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Abstract Pesticides have emerged as an integral tool of the farming activities and 
are used extensively to meet the increasing demand for food and feed. About 99% 
of the applied pesticides get accumulated in the nontarget organisms and environ-
ment. S-triazine herbicides have been classified as possible human carcinogens. Of 
these, atrazine was mostly used as it increases yield up to 50% based on crop and 
the most studied for toxicity and degradation. These pesticides are slowly degraded, 
and persistence leads to accumulation in soil or migrate to water bodies posing a 
severe threat to human and environment. Atrazine and its metabolites are frequently 
detected in surface water and ground water at concentrations exceeding the safety 
levels. We reviewed the biodegradation of s-triazine herbicides by microorganism, 
plants, and their degradation pathways. It was noted that atrazine degrading genes 
are widely distributed among the bacteria, but most of the bacterial strains do not 
contain all the genes required for atrazine mineralisation. Atrazine mineralisation 
appears to be more common in soils by microbial consortia than individual species. 
Certain bacteria including Arthrobacter sp. SC-JAK2 can degrade atrazine of above 
1 g L−1 concentration which is far above the reported atrazine contaminant concen-
tration in soil and water. Several reports concluded that excellent atrazine degraders 
in laboratory media, fail to do that in the complex natural environmental conditions 
that are suboptimal for growth or repress the synthesis of enzymes involved in the 
degradation pathway. Biostimulation and bioaugmentation studies showed rapid 
biodegradation of atrazine in contaminated sites. Major advances in the biodegrada-
tion of s-triazine-contaminated sites include the usage of genetically modified or 
engineered microorganisms, enzymatic bioremediation, and use of nanomaterials. 
With the help of advanced molecular and physiological approaches, it is possible to 
monitor the bioremediation and microbial community development in the atrazine- 
contaminated soil.

Keywords Atrazine · S-Triazine · Bioaugmentation · Biodegradation · 
Bioremediation · Biostimulation · Contaminant · Environment · Herbicides · 
Pesticides

2.1  Introduction

To meet the global requirement of food and fuel to some extent, pesticides are being 
used extensively in agriculture. Less than 0.1% of the applied pesticides reach the 
target organism, and the remainder gets deposited in soil and nontarget organisms 
or move into nearby water streams and lakes by leaching and agricultural runoff 
(Pimentel and Levitan 1986). These pesticides cause contamination of the environ-
ment and adversely affect the nontarget organisms and plants because of their per-
sistence in the soil and water bodies. The persistence of pesticides in the soil and 
water mainly depend on chemical stability, solubility in water, soil physicochemical 
properties, climatic conditions, soil microbial activity, and leaching. Pollution of 
soil and water with pesticides and their toxic metabolites have become a major 
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environmental concern in the twenty-first century. Hence, the obliteration of  
persistent pesticides is essential to their sustained use.

2.1.1  S-Triazine Herbicides

Symmetrical triazine (s-triazine) relates to a large family of herbicides widely used 
worldwide to control broadleaf weeds and annual grasses in various plantations, 
residential lawns, and golf courses. The first triazine, chlorazine, was discovered in 
1952 at J.R. Geigy Ltd. in Switzerland. Later in 1956, atrazine and simazine were 
discovered. The general structure of s-triazine herbicides is shown in Fig. 2.1. Side 
chains of triazine ring (X, R1, and R2) of commonly used triazine pesticides and 
their half-life in soil, applications in crops, as well as WHO classification are given 
in Table  2.1. Examples of s-triazines herbicides are chloro-s-triazines (atrazine, 
simazine, propazine, and cyanazine), the thiomethyl-s-triazines (ametryn, prome-
tryn, terbutryn), and the methoxy-s-triazine (prometon). Cyanuric chloride (tri-
chloro- 1, 3, 5-triazine) is the basic for the production of several s-triazine herbicides 
including atrazine and simazine. Triazines are taken up into the plant roots, distrib-
uted throughout the plant via xylem, and act by interrupting photosynthesis in leaves 
specifically inhibiting the photosystem II. The effectiveness of triazines is depen-
dent on several parameters including soil structure, moisture content, organic matter 
content, particle size distribution, and mode of application. Major advantages of 
using triazines are that it offers application flexibility and facility to mix with other 
herbicides for broad-spectrum weed control. They provide exceptional residual pre-
emergence as well as early postemergence weed control. This enable farmers to use 
no-till and conservation tillage systems that minimise soil erosion by more than 
50%. Triazine herbicides played a significant role in the adoption of conservation 
tillage, which significantly reduced fuel usage since fewer tillage trips are made 
across the field. Conservation tillage systems conserve soil moisture, increase the 
soil organic matter, and also dramatically decrease the water runoff and increase 
water infiltration. Minimizing soil erosion and water runoff will benefit the aquatic 
ecosystem. Further, these triazine herbicides paved way for the increased yield of 
food and feed in lesser space.

