
Floating Hierarchical Menus for Swipe-Based
Navigation on Touchscreen Mobile Devices

Alen Salkanovic, Ivan Štajduhar, and Sandi Ljubic(B)

University of Rijeka, Faculty of Engineering, Vukovarska 58, 51000 Rijeka, Croatia
{alen.salkanovic,ivan.stajduhar,sandi.ljubic}@riteh.hr

Abstract. In this paper, we present two menu implementations that allow swipe-
based navigation through deep hierarchical menu configurations. Instead of uti-
lizing repetitive tap-based selections, the proposed interaction relies on continu-
ous finger movement across different submenus. The menus are implemented as
a service; hence they can easily be attached to the target mobile application and
visualized as a semi-transparent floatingwidget on top of it. Similar to themarking
menu concept, the provided designs also enable a smooth transition from novice
to expert user, as swipe gestures used for menu item selections can be memorized
and subsequently executed faster. Both menus initially act as a floating action but-
ton, allowing the user to change its location by dragging it to the preferred place
on the screen. Visualization of the menu starts in this pivotal position, according
to the utilized design: Tilemenu or Piemenu. The Tilemenu uses a linear scheme
and dynamically occupies more screen real-estate when a submenu is triggered.
On the other hand, the Pie menu is displayed as a circular widget without extra
containers and uses touch-dwelling for submenu invocation. Implementations of
the proposed menu designs are evaluated and comparatively analyzed by conduct-
ing a controlled experiment involving 30 participants. We present the results of
this empirical research, specifically focusing onmenu navigation efficiency in two
different contexts of use, the related interaction workload, and usability attributes.

Keywords: Hierarchical menus · Swipe-based navigation · Touchscreen gestures

1 Introduction

Hierarchical menus are widely used in software applications written for contemporary
desktop operating systems. Different menu structures are commonly visualized as lin-
ear widgets (vertically and horizontally expandable menus), which can utilize different
designs. Namely, the most popular types of multi-level menus are dropdown menus,
flyout menus, dropline menus, accordion menus, and split menus. However, the corre-
sponding implementations are usually optimized for mouse and/or keyboard interaction,
hence applying the same concepts in the touchscreen mobile domain can sometimes be
quite questionable.

It is an undeniable fact that present-day mobile devices are powerful enough to
run relatively complex software applications. Mobile versions of the popular desktop

© Springer Nature Switzerland AG 2020
M. Kurosu (Ed.): HCII 2020, LNCS 12182, pp. 509–522, 2020.
https://doi.org/10.1007/978-3-030-49062-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49062-1_34&domain=pdf
https://doi.org/10.1007/978-3-030-49062-1_34


510 A. Salkanovic et al.

applications, such asMicrosoftWord or Photoshop, are already used by numerous smart-
phone and tablet users. However, as mobile touchscreens are substantially smaller when
compared to desktop screens, implementing multi-level menus for mobile applications
remains a challenge in the HCI field.

Menus in contemporary mobile applications come in different shapes and forms
and follow a trade-off between screen real-estate occupation and navigation efficiency.
Touchscreenmobile devices raise particular problems inmenu interaction, such as delay-
based context menu activation, lack of shortcuts, occlusion, and insufficient accuracy
[1]. The small screen size cannot easily accommodate many subcategories; hence the
most common designs include accordions (a hamburger menu), sequential menus (e.g.
navigation drawer), section menus (tabs), and floating action buttons (FABs) [2]. While
all mentioned solutions have pros and cons, they are all tied to the underlying applica-
tion and predefined activation points, usually located on the top/bottom of the screen.
Typically, menu items from a single submenu are only presented on the screen, leaving
the application content predominantly hidden.

