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In this paper, we refer to digraphs in the classical sense as static digraphs. A
temporal digraph is a digraph that exists and changes in a time interval 7. That
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Abstract. A temporal digraph G is a triple (G,~v,\) where G is a
digraph, v is a function on V(G) that tells us the time stamps when
a vertex is active, and A is a function on E(G) that tells for each
uv € E(G) when u and v are linked. Given a static digraph G, and a
subset R C V(G), a spanning branching with root R is a subdigraph of G
that has exactly one path from R to each v € V(G). In this paper, we con-
sider the temporal version of Edmonds’ classical result about the prob-
lem of finding k edge-disjoint spanning branchings respectively rooted at
given Ry,---, Rix. We introduce and investigate different definitions of
spanning branchings, and of edge-disjointness in the context of temporal
graphs. A branching B is vertex-spanning if the root is able to reach
each vertex v of G at some time where v is active, while it is temporal-
spanning if v can be reached from the root at every time where v is
active. On the other hand, two branchings B; and By are edge-disjoint
if they do not use the same edge of G, and are temporal-edge-disjoint if
they can use the same edge of G but at different times. This lead us to
four definitions of disjoint spanning branchings and we prove that, unlike
the static case, only one of these can be computed in polynomial time,
namely the temporal-edge-disjoint temporal-spanning branchings prob-
lem, while the other versions are NP-complete, even under very strict
assumptions.
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is, given a static digraph G, a temporal digraph G with base static digraph G and
lifetime 7 changes as follows: at each time stamp t € T, only a subdigraph of G
is active, and edges might have a delay, leaving a vertex at some time stamp but
arriving only later. If a vertex v € V(@) is active at every t € 7, we say that v
is permanent.

In this paper we deal with disjoint spanning branchings in temporal digraphs,
which are well-understood structures in digraphs. Given a digraph G, and a
subset R C V(G), we say that H C G is a spanning branching of G with root R
if V(H) = V(G), and H contains exactly one path between some r € R and u, for
each u € V(G). Given subsets Ry, - - - , Ry, a classical result by Edmonds [9] gives
a necessary and sufficient condition for the existence of k edge-disjoint branchings
with roots Ry, - , Ry, respectively. His result also gives a polynomial algorithm
that constructs these branchings.

When translating concepts to temporal graphs, it is often the case that theo-
rems coming from graph theory, in the classical sense, can hold or not depending
on the adopted definition. Indeed, in [14] the authors give an example where
Edmonds’ result on branchings does not hold on the temporal context. However,
as we will see later, their concept is just one of many possible definitions, and
in fact there is even one case where polynomiality holds.

Another example of such behavior is the validity of Menger’s Theorem. It
has been shown that the edge version of Menger’s Theorem holds [3], even if
one considers weights on the edges [2]. However, the vertex version of Menger’s
Theorem holds or not, depending on how one interprets what a cut should be.
If a cut is understood as a subset of V(G), then Menger’s Theorem does not
hold [3,14]; and if it is understood as a subset of the appearances of vertices
in time (alternatively, a cut can be seen as deactivating vertices at some time
stamps), then Menger’s Theorem holds [18].

Our Contribution. Given a temporal digraph G with base digraph G, and subsets
of wertices in time Ry,--- , Ry, i.e. sets of pairs (u,t) where u is a vertex of G
and ¢ a time stamp, here we investigate the many variations of finding (pairwise)
disjoint spanning branchings with roots Ri,---, Ri. Spanning can mean that
one wants to pass by at least one appearance of each u € V(G) (called vertex
spanning), or by all appearances of each u € V(G) (called temporal spanning).
Similarly, edge-disjoint can have different interpretations, as it can refer to edges
of G or to the appearances of these edges in G. We say that two branchings are
edge-disjoint if they do not share any edge of GG, and that they are temporal-
edge-disjoint (or t-edge-disjoint for short) if they do not share any appearance
of an edge of G in G. We found that the only case in which this problem is
polynomial (as its static counterpart) is when we want t-edge-disjoint temporal-
spanning branchings. We also found that if vertices are permanent (this is the
more popular case where vertices are always active), the problem is polynomial
for temporal-spanning branchings and NP-complete otherwise. Our results are
summarized in Table1 and detailed in the following main theorem. A digraph
G is a in-star if there exists u € V(G) such that all the edges in G are incoming
edges to u.
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Table 1. Our results. Vertices are permanent if they are always active.

