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Abstract. With image processing, robots acquired visual perception skills;
enabling them to become autonomous. Since the emergence of Artificial Intel-
ligence (AI), sophisticated tasks such as object identification have become pos-
sible through inferencing Artificial Neural Networks (ANN). Be that as it may,
Autonomous Mobile Robots (AMR) are Embedded Systems (ESs) with limited
on-board resources. Thus, efficient techniques inANN inferencing are required for
real-time performance. This paper presents the process of optimizing ANNs infer-
encing using tensor-based optimization on embedded Graphical Processing Unit
(GPU) with Computer Unified Device Architecture (CUDA) platform for parallel
acceleration onES. This research evaluates renowned network, namely,You-Only-
Look-Once (YOLO), on NVIDIA Jetson TX2 System-On-Module (SOM). The
findings of this paper display a significant improvement in inferencing speed in
terms of Frames-Per-Second (FPS) up to 3.5 times the non-optimized inferencing
speed. Furthermore, the current CUDA model and TensorRT optimization tech-
niques are studied, comments are made on its implementation for inferencing,
and improvements are proposed based on the results acquired. These findings will
contribute to ES developers and industries will benefit from real-time performance
inferencing for AMR automation solutions.

Keywords: Artificial Neural Networks · Embedded GPU · TensorRT ·
Real-time · NVIDIA Jetson · Image processing · YOLO · CUDA

1 Introduction

Artificial Intelligence (AI) is being increasingly adopted into ES due to its synergistic
relation in the virtue of efficient data analysis, capability to rationalize tasks and per-
forming system optimization. Over the past few years, AI has been rapidly developed to
be utilized in applications such as safe autonomous driving which involves object avoid-
ance and collision mitigation [1] and in visual perception tasks like scene understanding,
object detection, and localization [2, 3]. Machine Learning, a prime constituent of AI
comprises of two main processes: training and inferencing. These are power-intensive
and computationally demanding tasks [4].
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As observed in examples [5, 6], inferencing is a critical step in implementing and
deploying an effective ES. It encompasses the procedures involved in determining a
viable conclusion from the evidence collected during the training phase. Observing from
the perspective of ESs, inferencing which is a power-intensive utility, is challenging to
run with limited available resources [7]. In such a scenario, optimization is the key to
achieving best performance with lower power consumption [8].

System optimization is a challenging step in achieving higher performance and there-
fore, the relatively more popular alternative is usually opted for: scaling the system
over several GPUs [9]. This solution incurs high cost and decreases projects’ economic
feasibility. The research [10] supports this observation through a study conducted on
ImageNet competition which aims to achieve maximum accuracy through complex
Deep Neural Networks (DNNs). To maximize performance, the participants neglect
system optimization and invest in hardware upgrades, which shows inefficient resources
utilization as the existing system was not executed up to its full potential.

Optimization encompasses processes ranging from data-handling, parameters fine-
tuning, architecture selection and process pipeline remodeling [11]. This can be seen
in examples like [12] open source GPU-Accelerated feature extraction tool and Bon-
net framework for semantic segmentation in robotics [13]. This is also evident in the
emergence of GPU acceleration frameworks like CUDA and OpenGL [8]. Another key
technology in optimization is TensorRT [14]. Yamane [15] stressed on the importance
of inferencing on ESs. Also, highlighting the fact that ESs are still lacking in real-time
performance, rendering edge devices unreliable for critical missions.

In this paper,You-Only-Look-Once (YOLOv3) object detection system is inferred on
Jetson TX2. YOLO model predicts objects by running a single network evaluation [16].
Making it lighter than most networks with similar accuracy; hence, ideal candidate for
ESs. Running on theGPU for parallelization, the inference performance is evaluatedwith
and without optimization using TensorRT inference accelerator. The acquired results
present an eye-catching increase in performance up to 3.5x times. This provides an
insight into optimization trends and their effectiveness. Furthermore, with the acquired
insights, CUDA framework pipeline is studied under limited scope and areas of potential
improvements are suggested.

2 Methods

This research is a part of a bigger research that focuses on applying visual Simultane-
ous Localization And Mapping (vSLAM) for AMRs in industrial environments. With
focus on material handling in warehouses; this work has been presented in the Logistic
Research Competition organized by Oman Logistic Center. Additionally, for ore mining
industry, a dataset with one class “Power Screens” has been initiated [17]. Both of which
targeted real-time inferencing of YOLOv3 ANN. This research continues the previous
work by optimizing the inferencing speed to meet real-time needs with a pretrained
YOLOv3 ANN with COCO dataset with 80 classes.
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2.1 Hardware Setup

The hardware setup follows certain specifics for AMRs: limited on-board compute capa-
bility, limited power source, System-On-Module (SOM). The physical set-up of the robot
adopts the open source Turtlebot3, with adjustments for Jetson TX2, ZED Stereo Cam-
era, 2D RP-LIDAR, and a Logitech C920 HD Pro webcam. On the execution layer, as
can be seen on the AMR system block diagram in Fig. 1, the robot uses differential drive
for movements with magnetic encoders for odometry. Be that as it may, in this AMR
context, this research focuses solely on the optimization process of ANN inferencing.

