limit.

3.3 Non-observation Predicate and Multi-predicate Learning

Metagol learns one predicate, determined from the examples. The rules synthe-
sized for this predicate can call predicates completely defined in the BK. This is
the usual single-predicate and observation predicate learning scenario.

In our task the examples are provided for the top level predicate eval, for
which we do not want to learn new rules: it is defined in the BK. The semantic
rules themselves that we want to learn are expressed by two predicates: step and
value, called by the eval predicate. The step and value predicates are partially
defined in the BK: we have some predefined rules, but we want to learn new
ones for the new language constructs.

We found that this more complex learning scenario can be expressed with
interpreted predicates [2]. They have been used to learn higher order predicates;
we show that they can also be used for non-observation predicate learning and
multi-predicate learning.

We showed that interpreted predicates are useful for first order learning,
too: as they are executed by the meta-interpreter, they may refer to predicates
that are not completely defined in the BK, but need to be learnt. The meta-
interpreter can simply switch back to learning mode from executing mode when
it encounters a non-defined or partially defined predicate.

We added support for a special markup for predicate names to Metagol.
We required the user to mark which predicates can be used in the head of a
meta-rule, and similarly, to mark which predicates can be used in the body of a
meta-rule. This change extends the capabilities of Metagol in three ways:

1. Non-observation predicate learning: We can include learned predicates in the
BK, and learn predicates lower down in the call hierarchy. The examples can
be for a predicate in the BK, and we can learn other predicates, that do not
have their own examples.

2. Multi-predicate learning: We can learn more than one predicate, and the
examples can be for more than one predicate.
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This simple change nevertheless allows more flexible learning scenarios than
the standard ILP setup. These changes have been incorporated into the official
version of Metagol [3].

4 Evaluation

Our modified version of Metagol and the tests are available on GitHub https://
github.com/barthasanyi/metagol PLS. All tests benefit from the changes that
allow a more flexible learning scenario (Sect. 3.3), learning non-terminating pred-
icates (Sect. 3.2), and function metavariables (Sect. 3.1).

We coded three hand-crafted learning scenarios: learning the semantics of
pairs, learning the semantics of lists (very similar to pairs), and learning the
semantics of a conditional expression (if then else). Additionally we showed
in a fourth scenario that we can distinguish eager and lazy evaluation of the
λ-calculus based on a suitable term that terminates with lazy evaluation, but
does not terminate with eager evaluation:

eval ( app ( lam (x , var (y ) ) , app ( lam (x , app ( var (x ) , var (x ) ) ) ,
lam (x , app ( var (x ) , var (x ) ) ) ) ) ,_ )

All four case studies use the same hypothesis space (the same set of meta-
rules), and the same BK. The meta-rules are similar to the one mentioned in
Sect. 3.1. The BK contains the interpreter for the λ-calculus extended with simple
integer arithmetic, as well as two predicates that select a component. They are
used in the induced rules for pairs, lists and conditionals:

left (A , _ , A ) . right (_ , B , B ) .

The evaluation examples are hand-crafted for each case study, and they are
similar to the one showed earlier in Sect. 2. The semantic rules are decomposed
into multiple predicates in the output, since MIL tends to invent and re-use
predicates. We show this through the example of the synthesized semantics of
conditionals. Conditionals are represented with two binary predicates in our
target language: if(A,thenelse(B,C)). We chose this format to avoid too many
extra meta-rules for ternary predicates.

The induced rules for conditionals are (order re-arranged for readability):

step ( if (A , B ) ,C ) :− pred_1 (A , B , C ) . % Select apprpopriate branch
pred_1 ( false , A , B ) :− pred_3 (A , B ) .
pred_1 ( true , A , B ) :− pred_2 (A , B ) .
pred_2 ( thenelse (A , B ) ,C ) :− left (A , B , C ) .
pred_3 ( thenelse (A , B ) ,C ) :− right (A , B , C ) .
step ( if (A , B ) , if (C , B ) ) :− step (A , C ) . % Evaluate condition inside
value ( false ) . % Boolean literals are values
value ( true ) .

Finally, we demonstrated that the four learning tasks can be learned sequen-
tially: we can learn a set of operational semantic rules from one task and add
these to the BK for the next task. We chained all four demonstrations together,

https://github.com/barthasanyi/metagol_PLS
https://github.com/barthasanyi/metagol_PLS
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synthesizing a quite large set of semantic rules (25 rules total). Metagol does not
scale up to learning this many rules in a single learning task: according to our
preliminary investigations, the runtime is roughly exponential, which matches
the theoretical results [5]. Even synthesizing half as many rules can take hours.
Sequential learning has been implemented in Metagol [9], but the flexible learn-
ing scenarios required extending this functionality.

The examples run fairly fast: even the combined learning scenario finishes
under 0.2 seconds on our machine. However, during our preliminary experiments
with hand-crafted examples we found that the running time of Metagol tasks
greatly depends on the order of the examples: there can be orders of magnitude
running time differences between example sets. Further research is needed to
determine how to obtain good example sets.

5 Conclusion and Future Work

This research is a first step towards a distant goal. Krishnamurthi et al. [7] make
a strong case that the goal is both important and challenging.

We have demonstrated that with modifications MIL can synthesize structural
semantic rules for a simple programming language from suitable (hand-crafted)
examples. But we only considered relatively simple language semantics learning
scenarios, so further work is need to scale up the method to realistic languages.

The most crucial issue is scalability, which is the general problem for MIL.
MIL does not scale well to many meta-rules and large programs. In our exper-
iments we found that synthesizing less than 10 rules is fast, but synthesizing
more than 20 seems to be impossible. As a comparison, the SOS semantics
of real-world languages may contain hundreds of rules. Therefore we need a
method to partition the task: to generate suitable examples that characterize
the behaviour of the language on a small set of constructs, and to prune the set
of meta-rules, which can be large. Our sequential learning case study ensures
that once the problem is partitioned, we can learn the rules, but it does not
help with the actual partitioning. Alternatively, other ILP systems that support
learning recursive predicates, such as XHAIL [15] or ILASP [8], could be tried.

In our artificial example, substitution rules were added to the BK. In the
presence of name binding constructs, correct (capture-avoiding) substitution is
tricky to implement in Prolog. However, new language features sometimes involve
name-binding and real languages sometimes employ non-standard definitions of
substitution or binding. Substitution, while ubiquitous, is a not a good tar-
get for machine learning to start our investigations in this new domain. One
direction could be to include name binding features (following λ-Prolog [10] or
α-Prolog [1]) that make it easier to implement substitution.

Another direction is to test the method on more complex semantic rules.
Modular structural operational semantics (MSOS) [11] gives us hope that it
is possible: it expresses the semantics of complex languages in a modular way,
which means that the rules do not need to be changed when other rules change.
MSOS can be implemented in Prolog.
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For a working system we also need some semi-automatic translation from the
concrete syntax of the language to abstract syntax. This is a different research
problem, but could also be a suitable candidate for ILP.

Krishnamurthi et al. [7] framed the same general problem differently: they
assume that we know the core semantics in the form of an abstract language, and
we need to learn syntactic transformations in the form of tree transducers that
reduce the full language to this core language. They attempted several learning
techniques, each with shortcomings, but did not consider ILP, so applying ILP
to their problem could be an interesting direction to take.

Acknowledgments. The authors wish to thank Andrew Cropper, Vaishak Belle, and
anonymous reviewers for comments. This work was supported by ERC Consolidator
Grant Skye (grant number 682315).
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Applicazioni (CILA), Università degli Studi di Bari “Aldo Moro”, Bari, Italy
FrancescaAlessandra.Lisi@uniba.it

Abstract. Machine Ethics is a newly emerging interdisciplinary field
which is concerned with adding an ethical dimension to Artificial Intel-
ligent (AI) agents. In this paper we address the problem of representing
and acquiring rules of codes of ethics in the online customer service
domain. The proposed solution approach relies on the non-monotonic
features of Answer Set Programming (ASP) and applies ILP. The app-
roach is illustrated by means of examples taken from the preliminary tests
conducted with a couple of state-of-the-art ILP algorithms for learning
ASP rules.

Keywords: Answer Set Programming · Machine Ethics · ILP
Applications

1 Introduction

Motivation and Background. Robots in elder care, robot nannies, virtual com-
panions, chatbots, robotic weapons systems, autonomous cars, etc. are examples
of some of the AI systems currently undergoing research and development. These
kinds of systems usually need to engage in complex interactions with humans.
To ensure that these systems will not violate the rights of human being and also
will carry out only ethical actions (i.e., actions that follow acceptable ethical
principles), a combination of AI and ethics has become mandatory. This is the
subject for a newly emerging interdisciplinary field known under the name of
Machine Ethics [9].

Moral decision-making and judgment is a complicated process involving many
aspects: it is considered as a mixture of reasoning and emotions. In addition,
moral decision making is highly flexible, contextual and culturally diverse. Since
the beginning of this century there have been several attempts at implementing
ethical decision making into AI agents using different approaches. However, no
fully descriptive and widely accepted model of moral judgment and decision-
making exists.
c© Springer Nature Switzerland AG 2020
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Ethics in customer dealings present the company in a good image, and cus-
tomers will trust the company in the future. Ethics improves the quality of
service and promotes positive relationships. Many top leading companies have a
booklet called “code of conduct and ethics” and new employees are made to sign
it. However, enforcing codes of conduct and ethics is not an easy task. These
codes are mostly abstract and general rules, e.g. confidentiality, accountability,
honesty, inclusiveness, empathy, fidelity, etc. Therefore they are quite difficult
to apply. Moreover, they often contain open textured terms that cover a wide
range of specific situations [8]. They are subject to interpretations and may have
different meanings in different contexts. Thus, there is an implementation prob-
lem from the computational point of view. It is difficult to use deductive logic to
address such a problem [12]. It is impossible for experts to define intermediate
rules to cover all possible situations. Codes of ethics in their abstract form are
very difficult to apply in real situations [6]. All the above mentioned reasons
make learning from cases and generalization crucial for judgment of future cases
and violations.

Contribution. In this work and in the view of future ethical chatbots, we pro-
pose an approach for addressing the problem of evaluating the ethical behavior
of customer service employees for violations w.r.t. the codes of ethics and con-
duct of their company. Our approach is based on a combination of Answer Set
Programming (ASP) and Inductive Logic Programming (ILP). We use ASP for
ethical knowledge representation, and ILP for learning the ASP rules needed for
reasoning.

Ethical reasoning is a form of commonsense reasoning. Ethical rules nor-
mally have exceptions like many other rules in real life. Nonmonotonic logic
can effectivelly express exceptions which are represented using NAF (Negation-
As-Failure). ASP provides an elegant mechanism for handling negation in logic
programming (see, e.g., [3] for an overview of ASP and its applications). Logic
Programming based on classical Horn logic is not sufficiently expressive for rep-
resenting incomplete human knowledge, and inadequate for characterizing non-
monotonic commonsense reasoning [11]. This in fact nominates non-monotonic
logics which simulate common sense reasoning to be used for formalizing differ-
ent ethical conceptions. In addition, the expressiveness of ASP, the readability of
its code and the performance of the available “solvers” gained ASP an important
role in the field of AI.

Two very important and desired aspects of Machine Ethics are explainabil-
ity and accountability. Among the many machine learning approaches, ILP was
chosen because it supports both. Indeed, ILP is known for its explanatory power
which is compelling: clauses of the generated rules can be used to formulate
an explanation of the choice of a certain decision over others. Moreover, ILP
seems better suited than statistical learning methods to domains in which train-
ing examples are scarce as in the case of ethical domain. However, traditional
ILP is not able to handle exceptions to general rules. Often, the exceptions
to the rules themselves follow a pattern, which can be learned as well, result-
ing in a default theory that describes the underlying model more accurately.
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Furthermore, ASP is a highly declarative LP paradigm. ILP systems are not
declarative enough. Users need to experiment with ordering of the clauses, this
being relevant not only to efficiency but even to termination and correctness [2].
There has been some interest in extending ILP to the ASP framework. In this
work we use two systems which have been proposed to learn ASP rules, viz.
XHAIL [10], and ILED [7]. XHAIL is a non-monotonic mode-directed ILP app-
roach that integrates abductive, deductive and inductive reasoning in a common
learning framework for learning normal logic programs. XHAIL ensures sound-
ness by generalizing all examples in one go. XHAIL is a state-of-the-art system
among its Inverse Entailment-based peer algorithms, in terms of completeness.
However, a serious obstacle that prevents XHAIL and other similar ILP algo-
rithms from being widely applicable as a machine learning system in real world
applications is scalability. XHAIL scales poorly, partly because of the increased
computational complexity of abduction, which lies at the core of its functionality,
and partly because of the combinatorial complexity of learning whole theories,
which may result in an intractable search space. ILED is a novel incremental
algorithm based on XHAIL machinery and scales it to large volumes of sequen-
tial data, typically suitable for the type of applications that we present in this
paper where examples arrive and grow overtime. There are two key features of
ILED that contribute towards its scalability: First, reprocessing of past experi-
ence is necessary only in the case where new clauses are generated by a revision,
and is redundant in the case where a revision consists of refinements of exist-
ing clauses only. Second, reprocessing of past experience requires a single pass
over the historical memory, meaning that it suffices to revisit each past window
exactly once to ensure that the output revised hypothesis Hn+1 is complete &
consistent w.r.t. the entire historical memory.

Several previous works have suggested the use of either ASP (see, e.g., [5]) or
ILP (see, e.g., [1]) for programming ethical AI agents. We think that an approach
combining the two would have a greater potential than previous proposals.

Structure. The paper is organized as follows. In Sect. 2 we present the application
we are addressing by means of illustrative examples. Then we conclude with final
remarks and future directions in Sect. 3.

2 Learning ASP Rules for Ethical Customer Service

Codes of ethics in domains such as customer service are mostly abstract general
codes, which refer to notions like confidentiality, accountability, honesty, fidelity,
etc. They are subject to interpretations and may have different meanings in
different contexts. Therefore it is quite difficult if not impossible to define codes in
a manner that they maybe applied deductively. Also it is not possible for experts
to define intermediate rules to cover all possible situations to which a particular
code applies. In addition, there are many situations in which obligations might
conflict. An important question to ask here is how can the company’s managers
evaluate the ethical behavior of employees in such setting. To achieve this end,
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and help managers to have detailed rules in place for monitoring the behavior
of their employees at customer service for violations of the company’s ethical
codes, we propose an approach for generating these rules from interactions with
customers. So, the new codes of ethics to be used for ethical evaluation are
a combination of the existing clear codes (those that give a clear evaluation
procedure that can be deductively encoded using ASP) and the newly generated
ones. As already mentioned in the introduction, we use ASP for representing
the domain knowledge, the ontology of the domain, and scenarios information.
In the following we briefly report the results obtained with the implementations
of XHAIL1 and ILED2 made available by their authors. In the case of ILED we
have used the mongodb database for the historical memory of our examples.

Batch learning with XHAIL. To learn the rules required for ethical reasoning and
evaluation of the agent behavior in a certain scenario, we initially use XHAIL
system. The inputs to the system are a series of scenarios(cases) in the form
of requests and answers, along with the ethical evaluation of the response con-
sidering each particular situation. The system remembers the facts about the
narratives and the conclusions given to it by the user, and learns to form rules
and relations that are consistent with the evaluation given by the user of the
responses to the given requests.

To illustrate our approach, let us consider the following scenario:

case1: A client contacts the customer service of a company to ask for a par-
ticular product of the company, and the employee talks about the product and
tries to convince the customer to buy the product. (S)he starts saying that the
product is environmentally friendly (which is irrelevant in this case), and this
is an advantage of their product over the same products of other companies.
It is unethical to make use of irrelevant but sensitive slogans like “environmen-
tally friendly” to attract and provoke the customers to buy a certain product or
service. This can be considered a violation of the ethical principle of ’Honesty’.

We can form an ILP task ILP (B,E = {E+, E−},M) for our example, where
B is the background knowledge, E are the positive and negative examples, and
M are The mode declarations. The three steps of XHAIL to derive the hypothesis
are shown with the example in Table 1.

Now, let us consider our agent having three cases together, the above men-
tioned case and the following two cases (scenarios) along with a set of examples
for each case.

case2: An employee gives information about client1 to client2 without checking
or being sure that client2 is authorized to access such information. This behavior
is unethical because it violates ’Confidentiality’ which is very critical especially
when dealing with sensitive products and services like services or products pro-
vided to patients with critical medical conditions.

1 https://github.com/cathexis-bris-ac-uk/XHAIL.
2 https://github.com/nkatzz/ILED.

https://github.com/cathexis-bris-ac-uk/XHAIL
https://github.com/nkatzz/ILED
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Table 1. Test with XHAIL: input, steps and output theory

Input

Facts(part of B) Conclusion(examples E)

ask(customer,infoabout(productx)) unethical(environmentallyFriendly)

answer(environmentallyFriendly)

sensitiveSlogan(environmentallyFriendly)

not relevant(environmentallyFriendly)

ask(customer,infoabout(productY)) unethical(xxx)

answer(xxx)

sensitiveSlogan(xxx)

not relevant(xxx)

ask(customer,infoabout(productZ)) not unethical(yyy)

answer(yyy)

sensitiveSlogan(yyy)

relevant(yyy)

ask(customer,infoabout(productV)) not unethical(zzz)

answer(zzz)

not sensitiveSlogan(zzz)

not relevant(zzz)

Mode Declarations M: Background Knowledge B:

modeh unethical(+answer) not relevant(X) ←
modeb sensitiveSlogan(+answer) not relevant(X),answer(X)

modeb not sensitiveSlogan(+answer) not sensitiveSlogan(X) ←
modeb not relevant(+answer) not sensitiveSlogan(X),answer(X)

modeb relevant(+answer)

Step1 (Abduction):

Δ1= {unethical(environmentallyFriendly)

unethical(xxx)

unethical(yyy)}
Step2 (Deduction):

Kernel Set K Variabilized Kernel Set Kv

unethical(environmentallyFriendly) ← K1= unethical(X1) ←
answer(environmentallyFriendly), answer(X1),

sensitiveSlogan(environmentallyFriendly), sensitiveSlogan(X1),

not relevant(environmentallyFriendly) not relevant(X1)

unethical(xxx) ← K2= unethical(X2) ←
answer(xxx), answer(X2),

sensitiveSlogan(xxx), sensitiveSlogan(X2),

not relevant(xxx) not relevant(X2)

Step3 (Induction):

Learned hypothesis:

unethical(V) ← sensitiveSlogan(V), not relevant(V),

answer(V)

Learned hypotheses for the three mentioned cases

unethical(V) ←
sensitiveSlogan(V),not relevant(V), answer(V)

unethical(giveinfo(V1,V2)) ←
context(competitor(V2)), badinfo(V1),

info(V1),company(V2)

unethical(tell(V2,infoabout(V2))) ←
not authorized(tell(V1,infoabout(V2))), client(V1),

client(V2)
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case3: A client contacts the customer service of a certain company to ask to
buy a certain product X. In this context the customer asks also about a similar
product of a competitor company which is slightly cheaper. Then the employee,
in order to convince the customer to buy their product, says that the other com-
pany uses substandard materials in their production. This is an unethical answer
from the employee, even if it tells the truth. In general, though the employee
should be truthful with the customer, the answer given in this scenario is not
ethical because bad mouthing competitors is not ethical and not professional.

From these three cases our agent learned the three rules presented in Table 1
for evaluating the employees ethical behavior (for the lack of space we omitted
the details). In addition, supposing that our agent already have the rule b1
shown in Table 1 as a background knowledge in his/her knowledge base, which
says that it is unethical to give incorrect information to the customers. So now
our agent has four rules for ethical evaluation (the one that she already have plus
the three learned ones). More details about the experiments done with XHAIL
can be found in [4]. As mentioned above XHAIL was perfectly able to learn the
desired rules. As a matter of fact XHAIL provides an appropriate framework
for learning ethical rules needed for ethical evaluation of online customer service
employees. However, because of the drawbacks mentioned in the introduction,
and also due to the fact that in applications like the one we are considering
examples arrive overtime, we need an incremental learning approach.

Incremental Learning with ILED. In the second part of the experiments of our
approach we use ILED for learning ethical rules incrementally from interactions
with customers. ILED starts with an empty hypothesis and empty historical
memory and in this case it reduces to XHAIL and operates on Kernel Set of the
first arriving window of examples.

In our case study, each window of examples include one single example which
is one case scenario resulting from a single interaction of a customer with an
online customer service agent. Mode declarations and background knowledge are
the same used with XHAIL. Let us take a small example from our experiments
for illustration: In our experiment we started ILED with an empty hypothesis
and an empty historical memory. The first input example window is w1. The
currently empty hypothesis does not cover the provided example since in w1
an unethical answer to the customer question was given so the example raise
unethical flag. Hence ILED starts the process of generating an initial hypothesis.
And here as we mentioned earlier ILED reduces to XHAIL and operates on a
Kernel Set of w1 only. The variabilized Kernel Set in this case is the single-
clause program K1 shown in Table 1 generated from the corresponding ground
clause. Generalizing the Kernel Set results in a minimal hypothesis that covers
w1. This hypothesis is shown in Table 2. ILED stores w1 in ε and initializes
the support set of the newly generated hypothesis by selecting from K1 the
clauses that θ-subsumed by the running hypothesis [7], in this case K1’s single
clause. The new window w2 arrives next. In w2, an unethical answer flag was
also raised, so the running hypothesis correctly accounts for it and thus no
revision is required. ILED generates a new Kernel Set K2 from window w2 as
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shown in Table 1, H1.supp covers w2 so remain unchanged also. Now arrives
window w3, which has no positive examples for raising unethical flag for the
employee answer. Hence the running hypothesis need to be revised for window
w3, since the current hypothesis covers a negative example because it says that

Table 2. Test with ILED: input examples and output theory

Window w1

Facts Conclusion

ask(customer,infoabout(productx)) unethical(environmentallyFriendly)

answer(environmentallyFriendly)

sensitiveSlogan(environmentallyFriendly)

not relevant(environmentallyFriendly)

Kernel Set Variabilized Kernel Set

unethical(environmentallyFriendly) ← K1= (X1) ←
answer(environmentallyFriendly), answer(X1),

sensitiveSlogan(environmentallyFriendly), sensitiveSlogan(X1),

not relevant(environmentallyFriendly) not relevant(X1)

Running Hypothesis Support Set

H1= unethical(X1) ← H1.supp = {K1}
answer(X1)

window w2

Facts Conclusion

ask(customer,infoabout(productY)) unethical(xxx)

answer(xxx)

sensitiveSlogan(xxx)

not relevant(xxx)

Kernel Set Variabilized Kernel Set

unethical(xxx) ← K2= unethical(X1) ←
answer(xxx), answer(X1),

sensitiveSlogan(xxx), sensitiveSlogan(X1),

not relevant(xxx) not relevant(X1)

Running Hypothesis Support Set

remains unchanged H1.supp = {K1, K2}
window w3

Facts Conclusion

ask(customer,infoabout(productZ)) not unethical(yyy)

answer(yyy)

sensitiveSlogan(yyy)

relevant(yyy)

Revised Hypothesis Support Set

H2= unethical(X1) ← H2.supp = {K1, K2}
answer(X1), not relevant(X1)

window w4

Facts Conclusion

ask(customer,infoabout(productV)) not unethical(zzz)

answer(zzz)

not sensitiveSlogan(zzz)

not relevant(zzz)

Revised Hypothesis Support Set

H3= unethical(X1) ← H3.supp = {K1, K2}
answer(X1),

not relevant(X1),sensitiveSlogan(X1)
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an answer is always un ethical while in w3 the employee answer is not unethical.
To address this issue, ILED searches H1.supp which serves now as a refinement
search space to find a refinement that rejects the negative example. The only
choice for a refinement clause that does not cover the negative example in w3 and
subsumes H1.supp is adding the literal not relevant(X1) as shown in Table 1.
A new clause H2 replaces the initial one H1 in the running hypothesis. Now the
hypothesis is complete and consistent throughout ε. It is important here to note
that the hypothesis was refined by local reasoning only i.e. reasoning within w3
and the support set. The support set of the new hypothesis H2 is initialized to a
subset of the support set of it’s parent clause that is θ-subsumed by H2, in this
case H2.supp = H1.supp. Window w4 arrive next, which also has no positive
examples for raising unethical flag. The running hypothesis is revisable in w4
because H2 covers the negative example in w4 by saying that an answer that
is notrelevant is unethical so is inconsistent. By searching H2.supp, ILED finds
a refinement by adding the literal sensitiveSlogan(X1). After revision a new
hypothesis H3 that is complete and consisten throwout the historical memory
is generated and H3.supp = H2.supp as shown in Table 2.

3 Final Remarks and Future Directions

In this article we have reported ongoing work on using a hybrid logic-based app-
roach for ethical evaluation of employees behavior in online customer service chat
point. This work was done with a future perspective towards ethical chatbots
in customer service. Combining ASP with ILP for modeling ethical agents pro-
vides many advantages: increases the reasoning capability of our agent; promotes
the adoption of hybrid strategy that allow both topdown design and bottom up
learning via context sensitive adaptation of models of ethical behavior; allows the
generation of rules with valuable expressive and explanatory power which equips
our agent with the capacity to give an ethical evaluation and explain the reasons
behind this evaluation. In other words, our method supports transparency and
accountability of such models, which facilitates instilling confidence and trust in
our agent. Furthermore, in our opinion and for the sake of transparency, eval-
uating the ethical behavior of others should be guided by explicit ethical rules
determined by competent judges or ethicists or through consensus of ethicists.
Our approach provides support for developing these ethical rules.

ILP algorithms, unlike neural networks, output rules which are comprehen-
sible by humans and can provide an explanation for predictions on a new data
sample. Furthermore, if prior knowledge (background knowledge) is extended in
these methods, then the entire model needs to be re-learned. Finally, no distinc-
tion is made between exceptions and noisy data in these methods. This makes
ILP particularly appropriate for scientific theory formation tasks in which the
comprehensibility of the generated knowledge is essential. Moreover, in an ill-
defined domain like the machine ethics domain, it is infeasible to define abstract
codes in precise and complete enough terms to be able to use deductive problem
solvers to apply them correctly. A combination of deductive (rule-based) and
inductive (case-based learning) is needed.
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In [1] the authors used ILP to learn rules to help decide between two or
more available actions based on a set of involved ethical prima facie duties.
So their approach can be applied to choose the most ethical action when we
have specific clear ethical duties involved and to do so we need to assign weights
of importance(priority) to these duties for each available action, then the system
computes the weighted sum for each action, and the one with highest weighted
sum is the best action to do. In this approach it is not really clear the basis of
assigning weights to duties(we doubt whether we can really quantify the impor-
tance of ethical duties on a grade from 2 to -2 as done in these works), then it is
not clear whether the generated rules can be refined incrementally over time. On
the other hand, in our approach we use ILP to generate rules for ethical evalua-
tion of actions (in response to requests from customers) based on different facts
extracted from cases. In other words ILP is used to learn the relation between
the evaluation of an action to be ethical or unethical and the related facts in the
case scenario. To this end, different facts are extracted from the case scenario
and our system try to find the relation between these facts and the conclusion
(ethical or un ethical or probably unknown). We would like to mention that their
approach is not applicable to our application, because in our case, the employee
response is either ethical or unethical. There is no sense of assigning weights to
relevant facts extracted from text representing the level of violation/satisfaction
of certain code of ethics. It is not a matter of arriving to equilibrium between
conflicting rules, it is a matter “‘violate or not violate”’. Our approach can be
used to generate ethical rules to follow when there is no ethical rules available
in place for evaluation, by considering the involved facts and possibly involving
counterfactual reasoning in the evaluation. We think that our approach is more
general and can be used to generate ethical rules for any domain (and/or elab-
orate existing ones) and does cope with the changes of ethics over time because
of the use of non-monotonic logic and incremental learning.

Finally, one of the challenges we are facing in this work is the scarcity of
training examples. In fact this is a big challenge in the ethical domain in general.
We are currently working on creating a big enough dataset for real experiments,
where obtaining real world examples is an obstacle due to the rules of privacy.
Until now our experiments are limited to a very small datasets of examples
created manually. Furthermore, we would like to test our AI agent in a real chat
scenario, and to this purpose the whole system will need to be implemented which
also involves natural language processing. Finally, as another future direction we
would like to investigate the possibility of judging the ethical behavior from a
series of related chat sessions.
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Abstract. Deep learning has been shown to achieve impressive results
in several domains like computer vision and natural language process-
ing. A key element of this success has been the development of new loss
functions, like the popular cross-entropy loss, which has been shown to
provide faster convergence and to reduce the vanishing gradient problem
in very deep structures. While the cross-entropy loss is usually justified
from a probabilistic perspective, this paper shows an alternative and
more direct interpretation of this loss in terms of t-norms and their asso-
ciated generator functions, and derives a general relation between loss
functions and t-norms. In particular, the presented work shows intrigu-
ing results leading to the development of a novel class of loss functions.
These losses can be exploited in any supervised learning task and which
could lead to faster convergence rates that the commonly employed cross-
entropy loss.

