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Abstract. The 1-2-3 Conjecture states that every nice graph G (without
component isomorphic to K2) admits a proper 3-labelling, i.e., a labelling
of the edges with 1, 2, 3 such that no two adjacent vertices are incident
to the same sum of labels. Another interpretation of this conjecture is
that every nice graph G can be turned into a locally irregular multigraph
M , i.e., with no two adjacent vertices of the same degree, by replacing
each edge by at most three parallel edges. In other words, for every nice
graph G, there should exist a locally irregular multigraph M with the
same adjacencies and having few edges.

We study proper labellings of graphs with the extra requirement that
the sum of assigned labels must be as small as possible. That is, given a
graph G, we are looking for a locally irregular multigraph M∗ with the
fewest edges possible that can be obtained from G by replacing edges with
parallel edges. This problem is quite different from the 1-2-3 Conjecture,
as we prove that there is no k such that M∗ can always be obtained from
G by replacing each edge with at most k parallel edges.

We investigate several aspects of this problem. We prove that the
problem of designing proper labellings with minimum label sum is NP-
hard in general, but solvable in polynomial time for graphs with bounded
treewidth. We also conjecture that every nice connected graph G admits
a proper labelling with label sum at most 3

2
|E(G)| + O(1), which we

verify for several classes of graphs.
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1 Introduction

In this paper, we consider proper labellings of graphs, a notion related to
the 1-2-3 Conjecture, with the extra constraint that the sum of assigned labels
must be minimised. For any notation on graph theory not defined here, we refer
the reader to [7]. For a graph G, a function � : E(G) �→ {1, . . . , k} is called a
k-labelling of G. For any v ∈ V (G), let c�(v) : V (G) �→ N

∗ be the colour of
v that is induced by �, being the sum of labels assigned to the edges incident
to v. That is, c�(v) =

∑
u∈N(v) �(vu) where N(v) = {u ∈ V (G) : uv ∈ E(G)}

Due to space limitation, several proofs have been omitted. They can be found in [3].
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is the neighbourhood of v. We say that � is a proper labelling if the resulting
colouring c� is a proper vertex-colouring of G, i.e., for every edge uv ∈ E(G) we
have c�(u) �= c�(v). Note that a graph admits a proper labelling if and only if it
has no K2 as a component [10]. Therefore, we here focus only on nice graphs,
i.e., graphs without any component isomorphic to K2. Given a nice graph G, let
χΣ(G) be the smallest k such that G admits a proper k-labelling.

Maybe the most famous conjecture concerning proper labellings of graphs is
the so-called 1-2-3 Conjecture, introduced by Karoński, �Luczak and Thoma-
son in 2004 [10]. This conjecture states that for every nice graph G, we have
χΣ(G) ≤ 3. It is worth noting that there exist nice graphs, such as nice complete
graphs [5], for which the upper bound is attained. Actually, given a graph G,
deciding if χΣ(G) ≤ 2 holds is an NP-complete problem [8]. The best currently
known result towards the 1-2-3 Conjecture is that for any nice graph G, we have
χΣ(G) ≤ 5 [9]. Another important result states that the conjecture is satisfied for
nice 3-colourable graphs [10]. Quite recently, a characterisation of nice bipartite
graphs G with χΣ(G) = 3 was provided in [13]. Moreover, χΣ(G) ≤ 4 holds for
every nice regular graph G [12] and χΣ(T ) ≤ 2 holds for every nice tree T [5].

Our work takes place in a recent series of works dedicated to better under-
standing proper labellings by studying variations with additional requirements,
such as minimising the number of distinct colours [1] or minimising the maximum
colour [4] induced by a proper k-labelling. An additional motivation is the follow-
ing [6]. Given a graph G and a proper labelling � of G, by replacing every edge e
by �(e) parallel edges, we obtain a multigraph MG,� with the same adjacencies as
G that is locally irregular, i.e., in which no two adjacent vertices have the same
degree. In this setting, the 1-2-3 Conjecture states that, for every nice graph G,
we can construct a corresponding MG,� by replacing each edge by at most three
parallel edges, and thus construct such an MG,� with at most 3|E(G)| edges. One
could argue however, that there might be cases in which it could be possible to
obtain such a multigraph with fewer edges when being allowed to replace edges
by more than three parallel edges. We study this through the following additional
notions and definitions. Formally, for a labelling � of a nice graph G, let σ(�) be
the sum of labels assigned to the edges of G by �. That is, σ(�) =

∑
e∈E(G) �(e).