NOT PERMANENT VERTICES PERMANENT VERTICES
EDGE-DISJOINT | T-EDGE-DISJOINT | EDGE-DISJOINT | T-EDGE-DISJOINT
TEMPORAL- | Poly NP-c Poly Poly
SPANNING
VERTEX- NP-c NP-c NP-c NP-c
SPANNING

Theorem 1. Let G be a temporal digraph with base digraph G, and consider
subsets of vertices in time, Ry, -+, Ry. The problem of finding k branchings
rooted at Ry, - , Ry is:

1. Polynomial for t-edge-disjoint temporal-spanning,

2. NP-complete for edge-disjoint temporal-spanning even if G is a in-star, and
each snapshot has constant size, or if G has lifetime 3. And if vertices are
permanent or G has lifetime 2, then edge-disjoint temporal-spanning becomes
polynomial.

3. NP-complete for edge-disjoint vertex-spanning even if G is a DAG, the lifetime
of G is 2, and vertices are permanent.

4. NP-complete for t-edge-disjoint vertez-spanning even if G is a DAG, the life-
time of G is 2, and vertices are permanent.

As said before, Edmonds’ condition is the characterization behind the poly-
nomial algorithm for finding k£ edge disjoint spanning branchings in digraphs.
Because of our NP-completeness results, it is worth remarking that, unless
P=NP, any such characterization for the NP-complete cases in temporal digraphs
should be checkable in superpolynomial time, unlike the one provided by
Edmonds.

Finally, our reductions further imply that, in the case of edge-disjoint
temporal-spanning, even if the base digraph G is a in-star, the problem cannot
be solved by an algorithm running in time O*(2°(7)) unless ETH fails, where
T is the lifetime of G. Moreover, in the vertex-spanning variations, the problem
also cannot be solved in O*(QO("‘“”)) under the same assumption, where n and
m are respectively the number of nodes and edges of the base digraph of G.

Related Work: While it is easy to imagine a variety of graph problems that
can profit from considering changes in time, it is hard to pin-point when the
study of temporal graphs and similar structures began. Nevertheless, in the last
decade or so, it has attracted a lot of attention from the community, with a
considerable number of papers being published in the field (we refer the reader
to the surveys [15,19]). We mention that temporal graphs (or other very similar
structures) appear in the literature under a number of names, such as dynamic
networks [4], time-varying graphs [8], evolving networks [5], and link streams [15].
Also, many works consider a temporal graph G as having vertices that are always
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active, and edges have the same starting and ending time [2,6,14,18,20]. While
models where edges that have a delay are more common [8,25], models where
nodes can be inactive have already been considered in [8,15].

A path in temporal graphs is generally understood as a sequence of edges
respecting time, i.e. the arrival time in each vertex of the path must be lower than
the departing time of the next edge taken. In this context, a number of metrics
can be related to a path, such as earliest arrival time, latest departure time,
minimum number of temporal edges, and minimum traveling time [25]. When
vertices can be inactive, we have to further ensure that, when waiting for the
next edge on a certain vertex, it must remain active in the waiting period [8]. In
this scenario, the definitions of reachability and connectivity change accordingly,
and it is natural to ask how well-known structures and results from graph theory
in the classical sense change taking into account the temporal constraint.

Temporal definitions of trees [6,15] and (minimum) spanning trees [13], which
are related to our definition of branching, have been proposed and investigated,
and usually consist of ensuring that the root-to-node path in the tree is a valid
temporal path. Analogously, temporal cuts from a vertex s to ¢ aim to break any
temporal path from s to ¢ and can be related to extending the max-flow min-cut
Theorem to temporal graphs [2]. And as we have already mentioned, different
conclusions have been made about a temporal version of Menger’s Theorem
depending on the adopted translation in terms of temporal graphs [3,14,18].