Keywords: Loss functions · Learning from constraints · T-Norms

1 Introduction

A careful choice of the loss function has been pivotal into the success of deep
learning. In particular, the cross-entropy loss, or log loss, measures the perfor-
mance of a classifier and increases when the predicted probability of an assign-
ment diverges from the actual label [7]. In supervised learning, the cross-entropy
loss has a clear interpretation as it attempts at minimizing the distribution of
the predicted and given pattern labels. From a practical standpoint, the main
advantage of this loss is to limit the vanishing gradient issue for networks with
sigmoidal or softmax output activations.

Recent advancements in Statistical Relational Learning (SRL) [16] allow to
inject prior knowledge, often expressed using a logic formalism, into a learner.
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One of the most popular lines of research in this community attempts at defin-
ing frameworks for performing logic inference in the presence of uncertainty. For
example, Markov Logic Networks [18] and Probabilistic Soft Logic [1] integrate
First Order Logic (FOL) and graphical models. More recently, many attempts
have been focusing on integrating reasoning with uncertainty with deep learn-
ing [20]. A common solution, followed by approaches like Semantic Based Reg-
ularization [4] and Logic Tensor Networks [5], relies on using deep networks
to approximate the FOL predicates, and the overall architecture is optimized
end-to-end by relaxing the FOL into a differentiable form, which translates into
a set of constraints. For the sake of overall consistency, one question that can
naturally arise in this context is how the fitting of the supervised examples can
be expressed using logic formalism. Following this starting point, this paper fol-
lows an orthogonal approach for the definition of a loss function, by studying
the relation between the translation of the prior knowledge using t-norms and
the resulting loss function. In particular, the notion of t-norm generator plays
a fundamental role in the behavior of the corresponding loss. Remarkably, the
cross-entropy loss can be naturally derived within this framework. However, the
presented theoretical results suggest that there is a larger class of loss functions
that correspond to the different possible translations of logic using t-norms, and
some loss functions are potentially more effective than the cross-entropy to limit
the vanishing gradient issue, therefore proving a faster convergence rate.

The paper is organized as follows: Sect. 2 presents the basic concepts about
t-norms, generators and aggregator functions. Section 3 introduces the learn-
ing frameworks used to represent supervised learning in terms of logic rules,
while Sect. 4 presents the experimental results and, finally, Sect. 5 draws some
conclusions.

2 Fuzzy Aggregation Functions

The aggregation takes place on a set of values typically representing preferences
or satisfaction degrees restricted to the unit interval [0, 1] to be aggregated.
There are several ways to aggregate them into a single value expressing an overall
combined score, according to what is expected from such mappings. The purpose
of aggregation functions is to combine inputs that are typically interpreted as
degrees of membership in fuzzy sets, degrees of preference or strength of evidence.
Aggregation functions have been studied by several authors in the literature [2,3],
and they are successfully used in many practical applications, for instance see
[8,19]. Please note that the fuzzy aggregation functions that will be covered in
this section can be directly applied to the output of a multi-task classifier, when
implemented via a neural network with sigmoidal or softmax output units.

Basic Definitions. Aggregation functions are defined for inputs of any car-
dinality, however for simplicity the main definitions are provided only for
the binary case. A (binary) aggregation function is a non-decreasing function
A : [0, 1]2 → [0, 1], such that: A(0, 0) = 0, A(1, 1) = 1. An aggregation function A
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Table 1. Fundamental t-norms.

Gödel Lukasiewicz Product

TM (x, y) = min{x, y} TL(x, y) = max{0, x + y − 1} TΠ(x, y) = x · y

can be categorized according to the pointwise order in Eq. 1 as: conjunctive when
A ≤ min, disjunctive when max ≤ A, averaging (a mean) when min < A < max
and hybrid otherwise; where min and max are the aggregation functions for the
minimum and maximum respectively.

A1 ≤ A2 iff A1(x, y) ≤ A2(x, y), for all x, y ∈ [0, 1] . (1)

Conjunctive and disjunctive type functions combine values as if they were
related by a logical AND and OR operations, respectively. On the other hand,
averaging type functions have the property that low values can be compensated
by high values. Mean computation is the most common way to combine the
inputs, since it assumed the total score cannot be above or below any of the
inputs, but it depends on all the inputs.

2.1 Archimedean T-Norms

Despite averaging functions have nice properties to aggregate fuzzy values, they
are not suitable to represent neither a conjunction nor a disjunction, because
they do not generalize their boolean counterpart. This is a reason why, we focus
on t-norms and t-conorms [11,14], that are associative, commutative aggregation
functions with 1 and 0 as neutral element, respectively. Table 1 reports Gödel,
Lukasiewicz and Product t-norms, which are referred as the fundamental t-norms
because all the continuous t-norms can be obtained as ordinal sums of the two
fundamental t-norms [10]. A simple example of a t-norm that is not continuous
is given by the Drastic t-norm TD, that is always returning a zero value, except
for TD(1, 1) = 1. Archimedean t-norms [13] are a class of t-norms that can be
constructed by means of unary monotone functions, called generators.

Definition 1. A t-norm T is said to be Archimedean if for every x ∈ (0, 1),
T (x, x) < x. In addition, T is said strict if for all x ∈ (0, 1), 0 < T (x, x) < x
otherwise is said nilpotent.

For instance, the Lukasiewicz t-norm TL is nilpotent, the Product t-norm TΠ

is strict, while the Gödel one TM is not archimedean, indeed TM (x, x) = x, for
all x ∈ [0, 1]. The Lukasiewicz and Product t-norms are enough to represent the
whole classes of nilpotent and strict Archimedean t-norms [14].

A fundamental result for the construction of t-norms by additive generators
is based on the following theorem [12]:
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Theorem 1. Let g : [0, 1] → [0,+∞] be a strictly decreasing function with
g(1) = 0 and g(x) + g(y) ∈ Range(g) ∪ [g(0+),+∞] for all x, y in [0, 1], and
g(−1) its pseudo-inverse. Then the function T : [0, 1] → [0, 1] defined as

T (x, y) = g−1
(
min{g(0+), g(x) + g(y)}

)
. (2)

is a t-norm and g is said an additive generator for T .

Any t-norm T with an additive generator g is Archimedean, if g is continuous
then T is continuous, T is strict if and only if g(0) = +∞, otherwise it is
nilpotent.

Example 1. If we take g(x) = 1 − x, then also g−1(y) = 1 − y and we get TL:

T (x, y) = 1 − min{1, 1 − x + 1 − y} = max{0, x + y − 1} .

Example 2. Taking g(x) = − log(x), we have g−1(y) = e−y and we get TΠ :

T (x, y) = e−(min{+∞,− log(x)−log(y)}) = x · y .

Equation (2) allows to derive the other fuzzy connectives as function of the
generator:

residuum : x ⇒ y = g−1 (max{0, g(y) − g(x)})

bi-residuum : x ⇔ y = g−1 (|g(x) − g(y)|)
(3)

If g is expressed as a parametric function, it is possible to define families of
t-norms, which can be constructed by the generator obtained when setting the
parameters to specific values. Several parametric families of t-norms have been
introduced [2]. The experimental section of this paper employs the family of
Schweizer–Sklar and Frank t-norms, depending on a parameter λ ∈ (−∞,+∞)
and λ ∈ [0,+∞] respectively, and whose generators are defined as:

gSS
λ (x) =

{
− log(x) if λ = 0
1−xλ

λ otherwise
and gF

λ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

− log(x) if λ = 1
1 − x if λ = +∞
log

(
λ−1
λx−1

)
otherwise

(4)

3 From Formulas to Loss Functions

A learning process can be thought of as a constraint satisfaction problem, where
the constraints represent the knowledge about the functions to be learned. In par-
ticular, multi-task learning can be expressed via a set of constraints expressing
the fitting of the supervised examples, plus any additional abstract knowledge.

Let us consider a set of unknown task functions P = {p1, . . . , pJ} defined on
R

n, all collected in the vector p = (p1, . . . , pJ ) and a set of known functions or
predicates S. Given the set X ⊆ R

n of available data, a learning problem can be
generally formulated as minp L(X ,S,p) where L is a positive-valued functional



40 F. Giannini et al.

denoting a certain loss function. Each predicate is approximated by a neural
network providing an output value in [0, 1]. The available knowledge about the
task functions consists in a set of FOL formulas KB = {ϕ1, . . . , ϕH} and the
learning process aims at finding a good approximation of each unknown element,
so that the estimated values will satisfy the formulas for the input samples. Since
any formula is true if it evaluates to 1, in order to satisfy the constraints we may
minimize the following loss function:

L(X ,S,p) =
H∑

h=1

λhL
(
fh(X ,S,p)

)
(5)

where any λh is the weight for the h-th logical constraint, which can be selected
via cross-validation or jointly learned [15,21], fh is the truth-function corre-
sponding to the formula ϕh according to a certain t-norm fuzzy logic and L
is a decreasing function denoting the penalty associated to the distance from
satisfaction of formulas, so that L(1) = 0. In the following, we will study dif-
ferent forms for the L cost function and how it depends on the choice of the
t-norm generator. In particular, a t-norm fuzzy logic generalizes Boolean logic
to variables assuming values in [0, 1] and is defined by its t-norm modeling the
logical AND [9]. The connectives can be treated using the fuzzy generalization
of first–order logic that was first proposed by Novak [17]. The universal and
existential quantifiers occurring in the formulas in KB allows the aggregation
of different evaluations (groundings) of the formulas on the available data. For
instance, given a formula ϕ(xi) depending on a certain variable xi ∈ Xi, where
Xi denotes the available samples for the i-th argument of one of the involved
predicates in ϕ, we may convert the quantifiers as the minimum and maximum
operations that are common to any t-norm fuzzy logic:

∀xi ϕ(xi) =⇒ fϕ(Xi,S,p) = min
xi∈Xi

fϕ(xi,S,p)

∃xi ϕ(xi) =⇒ fϕ(Xi,S,p) = max
xi∈Xi

fϕ(xi,S,p)

3.1 Loss Functions by T-Norms Generators

A quantifier can be seen as a way to aggregate all the possible groundings of
a predicate variable that, in turn, are [0, 1]-values. Different aggregation func-
tions have also been considered, for example in [5], the authors consider a mean
operator to convert the universal quantifier. However this has the drawback that
also the existential quantifier has the same semantics conversion and then it is
determined by the authors via Skolemization. Even if this choice may yield some
learning benefits, it has no direct justification inside a logic theory. Moreover it
does not suggest how to map the functional translation of the formula into a con-
straint. In the following, we investigate the mapping of formulas into constraints
by means of generated t-norm fuzzy logics, and we exploited the same additive
generator of the t-norm to map the formula into the functional constraints to be
minimized, i.e. L = g.
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Given a certain formula ϕ(x) depending on a variable x that ranges in the
set X and its corresponding functional representation fϕ(x,p) evaluated on each
x ∈ X , the conversion of universal and existential quantifiers should have seman-
tics equivalent to the AND and OR of the evaluation of the formula over the
groundings, respectively. This can be realized by directly applying the t-norm
or t-conorms over the groundings. For instance, for the universal quantifier:

∀xϕ(x) ≡
∧

x

ϕ(x) =⇒ g−1

(

min

{

g(0+),
∑

x∈X
g
(
fϕ(x,S,p)

)
})

, (6)

where g is an additive generator of the t-norm T corresponding to the universal
quantifier. Since any generator function is decreasing, in order to maximize the
satisfaction of ∀xϕ(x) we can minimize g applied to Eq. 6, namely:

min{g(0+),
∑

x∈X
g(fϕ(x,S,p))} if T is nilpotent (7)

∑

x∈X
g(fϕ(x,S,p)) if T is strict (8)

As a consequence, with respect to the convexity of the expressions in Eqs. 7–
8, we get the following result, that is an immediate consequence of how the
convexity is preserved by function composition.

Proposition 1. If g is a linear function and fϕ is concave, Eq. 7 is convex. If
g is a convex function and fϕ is linear, Eq. 8 is convex.

Example 3. If g(x) = 1 − x (Lukasiewicz t-norm) from Eq. 7 we get:

min(1,
∑

x∈X
(1 − (fϕ(x,S,p))) .

Hence, in case fϕ is concave (see [6] for a characterization of the concave fragment
of Lukasiewicz logic), this function is convex.
If g = − log (Product t-norm) from Eq. 8 we get the cross-entropy:

−
∑

x∈X
log(fϕ(x,S,p)) .

As we already pointed out in Sect. 2, if g is an additive generator for a t-norm
T , then the residual implication and the biresidum with respect to T are given
by Eq. 3. In particular, if p1, p2 are two unary predicates functions sharing the
same input domain X , and S = ∅ the following formulas yield the following
penalty terms:

∀x p1(x) =⇒ min

{

g(0+),
∑

x∈X
g(p1(x))

}

∀x p1(x) ⇒ p2(x) =⇒ min

{

g(0+),
∑

x∈X
max(0, g(p2(x)) − g(p1(x))

}
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∀x p1(x) ⇔ p2(x) =⇒ min

{

g(0+),
∑

x∈X
|g(p1(x)) − g(p2(x))|

}

.

3.2 Redefinition of Supervised Learning with Logic

In this section, we study the case of supervised learning w.r.t. the choice of a
certain additive generator. Let us consider a multi-task classification problem
with predicates pj , j = 1, . . . , J defined over the same input domain with a
supervised training set T = {(xi, yi)} where each yi ∈ {1, 2, . . . , J} is the output
class for the pattern xi and X is the overall set of supervised patterns. Finally, the
known predicate Sj is defined for each predicate such that Sj(xi) = 1 iff yi = j,
and we indicate as Xj = {xi ∈ X : Sj(xi) = 1} the set of positive examples for
the j-th predicate. Then, we can enforce the supervision constraints for pj as:

∀xSj(x) ⇔ pj(x) =⇒ L(X ,S, pj) =
∑

x∈X
|g(Sj(x)) − g(pj(x))|

In the special case of the predicates implemented by neural networks and
exclusive multi-task classification, where each pattern should be assigned to one
and only one class, the exclusivity can be enforced using a softmax output acti-
vation. Typically, in this scenario, only the positive supervisions are explicitly
listed, and since it holds that g(Sj(x)) = 0,∀x ∈ Xj , yields:

L+(X ,S, pj) =
∑

x∈Xj

g(pj(x)), (9)

For instance, in the case of Lukasiewicz and Product logic, we have, respectively:

L+
L(Xj , pj) =

∑

x∈Xj

(1 − pj(x)) , L+
Π(Xj , pj) = −

∑

x∈Xj

log (pj(x))

corresponding to the L1 and cross entropy losses, respectively.

4 Experimental Results

The proposed framework allows to recover well-known loss functions by express-
ing the fitting of the supervision using logic and then carefully selecting the
t-norm used to translate the resulting formulas. However, a main strength of
the proposed theory is that it becomes possible to derive new principled losses
starting from any family of parametric t-norms. Driven by the huge impact
that cross-entropy gained w.r.t. to classical loss functions in improving conver-
gence speed and generalization capabilities, we designed a set of experiments to
investigate how the choice of a t-norm can lead to a loss function with better
performances than the cross-entropy loss. The Schweizer–Sklar and the Frank
parametric t-norms defined in Sect. 2.1 have been selected for this experimental
evaluation, given the large spectrum of t-norms that can be generated by varying
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(a) The Schweizer–Sklar t-norms (b) The Frank t-norms

Fig. 1. Convergence speed of multiple generated loss functions on the MNIST classifica-
tion task for different values of the parameter λ of Eq. 4. The well-known cross-entropy
loss is equivalent to the loss obtained by the TΠ generator.

their λ parameter. The well known MNIST dataset is used as benchmark for all
the presented experiments. In order to have a fair comparison, the same neural
network architecture is used during all the runs: a 1-hidden layer neural network
with 50 hidden ReLU units and 10 softmax output units. The softmax activa-
tion function allows to express only positive supervisions, like commonly done
in mutually exclusive classification using the cross-entropy loss. Optimization is
carried on using Vanilla gradient descent with a fixed learning rate of 0.01.

Results are shown in Fig. 1, that reports the accuracy on the test set of a
neural network trained on the MNIST dataset. Specific choices of the parameter
λ recover classical loss functions, like the cross-entropy loss, which is equivalent
to the loss obtained using TΠ . The results confirm that the cross-entropy loss
converges faster than the L1 obtained when using TL. However, there is a wide
range of possible choices for the parameter λ that brings an even faster conver-
gence and better generalization than the widely adopted used cross-entropy.

5 Conclusions

This paper presents a framework to embed prior knowledge expressed as logic
statements into a learning task, showning how the choice of the t-norm used
to convert the logic into a differentiable form defines the resulting loss function
used during learning. When restricting the attention to supervised learning, the
framework recovers popular loss functions like the cross-entropy loss, and allows
to define new loss functions corresponding to the choice of the parameters of t-
norm parametric forms. The experimental results show that some newly defined
losses provide a faster convergence rate that the commonly used cross-entropy
loss. Future work will focus on testing the loss functions in more structured
learning tasks, like the one commonly addressed with Logic Tensor Networks
and Semantic based Regularization. The parametric form of the loss functions
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allows to define joint learning tasks, where the loss parameters are co-optimized
during learning, for example using maximum likelihood estimators.
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Abstract. Recent advances in learning description logic (DL) concepts
usually employ a downward refinement operator for space traversing and
hypotheses construction. However, theoretical research proved that ideal
refinement operator does not exist for expressive DLs, including the lan-
guage ALC. The state-of-the-art learning framework DL-Learner sug-
gests to use a complete and proper refinement operator and to handle
infiniteness algorithmically. For example, the CELOE algorithm follows
an iterative widening approach to build a search tree of concept hypothe-
ses. To select a tree node for expansion, CELOE adopts a simple greedy
strategy that neglects the structure of the search tree. In this paper, we
present the Rapid Restart Hill Climbing (RRHC) algorithm that selects
a node for expansion by traversing the search tree in a hill climbing man-
ner and rapidly restarts with one-step backtracking after each expansion.
We provide an implementation of RRHC in the DL-Learner framework
and compare its performance with CELOE using standard benchmarks.

Keywords: Concept learning · Description logics · Hill Climbing

1 Introduction

The research area of concept learning devotes to develop supervised machine
learning algorithms for inducing concept definitions from labeled data. In
description logics (DL), such concept definitions are logical expressions that
are built using DL constructors. For each concept C of interest, positive data
examples represent members of C while negative ones are not. The goal of a
learning algorithm is to find a logical expression that correctly classifies the data
examples while being as simple as possible.

The theoretical foundation of learning in description logics is based on the
study of suitable space traversing operators, so-called refinement operators [12].
One can distinguish between downward and upward refinement operators that
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either specialize the most general concept � or generalize the most specific con-
cept ⊥. Following a learning-by-searching paradigm, concept learning algorithms
use the refinement operator to generate concept hypotheses for the learning prob-
lem and utilize heuristic functions to assess the quality of the hypotheses.

DL-Learner is a popular concept learning framework that implements sev-
eral algorithms based on refinement operators [2]. In particular, CELOE is a
top-down learning algorithm that employs a complete but infinite refinement
operator ρcl in the language ALC with the support of concrete roles and car-
dinality restrictions [11]. To handle the infiniteness of ρcl, CELOE follows the
iterative widening [5] approach to span a search tree of concept hypotheses and
adopts a simple greedy strategy to select the most promising tree node for expan-
sion. The expansion is controlled by a length upper bound of new refinements
that is increased successively during a revisit of the same tree node. However,
this simple greedy selection strategy does not utilize the structure of the search
tree well and may rapidly lead to a local optimum. Another problem of DL-
Learner is the number of parameters used to implement the heuristic. During
the empirical evaluation of CELOE, we noticed that different settings of these
parameters significantly affect the learning performance, and there is often no
clear indication of how they can be mediated for individual learning problems.

In this paper, we present the Rapid Restart Hill Climbing (RRHC) algorithm
to tackle these problems. In contrast to the simple greedy strategy adopted by
CELOE, RRHC selects a node for expansion by traversing the search tree in a hill
climbing fashion. RRHC uses the heuristic proposed in [13] which has only two
parameters. For the expansion, RRHC commits to the iterative widening app-
roach for producing a finite set of refinements. Unlike conventional hill climbing
techniques used in Inductive Logic Programming (ILP), RRHC rapidly restarts
with one-step backtracking after the expansion. We provide an implementation
of RRHC in the DL-Learner framework1 and use CELOE as the baseline for our
experiments. In the most learning problems provided by DL-Learner, we show
that RRHC generally performs better than CELOE.

The rest of the paper is organized as follows. Section 2 discusses related work
in concept learning. Section 3 gives a formal definition of the learning prob-
lem and elaborates some details of CELOE that are necessary for presenting
RRHC in Sect. 4. We compare the performance of RRHC with CELOE in Sect. 5.
Finally, Sect. 6 concludes the paper with future works.

2 Related Work

The most related work on top-down concept learning in description logics is
the DL-Learner framework [2]. DL-Learner provides an expressive refinement
operator ρcl for the language ALC which is later extended to cover concrete roles
and cardinality restrictions for the Web Ontology Language2 (OWL). Besides
other practical features e.g. knowledge fragment segmentation and approximate
1 https://github.com/kit-hua/DL-Learner/tree/hua/ilp2019.
2 https://www.w3.org/TR/owl2-overview/.

https://github.com/kit-hua/DL-Learner/tree/hua/ilp2019
https://www.w3.org/TR/owl2-overview/
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coverage test, DL-Learner implements two algorithms OCEL [13] and CELOE
[11] for learning concepts in OWL. In this paper, we are interested in CELOE,
which is a top-down learning algorithm using the operator ρcl. CELOE employs
a heuristic to evaluate the quality of concept hypotheses and iteratively searches
for a better solution using a simple greedy strategy. It is also worth noting that
while DL adopts the Open-World Assumption (OWA), CELOE implements a
partially closed world reasoner for learning universal restrictions, negations and
cardinality restrictions. Section 3.3 elaborates more details of CELOE, especially
on the procedure of search tree construction.

We also discuss other approaches that make explicit use of refinement oper-
ators. Badea and Nienhuys-Cheng proposed a refinement operator for top-down
concept learning in the language ALER and showed a basic learning procedure
based on this operator [1]. YingYang is a learning system for ALC [6,7,10]. In
contrast to a standard refinement-based approach as DL-Learner, YingYang
uses an upward refinement operator to generalize approximated MSCs (most spe-
cific concepts). Afterwards, the so-called counterfactuals and a non-deterministic
downward refinement operator are used to remove overly generalized hypothe-
ses. Because MSCs need to be approximated for ALC and more expressive DL
languages, YingYang tends to produce unnecessarily long concepts [13].

PArCEL and SPArCEL are recent works on learning in OWL and are built on
top of DL-Learner [15,16]. More specifically, both algorithms are parallelized by
adopting a separate-and-conquer strategy. While both PArCEL and SPArCEL
show the great advantage of parallelism, they use DL-Learner as a subroutine for
the top-down refinement and can potentially also be improved by our approach.

DL-FOIL is another DL learning system that adopts the separate-and-
conquer strategy [8,9]. As opposed to PArCEL and SPArCEL, DL-FOIL is a DL
variant of the FOIL algorithm [14]. The inner loop of DL-FOIL uses a refine-
ment operator for specializing partial solutions of the learning problem, while
the outer loop combines the partial solutions with disjunctions. The specializa-
tion procedure acts as a hill climbing search with a predefined upper bound of
refinement steps, therefore does not construct a search tree as with CELOE.

The hill climbing search adopted by DL-FOIL originated in the well-known
ILP system FOIL. In fact, hill climbing is one of the most commonly used search
algorithm in ILP, although it suffers from the so-called myopia problem [4].
Yet we have a fundamentally different setting in the learning procedure, as our
refinement operator is infinite and the heuristic of a concept hypothesis decreases
after each refinement (see Sect. 3.3). Thus, we do not run hill climbing search
until a solution or a dead end is found, but rapidly restart the search after each
refinement step. Our approach shares some similar ideas with the rapid random
restarts (RRR) algorithm [18], but it does not use computational resource as the
condition for the restart and has a deterministic nature for node selection.
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3 Concept Learning in DL

In this section, we first give the formal definition of the learning problem we are
looking at and then describe CELOE more in detail regarding the search tree
construction.

3.1 The Concept Learning Problem

We use the definition of the learning problem as proposed in [13]:

Definition 1 (concept learning in description logics). Let Target be a con-
cept name and K be a knowledge base (not containing Target). Let E = E+∪E−

be a set of examples, where E+ are the positives examples and E− are the neg-
ative examples and E+ ∩ E− = ∅. The learning problem is to find a concept
C ≡ Target with K ∪ C |= E+ and K ∪ C �|= E−.

In this definition, we call a learned concept C a hypothesis of Target. We
say that a learned concept C covers an example e ∈ E if e is an instance of
C with respect to the knowledge base K, i.e. K |= C(e). A hypothesis C is
complete if it covers all positive examples e ∈ E+, is consistent if it does not
cover any negative example e ∈ E−, and is correct if it is both complete and
consistent. Besides the correctness, another criteria of the solution is the length
of the concept hypothesis. For concepts in ALC, the length is defined as follows:

Definition 2 (length of an ALC concept). Let A be an atomic concept, r be
a role, and D,E be concepts in ALC, the length operator | · | is defined as:

|A| = |�| = |⊥| = 1
|¬D| = |D| + 1

|D 
 E| = |D � E| = 1 + |D| + |E|
|∃r.D| = |∀r.D| = 2 + |D|

3.2 Refinement Operators

Refinement operators formulate the theoretical foundation of concept learning
in description logics. They are used to traverse the concept space and to con-
struct appropriate concept hypotheses. In the literature of learning in DL, the
subsumption relation � is usually taken as a quasi-ordering of the search space.
A downward (upward) refinement operator specializes (generalizes) a concept C
to C ′ with C ′ � C (C � C ′), respectively. As this paper focuses on top-down
learning algorithms, we briefly discuss some critical characteristics of downward
refinement operators.

Definition 3 (properties of downward refinement operators). A refine-
ment operator ρ for a DL language L is called:
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– complete if for all concepts C,D with C � D, there is a concept E with
E ∈ ρ(D) and E ≡ C.

– weakly complete if for all concepts C � �, there is a concept E with
E ∈ ρ(�) and E ≡ C.

– (locally) finite if for all concepts C, ρ(C) is finite
– proper if for all concepts C,D with D ∈ ρ(C), C �≡ D

In this paper, we use the refinement operator ρcl from the DL-Learner
framework. Lehmann and Hitzler showed that ρcl is weakly complete, complete,
and proper [13]. Additionally, ρcl does not reduce the length of a concept, i.e.
∀D ∈ ρcl(C) : |D| ≥ |C|. These properties provide the basis for developing
learning algorithms that are guaranteed to find a correct solution. However, ρcl

is infinite and requires algorithmic handling during the learning procedure.

3.3 CELOE

In this section, we show some essential properties of CELOE that are necessary
for introducing the RRHC algorithm. CELOE is a top-down learning algorithm
based on the refinement operator ρcl. The main part of CELOE iteratively builds
a search tree of the concept space in the following steps:

1. Selection: Find a tree node n with the maximum heuristic score in the
search tree. CELOE implements this by using a global priority queue of all
tree nodes, sorted by their score.

2. Refinement: Invoke ρcl to generate new refinements of the node n. Since ρcl

is infinite, CELOE adopts an iterative widening approach [5] that restricts
the number of refinements using a length upper bound. This upper bound is
called the horizontal expansion of the node n. Upon a revisit of the node n,
its horizontal expansion is increased by one. Note that because the horizontal
expansion limits the length of refinements, there might be no refinement for
a certain iteration.

3. Expansion: New refinements generated in the last step are tested against
redundancy and completeness. A refinement C is ignored if the search tree
already contains a concept C ′ which is weakly equal to C (redundant), or
C does not cover all positive examples E+ (too weak). Refinements that are
neither redundant nor too weak are added as child nodes to the current node
n, and CELOE starts over with the selection step.

The basic form of the heuristic employed for assessing the quality of a node
n was first proposed in [13] as follows:

score(n) = accuracy(C) + α · acc gain(n) − β · he (α ≥ 0, β ≥ 0) (1)

In Eq. 1, C is the concept hypothesis of node n, acc gain is the accuracy
gain compared with n’s parent, and he is the horizontal expansion. The two
parameters α, β control the expansion behavior of the search tree: larger α tends
to exploit better hypotheses while larger β favors less explored areas.
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One major drawback of CELOE is that the selection phase handles the search
tree as a single priority queue, and the global best tree node is selected for further
refinement. We emphasize on the term global since CELOE does not traverse the
search tree in any form, but tracks the best node in the queue. While this simple
greedy approach is fast, it neglects the structure of the search tree and may
rapidly lead to a local optimum in the lower part of the tree. Because there are
often much more nodes in the lower part of the tree, significant effort is required
to regret previous radical decisions.

The concrete implementation of CELOE tries to handle this problem by using
two additional parameters in the heuristic. One is the start node bonus that gives
extra value to the start node � for a hopefully sufficient exploration in the upper
part of the tree, and another one is the refinement penalty that penalizes tree
nodes proportionally to the number of their child nodes.

Nevertheless, consider the combination with the gain bonus and expansion
penalty, we argue that finding a proper setting of these parameters is laborious.
More importantly, different learning problems do not share these parameters. We
explain this more in detail with the Uncle example from the family benchmark
provided by DL-Learner. With the default configuration, CELOE was able to
find the following solution in 4 s 301 ms.

