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Abstract. We consider the Budgeted version of the classical Connected
Dominating Set problem (BCDS). Given a graph G and a budget k, we
seek a connected subset of at most k vertices maximizing the number of
dominated vertices in G. We improve over the previous (1 − 1/e)/13
approximation in [Khuller, Purohit, and Sarpatwar, SODA 2014 ] by
introducing a new method for performing tree decompositions in the
analysis of the last part of the algorithm. This new approach provides
a (1 − 1/e)/12 approximation guarantee. By generalizing the analysis of
the first part of the algorithm, we are able to modify it appropriately
and obtain a further improvement to (1− e−7/8)/11. On the other hand,
we prove a (1 − 1/e + ε) inapproximability bound, for any ε > 0.

We also examine the edge-vertex domination variant, where an edge
dominates its endpoints and all vertices neighboring them. In Budgeted
Edge-Vertex Domination (BEVD), we are given a graph G, and a bud-
get k, and we seek a, not necessarily connected, subset of k edges such
that the number of dominated vertices in G is maximized. We prove
there exists a (1 − 1/e)-approximation algorithm. Also, for any ε > 0,
we present a (1 − 1/e + ε)-inapproximability result by a gap-preserving
reduction from the maximum coverage problem. Finally, we examine the
“dual” Partial Edge-Vertex Domination (PEVD) problem, where a graph
G and a quota n′ are given. The goal is to select a minimum-size set of
edges to dominate at least n′ vertices in G. In this case, we present a
H(n′)-approximation algorithm by a reduction to the partial cover prob-
lem.

Keywords: Approximation · Budget · Partial · Connected
domination · Edge-vertex domination

1 Introduction

The problem of vertices dominating vertices in a graph is very common and
has been extensively studied in graph theory and combinatorial optimization
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literature. In the classical definition, a dominating set is a subset of vertices
such that each vertex is either a member of the subset or adjacent to a member
of the subset. Intuitively, a dominating set provides a skeleton for the placement
of resources, such that any network node is within immediate reach to them.

However, as it is often the case, there are constraints on the amount of
resources available for placement, e.g., due to financial or other management
reasons. That is, we are limited to a budget of k resources to be placed on network
nodes. The optimization goal is to place the available resources suitably, such
that the number of network nodes they dominate is maximized. This problem is
known in literature as the Budgeted Dominating Set problem.

Budgeted domination has applications especially in ad-hoc wireless (sensor)
networks. In this setting, a set of network nodes needs to be identified as the
virtual backbone of the network, that is, the structure responsible for routing
and packet forwarding. To achieve these tasks, nodes in the backbone must be
able to communicate with each other, i.e., form a connected set of vertices in
the graph capturing the topology of their communication ranges. The resulting
optimization problem is the Budgeted Connected Dominating Set (BCDS) prob-
lem. In this paper, we study BCDS and present an improved guarantee over the
previous state of the art [12].

Besides BCDS, we examine other problems where graph edges are selected
as dominators. The concept of edges dominating adjacent edges has been well-
considered in literature; e.g., see [8,27] for some preliminary results. An example
application is in network tomography where probes need to be placed to monitor
the health of network links [14].

In this paper, we consider cases where resources must be positioned on the
links of a network to dominate network nodes. For instance, consider a power
system where a limited number of static var compensators need to be placed on
transmission lines’ midpoints to locate faults affecting a big proportion of buses
[10]. Another example is to identify a limited-size set of friendships, modeled as
graph edges, having a big impact in terms of neighborhood in a social network.

More formally, the notion in consideration is edge-vertex domination, where
an edge dominates its endpoints and any vertices adjacent to its endpoints. We
examine the (in)approximability of Budgeted Edge-Vertex Domination (BEVD),
where we seek a, not necessarily connected, set of k (budget) edges dominating
as many vertices as possible. If the edge set is required to be connected, we show
that the problem essentially matches BCDS. Finally, we consider the related
Partial Edge-Vertex Domination (PEVD) problem: a quota of vertices needs to
be dominated by utilizing the minimum number of edges possible.

