
31st International Workshop, IWOCA 2020
Bordeaux, France, June 8–10, 2020
Proceedings

Combinatorial
AlgorithmsLN

CS
 1

21
26

AR
Co

SS
Leszek Gąsieniec
Ralf Klasing
Tomasz Radzik (Eds.)

Lecture Notes in Computer Science 12126

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0001-9619-1558

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Leszek Gąsieniec • Ralf Klasing •

Tomasz Radzik (Eds.)

Combinatorial
Algorithms
31st International Workshop, IWOCA 2020
Bordeaux, France, June 8–10, 2020
Proceedings

123

Editors
Leszek Gąsieniec
University of Liverpool
Liverpool, UK

Augusta University
Augusta, GA, USA

Ralf Klasing
CNRS and University of Bordeaux
Talence, France

Tomasz Radzik
King’s College London
London, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-48965-6 ISBN 978-3-030-48966-3 (eBook)
https://doi.org/10.1007/978-3-030-48966-3

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-48966-3

Preface

The 31st International Workshop on Combinatorial Algorithms (IWOCA 2020) was
originally scheduled to take place during June 8–10, 2020, in Bordeaux, France. Due to
the COVID-19 pandemic, those original arrangements had to be changed. The sym-
posium was run online on the originally set dates of 8–10 June 2020, organized and
coordinated from Bordeaux by the IWOCA 2020 Organizing Committee.

Since its inception in 1989 as AWOCA (Australasian Workshop on Combinatorial
Algorithms), IWOCA has provided an annual forum for researchers who design
algorithms for the myriad combinatorial problems that underlie computer applications
in science, engineering, and business. Previous IWOCA and AWOCA meetings have
been held in Australia, Canada, Czech Republic, Finland, France, Indonesia, India,
Italy, Japan, Singapore, South Korea, the UK, and the USA.

The Program Committee (PC) of IWOCA 2020 received 62 submissions. Each
submission was reviewed by at least three PC members and some trusted external
referees, and evaluated on its quality, originality, and relevance to the symposium.
The PC selected 30 papers for presentation at the symposium and inclusion in the
proceedings.

Three invited talks were given at IWOCA 2020, by Dan Alistarh (Institute of
Science and Technology, Austria), Sándor Fekete (Technische Universität Braun-
schweig, Germany), and Tatiana Starikovskaya (École normale supérieure, Paris,
France). This volume contains the abstracts or the extended versions of the three
invited talks.

We thank the Steering Committee for giving us the opportunity to serve as program
chairs of IWOCA 2020, and for the responsibilities of selecting the PC, the conference
program, and publications.

The PC selected three contributions for the best paper and the best student paper
awards, sponsored by Springer.

The Best Paper Award was given to:

• Peter Damaschke for his paper “Two Robots Patrolling on a Line: Integer Version
and Approximability”

The Best Student Paper Award was shared between two papers:

• Pratibha Choudhary for her paper “Polynomial Time Algorithms for Tracking Path
Problems”

• Florent Foucaud, Benjamin Gras, Anthony Perez, and Florian Sikora for their
paper “On the complexity of Broadcast Domination and Multipacking in digraphs”

We gratefully acknowledge additional financial support from the following insti-
tutions: the University of Bordeaux, LaBRI, CNRS, Bordeaux INP, IDEX Bordeaux,
Cluster SysNum, and the French National Research Agency (ANR).

We would like to thank all the authors who responded to the call for papers, the
invited speakers, the members of the PC, the external referees, and – last but not least –
the members of the Organizing Committee.

We would like to thank Springer for publishing the proceedings of IWOCA 2020 in
their ARCoSS/LNCS series and for their support.

Finally, we acknowledge the use of the EasyChair system for handling the sub-
mission of papers, managing the review process, and generating these proceedings.

June 2020 Leszek Gąsieniec
Ralf Klasing

Tomasz Radzik

vi Preface

Organization

Steering Committee

Maria Chudnovsky Princeton University, USA
Charles Colbourn Arizona State University, USA
Costas Iliopoulos King’s College London, UK
Bill Smyth McMaster University, Canada; Murdoch University,

Australia; and King’s College London, UK

Program Committee

Amihood Amir Bar Ilan University, Israel
Petra Berenbrink University of Hamburg, Germany
Hans L. Bodlaender Utrecht University, The Netherlands
Hans-Joachim Böckenhauer ETH Zürich, Switzerland
Marthe Bonamy CNRS and University of Bordeaux, France
Arnaud Casteigts University of Bordeaux, France
Marek Chrobak University of California, Riverside, USA
Charles Colbourn Arizona State University, USA
Anne Driemel University of Bonn, Germany
Leah Epstein University of Haifa, Israel
Thomas Erlebach University of Leicester, UK
Paola Flocchini University of Ottawa, Canada
Florent Foucaud University of Bordeaux, France
Pierre Fraigniaud CNRS and Paris Diderot University, France
Luisa Gargano University of Salerno, Italy
Leszek Gąsieniec

(Co-chair)
The University of Liverpool, UK, and Augusta

University, USA
Juraj Hromkovič ETH Zürich, Switzerland
Sun-Yuan Hsieh National Cheng Kung University, Taiwan
Ling-Ju Hung National Taipei University of Business, Taiwan
Ralf Klasing (Co-chair) CNRS and University of Bordeaux, France
Tomasz Kociumaka Bar Ilan University, Israel
Dennis Komm ETH Zürich, Switzerland
Rastislav Královič Comenius University, Slovakia
Thierry Lecroq University of Rouen, France
Dimitrios Letsios King’s College London, UK
Andrea Marino University of Florence, Italy
Tobias Mömke Saarland University, Germany
Xavier Muñoz Universitat Politècnica de Catalunya, Spain
Ian Munro University of Waterloo, Canada
Rolf Niedermeier Technical University of Berlin, Germany

Aris Pagourtzis National Technical University of Athens, Greece
Marina Papatriantafilou Chalmers University of Technology, Sweden
Tomasz Radzik (Co-chair) King’s College London, UK
Sohel Rahman Bangladesh University of Engineering and Technology,

Bangladesh
Peter Rossmanith RWTH Aachen University, Germany
Joe Ryan The University of Newcastle, Australia
Alex Schwarzmann Augusta University, USA
Bill Smyth McMaster University, Canada; Murdoch University,

Australia; and King’s College London, UK
Paul Spirakis The University of Liverpool, UK, and University

of Patras, Greece
Walter Unger RWTH Aachen University, Germany
Przemysław Uznański University of Wrocław, Poland
Yukiko Yamauchi Kyushu University, Japan

Organizing Committee

Marthe Bonamy CNRS and University of Bordeaux, France
Arnaud Casteigts University of Bordeaux, France
Auriane Dantes University of Bordeaux, France
Florent Foucaud (Co-chair) University of Bordeaux, France
Isabelle Garcia University of Bordeaux, France
Shih-Shun Kao University of Bordeaux, France, and National Cheng

Kung University, Taiwan
Ralf Klasing (Co-chair) CNRS and University of Bordeaux, France
Dimitri Lajou University of Bordeaux, France
Alessia Milani Bordeaux INP, France
Jonathan Narboni University of Bordeaux, France
Jason Schoeters University of Bordeaux, France

External Reviewers

Abels, Andreas
Afshani, Peyman
Akrida, Eleni C.
Abels, Andreas
Afshani, Peyman
Akrida, Eleni C.
Benter, Matthias
Bergognoux, Benjamin
Brejová, Broňa
Burjons, Elisabet
Cames van Batenburg, Wouter
Chakraborty, Dibyayan
Chang, Jou-Ming

Chang, Shun-Chieh
Colini Baldeschi, Riccardo
Cordasco, Gennaro
Coudert, David
Dailly, Antoine
Damaschke, Peter
de Castro Mendes Gomes, Guilherme
Deligkas, Argyrios
Dereniowski, Dariusz
Dobrev, Stefan
Dreier, Jan
Duvignau, Romaric
Faliszewski, Piotr

viii Organization

Fischer, Dennis
Frascaria, Dario
Frei, Fabian
Froese, Vincent
Fuchs, Janosch
Fukunaga, Takuro
Fürst, Maximilian
Georgiou, Konstantinos
Gkikas, Angelos
Habib, Mursalin
Hanaka, Tesshu
Hartmann, Tim A.
Hassan, Shahriar
Heeger, Klaus
Himmel, Anne-Sophie
Hoefer, Martin
Hsu, Daniel
Kao, Mong-Jen
Kauers, Manuel
Kellerhals, Leon
Kijima, Shuji
Kim, Eun Jung
Knop, Dušan
Kobayashi, Yasuaki
Koumoutsos, Grigorios
Kranakis, Evangelos
La, Hoang
Lajou, Dimitri
Lee, Chuan-Min
Levin, Asaf
Lin, Chuang-Chieh
Lopes, Raul
Lotze, Henri

Lucarelli, Giorgio
Łukasiewicz, Aleksander
Lukoťka, Robert
Mautner, Stefan
Mc Inerney, Fionn
Mertzios, George
Michail, Othon
Mnich, Matthias
Mobin, Jaiaid
Nakos, Vasileios
Narboni, Jonathan
Novotna, Jana
Okrasa, Karolina
Ordyniak, Sebastian
Pandit, Supantha
Prezza, Nicola
Psarros, Ioannis
Punzi, Giulia
Rashid, Syed Md. Mukit
Ravindran Vijayalakshmi, Vipin
Rescigno, Adele
Ruangwises, Suthee
Sadakane, Kunihiko
Sajenko, Andrej
Santoro, Nicola
Serna, Maria
Shamil, Md. Salman
Silva, Ana
Suzuki, Akira
Tauer, Björn
Vaccaro, Ugo
Zamaraev, Viktor
Zhang, Jingru

Organization ix

Sponsors

x Organization

Abstracts of Invited Talks

Optimization by Population: Large-Scale
Distributed Optimization Via Population

Protocols

Dan Alistarh

Institute of Science and Technology, Austria
dan.alistarh@ist.ac.at

The population model is a standard way to represent large-scale decentralized dis-
tributed systems, in which agents with limited computational power interact in ran-
domly chosen pairs, in order to collectively solve global computational tasks. In
contrast with synchronous gossip models, nodes are anonymous, lack a common notion
of time, and have no control over their scheduling. In this talk, I will describe recent
work examining whether large-scale distributed optimization can be performed in this
extremely restrictive setting.

I will introduce and analyze natural decentralized variants of the classical stochastic
gradient descent (SGD) procedure, in which every node maintains a local estimate
of the optimal set of parameters, and is able to compute stochastic gradients with
respect to this parameter. Every pair-wise node interaction performs a stochastic gra-
dient step at each agent, followed by averaging of the two models. I will show that,
under standard assumptions, SGD can converge even in this extremely loose, decen-
tralized setting. Moreover, surprisingly, the algorithm can achieve linear speedup in the
number of nodes n. In addition, I will show experimental results showing that this
algorithm can achieve convergence and speedup for large-scale distributed learning
tasks.

Coordinating Swarms of Objects at Extreme
Dimensions

Sándor P. Fekete

Department of Computer Science, TU Braunschweig, Germany
s.fekete@tu-bs.de

We describe a variety of algorithmic challenges arising from coordination and recon-
figuration of swarms of potentially many objects, ranging in size from minuscule
particles all the way to far-away satellite swarms. Particular results include methods for
coordinating the motion of vehicles in traffic in order to avoid inefficient stop-and-go
congestions; using uniform global forces for controlling particle swarms; online tri-
angulation and structured exploration; cohesive control for swarms of robots with only
local communication; coordinated motion planning for efficiently reconfiguring an
arrangement of robots; and constructing and reconfiguring large-scale structures by
finite automata. All presented work is based on collaborations with a variety of authors.

Algorithms for String Processing
in Restricted-Access Models of Computation

Tatiana Starikovskaya

DIENS, École normale supérieure, PSL Research University, Paris, France
tat.starikovskaya@gmail.com

Many classical algorithms for string processing assume that the input can be accessed
in full via constant-time random access, which poses a serious limitation in the modern
era of data deluge. In this talk, we will consider two novel models of computation that
avoid this assumption: streaming and property testing. In this talk, we will discuss
recent developments related to these two models and will show that they allow
developing ultra-efficient approaches to string processing.

In the streaming model of computation, we assume that the input arrives as a
stream, one character at a time, which captures a situation when the data are sequential
measurements or an output of an algorithm. In this model, the space complexity is
defined as all the space used, including the space used to store any information about
the input. The goal is to develop an algorithm which uses sublinear (preferably,
polylogarithmic) space. The first streaming algorithm for pattern matching was pre-
sented in the seminal paper of Porat and Porat in FOCS 2009. For a pattern of length m,
the algorithm uses only OðlogmÞ space, while any classical algorithm requires XðmÞ
space. This result served as a foundation of the area of streaming algorithms for pattern
matching, which we will survey in the first part of the talk.

In the property testing model, our task is to decide whether the input string has a
particular property P. As opposed to streaming algorithms, property testers have
random access to their input. However, we pose a restriction on property testers and
require them to access as few characters of the input as possible, which allows
developing very fast algorithms. In order to make the decision task possible, often two
relaxations are allowed. First, we allow probabilistic algorithms. Second, we only ask
the tester to distinguish between two cases: the case where the input satisfies P; and the
case where we must change at least an e-fraction of the characters so that the input
satisfies P. In FOCS 1999, Alon et al. showed that any regular language can be tested
by accessing only Oðlog3ð1=eÞ=eÞ characters of the input. Since this fundamental
result, the literature has seen a series of property testers for formal languages, and we
will discuss some of them in the second part of the talk.

Contents

Invited Paper

Coordinating Swarms of Objects at Extreme Dimensions 3
Sándor P. Fekete

Contributed Papers

A Family of Tree-Based Generators for Bubbles in Directed Graphs 17
Vicente Acuña, Leandro Lima, Giuseppe F. Italiano,
Luca Pepè Sciarria, Marie-France Sagot, and Blerina Sinaimeri

The Micro-world of Cographs. 30
Bogdan Alecu, Vadim Lozin, and Dominique de Werra

Parameterized Complexity of ðA; ‘Þ-Path Packing . 43
Rémy Belmonte, Tesshu Hanaka, Masaaki Kanzaki, Masashi Kiyomi,
Yasuaki Kobayashi, Yusuke Kobayashi, Michael Lampis, Hirotaka Ono,
and Yota Otachi

On Proper Labellings of Graphs with Minimum Label Sum 56
Julien Bensmail, Foivos Fioravantes, and Nicolas Nisse

Decremental Optimization of Dominating Sets Under
the Reconfiguration Framework . 69

Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, and Akira Suzuki

On the Complexity of Stackelberg Matroid Pricing Problems 83
Toni Böhnlein and Oliver Schaudt

Nonexistence Certificates for Ovals in a Projective Plane of Order Ten 97
Curtis Bright, Kevin K. H. Cheung, Brett Stevens, Ilias Kotsireas,
and Vijay Ganesh

Edge-Disjoint Branchings in Temporal Graphs . 112
Victor Campos, Raul Lopes, Andrea Marino, and Ana Silva

Optimal In-place Algorithms for Basic Graph Problems 126
Sankardeep Chakraborty, Kunihiko Sadakane, and Srinivasa Rao Satti

Further Results on Online Node- and Edge-Deletion Problems
with Advice . 140

Li-Hsuan Chen, Ling-Ju Hung, Henri Lotze, and Peter Rossmanith

Fair Packing of Independent Sets . 154
Nina Chiarelli, Matjaž Krnc, Martin Milanič, Ulrich Pferschy,
Nevena Pivač, and Joachim Schauer

Polynomial Time Algorithms for Tracking Path Problems 166
Pratibha Choudhary

New Bounds for Maximizing Revenue in Online Dial-a-Ride 180
Ananya Christman, Christine Chung, Nicholas Jaczko, Tianzhi Li,
Scott Westvold, Xinyue Xu, and David Yuen

Iterated Type Partitions . 195
Gennaro Cordasco, Luisa Gargano, and Adele A. Rescigno

Two Robots Patrolling on a Line: Integer Version and Approximability 211
Peter Damaschke

Ordering a Sparse Graph to Minimize the Sum of Right Ends of Edges 224
Peter Damaschke

On the Complexity of Singly Connected Vertex Deletion 237
Avinandan Das, Lawqueen Kanesh, Jayakrishnan Madathil,
Komal Muluk, Nidhi Purohit, and Saket Saurabh

Equitable d-degenerate Choosability of Graphs . 251
Ewa Drgas-Burchardt, Hanna Furmańczyk, and Elżbieta Sidorowicz

On the Complexity of BROADCAST DOMINATION and MULTIPACKING

in Digraphs . 264
Florent Foucaud, Benjamin Gras, Anthony Perez, and Florian Sikora

A Parameterized Perspective on Attacking and Defending Elections 277
Kishen N. Gowda, Neeldhara Misra, and Vraj Patel

Skyline Computation with Noisy Comparisons . 289
Benoît Groz, Frederik Mallmann-Trenn, Claire Mathieu,
and Victor Verdugo

Strongly Stable and Maximum Weakly Stable Noncrossing Matchings. 304
Koki Hamada, Shuichi Miyazaki, and Kazuya Okamoto

Connectivity Keeping Trees in 2-Connected Graphs with Girth Conditions. . . 316
Toru Hasunuma

The Steiner Problem for Count Matroids . 330
Tibor Jordán, Yusuke Kobayashi, Ryoga Mahara, and Kazuhisa Makino

Bounded Degree Group Steiner Tree Problems . 343
Guy Kortsarz and Zeev Nutov

xviii Contents

Between Proper and Strong Edge-Colorings of Subcubic Graphs. 355
Hervé Hocquard, Dimitri Lajou, and Borut Lužar

Improved Budgeted Connected Domination and Budgeted
Edge-Vertex Domination . 368

Ioannis Lamprou, Ioannis Sigalas, and Vassilis Zissimopoulos

Algorithms for Constructing Anonymizing Arrays . 382
Erin Lanus and Charles J. Colbourn

Parameterized Algorithms for Partial Vertex Covers in Bipartite Graphs. 395
Vahan Mkrtchyan, Garik Petrosyan, K. Subramani,
and Piotr Wojciechowski

Acyclic Matching in Some Subclasses of Graphs . 409
B. S. Panda and Juhi Chaudhary

Author Index . 423

Contents xix

Invited Paper

Coordinating Swarms of Objects
at Extreme Dimensions

Sándor P. Fekete(B)

Department of Computer Science, TU Braunschweig, Braunschweig, Germany
s.fekete@tu-bs.de

Abstract. We describe a variety of algorithmic challenges arising from
coordination and reconfiguration of swarms of potentially many objects,
ranging in size from minuscule particles all the way to far-away satellite
swarms. Particular results include methods for coordinating the motion
of vehicles in traffic in order to avoid inefficient stop-and-go conges-
tions; using uniform global forces for controlling particle swarms; online
triangulation and structured exploration; cohesive control for swarms
of robots with only local communication; coordinated motion planning
for efficiently reconfiguring an arrangement of robots; and constructing
and reconfiguring large-scale structures by finite automata. All presented
work is based on collaborations with a variety of authors, who are named
in the respective sections of this overview.

1 Introduction

Problems of coordinating and reconfiguring arrangements of objects pose impor-
tant questions at various dimensions, ranging from tiny particles all the way to
far-away satellite swarms. Ironically, systems at these very small and very large
distances share a fundamental property: It becomes difficult to use “external”
computation, in which a powerful central computing device is provided with
input about the system, and output is fed back into the system. Instead, it
becomes important to consider “internal” computation, in which algorithms and
execution remain within the system itself, even if that comes at the expense of
processing power.

In this overview we provide a number of different contexts that require deal-
ing with computation, communication and coordination of swarms of robots
at extreme dimensions. These dimensions may correspond to extremely small
or large sizes or extremely large numbers; both give rise to a wide range of
algorithmic challenges. This overview provides pointers to more detailed con-
texts and references, and gives credit to the numerous collaborators and their
contributions.

2 Traffic

How can we coordinate the motion of many autonomous vehicles, such that the
overall traffic flow is smooth and efficient? (Fig. 1).
c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 3–13, 2020.
https://doi.org/10.1007/978-3-030-48966-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_1&domain=pdf
http://orcid.org/0000-0002-9062-4241
https://doi.org/10.1007/978-3-030-48966-3_1

4 S. P. Fekete

Fig. 1. Typical stop-and-go traffic.

We describe a distributed and self-regulated approach for the self-
organization of a large system of many self-driven, mobile objects, i.e., cars in
traffic. Based on methods for mobile ad-hoc networks using short-distance com-
munication between vehicles, and ideas from distributed algorithms, we consider
reactions to specific traffic structures (e.g., traffic jams). Building on models
from traffic physics, we are able to develop strategies that significantly improve
the flow of congested traffic. Results include fuel savings up to 40% for cars in
stop-and-go traffic; we present a number of simulation results illustrating the
efficacy of the underlying mechanisms (Fig. 2).

Fig. 2. A simulation of dense traffic. Time proceeds from top to bottom, vehicles move
from left to right, so an individual vehicle follows a trajectory from top left to bottom
right, with color indicating momentary vehicle speeds. Observe the stop-and-go density
fluctuations in the upper part of the diagram, which are dissolved in the bottom part
by switching on our developed mechanism, resulting in a better flow of traffic. (Color
figure online)

Coordinating Swarms of Objects 5

The results of this section summarize joint work with Sebastian Ebers, Ste-
fan Fischer, Horst Hellbrück, Björn Hendriks, Christopher Tessars, and Axel
Wegener. See [13,16,19] for further details.

3 Uniform Global Control for Particle Swarms

How can we rearrange a potentially large swarm of particles that do not have
their own energy supply? (Fig. 3).

.025 mm 0.5 mm 65 mm 0.5 mm

Fig. 3. After feeding iron particles to ciliate eukaryons (Tetrahymena pyriformis) and
magnetizing the particles with a permanent magnet, the cells can be turned by changing
the orientation of an external magnetic field (see colored paths in the center image).
(Right) Using two orthogonal Helmholz electromagnets, Becker et al. [11] demonstrated
steering many living magnetized T. pyriformis cells. All cells are steered by the same
global field. (Color figure online)

We consider algorithmic control of a large swarm of mobile particles, such
as robots, sensors, or building material. The objective is to achieve arbitrary
reconfiguration, even if the particles are too small to carry their own energy
supply. Instead, they are moved around with the help of external forces, such as
a magnetic field or gravity. Upon actuation, each object is pushed in the same
direction until it collides with an obstruction. This concept can be used for a
wide range of applications in which particles follow a uniform global signal. In an
open workspace, this system model is of limited use, because all particles receive
the same inputs and move uniformly. Thus, a crucial challenge for achieving any
desired target configuration is breaking global symmetry in a controlled fashion.

We provide two different methods for this objective. The first is to add a
maze of obstacles to the environment, which can make the system drastically
more complex but also more useful. We provide a variety of results for a wide
range of questions. These can be subdivided into external algorithmic prob-
lems, in which particle configurations serve as input for computations that are
performed elsewhere, and internal logic problems, in which the particle config-
urations themselves are used for carrying out computations (Fig. 4).

6 S. P. Fekete

Fig. 4. Gravity-fed hardware implementation of particle computation. This reconfig-
urable prototype is set up as a fan-out gate using a 2 × 1 robot (white)

The second approach uses the interplay between static friction with a bound-
ary and the external force to achieve arbitrary reconfiguration. As we demon-
strate, it is possible to determine a precise theoretical characterization of the
critical coefficient of friction that is sufficient for rearranging two particles in tri-
angles, convex polygons, and regular polygons. We also illustrate a method for
reconfiguring multiple particles in rectangular workspaces, and deriving practical
algorithms for these rearrangements.

The results of this section highlight a broad spectrum of joint work with
Victor Baez, Aaron Becker, Erik Demaine, Golnaz Habibi, Li Huang, Phillip
Keldenich, Linda Kleist, Dominik Krupke, Jarrett Lonsford, Arun Mahadev,
Sheryl Manzoor, James McLurkin, Rose Morris-Wright, Hamed Mohtasham
Shad, Christian Rieck, Christian Scheffer, and Arne Schmidt; see [3,4,6–8,10,20,
23,24,26,27] for further details. The shown video [2] is available at https://www.
ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2020/Friction SoCG.mp4; an earlier
video with further theoretical results [5] can be found at https://www.ibr.cs.tu-
bs.de/users/fekete/Videos/SoCG/2015/TiltforCompGeom100mb.mp4.

4 Online Triangulation and Structured Exploration

How can we allow a swarm of relatively simple robots to cooperate in exploring
an unknown environment? (Figs. 5 and 6).

We consider a fundamental framework for organizing exploration, coverage,
and surveillance by a swarm of robots with limited individual capabilities, based
on triangulating an unknown environment with a multi-robot system. Locally, an
individual triangle is easy for a single robot to manage and covers a small area;
globally, the topology of the triangulation approximately captures the geom-
etry of the entire environment. Combined, a multi-robot system can explore,

https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2020/Friction_SoCG.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2020/Friction_SoCG.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2015/TiltforCompGeom100mb.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2015/TiltforCompGeom100mb.mp4

Coordinating Swarms of Objects 7

Fig. 5. A swarm of small robots building an expanding triangulation for carrying out
a collective online exploration algorithm.

Fig. 6. Using a dual path for routing in a triangulated environment: a shortest path
(shown in red) is approximated by a minimum-hop path (shown in yellow), achieving
constant stretch. (Color figure online)

map, navigate, and patrol. Algorithms can store information in triangles that
the robots can read and write as they run their algorithms. This creates a physi-
cal data structure (PDS) that is both robust and versatile. We study distributed
approaches to triangulating an unknown, two-dimensional Euclidean space using
a multi-robot network. The resulting PDS is a compact representation of the
workspace, contains distributed knowledge of each triangle, encodes the dual
graph of the triangulation, and supports reads and writes of auxiliary data. The
ability to store and process this auxiliary information enables the simple robots
to solve complex problems. This leads to distributed algorithms for dual-graph
navigation, patrolling, construction of a topological Voronoi tessellation, and
location of the geodesic centers in non-convex regions, making it possible to

8 S. P. Fekete

provide theoretical performance guarantees for the quality of constructed trian-
gulation and the connectivity of a dual graph in the triangulation. In addition,
the path lengths of the physical navigation are within a constant factor of the
shortest-path Euclidean distance. These theoretical results were also practically
validated with simulations and experiments with dozens of robots.

The results of this section summarize joint work with Aaron Becker,
Tom Kamphans, Alexander Kröller, Seoung Kyou Lee, James McLurkin, Joe
Mitchell, and Christiane Schmidt. See our papers [17,22] for further details;
the shown video [18] is available at https://www.ibr.cs.tu-bs.de/users/fekete/
Videos/SoCG/2013/MATP-Video.mov.

5 Cohesive Control

How can we enable a swarm of simple robots to maintain connectivity, even if it
is being pulled apart by external forces? (Fig. 7).

Fig. 7. A robust robot swarm emulating a Steiner tree between diverging leader robots.

Consider a swarm of robots that needs to remain connected. There is no
central control and no knowledge of the overall environment. This environment
is hostile: The swarm is being pulled apart by external forces, stretching it into a
number of different directions, so it is in danger of breaking up. Individual robots
are weak, with limited sensing, limited communication, and limited connectivity;
even worse, each robot’s expected lifetime is limited by random, permanent
failures, which may destroy connectedness and functioning of the swarm as a
whole. The objective is to achieve coordinated dynamic swarm behavior without
centralized coordination, employing each robot as much as possible, without
depending on it if it fails, and balancing overall flexibility and robustness to deal
with the hostile environment.

https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2013/MATP-Video.mov
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2013/MATP-Video.mov

Coordinating Swarms of Objects 9

We propose a set of local continuous algorithms that together produce a
generalization of a Euclidean Steiner tree. At any stage, the resulting overall
shape achieves a good compromise between local thickness, global connectiv-
ity, and flexibility to further continuous motion of the terminals. The resulting
swarm behavior scales well, is robust against node failures, and performs close
to the best known approximation bound for a corresponding centralized static
optimization problem.

The results of this section summarize joint work with Dominik Krupke, Max-
imilian Ernestus, and Michael Hemmer. See our paper [21] for further details.

6 Coordinated Motion Planning

How can we coordinate the collision-free motion of many robots, vehicles, air-
craft, or people, such that each one reaches its destination as quickly as possible?
(Fig. 8).

Fig. 8. Coordinated motion planning: (Left) A start configuration of labeled robots.
(Center) A feasible move, coordinating parallel relocation of many robots. (Right) The
desired target configuration.

We develop constant-factor approximation algorithms for minimizing the exe-
cution time of a coordinated parallel motion plan for a relatively dense swarm of
homogeneous robots in the absence of obstacles. In our first model, each robot
has a specified start and destination on the square grid, and in each round
of coordinated parallel motion, every robot can move to any adjacent position
that is either empty or simultaneously being vacated by another robot. In this
model, our algorithm achieves a constant stretch factor : If every robot starts at
a distance of at most d from its destination, then the total duration of the over-
all schedule is O(d), which is optimal up to constant factors. Our result holds
for distinguished robots (each robot has a specific destination), identical (unla-
beled) robots, and most generally, classes of different robot types (where each
destination specifies a required type of robot). We also show that finding the
optimal coordinated parallel motion plan is NP-hard, justifying approximation
algorithms.