Only a fraction like less than 1% of the applied herbicide reaches the site of 
action within the plants. The loss is due to volatilisation, adsorption to soil, leaching 

Fig. 2.1 General chemical 
structure of s-triazine 
pesticides (X, R1, and R2 
are the side chains of 
triazine ring)
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Table 2.1 List of s-triazine pesticides

s-Triazine 
herbicides X R1 R2

Soil 
half- 
life 
(days) Applications

WHO 
classification

Atrazine -Cl -NHC2H5 -NHC3H7 
(iso)

14–
150

Corn, sorghum, 
sugarcane, 
pineapple, 
conifers, 
forestry

Slightly 
hazardous

Atratone -OCH3 -NHC2H5 -NHC3H7 
(iso)

30 Non- 
agricultural 
areas, 
sugarcane, corn

Obsolete 
substance

Ametryn -SCH3 -NHC2H5 -NHC3H7 
(iso)

37–
250

Sugarcane, 
corn, pineapple

Moderately 
hazardous

Cyanazine -Cl -NHC(CN)
(CH3)2

-NHC2H5 12–25 Vegetables, 
onions, 
potatoes, 
sweetcorn

Moderately 
hazardous

Desmetryn -SCH3 -NH2CH3 -NHC3H7 
(iso)

9–50 Brassicas, 
onions and 
leeks, fodder 
rape

Slightly 
hazardous

Dimethametryn -SCH3 -NHC2H5 -NHCH(CH3) 
C3H7 (iso)

37–
250

Sugarcane, 
corn, pineapple

Slightly 
hazardous

Prometryn -SCH3 -NHC3H7 
(iso)

-NHC3H7 
(iso)

41–60 Cotton, celery, 
dill, potatoes, 
sunflowers, 
carrots, peanuts

Slightly 
hazardous

Prometone -OCH3 -NHC3H7 
(iso)

-NHC3H7 
(iso)

500 Non-cropland Slightly 
hazardous

Propazine -Cl -NHC3H7 
(iso)

-NHC3H7 
(iso)

45–
131

Corn, sorghum, 
carrots, fennel, 
ornamentals, 
greenhouse use

Unlikely to 
present an 
acute hazard

Simazine -Cl -NHC2H5 -NHC2H5 60–
102

Corn, fruit and 
nut crops

Unlikely to 
present an 
acute hazard

Simetryn -SCH3 -NHC2H5 -NHC2H5 60 Rice, corn, 
bean, pea, 
cereals, cotton

Slightly 
hazardous

Terbutryn -SCH3 -NHC2H5 -NHC(CH3)3 14–74 Sugarcane, 
cereal, 
sorghum, 
sunflowers, 
peas, potatoes

Slightly 
hazardous

(continued)
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by rainfall, photochemical degradation by sunlight, microbiological degradation by 
soil microorganisms, chemical degradation by soil constituents, and thermal degra-
dation. S-triazines are toxic compounds and have been classified as possible human 
carcinogens. Simetryn, one of the major methylthio-s-triazine herbicides used in 
paddy fields, inhibits algal growth. Chlorinated triazine class of pesticides show 
common neuroendocrine mechanism of toxicity resulting in both reproductive and 
developmental concerns. The toxicity of these compounds has promoted research 
for their degradation. Atrazine is the most studied chlorinated triazine herbicide for 
toxicity and degradation.

2.1.2  Atrazine

Atrazine is one of the most widely used herbicides. Atrazine is very effective against 
a wide range of weeds and less expensive when compared to the alternative prod-
ucts. Atrazine inhibits D-1 quinone binding involved in photosystem II. Atrazine 
increases yield of about 6–50% based on crop. Despite the high agricultural yield, 
there is a huge concern for the continued use of atrazine in several parts of the 
world. For three decades from its discovery, microbial degradation was not observed 
as the triazine ring contains no available electrons for aerobic biodegradation. For 
microbial degradation, the only available energy source in atrazine is the ethyl and 
isopropyl side chains attached to the triazine ring. However, atrazine was converted 
by nonspecific monooxygenases to desethylatrazine and desisopropylatrazine. 
Small amount of hydroxyatrazine was formed by chemical processes. Atrazine and 
its metabolites are frequently detected in surface water and ground water at concen-
trations exceeding the safety levels. Atrazine is believed to cause endocrine disrup-
tion; carcinogenic effects including non-Hodgkin’s lymphoma, ovarian cancer, 
colon cancer, leukaemia, multiple myeloma, reduced sperm quality in humans 
(IARC 1999; Rusiecki et al. 2004), cancer, delayed reproductive development in 

Table 2.1 (continued)

s-Triazine 
herbicides X R1 R2

Soil 
half- 
life 
(days) Applications

WHO 
classification

Trietazine -Cl -N(C2H5)2 -NHC2H5 60 Potatoes, 
legumes, 
bananas, citrus, 
coffee, maize, 
sugarcane, tea, 
tobacco

Slightly 
hazardous

Terbuthylazine -Cl -NHC2H5 -NHC(CH3)3 22–60 Corn, sorghum, 
grape

Slightly 
hazardous

Where X, R1 and R2 = side chains of triazine ring (shown in Fig. 2.1)

2 Biodegradation and Bioremediation of S-Triazine Herbicides



36

rats, and male hermaphroditism in amphibians; and negative effect on aquatic 
organisms particularly in combination with other pesticides.

