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Abstract. We propose a continuous situation awareness (SA) assessment
method based on eye-tracking and on-line display analysis. In our method, an
explicit representation of the pilot’s knowledge about the situation is con-
structed, which contains the pilot’s perceived state of the system. To quantify
SA for different information relevant to a task, the perceived state is compared to
a ground truth to compute a metric of accordance between the pilot’s situational
picture and the system state. We evaluate this method in a fast jet cockpit
simulator experiment with pilots, both professional and in training, from the
German Air Force. The participant had to fly a demanding low-level route while
reporting threats appearing at random times. We hypothesized, that low accor-
dance between system state and pilot awareness predicts long response time in
threat report, low performance in the flight altitude and low subjective SA.
Results show, that pilot performance in the low-level flight was correlated to
measured average accordance in the aircrafts altitude. Further, subjective SA
ratings showed positive association to our measurement results. Response time
did not correlate with the measured SA. Apart from that, our measurement
approach identified grave decrements for individual participants in the percep-
tual level of SA, suited for assistance system interventions. We conclude, that
the proposed measurement is a promising method to enable assistance systems
adapting to the pilot’s mental state.

Keywords: Applied cognitive psychology � Human error � Situation
awareness � Eye-tracking � Operator state

1 Introduction

Pilot error is one major cause for aviation accidents. Improvements in safety procedures
and training can reduce pilot fallibility but cannot eliminate it completely [1]. In this
context, adaptive assistance systems could reduce the risk of accidents by removing
possible sources of pilot errors.

One cause of pilot error is the loss of situation awareness (SA) [2]. When a pilot is
not aware of relevant information due to perceptual errors or divergence in his mental
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model, wrong decision-making may result in fatal consequences [3, 4]. With increasing
complexity and automation in a cockpit, maintaining a high level of SA is an important
aspects of a pilot’s work process.

Pilot SA is model of situational cognition, which means that it is affected by the
several factors of the situation. It does not result from a single factor, but is influenced
by the state of the environment, automation, machine interface and pilot cognition.
Therefore, a continuous measure of SA could be valuable input for assistance systems
enabling them to adjust to the SA of the pilot. Conventionally, SA is measured for
analytical purposes in simulation studies, where the goal is to evaluate operator per-
formance or interface designs. In these cases, freeze-probe methods such as the Situ-
ation Awareness Global Assessment Technique (SAGAT) or online query measures
such as the Situation Present Assessment Method (SPAM) are used to measure SA [5].
With freeze-probe measures, the simulation is halted at random times, all screens are
blanked, and the participant is asked several questions referring to SA relevant infor-
mation of the operation. On the contrary, online query measures require the participant
to answer such queries without interruption of their task. Several reviews and meta-
analysis [5–9] discuss the pros, cons and the validity of different measures. Apart from
issues described in those studies, these methods cannot be used in an operational setting
and therefore, it is not possible to use them as real-time input for adaptive assistant
systems.

As an alternative to query methods, eye-tracking might be a way to measure SA in
an operational environment [10]. It can be obtained continuously without intrusion and
is a strong indicator of pilots’ selective attention. Several studies used eye-tracking to
correlate eye-tracking parameters (e.g. fixation frequency of relevant display elements)
with task performance and query SA measures. In [11], fixation rates, dwell times, and
entropy were used as indication for acquisition of information of air traffic controller. It
was demonstrated, that controllers with high performance did focus their attention at
important times and distributed attention when possible. The authors of [10] imple-
mented an eye-tracking based measurement of SA for a simple monitoring task and
compared it to SAGAT. In this case, task performance prediction by eye-tracking was
superior to SAGAT. Their results also showed, that the participants attentional distri-
bution depended on the dynamics and state of the task environment, hence SA is
situated in the users work process. Based on these results, other studies explored the
use of eye-tracking as input for assistant systems. The authors of [12] implemented a
cockpit assistant system, which notified a pilot based on a comparison of scan patterns
with a visual behavior database. However, evaluation showed mixed results with a lot
of room for improvement. In [13], eye-tracking was used to continuously evaluate SA
in the supervision of multiple UAVs. It could be demonstrated that this system
enhances operator monitoring performance. In [14] and [15], eye-tracking was used to
measure pilot workload as input for an adaptive assistance system for pilot helicopters,
which showed promising results in operational use.