In this paper, we investigate alternative menu designs that combine some of the
previously introduced concepts (e.g. radial-shaped menus, marking menus) and touch-
screen interaction modalities (e.g. swipe gestures instead of tapping sequence). Our
design considerations also involve menu semi-transparent visualization and customiza-
tion of the menu position on the screen. Navigation efficiency of the proposed menu
solutions is empirically analyzed in two contexts of use: single-handed and cradling (the
case wherein one hand is holding the device, while the other one is performing swipe
gestures).

2 Related Work

Pie menu, also known as a radial menu, is a type of menu where item selection depends
on themovement direction of the pointing device. Themenu options are placed along the
circumference of a circle at equal radial distances from the center. The original concept
is attributed to a system called PIXIE [3]. A number of empirical comparisons between
pie and linear menus, applied to desktop systems, has been made. For example, one of
the early studies claimed pie menus to be about 15% faster than linear menus, with a
significantly lower error rate [4].

Marking menu can be described as a specific type of pie menu wherein items are
selected using a straight stroke gesture. In general, marking menu concept enables an
easy transition fromnovice to expert user, according to the twodifferentmodes it imposes
[5]. In the novice mode, the menu is visible to the users while making the selections, and
it disappears from the screen once a menu item is selected. However, in the expert mode,
the menu is completely hidden from the user. Therefore, previously memorized stroke
gestures can be made without the need for the menu to appear. Besides the possibility of
learning gestures for commonly used menu options, marking menu thus supports better
screen utilization from the application content standpoint.

Both the pie menu and the marking menu concept were initially proposed for the
desktop interaction; nevertheless, they have been successfully applied and investigated
in touchscreen mobile domain as well.



Floating Hierarchical Menus for Swipe-Based Navigation 511

WaveletMenu [6] supports exploration and navigation inmultimedia data hierarchies
(e.g. photos and music) on mobile devices. The menu uses previsualization, a special
feature which allows user to see the submenu corresponding to a certain menu option
before it is actually activated. Additionally, this radial menu incorporates two different
layout solutions. In a situation when a list of menu options is very long, the circular
layout is combined with the linear one. This way it is easier to display and interact with
submenus containing a large number of different options.

The Swiss Army Menu (SAM) [7] is another solution which utilizes radial design.
Its main advantage is hierarchy navigation based on small thumb movements. A pointer
controlled by the finger is used to select certain menu item in order to avoid the occlusion
problem. Four different types ofmenu items are allowed in this design, which correspond
to typical usage of buttons, checkboxes, sliders, and scrollbars. Similar to the Wavelet
Menu, SAM also implements a preview feature which improves submenu navigation
efficiency. Although it is possible to activate the menu from any location on the screen,
it always appears at the same predefined position.

Two-Handed Marking Menus [8] is a solution specifically designed for multi-touch
mobile devices and two-handed interaction. It allows user to perform two gestures, one
with each hand, at the same time, in order to maximize parallelism in hand motions and
provide faster menu selections. The ordered variant of the same solution, in which users
alternates his/her gestures between two hands, is also implemented.

Semi-circular layouts, likeArchMenu and ThumbMenu presented in [9], offer amenu
design in which all menu items are easily accessible with the thumb. However, due to
the utilized layout shape, which increases in size with every new triggered submenu, the
number of items a menu can display is significantly constrained.

More recent work refers to M3 Gesture Menu [10], a re-conceptualized version of
traditional marking menu, which utilizes a persistent screen space and contains menu
items arranged in a grid instead of a circular layout. Swipe gestures are used in order
to select menu items, and when a certain option is activated, the same space is being
occupiedby its submenu items.Gesture shapes required for itemselections are predefined
and depend on related item locations inside the menu.