1.1 Related Work

Finding a minimum-size connected set of vertices dominating the whole graph
is a classical NP-hard problem. In [7], Guha and Khuller proposed a lnΔ + 3
approximation algorithm, which is (up to constant factors) the best possible,
since the problem is hard to approximate within a factor of (1 − ε) log n [5]. For
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a bigger picture of the research landscape, in [4], many connected domination
results for special graph classes and other applications are surveyed.

In [21], vertex-vertex and edge-edge budgeted domination are considered. For
vertex-vertex, matching upper and lower bounds of (1−1/e) are given, whereas,
for edge-edge, a (1−1/e) approximation and a 1303/1304+ε hardness are proved.

In the connected case, budgeted and partial versions of domination have
their origins in wireless sensor networking [19,26], where a network backbone
with good qualities needs to be determined, which must either be limited in
resources and/or cover a big-enough proportion of the network. The first, and
thus far state of the art, results for the budgeted and partial cases in gen-
eral graphs appear in [12], where a (1 − 1/e)/13-approximation, respectively
an O(ln Δ)-approximation, is proved for the budgeted, respectively partial, case.
Other works have followed in particular settings. For example, in [20], a constant
factor approximation algorithm for partial connected domination on a superset
of unit disk graphs, namely growth-bounded graphs, is proposed. Their result
translates to a 27-approximation guarantee on unit disk graphs.

Regarding edge-vertex domination, the graph-theoretic notion was intro-
duced in [22], together with the complementary case of vertex-edge domination,
where a vertex dominates all edges incident to it or to a neighbor of it. Some
complexity and algorithmic results about the minimal size of an edge-vertex,
respectively vertex-edge, dominating set appear in [18]. More recently, some
vertex-edge domination open questions posed in [18] were answered in [2]. In [25],
an improved bound on the edge-vertex domination number of trees was proved.
Except for the vertex-edge and edge-vertex variants, a mixed domination vari-
ant has been introduced [23], where a minimal subset of both vertices and edges
need to be selected so that each vertex/edge of the graph is incident/adjacent
to a vertex/edge in the subset. Recent example works in this topic study the
problem in special graph classes like trees, cacti, and split graphs [17,28].

1.2 Our Results

In Sect. 2, we present preliminary notions and formally define the problems.
In Sect. 3, we examine the Budgeted Connected Dominating Set (BCDS)

problem, see Definition 1, where a connected subset of budget vertices needs to
dominate as many vertices as possible. By introducing a new tree decomposition
technique in Subsect. 3.2, we prove a (1 − 1/e)/12 � 0.05267 approximation, in
Theorem 2, which improves over the previous best known (1−1/e)/13 guarantee
[12]. (We note the same guarantee has recently been achieved independently in
[13].) We further improve the ratio to (1 − e−7/8)/11 � 0.05301 (Theorem 3) by
generalizing the first part of the analysis in [12] and then modifying the proposed
algorithm accordingly in Subsect. 3.3. On the negative side, for any ε > 0, we
show a first (1 − 1/e + ε) inapproximability bound; see Theorem 5.

In Sect. 4, we consider edge-vertex domination, where a, not necessarily con-
nected, subset of edges dominates adjacent vertices. If the set of edges is also
required to be connected, then the problems essentially reduce to the standard
vertex-vertex budgeted/partial dominating set problems; see Proposition 2. In
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Subsect. 4.1, we prove there is a (1−1/e)-approximation algorithm (Theorem 7).
This is the best possible since we prove an (1 − 1/e + ε) inapproximability lower
bound, for any ε > 0, see Theorem 8. In Subsect. 4.2, we consider the problem of
Partial Edge-Vertex Domination. In Theorem 10, we prove that, in the general
case, there exists an H(n′)-approximation, where H(·) is the Harmonic number
and n′ is the number of vertices requested to be dominated. To do so, we employ
a reduction to a partial version of the classical Set Cover problem.

Finally, in Sect. 5, we give some concluding remarks.

2 Preliminaries

A graph G is denoted as a pair (V (G), E(G)) (or simply (V,E)) of the vertices
and edges of G. The graphs considered are simple (neither loops nor multi-
edges are allowed), connected and undirected. Besides the aforementioned, no
assumptions are made on the topology of the input graphs.

