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Abstract. In fuzzy hypothesis testing we use fuzzy test statistics pro-
duced by fuzzy estimators and fuzzy critical values. In this paper we use
the non-asymptotic fuzzy estimators in fuzzy hypothesis testing. These
are triangular shaped fuzzy numbers that generalize the fuzzy estimators
based on confidence intervals in such a way that eliminates discontinu-
ities and ensures compact support. Our approach is particularly useful in
critical situations, where subtle fuzzy comparisons between almost equal
statistical quantities have to be made. In such cases the hypotheses tests
that use non-asymptotic fuzzy estimators give better results than the
previous approaches, since they give us the possibility of partial rejec-
tion or not of H0.
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1 Introduction

The use of fuzzy hypothesis tests is necessary: 1) in cases of samples of crisp data
for which the value of the test statistic is very close to critical value, the crisp
test is unstable, since small changes in few observations drive from rejection to
no rejection or vice-versa, 2) in cases in which the available observations are
fuzzy.

In a fuzzy test of a null hypothesis of the form H0 : U = U0 with alternative
H1 : U �= U0 for a parameter u we use a fuzzy test statistic, which is constructed
using a fuzzy estimator. Since the test statistic is fuzzy, the critical region will
be determined by fuzzy critical values CVi, i = 1, 2. The a−cuts of CVi are
found in each case as described in [5] and presented in Sects. 2 and 3. So, H0 is
rejected or not rejected in a certain significance level with the help of a fuzzy
statistic U which is constructed using a fuzzy estimator and fuzzy inequalities
between U and the fuzzy critical values, like U < CV , U > CV or U ≈ CV .
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In our new approach, from the various types of existing fuzzy estimators
we use the non-asymptotic fuzzy estimators [11], which are more convenient
since they are triangular shaped fuzzy numbers with compact support without
discontinuities.

We apply this concept in Sects. 2 and 3 testing hypotheses for: 1) the mean
and 2) the variance of a normal distribution and compare results with these
of the respective tests with fuzzy statistics constructed with the estimators of
Buckley [5].

1.1 Ordering Fuzzy Numbers

The fuzzy hypotheses tests are based on ordering fuzzy numbers, for which we
will use one of the several procedures used [7], according to which the degree
v(A ≤ B) of the inequality A ≤ B that counts the degree to which the fuzzy
number A is less or equal than the fuzzy number B is

v(A ≤ B) = max {min(A(x), B(y)) x ≤ y} (1)
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Fig. 1. Ordering triangular shaped fuzzy numbers

If v(A ≤ B) = 1 we define the truth-value (degree of confidence) d of A < B as

v(A < B) = d ⇔ v(A ≤ B) = 1 and v(B ≤ A) = 1 − d (2)

If v(B ≤ A) = 1 the truth-value d of B < A is

v(B < A) = d ⇔ v(B ≤ A) = 1 and v(A ≤ B) = 1 − d (3)

So, the truth-value η of A ≈ B is defined as

v(A ≈ B) = η ⇔ v(A ≤ B) = 1 and v(B ≤ A) = η
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or v(B ≤ A) = 1 and v(A ≤ B) = η (4)

In the case of the triangular shaped fuzzy numbers of Fig. 1, which appears often
in fuzzy hypotheses tests, we can see that:
v(A ≤ B) = 1, according to (1) since the core of A lies to the left of the core of
B,
v(B ≤ A) = y0, according to (1), where y0 the truth level of the point of
intersection of the right part of A and the left part of B.

Thus according to Eq. (2) and (4),

v(A < B) = 1 − y0 and v(A ≈ B) = y0

2 Hypothesis Test for the Mean of a Normal Distribution
with Known Variance

We test in significance level γ the null hypothesis that the mean value μ of a
random variable X that follows normal distribution with known variance σ is
equal to μ0

H0 : μ = μ0

with alternative the (two sided test)

H1 : μ �= μ0

using a random sample of observations of X of size n. In the crisp case we test
H0 using the statistic

Z =
x − μ0

σ√
n

(5)
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Fig. 2. The fuzzy statistic Z and the fuzzy critical values for the test of H0 : μ = 5
from a sample with x1 = 5.4
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where x is the sample mean value.
H0 is rejected if z < −zc or z > zc where zc the critical value of the test

zc = zγ/2 = Φ−1
(
1 − γ

2

)
(6)

and Φ−1 the inverse distribution function of the standard normal distribution.
While, if −zc < z < zc, then H0 is not rejected.