In anaerobic aquatic environment, atrazine’s overall half-life, water half-life, and 
sediment half-life were given as 608, 578, and 330 days, respectively. While in ter-
restrial environment, half-life of atrazine may range from 13–261 days (US-EPA 
2006). Atrazine dealkylation metabolites, such as deethylatrazine and deisopropyla-
trazine, are also regulated compounds and may pose health risks. Massive applica-
tion, high mobility, and persistence are the major reasons for the frequent detection 
of atrazine and its metabolites in surface and ground water at concentrations well 
above the legal limits globally. European Union banned atrazine use in October 
2003 but still in use in many parts of the world including the United States and 
India. However, Environmental Protection Agency has set the maximum contain-
ment level for atrazine in drinking water at 3 ppb. Triazine herbicides are persisted 
in the soil for 3–12 months and are slowly degraded by biological, chemical, and 
physical processes. This persistence period leads to accumulation in soil and water 
bodies posing a serious threat to human and environment. Therefore, utmost priority 
should be given to develop effective technologies for detoxification and/or removal 
of triazine pesticides and their metabolites. However, the metabolites of atrazine 
including hydroxyatrazine is less acutely toxic than the parent atrazine.

2.2  Biodegradation

2.2.1  Biodegradation of S-Triazine Herbicides by Bacteria

Pseudomonas sp. strain ADP was the first isolated atrazine-mineralizing strain. 
Many other bacteria are found to degrade atrazine as shown in Table 2.2. Atrazine 
mineralisation by microbial consortia appears to be more common in soils than 
individual species as most of the bacterial strains do not contain all the genes 
required for atrazine mineralisation (Billet et al. 2019; Kolic et al. 2007; Smith et al. 
2005). Bacteria use atrazine primarily as a nitrogen source. Satsuma (2010) reported 
that a newly isolated Nocardioides species strain DN36 not only mineralised sime-
tryn, atrazine, and simazine but also transformed propazine, ametryn, prometryn, 
dimethametryn, atraton, simeton, and prometon.

 Degradation Pathway

Triazine mineralisation is more or less similar to atrazine mineralisation and is 
achieved in two stages. In the first stage, atrazine is converted to cyanuric acid 
(2,4,6-trihydroxy-1,3,5-triazine) by dehalogenation and dealkylation of side chains. 
Conversion of atrazine to cyanuric acid takes place via one of the three pathways as 
shown in Fig. 2.2. P-1 is the hydrolytic pathway commonly found in many bacteria 
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catalysed by atrazine chlorohydrolase (AtzA) or triazine hydrolase (TrzN), hydroxy-
atrazine N-ethylaminohydrolase (AtzB) (BoundyMills et  al. 1997), and 
N-isopropylammelide aminohydrolase (AtzC) (Sadowsky et  al. 1998). In Gram- 
negative bacteria, AtzA is responsible for dechlorination of atrazine (deSouza et al. 
1996). TrzN of Gram-positive bacteria showed broad-spectrum activity, not only 
dehalogenation but also dislodges azido, cyano, S-alkyl, and O-alkyl substituents of 

Table 2.2 List of bacterial genera capable of degrading various triazine herbicides

Pesticide Bacteria References

Atrazine Acinetobacter sp. Singh et al. (2004a)
Aerobacterium sp. Vargha et al. (2005)
Agrobacterium sp. Devers et al. (2007)
Arthrobacter sp. Shapir et al. (2005a)
Bacillus sp. Vargha et al. (2005)
Chelatobacter sp. Rousseaux et al. (2001)
Citricoccus sp. Yang et al. (2018)
Deinococcus sp. Vargha et al. (2005)
Clavibacter sp. De Souza et al. (1998)
Delftia sp. Vargha et al. (2005)
Microbacterium sp. Vargha et al. (2005)
Micrococcus sp. Vargha et al. (2005)
Nocardioides sp. Piutti et al. (2003)
Polaromonas sp. Devers et al. (2007)
Pseudaminobacter sp. Topp et al. (2000)
Pseudomonas sp. Mandelbaum et al. (1995)
Ralstonia sp. Radosevich et al. (1995)
Rhizobium sp. Bouquard et al. (1997)
Rhodococcus sp. Behki et al. (1993)
Sinorhizobium sp. Devers et al. (2007)

Ametryn Agrobacterium sp. Moscinski et al. (1996)
Cyanazine Agrobacterium sp. Moscinski et al. (1996)

Rhodococcus sp. Behki (1993)
Prometon Agrobacterium sp. Moscinski et al. (1996)
Prometryn Bacillus sp. Mizrachi (1994)

Leucobacter sp. Liu et al. (2018)
Pseudomonas sp. Grossenbacher (1986)

Propazine Rhodococcus sp. Behki (1993)
Simazine Acinetobacter sp. Feakin et al. (1995)

Agrobacterium sp. Liao and Xie (2008)
Klebsiella sp. Sánchez et al. (2005)
Rhodococcus sp. Behki (1993)
Moraxella (Branhamella) sp. Kodama et al. (2001)
Pseudomonas sp. Hernandez et al. (2008)

Simetryn Bacillus sp. Mizrachi (1994)

Note: Gram-positive bacteria have the ability to degrade more than one s-triazine pesticide