Most of the related research demonstrates the utility of eye-tracking in lab envi-
ronments. However, there are three requirements for a measurement method used by an
assistance system: First, a statistical approach to predict SA by analyzing eye-tracking
data is not enough. While there are certainly meaningful correlations between SA and
statistical gaze measures (e.g. fixation frequency on relevant areas), they possess an
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averaging nature. Therefore, rare situations of a pilot missing a relevant cue would be
ignored when the overall statistical measure is good enough. Thus, statistical indices
are missing important outliers, which are the most promising situations for an assis-
tance system intervention. Second, an assistance system requires knowledge about
context and the specific information, a pilot is missing. No meaningful information
could be drawn from a single number quantifying SA. Third, the method must predict
SA continuously and during operation to enable assistance. Most published methods
rely on post-processing ([13–15] are one of the few exceptions).

In our contribution, we address these issues by a computational model which does
not rely on statistical measures but holds an explicit representation of the information
perceived by the pilot.

2 Computational Estimation of SA

The objective of the proposed system is to find potential sources of pilot errors related
to the lack of SA. To measure this “lack”, three questions are modeled by our approach:
What information is relevant? What does the pilot know? What is the state of the
system? In the following, we describe how our approach handles each of these
questions.

The measurement system is illustrated in Fig. 1. First, the pilot’s gaze is measured
by an eye-tracking system. The gaze position is used to analyze the fixated display
elements in a context-aware interface. This interface application generates information
about the display element, the pilot looked at. To infer SA, this information is input to a
dynamic knowledge representation. This representation is instantiated from a SA model
that associates displayed information to a domain model of SA. The pilot instance of
this model is then compared to a similar model fed with the system’s ground truth. This
comparison is used to compute accordance and identify deviations. The modules are
explained more detailed in the following subsections.

Fig. 1. Overview over the measurement chain
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2.1 Eye-Tracking and Perception Analysis

The first module provides an estimate of the pilot’s visual perception. For this, an eye-
tracking system periodically determines the pilot’s gaze position in the cockpit. In this
stream of gaze positions, only fixated positions are used for further analysis, because
they serve as a good indication of information intake [16]. To account for the impre-
cision of the eye-tracking system, we virtually add gaze samples in a small area around
the measured gaze. In the following parts of the measuring chain, these virtual samples
are analyzed in similar manner as the measured sample. This ensures that no display
element is missed due to small eye-tracking imprecisions. All samples, both measured
and virtual, are then passed to the display application.

2.2 Context-Aware Display

The objective of this module is to analyze a gaze sample for the information displayed
at that position in the screen. For a given sample, the display application generates a
specific observation which contains three types of information: semantic, content and
identification. Semantic describes the meaning of the display element at the gaze
position, which can be subsequently used to distinguish between all generated obser-
vations. The content describes the value of the information at the time of measurement.
The identification indicates, which object the information is about.

Fig. 2. Simplified primary flight display with two samples
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As an example, Fig. 2 shows a simplified primary flight display (PFD) with air
speed (left) and attitude (right) indicators: Two hypothetical samples are drawn on air
speed indicator and attitude indicator. For the sample on the air speed indicator, the
application generates the semantic PFD_IAS with a content of cIAS ¼ 150 kts½ �, dis-
played at measurement. The identification is set to the pilot’s aircraft, which is the
object, the speed information is about. The other sample on the attitude indicator
encodes more than one information alone. It displays both roll and pitch angles of the
aircraft by means of an artificial horizon. Therefore, the context-aware display gen-
erates two semantics, one for pitch and roll respectively. Both observations contain the
value at the time of measurement and a reference to the pilot’s aircraft.

2.3 SA Model

To use the continuous stream of observation data as a SA indication, a model is
required to associate observations with meaningful information. What an observation
means is dependent on the application, therefore is domain knowledge. The SA model
needs to be flexible enough to capture situational information in different domains. For
that purpose, we use a directed logical network. Every node in this network represents a
SA-relevant information, subsequently denoted as SA node. The existing observations
can be associated to these nodes, which means that a given observation carries the
content for the associated SA node. When a gaze measurement generates this obser-
vation, the SA node is activated within the network. For example, the PFD_IAS from
Fig. 2 is an indicator for the aircraft’s speed.

As illustrated in Fig. 3, different SA nodes can be connected among each other to
represent new aggregations, e.g. the distance between two objects on a map can be
estimated by knowing the position of both. This is expressed by edges between SA
nodes. These edges implement different logical functions, that define how an initial
node activation propagates. However, in this contribution, we only use one type of
edge that activates the child node if any parent node is active.

