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 Introduction

The human body has limited capacity to regener-
ate tissues following injury, and healing is often 
with the formation of scar tissue [1, 2]. The use of 
autografts is ideal for replacing lost tissues. 
However, autologous grafts are limited in their 
availability, and their retrieval can cause donor 
site morbidity [3]. These circumstances have 
triggered a large interest in developing engi-
neered tissues and regenerative therapeutics [4], 
which aim to find solutions toward this end.

Three-dimensional (3D) bioprinting has been 
expanding tremendously over the last decade 
(Fig.  16.1). It aims to develop biomimetic and 
functional tissues addressing the demand for tis-
sue and organ replacement. Its market share is 
projected to be about $11 billion in 2021 in com-

parison with $2.2 billion in 2012 [5]. When com-
pared to other tissue engineering approaches, 3D 
bioprinting offers several advantages (Table 16.1) 
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Fig. 16.1 The disciplines contributing to 3D biofabrica-
tion of human tissues
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[6, 7]. More importantly, instead of seeding cells 
into scaffolds, 3D bioprinting creates a frame-
work for the fabrication of complex cell-laden 
tissues with specific architectures resembling the 
target tissue [6, 8]. Provided by a layer-by-layer 
biofabrication method, cell and growth factor 
distribution is homogenous, and several biomate-
rials can be used in the same construct to reca-
pitulate the structure of the target tissue [6, 8, 9]. 
These advantages have been confirmed by sev-
eral experimental studies, which show great 
potential for clinical translation of this technol-
ogy in the near future [6, 8, 10].

The aim of this chapter is to present the cur-
rent advances and understanding of 3D bioprint-
ing in the development of viable biomimetic 
human tissues. The present chapter focuses on 
the direct bioprinting of such constructs and sum-
marizes the available examples of tissues pro-
duced with this technology. The challenges and 
future perspectives are also discussed.

 Three-Dimensional Printing 
Techniques

Several 3D bioprinting techniques have been 
developed including extrusion-based bioprinting, 
light-based bioprinting, and droplet-based bio-

printing (Fig. 16.2) [8, 11, 12]. Extrusion-based 
3D bioprinting, often referred to as pressure- 
assisted bioprinting, was developed as a tech-
nique for scaffold fabrication. Over the years, the 
popularity of this technique grew due to its sim-
plicity, diversity, and predictability. Extrusion- 
based 3D bioprinting can be divided into 
pneumatic, piston-driven, or screw-driven dis-
pensing [13]. The pneumatic dispensing utilizes 
air pressure to dispense the biomaterial, while 
mechanical forces are used for the piston-driven 
and screw-driven methods [13]. Among the 
requirements of the bioinks compatible with this 
technique is a relative viscosity ranging from 30 
to 6 × 107 mPa [14]. Factors to consider are the 
tuning of the viscosity, the state of the bioink 
prior to bioprinting, and the available biofabrica-
tion window [15]. Extrusion-based bioprinting 
delivers good homogeneity of bioinks, can be 
performed at room temperature, and can deliver 
relatively high cell densities. On the other hand, 
the overall resolution and speed is rather poor 
compared to other techniques like inkjet bioprint-
ing [14], and some authors have noted deforma-
tion of cells and high apoptosis levels [16].

Light-based bioprinting technologies include 
stereolithography apparatus (SLA), digital light 
processing or projection (DLP), and laser- induced 
forward transfer (LIFT). Stereolithography is a 

Table 16.1 Comparison of different tissue engineering approaches

Methods
Hanging drop 
method

Microwell-based 
method Microfluidics

Magnetic 
force-based 
patterning Bioprinting

Mechanisms Cellular 
spheroids are 
formed by 
gravitational 
force

Microwells are 
fabricated by 
nonadhesive 
materials to form 
cellular spheroids

Micro- flow 
mediates stacking 
cells in layers or 
forming cell 
spheroids using 
trapping

Magnetically 
labeled cells are 
compacted in 
spheroids 
formed under 
magnetic forces

Cells are 
deposited in 
scaffold-based or 
scaffold-free 
manner

Size uniformity ++ +++ +++ +++ +++
Microarchitectural 
controllability

+ ++ +++ +++ +++

Scalability ++ + + ++ +++
Coculture ability ++ ++ ++ + +++
High- throughput 
capability

+ +++ +++ +++ +++

Low risk of 
cross- contamination

+ + ++ ++ +++

From Peng et al. [7]. Reprinted with permission from Elsevier
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light-assisted printing method used to cure light-
sensitive bioinks [17, 18]. It involves the curing, 
i.e., cross-linking, of a cell-laden photo-cross-
linkable polymer in a layer-by-layer fashion. Its 
main advantage is that no printheads are needed, 
but the printing time is related to the printing reso-
lution and thickness [17, 18]. Gauvin et al. sug-
gested that resolution of 100 μm can be achieved 

with cell viability higher than 90% [18]. Digital 
light processing (DLP) utilizes a projector screen 
to project each print layer [19]. This process is 
much faster as compared to SLA as it cures the 
whole layer at once.