2 Biodegradation and Bioremediation of S-Triazine Herbicides
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s-triazine herbicides (Topp et al. 2000). P-2 and P-3 are oxidative-hydrolytic path-
ways involving initial oxidative N-dealkylation of atrazine to deethylatrazine or 
deisopropylatrazine respectively by nonspecific monooxygenases (Devers et  al. 
2004). These products are dealkylated again to deisopropyldeethylatrazine, which is 
converted to cyanuric acid by hydrolytic dechlorination, deamination, and/or deal-
kylation (Govantes et  al. 2009). Atrazine degradation via these routes is mostly 
reported by a consortium rather than individual bacteria and is less common. In the 
second stage, hydrolytic cleavage of the s-triazine ring of cyanuric acid and subse-
quently hydrolysis of biuret and allophanate occur to yield ammonia and carbon 
dioxide (Fig. 2.3). In most of the atrazine mineralising bacteria, these enzymes are 
encoded by the atzDEF operon (Fruchey et  al. 2003; Karns 1999; Shapir et  al. 
2005b). Homologues to AtzD (TrzD) and AtzF (TrzF) perform the equivalent reac-
tions in other bacteria with small differences in substrate affinity and specificity 
(Rousseaux et al. 2001; Shapir et al. 2006). Atrazine will be biodegraded to cyanuric 
acid by one of the above three pathways.

Rhodococcus sp. strain FJ1117YT degrades the methylthio-s-triazines such as 
simetryn, ametryn, desmetryn, dimethametryn, and prometryn when supplied as the 
sole sulphur source. The biodegradation pathway of simetryn involves the forma-
tion of methylsulfinyl analogue as the first metabolite followed by methylsulfonyl 

Fig. 2.2 Atrazine degradative pathways (P1, P2, and P3) showing conversion of atrazine to cyan-
uric acid
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intermediate and the hydroxy analogues. The methylthio group of methylthio- s- 
triazines was progressively oxidised and hydrolysed (Fujii et al. 2007). Simazine 
degradation occurs via two pathways yielding either 2-hydroxysimazine or desethyl- 
simazine. Organic or inorganic nitrogen sources stimulated N5C cell growth, but 
had little effect on the simazine degradation rate. Some of the bacteria use prome-
tryn or ametryn as the sole source of sulphur for growth (Cook and Hütter 1982). 
Methylthio-s-triazines were transformed to their hydroxy compounds by whole 
cells and cell extracts of Nocardioides sp. strain C190 (Topp et  al. 2000) and 
Clavibacter michiganensis strain ATZ1 (Seffernick et al. 2000). Recombinant TrzN 
from Arthrobacter aurescens strain TC1 rapidly hydrolyses ametryn and methylsu-
finyl ametryn to hydroxyametryn (Shapir et al. 2005a).

 S-Triazine-Degrading Proteins

AtzA is a homohexamer of the amidohydrolase superfamily which contains one 
essential Fe2+ per monomer. AtzA hexamer is a trimer of dimers with a molecular 
weight of 315 kDa. AtzA gene has been proposed to be evolved from the TriA gene 

Fig. 2.3 Cyanuric acid 
degradative pathway 
showing conversion of 
cyanuric acid to carbon 
dioxide and ammonia
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(from Pseudomonas sp. strain NRRL B-12227) with only nine amino acid substitu-
tions in response to atrazine induction. Despite of 98% sequence similarity, they are 
functionally different. AtzA is a dechlorinase with no deaminase activity, while 
TriA is a deaminase with low dechlorinase activity. TrzN is a zinc-dependent ami-
dohydrolase which is ∼25% identical to atzA (Mulbry et al. 2002). TrzN is a dimer 
containing a single Zn2+ bound in each active site. Both AtzB and AtzC 
(N-isopropylammelide aminohydrolase) have a zinc metal centre in the active site. 
Shapir et al. (2002) reported that molecular weight of AtzC holoenzyme is 174,000 
and has a subunit size of 44,938 kDa. The activity of metal-depleted AtzC can be 
restored with Zn(II), Fe(II), Co(II), Mn(II), and Ni(II) salts. AtzD enzyme is a mem-
ber of a family of ring-opening amidases. Apart from those enzymes discussed ear-
lier, some other enzymes are reported to involve in the mineralisation of atrazine in 
few organisms. These include Rhodococcus sp. N186/21 cytochrome P450 (Nagy 
et al. 1995). Smith et al. (2005) reported that Nocardia converted hydroxyatrazine 
to N-ethylammelide via an unidentified gene product.

 S-Triazine-Degrading Genes

Triazine-degrading genes may be located on large plasmids or on the bacterial chro-
mosome (Devers et al. 2007). The atzABCDEF gene composition was found only 
in few bacterial strains including Pseudomonas sp. ADP and Agrobacterium sp. 
NEA-D and is located on a unique plasmid of 110 kb for ADP (pADP1 plasmid) 
and 137 kb for NEA-D. Atrazine mineralisation was well studied using Pseudomonas 
sp. ADP. AtzABC genes are dispersed in an unstable region and flanked by insertion 
elements with high homology to the known transposable DNA elements, IS1071 
and IS801. The rearrangements result in the stochastic loss of one, two, or all three 
atz genes. In the absence of atrazine selection pressure, atzB can be easily lost as in 
Aminobacter ciceronei strain C147 formerly Pseudaminobacter sp. (Topp et  al. 
2000). The genes encoding atzDEF are clustered in the atzDEF operon, which is 
located in a stable region of pADP-1. Adaptation of soil microflora to atrazine deg-
radation or mineralization may rely on horizontal gene transfer and repeated expo-
sure. Atrazine mineralization greatly depends on regulatory phenomena in response 
to nitrogen limitation and transcriptional activation by LysR-transcriptional regula-
tors. Devers et  al. (2007) reported the presence of TrzN gene in Gram-negative 
bacteria such as Sinorhizobium sp. and Polaromonas sp.