Fig. 3. Situation awareness model
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During operation, the SA model is instantiated and fed with the stream of pilot
observations. An observation activates every associated node in the model. To account
for similar information related to different entities of the same kind, information nodes
are uniquely instantiated for every identification. This is important, when two display
elements represent the same semantic of information but are related to different objects
in the environment; e.g. two buildings in a tactical map convey positional information,
therefore two nodes are spawned for both buildings respectively. The node activation
propagates through the network according to the logical functions of the edges.

A second instance of this model is used for the generation of a ground truth model.
For this, we use the system state to generate all possible observations in the system
containing correct values. These observations are used as input for the SA Model,
which represents the ground truth during operation.

2.4 Accordance Computation

The last step is to evaluate the quality of the measured awareness. Thus, we compare
the system state to the pilot’s awareness. The content of both situational representations
– ground truth and pilot’s mental state – are used to compute accordance of the pilot’s
situational picture. In terms of information, a content can be numeric, text, states, times
or an identification for another object. To compute the accordance of two values of the
same semantic, a parameter cnorm is required. This parameter quantifies for every
observation, what a desirable accordance between two contents is, by normalizing the
difference of both. For example, it might be good enough to know the aircrafts altitude
within 1000 ft. Note, that this parameter varies for different tasks, e.g. altitude in a low-
level flight has a smaller normalizing parameter than a transit flight. For every
observation, the accordance is computed as follows:

xacc ¼ 1� cpilot�csysj j
cnorm

cpilot � csys
�
�

�
�� cnorm

½3pt� 0 otherwise

(

ð1Þ

The terms cpilot and csys denote the content of the pilot and system observation,
respectively. The accordance for text, states and identifications is binary since there is
no fuzzy area between two different information of such kind. For numeric values and
times, there can be a continuous accordance normalized by cnorm: The result of this
computational process is a model of the pilot’s mental state describing the accordance
with the actual ground truth. The accordance is specific to every information node in
the system.

2.5 Limitations

For reasons of simplicity, we neglect three phenomena of cognition and perception
which might affect SA measurement. First, there is no model for working memory of
the pilot. An information which has been fixated upon by the pilot and generated an
observation activates all associated nodes in the model. Assuming no change in the
content, our model continuously predicts perfect SA without any notion of memory
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decay. Second, the perception is solely based on fixations, which are not a perfect
measure of visual attention. While there is a high correlation between fixation position
and information processing, our approach neglects look-but-failed-to-see phenomena
[16]. Third, peripheral vision is neglected for the most part. As described earlier, a
small area around a measured fixation is additionally analyzed but apart from that there
is no way to observe what the pilot perceives in his peripheral vision.

3 Experimental Evaluation

To evaluate the SA measurement, we conducted a human-machine-experiment. For the
experiment, we hypothesized that a low accordance measured by our assessment
correlates with low performance as well as low subjective SA. Further, we expected to
be able to identify situational errors, which in statistical analysis would be classified as
outliers, but represent use-cases for an assistance system.

Flight Simulator. We conducted the experiment in our fast jet research cockpit
simulator (Fig. 4). The cockpit does not reflect an existing jet but is a custom research
cockpit with three multi-touch-displays. Here, we implemented the measurement chain
and fully integrated eye-tracking and the context-aware display to generate observa-
tions. For eye-tracking, we used SmartEye©-System connected to our simulator soft-
ware. The gaze is measured with a sampling frequency of 60 Hz and covers three
cockpit displays as well as the Head-Up Display (HUD).

Participants. The experiment was conducted with two groups of participants. The first
group consisted of eight professional fighter pilots from the German Air Force with a
mean age of 36.25 years (all male, spilots ¼ 6:8). One pilot had to be excluded in the
experiment due to data logging issues. The second group were nine pilot candidates
from the University of the Bundeswehr Munich with a mean age of 22.6 years (all
male, sstudents ¼ 1:4). All participants provided written informed consent.

Procedure. We conducted one experiment with each participant. The two groups
received different training. The professional pilots got an extensive training on the
simulator with a focus on other experiments. During that time, they did not encounter a

Fig. 4. Integrated gaze tracking system
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version of the experimental task. They were required to perform the experiment without
specific training for the experimental tasks. On the other hand, the pilot candidates were
trained for two hours, but did encounter closely related tasks, e.g. low-level flying and
threat reporting.