Two vertices u, v ∈ V connected by an edge, denoted (u, v) or equivalently
(v, u), are called adjacent or neighboring. The open neighborhood of a vertex
v ∈ V is defined as N(v) = {u ∈ V : (v, u) ∈ E}, while the closed neighborhood
is defined as N [v] = {v} ∪ N(v). For a subset of vertices S ⊆ V (G), we expand
the above definitions to N(S) =

⋃
v∈S N(v) \ S and N [S] = N(S) ∪ S.

The degree of a vertex v ∈ V is defined as d(v) = |N(v)|. The minimum, resp.
maximum, degree of G is denoted by δ = minv∈V d(v), resp. Δ = maxv∈V d(v).

Let us now consider the neighborhood of edges in terms of vertices. Given an
edge e = (v, u) ∈ E, let I(e) = {v, u} stand for the set containing its two incident
vertices. We define the neighborhood of an edge e as N [e] =

⋃
v∈I(e) N [v]. For a

set of edges E′ ⊆ E, we define V (E′) = {v ∈ V | ∃e ∈ E′ such that v ∈ I(e)}.
Then, we define the edge-set neighborhood as N [E′] = N [V (E′)]. Here, we focus
on a closed neighborhood definition, since it captures the number of vertices
incident or adjacent to a set of edges in the standard edge-vertex domination
paradigm (Definition 8 in [18]; originally introduced in [22]). That is, we say that
a set of edges E′ dominates N [E′].

Let us now proceed to formally define the problems studied in this paper.

Definition 1 (BUDGETED CONNECTED DOMINATING SET).
Given a graph G = (V,E) and an integer k, select a subset S ⊆ V , where |S| ≤ k,
such that the subgraph induced by S is connected and |N [S]| is maximized.

Definition 2 (BUDGETED EDGE-VERTEX DOMINATION). Given
a graph G = (V,E) and an integer k, select a subset E′ ⊆ E, where |E′| ≤ k,
such that |N [E′]| is maximized.

Definition 3 (PARTIAL EDGE-VERTEX DOMINATION). Given a
graph G = (V,E) and an integer n′, select a subset E′ ⊆ E of minimum size
such that it holds |N [E′]| ≥ n′.
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3 Budgeted Connected Dominating Set

In this section, we consider the Budgeted Connected Dominating Set (BCDS)
problem given in Definition 1. We initially present a summary of key aspects of
the state of the art algorithm [12], which achieves a (1 − 1/e)/13 approximation
factor. We then show how the analysis can be improved to achieve a (1−1/e)/12
guarantee via an alternative tree decomposition scheme; see Theorem 2. Then,
we generalize the analysis of the greedy procedure in order to modify a call
within the state of the art algorithm. This modification allows us to increase
the approximation factor even further to (1 − e−7/8)/11; see Corollary 1. On
the other hand, we conclude this section with a (1 − 1/e + ε), for any ε > 0,
inapproximability result; see Theorem 5.

3.1 Previous Approach

Khuller et al., see Algorithm 2 (Algorithm 5.1 in [12]), design the first constant
factor approximation algorithm for BCDS with an approximation guarantee of
(1 − 1/e)/13. Their approach comprises three method calls: (i) a call to an
algorithm returning a greedy dominating set D and its corresponding profit
function p; see Algorithm 1 (GDS), (ii) a call to a 2-approximation algorithm,
which follows from [6,9], for the Quota Steiner Tree (QST) problem defined
below, and (iii) a call to a dynamic programming scheme Bestk(·) to determine
the maximum-profit subtree of size at most k within a bigger-size tree.