Radial menu layouts applied to small touchscreen interfaces can occasionally cause
interaction burden. Namely, swipe gestures near the screen borders can be difficult to
accomplish. However, hierarchical multi-level menus for mobile touchscreens can also
be designed by making use of linear schemes. Leaf Menu [11] is a type of marking
menu implemented with such design, wherein linearly organized items can be selected
using swipe gestures. To select the target item from the specific submenu, the user
simply needs to lift his/her finger off the screen. Leaf Menu supports precise finger
interaction, mitigates the occlusion problem, and can be used close to the screen borders.
Nevertheless, because all menu items are displayed one below the other, the screen space
utilization can represent a problem, depending on the different hierarchy depth. For this
purpose, a feature called mirror effect is used in order to compensate for the lack of
available screen space.

It is important to mention that both linear and radial menu designs are prone to
certain limitations [5]. The number of menu items on each (submenu) level is one of
the limiting factors. As the number of menu options increases, less space is available



512 A. Salkanovic et al.

for the corresponding UI widgets. This way targets are becoming smaller and harder
to select. Additionally, increasing the menu depth (i.e. total number of submenus) also
increases response time. Finally, interacting with complex menu configurations (with
higher breadths and depths) usually involves the higher number of incorrectly selected
menu items.

3 Floating Hierarchical Menus – Tile Menu and PieMenu

Following the motivating factors drawn from the related work, as well as some new
ideas about possible enhancements in menu navigation on touchscreen mobile devices,
we introduce two different solutions – the Tile menu and the Pie menu – that allow
swipe-based navigation through deep hierarchical menu configurations.

The proposed Tile menu design and the accompanying interaction are illustrated
in Fig. 1. The top-level menu with associated options is activated using simple swipe
movement from the FAB location in an upward direction. Dragging the finger on top of
any (expandable) option activates the corresponding submenu above the top-level menu.
Thus, the navigation across the menu hierarchy is achieved using a continuous swipe
gesture, with submenu levels being stacked on top of each other. All sub-menus are
created dynamically, only when needed, according to the user’s swipe trajectory. Target
option can be selected simply by lifting the finger off the screen, once the swipe gesture
has reached (or passed through) the particular menu item. The proposed design allows
memorizing swipe gestures for commonly used menu options (similar to the marking
menu concept [5, 10, 11]).

To make underlying application content visible as much as possible, we had to
replace the usual navigation model in which the menu widget covers up the whole
screen or large portion of the screen real-estate. Instead, the Tile menu utilizes a semi-
transparent visualization and additionally hides all items which are not relevant to the
current state of the swipe gesture. As shown in Fig. 1, only FORMAT and STYLE items
remain visible once the user swipes to the third level in the menu hierarchy. Hence,
the described approach provides several interaction benefits: (i) saving valuable space
on small touchscreens, (ii) allowing hierarchical navigation within the same application
activity, (iii) item selection by making use of a single swipe gesture, and (iv) retaining
the visibility of application content while handling the menu at the same time. It must
be noted here that swiping in a downward direction (and stacking submenus in a top-
down manner) was not considered as a possible design choice, due to the well-known
occlusion issue.

When the menu is minimized and visualized as FAB only, it allows two states of
operation. Namely, the menu activation button can be either active or locked. In the
locked state, swipe gestures for hierarchical navigation are enabled, and interaction with
the Tilemenu proceeds as described above. However, if FAB enters the active state, menu
navigation is then disabled, and FAB itself becomes draggable instead. Consequently,
the active state can be utilized for changing themenu position on the screen, according to
the users’ current needs and individual preferences. Altering the menu pivotal position
can become convenient when the context of use is changed (for example, switching
between single-handed and two-handed usage). Toggling the FAB state, between active
and locked, is enabled via simple tap-and-hold gesture.



Floating Hierarchical Menus for Swipe-Based Navigation 513

Fig. 1. Tilemenu is, initially, minimized and draggable, and can be activatedwhen the user swipes
up from its locked state (a). Top-levelmenu is activated: dragging the finger aboveFORMAToption
will activate new submenu and will hide all other items within the current level (b). Submenu for
FORMAT option is placed above the previous container. Item border (yellow) indicates that there
is an additional submenu available for a particular option (c). Lifting the finger off the screen
activates the last item (ITALIC) along the swipe trajectory (d).