Right before each experiment, the eye-tracking system was calibrated for each
participant. Nine-point calibration on every screen resulted in the mean precisions and
accuracies given for each participant in Fig. 5. Mean tracking accuracy was 116:2 px½ �
and mean standard deviation was �sacc ¼ 63:5 px½ �. Then, participants of both groups
received a short briefing about the upcoming task.

Experiment. In the experiment, the participants had to fly a demanding low-level
route through a mountainous environment while keeping their radar altitude below 500
ft. Figure 9 shows an overview of this route. The altitude information was indicated in
the HUD radar altitude read-out (marked red in Fig. 6). During the flight, air defenses
appeared at random times. No audio cue was given as an indicator of threat. When the
participant visually noticed a pop-up air defense either as a red symbol in their central
display (Fig. 7) or as a radar warning indication in the HUD (Fig. 6), they had to report
the type, their own position and mission time as quickly as possible.

Fig. 5. Gaze tracking statistics

Fig. 6. HUD Fig. 7. Central cockpit display
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As an indirect assessment of SA, we measured performance in two ways. First, we
continuously measured if the pilot adheres to the altitude limit. Second, we measured
time until the pilot reported his position. The latter can be interpreted as an adapted
version of SPAM. The report is not explicitly requested by someone external but is
required by an appearing threat. We assumed a quicker threat report to be related to a
high pilot accordance in the aircraft position. For subjective SA measurement, the
pilots answered a Situational Awareness Rating Technique (SART) questionnaire. For
the experiment, we constructed a SA model that describes the relationship among all
relevant information for the computational assessment process.

SA Model. The constructed SA Model, illustrated in Fig. 8, reflects the simplistic
nature of the task. The participant had to monitor their radar altitude and look out for a
possible threat. The nodes Radar Altitude and Threat correspond to these tasks in the
SA model. In the cockpit, there were two ways to identify a threat: Either in the radar
warning display or in a tactical map. In both cases, the node Threat is activated for the
air defense instance. Note, that a node is created for every new threat since the
information relates to different logical instances of the same semantic, which means in
this case different enemy air defenses all representing a threat to the pilot. The nodes
Mission Time and Fighter Position are associated with the threat task, where this
information must be reported.

Results. We correlated the accordance value of Fighter Position of the time right
before the threat node was activated with the time duration until the fighter position was
reported. We found no correlations between accordance in position and position report
time.

Second measure of performance is the aircraft altitude. We assessed accordance of
radar altitude to quantify, if low accordance is linked to a pilot violating the altitude
limit. For that, we accumulated the time in four categories displayed in a confusion
matrix in Table 1. Accordance was classified as high for xacc [ 0:75 and low other-
wise. Note, that we selected a normalizing parameter cnorm ¼ 500 ft, which means that
a deviation of less than 125 ft was classified as high. Altitude was classified as wrong

Fig. 8. Experimental model Fig. 9. Experimental scenario
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for xalt [ 500 ft and correct otherwise. The table contains the mean values and
standard deviations of the percentage of time of the combination of two categories over
all participants. There is a high percentage of true positives (correct altitude and high
accordance), which means that pilot’s flying under the limit also had a good knowledge
of their altitude. In contrast, there is a great portion of false positives, where the pilots
exceeded the altitude limit but, according to the model, were aware of their altitude
within the limit. Percentage of mission time in wrong altitude differed strongly between
participants with a mean of �e ¼ 0:118 (�0:118Þ.

To study a general link between accordance and error, we computed the correlation
between the average accordance of Radar Altitude and the time proportion violating the
altitude limit. Figure 10 shows the percentage of time violating the altitude limit over
the average accordance. Pearson’s correlation coefficient is r ¼ �0:62 with p < 0.02
(two-sided). We excluded one pilot from correlation computation because of his
extraordinary bad performance leading to non-normal distributed data. Nevertheless,
this outlier fits the trend of a linear regression.

Further, Fig. 11 shows the average altitude accordance time over the normalized
SART score. We computed a positive correlation of r ¼ 0:56 with p < 0.04 (two-
sided). Here, one student participant was excluded due to errors in their SART survey.

Table 1. Confusion matrix for accordance and altitude

Correct altitude Wrong altitude

High accordance .842 (±.0.37) .618 (±.122)
Low accordance .128 (±.037) .382 (±.122)

Fig. 10. Scatter plot of error time over average accordance
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We could correctly classify the perception of an appearing threat in 73.8% of all
samples (n = 16 participants * 10 threats = 160). A threat was classified as correct if
the node “Threat” was activated and the participant reported within three seconds after
activation. In 26.2% of all cases, the threat was not classified correctly due to three
different reasons: The pilot reported incorrectly (n = 2), the threat node was inactive
when the pilot reported the threat (n = 31) or the threat node was active, but the pilot
did not report within three seconds after activation (n = 9).