In our second model, each robot is a unit-radius disk in the plane, and
robots can translate continuously in parallel subject to not intersecting, i.e.,

10 S. P. Fekete

having disk centers at L2-distance at least 2. We prove the same result—
constant-factor approximation algorithm to minimizing execution time via con-
stant stretch factor—when the pairwise L∞-distance between disk centers is at
least 2

√
2 = 2.8284 On the other hand, for N densely packed disks at dis-

tance at most 2 + δ for a sufficiently small δ > 0, we prove that a stretch factor
of Ω(N1/4) is sometimes necessary (when densely packed), while a stretch factor
of O(N1/2) is always possible.

The results of this section summarize joint work with Aaron Becker, Erik
Demaine, Phillip Keldenich, Lilian Li, and Henk Meijer. See our paper [12] for
further details; the shown video [9] is available at https://www.ibr.cs.tu-bs.de/
users/fekete/Videos/SoCG/2018/CoordinatedMotionPlanning.mp4.

7 Constructing and Reconfiguring Large-Scale Structures

How can we use simple robots to construct large-scale structures, such as space
stations? (Fig. 9).

0% 20% 40% 60% 80% 100%

Fig. 9. Snapshots from building a bounding box for a Z-shaped polyomino using 2D
simulator, 3D simulator, and staged hardware robots, synchronized so all are shown at
steps {0, 24, 48, 72, 96, 120}.

We consider recognition and reconfiguration of lattice-based cellular struc-
tures by very simple robots with only basic functionality. The underlying motiva-
tion is the construction and modification of space facilities of enormous dimen-
sions, where the combination of new materials with extremely simple robots
promises structures of previously unthinkable size and flexibility. We present
algorithmic methods that are able to detect and reconfigure arbitrary poly-
ominoes, based on finite-state robots, while also preserving connectivity of a
structure during reconfiguration. Specific results include methods for determin-
ing a bounding box, scaling a given arrangement, and adapting more general
algorithms for transforming polyominoes.

https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2018/CoordinatedMotionPlanning.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2018/CoordinatedMotionPlanning.mp4

Coordinating Swarms of Objects 11

The results of this section summarize joint work with Amira Abdel-Rahman,
Aaron Becker, Daniel Biediger, Kenny Cheung, Neil Gershenfeld, Sabrina Hugo,
Ben Jenett, Phillip Keldenich, Eike Niehs, Christian Rieck, Arne Schmidt, Chris-
tian Scheffer, and Michael Yannuzzi. See our papers [15,25] for further details;
the shown video [1] is available at https://www.ibr.cs.tu-bs.de/users/fekete/
Videos/SoCG/2020/SpaceAnts SoCG.mp4.

8 Conclusion

Many of the presented topics are still subject to ongoing work; see the recent
survey article [14] for more details on context, content and technical details, as
well as additional references for some of the described topics. We are confident
that more progress on a wide range of related problems is imminent.

References

1. Abdel-Rahman, A., et al.: Space ants: constructing and reconfiguring large-scale
structures with finite automata. In: Symposium on Computational Geometry
(SoCG), pp. 73:1–73:7 (2020). https://www.ibr.cs.tu-bs.de/users/fekete/Videos/
SoCG/2020/SpaceAnts SoCG.mp4

2. Baez, V.M., Becker, A.T., Fekete, S.P., Schmidt, A.: Coordinated particle relo-
cation with global signals and local friction. In: Symposium on Computa-
tional Geometry (SoCG), pp. 72:1–72:8 (2020). https://www.ibr.cs.tu-bs.de/users/
fekete/Videos/SoCG/2020/Friction SoCG.mp4

3. Becker, A., Demaine, E.D., Fekete, S.P., Habibi, G., McLurkin, J.: Reconfiguring
massive particle swarms with limited, global control. In: Flocchini, P., Gao, J.,
Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol.
8243, pp. 51–66. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
45346-5 5

4. Becker, A., Demaine, E.D., Fekete, S.P., McLurkin, J.: Particle computation:
designing worlds to control robot swarms with only global signals. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 6751–6756 (2014)

5. Becker, A., Demaine, E.D., Fekete, S.P., Shad, S.H.M., Morris-Wright, R.: Tilt:
the video. Designing worlds to control robot swarms with only global signals. In:
Symposium on Computational Geometry (SoCG), pp. 16–18 (2015). https://www.
ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2015/TiltforCompGeom100mb.mp4

6. Becker, A., Morris-Wright, R., Demaine, E.D., Fekete, S.P.: Particle computation:
device fan-out and binary memory. In: IEEE International Conference on Robotics
and Automation (ICRA), pp. 5384–5389 (2015)

7. Becker, A.T., Demaine, E.D., Fekete, S.P., Lonsford, J., Morris-Wright, R.: Parti-
cle computation: complexity, algorithms, and logic. Nat. Comput. 18(1), 181–201
(2017). https://doi.org/10.1007/s11047-017-9666-6

8. Becker, A.T., et al.: Targeted drug delivery: algorithmic methods for collecting a
swarm of particles with uniform, external forces. In: IEEE International Conference
on Robotics and Automation (ICRA), (2020). https://www.ibr.cs.tu-bs.de/users/
fekete/hp/publications/PDF/2020-Gathering ICRA.pdf

https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2020/SpaceAnts_SoCG.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2020/SpaceAnts_SoCG.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2020/SpaceAnts_SoCG.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2020/SpaceAnts_SoCG.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2020/Friction_SoCG.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2020/Friction_SoCG.mp4
https://doi.org/10.1007/978-3-642-45346-5_5
https://doi.org/10.1007/978-3-642-45346-5_5
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2015/TiltforCompGeom100mb.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2015/TiltforCompGeom100mb.mp4
https://doi.org/10.1007/s11047-017-9666-6
https://www.ibr.cs.tu-bs.de/users/fekete/hp/publications/PDF/2020-Gathering_ICRA.pdf
https://www.ibr.cs.tu-bs.de/users/fekete/hp/publications/PDF/2020-Gathering_ICRA.pdf

12 S. P. Fekete

9. Becker, A.T., Fekete, S.P., Keldenich, P., Konitzny, M., Lin, L., Scheffer, C.: Coor-
dinated motion planning: the video. In: Symposium on Computational Geometry
(SoCG), vol. 99, pp. 74:1–74:6 (2018). https://www.ibr.cs.tu-bs.de/users/fekete/
Videos/SoCG/2018/CoordinatedMotionPlanningDefinitiveVersion.mp4

10. Becker, A.T., et al.: Tilt assembly: algorithms for micro-factories that build objects
with uniform external forces. Algorithmica 82(2), 165–187 (2020)

11. Becker, A.T., Ou, Y., Kim, P., Kim, M.J., Julius, A.: Feedback control of many
magnetized Tetrahymena pyriformis cells by exploiting phase inhomogeneity. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 3317–3323 (2013)

12. Demaine, E.D., Fekete, S.P., Keldenich, P., Scheffer, C., Meijer, H.: Coordinated
motion planning: reconfiguring a swarm of labeled robots with bounded stretch.
SIAM J. Comput. 48, 1727–1762 (2019)

13. Fekete, S., Tessars, C., Schmidt, C., Wegener, A., Fischer, S., Hellbrück, H.: Ver-
fahren und Vorrichtung zur Ermittlung einer Fahrstrategie. Patentnummer DE 10,
047 (2008)

14. Fekete, S.P.: Geometric aspects of robot navigation: from individual robots to mas-
sive particle swarms. In: Flocchini, P., Prencipe, G., Santoro, N. (eds) Distributed
Computing by Mobile Entities. LNCS, vol. 11340. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-11072-7 21

15. Fekete, S.P., Gmyr, R., Hugo, S., Keldenich, P., Scheffer, C., Schmidt, A.:
Cadbots: algorithmic aspects of manipulating programmable matter with finite
automata. In: Algorithmic Foundations of Robotics (WAFR 2018), Advanced
Tracts in Robotics. Springer, (2020). https://www.ibr.cs.tu-bs.de/users/fekete/
hp/publications/PDF/2020-CADBots WAFR.pdf

16. Fekete, S.P., et al.: Methods for improving the flow of traffic. In: Müller-Schloer,
C., Schmeck, H., Ungerer, T. (eds) Organic Computing – A Paradigm Shift for
Complex Systems. Autonomic Systems, vol. 1, pp. 447–460. Springer, Basel (2011).
https://doi.org/10.1007/978-3-0348-0130-0 29

17. Fekete, S.P., Kamphans, T., Kröller, A., Mitchell, J.S.B., Schmidt, C.: Exploring
and triangulating a region by a swarm of robots. In: Goldberg, L.A., Jansen, K.,
Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM -2011. LNCS, vol. 6845, pp.
206–217. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22935-
0 18

18. Fekete, S.P., Kröller, A., Kyou, L., Schmidt, J.M.C.: Triangulating unknown
environments using robot swarms. In: Symposium on Computational Geometry
(SoCG), pp. 345–346 (2013). https://www.ibr.cs.tu-bs.de/users/fekete/Videos/
SoCG/2013/MATP-Video.mov

19. Fekete, S.P., Schmidt, C., Wegener, A., Hellbrück, H., Fischer, S.: Empowered by
wireless communication: distributed methods for self-organizing traffic collectives.
ACM Trans. Auton. Adapt. Syst. 5(3), 1–30 (2010)

20. Keldenich, P., et al.: On designing 2D discrete workspaces to sort or classify polyn-
minoes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1–9 (2018)

21. Krupke, D.M., Ernestus, M., Hemmer, M., Fekete, S.: Distributed cohesive control
for robot swarms: maintaining good connectivity in the presence of exterior forces.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 413–420 (2015)

22. Lee, S.K., Fekete, S.P., McLurkin, J.: Structured triangulation in multi-robot sys-
tems: coverage, patrolling, voronoi partitions, and geodesic centers. Int. J. Robot.
Res. 9(35), 1234–1260 (2016)

https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2018/CoordinatedMotionPlanningDefinitiveVersion.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2018/CoordinatedMotionPlanningDefinitiveVersion.mp4
https://doi.org/10.1007/978-3-030-11072-7_21
https://doi.org/10.1007/978-3-030-11072-7_21
https://www.ibr.cs.tu-bs.de/users/fekete/hp/publications/PDF/2020-CADBots_WAFR.pdf
https://www.ibr.cs.tu-bs.de/users/fekete/hp/publications/PDF/2020-CADBots_WAFR.pdf
https://doi.org/10.1007/978-3-0348-0130-0_29
https://doi.org/10.1007/978-3-642-22935-0_18
https://doi.org/10.1007/978-3-642-22935-0_18
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2013/MATP-Video.mov
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2013/MATP-Video.mov

Coordinating Swarms of Objects 13

23. Mahadev, A.V., Krupke, D., Fekete, S.P., Becker, A.: Mapping, foraging, and cov-
erage with a particle swarm controlled by uniform inputs. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 1097–1104
(2017)

24. Mahadev, A.V., Krupke, D., Reinhardt, J.-M., Fekete, S.P., Becker, A.: Collect-
ing a swarm in a 2D environment using shared, global inputs. In: Conference on
Automation Science and Engineering (CASE), pp. 1231–1236 (2016)

25. Niehs, E., et al.: Recognition and reconfiguration of lattice-based cellular structures
by simple robots. In: IEEE International Conference on Robotics and Automation
(ICRA) (2020). https://www.ibr.cs.tu-bs.de/users/fekete/hp/publications/PDF/
2020-Automata ICRA.pdf

26. Schmidt, A., Manzoor, S., Huang, L., Becker, A., Fekete, S.P.: Efficient parallel
self-assembly under uniform control inputs. Robot. Autom. Lett. 3, 3521–3528
(2018)

27. Schmidt, A., Montano, V., Becker, A., Fekete, S.P.: Coordinated particle relocation
using finite static friction with boundary walls. Robot. Autom. Lett. 2, 985–992
(2020)

https://www.ibr.cs.tu-bs.de/users/fekete/hp/publications/PDF/2020-Automata_ICRA.pdf
https://www.ibr.cs.tu-bs.de/users/fekete/hp/publications/PDF/2020-Automata_ICRA.pdf

Contributed Papers

A Family of Tree-Based Generators for Bubbles
in Directed Graphs

Vicente Acuña1, Leandro Lima2, Giuseppe F. Italiano3,5, Luca Pepè Sciarria4,

Marie-France Sagot5,6, and Blerina Sinaimeri5,6(B)

1 Center for Mathematical Modeling (UMI 2807 CNRS), University of Chile, Santiago, Chile
2 European Bioinformatics Institute, Cambridge, UK

3 LUISS University, Roma, Italy
4 University of Rome Tor Vergata, Rome, Italy

5 Erable, INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France
blerina.sinaimeri@inria.fr

6 Université de Lyon, Université Lyon 1, Laboratoire de Biométrie et Biologie Evolutive,
UMR 5558, Villeurbanne, France

Abstract. Bubbles are pairs of internally vertex-disjoint (s, t)-paths in a directed
graph. In de Bruijn graphs built from reads of RNA and DNA data, bubbles rep-
resent interesting biological events, such as alternative splicing (AS) and allelic
differences (SNPs and indels). However, the set of all bubbles in a de Bruijn
graph built from real data is usually too large to be efficiently enumerated and
analysed in practice. In particular, despite significant research done in this area,
listing bubbles still remains the main bottleneck for tools that detect AS events in
a reference-free context. Recently, in [1] the concept of a bubble generator was
introduced as a way for obtaining a compact representation of the bubble space of
a graph. Although this generator was quite effective in finding AS events, prelimi-
nary experiments showed that it is about 5 times slower than state-of-art methods.
In this paper we propose a new family of bubble generators which improve sub-
stantially on the previous generator: generators in this new family are about two
orders of magnitude faster and are still able to achieve similar precision in iden-
tifying AS events. To highlight the practical value of our new generators, we also
report some experimental results on a real dataset.

Keywords: Bubble generator · Directed graphs · Alternative splicing

1 Introduction

The advent of sequencing technologies has revolutionised the study of DNA and RNA
data. The information contained in the reads coming from genome or transcriptome

V. Acuña is supported by Fondecyt 1140631, PIA Fellowship AFB170001 and Center for
Genome Regulation FONDAP 15090007. G. F. Italiano is partially supported by MIUR, the
Italian Ministry for Education, University and Research, under PRIN Project AHeAD (Efficient
Algorithms for HArnessing Networked Data). B. Sinaimeri and M.-F. Sagot are partially funded
by the French ANR project Aster (2016–2020). Part of this work was done while G. F. Italiano
was visiting Université de Lyon and B. Sinaimeri andM.-F. Sagot were visiting LUISS University
in Rome.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 17–29, 2020.
https://doi.org/10.1007/978-3-030-48966-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_2

18 V. Acuña et al.

sequencing is usually represented by a de Bruijn graph (see e.g., [18,20]). In this
graph bubbles, i.e., pairs of internally vertex-disjoint (s, t)-paths, play an important
role in the study of genetic variations, which include Alternative Splicing (AS) in
RNA-data [16,20–22] and SNPs (Single Nucleotide Polymorphism), and indels in
DNA-data [10,24,25]. Since bubbles can be associated to such biologically relevant
events, in recent years there have been several theoretical studies on bubbles (see e.g.,
[3,4,19,21,23]), and in particular there has been a growing interest in algorithms for
listing all bubbles in a directed graph. However, in real data graphs the number of bub-
bles can be exponential in the size of the graph. As a consequence, in practice current
algorithms are able to list only a subset of the bubble space, thus losing the information
related to the bubbles that are left unexplored. Furthermore, not every bubble corre-
sponds to a biological event. Indeed, a significant number of these bubbles can be false
positives (i.e., they are not biologically relevant events), and are produced as artifacts of
the underlying construction of the de Bruijn graph. In this framework, the main ques-
tion is how to find a subset of bubbles that can be efficiently computed in practice and
that correspond to relevant biological events.

To tackle this question, the notion of bubble generator was first introduced in [1].
Intuitively, a bubble generator is a subset of bubbles of polynomial size, from which
all the other bubbles in the graph can be obtained through a suitable application of a
specific symmetric difference operator. In particular, the generator proposed in [1] con-
tains at most m · n bubbles, where m and n denote respectively the number of edges and
vertices in the input graph. Furthermore, the authors of [1] provided an algorithm that,
given any bubble B in the graph, is able to find inO(n3) time the bubbles of the generator
that can be combined to produce B through a symmetric difference operator. To test its
practical value, the generator was used to find AS events in a real dataset. As reported
in [1], this generator was able to achieve about the same precision in identifying AS
events as the state-of-art-algorithm KisSplice [16,20], but unfortunately building the
generator was about 5 times slower than finding AS events with KisSplice. Despite its
great theoretical value, this poses a serious limitation on the practical application of this
generator to large-scale datasets, which are typical of biological applications.

To address this issue, in this paper we present a new family of bubble generators
which improves substantially on the generator of [1]. In particular, in the same RNA
dataset used in [1], generators in our family are about two orders of magnitude faster
in practice than the generator in [1], and improve the precision in identifying AS events
from 77.3% to 90%.When compared to the state-of-the-art algorithm for identifying AS
events, our generators are also much faster than KisSplice [16,20], have similar preci-
sion, and find AS events that KisSplice cannot find. In the experiments, we observed
that our new generators also contain many bubbles that correspond to a particular type
of AS event, namely intron retention (IR), which is usually considered a hard-to-find
event. We believe that our experimental findings make the new generators the method
of choice for finding AS events in a reference-free context, especially in large-scale data
sets.

From the theoretical viewpoint, our new generators are of minimum size (i.e. size
m − n + 1) for flow graphs, i.e., graphs in which there exists a vertex that can reach all
other vertices. In case of general graphs, their size is bounded by |S |(m − n + 1), where
S is the source set, i.e., a minimum set of vertices that can reach every other vertex in

A Family of Tree-Based Generators for Bubbles in Directed Graphs 19

the graph. Although in the worst case this is asymptotically equivalent to the size of
the generator in [1], in our experiments the new generators had a much smaller size in
practice. Furthermore, the new generators have a much faster decomposition algorithm:
given a bubble B it is possible to compute in O(n) time the set of bubbles in the new
generators from which B can be composed, while the bubble decomposition algorithm
of [1] required as much as O(n3) time for this task.

To design our new family of generators, we find a way to exploit some connec-
tions with cycle bases. We observe that the techniques developed for cycle bases (both
in undirected and in directed graphs) cannot be applied directly to bubble generators.
Indeed, as reported in [1], the main difference with cycle bases is that in our problem,
in order to have biological relevance the following two properties are needed:

(P1) A bubble generator for a directed graph G must contain only bubbles;
(P2) Each bubble of G should be decomposed into bubbles of the generator, so that

only bubbles are generated at each step of this decomposition.

We remark that ensuring properties (P1) and (P2) for cycles (in place of bubbles)
is already non-trivial. Indeed, Gleiss et al. [8] have shown that it is possible to find a
basis composed of directed cycles if the graph is strongly connected. However, this is
not known in the case of general directed graphs. On the other side, Property (P2) is
somewhat reminiscent of the notion of cyclically robust cycle bases which allows one
to generate all cycles of a given graph by iteratively adding cycles of the basis [11,15].
Unfortunately, not all graphs have a cyclically robust cycle basis [9] and understanding
for which graph classes such a basis can be found is still an important open problem
(see e.g., [15]). Despite all these difficulties, we prove that a bubble generator based on
spanning trees of the input graph satisfies properties (P1) and (P2). Since our bubble
generators are identified from a chosen spanning tree, we also investigate the influence
of the choice of spanning tree on the resulting generator.

The remainder of this paper is organised as follows. Section 2 presents some defi-
nitions that will be used throughout the paper. Section 3 introduces our family of bub-
ble generators for flow graphs and for arbitrary graphs and we prove that it satisfies
properties (P1) and (P2). Section 4 presents our experimental results: we first provide
an empirical analysis of the characteristics of our new bubble generators based on the
choice of the spanning tree (Subsect. 4.1) and then we show an application of our new
bubble generators in processing and analysing RNA data (Subsect. 4.2). Finally, we
conclude with some open problems in Sect. 5.

2 Preliminaries

Throughout the paper, we assume that the reader is familiar with the standard graph
terminology, as contained for instance in [6]. A graph is a pair G = (V, E), where V is
the set of vertices, and E ⊆ V × V is the set of edges. For convenience, we may also
denote the set of vertices V of G by V(G) and its set of edges E by E(G). We further
set n = |V(G)| and m = |E(G)|. A graph may be directed or undirected, depending on
whether its edges are directed or undirected. In this paper, we deal with graphs that are

20 V. Acuña et al.

directed, unweighted, finite and without parallel edges. An edge e = (u, v) is said to be
incident to the vertices u and v, and u and v are said to be the endpoints of e = (u, v).
For a directed graph, edge e = (u, v) is said to be leaving vertex u and entering vertex
v. Alternatively, e = (u, v) is an outgoing edge for u and an incoming edge for v. The
in-degree of a vertex v is given by the number of edges entering v, while the out-degree
of v is the number of edges leaving v. The degree of v is the sum of its in-degree and
out-degree.

We say that a graph G′ = (V ′, E′) is a subgraph of a graph G = (V, E) if V ′ ⊆ V
and E′ ⊆ E. Given a subset of vertices V ′ ⊆ V , the subgraph of G induced by V ′,
denoted byGV ′ , has V ′ as vertex set and contains all edges ofG that have both endpoints
in V ′. Given a subset of edges E′ ⊆ E, the subgraph of G induced by E′, denoted
by GE′ , has E′ as edge set and contains all vertices of G that are endpoints of edges
in E′. Given two subgraphs G and H, their union G ∪ H is the graph F for which
V(F) = V(G) ∪ V(H) and E(F) = E(G) ∪ E(H). Their intersectionG ∩H is the graph
F for which V(F) = V(G) ∩ V(H) and E(F) = E(G) ∩ E(H).

Let s, t be any two vertices in G. A (directed) path from s to t in G, denoted as
s� t, is a sequence of vertices and edges s = v1, e1, v2, e2, . . ., vk−1, ek−1, vk = t, such
that ei = (vi, vi+1) for i = 1, 2, . . . , k − 1. Since there is no danger of ambiguity, in the
remainder of the paper we will also denote a path simply as s = v1, v2, . . ., vk−1, vk = t
(i.e., as a sequence of vertices). A path is simple if it does not contain repeated vertices,
except possibly for the first and the last vertex. Throughout this paper, all the paths
considered will be simple and referred to as paths. A path from s to t is also referred to
as an (s, t)-path.

A directed graph G is a flow graph if there is one vertex s (referred to as the start
vertex) which can reach all other vertices. Given a graphG, a rooted spanning tree T of
G is a tree where each leaf is reachable from the root by a directed path. Notice that any
flow graph has a spanning tree rooted at the start vertex through a graph visit.

Definition 1. Given a directed graph G and two (not necessarily distinct) vertices
s, t ∈ V(G), an (s, t)-bubble consists of two directed (s, t)-paths that are internally ver-
tex disjoint. Vertex s is the source and t is the target of the bubble. If s = t then exactly
one of the paths of the bubble has length 0, and therefore B corresponds to a directed
cycle. In this case, we say that B is a degenerate bubble.

Let G be an undirected graph. Two subgraphs G1,G2 of G can be combined by the
operator Δ that simply consists in the symmetric difference of the set of edges. More
formally,G1 ΔG2 = (G1 ∪ G2) \ (E(G1)∩E(G2)) where E(Gi) is the set of edges ofGi.
If G3 = G1 ΔG2 we say that G3 is generated by G1 and G2. With this operation, it can
be shown that the space of all Eulerian subgraphs of G (called the cycle space of G) is
a vector space [8,12,13,17].

It is known that a cycle basis for a connected undirected graphG, denoted by C(G),
has dimension m− n+ 1. If the graphG is not connected this is generalised to m− n+ c,
where c is the number of connected components (see, e.g., [8,12,13,17]). For a given
graph G and a spanning tree T on it, the insertion of one further edge e of the graph
to this tree produces a unique cycle C(T, e). Given a spanning tree T of G, the set
C(G) = {C(T, e)|e ∈ E(G) \ E(T)} is called Kirchhoff cycle basis [14].

A Family of Tree-Based Generators for Bubbles in Directed Graphs 21

Let B be a set of bubbles in G. B is a bubble generator if each bubble in G can be
generated by a subset of bubbles in B. A generator is minimal if it does not contain a
proper subset that is also a generator; and a generator is minimum if it has the minimum
cardinality. We say that B has a tree decomposition in B, if B can be decomposed in
a binary-tree-like-fashion where the leaves correspond to bubbles in B and the internal
nodes are bubbles. Notice that a bubble generator satisfies Property P2 if every bubble
of the graph has a tree-decomposition in B.

3 Defining a Bubble Generator from a Spanning Tree

In this section, we define a bubble generator that satisfies properties (P1) and (P2)
starting from a spanning tree of the input graph. We consider first flow graphs and then
we extend our results to general graphs. Given a flow graph G with start vertex s, we
find a rooted spanning tree T ofG, by performing any graph visit starting from s. In the
experimental results in Sect. 4 we consider different types of visits, such as Depth-First
Search, Breadth-First Search and Scan-First Search [5].

Every non-tree edge e = (u, v) encountered during this visit defines a bubble. The
source of this bubble is the least common ancestor w of u and v, and its target is v. The
two paths of this bubble are the tree path from w to v and the tree path from w to u
followed by the edge (u, v). We denote by BT (G) the set of bubbles obtained in this way
for the flow graph G.

Theorem 1. Let G be a flow graph with start vertex s, and let BT (G) be the set of
bubbles identified by a tree T obtained through a visit starting from s. Then each bubble
in G can be generated starting from the bubbles in BT (G) (with a symmetric difference
operator), and |BT (G)| = m − n + 1.
Proof. Let T be a rooted spanning tree of G obtained by a visit starting from s and
let BT (G) be the set of bubbles identified by the non-tree edges of T . Consider the
undirected graphG′ obtained by ignoring the direction of edges inG. We now consider
two cases, depending on whether there are parallel edges in G′ or not.

Assume first that there are no parallel edges in G′. Note that there is a one-to-one
mapping between (undirected) cycles inG′ and bubbles inG, and that the spanning tree
T found in G is trivially a spanning tree for G′. It is well-known (see for example [13])
that, given an undirected graph G′ without parallel edges, taking the cycles formed by
the combination of a path in the spanning tree and a single edge outside the tree yields
a cycle basis in G′ (with a symmetric difference operator). Consider any bubble B in
G and let B1, . . . , Bk be the bubbles in BT (G) identified by the non-tree edges of B. If
we ignore the directions of the edges, the above property implies that BΔ B1Δ . . . ΔBk

is empty. Consider now the directed graph G notice that BΔ B1Δ . . . ΔBk is again empty
as each edge in G appears in exactly one direction. Hence, each bubble in G can be
generated starting from the bubbles in BT (G). Since there are m − (n − 1) non-tree
edges, |BT (G)| = m − n + 1.

IfG′ has parallel edges, the previous argument cannot be applied directly. However,
in this case a simple reduction will work. Note that in G′ there can be at most two par-
allel edges between any two vertices u and v, corresponding to the two edges (u, v) and

22 V. Acuña et al.

(v, u) in the original directed graph G. To deal with this, we transform G into another
directed graph Go as follows: if there are two edges (u, v) and (v, u) in G, we subdivide
one of them, say (u, v), by adding a new vertex xuv, by removing the edge (u, v) and by
adding two new edges (u, xuv), (xuv, v). Note that there is a one-to-one mapping between
bubbles in G and bubbles in Go: for any vertex xuv in Go, (u, xuv), (xuv, v) belong to a
bubble Bo in Go if and only if (u, v) belongs to a corresponding bubble B in G. Further-
more, let G′o be the undirected graph obtained by ignoring the direction of edges in Go.
Since G′o has no parallel edges, each bubble of Go can be generated starting from the
bubbles in BT (Go). Due to the one-to-one mapping between bubbles of G and bubbles
of Go, this implies that each bubble of G can be generated starting from the bubbles
in BT (Go). Let k be the number of new vertices xuv added to Go: note that for each
new vertex added to Go, the number of edges of Go increases by one. This implies that
BT (G) = BT (Go) = (m + k) − (n + k) + 1 = m − n + 1 and yields the theorem. �

Let G be a flow graph with start vertex s and let T be a spanning tree from s.
Since each non-tree edge (u, v) is contained exactly in one bubble of BT (G), Theorem 1
implies that, in order to decompose a generic bubble B into the bubbles of BT (G), one
needs to consider all and only the bubbles of BT (G) identified by the non-tree edges
of B (with respect to T). Moreover, the set BT (G) can be found efficiently by simply
performing a visit from the start vertex s and by returning the non-tree edges.

It is worth mentioning that Theorem 1 can be extended to general graphs as follows.
Let G be an arbitrary directed graph G. Let S be a minimum set of vertices from which
every vertex of G can be reached. We denoted by S a source set of G. Note that in the
worst case, |S | = O(n). For each s ∈ S , let BT (G, s) be the set of bubbles identified
by a visit starting from the vertex s of G. Consider the set B(G, S) = ∪s∈S BT (G, s).
Observe that the source of any bubble B in G can be reached by at least one vertex s in
S . Thus B belongs to a subgraph of G, which is a flow graph rooted in s, and hence can
be expressed as a composition of bubbles in BT (G, s). This can be summarised by the
following theorem.

Theorem 2. Let G be a directed graph and let S be its source set. Then there is a set
of bubbles B, such that each bubble in G can be generated starting from the bubbles in
B (with a symmetric difference operator), and |B| ≤ |S |(m − n + 1).

Notice that for general graphs, our generator can reach the size of the generator
proposed in [1]. However, it will be shown in Sect. 4 that in practice the size of our gen-
erator is much smaller. Finally, we show that our generator ensures a tree-like decom-
position and thus satisfies Property P2. In other words, we show that each bubble B in
G has a tree decomposition using a subset of bubbles in BT and such that in each step
we combine only bubbles. To prove this we need first two propositions.