Light-based bioprinting technologies also 
include laser-induced forward transfer (LIFT). 
Conventional desktop inkjet printing technology 
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Fig. 16.2 Available 3D bioprinting technologies. (a) 
Thermal and piezoelectric inject printing; (b) extrusion 
bioprinters with pneumatic, piston-, and screw-driven dis-
pensing; (c) laser-guided SLA- and DLP-type bioprinter. 
The difference of SLA and DLP is light sources. While 
the SLA uses the light source as laser, the DLP uses pro-

jector. (d) Laser-induced forward transfer (LIFT)-type 
bioprinter. Laser bioprinter with either driving cells to the 
substrate or transfer of a vapor bubble containing bioink 
onto a substrate. (From Knowlton et al. [158]. Reprinted 
with permission from Elsevier)
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led to the development of inkjet-based 3D bio-
printing. It involves a noncontact printing pro-
cess, which can be further subclassified as 
drop-on-demand inkjet bioprinting, continuous- 
inkjet bioprinting, and electro-hydrodynamic jet 
bioprinting [20]. The overall resolution is around 
50 μm, but this technology suffers from failure to 
sustain continuous flow [21]. For this reason, 
low-viscosity bioinks are required, with 
 viscosities less than 10 mPa [11, 22, 23]. In addi-
tion, despite the fact that the inkjet bioprinting 
technique is fast compared to other methods, 
printed cell densities and viability are low [14]. 
The latter could be attributed to shear and ther-
mal stress that are exerted upon the cells from the 
high temperatures and pressures reached in the 
thermal actuator element and piezoelectric actua-
tion systems, respectively [11, 22, 23]. LIFT 
allows the deposition of either solid or liquid 
materials in high resolution through the effect of 
pulsed nanosecond laser energy [24]. Although it 
creates droplets with the aid of laser and although 
it is commonly regarded as a light-based bio-
printing technology, some researchers consider it 
as one of the droplet-based bioprinting technolo-
gies. Following stimulation, a pressure bubble is 
created that drives the bioink droplet from the 
donor film to a substrate plate which contains the 
bioink [21]. The overall resolution achieved is in 
the region of 10–50  μm. Important parameters 
that could influence this technique include the 
laser energy, speed, and the rheological proper-
ties of the bioink [22, 24, 25]. Some researchers 
highlighted low cell survival rates, probably due 
to the thermal and shearing stress experienced by 
cells during the process [26].

 Bioinks

Bioink is printable formulation for 3D bioprint-
ing, and it is composed of living cells without or 
with carrier and/or matrix hydrogels. In addition 
to cells and hydrogels, other additive components 
such as biomaterials (e.g., bioceramics) and bio-
active molecules can be added to the bioink 
formulation.

 Cells

Cells are the main biological component of the 
bioinks used for 3D bioprinting of functional 
constructs. Three-dimensional bioprinting 
should take into account all the different cell 
types needed to simulate native tissue that 
needs to be constructed. Accordingly, cells can 
be of parenchymal type, supportive type, or 
cells for vascularization. During 3D bioprint-
ing, the cells chosen to be printed will go 
through a journey that can affect their proper-
ties, function, and survival within the newly 
formed construct [27–29]. This journey begins 
from their harvesting and extends until their 
final implantation in vivo, when they are applied 
for regenerative purposes. Hence, it is essential 
to minimize the effects from harvesting, han-
dling, culture environment, and media [30]. 
These cells can be broadly divided into either 
committed cell types, stem cells [31], and 
genetically programmed cells [32] to perform 
specific tasks and functions.

Committed and differentiated human cells 
could be considered the ideal source for creation 
of biomimetic tissues. The first issue arising from 
the use of such cells is the potential host immune 
reactions in cases of implantation of exogenous 
cells. Autologous sources are preferred, but donor 
site morbidity is a potential drawback. In addi-
tion, the life span of these cells is limited, and 
they lose their capacity to proliferate ex vivo. For 
example, liver cells have been found to have high 
regeneration capacity in  vivo, yet they exhibit 
poor capacity for expansion in vitro [33]. Except 
proliferation and survival, the ex vivo manipula-
tion of these cells changes their phenotypic pro-
file. For instance, cardiac valve endothelial cells 
were shown to express osteogenic markers fol-
lowing isolation [34, 35].