In the fuzzy case for the test of H0 we use the fuzzy statistic of Buckley [5]

Z =
μ̂ − μ0

σ√
n

(7)

that is generated by (5) using a fuzzy estimator μ̂ of the mean value.
We use the non-asymptotic fuzzy estimator μ̂ the α−cuts of which are [11]
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Fig. 3. The fuzzy statistic Z and the fuzzy critical values for the test of H0 : μ = 5
from a sample with x1 = 5.45

μ̂[α] =
[
x − zh(α)

σ√
n

, x + zh(α)
σ√
n

]
, α ∈ (0, 1] (8)

where

h : (0, 1] →
[
γ

2
,
1
2

]
h(α) =

(
1
2

− γ

2

)
α +

γ

2
(9)

and
zh(α) = Φ−1(1 − h(α)) (10)

where Φ−1 the inverse distribution function of the standard normal distribution.
From (7) and (8) follows that the α−cuts of the fuzzy statistic Z are

Z[α] =
[
z0 − zh(α), z0 + zh(α)

]
, α ∈ (0, 1] (11)
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where
z0 =

x − μ0
σ√
n

(12)

Since the test statistic is fuzzy, the critical values as described in [5] are the fuzzy
numbers CV 2 and CV 1 = −CV2, the α−cuts of which are

CV 1[α] =
[
zγ/2 − zα/2, zγ/2 + zα/2

]
(13)

CV 2[α] =
[−zγ/2 − zα/2, −zγ/2 + zα/2

]
α ∈ (0, 1] (14)

Having the fuzzy test statistic Z and the fuzzy critical values CV i, our decision
for rejecting H0 or not in significance level γ, depends on the comparison of the
fuzzy numbers Z and CV i, as given in Sect. 1.1. So:

if max
(
v(Z > CV 2), v(Z < CV 1

)
= d, then H0 is rejected with a degree of

confidence less or equal to d,
if min

(
Z > CV 1), v(Z < CV 2)

)
= d, then H0 is not rejected with a degree

of confidence less or equal to d,
if max

(
v(Z ≈ CV 2), v(Z ≈ CV 1

)
= 1 − d, then we cannot make a decision

on rejecting or not H0 with degree of confidence greater or equal to d.

Example 1 Comparison of fuzzy and crisp hypothesis test. In the crisp
test in significance level γ = 0.05 of the null hypothesis

H0 : μ = 5

with alternative the (two sided test)

H1 : μ �= 5

for the mean value μ of a random variable X that follows normal distribution
with standard deviation s = 2 using a sample of 80 observations with sample
mean x1 = 5.4, we evaluate the value of the statistic (5)

z0 =
5.4 − 5

2√
80

= 1.799

Since
z0 = 1.799 < z0.05/2 = z0.025 = 1.96

H0 is not rejected.
For a second sample with sample mean x2 = 5.45 the value of the statistic

Eq. (5) is

z0 =
5.45 − 5

2√
80

= 2.012

So, since
z0 = 2.012 > z0.05/2 = z0.025 = 1.96



162 N. Mylonas and B. Papadopoulos

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z
CV1
CV2

Fig. 4. Fuzzy statistic Z and fuzzy critical values CV i for the test of H0 : μ = 1 using
non-asymptotic fuzzy estimator

H0 is rejected.
Applying the above described fuzzy test of H0 for the first sample (x = 5.4)

we get Fig. 2, where the point of intersection of the fuzzy numbers Z and CV 2

is y0 = 0.93. So according to Eq. (2), v(Z < CV 2) = 1 − 0.93 = 0.07. Therefore,
from this sample we cannot make a decision on rejecting or not H0 with degree
of confidence d ≥ 0.07.

For the second sample (x = 5.45) we plot Z and CV 2 in Fig. 3, where we can
see that the point of intersection of the fuzzy numbers Z and CV 2 is y0 = 1. So
according to Eq. (4), v(Z ≈ CV 2) = 1. Therefore, from this sample we cannot
make a decision on rejecting H0 or not with any degree of confidence d.

Example 2. We test in significance level 0.1 the hypothesis

H0 : μ = 1

with alternative the

H1 : μ �= 1

for the mean value μ of a random variable X that follows normal distribution
with standard deviation s = 2 using a sample of 100 observations with sample
mean value x1 = 1.24.