Given a bubble B and two distinct vertices u, v in B (not necessarily distinct from
s, t), an (u, v)-chord of B is a directed path from u to v that is internally vertex disjoint
with B (i.e. except for u and v, the path u� v has no other vertex in common with B).

Proposition 1. Given a non-degenerate (s, t)-bubble B and an (u, v)-chord of B such
that either there is no directed path v � u in B or {u, v} ∩ {s, t} � ∅, then the chord
defines two bubbles B1 and B2 such that B = B1 Δ B2.

A Family of Tree-Based Generators for Bubbles in Directed Graphs 23

Proof. If u and v are on different legs of B, then we define B1 to be the bubble with
source u and target t and B2 to be the bubble with source s and target v. Notice that if at
least one of u and v coincides with s or t, they can be considered to be in different legs
as s and t belong to both legs of B. It is easy to see that B = B1 Δ B2. These cases are
depicted in Fig. 1(a)–(d). If u and v are on the same leg of B then we define B1 to be
the bubble with source u and target v and B2 to be the bubble with source s and target t.
However, if there exists a path from v� u in B (see Fig. 1(e2)) then it is not possible to
define the two bubbles B1 and B2. Notice that this is the only case where the (u, v)-chord
does not allow to define the two bubbles for which B = B1 Δ B2. �

Fig. 1. All the possible cases considered in Proposition 1. In dotted line we have the edges of the
(u, v)-chord, the bubble B is composed by the black and grey edges, the bubble B1 is composed
by the black and the dotted line edges and the bubble B2 by the grey and the dotted line edges.

Proposition 2. Given a degenerate bubble B then any (u, v)-chord of B defines two
bubbles B1 and B2 such that B = B1 Δ B2.

Proof. The proof follows straightforwardly by observing that every vertex in a directed
cycle C has in-degree and out-degree equal to one. After adding the edges of the (u, v)-
chord, u has out-degree equal to 2 and v has in-degree 2. Thus the directed cycle C can
be written as the sum of B1 that is the non-degenerate bubble with source u and target v
and B2 that is the degenerate bubble with source and target u (or v). �

Propositions 1 and 2 can be used to prove the following theorem. For lack of space,
its proof is deferred to a full version of this paper. Moreover, using the same arguments
as for Theorem 2, we can extend it to general graphs.

Theorem 3. Let G be a flow graph with start vertex r, and let BT (G) be the set of
bubbles identified by a spanning tree T rooted in r. Then any bubble B in G can be
decomposed in O(n) time in bubbles in BT (G) in a tree-like fashion.

24 V. Acuña et al.

4 Experimental Results

To test the usefulness of our family of generators in practice, we applied it to the iden-
tification of AS events in RNA data in a reference-free context. In order to compare
our generators to both the state-of-art algorithm KisSplice [16,20] and to the generator
defined in [1], we used in our experiments exactly the same dataset as in [1]. This dataset
is constructed by selecting the reads corresponding to chromosome 10 from the set of
58 million RNA-seq Illumina paired-end reads extracted from the mouse brain tissue
(available in the ENA repository under the following study: PRJEB25574). This leads
to a set of 4,932,572 reads. We built the de Bruijn graph from these reads and applied
standard sequencing-error-removal procedures by using KisSplice [16,20]. We recall
that KisSplice is a method to find AS events in a reference-free context by enumerating
bubbles in a de Bruijn Graph.

For our family, we considered generators coming from three different types of
underlying spanning trees, namely Depth-First Search (DFS), Breadth-First Search
(BFS) and Scan-First Search (SFS). We recall here that Scan-First Search is the graph
search procedure introduced in [5] and which works as follows. As with DFS and BFS,
we start from a specified source vertex s and we mark it. At each step, we perform what
we call a scan. This selects a marked vertex v and marks all previously unmarked neigh-
bours of v. In other terms, SFS proceeds by scanning a marked and unscanned vertex
until all vertices are scanned. Notice that both BFS and DFS can be seen as special cases
of SFS. Similarly to BFS and DFS, also SFS can produce a tree as follows. Initially, the
tree is empty. Whenever a vertex v is scanned, all the edges between v and its previously
unmarked neighbours are added to the tree. In our experiments, we implemented SFS
with a random choice of the next vertex to be scanned, and averaged on 1,000 runs with
different random seeds.

To compute the source set of the de Bruijn graph, we computed in linear time the
DAG of its strongly connected components and chose a vertex from each source. The de
Bruijn graph corresponding to our dataset had a total of 83,400 vertices, 99,038 edges
and 18,385 source vertices.

Finally, we recall that for general graphs, our new generators are not necessarily
minimal. In order to avoid producing duplicates of the same bubble, we discarded a
bubble whenever its source was already contained in a tree previously computed from
another start vertex. Notice that this does not guarantee the minimality of the genera-
tor as there can still be bubbles that can be composed from bubbles that were already
present in the generator. For this reason, in general graphs we expect that the size of the
generator may vary substantially, depending on the underlying tree chosen.

All our experiments were carried out on a 64-bit machine running Ubuntu 16.04
LTS, equipped with a 2.30GHz processor Intel(R) Xeon(R) Gold 511, 192GB of RAM,
16MB of L3 cache and 1MB of L2 cache.

4.1 An Empirical Analysis of the Characteristics of the Bubble Generator Based
on the Choice of the Spanning Tree

We first explore experimentally some characteristics of bubble generators in our family,
depending on the choice of the underlying spanning tree. The parameters we consider

A Family of Tree-Based Generators for Bubbles in Directed Graphs 25

are: (i) the size of the generator, (ii) the number of degenerate bubbles (cycles), (iii)
the average length of the longest leg, (iv) the average length of the shortest leg, (v) the
number of branching bubbles (a branching bubble is a bubble containing more than 5
vertices of in-degree or out-degree greater than 1 [16,20]).

Table 1 shows the main characteristics of generators in our family. We also include
the time required to compute each generator. We do not include in this running time the
pre-processing time spent in creating the de Bruijn graph, which is exactly the same for
all generators. We refer to a generator in our family simply by the graph search used to
generate it and we denote by SP-Gen the generator defined in [1].

Table 1. Characteristics of the generators in our family. The columns represent: the size of the
generator, #NDBubbles the number of non degenerate bubbles found, #DBubbles the number of
degenerate bubbles (i.e. cycles), AvgLong and AvgShort the average length of the longest and
shortest leg, respectively, and the time the algorithm spent in seconds. Notice that for Scan-First
search trees (SFS) we report the mean and the standard deviation of 1000 different runs.

Generator Size #NDBubbles #DBubbles AvgLong AvgShort Time (s)

DFS 12175 11792 383 90.53 40.5 3

BFS 42324 41959 365 33.57 21.23 3

SFS Mean 41388 41187 201 56.58 41.47 3

STD 1102.8 1096 6.8 0.3 0.32 0.09

SP-Gen [1] 91486 80108 11378 70.12 31.31 380

As illustrated in Table 1, the size of all our new generators, independently of the
underlying spanning tree, is much smaller than the size of SP-Gen [1]. Furthermore,
all our new generators can be computed two orders of magnitude faster than SP-Gen.
Furthermore, compared to BFS and SFS, the DFS generator usually has smaller size and
its bubbles have longer legs. We also observe that, compared to SP-Gen, the percentage
of cycles significantly drops in our new generators: from 12.4% for SP-Gen to 3.1%
for DFS, 0.8% for BFS and 0.5% for SFS. This is desirable as cycles are degenerate
bubbles that do not correspond to AS events, and thus generators that avoid cycles are
preferable.

4.2 Application of the Bubble Generator to the Identification of AS Events in
RNA-seq Data

As already mentioned in the introduction, identifying AS events in the absence of a
reference genome remains a challenging problem. Local assemblers such as KisSplice
[16] are faced with a dramatically large (and often practically unfeasible) running time
due to the exponentially large number of bubbles present, most of which are false pos-
itives, i.e. they are artificial bubbles not associated with biological events. Indeed, a
significantly large number of such artificial bubbles comes from complex subgraphs
created by the presence of approximate repeats in the transcriptomic sequence. Thus,

26 V. Acuña et al.

tools such as KisSplice use heuristics in order to avoid dealing with large portions of a
de Bruijn graph containing such complex subgraphs. Here we show how the set of bub-
bles belonging to generators in our family can be used to predict AS events. Notice that
our method is reference-free; however, in order to evaluate it, we make use of annotated
reference genomes to assess if our predictions are correct.

To estimate the precision of our new generators in predicting AS events we pro-
ceed as follows. We consider the whole set of bubbles belonging to the generator.
We then apply the same filter (based on the length of the legs) as in KisSplice to
extract the bubbles that can be considered as putative AS events. To determine the
true AS events, we map the putative bubbles to the Mus musculus reference genome
and annotations (Ensemble release 94) using STAR [7], which are then analysed by
KisSplice2RefGenome [2]. Following [16], a bubble corresponds to a true AS event (or
a true positive (TP)) if one leg matches the inclusion isoform and the other the exclu-
sion isoform. Otherwise, the bubble is classified as a false positive. The precision of the
method is defined as TP/(TP + FP).

The results for DFS/BFS/SFS and SP-Gen are reported in Table 2. The results show
that the number of true AS events found by our generators is comparable to the number
of true AS events found by SP-Gen whereas the number of false positives is significantly
smaller. Indeed, our generators have a precision between 87.7% and 91.6%, compared
to 77.3% for the SP-Gen. An interesting aspect of SP-Gen was that it contained many
bubbles that were classified as Intron Retention (IR), which is a type of AS event that
is generally particularly hard to identify. As shown in Table 2, the number of IR for our
generators remains similar to the one found by SP-Gen.

Table 2. Precision of the generators in our family. The columns represent: number of putative AS
events, number of true AS events, precision and number of intron retention events.

Algorithm #putatitve AS events #true AS events Precision #IR

BFS 1046 959 (91.6%) 319

DFS 1178 1034 (87.7%) 392

SFS 1163 1053 (90.5%) 391

SP-Gen [1] 1403 1085 (77.3%) 377

Since the computation of generators in our family is truly fast in practice, we com-
bined them by taking the union of bubbles coming from different generators and tested
whether this would increase the number of AS events found. Notice that the same bub-
ble could be found in two different generators in our family, and thus we eliminated
duplicate bubbles in this process. In Table 3 we report the results of different unions of
generators in our family (DFS, BFS and 10 randomly chosen runs of SFS), together with
the results of SP-Gen and KisSplice. As can be seen, the union of different generators
in our family allows us to find more true AS events than both SP-Gen and KisSplice.

Finally, in [1] it was shown that SP-Gen was able to identify some AS events that
will certainly be lost by KisSplice. Indeed, the heuristic used by KisSplice does not gen-
erate bubbles containing a number of branching vertices (i.e., vertices with in-degree or

A Family of Tree-Based Generators for Bubbles in Directed Graphs 27

Table 3.Combining different generators in our family. The columns represent: number of putative
AS events, number of true AS events and precision.

Algorithm #putatitve AS events #true AS events Precision

BFS + DFS 1245 1099 88.3%

10-SFS 1622 1179 72.7%

BFS + DFS + 10-SFS 1677 1196 71%

SP-Gen [1] 1403 1085 77.3%

KisSplice 1293 1159 89.63%

out-degree at least 2) higher than some threshold. In KisSplice, the default value for this
branching threshold is 5. Increasing the value of this threshold will increase exponen-
tially the running time of the algorithm and thus a large branching threshold is unfeasi-
ble in practice. As reported in [1], around 27 true AS events in SP-Gen have a branching
number higher than 5, and are lost by KisSplice. For the family of our generators, we
have that the number of true AS events that are certainly lost by KisSplice is: (a) 16 for
the BFS, (b) 77 for the DFS, and (c) an average of 80 for SFS (averaged over different
choices of the random seed).

5 Conclusions and Open Problems

In this paper, we have proposed a new family of bubble generators which improves
substantially on the previous generator (SP-Gen [1]): generators in the new family are
much faster, i.e., about two orders of magnitude faster than SP-Gen, and they are still
able to achieve similar (and sometimes higher) precision in identifying AS events.

Our work raises several new and perhaps intriguing questions. First, we notice that
while for flow graphs our family produces minimum generators, for general graphs it is
still open to find a minimum bubble generator. Second, the fast computation of our new
generators opens the way to the design of algorithms that efficiently combine the bub-
bles of a generator in order to find more AS events. Third, we believe that the number
of false positives could be reduced by adding more biologically motivated constraints.
An example of constraint that can be introduced toward this aim is to give a weight to
each edge of the de Bruijn graph based on the reads coverage. A true AS event would
then correspond to bubbles in which the edges inside a leg must have similar weights
(but different legs may have different coverage). Fourth, when constructing a de Bruijn
graph from RNA-seq reads, some filters are applied that are meant to eliminate sequenc-
ing errors. These filters remove vertices and edges whose coverage by the set of reads
is below some given thresholds. Changing those thresholds has a significant impact on
the resulting de Bruijn graph, and hence on the set of solutions. Is it possible to com-
pute in a dynamic fashion a bubble generator when this coverage threshold is changing,
without having to recompute everything from scratch?

28 V. Acuña et al.

References

1. Acuña, V., et al.: On bubble generators in directed graphs. In: Bodlaender, H.L., Woeginger,
G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 18–31. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68705-6 2. Announced at WG 2017

2. Benoit-Pilven, C., et al.: Complementarity of assembly-first and mapping-first approaches
for alternative splicing annotation and differential analysis from RNAseq data. Sci. Rep.
8(1), 1–13 (2018)

3. Birmelé, E., et al.: Efficient bubble enumeration in directed graphs. In: Calderón-Benavides,
L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp.
118–129. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34109-0 13

4. Brankovic, L., Iliopoulos, C.S., Kundu, R., Mohamed, M., Pissis, S.P., Vayani, F.: Linear-
time superbubble identification algorithm for genome assembly. Theoret. Comput. Sci. 609,
374–383 (2016)

5. Cheriyan, J., Kao, M.-Y., Thurimella, R.: Scan-first search and sparse certificates: an
improved parallel algorithm for k-vertex connectivity. SIAM J. Comput. 22(1), 157–174
(1993)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.
The MIT Press, Cambridge (2009)

7. Dobin, A., et al.: STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1), 15–21
(2013)

8. Gleiss, P.M., Leydold, J., Stadler, P.F.: Circuit bases of strongly connected digraphs. Discuss.
Math. Graph Theory 23(2), 241–260 (2003)

9. Hammack, R.H., Kainen, P.C.: Robust cycle bases do not exist for Kn,n if n ≥ 8. Discret.
Appl. Math. 235, 206–211 (2018)

10. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.:De novo assembly and genotyping
of variants using colored de Bruijn graphs. Nat. Genet. 44(2), 226–232 (2012)

11. Kainen, P.C.: On robust cycle bases. Electron. Notes Discret. Math. 11, 430–437 (2002). The
Ninth Quadrennial International Conference on Graph Theory. Combinatorics, Algorithms
and Applications

12. Kavitha, T., et al.: Cycle bases in graphs characterization, algorithms, complexity, and appli-
cations. Comput. Sci. Rev. 3(4), 199–243 (2009)

13. Kavitha, T., Mehlhorn, K.: Algorithms to compute minimum cycle bases in directed graphs.
Theory Comput. Syst. 40(4), 485–505 (2007)

14. Kirchhoff, G.: Ueber die auflösung der gleichungen, auf welche man bei der untersuchung
der linearen vertheilung galvanischer ströme geführt wird. Ann. Phys. 148(12), 497–508
(1847)

15. Klemm, K., Stadler, P.F.: A note on fundamental, non-fundamental, and robust cycle bases.
Discret. Appl. Math. 157(10), 2432–2438 (2009). Networks in Computational Biology

16. Lima, L., et al.: Playing hide and seek with repeats in local and global de novo transcriptome
assembly of short RNA-seq reads. Algorithms Mol. Biol. 12, 2 (2017)

17. MacLane, S.: A combinatorial condition for planar graphs. Fundamenta Mathematicae 28,
22–32 (1937)

18. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation sequencing data.
Genomics 95(6), 315–327 (2010)

19. Onodera, T., Sadakane, K., Shibuya, T.: Detecting superbubbles in assembly graphs. In: Dar-
ling, A., Stoye, J. (eds.) WABI 2013. LNCS, vol. 8126, pp. 338–348. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40453-5 26

20. Sacomoto, G., et al.: Kis Splice: de-novo calling alternative splicing events from RNA-seq
data. BMC Bioinform. 13(S–6), S5 (2012). https://doi.org/10.1186/1471-2105-13-S6-S5

https://doi.org/10.1007/978-3-319-68705-6_2
https://doi.org/10.1007/978-3-319-68705-6_2
https://doi.org/10.1007/978-3-642-34109-0_13
https://doi.org/10.1007/978-3-642-40453-5_26
https://doi.org/10.1186/1471-2105-13-S6-S5

A Family of Tree-Based Generators for Bubbles in Directed Graphs 29

21. Sacomoto, G., Lacroix, V., Sagot, M.-F.: A polynomial delay algorithm for the enumeration
of bubbles with length constraints in directed graphs and its application to the detection of
alternative splicing in RNA-seq data. In: Darling, A., Stoye, J. (eds.) WABI 2013. LNCS, vol.
8126, pp. 99–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40453-
5 9

22. Sammeth, M.: Complete alternative splicing events are bubbles in splicing graphs. J. Comput.
Biol. 16(8), 1117–1140 (2009)

23. Sung, W.-K., Sadakane, K., Shibuya, T., Belorkar, A., Pyrogova, I.: An O(m logm)-time
algorithm for detecting superbubbles. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(4),
770–777 (2015)

24. Uricaru, R., et al.: Reference-free detection of isolated SNPs. Nucleic Acids Res. 43(2), e11
(2015)

25. Younsi, R., MacLean, D.: Using 2k + 2 bubble searches to find single nucleotide polymor-
phisms in k-mer graphs. Bioinformatics 31(5), 642–646 (2015)

https://doi.org/10.1007/978-3-642-40453-5_9
https://doi.org/10.1007/978-3-642-40453-5_9

The Micro-world of Cographs

Bogdan Alecu1(B), Vadim Lozin1, and Dominique de Werra2

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
{B.Alecu,V.Lozin}@warwick.ac.uk

2 Institute of Mathematics, EPFL, 1015 Lausanne, Switzerland
dominique.dewerra@epfl.ch

Abstract. Cographs constitute a small point in the atlas of graph
classes. However, by zooming in on this point, we discover a complex
world, where many parameters jump from finiteness to infinity. In the
present paper, we identify several milestones in the world of cographs and
create a hierarchy of graph parameters grounded on these milestones.

1 Introduction

Large things are seen from a distance, but to examine small things, one needs to
look up-close. Cographs constitute a small class and in this paper we analyse it
with a “magnifying glass”, trying to spot the details. With a closer look at this
class we discover a complex world and observe that many important parameters
can be arbitrarily large within cographs. This is the case, for instance, for chro-
matic number, co-chromatic number, matching number, tree-width, linear clique-
width and many others. Moreover, such parameters jump to infinity on specific
subclasses of cographs. This is due to the fact that the class of cographs is well-
quasi-ordered under the induced subgraph relation [8], and therefore, for every
parameter p which is unbounded in the class of cographs, there exists a finite col-
lection M(p) of inclusion-wise minimal hereditary subclasses of cographs, where
p can be arbitrarily large. This observation suggests a simple way of comparing
two parameters: a parameter p1 is stronger than a parameter p2 if for every class
X ∈ M(p1) there exists a class Y ∈ M(p2) such that Y ⊆ X. In other words,
p1 is stronger than p2 if the family of cograph subclasses where p1 is bounded
contains the family of cograph subclasses where p2 is bounded.

For some parameters, identifying minimal classes is an easy task. For
instance, since cographs are perfect, the chromatic number is bounded if and
only if the clique number is bounded and hence the class of complete graphs is
the only minimal hereditary subclass of cographs where the chromatic number
is unbounded. However, in general, identifying minimal classes is far from being
trivial, as the example of linear clique-width shows. The authors of [5] develop
a sophisticated approach to show that there exist precisely two minimal heredi-
tary subclasses of cographs where linear clique-width is unbounded: the class of
(P4, C4)-free graphs, also known as the quasi-threshold [21] or trivially perfect
[15] graphs, and the class of their complements.
c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 30–42, 2020.
https://doi.org/10.1007/978-3-030-48966-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_3

The Micro-world of Cographs 31

In the present paper, we characterise a variety of other graphs parameters in
terms of minimal hereditary subclasses of cographs where these parameters are
unbounded, which is the content of Sects. 3 and 4. In Sect. 2, we introduce basic
terminology and notation used throughout the paper.

2 Preliminaries

All graphs in this paper are simple, i.e., finite, undirected, without loops and
without multiple edges. The vertex set and the edge set of a graph G are denoted
by V (G) and E(G), respectively. As usual, Pn, Cn,Kn denote a chordless path,
a chordless cycle and a complete graph with n vertices, respectively. Also, Kn,m

is a complete bipartite graph with parts of size n and m.
The complement of a graph G is denoted by G. Given two graphs G and H,

we denote by G ∪ H the disjoint union of G and H and by G × H the join of G
and H, i.e., the graph obtained from G∪H by adding all possible edges between
G and H. Two sets A,B ⊆ V (G) are said to be complete to each other if every
possible edge between them appears in G, and anticomplete to each other if
they are complete to each other in G. The disjoint union of p copies of G will be
denoted by pG.

A clique in a graph is a subset of pairwise adjacent vertices and an indepen-
dent set is a subset of pairwise non-adjacent vertices. We say that a graph G is
H-free if G does not contain a copy of H as an induced subgraph.

A class of graphs is hereditary if it is closed under taking induced subgraphs.
It is well-known (and not difficult to see) that a class is hereditary if and only if
it can be characterised in terms of minimal forbidden induced subgraphs.

The class of cographs is the class of graphs that can be obtained from K1

by taking complements and disjoint unions. In particular, every cograph with at
least two vertices can be represented either as G ∪ H or as G × H for two non-
empty graphs G and H. It is well known that the class of cographs is precisely
the class of P4-free graphs.

Since the complement of a cograph is again a cograph, with every subclass
X of cographs we associate the subclass X of complements of graphs in X . The
following subclasses of cographs will play a critical role in our study:

Q the class of quasi-threshold graphs, i.e., (P4, C4)-free graphs,
T the class of threshold graphs. This is the class of (P4, C4, 2K2)-free graphs,

i.e., the intersection of Q and Q.
U the class of P3-free graphs, i.e., graphs every connected component of which

is a clique.
K the class of complete graphs.
F the class of star forests, i.e., graphs every connected component of which is

a star. This is the class of (P4, C4,K3)-free graphs, i.e., the class of bipartite
graphs in Q.

M the class of graphs of vertex degree at most 1. This is the class of (P3,K3)-
free graphs, i.e., the class of bipartite graphs in U .

32 B. Alecu et al.

B the class of complete bipartite graphs (an edgeless graph is counted as com-
plete bipartite with one part being empty). This is the class of (P 3,K3)-free
graphs, i.e., the class of bipartite graphs in U .

S the class of stars, i.e., graphs of the form K1,n and their induced subgraphs.

The Ramsey number R(a, b) is the smallest natural number such that any graph
with R(a, b) vertices contains a clique of size a or an independent set of size b.

3 Graph Parameters

We start by reporting some known results or results that readily follows from
known results. In particular, directly from Ramsey’s Theorem we derive the
following conclusion:

Proposition 1. The class K of complete graphs and the class of S of stars are
the only two minimal hereditary classes of graphs of unbounded maximum vertex
degree.

To report more results, we denote by

α(G) the independence number of G, i.e., the size of a maximum independent
set in G,

ω(G) the clique number of G, i.e., the size of a maximum clique in G,
χ(G) the chromatic number of G, i.e., the minimum number of subsets in a

partition of V (G) such that each subset is an independent set,
y(G) the clique partition (also known as clique cover) number, i.e., the minimum

number of subsets in a partition of V (G) such that each subset is a clique.

Clearly, the class K of complete graphs is the only minimal hereditary class
of unbounded clique number, i.e., by forbidding a complete graph we obtain
a class of bounded clique number. Also, it is not difficult to see that K is a
minimal hereditary class of unbounded chromatic number. However, it is not the
only minimal hereditary class of unbounded chromatic number, i.e., forbidding a
complete graph does not guarantee a bound on the chromatic number. Moreover,
as shown by Erdős [10] chromatic number is unbounded even in the class of
(C3, C4, . . . , Ck)-free graphs for any value of k, which means that in the universe
of hereditary classes chromatic number cannot be characterised by means of
minimal classes where this parameter is unbounded. On the other hand, when
we restrict ourselves to cographs such a characterization is possible, which is due
to the fact that cographs are perfect, and hence ω(G) = χ(G) for any cograph
G. As a result, we obtain the following conclusion.

Proposition 2. The class K of complete graphs is the only minimal hereditary
subclass of cographs of unbounded clique number and chromatic number.

The degeneracy of a graph G is the smallest value of k such that every induced
subgraph of G has a vertex of degree at most k. It is not difficult to see that
the class K of complete graphs and the class of B of complete bipartite graphs

The Micro-world of Cographs 33

are minimal hereditary classes of unbounded degeneracy. However, these are not
the only minimal classes, because forbidding a complete graph and a complete
bipartite graph does not guarantee a bound on the degeneracy. To explain this,
we observe that the degeneracy of G is bounded from below by χ(G) − 1 and
from above by the tree-width of G. Therefore, degeneracy and tree-width are
unbounded in the class of (C3, C4, . . . , Ck)-free graphs for any value of k, and
for k ≥ 4 the set of forbidden induced subgraphs include both a complete graph
C3 and a complete bipartite graph C4. This discussion shows that, similarly to
chromatic number, in the universe of all hereditary classes neither degeneracy
nor tree-width admit a characterization in terms of minimal classes where these
parameters are unbounded. On the other hand, again similarly to chromatic
number, such a characterization is possible when restricting to cographs, and it
is presented in the next claim.

Proposition 3. The class K of complete graphs and the class of B of complete
bipartite graphs are the only two minimal hereditary subclasses of cographs of
unbounded degeneracy and tree-width.

Proof. To prove the claim, it suffices to show that for any s and p, the tree-width
of (P4,Ks,Kp,p)-free graphs is bounded by a constant. For this, we refer the
reader to the following result from [1]: for every t, p, s, there exists a z = z(t, p, s)
such that every graph with a (not necessarily induced) path of length at least z
contains either an induced Pt or an induced Kp,p or a clique of size s. From this
result it follows that (P4,Ks,Kp,p)-free graphs do not contain (not necessarily
induced) paths of length z(4, p, s). It is well known (see, e.g., [12]) that graphs of
bounded path number (the length of a longest path) have bounded tree-width.

��
The matching number of a graph G is the size of a maximum matching in G.

The following result was proved in [7].

Lemma 1. For any natural numbers s, t and p, there is a number N(s, t, p)
such that every graph with a matching of size at least N(s, t, p) contains either
a clique Ks or an induced bi-clique Kt,t or an induced matching pK2.

A natural corollary from this result is the following characterization of the
matching number in terms of minimal hereditary classes where this parameter
is unbounded.

Theorem 1. M, B and K are the only three minimal hereditary classes of
graphs of unbounded matching number.

The vertex cover number of a graph G is the size of a minimum vertex cover
in G. It is well known that the vertex cover number is never smaller than the
matching number and never larger than twice the matching number. Therefore,
the characterization of matching number given in Theorem 1 applies to the
vertex cover number as well.

34 B. Alecu et al.

Theorem 2. M, B and K are the only three minimal hereditary classes of
graphs of unbounded vertex cover number.

The neighbourhood diversity of a graph was introduced in [16] and can be
defined as follows.

Definition 1. Let us say that two vertices x and y are similar if there is no
vertex z distinguishing them (i.e., if there is no vertex z adjacent to exactly one
of x and y). Vertex similarity is an equivalence relation. We denote by nd(G) the
number of similarity classes in G and call it the neighbourhood diversity of G.

Neighbourhood diversity was characterised in [17] by means of nine minimal
hereditary classes of graphs where this parameter is unbounded. Six of these min-
imal classes contain a P4. Therefore, when restricted to cographs, neighbourhood
diversity can be characterised by three minimal classes as follows.

Theorem 3. M, M, and T are the only three minimal hereditary subclasses of
cographs of unbounded neighbourhood diversity.

3.1 Co-chromatic Number

The co-chromatic number of G, denoted z(G), is the minimum number of subsets
in a partition of V (G) such that each subset is either a clique or an independent
set [11]. It is not difficult to see that the co-chromatic number can be arbitrarily
large in the class of P3-free graphs, where each graph is a disjoint union of cliques.
Therefore, it is also unbounded in the complements of P3-free graphs, also known
as complete multipartite graphs. In what follows, we show that these are the only
two minimal subclasses of cographs of unbounded co-chromatic number.

Lemma 2. Let n,m, t be positive integers with t ≥ 2. If G is a (nKt,mKt)-free
cograph, then z(G) ≤ 2m+n−1(t − 1).

Proof. Call a partition of V (G) good if it contains at least t− 1 cliques and t− 1
independent sets (empty sets in the partition may count as either). We prove
by induction on m + n that G admits a good partition into 2m+n−1(t − 1) sets,
each of which is a clique or an independent set.

If m+n = 2 (n = m = 1), then G is Kt-free. Hence χ(G) = ω(G) ≤ t−1; we
add empty sets to the partition until we reach 2(t − 1) sets in total. This makes
the partition good, and we have proved the basis for the induction. In general,
put G′ := G. We are in one of the following three cases:

(a) G′ = G1 ∪ G2, and both G1 and G2 are Kt-free, OR G′ = G1 × G2, and
both G1 and G2 are Kt-free.