As for alternative design which also utilizes floating principle and swipe-based navi-
gation, we implemented the Pie menu – a circular (pie-like) widget that already attracted
a number of research efforts in HCI field. In our case, finding the target item within this
menu relies on continuous finger movement. The main difference from the Tilemenu, as
well as from other similar radial-basedmenu solutions [6, 7, 9], lies in the submenu visu-
alization. Namely, instead of dynamically creating extra containers for new submenus,
existing elements inside the circular layout of the Pie menu are accordingly replaced
with new items. The corresponding interaction concept is illustrated in Fig. 2.



514 A. Salkanovic et al.

Fig. 2. The Pie menu is, initially, minimized and draggable, and can be activated when the user
swipes in any direction from its locked state (a). User can invoke a new submenu by hovering
(touch-dwelling) over the certain item.Highlighted items (yellow) indicate that there are additional
submenus available (b). When expandable option is selected (FORMAT), all items from the same
hierarchy level are replaced with new submenu (c). Lifting the finger off the screen activates the
last selected option along the swipe trajectory (ITALIC) (d). (Color figure online)

As with the Tile menu, the Pie menu also allows changing its pivotal position by
dragging the FAB to the preferred location on the screen. Placing the finger on FAB
in a locked state, and subsequently starting a swipe gesture in any direction will create
a circular container around the starting point, with all items from the top-level menu.
The container itself cannot exceed the screen boundaries, and cannot be furthermore
expanded. If the finger is dragged to the certain (expandable) item, and retained in the
same position for a given time (i.e. dwell time), all currentmenu options are replacedwith
the new ones from the corresponding submenu. This navigation pattern can be repeated
as long as there are available options within the hierarchical menu configuration. The



Floating Hierarchical Menus for Swipe-Based Navigation 515

final selection is invoked by ending the swipe gesture once the finger is dragged across
the target menu item. When this happens, the menu is automatically minimized to its
FAB form.

When compared to the Tilemenu design, the Piemenu generally utilizes less screen
space and usually requires less swiping. On the other hand, it is more susceptible to
the occlusion problem and allows only the current submenu to be visualized at a given
moment.

4 Empirical Evaluation

Implementations of the menu solutions so far described are evaluated and comparatively
analyzed by conducting a controlled experiment. In this section, we present the details
about the experiment design and discuss the obtained results.

4.1 Participants, Apparatus, and the Procedure

Thirty participants were involved in empirical research (23 males, 7 females), their age
ranging from 19 to 41 with an average of 23,6 years (SD = 3,63). In the introductory
questionnaire users reported their personal smartphone models (87% were owners of an
Android device), their dominant hand (only one was left-handed), and their preferred
hands posture while holding a smartphone (depicted in Fig. 3).

Fig. 3. The majority of the recruited participants generally prefer one-thumb single-handed
interaction with a smartphone device.

Before the actual experiment, users were involved in the short practice session in
order to get familiar with the two different menu designs. While testing the provided
solutions, participants were asked to complete twenty different menu navigation tasks
in total, ten using the Tile menu and the other ten using the Pie menu. At this stage, no
data was collected whatsoever.

In the actual experiment,we considered two independent variables:menudesign (Tile
vs Pie) and interaction style. When addressing the interaction style, we are referring to
the way of handling the mobile device. Specifically, we were interested if particular



516 A. Salkanovic et al.

hand posture (single-handed vs cradling) also makes a difference in executing menu
navigation tasks. The term cradling [12] corresponds to the use case wherein one hand
is holding the device, while the other – usually the dominant one – performs the touch
interaction.