Edmonds’ Theorem on disjoint branchings is a classical theorem in graph
theory, with many distinct existing proofs (e.g. Lovdsz [16], Tarjan [24], and
Fulkerson and Harding [12]), and has many interesting consequences on digraph
theory (e.g., one can derive Menger’s Theorem from it, characterize arc-
connectivity [22], characterize branching cover [11], ensure integer decomposi-
tion of the polytope of branchings of size k [17], etc). As far as we know, the
only other time that Edmonds’ Theorem has been investigated on the temporal
context has been in [14], where the authors give an example where the theorem
does not hold. The definition used by them falls into our category of edge-disjoint
vertex-spanning branchings, which we prove to be NP-complete even under very
strict constraints.

Structure of the Paper. The paper is organized as follows. In Sect. 2, we formal-
ize the definitions of spanning branchings and disjointness, also showing that
having multiple roots in each of the k branchings is computationally equivalent
to having a single root for all of the k branchings. In Sect.3, we present the
results about temporal-spanning branchings. In Sect.4 we present our results
concerning vertex-spanning branchings. Finally, in Sect. 5, we draw our conclu-
sions and make some final remarks. The proofs of the results marked with ‘(x)’
can be found online in [7].

2 The Temporal Disjoint Branchings Problems

This section is devoted to formally define the several concepts of temporal graphs
and disjoint branchings we introduce in this paper. A temporal digraph G is a
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triple (G,v,A) where G is a digraph and v and A are functions on V(G) and
E(G), respectively, that tell us when the vertices and the edges appear. More
formally, for each v € V(G) we have v(v) C N, and for each edge e € E(G) we
have A(e) C N x N. Also, if (¢,¢') € A(uv), then ¢ < t, ¢t € y(u) and t' € y(v).
Here, we consider only finite temporal digraphs, i.e., 7 = max UUEV(G) ~v(v) is
defined and is called the lifetime of G. We call G the base digraph of G. In what
follows, unless said otherwise, we work on general digraphs, i.e., directions, loops
and multiple edges are allowed.

In particular, if 7 is the lifetime of G = (G,v, ), y(v) = [7T] for each
v € V(G), and t = ¢ for every (t,t') € AE(G)), then the above definition
corresponds to the definition of temporal graph given in [14] and many other
works. The above definition also generalizes the definition of stream graph given
in [15], and of time-varying graphs given in [1].

The vertices and edges of G are the vertices and edges of G. We say that a
vertex v is active at time t if t € v(v), and that v is active from t; to tg if v
is active for every time t with ¢; < ¢ < to. Also, if v is active throughout the
lifetime of G, then we say that v is permanent. The set Vi of temporal vertices
is the set {(v,t) | v € V(GQ) and t € y(v)}, and the set Ep of temporal edges
is the set {(u,t)(v,t') | e = wv € E(G) and (t,t') € A(e)}. Observe that a
temporal digraph G = (G,,\) can be also seen as a pair of digraphs (G, Gr)
where Gr = (Vr, Er). This is similar to what has been proposed in [1] and [2].
We call the digraph G the (v, A)-digraph of G.

Since in our more general case, also vertices appear and disappear, the defi-
nition of walk must take into account that it is possible to wait only on vertices
which are active, as formally defined next. Given temporal vertices s1, s, € Vi,
an sy, sk-temporal walk in (G,Gr) is a sequence of temporal vertices and tem-
poral edges, (s1,...,sk), that either goes through a temporal edge, or stays on
different copies of the same vertex of G. More formally: if s; is a temporal edge,
then s;_; and s;41 are temporal vertices and s; goes from s;,_; to s;41; and if
s; and s;41 are temporal vertices, then s; = (v,t) and s;41 = (v,t + 1) for some
vertex v and some time ¢. If such a walk exists, we say that sy reaches sj.

A temporal digraph B = (G’,7/,\') such that G’ C G, v Cyand X C X is
called a temporal subdigraph of G.! Let R C Vp; a temporal subdigraph B of G
is a temporal-spanning branching of G with root R if B has a unique temporal
walk from R to every vertex in Vp, i.e. for any (u,i) € Vp there is exactly one
temporal walk in B starting at some vertex r € R and arriving at (u,). And B
is a vertex-spanning branching of G with root R if B has exactly one temporal
walk from R to some vertex in {(u,) € Vr} for every u € V(G).