Uncle ≡ ((∃hasSibling.(∃hasChild.�))

(∃married.(∃hasSibling.(∃hasChild.�)))) � (¬Female)

(2)

This solution is correct and reads, “An uncle is not a female and has a sibling
who has a child or is married to someone that has a sibling who has a child.”
To better illustrate the learning process, we assign an ID for each node in the
search tree as follows.

Definition 4 (ID of a tree node). An ID of a tree node n describes its position
in the search tree. It is a sequence of position numbers connected by the hyphen
as P0-P1-P2- · · · . Each position number Pi represents the index of the branch
located at the depth level i that contains n as a descendant node.

For example, the solution in Eq. 2 has the ID 0-2-52-9-17-9, which means
that it is the 9th child of its parent 0-2-52-9-17.

Figure 1 shows the tree depth of expanded nodes for learning the concept of
Uncle with CELOE. First, we can see that most expansions occurred at a level
lower than 3 (depth larger than 3). In particular, from the iteration 1000 to 9150,
CELOE visited level 2 very rarely and put much effort to search from level 3
to 6. After this extensive searching of lower levels, the algorithm realized that
a better solution originated in the less explored areas from the upper part of
the tree and therefore started to explore level 2 from the iteration 9150. Indeed,
a good seed for the solution was the tree node 0-2-52 with the hypothesis
(∃hasSibling.� 
 ∃married.�) � (¬Female). As the ID indicates, 0-2-52 was the
52nd child of the level 1 hypothesis ¬Female, while ¬Female itself was the second
child of �. CELOE came back to 0-2-52 in the iteration 9303 and was able to
find the solution within 40 further iterations.
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(a) Iterations up to 4000.

(b) Iterations from 4001.

Fig. 1. The tree depth of expanded nodes for learning the concept of Uncle with the
default setting of CELOE.

Table 1. The configurations of learning algorithms used for comparison.

Configuration Exp. penalty Gain bonus Ref. penalty Start bonus

ori 0.02/0.1 0.3 0.0001 0.1

spa 0.05 0.2 0.0001 0.1

ori v1 0.02/0.1 0.3 0 0

ori v2 0.03 0.3 0.00005 0.1

ori v3 0.02 0.2 0 0

rrhc-default 0.02 0.2 0 0

To demonstrate the effects of different parameter settings, we compare the
performance of various CELOE configurations for the Uncle example, as shown
in Table 1. The configuration ori is the default setting provided by DL-Learner.
ori has different expansion penalty for individual learning problems and is set
to 0.02 for the Uncle problem. The configuration spa is suggested by Tran et
al. in [15]. We also consider three futher variants of ori: ori v1 and ori v3
are intended to test the influence of the refinement penalty and the start bonus,
while ori v2 slightly modifies the expansion and refinement penalty.

For each of these configurations, Table 2 summarizes measurements collected
until the first correct solution was found. On the one hand, while ori, ori v1
and ori v3 had comparatively good performance, they still differ in the num-
ber of tested expressions and in the tree depth. In particular, the results of
ori v1 and ori v3 indicated that the refinement penalty and the start bonus
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Table 2. The learning performance of four different CELOE configurations for the
Uncle example. All statistics are collected until the first correct solution is found.

Time (s) #iterations #expressions #tree nodes Tree depth Length

ori 4.301 9342 16584 6655 9 16

spa 177.863 429207 526022 322902 12 15

ori v1 4.550 9346 10912 7088 10 15

ori v2 42.808 55206 115141 46546 11 16

ori v3 4.325 9342 10457 6655 10 15

were unnecessary for learning the definition of Uncle. However, as we will show
later in Sect. 5, it is not always the case for other learning problems. More impor-
tantly, ori v1 and ori v3 found a slightly better solution than ori that replaced
¬Female in Eq. 2 with Male. On the other hand, the terrible performance of both
ori v2 and spa suggested that the (slightly) higher expansion penalty is fatal
in the Uncle example.

4 Rapid Restart Hill Climbing (RRHC)

RRHC inherits the main idea of CELOE but adopts a different selection strategy.
Algorithm 1 illustrates the skeleton of RRHC that has two nested loops. For a
current node n, the inner loop selects a tree node for expansion in a hill-climbing
manner (line 4–11) while the outer loop expands the selected node n using the
refinement operator ρcl. The horizontal expansion of the node n is increased
by one after the refinement (line 18), so that a revisit of n could generate new
refinements. Because the heuristic in Eq. 1 depends on the horizontal expansion,
the score of n drops after each refinement such that n might not be the best one
among its siblings. Therefore, the algorithm backtracks to n’s parent (line 20)
and rapidly restarts without checking the new refinements.

In Fig. 2, we compare the tree construction process of RRHC and CELOE.
For the sake of simplicity, we use the Mother example from the family bench-
mark. The numbers on the upper left corner of each tree node illustrate the
sequence of refinement generation. The tree node marked as green depicts the
solution found by the algorithms.

We observe two major differences between Fig. 2a and 2b. The first one is
that CELOE committed to the refinement chain � � Person � Mother � · · ·
while RRHC preferred ¬Male rather than Person. In fact, RRHC also generated
Female in the early phase but decided to go back to the upper layer instead
of exploiting the high score of Female, because the score of Person decreased
after one refinement and did not show any advantage against the root node.
After discovering the node ¬Male, RRHC insisted on refining it since its score
is higher than Person, even after three times of expansion (step 5 to 7). One
reason is that ¬Male has the same individuals (instances) as Female, although
their semantic equivalence is not explicitly stated in the knowledge base.
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Algorithm 1. Rapid Restart Hill Climbing (RRHC)
Input: background knowledge K, positive examples E+, negative examples E−

Output: best concept found
1: initialize a search tree ST with the root node (�, |�|)
2: let the current node n = (C, he) be the root node with C = �, he = |�|
3: while Solution not found or timeout not triggered do
4: while size(n.children) �= 0 do
5: select a node child with the best score among n.children
6: if score(child) > score(n) then
7: n ← child
8: else
9: break

10: end if
11: end while
12: let refinements = {D | D ∈ ρcl(C), |D| ≤ he}
13: for D ∈ refinements do
14: if D is complete and D is not redundant then
15: add (D, |D|) as a child of n
16: end if
17: end for
18: increase the horizontal expansion of n by 1
19: if n �= root then
20: n ← n.parent
21: end if
22: end while
23: return concept with best accuracy

The second difference is that CELOE found a better solution than RRHC
regarding the concept length. However, as we have shown in Table 2, the solution
found by CELOE depends on its parameter setting. In fact, with the configura-
tions spa and ori v2, CELOE generated the same solution as RRHC.

After explaining the learning procedure of RRHC, we want to analyze its
theoretical properties. Proposition 1 shows that RRHC is correct in ALC.

Proposition 1 (Correctness in ALC). If a learning problem has a solution
in ALC, then Algorithm 1 terminates and finds a correct solution.

Proof. We first briefly repeat the correctness proof for OCEL/CELOE in [12],
and then extend it for Algorithm1.

Suppose that the learning problem has a solution D in ALC, then the weak
completeness of the refinement operator ρcl guarantees a refinement path in the
form of � � D1 � D2 � · · · � Dn = D. The basic heuristic in Eq. 1 has the
property that score(D) ≥ −|D| for β ∈ [0, 1], since the first two terms in Eq. 1
are positive, and the horizontal expansion of D is initialized to |D|. Moreover,
score(Di) ≥ −|D|, since ρcl does not reduce the length of a refined hypothesis.
On the other hand, because β > 0, a hypothesis D′ with a sufficiently high
horizontal expansion would have a score lower than −|D| and would not exist in
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(a) Search tree of the Mother example by CELOE.

(b) Search tree of the Mother example by RRHC.

Fig. 2. The search tree constructed for learning the concept of Mother with the default
setting of CELOE and RRHC.

the chain above. As OCEL/CELOE greedily selects the global best node from
the tree, D′ would never be selected until all concepts in the chain above are
sufficiently refined. Thus, either D or another solution will be found.

Now we extend this proof for Algorithm1, since RRHC employs a different
selection strategy. Essentially, we need to show that RRHC would not select a
node D′ that has no chance to refine to D, i.e. score(D′) < −|D|. We proof this
by deriving a contradiction. Suppose that D′ would be selected, then −|D| >
score(D′) ≥ score(D∗) for each D∗ that is a sibling of D′. In other words, no
sibling node of D′ can be refined to the concept D. Furthermore, let D′

p be the
parent of D′, then −|D| > score(D′) > score(D′

p), since otherwise Algorithm 1
would choose D′

p and restart. Consider the layers above D′, it is evident that the
score of all predecessors of D′ and the siblings of those are lower than score(D′)
and therefore lower than −|D|, including the root node �. As a consequence,
even with sufficiently high horizontal expansion, ρcl can not generate D from �,
which leads to a contradiction of the weak completeness of ρcl. �


5 Experiments

In this section, we conduct extensive comparisons of RRHC and CELOE using
the standard benchmarks provided by DL-Learner. Table 3 enumerates the
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Table 3. Statistics of used benchmarks. Moral reasoner and poker have two different
versions which are shown with two values in each column.

Benchmarks Language #classes #ind #op #dp #axioms Category

arch ALC 8 19 5 0 80 simple

carcinogenesis ALC(D) 142 22372 4 15 74566 hard

family AL 4 202 4 0 1343 simp./med.

forte ALIF 3 86 3 0 347 medium

lymphography AL 53 148 0 0 2197 simp./hard

moral reasoner ALC/ALC 41/44 43/202 0/0 0/0 1047/4710 simple

mutagenesis AL(D) 86 14145 5 6 62066 hard

poker AL/AL 2/2 311/347 6/6 0/0 1334/1418 simple

semantic bible SHOIN (D) 49 724 29 9 4434 simple

trains ALC 10 50 5 0 288 simple

yinyang ALI 3 31 3 0 157 simple

ontologies of these benchmarks with the statistics of their classes, individuals,
roles (object properties and data properties in OWL), and axioms3.

For each benchmark, there can be several learning problems, such as Mother
and Uncle in the family benchmark. We categorize the learning problems by
the learning time required to find the first correct solution: simple problems
can be solved by both algorithms within 3 s, medium problems require more
than 3 s by at least one algorithm, and hard problems can not be solved within
300 s (timeout) by at least one algorithm. The last column of Table 3 shows the
difficulty of each benchmark. Note that some benchmarks have mixed difficulties
such as family. To assess the performance of algorithms more fairly, we choose
a different evaluation criteria for each category as follows:

– simple: since both algorithms found the solution very fast, we use the size of
the search tree to compare the learning efficiency in order to avoid the impact
of oscillations of the computing power.

– medium: in this case, the time required for the first solution is used.
– hard : in all hard cases, we compare the accuracy of the best concept found

by both algorithms.

5.1 Results and Discussions

The benefit of using the basic heuristic in Eq. 1 is that we were able to choose a
default configuration rrhc-default for RRHC empirically (last row in Table 1).
It does not mean that the default configuration was always the best one, but it
performed statistically well throughout all learning problems. For CELOE, we
chose the configurations that are summarized in Table 1. Note that ori v3 has
exactly the same setting as rrhc-default.

3 The statistics are obtained using the Protégé editor.
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We run the experiments on a machine with a 2.6 GHz CPU and 16 GB mem-
ory. The timeout for all learning problems is 300 s. We explicitly disallow noise
percentage in all experiments, therefore only complete concept hypotheses are
considered as potential solutions. For both algorithms, predictive accuracy is
used to compute the accuracy of hypotheses [13]. Figures 3 and 4 show the com-
parisons of RRHC and CELOE regarding the performance criteria mentioned
above. In all plots, the blue line or bar depicts the value of RRHC while the
others represent different CELOE configurations.

(a) Tree size of rrhc-default, ori, spa for simple learning problems.

(b) Tree size of rrhc-default, ori v1, ori v2, ori v3 for simple learning problems.

Fig. 3. Comparison of RRHC and CELOE in simple learning problems. (Color figure
online)
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For the simple learning problems, Fig. 3 shows the number of tree nodes when
the first solution is found. Besides some trivial ones in which both algorithms
had very similar results, RRHC generally performed better than CELOE. One
exception is the arch benchmark, which strongly prefers large expansion penalty,
such as 0.05/0.1 from ori, spa, and ori v1. Note that in Fig. 3b, ori v3 per-
formed well for all problems in family, but worked unsatisfyingly in some other
problems, e.g. hasValue in semantic bible and straight in poker.

For the medium learning problems, Fig. 4a shows the time required (in sec-
onds) for constructing the first solution, and RRHC was always the best one.
For the hard cases, Fig. 4b shows the accuracy of the best solution found within

(a) Time required of all configurations for medium learning problems.

(b) Best accuracy obtained from all configurations for hard learning problems.

Fig. 4. Comparison of RRHC and CELOE in medium and hard learning problems.
(Color figure online)
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Fig. 5. Comparison of RRHC (orange) and CELOE (blue) regarding the expanded
nodes in the Uncle example. Iterations from 5001 are omitted since RRHC found a
solution in iteration 2418. (Color figure online)

300 s. Apparently, the performance of RRHC was either comparable to or better
than the best CELOE configuration.

One extremely hard benchmark is carcinogenesis, which is very noisy so
that both algorithms had poor results. Among the CELOE configurations, it is
evident that no single setting was significantly better than the others. Interest-
ingly, ori v3 performed well in most cases except the muta-train2 problem.

Recall the Uncle example from the family benchmark. Figure 5 shows the
comparison of RRHC (orange) and CELOE (blue) regarding the tree depth of
expanded nodes. Besides that RRHC tended to explore the upper part of the
tree, its behavior was also more stable than CELOE regarding depth changes.
However, it is worth noting that RRHC is fundamentally different to a breadth-
first search, as an exhaustive expansion of any tree node is not viable due to
the infiniteness of the refinement operator. Principally, heuristic still guides the
search. However, the restart mechanism requires a sequence of good candidates
from the root node � to the selected one. Consequently, RRHC also spent quite
much time in level 3 and 4, since the score of the node 0-2-52 was lower than its
siblings. However, because the upper part of the tree has much fewer nodes than
the lower part, RRHC was able to expand 0-2-52 in iteration 2382, compared
with iteration 9303 in the case of CELOE.

6 Conclusion and Future Work

In this paper, we presented the Rapid Restart Hill Climbing (RRHC) algorithm
for learning DL concepts. We identified the drawbacks of the simple greedy
strategy employed in the CELOE algorithm and showed that RRHC generally
performs better than CELOE in standard benchmarks of DL-Learner. Moreover,
RRHC enjoys a small number of parameters, and a default setting was provided
empirically for future research.

While the results look promising, we did not look into the myopia problem of
hill climbing. One reason is that our heuristic is rather dynamic, i.e. the score of
a tree node changes after its concept is refined. In future work, we want to study
how the myopia problem affects RRHC for learning DL concepts, and plan to
extend RRHC using advanced techniques that can be borrowed from the ILP
community. For example, macros were introduced for tackling the problem of
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non-discriminating relations in ILP [3]. A similar adaptation of the refinement
operator ρcl can thus require the consumer (filler) in any quantification to be a
specialization of �. For noisy data sets, e.g. carcinogenesis, one can consider
to introduce random selections during the hill climbing search [17].
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Abstract. While deep networks have been enormously successful, they
rely on flat-feature vector representations. Using them in structured
domains requires significant feature engineering. Such domains rely on
relational representations to capture complex relationships between enti-
ties and their attributes. Thus, we consider the problem of learning neu-
ral networks for relational data. We distinguish ourselves from current
approaches that rely on expert hand-coded rules by learning higher-
order random-walk features to capture local structural interactions and
the resulting network architecture. We further exploit parameter tying,
where instances of the same rule share parameters. Our experimental
results demonstrate the effectiveness of the proposed approach over mul-
tiple neural net baselines as well as state-of-the-art relational models.

Keywords: Neural networks · Relational models

1 Introduction

Probabilistic Logic/Statistical Relational Models [1,3] allows them to model
complex data structures such as graphs far more easily and interpretably than
basic propositional representations. While expressive, these models do not incor-
porate or discover latent relationships between features as effectively as deep
networks. There has been focus on achieving the dream team of symbolic and
statistical learning methods such as relational neural networks [2,7,11,15,16].
While specific architectures differ, these methods generally employ an expert
or Inductive Logic Programming (ILP, [10]) to identify domain structure/rules
which are then instantiated to learn a neural network. We improve upon these
methods in two ways: (1) we employ a rule learner to automatically extract
interpretable rules that are then employed as hidden layer of the neural network;
(2) we exploit parameter tying similar to SRL models [14] that allow multiple
instances of the same rule share the same parameter. These two extensions sig-
nificantly improve the adaptation of neural networks (NNs) for relational data.

We employ Relational Random Walks [9] to extract relational rules from a
database, which are then used as the first layer of the NN. These random walks
c© Springer Nature Switzerland AG 2020
D. Kazakov and C. Erten (Eds.): ILP 2019, LNAI 11770, pp. 62–71, 2020.
https://doi.org/10.1007/978-3-030-49210-6_6
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have the advantages of being learned from data (as against time-consumingly
hand-coded features) and interpretable (they are rules in a database schema).
Given evidence (facts), our network ensure two key features. First, relational
random walks are learned and instantiated (grounded); parameter tying ensures
that groundings of the same random walk share the same parameters resulting
in far fewer learnable network parameters. Next, for combining outputs from
different groundings of the same clause, we employ combination functions [4,14].
Finally, once the network weights are appropriately constrained by parameter
tying, they can be learned using standard techniques such as backpropagation.

We make the following contributions: (1) we learn a NN that can be
fully trained from data and with no significant engineering, unlike previous
approaches; (2) we combine the successful paradigms of relational random walks
and parameter tying allowing the resulting NN to faithfully model relational
data while being fully learnable; (3) we evaluate the approach and demonstrate
its efficacy.

2 Related Work

Our work is closest to Lifted Relational Neural Networks (LRNN, [15]) due to
Šourek et al. LRNN uses expert hand-crafted rules, which are then instantiated
and rolled out as a ground network. While Šourek et al., exploit tied parameters
across facts, we share parameters across multiple instances of the same rule.
LRNN supports weighted facts due to the fuzzy notion that they adapt; we take a
more standard approach with Boolean facts. Finally, while the previous difference
appears to be limiting, in our case it leads to a reduction in the number of network
weights. Ŝourek et al., extended their work to learn network structure using
predicate invention [16]; our work learns relational random walks as rules for the
network structure. As we show in our experiments, NNs can easily handle large
numbers of random walks as weakly predictive intermediate layers capturing
local features. This allows for learning a more robust model than the induced
rules, which take a more global view of the domain.

Another recent approach is due to Kazemi and Poole [7], who proposed a
relational neural network by adding hidden layers to their Relational Logistic
Regression [6] model. A key limitation of their work is that they are restricted
to unary relation predictions. Other recent approaches such as CILP++ [2] and
Deep Relational Machines [11] incorporate relational information as network
layers. However, such models propositionalize relational data into flat-feature
vector while we learn a lifted model.

3 Neural Networks with Relational Parameter Tying

A relational neural network N is a set of M weighted rules {Rj, wj)}M
j=1

. Rela-
tional rules are conjunctions of the form h ⇐ b1 ∧ . . . ∧ b�, where the head
h is the target of prediction and the body b1 ∧ . . . ∧ b� corresponds to condi-
tions that make up the rule. We are given evidence: atomic facts F and labeled
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relational examples {(xi, yi)}�
i=1. We seek to learn a relational neural network

N ≡ {Rj, wj)}M
j=1

to predict a Target relation: y = Target(x). This consists
of two steps: structure learning, to learn the architecture of N and parameter
learning, to identify (tied) network parameters of N .

3.1 Generating Lifted Random Walks

The architecture is determined by the set of induced clauses from the domain.
While previous approaches employed carefully hand-crafted rules, we use rela-
tional random walks to define the network architecture and local qualitative
structure of the domain. Relational data is often represented using a lifted
graph, which defines the domain’s schema; in such a representation, a relation
Predicate(Type1, Type2) can be understood as a predicate edge between two
type nodes: Type1

Predicate−−−−−−→ Type2. A relational random walk through a graph
is a chain of such edges corresponding to a conjunction of predicates.

For a random walk to be semantically sound, the input type (argument
domain) of the (i + 1)-th predicate must be the same as the output type
(argument range) of the i-th predicate. For example, in a movie domain, the
body of the rule ActedIn(P1, G1) ∧ SameGenre(G1, G2) ∧ ActedIn−1(G2, P2)∧
SamePerson(P2, P3) ⇒ WorkedUnder(P1, P3) is a lifted random walk

P1
ActedIn−−−−−→ G1

SameGenre−−−−−−−−→ G2
ActedIn−1

−−−−−−−→P2
SamePerson−−−−−−−−→ P3, between two entities

P1 → P3 in the target predicate, WorkedUnder(P1, P3). This walk contains an
inverse predicate ActedIn−1, which is distinct from ActedIn (its arguments are
reversed).

We use path-constrained random walks [9] approach to generate M lifted
random walks Rj, j = 1, . . . ,M . These random walks form the backbone of the
lifted neural network, as they are templates for various feature combinations
in the domain. They can also be interpreted as domain rules as they impart
localized structure, or a qualitative description of the domain. When these lifted
random walks have weights associated with them, we are then able to endow
them with a quantitative influence on the target. A key component of network
instantiation with these rules is rule-based parameter tying, which reduces the
number of learnable parameters significantly, while still effectively maintaining
the quantitative influences as described by the relational random walks.

3.2 Network Instantiation

The relational random walks (Rj) generated above are the relational features of
the lifted relational NN, N . Our goal is to unroll and ground the network with
several intermediate layers that capture the relationships expressed by these ran-
dom walks. A key difference in network construction between our proposed work
and recent approaches [15] is that we do not perform an exhaustive grounding
to generate all possible instances before constructing the network. Instead, we
only ground as needed leading to a much more compact network (cf. Figure 1).
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Fig. 1. The relational neural network is unrolled in three stages, ensuring that the
output is a function of facts through two hidden layers: the combining rules layer
(with lifted random walks) and the grounding layer (with instantiated random walks).
Weights are tied between the input and grounding layers based on which fact/feature
ultimately contributes to which rule in the combining rules layer.

Output Layer: For the Target, which is also the head h in all the rules Rj,
introduce an output neuron called the target neuron, Ah. With one-hot encod-
ing of the target labels, this architecture can handle multi-class problems. The
target neuron uses the softmax activation function. Without loss of generality,
we describe the rest of the network unrolling assuming a single output neuron.

Combining Rules Layer: The target neuron is connected to M lifted
rule neurons, each corresponding to one of the lifted relational random walks,
(Rj, wj). Each rule Rj is a conjunction of predicates defined by random walks:

Qj1(X, ·) ∧ . . . ∧ QjL(·, Z) ⇒ Target(X, Z), j = 1, . . . ,M,

and corresponds to the lifted rule neuron Aj . This layer of neurons is fully
connected to the output layer to ensure that all the lifted random walks (that
capture the domain structure) influence the output. The extent of their influence
is determined by learnable weights, uj between Aj and the output neuron Ah.

In Fig. 1, we see that the rule neuron Aj is connected to the neurons Aji;
these neurons correspond to Nj instantiations of the random-walk Rj. The lifted
rule neuron Aj aims to combine the influence of the groundings of the random-
walk feature Rj that are true in the evidence. Thus, each lifted rule neuron
can also be viewed as a rule combination neuron. The activation function of
a rule combination neuron can be any aggregator or combining rule [14]. This
can include value aggregators such as weighted mean, max or distribution
aggregators (if inputs to the this layer are probabilities) such as Noisy-Or.
For instance, combining rule instantiations out(Aji) with a weighted mean will
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Fig. 2. Example: unrolling the network with relational parameter tying.

require learning vji, with the nodes using unit functions for activation. This layer
is more general and subsumes LRNN [15], which uses a max combination layer.

Grounding Layer: For each ground random walk Rjθi, i = 1, . . . , Nj , we
introduce a ground rule neuron, Aji. This ground rule neuron represents the i-th
instantiation (grounding) of the body of the j-th rule, Rjθi: Q

j
1θi ∧ . . . ∧ Qj�θi.

The activation function of a ground rule neuron is a logical AND (∧); it is
only activated when all its constituent inputs are true. This requires all the
constituent facts Qj1θi, . . . , Q

j
�θi to be in the evidence. Thus, the (j, i)-th ground

rule neuron is connected to all the fact neurons that appear in its corresponding
instantiated rule body. A key novelty is relational parameter tying: the weights
of connections between the fact and grounding layers are tied by the rule these
facts appear in together. This is described in detail further below.

Input Layer: Each grounded predicate is a fact, that is Qjkθi ∈ F . For each
such instantiated fact, we create a fact neuron Af , ensuring that each unique
fact in evidence has only one single neuron associated with it. Every example is
a collection of facts, that is, example xi ≡ Fi ⊂ F . Thus, an example is input
into the system by simply activating its constituent facts in the input layer.

Relational Parameter Tying: We employ rule-based parameter tying for
the weights between the grounding layer and the input/facts layer. Parameter
tying ensures that instances corresponding to an example all share the same
weight wj if they occur in the same lifted rule Rj. The shared weights wj are
propagated through the network in a bottom-up fashion, ensuring that weights
in the succeeding hidden layers are influenced by them. Our approach to param-
eter tying is in sharp contrast to LRNN, where weights between the output and
combining rules layers are learned. This approach also differs from our previ-
ous work [5] where we used relational random walks as features for an RBM.
The relational RBM formulation has significantly more edges, and many more
parameters to optimize during learning as its architecture is a bipartite graph.
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We illustrate network construction with an example: two lifted random walks
(R1, w1) and (R2, w2) for the target predicate WorkedUnder(P1, P2) (Fig. 2):

WorkedUnder(P1, P2) ⇐ActedIn(P1, M) ∧ Directed−1(M, P2),

WorkedUnder(P1, P2) ⇐SamePerson(P1, P3) ∧ ActedIn(P3, M) ∧ Directed−1(M, P2).

The output layer consists of a single neuron Ah corresponding to
WorkedUnder. The lifted rule layer has two lifted rule nodes A1 corre-
sponding to rule R1 and A2 corresponding to rule R2. These rule nodes com-
bine inputs corresponding to instantiations that are true in the evidence.
The network is unrolled based on the specific training example, for instance:
WorkedUnder(Leo, Marty). For this example, the rule R1 has two instantiations
that are true in the evidence. Then, we introduce a ground rule node for each
such instantiation:

A11 :Act(Leo, ”TheDeparted”) ∧ Dir−1(”TheDeparted”, Marty),

A12 :Act(Leo, ”TheAviator”) ∧ Dir−1(”TheAviator”, Marty).

The rule R2 has only one instantiation, and consequently only one node:

A21 :SamPer(Leo, Leonardo) ∧ Act(Leo, ”TheDeparted”) ∧ Dir−1(”TheDeparted”, Marty).

The grounding layer consists of ground rule nodes corresponding to instan-
tiations of rules that are true in the evidence. The edges Aji → Aj have
weights vji that depend on the combining rule implemented in Aj . In this exam-
ple, the combining rule is average, so we have v11 = v12 = 1

2 and v21 = 1.
The input layer consists of atomic fact in evidence: f ∈ F . The fact nodes
ActedIn(Leo, ”TheAviator”) and Directed−1(”TheAviator”, Marty) appear in
the grounding R1θ2 and are connected to the corresponding ground rule neu-
ron A12. Finally, parameters are tied between the facts layer and the grounding
layer. This ensures that all facts that ultimately contribute to a rule are pooled
together, which increases the influence of the rule during weight learning. This
ensures that a rule that holds strongly in the evidence gets a higher weight.

4 Experiments

We aim to answer the following questions about our method, Neural Networks
with Relational Parameter Tying (NNRPT):1 Q1: How does NNRPT compare to the
state-of-the-art SRL models ? Q2: How does NNRPT compare to propositional-
ization models ? Q3: How does NNRPT compare to relational neural networks in
literature?

1 https://github.com/navdeepkjohal/NNRPT.

https://github.com/navdeepkjohal/NNRPT
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Table 1. Data sets used in our experiments. The last column is the number of sampled
groundings of random walks per example for NNRPT.

Domain Target #Facts #Pos #Neg #RW #Samp/RW

Uw-Cse advisedBy 2817 90 180 2500 1000

Mutagenesis MoleAtm 29986 1000 2000 100 100

Cora SameVenue 31086 2331 4662 100 100

Imdb WorkedUnder 914 305 710 80 -

Sports TeamPlaysSport 7824 200 400 200 100

To answer Q1, we compare NNRPT with state-of-the-art relational gradient-
boosting methods, RDN-Boost[13], MLN-Boost [8], and relational RBMs (RRBM-
E, RRBM-C, [5]). As the random walks chain binary predicates in NNRPT, we
convert unary and ternary predicates into binary predicates for all data sets.
We use these binary predicates across all our baselines. We run RDN-Boost and
MLN-Boost with their default settings and learn 20 trees for each model. We train
RRBM-E and RRBM-C according to the settings recommended in [5]. For NNRPT, we
generate random walks by considering each predicate and its inverse to be two
distinct predicates. Also, we avoid loops in the random walks by enforcing sanity
constraints on the random walk generation (Table 1). When exhaustive grounding
becomes prohibitively expensive, we sample groundings for each random walk for
large data sets. For all experiments, we set the positive to negative ratio to be
1 : 2 for training, set combination function to “average” and perform 5-fold cross
validation. For NNRPT, we set the learning rate to be 0.05, batch size to 1, and
number of epochs to 1. We train our model with L1-regularized AdaGrad.