(b) G′ = G1 ∪ G2, and both G1 and G2 contain a Kt, OR G′ = G1 × G2, and
both G1 and G2 contain a Kt.

(c) G′ = G1 ∪ G2, G1 contains a Kt and G2 is Kt-free, OR G′ = G1 × G2, G1

contains a Kt and G2 is Kt-free.

The Micro-world of Cographs 35

As long as we are in case (c), iteratively put G′ := G1. We end up with
a graph G′ in either case (a) or (b). Note first that any good partition of G′

extends to a good partition of G without increasing the number of sets. Indeed,
at each step, G2 was either Kt-free and anticomplete to the rest of the graph or
Kt-free and complete to the rest of the graph. The disjoint union of all Kt-free
G2s is again Kt-free and hence can be partitioned into at most t−1 independent
sets, and we take the union of each of these sets with one of the independent
sets in the good partition of G′ injectively. Similarly, the join of the Kt-free G2s
can be partitioned into at most t− 1 cliques, each of which we join to one of the
cliques in the good partition of G′ injectively.

Now, if G′ is in case (a), then G′ is Kt-free or Kt-free and we act like in the
base case to obtain a good partition of G′ (and therefore of G) in 2(t−1) sets. If
G′ is in case (c), then G1 and G2 are both either (n−1)Kt-free or (m − 1)Kt-free.
In either case, the inductive hypothesis applies, and we have a good partition of
G′ of size at most

2m+n−2(t − 1) + 2m+n−2(t − 1) = 2m+n−1(t − 1).

Like before, this extends to a partition of G, concluding the proof. ��
Lemma 2 naturally leads to the following conclusion.

Theorem 4. The class U of P3-free graphs and the class U of P 3-free graphs
are the only two minimal hereditary subclasses of cographs of unbounded co-
chromatic number.

3.2 Lettericity

The notion of letter graphs was introduced in [19] and can be defined as follows.
Let A be a finite alphabet, D ⊆ A2 and w = w1w2 . . . wn a word over A

(repetitions allowed). The letter graph G(D,w) associated to w has {1, 2, . . . , n}
as its vertex set, and two vertices i < j are adjacent if and only if the ordered
pair (wi, wj) belongs to D. A graph G is said to be a letter graph if there exist
an alphabet A, a subset D ⊆ A2 and a word w = w1w2 . . . wn over A such that
G is isomorphic to G(D,w).

The role of D is to decode (transform) a word into a graph and therefore
we refer to D as a decoder. Every graph G is trivially a letter graph over the
alphabet A = V (G) with the decoder D = {(v, w), (w, v) : {v, w} ∈ E(G)}. The
lettericity of G, denoted �(G), is the minimum k such that G is representable as
a letter graph over an alphabet of k letters.

To give a less trivial example, consider the alphabet A = {a, b} and the
decoder D = {(a, a), (a, b)}. Then the word ababababab describes the graph
represented in Fig. 1. This graph can be constructed from a single vertex by
means of two operations: adding a dominating vertex (corresponds to adding
letter a as a prefix) or adding an isolated vertex (corresponds to adding letter b
as a prefix). The class of all graphs that can be constructed by means of these
two operations coincides with the class of threshold graphs defined in Sect. 2

36 B. Alecu et al.

as (2K2, C4, P4)-free graphs [18]. The above discussion shows that a graph is
threshold if and only if it is a letter graph over the alphabet A = {a, b} with the
decoder D = {(a, a), (a, b)}.

Fig. 1. The letter graph of the word ababababab (the oval represents a clique). We use
indices to indicate in which order the a-letters and the b-letters appear in the word.

Lemma 3. �(nK2) = n.

Proof. First, it is not difficult to see that �(nK2) ≤ n, since n letters suffice
(one letter per edge). Assume �(nK2) < n, then there must exist a letter a
representing at least 3 vertices of the graph. Clearly, (a, a) 	∈ D, since otherwise
a triangle arises. Then the neighbour of the middle a is different from a, say b.
If this neighbour appears before the middle a, it must also be adjacent to the
last a. If it appears after the middle a, it must also be adjacent to the first a. In
both case, b has at least two neighbours. Therefore, �(nK2) ≥ n. ��

The above theorem shows that the lettericity is unbounded in the class M
of graphs of vertex degree at most 1. Therefore, it is also unbounded in the class
M, since �(G) = �(G).

Theorem 5. M and M are the only two minimal hereditary subclasses of
cographs of unbounded lettericity.

Proof. To prove the theorem, we will show that for any natural numbers p, t ≥ 2,
the lettericity of a (P4, pK2, tK2)-free graph G is at most 2p+t−3. This will be
shown by induction on p + t. Moreover, we will show that G can be represented
with a decoder D containing a source letter, i.e., a letter a such that (a, b) ∈ D
for any letter b, and a sink letter, i.e., a letter b such that (b, a) 	∈ D for any
letter a.

If p = t = 2, then G is a threshold graph and its lettericity is at most
2, because any threshold graph can be represented over the decoder D =
{(a, a), (a, b)}. In this decoder, a is a source letter and b is a sink letter.

Assume that every (P4, pK2, tK2)-free graph with p+t ≤ k can be represented
as a letter graph over an alphabet of at most 2p+t−3 letters with a decoder
containing a source vertex a and a sink vertex b. Consider now a (P4, pK2, tK2)-
free graph G with p + t = k + 1.

The presence of source and sink letters in the decoder allows us to assume
that G has neither dominating nor isolated vertices. Indeed, if v is dominating,

The Micro-world of Cographs 37

then a word for G can be constructed from a word for G − v by adding a source
letter as a prefix, and if v is isolated, then a word for G can be constructed from
a word for G − v by adding a sink letter as a prefix. Therefore, in the rest of the
proof we assume that G has neither isolated nor dominating vertices.

Case 1: G is disconnected. Denote by G1 a connected component of G and by
G2 the rest of the graph. Observe that each of G1 and G2 contains a K2, since
otherwise G has an isolated vertex. Therefore, each of G1 and G2 is (p − 1)K2-
free and hence we can apply induction to each of G1 and G2. In other words,
G1 can be represented by a word ω1 over an alphabet A1 of size at most 2p+t−4

with a decoder containing a source vertex a1 and a sink vertex b1, and G1 can
be represented by a word ω2 over an alphabet A2 of size at most 2p+t−4 with a
decoder containing a source vertex a2 and a sink vertex b2 (we assume that A1

and A2 are disjoint). Then the word ω = ω1ω2 represents G over the alphabet
A1 ∪ A2 of size at most 2p+t−3 with the decoder D = D1 ∪ D2. In this decoder,
vertex b2 is a sink vertex. To guarantee the presence of a source vertex, we add
to D the pair (a2, c) for every vertex c ∈ A1. This extension transforms a2 into
a source vertex and does not change the graph represented by the word ω, since
every letter from A1 appears in ω before any appearance of a2.

Case 2: G is connected. In this case, G is disconnected and (P4, tK2, pK2)-free.
A similar argument as above gives a representation for G with at most 2p+t−3

letters, and complementing the corresponding decoder produces one for G (note
that when doing that, sink letters become source letters and vice-versa). ��

3.3 Boxicity

The boxicity box(G) of a graph G is the minimum dimension in which G can be
represented as an intersection graph of hyper-rectangles. Equivalently, it is the
smallest number of interval graphs on the same set of vertices whose intersection
is G. The next lemma was shown in [20]; we give here a proof for the sake of
completeness.

Lemma 4. box(nK2) = n.

Proof. To see that box(nK2) ≤ n, note that K2n without an edge is an interval
graph, and nK2 is the intersection of n such graphs. Conversely, note that two
different matched non-edges in nK2 cannot belong to the same interval graph
(since the corresponding four vertices would induce a C4, which is not an interval
graph). Hence we need at least n interval graphs to obtain nK2 as an intersection.

��
Lemma 5. Let G1 and G2 be two graphs. Then

box(G1∪G2) ≤ max(box(G1),box(G2)) and box(G1×G2) ≤ box(G1)+box(G2).

Moreover, if G2 is a clique, then box(G1 × G2) = box(G1).

38 B. Alecu et al.

Proof. Suppose G1 =
s⋂

i=1

Ai and G2 =
t⋂

i=1

Bi where the Ai and Bi are interval

graphs, and assume without loss of generality that s ≥ t. Put Ci = Ai ∪ Bi for
1 ≤ i ≤ t and Ci = Ai ∪ K|V (G2)| for t < i ≤ s. Put Di = Ai × K|V (G2)| for
1 ≤ i ≤ s and Di = K|V (G1)| × Bi−s for s < i ≤ s + t.

The Ci and Di are interval graphs, and with the obvious labellings of Ci and

Di, we have G1 ∪ G2 =
s⋂

i=1

Ci and G1 × G2 =
s+t⋂

i=1

Di.

For the final claim, if G2 = K|V (G2)| is a clique, then G1 × G2 =
s⋂

i=1

(Ai ×
K|V (G2)|), and each of those is an interval graph. ��
Theorem 6. M is the only minimal hereditary subclass of cographs of
unbounded boxicity.

Proof. Let n ≥ 2. We prove by induction on n that (P4, nK2)-free graphs have
boxicity at most 2n−2. The result is true for n = 2, since (P4, C4)-free graphs
are known to be interval graphs (see, e.g., [4]).

For the induction step, suppose the result is true for some n ≥ 2, and let
G be a cograph that is (n + 1)K2-free. By Lemma 5, we may assume that G is
connected, and in particular that G = G1 × G2 where neither of the cographs
G1 or G2 is a clique. But then G1 and G2 each have a K2, and so they are both
nK2-free. The induction hypothesis applies, and another application of Lemma 5
gives us that box(G) ≤ box(G1)+box(G2) ≤ 2n−2 + 2n−2 = 2n−1 as required. ��

3.4 H-Index

The H-index h(G) of a graph G is the largest k ≥ 0 such that G has k vertices
of degree at least k. This parameter is important in the study of dynamic algo-
rithms [9]. Clearly, H-index is unbounded for cographs, since it is unbounded for
complete graphs. To characterise this parameter in terms of minimal subclasses
of cographs with unbounded H-index, we start with a helpful lemma.

Lemma 6. Let G1, . . . , Gt be graphs. Then

h(
t⋃

i=1

Gi) ≤
t∑

i=1

h(Gi), and h(G1×G2)≤min(h(G1)+|V (G2)|, h(G2)+|V (G1)|).

Proof. For the first bound, note that for any j, 1+
∑

i h(Gi) > h(Gj). In partic-
ular, by definition of the H-index, each Gj has at most h(Gj) vertices of degree
1 +

∑
i h(Gi) or more, and so

⋃
j Gj has at most

∑
j h(Gj) vertices of degree at

least 1 +
∑

i h(Gi), from which the claim follows.
For the other bound, note that G1×G2 has at most |V (G2)| vertices of degree

at least h(G1)+|V (G2)|+1 coming from G2, and at most h(G1) coming from G1,
since1 degG1×G2

(v) = degG1
(v)+ |V (G2)| for any v ∈ G1, and G1 does not have

1 When a vertex v appears in more than one graph, we write degG(v) for the degree
of v in graph G.

The Micro-world of Cographs 39

more than h(G1) vertices of degree h(G1) + 1. By definition of the H-index, we
obtain that h(G1 × G2) ≤ h(G1) + |V (G2)|, and the claim follows by symmetry.

��
Theorem 7. K, B and the class F of star forests are the only minimal heredi-
tary subclasses of cographs of unbounded H-index.

Proof. One can check that those are, indeed, minimal hereditary classes of
unbounded H-index. To see they are the only ones, let p, q, r, s ≥ 1. We will
show by induction on p + r that if G avoids Kp, Kq,q and rK1,s, then the H-
index of G is bounded by a constant H(p, q, r, s). For the base case, note that
if p = 1, this is trivial, and if r = 1, then G is (Kp,K1,s)-free and therefore the
maximum vertex degree in G is bounded by R(p, s). This in turn implies that
h(G) ≤ R(p, s). We may thus assume p, r ≥ 2.

If G = G1 × G2 is a join of non-empty graphs, then not both G1 and G2

have more than R(p, q) vertices. Indeed, if both do, then either one of them
contains a clique of size p, which is forbidden, or they both have independent
sets of size q, which again cannot happen since Kq,q is forbidden. Without loss
of generality, we may assume that |V (G2)| ≤ R(p, q). In this case, by Lemma 6,
h(G) ≤ h(G1)+R(p, q). Since |V (G2)| ≥ 1, G1 is Kp−1-free, so by the induction
hypothesis, h(G1) is bounded by H(p − 1, q, r, s).

If G =
t⋃

i=1

Gi is a union of connected graphs, we may write G = G1 ∪ . . . Gl ∪
G′, where G1, . . . , Gl each have a K1,s, and G′ is K1,s-free (we may have l = 0).
Since Kp and K1,s are forbidden for G′, the maximum vertex degree, and hence
the H-index of G′, is bounded by R(p, s). Moreover, if l ≥ 2 and so two of the
components of G do have a K1,s, then we may write G as the union of two graphs
that are (r − 1)K1,s-free, and by Lemma 6, h(G) ≤ 2H(p, q, r − 1, s). Finally,
if only one component has a K1,s, then that component is a join of non-empty
graphs and we obtain, again by Lemma 6 and from the previous paragraph,
h(G) ≤ H(p − 1, q, r, s) + R(p, q) + R(p, s).

Combining the above, we obtain

H(p, q, r, s) ≤ max(H(p − 1, q, r, s) + R(p, q) + R(p, s), 2H(p, q, r − 1, s)).

��

3.5 Achromatic Number

A complete k-colouring is a partition of G into k independent sets (the “colour
classes”) such that any two independent sets in the partition have at least one
edge between them. The achromatic number ψ(G) of a graph G is the maximum
number k such that G admits a complete k-colouring. Computing this parameter
is a difficult task even for cographs and interval graphs [3].

Note that the class K of complete graphs and the class M of matchings have
unbounded achromatic number. Indeed, this is clear for complete graphs, and we
note that

(
n
2

)
K2 admits a complete n-colouring where each edge of the matching

40 B. Alecu et al.

joins two of the colour classes. We claim that among cographs, those are the
only minimal classes of unbounded achromatic number. To show this, we start
with a short lemma.

Lemma 7. Let r, s ∈ N. The class of (Kr, sK2, P4)-free graphs has bounded
neighbourhood diversity.

Proof. From Theorem 3, the only minimal subclasses of cographs where neigh-
bourhood diversity is unbounded are M, M and T . Kr belongs to both M and
T , while sK2 belongs to M. ��

We are now ready to prove the main result of this section.

Theorem 8. K and M are the only minimal hereditary subclasses of cographs
of unbounded achromatic number.

Proof. It suffices to show that for any r, s ∈ N, the class of (Kr, sK2, P4)-free
graphs has bounded achromatic number. Let G be a graph in this class. By
Lemma 7, the class has bounded neighbourhood diversity. In other words, there
is a constant k (independent of G) such that the vertex set of G can be partitioned
into k similarity classes, each similarity class being a clique or an independent set.
Moreover, since the size of cliques is bounded by r, we may further assume that
each of these similarity classes is an independent set. Let G′ be the quotient of G
by this partition, i.e., the graph whose vertices are the independents sets, with
two vertices being adjacent if and only if the corresponding sets are complete to
each other.

Now consider a t-colouring of G, and interpret the colours as vertices of the
complete graph Kt. From each edge e of G′, we obtain a complete bipartite
subgraph of Kt as follows: if the edge e in G′ joins independent sets A1 and A2,
then the two sets are complete to each other, so the sets of colours I1, I2 ⊆ V (Kt)
appearing in A1 and A2 respectively are disjoint. The complete bipartite graph
Be corresponding to e has I1 and I2 as its parts. With this set-up, the t-colouring
is complete if any only if the edges of the graphs Be

e∈E(G′) cover the edges of
Kt. From [13], we need at least
log2(t)� complete bipartite graphs to cover Kt.
It follows that t ≤ 2|E(G′)| ≤ 2(k

2), as required. ��

4 The Hierarchy

In this section, we bring together the different pieces of our analysis and draw a
hierarchy of the parameters studied in this paper. Each parameter p is presented
in Fig. 2 together with a collection M(p) of minimal hereditary subclasses of
cographs where p is unbounded. We say that a parameter p1 is stronger than a
parameter p2 if the family of classes where p1 is bounded contains the family of
classes where p2 is bounded. It is not difficult to see that p1 is stronger than p2
if for every class X ∈ M(p1) there exists a class Y ∈ M(p2) such that Y ⊆ X.

The Micro-world of Cographs 41

Fig. 2. A Hasse diagram of graph parameters within the universe of cographs

5 Conclusion and Open Problems

There are many other interesting parameters that are unbounded in the class
of cographs, such as linearity [6], shrub-depth [14] or distinguishing number [2].
However, surprisingly, there are not so many “interesting” subclasses of cographs
that appear in the characterization of those parameters. For instance, shrub-
depth and distinguishing number can be characterised without extending the set
of classes studied in this paper. Understanding this phenomenon is a challenging
research problem.

As we observed earlier, computing the achromatic number is an NP-complete
problem for cographs, and again due to well-quasi-orderability of cographs there
must exist a finite collection of minimal hereditary subclasses of cographs, where
the problem is NP-complete. Identifying this collection is one more open problem.

References

1. Atminas, A., Lozin, V.V., Razgon, I.: Linear time algorithm for computing a small
biclique in graphs without long induced paths. In: Fomin, F.V., Kaski, P. (eds.)
SWAT 2012. LNCS, vol. 7357, pp. 142–152. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31155-0 13

2. Atminas, A., Brignall, R.: Well-quasi-ordering and finite distinguishing number. J.
Graph Theory. https://doi.org/10.1002/jgt.22523

https://doi.org/10.1007/978-3-642-31155-0_13
https://doi.org/10.1007/978-3-642-31155-0_13
https://doi.org/10.1002/jgt.22523

42 B. Alecu et al.

3. Bodlaender, H.L.: Achromatic number is NP-complete for cographs and interval
graphs. Inf. Process. Lett. 31, 135–138 (1989)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, pp. xii+304 (1999)

5. Brignall, R., Korpelainen, N., Vatter, V.: Linear clique-width for hereditary classes
of cographs. J. Graph Theory 84, 501–511 (2017)

6. Crespelle, C., Gambette, P.: (Nearly-)tight bounds on the contiguity and linearity
of cographs. Theor. Comput. Sci. 522, 1–12 (2014)

7. Dabrowski, K., Demange, M., Lozin, V.V.: New results on maximum induced
matchings in bipartite graphs and beyond. Theor. Comput. Sci. 478, 33–40 (2013)

8. Damaschke, P.: Induced subgraphs and well-quasi-ordering. J. Graph Theory
14(4), 427–435 (1990)

9. Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic
subgraph statistics. J. Graph Algorithms Appl. 16, 543–567 (2012)

10. Erdős, P.: Graph theory and probability. Canad. J. Math. 11, 34–38 (1959)
11. Erdős, P., Gimbel, J., Straight, H.J.: Chromatic number versus cochromatic num-

ber in graphs with bounded clique number. Eur. J. Comb. 11, 235–240 (1990)
12. Fellows, M.R., Langston, M.A.: On search, decision and the efficiency of

polynomial-time algorithms. In: STOC, pp. 501–512 (1989)
13. Fishburn, P.C., Hammer, P.L.: Bipartite dimensions and bipartite degrees of

graphs. Discrete Math. 160, 127–148 (1996)
14. Ganian, R., Hliněný, P., Nešetřil, J., Obdržálek, J., de Mendez, P.O.: Shrub-depth:

capturing height of dense graphs. In: Logical Methods in Computer Science, vol.
15, pp. 7:1–7:25 (2019)

15. Golumbic, M.C.: Trivially perfect graphs. Discrete Math. 24, 105–107 (1978)
16. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica

64, 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x
17. Lozin, V.: Graph parameters and ramsey theory. In: Brankovic, L., Ryan, J.,

Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp. 185–194. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78825-8 15

18. Mahadev, N.V.R., Peled, U.N.: Threshold graphs and related topics. In: Annals of
Discrete Mathematics, pp. xiv+543. 56. North-Holland Publishing Co., Amsterdam
(1995)

19. Petkovšek, M.: Letter graphs and well-quasi-order by induced subgraphs. Discrete
Math. 244, 375–388 (2002)

20. Roberts, F.S.: On the boxicity and cubicity of a graph. In: Recent Progress in
Combinatorics, pp. 301–310. Academic Press, Cambridge (1969)

21. Yan, J.-H., Chen, J.-J., Chang, G.J.: Quasi-threshold graphs. Discrete Appl. Math.
69, 247–255 (1996)

https://doi.org/10.1007/s00453-011-9554-x
https://doi.org/10.1007/978-3-319-78825-8_15

Parameterized Complexity of (A, �)-Path
Packing

Rémy Belmonte1, Tesshu Hanaka2 , Masaaki Kanzaki3, Masashi Kiyomi4,
Yasuaki Kobayashi5, Yusuke Kobayashi5 , Michael Lampis6 ,

Hirotaka Ono7 , and Yota Otachi7(B)

1 The University of Electro-Communications, Chofu, Tokyo, Japan
remybelmonte@gmail.com

2 Chuo University, Bunkyo-ku, Tokyo, Japan
hanaka.91t@g.chuo-u.ac.jp

3 Kumamoto University, Kumamoto 860-8555, Japan
c5744@st.cs.kumamoto-u.ac.jp

4 Yokohama City University, Yokohama, Japan
masashi@yokohama-cu.ac.jp

5 Kyoto University, Kyoto, Japan
kobayashi@iip.ist.i.kyoto-u.ac.jp, yusuke@kurims.kyoto-u.ac.jp

6 Université Paris-Dauphine, PSL University, CNRS, LAMSADE,
75016 Paris, France

michail.lampis@lamsade.dauphine.fr
7 Nagoya University, Nagoya 464-8601, Japan

{ono,otachi}@nagoya-u.jp

Abstract. Given a graph G = (V, E), A ⊆ V , and integers k and �,
the (A, �)-Path Packing problem asks to find k vertex-disjoint paths
of length � that have endpoints in A and internal points in V \ A. We
study the parameterized complexity of this problem with parameters |A|,
�, k, treewidth, pathwidth, and their combinations. We present sharp
complexity contrasts with respect to these parameters. Among other
results, we show that the problem is polynomial-time solvable when � ≤
3, while it is NP-complete for constant � ≥ 4. We also show that the
problem is W[1]-hard parameterized by pathwidth+ |A|, while it is fixed-
parameter tractable parameterized by treewidth + �.

Keywords: A-path packing · Fixed-parameter tractability · Treewidth

1 Introduction

Let G = (V,E) be a graph and A ⊆ V . A path P in G is an A-path if the first and
the last vertices of P belong to A and all other vertices of P belong to V \A. Given

Partially supported by PRC CNRS JSPS project PARAGA, by JSPS KAKENHI
Grant Numbers JP16K16010, JP17H01698, JP17H01788, JP18H05291, JP18K11157,
JP18K11168, JP18K11169, JP18H04091, JP19K21537, and by JST CREST JPMJCR
1401. The authors thank Tatsuya Gima for helpful discussions.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 43–55, 2020.
https://doi.org/10.1007/978-3-030-48966-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_4&domain=pdf
http://orcid.org/0000-0001-6943-856X
http://orcid.org/0000-0001-9478-7307
http://orcid.org/0000-0002-5791-0887
http://orcid.org/0000-0003-0845-3947
http://orcid.org/0000-0002-0087-853X
https://doi.org/10.1007/978-3-030-48966-3_4

44 R. Belmonte et al.

G and A, A-Path Packing is the problem of finding the maximum number of
vertex-disjoint A-paths in G. The A-Path Packing problem is well studied
and even some generalized versions are known to be polynomial-time solvable
(see e.g., [5,6,11,15,18,19]). Note that A-Path Packing is a generalization of
Maximum Matching since they are equivalent when A = V .

In this paper, we study a variant of A-Path Packing that also generalizes
Maximum Matching. An A-path of length � is an (A, �)-path, where the length
of a path is the number of edges in the path. Now our problem is defined as
follows:

(A, �)-Path Packing (ALPP)
Input: A tuple (G,A, k, �), where G = (V,E) is a graph, A ⊆ V , and k

and � are positive integers.
Question: Does G contain k vertex-disjoint (A, �)-paths?

To the best of our knowledge, this natural variant of A-Path Packing was
not studied in the literature. Our main motivation of studying ALPP is to see
theoretical differences from the original A-Path Packing, but practical motiva-
tions of having the length constraint may come from some physical restrictions or
some fairness requirements. Note that if � = 1, then ALPP is equivalent to Max-

imum Matching. Another related problem is �-Path Partition [16,20,21],
which asks for vertex-disjoint paths of length � (without specific endpoints).

In the rest of paper, we assume that k ≤ |A|/2 in every instance as otherwise
the instance is a trivial no-instance. The restricted version of the problem where
the equality k = |A|/2 is forced is also of our interest as that version corresponds
to a “full” packing of A-paths. We call this version Full (A, �)-Path Packing

(Full-ALPP, for short). In this paper, all our positive results showing tractability
of some cases will be on the general ALPP, while all our negative (or hardness)
results will be on the possibly easier Full-ALPP.

We assume that the reader is familiar with terminologies in the parameterized
complexity theory. See the textbook by Cygan et al. [8] for standard definitions.

Our Results

In summary, we show that ALPP is intractable even on very restricted inputs,
while it has some nontrivial cases that admit efficient algorithms. (See Fig. 1.)

We call |A|, k, and � the standard parameters of ALPP as they naturally arise
from the definition of the problem. We determine the complexity of ALPP with
respect to all standard parameters and their combinations. We first observe that
Full-ALPP is NP-complete for any constant |A| ≥ 2 (Observation 3.1) and for
any constant � ≥ 4 (Observation 3.2), while it is polynomial-time solvable when
� ≤ 3 (Theorem 3.3). On the other hand, ALPP is fixed-parameter tractable
when parameterized by k+ � and thus by |A|+ � as well (Theorem 3.5). We later
strengthen Observation 3.2 by showing that NP-complete for every fixed � ≥ 4
even on grid graphs (Theorem 5.1).

We then study structural parameters such as treewidth and pathwidth in
combination with the standard parameters. We first observe that ALPP can be

Parameterized Complexity of (A, �)-Path Packing 45

solved in time nO(tw) (Theorem 4.1), where n and tw are the number of ver-
tices and the treewidth of the input graph, respectively. Furthermore, we show
that ALPP parameterized by tw + � is fixed-parameter tractable (Theorem 4.2).
We finally show that Full-ALPP parameterized by pw + |A| is W[1]-hard (Theo-
rem 4.5), where pw is the pathwidth of the input graph.

treewidth

pathwidth

treedepth

treedepth + |A|

treewidth + |A|

pathwidth + |A|

treedepth + �

treewidth + �

pathwidth + �

|A| �

k + �

|A| + �

paraNP-complete

XP

W[1]-hard

FPT

∗ ∗

∗

∗
∗ ∗

Fig. 1. Summary of the results. An arrow α → β indicates that there is a function f
such that α ≥ f(β) for every instance of ALPP. Some possible arrows are omitted to
keep the figure readable. The results on the parameters marked with ∗ are explicitly
shown in this paper, and the other results follow by the hierarchy of the parameters.
We have a bidirectional arrow treedepth ↔ treedepth + � because the maximum length
of a path in a graph is bounded by a function of treedepth [17, Section 6.2].

2 Preliminaries

A graph G = (V,E) is a grid graph if V is a finite subset of Z
2 and E =

{{(r, c), (r′, c′)} | |r − r′| + |c − c′| = 1}. From the definition, all grid graphs
are planar, bipartite, and of maximum degree at most 4. To understand the
intractability of a graph problem, it is preferable to show hardness on a very
restricted graph class. The class of grid graphs is one of such target classes.

A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T =
(I, F)), where Xi ⊆ V for each i and T is a tree such that

– for each vertex v ∈ V , there is i ∈ I with v ∈ Xi;
– for each edge {u, v} ∈ E, there is i ∈ I with u, v ∈ Xi;
– for each vertex v ∈ V , the induced subgraph T [{i | v ∈ Xi}] is connected.

The width of a tree decomposition ({Xi | i ∈ I}, T) is maxi∈I |Xi| − 1, and
the treewidth of a graph G, denoted tw(G), is the minimum width over all tree
decompositions of G.

The pathwidth of a graph G, denoted pw(G), is defined by restricting the
trees T in tree decompositions to be paths. We call such decompositions path
decompositions. It is easy to observe that pathwidth does not change significantly
by subdividing some edges and attaching paths to some vertices.

46 R. Belmonte et al.

Corollary 2.1 (�1). Let G = (V,E) be a graph without isolated vertices. If
G′ is a graph obtained from G by subdividing a set of edges F ⊆ E an arbitrary
number of times, and attaching a path of arbitrary length to each vertex in a set
U ⊆ V , then pw(G′) ≤ pw(G) + 2.

3 Standard Parameterizations of ALPP

In this section, we completely determine the complexity of ALPP with respect
to the standard parameters |A|, k, �, and their combinations. (Recall that k ≤
|A|/2.) We first observe that using one of them as a parameter does not make
the problem tractable. That is, we show that the problem remains NP-complete
even if one of |A|, k, � is a constant. We then show that the problem is tractable
when � ≤ 3 or when k + � is the parameter.