Given two branchings By = (G1,v1,A1) and By = (Ga,72, A2) rooted at
Ry, R, respectively, either both temporal-spanning or both vertex-spanning, we
say that By and By are temporal-edge-disjoint (or t-edge-disjoint for short) if
they have no common temporal edges; more formally, if Aj(e) N Az2(e) = O for

! Here, a function is seen as a set of ordered pairs, and the containment relation is the
usual one for sets.
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every e € E(G). And we say that By and Bs are edge-disjoint if there is no edge
wv € E(G) that has copies in both By and By; more formally, E(G1)NE(G2) = 0.

Problem 1 (k X-disjoint Y -spanning Branching). Let X € {edge,t-edge}, Y €
{temporal, vertex}, and k be a fixed positive integer. Given a temporal digraph G,
and subsets of temporal vertices Ry,..., Ry C Vp, find £ X-disjoint Y-spanning
branchings B, ..., By respectively with roots Ry, ..., Ry.

We introduce the following restriction of Problem 1, which corresponds to
finding branchings that have a single root (also called out-arborescence).

Problem 2 (k Single Source X-disjoint Y -spanning Branching). Let X €
{edge, t-edge}, Y € {temporal, vertex}, and k be a fixed positive integer. Given a
temporal digraph G, and a temporal vertex r € Vi, find k X-disjoint Y-spanning
branchings By, ..., By each one with root r.

Lemma 1. Problem 1 is computationally equivalent to Problem 2.

Proof. Problem 2 is clearly a restriction of Problem 1. In the following we provide
the reduction in the opposite direction, from the problem where each branching
has a subset of Vp as roots to the problem where each branching has a single
same root. For this, for each ¢ € [k] add a new vertex r; to G adjacent to every
u € V(G) such that (u,t) € R;, for some t € [7]. Then, make v(r;) = {0},
and for each (u,t) € R;, add (0,¢) to A(r;u) (which is the same as adding the
temporal edge (r;,0)(u,t) to G). Moreover, add a vertex r and make it adjacent
to {r1,---,ri}; also make v(r) = {0} and A(rr;) = {(0,0)} (which is the same
as adding temporal edges (r,0)(r;,0) for every i € [k]).

One can see that k vertex-spanning (resp. temporal-spanning) branchings
rooted at r give k vertex-spanning (resp. temporal-spanning) branchings rooted
at Ry,---, Ry, and vice-versa. The edge-disjointness, both for t-edge or edge-
disjoint versions, clearly are not altered by adding the new temporal edges. O

The next easy proposition tells us that if finding & disjoint spanning branch-
ings is hard, for some fixed k, then so is finding k£ + 1 of them.

Proposition 1. Let X € {edge, t-edge}, Y € {temporal, vertez} and k be a fixed
positive integer. If Problem k X -disjoint Y -spanning Branching is NP-complete,
then the same holds for Problem k 4+ 1 X-disjoint Y -spanning Branching.

Proof. To reduce from k to k + 1, it suffices to add Ry41 = Vr as entry. Surely
the (k+1)-th branching has no temporal edges, which means that the other ones
form a solution to the initial problem. a

3 Temporal-Spanning Branchings

This section is devoted to study Problem 1 in the case where Y is tem-
poral, i.e. we aim to find k X-disjoint temporal-spanning branchings, with
X € {edge, t-edge}. We will hence prove Item 1 and Item 2 of Theorem 1 respec-
tively in Sect. 3.1 and in Sect. 3.2.
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3.1 T-Edge-Disjoint Temporal-Spanning Branchings

Let G = (G, 7, A), and let V, Ex be its set of temporal vertices and edges, respec-
tively. Also, let Ry, -, Rx € Vi, and H = (Vp, Ep UE"), where E’ contains k
copies of the edge (u,t)(u,t+1) whenever {(u,t), (u,t+1)} C V. We prove that
G has the desired branchings iff H has k edge-disjoint spanning branchings with
roots Ry, -+, Rg. Then, Item 1 of Theorem 1 follows by Edmonds’ result [9].