Algorithm 1: Greedy Dominating Set (GDS) [12]
Input : A graph G = (V (G), E(G))
Output: A dominating set D ⊆ V (G) and a profit function

p : V (G) → N ∪ {0}
1 D ← ∅
2 U ← V (G)
3 foreach υ ∈ V (G) do
4 p(υ) ← 0
5 end
6 while U �= ∅ do
7 w ← arg maxυ∈V (G)\D |NU (υ)| /* NU (υ) = N [υ] ∩ U */

8 p(w) ← |NU (w)|
9 U ← U \ NU (w)

10 D ← D ∪ {w}
11 end
12 return (D, p)

Definition 4 (QUOTA STEINER TREE). Given a graph G, a vertex profit
function p : V (G) → N ∪ {0}, an edge cost function c : E(G) → N ∪ {0} and
a quota q ∈ N, find a subtree T that minimizes

∑
e∈E(T ) c(e) subject to the

condition
∑

v∈V (T ) p(v) ≥ q.
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Algorithm 2: Greedy Profit Labeling Algorithm for BCDS [12]
Input : A graph G = (V (G), E(G)) and k ∈ N

Output: A tree T̃ on at most k vertices
1 (D, p) ← GDS(G)
2 T ← QST (G, (1 − 1/e)OPT, p)

3 T̃ ← Bestk(T, p)

4 return T̃

Theorem 1 (Follows from results in [6,9]). There is a 2-approximation algo-
rithm for QUOTA STEINER TREE.

In their analysis, Khuller et al. [12] demonstrate that there exists a set D′ ⊆ D
of size k which dominates at least (1 − 1/e)OPT vertices, where OPT is the
optimal number of dominated vertices achieved with a budget of k. Furthermore,
D′ can be connected by adding at most another 2k Steiner vertices, so giving a
total of 3k vertices. Then, it suffices to call the 2-approximation algorithm for
QST, see line 2 in Algorithm 2, with profit function p (returned by algorithm
GDS at line 1), all edge costs equal to 1 and quota equal to (1 − 1/e)OPT. The
value OPT can be guessed via a binary search between k and n. Overall, the
returned tree has size at most 6k vertices and dominates at least (1 − 1/e)OPT
vertices: a (6, 1 − 1/e) bicriteria approximation is attained (Lemma 5.2 [12]).

As a final step (Bestk(·) at line 3), a dynamic programming approach is used
to identify the best-profit subtree with at most k vertices, such that the budget
requirement is satisfied; see paragraph 5.2.2 in [12] for the relevant recurrences.
To obtain a true approximation guarantee for the final solution, the following
tree decomposition lemma is used recursively to prove that, for a sufficiently
large value of k, a tree of size 6k can be decomposed into 13 trees; each of size
at most k (Lemma 5.4 [12]).

Lemma 1 (Folklore). Given any tree on n vertices, we can decompose it into
two trees (by replicating a single vertex) such that the smaller tree has at most

n
2 � vertices and the larger tree has at most 
 2n

3 � vertices.

3.2 Improvement to Previous Approach: Eligible Trees

An improvement to the analysis in [12] can be achieved by utilising a more
refined tree decomposition (than the recursive application of Lemma 1) to pro-
vide the approximation guarantee at the final step. To do so, we consider a tree
decomposition scheme based on the notion of eligible trees as introduced in [3].

Definition 5 ([3]). Given a directed tree T = (VT , ET ), an eligible subtree T ′

is a subtree of T rooted at some vertex i ∈ VT such that the forest obtained by
deleting the edges with both endpoints in T ′, and then all the remaining vertices
of degree 0, consists of a single tree.
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Assuming T ′ is an eligible subtree not identical to T , after deleting all edges
with both endpoints in T ′, the only vertex of T ′ with degree strictly greater than
0 is the root vertex of T ′. That is, like in Lemma 1, a single vertex is replicated
when removing T ′ from T ; see Fig. 1. The following lemma suggests that, for
any tree, there exists an eligible subtree within some specific size range.

Lemma 2 (Lemma 5 [3]). For each directed tree T = (VT , ET ), and for each
p ∈ [1, |VT |]∩N, there exists an eligible subtree T ′ of T such that p/2 ≤ |VT ′ | ≤ p.

Fig. 1. An example eligible subtree of size 6 (enclosed within the dashed shape). After
removing its edges and then all remaining vertices of degree 0 (vertices with lines), a
single tree remains (enclosed within the solid shape). A single vertex is replicated in
both trees, the black vertex.