 Recombinants and Formulations

Genetically engineered microorganisms overexpressing catabolic genes considerably 
amplify the degradation in heavily atrazine-contaminated soils. Strong et al. (2000) 
employed transgenic AtzA-expressing E. coli to remove residual atrazine contamina-
tion in situ of soil contaminated with 29 g L−1 atrazine. Benson et al. (2018) observed 
superior biodegradation of atrazine by recombinant E. coli- expressing atrazine 
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chlorohydrolase encapsulated in organically modified silica gel. They reported that 
atrazine biodegradation is highly dependent on the adsorption.

2.2.2  Biodegradation of S-Triazine Herbicides by Fungus

Several soil fungi including Aspergillus fumigatus, A. flavipes, A. ustus, Fusarium 
oxysporum, F. roseum, F. moniliforme, Rhizopus stolonifer, Penicillium decumbens, 
P. luteum, P. janthinellum, P. rugulosum, and Trichoderma viride are reported to 
degrade atrazine by N-dealkylation of either alkylamino groups. They were unable 
to cleave the triazine ring. Although dealkylation is a pathway in majority of the 
fungal strains, formation of hydroxyatrazine was also observed in few fungal spe-
cies such as P. luteum (Kaufman and Blake 1970). Other atrazine-degrading fungal 
strains include white rot fungus Phanerochaete chrysosporium (Mougin et al. 1994) 
and Pleurotus pulmonarius (Masaphy et al. 1993). Donnelly et al. (1993) studied 
the atrazine degradation efficiency of Hymenoscyphus ericae, Oidiodendron gri-
seum, Trappea darkeri, and Rhizopogon vinicolor and reported that with increase in 
nitrogen concentration results in increased herbicide degradation. Penicillium 
steckii DS6F is the first simazine-degrading fungus ever reported (Kodama et al. 
2001). Szewczyk et al. (2018) reported the degradation of the ametryn by entomo-
pathogenic fungi. Metarhizium brunneum leads to formation of 2-hydroxy atrazine, 
ethyl hydroxylated ametryn, S-demethylated ametryn, and deethylametryn.

2.2.3  Biodegradation of S-Triazine Herbicides by Plants

In plants, three metabolic pathways are involved in atrazine transformation. The 
major pathway of atrazine detoxification in some resistant weeds is glutathione con-
jugation in which the glutathione S-transferase displaces chlorine atom at 2-carbon 
atom of atrazine (Lamoureux et  al. 1970). The second mechanism is hydrolysis 
where the chlorine atom in atrazine is replaced with a hydroxyl group. Resistance 
of corn to atrazine and simazine was primarily attributed to 2- hydroxylation path-
way (Hamilton and Moreland 1962). The third pathway is N-dealkylation, in which 
cytochrome P450 monooxygenases remove the ethylamino and isopropyl amino 
side chains. In pea and resistant sorghum, only the N-dealkylation pathway was 
performed in which atrazine is degraded to desethylatrazine and desisopropylatra-
zine. The first instance of atrazine uptake and degradation by aboveground plant 
biomass was shown in poplar trees (Burken and Schnoor 1997). In poplar trees, corn 
(Zea mays L.), and sorghum (Sorghum vulgare Pers.), atrazine metabolism occurs 
via 2-hydroxylation and N-dealkylation pathways (Shimabukuro 1967). Plant root 
exudates influence the atrazine degradation through the enhancement of microbial 
activity. Atrazine-contaminated soils planted with Pennisetum clandestinum showed 
faster atrazine degradation than in unplanted soil (Singh et al. 2004b). Rhizosphere 
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soils from Kochia scoparia and maize plants showed to accelerate mineralization of 
atrazine (Perkovich et al. 1996; Piutti et al. 2002). Wang et al. (2012) used a hydro-
ponic system to evaluate the potential of three emergent hydrophytes, Iris pseud-
acorus, Lythrum salicaria, and Acorus calamus for atrazine removal and uptake. 
Schmidt et al. (2008) studied the biconversion of [14C] atrazine to hydroxyatrazine 
and dealkylated products (de-ethyl-, deisopropyl- and de-ethyl- deisopropylatrazine) 
in heteroirophic cell-suspension cultures of soyabean (Giycine max L. Merr), carrot 
(Daucus caroia), purple foxglove (Digitalis purpurea), corn cockle (Agrostemma 
githago), wheat (Tritician aestivum), and thorn-apple (Datura stramonium).

2.2.4  Abiotic Degradation of S-Triazine Herbicides

Several physicochemical methods are proposed for cleaning of atrazine from con-
taminated soils, water, and wastewater. These techniques include incineration, 
reverse osmosis, electrodialysis, thermal absorption, ultraviolet, peroxides, and 
metal oxides. Various adsorbents including hypercrosslinked polymers (Streat and 
Horner 2000), zeolites, and organoclays (Bottero et al. 1994) have been studied for 
the removal of atrazine. Chemical methods used for atrazine degradation are pho-
tolysis, hydrolysis, dehalogenation, and oxygenation. Chemical hydrolysis of atra-
zine produces hydroxyatrazine in strongly acidic or basic solutions. These 
technologies are expensive and also release toxic by-products, which require further 
treatments. Atrazine degradation is negligible by sunlight, i.e. direct photolysis and 
result in the formation of hydroxyatrazine and dealkylated products of hydroxyatra-
zine. Photosensitisers such as dissolved organic carbon and nitrate absorb and trans-
fer light energy (indirect photolysis) to catalyse the degradation of atrazine to form 
cyanuric acid (Cessna 2008). Corrosive and toxic gases are formed during the incin-
eration process according to the component of the pesticide incinerated. For exam-
ple, pesticides containing chlorine can produce hydrochloric acid, and 
nitrogen-containing pesticides can produce nitrogen oxide and nitrogen dioxide 
during incineration. All the above gases are acidic and corrosive. These toxic 
exhaust gases are to be treated before letting it out to the environment.