Stem cells can further be subdivided into 
embryonic stem cells, stem cells from fetal sup-
porting tissues, and adult tissue-derived stem 
cells. Embryonic stem cells can differentiate in 
most specialized cell types, and they have an 
immense capacity to proliferate in an undifferen-
tiated state. There are several drawbacks involved 
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with the use of these cells. Embryos are destroyed 
during their isolation, which carries ethical issues 
[36]. In addition, their use has been related to the 
development of teratomas [37]. An alternative 
cell source for stem cells is human placenta and 
amnion. These cells pose less risk for tumorigen-
esis and pose minimal ethical concerns but 
require prolonged freezing and thus investment 
in the infrastructure for their storage [38].

Adult stem cells are the most studied cell type 
in the last three decades. Adult stem cells are 
multipotent precursor cells with tremendous cell 
renewal capacity [39, 40]. They differentiate 
toward cell types found in their surroundings fol-
lowing cues derived from tissue trauma [39]. 
They do not trigger an immune reaction. Often, 
their endogenous production of cytokines and 
chemokines diminishes unwanted functions like 
inflammation and cell death [39–41]. Despite 
their wide use in research, one important draw-
back is the lack of sufficient knowledge on the 
underlying physiology and the mechanisms that 
control their fates [41, 42].

Induced pluripotent stem cells (iPSCs) are 
somatic cells that have been transformed to an 
embryonic stem cell-like state following genetic 
reprogramming [43]. Genetic reprogramming 
involves the introduction of genes into the cells 
that force them toward specific properties similar 
to those seen in pluripotent cells [42]. This forced 
genetic expression is introduced through viral 
vectors, and poor yields of iPSCs are reported 
[44]. Also, the type of the original cell used to 
create iPSCs can influence the final functions of 
the derived cells [45–47].

 Biomaterials

Hydrogels are the most utilized biomaterials for 
bioprinting due to their compatibility with living 
cells [48]. Several other types of biomaterials can 
be utilized as additives which can range from soft 
hydrogels to ceramic [49]. There are specific 
requirements for achieving successful 3D print-

ing that need to be met by the bioinks as was dis-
cussed above.

Hydrogels are three-dimensional polymer net-
works that can hold a significant amount of water 
and can mimic the elastic modulus of the major-
ity of human tissues except the calcified bodily 
structures like bone and teeth [50]. Hydrogels 
can be further subdivided according to their ori-
gin into naturally occurring polymers and their 
derivatives like alginate, collagen, chitosan, gela-
tin, and hyaluronic acid or synthetic materials 
like polyethylene glycol, copolymers, and plu-
ronic F127, which can have adaptable structure, 
composition, and function [13, 51–53]. Naturally 
occurring polymers are often favored because of 
the similarities with human extracellular matrix 
(ECM) such as collagen and its derivatives. Due 
to their similarities with tissue environment, 
these biomaterials are ideal for encapsulating 
cells [13]. On the other hand, they can cause 
immune reactions, and they also have relatively 
poor mechanical properties. Natural polymers 
can be mixed with synthetic polymers such as 
polyvinyl alcohol, polycaprolactone (PCL), poly-
lactide (PLA), poly(lactide-co-glycolide) 
(PLGA), and poly(3-hydroxybutyrate) to gener-
ate hybrid biomaterial, so as to improve the 
mechanical properties of hydrogels [9, 54–56]. 
Also some specific nanomaterials can be added 
for the improving mechanical strength of hydro-
gel to obtain functional multicomponent bioinks 
for the preparation of mechanically demanding 
tissues – such as bone, cartilage, and tendon [57].

In addition to natural and synthetic hydrogels, 
hydrogels can also be developed from decellular-
ized tissues to create tissue-specific bioinks. For 
instance, tissues including bone, cartilage, liver, 
and heart have already been shown to create 
tissue- specific bioinks [58, 59]. Here, after decel-
lularization of the tissue, it is enzymatically 
digested and solubilized to form a viscous bioink 
which, in turn, allows for the encapsulation of 
cells. Bioinks from decellularized tissue inher-
ently show thermal gelation, resulting in gelation 
(solidification) at body temperature.

16 3D Bioprinting
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 Biomolecules

Multifunctionalization of biomaterials [60] is a 
critical process in tissue engineering. It involves 
the inclusion of agents that can help in the regula-
tion of cell fates and function through their inter-
actions with cells within the 3D bioprinting 
construct. These molecules can direct cells in the 
engineered tissue constructs toward a specific 
phenotype and guide their migration, prolifera-
tion, and differentiation – and they can also influ-
ence native cells toward processes such as 
vascularization of the graft or in situ regeneration 
[61]. Alternatively, modifications of the biomate-
rials through the incorporation of bioactive cues, 
recognition sites, and adhesion molecules have 
been used [5, 62]. The choice of the biomolecules 
is dependent on the target tissue that one aims to 
treat. For bone regeneration, for example, mole-
cules that improve angiogenesis  – such as the 
vascular endothelial growth factor (VEGF), 
osteogenesis-like growth factors belonging in the 
TGF-β superfamily (TGF-β), or the bone mor-
phogenetic proteins (BMPs)  – have been used 
[54, 63–65]. Similarly, in nerve regeneration, 
neurotrophic factors, such as the nerve growth 
factor, neurotrophin-3, and ciliary neurotrophic 
factor, have been used [66]. These molecules are 
the steering forces giving cues to the cells to 
adopt specific function leading to the healing and 
incorporation of the graft.