To answer Q2, we generated flat feature vectors by Bottom Clause Proposi-
tionalization (BCP, [2]), according to which one bottom clause is generated for
each example. BCP considers each predicate in the body of the bottom clause as
a unique feature when it propositionalizes bottom clauses to flat feature vector.
We use PROGOL [12] to generate bottom clauses. After propositionalization,
we train two models: a propositionalized RBM (BCP-RBM) and a propositional-
ized NN (BCP-NN). The NN has two hidden layers, which makes BCP-NN model
a modified version of CILP++ [2] that has one hidden layer. Hyper-parameters
of both models were optimized by line search on a validation set. To answer
Q3, we compare NNRPT with LRNN [15]. To ensure fairness, we perform structure
learning by using PROGOL and input the same clauses to both LRNN and NNRPT.
PROGOL learned 4 clauses for Cora, 8 clauses for Imdb, 3 clauses for Sports,
10 clauses for Uw-Cse and 11 clauses for Mutagenesis in our experiment.

Table 2 compares NNRPT to state-of-the-art SRL methods. NNRPT is signifi-
cantly better than RRBM for Cora and Sports, and performs comparably on
other data sets. It also performs better than MLN-Boost, RDN-Boost on Imdb
and Cora, and comparably on other data sets. Broadly, Q1 can be answered
affirmatively: NNRPT performs comparably to or better than state-of-the-art SRL.
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Table 2. Comparison with different SRL algorithms.

Data Set Measure RDN-Boost MLN-Boost RRBM-E RRBM-C NNRPT

Uw-Cse AUC-ROC 0.973± 0.014 0.968± 0.014 0.975± 0.013 0.968± 0.011 0.959± 0.024

AUC-PR 0.931± 0.036 0.916± 0.035 0.923± 0.056 0.924± 0.040 0.896± 0.063

Imdb AUC-ROC 0.955± 0.046 0.944± 0.070 1.000± 0.000 0.997± 0.006 0.984± 0.025

AUC-PR 0.863± 0.112 0.839± 0.169 1.000± 0.000 0.992± 0.017 0.951± 0.082

Cora AUC-ROC 0.895± 0.183 0.835± 0.035 0.984± 0.009 0.867± 0.041 0.952± 0.043

AUC-PR 0.833± 0.259 0.799± 0.034 0.948± 0.042 0.825± 0.050 0.899± 0.070

Mutag. AUC-ROC 0.999± 0.000 0.999± 0.000 0.999± 0.000 0.998± 0.001 0.981± 0.024

AUC-PR 0.999± 0.000 0.999± 0.000 0.999± 0.000 0.997± 0.002 0.970± 0.039

Sports AUC-ROC 0.801± 0.026 0.806± 0.016 0.760± 0.016 0.656± 0.071 0.780± 0.026

AUC-PR 0.670± 0.028 0.652± 0.032 0.634± 0.020 0.648± 0.085 0.668± 0.070

Table 3. Comparison of NNRPT with propositionalization-based approaches.

Data Set Measure BCP-RBM BCP-NN NNRPT

Uw-Cse AUC-ROC 0.951 ± 0.041 0.868 ± 0.053 0.959 ± 0.024

AUC-PR 0.860 ± 0.114 0.869 ± 0.033 0.896 ± 0.063

Imdb AUC-ROC 0.780 ± 0.164 0.540 ± 0.152 0.984 ± 0.025

AUC-PR 0.367 ± 0.139 0.536 ± 0.231 0.951 ± 0.082

Cora AUC-ROC 0.801 ± 0.017 0.670 ± 0.064 0.952 ± 0.043

AUC-PR 0.647 ± 0.050 0.658 ± 0.064 0.899 ± 0.070

Mutag. AUC-ROC 0.991 ± 0.003 0.945 ± 0.019 0.981 ± 0.024

AUC-PR 0.995 ± 0.001 0.973 ± 0.012 0.970 ± 0.039

Sports AUC-ROC 0.664 ± 0.021 0.543 ± 0.037 0.780 ± 0.026

AUC-PR 0.532 ± 0.041 0.499 ± 0.065 0.668 ± 0.070

Table 3 compares NNRPT with two propositionalization models: BCP-RBM and
BCP-NN. NNRPT performs better than BCP-RBM on all data sets except Mutagen-
esis, where the two are comparable. NNRPT performs better than BCP-NN on all
data sets. It should be noted that BCP feature generation sometimes introduces
a large positive-to-negative example skew (for example, in the Imdb data set),
which can sometimes gravely affect the performance of propositional models.
This emphasizes the need for models, like ours, that can handle relational data
without propositionalization. Q2 can now be answered affirmatively: that NNRPT
performs better than propositionalization models.

Table 4 compares NNRPT and LRNN when both use clauses learned by PRO-
GOL. NNRPT performs better on Uw-Cse, Sports evaluated using AUC-PR.
This result is especially significant because these data sets are considerably
skewed. NNRPT also outperforms LRNN on Cora and Mutagenesis. The reason
for this big performance gap between the two models on Cora is likely because
LRNN could not build effective models with the fewer number of clauses typically
learned by PROGOL (four, here). In contrast, even with very few clauses, NNRPT
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Table 4. Comparison of NNRPT and LRNN on AUC-ROC and AUC-PR on different data
sets. Both the models were provided clauses learnt by PROGOL, [12].

Model Measure Uw-Cse Imdb Cora Mutagen. Sports

LRNN AUC-ROC 0.923± 0.027 0.995± 0.004 0.503± 0.003 0.500± 0.000 0.741± 0.016

AUC-PR 0.826± 0.056 0.985± 0.013 0.356± 0.006 0.335± 0.000 0.527± 0.036

NNRPT AUC-ROC 0.700± 0.186 0.997± 0.007 0.968± 0.022 0.532± 0.019 0.657± 0.014

AUC-PR 0.910± 0.072 0.992± 0.017 0.943± 0.032 0.412± 0.032 0.658± 0.056

outperforms LRNN. This helps us answer Q3, affirmatively: NNRPT offers many
advantages over state-of-the-art relational neural networks.

Our experiments show the benefits of parameter tying as well as the expres-
sivity of relational random walks in tightly integrating with a neural network
model across a variety of domains and settings. The key strengths of NNRPT are
that it can (1) efficiently incorporate a large number of relational features, (2)
capture local qualitative structure through relational random walk features, (3)
tie feature weights to capture global quantitative influences.

5 Conclusion and Future Work

We considered the problem of learning neural networks from relational data. Our
proposed architecture exploits parameter tying: instances of the same rule share
the same parameters for the same training example. In addition, we explored
relational random walks as relational features for training these neural nets. Fur-
ther experiments on larger data sets could yield insights into the scalability of this
approach. Integration with an approximate-counting method could potentially
reduce the training time. Finally, understanding the use of such random-walk-
based NN as a function approximator can allow for efficient and interpretable
learning in relational domains with minimal feature engineering.
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Abstract. Real world data are often noisy and fuzzy. Most traditional
logical machine learning methods require the data to be first discretized
or pre-processed before being able to produce useful output. Such short-
coming often limits their application to real world data. On the other
hand, neural networks are generally known to be robust against noisy
data. However, a fully trained neural network does not provide easily
understandable rules that can be used to understand the underlying
model. In this paper, we propose a Differentiable Learning from Inter-
pretation Transition (δ-LFIT) algorithm, that can simultaneously output
logic programs fully explaining the state transitions, and also learn from
data containing noise and error.

Keywords: Neural network · Machine learning · Interpretability ·
LFIT

1 Introduction

Learning from Interpretation Transition (LFIT) is an algorithm that learns
explainable rules of a dynamic system [7]. Given a series of state transitions
from the observed dynamic system, the LFIT algorithm outputs a normal logic
program (NLP) which realizes the given state transitions. LFIT has many appli-
cations in different areas. In the robotics field, being able to learn the model
of the surrounding enables the agent to perform planning [8]. In the field of
biology, learning the model of how each gene influence each other can lead to
development of medicine and curing of diseases [9].

The LFIT algorithm has largely been implemented in two different methods,
symbolic method [10] and the neural network method [5]. The symbolic method
utilizes logical operations to learn and induce logic programs. However, there are
also significant limits when utilizing logical operations. One such limit is that
the logical operations currently employed by the symbolic LFIT method lacks
ambiguous notations. This means that any error or noise present in the data
is reflected directly in the output, synonymous to the garbage in, garbage out
problem.
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To employ some ambiguity in LFIT, the neural network method was devel-
oped. Deep learning and various other statistical machine learning methods have
been shown to be relatively robust against noisy data [11,12]. Prior work using
neural network has shown that it is possible to perform the LFIT algorithm
with neural networks [5]. Although robustness against noise was not proven in
[5], experiments showed that the neural network was able to generalize despite
only given a smaller number of state transitions as training data.

In this paper, we propose the Differentiable Learning from Interpretation
Transition (δ-LFIT) algorithm. The δ-LFIT algorithm is an end-to-end differ-
entiable implementation of the LFIT algorithm. With δ-LFIT, we attempt to
address both the problems of symbolic machine learning methods and the prob-
lems of neural network methods. It is robust to noisy and ambiguous data, gen-
eralizes well from very few training data, and the output is a human-readable,
interpretable model.

This paper is structured as follows: first we cover some necessary background
on logic programming, LFIT and neural networks in Sect. 2. Next, we present the
δ-LFIT algorithm in Sect. 3. Following that, we present some experiments and
observations in Sect. 4. In Sect. 5, we discuss some prior works that are related
to our contribution. Finally, we summarize our work and discuss some future
research directions that are possible with this work.

2 Background

The main goal of LFIT is to learn an NLP describing the dynamics of the
observed system. To describe the dynamics of a changing system with respect to
time, we can use time as an argument. In particular, we will consider the state
of an atom A at time t as A(t). Thus, we consider a dynamic rule as follows:

A(t + 1) ← A1(t) ∧ · · · ∧ Am(t) ∧ ¬Am+1(t) ∧ · · · ∧ ¬An(t) (1)

which means that, if A1, A2, . . . , Am, denoted as b+ is true at time t and Am+1,
Am+2, . . . , An, denoted as b− is false at time t, then the head A will be true at
time t + 1. We can simulate the state transition of a dynamical system with the
TP operator.

An Herbrand interpretation I is a subset of the Herbrand base B. For a
logic program P and an Herbrand interpretation I, the immediate consequence
operator (or TP operator) is the mapping TP : 2B → 2B:

TP (I) = {h(R) | R ∈ P, b+(R) ⊆ I, b−(R) ∩ I = ∅}. (2)

Given a set of Herbrand interpretations E and {TP (I) | I ∈ E}, the LFIT
algorithm outputs a logic program P which completely represents the dynamics
of E.

The LFIT algorithm, in its simplest form, can be described as an algorithm
that requires an input of a set of state transitions E and an initial NLP P0, then
outputs an NLP P such that P is consistent with the input E.
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3 δ-LFIT

In this section, we describe our core contribution: a differentiable implementation
of the LFIT algorithm. Broadly speaking, the δ-LFIT model can be seen as a
classifier, classifying whether each rule is present in the system.

3.1 Rule Classification

To build a classifier, we first have to know all the possible rules that a system
can have given the Herbrand base B. There can be an infinite number of rules
possible if we consider the combination of each atoms and placing them in the
form (1). Therefore, we have to place some restrictions in the rules that we are
classifying.

First, we’ll define an operation that allows us to simplify a rule.

Definition 1 (Simplification of Rules). A rule can be simplified according
to the following operations:

– a ∧ a is simplified to a
– ¬a ∧ ¬a is simplified to ¬a
– a ∧ ¬a and ¬a ∧ a is simplified to ⊥
where a is an atom.

⊥ is the equivalent of having an empty body a ←.

Definition 2 (Minimal Rule). A rule is considered to be minimal, if its logical
formula cannot be simplified further.

For every Herbrand base B, we can generate a finite ordered set of rules τ(B)
that contains all possible minimal rules for any system that has Herbrand base
B. In a classification scenario, we want to know which class corresponds to which
rule. To ease this mapping, we define a deterministic approach of mapping each
rules to an index, which corresponds to the class.

Definition 3 (Length of a rule). The length of a rule R ∈ τ(B) is defined as
‖b(R)‖.
Definition 4 (Index of element in ordered set). Let S be an ordered set,
the index of element e ∈ S, is defined as σS(e) = ‖S<e‖, where σS : S �→ N and
S<e = {x | x < e, x ∈ S}.
Definition 5 (Ordered Herbrand Base). The ordered Herbrand base Bo con-
tains the same elements as B except each element has an ordered relation <.

The relation < on Bo can be defined arbitrarily, but in most cases, the lex-
icographical ordering is the most convenient, and is the one that we will
be using throughout this paper. Now, consider a set of rules τl(Bo), where
τl(Bo) = {R | ‖b(R)‖ ≤ l, R ∈ τ(Bo)} ⊆ τ(Bo) which contains all rules that
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are less than or equal to length l. The number of rules in τl(Bo) can be given by
the following formula:

‖τl(Bo)‖ =

{
1 if l = 0,
‖τl−1(Bo)‖ +

(
n
l

) × 2l if l > 0.

where n = ‖Bo‖ is the number of elements in the Herbrand base and
(
n
k

)
repre-

sents the binomial coefficient.
Also consider the ordered set τ̃l(Bo) = {R | ‖b(R)‖ = l, R ∈ τ(Bo)} containing

all the rules R that are exactly of length l. The ordered relation for τ̃l is defined
by first ordering the negation by marking the negative literals as 1s and positive
literals as 0s. With that, the position of negations in the literals can be mapped
into a binary number. Note that there is no information loss here, as the binary
number mapping is only used for ordering. Next, we look at each atom in the
rule and order them according to Bo. In this relation, {a, b} < {a, c} < {¬a, b} <
{¬b, c} < {¬a,¬c}.

The index of a rule R στ(Bo)(R) can be obtained by performing the following
calculation:

στ(Bo)(R) = ‖τl−1(Bo)‖ + στ̃l(Bo)(R)

where l = ‖b(R)‖ is the length of the rule R.
If we consider that in a rule, an atom can be present as a positive literal, as

a negative literal, or not be present, then the number of possible rules for an n-
variable system (n = ‖B‖) is ‖τn(Bo)‖ = 3n. Thus, for an n-variable system, the
number of classes the δ-LFIT model is classifying is 3n × n, with each variable
in the system taking the head of the rules.

To encode normal logic programs (NLP) into a matrix, we consider only the
minimal form, where a minimal form is a formula that cannot be further reduced.

By enumerating all possible rules that take only the minimal form, we can
construct a matrix where the rows represent the head of the rules, and the
columns represent the body. Note that heads with multiple rules, which are
disjunctions in the NLP semantics, can be encoded by marking their respective
rows as 1, therefore each rows are not strictly one-hot encoding.

3.2 Model

In this section, we describe our core model, which is the differentiable imple-
mentation of the LFIT approach. The main concept is being able to accept a
series of state transitions, and being able to output the corresponding rules that
are found within the transitions. Therefore, we opted to use the LSTM (Long-
Short Term Memory) [6] model to handle the input, and a feed-forward neural
network that will give us the output. This is depicted in Fig. 1. Unfortunately,
LSTM does not handle varying dimensions in the input. Therefore, we would
not be able to use a trained 3-variable δ-LFIT model on a 5-variable system, we
would instead have to retrain the model from scratch.
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...

xtx2x1

p(t+1)←

p(t+1)←q(t)
p(t+1)←p(t)

p(t+1)←r(t)

...

Fig. 1. The δ-LFIT Architecture.

For each rule r, given the state transitions T , our model outputs the con-
ditional probability p(r|T ). The aim is to output for each rule r that appears
within the logic program P be p(r|T ) = 1 and those that don’t appear in P
be p(r|T ) = 0. Therefore, the goal is to minimize the expected negative log
likelihood:

LFIT loss = −E(r,T )∼Λ(r × log p(r|T ) + (1 − r) × log(1 − p(r|T )))

In addition to this, we would also like to capture the subsumption relation
between rules. Consider a set of rules S such that for every rule R ∈ S, there is
another rule R′ ∈ S that subsumes R. A set S of all S possible in the Herbrand
base B, a softmax cross entropy loss is added. For S, the loss is defined as follows:

Subsumption LossS = −
∑
r∈S

(
r × log p(r|T ) + (1 − r) × log(1 − p(r|T ))

)

Thus, the loss for which we are optimizing is:

loss = LFIT loss + λ1

∑
S∈ S

Subsumption LossS + λ2‖θ‖2

where λ1 and λ2 are the hyperparameters that control the weight for the losses,
and ‖θ‖2 is the L2-regularization of all the parameters.

3.3 Generating Training Data

Gathering good training data is usually the most important aspect in statistical
machine learning [14]. In terms of the δ-LFIT task, we are attempting to solve
a classification problem. Thus a training data for that allows identification for
each separate rule is required. Unfortunately, this is very difficult to obtain from
real world data. Therefore, the training data that we are going to use will be
artificially generated.

To generate the training data set, first a logic program Po is constructed.
Po must contain the rule R for which we are constructing the training data set
for. Next, a random initial state is selected and a series of state transition T
is generated based on Po. Next, based on the state transition generated a logic
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program Pl is learned based on the algorithm described in [10]. If R is present
in Pl, then the data pair (T, Pl) is accepted, otherwise it is rejected and a next
initial state is selected.

4 Experiments

We first verify that our model is capable of producing the expected logic pro-
grams when given a series of state transition. Next, we perform several experi-
ments that focus mainly on the ability to handle noisy data and also erroneous
data.

We implemented our model in Tensorflow [1]. We prepared several experi-
ments to verify the performance of our model. As far as we are aware, there are
no other works that perform similar tasks, therefore we were not able to do any
comparison. Instead, we will show the precise results that we obtained in our
experiments.

4.1 Experimental Methods

Table 1. The MSE for the state transitions generated by the predicted logic programs.

Boolean Network MSE (Discrete) MSE (Fuzzy)

3-node (a) 0.095 0.137

3-node (b) 0.054 0.057

Raf 0.253 0.217

5-node 0.142 0.147

We generated 500,000 (T, P ) pairs for each training data set. For some rules, the
amount of training data required was generated relatively quickly. However for
some rules, the generation took 10 h. In total, the whole process for generating
this training dataset took 27 h on a 28-core Intel i9-7940X. The model is then
trained for 10 epochs on this data sets while attempting to minimize the loss.
The training process only took 4 h.

Once δ-LFIT has finished training, we get the probability of the rules. To turn
it into a human-readable logic program, we just have to take for each p(R) ≥ θ,
where θ is a threshold, use the reverse lookup σ−1

τ(BO)(R) and combine them.
We tested δ-LFIT on 4 boolean networks taken from [13]. Three of them are

3-variable systems and one of them is a 5-variable system. We could only test
on small systems currently, mainly due to memory constraints because larger
systems require a larger neural network architecture. Another factor is that the
training data generation takes too long to be practical beyond 5 variables.

First, we fed δ-LFIT discrete, error-free data. From the predicted logic pro-
gram that was obtained from δ-LFIT, we attempted to reproduce the same state
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transition sequence. Then, we calculated the mean squared error (MSE) between
the original input sequence and the generated sequence.

Next, we test δ-LFIT with fuzzy data. We map the values of the transition
being fed into δ-LFIT from 1 → [0.5, 1] and 0 → [0, 0.5] randomly on a normal
distribution. Note that both ranges include 0.5, this is done deliberately to test
the model’s robustness.

The full results for the experiments we have performed is detailed in Table 1.
In general, we notice that δ-LFIT was not able to perform as well when the data
is fuzzy, except for Raf, which has several attractors. We provide some analysis
into why this is the case in Sect. 4.2.

Here, we describe in detail the experiment for the network 3-node (a). This is
a toy network that contains 3 nodes. Its corresponding logic program is described
as below:

v1(t + 1) ← ¬v1(t) ∧ ¬v2(t). v2(t + 1) ← ¬v1(t) ∧ v2(t). v3(t + 1) ← ¬v1(t).
v1(t + 1) ← ¬v1(t) ∧ ¬v3(t). v3(t + 1) ← v2(t).

This network has two attractors and one steady state. We plugged every pos-
sible initial state (23 states) and produced a series of 15 state transitions for
every initial state. These series were then fed into δ-LFIT to obtain the corre-
sponding logic program. After δ-LFIT predicted the logic program, we then used
the predicted logic program to generate a series of 15 state transitions. Those
transitions were then compared with the original transitions.

The mean squared error (MSE) in this task for all the state transitions were
0.095. More precisely, out of 8 possible series of state transitions, there were 2
series of state transitions for which the predicted logic program couldn’t repro-
duce accurately. δ-LFIT predicted the following logic program that was consis-
tent with the input:

v1(t + 1) ← v2(t). v2(t + 1) ← v2(t). v3(t + 1) ← v2(t).
v1(t + 1) ← ¬v1(t). v2(t + 1) ← ¬v1(t) ∧ v3(t). v3(t + 1) ← ¬v1(t).
v1(t + 1) ← ¬v3(t). v2(t + 1) ← v1(t) ∧ ¬v3(t). v3(t + 1) ← ¬v3(t).

Notice that even though the predicted logic program was longer than the original
logic program, none of the rules subsume each other. We attribute this to the
subsumption loss that was added to the loss function.

4.2 Discussion

Our aim was to utilize neural network’s ability to handle ambiguous data to
produce models that fully explain the system that we were trying to observe.
While we were able to show that when passing discrete data, δ-LFIT was able
to perform very well. Performance on ambiguous and fuzzy data were slightly
worse. We attribute this to the fact that we did not train our neural networks
to learn to handle fuzziness in the data. We speculate that adding fuzziness to
the training data should be able to help δ-LFIT generalize better to ambiguity.



Learning Logic Programs from Noisy State Transition Data 79

We were also not able to scale the neural network beyond 5 variables. Mainly
because the amount of expressiveness required beyond that point far exceeds
the computation capability we currently possess. To train a 7-variable model,
we would require 7 × 37 = 15, 309 datasets, which would take several weeks to
generate and would require more than 24GB RAM on the GPU. This grows
exponentially with the number of variables.

Also, on all 4 of the experiments, δ-LFIT was not able to output a logic pro-
gram that was consistent with the input when the input was within an attractor.
However, the performance improved by slightly when fuzzy data was given for
Raf, which had more attractors than the other boolean networks. We attribute
this to the low variance nature of an attractor as an input.

5 Related Work

Currently, there are not many works that attempt to construct generalized neu-
ral network architecture that could learn logic programs without retraining the
neural networks itself. In [4], the authors proposed a method to use neural net-
works to learn symbolic examples, then extract symbolic knowledge based on
what the neural networks have learned. In [3], the authors provided a method to
extract symbolic knowledge from neural networks, provided certain constraints
on the neural network itself. These work place constraints on the neural network
architecture itself and require retraining of the neural network when a new logic
program has to be learned.

Enguerrand, et. al. [5] presented an algorithm that performs LFIT by extract-
ing logic programs from a feed-forward neural network after learning. This
method only trains one neural network to learn one specific system, while our
work trains one neural network to learn many systems of the same number of
variables.

Evans, et. al. [2] introduced the δ-ILP framework, which incorporates a dif-
ferentiable machine learning approach and the symbolic ILP approach. The main
difference between δ-ILP and δ-LFIT is that, in δ-ILP, the authors proposed a
framework that uses differentiable methods to also perform the ILP task at hand,
while simultaneously learning to produce the logic program that could solve the
ILP task itself. In contrast, we constructed a differentiable method to learn the
logic program, while not imposing any trainable parameters to resemble the logic
program.

6 Conclusion

In this work, we have advocated an approach to performing symbolic logical
learning with neural network. We described our method for enumerating all
possible rules and mapping them to classes. We then showed our approach to
learning logic programs by using only off-the-shelf neural network architectures.

We performed several experiments to evaluate the model that we have pro-
posed. We found that δ-LFIT was able to perform well when discrete error-free



80 Y. J. Phua and K. Inoue

data that has high variance was given, however when the data given was fuzzy,
ambiguous and only contained steady states, δ-LFIT struggled to produce accu-
rate results.

As future work, we plan to adapt some of the state-of-the-art multiclass-
multilabel classification problem to allow our framework to scale to a higher
number of variables.
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Abstract. This paper provides a new algorithm of computing a least
generalization of a set of atoms. Our algorithm is based on the notion
of anti-combination that is the inverse substitution of a combined sub-
stitution. In contrast to an anti-unification algorithm that computes a
least generalization of two atoms, anti-combination can compute a least
generalization of (more than two) atoms in parallel. We evaluate the
proposed algorithm using randomly generated data and show that anti-
combination outperforms the iterative application of an anti-unification
algorithm in general.

Keywords: Anti-unification · Anti-combination · Least generalization

1 Introduction

For a definite program P and a goal G, a computed answer θ for P ∪ {G} is the
substitution obtained by restricting the composition θ1 · · · θn to the variables of
G, where θ1, . . . , θn is the sequence of mgu’s used in an SLD-refutation of P ∪{G}
[10]. In an SLD-derivation, each θi is an mgu used for deriving a new goal Gi from
its preceding goal Gi−1 and a parent clause in P . Thus, θ1, . . . , θn are computed
sequentially and an answer substitution is computed by composing mgus one by
one. As such, the composition operation is not very efficient, and furthermore,
it is often unintuitive or inadequate [13]. Yamasaki et al. [17] introduce a new
resolution method based on combination of mgus. The method has the unique
feature that resolution is performed by manipulation of substitutions, and mgus
used in combination are computed independently of one another. Palamidessi
[13] introduces a compositional operational semantics of definite logic programs
based on combination of mgus and addresses its application to concurrent logic
programming. Compared with the composition operation, however, the combi-
nation operation is not well-known and is of relatively little use in automated
reasoning and logic programming, although the original idea is date back to
[1,15]. Eder [4] formulates algebraic properties of substitutions and shows that
combination is obtained as the greatest lower bound of mgus. In contrast to
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composition that is only associative, combination is commutative, associative
and idempotent, so that it has potential for parallel computation of symbolic
reasoning.

In this paper we use the combination operation for computing a least gen-
eralization (lg) of a set of atoms. Plotkin [14] and Reynolds [16] introduce
algorithms for anti-unification of two atoms. Plotkin argues that the algo-
rithm is iteratively applied to computing a least generalization of a set of
atoms: for a set of atoms {A1, . . . , An}, its least generalization is computed
as lg(A1, lg(A2, . . . , lg(An−1, An) · · · ) ) where lg(Ai, Aj) computes a least gener-
alization of Ai and Aj . Such serial computation is inefficient when the number
of atoms increases. We show that it is computed in parallel using combination
of substitutions.

This paper is an extension of the preliminary report [18], which sketches the
idea while implementation and evaluation are left. The current paper develops
an algorithm and provides experimental evaluation. The rest of this paper is
organized as follows. Section 2 reviews basic notions and formal properties of
substitutions. Section 3 introduces a method of computing a least generalization
by combination of substitutions, and presents an algorithm based on it. Section 4
provides experimental evaluation. Section 5 discusses related issues and Sect. 6
summarizes the paper.

2 Preliminaries

A first-order language consists of an alphabet and all formulas defined over it.
The definition is the standard one in the literature [1,10]. Variables are repre-
sented by letters x, y, z, . . .; constants are represented by letters a, b, c, . . .; func-
tion symbols (of arities >0) are represented by letters f, g, h, . . .; and predicate
symbols are represented by letters P,Q,R, . . .. A term is either (i) a constant,
(ii) a variable, or (iii) f(t1, . . . , tm) where f is an m-ary (m ≥ 1) function symbol
and t1, . . . , tm are terms. An atom is a formula P (t1, . . . , tn) (n ≥ 1) where P is
an n-ary predicate and ti’s are terms. An expression is either a term or an atom.
Two atoms are compatible if they have the same n-ary predicate. The set of all
variables (resp. terms, atoms) in the language is denoted by V ar (resp. Term,
Atom). The set Atom also contains the special elements � and ⊥. The set of all
expressions is defined as Exp = Term ∪ Atom. The set of variables occurring in
an expression e (resp. a set E of expressions) is denoted by V(e) (resp. V(E)).
The following definitions and results are due to [1,4,9,13,16].

Definition 1 (substitution). A substitution is a mapping σ from V ar into
Term such that the set Γ = { 〈x, σ(x) 〉 | x �= σ(x) and x ∈ V ar} is finite.
When σ(xi) = ti for i = 1, . . . , n, it is also written as σ = { t1/x1, ..., tn/xn }.1

The set of all substitutions in the language is denoted by Sub. The set D(σ) =
{x | 〈x, t 〉 ∈ Γ } is the domain of σ and the set R(σ) = { t | 〈x, t 〉 ∈ Γ } is
the range of σ. The set V(R(σ)) represents the set of all variables occurring in

1 It is often written as { x1/t1, ..., xn/tn } [3,10,13].



A New Algorithm for Computing Least Generalization of a Set of Atoms 83

R(σ). The identity mapping ε over V ar is the empty substitution. A bijection ρ
from V ar to V ar is a renaming of variables. The set of all renamings is denoted
by Ren (where Ren ⊂ Sub).