2.3  Bioremediation

Bioremediation refers to the process of detoxifying the contaminated environments 
using microorganisms, plants, or their enzymes. This includes partial or complete 
transformation (mineralisation) of the pollutant via biodegradation process. 
Bioremediation is carried out by adding an enriched microbial culture capable of 
degrading the pollutant or by stimulating the native xenobiotic degrading bacteria. 
The major advantages of bioremediation process are that it is environment friendly 
and cost-effective. Benoit et al. (1998) reported the immobilisation of atrazine by 
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fungal biomass in soils enriched with lignocellulosic materials where the density of 
fungal mycelia may be high. Immobilisation of microbial cells on solid porous 
structures is used for bioremediation of triazine pesticides in water (Yu et al. 2019).

2.3.1  Phytoremediation

Phytoremediation has been suggested as an alternative bioremediation technique to 
the microbial degradation of pesticide-contaminated sites. Phytoremediation 
involves the use of vegetation for the in situ treatment of contaminated soil. Though 
phytoremediation may take longer period for cleaning up the contaminated sites, it 
is extremely useful for the sites with higher pesticide concentration that will inhibit 
the microbial growth and activity. Phytoremediation helps in enhancing the organic 
carbon in soil which helps in microbial growth. Phytoremediation occurs via four 
mechanisms: (i) direct uptake and accumulation of pesticides and subsequent 
metabolism in plant tissues are efficient mechanism of pesticide removal, (ii) tran-
spiration of volatile organic hydrocarbons through the leaves, (iii) release of exu-
dates that stimulates microbial activity and biochemical transformations in the soil, 
and (iv) enhancement of mineralization at the root-soil interface by microorganisms 
(Schnoor et  al. 1995). Phytoremediation can be a cost-effective and eco-friendly 
way of atrazine degradation. Pesticide-tolerant and nontarget plants can uptake and 
transform the pesticides to lesser toxic metabolites. Kawahigashi et al. (2006) pro-
posed phytoremediation of atrazine using transgenic rice plants expressing human 
cytochrome P450 genes CYP1A1, CYP2B6, and CYP2C19. Sanchez et al. (2019) 
indicated that the atrazine removal from soils was improved by the electric field 
coupled to phytoremediation.

2.3.2  Biostimulation and Bioaugmentation

Biostimulation is the method of adding appropriate and limiting nutrient amend-
ments to soils to enhance the rapid growth of indigenous bacteria, thereby increas-
ing atrazine degradation rate (Getenga 2003; Qiu et al. 2009). Essential nutrients in 
limiting quantities usually control the growth of native microbial population. The 
atrazine removal varies significantly depending on the concentration of atrazine, 
stimulant type, pH of medium, and inoculation time (Dehghani et  al. 2019). 
Biostimulation will not be effective when the bioavailability of the pesticide is low. 
Bioaugmentation is proposed for rapid and cost-effective cleaning of atrazine- 
contaminated sites (Zhao et  al. 2019). The addition of layered double hydroxide 
bionanocomposites (Alekseeva et  al. 2011) and carbon nanotubes (Zhang et  al. 
2015) has been reported to enhance the atrazine biodegradation rate. Bioaugmentation 
is not that much successful in field trials due to the poor environmental adaptability 
of the degraders, reduced bioavailability of atrazine, readily available carbon and 
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nitrogen sources, low utilization of additive substrates, and other complex environ-
mental condition that affects the growth and metabolic activity of the atrazine 
degraders. The addition of poultry manure increased atrazine removal two-fold as 
compared to that of control (Gupta and Baummer 1996). Lin et al. (2018) studied 
the role of earthworm in microbial degradation of atrazine. Earthworms accelerated 
atrazine degradation by consuming soil humus, neutralizing soil pH, altering bacte-
rial community structure, excreting the intestinal atrazine-degrading bacteria, and 
enriching indigenous atrazine degraders. Biostimulation and bioaugmentation helps 
to reduce the atrazine concentrations significantly in heavily contaminated soils.