For any k ≥ 1, let mEk(G) be the minimum value of σ(�) over all proper k-
labellings � of G. That is, mEk(G) = min {σ(�) : � is a proper k−labelling of G}.
Let mE(G) = min{mEk(G) : k ≥ χΣ(G)}. Computing a proper labelling �∗ such
that σ(�∗) = mE(G) is thus equivalent to finding a locally irregular multigraph
MG,�∗ with minimum number of edges.

Our Contributions. Section 2 starts by giving observations on labellings that
are used to deduce the value of mE for nice complete bipartite graphs, complete
graphs and cycles. We then exhibit an infinite family of graphs G showing that,
for any fixed k ≥ 2, the value mEk(G) can be arbitrarily larger than mEk+1(G),
thereby establishing a fundamental property of our problem.

In Sect. 3, we study the complexity of computing the parameter mEk(G) for
some input integer k and nice graph G. We establish both positive and negative
results. On the negative side we prove that determining mE2(G) is NP-complete,
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even when G is restricted to a planar bipartite graph. An important point is that
this is contrasting with the complexity of determining whether χΣ(G) ≤ 2 holds
for a given bipartite graph G, which can be done in polynomial time [13]. On
the positive side, we prove that determining mEk(G) can be done in polynomial
time whenever k is fixed and G is a graph with bounded treewidth.

Finally, Sect. 4 is dedicated to bounds on mE. Our guiding thread is a
conjecture we raise, stating that, for any nice connected graph G, mE(G) ≤
3
2 |E(G)|+O(1). Towards this conjecture, we focus on the bipartite case. As sup-
port, we both provide infinite families of bipartite graphs G with “large” value
of mE2(G), and prove the conjecture for several classes of bipartite graphs.

2 First Insights into the Problem

In this section, we give first insights into the problem of determining the param-
eters mE(G) and mEk(G) for a given graph G. We start off, in Sect. 2.1, by
raising observations on labellings and by considering easy classes of graphs. For
each G belonging to the classes we consider, we actually have mEk(G) = mE(G)
for k = χΣ(G). Put differently, a larger label than χΣ(G) is not needed to
achieve the smallest label sum. However, this behaviour is not systematic, as
we exhibit, in Sect. 2.2, examples of trees T for which the smallest k such that
mEk(T ) = mE(T ) is arbitrarily large.

2.1 Warm-Up Results

First off, note that in general, labellings have systematic properties that can be
useful to establish bounds on mE and mEk.

Observation 1. Let � be a k-labelling of a graph G. The following items hold:

– |E(G)| ≤ σ(�) ≤ k|E(G)|.
–

∑
e∈E(G) 2�(e) = 2σ(�) =

∑
v∈V (G) c�(v).

–
∑

v∈V (G) c�(v) must therefore be an even number.

In particular, these observations allow to determine the value of mE for simple
graph topologies, namely for complete bipartite graphs, complete graphs, and
cycles. Due to lack of space, we only sketch the proof of the result about cycles.

Theorem 2. Let G = Kn,m be a complete bipartite graph with order n+m > 2.

– If n �= m, then mE(G) = mE1(G) = |E(G)|;
– otherwise, i.e., n = m, we have mE(G) = mE2(G) = |E(G)| +

√|E(G)|.
Theorem 3. Let Kn be a complete graph with order n ≥ 3. Then:

– if n = 3, then mE(K3) = mE3(K3) = 6 = 2|E(K3)|;
– if n ≡ 0 or 1 (mod 4), then mE(Kn) = mE3(Kn) = 3

2 |E(Kn)|;
– if n ≡ 2 or 3 (mod 4), then mE(Kn) = mE3(Kn) =

⌈
3
2 |E(Kn)|⌉.
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Theorem 4. Let Cn be a cycle with length n ≥ 3. Then:

– if n ≡ 0 (mod 4), then mE(Cn) = mE2(Cn) = 3
2 |E(Cn)|;

– if n ≡ 1 or 3 (mod 4), then mE(Cn) = mE3(Cn) =
⌈

3
2 |E(Cn)|⌉ + 1;

– if n ≡ 2 (mod 4), then mE(Cn) = mE3(Cn) = 3
2 |E(Cn)| + 3.

Sketch of Proof. The proof of the lower bounds follow mainly from the fact that,
for any l ≤ k, any proper k-labelling � of Cn assigns label l to at most 	 1

2 |E(Cn)|

edges if n is odd and to at most 1

2 |E(Cn)|−1 edges if n ≡ 2 (mod 4). This claim
is proved by considering the conflict graph that consists of one vertex per edge
of Cn, with two vertices being adjacent when the corresponding edges of Cn

cannot have the same label. We show that this conflict graph is either one cycle
or two disjoint cycles (depending on the parity of n) and so the size of any of
its independent sets (corresponding to a set of edges of Cn that can receive the
same label) is bounded above as required.