We can now proceed to employ the above lemma iteratively toward a decompo-
sition scheme for the tree of size at most 6k returned by the Quota Steiner Tree
call in Algorithm 2.

Lemma 3. Let k be an integer. Given any tree T on ak vertices, where a ∈ N

is a constant, and k ≥ 4a − 2, we can decompose it into 2a subtrees each on at
most k vertices.

Proof. To make T directed, we orient its edges away from some arbitrary vertex
picked as the root. Now, we iteratively apply Lemma 2 with p = k, until we are
left with a tree on at most k vertices.

First, let us show that after i iterations, the remaining tree has at most
ak − i · (k/2 − 1) vertices. At the first iteration, there exists an eligible subtree
T ′
1 such that k/2 ≤ |VT ′

1
| ≤ k. After removing it from T1 := T we are left with

T2 of size |VT1 | − (|VT ′
1
| − 1), since the root of T ′

1 remains in T1. Hence, |VT1 | ≤
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ak − (k/2 − 1), since k/2 ≤ |VT ′
1
|. Assume that after i iterations of the above

procedure, it holds for the remaining tree Ti+1 that k < |VTi+1 | ≤ ak−i·(k/2−1).
We inductively apply Lemma 2 with p = k and get an eligible subtree T ′

i+1.
Removing T ′

i+1 from Ti+1, we get Ti+2, where |VTi+2 | = |VTi+1 | − (|VT ′
i+1

| − 1) ≤
ak − i · (k/2 − 1) − (k/2 − 1) = ak − (i + 1) · (k/2 − 1).

We proved that, after i removals of eligible subtrees from the original tree,
for the remaining tree Ti+1 it holds |VTi+1 | ≤ ak − i · (k/2 − 1). For i = 2a − 1,
we get |VT2a

| ≤ ak − (2a− 1) · (k/2− 1) = ak −ak +2a+k/2− 1 = k/2+2a− 1,
which is at most k for a sufficiently large value of k, i.e., k ≥ 4a−2. Overall, the
original tree T1 has been decomposed into 2a trees: T ′

1, T
′
2, . . . , T

′
2a−1 and T2a,

each of which has at most k vertices. �
Theorem 2. Algorithm 2 is a (1 − 1/e)/12 approximation for BCDS.

3.3 An Improved Modified Algorithm

In the following proof, we generalize the analysis given in Lemma 5.1 [12] regard-
ing the existence of a greedily selected set (of at most k vertices) with a good
intersection to the (neighborhood of the) optimal solution. Below, let D and
p refer to the dominating set and profit function returned by GDS (line 1 in
Algorithm 2).

Lemma 4. There exists a set D′ ⊆ D, |D′| ≤ 
ck�, for some constant 0 < c ≤ 1,
such that p(D′) ≥ (1−e−c)OPT. Furthermore, D′ can be connected using at most
another k + 
ck� Steiner vertices.

Proof. We define the layers L1, L2, L3 as follows. L1 contains the (at most k)
vertices of an optimal BCDS solution. Let L2 = N(L1), meaning that the optimal
number of dominated vertices is OPT = |L1 ∪ L2|. Also, let L3 = N(L2) \ L1

and R = V \ (L1 ∪ L2 ∪ L3), where R denotes the remaining vertices, i.e., those
outside the three layers L1, L2, L3. Let us now consider the intersection of these
layers with the greedy dominating set D returned by GDS (Algorithm 1). Let
L′

i = D ∩ Li for i = 1, 2, 3 and D′ = {v1, v2, . . . , vλ} denote the first λ = 
ck�
vertices from L′

1∪L′
2∪L′

3 in the order selected by the greedy algorithm. In order
to bound the total profit in D′, we define gi =

∑i
μ=1 p(vμ) as the profit we gain

from the first i vertices of D′. For the initial value, let g0 = 0.

Proposition 1 (Claim 1 [12]). For i = 0, 1, . . . , k − 1, it holds gi+1 − gi ≥
1
k (OPT − gi).