Applying the fuzzy test of H0 (using the non-asymptotic fuzzy estimator of
mean value) we get Fig. 4, where the point of intersection of the fuzzy statistics Z
and CV2 is below 0.8. So, the truth-value of Z < CV2 is greater than 1−0.8 = 0.2.
Therefore, H0 is not rejected in degree of confidence d = 0.2. While, applying
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Fig. 5. Fuzzy statistic Z and fuzzy critical values CV i for the test of H0 : μ = 1 using
fuzzy estimator of Buckley [5]

the fuzzy test of H0 using the fuzzy estimator of mean value of Buckley [5] we
get Fig. 5, in which the point of intersection of the fuzzy test statistics Z and
CV 2 is above 0.8. So, v(Z < CV 2) < 0.2. Therefore, according to this test, we
cannot make a decision on the rejection or not of H0 with degree of confidence
d = 0.2.

3 Hypothesis Test for the Variance of a Normal
Distribution

We test in significance level γ the null hypothesis that the variance σ2 of a
random variable X that follows normal distribution is equal to σ2

0

H0 : σ2 = σ2
0

with alternative the (two sided test)

H1 : σ2 �= σ2
0

using a random sample of observations of X of size n.
In the crisp case we test H0 using the test statistic

χ2
0 =

(n − 1)s2

σ2
0

(15)

where s2 is the sample variance.
H0 is rejected if χ2

0 < χ2
L;γ/2 or χ2

0 > χ2
R;γ/2 where χ2

L;γ/2 and χ2
R;γ/2 the critical

values of the test,

χ2
L;γ/2 = F−1

(γ

2

)
and χ2

R;γ/2 = F−1
(
1 − γ

2

)
(16)
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where F−1 the inverse distribution function of the χ2
n−1 distribution with n

degrees of freedom. While, if χ2
L;γ/2 < χ2 < χ2

R;γ/2, then H0 is not rejected.
In the fuzzy case for the test of H0 we use the unbiased fuzzy statistic χ2 [5]
with the non-asymptotic fuzzy estimator [11] the α−cuts of which are

χ2[a] =

[
(n − 1)χ2

0

(1 − h(a))χ2
R;γ/2 + (n − 1)h(a)

,
(n − 1)χ2

0

(1 − h(a))χ2
L;γ/2 + (n − 1)h(a)

]

(17)
where

h : (0, 1] → [γ, 1] h(α) = (1 − γ)α + γ, α ∈ (0, 1] (18)

The fuzzy critical values of the test, as described in Buckley [5], (using the
non-asymptotic fuzzy estimator [11]) are the fuzzy numbers CV 1 and CV 2, the
α−cuts of which are

CV 1[a] =

[
(n − 1)χ2

L;γ/2

(1 − h(a))χ2
R;γ/2 + (n − 1)h(a)

,
(n − 1)χ2

L;γ/2

(1 − h(a))χ2
L;γ/2 + (n − 1)h(a)

]

CV 2[a] =

[
(n − 1)χ2

R;γ/2

(1 − h(a))χ2
R;γ/2 + (n − 1)h(a)

,
(n − 1)χ2

R;γ/2

(1 − h(a))χ2
L;γ/2 + (n − 1)h(a)

]

Example 3. We test in significance level 0.1 the hypothesis

H0 : σ2 = 2
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Fig. 6. The fuzzy statistic Z and the fuzzy critical values for the test of H0 : σ2 = 2
from a sample with variance s2 = 2.73
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with alternative the (two sided test)

H1 : σ2 �= 2

using a random sample of 100 observations with sample variance s2 = 2.73.
Applying the above described fuzzy test of H0 we get the result of Fig. 6,

where the point of intersection of the fuzzy numbers Z and CV 2 is y0 = 0.79.
So, according to Sect. 1.1 v(Z > CV 2) = 1 − 0.79 = 0.21. Therefore, H0 is
rejected in degree of confidence d ≤ 0.21.

4 Conclusions

If the value of the test statistic of a hypothesis is close to the critical values of
the test, then the crisp hypothesis test is unstable, since a small change in the
sample mean value (addition or removal or a change of one observation) may lead
from rejection to no rejection of H0 or vice-versa. While, the fuzzy hypothesis
testing in such cases gives a very low degree of confidence of the rejection or not
of the null hypothesis, as shown in Example 1.

Comparing with a computer program (in Matlab) the results of the fuzzy test
with non-asymptotic fuzzy estimator with the respective fuzzy test with fuzzy
estimator of Buckley [5] we see a slight difference, which in some cases leads to
a different decision, as shown in the Example 2.

Our approach that uses non-asymptotic fuzzy estimators for the construction
of the fuzzy statistics and a degree of confidence for the rejection or not of
a hypothesis gives better results than the existing ones, since it gives us the
possibility to make a decision on a partial rejection of it in a certain degree of
confidence.
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