The upper bounds on mE are proven by giving a proper labelling matching
the lower bound. For instance, if n ≡ 0 (mod 4), it is sufficient to alternate two
consecutive edges labelled with 1, then two consecutive edges labelled with 2,
and so on. When n ≡ 1 or 3 (mod 4), one single edge labelled with 3 is necessary
and sufficient while two such edges are required and sufficient in the last case. ♦

2.2 Using Larger Labels can be Arbitrarily Better

In this section, we show that there is no absolute constant k ∈ N such that
mE(G) = mEk(G) for all nice graphs. More precisely, for any integer k, we
exhibit a tree Tk such that mE(Tk) = mEk(Tk) < mEk−1(Tk).

Let us first introduce the auxiliary graph A(α, β) (for α ≥ 2 and β ≥ 0),
which will serve as the building block for Tk. This auxiliary graph is a tree built
recursively as follows. For any α∗ ∈ N, define A(α∗, 0) as a leaf. For any β > 0,
define A(α, β) as a tree of height β, rooted in a vertex r with α children. For
each 1 ≤ i ≤ α, let ci be the corresponding child of r; each ci is the root of an
A(α + i, β − 1) tree and thus d(ci) = α + i + 1 (since each ci has α + i children
of its own and an edge connecting it with his parent). Note that d(ci) ∈ D(α) =
[α + 2, 2α + 1] and that for i �= j, we have d(ci) �= d(cj) (and thus all values of
D(a) are used exactly once). Finally, we say that A(α, β) is represented by r.

Let us also define the pending auxiliary graph that corresponds to A(α, β) as
P (α, β) = (V,E), where V = V (A(α, β)) ∪ {v} and E = E(A(α, β)) ∪ {vr}; in
essence P (α, β) is A(α, β) with an extra vertex v connected to r. The vertex r
is called the representative of P (α, β). The graph P (α, β) is said to be pending
from v. Observe that P (α, β) is locally irregular and thus the labelling � that
assigns label 1 on every one of its edges is proper and mE(P (α, β)) = |E|.
Theorem 5. For any k ≥ 2, there is a graph Tk with mEk+1(Tk) < mEk(Tk).

Sketch of Proof. Let k ≥ 2 and let us describe the construction of Tk. For
0 ≤ j ≤ k−1, let P (k+j, 2(k+1)) be the graph pending from vj that corresponds
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to an auxiliary graph A(k + j, 2(k + 1)) (represented by a vertex rj) and let u, v
be two adjacent vertices. The tree Tk is the graph that is produced by merging
v with each one of the vj . Observe that since rj represents A(k + j, 2(k + 1)),
each rj has d(rj) = k + j +1 in Tk and that the height of Tk is 2(k +1)+1. Also
observe that in Tk, since N(v) = {r0, . . . , rk−1, u}, we have d(v) = k+1 = d(r0).

Let � be the (k + 1)-labelling of Tk that assigns label k + 1 to the edge
uv and label 1 to the remaining edges of Tk. It easy to see that � is a proper
(k + 1)-labelling for Tk with σ(�) = |E(Tk)| + k.

Let �′ be any proper k-labelling of Tk. It suffices to show that σ(�′) >
|E(Tk)| + k. For any w ∈ N(r0) \ {v} and y ∈ N(v) \ {u, r0}, since d(v) =
d(r0) = k+1, at least one of the edges uv, r0w or vy has to have a label different
from 1 for �′ to be proper. Let us assume that �(uv) �= 1 (the other cases being
similar). Let �′(uv) = l with 2 ≤ l ≤ k and assume that only this edge of Tk has
a label different from 1. Then c�′(v) = k + l and k + l ∈ [k + 2, 2k]. Recall that
for each 0 ≤ j ≤ k − 1, rj has d(rj) = k + j + 1 and thus d(rj) ∈ [k + 1, 2k].
Since uv is the only edge with a label different from 1, c�′(rj) = d(rj). It follows
that there exists a j ∈ [0, k − 1], such that c�′(rj) = c�′(v) leading to �′ not
being proper. Thus, there must exist another edge u′v′ (with, say, u′ being the
parent of v′) that is assigned a label different from 1 by �′. Note that this edge
u′v′ belongs to P (q, 2(k + 1)) (for some q ∈ [k, 2k − 1]) and either v′ = v or v′

is the child of the representative v of P (q, 2(k + 1)). It can be shown that, for
� to be proper, at least one child of u′ has one of its incident edges e assigned
a label distinct from 1. This edge e belongs to some subtree P (q, 2k) and e is
incident to either the representative of this copy of P (q, 2k) or to a child of this
representative. Applying this argument recursively, it can be proved that, for �
to be proper, this copy of P (q, 2k) must contain at least k edges with a label
greater than 1. Overall, mE(Tk) ≥ |E(Tk)| + k + 1.