For each experiment condition A–D (see Table 1), i.e. combination of the menu
design and the interaction style, users were instructed to select certain items from dif-
ferent menu configurations. In total, users were asked to complete 200 menu navigation
tasks, of which 50 unique ones had to be repeated within each experiment condition.
Experiment tasks were generated according to the available menu configurations with
various hierarchy structures. Namely, we defined fivemenu configurations with different
breadths and depths, equal to the ones that can be found in popular text editors, photo
editors and integrated development environments. This way we wanted to present users
with a rather familiar menu navigation tasks, instead of using fictional mock-ups. The
tasks involved both shorter and longer navigation routes, with themenu depth limit being
set to six submenu levels. The single task was displayed on the smartphone screen as
the required navigation path (e.g. Format → Style → Italic).

Table 1. Experiment conditions involved in the empirical evaluation.

Experiment condition Menu design/implementation Interaction style/device handling

A Tile menu Single-handed (one-thumb)

B Tile menu Cradling (forefinger)

C Pie menu Single-handed (one-thumb)

D Pie menu Cradling (forefinger)

Both implementations of the proposed hierarchical menus were tested on a Samsung
Galaxy S5 smartphone (SM-G900F) running Android Marshmallow OS. This device is
142 × 72.5 × 8.1 mm large and weighs 145 g. Two different devices of the same model
were available for the experiment, so twoparticipants could execute tasks simultaneously.

TwoAndroid applications were developed in order to run Tile andPiemenu services,
as well as to log all relevant interaction events. Both applications are using the same
SQLite database which stores information about the menu navigation tasks that have
to be accomplished during the experiment. Furthermore, both applications can access
configuration files (stored in the internal memory of a mobile device) which contain a
description of the menu structure. From these configuration files, specific menu naviga-
tion tasks can be defined either manually or automatically. Hence, we provided support
for tweaking the experiment settings in an easy way. For example, introducing a new
menu hierarchy and new tasks in the experiment requires preparing the corresponding
configuration file and utilizing the available task generator.

The time taken to complete the required menu navigation task is considered to be
the interval between a first touch inside the FAB (in its locked state) and a finger lift-off
event which ends the associated swipe gesture. This task execution time is measured by
the application itself, by making use of a built-in monotonic clock which is tolerant to



Floating Hierarchical Menus for Swipe-Based Navigation 517

power saving modes and is anyway the recommended basis for general- purpose interval
timing on Android devices. All network-based services on the smartphones were turned
off during the experiment. In case when target selection was not successfully achieved,
the corresponding task was not repeated, and error details were logged along the task
execution time.

A repeatedmeasures (i.e. within-subjects) experiment design was utilized. The order
of experiment conditions was properly counterbalanced using balanced Latin squares
[13], to compensate for possible learning effects. Additionally, the order of the menu
navigation tasks in a given sequence was randomized as well. Breaks were allowedwhen
switching between different experiment conditions. Users were also allowed to change
menu pivotal position, but only at the beginning of the new task sequence. Replacing
the menu position was programmatically constrained in a way that ensures that all menu
items stay inside the visible screen area.

After the participants completed all the tasks using both menus and both interaction
styles, they were asked to complete a post-study questionnaire based on the rating part
of the NASA-TLX (Raw-TLX format). Individual opinions about perceived workload
had to be estimated on a 20-point Likert scales for five factors: mental demand, physical
demand, frustration, performance, and effort. Subsequently, subjective opinions about
usability attributes of the two proposed menu designs were collected. Participants had to
rank the menus’ usability features, according to their personal preference, using 7-point
Likert scales. In the end, general design issues for both the Tile menu and the Pie menu
were assessed. The complete qualitative part of the evaluation was constructed in a way
to address the perceived differences between the two menu designs, hence interaction
style aspects were not specifically addressed within the related questionnaires.

4.2 Results and Discussion

Participants accomplished6000menu itemselections in total.After averagingdata across
four experiment conditions, altogether 120 menu navigation performance records were
obtained: 30 participants × 2 menu designs × 2 interaction styles. Figure 4 depicts the
task execution times for two different menu designs, achieved both single-handedly and
via cradling.