2.3.3  Enzymatic Bioremediation

Enzymatic bioremediation will be a futuristic approach in resolving the pesticide- 
contaminated sites especially when the usage of genetically modified or engineered 
microorganisms is restricted by government regulations. Enzymes help to overcome 
the most disadvantages pertaining to the use of microbes and plants. Atrazine- 
degrading enzymes perform well in soil having high nitrogen content which supress 
the atrazine degradation pathway system in the microbial cells. Enzymes can reach 
the soil pores which are inaccessible to microbes and will be active in the presence 
of microbial predators or antagonists. The enzymes are highly selective in degrad-
ing the pollutants when the microorganisms prefer the more easily available carbon 
and nitrogen sources (Rajendran et al. 2018). Aspergillus laccase immobilised on 
biosorbents prepared with peanut shell and wheat straw has a strong potential for 
the effective removal of pesticides including atrazine and prometryn from water and 
soil by biosorption coupled with degradation (Chen et al. 2019). Enzymatic biore-
mediation also suffers from some drawbacks. The free enzymes may be degraded 
rapidly by the proteases released by the native soil microorganisms. Some enzymes 
require cofactors which have to be applied along with the enzymes. Further higher 
purity of the enzymes is much costlier compared to the use of microorganisms. 
They require optimal environmental conditions for maximum activity. Enzymes 
may reduce or lose their activity upon pesticide transformation and require repeated 
applications. Enzyme immobilisation offers long-term stability and can be reused or 
recovered. Enzymes can be immobilised on natural or synthetic supports through 
various immobilisation mechanisms. Immobilised enzymes have been reported to 
have higher stability and activity than the free enzymes.

2.3.4  Factors Affecting Atrazine Biodegradation

Environmental and soil conditions such as temperature, soil pH, structure, type, 
moisture content, nutrient availability, cation exchange capacity, fertility, organic 
matter, oxygen, and bioavailability of s-triazine pesticide greatly vary and affect the 
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biodegradation process. Atrazine was found to adsorb to humic acids and clays and 
to the various interrelated physical and chemical mechanisms of soil (Moreau- 
Kervévan and Mouvet 1998). Nitrogen compounds have been shown to have nega-
tive effect on atrazine degradation by numerous bacterial strains tested in pure 
cultures and in soil (Alvey and Crowley 1995; Entry et al. 1993; Garces et al. 2007). 
However, Agrobacterium radiobacter J14a (Bichat et al. 1999) and Arthrobacter sp. 
SC-JAK2 (Rajendran et al. 2018, 2019) are not influenced by the simultaneous pres-
ence of ammonium, nitrate, and urea in the growth medium. Atrazine-degrading 
enzymes are inducible in resting cells, if cells are acclimated in media containing 
growth-limiting nitrogen source, atrazine, or a pathway metabolite. However, their 
presence in media containing other nitrogen sources did not stimulate the atrazine 
degradation indicating that these microorganisms prefer the other nitrogen sources 
for their growth and metabolism. Low atrazine biodegradation is mainly attributed 
to its low water solubility and migration to soil pores inaccessible to microorgan-
isms. Although addition of surfactants enhances their solubility, they inhibit the 
microbial activity. Atrazine mineralization rate increases with the increase of water 
content up to 40% of field capacity. Mineralization was proportional to the organic 
matter content of the soils and oxygen content. Atrazine mineralization was found 
to be much slower under denitrifying conditions (Nair and Schnoor 1994). In spite 
of the presence of significant populations of native atrazine-degrading microorgan-
isms, their ability to significantly degrade the atrazine under complex environmen-
tal conditions appears to be limited.

2.4  Nanotechnology in Removal of S-Triazine Pesticides

Nanoscale materials are of significant research interest over the past several years 
because of their improved properties when compared to their bulk form. 
Nanomaterials including silver, titanium dioxide, and zinc oxide were used as pho-
tocatalysts for the heterogeneous degradation of pesticides. Zero-valent metals have 
been extensively researched for their usage in environmental remediation due to the 
strong reductive activity. Iron-based nanomaterials have obtained considerable 
attention in environmental remediation due to their high specific surface area, super-
paramagnetism, non-toxic and economic characteristics, and abundance. There is a 
concern on the usage of most nanomaterials intended for environmental application 
due to their toxicological effects on different biological systems. At present, only 
iron nanoparticles are considered to be safe for the environmental usage and biore-
mediation purpose. Some of the nanoparticles developed for s-triazine pesticide 
degradation or removal are presented in Table 2.3.
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2.5  Isolation of S-Triazine-Degrading Microorganisms

Several triazine-degrading bacteria were isolated from agricultural and other con-
taminated sites in various geographical regions. Minimal salt media containing 
varying concentrations of s-triazine herbicides as the sole source of carbon and/or 
nitrogen were used to enrich and isolate the efficient degraders. Enrichment can be 
carried out by transferring the initial culture to fresh media containing herbicide 
every week (up to 5–6 weeks). When the herbicide is first applied, a lag period is 
observed before degradation proceeds. On subsequent exposures, immediate rapid 
degradation of atrazine takes place. The addition of carbon source enhances the 
microbial growth which in turn stimulate the biodegradation process. Nitrogen 
amendment to the media inhibits the atrazine degradation in many bacterial strains 
(Entry et al. 1993; Garces et al. 2007). Repeated exposure to atrazine increases the 
degradation efficiency of the microorganism. After enrichment, potential atrazine- 
degrading isolates can be identified by clearance zone around the colony on mini-
mal media agar plates containing triazine pesticide. Very limited reports are available 
on anaerobic degradation of triazines compared to aerobic condition, perhaps due to 

Table 2.3 Nanomaterials used for s-triazine pesticide degradation or removal

S-triazine 
herbicide Nanoparticle/nanocomposite Process References

Ametryn Iron – functionalised with 1-butyl-3- 
methylimidazolidium bromide

Adsorption Ali et al. (2016)

Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) Sonocatalysis Li et al. (2017)
Atrazine Penicillium sp. doped with nano 