Fig. 11. Scatter plot of the normalized SART score over the average accordance

Fig. 12. Accordance for successful report (left) and unsuccessful report (right).
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In three cases, a threat was missed for over six seconds by a participant. In these
cases, the measurement identified the lack of SA as a deviation in an appearing
“Threat” node. As an illustrative example, Fig. 12 shows characteristic measurements
for both successful and unsuccessful report. The red lines indicate the time of an
appearing threat and the time of pilot report, respectively. The data on the left shows,
that the pilot quickly notices the threat (t ¼ 1:7s), which is indicated in our system by a
node activation of “Threat #2” (Fig. 12, (5), left) along with a peak in accordance
which can be interpreted as the pilot’s knowledge about this threat. After the participant
starts to report the threat, he updates his knowledge about the mission time as part of
the report, which is indicated by an accordance peak in the node “Mission Time”
(Fig. 12, (3), left). In contrast to that, Fig. 12 on the right shows an extreme outlier of
bad performance for the same participant. Here, the pilot misses the threat over a long
period (t ¼ 13:1 s), which is measured as a late peak in accordance of the threat node
(Fig. 12, (5), right). The accordance values of “Radar Alt” (Fig. 12, (1), right) indicate,
that the pilot was engaged in keeping his altitude below the limit. Nevertheless, the
same pattern of updating his knowledge about mission time right after threat report can
be observed.

4 Discussion

In this contribution, we sought to evaluate, if our proposed method can assess mean-
ingful aspects of SA. Also, we tried to validate, if this approach can find causes of pilot
errors. The results show, that measurement of aspects influencing pilot performance in
the experimental tasks was possible. A strong negative correlation of average altitude
accordance and error time shows a link between our computational model and per-
formance in the task of low-level flight. Also, the SART results were correlated with
the accordance in the flight task. As indicators of pilot errors, statistical outliers such as
a pilot missing an enemy air threat were classified correctly. These results indicate, that
our system has successfully measured perceptual aspects of SA, which were the
dominant factor for performance in the experiment. The confusion matrix shows a high
portion of false positives of accordance and error. This is not contradictory to our
expectation, since SA can be high when a pilot notices his error. It means that in many
cases, a pilot was aware of his altitude while committing an error, which suggests that
the participants noticed their error but needed time to adjust. Thus, an adaptive
assistance system should respect the pilot working on the solution of a problem.

However, there are also mixed results and limitations of the experimental design. In
the threat report task, the response time showed no correlations with measured
accordance in the aircrafts position. We assume that response time was not a good SA
indicator in our experiment, since some participants were not always eager to answer
quickly, and no participant bothered to update his position frequently to answer more
quickly. Finally, statistical meaningfulness of the experiment is mitigated by a small
number of participants, who were drawn from heterogenous groups (professional vs.
unexperienced pilots).

Apart from experimental limitations, the model is based on simplifying assump-
tions and does not perfectly capture the pilot’s perceptional process and mental model,
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which was obvious in the look-but-failed-to-see situations of threat report. Also, eye-
tracking accuracy and precision differed strongly between participants which had a
great influence on prediction quality. Finally, the model does not have a good mech-
anism to observe pilot intuition about the aircraft’s altitude, yet. It is obvious, that
spatial information such as altitude can be perceived not only by a numerical sensor
indication in the HUD but also by the pilots “feeling” and peripheral vision of the
course of the terrain.

5 Conclusion and Further Research

In general, our findings support the idea to assess SA based on eye-tracking and the
correlations showed a successful operationalization of SA. Beyond conclusions from
statistical inference, our system can provide detailed information about the situational
context, which is valuable for an adaptive assistance system. In the proposed method,
we addressed requirements for on-line SA measurement listed by [10]: we can measure
what the pilot knows, what the system state is and merge this data in a SA model. With
this model we can specify relevant information and quantify, how accurate the pilot’s
SA is.

However, the experiment mainly covered the perceptional level and the SA model
was specifically designed for the experimental task. Also, results suffered from eye-
tracking measurement errors. Therefore, further research will focus on two aspects:
estimation of higher levels of SA by a more complex SA model and increasing mea-
surement accuracy.
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