 Computer-Aided Design 
and Manufacturing for Tissue 
Modeling

The fabrication of biomimetic tissues can be 
achieved through the use of computer-aided 
design (CAD) and computer-aided manufactur-
ing (CAM) techniques. CAD is defined as the 
computer software aiming to design target tissue 
structure, while CAM is referred as the software 
used to control the printer during 3D printing. 
Due to the complexity of tissue anatomical and 
structural organization, information on the tissue 
composition at the microscale level is essential. 
Computed tomography (CT) and magnetic reso-

nance imaging (MRI) can provide information on 
the geometries and brief structure of calcified and 
soft tissues [67]. Once this information becomes 
available, histological 3D sections are designed 
based on the underlying anatomy of the target tis-
sue. The thickness of these sections depends on 
the printer’s resolution and can range from 100 to 
500 μm depending on the machine and material 
used [67]. CAM technologies are equally impor-
tant for the creation of the CAD models. CAM 
takes into account the properties of the underly-
ing tissue and bioinks and aims toward successful 
creation of target structures. Bioink deformation, 
stiffness, fusion, nozzle clogging, and viscosity 
are controlled through CAM [68, 69]. In addi-
tion, CAM controls the survival and properties of 
the cellular components of bioinks [8, 70]. In 
essence, while CAD is critical for the reproduc-
tion of biomimetic tissues, CAM safeguards the 
quality of the 3D printing process.

 Applications

The potential of 3D bioprinting has been shown 
in a number of applications. The fabrication of 
biomimetic tissues including bone, cartilage, 
nerves, cardiovascular tissue, and others has 
become possible through this technology.

 Bone and Cartilage

Bone and cartilage regeneration have been 
important areas that tissue engineering has 
addressed over the last decades. Among the chal-
lenges mostly faced are the need of recreating 
the complex organization of these structures, the 
optimization of the rheological properties, bio-
compatibility, osteoconductivity, and realizing 
the potential of implanted grafts to be integrated 
and remodeled [71, 72].

Evidence from a wide range of 3D bioprinted 
constructs for bone regeneration has been prom-
ising [54]. Some bioinks were found capable of 
yielding stresses and Young’s modulus similar to 
that of the human bone [57]. It is well recognized 
that mechanical stability alone is not the only 
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desirable feature of bone constructs; the chosen 
biomaterials should allow high viability while 
preserving the osteogenic capacity of osteopro-
genitor cells printed within. In fact, some authors 
highlighted that although materials like PCL and 
PLGA are mechanically stable, they are not 
enough to support osteogenesis [73, 74]. On the 
contrary, other biomaterials, for example, decel-
lularized bone matrix with PCL, were associated 
with upregulation of osteogenic genes of human 
adipose-derived stem cells [75]. Similarly, 
Campos et al. compared the effect of the addition 
of thermo-responsive agarose in a collagen bio-
ink. This addition improved the mechanical stiff-
ness of the construct [76]. The addition of 
bioactive glass particles has been shown to 
improve the mechanical performance while 
allowing for the construction of a porous con-
struct, mimicking the pores of native human bone 
[77, 78].

Constructs which allow for the controlled 
release of molecules that either improves cell via-
bility, angiogenesis, or osteogenesis could be a 
potential option [79, 80]. Du et  al. created a 3D 
bioprinted gelatin-based bioink encapsulating 
MSCs and microfibers containing BMP-2. The 
addition of BMP-2 induced a stronger osteogenic 
phenotype following culture [80]. In a similar 
study, incorporating BMP-2 and VEGF to the con-
struct resulted in increased expression of osteo-
blast-related genes Col1a1, Runx2, and Osx [79].

Cartilage is another important tissue, and its 
regeneration may benefit from 3D bioprinting. It 
is a specialized form of elastic connective tissue 
constituting parts of joints, the outer ear, and the 
nose. Articular cartilage draws most interest as its 
loss (e.g., in arthritis) is a major cause of morbid-
ity and disability worldwide. Articular cartilage is 
not vascularized; hence, it is an ideal target for 
regenerative therapy using 3D bioprinting. 
However, the ideal cell carrier for chondrocytes is 
not yet identified, and available suitable materials 
lack enough mechanical integrity to enable suc-
cessful function in high-load-bearing sites [81].