3.1 Intractable Cases

The first observation is that Full-ALPP is NP-complete even if |A| = 2 (and thus
k = 1). This can be shown by an easy reduction from Hamiltonian Cycle [12].
This observation is easily extended to every fixed even |A|.
Observation 3.1 (�). For every fixed even number α ≥ 2, Full-ALPP on grid
graphs is NP-complete even if |A| = α.

The NP-hardness of Full-ALPP for fixed � can be shown also by an easy
reduction from a known NP-hard problem, but in this case only for � ≥ 4. This
is actually tight as we see later that the problem is polynomial-time solvable
when � ≤ 3 (see Theorem 3.3).

Observation 3.2 (�). For every fixed � ≥ 4, Full-ALPP is NP-complete.

We can strengthen Observation 3.2 to hold on grid graphs by constructing
an involved reduction from scratch. As the proof is long and the theorem does
not really fit the theme of this section, we postpone it to Sect. 5.

3.2 Tractable Cases

Theorem 3.3. If � ≤ 3, then ALPP can be solved in polynomial time.

Proof. Let (G,A, k, �) with G = (V,E) be an instance of ALPP with � ≤ 3.
If � = 1, then the problem can be solved by finding a maximum matching in

G[A]. Since a maximum matching can be found in polynomial time [9], this case
is polynomial-time solvable.

Consider the case where � = 2. We reduce this case to the case of � = 3.
We can assume that G[A] and G[V \ A] do not contain any edges as such edges
are not included in any (A, 2)-path. New instance (G′, A, k, 3) is constructed by

1 A star � means that the proof is omitted.

Parameterized Complexity of (A, �)-Path Packing 47

adding a true twin v′ to each vertex v ∈ V \A; i.e., V (G′) = V ∪{v′ | v ∈ V \A}
and E(G′) = E ∪ {{v, v′} | v ∈ V \ A} ∪ {{u, v′} | u ∈ A, v ∈ V \ A, {u, v} ∈ E}.
Clearly, (G,A, k, 2) is a yes-instance if and only if so is (G′, A, k, 3).

For the case of � = 3, we construct an auxiliary graph G′ = (A∪V1∪V2, EA,1∪
E1,2 ∪ E2,2) as follows (see Fig. 2):

Vi = {vi | v ∈ V \ A} for i ∈ {1, 2},

EA,1 = {{u, v1} | u ∈ A, v ∈ V \ A, {u, v} ∈ E},

E1,2 = {{v1, v2} | v ∈ V },

E2,2 = {{u2, v2} | u, v ∈ V \ A, {u, v} ∈ E}.

We show that (G,A, k, 3) is a yes-instance if and only if G′ has a matching of
size k + |V \ A|, which implies that the problem can be solved in polynomial
time.

Fig. 2. The construction of G′ (right) from G (left).

To prove the only-if direction, let P1, . . . , Pk be k vertex-disjoint (A, 3)-path
in G. We set M = MA,1 ∪ M1,2 ∪ M2,2, where

MA,1 = {{u, v1} ∈ EA,1 | edge {u, v} appears in some Pi},

M1,2 = {{v1, v2} ∈ E1,2 | vertex v does not appear in any Pi},

M2,2 = {{u2, v2} ∈ E2,2 | edge {u, v} appears in some Pi}.

Since the (A, 3)-paths P1, . . . , Pk are pairwise vertex-disjoint, M is a matching.
We can see that |M | = k + |V \ A| as |M2,2| = k and |MA,1| + |M1,2| = |V1| =
|V \ A|.

To prove the if direction, assume that G′ has a matching of size k + |V \ A|.
Let M be a maximum matching of G′ that includes the maximum number of
vertices in V1 ∪ V2 among all maximum matchings of G′. We claim that M
actually includes all vertices in V1 ∪ V2. Suppose to the contrary that v1 or v2 is
not included in M for some v ∈ V \ A. Now, since M is maximum, exactly one
of v1 and v2 is included in M .

Case 1: v1 ∈ V (M) and v2 /∈ V (M). There is a vertex u ∈ A such that
{u, v1} ∈ M . The set M − {u, v1} + {v1, v2} is a maximum matching that uses
more vertices in V1 ∪ V2 than M . This contradicts how M was selected.

48 R. Belmonte et al.

Case 2: v1 /∈ V (M) and v2 ∈ V (M). There is a vertex w2 ∈ V2 such that
{v2, w2} ∈ M . The edge set M ′ := M − {v2, w2} + {v1, v2} is a maximum
matching that uses the same number of vertices in V1 ∪ V2 as M . Since M ′ is
maximum and w2 is not included in M ′, the vertex w1 has to be included in M ′,
but such a case leads to a contradiction as we saw in Case 1.

Now we construct k vertex-disjoint (A, 3)-paths from M as follows. Let
{u2, v2} ∈ M ∩E2,2. Since M includes all vertices in V1, it includes edges {u1, x}
and {v1, y} for some x, y ∈ A. This implies that G has an (A, 3)-path (x, u, v, y).
Let (x′, u′, v′, y′) be the (A, 3)-path constructed in the same way from a differ-
ent edge in M ∩ E2,2. Since M is a matching, these eight vertices are pairwise
distinct, and thus (x, u, v, y) and (x′, u′, v′, y′) are vertex-disjoint (A, 3)-paths.
Since |M | ≥ k + |V \ A| and each edge in EA,1 ∪ E1,2 uses one vertex of V1, M
includes at least k edges in E2,2. By constructing an (A, 3)-path for each edge
in M ∩ E2,2, we obtain a desired set of k vertex-disjoint (A, 3)-paths. �	

In their celebrated paper on Color-Coding [1], Alon, Yuster, and Zwick
showed the following result.

Proposition 3.4 ([1, Theorem 6.3]). Let H be a graph on h vertices with
treewidth t. Let G be a graph on n vertices. A subgraph of G isomorphic to H,
if one exists, can be found in time O(2O(h) · nt+1 log n).

By using Proposition 3.4 as a black box, we can show that ALPP parameter-
ized by k + � is fixed-parameter tractable.

Theorem 3.5. ALPP on n-vertex graphs can be solved in O(2O(k�)n6 log n)
time.

Proof. Let (G,A, k, �) be an instance of ALPP. Observe that the problem ALPP
can be seen as a variant of the Subgraph Isomorphism problem as we search for
H = kP�+1 in G as a subgraph with the restriction that each endpoint of P�+1 in
H has to be mapped to a vertex in A, where P�+1 denotes an (�+1)-vertex path
(which has length �) and kP�+1 denotes the disjoint union of k copies of P�+1.
We reduce this problem to the standard Subgraph Isomorphism problem [12].

Let G′ and H ′ be the graphs obtained from G and H, respectively, by sub-
dividing each edge once. The graphs G′ and H ′ = kP2�+1 are bipartite. We then
construct G′′ from G′ by attaching a triangle to each vertex in A; that is, for each
vertex u ∈ A we add two new vertices v, w and edges {u, v}, {v, w}, and {w, u}.
Similarly, we construct H ′′ from H ′ by attaching a triangle to each endpoint of
each P2�+1. Note that |V (G′′)| ∈ O(n2), |V (H ′′)| = k(2� + 1), and tw(H ′′) = 2.
Thus, by Proposition 3.4, it suffices to show that (G,A, k, �) is a yes-instance of
ALPP if and only if G′′ has a subgraph isomorphic to H ′′.

To show the only-if direction, assume that G has k vertex-disjoint (A, �)-
paths P1, . . . , Pk. In G′′, for each Pi, there is a unique path Qi of length 2� plus
triangles attached to the endpoints; that is, Qi consists of the vertices of Pi,
the new vertices and edges introduced by subdividing the edges in Pi, and the
triangles attached to the endpoints of the subdivided path. Furthermore, since

Parameterized Complexity of (A, �)-Path Packing 49

the paths Pi are pairwise vertex-disjoint, the subgraphs Qi of G′′ are pairwise
vertex-disjoint. Thus, G′′ has a subgraph isomorphic to H ′′ =

⋃
1≤i≤k Qi.

To prove the if direction, assume that G has a subgraph H ′ isomorphic to H.
Let R1, . . . , Rk be the connected components of H ′. Each Ri is isomorphic to a
path of length 2� with a triangle attached to each endpoint. Let u, v ∈ V (Ri)
be the degree-3 vertices of Ri. Since G′′ is obtained from the triangle-free graph
G′ by attaching triangles at the vertices in A, we have u, v ∈ A. Since the
u-v path of length 2� in Ri is obtained from a u-v path of length � in G by
subdividing each edge once, the graph G[V (Ri)∩V (G)] contains an (A, �)-path.
Since V (R1), . . . , V (Rk) are pairwise disjoint, G contains k vertex-disjoint (A, �)-
paths. �	

4 Structural Parameterizations

In this section, we study structural parameterizations of ALPP. First we present
XP and FPT algorithms parameterized by tw and tw + �, respectively.

The XP-time algorithm parameterized by tw is based on an efficient algorithm
for computing a tree decomposition [4] and a standard dynamic-programming
over nice tree decompositions [14]. The FPT algorithm parameterized tw + � is
achieved by expressing the problem in the monadic second-order logic (MSO2)
of graphs [2,3,7]. The proofs of them are omitted.

Theorem 4.1 (�). ALPP can be solved in time nO(tw).

Theorem 4.2 (�). ALPP parameterized by tw+� is fixed-parameter tractable.

Now we show that Full-ALPP is W[1]-hard parameterized by pathwidth (and
hence also by treewidth), even if we also consider |A| as an additional parame-
ter. We present a reduction from a W[1]-complete problem k-Multi-Colored

Clique (k-MCC) [10], which goes through an intermediate version of our prob-
lem. Specifically, we will consider a version of Full-ALPP with the following mod-
ifications: the graph has (positive integer) edge weights, and the length of a path
is the sum of the weights of its edges; the set A is given to us partitioned into
pairs indicating the endpoints of the sought A-paths; for each such pair the value
of � may be different.

More formally, Extended-ALPP is the following problem: we are given a
graph G = (V,E), a weight function w : E → Z

+, and a sequence of r triples
(s1, t1, �1), . . . , (sr, tr, �r), where all the si, ti ∈ V are distinct vertices and
�i ∈ Z

+ for all i ∈ [r]2. We are asked if there exists a set of r vertex-disjoint
paths in G such that for all i ∈ [r] the i-th path in this set has endpoints si, ti
and the sum of the weights of its edges is �i. We first show that establishing that
this variation of the problem is hard implies also the hardness of Full-ALPP.

Lemma 4.3. There exists an algorithm which, given an instance of Extended-
ALPP on an n-vertex graph G with r triples and maximum edge weight W ,
2 For a positive integer r, we denote the set {1, 2, . . . , r} by [r].

50 R. Belmonte et al.

constructs in time polynomial in n + W an equivalent instance (G′, A, |A|/2, �)
of Full-ALPP with the properties: (i) |A| = 2r, (ii) pw(G′) ≤ pw(G) + 2.

Proof. First, we simplify the given instance of Extended-ALPP by removing edge
weights: for every edge e = {u, v} ∈ E(G) with w(e) > 1, we remove this edge
and replace it with a path from u to v with length w(e) going through new
vertices (in other words we subdivide e w(e) − 1 times). It is not hard to see
that we have an equivalent instance of Extended-ALPP on the new graph, which
we call G1, where the weight of all edges is 1 and |V (G1)| ≤ n2W . We now
give a polynomial-time reduction from this new instance of Extended-ALPP to
Full-ALPP.

Let n1 = |V (G1)| and � = n3
1. For each i ∈ [r] we do the following: we

construct a new vertex s′
i and connect it to si using a path of length i · n2

1 going
through new vertices; we construct a new vertex t′i and connect it to ti using a
path of length (n1 − i) · n2

1 − �i through new vertices. We set A to contain all
the vertices s′

i, t
′
i for i ∈ [r]. This completes the construction and it is clear that

|A| = 2r (because the si, ti vertices are distinct), the new graph G′ has order at
most n5

1 ≤ n10 · W 5 and can be constructed in time polynomial in n + W .
We claim that the new graph G′ has |A|/2 vertex-disjoint (A, �)-paths if and

only if the Extended-ALPP instance of G1 has a positive answer. Indeed, if there
exists a collection of r vertex-disjoint paths in G1 such that the i-th path has
endpoints si, ti and length �i, we add to this path the paths from s′

i to si and from
ti to t′i and this gives a path of length � = n3

1 with endpoints in A. Observe that
all these paths are vertex-disjoint, so we obtain a yes-certificate of Full-ALPP.
For the converse direction, suppose that G′ has a set A of |A|/2 vertex-disjoint
(A, �)-paths. If A contains a path P with endpoints s′

i and s′
j , then considering

the length of P we get (i + j) · n2
1 + 1 ≤ n3

1 ≤ (i + j) · n2
1 + n1 − 1. The first

inequality implies i + j ≤ n1 − 1, but then this implies (i + j) · n2
1 + n1 − 1 ≤

n3
1 − n2

1 + n1 − 1 < n3
1, a contradiction. Also, there cannot be a path in A with

endpoints t′i and t′j , since existence of such a path implies, by the pigeon hole
principle, that there is a path in A with endpoints s′

p and s′
q. Assume that A

contains a path with endpoints s′
i and t′j . Then the length of this path is at least

i · n2
1 + (n1 − j) · n2

1 − �j + 1 and at most i · n2
1 + (n1 − j) · n2

1 − �j + n1 − 1.
Therefore, if this path has length exactly � = n3

1, it must be the case that i = j.
Furthermore, if i = j we infer that the length of the part of the path from si to
ti is exactly �i. We therefore obtain a solution to the Extended-ALPP instance.

Finally, observe that the only modifications we have done on G is to subdivide
some edges and to attach paths to some vertices. By Corollary 2.1, the pathwidth
is increased only by at most 2. �	

We can now reduce the k-MCC problem to Extended-ALPP.

Lemma 4.4. There exists a polynomial-time algorithm which, given an instance
of k-MCC on a graph G with n vertices, produces an equivalent instance of
Extended-ALPP on a graph G′, with r ∈ O(k2) triples, pw(G′) ∈ O(k2), and
maximum edge weight W ∈ nO(1).

Parameterized Complexity of (A, �)-Path Packing 51

Proof. We are given a graph G = (V,E) with V partitioned into k sets V1, . . . , Vk,
and are asked for a clique of size k that contains one vertex from each set. To
ease notation, we will assume that n is even and |Vi| = n for i ∈ [k] (so the graph
has kn vertices in total) and that the vertices of Vi are numbered 1, . . . , n. We
define two lengths L1 = n3 + (k + 1)(2n + 2) and L2 = n6.

For i ∈ [k] we construct a vertex-selection gadget as follows (see Fig. 3): we
make 2n + 3 paths of length k, call them Pi,j , where j ∈ [2n + 3]. Let ai,j , bi,j

be the first and last vertex of path Pi,j respectively. We label the remaining
vertices of the path Pi,j as xi,j,i′ for i′ ∈ {1, . . . , k}\{i} in some arbitrary order.
Then for each j ∈ [2n + 2] we connect ai,j to ai,j+1 and bi,j to bi,j+1. All edges
constructed so far have weight 1. We add two vertices si, ti, connect si to ai,1

with an edge of weight n3/2 and ti to ai,2n+3 also with an edge of weight n3/2.
We add to the instance the triple (si, ti, L1).

Fig. 3. An example of the vertex-selection gadget for n = 3, k = 4, and i = 2.

We now need to construct an edge-verification gadget as follows (see Fig. 4):
for each i1, i2 ∈ [k] with i1 < i2 we construct three vertices si1,i2 , ti1,i2 , pi1,i2 . For
each edge e of G between Vi1 and Vi2 we do the following: suppose e connects
vertex j1 of Vi1 to vertex j2 of Vi2 . We add the following four edges:

1. An edge from si1,i2 to xi1,2j1,i2 . This edge has weight L2/4 + j1n
4 + j2n

2.
2. An edge from xi1,2j1,i2 to pi1,i2 . This edge has weight L2/4.
3. An edge from pi1,i2 to xi2,2j2,i1 . This edge has weight L2/4.
4. An edge from xi2,2j2,i1 to ti1,i2 . This edge has weight L2/4 − j1n

4 − j2n
2.

We call the edges constructed in the above step heavy edges, since their
weight is close to L2/4. We add the k(k − 1)/2 triples (si1,i2 , ti1,i2 , L2) to the
instance, for all i1, i2 ∈ [k], with i1 < i2.

52 R. Belmonte et al.

Fig. 4. An example of the edge-verification gadget for Vi1 and Vi2 (i1 < i2). In this
example, there are exactly three edges between Vi1 and Vi2 .

Note that in the above description we have created some parallel edges, for
example from si1,i2 to xi1,2j1,i2 (if the vertex j1 of Vi1 has several neighbors in
Vi2). This can be avoided by subdividing such edges once and assigning weights
to the new edges so that the total weight stays the same. For simplicity we ignore
this detail in the remainder since it does not significantly affect the pathwidth
of the graph (see Corollary 2.1). This completes the construction.

Let us now prove correctness. First assume that we have a k-multicolored
clique in G, encoded by a function σ : [k] → [n], that is, σ(i) is the vertex of
the clique that belongs in Vi. For the i-th vertex-selection gadget we have the
triple (si, ti, L1). We construct a path from si to ti as follows: we take the edge
(si, ai,1), then for each j < 2σ(i) we follow the path Pi,j from ai,j to bi,j if j
is odd, and in the reverse direction if j is even. We thus arrive to the vertex
bi,2σ(i)−1. We then skip the path Pi,σ(i), proceed through bi,2σ(i) to the vertex
bi,2σ(i)+1 and traverse the paths by reversing our parity rule: for j > 2σ(i) we
traverse Pi,j from bi,j to ai,j if j is odd, and in the reverse direction otherwise.
Hence, the last vertex of this traversal is ai,2n+3, after which we reach ti. The
first and last edge of this path have total cost n3; we have traversed 2n+2 paths
Pi,j , each of which has k edges; we have also traversed 2n + 2 edges connecting
adjacent paths. The total length is therefore, n3 + (2n + 2)k + 2n + 2 = L1.
In this way we have satisfied all the k triples (si, ti, L1) and have not used the
vertices xi,2σ(i),i′ for any i′ �= i.

Consider now a triple (si1,i2 , ti1,i2 , L2), for i1 < i2. Because we have selected
a clique, there exists an edge between vertex σ(i1) of Vi1 and σ(i2) of Vi2 .
For this edge we have constructed four edges in our new instance, linking
si1,i2 to ti1,i2 with a total weight of L2. We use these paths to satisfy the
(
k
2

)
triples (si1,i2 , ti1,i2 , L2). These paths are disjoint from each other: when

i1 < i2, xi1,2σ(i1),i2 is only used in the path from si1,i2 to ti1,i2 and when i1 > i2,
xi1,2σ(i1),i2 is only used in the path from si2,i1 to ti2,i1 . Furthermore, these paths
are disjoint from the paths in the vertex-selection gadgets, as we observed that

Parameterized Complexity of (A, �)-Path Packing 53

xi,2σ(i),i′ are not used by the path connecting si to ti. We thus have a valid
solution. See Fig. 5.

Fig. 5. Construction of paths from σ.

For the converse direction, suppose we have a valid solution for the Extended-
ALPP instance. First, consider the path connecting si to ti. This path has length
L1, therefore it cannot be using any heavy edges, since these edges have cost at
least L2/4 − n5 − n3 > L1. Inside the vertex-selection gadget, the path may
use either all of the edges of a path Pi,j or none. Let us now see how many
Pi,j are unused. First, a simple parity argument shows that, because si, ti are
both connected to an ai,j vertex, the number of paths traversed in the ai,j → bi,j

direction is equal to those traversed in the opposite direction, so the total number
of used paths is even. Since we have an odd number of paths in total, at least
one path is not used. We conclude that exactly one Pi,j is not used, otherwise
the path from si to ti would be too short. Let σ(i) be defined as the index j such
that the internal vertices of Pi,j are not used in the si → ti path of the solution.
We define a clique in G by selecting for each i the vertex �σ(i)/2.

Let us argue why this set induces a clique. Let j1, j2 be the vertices selected
in Vi1 , Vi2 respectively, with i1 < i2, and consider the triple (si1,i2 , ti1,i2 , L2).
This triple must be satisfied by a path that uses exactly four heavy edges, since
each heavy edge has weight strictly larger than L2/5 and strictly smaller than
L2/3 and all other edges together are either incident on another terminal or have
weight smaller than L2/5n2. Hence, every such path is using at least two internal
vertices of some Pi,j because every heavy edge is incident on such a vertex. But,
by our previous reasoning, the paths that satisfy the (si, ti, L1) triples have used
all such vertices except for one path Pi,j for each i. There exist therefore exactly
k(k −1) such vertices available, so each of the k(k −1)/2 triples (si1,i2 , ti1,i2 , L2)
has a path using exactly two of these vertices. Hence, each such path consists of
four heavy edges and no other edges.

Such a path must therefore be using one edge incident on si1,i2 , one edge
incident on ti1,i2 and two edges incident on pi1,i2 . The used edge incident on

54 R. Belmonte et al.

si1,i2 must have as other endpoint xi1,2j1,i2 , which implies that its weight is
L2/4 + j1n

4 + j′
2n

2, for some j′
2. Similarly, the edge incident on ti1,i2 must have

weight L2/4 − j′
1n

4 − j2n
2, as its other endpoint is necessarily xi2,2j2,i1 . We

conclude that the only way that the length of this path is L2 is if j1 = j′
1 and

j2 = j′
2. Therefore, we have an edge between the two selected vertices, and as a

result a k-clique.
To conclude we observe that deleting the O(k2) vertices si1,i2 , pi1,i2 , ti1,i2

disconnects the graph into components that correspond to the vertex gadgets.
Each vertex gadget has pathwidth at most 4 as it can be seen as a subgraph of a
subdivision of the 2 × (2n + 4) grid. As a result the whole graph has pathwidth
O(k2). �	
Theorem 4.5. Full-ALPP is W[1]-hard parameterized by pw + |A|.
Proof. We compose the reductions of Lemmas 4.3 and 4.4. Starting with an
instance of k-MCC with n vertices this gives an instance of Full-ALPP with
nO(1) vertices, |A| = O(k2), and pathwidth O(k2). �	

5 Hardness on Grid Graphs

We first reduce Planar Circuit SAT to Full-ALPP on planar bipartite graphs
of maximum degree at most 4. We then modify the instance by subdividing
edges and adding terminal vertices in a appropriate way, and have an equivalent
instance on grid graphs. All proofs in this section are omitted.

Theorem 5.1 (�). For every fixed � ≥ 4, Full-ALPP is NP-complete on grid
graphs.

6 Concluding Remarks

In this paper, we have introduced a new problem (A, �)-Path Packing and
showed tight complexity results. One possible future direction would be the
parameterization by clique-width cw, a generalization of treewidth (see [13]). In
particular, we ask the following two questions.

– Does ALPP admit an algorithm of running time O(ncw)?
– Is ALPP fixed-parameter tractable parameterized by cw + �?

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995).
https://doi.org/10.1145/210332.210337

2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable
graphs. J. Algorithms 12(2), 308–340 (1991). https://doi.org/10.1016/0196-
6774(91)90006-K

https://doi.org/10.1145/210332.210337
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1016/0196-6774(91)90006-K

Parameterized Complexity of (A, �)-Path Packing 55

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996). https://doi.org/10.1137/
S0097539793251219

4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.
45(2), 317–378 (2016). https://doi.org/10.1137/130947374

5. Chudnovsky, M., Cunningham, W.H., Geelen, J.: An algorithm for packing non-
zero a-paths in group-labelled graphs. Combinatorica 28(2), 145–161 (2008).
https://doi.org/10.1007/s00493-008-2157-8

6. Chudnovsky, M., Geelen, J., Gerards, B., Goddyn, L.A., Lohman, M., Seymour,
P.D.: Packing non-zero a-paths in group-labelled graphs. Combinatorica 26(5),
521–532 (2006). https://doi.org/10.1007/s00493-006-0030-1

7. Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions,
minor and complexity issues. Theor. Inf. Appl. 26, 257–286 (1992). https://doi.
org/10.1051/ita/1992260302571

8. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

9. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965). https://
doi.org/10.4153/CJM-1965-045-4

10. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized
complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61
(2009). https://doi.org/10.1016/j.tcs.2008.09.065

11. Gallai, T.: Maximum-Minimum Sätze und verallgemeinerte Faktoren von Graphen.
Acta Mathematica Academiae Scientiarum Hungarica 12, 131–173 (1961). https://
doi.org/10.1007/BF02066678

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman W. H., New York (1979)

13. Hlinený, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. Comput. J. 51(3), 326–362 (2008). https://doi.org/10.1093/
comjnl/bxm052

14. Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

15. Mader, W.: Über die maximalzahl kreuzungsfreier H-wege. Archiv der Mathematik
(Basel) 31, 387–402 (1978). https://doi.org/10.1007/BF01226465

16. Monnot, J., Toulouse, S.: The path partition problem and related problems in
bipartite graphs. Oper. Res. Lett. 35(5), 677–684 (2007). https://doi.org/10.1016/
j.orl.2006.12.004

17. Nešetřil, J., Ossona de Mendez, P.: Sparsity - Graphs, Structures, and Algo-
rithms. AC, vol. 28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27875-4

18. Pap, G.: Packing non-returning a-paths. Combinatorica 27(2), 247–251 (2007).
https://doi.org/10.1007/s00493-007-0056-z

19. Pap, G.: Packing non-returning a-paths algorithmically. Discrete Math. 308(8),
1472–1488 (2008). https://doi.org/10.1016/j.disc.2007.07.073

20. Steiner, G.: On the k-path partition of graphs. Theor. Comput. Sci. 290(3), 2147–
2155 (2003). https://doi.org/10.1016/S0304-3975(02)00577-7

21. Yan, J.H., Chang, G.J., Hedetniemi, S.M., Hedetniemi, S.T.: k-path partitions
in trees. Discret. Appl. Math. 78(1–3), 227–233 (1997). https://doi.org/10.1016/
S0166-218X(97)00012-7

https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/130947374
https://doi.org/10.1007/s00493-008-2157-8
https://doi.org/10.1007/s00493-006-0030-1
https://doi.org/10.1051/ita/1992260302571
https://doi.org/10.1051/ita/1992260302571
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1007/BF02066678
https://doi.org/10.1007/BF02066678
https://doi.org/10.1093/comjnl/bxm052
https://doi.org/10.1093/comjnl/bxm052
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BF01226465
https://doi.org/10.1016/j.orl.2006.12.004
https://doi.org/10.1016/j.orl.2006.12.004
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/s00493-007-0056-z
https://doi.org/10.1016/j.disc.2007.07.073
https://doi.org/10.1016/S0304-3975(02)00577-7
https://doi.org/10.1016/S0166-218X(97)00012-7
https://doi.org/10.1016/S0166-218X(97)00012-7

On Proper Labellings of Graphs
with Minimum Label Sum

Julien Bensmail, Foivos Fioravantes(B), and Nicolas Nisse

Université Côte d’Azur, CNRS, Inria, I3S, Sophia Antipolis, France
foivos.fioravantes@inria.fr

Abstract. The 1-2-3 Conjecture states that every nice graph G (without
component isomorphic to K2) admits a proper 3-labelling, i.e., a labelling
of the edges with 1, 2, 3 such that no two adjacent vertices are incident
to the same sum of labels. Another interpretation of this conjecture is
that every nice graph G can be turned into a locally irregular multigraph
M , i.e., with no two adjacent vertices of the same degree, by replacing
each edge by at most three parallel edges. In other words, for every nice
graph G, there should exist a locally irregular multigraph M with the
same adjacencies and having few edges.

We study proper labellings of graphs with the extra requirement that
the sum of assigned labels must be as small as possible. That is, given a
graph G, we are looking for a locally irregular multigraph M∗ with the
fewest edges possible that can be obtained from G by replacing edges with
parallel edges. This problem is quite different from the 1-2-3 Conjecture,
as we prove that there is no k such that M∗ can always be obtained from
G by replacing each edge with at most k parallel edges.

We investigate several aspects of this problem. We prove that the
problem of designing proper labellings with minimum label sum is NP-
hard in general, but solvable in polynomial time for graphs with bounded
treewidth. We also conjecture that every nice connected graph G admits
a proper labelling with label sum at most 3

2
|E(G)| + O(1), which we

verify for several classes of graphs.

Keywords: Proper labelling · 1-2-3 Conjecture · Minimum label sum

1 Introduction

In this paper, we consider proper labellings of graphs, a notion related to
the 1-2-3 Conjecture, with the extra constraint that the sum of assigned labels
must be minimised. For any notation on graph theory not defined here, we refer
the reader to [7]. For a graph G, a function � : E(G) �→ {1, . . . , k} is called a
k-labelling of G. For any v ∈ V (G), let c�(v) : V (G) �→ N

∗ be the colour of
v that is induced by �, being the sum of labels assigned to the edges incident
to v. That is, c�(v) =

∑
u∈N(v) �(vu) where N(v) = {u ∈ V (G) : uv ∈ E(G)}

Due to space limitation, several proofs have been omitted. They can be found in [3].

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 56–68, 2020.
https://doi.org/10.1007/978-3-030-48966-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_5

On Proper Labellings of Graphs with Minimum Label Sum 57

is the neighbourhood of v. We say that � is a proper labelling if the resulting
colouring c� is a proper vertex-colouring of G, i.e., for every edge uv ∈ E(G) we
have c�(u) �= c�(v). Note that a graph admits a proper labelling if and only if it
has no K2 as a component [10]. Therefore, we here focus only on nice graphs,
i.e., graphs without any component isomorphic to K2. Given a nice graph G, let
χΣ(G) be the smallest k such that G admits a proper k-labelling.