Observe that the height of Tk can be freely controlled by changing the β
value of the pending auxiliary graphs that form it. Furthermore, it follows from
some of the arguments we have employed that mE(T (α, 2β)) < mE(T (α, 2β′))
for β < β′. Put simply, since the difference between mEk+1(Tk) and mEk(Tk)
depends on the height of Tk and this can be an arbitrary number, the following
holds:

Corollary 1. For any k ≥ 2, there exists a graph Tk such that mEk+1(Tk) is
arbitrarily smaller than mEk(Tk).

3 Complexity Aspects

This section is devoted to the complexity aspects of the problem of computing
mEk. On the negative side, we prove that the problem is NP-complete in planar
bipartite graphs. On the positive side, we prove that the problem can be solved
in polynomial time for graphs with bounded treewidth, and that it is even FPT
when parameterised by the treewidth plus the maximum degree.
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3.1 NP-hardness for Planar Bipartite Graphs

Let us first introduce the k-gadget, for k ≥ 11, which will be useful for proving
the main Theorem of this section. To build this gadget, start with k − 1 stars,
each having a center denoted by si, i ∈ [1, k − 1], such that d(si) = k + 1.
For each star, pick an arbitrary edge siyi and identify all the yi into a single
vertex y, which is called the representative of the gadget. Finally add another
vertex u, called the root of the gadget, which is connected to y. It is clear that
d(u) = 1 and d(y) = k. Also, each k-gadget is a tree with O(k2) edges. Let v be
a vertex of a graph G, and H be a k-gadget. The operation of adding H to G
and identifying the root u of H with v is called attaching H to v.

Theorem 6. Let G be a nice planar bipartite graph, k ≥ 2 and q ∈ N. The
problem of deciding if mEk(G) ≤ q is NP-complete.

Proof. The problem is clearly in NP. We focus on showing it is also NP-hard.
The proof is done by reduction from Planar Monotone 1-in-3 SAT, which
was shown to be NP-complete in [11]. In this problem, a 3CNF formula F is
given as input, which has clauses with exactly three distinct variables all of which
appear only positively. We say that a bipartite graph G′ = (V,C,E) corresponds
to F if it is constructed in the following way: for each variable xi of F we add
a variable vertex vi in V and for each clause Cj of F we add a clause vertex
cj in C. Then the edge vicj is added if variable xi appears in clause Cj . In the
Planar Monotone 1-in-3 SAT problem, we also have that for any instance F
the corresponding graph is planar. The question is whether there exists a 1-in-3
truth assignment of F ; that is a truth assignment to the variables of F such that
each clause has exactly one variable with the value true.

Let us prove the statement for k = 2. Let F be the 3CNF formula with c
clauses that is given as input to the Planar Monotone 1-in-3 SAT prob-
lem. Our goal is to construct a planar bipartite graph G such that F is 1-in-3
satisfiable if and only if mE2(G) ≤ |E(G)| + c.

Start with G′ = (V,C,E) being the planar bipartite graph that corresponds
to F , with V being the set of the variable vertices vi, C being the set of the
clause vertices cj and |C| = c. In F , each clause has exactly three variables but
there is no bound on how many times a variable appears in F . Thus for each
vi ∈ V, d(vi) ≥ 1 and for each cj ∈ C, d(cj) = 3. It follows that |V | ≤ 3c.

Modify G′ by adding the k-gadgets described earlier in the following way.
For each variable vertex vi of G, let di be the degree of vi in G′. Let dv,i =
(di − 1)(c + 1) + di and dc = 3(c + 1) + 3. For each variable vertex vi, for all
1 ≤ j < di, attach c + 1 copies of the (dv,i + j)-gadget. Thus the degree of each
vi in G becomes equal to dv,i. On each clause vertex cj , attach c + 1 copies
of the dc-gadget, c + 1 copies of the (dc + 2)-gadget and c + 1 copies of the
(dc + 3)-gadget. Thus the degree of each cj in G becomes equal to dc. Clearly,
the construction of G is achieved in polynomial time. Observe also that since G′

is planar and the attached gadgets are actually trees, G is also planar.
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Claim. Let G(V,C,E) be a bipartite graph and � be any proper 2-labelling of G
such that σ(�) ≤ |E(G)| + c, for c = |C|. Let H be any p-gadget attached to G,
where p − 1 > c. Let y be the representative of H. If at least one edge e of H
incident to y is labelled 2, then at least two edges of H are labelled 2.