Lemma 2. Let G = (G,~,\) be a temporal digraph, Ry,--- , Ry, C Vi, and H be
constructed as above. Then, G has k t-edge-disjoint temporal-spanning branchings
rooted at Ry, -, Ry iff H has k edge-disjoint spanning branchings rooted at
R17 Tty Rk'

Proof. Let By,--- , By be t-edge-disjoint temporal-spanning branchings rooted
at Rq,---, Ry, respectively. For each B;, let B; be a spanning subgraph of H
initially containing the temporal edges of B;; then for each (u,t) € V(B;), if the
only walk in B; from R; to (u,t) contains (u,t)(u,t+ 1) as a subsequence, then
add an unused copy of (u,t)(u,t + 1) € to B;. Because this walk is unique and
cannot pass twice from time stamp ¢ to time stamp ¢t + 1, we get that at most
k copies are needed, and, hence, the produced branchings are edge-disjoint. The
converse can be easily proved by deleting the edges in E’ from the solution to
obtain the temporal subgraphs. a

3.2 Edge-Disjoint Temporal-Spanning Branchings

In this section, we prove Item 2 of Theorem 1. For this, we first prove that the
problem is NP-complete, and then that it is polynomial when each vertex is
active for a consecutive set of time stamps. This includes the popular case where
vertices are assumed to be permanent, as well as the case where T' = 2.

Theorem 2 and Theorem 3 below detail our NP-completeness results. In the
next proof, we make a reduction from the k-WEAK DISJOINT PATHS problem
(k-WDP), where we are given a digraph G and a set I of k pairs of vertices
{(s1,t1), ..., (sk,tr)} (called the requests) of V(G) and the goal is to find a
collection of pairwise edge-disjoint paths {P,..., P;} such that P; is a path
from s; to t; in G, for i € {1,...,k}. The k-WDP problem is NP-complete for
k =2 [10] and W[1]-hard with parameter &k in DAGs [23].

Theorem 2. Let k > 2 be a fized integer, G = (G,7, ) be a temporal digraph,
and Ry, ..., Ry C V. Deciding whether G has k edge-disjoint temporal-spanning
branchings rooted at Ry, --- , Ri is NP-complete even if G has lifetime 3.

Proof. Let (G,I) be an instance of 2-WDP with T = {(s1,t1), (s2,t2)}, and
define W = {1, %1, 2, t2}. Assume that s1, s2 are sources, t1, to are sinks, and all
vertices in W are distinct. We construct the temporal graph G = (G, v, A) with
subsets Rp, Ry such that G has 2 edge-disjoint temporal-spanning branchings
rooted at Ry, Ry if and only if (G,I) is a “yes” instance of 2-WDP. The NP-
completeness for higher values of k follows from Proposition 1.
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In the constructed temporal graph, there are no temporal edges of the type
(u,t)(v,t") with ¢t # t'. For this reason, it is easier to describe our temporal
graph by describing, for each timestamp, what are the vertices and edges that
are active. These are called snapshots and consist of subgraphs of G formed at
each timestamp.

We let the first snapshot of G initially consist of G — {s2,t2}, and the
third snapshot initially consist of G — {s1,t1}. Then, we add a new vertex x
to snapshot 1, and add the edges: {zv | v € V(G) \ {s2,%2}} U {tiv | v €
(V(G) U{z})\ {51, s2,t2}}. Similarly, we add a new vertex y to snapshot 3, and
add the edges: {yv | v € V(G)\{s1,t1}} U {tov | v € (V(G) U {y})\{s2, s1,t1}}.
Observe Fig. 1.

G-—W+s1 G—-—W + 59

(Jp &

G Go G

Fig. 1. Temporal graph constructed from an instance (G,I) of 2-WDP, where I =
{(s1,t1), (s2,t2)} and W = {s1,t1, 82, t2}. Edges arriving in ¢1 and ¢2 originally from
G are omitted.

Define Ry = {(s1,1), (y,3)} and Rs = {(s2,3), (z,1)}. Now, we prove that
(G,I) is a “yes” instance of 2-WDP if and only if G contains two edge-disjoint
temporal-spanning branchings rooted at R; and Rs, respectively. Notice that
snapshot 2 of G is empty, thus each path in G can be represented by either a
temporal path on snapshot 1 or a temporal path on snapshot 2.