To analyze the obtained data, a two-way repeated measures ANOVA was used, with
Design (Tile, Pie) and Style (single-handed, cradling) being the within-subjects factors.
The analysis revealed a significant effect of Design on menu navigation time (F1, 29 =
18.783, p< .001). The effect of Style (i.e. the way of holding a mobile device) was also
found statistically significant (F1, 29 = 8.132, p < .05). Finally, the effect of Design *
Style interaction was not found statistically significant.

As for the pairwise comparisons, the differences in task execution times between the
proposed menu designs, as well as between interaction styles, are reported as follows:

• Tile menu vs. Pie menu: (5,002 ± 0.12 s) vs. (5,443 ± 0.08 s), p < .001
• Single handed vs cradling: (5,334 ± 0.10 s) vs. (5,110 ± 0.09 s), p < .001



518 A. Salkanovic et al.

Fig. 4. Menu navigation times (mean values and standard deviations) obtained within four
experimental conditions.

Thus, the Tile menu design showed to be more efficient, as swipe-based navigation
tasks were accomplished significantly faster than with the Pie menu. However, inter-
acting with the menus single-handedly showed to be significantly less efficient when
compared to cradling posture. It can be seen that difference between interaction styles
is more prominent when Tilemenu design is utilized. This can be explained as the result
of thumb movement constraints that are inherently higher when deep submenus have
to be reached within the Tile hierarchy. Specifically, the thumb needs to be stretched
more for reaching the submenus at the top part of the screen, which is not the case when
forefinger is used or if the Pie menu design is applied.

Errors made in menu navigation tasks are reported from the descriptive statistics
standpoint only. As shown in Table 2, error rates were rather low in all experiment
conditions. Log records revealed that most of the errors were made on the last submenu
level, when non-target item was unintentionally selected by ending the swipe gesture on
the wrong place.

Table 2. Error rates obtained within four experimental conditions.

Single-handed Cradling

Tile menu 5,13% 3,66%

Pie menu 3,93% 3,89%

As mentioned before, questionnaire based on Raw-TLX format was used in order
to obtain comparative ratings of perceive workload between Tile and Piemenu designs.
The respective outcomes are shown in Fig. 5.

The Wilcoxon signed-rank tests were used to assess obtained TLX-based scores for
each considered factor. ThePiemenu seems tobegenerally preferred amongparticipants;
however significant difference was found for one factor only. Namely, it was confirmed
that Tilemenu interaction implies significantly higher physical demand when compared



Floating Hierarchical Menus for Swipe-Based Navigation 519

Fig. 5. Users’ opinions on perceived workload for the proposed menu designs. For each factor,
the corresponding box plots showminimum andmaximum, 25 percentile (Q1), 75 percentile (Q3),
and median value (M).

toPiemenu (Z= − 3,699, p< .001). This result validates the aforementioned discussion
about particular movement constraints that are imposed by the Tile menu design.

Although frustration levels are evenly perceived, it was interesting to find out that
sources of frustration are completely different for two menu solutions. According to the
users’ comments, some were annoyed by continuous UI change within the Tile layout,
which combines submenu stacking and hiding certain menu items at the same time.
Conversely, the Pie menu layout is more consistent, but many participants reported
dwell time as too long, which made them somewhat irritated, especially towards the
end of the experiment. It must be noted here that dwell time was set to 1 s without the
possibility to change it during the experiment.

In the first part of the concluding survey, participants used 7-point Likert scales for
rating two menu implementations against the ease of use, perceived learnability, and
overall satisfaction. The obtained results are presented in Fig. 6. Wilcoxon signed-rank
tests revealed no significant differences between the Tile menu and the Pie menu with
regard to usability attributes in question. Nevertheless, score mean values indicate that
participants perceive Piemenu design easier to use and marginally easier to learn, which
automatically explains the outcome of satisfaction level comparison.