By solving the recurrence in Claim 1, we get gi ≥ (1−(1− 1
k )i)OPT. Then, for D′,

we get
∑

v∈D′ p(v) = g�ck� ≥
(
1 − (

1 − 1
k

)�ck�) OPT ≥
(
1 − (

1 − 1
k

)ck
)

OPT ≥
(
1 −

((
1 − 1

k

)k
)c)

OPT ≥ (1 − e−c)OPT. Moreover, let us show that an extra
k + 
ck� vertices are enough to ensure that D′ is connected. We select a subset
D′′ ⊆ L2 of size at most |L3∩D′| ≤ 
ck� to dominate all vertices of D′∩L3. Then,
we ensure that all vertices are connected by simply adding all the k vertices of
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L1. Thus, D̂ = D′ ∪D′′ ∪L1 induces a connected subgraph that contains at most
k + 2
ck� vertices. �

We can now make use of this generalized analysis and suggest a modified
algorithm, parameterized by the parameter c, where the Quota Steiner Tree
routine is called with a quota of (1 − e−c)OPT; see Algorithm 3 below.

Algorithm 3: Modified Greedy Profit Labeling Algorithm for BCDS(c)
Input : A graph G = (V (G), E(G)), k ∈ N

Output: A tree T̃ on at most k vertices
1 (D, p) ← GDS(G)
2 T ← QST (G, (1 − e−c)OPT, p)

3 T̃ ← Bestk(T, p)

4 return T̃

Theorem 3. For some constant 0 < c ≤ 1, there is a (1 − e−c)/(
8c� + 4)
approximation for BCDS.

Proof. By Lemma 4 and Theorem 1, it follows that Algorithm 3 (line 2) returns
a tree of size at most 2k + 4
ck� ≤ 2k + 4(ck + 1) = (4c + 2)k + 4 with profit
at least (1 − e−c)OPT. For a final solution, it suffices to return a subtree of T ,
namely T ′, of size at most k which dominates the maximum number of vertices
(call Bestk(·) in line 3 of Algorithm 3). This can be done in polynomial time via
dynamic programming: see section 5.2.2 in [12].

To prove a lower bound on the number of vertices T ′ dominates, we decom-
pose T into a set of subtrees via iteratively removing an eligible tree from T .
To do so, we apply Lemma 2 with p = k. Like in the proof of Lemma 3, we can
prove by induction that after i such removals of eligible subtrees of size at most
k, the remaining tree has at most |T |− i · (k/2−1) vertices. For i = 
8c+3�, the
remaining tree’s size is upper bounded by (4c + 2)k + 4 − 
8c + 3� · (k/2 − 1) ≤
(4c + 2)k + 4 − (8c + 3) · (k/2 − 1) = k/2 + 8c + 7, which is at most k
for a sufficiently large choice of k, i.e., k ≥ 16c + 14. Therefore, we can
decompose T into 
8c + 3� + 1 = 
8c� + 4 subtrees of size at most k, say
T1, T2, . . . , T�8c�+4. Then, from pigeonhole principle and our decomposition, it
follows p(T ′) ≥ 1

�8c�+4

∑�8c�+4
i=1 p(Ti) ≥ 1

�8c�+4p(T ) ≥ 1
�8c�+4 (1 − e−c)OPT. �

For c = 1, Theorem 3 matches the approximation ratio already given in
Theorem 2. Since the above ratio is a function of the parameter c, we numerically
compute its maximum value to 1/11(1 − e−7/8) attained for c = 7/8.

Corollary 1. There is a 1/11(1 − e−7/8)-approximation for BCDS.
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3.4 Inapproximability

In this Subsection, we demonstrate a first inapproximability result for BCDS by
identifying a reduction from the well known Maximum Coverage problem.

Definition 6 (MAX-k-COVER). Given a positive integer k and a collection
of sets S = {S1, S2, . . . , Sm}, find a set S′ ⊆ S, where |S′| ≤ k, which maximizes
the number of covered elements |⋃Si∈S′ Si|.
Theorem 4 ([5,11]). For any ε > 0, there is no polynomial time approximation
algorithm for MAX-k-COVER within a ratio of (1 − 1/e + ε) unless P = NP.