First, let P, and P, be two edge-disjoint paths from s; to ¢; and from s
to to in G, respectively. Let T be initially the copy of P; in snapshot 1, and
T5 be initially the copy of P, in snapshot 3. Note that the vertices not spanned
by T; are all the copies of v ¢ V(P;) in snapshot 1, together with all the
vertices in snapshot 3, and vertices {(x,1), (y,3)}. To span snapshot 3, add to
Ty all edges between (y,3) and (v,3), for every v € V(G) \ {s1,t1}. To span
the remainder of snapshot 1, add all edges between (¢1,1) and (v,1), for every
v € V(G) \ (V(Py) U {s2,t2}), and the edge from (t1,1) to (z,1). A similar
argument can be applied to span every temporal vertex also with 7T5. Because
P; and P, are edge-disjoint, we get that 77 and T5 could only intersect in the
added edges, which does not occur because all edges added to T} are incident
to t; and y, all edges added to T5 are incident to t3 and x, and there is no
intersection between these.
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Now, let T} and T5 be edge-disjoint temporal-spanning branchings in G with
roots R1, Ry. Denote snapshot 1 by ;. Since ¢; appears only in G1, and the only
root of Ry in G is (s1,1), we get that in T there exists a path of Gy going from
(s1,1) to (t1,1). Because the only incoming edge to (z,1) is (t1,1)(z, 1), we get
that (z,1) cannot be an internal vertex in this path, and hence it corresponds
to a path in G, P;. Applying a similar argument, we get a path P, from ss to to
in G taken from 75, and since 717 and 75 are edge-disjoint, so are P, and P,. O

The next result concludes the proof of Item 2 of Theorem 1.

Theorem 3 (x). Let k > 2 be a fized integer, G = (G,7v,\) be a temporal
digraph, and Ry, ..., Ry C V. Deciding whether G has k edge-disjoint temporal-
spanning branchings rooted at Ry,--- , Ry is NP-complete, even if G is a in-
star, and each snapshot has constant size. Furthermore, in this case, there is no
algorithm running in time O*(QO(T)) to solve the problem, unless ETH fails.

The following theorem gives us a situation where the problem becomes easy.
Note that this case includes the temporal graphs used in [2,6,14,18,20], where
vertices are assumed to be permanent. It also implies that the problem is poly-
nomial when the lifetime of G is 2, which together with Theorem 2, gives a
complete dichotomy in terms of the lifetime of G.

Theorem 4. Let G = (G, v, \) be a temporal digraph with temporal vertices V,
and let Ry,--+ , Ry, C V. If for every v € V(G), v(v) is exactly one interval of
consecutive integers, then finding k edge-disjoint temporal-spanning branchings
rooted at Ry, -+ , Ry can be done in polynomial time.

Proof. Let T be the lifetime of G. We first construct digraphs Gy, --- ,G7 and
subsets RY,--- , Ry, for each j € {0,---, 7}, then we prove that G has the desired
branchings if and only if G; has k edge-disjoint branchings rooted at R‘{, cee Ri
for each j € {0,---,7}, which can be checked in polynomial time, applying
Edmonds’ result [9].

First, let Go = (Vo, Ep) be the digraph in time stamp 0, i.e, Vo = {u € V(G) |
0€v(u)} and Ey = {e € E(G) | (0,0) € y(e)}. Also, for every i € [k], let R? be
the roots at time stamp 0, i.e., the set {u € V(G) | (v,0) € R;}. Now, for each
Jj € [T], let G; = (V;, E;) be the digraph containing the edges arriving at time
stamp j together with their endpoints; more formally, E; = {e € E(G) | (t,j) €
A(e), for some t} and V; = {u € V(G) | (u,j) € Vr or wv € Ej, for some v}.
Also, for each i € [k], let Rf be the set of roots at time stamp j together with
vertices still active from the previous time stamp, i.e., R} = {u € V(G) | (u,j) €
Ri}Ufue V(G) | {j — 17} C 1w}