Finally, in the second part of the concluding survey, participants had a chance to
evaluate design choices implemented within the proposed menus, as well as to assess
the suitability of the menus for particular contexts of use. 7-point Likert scales were
used for comparative rating once again. Figure 7 presents the corresponding outcomes.

As can be seen, users reported the Pie menu to be a more convenient solution than
the Tilemenu in terms of single-handed device usage. This difference was confirmed as
statistically significant (Z=−2,324, p< .05) bymaking use of theWilcoxon signed-rank
test. Thus, the stated arguments on Tile menu interaction constraints are corroborated
once again. No other statistically significant effects were found.



520 A. Salkanovic et al.

Fig. 6. Usability attributes of the proposed menu solutions. Mean values and confidence intervals
are presented.

Fig. 7. Users’ opinions about specific design choices and suitability of the menus for particular
contexts of use. Mean values and confidence intervals are presented.

Obtained scores may furthermore indicate that the Pie menu is more suitable for
swipe-based interaction as well, although the occlusion problem seems to be less promi-
nent when a linear-based layout is used. According to the users’ answers, the semi-
transparency feature represents a reasonable design choice, because it benefits both
menu designs evenly.

Lastly, the possibility of changing menu pivotal position is generally considered
useful, with slightly more advantageous effects being perceived for the Tile menu. This
is in accordance with the log records which revealed that menu repositioning was almost
always utilized before starting the Tile testing sequence with different hands posture. In
general, FABwas predominantly moved at the bottom of the screen when Tilemenu was
utilized, whereas bottom corners (mostly the right one) were commonly occupied with
the Pie menu. When cradling posture was part of the particular experiment condition,
some users tended to move menu layout closer to the center of the screen.



Floating Hierarchical Menus for Swipe-Based Navigation 521

5 Conclusion and Future Work

Two different hierarchical menu designs for touchscreen mobile applications, that uti-
lize swipe-based navigation, were introduced and comparatively evaluated in a study
involving thirty participants. Tile menu implementation applies linear layout, and relies
on dynamical submenu stacking according to the gesture being performed. Conversely,
Piemenu utilizes consistent radial layout and additional touch-dwells for invoking sub-
menus in a multi-level menu hierarchy. Both menus are implemented as an Android
service, i.e. they are visualized as a semi-transparent floating widget on top of the target
application which can furthermore be repositioned. Navigation across the menu hierar-
chy is achieved using a continuous swipe gesture, thus avoiding the need for recurrent
tapping.

Empirical results revealed thatmenunavigation tasks are executed significantly faster
using the Tile design. Single-handed menu interaction, wherein a thumb is used for
making swipe gestures, showed to be significantly less efficient when compared to the
cradling style in which non-dominant hand is providing device stability. Qualitative
analysis, based on the questionnaire outcomes, showed that Pie menu is nevertheless
more preferred among the participants. It was confirmed that interacting with the Tile
menu implies significantly higher physical demand, which makes the Pie menu a more
convenient solution (especially in the single-handed context of use). Other differences
between Tile and Pie menu, in terms of interaction workload, usability attributes, and
design-related aspects were not found as statistically significant, but are nevertheless
discussed in detail.

In general, the proposedmenu designs proved to be a feasible option for swipe-based
navigation through deep hierarchical configurations. We believe that these solutions
could provide more effective utilization of available screen space, and an easy transition
from beginner to expert user.

Our future work plan includes providing further enhancements to existing menu
designs. In order to additionally reduce occlusion effects in Tile menu interaction, a
submenu activation should immediately follow when a specific (expandable) item is
selected. In the current version, a new submenu is displayed after dragging the finger
above the current-level layout. Due to dwell time being one of the limiting factors in
navigation efficiency with the Pie menu, our current research efforts are focused on
evaluating different dwell time values for such design. Reducing the time needed to
automatically activate submenus could potentially provide faster navigation through the
menuhierarchy.However, short dwell times couldmakePiemenu interactionmore error-
prone, because unintentional item selections are more probable in such case. Finally, a
longitudinal study should be conducted in order to investigate the effects of memorizing
swipe gestures for frequently selected menu items. This way, we could test the marking
menu concept, which is inherently involved in our designs, and actually observe the
expected transition from novice to expert user.