Let � be a proper 2-labelling of G such that σ(�) ≤ |E(G)| + c, i.e., there
are at most c edges of G labelled 2 by �. Observe that G contains p-gadgets for
p ∈ {dv,i + 1, dv,i + 2, . . . dv,i + di − 1, dc, dc + 2, dc + 3 and dv,i − 1, dc − 1 > c.
Thus the above claim holds for each gadget attached to G.

Claim. For any proper 2-labelling � of G with σ(�) ≤ |E(G)| + c, we have that:

– for each variable vertex vi ∈ V, c�(vi) /∈ {dv,i + 1, dv,i + 2, . . . , dv,i + di − 1}
– for each clause vertex cj ∈ C, c�(cj) /∈ {dc, dc + 2, dc + 3}
Claim. Let � be any proper 2-labelling of G with σ(�) ≤ |E(G)| + c. Then all
edges of the attached gadgets must be labelled 1.

Using the above Claims, it follows that the only possible colours induced by
� on the vertices of G′ are in {dv,i, dv,i + 1, dv,i + 2, . . . , dv,i + di − 1, dv,i + di}
for each variable vertex vi ∈ V , and in {dc, dc + 1, dc + 2, dc + 3} for every
clause vertex cj ∈ C. Furthermore, for every variable vertex vi, we have c�(vi) ∈
{dv,i, dv,i + di}, and observe that c�(vi) = dv,i if all edges of G′ incident to vi

are labelled 1, while c�vi = dv,i + di if all edges of G′ incident to vi are labelled
2. For every clause vertex cj , we have c�(cj) = {dc + 1}, which corresponds to
two edges of G′ incident to cj labelled 1 and only one edge labelled 2.

We are now ready to show the equivalence between finding a 1-in-3 truth
assignment φ of F and finding a proper 2-labelling � of G such that σ(�) =
mE2(G) ≤ |E(G)| + c. An edge vicj of G′ labelled 2 (1, respectively) by �
corresponds to variable xi bringing truth value true (false, respectively) to clause
Cj by φ. Also, we know that in G′, each variable vertex vi is adjacent to n ≥ 1
edges, all having the same label (either 1 or 2). Accordingly, the corresponding
variable xi brings, by φ, the same truth value to the n clauses of F that contain
it. Finally, in G′, each clause vertex cj is adjacent to two edges labelled 1 and
one labelled 2. This corresponds to the clause Cj being regarded as satisfied by
φ only when it has exactly one true variable. �


3.2 Polynomiality for Bounded-Treewidth Graphs

The following theorem is proved by a classical (while non trivial) dynamic pro-
gramming algorithm on tree-decompositions. Due to lack of space, we only state
our main theorem. The full description of the algorithm and of its proof can be
found in [3].

Theorem 7. Let k ≥ 2 and tw ≥ 1 be two fixed integers. Given a nice graph G
with |V (G)| = n and an integer s, the problem of deciding whether mEk(G) ≤ s
can be solved in polynomial time if G has treewidth at most tw (and in linear
time if G is additionally of bounded maximum degree).
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Importantly, the above theorem provides a constructive polynomial-time
algorithm to compute mEk in the class of trees and in the class of odd multi-
cacti (an important class in the context of the 1-2-3 Conjecture, that we detail
below). Note however that k must be fixed and since, by Theorem5, the smallest
integer k such that mE(T ) = mEk(T ) for every tree T is not bounded, we leave
open the question of the complexity of computing mE in the class of trees.

4 General Bounds

Recall that mE(G) ≤ χΣ(G)|E(G)| and χΣ(G) ≤ 5 (see [9]) hold for every
nice graph G. Thus mE(G) ≤ 5|E(G)| holds for every nice graph G, and even
mE(G) ≤ 4|E(G)| holds when G is regular [12]. Moreover, for every graph sat-
isfying the 1-2-3 Conjecture, even mE(G) ≤ 3|E(G)| holds. Throughout this
section, we study how tight this bound is, in particular in the bipartite case.