Now, let By, -+, B be edge-disjoint temporal-spanning branchings rooted
at Ri,---,Ry; denote by Ep(B;) the set of temporal edges of B;. Con-
sider j € {0,---,7}, and for each i € [k], let B} be the set of edges of
B; that have a copy ending at time stamp j, i.e., Bf = {uww € E(Q) |
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(u,h)(v,j) € Er(B;) for some h}. Because By, - - - , By are edge-disjoint, we get
that B{,---, Bj are also disjoint. It remains to prove that each B; is the edge
set of a spanning branching of G; rooted at Rf . So, consider any i € [k]. Because
B, is a temporal-spanning branching of G, we know that each u € V(G) is either
the head of some edge in B/, in which case u is spanned by B, or u is a root in
Bf We prove that in the latter case we get that v € RZ Because u is not the
head of any edge in Bf, this means that either (u,j) € R; or (u,j) is spanned
by B; just by waiting, i.e., {j — 1,7} € v(u). In both cases, we get that u € Rg,
as we wanted to prove. _ '

Now, for each j € {0,---,7}, let Bf,..., B} be the edge sets of k edge-

disjoint spanning branchings of G;. First, we prove that if uv € Bg ,then v € Rg,/
for every ¢ € [k] and every j' € {j+1,---, T} N~(v); hence if B; = UJ-T:O B,
then we get that By,--- , By are disjoint (these will be used later to construct
the desired temporal branchings). So let j' € {j + 1, - ,k} N~y(v) and observe
that if wv € E(G;) then j € y(v). Because y(v) is an interval of consecutive
integers and j < j' € v(v), we get that j' — 1 € v(v), which implies that v € Rg:
for every i’ € [k], as we wanted to show. Now, for each i € [k], let B; = (G, ~, \Y)
be a spanning temporal subdigraph of G having as temporal edges the temporal
copies of each e € B;, i.e, Ai(e) = A(e) if e € By, and \(e) = () otherwise.
Because By, --- , By are disjoint, it follows that By, --- , By are edge-disjoint, so
it remains to prove that each B; is a temporal-spanning branching rooted at
R;. Let u € V(G), and recall that v(u) is an interval of consecutive integers;
denote by s, the minimum value in «y(u). Note that we just need to prove that
if (u,s,) ¢ R;, then there exists a temporal edge in B; arriving in (u, s,,); this is
because the other copies can be spanned simply by waiting in the interval y(u).
Since (u, s,) ¢ R; and s, — 1 ¢ v(u), we get that u ¢ R;“. So, let vu € Bj* (it
exists since B;* is the edge set of a spanning branching of Gy, ), and recall that
MN(vu) = Avu). We know that vu € E(Gs,) only if (v,j)(u,s,) is a temporal
edge of G for some j < s, (i.e. (§,s,) € A(vu)). This means that there is a
temporal edge arriving in (u,s,) in B;, completing the proof. a

4 Vertex-Spanning Branchings

In this section, we provide an NP-completeness proof to prove both Item 3 and
Item 4 of Theorem 1. We make a reduction from NAE-SAT, which consists
of, given a CNF formula ¢ such that each clause contains exactly 3 literals,
deciding whether there is a truth assignment to ¢ such that each clause has at
least one true and one false literal. This is problem is NP-complete [21], and
in fact it is a well known standard procedure to make a reduction from 3-SAT
to it that produces a formula of size linear on the size of the original 3-SAT
formula. Therefore, applying ETH we get that NAE-SATalso cannot be solved
in time O(2°("*™)) where n,m are the number of variables and clauses of an
input, respectively.
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Let ¢ be a CNF formula on variables {z1,...,2,} and clauses {c1,...,cn}.
A variable gadget related to x; is formed by the set of vertices

Vi =A{;, Fi, T;, a; }

and the set of edges
E; = {xiT;, 2 F;, Tia,, Fia;}.

Now, consider a clause ¢; = {/;,,{s,,4:,}, and for each 7 € [3] let x;; be the
variable related to literal £;;. For each i € [3], if z;; appears positively in ¢;, then
add edge Tj,c; to the clause gadget related to c;; otherwise, add edge F; c;. See
Fig. 2 for the digraph related to ¢ = (x1 Vaa Vas) A (T2 Va3V Ty).

Denote by C; the set of vertices in the clause gadget of ¢;, and by EJ, the
set of edges. Now, let G, be the digraph formed by the union of all variable and
clause gadgets, i.e., V(G) =", V,ulU, C; and E(G) =, E; U~ E..
Finally, add to G4 two new vertices, g,r, and add edges {gz;,rz;} for every
1e{l,---,n}.