Tellisi et  al. compared hydrogels, ceramics, 
and meshes for cartilage tissue engineering [82], 
and they found that chondrocyte proliferation 
was more in hydrogels as compared to ceramics 

and mesh. Daly et al. have also compared a wide 
range of commonly used hydrogel that included 
BioINK™, GelMA, alginate, and agarose [81]. 
The results showed that the choice of bioink can 
direct the cells to different functions. More spe-
cifically, alginate and agarose hydrogels resulted 
in the formation of tissue rich in type II collagen, 
i.e., supported the development of hyaline-like 
chondral tissue. On the other hand, GelMA and 
BioINK™ led to the development of a more 
fibrocartilage-like tissue. The combination of 
nanofibrillated PLGA [83], cellulose, or PLA 
nanofibers with cell-laden alginate hydrogel was 
also explored [84, 85]. These approaches were 
reported to result in improved cell density and 
better reinforcement of the mechanical strength 
of the constructs. Another study reported that 
high-density collagen is an ideal bioink for recon-
struction of cartilage due to its capability of 
maintaining appropriate cell growth and for hav-
ing mechanical stability [86].

Finally, in situ 3D bioprinting is presenting an 
attractive option [10]. For example, Di Bella 
et al. developed a handheld 3D bioprinter in an 
experimental animal model of critical size carti-
lage defect [87]. This printer was capable of on- 
demand filling of these defects with MSCs 
together with gelatin methacrylamide and HA 
methacrylate hydrogel. Improved macroscopic 
and microscopic appearances of the resulting tis-
sue were noted when compared to conventional 
approaches. A higher amount of newly regener-
ated cartilage was seen with no signs of subchon-
dral collapse or deformation [87].

Clinical evidence has shown that during the 
development of arthritis, changes to the underly-
ing bone coexist with loss of cartilage. Therefore, 
a combined approach might be required. A num-
ber of researchers have worked on this principle, 
aiming for the development of osteochondral 
constructs rather than bone or cartilage patches 
[88–92]. In these studies, 3D bioprinted con-
structs with predesigned mechanical properties 
were created for potential clinical applications 
ranging from femoral head to temporomandibu-
lar defects [88, 89, 91, 92]. In an experimentally 
induced proximal humeral defect in rabbits, a 
customized layer-by-layer 3D bioprinted con-
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struct containing transforming growth factor β3 
(TGF-β3), HAp powder, and PCL was applied 
following capture with laser scanning [90]. The 
authors suggested that the entire articular surface 
of the synovial joint could regenerate without the 
addition of cells. It was hypothesized that the 
regeneration of complex tissues could occur by 
homing of endogenous cells.

 Neural Cells

Nerve injury is the cause of significant disability 
and represents a clinical challenge due to the 
poor regenerative capacity of neural tissues. 
Three-dimensional bioprinting could be applied 
to nerve regeneration. For example, England 
et al. created a 3D bioprinted fibrin-based scaf-
fold to guide neurite growth by encapsulating 
Schwann cells [93]. In cases of nerve loss, hollow 
nerve conduits composed of either synthetic or 
natural materials found to promote nerve regen-
eration [94–96]. Some authors suggested that 
cells in the bioink enhance the healing potential 
[97, 98]. In an experimentally created tibial nerve 
transection with 10  mm gap in rodents, Adams 
et  al. used engineered nerve conduits utilizing 
fibroblasts and embryonic rat nerve cells [98]. 
They showed adequate distal motor nerve con-
duction velocity and large axons within the 
repaired nerve segment. In a similar study on the 
sciatic nerve defects in rats, cylindrical layer-by- 
layer 3D printed grafts were created. The cylin-
ders contained MSCs (90%) and Schwann cells 
(10%) [97]. In this proof of concept study, the 
authors showed that this construct performed bet-
ter than the standard collagen tubes and high-
lighted the complexities and the numerous 
adjustments needed to optimize the performance 
of such grafts.

 Blood Vessels

The primary goal of tissue engineering is to cre-
ate functional structures which could be incorpo-
rated into the host after implantation and can 
withstand the demands of the target tissue. 

Having complex structures without a vascular 
network to support the printed cells can lead to 
failure, because cells can survive on diffusion, 
only at a farthest distance of 200–400 μm from a 
feeding blood vessel [99]. In many studies, the 
lack of vasculature within the graft is surpassed 
by addition of angiogenic factors to promote 
angiogenesis. However, there is often a long pro-
cess before angiogenesis is established; there-
fore, implanted graft survival is at risk [100].