Maybe the most famous conjecture concerning proper labellings of graphs is
the so-called 1-2-3 Conjecture, introduced by Karoński, �Luczak and Thoma-
son in 2004 [10]. This conjecture states that for every nice graph G, we have
χΣ(G) ≤ 3. It is worth noting that there exist nice graphs, such as nice complete
graphs [5], for which the upper bound is attained. Actually, given a graph G,
deciding if χΣ(G) ≤ 2 holds is an NP-complete problem [8]. The best currently
known result towards the 1-2-3 Conjecture is that for any nice graph G, we have
χΣ(G) ≤ 5 [9]. Another important result states that the conjecture is satisfied for
nice 3-colourable graphs [10]. Quite recently, a characterisation of nice bipartite
graphs G with χΣ(G) = 3 was provided in [13]. Moreover, χΣ(G) ≤ 4 holds for
every nice regular graph G [12] and χΣ(T) ≤ 2 holds for every nice tree T [5].

Our work takes place in a recent series of works dedicated to better under-
standing proper labellings by studying variations with additional requirements,
such as minimising the number of distinct colours [1] or minimising the maximum
colour [4] induced by a proper k-labelling. An additional motivation is the follow-
ing [6]. Given a graph G and a proper labelling � of G, by replacing every edge e
by �(e) parallel edges, we obtain a multigraph MG,� with the same adjacencies as
G that is locally irregular, i.e., in which no two adjacent vertices have the same
degree. In this setting, the 1-2-3 Conjecture states that, for every nice graph G,
we can construct a corresponding MG,� by replacing each edge by at most three
parallel edges, and thus construct such an MG,� with at most 3|E(G)| edges. One
could argue however, that there might be cases in which it could be possible to
obtain such a multigraph with fewer edges when being allowed to replace edges
by more than three parallel edges. We study this through the following additional
notions and definitions. Formally, for a labelling � of a nice graph G, let σ(�) be
the sum of labels assigned to the edges of G by �. That is, σ(�) =

∑
e∈E(G) �(e).

For any k ≥ 1, let mEk(G) be the minimum value of σ(�) over all proper k-
labellings � of G. That is, mEk(G) = min {σ(�) : � is a proper k−labelling of G}.
Let mE(G) = min{mEk(G) : k ≥ χΣ(G)}. Computing a proper labelling �∗ such
that σ(�∗) = mE(G) is thus equivalent to finding a locally irregular multigraph
MG,�∗ with minimum number of edges.

Our Contributions. Section 2 starts by giving observations on labellings that
are used to deduce the value of mE for nice complete bipartite graphs, complete
graphs and cycles. We then exhibit an infinite family of graphs G showing that,
for any fixed k ≥ 2, the value mEk(G) can be arbitrarily larger than mEk+1(G),
thereby establishing a fundamental property of our problem.

In Sect. 3, we study the complexity of computing the parameter mEk(G) for
some input integer k and nice graph G. We establish both positive and negative
results. On the negative side we prove that determining mE2(G) is NP-complete,

58 J. Bensmail et al.

even when G is restricted to a planar bipartite graph. An important point is that
this is contrasting with the complexity of determining whether χΣ(G) ≤ 2 holds
for a given bipartite graph G, which can be done in polynomial time [13]. On
the positive side, we prove that determining mEk(G) can be done in polynomial
time whenever k is fixed and G is a graph with bounded treewidth.

Finally, Sect. 4 is dedicated to bounds on mE. Our guiding thread is a
conjecture we raise, stating that, for any nice connected graph G, mE(G) ≤
3
2 |E(G)|+O(1). Towards this conjecture, we focus on the bipartite case. As sup-
port, we both provide infinite families of bipartite graphs G with “large” value
of mE2(G), and prove the conjecture for several classes of bipartite graphs.

2 First Insights into the Problem

In this section, we give first insights into the problem of determining the param-
eters mE(G) and mEk(G) for a given graph G. We start off, in Sect. 2.1, by
raising observations on labellings and by considering easy classes of graphs. For
each G belonging to the classes we consider, we actually have mEk(G) = mE(G)
for k = χΣ(G). Put differently, a larger label than χΣ(G) is not needed to
achieve the smallest label sum. However, this behaviour is not systematic, as
we exhibit, in Sect. 2.2, examples of trees T for which the smallest k such that
mEk(T) = mE(T) is arbitrarily large.

2.1 Warm-Up Results

First off, note that in general, labellings have systematic properties that can be
useful to establish bounds on mE and mEk.

Observation 1. Let � be a k-labelling of a graph G. The following items hold:

– |E(G)| ≤ σ(�) ≤ k|E(G)|.
–

∑
e∈E(G) 2�(e) = 2σ(�) =

∑
v∈V (G) c�(v).

–
∑

v∈V (G) c�(v) must therefore be an even number.

In particular, these observations allow to determine the value of mE for simple
graph topologies, namely for complete bipartite graphs, complete graphs, and
cycles. Due to lack of space, we only sketch the proof of the result about cycles.

Theorem 2. Let G = Kn,m be a complete bipartite graph with order n+m > 2.

– If n �= m, then mE(G) = mE1(G) = |E(G)|;
– otherwise, i.e., n = m, we have mE(G) = mE2(G) = |E(G)| +

√|E(G)|.
Theorem 3. Let Kn be a complete graph with order n ≥ 3. Then:

– if n = 3, then mE(K3) = mE3(K3) = 6 = 2|E(K3)|;
– if n ≡ 0 or 1 (mod 4), then mE(Kn) = mE3(Kn) = 3

2 |E(Kn)|;
– if n ≡ 2 or 3 (mod 4), then mE(Kn) = mE3(Kn) =

⌈
3
2 |E(Kn)|⌉.

On Proper Labellings of Graphs with Minimum Label Sum 59

Theorem 4. Let Cn be a cycle with length n ≥ 3. Then:

– if n ≡ 0 (mod 4), then mE(Cn) = mE2(Cn) = 3
2 |E(Cn)|;

– if n ≡ 1 or 3 (mod 4), then mE(Cn) = mE3(Cn) =
⌈

3
2 |E(Cn)|⌉ + 1;

– if n ≡ 2 (mod 4), then mE(Cn) = mE3(Cn) = 3
2 |E(Cn)| + 3.

Sketch of Proof. The proof of the lower bounds follow mainly from the fact that,
for any l ≤ k, any proper k-labelling � of Cn assigns label l to at most 	 1

2 |E(Cn)|

edges if n is odd and to at most 1

2 |E(Cn)|−1 edges if n ≡ 2 (mod 4). This claim
is proved by considering the conflict graph that consists of one vertex per edge
of Cn, with two vertices being adjacent when the corresponding edges of Cn

cannot have the same label. We show that this conflict graph is either one cycle
or two disjoint cycles (depending on the parity of n) and so the size of any of
its independent sets (corresponding to a set of edges of Cn that can receive the
same label) is bounded above as required.

The upper bounds on mE are proven by giving a proper labelling matching
the lower bound. For instance, if n ≡ 0 (mod 4), it is sufficient to alternate two
consecutive edges labelled with 1, then two consecutive edges labelled with 2,
and so on. When n ≡ 1 or 3 (mod 4), one single edge labelled with 3 is necessary
and sufficient while two such edges are required and sufficient in the last case. ♦

2.2 Using Larger Labels can be Arbitrarily Better

In this section, we show that there is no absolute constant k ∈ N such that
mE(G) = mEk(G) for all nice graphs. More precisely, for any integer k, we
exhibit a tree Tk such that mE(Tk) = mEk(Tk) < mEk−1(Tk).

Let us first introduce the auxiliary graph A(α, β) (for α ≥ 2 and β ≥ 0),
which will serve as the building block for Tk. This auxiliary graph is a tree built
recursively as follows. For any α∗ ∈ N, define A(α∗, 0) as a leaf. For any β > 0,
define A(α, β) as a tree of height β, rooted in a vertex r with α children. For
each 1 ≤ i ≤ α, let ci be the corresponding child of r; each ci is the root of an
A(α + i, β − 1) tree and thus d(ci) = α + i + 1 (since each ci has α + i children
of its own and an edge connecting it with his parent). Note that d(ci) ∈ D(α) =
[α + 2, 2α + 1] and that for i �= j, we have d(ci) �= d(cj) (and thus all values of
D(a) are used exactly once). Finally, we say that A(α, β) is represented by r.

Let us also define the pending auxiliary graph that corresponds to A(α, β) as
P (α, β) = (V,E), where V = V (A(α, β)) ∪ {v} and E = E(A(α, β)) ∪ {vr}; in
essence P (α, β) is A(α, β) with an extra vertex v connected to r. The vertex r
is called the representative of P (α, β). The graph P (α, β) is said to be pending
from v. Observe that P (α, β) is locally irregular and thus the labelling � that
assigns label 1 on every one of its edges is proper and mE(P (α, β)) = |E|.
Theorem 5. For any k ≥ 2, there is a graph Tk with mEk+1(Tk) < mEk(Tk).

Sketch of Proof. Let k ≥ 2 and let us describe the construction of Tk. For
0 ≤ j ≤ k−1, let P (k+j, 2(k+1)) be the graph pending from vj that corresponds

60 J. Bensmail et al.

to an auxiliary graph A(k + j, 2(k + 1)) (represented by a vertex rj) and let u, v
be two adjacent vertices. The tree Tk is the graph that is produced by merging
v with each one of the vj . Observe that since rj represents A(k + j, 2(k + 1)),
each rj has d(rj) = k + j +1 in Tk and that the height of Tk is 2(k +1)+1. Also
observe that in Tk, since N(v) = {r0, . . . , rk−1, u}, we have d(v) = k+1 = d(r0).

Let � be the (k + 1)-labelling of Tk that assigns label k + 1 to the edge
uv and label 1 to the remaining edges of Tk. It easy to see that � is a proper
(k + 1)-labelling for Tk with σ(�) = |E(Tk)| + k.

Let �′ be any proper k-labelling of Tk. It suffices to show that σ(�′) >
|E(Tk)| + k. For any w ∈ N(r0) \ {v} and y ∈ N(v) \ {u, r0}, since d(v) =
d(r0) = k+1, at least one of the edges uv, r0w or vy has to have a label different
from 1 for �′ to be proper. Let us assume that �(uv) �= 1 (the other cases being
similar). Let �′(uv) = l with 2 ≤ l ≤ k and assume that only this edge of Tk has
a label different from 1. Then c�′(v) = k + l and k + l ∈ [k + 2, 2k]. Recall that
for each 0 ≤ j ≤ k − 1, rj has d(rj) = k + j + 1 and thus d(rj) ∈ [k + 1, 2k].
Since uv is the only edge with a label different from 1, c�′(rj) = d(rj). It follows
that there exists a j ∈ [0, k − 1], such that c�′(rj) = c�′(v) leading to �′ not
being proper. Thus, there must exist another edge u′v′ (with, say, u′ being the
parent of v′) that is assigned a label different from 1 by �′. Note that this edge
u′v′ belongs to P (q, 2(k + 1)) (for some q ∈ [k, 2k − 1]) and either v′ = v or v′

is the child of the representative v of P (q, 2(k + 1)). It can be shown that, for
� to be proper, at least one child of u′ has one of its incident edges e assigned
a label distinct from 1. This edge e belongs to some subtree P (q, 2k) and e is
incident to either the representative of this copy of P (q, 2k) or to a child of this
representative. Applying this argument recursively, it can be proved that, for �
to be proper, this copy of P (q, 2k) must contain at least k edges with a label
greater than 1. Overall, mE(Tk) ≥ |E(Tk)| + k + 1.

Observe that the height of Tk can be freely controlled by changing the β
value of the pending auxiliary graphs that form it. Furthermore, it follows from
some of the arguments we have employed that mE(T (α, 2β)) < mE(T (α, 2β′))
for β < β′. Put simply, since the difference between mEk+1(Tk) and mEk(Tk)
depends on the height of Tk and this can be an arbitrary number, the following
holds:

Corollary 1. For any k ≥ 2, there exists a graph Tk such that mEk+1(Tk) is
arbitrarily smaller than mEk(Tk).

3 Complexity Aspects

This section is devoted to the complexity aspects of the problem of computing
mEk. On the negative side, we prove that the problem is NP-complete in planar
bipartite graphs. On the positive side, we prove that the problem can be solved
in polynomial time for graphs with bounded treewidth, and that it is even FPT
when parameterised by the treewidth plus the maximum degree.

On Proper Labellings of Graphs with Minimum Label Sum 61

3.1 NP-hardness for Planar Bipartite Graphs

Let us first introduce the k-gadget, for k ≥ 11, which will be useful for proving
the main Theorem of this section. To build this gadget, start with k − 1 stars,
each having a center denoted by si, i ∈ [1, k − 1], such that d(si) = k + 1.
For each star, pick an arbitrary edge siyi and identify all the yi into a single
vertex y, which is called the representative of the gadget. Finally add another
vertex u, called the root of the gadget, which is connected to y. It is clear that
d(u) = 1 and d(y) = k. Also, each k-gadget is a tree with O(k2) edges. Let v be
a vertex of a graph G, and H be a k-gadget. The operation of adding H to G
and identifying the root u of H with v is called attaching H to v.

Theorem 6. Let G be a nice planar bipartite graph, k ≥ 2 and q ∈ N. The
problem of deciding if mEk(G) ≤ q is NP-complete.

Proof. The problem is clearly in NP. We focus on showing it is also NP-hard.
The proof is done by reduction from Planar Monotone 1-in-3 SAT, which
was shown to be NP-complete in [11]. In this problem, a 3CNF formula F is
given as input, which has clauses with exactly three distinct variables all of which
appear only positively. We say that a bipartite graph G′ = (V,C,E) corresponds
to F if it is constructed in the following way: for each variable xi of F we add
a variable vertex vi in V and for each clause Cj of F we add a clause vertex
cj in C. Then the edge vicj is added if variable xi appears in clause Cj . In the
Planar Monotone 1-in-3 SAT problem, we also have that for any instance F
the corresponding graph is planar. The question is whether there exists a 1-in-3
truth assignment of F ; that is a truth assignment to the variables of F such that
each clause has exactly one variable with the value true.

Let us prove the statement for k = 2. Let F be the 3CNF formula with c
clauses that is given as input to the Planar Monotone 1-in-3 SAT prob-
lem. Our goal is to construct a planar bipartite graph G such that F is 1-in-3
satisfiable if and only if mE2(G) ≤ |E(G)| + c.

Start with G′ = (V,C,E) being the planar bipartite graph that corresponds
to F , with V being the set of the variable vertices vi, C being the set of the
clause vertices cj and |C| = c. In F , each clause has exactly three variables but
there is no bound on how many times a variable appears in F . Thus for each
vi ∈ V, d(vi) ≥ 1 and for each cj ∈ C, d(cj) = 3. It follows that |V | ≤ 3c.

Modify G′ by adding the k-gadgets described earlier in the following way.
For each variable vertex vi of G, let di be the degree of vi in G′. Let dv,i =
(di − 1)(c + 1) + di and dc = 3(c + 1) + 3. For each variable vertex vi, for all
1 ≤ j < di, attach c + 1 copies of the (dv,i + j)-gadget. Thus the degree of each
vi in G becomes equal to dv,i. On each clause vertex cj , attach c + 1 copies
of the dc-gadget, c + 1 copies of the (dc + 2)-gadget and c + 1 copies of the
(dc + 3)-gadget. Thus the degree of each cj in G becomes equal to dc. Clearly,
the construction of G is achieved in polynomial time. Observe also that since G′

is planar and the attached gadgets are actually trees, G is also planar.

62 J. Bensmail et al.

Claim. Let G(V,C,E) be a bipartite graph and � be any proper 2-labelling of G
such that σ(�) ≤ |E(G)| + c, for c = |C|. Let H be any p-gadget attached to G,
where p − 1 > c. Let y be the representative of H. If at least one edge e of H
incident to y is labelled 2, then at least two edges of H are labelled 2.

Let � be a proper 2-labelling of G such that σ(�) ≤ |E(G)| + c, i.e., there
are at most c edges of G labelled 2 by �. Observe that G contains p-gadgets for
p ∈ {dv,i + 1, dv,i + 2, . . . dv,i + di − 1, dc, dc + 2, dc + 3 and dv,i − 1, dc − 1 > c.
Thus the above claim holds for each gadget attached to G.

Claim. For any proper 2-labelling � of G with σ(�) ≤ |E(G)| + c, we have that:

– for each variable vertex vi ∈ V, c�(vi) /∈ {dv,i + 1, dv,i + 2, . . . , dv,i + di − 1}
– for each clause vertex cj ∈ C, c�(cj) /∈ {dc, dc + 2, dc + 3}
Claim. Let � be any proper 2-labelling of G with σ(�) ≤ |E(G)| + c. Then all
edges of the attached gadgets must be labelled 1.

Using the above Claims, it follows that the only possible colours induced by
� on the vertices of G′ are in {dv,i, dv,i + 1, dv,i + 2, . . . , dv,i + di − 1, dv,i + di}
for each variable vertex vi ∈ V , and in {dc, dc + 1, dc + 2, dc + 3} for every
clause vertex cj ∈ C. Furthermore, for every variable vertex vi, we have c�(vi) ∈
{dv,i, dv,i + di}, and observe that c�(vi) = dv,i if all edges of G′ incident to vi

are labelled 1, while c�vi = dv,i + di if all edges of G′ incident to vi are labelled
2. For every clause vertex cj , we have c�(cj) = {dc + 1}, which corresponds to
two edges of G′ incident to cj labelled 1 and only one edge labelled 2.

We are now ready to show the equivalence between finding a 1-in-3 truth
assignment φ of F and finding a proper 2-labelling � of G such that σ(�) =
mE2(G) ≤ |E(G)| + c. An edge vicj of G′ labelled 2 (1, respectively) by �
corresponds to variable xi bringing truth value true (false, respectively) to clause
Cj by φ. Also, we know that in G′, each variable vertex vi is adjacent to n ≥ 1
edges, all having the same label (either 1 or 2). Accordingly, the corresponding
variable xi brings, by φ, the same truth value to the n clauses of F that contain
it. Finally, in G′, each clause vertex cj is adjacent to two edges labelled 1 and
one labelled 2. This corresponds to the clause Cj being regarded as satisfied by
φ only when it has exactly one true variable. �

3.2 Polynomiality for Bounded-Treewidth Graphs

The following theorem is proved by a classical (while non trivial) dynamic pro-
gramming algorithm on tree-decompositions. Due to lack of space, we only state
our main theorem. The full description of the algorithm and of its proof can be
found in [3].

Theorem 7. Let k ≥ 2 and tw ≥ 1 be two fixed integers. Given a nice graph G
with |V (G)| = n and an integer s, the problem of deciding whether mEk(G) ≤ s
can be solved in polynomial time if G has treewidth at most tw (and in linear
time if G is additionally of bounded maximum degree).

On Proper Labellings of Graphs with Minimum Label Sum 63

Importantly, the above theorem provides a constructive polynomial-time
algorithm to compute mEk in the class of trees and in the class of odd multi-
cacti (an important class in the context of the 1-2-3 Conjecture, that we detail
below). Note however that k must be fixed and since, by Theorem5, the smallest
integer k such that mE(T) = mEk(T) for every tree T is not bounded, we leave
open the question of the complexity of computing mE in the class of trees.

4 General Bounds

Recall that mE(G) ≤ χΣ(G)|E(G)| and χΣ(G) ≤ 5 (see [9]) hold for every
nice graph G. Thus mE(G) ≤ 5|E(G)| holds for every nice graph G, and even
mE(G) ≤ 4|E(G)| holds when G is regular [12]. Moreover, for every graph sat-
isfying the 1-2-3 Conjecture, even mE(G) ≤ 3|E(G)| holds. Throughout this
section, we study how tight this bound is, in particular in the bipartite case.

4.1 Upper Bounds

Recall that bipartite graphs satisfy the 1-2-3 Conjecture [10]. For i ∈ {1, 2, 3},
let Bi be the set of bipartite graphs G with χΣ(G) = i. In particular, B1 is the
set of locally irregular bipartite graphs and the set B3 is that of the so-called
odd multi-cacti, which are defined as follows [13]. The set B3 is exactly the set
of graphs that can be obtained at any moment of the following procedure:

– Start from a cycle with length at least 6 congruent to 2 modulo 4 whose edges
are properly coloured with red and green.

– Repeatedly consider a green edge uv, and join u and v by a path of length at
least 5 congruent to 1 modulo 4 whose edges are properly coloured with red
and green, where the edge incident to u and that incident to v are red.

Theorem 8. Every nice bipartite graph G satisfies mE(G) ≤ mE3(G) ≤
2|E(G)|. Moreover, if G ∈ B2, then mE(G) < 2|E(G)|.
Proof. The statement trivially holds for every G ∈ B1 since G is locally irregular
and so mE(G) = |E(G)|. For every G ∈ B2 (so G is not locally irregular), if we
had mE2(G) = 2|E(G)|, then the only proper 2-labelling of G would be the one
assigning label 2 to all edges, which can only be proper if G is locally irregular,
a contradiction. Therefore, in any proper 2-labelling of G, there must be at least
one edge assigned label 1, implying that mE(G) < 2|E(G)|.

Let us now assume G ∈ B3, i.e., G is an odd multi-cactus with bipartition
(U, V) (both |U | and |V | are odd by construction). If G is a cycle with length at
least 6 congruent to 2 modulo 4, then the result follows from Theorem4. Thus,
we may assume that the maximum degree Δ(G) of G is at least 3, i.e., some
path attachments were made to build G starting from an original cycle.

Let us consider the last green edge xy to which a path P = (x, v1, . . . , v4k, y)
was attached in the construction of G, where k ≥ 1. Recall that d(x) = d(y) ≥ 3
by construction. Consider G′ = G−{v1, v2, v3}. Assuming v1, v3 ∈ U and v2 ∈ V ,

64 J. Bensmail et al.

the bipartition of G′ is (U ′, V ′) = (U \{v1, v3}, V \{v2}). This means that |V ′| is
even. It is known that any bipartite graph with one part X of even size belongs
to B2 and furthermore admits proper 2-labellings where all vertices of X have
odd colour while all vertices of the other part Y have even colour [5]. Therefore,
there is a proper 2-labelling �′ of G′ such that all vertices of U ′ have even colour
while all vertices of V ′ have odd colour. Since x ∈ V ′, the colour c�′(x) is odd,
and thus at least 3 since dG′(x) ≥ 2. Similarly, v4 ∈ V ′, so the colour c�′(v4) is
odd, and it is precisely 1 since dG′(v4) = 1.

We now extend �′ to a proper 3-labelling � of G, by assigning label 1 to
v1v2, label 2 to xv1 and v3v4, and label 3 to v2v3. This way, note that c�(x) and
c�(v4) remain odd. Also, c�(v1) = 3 < 5 ≤ c�(x), c�(v3) = 5 > 3 = c�(v4) and
c�(v2) = 4 �∈ {c�(v1), c�(v3)} = {3, 5}. For these reasons, it should be clear that �
is indeed a proper 3-labelling of G. We additionally note that label 3 is actually
assigned only once by �, to v2v3. Furthermore, � assigns label 1 at least once,
e.g. to v1v2. From this, it follows that σ(�) ≤ 2|E(G)|. �

Note that the upper bound in Theorem8 is tight due to C6 for which
mE(C6) = 12 = 2|E(C6)| (recall Theorem 4). However this seems to be a patho-
logical case due to the small size of C6. For larger graphs, the next result shows
that the upper bound can actually be improved.

Theorem 9. Let G be a connected bipartite graph with bipartition (U, V) where
|U | is even. Then, we have mE2(G) ≤ |E(G)| + |V (G)| − 1.

Proof. Let Ue (Uo, respectively) be the set of vertices of U of even (odd, respec-
tively) degree in G, and Ve (Vo, respectively) be the set of vertices of V of even
(odd, respectively) degree in G. Note that either |Ue| and |Vo| must have the
same parity, or |Uo| and |Ve| must have the same parity. This is because, other-
wise, since |U | is even and |U | = |Ue| + |Uo|, the sizes |Ue| and |Uo| must have
the same parity, we would get that also |Ve| and |Vo| have the same parity. Then
we would deduce that

∑
u∈U d(u) �≡ ∑

v∈V d(v) (mod 2), which is not possible.
Without loss of generality, we may assume that Ue and Vo have the same

parity, thus that |Ue| + |Vo| is even. Our aim now, is to design a 2-labelling of
G that assigns label 2 on as few edges as possible, such that all vertices in U
get an odd colour while all vertices in V get an even colour. Such a labelling
will obviously be proper. To that aim, we proceed as follows. Let us start with
assigning label 1 to all edges of G. This way, at this point the colour of every
vertex is exactly its degree; so all vertices in Uo and Ve verify the desired colour
property, while all vertices in Ue and Vo do not. To fix these vertices, we con-
sider any spanning tree T of G. We now repeatedly apply the following fixing
procedure: we consider any two vertices x and y of Ue ∪ Vo that remain to be
fixed, and flip (i.e., turn the 1’s into 2’s, and vice versa) the labels of all edges
on the unique path in T from x to y. This way, only the colours of x and y are
altered modulo 2. Since |Ue|+ |Vo| is even, there is an even number of vertices to
fix, and, by flipping labels along paths of T , we can fix the colour of all vertices
in Ue ∪Vo. This results in a 2-labelling � of G, with the desired properties, which

On Proper Labellings of Graphs with Minimum Label Sum 65

is thus proper. Note now that � assigns label 2 only to a subset of the edges of
T . Since T has |V (G)| − 1 edges, the result follows. �

The arguments in the proof of Theorem 9 actually generalise to graphs with
larger chromatic number. See [3] for the proof details.

Theorem 10. Let G be a connected graph with chromatic number k = χ(G) at
least 3. Then, we have mE(G) ≤ mE2� k

2 �+1(G) ≤ |E(G)| + 2
⌊

k
2

⌋ |V (G)|.

4.2 General Conjecture and Refined Bounds for Bipartite Graphs

We are not aware of graphs for which all proper 3-labellings require more than
a few edges labelled with 3. In general, it might actually be true that, for all
nice graphs, there is a proper 3-labelling with a few 3’s where the number of
1’s is about the number of 2’s. Also, we observed, during experimentation via
computer programs, that only small graphs G seem to have their value of mE(G)
close to 2|E(G)| (recall that K3 and C6 are such examples, by Theorems 3 and 4).
This leads us to conjecture the following:

Conjecture 1. There is an absolute constant c ≥ 1 such that, for every nice
connected graph G, we have mE(G) ≤ 3

2 |E(G)| + c.

In the rest of this section, we investigate Conjecture 1 by giving a special
focus to bipartite graphs. We exhibit several upper bounds for mE(G) in various
subclasses of bipartite graphs. Each of these upper bounds support Conjecture 1.
We also exhibit examples of graphs achieving these upper bounds.

Lower Bounds. We first show that it is not possible to lower mE(G) below the
3
2 |E(G)| barrier for general graphs G. This is already illustrated by Theorem4,
which states that mE(Cn) = 3

2 |E(G)| + 3 for every n ≡ 2 (mod 4). Note that
these cycles Cn are such that χΣ(Cn) = 3. The lower bound even holds for
bipartite graphs G with χΣ(G) = 2. Indeed, there exist bipartite graphs for
which label 2 must be assigned to at least half of the edges by any proper 2-
labelling. This is a consequence of the following more general result.

Theorem 11. There exist infinitely many bipartite graphs G ∈ B2 with various
structure verifying mE2(G) = 3

2 |E(G)|. This remains true for trees.

Sketch of Proof. Let G be any graph, and let H be a graph obtained from G by
subdividing every edge e exactly ne times, where ne = 4ke + 3 for some ke ≥ 0.
Then χΣ(H) = 2. Furthermore, mE2(H) = 3

2 |E(H)|.
Through our experimentation, we also managed to come up with the following

class of bipartite graphs G for which mE2(G) slightly exceeds 3
2 |E(G)|.

Theorem 12. Let x, y ≥ 4 be any two integers congruent to 0 modulo 4, and let
H be the graph obtained by adding an edge joining any vertex of a cycle of length
x and any vertex of a cycle of length y. Then, we have mE2(H) =

⌈
3
2 |E(H)|⌉.

66 J. Bensmail et al.

Improved Upper Bounds. It is worth pointing out that a proper 2-labelling
� of a graph G where σ(�) is about 3

2 |E(G)| is actually a 2-labelling where the
number of assigned 1’s is about the same as the number of assigned 2’s. Thus,
Conjecture 1 relates to equitable proper labellings of graphs, introduced in [2],
which are proper labellings where, for every two assigned labels i, j, the number
of edges assigned label i differs by at most 1 from the number of edges assigned
label j. Regarding Conjecture 1, observe that mE2(G) ≤ 3

2 |E(G)| + 1 holds for
every graph G admitting an equitable proper 2-labelling.

The authors in [2] proved that nice forests admit equitable proper 2-
labellings. This directly implies Theorem13 below for trees with even size, while
it does not for trees with odd size (as a 2-labelling where the number of assigned
2’s is one more than the number of assigned 1’s does not fulfill our claim), for
which we need a dedicated proof. Recall that this result is optimal due to The-
orem 11.

Theorem 13. For every nice tree T , we have mE2(T) ≤ 3
2 |E(T)|.

Sketch of Proof. The proof is by induction on the number k of branching
vertices (i.e., vertices with degree at least 3) of T . Observe that, for a path
P = (v1, . . . , vn) where v2, . . . , vn−1 have degree 2, two inner vertices cannot be
involved in a colour conflict by a 2-labelling assigning consecutive labels 1, 2, 2,
1, 1, . . . (a path labelled in this fashion is called a 1-extension) or 2, 1, 1, 2, 2, . . .
(called a 2-extension) to the edges of P . Note also that 1-extensions and 2-
extensions comply with equitability, as the numbers of 1’s and 2’s assigned to
the edges of P differ by at most 1.