References

1. Bailly, G., Lecolinet, E., Nigay, L.: Visual menu techniques. ACM Comput. Surv. 49(4),
60:1–60:41 (2017)



522 A. Salkanovic et al.

2. Budiu, R.: Mobile Subnavigation. Nielsen NormanGroup (2017). https://www.nngroup.com/
articles/mobile-subnavigation/

3. Wiseman, N.E., Lemke, H.U., Hiles, J.O.: PIXIE: a new approach to graphical man-machine
communication. In: Proceedings of the CAD Conf. Southampton, vol. 463. IEEE Conference
Publication 51 (1969)

4. Callahan, J., Hopkins, D., Weiser, M., Shneiderman, B.: An empirical comparison of pie vs.
linear menus. In: Proceedings SIGCHI Conference Human Factors in Computing Systems
(CHI 1988), pp. 95–100. ACM Press, New York (1988)

5. Kurtenbach, G., Buxton, W.: The limits of expert performance using hierarchic marking
menus. In: Proceedings Conference Human Factors in Computing Systems (CHI 1993),
pp. 482–487. ACM Press, New York (1993)

6. Francone, J., Bailly, G., Nigay, L., Lecolinet, E.: Wavelet menus: a stacking metaphor for
adaptingmarkingmenus tomobile devices. In: Proceedings International ConferenceHuman-
Computer Interaction with Mobile Devices and Services (MobileHCI 2009), pp. 49:1–49:4.
ACM Press, New York (2009)

7. Bonnet, D., Appert, C.: SAM: the swiss armyMenu. In: Proceedings Conference l’Interaction
Homme-Machine (IHM 2011), pp. 5:1–5:4. ACM Press, New York (2011)

8. Kin, K., Hartmann, B., Agrawala, M.: Two-handed marking menus for multitouch devices.
ACM Trans. Comput. Hum. Interact. 18(3), 16:1–16:23 (2011)

9. Huot, S., Lecolinet, E.: ArchMenu et ThumbMenu: contrôler son dispositif mobile «sur le
pouce». In: Proceedings Conference l’Interaction Homme-Machine (IHM 2007), pp. 107–
110. ACM Press, New York (2007)

10. Zheng, J., Bi, X., Li, K., Li, Y., Zhai, S.: M3 gesture menu: design and experimental analyses
of marking menus for touchscreen mobile interaction. In: Proceedings Conference Human
Factors in Computing Systems (CHI 2018), pp. 249:1–249:14. ACM Press, New York (2018)

11. Roudaut, A., Bailly, G., Lecolinet, E., Nigay, L.: Leaf menus: linear menus with stroke
shortcuts for small handheld devices. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L.,
Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5726, pp. 616–
619. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03655-2_69

12. Hoober, S.: How do users really hold mobile devices? In: UXmatters. http://www.uxmatters.
com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php

13. MacKenzie, I.S.: Human-Computer Interaction: An Empirical Research Perspective. Morgan
Kaufmann, San Francisco (2013)

https://www.nngroup.com/articles/mobile-subnavigation/
https://doi.org/10.1007/978-3-642-03655-2_69
http://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php

	Floating Hierarchical Menus for Swipe-Based Navigation on Touchscreen Mobile Devices
	1 Introduction
	2 Related Work
	3 Floating Hierarchical Menus – Tile Menu and Pie Menu
	4 Empirical Evaluation
	4.1 Participants, Apparatus, and the Procedure
	4.2 Results and Discussion

	5 Conclusion and Future Work
	References