Although currently the biofabrication of vas-
cularized tissue has not been achieved, several 
authors evaluated ways to create and incorporate 
blood vessels into 3D printed grafts [101]. Some 
authors focused on the creation of large con-
structs like aortic tissue. One approach involved 
the use of embryonic fibroblasts and hydrogels 
printed in a layer-by-layer fashion to form an aor-
tic tissue construct [102]. Another group utilized 
decellularized ECM with the use of separate lay-
ers of human smooth muscle cells, endothelial 
cells, and fibroblasts to recreate the media, 
intima, and adventitia layers through perfusion 
into the corresponding location of the supporting 
scaffold [103]. The fabrication of smaller blood 
vessels can be constructed as tubular structures 
with defined pores of 100–200 μm mimicking the 
structure of native vasculature [104]. Biomaterial 
selection is a key aspect. The production of 
sophisticated human-scale constructs of various 
sizes and shapes and incorporating microchan-
nels allowing the diffusion of nutrients have been 
attempted [67, 105].

 Muscles and Tendons

Musculoskeletal injuries are common and can 
result in significant morbidity [106]. Several 
authors have thus far explored the potential of 
musculotendinous regeneration through 3D bio-
printing. The fabrication of isolated muscle units 
composed of myotubes and myoblasts resulted in 
contraction following electrical stimulation like 
in native muscles [67, 107, 108]. Kang et al. cre-
ated skeletal muscle units of 15  ×  5  ×  1  mm 
which were stretched along the longitudinal axis 
and responded to stimulation preserving their 
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structural stability [67]. In regard to tendons, 
only limited groups have developed biomimetic 
tendon constructs [109]. The main challenge has 
been defining the ideal bioink, which could 
achieve structural stability equivalent to that of 
native tendons. Attempts to develop complex 
muscle-tendon units mimicking functional 
human muscle are also available. A two-layer 
construct composed of thermoplastic polyure-
thane co-printed with C2C12 cell-containing 
hydrogel and PCL co-printed with fibroblast- 
containing hydrogel offered elasticity for muscle 
development and stiffness for the development of 
the tendon [110].

 Skin

Skin loss can be the outcome of trauma, skin dis-
eases, and burns. Autografts are of limited avail-
ability, and substitutes often fail to achieve 
acceptable outcomes [111, 112]. Tissue engineer-
ing with the use of 3D bioprinting could provide 
an alternative approach, creating multilayered 
biomimetic structures to serve as skin substitutes 
(Fig. 16.3). The simplest option is the seeding of 
cells such as fibroblasts, keratinocytes, and mela-
nocytes in predefined concentrations and layers 
into biomaterials, mimicking native human skin 
[113, 114]. The results have shown that these 

Patient

Cells

Keratinocytes

Melanocytes

Fibroblasts

Cell
suspension

Bio-inks

Hydrogel Cell-encapsulated
hydrogel

Bioprinting

Printed construct

Matured construct

Fig. 16.3 3D bioprinting of skin. Following collection of 
cells, ex vivo expansion of the cells is commenced. Then 
3D bioprinted biomimetic skin is constructed and once 

matures it is implanted to the patient. (From Ng et  al. 
[159]. Reprinted with permission from Elsevier)
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cells survive the printing process, and once 
implanted in experimental models, they form 
structures which have histological similarities to 
normal skin [113, 114].

Min et  al. attempted to recreate a multilayer 
structure of fibroblasts on a collagen hydrogel, 
which was then covered with layers of melano-
cytes and keratinocytes [115]. Following histo-
logical analysis, the authors reported a distinct 
skin layer, the presence of pigmentation, and the 
presence of the outmost layer of normal skin (the 
stratum corneum). Three-dimensional bioprint-
ing technologies allowing in situ bioprinting have 
also been developed [10]. In situ 3D bioprinting 
provides a platform for the creation of fully cus-
tomized biomimetic structures printed exactly at 
the site of injury or defect [10]. A number of 
authors have developed handheld devices capa-
ble of ejecting multiple bioinks and demonstrated 
satisfactory cell survival and fast healing of skin 
defect [116–118].

 Cardiovascular Tissue

Cardiovascular diseases are highly prevailing, 
and they represent one of the most common 
causes of death worldwide [119]. Tissue 
 engineering has attempted to identify treatment 
options to facilitate the prompt repair of the 
affected tissue, mainly through the implantation 
of stem cells. Unfortunately, only a small fraction 
of these cells survive the effects of cytokines, free 
radicals, and lack of nutrients [120, 121]. Several 
attempts to create the hierarchical structure of the 
native myocardium through 3D bioprinting have 
been described [122, 123]. For example, Zhang 
et  al. developed an endothelialized myocardial 
tissue by first aligning endothelial cells along the 
periphery of microfibers [123]. Then endothelial 
tissue was covered by cardiomyocytes. This con-
struct had features of functional myocardium and 
expressed rhythmic beating. In a similar study 
using MSCs, Tijore et al. created microchanneled 
gelatin hydrogel that promotes human MSC 
myocardial commitment and supports native car-
diomyocyte contractile functionality [122]. The 
feasibility of creating biomimetic cardiac tissue 