4.1 Upper Bounds

Recall that bipartite graphs satisfy the 1-2-3 Conjecture [10]. For i ∈ {1, 2, 3},
let Bi be the set of bipartite graphs G with χΣ(G) = i. In particular, B1 is the
set of locally irregular bipartite graphs and the set B3 is that of the so-called
odd multi-cacti, which are defined as follows [13]. The set B3 is exactly the set
of graphs that can be obtained at any moment of the following procedure:

– Start from a cycle with length at least 6 congruent to 2 modulo 4 whose edges
are properly coloured with red and green.

– Repeatedly consider a green edge uv, and join u and v by a path of length at
least 5 congruent to 1 modulo 4 whose edges are properly coloured with red
and green, where the edge incident to u and that incident to v are red.

Theorem 8. Every nice bipartite graph G satisfies mE(G) ≤ mE3(G) ≤
2|E(G)|. Moreover, if G ∈ B2, then mE(G) < 2|E(G)|.
Proof. The statement trivially holds for every G ∈ B1 since G is locally irregular
and so mE(G) = |E(G)|. For every G ∈ B2 (so G is not locally irregular), if we
had mE2(G) = 2|E(G)|, then the only proper 2-labelling of G would be the one
assigning label 2 to all edges, which can only be proper if G is locally irregular,
a contradiction. Therefore, in any proper 2-labelling of G, there must be at least
one edge assigned label 1, implying that mE(G) < 2|E(G)|.

Let us now assume G ∈ B3, i.e., G is an odd multi-cactus with bipartition
(U, V ) (both |U | and |V | are odd by construction). If G is a cycle with length at
least 6 congruent to 2 modulo 4, then the result follows from Theorem4. Thus,
we may assume that the maximum degree Δ(G) of G is at least 3, i.e., some
path attachments were made to build G starting from an original cycle.

Let us consider the last green edge xy to which a path P = (x, v1, . . . , v4k, y)
was attached in the construction of G, where k ≥ 1. Recall that d(x) = d(y) ≥ 3
by construction. Consider G′ = G−{v1, v2, v3}. Assuming v1, v3 ∈ U and v2 ∈ V ,
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the bipartition of G′ is (U ′, V ′) = (U \{v1, v3}, V \{v2}). This means that |V ′| is
even. It is known that any bipartite graph with one part X of even size belongs
to B2 and furthermore admits proper 2-labellings where all vertices of X have
odd colour while all vertices of the other part Y have even colour [5]. Therefore,
there is a proper 2-labelling �′ of G′ such that all vertices of U ′ have even colour
while all vertices of V ′ have odd colour. Since x ∈ V ′, the colour c�′(x) is odd,
and thus at least 3 since dG′(x) ≥ 2. Similarly, v4 ∈ V ′, so the colour c�′(v4) is
odd, and it is precisely 1 since dG′(v4) = 1.

We now extend �′ to a proper 3-labelling � of G, by assigning label 1 to
v1v2, label 2 to xv1 and v3v4, and label 3 to v2v3. This way, note that c�(x) and
c�(v4) remain odd. Also, c�(v1) = 3 < 5 ≤ c�(x), c�(v3) = 5 > 3 = c�(v4) and
c�(v2) = 4 �∈ {c�(v1), c�(v3)} = {3, 5}. For these reasons, it should be clear that �
is indeed a proper 3-labelling of G. We additionally note that label 3 is actually
assigned only once by �, to v2v3. Furthermore, � assigns label 1 at least once,
e.g. to v1v2. From this, it follows that σ(�) ≤ 2|E(G)|. �


Note that the upper bound in Theorem8 is tight due to C6 for which
mE(C6) = 12 = 2|E(C6)| (recall Theorem 4). However this seems to be a patho-
logical case due to the small size of C6. For larger graphs, the next result shows
that the upper bound can actually be improved.

Theorem 9. Let G be a connected bipartite graph with bipartition (U, V ) where
|U | is even. Then, we have mE2(G) ≤ |E(G)| + |V (G)| − 1.

Proof. Let Ue (Uo, respectively) be the set of vertices of U of even (odd, respec-
tively) degree in G, and Ve (Vo, respectively) be the set of vertices of V of even
(odd, respectively) degree in G. Note that either |Ue| and |Vo| must have the
same parity, or |Uo| and |Ve| must have the same parity. This is because, other-
wise, since |U | is even and |U | = |Ue| + |Uo|, the sizes |Ue| and |Uo| must have
the same parity, we would get that also |Ve| and |Vo| have the same parity. Then
we would deduce that