Definition 2 (Eσ). Let σ ∈ Sub and E ∈ Exp. Then Eσ is defined as follows:

Eσ =

⎧
⎪⎪⎨

⎪⎪⎩

σ(x) if E = x for x ∈ V ar,
a if E = a for a constant a,
f(t1σ, ..., tmσ) if E = f(t1, ..., tm) ∈ Term,
P (t1σ, ..., tnσ) if E = P (t1, ..., tn) ∈ Atom.

Definition 3 (composition). For σ, λ ∈ Sub, the composition of σ and λ
(denoted by σλ) is a function from V ar to Term such that

σλ(x) = (xσ)λ for any x ∈ V ar.

For any e ∈ Exp, it holds that e(σλ) = (eσ)λ. The composition operation
has the properties: (σλ)μ = σ(λμ) and σε = εσ = σ for any σ, λ, μ ∈ Sub. Note
that σλ �= λσ in general.

Definition 4 (idempotent). A substitution σ is idempotent if σσ = σ. The
set of all idempotent substitutions is denoted by ISub.

Proposition 1 ([4,9]). A substitution σ is idempotent iff D(σ) ∩ V(R(σ)) = ∅.
Definition 5 (order on Atom). Let A,B ∈ Atom. A preorder relation ≤ over
Atom is defined as follows:

• A ≤ �,
• ⊥ ≤ A,
• A ≤ B ifA = Bθ for some θ ∈ Sub.

We write A ∼ B if A ≤ B and B ≤ A.

When A ≤ B, we say that A is an instance of B (or B is a generalization of A).
It holds that A ∼ B iff A = Bρ for some ρ ∈ Ren. Let Q be the quotient set
Atom/∼. Then the ordered set (Q,≤) constitutes a complete lattice [16].

Definition 6 (gci, lcg). Let Σ ⊆ Atom. An atom A ∈ Atom is a common
instance of Σ if A ≤ B for any B ∈ Σ. In particular, A is a greatest common
instance (gci) of Σ if A is a common instance of Σ and A′ ≤ A for any common
instance A′ of Σ.

An atom A ∈ Atom is a common generalization of Σ if B ≤ A for any B ∈ Σ.
In particular, A is a least common generalization (lcg) of Σ if A is a common
generalization of Σ and A ≤ A′ for any common generalization A′ of Σ.

Least common generalization is simply called least generalization hereafter.
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Definition 7 (order on Sub). Let σ, θ ∈ Sub. A preorder relation ≤ over Sub
is defined as:2

σ ≤ θ if σ = θλ for some λ ∈ Sub.

We write σ ∼ θ if σ ≤ θ and θ ≤ σ.

By definition, σ ≤ ρ for any σ ∈ Sub and ρ ∈ Ren. It holds that σ ∼ θ iff σ = θρ
for some ρ ∈ Ren.

Definition 8 (unifier, mgu, mgsu). Let Σ = {A1, . . . , An} be a set of atoms.
A substitution σ ∈ Sub is a unifier for Σ if A1σ = · · · = Anσ holds. A unifier σ
for a set Σ is a most general unifier (mgu) (written σ = mgu(Σ)) if θ ≤ σ for any
unifier θ for the set Σ. For a finite set S of finite sets of atoms, σ ∈ Sub is a most
general simultaneous unifier (mgsu) of S (written mgsu(S)) if σ = mgu(Σ) for
any Σ ∈ S.

Proposition 2 ([4, Prop.4.5]). For any finite set Σ ⊆ Atom, σ = mgu(Σ) for
some σ ∈ Sub iff there is λ ∈ ISub such that λ = mgu(Σ) and λ ∼ σ.

By Proposition 2 mgus are assumed to be idempotent in this paper without
loss of generality. Let IS be the quotient set ISub/∼, completed with the bottom
element ⊥. Denote the relation ≤/∼ simply by ≤. Then the ordered set (IS,≤)
constitutes a complete lattice [4].

Definition 9 (combination). For Θ ⊆ IS, the glb of (Θ,≤) is called a com-
bination. When Θ = {θ1, . . . , θn}, it is written as θ1 + · · · + θn.

For any σ, λ, μ ∈ ISub, it holds that (i) (σ+σ) ∼ σ, (ii) (σ+λ) ∼ (λ+σ), (iii)
((σ + λ) + μ) ∼ (σ + (λ + μ)), and (iv) (σ + ε) ∼ σ.

Chang and Lee [1] provide another definition of combination. Given θ1, ...,
θn ∈ ISub where θi = {ti1/xi

1, ..., t
i
ki

/xi
ki

} (1 ≤ i ≤ n), the combination
θ1 + · · · + θn is defined as the mgu of two atoms: A1 = P (x1

1, . . . , x
1
k1

, . . . ,
xn
1 , . . . , xn

kn
) and A2 = P (t11, . . . , t

1
k1

, . . . , tn1 , . . . , tnkn
). These two definitions are

proved to be equivalent [17].3

Example 1 ([1, p. 188]). Given θ1 = { f(g(x1))/x3, f(x2)/x4 } and θ2 = {x4/x3,
g(x1)/x2 }, define A1 = P (x3, x4, x3, x2) and A2 = P (f(g(x1)), f(x2), x4, g(x1)).
The mgu of A1 and A2 is {f(g(x1))/x3, f(g(x1))/x4, g(x1)/x2 }, which is the
combination of θ1 and θ2. Note that θ1 + θ2 = θ1θ2 but θ1 + θ2 �= θ2θ1 =
{ f(x2)/x3, g(x1)/x2, f(x2)/x4 }.

The next proposition immediately holds by definition.

Proposition 3. Forσ, λ ∈ ISub,σ + λ = σ ∪ λ if D(σ) ∩ D(λ) = ∅.
Proposition 4 ([4,17]). Let E = {Σ1, . . . , Σn} be a set of finite sets of atoms.
2 We use the same symbol ≤ over Atom, but the meaning is clear from the context.

Note that the relation is often used reversely in the literature, e.g. σ ≥ θ if σ =
θλ [4].

3 Combination is called parallel composition in [13].
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(i) mgsu(E) ∼ σ1 · · · σn where σ1 = mgu(Σ1) and σi = mgu(Σiσ1 · · · σi−1)
(2 ≤ i ≤ n).

(ii) mgsu(E) ∼ mgu(Σ1) + · · · + mgu(Σn).

Proposition 4 presents two different ways of computing mgsu(E). The one (i)
presents that computing σ1, . . . , σn in a sequential manner and composing them
to get mgsu(E). This method is usually employed in binary resolution. The other
one (ii) presents that computing mgu(Σi) for each Σi and combining them to
get mgsu(E). Comparing two methods, computation of σi uses the results of
σ1, . . . , σi−1 in (i). By contrast, in (ii) each mgu(Σi) is computed independently,
so that combination has potential for computing gci in parallel.

Example 2 Consider the set of atoms Σ = {P (x, f(y)), P (z, f(b)), P (c, w) }.
Let Σ1 = {P (x, f(y)), P (z, f(b)) } and Σ2 = {P (z, f(b)), f(c, w) }. Then
σ1 = mgu(Σ1) = {b/y, x/z} and σ2 = mgu(Σ2σ1) = {c/x, f(b)/w}. The mgsu
of {Σ1, Σ2} is then obtained by the composition σ1σ2 = {c/x, b/y, c/z, f(b)/w},
and the gci of Σ1 ∪ Σ2 is P (c, f(b)) (Fig. 1(a)). Similar computation is done
by first computing λ1 = mgu(Σ2) = {c/z, f(b)/w} and then computing
λ2 = mgu(Σ1λ1) = {c/x, b/y}, which produces the same mgsu and the gci
(Fig. 1(b)). On the other hand, the mgsu is computed by the combination
σ1 + λ1 = {c/x, b/y, c/z, f(b)/w} which produces the gci (Fig. 1(c)).
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Fig. 1. Composition and combination

3 Computing Least Generalization by Anti-combination

3.1 Anti-unification Algorithm

For a set Σ ⊆ Atom, its least (common) generalization (written lg(Σ)) is defined
as the least upper bound of the set (Σ,≤) (Definition 6). lg(Σ) is obtained from
Σ by anti-unification, that is a dual of unification.

Definition 10 (anti-unifier, msau) ([11]). Let Σ = {A1, . . . , Ak} be a set of
atoms. Then, a tuple of substitutions τ = (σ1, . . . , σk) where σi ∈ Sub (1 ≤
i ≤ k) is an anti-unifier of Σ if Ai = lg(Σ)σi for i = 1, . . . , k. An anti-unifier
τ of Σ is a most specific anti-unifier (msau) if for each anti-unifier (θ1, . . . , θk)
there is a substitution λi ∈ Sub such that σi = λiθi (1 ≤ i ≤ k). We define
D(τ) = D(σ1) ∪ · · · ∪ D(σk).
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An anti-unifier always exists, but is not necessarily unique. There is a unique
most specific anti-unifier that produces the least generalization, which is unique
up to renaming of variables [11]. Like an mgu, an msau is also assumed to be
idempotent.

Proposition 5. Let Σ be a set of atoms. Then (σ1, . . . , σk) such that σi ∈ Sub
(1 ≤ i ≤ k) is an msau of Σ iff there is an msau (λ1, . . . , λk) such that λi ∈ ISub
and λi ∼ σi for i = 1, . . . , k.

Proof. When D(σi) ∩ V(R(σi)) �= ∅, let λi = σiρi where ρi ∈ Ren and
D(λi) ∩ V(R(λi)) = ∅. In this case, Ai = lg(Σ)σi implies Ai ∼ lg(Σ)λi, and
vice-versa. ��

Now we recall the anti-unification algorithm [3, Algorithm 13.1] for comput-
ing a least generalization of two atoms which is originally introduced in [14,16].
Given an atom A = P (t1, . . . , tn), a term ti (1 ≤ i ≤ n) has position 〈 i 〉 in A.
If a term f(s1, . . . , sm) has position 〈 p1, . . . , pk 〉 in A, then sj within this term
has position 〈 p1, . . . , pk, j 〉 in A. The algorithm is described in Fig. 2.

Since the lub of (Σ,≤) is associative, the anti-unification algorithm is itera-
tively applied for computing a least generalization of a set Σ of atoms. In this
case, an anti-unifier is computed by a composition of substitutions.

Example 3. Let Σ = {A1, A2, A3}, G1 = lg({A1, A2}) and G2 = lg({A1, A2,
A3}) = lg({G1, A3}). Then A1 = G1θ1, A2 = G1θ2, G1 = G2σ1, and A3 = G2σ2

for some θ1, θ2, σ1, σ2 ∈ Sub. Then A1 = G2σ1θ1, A2 = G2σ1θ2, and A3 = G2σ2.
So (σ1θ1, σ1θ2, σ2) is an anti-unifier of (A1, A2, A3).

Fig. 2. Anti-unification algorithm [3]
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The above algorithm computes a substitution θi such that Ai = Gθi (i = 1, 2)
for G = lg({A1, A2}). Then an lg G is also computed by G = Aiθ

−1
i where θ−1

i

is an inverse substitution of θi. An inverse substitution θ−1 is well-defined if θ is
injective.

Definition 11 (inverse substitution) ([12]). Let θ ∈ Sub be injective and
t ∈ Term. If D(θ) ∩ V(t) = ∅, then an inverse substitution θ−1 : Term → V ar
is defined as follows.

tθ−1= x if (t/x) ∈ θ,

f(t1, . . . , tn)θ−1= f(t1θ−1, . . . , tnθ−1) if (f(t1, . . . , tn)/x) �∈ θ for any x ∈ V ar,

yθ−1= y if (y/x) �∈ θ for any x ∈ V ar.

If D(θ) ∩ V(t) �= ∅, a renaming substitution ρ ∈ Ren is applied to t in such
a way that D(θ) ∩ V(tρ) = ∅. Then we can apply θ−1 to tρ if θ is injective. If
a substitution θ is not injective, we use the technique of [3] to constitute θ−1.
For instance, when t = f(x, y) and θ = {a/x, a/y}, it becomes tθ = f(a, a).
The inverse substitution θ−1 = {x/a, y/a} is ill-defined, then it is modified as
θ−1 = {(x/a, 〈 1 〉), (y/a, 〈 2 〉)} meaning that a at position 〈 1 〉 is mapped to x
and a at position 〈 2 〉 is mapped to y. With this mechanism, f(a, a)θ−1 = f(x, y).
For any non-injective θ ∈ Sub, we constitute θ−1 in this way.

Definition 12 (anti-combination). Let σ = θ1 + · · · + θn be a combination
of θi ∈ ISub (1 ≤ i ≤ n). Then the inverse substitution σ−1 is called an anti-
combination of θ1, . . . , θn.

Combining injective substitutions may produce a non-injective substitution.
For instance, θ1 = {a/x} and θ2 = {a/y} produce θ1 + θ2 = {a/x, a/y}. To
compute its inverse substitution, we incorporate information of substitutions
from which each binding comes from: (θ1 + θ2)−1 = {(x/a, 〈 θ1 〉), (y/a, 〈 θ2 〉)}
which means that a from θ1 is mapped to x and a from θ2 is mapped to y. With
this technique, anti-combination is well-defined for non-injective combination.
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Fig. 3. Anti-unification and anti-combination

Lemma 1. Let Σ = {A1, A2, A3} be a set of atoms, τ12 = (σ12, λ12) an msau
of {A1, A2}, and τ13 = (σ13, λ13) an msau of {A1, A3} such that D(τ12)∩
D(τ13) = ∅. Then lg(Σ) = A1θ

−1 where θ ∼ (σ12 + σ13).
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Proof. Let G1 = lg({A1, A2}) and G2 = lg({A1, A3}). Then lg(Σ) = lg({G1,
G2}), and G1σ12 = A1 and G2σ13 = A1. By D(σ12) ∩ D(σ13) = ∅, G1σ12 =
G1(σ12 + σ13) = A1 and G2σ13 = G2(σ12 + σ13) = A1. Then lg(Σ) =
lg({G1, G2}) = lg({A1(σ12 + σ13)−1, A1(σ12 + σ13)−1}) = A1(σ12 + σ13)−1. ��

Since combination is associative, the result of Lemma 1 is extended to a set
containing n atoms (n ≥ 3).

Theorem 1. Let Σ = {A1, . . . , An} (n ≥ 3) be a set of atoms, τ1k = (σ1k, λ1k)
(2 ≤ k ≤ n) an msau of {A1, Ak} such that D(τ1i) ∩ D(τ1j) = ∅ (1 ≤ i, j ≤
n; i �= j). Then, lg(Σ) = A1θ

−1 where θ ∼ (σ12 + · · · + σ1n).

Theorem 1 shows that a least generalization of atoms is computed by anti-
combination of substitutions.

Example 4. Consider the set Σ = {P (x, f(y)), P (z, f(b)), P (c, w) } of atoms.
Then lg({P (x, f(y)), P (z, f(b)) }) = P (u, f(v)) with the msau (σ, θ) where
σ = {x/u, y/v} and θ = {z/u, b/v}. In this case, P (u, f(v))σ = P (x, f(y)) and
P (u, f(v))θ = P (z, f(b)).

Next, lg({P (u, f(v)), P (c, w)}) = P (x′, y′) with the msau (λ, δ) where
λ = {u/x′, f(v)/y′} and δ = {c/x′, w/y′}. In this case, P (x′, y′)λ = P (u, f(v))
and P (x′, y′)δ = P (c, w). Then, lg(Σ) = P (x′, y′) where P (x′, y′)λσ =
P (x, f(y)) with λσ = {x/x′, f(y)/y′} and P (x′, y′)λθ = P (z, f(b)) with
λθ = {z/x′, f(b)/y′} (Fig. 3(a)). Similar computation is done by first com-
puting lg({P (z, f(b)), P (c, w)}) with (μ, ν) = ({z/u′, f(b)/v′}, {c/u′, w/v′}),
and then computing lg({P (x, f(y)), lg({P (z, f(b)), P (c, w)}) }) with (η, ξ) =
({x/x′, f(y)/y′}, {u′/x′, v′/y′}) (Fig. 3(b)).

By contrast, θ + μ = {z/u, b/v, z/u′, f(b)/v′}. Then

(θ + μ)−1 = { (u/z, 〈 θ 〉), (v/b, 〈 θ 〉), (u′/z, 〈μ 〉), (v′/f(b), 〈μ 〉) }.

Applying it to P (z, f(b)), lg(Σ) = P (u, v′) (∼ P (x′, y′)) is obtained (Fig. 3(c)).
Note that by the second condition of Definition 11, (v/b, 〈 θ 〉) is not applied to
b in P (z, f(b)).

3.2 Algorithms for Computing Least Generalization of a Set
of Atoms

The algorithm for computing anti-unification (Fig. 2) is extended to computing a
least generalization of a set of atoms. Given a set Σ, Σ[i] means the i-th element
of Σ.
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Algorithm 1: AntiUnif

Input : A set Σ = {A1, . . . , An} (n ≥ 2) of compatible atoms
Output : a least generalization of Σ

1. Put G := Σ[1].
2. Put i := 2; while i ≤ n do:

Compute G := lg({G,Σ[i]}) by the anti-unification algorithm (Fig. 2).
Put i := i + 1.

3. Return G.

The algorithm for computing a least generalization of a set of atoms by anti-
combination is described as follows.

Algorithm 2: AntiComb

Input : A set Σ = {A1, . . . , An} (n ≥ 2) of compatible atoms
Output : a least generalization of Σ

1. Put θ := ε (empty substitution).
2. Put i := 2; while i ≤ n do:

Compute Gi = lg({A1, Ai}) by the anti-unification algorithm.
Get a substitution θi such that A1 = Giθi, D(θi) ∩ D(θ) = ∅ and
D(θi) ∩ V(R(θi)) = ∅.
Put θ := θ + θi and i := i + 1.

3. Compute the inverse substitution θ−1.
4. Compute G = A1θ

−1 and return G.

In θi we store information about the substitution and the position of each element
as [ti/zi, 〈 p, q 〉, θi], meaning that ti/zi in θi happens at the q-th position of the
p-th arity.

When k (2 ≤ k < n) processors are available, the step 2 of Algorithm 2 is
split into k procedures. First, Σ is partitioned into k subsets Σ1 ∪ · · · ∪ Σk

such that Σ1 = {A1, . . . , Am1}, Σ2 = {Am1 , Am1+1, . . . , Am2}, . . ., Σk =
{Amk−1 , Amk−1+1, . . . , Amk

} where each Σi and Σi+1 share an element Ami
in

common. After computing a combination θi for each Σi (1 ≤ i ≤ k) in parallel,
they are combined into one substitution θ = θ1 + · · · + θk. Then, its inverse
substitution is computed at the step 3. Formally, such a spliting is done by

Σj = {Σ[(j − 1) × �n

k
� + 1], . . . , Σ[j × �n

k
� + 1]} (1 ≤ j ≤ k − 1),

Σk = {Σ[(k − 1) × �n

k
� + 1], . . . , Σ[n]}

where � � is the floor function.
According to [7] the complexity of the anti-unification algorithm of Fig. 2 is

computed in O(N log N) where N is the size of the lub of θ1 and θ2. Using the
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result, the complexity of AntiUnif is O(n × N log N) where n is the number
of atoms in Σ. Step 2 of AntiComb is also done in O(n × N log N), since
combination of substitution is computed by merging θ ∪ θi (Proposition 3). If
k-processors (k ≥ 2) are available for computing Step 2 in parallel, the lower
bound of computation is given as O(n×N logN

k ).

Example 5. Suppose the set Σ of atoms such that |Σ |= 5 and each atom has a
ternary predicate P .4

E := {
A1 = P (f9(x2, x2, x1), f10(x2, f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))), x1),

A2 = P (f9(x2, x2, x1), f10(f3(f4(f8(x2, x1), x2, f7(x2, x1))), f1(x1, x1, x1)), f3(x2)),

A3 = P (f9(x2, x2, x1), f10(f5(x1), f5(f5(f6(x2, x1)))), f3(f10(x2, x1))),

A4 = P (f9(f1(x1, x2, x2), x1, f2(x1, x1, x1)), f10(f7(f9(f6(x1, x1), f6(x1, x2), x1), x1), x1), x1),

A5 = P (f9(f4(x2, x2, x1), f4(x2, x1, x2), f10(x1, x1)),

f10(x2, f4(f5(f9(x1, x2, x1)), x2, f5(f5(x1)))), x2)

}.

Using AntiUnif:

G1 := lg(A1, A2) = P (f9(x2, x2, x1), f10(z1, z2), z3) %Compute lg(A1, A2)

G2 := lg(G1, A3) = P (f9(x2, x2, x1), f10(z4, z5), z6) %Compute lg(G1, A3)

G3 := lg(G2, A4) = P (f9(z7, z8, z9), f10(z10, z11), z12) %Compute lg(G2, A4)

G4 := lg(G3, A5) = P (f9(z13, z14, z15), f10(z16, z17), z18) %Compute lg(G3, A5)

Using AntiComb:

G1 := lg(A1, A2) = P (f9(x2, x2, x1), f10(z1, z2), z3) %Compute lg(A1, A2)

θ1 := {[x2/z1, 〈 2, 1 〉, θ1], [f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z2, 〈 2, 2 〉, θ1],
[x1/z3, 〈 3 〉, θ1] };

G2 := lg(A1, A3) = P (f9(x2, x2, x1), f10(z4, z5), z6) %Compute lg(A1, A3)

θ2 := { [x2/z4, 〈 2, 1 〉, θ2], [f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z5, 〈 2, 2 〉, θ2],
[x1/z6, 〈 3 〉, θ2] };

G3 := lg(A1, A4) = P (f9(z7, z8, z9), f10(z10, z11), x1) %Compute lg(A1, A4)

θ3 := { [x2/z7, 〈 1, 1 〉, θ3], [x2/z8, 〈 1, 2 〉, θ3], [x1/z9, 〈 1, 3 〉, θ3], [x2/z10, 〈 2, 1 〉, θ3],
[f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z11, 〈 2, 2 〉, θ3] };

G4 := lg(A1, A5) = P (f9(z12, z13, z14), f10(x2, z15), z16) %Compute lg(A1, A5)

θ4 := { [x2/z12, 〈 1, 1 〉, θ4], [x2/z13, 〈 1, 2 〉, θ4], [x1/z14, 〈 1, 3 〉, θ4],
[f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z15, 〈 2, 2 〉, θ4], [x1/z16, 〈 3 〉, θ4] };

4 Here we draw underlines to help distinguishing 3 terms in P .
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θ := θ1 + θ2 + θ3 + θ4 %Compute combination

= {[x2/z1, 〈 2, 1 〉, θ1], [f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z2, 〈 2, 2 〉, θ1],

[x1/z3, 〈 3 〉, θ1], [x2/z4, 〈 2, 1 〉, θ2], [f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z5, 〈 2, 2 〉, θ2],

[x1/z6, 〈 3 〉, θ2], [x2/z7, 〈 1, 1 〉, θ3], [x2/z8, 〈 1, 2 〉, θ3], [x1/z9, 〈 1, 3 〉, θ3],

[x2/z10, 〈 2, 1 〉, θ3], [f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z11, 〈 2, 2 〉, θ3],

[x2/z12, 〈 1, 1 〉, θ4], [x2/z13, 〈 1, 2 〉, θ4], [x1/z14, 〈 1, 3 〉, θ4],

[f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z15, 〈 2, 2 〉, θ4], [x1/z16, 〈 3 〉, θ4] };

θ
−1

:= %Compute anti-combination

{[z1/x2, 〈 2, 1 〉, θ1], [z2/f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1))), 〈 2, 2 〉, θ1],

[z3/x1, 〈 3 〉, θ1], [z4/x2, 〈 2, 1 〉, θ2], [z5/f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1))), 〈 2, 2 〉, θ2],

[z6/x1, 〈 3 〉, θ2], [z7/x2, 〈 1, 1 〉, θ3], [z8/x2, 〈 1, 2 〉, θ3], [z9/x1, 〈 1, 3 〉, θ3],

[z10/x2, 〈 2, 1 〉, θ3], [z11/f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1))), 〈 2, 2 〉, θ3],

[z12/x2, 〈 1, 1 〉, θ4], [z13/x2, 〈 1, 2 〉, θ4], [z14/x1, 〈 1, 3 〉, θ4],

[z15/f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1))), 〈 2, 2 〉, θ4], [z16/x1, 〈 3 〉, θ4] };

A1θ
−1

:= P (f9(z12, z13, z14), f10(z10, z15), z16). %Compute least generalization

When there are different replacements zi/ti from different θj ’s at the same posi-
tion 〈m,n 〉 in θ−1, for instance, [z7/x2, 〈 1, 1 〉, θ3] and [z12/x2, 〈 1, 1 〉, θ4], they
are equivalent modulo variable renaming and one of them is selected.

4 Experimental Evaluation

In this section, we compare runtime for computing least generalizations by two
algorithms AntiUnif and AntiComb.

4.1 Generating Test Data

We use randomly created data sets Prog satisfying the following conditions.

1. Each element in Prog is an atom of the form: P (t1, t2, t3) where P is a ternary
predicate and t1, t2, t3 are terms. Every atom in Prog has the same predicate.

2. Prog has two parameters: n is the number of elements in Prog, and m is
the number of function symbols appearing in Prog. The number of different
variables appearing in Prog is set to n

2 , while there is no constant in Prog.
3. For an atom A = P (t1, t2, t3), the depth of A is defined as d(A) = 1 +

max{d(t1), d(t2), d(t3)} where d(ti) (1 ≤ i ≤ 3) is the number of function
symbols appearing in ti. For instance, the depth of P (x, y, z) is 1, the depth
of P (f(x), y, g(h(z))) is 3, and so on. We set the depth of each atom A in
Prog as d(A) ≤ 5.

4. For any atom P (t1, t2, t3) in Prog, if a function f appears in the outermost
of the term ti (1 ≤ i ≤ 3), then the outermost function appearing in the
corresponding term si of another atom P (s1, s2, s3) in Prog is set to the
same function f .
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An explanation is in order for the above 4th condition on Prog. For instance,
two atoms: P (f(g(x)), y, g(z)) and P (f(h(x)), g(y), g(h(z))) have the same out-
ermost function f in terms appearing in the 1st arity of P and the same out-
ermost function g in the 3rd arity. This is because we randomly generate a set
Prog then it is very unlikely that the same function appears in the correspond-
ing positions of more than two elements. Without this assumption, computa-
tion of anti-unification will be simple and the results are likely to contain no
function. For instance, the result of anti-unification of P (f1(g1(x)), y, g2(z)) and
P (f2(h1(x)), g3(y), g4(h2(z))) becomes P (x, y, z). Note that it may happen that
no function appears in the i-th arity (1 ≤ i ≤ 3) of P as in the 2nd element of
P (f(g(x)), y, g(z)).

4.2 Experimental results

We compare runtime for computing a least generalization of Prog using
AntiUnif and AntiComb. We implement two algorithms by Maple 2018, 64
bit. The testing is done on a computer with the following configuration: Intel(R)
CoreTM i7-4750HQ CPU@ 2.0 GHz, RAM 8.00 GB, Operating system: Windows
10, 64-bit.

In the experiments, we set the parameters n and m as follows:

• The number of atoms in Prog is set to: n = 500, 1000, 3000, 5000, 10000.
• The number of functions appearing in Prog is set to: m = n/2; m = n;

m = 2n.

Based on (n,m), generate the set of atoms Prog randomly. In AntiComb, the
number of processors k is set to k = 10; 30; 50. For each (n,m, k) we measure
runtime at least four times and pick average values.

In experiments, we do not have many computers for parallel computing.
So we compute the time for k-parallel processing by max{t1, . . . , tk} where ti
(1 ≤ i ≤ k) is the time for computing a combination θi for Σi. After computing
each θi, they are combined into θ = θ1 + · · · + θk. This process is denoted by
Stage 1. After Stage 1, produce the inverse θ−1 and compute A1θ

−1 that is the
least generalization lg(Σ) of the input set Σ. This process is denoted by Stage 2.

Table 1 shows the experimental results that are displayed in Figs. 4 and 5.
By the results of testing, it is observed that AntiComb is faster than AntiU-

nif in general. This is because AntiComb can compute least generalization in
parallel. The time of computing a least generalization by AntiComb decreases
by increasing the number of processors for parallel computing. Note that run-
time TAC for AntiComb is greater than the value TAU/k where TAU is runtime
for AntiUnif. This is because the relation TAU/k < TAC < TAU/k + T∞ holds
by Brent’s law [6], where T∞ is runtime using an idealized machine with an
infinite number of processors. It is known that parallel computing is effective
when the number of processors is small, or when the problem is perfectly paral-
lel (Amdahl’s law) [5]. In AntiComb, Stage 1 is (partly) computed in parallel
while Stage 2 is serial. Hence, the speedup of the algorithm S = TAU/TAC is
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limited by the time needed for the serial fraction of the problem. The efficiency
of parallel computing E = S/k also decreases by increasing k. Moreover, we
compute runtime for parallel processing by max{t1, . . . , tk}. These factors make
the speedup of AntiComb seemingly smaller than the number of processors
used.