When k = 0, i.e., T is a path, the claim is proved by performing a 1-extension
or a 2-extension from a degree-1 vertex to the other so that more 1’s than 2’s
are assigned. For larger values of k, the claim is proved by rooting T at some
degree-1 vertex r, considering a branching vertex v at largest distance from r,
and removing all pendant paths attached to v, resulting in a tree T ′. This tree
T ′ can be assumed to be nice (as otherwise there would be a better choice for r),
and it thus admits, by induction, a proper 2-labelling assigning more 1’s than
2’s. It can then be proved that this labelling can be extended, by performing
1-extensions and 2-extensions, to the paths attached to v, resulting in a proper
2-labelling of T where more 1’s than 2’s are assigned.

Towards Conjecture 1, refined bounds can be deduced in particular contexts.
For instance, any graph G satisfies |E(G)| + |V (G)| − 1 ≤ 3

2 |E(G)| as soon as
|E(G)| ≥ 2|V (G)| − 2. As a consequence, Theorem 9 implies that a bipartite
graph G ∈ B2 with a part of even size verifies mE2(G) ≤ 3

2 |E(G)| as soon as G
has minimum degree at least 4, or more generally when G is dense enough. The
same holds for Hamiltonian bipartite graphs with a part of even size.

Lemma 1. Let G be a Hamiltonian bipartite graph with bipartition (U, V) where
|U | is even. Then mE(G) ≤ mE2(G) ≤ 3

2 |E(G)|.
Proof. Just mimic the proof of Theorem 9, but repair pairs of defective vertices of
G along a Hamiltonian cycle C = (v0, . . . , vn−1, v0), matching each of them, say,

On Proper Labellings of Graphs with Minimum Label Sum 67

with the next defective vertex in the ordering of C. If this fixing process turns
more than half of the labels to 2, then, instead, repair pairs of vertices around C
matching each of them with the previous defective vertex in the ordering (which
is equivalent to flipping the labels along C). �

The same result holds when G is bipartite and cubic (in which case χΣ(G) = 2
since G ∈ B2, by definition of odd multi-cacti), by a more general argument:

Lemma 2. Let G be a regular graph with χΣ(G) = 2. Then mE2(G) ≤ 3
2 |E(G)|.

Proof. Let � be a proper 2-labelling of G. Since G is regular, the edges labelled 1
by �, and similarly the edges labelled 2, must induce a locally irregular subgraph
of G. Then the 2-labelling �′ of G obtained by turning all 1’s into 2’s, and vice
versa, is also proper. Now there is one of � and �′ that assigns label 2 to at most
half of the edges, and the conclusion follows. �

5 Conclusion

We have here studied the algorithmic complexity and bounds for the parameter
mE. The main question we leave open is Conjecture 1 asking whether mE(G) ≤
3
2 |E(G)|+O(1) holds for every nice connected graph G. We think that the proof
of Theorem 9 could be improved to prove the conjecture for bipartite graphs.

Regarding our algorithmic results in Sect. 3, note that they all deal, for a
given graph G, with the parameter mEk(G) (for some k), and not with the more
general parameter mE(G). This is mainly because, as indicated by Theorem 5, in
general there is no absolute constant that bounds, for all graphs G, the smallest
k such that mE(G) = mEk(G). In particular, even for a graph G of bounded
treewidth, although we can determine mEk(G) in polynomial time for any fixed k
(due to our algorithm in Theorem7), running enough iterations of our algorithm
to determine mE(G) is not feasible in polynomial time. Thus, the question of
determining the complexity of mE(G) is left open, even when G is a tree.

References

1. Baudon, O., Bensmail, J., Hocquard, H., Senhaji, M., Sopena, E.: Edge weights
and vertex colours: minimizing sum count. Discrete Appl. Math. 270, 13–24 (2019)

2. Baudon, O., Piĺsniak, M., Przyby�lo, J., Senhaji, M., Sopena, E., Woźniak, M.:
Equitable neighbour-sum-distinguishing edge and total colourings. Discrete Appl.
Math. 222, 40–53 (2017)

3. Bensmail, J., Fioravantes, F., Nisse, N.: On proper labellings of graphs with
minimum label sum. Research report (2020). https://hal.archives-ouvertes.fr/hal-
02450521

4. Bensmail, J., Li, B., Li, B., Nisse, N.: On minimizing the maximum color for
the 1-2-3 conjecture. Research report (2019). https://hal.archives-ouvertes.fr/hal-
02330418

5. Chang, G., Lu, C., Wu, J., Yu, Q.: Vertex-coloring edge-weightings of graphs.
Taiwanese J. Math. 15, 1807–1813 (2011)

https://hal.archives-ouvertes.fr/hal-02450521
https://hal.archives-ouvertes.fr/hal-02450521
https://hal.archives-ouvertes.fr/hal-02330418
https://hal.archives-ouvertes.fr/hal-02330418

68 J. Bensmail et al.

6. Chartrand, G., Erdős, P., Oellermann, O.: How to define an irregular graph. Coll.
Math. J. 19, 36–42 (1998)

7. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

8. Dudek, A., Wajc, D.: On the complexity of vertex-coloring edge-weightings. Dis-
crete Math. Theoret. Comput. Sci. 13, 45–50 (2011)

9. Kalkowski, M., Karoński, M., Pfender, F.: Vertex-coloring edge-weightings: towards
the 1-2-3-conjecture. J. Comb. Theory Ser. B 100(3), 347–349 (2010)

10. Karoński, M., �Luczak, T., Thomason, A.: Edge weights and vertex colours. J.
Comb. Theory Ser. B 91(1), 151–157 (2004)

11. Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. J. ACM 55(2),
11:1–11:29 (2008)

12. Przyby�lo, J.: The 1-2-3 conjecture almost holds for regular graphs (2018)
13. Thomassen, C., Wu, Y., Zhang, C.Q.: The 3-flow conjecture, factors modulo k,

and the 1-2-3-conjecture. J. Comb. Theory Ser. B 121, 308–325 (2016)

Decremental Optimization of Dominating
Sets Under the Reconfiguration

Framework

Alexandre Blanché1, Haruka Mizuta2, Paul Ouvrard1(B), and Akira Suzuki2

1 Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, 33400 Talence, France
{alexandre.blanche,paul.ouvrard}@u-bordeaux.fr

2 Graduate School of Information Sciences, Tohoku University, Aoba 6-6-05,
Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan

haruka.mizuta.s4@dc.tohoku.ac.jp, a.suzuki@ecei.tohoku.ac.jp

Abstract. Given a dominating set, how much smaller a dominating set
can we find through elementary operations? Here, we proceed by iter-
ative vertex addition and removal while maintaining the property that
the set forms a dominating set of bounded size. This can be seen as
the optimization variant of the dominating set reconfiguration problem,
where two dominating sets are given and the question is merely whether
they can be reached from one another through elementary operations.
We show that this problem is PSPACE-complete, even if the input graph
is a bipartite graph, a split graph, or has bounded pathwidth. On the
positive side, we give linear-time algorithms for cographs, trees and inter-
val graphs. We also study the parameterized complexity of this problem.
More precisely, we show that the problem is W[2]-hard when parameter-
ized by the upper bound on the size of an intermediary dominating set.
On the other hand, we give fixed-parameter algorithms with respect to
the minimum size of a vertex cover, or d + s where d is the degeneracy
and s is the upper bound of the output solution.

Keywords: Combinatorial reconfiguration · Dominating set ·
Parameterized complexity

1 Introduction

Recently, Combinatorial reconfiguration [11] has been extensively studied in the
field of theoretical computer science (See, e.g., surveys [10,18]). A reconfigura-
tion problem is generally defined as follows: we are given two feasible solutions of

Partially supported by JSPS and MAEDI under the Japan-France Integrated Action
Program (SAKURA). The first and third author is partially supported by ANR project
GrR (ANR-18-CE40-0032). The second author is partially supported by JSPS KAK-
ENHI Grant Number JP19J10042, Japan. The third author is partially supported by
ANR project GraphEn (ANR-15-CE40-0009). The fourth author is partially supported
by JST CREST Grant Number JPMJCR1402, and JSPS KAKENHI Grant Numbers
JP17K12636 and JP18H04091, Japan.
Full version available at https://arxiv.org/abs/1906.05163.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 69–82, 2020.
https://doi.org/10.1007/978-3-030-48966-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_6&domain=pdf
https://arxiv.org/abs/1906.05163
https://doi.org/10.1007/978-3-030-48966-3_6

70 A. Blanché et al.

↔

D0 = D

↔

D1

↔

D2 D3 = Dt

Fig. 1. Reconfiguration sequence between D0 and D3 via dominating sets D1, D2 with
upper bound k = 4, where vertices contained in a dominating set are depicted by black
circles, and added or removed vertices are surrounded by dotted circles.

a combinatorial search problem, and asked to determine whether we can trans-
form one into the other via feasible solutions so that all intermediate solutions
are obtained from the previous one by applying the specified reconfiguration rule.
This framework is applied to several well-studied combinatorial search problems;
for example, Independent Set [3,9,13,14], Vertex Cover [16,17], Dominat-

ing Set [8,15,17,19], and so on.
The Dominating Set Reconfiguration problem is one of the well-studied

reconfiguration problems. For a graph G = (V,E), a vertex subset D ⊆ V is
called a dominating set of G if D contains at least one vertex in the closed
neighborhood of each vertex in V . Figure 1 illustrates four dominating sets of
the same graph. Suppose that we are given two dominating sets D0 and Dt

of a graph whose cardinalities are at most a given upper bound k. Then the
Dominating Set Reconfiguration problem asks to determine whether we
can transform D0 into Dt via dominating sets of cardinalities at most k such
that all intermediate ones are obtained from the previous one by adding or
removing exactly one vertex. Note that this reconfiguration rule, i.e. adding or
removing exactly one vertex while keeping the cardinality constraint, is called
the token addition and removal (TAR) rule. Figure 1 illustrates an example of
transformation between two dominating sets D0 and D3 for an upper bound
k = 4.

Combinatorial reconfiguration models “dynamic” transformations of sys-
tems, where we wish to transform the current configuration of a system into
a more desirable one by a step-by-step transformation. In the current framework
of combinatorial reconfiguration, we need to have in advance a target (a more
desirable) configuration. However, it is sometimes hard to decide a target con-
figuration, because there may exist exponentially many desirable configurations.
Based on this situation, Ito et al. introduced the new framework of reconfigu-
ration problems, called optimization variant [12]. In this variant, we are given a
single solution as a current configuration, and asked for a more “desirable” solu-
tion reachable from the given one. This variant was introduced very recently,
hence it has only been applied to Independent Set Reconfiguration to the
best of our knowledge. Therefore and since Dominating Set Reconfigura-

tion is one of the well-studied reconfiguration problems as we already said, we
focus on this problem and study it under this framework.

OPT-DSR 71

1.1 Our Problem

In this paper, we study the optimization variant of Dominating Set Recon-

figuration, denoted by OPT-DSR. To avoid confusion, we call the original
Dominating Set Reconfiguration the reachability variant, and we denote
it by REACH-DSR. Suppose that we are given a graph G, two integers k, s,
and a dominating set D of G whose cardinality is at most k; we call k an upper
bound and s a solution size. Then OPT-DSR asks for a dominating set Dt sat-
isfying the following two conditions: (a) the cardinality of Dt is at most s, and
(b) Dt can be transformed from D under the TAR rule with upper bound k. For
example, if we are given a dominating set D0 in Fig. 1 and two integers k = 4
and s = 2, then one of the solutions is D3, because D3 can be transformed from
D0 and |D3| ≤ 2 holds.

1.2 Related Results

Although OPT-DSR is being introduced in this paper, some results for
REACH-DSR relate to OPT-DSR in the sense that the techniques to show
the computational hardness or construct an algorithm will be used in our proof
for OPT-DSR. We thus list such results for REACH-DSR in the following.

There are several results for the polynomial-time solvability of REACH-

DSR. Haddadan et al. [8] showed that REACH-DSR under TAR rule is
PSPACE-complete for split graphs, for bipartite graphs, and for planar graphs,
while linear-time solvable for interval graphs, for cographs, and for forests.
REACH-DSR is also studied well from the viewpoint of fixed-parameter
(in)tractability. Mouawad et al. [17] showed that REACH-DSR under TAR
is W[2]-hard when parameterized by an upper bound k. As a positive result,
Lokshtanov et al. [15] gave a fixed-parameter algorithm with respect to k +d for
graphs that exclude Kd,d as a subgraph.

Ito et al. studied an optimization variant of Independent Set Recon-

figuration (denoted OPT-ISR) [12]. More precisely, they proved that this
problem is PSPACE-hard on bounded pathwidth, NP-hard on planar graphs,
while linear-time solvable on chordal graphs. They also gave an XP-algorithm
with respect to the solution size, and a fixed-parameter algorithm with respect
to both solution size and degeneracy.

1.3 Our Results

In this paper, we study OPT-DSR from the viewpoint of the polynomial-time
(in)tractability and fixed-parameter (in)tractability.

We first study the polynomial-time solvability of OPT-DSR with respect to
graph classes (See Fig. 2). Specifically, we show that the problem is PSPACE-
complete even for split graphs, for bipartite graphs, and for bounded pathwidth
graphs, and NP-hard for planar graphs with bounded maximum degree. On the
other hand, the problem is linear-time solvable for cographs, trees and interval
graphs. The inclusions of these graph classes are represented in Fig. 2.

72 A. Blanché et al.

PSPACE-c.

P(linear time)

NP-hard

Perfect Bounded degeneracy

Chordal Bounded treewidth

Split
[Thm 1]

Bipartite
[Thm 1]

Bounded pathwidth
[Thm 1]

Planar
[Obs 3]

Cograph
[Cor 1]

Interval
[Cor 1]

Tree
[Cor 1]

Threshold Caterpillar

Fig. 2. Our results for polynomial-time solvability with respect to graph classes, where
A → B means that the class A contains the class B.

We then study the fixed-parameter (in)tractability of OPT-DSR. We first
focus on the following four graph parameters: the degeneracy d, the maximum
degree Δ, the pathwidth pw, and the vertex cover number τ (that is the size of
a minimum vertex cover). Figure 3(a) illustrates the relationship between these
parameters, where A → B means that the parameter A is bounded by some
function of B. This relation implies that if we have a result stating that OPT-

DSR is fixed-parameter tractable for A then the tractability for B follows, while
if we have a negative (i.e. intractability) result for B then it extends to A. From
results for polynomial-time solvability, we show the PSPACE-completeness for
fixed pw and NP-hardness for fixed Δ, and hence the problem is fixed-parameter
intractable for each parameter pw, Δ and d under P �= PSPACE or P �= NP. As
a positive result, we give an FPT algorithm for τ . We then consider two input
parameters: the solution size s and the upper bound k. (See Fig. 3(c).) We show
that OPT-DSR is W[2]-hard when parameterized by k. We note that we can
assume without loss of generality that s < k holds, as explained in Sect. 2. There-
fore, it immediately implies W[2]-hardness for s. Most single parameters (except
for τ) cause a negative (intractability) result. We thus finally consider combina-
tions of one graph parameter and one input parameter. We give an FPT algo-
rithm with respect to s+d. (See Fig. 3(b).) In the end, we can conclude from the
discussion above that for any combination of a graph parameter p ∈ {d,Δ, pw, τ}
and an input parameter q ∈ {s, k}, OPT-DSR is fixed-parameter tractable when
parameterized by p + q. Due to space limitations, proofs of statements marked
with (*) have been omitted (see the arXiv version).

2 Preliminaries

For a graph G, we denote by V (G) and E(G) the vertex set of G and edge set
of G, respectively. For a vertex v ∈ V (G), we let NG(v) = {w | vw ∈ E(G)}
and NG[v] = NG(v) ∪ {v}; we call a vertex in NG(v) a neighbor of v in G. For a

OPT-DSR 73

degeneracy d
(PSPACE-c. for fixed d)

maximum degree Δ
NP-h. for fixed Δ

[Obs 3]

pathwidth pw
PSPACE-c. for fixed pw

[Thm 1]

vertex cover number τ
FPT for τ
[Thm 5]

(a) graph parameters.

d + s
FPT for d + s

[Thm 4]

any
other combinations

(b) combinations.

solution size s
(W[2]-h. for s)

upper bound k
W[2]-h. for k

[Thm 3]

(c) input parameters.

intractable

tractable

Fig. 3. Our results for fixed-parameter tractability, where A → B means that the
parameter A is bounded on some function of B.

vertex subset S ⊆ V (G), we let NG[S] =
⋃

v∈S NG[v]. If there is no confusion,
we sometimes omit G from the notation.

2.1 Optimization Variant of Dominating Set Reconfiguration

For a graph G = (V,E), a vertex subset D ⊆ V is a dominating set of G if
N [D] = V (G). For a dominating set D, we say that u ∈ D dominates v ∈ V if
v ∈ N [u] holds. We say that a vertex v ∈ D has a private neighbor in D if there
exists a vertex u ∈ N [v] such that N [u] ∩ D = {v}. In other words, the vertex
u is dominated only by v in D. Note that the private neighbor of a vertex can
be itself. A dominating set is (inclusion-wise) minimal if and only if each of its
vertices has a private neighbor, and minimum if and only if the cardinality is
minimum among all dominating sets. Notice that any minimum dominating set
is minimal.

Let D and D′ be two dominating sets of G. We say that D and D′ are adjacent
if |DΔD′| = 1, where DΔD′ = (D\D′)∪(D′\D) and we denote this by D ↔ D′.
Let us now assume that D and D′ are both of size at most k, for some given
k ≥ 0. Then, a reconfiguration sequence between D and D′ under the TAR rule
(or sometimes called a TAR-sequence) is a sequence 〈D = D0,D1, . . . , D� = D′〉
of dominating sets of G such that:

– for each i ∈ {0, 1, . . . , �}, Di is a dominating set of G such that |Di| ≤ k; and
– for each i ∈ {0, 1, . . . , � − 1}, Di ↔ Di+1 holds.

Considering a reconfiguration sequence under the TAR rule, we sometimes write
TAR(k) instead of TAR to emphasize the upper bound k on the size of a solution.
We say that D′ is reachable from D if there exists a reconfiguration sequence
between D and D′; since a reconfiguration sequence is reversible, if D′ is reach-
able from D, then D is also reachable from D′. We write D

k� D′ if D′ (resp.

74 A. Blanché et al.

D) is reachable from D (resp. D′). Then, the optimization variant of the Dom-

inating Set Reconfiguration problem (OPT-DSR) is defined as follows:

OPT-DSR

Instance: A graph G, two integers k, s ≥ 0, a dominating set D of G such
that |D| ≤ k.

Question: A dominating set Dt of G such that |Dt| ≤ s and D
k� Dt if

it exists, no-instance otherwise.

We denote by a 4-tuple (G, k, s,D) an instance of OPT-DSR.

2.2 Useful Observations

From the definition of OPT-DSR, we have the following observations.

Observation 1. Let (G, k, s,D) be an instance of OPT-DSR. If k, s and |D|
violate the inequality s < |D| ≤ k, then D is a solution of the instance.

Proof. By the definition of D, we know |D| ≤ k. Therefore if the inequality is
violated, we have |D| ≤ s ≤ k or |D| ≤ k ≤ s. In both cases, |D| ≤ s holds, and
hence D is a solution. �

It is observed that the condition in Observation 1 can be checked in linear
time. Therefore, we sometimes assume without loss of generality that s < |D| ≤ k
holds. Then, another observation follows.

Observation 2. Let (G, k, s,D) be an instance of OPT-DSR such that s < |D|
holds. If D is minimal and |D| = k holds, then the instance has no solution.

Proof. Since |D| = k, we cannot add any vertex to D without exceeding the
threshold k. Besides, since D is minimal, we cannot remove any vertex while
maintaining the domination property. As a result, there is no dominating set Dt

of size at most s reachable from D i.e. D
k� Dt does not hold for any dominating

set Dt such that |Dt| ≤ s. �
Again, the conditions in Observation 2 can be checked in linear time, and

hence we can assume without loss of generality that D is not minimal or |D| < k
holds. Suppose that D is not minimal. Then we can always obtain a dominating
set of size less than k by removing some vertex without private neighbor from
D, that is, we have a dominating set D′ with D

k� D′ and |D′| < k. Note that
(G, k, s,D) has a solution if and only if (G, k, s,D′) does. Therefore, it suffices
to consider the case where |D| < k holds. Combining it with Observation 1, we
sometimes assume without loss of generality that s < |D| < k holds.

Finally, we have the following observation which states that OPT-DSR is a
generalization of the Dominating Set Problem:

OPT-DSR 75

Observation 3. Let G = (V,E) be a graph and s be an integer. Then the
instance (G, |V |, s, V) of OPT-DSR is equivalent to finding a dominating set
of G of size at most s.

Proof. Let Dt be a dominating set of G of size at most s. Since we started from
a dominating set containing all the vertices of G, it is sufficient to remove one
by one each vertex in V \ Dt to reach Dt. �

Observation 3 implies that hardness results for the original Dominating Set

problem extend to OPT-DSR. In particular, we get that OPT-DSR is NP-hard
even for the case where the input graph has maximum degree 3, or is planar with
maximum degree 4 [7]. However, we will show in Sect. 3.1 that this problem is
actually PSPACE-complete.

3 Polynomial-Time (In)tractability

3.1 PSPACE-Completeness for Several Graph Classes

Theorem 1. OPT-DSR is PSPACE-complete even when restricted to bounded
pathwidth graphs, for split graphs, and for bipartite graphs.

First, observe that OPT-DSR is in PSPACE. Indeed, when we are given a
dominating set Dt as a solution for some instance of OPT-DSR, we can check
in polynomial time whether it has size at most s or not. Furthermore, since
REACH-DSR is in PSPACE, we can check in polynomial space whether it is
reachable from the original dominating set D. Therefore, we can conclude that
OPT-DSR is in PSPACE.

We now give three reductions to show the PSPACE-hardness for split graphs,
bipartite graphs and bounded pathwidth graphs, respectively. These reductions
are slight adaptations of the ones of PSPACE-hardness for REACH-DSR devel-
oped in [8]. We only give the hardness proof for split graphs (see the arXiv version
for the two other proofs). To this end, we use a polynomial-time reduction from
the optimization variant of Vertex Cover Reconfiguration, denoted by
OPT-VCR.

Given a graph G = (V,E), a vertex cover is a subset of vertices that contains
at least one endpoint of each edge in E. We now give the formal definition of
OPT-VCR. Suppose that we are given a graph G, two integers k, s ≥ 0, and a
vertex cover C of G whose cardinality is at most k. Then OPT-VCR asks for
a vertex cover Ct of size at most s reachable from C under the TAR(k) rule.
This problem is known to be PSPACE-complete even for bounded pathwidth
graphs1 [12].

Lemma 1. OPT-DSR is PSPACE-hard even for split graphs.

1 In [12], Ito et al. actually showed the PSPACE-completeness for the optimization
variant of Independent Set Reconfiguration. However, the result can easily be
converted to OPT-VCR from the observation that any vertex cover of a graph is the
complement of an independent set.

76 A. Blanché et al.

Fig. 4. Reduction for Lemma 1. Note that {v2, v4} is a dominating set of G.

Proof. As we said, we give a polynomial-time reduction from OPT-VCR. More
precisely, we extend the idea developed for the NP-hardness proof of Dominat-

ing Set problem on split graphs [2].
Let (G′, k′, s′, C) be an instance of OPT-VCR with V (G′) = {v1, v2, . . . , vn}

and E(G′) = {e1, e2, . . . , em}. We construct the corresponding split graph G
as follows (see also Fig. 4). Let V (G) = A ∪ B, where A = V (G′) and B =
{w1, w2, . . . , wm}; the vertex wi ∈ B corresponds to the edge ei ∈ E(G′). We
join all pairs of vertices in A so that A forms a clique in G. In addition, for each
edge ei = vpvq in E(G′), we join wi ∈ B with each of vp and vq. Let G be the
resulting graph, and let (G, k = k′, s = s′,D = C) be the corresponding instance
of OPT-DSR (we will prove later that D is a dominating set of G). Clearly,
this instance can be constructed in polynomial time. It remains to prove that
(G′, k′, s′, C) is a yes-instance if and only if (G, k, s,D) is a yes-instance.

We start by the only-if direction. Suppose that (G′, k′, s′, C) is a yes-instance.
Then, there exists a vertex cover Ct of size at most s′ reachable from C under the
TAR(k’) rule. Since k′ = k, s = s′ and both problems employ the same reconfig-
uration rule, it suffices to prove that any vertex cover of G′ is a dominating set of
G. Since C ⊆ V (G′) = A and A is a clique, all vertices in A\C are dominated by
the vertices in C. Thus, consider a vertex wi ∈ B, which corresponds to the edge
ei = vpvq in E(G′). Then, since C is a vertex cover of G′, at least one of vp and
vq must be contained in C. This means that wi is dominated by the endpoint vp

or vq in G. Therefore, each vertex cover in the reconfiguration sequence between
C and Ct is a dominating set of G (including D = C and Dt = Ct) and thus,
(G, k, s,D) is a yes-instance.

We now focus on the if direction. Suppose that (G, k, s,D) is a yes-instance.
Then, there exists a dominating set Dt of G of size at most s reachable under
the TAR(k) rule by a sequence R = 〈D0,D1, . . . , Dt〉, with D = D0. Recall that
D = C and thus D is a vertex cover of G′. We want to produce a sequence of
dominating sets that are subsets of A. To this end, we proceed by eliminating
the vertices of B that appears in R one by one from the sequence. Let i be the
smallest index such that Di ∈ R contains a vertex w ∈ B associated to the edge
vavb ∈ E(G). Let j ≥ i be the largest index such that every dominating set
Dl ∈ R (i ≤ l ≤ j) contains w. Now we show that Dj+1 is reachable from Di−1

under TAR(k) rule without touching w, that is, there is a sequence where each

OPT-DSR 77

dominating set in the sequence does not contain w. For every Dl ∈ R (i ≤ l ≤ j)
we instead consider the set D′

l = (Dl \ w) ∪ {va}. Note that va ∈ NG(w), and
|D′

l| ≤ |Dl| ≤ k. Observe that each D′
l is a dominating set since NG[w] ⊆ NG[va].

If va ∈ Di−1, then Di−1 = D′
i. Otherwise, D′

i is obtainable from Di−1 in one step
since we just replace the addition of w by the one of va. Moreover, due to the
choice of j, Dj+1 = Dj \{w}. Hence, Dj+1 contains a vertex in A adjacent to w.
If this vertex is va, D′

j = Dj+1. Otherwise, Dj+1 = D′
j \{va}, which corresponds

to a valid TAR move. Finally, since we ensure that each dominating set D′
l with

i ≤ l ≤ j contains va, we can ignore each move in the subsequence of R that
touches va. Hence, either D′

l = D′
l+1 or D′

l ↔ D′
l+1 holds, for every i ≤ l < j.

By ignoring duplicates from the sequence 〈Di−1,D
′
i, . . . , D

′
j ,Dj+1〉, we obtain a

desired subsequence which does not touch w. Therefore, we can eliminate w in
the subsequence 〈Di−1,Di, . . . , Dj ,Dj+1〉 of R by replacing it with the desired
subsequence. Hence by repeating this process for each subsequence containing w
we get a new sequence that does not touch w at all. We then repeat this process
for every vertex of B that appears in R and we obtain a sequence R′ where
each dominating set is a subset of A. Finally, observe that any dominating set
D of G such that D ⊆ A = V (G′) forms a vertex cover of G′, because each
vertex wi ∈ B is dominated by at least one vertex in D ⊆ V (G′). Therefore,
(G′, s′, k′, C) is a yes-instance. �

Finally, the two following lemmas complete the proof of Theorem1.

Lemma 2 (*). OPT-DSR is PSPACE-hard even for bounded pathwidth
graphs.

Lemma 3 (*). OPT-DSR is PSPACE-hard even for bipartite graphs.

3.2 Linear-Time Algorithms

We now explain how OPT-DSR can be solved in linear time for several graph
classes. To this end, we deal with the concept of a canonical dominating set.
A dominating set Dc is canonical if Dc is a minimum dominating set which is
reachable from any dominating set D under the TAR(|D|+1) rule. Then we have
the following theorem.

Theorem 2. Let G be a class of graphs such that any graph G ∈ G has a canon-
ical dominating set and we can compute it in linear time. Then OPT-DSR can
be solved in linear time on G.
Proof. Let (G, k, s,D) be an instance of OPT-DSR, where G ∈ G. Recall that
we can assume without loss of generality that s < |D| < k; we can check in
linear time whether the inequality is satisfied or not, and if it is violated, then
we know from Observation 1 and 2 that it is a trivial instance. Since G ∈ G,
G admits a canonical dominating set and we can compute in linear time an
actual one. Let Dc be such a canonical dominating set. Then it follows from the
definition that Dc is reachable from D under the TAR(k) rule since k ≥ |D| + 1.

78 A. Blanché et al.

Since Dc is a minimum dominating set, we can output it if |Dc| ≤ s holds, and
no-instance otherwise. All processes can be done in linear time, and hence the
theorem follows. �

Haddadan et al. showed in [8] that cographs, trees (actually, forests), and
interval graphs admit a canonical dominating set. Their proofs are constructive,
and hence we can find an actual canonical dominating set. It is observed that the
constructions on cographs and trees can be done in linear time. The construction
on interval graphs can also be done in linear time with a nontrivial adaptation by
using an appropriate data structure. Therefore, we have the following linear-time
solvability of OPT-DSR.