Let us now demonstrate a gap-preserving reduction (Definition 10.2 [1])
which transforms an instance of MAX-k-COVER, namely MC(S, k), where
S = {S1, S2, . . . , Sm} to an instance of BCDS, namely BCDS(G, k), where
G = (V,E). For an example illustration, see Fig. 2. For each set Si ∈ S, we
include a vertex si in V . Let the union of elements in the set system

⋃
Si∈S Si

be represented as {x1, x2, . . . , xn}. For each element xj , we include q vertices in
V , namely xj,1, xj,2, . . . , xj,q, where q is a polynomial in m (q ≥ m2 suffices).
Overall, |V | = m + qn. In the edge set E, we include edges (si, sj), for each
i, j = 1, 2, . . . ,m, i �= j, and (si, xj,z), for each i, j such that xj ∈ Si and for
each z = 1, 2, . . . , q. Notice the size is polynomial in the input of MC(S, k), since
we get |E| ≤ (

m
2

)
+ mqn. In Lemma 5, let MC(S, k), respectively BCDS(G, k),

also refer to the optimal solution for the corresponding MAX-k-COVER, resp.
BCDS, instance.

s1 s2 si sm· · · · · · · · · · · ·
. . . . .

. . . . . .
. . . . . .

. . . . . .
.

x1,1 x1,q

· · ·
x2,1 x2,q

· · ·
xj,1 xj,q

· · ·. . . . . . . . . . . .

xn,1 xn,q

· · ·

Fig. 2. The graph G constructed for the gap-preserving reduction employed in
Lemma 5. Vertices si within the dashed ellipse form a clique. Vertex si is connected to
vertices xj,1, xj,2, . . . , xj,q in G if Si 
 xj in MC(S, k).

Lemma 5. There is a gap-preserving reduction from MAX-k-COVER to BCDS
so that,

(i) if MC(S, k) ≥ λ, then BCDS(G, k) ≥ Λ, where Λ := m + qλ, and
(ii) if MC(S, k) < (1− 1

e +ε)·λ, then BCDS(G, k) < (1− 1
e + m

e(m+qλ)+ε· qλ
m+qλ )·Λ.

Theorem 5. For any ε > 0, there is no polynomial time approximation algo-
rithm for BCDS within a ratio of (1 − 1/e + ε) unless P = NP.
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4 Edge-Vertex Domination

We now turn our attention to edge-vertex domination problems, where the goal
is to identify a set of edges which dominate vertices of the graph. We consider
both budgeted and partial cover cases.

4.1 Budgeted Edge-Vertex Domination

Let us consider the general case of BEVD (Definition 2), where the selected sub-
set of edges does not need to be connected. We identify a strong connection to
the classical MAX-k-COVER problem; see Definition 6 and Theorems 4, 6. On
the positive side, in Theorem 7, we prove a (1−1/e)-approximation by reducing
BEVD to an instance of MAX-k-COVER. On the negative side, we demonstrate
a gap-preserving reduction from MAX-k-COVER to BEVD and therefore con-
clude that the above approximation is the best possible (Theorem 8).

Theorem 6 (Proposition 5.1 [5]). There exists a (1 − 1/e)-approximation
algorithm in polynomial time for MAX-k-COVER.

Theorem 7. There exists a (1 − 1/e)-approximation algorithm for BEVD.

We now proceed and demonstrate a gap-preserving reduction (Definition
10.2 [1]) which transforms an instance of MAX-k-COVER, namely MC(S, k),
where S = {S1, S2, . . . , Sm} to an instance of BEVD, namely BEVD(G, k), where
G = (V,E). For an illustration, see Fig. 3. The vertex set V contains a “root”
vertex v0. For each set Si ∈ S, we include a vertex si in V . Let the union of
elements in the set system

⋃
Si∈S Si be represented as {x1, x2, . . . , xn}. For each

element xj , we include q vertices in V , namely xj,1, xj,2, . . . , xj,q, where q is a
polynomial in m (q ≥ m2 suffices) Overall, we have |V | = m+1+qn. In the edge
set E, we include the edges (v0, si), for each i = 1, 2, . . . , m, and (si, xj,z), for
each i, j such that xj ∈ Si and for each z = 1, 2, . . . , q. The size is polynomial in
the input of MC(S, k), since we get |E| ≤ m + mqn. In Lemma 6, let MC(S, k),
respectively BEVD(G, k), refer to the optimal solution for the corresponding
max cover, resp. BEVD, instance.