Fe3O4 in polyvinyl alcohol-sodium 
alginate gel beads

Biodegradation Yu et al. (2018)

Alginate-stabilised silver 
nanoparticle

Adsorption Pal et al. (2015)

Zinc oxide Ozonation Yuan et al. 
(2017)

Zero-valent copper Hydroxyl radical- 
induced degradation

Hong et al. 
(2017)

Pd, PdO, and Ag-Pd on hierarchical 
carbon structures

Degradation Vijwani et al. 
(2018)

Simazine Au–TiO2 Sonophotocatalysis Sathishkumar 
et al. (2014)

Diatomite-supported Zero-valent 
iron

Degradation Sun et al. (2013)

Al2O3 and Fe2O3 Sorption Addorisio et al. 
(2011)

Propazine Titanium dioxide Photocatalysis Konstantinou 
et al. (2001)

Cyanazine Titanium dioxide Photocatalysis Konstantinou 
et al. (2001)

Prometryne Titanium dioxide Photocatalysis Konstantinou 
et al. (2001)
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the difficulty in working with anaerobic cultures and slow growth of anaerobes. 
Under anaerobic conditions, soil samples can be enriched using either sulphate 
(20 mM of sodium sulphate) or nitrate (20 mM of potassium nitrate) as electron 
acceptors.

2.6  Analysis of S-Triazine Herbicide Degradation

In the early 1970s, triazine herbicides were analysed spectrophotometrically in the 
visible and UV regions and by paper- and thin-layer chromatography. Until the last 
decade, radiolabeled atrazine was used to study the uptake and detoxification of 
atrazine followed by quantification with thin-layer chromatography or high- 
performance liquid chromatography (HPLC). Advanced chromatographic 
approaches such as GC and HPLC have been developed for the detection of triazine 
herbicides. Abbas et al. (2015) reviewed the application of gas chromatography and 
high-performance liquid chromatography for analysis of triazine herbicide residues 
in various samples. Li et al. (2008) extracted atrazine with dichloromethane from 
soil and liquid media and analysed with gas chromatography system equipped with 
a flame ionization detector. Alkali flame detector and electrolytic conductivity 
detector were used together with a flame photometric detector which is specific for 
methylthiotriazines and microcoulometric detector specific for chlorotriazines for 
analysis of specific triazine herbicides. 63Ni electron capture detector was used to 
analyse halogenated compounds including atrazine.

HPLC is often the method of choice after extraction process. The major advan-
tage of s-triazine analysis with HPLC is that it does not require chemical derivatiza-
tion normally required for gas chromatography analysis. HPLC also provides 
accurate analysis even in the presence of interfering compounds with GC such as 
n-alkanes which do not absorb UV light at the wavelength chosen for triazine quan-
tification. Pacáková et al. (1988) separated 18 s-triazine derivatives using reversed- 
phase C18 columns with both UV and amperometric detection by HPLC.  UV 
detection was good for detection of all triazines, while amperometric is useful for 
hydroxyl derivatives of triazine compounds. Further confirmation can be done with 
gas chromatography- or liquid chromatography- mass spectrometry in conjunction 
with thermospray coupling using either a high-resolution or a quadrupole mass 
spectrometer. There are several studies of HPLC being used as the preferred tech-
nique for triazine analysis.

2.7  Conclusion

Farmers have concern over the ban of atrazine. Atrazine ban will have substantial 
financial impacts on farmer as well as nation economy. An estimated 2 billion dol-
lars and as much as 343  million dollar were estimated to be the revenue loss 
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annually by corn and sugarcane industries, respectively, in the USA due to elimina-
tion of atrazine (US-EPA 2006). Furthermore, there will be much more loss when 
all the atrazine-dependent crops are included. Postemergence application of other 
herbicides involves several risk including (i) crop injury as it is applied directly to 
the emerged crop and weeds, (ii) greater competition between crop and weeds until 
herbicide application, and (iii) fewer or lack of emergency remedies for weed con-
trol if the application of herbicide is missed due to the bad weather or other factors. 
Physical and chemical methods have not been effective in detoxifying the herbi-
cides under field conditions. Biological methods are the most practical. Research on 
phytoremediation for s-triazine-contaminated soil is limited. Microorganisms have 
inherent ability to degrade triazine pesticides by utilising them as carbon and nitro-
gen source. Several reports concluded that excellent atrazine degraders in labora-
tory media fail to do that in the complex natural environmental conditions that are 
suboptimal for growth or repress the synthesis of enzymes involved in the degrada-
tion pathway. In these cases, enzymatic bioremediation is the excellent solution 
available now. Since these herbicides are often used in combination with other pes-
ticides, the remediation approaches must able to cope up and degrade or remove 
these multi-pesticides. The limiting factor in atrazine biodegradation is the lack of 
efficient atrazine-mineralising microorganisms that can cleave the triazine ring. 
Much research has to be focussed on biostimulation, bioaugmentaion, and develop-
ing recombinant strains to cope up these conditions. With the help of advanced 
molecular and physiological approaches, such as fluorescent in situ hybridization, 
denaturing- and temperature-gradient gel electrophoresis and phospholipid fatty 
acid analysis, and community-level physiological profiling, it is possible to monitor 
the bioremediation and microbial community development in the atrazine- 
contaminated soil. The degradative potential of atrazine compromised sites can be 
established using the primers for the atzABC enzymes.
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