∑
u∈U d(u) �≡ ∑

v∈V d(v) (mod 2), which is not possible.
Without loss of generality, we may assume that Ue and Vo have the same

parity, thus that |Ue| + |Vo| is even. Our aim now, is to design a 2-labelling of
G that assigns label 2 on as few edges as possible, such that all vertices in U
get an odd colour while all vertices in V get an even colour. Such a labelling
will obviously be proper. To that aim, we proceed as follows. Let us start with
assigning label 1 to all edges of G. This way, at this point the colour of every
vertex is exactly its degree; so all vertices in Uo and Ve verify the desired colour
property, while all vertices in Ue and Vo do not. To fix these vertices, we con-
sider any spanning tree T of G. We now repeatedly apply the following fixing
procedure: we consider any two vertices x and y of Ue ∪ Vo that remain to be
fixed, and flip (i.e., turn the 1’s into 2’s, and vice versa) the labels of all edges
on the unique path in T from x to y. This way, only the colours of x and y are
altered modulo 2. Since |Ue|+ |Vo| is even, there is an even number of vertices to
fix, and, by flipping labels along paths of T , we can fix the colour of all vertices
in Ue ∪Vo. This results in a 2-labelling � of G, with the desired properties, which
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is thus proper. Note now that � assigns label 2 only to a subset of the edges of
T . Since T has |V (G)| − 1 edges, the result follows. �


The arguments in the proof of Theorem 9 actually generalise to graphs with
larger chromatic number. See [3] for the proof details.

Theorem 10. Let G be a connected graph with chromatic number k = χ(G) at
least 3. Then, we have mE(G) ≤ mE2� k

2 �+1(G) ≤ |E(G)| + 2
⌊

k
2

⌋ |V (G)|.

4.2 General Conjecture and Refined Bounds for Bipartite Graphs

We are not aware of graphs for which all proper 3-labellings require more than
a few edges labelled with 3. In general, it might actually be true that, for all
nice graphs, there is a proper 3-labelling with a few 3’s where the number of
1’s is about the number of 2’s. Also, we observed, during experimentation via
computer programs, that only small graphs G seem to have their value of mE(G)
close to 2|E(G)| (recall that K3 and C6 are such examples, by Theorems 3 and 4).
This leads us to conjecture the following:

Conjecture 1. There is an absolute constant c ≥ 1 such that, for every nice
connected graph G, we have mE(G) ≤ 3

2 |E(G)| + c.

In the rest of this section, we investigate Conjecture 1 by giving a special
focus to bipartite graphs. We exhibit several upper bounds for mE(G) in various
subclasses of bipartite graphs. Each of these upper bounds support Conjecture 1.
We also exhibit examples of graphs achieving these upper bounds.

Lower Bounds. We first show that it is not possible to lower mE(G) below the
3
2 |E(G)| barrier for general graphs G. This is already illustrated by Theorem4,
which states that mE(Cn) = 3

2 |E(G)| + 3 for every n ≡ 2 (mod 4). Note that
these cycles Cn are such that χΣ(Cn) = 3. The lower bound even holds for
bipartite graphs G with χΣ(G) = 2. Indeed, there exist bipartite graphs for
which label 2 must be assigned to at least half of the edges by any proper 2-
labelling. This is a consequence of the following more general result.

Theorem 11. There exist infinitely many bipartite graphs G ∈ B2 with various
structure verifying mE2(G) = 3

2 |E(G)|. This remains true for trees.

Sketch of Proof. Let G be any graph, and let H be a graph obtained from G by
subdividing every edge e exactly ne times, where ne = 4ke + 3 for some ke ≥ 0.
Then χΣ(H) = 2. Furthermore, mE2(H) = 3

2 |E(H)|.
Through our experimentation, we also managed to come up with the following

class of bipartite graphs G for which mE2(G) slightly exceeds 3
2 |E(G)|.

Theorem 12. Let x, y ≥ 4 be any two integers congruent to 0 modulo 4, and let
H be the graph obtained by adding an edge joining any vertex of a cycle of length
x and any vertex of a cycle of length y. Then, we have mE2(H) =

⌈
3
2 |E(H)|⌉.
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Improved Upper Bounds. It is worth pointing out that a proper 2-labelling
� of a graph G where σ(�) is about 3

2 |E(G)| is actually a 2-labelling where the
number of assigned 1’s is about the same as the number of assigned 2’s. Thus,
Conjecture 1 relates to equitable proper labellings of graphs, introduced in [2],
which are proper labellings where, for every two assigned labels i, j, the number
of edges assigned label i differs by at most 1 from the number of edges assigned
label j. Regarding Conjecture 1, observe that mE2(G) ≤ 3

2 |E(G)| + 1 holds for
every graph G admitting an equitable proper 2-labelling.