Lemma 6. There is a gap-preserving reduction from MAX-k-COVER to BEVD
so that,

(i) if MC(S, k) ≥ λ, then BEVD(G, k) ≥ Λ, where Λ := m + 1 + qλ, and
(ii) if MC(S, k) < (1 − 1

e + ε) · λ, then BEVD(G, k) < (1 − 1
e + m+1

e(m+1+qλ) +

ε qλ
m+1+qλ ) · Λ.

Theorem 8. For any ε > 0, there is no polynomial time approximation algo-
rithm for BEVD within a ratio of (1 − 1/e + ε) unless P = NP.

As a side note, consider the case where the selected edge set is required to
be connected. That is, let BEVDC refer to the budgeted edge-vertex connected
domination problem. Below, we prove that this problem is equivalent to the
budgeted connected dominating set (BCDS) problem researched in Sect. 3.
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v0

s1 s2 si sm· · · · · · · · · · · ·
. . . . .

. . . . . .
. . . . . .

. . . . . .
.

x1,1 x1,q

· · ·
x2,1 x2,q

· · ·
xj,1 xj,q

· · ·. . . . . . . . . . . .

xn,1 xn,q

· · ·

Fig. 3. Graph G constructed for the gap-preserving reduction employed in Lemma 6.
Vertex si is connected to vertices xj,1, xj,2, . . . , xj,q in G if Si 
 xj in MC(S, k).

Proposition 2. For any G = (V,E) where |V | ≥ 2, and integer k ≥ 2, a feasible
solution S to BCDS(G, k) can be transformed to a solution SE to BEVDC(G, k−
1), where N [S] = N [SE ], and vice versa.

4.2 Partial Edge-Vertex Domination

Herein, we prove an O(log n)-approximation for Partial Edge-Vertex Domination
(PEVD); refer to Definition 3. Given a graph G = (V,E) and an integer n′, we
need to select a subset E′ ⊆ E of minimum size such that it holds |N [E′]| ≥ n′.
To approximate the problem, we identify a reduction to Partial Cover (PC).

Definition 7 (PARTIAL COVER). Given a universe (set) of elements X =
{x1, x2, ..., xn}, a collection of subsets of X, S = {S1, S2, ..., Sm}, and a real
0 < p ≤ 1, find a minimum-size sub-collection of S, say S′, that covers at least
a p-part of X, i.e., |⋃Si∈S′ Si| ≥ pn.

Theorem 9 (Theorems 3, 4 in [24]). PARTIAL COVER is approximable
within a factor min{H(
pn�),H(D)}, where H is the Harmonic number H(x) =∑x

i=1 1/x and D is the maximum size of a set in S.

Theorem 10. There exists a min{H(n′),H(2Δ)}-approximation for PEVD.

5 Conclusion

We propose a new technique to obtain tree decompositions, and a generalized
analysis, thus improving the approximation guarantee from (1− e−1)/13 to (1−
e−7/8)/11 for BCDS. Furthermore, we prove a (1 − 1/e + ε) upper bound. Also,
we introduce BEVD and PEVD, and provide (tight) approximation bounds.

Regarding future work on BCDS, the goal is to design an algorithm with an
improved guarantee. Moreover, it would be interesting to capture the difficulty
of the problem with a stronger inapproximability result. We believe that a tight
bound lies somewhere between our currently established state of the art.
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Related to the edge-vertex case, it would be interesting to consider budgeted
and partial versions for other dominating set variants, such as mixed domina-
tion [28], where both vertices and edges are selected in order to dominate as
many vertices and edges as possible, expansion ratio variants such as in [16], or
even eternal domination [15], where a set of guards need to dominate the graph
perpetually while moving to protect it against attacks on its vertices.
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