Fig. 1. AMR system block diagram

2.2 YOLO ANN for Object Detection

YOLO ANN implements a smart approach for object detection. Achieving real-time
performance using a single Convolutional Neural Network (CNN) structure. Quoting its
developers from their research paper [18] “It achieves 57.9 AP50 in 51 ms on a Titan X,
compared to 57.5 AP50 in 198 ms by RetinaNet, similar performance but 3.8× faster”.

YOLO ANN architecture is based on an open-source CNN called Darknet-53 for
image classification. Darknet-53 serves as the network’s backbone with an additional 53
layers for detection. Resulting in a total of 106 layers, out of which 75 are convolutional,
23 shortcuts, 4 routes, 2 upsamples, 3 detections [19].

With reference to the architecture illustration in Fig. 2, the network performs detec-
tion at 3 different scales at 82nd, 94th, and 106th layers. At each one of the detection
layers, the image is downsampled by a factor called stride of the network. Respective to
the detection layers, the input image is downsampled by a factor of 32, 16, and 8.

In this architecture, the detection kernel shape is defined by N × N × (B × (5 +
C)). N × N being the alternating 1 × 1 convolutional layers for feature space reduction.
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Fig. 2. YOLO network architecture

B = 3 being the number of anchors, resulting in the prediction of three bounding boxes
per cell. These anchors are priors for bounding boxes that were calculated on the COCO
dataset using k-means clustering. This dataset has 80 classes; henceC= 80. The ‘5’ is the
sum of the 4 bounding box offsets from the cluster centroids, using the logistic sigmoid
Eq. (1) and objectness prediction score 1. Thus, the detection kernel was designed as 1
× 1 × (3 × (5 + 80)) tensor or its equivalent 1 × 1 × 255 tensor for each scale. For
the bounding box predictions, tx, ty, tw, th determine 4 co-ordinates of each bounding
box, (cx, cy) are co-ordinates at the offset from top corner of the detection grid. pw, ph
are width and height of bounding box priors. While bx, by are x, y centre co-ordinates
of prediction and bw, bh are width and height of the predicted bounding box.

σ(x) = 1

1 + e−x
(1)

bx = σ(tx) + cx (2)

by = σ
(
ty

) + cy (3)

bw = pwe
tw (4)

bh = phe
th (5)

Considering the above, the output value is always between 0 and 1 due to the logistic
sigmoid function. YOLO ANN predicts the relative offsets of the bounding box center
rather than the absolute coordinates. Normalized by the feature map dimensions which
is 1 [20].

2.3 Complexity Class

To verify the complexity class in which the adopted YOLO ANN falls in; it is necessary
to examine the decision-making procedure in determining a prediction. Bearing that in
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mind, it is worth noting that “object recognition is not a formally defined problem, so is
not in itself either polynomial time solvable or NP-complete” [21].

YOLO ANN recognizes an object based on class-specific confidence score for each
bounding box. This is achieved by first computing the confidence as follows:

Confidence = Pr(Object) × IOUtruth
pre (6)

The value of Pr(Object) is 1 if a ground truth box is present within the grid cell,
otherwise it is 0.While the intersection over union value between the predicted bounding
box and the actual ground truth is denoted by IOUtruth

pre [22].
With reference to the detection kernel in Sect. 2.2, each grid generates conditional

class probabilities represented as follow: Pr(Classi | Object). YOLO ANN output is
class-specific confidence, computed by multiplying the conditional class probabilities
and the individual box confidence predictions as represented by [22]:

Pr(Classi|Object) ×Pr(Object) × IOUtruth
pre = Pr(Classi)× IOUtruth

pre (7)

2.4 Tensor-Based Optimization

YOLOANNwas originally developed usingDarknet frameworkwritten in C andCUDA
[16]. Optimization using TensorRT adds an extra step between training a model and
inferencing it. That step requires the trained ANN model to be converted into a format
that is optimizable by TensorRT. TensorRT is a programmable inference accelerator built
on CUDA for parallel programming. In this research, the conversion of the YOLOANN
model is done through an open-source format defined by the Open Neural Network
Exchange (ONNX) ecosystem. This format ensures interoperability and easy hardware
access optimization.