was also confirmed by Wang et  al., who devel-
oped cardiac tissues formed with uniformly 
aligned, dense, and electromechanically coupled 
cardiac cells expressing the cardiac markers like 
α-actinin and connexin [124]. Three- 
dimensionally printed patches for myocardial 
regenerations were also explored [125, 126]. 
These patches were composed of human coro-
nary artery-derived endothelial cells, methacry-
lated collagen, and an alginate matrix. They were 
found to upregulate cellular proliferation, migra-
tion, and differentiation in the damaged 
myocardium.

In addition to the regeneration of myocar-
dium, the replacement of heart valves can be fea-
sible utilizing 3D bioprinting technology. The 
construction of aortic valves capable of with-
standing the hemodynamic requirements was 
proposed. Hockaday et  al. used photo-cross- 
linked bioink loaded with porcine interstitial 
cells to show the feasibility of creating rapidly 
biomimetic aortic valve tissues with excellent 
cellular viability and cell engraftment capabili-
ties [127]. Other groups have showed similar 
results, with some highlighting that the technique 
used to improve mechanical strength of the con-
struct can adversely affect the viability of the 
cells [128, 129].

 Retina and Cornea

Corneal and retinal diseases are the most impor-
tant causes of blindness worldwide. At present, 
there is extensive research exploring the feasibil-
ity of engineering structures of the human eye 
including the cornea, retina, and lens. Isaacson 
et  al. used extrusion 3D printing to fabricate a 
corneal-like cell-laden structure [130]. In a simi-
lar study, Sorkio et al. created a cornea- mimicking 
tissue using human stem cells and laser-assisted 
3D bioprinting [131]. Printed constructs were 
examined for their microstructural properties, 
cell viability, and proliferation and for the expres-
sion of key proteins (Ki67, p63α, p40, CK3, 
CK15, collagen type I, VWF) [131]. As far as the 
retina is concerned, Lorber et  al. created a 3D 
bioprinted construct containing retinal and glial 
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cells [132]. These cells retained their growth- 
promoting properties and exhibited higher than 
70% viability [132]. Other authors highlighted 
the importance of the ECM as a determinant of 
cell differentiation [8, 133]. It is crucial the ECM 
should mimic the characteristics and stiffness of 
the human retina [8, 133]. In a scaffold-free 
approach, Masaeli et al. utilized an inkjet 3D bio-
printing system to create (with precision) a con-
struct made of photoreceptor cell layer lying on 
top of a bioprinted retinal pigment epithelial 
layer [134]. The cells expressed structural mark-
ers including opsin B, opsin R/G, MITF, PNA, 
rhodopsin, and ZO1 and released large amounts 
of human vascular endothelial growth factor 
(hVEGF).

 Tissue Models

The development of tissue models for studying 
tissue and organ function, studying disease states, 
and testing drugs and chemicals represents 
another important potential application of 3D 
bioprinting [135]. This can help to overcome the 
limitations of current in vitro models which rely 
on the use of two-dimensional (2D) cell cultures. 
It is argued that 2D models cannot represent 
appropriately native tissues [136]. In this rela-
tion, Maden et  al. developed a 3D bioprinted 
model of human intestinal mucosa mimicking the 
function and the biochemical and histological 
characteristic of the native human tissue [137]. 
Vascularized perfusable liver tissue has been also 
created. Drug toxicity on 3D printed tissue was 
also conducted, with the authors suggesting the 
advantages of this approach for the evaluation of 
drug-induced liver injury [138]. Commercially 
available 3D printed liver and kidney tissue is 
currently available for research purposes [139].

In addition to healthy tissue models, a number 
of pathologic tissue models based on 3D bio-
printing currently exist. For example, such mod-
els can be valuable tools for gaining in-depth 
understanding of tumor progression and inva-
sion – as well as for the study of the interaction 
between different cell types and treatment of che-
motherapeutic drugs [140]. The clinical scenarios 

are diverse, and models should be designed 
accordingly. In metastatic bone disease, Zhou 
et al. developed a biomimetic bone matrix ana-
lyzing the interactions between breast cancer 
cells, fetal osteoblasts, and human bone marrow 
MSCs [141]. In another study, 3D bioprinted 
microtissue, recapitulating the in  vivo environ-
ment of tumor cells in pituitary adenoma, was 
found to be an excellent model for cancer research 
[142]. Similarly, uterine cervical tumor models, 
lung cancer, neuroblastoma, and breast cancer 
models exist [143–146].