Table 1. Experimental results

n m
AntiUnif AntiComb (sec)

(sec) k Stage 1 Stage 2 Total

10 0.047 0.031 0.078

500 250 0.203 30 0.032 0.031 0.063

50 0.016 0.031 0.047

10 0.032 0.015 0.047

500 500 0.218 30 0.016 0.031 0.047

50 0.016 0.016 0.032

10 0.141 0.031 0.172

500 1000 0.406 30 0.031 0.047 0.078

50 0.016 0.047 0.063

n m
AntiUnif AntiComb (sec)

(sec) k Stage 1 Stage 2 Total

10 0.063 0.25 0.313

1000 500 0.406 30 0.032 0.062 0.094

50 0.032 0.047 0.079

10 0.266 0.078 0.344

1000 1000 0.422 30 0.016 0.078 0.094

50 0.016 0.062 0.078

10 0.063 0.063 0.126

1000 2000 0.61 30 0.032 0.062 0.094

50 0.016 0.047 0.063

n m
AntiUnif AntiComb (sec)

(sec) k Stage 1 Stage 2 Total

10 0.281 0.093 0.374

3000 1500 0.719 30 0.219 0.078 0.297

50 0.125 0.078 0.203

10 0.359 0.093 0.452

3000 3000 0.922 30 0.047 0.109 0.156

50 0.016 0.094 0.11

10 0.437 0.109 0.546

3000 6000 0.953 30 0.219 0.11 0.329

50 0.172 0.094 0.266

n m
AntiUnif AntiComb (sec)

(sec) k Stage 1 Stage 2 Total

10 0.547 0.125 0.672

5000 2500 1.218 30 0.297 0.141 0.438

50 0.276 0.125 0.401

10 0.829 0.204 1.033

5000 5000 2.125 30 0.5 0.234 0.734

50 0.328 0.219 0.547

10 1.109 0.234 1.343

5000 10000 2.891 30 0.641 0.25 0.891

50 0.453 0.234 0.687

n m
AntiUnif AntiComb (sec)

(sec) k Stage 1 Stage 2 Total Speedup † Efficiency ‡

10 1.313 0.141 1.454 1.13 0.11

10000 5000 1.641 30 0.515 0.125 0.64 2.56 0.09

50 0.359 0.125 0.484 3.39 0.07

10 1.047 0.187 1.234 1.91 0.19

10000 10000 2.359 30 0.547 0.188 0.735 3.21 0.11

50 0.485 0.203 0.688 3.43 0.07

10 1.406 0.266 1.672 1.77 0.18

10000 20000 2.953 30 0.579 0.297 0.876 3.37 0.11

50 0.422 0.282 0.704 4.19 0.08

† Speedup:= AntiUnif / AntiComb(Total)

‡ Efficiency:=Speedup / k

5 Discussion

Palamidessi [13] uses the least upper bound (that is called the glb in the con-
text of [13]) of substitutions for parallel factorization that corresponds to least
generalization. Given two substitutions θ and σ with different bindings for the
same variable, say t/x ∈ θ and u/x ∈ σ, she eliminates the difference by replac-
ing t and u by x in θ and σ respectively. For instance, given two substitutions
θ = { a/x, f(a)/y } and σ = {b/x, f(b)/y}, λ = {f(x)/y} is computed as the least
upper bound of θ and σ by replacing a and b by x. This corresponds to com-
puting a least generalization of two atoms A1 = P (a, f(a)) and A2 = P (b, f(b))
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using the anti-unification algorithm, which outputs lg({A1, A2}) = P (x, f(x))
and the msau ({a/x}, {b/x}). In the anti-combination algorithm AntiComb, on
the other hand, given the set of n atoms {A1, . . . , An} such that A1 = P (a, f(a))
and A2 = P (b, f(b)), lg({A1, A2}) = P (x, f(x)) and the substitution θ2 = {a/x}
is computed. θ2 is then combined with other substitution θi such that A1 = Giθi
and Gi = lg({A1, Ai}) for 3 ≤ i ≤ n. As such, anti-combination is different
from parallel factorization. In fact, the parallel factorization algorithm intro-
duced in [13] outputs the lub of two substitutions, in other words, it computes
anti-unification of two terms by manipulating substitutions.

Several algorithms for anti-unification are proposed in the literature. Kuper
et al. [8] show that anti-unification of two terms represented in the form of trees of
size n is carried out in time O(log2 n) using n processors (or n/log2 n processors

Fig. 4. Comparison of runtime by AntiUnif and AntiComb (1)
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Fig. 5. Comparison of runtime by AntiUnif and AntiComb (2)
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in [2]). Kostylev and Zakharov [7] represent two given terms by acyclic directed
graphs, and compute their most specific term (or lg) in time O(N log N) where
N is the size of the most specific term it computes. In contrast to the algorithm
proposed in this paper, those algorithms compute least generalization of two
atoms (or terms). We use the Plotkin/Reynolds’s algorithm in this paper, but
AntiComb can use any algorithm of anti-unification of two atoms in the step 2.
Kuper et al. [8] also analyze that anti-unification of m terms, each having at most
O(n) symbols, is computed in O(log mn+log2 n) using mn processors. If we use
their anti-unification algorithm of two atoms in AntiComb, anti-unification of
m atoms takes O(m× log2 n) using n processors. Using mn processors, it is done
in O(log2 n). Hence, AntiComb will be faster than anti-unification of m terms
in [8].

6 Conclusion

This paper introduced a new algorithm for computing a least generalization of
a set of atoms based on anti-combination. Experimental results show that the
proposed algorithm has potential to compute induction from big data in the form
of relational facts in parallel. Future study includes extending the framework to
generalization of clauses and exploiting other opportunities for parallelisation in
practical ILP applications.
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Abstract. Propositionalization is the process of summarizing relational
data into a tabular (attribute-value) format. The resulting table can next
be used by any propositional learner. This approach makes it possible
to apply a wide variety of learning methods to relational data. However,
the transformation from relational to propositional format is generally
not lossless: different relational structures may be mapped onto the same
feature vector. At the same time, features may be introduced that are
not needed for the learning task at hand. In general, it is hard to define
a feature space that contains all and only those features that are needed
for the learning task. This paper presents LazyBum, a system that can
be considered a lazy version of the recently proposed OneBM method for
propositionalization. LazyBum interleaves OneBM’s feature construction
method with a decision tree learner. This learner both uses and guides
the propositionalization process. It indicates when and where to look for
new features. This approach is similar to what has elsewhere been called
dynamic propositionalization. In an experimental comparison with the
original OneBM and with two other recently proposed propositionaliza-
tion methods (nFOIL and MODL, which respectively perform dynamic
and static propositionalization), LazyBum achieves a comparable accu-
racy with a lower execution time on most of the datasets.

Keywords: LazyBum · Inductive logic programming ·
Propositionalization

1 Introduction

There is a renewed interest in analyzing data stored in relational databases.
In 2017, Tan et al. proposed the “One Button Machine” (OneBM) [15], which
automatically constructs features from a relational database. In ILP terms, one
would say that OneBM performs propositionalization [14]. It summarizes a rela-
tional database into a single table by defining features that are derived from
the database by joining multiple tables. It handles one-to-many and many-to-
many relationships by using specific aggregation functions that aggregate the
information in a set of multiple related tuples into a single tuple.
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An obvious disadvantage of propositionalization is that there is usually a loss
of information: the resulting table provides a summary of the original database,
from which that database cannot uniquely be reconstructed. Defining more fea-
tures means that less information is lost.

Viewed from an ILP perspective, propositionalization is equivalent to defining
a (usually relatively small) set of clauses, and associating with each clause one
particular feature. A typical ILP system searches a space that is much larger than
the number of features typically constructed by propositionalization approaches.

In this paper, we propose a variant of OneBM that performs dynamic, or
“lazy”, propositionalization. It considers the same types of features as OneBM,
but constructs these features in a lazy manner that is guided by the learner. We
begin by only considering that are based on the target table. But when another
table’s relevance to the learner becomes more evident, it expands its feature
space to consider features based on information contained in that table.

The gradual expansion of the feature table is somewhat similar to how ILP
systems gradually construct longer clauses by first constructing shorter ones
and considering only the promising ones for extension. An important difference,
however, is that ILP systems, when evaluating a clause, typically re-evaluate
the whole clause, which includes re-discovering answer substitutions for the sub-
clause that has already been evaluated earlier. The lazy propositionalization
methods proposed in this paper caches these instantiations.

The hypothesis underlying this paper is that a method like OneBM can be
made more efficient in both memory and time by implementing a lazy version of
its feature construction, without a loss of accuracy. At the same time, one might
hope that it is faster than ILP systems that use the same implicit search space.

The remainder of this paper is structured as follows. Section 2 briefly presents
OneBM. Section 3 introduces our new algorithm, including two available strate-
gies for defining new features, and discusses related work. Section 4 experimen-
tally compares this algorithm to other propositionalization approaches, in terms
of predictive and run-time performance, and Sect. 5 presents conclusions.

2 OneBM

The “One Button Machine” or OneBM [15] is a relational learning system that
works on data stored in a relational database. It takes as input a set of tables,
connected with each other through foreign keys. A single attribute is selected to
serve as the target attribute, and the table containing this attribute is called the
target table. OneBM produces as output a modified target table that contains
newly constructed features which summarize the other tables. Figure 1 shows an
example of what the input may look like.

The OneBM paper defines a “joining path” as a sequence of tables T0
c1−→

T1
c2−→ T2

c3−→ · · ·Tk �→ A where T0 is the target table, ci is the condition on
which Ti−1 and Ti are (equi-)joined, and A is an attribute of the last table in
the sequence. Note that this definition considers the projection onto one single
attribute at the end as part of the “joining path.” In this paper, we will use the
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Fig. 1. An example database representing teachers and students in a fictional school.
Professor is the target table and the target attribute is popular.

term “join path”, or J-path, for the joining path without the final projection,
and “join-project path”, or JP-path, for the joining path as originally defined.
Given a T0-tuple t, we will write t.P for the set of Tk-tuples associated with it
through the join path P , and t.P.A for the multiset of A-values in t.P .

Figure 2 shows, for the database shown in Fig. 1 and the JP-path Professor
PID−−−→ Course CID−−−→ Enrolled SID−−→ Student �→ Grade, the multiset of grades asso-
ciated with Prof. Lupin (we use PID as shorthand notation for Professor .PID =
Course.PID here, and similar for CID and SID).

If all the joins in P are one-to-one or many-to-one, then t.P.A is guaranteed
to be a singleton; otherwise, it is not. In the first case, we call P determinate,
and in the second case we call it non-determinate.

OneBM derives features from JP-paths as follows. A determinate path defines
one feature, whose value (for a given tuple t) is the single element of t.P.A. A
non-determinate path defines a fixed-sized feature vector whose components are
defined by predefined aggregation functions applied to t.P.A. Which aggregation
functions are used depends on the type of A. If A is numerical, the feature vector
contains the mean, variance, min, max, sum and count of the numbers in the
multiset. If A is categorical, the feature vector contains the cardinality of the
multiset and the corresponding set (in SQL terms, the count and count distinct
functions). OneBM defines other aggregation functions for values that are texts,
timestamps, etc.

The features defined by a JP-path can be collected using a single SQL query.
For example, the multiset from Fig. 2 and its corresponding features can be
computed using the following SQL query:

SELECT count(grade), sum(grade), average(grade),
variance(grade), min(grade), max(grade)

FROM Professor
JOIN Course ON Professor.PID = Course.PID



LazyBum: Decision Tree Learning Using Lazy Propositionalization 101

Fig. 2. The multiset of grades for students taking one of professor Lupin’s courses.
OneBM transforms this multiset to multiple features for Lupin. Example transforma-
tions include the average and standard deviation.

JOIN Enrolled ON Course.CID = Enrolled.CID
JOIN Student ON Student.SID = Enrolled.SID

GROUP BY Professor.PID

OneBM defines the depth of a table Ti, d(Ti), as the length of the shortest
join path between T0 and Ti. It has two options for generating join paths: in
“forward-only” mode, consecutive tables must be increasingly farther from the
target table (that is, i < j ⇒ d(Ti) < d(Tj)), whereas in “full” mode this
restriction is dropped, allowing for what the authors of OneBM call “backward
traversal”.

Given a database, OneBM constructs a table that contains for each join path
all the defined features. As the number of join paths can grow exponentially with
their length, OneBM has a MaxDepth parameter that limits this length.

OneBM uses a relatively restrictive bias. For instance, it does not mix selec-
tions into the join path, as, e.g., Van Assche et al. do [25]. Doing so would result
in an exponential blowup of the already large feature table.

The lazy version of OneBM that we propose does not attempt to lift this
restriction or address any other limitations; it constructs features lazily, but in
all other respects is meant to behave as much as possible like OneBM. It is
currently limited to numerical and categorical values, and only implements the
forward-only approach.

3 LazyBum

Our lazy version of OneBM is called Lazy Button Machine, or LazyBum. The
main motivation for developing LazyBum is that, by constructing all features in
advance, OneBM may invest much work into computing features that afterwards
will not be used by the learner. LazyBum takes a more cautious approach: it
first computes features based on short join paths, and only extends join paths
when (1) the simpler features turn out to be insufficient, and (2) there is reason
to believe the extension will help. In principle, LazyBum can construct every
feature that OneBM can construct, as it explores the same feature space. In
practice, it avoids constructing the large majority of them.
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As the lazy feature construction somehow needs to be informed about which
tables are useful additions to the current path, it is natural to integrate a learning
system into the feature construction process. LazyBum is based on relational
decision tree learning (such as Tilde [1] or Relational Probability Trees [20]).

3.1 The LazyBum Algorithm

LazyBum learns a decision tree in a top-down fashion. When deciding on the
test to include in a node, it evaluates possible tests using a “local data table”
(LDT), which just like in traditional tree learning contains all instances sorted
into this node, with one row per instance. Unlike traditional tree learning, the
LDT does not have a fixed schema (set of attributes) as the learner may extend
the schema with new features as needed. Each LDT is associated with a decision
tree node and contains all the features constructed along the path from the root
to that node. We now explain the learning process in detail.

At the root node of the tree, the LDT is the target table extended with all
features derived from join paths of length 1 (i.e., the tables directly connected to
the target table). LazyBum uses information gain to select the most informative
feature in the LDT to split on. If a good enough split is found, it splits the
LDT into two subsets of rows based on this: one for each child. If no good split
can be found, LazyBum tries to extend the LDT by introducing new features.
These new features are defined by extending some of the join paths used to build
the current LDT. Information from the current decision tree branch can guide
the selection of which join paths to extend, which is discussed in Subsect. 3.2.
LazyBum finds the best split based on the new features, and splits the extended
LDT into two subsets. If none of the new features is good enough, the node is
turned into a leaf. This procedure is recursively repeated for all subsets created.
Algorithm 1 summarizes the entire procedure.

The way LDTs are extended is somewhat similar to the way in which the
relational decision tree learner Tilde extends its clausal queries. In Tilde, a query
Q is associated with the current node (Q contains all the tests from the root to
this node), and this query is extended with one or more literals, chosen among
many candidates. After the most informative extension e is found, the set of
instances satisfying Q (i.e., all instances at this node) is partitioned into a subset
of instances that satisfy Q∧ e, and a subset of instances that do not. Important
differences between Tilde and LazyBum are:

– In Tilde, for each candidate extension e, the query Q ∧ e is evaluated. This
means the sub-query Q is computed many times. The “query pack” imple-
mentation of Tilde [2] avoids this to some extent: within a single node, the
search for all answer substitutions for query Q is done only once, not once for
each extension.
While query packs avoid rerunning Q multiple times inside one node, Q must
still be rerun in that node’s children. LazyBum differs in this respect. Lazy-
Bum caches the join paths corresponding to a node’s LDT. A join path is
cached using the primary keys identifiers of the tables on its path, for the
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Algorithm 1. Main LazyBum algorithm.
Require:

MaxDepth, max tree depth,
MinInst , minimum nb of instances in a leaf
MinIG, minimum information gain threshold

1: procedure grow tree(node N , table LDT )
2: if depth(N) = MaxDepth or #rows(LDT ) < MinInst then
3: Make N a leaf node
4: else
5: Find the test τ with highest information gain to split LDT on
6: if IG(τ) > MinIG then
7: Split LDT into tables LDTL, LDTR

8: Turn N into an inner node with children NL, NR

9: Call grow tree(NL, LDTL) and grow tree(NR, LDTR)
10: else
11: if table LDT can be extended then
12: LDT ext ← extend data table(LDT , N)
13: Find the test τ with highest information gain to split LDT ext on
14: if IG(τ) > MinIG then
15: Split LDT ext in tables LDT ext

L , LDT ext
R

16: Make N an inner node with children NL, NR

17: Call grow tree(NL, LDT ext
L ) and grow tree(NR, LDT ext

R )
18: else
19: Make N a leaf node
20: else � LDT cannot be extended
21: Make N a leaf node

instances in the LDT. When extending a node’s LDT, it reuses the join paths
of its ancestor nodes to avoid recomputing these joins. Only the joins with the
extension tables need to be calculated. This is similar to caching all answer
substitutions of Q ∧ e for all possible extensions e, and reusing the cached
results in all child nodes.
In addition, when extending a LDT, LazyBum derives all features for each
join path extension and adds them to the LDT. Therefore, if a feature is rele-
vant but not chosen immediately because a better feature exists, this feature
will appear in the LDT for all descendant nodes and hence can be used as
split criteria in one of these nodes (without having to be recomputed). In
comparison, Tilde with query packs does not cache the ‘features’ it does not
split on for use in child nodes.

– Tilde uses a more flexible language bias, largely specified by the user, whereas
LazyBum uses a predefined and more restrictive bias. LazyBum’s bias is
intended to be restrictive enough to make the storage of the LDT feasible.

3.2 LDT Extension Strategies

We call two tables neighbors if they are connected by a foreign key relationship.
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LazyBum defines two different strategies for extending an LDT. Let P =
T0 → T1 → · · · → Tk be a J-path used to construct the LDT. A table is called a
candidate for extension of P if (a) it does not occur in P and (b) it neighbors on
Tk. In the unrestricted strategy, every path used to construct the current LDT
gets extended with each candidate for extension. In the restricted strategy,
only those paths get extended from which at least one feature actually occurs
in an ancestor node of the decision tree node currently being considered. Hence,
the decision tree guides the selections of which join paths should be extended.
The difference between the two strategies is that for the unrestricted strategy,
it suffices that the features defined by the join path have been introduced in
the LDT, while for the restricted strategy they must also have been used at
least once. The motivation for the latter condition is that LazyBum should
preferentially introduce relevant features, and the underlying assumption is that
tables are more likely to be relevant if their neighbors are.

The LDT is then extended by considering for each extended J-path all JP-
paths (that is, considering each attribute of the newly added tables), computing
the features defined by these JP-paths, and adding these features to the LDT.
Table 1 lists the aggregation functions that are currently used by LazyBum. Most
of them speak for themselves. The “contains” aggregation function introduces
for each possible value of a categorical domain a Boolean feature that is true if
and only if the value occurs in the multiset. To avoid problems with “categorical”
variables that have a very large domain (e.g., because they are in fact strings),
these features are only introduced for variables whose domain size is below both
an absolute threshold DomSizeabs and a relative threshold DomSizerel (relative
to the number of rows in the table).

Figure 3 illustrates how the schemas of LDTs are extended in the restricted
strategy, guided by their corresponding decision tree branches.

Fig. 3. Example of a LDT schema extension in the restricted strategy based on the
splits chosen in the decision tree nodes, using the example database from Fig. 1. The
partial decision tree shows the root node, its left child and its right child splitting on

features from Professor , Professor
PID−−→ Course and Professor

MID−−−→ Movie, respec-
tively. The schemas of the LDTs of the root and its two children are the same. For
both left children of the roots two children, no good split is found and their LDTs are
extended.
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Table 1. The functions supported by LazyBum to aggregate multisets.

Join result Data type Aggregation function

Single value Numerical Identity function

Categorical

Multi-set Numerical Avg, standard deviation, variance, max,
min, sum, count

Categorical Count, distinct count, contains

3.3 Special Cases

Associative Tables. LazyBum normally extends join paths with a single table,
but there is one exception to this rule. Many-to-many relationships are usually
implemented with an intermediate associative table that does nothing else than
connect two other tables in an m-to-n manner (for an example, see the table
Enrolled in Fig. 1). The intermediate table has no attributes of its own, and is
more of an implementation artifact than a conceptual table. For this reason,
when an intermediate table is selected, the tables it connects to is immediately
added as well. This is somewhat similar to lookahead in ILP.

Empty Multisets. For some tuples t and join paths P , t.P.A may be empty.
Not all aggregation functions are defined on the empty set. To deal with this,
LazyBum uses the following strategy when evaluating features to split on. For
any test, the instance set is split into three subsets Pass, Fail, and Undefined,
which respectively contain the instances that pass the test, fail the test, or are
untestable because the feature is undefined. This ternary partition is transformed
into a binary partition by merging Undefined with either Pass or Fail, depending
on which of these two yields the highest scoring test. If that test is eventually
chosen, the node stores which option was chosen, so that it can correctly handle
instances with undefined values at prediction time. Apart from this, LazyBum
also introduces a Boolean feature that indicate whether a multiset is empty or
not, as this by itself may be relevant information.

Missing Values. Missing values may occur in the input data. Missing values are
quite different from undefined values, and must be treated differently. When the
original database has missing values, these are included as separate elements in
t.P.A. Except for count and count distinct, all aggregation functions are com-
puted on the sub-multiset of the multiset that excludes missing values. When
that sub-multiset is empty, while the multiset itself is not, a default value is
included as the feature’s value.

3.4 Comparison with Related Work

Many propositionalization approaches have been proposed in the past and suc-
cesfully applied to various domains, such as information extraction and word
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sense disambiguation [4,10,14,23,24]. To better position LazyBum with respect
to the state of the art, we categorize these approaches along four dimensions.

ILP vs Databases. A first dimension is the perspective that they take. Some
approaches take an ILP-based first-order logic perspective, other approaches take
a relational database perspective [11]. Although the logical and database repre-
sentations are strongly related, logic and database query engines are typically
optimized for different types of queries (essentially, determining the existence of
at least one answer substitution, versus computing the set of all answer substi-
tutions). LazyBum is set in the database setting. The motivation for this is that
the features it computes are indeed based on entire sets of answer substitutions.

Types of Features. We distinguish among three types of features. The first type
is existential features, which simply check the existence of an answer substitu-
tion of a particular type. These features are typically constructed by proposi-
tionalization approaches that are closely related to ILP learners. Examples of
such systems are LINUS [18], DINUS [17], SINUS [11], RSD [28], RelF [13] and
nFOIL [16]. They often focus on categorical attributes, with numerical attributes
getting discretized.

The second type of features is based on simple aggregation functions,
which summarize information in neighboring tables [21]. Most initial relational-
database oriented propositionalization approaches focus on this type of feature.
Examples of such systems are POLKA [9], RELAGGS [12], Deep Feature Syn-
thesis [8] and OneBM [15].

The third type of features consists of complex aggregates [25,26]. A complex
aggregate combines an aggregation function with a selection condition. The ILP
learners Tilde and FORF included in the ACE system [25] allow for complex
aggregates to be used. A recent propositionalization approach that considers
complex aggregates is MODL [3,4], which is included in the Khiops data mining
tool. MODL was designed to deal with a possibly infinite feature space. The
approach it takes is two-fold. First, it postulates a hierarchical prior distribution
over all possible constructed features. This prior distribution penalizes complex
features. It takes into account the recursive use of feature construction rules1,
being uniform at each recursion level. Second, it samples this distribution to
construct features.

LazyBum does not construct complex aggregates, but focuses on simple
aggregates as used in OneBM. However, LazyBum does build some features
using the existential quantifier.

Indirectly Linked Complementary Tables. This dimension is specific to database-
oriented propositionalization approaches and concerns how they handle comple-
mentary tables that are not directly connected to the target table. Like OneBM,
LazyBum joins tables over a path through the database, aggregating informa-
tion for each instance using a single aggregation function. In contrast, POLKA

1 A constructed feature can be used as an argument for another construction rule.
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and Deep Feature Synthesis use aggregation functions recursively, aggregating
in between joins. RELAGGS uses a form of identifier propagation similar to
CrossMine [27] to directly relate all complementary tables to the target table.

Static vs. Dynamic Propositionalization. Static propositionalization approaches
perform the following two-step process: (1) convert the relational database to a
data table, and (2) apply any propositional learner to the data table. In contrast,
dynamic approaches [5,7,16] interleave feature construction and model learning.
LazyBum is a dynamic version of OneBM, constructing a data table gradually,
as needed. LazyBum differs from existing dynamic propositionalization systems
like SAYU [5–7] and nFOIL [16] in three important ways. First, LazyBum takes a
database perspective, whereas SAYU and nFOIL come from an ILP-perspective.
Second, LazyBum considers a much wider array of aggregations whereas prior
approaches focus on existence [5,16] or possible simple counts [7]. Finally, Lazy-
Bum guides the propositionalization by learning a decision tree, while nFOIL
and SAYU use Bayesian network classifiers.

4 Evaluation

The goal of the empirical evaluation is to compare LazyBum’s predictive and
run-time performance to that of other propositionalization approaches.

4.1 Methodology

Table 2. The datasets used in the experiments.

Hepatitis UW-CSE University IMDb

# examples 500 278 38 12000

# classes 2 4 3 3

# rows (in total) 12927 712 145 442698

# tables 7 5 5 8

Target table Dispat Person Student Movies

Target variable Type Inphase Intelligence Rating

The following datasets were used in the evaluation, which were collected from
the CTU Prague Relational Dataset Repository [19]:

– The Hepatitis dataset describes patients with hepatitis B and C. The goal is
to predict the type of hepatitis.

– The UW-CSE dataset contains information about the University of Washing-
ton’s computer science department. The goal is to predict the phase a person
is in.
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– The University dataset is a small dataset containing information about stu-
dents. The classification task is to predict the intelligence of a student.

– The IMDb (Internet Movie Database) dataset contains information relating
movies, directors and actors. A possible regression task is to predict the rating
of a movie, which is a real number between 0 and 10. We turned this into
a classification problem by divided the examples into 3 groups: those with a
rating lower than 3.3 (bad movies), those with a rating between 3.3 and 6.6
(average movies) and those with a rating higher than 6.6. The original dataset
contained 67245 instances, with 5219 bad, 39599 average and 22427 good
movies. From this dataset, we sampled 12000 examples, with 4000 examples
of each class.

The datasets vary in size and number of instances (Table 2). For each dataset, we
removed the feature columns from the main table, leaving only the primary key
and the target attribute (and foreign keys). This ensures that the systems must
use information from the secondary tables to result in a model that performs
better than a majority class predictor.

We compare two versions of LazyBum (using respectively the restricted and
unrestricted strategy) to the following alternative approaches:

– OneBM is the static propositionalization system on which LazyBum is based.
As the original OneBM could not be made available to us, we implemented
our own version, which shares the same code base as LazyBum. As a result,
our OneBM and LazyBum versions are able to generate the same features.

– MODL [3,4] is a recent static propositionalization approach included in the
Khiops data mining tool.

– nFOIL [16]. Like LazyBum, nFOIL performs dynamic propositionalization.
However, nFOIL uses a naive Bayes learner instead of a decision tree to guide
its search for features. nFOIL uses conjunctive clauses to represent features,
while LazyBum uses simple aggregation functions.

– Wordification [22] is another recent static propositionalization method. Each
instance in a dataset is viewed as a text document, with as words the con-
structed features. Wordification converts each instance in a feature vector
using a bag-of-words representation for its corresponding document.

– Tilde [1] is a relational decision learner; it produces a model but no propo-
sitionalization of the data. Since LazyBum is inspired by Tilde and uses a
decision tree learner to guide its feature construction, we compare with Tilde
as a baseline.

For each of the systems, we performed 10-fold cross-validation. The same
10 folds were used for all systems except for nFOIL and Tilde. For nFOIL and
Tilde, we used their builtin 10-fold cross-validation, which choose their own 10
folds. On each dataset, we measure both predictive accuracy and run-time per-
formance. However, OneBM, MODL and Wordification are static propositional-
ization approaches. They only flatten the database into a table without building
a predictive model, while LazyBum also learns a decision tree. To compare pre-
dictive accuracy for these methods with LazyBum, we learn a single decision tree
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on their output tables. For OneBM and MODL, we used WEKA’s C4.5 decision
tree implementation. For Wordification, we used a default scikit-learn tree.

To compare run-time performance, we measure the model induction time,
averaged over the different folds. For OneBM, MODL and Wordification, this
includes both the propositionalization time and the time to learn a decision tree.

LazyBum and OneBM were run with their default parameter settings. For
LazyBum, this corresponds MinIG = 0.001, MaxDepth = ∞ an MinInst = 3
(see Algorithm 1). LazyBum and OneBM share their feature generation code,
which uses default thresholds DomSizeabs = 40 and DomSizerel = 0.2 for the
“contains” aggregation function.

For MODL, the number of constructed features was set to 1000. Its default
feature construction rules were used, without recoding the categorical or numer-
ical features, while keeping the initial target table attributes as features.

For Wordification, we based our experiments on the included sample scripts,
using the default weighting method.