When approaching an optimization problem on an AMR system, specific con-
siderations pertaining to ESs must be put into account. Memory management, hard-
ware architecture utilization, inference precision, and power efficiency. TensorRT
memory allocation is done using TensorFlow allocators by setting argument con-
fig.gpu_options.per_process_gpu_memory_fraction [23]. For hard-
ware architecture utilization, ANN model is converted on target Jetson TX2.

Inference in INT8 andmixed precision reducesmemory footprint; which is important
on an ES. Using symmetric linear quantization, models running in 32-bit floating-point
precision are scaled down to 8 bits with preserved symmetry. FP32 represents billions
of numbers while the INT8 represents 256 possible values only [24]. Equation below
formulates this process of getting quantized INT8 value, where input, floating point
range, and scaling factor are denoted by x, r and s respectively:

Quantize (x, r) = round
(
s ∗ clip (x, −r, r)

)
(8)

Using calibration and quantization aware training, accuracy is preservedwhenmodel
is scaled to INT8. Taking a specific range where most of the activation values fall.

The network’s performance is measured through latency and throughput. The
former is determined by the time elapsed between input presence until output is
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acquired. The latter is determined by the number of inferences performed in a set
amount of time. “Both can be measured using high precision timers present in C++
std::chrono::high_resolution_clock, and monitored by profiling CUDA
and memory utilization during runtime [25].”

3 Experimental Procedure

The experiment was conducted on the following setup with the webcam mounted on an
AMR. The robot was set to move at a constant speed of 10 cm/s detecting objects set in
its field of view. The objects detected are apparent on the screen attached (Fig. 3).

Fig. 3. Objects detected displayed in real-time

The process of optimizing an ANN, especially for inferencing on an ES; requires a
deep understanding of the software and the hardware architecture. This research is carried
on Jetson TX2 SOM running Linux for Tegra (L4T). The key technical specification of
this system can be seen in the Table 1 taken from [26].

Table 1. Jetson TX2 module specifications

GPU 256-core NVIDIA Pascal™ GPU architecture with 256 NVIDIA CUDA cores

CPU Dual-Core NVIDIA Denver 2 64-Bit CPU Quad-Core ARM® Cortex®-A57
MPCore

Memory 8 GB 128-bit LPDDR4 Memory 1866 MHx - 59.7 GB/s

Storage 32 GB eMMC 5.1 Power 7.5 W/15 W
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It is noted that the Jetson board is running a 256-core Nvidia GPU which is based
on Pascal architecture [26]. An efficient optimisation technique for GPU parallelization
should be able to optimally distribute the workload on the 256 cores available.

Since YOLO was originally developed using Darknet framework, optimizing this
ANN will require adjustments starting from the framework. Hence, the framework was
built from source on the Jetson TX2 with CUDA, cuDNN, and OpenCV enabled. This is
done by setting their respective flags to 1 in the Makefile. Adding to that, it is important
to specify the CUDA architecture, which is 62, for Jetson TX2.

On the time of conducting this experiment, Jetson TX2 was running L4T, CUDA,
and other relevant libraries as seen in Table 2 below:

Table 2. Software components and their versions on Jetson TX2

Component Version Component Version

JetPack 4.2.1 cuDNN 7.5.0.66

OS L4T R32.2 (K4.9) TensorRT 5.1.6.1

CUDA 10.0.326 OpenCV 3.4.0

At first YOLOv3-416 was run using a direct implementation of Darknet detector as
documented by Redmon & Farhadi [27]. Even though Darknet was built with CUDA
and cuDNN enabled, the GPU utilization was low. This resulted in poor performance;
maxing at 2 FPS. For efficient GPU utilization, YOLO ANN is formatted according to
ONNX open format. Facilitating the conversion to TensorRT using PyCUDA API to
access parallel computation of the GPU.

4 Result and Discussion

4.1 System Performance

Obtained results were analyzed for comparison between FPSwith andwithout TensorRT
optimization at different power modes as plotted in Fig. 4:
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As inferred from Fig. 4, when YOLOv3 is executed on CUDA along with OpenCV,
the maximum achieved FPS was 2.0 at Max-N. This power mode offers maximum GPU
frequency and utilizes both, ARM A57 and Denver cores. The lowest FPS was obtained
from the Max-Q power mode at 1.5 FPS and was also observed to drop to 1.3 FPS when
input traffic for object detection was increased. Max-Q and Max-P Core All modes had
fluctuations in output. However, Max-P Core ARM was observed to be the most stable
as the FPS stayed constant at 1.7. Max-N and Max-P Core Denver were observed to
have minimum drop of −0.1 FPS.