 Other Applications

It has to be noted that the potential targets of 3D 
bioprinting are not limited to the aforementioned 
applications. At present, numerous other applica-
tions based on 3D bioprinting are being 
explored – especially ones involving the creation 
of biomimetic soft or solid human tissues. Such 
structures include the kidney, liver, and trachea. 
Ali et al. created 3D bioprinted renal constructs 
exhibiting structural and functional features of 
the native renal tissue [147]. Lee et  al., on the 
other hand, 3D printed human liver which mim-
icked the cellular interactions seen within human 
liver [148]. Hard structures such as the human 
trachea were printed using PCL, and the con-
structs were then placed in omentum culture prior 
to transplantation [149]. This approach facilitated 
the rapid re-epithelialization and revasculariza-
tion of the scaffold and prevented postoperative 
luminal stenosis [149]. Other potential applica-
tions of such 3D bioprinting approaches in hard 
tissue engineering include the creation of knee 
meniscal tissues, human ear, and auricular carti-
lage [85, 150–152].

 Current Limitations and Future 
Prospects

Despite the significant advantages seen in 3D 
bioprinting over the last decades, at present, this 
technology has several limitations, which pre-
vents its further expansion. These challenges fall 
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into three main categories: (a) decoding of human 
anatomy and physiology, (b) manufacturing 
issues, and (c) creation of viable constructs that 
will integrate and function in vivo.

With regard to decoding human physiology, 
despite a gross understanding of the structure of 
human tissues, the underlying interactions at a 
cellular level are largely obscure. Not infre-
quently, our understanding of the composition, 
organization, and interactions occurring within 
human tissues is based on animal in vivo models 
and then extrapolated to explain our knowledge 
gap in humans. Animals are different species, and 
thus we often see complications and adverse 
effects to drugs in humans despite the safe results 
obtained from experimental studies [153].

In terms of manufacturing, several technical dif-
ficulties should be overcome. Attempts to improve 
the resolution of the printed tissues (probably at a 
cellular level) will open new avenues to 3D bio-
printing. This resolution should be maintained 
throughout the bioprinting process, and draw-
backs – like nozzle clogging with highly homoge-
nous bioinks maintaining their viscosity and 
shear-thinning properties  – should be addressed. 
Further work on developing new biomaterials for 
3D bioprinting is required identifying the ideal 
material for a given tissue and maintaining stability 
and mechanical rigidity. In cases when hard tissues 
(such as bone) are to be created, the bioink should 
maintain mechanical stability to withstand the 
demands but, at the same time, should allow the 
migration, proliferation, and differentiation of 
osteoprogenitor cells to enable the incorporation 
and remodeling of the newly formed bone.

Another major challenge of 3D bioprinting is 
the creation of viable and functional constructs. 
One of the main challenges is to recreate vascu-
larity. It is well known that cells should be in 
close proximity to the capillaries; otherwise, 
increased cell death can follow [154]. It can be 
hypothesized that improving the vascular net-
works within these structures will facilitate the 
functionality and integration of these structures 
to the host. Studying critical size bone defects 
has shown that the larger the defect is, the longer 
the time is required for healing, and beyond a 
critical size, healing by regeneration may not 

occur [155]. This time does not purely corre-
spond to the time required for the bony ends to 
heal, but instead it correlates with time it takes to 
achieve revascularization of the graft and the 
incorporation to the host.

Reflecting on the current growth rate of 3D 
bioprinting and the intensity of research activity, 
we envision that, in the near future, customized 
medical applications will be introduced into clin-
ical practice [156, 157]. Complex constructs 
mimicking native tissues will emerge. This would 
require extensive knowledge of biomaterials and 
the capacity to incorporate bioinks of different 
properties during the same bioprinting session. 
These materials should be loaded with the exact 
cell layers and growth factors to develop micro-
environments that may closely mimic that of the 
target native tissue. Further development in the 
incorporation of a functional vascular tree in 
printed constructs is an important factor required 
to achieve success. Despite the fact that all afore-
mentioned challenges are important, decoding 
and understanding human anatomy and physiol-
ogy is the most vital element that will unleash the 
capabilities of 3D bioprinting.

 Conclusions

Today, 3D bioprinting is a rapidly evolving tech-
nology for tissue engineering. It enables the fab-
rication of biomimetic tissues in a fast manner 
and with high precision. Despite the increasing 
number of studies presenting its potential role in 
clinical practice, several challenges are still fac-
ing the manufacturing process. The selection of 
bioinks suitable for a given target tissue, the lack 
of a vascular tree to support the cellular elements, 
and the final integration of a functional replace-
ment to the host are among the most important 
challenges. These challenges will ultimately be 
overcome via coordinated work that involves 
biologists, bioengineers, and clinicians.
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