Both nFOIL and Tilde were used with their default options. As input, nFOIL
expects a list of ground facts, together with a language bias of types and refine-
ment mode definitions. The datasets were converted by using each table row
as a predicate instance. In the rmode definitions used, primary and foreign key
attributes were marked as possible input variables (on which unification can be
performed), the other attributes were marked as output variables. If a regular
column has at most five different values, it was added as a possible selection con-
dition to the rmodes. For Tilde, we used the same language bias as for nFOIL.

4.2 Results

We had to modify the nFOIL setup for two datasets. For Hepatitis, nFOIL ran
for four days without finishing when using a language bias containing constants.
Hence, nFOIL’s reported results for Hepatitis use a language bias without con-
stants. For IMDb, the largest of the datasets, nFOIL always crashed, and Wordi-
fication did not succeed in propositionalising the first fold in eight hours, after
which it was canceled. At that point, it was using 15.5 gigabytes of memory.

Predictive Accuracy. When comparing propositionalization methods, both Lazy-
Bum versions have the highest accuracy on the UW-CSE and IMDb datasets
(Fig. 4a). On Hepatitis, both LazyBum versions are almost as accurate as nFOIL,
and they outperform the static approaches. On University, the smallest of our
datasets, nFOIL and Tilde noticeably outperform all other approaches. Inspect-
ing their models for University shows that a large part of their generated feature
clauses or node queries contain multiple instances of some predicate. That is,
features contain self-joins of tables. In comparison, our LazyBum and OneBM
implementations only allow each table to occur once in a join path; they cannot
generate these features. This may be why nFOIL performs better on University.

It is noteworthy that LazyBum outperforms OneBM+C4.5 on all datasets.
Given that LazyBum introduces a subset of the features that OneBM uses, the
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(a) Accuracies.

(b) Run times relative to restricted LazyBum.

Fig. 4. Accuracy and run-time measurements for each of the datasets. For OneBM,
MODL and Wordification, this includes both propositionalization and learning a tree
using C4.5 (averaged over the 10 folds).

only plausible explanation for this is that OneBM generates so many features
that it harms the performance of C4.5.

Run-Time Performance. Tilde is faster than all other approaches on three out of
four datasets (Fig. 4b). Tilde was 665 times slower than restricted LazyBum on
Hepatitis. This is likely due to the high number of refinements for each clause,
as nFOIL did not even finish without modifying the language bias. Possibly
contributing to Tilde’s relative speed is that it does not propositionalize.

When comparing between the propositionalization methods, the restricted
LazyBum is between 1.2 and 35.8 times faster than its competitors. The smallest
speedups are for the University dataset, which is substantially smaller than the
other datasets. Remarkably, the restricted LazyBum is only noticeably faster
than the unrestricted version on the IMDb dataset. As IMDb is the largest
dataset, there is the most to gain from using fewer joins. For the smaller Uni-
versity and UW-CSE datasets, the restricted version is slightly slower due to
having a more complex extension strategy.

General Discussion. In summary, LazyBum always results in significant run time
improvements compared to the other propositionalization methods, while still
achieving equivalent predictive performance on three of the four datasets. While
Tilde often outperforms the propositionalizers in terms of both accuracy and
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speed, it only produces a model, whereas the propositionalizers produce a table
that enables the generation of many different models. For the OneBM, MODL
and Wordification settings, most of the time is spent building the data table, with
the decision tree induction time being almost negligible in comparison. LazyBum
has the advantage of possibly not having to propositionalize the whole table.

5 Conclusion

We have implemented LazyBum, a lazy version of OneBM, a recently proposed
system for propositionalizing relational databases, and evaluated its performance
relative to OneBM and to several other propositionalization methods. Our exper-
imental results suggest that LazyBum outperforms all other systems in terms
of speed, sometimes by an order of magnitude, and this usually without signifi-
cant loss of accuracy. Moreover, LazyBum systematically outperforms OneBM in
terms of accuracy, which can only be explained by the fact that OneBM’s eager
generation of (many irrelevant) features is harmful to the subsequent learning
process. These results suggest that lazy propositionalization by interleaving a
decision tree learner with the feature generation process is an effective approach
to mining relational data.

Acknowledgments. Work supported by the KU Leuven Research Fund (C14/17/070,
“SIRV”), Research Foundation – Flanders (project G079416N, MERCS), and the Flan-
ders AI Impulse Program. The authors thank Marc Boullé for his responsiveness and
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Abstract. Relational data models are usually used by researchers and
companies when a single-table model is not enough to describe their sys-
tem. Then, when it comes to classification, there are mainly two options:
apply the corresponding relational version of classification algorithms or
use a propositionalization technique to transform the relational database
into a single-table representation before classification. In this work, we
evaluate a fast and simple propositionalization algorithm called Wordifi-
cation. This technique uses the table name, attribute name and value to
create a feature. Each feature is treated as a word and the instances of
the database are represented by a Bag-Of-Words (BOW) model. Then,
a weighting scheme is used to weight the features for each instance. The
original implementation of Wordification only explored the TF-IDF, the
term-frequency and the binary weighting schemes. However, works in the
text classification and data mining fields show that the proper choice
of weighting schemes can boost classification. Therefore, we empirically
experimented different term weighting approaches with Wordification.
Our results show that the right combination of weighting scheme and clas-
sification algorithm can significantly improve classification performance.

Keywords: Propositionalization · Relational data mining · Term
weighting · Wordification · Classification

1 Introduction

A relational data model is used when we desire to not only store attributes of our
entities, but also their relationships. In this case, we can apply two strategies
to learn from the stored data: apply multi-relational learners or use a propo-
sitionalization technique to transform the relational dataset into a single-table
representation, and then apply standard propositional learners. In this work,
we focus on the latter approach and evaluate a propositionalization method
called Wordification [25]. Because Wordification creates much simpler features
than other propositionalization techniques, it can achieve greater scalability [25].
c© Springer Nature Switzerland AG 2020
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Besides, statistical tests showed that the classification performance of Wordifi-
cation is equivalent to more complex propositionalization techniques, albeit the
algorithm being much faster [25].

Wordification uses a weighting scheme to assign numerical values to features
according to their relevance [25]. Then the resulting vector can be used as input
to propositional learners. In the original Wordification paper [25] only the TF-
IDF [31], and two other simpler weighting schemes, the term-frequency (TF) and
binary scheme, were used. The term-frequency performs a simple count of each
term and the binary (0/1) scheme just indicates the absence or presence of a term
in a document. This paper aims to evaluate the Wordification performance using
other weighting schemes, which performed better than TF-IDF in information
retrieval [23,27] and text classification scenarios [8,14,17].

The rest of this paper is organized as follows. Section 2 describes the back-
ground and the related work. Section 3 explains the necessary tools for imple-
mentation. Then Sect. 4 presents the experimental results. Lastly, Sect. 5 presents
our conclusions.

2 Background and Related Work

The study of the impact of different term weighting schemes to a propositional-
ization approach is not commonly done. Usually, weighting schemes are a sub-
ject of information retrieval [30] and text classification [29] fields, while propo-
sitionalization is an established approach of Relational Data Mining (RDM)
and Inductive Logic Programming (ILP) [10]. Due to the particular behavior of
Wordification algorithm, however, we have the opportunity to join these very
distinct themes in this work. We provide below an overview of Wordification
methodology and the term weighting schemes studied in this paper.

2.1 Propositionalization

Propositionalization techniques can transform a relational database into a propo-
sitional single-table format. Therefore, the process of learning with a proposi-
tionalization technique can be divided into the two following steps: first, the
relational data have to be transformed into a single-table dataset; secondly, we
apply a propositional learner on the resulting dataset [25].

Wordification. Generally, propositionalization algorithms construct com-
plex first-order features [11,13,16,35], which act as binary attributes of the
new propositional dataset. Compared to other propositionalization techniques,
Wordification generates much simpler features with the aim of achieving greater
scalability. It takes as input a relational database and outputs a set of feature
vectors, where each vector represents a document in the Bag-of-Words (BOW) [7]
vector format.
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A relational database can be described as a set of relations {R1, ..., Rn} and
a set of foreign-key connections between the relations denoted by Ri → Rj [25].
In Fig. 1’s diagram, the relations are represented as tables and the arrows are
the foreign-keys linking them. Table 1 shows part of the tables of the Trains
database [19]. The link between these tables is established by the train attribute
in the CAR table, which is referred by trainID in the TRAIN table.

As a first step of the Wordification, the user has to choose the target table
from the database. This table must contain the column with the class labels
that will be used later in the classification step. Each row of the target table
originates a text document, which is described by a set of words (or features).
The features are formed by the combination of the table name, attribute name
and its discretized value as shown below:

[table name] [attribute name] [value]

Fig. 1. The Wordification process of creating a document dn. The upper-left table is
the target table, which is related to the other tables. For each individual entry of the
target table one Bag-Of-Words (BOW) vector dn of weights of “words” is constructed.
The “words” correspond to the generated features of the target table and the related
tables. Modified from [25].

The features of each document are first generated for the target table and
then for each entry from the related tables. Finally, the generated features are
joined together according to the relational schema of the database, as illustrated
in Fig. 1. Figure 2 shows the generated features for two instances of the Trains
database. For example, the feature Cars Position 1 is created from the join of
attribute Position with value equal to 1 of table CAR.

After generating the documents for every entry of the target table, we assign
numerical values to the features of each document using a weighting scheme. The
original Wordification paper [25] included the results for three weighting methods:
TF-IDF, term-frequency and binary weighting scheme. However, as these differ-
ent weighting schemes did not perform significantly differently on the classifica-
tion task, the paper focused on the TF-IDF scheme since this method is prevalent
in text mining applications. In order to investigate further the influence of the
weighting schemes to the final classification performance, we selected some term
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Table 1. Example of two related tables before Wordification.

trainID direction

1 east

... ...

15 west

... ...

(a) Trains table

carID train position shape len sides roof wheels load shape load num

1 1 1 rectangle short not double none 2 circle 1

2 1 2 rectangle long not double none 3 hexagon 1

3 1 3 rectangle short not double peaked 2 triangle 1

4 1 4 rectangle long not double none 2 rectangle 3

... ... ... ... ... ... ... ... ... ...

48 15 1 rectangle long not double none 2 rectangle 2

49 15 2 u shaped short not double none 2 rectangle 1

... ... ... ... ... ... ... ... ... ...

(b) Cars table

Fig. 2. Example of generated features per instance using Trains as the target table.
The !1 and !0 at the beginning of the text represents the class positive (east) or negative
(west) of the instance.

weighting methods that statistically outperformed TF-IDF [8,14,17,23] and
compared the classification performance. The following section presents a
detailed description of each weighting scheme used in our experiments, including
the TF-IDF.
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2.2 Term Weighting Schemes

Weighting schemes can be divided into two groups: unsupervised and supervised
[9]. In the group of unsupervised weighting schemes, we have the TF-IDF and
BM25 algorithms, which come from the information retrieval field. First, they are
used to weight the terms and then, a ranking function is computed by summing
the assigned weights for each query [26]. On the other hand, the supervised
weighting schemes DELTA TF-IDF, TF-RF and CRED-TF-IDF were specially
designed to be applied in the text classification field [8,14,17]. They use the
available class information of each document in their formula to improve the
classification performance [15].

TF-IDF. This scheme is often used as a weighting function in information
retrieval searches [31]. It is intended to reflect how important a word is to a
document in a collection or corpus. The TF part is the term frequency and
is simply a count of how many times a word w appears in a document d. If a
word appears many times in a document, then that word may be relevant to
that document. The IDF, a short for inverse document frequency, measures the
weight of a term on corpus level. It diminishes the weight of terms that occur
very frequently in the corpus D and increases the weight of terms that occur
rarely. The TF-IDF measure is defined as follows:

tfidf(w, d) = tf(w, d) ∗ log
|D|

|d ∈ D : w ∈ d| (1)

where |D| is the total number of documents in the corpus and |d ∈ D : w ∈ d| is
the number of documents where the word w appears.

BM25. Also known as Okapi BM25 [27], the BM25 is a state-of-the-art term
weighting for information retrieval [18]. Its structure is very similar to TF-
IDF, however, its term-frequency component is nonlinear. This characteristic
is desirable due to the statistical dependence of term occurrences: the informa-
tion gained on observing a term the first time is greater than the information
gained on subsequently seeing the same term. As a result, the term weight sat-
urates after a few occurrences. The IDF calculation is also slightly different as
shown below:

bm25(w, d) = tf ′(w, d) ∗ idf ′(w) (2)

tf ′(w, d) =
tf(w, d) ∗ (k1 + 1)

tf(w, d) + k1 ∗ (1 − b + b ∗ dl
avgdl )

(3)

idf ′(w) =
|D| − n(w) + 0.5

n(w) + 0.5
(4)

where dl is the length of the document d in words, avgdl is the average document
length in the collection, and n(w) is the number of documents containing w. The
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values of the free parameters k1 and b are usually chosen as k1 ∈ [1.2, 2.0] and
b ∈ [0.5, 0.8] [26].

DELTA TF-IDF. This weighting scheme takes into account the class of each
document. It assigns feature values for a document by calculating the differ-
ence of the TF-IDF scores of that word in the positive and negative training
corpus [17] as shown below:

delta.tfidf(w, d) = tf(w, d) ∗ log2
|P |

(Pw + 1)
− tf(w, d) ∗ log2

|N |
(Nw + 1)

(5)

where |P | is the number of documents in the positively labeled training set
and Pw is the number of documents in the positively labeled training set with
word w. In the same way, |N | in the number of documents in the negatively
labeled training set, and Nw is the number of documents in the negatively labeled
training set with word w.

TF-RF. The TF-RF proposes a substitute to the IDF part in order to improve
the term’s discriminating power for the text classification field [14]. The TF
factor is the same, but the new factor rf , the relevancefrequency, is defined as
follow:

rf = log2(2 +
Pw

Nw + 1
) (6)

CRED-TF-IDF. The CRED-TF-IDF uses a different term frequency factor,
which assigns a credibility adjusted score to each word [8]. Let Ci,k be the count
of word i in class k, with k ∈ {−1, 1}, and Ci to be the count of words i over
both classes. Then, we assign a score to word i as follows:

ŝi =
1
Ci

Ci∑

n=1

Ci,k

Ci
(7)

This ŝi score is the average likelihood of making the correct classification for
a given word i in a document if i was the only word in the document. As we are
treating binary classification cases, this reduces to:

ŝi =
C2

i,1 + C2
i,−1

C2
i

(8)

Now, consider a case where we have two different words i and j, for which
ŝi = ŝj = 0.75 and Ci = 5 and Cj = 100. Intuitively, ŝj seems a more credible
score than ŝi and ŝi should be shrunk towards the population mean. Then, the
weighted population means ŝ is defined as:

ŝ =
∑

i

Ci ∗ ŝi
C

(9)
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where C in the total count of words in the corpus. Now, based on the Bühlmann
credibility adjustment [1] from the actuarial literature, the resulting credibility
adjusted score for word i is:

si =
C2

i,1 + C2
i,−1 + ŝ ∗ λ

C2
i + λ

(10)

where λ is an additive smoothing parameter. When Ci,1 and Ci,−1 are small,
si ≈ ŝ (otherwise, si ≈ ŝi) [8]. Finally, the modified credibility adjusted term
frequency is defined as given by:

tf i,d = (0.5 + si) ∗ tfi,d (11)

3 Implementation

In this section, we present the datasets, platforms, weighting schemes, classifiers
and additional configurations used to perform our experiments.

3.1 Datasets

We perform the experiments using 13 relational datasets. The datasets Trains,
IMDB, Mutagenesis 188, Mutagenesis 42, Carcinogenesis and Financial were
used in the original Wordification paper1. We also added to our experiments the
Bupa, Hepatitis, Musk Large, Mask Small, NBA, Pima and Facebook databases2

[20]. Each instance of these datasets are labelled as positive or negative. Table 2
shows the distribution of instances according to their classes.

3.2 Clowdflow

In order to test the weighting schemes, we first need to transform the relational
database into a single-table dataset applying the Wordification algorithm. In this
step, we used the Clowdflow platform [12], which is an open-source, web-based
data mining platform. The Clowdflow offers many widgets to build data mining
workflows, including a widget with the Wordification implementation.

Figure 3 shows our workflow. First, we use the Database Connect to access a
database on a MySQL [22] database server. Then we use the Database Context to
select the target table and the tables that we will be used in the following steps.
The Dataset Discretization widget convert continuous attributes of the selected
database to categorical, by discretizing the continuous attributes. It supports
three discretization methods: equal-width interval, equal-frequency intervals, and
class-aware discretization [3]. We use the equi-width discretization, the same
used in Wordification paper [25]. Then, the Wordification widget takes as input
the target table, the list of additional tables and the database context with
information about the relation between tables to generate the features. We save
the list of features generated per instance, as shown in Fig. 2, to a text file.
1 Datasets available at http://kt.ijs.si/janez kranjc/ilp datasets/.
2 Datasets available at https://relational.fit.cvut.cz/.

http://kt.ijs.si/janez_kranjc/ilp_datasets/
https://relational.fit.cvut.cz/
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Table 2. Class Distributions.

Database Positive Negative

IMDB 122 44

Trains 10 10

Mutagenesis 188 125 63

Mutagenesis 42 13 29

Carcinogenesis 182 147

Financial 606 76

Bupa 145 200

Hepatitis 294 206

Musk Large 39 63

Musk Small 47 45

NBA 15 15

Pima 268 500

Facebook 206 341

Fig. 3. Wordification workflow on Clowdflow.

3.3 Term Weighting and Classifiers

In possession of the text file, we use a weighting scheme to weight the features of
each instance. Then, we can create the propositional table, where each column
is a generated feature of the Wordification algorithm, and each row is a vector of
weights that represents an instance of a database. Finally, the resulting table can
be used as input to our classifiers, for which we apply the 10-fold cross-validation
to estimate the area under the receiver operating characteristic curve (AUC
ROC ) [6]. We chose this performance metric because most of our databases are
imbalanced, as shown in Table 2. We repeat this process for each combination of
dataset, weighting scheme, and classifier.

The BM25 free parameters are set to k1 = 1.2 and b = 0.75. For the CRED-
TF-IDF, we use the default value of λ = 1 [8]. Besides, we use Python 3.6 [28]
to manipulate the text files and implement the weighting schemes functions.
The classifiers are set to the default configurations of SVM with linear ker-
nel, KNN, Random Forest and Decision Tree classifiers from the library scikit-
learn [24]. KNN and SVM are justified by its frequent use, in works related to text
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classification [14,15,34]. The Random Forest and SVM are known to have the
best performance among the classifiers [4,36]. Besides, Decision Tree and SVM
were the two learners used in the Wordification paper [25].

3.4 Statistical Testing

We statistically compare the classification AUC of the Wordification output
using different weighting schemes on multiple datasets, separately for each clas-
sifier, applying the Friedman test [5] with significance level α = 0.05. The Fried-
man test ranks the algorithms for each dataset and then compares the average
rank of the algorithms. If the null hypothesis, which states that all algorithms
are equivalent, is rejected, we can proceed with the Nemenyi post-hoc test [21]
to compare the multiple algorithms to each other. The Nemenyi test performs a
pair-wise test of performance. In this case, if the average ranks of the algorithms
differ by at least the critical distance (CD), as defined by Demsar [2], we say
that the performance of the algorithms is significantly different.

4 Experimental Results

The results from the 10-fold cross-validation are shown in Tables 3, 4, 5 and 6.

Table 3. Average AUC ROC Scores for Decision Tree.

Database TF-IDF BM25 DELTA-TF-IDF TF-RF CRED-TF-IDF

IMDB 0.61 0.60 0.50 0.50 0.50

Trains 0.95 0.95 0.95 0.85 0.90

Mutagenesis 188 0.93 0.92 0.92 0.93 0.92

Mutagenesis 42 0.95 0.93 0.95 0.95 0.95

Carcinogenesis 0.50 0.52 0.57 0.53 0.52

Financial 0.61 0.61 0.61 0.61 0.61

Bupa 0.64 0.64 0.65 0.64 0.67

Hepatitis 0.66 0.66 0.66 0.66 0.66

Musk Large 0.57 0.63 0.55 0.59 0.55

Musk Small 0.59 0.59 0.59 0.63 0.62

NBA 0.60 0.58 0.43 0.40 0.60

Pima 0.52 0.52 0.53 0.53 0.53

Facebook 0.94 0.94 0.94 0.94 0.95
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Table 4. Average AUC ROC Scores for Random Forest.

Database TF-IDF BM25 DELTA-TF-IDF TF-RF CRED-TF-IDF

IMDB 0.58 0.58 0.46 0.54 0.57

Trains 0.75 0.90 0.80 0.90 0.80

Mutagenesis 188 0.97 0.98 0.96 0.97 0.97

Mutagenesis 42 0.87 1.00 0.95 0.92 1.00

Carcinogenesis 0.53 0.59 0.59 0.61 0.56

Financial 0.60 0.62 0.60 0.61 0.61

Bupa 0.68 0.66 0.67 0.63 0.65

Hepatitis 0.66 0.65 0.66 0.66 0.66

Musk Large 0.68 0.68 0.75 0.71 0.67

Musk Small 0.63 0.69 0.61 0.71 0.67

NBA 0.61 0.56 0.63 0.39 0.56

Pima 0.64 0.62 0.65 0.67 0.64

Facebook 0.97 0.97 0.97 0.97 0.96

Table 5. Average AUC ROC Scores for SVM.

Database TF-IDF BM25 DELTA-TF-IDF TF-RF CRED-TF-IDF

IMDB 0.65 0.65 0.65 0.65 0.65

Trains 0.40 0.80 0.90 0.80 0.40

Mutagenesis 188 0.93 0.95 0.96 0.97 0.93

Mutagenesis 42 0.95 0.95 1.00 0.93 0.95

Carcinogenesis 0.60 0.61 0.62 0.61 0.60

Financial 0.61 0.45 0.54 0.44 0.55

Bupa 0.68 0.67 0.83 0.68 0.69

Hepatitis 0.61 0.56 0.61 0.56 0.65

Musk Large 0.76 0.81 0.92 0.76 0.84

Musk Small 0.78 0.81 1.00 0.79 0.88

NBA 0.43 0.53 0.75 0.48 0.48

Pima 0.67 0.67 0.79 0.68 0.73

Facebook 0.95 0.92 0.96 0.97 0.95

Each row of these tables shows the average AUC ROC score for a given
database. Based on these results, we apply the statistical tests to compare the
performance of different combinations of weighting schemes and classifiers. More-
over Table 7 summarizes the occurrences of best scores for each combination of
classifier and weighting scheme. From this table, we can see that for the Decision
Tree, the TF-IDF and CRED-TF-IDF achieved the highest scores in 7 of the 13
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databases, while the BM25 and TF-RF scored better in 6 cases for the Random
Forest. On the other hand, the DELTA-TF-IDF performed better in 9 and 8
databases, for the SVM and KNN respectively.

Table 6. Average AUC ROC Scores for KNN.

Database TF-IDF BM25 DELTA-TF-IDF TF-RF CRED-TF-IDF

IMDB 0.57 0.58 0.50 0.50 0.61

Trains 0.50 0.90 0.85 0.95 0.45

Mutagenesis 188 0.81 0.80 0.92 0.93 0.83

Mutagenesis 42 0.68 0.54 0.85 0.80 0.54

Carcinogenesis 0.62 0.61 0.61 0.53 0.62

Financial 0.56 0.56 0.56 0.55 0.56

Bupa 0.63 0.64 0.74 0.73 0.68

Hepatitis 0.59 0.58 0.63 0.58 0.58

Musk Large 0.57 0.57 0.79 0.60 0.64

Musk Small 0.60 0.64 0.83 0.64 0.63

NBA 0.54 0.50 0.66 0.33 0.69

Pima 0.63 0.64 0.69 0.67 0.68

Facebook 0.91 0.88 0.97 0.97 0.93

Table 7. Summary of best scores for each combination of classifier and weighting
scheme.

Database TF-IDF BM25 DELTA-TF-IDF TF-RF CRED-TF-IDF

Decision Tree 7/13 4/13 6/13 6/13 7/13

Random Forest 4/13 6/13 4/13 6/13 2/13

SVM 2/13 1/13 9/13 3/13 2/13

KNN 2/13 1/13 8/13 3/13 4/13

4.1 Decision Tree and Random Forest

For Decision Tree and Random Forest classifiers, the null hypothesis could not
be rejected (p-value > 0.05; Decision Tree: 0.255; Random Forest: 0.62). There-
fore, the final results are statistically equivalent even if the weighting scheme is
changed. This result shows that these classifiers are robust against the choice of
weighting schemes.
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Table 8. Mean rank of Friedman test for Decision Tree and Random Forest classifiers.

Weighting scheme Mean rank

TF-IDF 2.92

BM25 3.58

DELTA-TF-IDF 3.35

TF-RF 2.69

CRED-TF-IDF 2.46

(a) Decision Tree

Weighting scheme Mean rank

TF-IDF 3.31

BM25 2.58

DELTA-TF-IDF 3.19

TF-RF 2.65

CRED-TF-IDF 3.27

(b) Random Forest

Table 8 shows the mean rank for each weighting scheme for the decision tree
and random forest classifiers. Although there is not a significant difference in
performance, the decision tree classifier achieved a better average rank using
the CRED-TF-IDF weighting scheme, while the random forest performed better
using the BM25.

4.2 SVM and KNN

For both SVM and KNN classifiers, the null hypothesis was successfully rejected
(p-value < 0.05; SVM = 0.003; KNN = 0.007). It means that the performance of
these classifiers significantly differs according to the choice of weighting scheme.
The Table 9 shows that both performed better using the DELTA-TF-IDF weight-
ing scheme.

Table 9. Mean rank of Friedman test for SVM and KNN classifiers.

Weighting scheme Mean rank

TF-IDF 3.77

BM25 3.35

DELTA-TF-IDF 1.62

TF-RF 3.35

CRED-TF-IDF 2.92

(a) SVM

Weighting scheme Mean rank

TF-IDF 3.65

BM25 3.73

DELTA-TF-IDF 1.73

TF-RF 3.12

CRED-TF-IDF 2.77

(b) KNN

The results of the Nemenyi test can be visualized compactly with the critical
distance diagram. The diagram interconnects the algorithms which performance
are statistically equivalent. For the SVM classifier, the diagram in Fig. 4a shows
that the performance using DELTA-TF-IDF was significantly better than the
performance using the traditional TF-IDF weighting scheme. The Fig. 4b shows
that the performance of KNN was significantly better using DELTA-TF-IDF
compared to TF-IDF and BM25.
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4.3 SVM with DELTA-TF-IDF vs Decision Tree with TF-IDF

In the original Wordification paper, the best-reported results were achieved using
the weights from TF-IDF as an input of a Decision Tree classifier [25]. On the
other hand, our best average results occurred when we used the weights from the
DELTA-TF-IDF weighting scheme as an input of an SVM classifier. In order to
compare these two configurations, we applied the Wilcoxon signed ranked test
[33] using the AUC as the performance metric. This test shows that the results
of SVM with DELTA-TF-IDF are significantly better than the Decision Tree
with TF-IDF (p-value = 0.0478; α = 0.05).

(a) SVM (b) KNN

Fig. 4. Critical distance diagram for the reported (a) SVM and (b) KNN’s classification
AUC.

5 Conclusions

This paper intended to analyze the impact of changing the weighting schemes of
Wordification in the performance of the classification. Our experiments showed
that some classifiers, such as Decision Tree and Random Forest, are very robust
and are not impacted by the choice of weighting scheme. However, the perfor-
mance of other classifiers, such as SVM and KNN, can greatly differ according
to this choice. SVM and KNN performed significantly better using DELTA-TF-
IDF rather than the traditional TF-IDF. We also showed that the use of SVM
with the DELTA-TF-IDF weighting scheme can result in better results than the
choice of the original proposal of Wordification, where the weights of the features
were given by the TF-IDF and were used as input to a Decision Tree classifier.
In other words, we can say that the right combination of weighting schemes and
the classifier can lead to a significantly different outcome.
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Abstract. The field of statistical relational learning aims at unifying
logic and probability to reason and learn from data. Perhaps the most
successful paradigm in the field is probabilistic logic programming (PLP):
the enabling of stochastic primitives in logic programming. While many
systems offer inference capabilities, the more significant challenge is that
of learning meaningful and interpretable symbolic representations from
data. In that regard, inductive logic programming and related techniques
have paved much of the way for the last few decades, but a major lim-
itation of this exciting landscape is that only discrete features and dis-
tributions are handled. Many disciplines express phenomena in terms of
continuous models.

In this paper, we propose a new computational framework for induc-
ing probabilistic logic programs over continuous and mixed discrete-
continuous data. Most significantly, we show how to learn these pro-
grams while making no assumption about the true underlying density.
Our experiments show the promise of the proposed framework.

1 Introduction

The field of statistical relational learning (SRL) aims at unifying logic and
probability to reason and learn from relational data. Perhaps the most suc-
cessful paradigm here is probabilistic (logic) programming (PLP): the enabling
of stochastic primitives in (logic) programming, which is now increasingly seen
to provide a declarative basis to complex machine learning applications [14,20].