Fig. 2. Snapshot 1 related to formula ¢ = (z1Vx2Vx3)A(T2V 23 VTs), and branchings
related to the assignment (7,7, F, F) to (1, %2, %3, %4).

Finally, let G’ be the graph having A U {g,r} as vertex set, where A =
{T;,F; | i € [n]}, and having every edge going from {g,7} to A. Let G be the
temporal digraph with lifetime 2, having G4 as first snapshot and G’ as second
snapshot (therefore, the basic digraph of G is given by (V, E(G,)UE(G")), where
V=V (Gys) D V(G)).

Theorem 5. For each k > 2, given a temporal digraph G = (G,~, \) with life-
time T, and set of temporal vertices Vi, and subsets Ry,--- , Ry C Vp, it is



Edge-Disjoint Branchings in Temporal Graphs 123

NP-complete to decide whether G has k (t-edge-disjoint or edge-disjoint) vertez-
spanning branchings rooted at Ry, -+ Ry, even if T = 2 and G is a DAG.
Furthermore, letting n = |V (G)| and m = |E(G)|, no algorithm running in time
O*(2°(n+m)) can exist for the problem, unless ETH fails.

Proof. The second part follows easily since the reduction is linear. We prove
the theorem for k£ = 2, and NP-completeness for bigger values of k follows by
Lemma 1. Let ¢ be an instance of NAE-SAT, and let G be the temporal digraph
constructed as before; denote by G the base digraph. We prove that ¢ is a “yes”
instance if and only if G has k edge-disjoint vertex-spanning branchings rooted
at {(g,1), (r,1)} (we will see that the branchings are also t-edge disjoint).

First, suppose that ¢ is a “yes” instance of NAE-SAT. We construct a solid
and a dotted branching that satisfy our conditions. For each true variable x;,
add to the solid branching the following edges of snapshot 1: {gz;, z;T;, T;a;},
together with edge T;c; for each clause c; containing x; that is not reached by
the solid branching yet; also add to the dotted branching edges {rz;, x; F;, F;a;},
, together with edge Fjc; for each clause c; containing T; that is not reached
by the dotted branching yet. Do something similar to the false variables, but
switching the branchings. Figure 2 gives the branchings related to the assignment
(T,T,F,F) to (x1,x2,x3,1x4), respectively.

Observe that every u € V(@) is spanned by both branchings, with the excep-
tion of vertices in B = {(T},2),(F};,2) | i € [n]}. However, these can easily be
spanned in the second snapshot since {(g,2), (r,2)} is complete to B.

Now, let By, B be two edge-disjoint vertex-spanning branchings. Because
each a; can only be reached at the first snapshot, it is reached by exactly two
paths from {(g,1), (r,1)}, one of them going through (z;,1)(T;,1) and the other
through (z;,1)(F;,1). We then put z; as true if and only if (x;,1)(T;,1) is in
branching B;. Now, consider clause ¢; = (£;; V £, V ¢;,). One can verify that,
because ¢; is spanned by By and B, we get that at least one of the edges in E
is in Bi, and at least one in By, which implies that at least one of ¢;,,¢;,,¢;, is
true, and at least one is false, as desired. O

5 Conclusions and Open Problems

In this paper we have investigated the temporal version of Edmonds’ classi-
cal result about the problem of finding k edge-disjoint spanning branchings
rooted at given Ry,---, Ri. We have introduced different definitions of span-
ning branchings, and of edge-disjointness in temporal digraphs. We have proved
that, unlike the static case, only one of the these can be computed in poly-
nomial time, namely the temporal-edge-disjoint temporal-spanning branchings
problem, while the other versions are NP-complete under very strict constraints.
Given a temporal digraph G = (G, 7, A), in the particular case of edge-disjoint
temporal-spanning, we give separate NP-complete results for fixed lifetime, and
for when G is a in-star. A good question then might be whether there exists a
polynomial algorithm for fixed lifetime and treewidth (a in-star has treewidth 1).
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Another interesting question is whether the problem remains hard for fixed life-
time when the base digraph is a DAG. Also, as we have provided computational
lower bounds under ETH in Theorem 3 and in Theorem 5, we wonder whether
there exist algorithms matching these lower bounds.
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