The authors in [2] proved that nice forests admit equitable proper 2-
labellings. This directly implies Theorem13 below for trees with even size, while
it does not for trees with odd size (as a 2-labelling where the number of assigned
2’s is one more than the number of assigned 1’s does not fulfill our claim), for
which we need a dedicated proof. Recall that this result is optimal due to The-
orem 11.

Theorem 13. For every nice tree T , we have mE2(T ) ≤ 3
2 |E(T )|.

Sketch of Proof. The proof is by induction on the number k of branching
vertices (i.e., vertices with degree at least 3) of T . Observe that, for a path
P = (v1, . . . , vn) where v2, . . . , vn−1 have degree 2, two inner vertices cannot be
involved in a colour conflict by a 2-labelling assigning consecutive labels 1, 2, 2,
1, 1, . . . (a path labelled in this fashion is called a 1-extension) or 2, 1, 1, 2, 2, . . .
(called a 2-extension) to the edges of P . Note also that 1-extensions and 2-
extensions comply with equitability, as the numbers of 1’s and 2’s assigned to
the edges of P differ by at most 1.

When k = 0, i.e., T is a path, the claim is proved by performing a 1-extension
or a 2-extension from a degree-1 vertex to the other so that more 1’s than 2’s
are assigned. For larger values of k, the claim is proved by rooting T at some
degree-1 vertex r, considering a branching vertex v at largest distance from r,
and removing all pendant paths attached to v, resulting in a tree T ′. This tree
T ′ can be assumed to be nice (as otherwise there would be a better choice for r),
and it thus admits, by induction, a proper 2-labelling assigning more 1’s than
2’s. It can then be proved that this labelling can be extended, by performing
1-extensions and 2-extensions, to the paths attached to v, resulting in a proper
2-labelling of T where more 1’s than 2’s are assigned.

Towards Conjecture 1, refined bounds can be deduced in particular contexts.
For instance, any graph G satisfies |E(G)| + |V (G)| − 1 ≤ 3

2 |E(G)| as soon as
|E(G)| ≥ 2|V (G)| − 2. As a consequence, Theorem 9 implies that a bipartite
graph G ∈ B2 with a part of even size verifies mE2(G) ≤ 3

2 |E(G)| as soon as G
has minimum degree at least 4, or more generally when G is dense enough. The
same holds for Hamiltonian bipartite graphs with a part of even size.

Lemma 1. Let G be a Hamiltonian bipartite graph with bipartition (U, V ) where
|U | is even. Then mE(G) ≤ mE2(G) ≤ 3

2 |E(G)|.
Proof. Just mimic the proof of Theorem 9, but repair pairs of defective vertices of
G along a Hamiltonian cycle C = (v0, . . . , vn−1, v0), matching each of them, say,
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with the next defective vertex in the ordering of C. If this fixing process turns
more than half of the labels to 2, then, instead, repair pairs of vertices around C
matching each of them with the previous defective vertex in the ordering (which
is equivalent to flipping the labels along C). �


The same result holds when G is bipartite and cubic (in which case χΣ(G) = 2
since G ∈ B2, by definition of odd multi-cacti), by a more general argument:

Lemma 2. Let G be a regular graph with χΣ(G) = 2. Then mE2(G) ≤ 3
2 |E(G)|.

Proof. Let � be a proper 2-labelling of G. Since G is regular, the edges labelled 1
by �, and similarly the edges labelled 2, must induce a locally irregular subgraph
of G. Then the 2-labelling �′ of G obtained by turning all 1’s into 2’s, and vice
versa, is also proper. Now there is one of � and �′ that assigns label 2 to at most
half of the edges, and the conclusion follows. �


5 Conclusion

We have here studied the algorithmic complexity and bounds for the parameter
mE. The main question we leave open is Conjecture 1 asking whether mE(G) ≤
3
2 |E(G)|+O(1) holds for every nice connected graph G. We think that the proof
of Theorem 9 could be improved to prove the conjecture for bipartite graphs.

Regarding our algorithmic results in Sect. 3, note that they all deal, for a
given graph G, with the parameter mEk(G) (for some k), and not with the more
general parameter mE(G). This is mainly because, as indicated by Theorem 5, in
general there is no absolute constant that bounds, for all graphs G, the smallest
k such that mE(G) = mEk(G). In particular, even for a graph G of bounded
treewidth, although we can determine mEk(G) in polynomial time for any fixed k
(due to our algorithm in Theorem7), running enough iterations of our algorithm
to determine mE(G) is not feasible in polynomial time. Thus, the question of
determining the complexity of mE(G) is left open, even when G is a tree.
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