In contrast to the above, with TensorRT optimization, the performance showed a
drastic improvement from 147% in Max-P Core All to 254% improvement in Max-P
Core ARM. The highest FPS achieved was on the Max-N at 6.58 units; an increase of
3.5× in performance. This is important for object detection applications on ESs from a
live stream. Table 3 summarizes the performance gain with and without TensorRT.

Table 3. Percentage increase in FPS obtained without versus with TensorRT

Power modes Without TensorRT With TensorRT Percentage increase, %

Max-P Core Denver 1.8 4.62 157

Max-P Core ARM 1.7 6.02 254

Max-P Core All 1.8 4.44 147

Max-Q 1.5 4.38 192

Max-N 2.0 6.58 229

4.2 Precise Object Detection

Adding one more dimension to the comparison, the effect of FPS on the number of
objects detected is observed. Performance in FPS and detection rate were monitored on
a test scene including 15 objects belonging to the ANN classes. As observed in Fig. 5,
without optimization, maximum 10 objects were detected out of 15.
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When tested with TensorRT optimization, all 15 objects in the scene were detected
while the FPS was relatively higher than without optimization as shown in Fig. 6.

Both Fig. 5 and Fig. 6 illustrate the relation between FPS, number of objects detected,
and power modes. It can be deduced that the increase in FPS results in more objects
detected. However,more processing power is required asmore objectsmust be processed
per frame. The system allocates more resources towards recognition of objects present
in the frame. This results in drop in FPS, consequently lowering the accuracy as Table 4
and Table 5 clarify. Additionally, 5 objects failed to be detected without optimization as
highlighted in Table 4.

Table 4. Observation of objects detected without TensorRT and their percentage accuracy

# Detected Accuracy # Detected Accuracy # Failed to detect

1 Bottle 100% 6 Keyboard 91% 11 Mouse

2 Bottle 93% 7 Backpack 88% 12 Laptop

3 Person 100% 8 Cell phone 87% 13 Keyboard

4 Person 99% 9 Cell phone 84% 14 Clock

5 Keyboard 99% 10 Cup 99% 15 Table

Table 5. Observation of objects detected with TensorRT and their percentage accuracy

# Objects detected Accuracy # Objects detected Accuracy

1 Bottle 100% 9 Cell phone 96%

2 Bottle 92% 10 Cup 100%

3 Person 97% 11 Backpack 91%

4 Person 89% 12 Mouse 37%

(continued)
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Table 5. (continued)

# Objects detected Accuracy # Objects detected Accuracy

5 Keyboard 99% 13 Laptop 99%

6 Keyboard 67% 14 Table 73%

7 Keyboard 67% 15 Clock 99%

8 Cell phone 96%

4.3 CUDA Study

CUDA framework is arguably the most efficient General-Purpose GPU (GPGPU) plat-
form. This is mainly due to its maturity, continuous update and support from NVIDIA
[28]. However, to accommodate the ever-increasing range of GPUs and their architec-
tures, NVIDIAmoved into generalization and multi-layering of CUDA 5.0. This caused
a noticeable reduction in performance when compared to CUDA 4.0 [29]. Adding to
that, it was noted in [30] that CUDA GPU acceleration was performing best on certain
workloads and for full utilisation, GPU kernels must be optimised as well.

5 Conclusion and Future Work

Optimization is the key in achievingmaximum efficiency of any given ES running onAI.
This paper identifies the causes of low accuracy and decreased performance of inferenc-
ing ANNs on ESs. Using Jetson TX2 SOM, a comparison was made between YOLOv3
ANN running on CUDA with and without tensor-based optimization using TensorRT
inference accelerator. Making use of open-source format (ONNX) for conversion from
YOLO native format to TensorRT.

Inferencing performance and accuracy are seen to be linked. As seen in Sect. 4.2,
high FPS allow for accurate perception of the current scene. Enabling AMRs to detect
more objects faster, resulting in prompt response. Nevertheless, complex scenes pose
computational challenges that may affect the resource allocation, lowering the FPS.

The optimization technique focuses on reducing the memory footprint and computa-
tional demands. Accomplished through downscaling theANNmodel fromFP32 to INT8
while targeting intermediate activation layers. Although this increases the performance
in FPS significantly by 3.5× and number of objects detected but reduces the detection
accuracy. This analysis conjoins the aforementioned parameters with power efficiency,
pertaining to AMR specifics.

This comprehensive study gives a thorough insight towards optimization of ESs for
effective resources utilization. Future works include in-depth analysis of the processes
in terms of mean Average Precision (mAP) and studying the relationships between the
several elements of the existing frameworks and APIs using a visualization software
such as NVIDIA Nsight Systems.
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