While many PLP systems offer inference capabilities [4,14,31], the more dif-
ficult task is that of learning meaningful and interpretable symbolic represen-
tations from data. Parameter learning attempts to obtain the probabilities of
atoms from observational traces (e.g., number of heads observed in a sequence of
coin tosses). Structure learning goes a step further and attempts to learn deter-
ministic or probabilistic rules (that is, logic programs) from data. In that regard,
inductive logic programming (ILP) and first-order logic (FOL) rule learning have
paved much of the way for the last few decades [13,32,38], with important appli-
cations for Web and biomedical data [12,44], among others.
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A major limitation of this exciting landscape is that only discrete features
and distributions are handled. This is somewhat surprising, as many disciplines
express phenomena in terms of continuous models. The heart of the matter
is that inference is already very challenging. Indeed, inference schemes often
assume parametric families (e.g., Gaussians) [22,28], or are approximate offering
asymptotic guarantees that only ensure correctness in the limit [33]. The learning
of models is analogously restricted, as learning uses inference as a sub-routine
[25]. Consequently, there is very little treatment on continuous distributions,
both on the inference and learning fronts. (We discuss some notable exceptions
in the penultimate section.)

In this work, we study the problem of parameter and structure learning for
PLPs over continuous and mixed discrete-continuous data. Critically, we will not
assume that these distributions are taken from known parametric families. To
the best of our knowledge, this is the first such attempt and we hope it will make
probabilistic knowledge representation systems more widely applicable for uncer-
tain hybrid data. In particular, we propose a computational framework for induc-
ing probabilistic logic programs over continuous and mixed discrete-continuous
data. Rather than needing to define a new learning paradigm, we show that it
is possible to leverage existing structure learners by appealing to the formula-
tion of weighted model integration (WMI). WMI has been proposed recently as
a computational abstraction for inference in discrete-continuous domains [6]. It
generalizes weighted model counting [9], which is used for inference in ProbLog
[18], for example. The resulting system is then a new dialect of the popular
PLP language ProbLog [18], which we call WMIProbLog. On the one hand,
WMIProbLog supports learning with hybrid distributions, and on the other, it
enables efficient exact inference. We remark that our framework is very general,
and could easily be adapted to other PLP languages.

2 Framework

Our framework consists of a generic weight and structure learner for hybrid
data (i.e., data containing continuous and discrete attributes), to yield weighted
hybrid atoms and thus, hybrid programs. As mentioned above, our approach
piggybacks on existing structure learners, including techniques for density esti-
mation that impose no restrictions on the true density that generated the data.

Overall, our algorithmic pipeline is as follows:

1. Intervals that best represent the data are constructed and polynomial weights
for these intervals are learned, based on algorithms for basis splines. Basically,
the attributes are split into mutually exclusive intervals. Then, a piecewise
polynomial (PP) approximation of the density is learned by the algorithm
with the understanding that each piece represents the probability density
function (PDF) for that interval. The constructed intervals lead to “invented”
predicates.

2. Relations between these atoms are constructed as clauses, subsequently yield-
ing hybrid probabilistic programs. That is, rules to relate the newly invented
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atoms are induced by adapting the inputs of two discrete probabilistic FOL
rule learners.

3. Finally, the atoms, weights and rules are combined in a PLP language
equipped with exact inference via WMI, which we call WMIProbLog. Exact
inference is made possible by means of the PP representation, which admits
efficient integration [3]. This is a major contribution in itself because most
SRL languages with continuous distributions only support approximate infer-
ence over weak asymptotic guarantees [34].

The organization of the paper is as follows. We discuss the technical back-
ground for realizing the above steps, before turning to empirical evaluations,
related work and conclusions.

2.1 Learning Weighted Atoms

We present a fully unsupervised approach to jointly learn intervals and their
piecewise polynomial approximate densities from data. Our objective is defined
as follows:

Definition 1 (Weighted Atom Construction). Given:

1. a finite set of numeric data points E = {x1, ..., xn} where t(xj) is a ground
fact for the predicate t.1

2. A partition scheme E1, ..., El that partitions E into l parts where ∪
i
Ei = E,

Ei ∩ Ej = ∅ and Ei ⊆ E.
3. An unknown distribution for each partition i, that is, fi : Ei → R≥0 such that

∑l
i=1

∫
Ei

fi = 1.
4. A hypothesis space H that consists of piecewise polynomials where H ∈ H is

of the form 〈h1, ...hl〉, such that
∑l

i=1

∫
Ei

hi = 1.
5. A loss function measuring the loss/granularity tradeoff for a candidate

density-estimator hi: loss(hi, fi) for each i.2

Find: A hypothesis H such that loss(fi, hi) is minimized for each i.

The goal of this learner is to find an optimal piecewise polynomial density
estimation that is as close to the unknown underlying distribution as possible.
As a result, we obtain new weighted atoms of the form: hi :: t i(X) ← t(X), Ei(X)
for each i. For example, we might learn the following for the height(X) predi-
cate over the [60, 91] region: X2/3 :: height 60 91(X) ← height(X), X ∈ [60, 91].
This says that the atoms whose groundings lay between 60 and 91 such as
height 60 91(60.4) have a probabilistic density given by the polynomial X2/3.
We provide an algorithm that induces such weighted predicates. It involves two
steps: partitioning and density estimation.
1 Imagine, for example, the predicate height(X) with examples such as
height(60.4), . . . , height(91.1), . . . , height(124.6).

2 That is, we may want to penalise very granular representations that are defined over
a large number of intervals and polynomials of a high degree. So, we would like to
minimise the loss, but prefer simpler representations over granular ones.
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Step 1: Partitioning. Partitioning refers to dividing the range of a continuous
variable into l mutually exclusive intervals according to selected criteria. Our
motivation is to capture complex continuous data by offloading the continuity
to the weight functions so as to yield meaningful hybrid atoms. Suppose X is
a real-valued variable – logically, think of the argument in height(X) – and
suppose xmin, . . . , xmax are the data points we observe. Partitioning yields I =
{E1, ..., El} with Ei = [ci−1, ci]. The set of cutpoints C = {c0, ..., cl} determine
the interval such that ci−1 < ci, i ∈ {1, ..., l}, c0 = xmin and cl = xmax. The
partiton step, therefore, defines intervals over the domain Ω = [xmin, xmax].

To restrict the interval search we chose to limit ourselves to two simple but
effective schemes: equal-width and equal-frequency binning [16]. Both methods
are regulated by the same parameter l that determines the number of bins that
is considered by the algorithm.

Step 2: Density Estimation. To enable exact inference over hybrid queries,
we choose piecewise polynomial functions to approximate the density. The main
advantage is that such PP densities can be learned from data without any prior
information about the density while still capturing the true density very closely
[46]. This section introduces the problem of approximating densities through
PPs and shows how to learn the weighted atoms from data.

Definition 2. A piecewise function over a real-valued variable x is defined over
l pieces as:

δ(X) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 x < c0
δ1(x) c0 ≤ x ≤ c1
. . .

δl(x) cl−1 ≤ x ≤ cl

0 x > cl

where the intervals (expressed using cutpoints) are mutually exclusive, and each
δi(x) is a polynomial with the same maximum polynomial order k of the form:
δi(x) = bi

0 + bi
1 ∗ x + . . . + bi

k ∗ xk. In order for δ(x) to form a valid density, the
function must be non-negative and integrate to 1:

∑l
i=1

∫ ci
ci−1

δi(x)dx = 1.

Our overall objective is to learn PP weights for each of the intervals. That
is, suppose f : R → R+ is the density of an unknown distribution. We would
like to find a candidate PP hypothesis h, defined over l intervals such that the
polynomial for each interval is of degree at most d. Let Pl,d be the class of l-
piecewise degree-d polynomials. Then, we wish to find m hypotheses h1

i , ..., h
m
i ∈

Pl,d for each interval i and then select one that maximises the likelihood of
the observed data. Since we also do not know the optimal degree to choose
from, we let the same likelihood criterion also determine the best degree. For
this, we leverage known techniques for learning polynomials [29] based on basis
splines (B-Splines) [11]. B-Splines form a basis in the piecewise polynomial space.
By considering linear combinations of splines, more complex polynomials can
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be obtained. The combination is adjusted by a set of mixing coefficients. By
imposing constraints on these coefficients, polynomials can form a (valid) density:
they are continuous, non-negative, differentiable and integrate to 1.

The parameters, the degree of the polynomial d and the number of pieces l
are estimated by the Bayesian information criterion [29,45]:

BIC(x, δ(x)) = L(x | δ(x)) − log(|X|)
2

where L denotes the log-likelihood measure. The BIC score is known to be
robust and avoids overfitting the model parameters. Moreover, in our empirical
results, it was seen to favor smaller polynomial ranks which achieve the desired
loss/granularity tradeoff discussed earlier.

Our algorithm is as follows:

1. Input: data points for real-valued variable X, and user-specified values for
maximum number of intervals allowed (maxSize = 40), and maximum degree
for polynomials allowed (maxOrder = 9).

2. Sort the points for X in ascending order, initialize B (the best BIC score)
to −∞, and S (the best polynomial structure) to {}.

3. Loop the following steps for 2 ≤ l ≤ maxSize intervals.
4. Loop the following steps for partition choices d ∈ {equal width, equal fre-

quency}.
5. Obtain cutpoint set C from (X, d).
6. Loop the following steps for polynomial degree 1 ≤ k ≤ maxOrder.
7. Define temporary variables s and b, the former containing a PP derived from

(C, k), and the latter the BIC score derived from s.
8. If b exceeds B, then let B = b, and S = s.
9. Return to (6) with the next iteration of k until completion, following which

return to (4) with the next iteration of d until completion, following which
return to (3) with the next iteration of l until completion.

10. Output: (S,B).

Theorem 1. The above algorithm realises Definition 1 with BIC measuring the
loss and a PP hypothesis space defined over B-Splines.

2.2 Learning Rules

We now move beyond simply learning weighted atoms to learning complex depen-
dencies between subspaces in a mixed discrete-continuous setting, that is, prob-
abilistic rules for the hybrid atoms. For this purpose, we leverage first-order
relational rule learners. The basic idea is to augment the original dataset that
uses continuous variables (such as height(X)) together with instances of the
invented predicates (such as height low(X), standing for values in the lower
range), as determined by the partitioning.

At this stage, there are multiple choices for rule learning. In the simplest
setting, we ignore the learned densities and perform rule learning for one or
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many target predicate(s). In a more advanced setting, we integrate the rule
learner directly into the pipeline, giving it not only the predicate but also the
learned probabilities as input. Both schemes are considered in the literature. For
example, [13] develop a case where parameters and the structure are optimized
jointly. In contrast, [44] apply a deterministic rule-learner in a deterministic
setting, and the weights are then obtained in a second step. In this section, we
explore both settings as an illustration of our framework’s generality.

Definition 3 (Rule Learning with Hybrid Atoms). Given:

1. (a) a set of examples E, consisting of pairs (xi, pi) where xi is a ground fact
for the invented predicate t and pi is the integrated target probability; or

(b) a set of examples E consisting of {x1, ..., xn} where xi is a ground fact
for the invented predicate t.

2. A background theory B containing information about the examples in the form
of a ProbLog program;

3. A loss function loss(H,B,E), measuring the loss of a hypothesis (set of
clauses) H w.r.t B and E;

4. A space of possible clauses Lh specified using a declarative bias;

Find: A hypothesis H ⊆ LH such that H = arg minH loss(H,B,E).

In other words, (1) partitions an attribute into its pieces and adds each piece
as an atom. The two cases decide whether the integrated probability is passed to
the rule learner (e.g. 0.31 :: height low(X)) or not (e.g. height low(X)). Then,
(2)–(4) realise standard first-order rule learning with the addition that rules
(may) have a probability assigned to them. The loss function is, of course, deter-
mined by the rule learner itself. ProbFOIL+’s loss function, for example, is based
on the error of predictions:

loss(H,B,E) =
∑

xi,pi∈E

|Ps(H ∪ B |= xi) − pi|

To compute probabilities for the first case we need to integrate the pieces over
their respective polynomial. For each clause ci and each piecewise polynomial
density δi(x) over cutpoints the integral is calculated as [ci−1, ci], i ∈ {1, . . . , l}:
pi =

∫ ci
ci−1

δi(x)dx where pi is a constant that denotes the probability over the
interval [ci−1, ci]. The hybrid atom is now transformed into a discrete atom
with a probability mass, that is, pi :: t i(X). This is then used instead of the
polynomial, and analogously, such a transformation is applied to all invented
predicates.

Once the weights are computed any discrete FOL rule learner can be used to
induce the rules. We utilize ProbFOIL+ [13] and SLIPCOVER [8] for the case
of probabilistic facts versus not. It should be clear that our architecture does not
hinge on either learner and indeed, ProbFOIL+ also handles the case of non-
probabilistic facts. Our choices are to be seen as illustrative of the generality of
the framework. We immediately also get the following.
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Theorem 2. The algorithmic scheme described above realises both versions of
Definition 3.

Proof. It is immediate to see that by integrating the polynomials, we obtain
standard probabilistic atoms of the form pi :: ci, where pi is a number and ci is
an atom. It now follows that ProbFOIL+ (and SLIPCOVER respectively) per-
forms rule induction over probabilistic examples (and non-probabilistic examples
respectively) wrt to the appropriate loss function. ��

As a final step, a WMIProbLog program (discussed in the following section)
is obtained that combines the individual relations, their polynomial weights and
the rules.

3 WMIProbLog

Learning rich representations is only appealing when it is also possible to effi-
ciently query those representations. In particular, PLPs are particularly use-
ful for computing conditional queries against structured models. Our learn-
ing regime culminates in the synthesis of WMIProbLog programs, a dialect of
ProbLog and Hybrid ProbLog [21], the latter being a generalisation of ProbLog
to continuous distributions in parametric forms. Hybrid ProbLog provides an
inference scheme based on interval propagation and dynamic discretisation.
WMIProbLog supports a generic (that is, applies to any density function approx-
imated in PP form) and efficient exact inference methodology via WMI, and as
will be discussed below, it does not involve any discretisation or rewriting of the
program.

Syntactically, ProbLog vs Hybrid ProbLog vs WMIProbLog can be con-
trasted as follows. Consider a simple mixture model in ProbLog, where a biased
coin toss yields either a 50% chance of success or a 25% chance of success:

To model the chance of success as continuous random variables in Hybrid
ProbLog, we might change the corresponding clauses to:

In WMIProbLog, in line with our previous sections, those continuous vari-
ables over, say, polynomials of degree 0 (chosen for ease of presentation, although
they can be of arbitrary degree in general) would be:
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Querying for mix in the first, and for mix chance:

in the other programs yields .425, for example.
The semantics of Hybrid ProbLog and WMIProbLog is given by probability

distributions over subsets of the facts and values for the numeric variables in
the continuous facts, much like in ProbLog, except that these values may be
drawn from an uncountable set. (See [21] for details.) But what is perhaps most
interesting about WMIProbLog is that, on the one hand, it is simply a syntactic
variant of the Hybrid ProbLog program in which continuous functions are not
necessarily parametric, but on the other, by integrating probabilities as shown
earlier, it is also a well-defined ProbLog program.

Theorem 3. Given any WMIProbLog program Δ there is a syntactically well-
defined ProbLog program Δ− such that for all q, e ∈ Δ−, marginalization and
probabilistic querying have the same values in Δ and Δ−.

Proof. As in the previous theorem, we simply integrate the polynomials to obtain
classic ProbLog probabilistic facts. Clearly, as the query and evidence atoms only
refer to these abstracted facts, the values for marginalisation and conditional
querying will be the same. ��

We write q, e ∈ Δ− to mean that the query and evidence atoms only refer
to the abstract program Δ−, where continuous atoms involving intervals and
polynomials and replaced with integrated probabilities. This idea, of abstracting
continuous features is at the very heart of WMI [6]. However, such a strategy
would only allow the most trivial conditional probability computations in general
(e.g., probability of mix given that heads), and would not be able to handle
queries like mix chance. Following Hybrid ProbLog, one approach would be
to syntactically rewrite the program (or dynamically discretise at computation
time), so as to involve every interval mentioned in a query in a well-defined
manner; e.g., split the definition of a(X) as:

Such a strategy is acceptable formally but can be seen to be a painful exercise.
So, the next observation to make is that if the weights are dropped, we also
immediately have a syntactically well-defined ProbLog (and Prolog) program:
Given any WMIProbLog program Δ there is a syntactically well-defined ProbLog
program Δ∗ that is obtained by dropping all the (polynomial and numeric)
weights.

What is the advantage of the reduction? To see this, consider that from
a computational perspective, the ProbLog engine proceeds by grounding the
input program and queries, breaking loops if necessary, to ultimately yield a
propositional formula [18]. That formula is then compiled to a data structure
such as a BDD or d-DNNF [10]. It is clearly useful to leverage that pipeline.
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For example, contrast the BDD (below) obtained for the query mix(X), with
the one obtained for a query that uses intervals not explicitly mentioned in the
original program (Fig. 1):

Fig. 1. Proofs of the query in BDD form.

So the only aspect that is needed to be resolved is the computation involv-
ing the densities and weights. This becomes possible because ProbLog’s com-
putational architecture is immediately generalisable to any commutative semir-
ing [23].3 (For example, polynomials with natural number coefficients form a
commutative semiring.) So the densities can be thought of as abstract ele-
ments of a semiring, which can then be symbolically integrated. For example,
query(a half) would be computed:

∫ 10

0
.1 · I[0,5](x)dx =

∫ 5

0
.1dx = .5. Corre-

spondingly, the probability for mix chance can be computed as:
∫ 10

0
.1 · I[0,5](x) ·

.6dx +
∫ 20

0
.05 · I[0,5](x) · .4 = .425.

4 Empirical Evaluations

We now evaluate our framework in this section. We reiterate that, to the best
of our knowledge, this is the first attempt to articulate a compositional PLP
framework for arbitrarily complex distributions from continuous data. Thus, our
goal was to study the empirical behaviour of the implemented framework on
various representational aspects to illustrate its capabilities.

4.1 Datasets

To carefully monitor the quality of the learned models, we mainly utilized
the University data set [19,41]. Beyond this, we considered many more hybrid

3 In an independent and recent effort, Martires et al. [30] have also considered the use
of semirings to do WMI inference over propositional circuits.
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datasets from the UCI repository [15]. The datasets capture domains ranging
from health care to marketing, but not all of them are of the same quality.
Some, especially Anneal-U and CRX contain many missing values. Some others
contain duplicate entries.

4.2 Learning Representations

On Piecewise Polynomials. This section discusses our observations for the
piecewise polynomial representation learning. The BIC score determined the
model parameters such as the order of polynomials and bins. Table 1 lists statis-
tics for the UCI datasets, which we contextualise further below.

Q1: How does the polynomial learner compare to other density
estimators? We compared the polynomial learner to Gaussian mixture mod-
els (GMM), which is the current state-of-the-art for density estimation, by
appealing to KL divergence in a controlled experiment. (Unimodal Gaussians
are used by most PLPs, e.g, [35].) For the GMM learner, we use the one from
Python sklearn, which also uses the BIC score as a model selection criterion.
As polynomial densities are only defined in Ω = [cp0, cpl] the GMMs need to
be normalised for a direct comparison. They are multiplied by a normalisation
constant 1/

∫
Ω

f(x)dx.
As it is not feasible to calculate the KL divergence directly for GMMs we

chose a sample size of 106 for a sampling-based approximation. This is calcu-
lated as: KL =

∫
Ω

p(x) log p(x)
q(x)dx ≈ 1

N

∑N
i=1 log p(xi)

q(xi)
where x1, ..., xn ∼ p(x).

We compared different types of distributions and sample sizes. The distribu-
tions were generated randomly. Not surprisingly, the polynomial learner per-
forms gradually better than the GMMs as the true distribution gets less similar
to a mixture of Gaussians (see Table 2). What is perhaps more interesting is

Table 1. Statistics on UCI datsets and the polynomial learning component. It shows
(in order) the number of training examples, the number of the continuous attributes
(number of all attributes in brackets) the number of created bins separately learned for
each attribute and then averaged over the number of features in the dataset (brackets
show number when including missing values) and the maximum order learned.

Dataset Train # C # Bins O

Anneal-U 673 6 (39) 10.7 (19) 2

Australian 517 5 (15) 7.5 (7.5) 6

Auto 119 15 (26) 6.7 (8.7) 3

Car 294 6 (9) 7 (9.2) 4

Crx 488 6 (16) 5.8 (11.7) 4

Diabetes 576 7 (21) 4.6 (9.1) 4

German 750 3 (9) 6.9 (6) 7

German-org 750 3 (25) 9.1 (6.3) 7

Iris 112 4 (5) 3.75 (3.75) 3
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Table 2. Approximation comparison of different distributions in terms of KL diver-
gence. Here, n denotes the sample size and T the model type. Abbreviations: Gaussian
Mixture Model estimation (G) and Piecewise Polynomial density estimation (P). We
tested distributions following Exponential, Gaussian and Mixture of Gaussian with
2 (MoG-2) and 5 (MoG-5) components.

n T Expon Gauss MoG-2 MoG-5

100 G 0.10409 0.01028 0.00308 0.12795

P 0.01254 0.00300 0.05699 0.05701

1000 G 0.03633 0.00123 0.00335 0.01550

P 0.00860 0.00228 0.00830 0.01295

10000 G 0.02959 0.00001 0.00083 0.01142

P 0.00147 0.00045 0.00125 0.00419

how well the PP learner estimates Gaussians. For small sample sizes, the polyno-
mial learner still outperforms GMMs when approximating a unimodal Gaussian.
When estimating a more complex distribution such as a mixture of five Gaus-
sian our learner fully outperforms the GMM learner even though the underlying
distribution is a mixture of Gaussians. This is mainly because the BIC in com-
bination with polynomial density can (a) handle small sample sizes, and (b) not
be forced to determine the appropriate number of components for these samples.
This shows that the learner generalises well even with small sample sizes thereby
avoiding overfitting.

Q2: Which trends in parameter learning can be observed for . . .
Q2.1: . . . the order?

The order of the polynomials in the learned models stayed relatively low in
a range from 2 to 5. In fact, only three attributes over all UCI datasets learned
an order that was higher than 5 but never higher than 7 (see Table 1). The few
outliers occurred when an attribute contained a high number of missing values.
Naturally, low order polynomials are computationally simpler to integrate during
inference.
Q2.2: . . . the number of intervals?

The appropriate number of intervals to approximate a PDF increases with
its non-uniformity, the unimodal Gaussian only needed 3 pieces, whereas the 5
Gaussian Mixture needed 6 or more (depending on the sample size). Further-
more, to achieve a close approximation, the cutpoints have to span the entire
range of attribute values which is why our algorithm often preferred equal fre-
quency over equal width partitions.

We also observed that the BIC is sensitive to the number of attribute instances.
For under 100 data points, the smallest partition and order was often chosen (cf.
Table 1). This observation helps to explain the behaviour when missing values are
observed. If a dataset contained missing values, we filtered them out in a prepro-
cessing step leading to less samples for the attribute so as to not skew the learner.
However, our observations indicate that even though more values achieve a higher
score, the smaller representation is still able to generalise well.
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4.3 Rule Learning

Here, we report on how the invented predicates integrated with the discrete rule
learners.

Table 3. Example rules learned by ProbFOIL+ (above horizontal line) and SLIP-
COVER (below line) for the target grade high(A,B). Below these a sample predicate
is shown, the polynomial is given as a weight before the rule head iq 1(A,X) and the
body of the rule determines the interval start and end points where the polynomial
density holds.

grade high(A,B) :- sat low(A,B), \+diff hard(B), \+iq 1(A,X).

grade high(A,B) :- takes(A,B), \+diff hard(B).

grade high(A,B) :- nrhours 4(B,Y), iq 1(A,X).

grade high(A,B) :- nrhours 4(B,Y), course(B).

grade high(A,B) :- sat low(A,B)

0.056367 -0.001598* X + 1.25739e-05 * X ^ 2 ::

iq 1(A,X):-iq(A,X),between(52.6,103.4,X)

Q3: How do the invented predicates interact with the rule learn-
ers? The idea behind these invented predicates is to capture continuous data
in terms of PP density approximations, which are ultimately adapted to the
input format of the rule learners. Table 3 shows an example. The invented pred-
icates are distinguished by the underscores followed by numbers. In the case of
the iq predicate, higher number indicate higher values. The grade of a course
being influenced by a student’s intelligence is clearly intuitive: a student either
gets a high grade if their intelligence is not low (rule 1) or if they have low
intelligence and put in a lot of hours of study (rule 3), and so, the rules pro-
vide a logical way to make sense of dependencies between subspaces in a mixed
discrete-continuous settings. We further see in Table 4 that the rule accuracy is
not affected over larger domains, which is clearly desirable.

Table 4. Statistics for the predicates grade high, grade mid, grade low for the two
rule learners (L): SLIPCOVER (S) and ProbFOIL+ (P). Comparisons are drawn in
terms of area under the precision/recall curve (AUCPR), area under the ROC curve
(AUCROC), the number of rules in a theory (Th) and the average number of literals
per rule for a theory (Pr).

grade L AUCPR AUCROC Th Pr

high S 0.249906564 0.750555262 8 1.375

P 0.381490547 0.935926625 2 2.5

mid S 0.404951538 0.940245155 7 1

P 0.3914379 0.936826911 2 2

low S 0.152929751 0.813107006 10 1.4

P 0.166327753 0.654570657 1 3
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Q4: How do the rule learners compare? As can be seen in Table 4,
our setting is not necessarily indicative of any general trend for the two rule
learners, but we did see, for example, that SLIPCOVER rules are shorter than
ones learned via ProbFOIL+, on average. In terms of standard measures, we
found both to be sufficient for inducing reasonable programs.

Q5: How efficient is the query engine? In order to test the efficiency of
our inference engine over large programs, we generated 100 random continuous
features and tested the query computation time. We fixed the number of bins to
2, 5, 10 and 15 in order to study the computation time. The query length, e.g.
the number of terms in the query was set to 5, 10, 20, 50 and 100. The results
are shown in Table 5. As can be seen, the system scales linearly with increasing
sizes, which is desirable.

Table 5. Query execution time in seconds. P denotes the number of pieces of the
underlying attributes, and t the amount of terms in the query.

P t = 5 t = 10 t = 20 t = 50 t = 100

2 0.9514 1.0506 1.2817 2.1540 4.0185

5 1.2804 1.4325 1.6293 2.5331 4.3767

10 1.4885 1.5773 1.8441 2.7239 4.6914

15 1.8313 1.9621 2.2031 3.1954 5.1372

5 Related Work

Inference and learning in probabilistic systems are the most fundamental prob-
lems in uncertainty reasoning within AI, to which our work here contributes.
There is an important distinction to be made between graphical models (includ-
ing relational counterparts such as Markov logic networks [42]) and the inductive
logic programming machinery that we use here, the latter based on logical deduc-
tion and proof theory. A comprehensive discussion on the semantic subtleties
would be out of scope, and orthogonal to the main thrust of the paper. We refer
interested readers to the lineage discussion in [13,39], and the possible worlds
perspective in [43]. Indeed, our fundamental contributions include the dynamic
interval and the polynomial density construction, all of which can perhaps be
easily applied to other formalisms. (Naturally, the choice of the underlying induc-
tion paradigm may affect the nature and interpretability of the rules learned.)

From an inference viewpoint, much of the literature is focused on discrete
random variables for which approaches such as model counting and bucket elim-
ination have strong runtime bounds [9,37]. In contrast, WMI serves as a compu-
tational abstraction for exact and approximate inference in hybrid domains [5,6]
based on piecewise polynomial approximations. It is thus different in spirit to
variational methods and analytic closed-form solutions for parametric families.
We refer the reader to [6] for discussions.
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On the learning front, several feature and structure induction techniques have
been proposed primarily for discrete data (or discretised models of continuous
data). Indeed, learning relational features from data is very popular in NLP and
related areas [40,44]. Rule learning has been studied in many forms, e.g., [17,26].

We leverage ProbFOIL+ and SLIPCOVER in this paper. ProbFOIL+ is
based on the mFOIL rule learner [17]. Later work, such as nFOIL [26] integrates
FOIL with Bayesian learning, and kFOIL [27] admits the specification of kernel
methods with FOIL. Early versions of Markov logic network structure learning
algorithms, for example, combined ideas from ILP and stochastic greedy search
from classical graphical modelling communities [24]. Approaches such as [2,36]
have further applied rule learning to complex applications such as automated
planning and affordances. SLIPCOVER, on the other hand, is based on SLIP-
CASE [7]. In general, the structure is learned through an iterative search through
the clause space.

Treating continuous and hybrid data in such contexts, however, is rare. Exist-
ing inference schemes for hybrid data are either approximate, e.g., [1,33], or make
restrictive assumptions about the distribution family (e.g., Gaussian potentials
[28]). Structure learning schemes, consequently, inherit these limitations, e.g.,
[35,41] where they learn rules by assuming Gaussian base atoms.

6 Conclusions

To the best of our knowledge, this is the first attempt to articulate a learning
regime for inducing PLPs from continuous data. It contributes an algorithmic
framework that learns piecewise polynomial representations which are then inte-
grated with rule learning to obtain probabilistic logic programs, along with effec-
tive symbolic inference. In our view, this work takes a major step towards the
difficult challenge of inducing representations from data, especially continuous
and mixed discrete-continuous data. In the long term, we hope the declara-
tive/interpretability aspect of our proposal will prove useful when reasoning and
learning over uncertain hybrid data.
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