Corollary 1. OPT-DSR can be solved in linear time on cographs, trees, and
interval graphs.

4 Fixed-Parameter (In)tractability

In this section, we study the fixed-parameter complexity of OPT-DSR with
respect to several graph parameters. More precisely, we first show that OPT-
DSR is W[2]-hard when parameterized by the upper bound k. To prove it, we
use the idea of the reduction constructed by Mouawad et al. to show the W[2]-
hardness of REACH-DSR [17].

Theorem 3 (*). OPT-DSR is W[2]-hard when parameterized by the upper
bound k.

On the other hand, we give FPT algorithms with respect to the combination
of the solution size s and the degeneracy d in Subsect. 4.1 and the vertex cover
number τ in Subsect. 4.2.

4.1 FPT Algorithm for Degeneracy and Solution Size

The following is the main theorem in this subsection.

Theorem 4. OPT-DSR is fixed-parameter tractable when parameterized by d+
s, where d is the degeneracy and s the solution size.

To prove the theorem, we give an FPT algorithm with respect to d + s. Note
that our algorithm uses the idea of an FPT algorithm solving the reachability
variant of Dominating Set Reconfiguration, developed by Lokshtanov et
al. [15]. Their algorithm uses the concept of domination core; for a graph G, a
domination core of G is a vertex subset C ⊆ V (G) such that any vertex subset
D ⊆ V (G) is a dominating set of G if and only if C ⊆ NG[D] [6].

Suppose that we are given an instance (G, k, s,D) of OPT-DSR where G is a
d-degenerate graph. By Observation 2, we can assume without loss of generality
that |D| < k. We first check whether G has a dominating set of size at most s:
this can be done in FPT(d + s) time for d-degenerate graphs [1]. If G does not
have it, then we can instantly conclude that this is a no-instance.

OPT-DSR 79

In the remainder of this subsection, we assume that G has a dominating set
of size at most s. In this case, we kernelize the instance: we shrink G by removing
some vertices while keeping the existence of a solution until the size of the graph
only depends on d and s. To this end, we use the concept of domination core.

Lemma 4 (Lokshtanov et al. [15]). If G is a d-degenerate graph and G has
a dominating set of size at most s, then G has a domination core of size at most
dsd and we can find it in FPT(d + s) time.

Therefore, one can compute a domination core of G of size at most dsd in
FPT(d + s) time by Lemma 4. In order to shrink G, we use the reduction rule
R1: if there is a domination core C and two vertices vr, vl ∈ V (G) \ C such
that NG(vr) ∩ C ⊆ NG(vl) ∩ C, we remove vr. We need to prove that R1 is
“safe”, that is, we can remove vr from G without changing the existence of a
solution. However, if the input dominating set D contains vr, we cannot do it
immediately. Therefore, we first remove vr from D.

Lemma 5 (*). Let D be a dominating set such that both |D| < k and vr ∈ D

hold. Then there exists D′ such that vr /∈ D′ and D
k� D′, and D′ can be

computed in linear time.

We can now redefine D as a dominating set which does not contain vr. We
then consider removing vr from G. Let G′ = G[V (G) \ {vr}]. The following
lemma ensures that removing vr keeps the existence of a solution.

Lemma 6 (*). Let (G, k, s,D) be an instance where vr /∈ D. Then, (G, k, s,D)
has a solution if and only if (G′, k, s,D) has a solution.

We exhaustively apply the reduction rule R1 to shrink G. Let Gk and Dk

be the resulting graph and dominating set, respectively. Then, any two vertices
u, v ∈ V (Gk)\C satisfy NGk

(u)∩C �= NGk
(v)∩C (more precisely, NGk

(u)∩C �⊆
NGk

(v) ∩ C). Then the following lemma completes the proof of Theorem 4.

Lemma 7. (Gk, k, s,Dk) can be solved in FPT(d + s) time.

Proof. We first show that the size of the vertex set of Gk is at most f(d, s) =
dsd + 2dsd

. Since |C| ≤ dsd, it suffices to show that |V (Gk) \ C| ≤ 2dsd

holds.
Recall that any two vertices u, v ∈ V (Gk) \C satisfy NGk

(u)∩C �= NGk
(v)∩C.

Then since the number of combination of vertices in C is at most 2|C| ≤ 2dsd

,
we have the desired upper bound |V (Gk) \ C| ≤ 2dsd

.
We now prove that (Gk, k, s,Dk) can be solved in FPT(d + s) time. To this

end, we construct an auxiliary graph GA, where the vertex set of GA is the set
of all dominating sets of Gk, and any two nodes (that correspond to dominating
sets of Gk) D and D′ in GA are adjacent if and only if |DΔD′| = 1 holds. Let
n = |V (Gk)| and m = |E(Gk)|. Then the number of candidate nodes in GA

(vertex subsets of Gk) is bounded by O(2n). For each candidate, we can check in

80 A. Blanché et al.

O(n+m) time if it forms a dominating set. Thus we can construct the vertex set
of GA in O(2n(n + m)) time. We then construct the edge set of GA. There are
at most O(|V (GA)|2) = O(4n) pairs of nodes in GA. For each pair of nodes, we
can check in O(n) time if their corresponding dominating sets differ in exactly
one vertex. Therefore we can construct the edge set of GA in O(4nn) time, and
hence the total time to construct GA is O(4nn + 2n(n + m)) time. We finally
search a solution by running a breadth-first search algorithm from Dk on GA in
O(|V (GA)| + |E(GA)|) = O(4n) time.

We can conclude that our algorithm runs in time O(4nn+2n(n+m)) in total.
Since n ≤ f(d, s) and m ≤ n2 ≤ (f(d, s))2, this is an FPT time algorithm. �

4.2 FPT Algorithm for Vertex Cover Number

Let (G, k, s,D) be an instance of OPT-DSR. As in the previous section, we may
first assume by Observation 2 that |D| < k. We recall that τ(G) is the size of a
minimum vertex cover of G. In order to lighten notations, we simply denote by
τ the vertex cover number of the input graph. Then, we have the following:

Theorem 5. OPT-DSR is fixed-parameter tractable when parameterized by τ .

Observation 4 (*). If G is d-degenerate, then d ≤ τ .

We are now able to get down to the proof of Theorem5, by providing an
algorithm that solves OPT-DSR and runs in time FPT(τ). We first compute
a minimum vertex cover X ⊆ V (G) of G in time FPT(τ) [4]. We partition
the vertices of G into two components, the vertex cover X and the remaining
vertices I. By definition of vertex cover, no edge can have both endpoints outside
X, therefore I is an independent set. Note that if s ≤ τ , then by Observation 4
we have d + s ≤ 2τ , where d is the degeneracy of G. In this case we are able
to use the algorithm of the last section, that runs in time FPT(d + s). We may
therefore assume τ < s. In that case, we have the following lemma:

Lemma 8 (*). If τ < s, then (G, k, s,D) is a yes-instance.

It remains to discuss the complexity of this algorithm. As we already said, we
first compute a minimum vertex cover X of G in time FPT(τ). If s ≤ τ , we run
the FPT algorithm of Sect. 4.1. Otherwise, we first compute the set T and then
run the subroutine which are both described in the proof of Lemma8. The two
rules used in this subroutine only apply to vertices that belong to the set I and
whenever one is applied, exactly one vertex in I is removed (and none is added).
Hence, they are applied at most |I ∩D| times. Therefore, the subroutine runs in
polynomial time and produces the desired dominating set Dt. As a result, this
algorithm is FPT with respect to τ . This concludes the proof.

Concluding Remarks. In this paper, we showed that OPT-DSR is PSPACE-
complete even if restricted to some graph classes. However, we only know that
it is NP-hard for bounded maximum degree graphs or planar graphs, as an

OPT-DSR 81

immediate corollary of Observation 3. Hence, it would be interesting to determine
whether OPT-DSR is NP-complete or PSPACE-complete on these two graph
classes. Note that the complexity on planar graphs remains open for OPT-ISR.

We also proved that OPT-DSR is W[2]-hard for parameter k but the ques-
tion remains as to whether there exists an XP algorithm for upper bound k.

References

1. Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed
size in degenerated graphs. Algorithmica 54(4), 544 (2008). https://doi.org/10.
1007/s00453-008-9204-0

2. Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett.
19(1), 37–40 (1984)

3. Bonamy, M., Bousquet, N.: Token sliding on chordal graphs. In: Bodlaender, H.L.,
Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 127–139. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68705-6 10

4. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40), 3736–3756 (2010)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999). https://doi.org/10.1007/978-1-4612-0515-9

6. Drange, P., et al.: Kernelization and sparseness: the case of dominating set. In:
33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016), pp.
31:1–31:14 (2016)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

8. Haddadan, A., et al.: The complexity of dominating set reconfiguration. Theor.
Comput. Sci. 651, 37–49 (2016)

9. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theor. Comput. Sci. 343(1–2), 72–96 (2005)

10. van den Heuvel, J.: The complexity of change. In: Surveys in Combinatorics 2013.
London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160. Cam-
bridge University Press (2013)

11. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12–14), 1054–1065 (2011)

12. Ito, T., Mizuta, H., Nishimura, N., Suzuki, A.: Incremental optimization of inde-
pendent sets under reachability constraints. In: Proceedings of the 25th Interna-
tional Computing and Combinatorics Conference (COCOON 2019), pp. 313–324
(2019)

13. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set recon-
figurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

14. Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfigura-
tion on bipartite graphs. In: Proceedings of the 29th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2018), pp. 7:1–7:19 (2019)

15. Lokshtanov, D., Mouawad, A.E., Panolan, F., Ramanujan, M.S., Saurabh, S.:
Reconfiguration on sparse graphs. J. Comput. Syst. Sci. 95, 122–131 (2018)

16. Mouawad, A.E., Nishimura, N., Raman, V.: Vertex cover reconfiguration and
beyond. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp.
452–463. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-0 36

https://doi.org/10.1007/s00453-008-9204-0
https://doi.org/10.1007/s00453-008-9204-0
https://doi.org/10.1007/978-3-319-68705-6_10
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-3-319-13075-0_36

82 A. Blanché et al.

17. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the
parameterized complexity of reconfiguration problems. Algorithmica 78(1), 274–
297 (2016). https://doi.org/10.1007/s00453-016-0159-2

18. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
19. Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets.

J. Comb. Optim. 32(4), 1182–1195 (2015). https://doi.org/10.1007/s10878-015-
9947-x

https://doi.org/10.1007/s00453-016-0159-2
https://doi.org/10.1007/s10878-015-9947-x
https://doi.org/10.1007/s10878-015-9947-x

On the Complexity of Stackelberg
Matroid Pricing Problems

Toni Böhnlein1(B) and Oliver Schaudt2

1 Faculty of Engineering, Bar Ilan University, 52900 Ramat-Gan, Israel
toni.bohnlein@biu.ac.il

2 Institut für Informatik, Universität zu Köln, Weyertal 80, 50321 Cologne, Germany
schaudto@uni-koeln.de

Abstract. In a Stackelberg pricing problem a distinguished player, the
leader, chooses prices for a set of items, and one or several other players,
the followers, seeks to buy a feasible subset of the items with minimal
costs. The leader’s goal is to maximize her revenue, which is determined
by the sold items and their prices.

We are interested in cases where the followers’ feasible subsets are
given by a combinatorial optimization problem. For example, a pricing
problem based on the shortest path problem was used by Labbé et al. [15]
to model road-toll setting scenarios.

In this paper, we consider Stackelberg pricing problems that are based
on matroids. The followers seek to buy a subset that is a basis. More
specifically, we consider uniform, partition and laminar matroids.

We study the complexity of computing leader-optimal prices for a sin-
gle and multiple followers. We show that optimal prices can be computed
in polynomial time for all three matroids if there is one follower. In gen-
eral, such pricing problems based on matroids are APX-hard (see [11]).

For multiple followers, we show that computing optimal prices for uni-
form matroids can be done in polynomial time. However, for partition
and laminar matroids the pricing problem becomes NP-hard.

Keywords: Algorithmic pricing · Stackelberg games · Revenue
maximization · Matroids

1 Introduction

We study pricing problems in a game-theoretic model known as Stackelberg
games or Stackelberg pricing problems. In this model, one player, the leader,
chooses prices for a number of items and one or several other players, the fol-
lowers, are interested in buying subsets of the items. The followers buy subsets
that minimize their expenses subject to some constraints while the leader’s goal
is to maximize her revenue, which is determined by the sold items and their
prices. We are interested in the complexity of computing leader-optimal prices
depending on the constraints of the followers.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 83–96, 2020.
https://doi.org/10.1007/978-3-030-48966-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_7

84 T. Böhnlein and O. Schaudt

One line of research studies Stackelberg pricing problems where the followers’
constraints are given by a combinatorial optimization problem. A well-motivated
example of such a pricing problem was introduced by Labbé et al. [15] to compute
optimal road-tolls: A road network is modeled by a graph where the edges have
costs that have to be paid when traveling along an edge. A subset of the roads or
edges belongs to the leader and she can charge a toll which increases their costs.
Each follower is given by two nodes s and t in the graph and chooses a minimal-
cost path connecting s and t. The leader gains revenue in the amount of paid tolls.
When deciding on the tolls, the leader has to make to following consideration:
On the one hand, low tolls might fail to produce maximum revenue. On the other
hand, a large toll might cause the followers to avoid a road entirely resulting in
zero revenue. Since the followers “buy” a shortest path, this variant is called
Stackelberg shortest path.

Stackelberg minimum spanning tree was analyzed by Cardinal et al. and Bilò
et al. [3,11,12]. The followers are again interested in subsets of a graph’s edges,
but the subsets have to form a spanning tree. This setting has applications, for
example, when an internet service provider wants to connect hubs in a network.
The leader charges additional costs for some of the edges and collects revenue
if they are used by a follower (internet service provider). Moreover, Stackelberg
interval scheduling models situations where the leader pays the follower to exe-
cute a set of jobs. The leader makes’make or buy’-type decisions (see [6]).

Intuitively, the complexity of the pricing problem depends on the complex-
ity of the followers’ optimization problem. Stackelberg shortest path is hard to
approximate within a factor of less than 2 (see Briest et al. [7]) and Stackel-
berg minimum spanning tree was shown to be APX-hard. However, Stackelberg
interval scheduling is solvable in polynomial time.

Our Results. We study Stackelberg pricing problems that are based on
matroids. A matroid is a family of subsets over a ground set that is subject
to a set of constraints. The constraints are a bit technical and we spare them
for the next section. As an example, for a matroid, we can think of the subsets
of a graph’s edges that are acyclic. This matroid is called the graphic matroid.
The inclusion-wise maximal subsets of a matroid are its bases. If the elements
of the ground set are associated with weights, then a minimal weight basis can
be computed by the greedy algorithm. The minimal weight bases of a graphic
matroid are the minimum weight spanning trees of the associated graph.

For a Stackelberg pricing problem based on a matroid, the ground set is par-
titioned into two blocks. One block contains items1 that have fixed-costs. Think
of these fixed-cost items as being offered by the leader’s competitors. The sec-
ond block contains the priceable items for which the leader chooses prices. Each
follower comes equipped with a matroid over the ground set and is interested
in buying a minimum weight basis. The weight of an item is either its fixed-
cost or its price. Given prices, the decision which subset a follower buys can be
computed by the greedy algorithm. If a follower buys a basis, the leader gains
1 We call the element of the ground set items.

Stackelberg Matroid Pricing Problems 85

revenue for each contained priceable item in the amount of its price. The leader’s
goal is to maximize her revenue.

Finding a minimum weight basis of a matroid can be regarded as a rather
simple problem since it can be done with the greedy algorithm. Therefore, it
is surprising that the pricing problem based on the graphic matroid, Stackel-
berg minimum spanning tree, is APX-hard. To find cases that can be solved in
polynomial time, we have to resort to even simpler matroids.

We study three different classes of matroids in two scenarios. For the sim-
pler scenario, we assume that there is a single follower. Note that this scenario
was studied in most of the literature on Stackelberg pricing problems so far.
For the second scenario, there are multiple followers which implies a few ques-
tions regarding the availability of items and coordination between followers. We
assume that the items are available in unlimited supply which makes coordina-
tion between the followers unnecessary. The leader sets one price for each item
that is valid for all the followers.

The first class are uniform matroids. Here, followers are interested in buying
a set of items that has a given size. Different followers may come with different
sizes. There is no additional structure on the items and a follower buys a subset
of his given size with minimum total weight. We show that leader-optimal prices
can be computed in polynomial time for a single and the multiple followers.
While the single follower scenario is quite simple, the multiple followers scenario
requires a dynamic programming approach.

Second, we consider partition matroids which generalize uniform matroids.
A follower is associated with a partition of the ground set into blocks. For each
block, the follower buys a subset of a given size. Different followers may be
associated with different partitions and sizes. We show that computing leader-
optimal prices for a single follower can be done in polynomial time. For the
multiple followers, this computational task is NP-hard.

Table 1. Summary of our results on matroid based Stackelberg pricing problems. The
results on Stackelberg minimum spanning tree (MST) appear in [11].

Single follower Multiple followers

Uniform poly-time poly-time

Partition poly-time NP-hard

Laminar poly-time NP-hard

MST APX-hard APX-hard

The third class are laminar matroids which generalize partition matroids. A
laminar matroid is based on a hierarchical family of subsets of the ground set,
i.e., two subsets of the family are either disjoint or one is contained in the other.
Such a hierarchical family is also called a laminar family. For each of the subsets
of the laminar family, a follower has an upper bound on the number of items

86 T. Böhnlein and O. Schaudt

that he wants to buy from this subset. Finding leader-optimal prices has the
same complexity for laminar matroids as it has for partition matroids.

Table 1 summarizes our results. The organization of the paper is as follows.
In the next section, we give a more careful definition of matroids and Stackelberg
pricing problems. In Sects. 3 and 4, we show how to solve Stackelberg uniform
matroid with multiple followers and Stackelberg laminar matroid with one fol-
lower, respectively. Section 5 shows that Stackelberg partition matroid is hard
with multiple followers. For the missing proofs, we refer to the full version of the
paper. Finally, Sect. 6 discusses directions for future research.

Related Work. Additional literature includes surveys on Stackelberg shortest
path by van Hoesel [20] and Labbé and Violin [16]. Roche et al. [18] present an
algorithm with logarithmic approximation guarantee. The best lower bound is
due to Briest et al. [7] showing approximation hardness within a factor of less
than 2. This is an improvement over APX-hardness by Joret [13].

A Stackelberg shortest path tree game was studied by Bilo et al. [4] and
Cabello [10]. Briest et al. [9] give a polynomial time algorithm for Stackelberg
bipartite vertex cover game which was later improved by Bäıou and Barahona [1].

Briest et al. [9] give a log(k) approximation algorithm for Stackelberg pricing
games where k is the number of items. Independently, a slightly more general
result was obtained by Balcan et al. [2]. Their algorithms use a single price
strategy which was studied in a more general setting by Böhnlein et al. [5].

Briest et al. [8] study Stackelberg pricing games where the follower is based
on a NP-hard optimization problem and runs a known approximation algorithm.

2 Preliminaries

Stackelberg Pricing Problems. Let E = Ef ∪̇Ep be a finite set of items
which consists of two blocks Ef and Ep. Ef contains the fixed-cost items and
Ep contains the priceable items. Let

|Ef | = m and |Ep| = n.

The items in Ef have costs given by the function c : Ef → R.
We have one leader and � followers, for an integer � ≥ 1. The leader seeks

to sell the items in Ep to the followers. But the followers can also buy items in
Ef paying their costs c. The leader choose prices by specifying a price function
p : Ep → R. From the followers’ perspective, we do not distinguish between
priceable and fixed-cost items. Hence, given a price function p, we compose a
weight function w : E → R:

w(e) =

{
c(e), e ∈ Ef ,

p(e), e ∈ Ep.

Stackelberg Matroid Pricing Problems 87

Each follower i is determined by a family of feasible subsets Si ⊆ 2E which
contains the subsets that he is interested in buying. Given a price function p,
the weight of a subset S ∈ Si is defined as

w(S, p) =
∑

e∈S w(e).

The objective of the follower is to buy a feasible subset with minimum total
weight which is w∗

i (p) = minS∈Si
w(S, p). A subset S ⊆ E (if bought by a

follower) yields revenue for the leader:

rev(S) =
∑

e∈S∩Ep
p(e).

In case there are several feasible subsets of weight w∗
i (p), we assume that followers

are optimistic and buy a subset that yields maximum revenue for the leader.
Hence, follower i buys the following feasible subset:

S∗
i (p) = arg maxS∈Si

{rev(S) : w(S, p) = w∗
i (p)}. (1)

The revenue from follower i is rev(S∗
i (p)) and the leader’s total revenue is

rev(p) =
∑�

i=1 rev(S∗
i (p)).

The leader’s objective is to determine a price function p that maximizes rev(p).
A follower’s decision is the solution to an optimization problem (given a price

function). When the leader decides on the prices, she is aware of the fixed-cost
items and their costs as well as the followers’ objective functions and feasible
subsets, i.e., we are in a full information setting. Moreover, we assume that
each follower has a feasible subset that does not contain any priceable items;
otherwise, the leader’s revenue is unbounded. If there are multiple followers, we
assume that items are available in unlimited supply.

stackelberg pricing

Input: A ground set E = Ef ∪ Ep, a cost function c : Ef → R, and �
followers given by families Si ⊆ 2E , for i ∈ [�].
Objective: Find prices p : Ep → R maximizing rev(p).

Note that stackelberg pricing captures the problems mentioned in the
introduction.

Matroids. Given a ground set E, a family of subsets S ⊂ 2E is a matroid if it
satisfies the following conditions:

(M1) ∅ ∈ S.
(M2) If X ⊆ Y ∈ S, then X ∈ S.
(M3) If X,Y ∈ S and |X| > |Y |, there exists x ∈ X \ Y such that Y ∪ x ∈ S.

88 T. Böhnlein and O. Schaudt

Matroids are a well-studied combinatorial structure (cf. [17]). The bases of
a matroid S are its inclusion-wise maximal elements. For example, the acyclic
subsets of the edges of a graph G form a matroid. It is called the graphic matroid
and its bases are the spanning forests of G.

Given weights w : E → R on the ground sets, a minimum weight basis B can
be computed using a greedy algorithm: To compute B, we (starting with B = ∅)
consider the elements of E sorted by their weights in non-decreasing order and
add an element e to B if B ∪ e ∈ S.

Stackelberg Matroid is an instance of stackelberg pricing where followers
are given by a matroid and buy a minimum weight basis. Cardinal et al. [11]
show that stackelberg pricing based on the graphic matroid is APX-hard.

Theorem 2.1 (Cardinal et al. [11]). stackelberg matroid with one fol-
lower is APX-hard.

Cardinal et al. observe that an optimal price function uses only values that
appear as fixed-costs in c. Given an instance of stackelberg matroid and a
price function p, then E = {e1, . . . , em+n} are the elements of E sorted non-
decreasingly by their weights w. If w(ej) = w(ei) where ej ∈ Ef and ei ∈ Ep,
then i < j. Hence, the optimistic follower computes his solution greedily based
on this order. If p assigns a price that is not a fixed-cost, increasing this price to
the next larger fixed-cost does not change the ordering but increases the leader’s
revenue. This observation also holds if there are multiple followers.

Lemma 2.1 (Cardinal et al. [11]). There is an optimal price function that
uses only values of the cost function c.

We close this section with some more notation. Let Ef = {g1, . . . , gm} be the
elements of Ef sorted non-decreasingly by their costs. Shorthand, we write
c(gi) = ci for the costs of gi ∈ Ef . Similarly, given a price function p, let
Ep = {h1, . . . , hn} be the elements of Ep sorted non-decreasingly by their price.
Usually, the price function is clear from the context and we write p(hi) = pi.

3 Uniform Matroid

In light of Theorem 2.1, we consider an arguably simple class of matroids, namely
uniform matroids. Given a ground set E and an integer s ≥ 1, the uniform
matroid S (of rank s) contains all subsets of E that have size at most s. Formally,

S = {U ⊆ E : |U | ≤ s}.

The bases of the uniform matroid are the subsets of size exactly s.

Stackelberg Matroid Pricing Problems 89

Stackelberg Uniform Matroid with One Follower. Let the follower be
based on a uniform matroid of rank s. Since E has no structure, the follower
only cares about the weight of an element. Given a price function p, the follower
buys the set S∗(p) = {e1, . . . , es}.

With the next lemma we analyze the conditions when the follower buys a
fixed number a ∈ N of the priceable items, for a ≤ min{s, n}.

Lemma 3.1. Let a ≤ min{s, n}. Given a price function p, |S∗(p) ∩ Ep| = a if
and only if pa ≤ cs−a+1 and cs−a < pa+1.

Proof. First, assume that |S∗(p) ∩ Ep| = a. It follows that |S∗(p) ∩ Ef | = s − a,
gs−a+1 �∈ S∗(p), gs−a ∈ S∗(p), and that ha ∈ S∗(p). Hence, we must have that
pa ≤ cs−a+1 and cs−a < pa+1.

Now, assume that pa ≤ cs−a+1 and cs−a < pa+1. It follows that |S∗(p)∩Ep| ≥
a and that |S∗(p) ∩ Ef | ≥ s − a. Consequently, |S∗(p) ∩ Ep| = a. �

To gain maximum revenue when selling a items, the leader chooses the largest
prices that satisfy the conditions of Lemma 3.1. It follows that an optimal price
function assigns prices cs−a+1 for a many items while the prices of the remaining
items must be larger. The revenue of such a price function is a · cs−a+1, and the
maximum revenue rev∗ can be computed as follows:

rev∗ = maxa∈[min{s,n}] a · cs−a+1.

Böhnlein et al. [5] showed that constant functions are optimal for stackelberg
uniform matroid. The target values are the values of c.

Stackelberg Uniform Matroid with � ≥ 2 Followers. Each follower i is
determined by its ranks si ∈ N. Without loss of generality, s� ≤ . . . ≤ s1. For
a given price function p, follower i buys the set S∗

i (p) = {e1, . . . , esi
}. It follows

that S∗
� (p) ⊆ . . . ⊆ S∗

1 (p) and that an item e ∈ S∗
i (p) is bought by i many

followers.

Observation 1. If |S∗
i (p) ∩ Ef | = a, then the leader sells a items at least i

times. Moreover, |S∗
i (p) ∩ Ef | = a if and only if pa ≤ csi−a+1 and csi−a < pa+1.

The second part of Observation 1 follows from Lemma 3.1.
To convince ourselves that an optimal price function does not have to be

constant when there are more than one followers, we consider a small example.
Assume that there are 4 items with fixed-costs c1 = 3 and c2/3/4 = 5 as well as 4
priceable items. We have two followers of rank 1 and 4, respectively. Verify that
the constant price functions with values 3 and 5 each yield a revenue of 15. But
the price function that assigns prices (3, 5, 5, 5) yields a revenue of 16.

From the small example, we get the intuition that an optimal price function p
can have several steps (assuming a non-decreasing ordering of the function’s val-
ues). To determine these steps or equivalently the step-lengths, we use dynamic
programming. We construct an algorithm based on solving elementary cases, in

90 T. Böhnlein and O. Schaudt

which the leader sells a many priceable items i+1 times and a+b many priceable
items i times. The set of all price functions that satisfy these conditions is

Pi
a,b = {p : Ep → R : |S∗

i+1 ∩ Ep| = a and |S∗
i ∩ Ep| = a + b},

for a, b ∈ N. With the next lemma we characterize optimal price functions under
these conditions.

Lemma 3.2. Let i ∈ [�] and a, b ∈ N such that a + b ≤ n, a ≤ si+1 and
b ≤ si − si+1. A price function p ∈ Pi

a,b is optimal, if

pa+1 = . . . = pa+b = csi−(a+b)+1.

Proof. Let p ∈ Pi
a,b be an optimal price function. With Observation 1 we have

that pa+1 ≤ . . . ≤ pa+b ≤ csi−(a+b)+1. Suppose towards a contradiction that
pa+1 < csi−(a+b)+1. But this implies that pa+1 can be increased to csi−(a+b)+1

without changing the followers’ decision and increasing the leader’s revenue,
contradicting that p was optimal. �

For i ≤ � and a ≤ si+1, we compute recursively the maximum revenue that
the items ha+1, . . . , hn can yield under the conditions of Pi

a,b.

Definition 3.1. Let i ≤ � and a, b ∈ N such that a ≤ min{si+1, n} and b ≤
min{si − si+1, n − i}. The maximum revenue that items ha+1, . . . , hn can yield
under a price function p ∈ Pi

a,b is

λi
a,b = maxp∈Pi

a,b

∑i
k=1 rev(S

∗
k(p) \ S∗

i+1(p)).

Note that Pi
a,b can be empty, and for a sound definition max is replaced by sup.

For a practical algorithm, we define λi
a,b = −∞ in these cases. Moreover, we set

S∗
�+1 = ∅ and s�+1 = 0. The main technical feat of this section is the next lemma

which derives a recursive formula for λi
a,b.

Lemma 3.3. λi
a,b = maxθ∈[min{n−(a+b),si−1−si}] λ

i−1
a+b,θ + b · i · csi−(a+b)+1

Following Lemma 3.2, the base cases for the dynamic program (i = 1) can be
determined as follows: λ1

a,b = b · cs1−(a+b)+1. Lemma 3.3 allows us to compute
the values of λi

a,b (for i ≥ 2).

Lemma 3.4. The leader’s maximum revenue can be computed as follows:

maxp rev(p) = maxb≤min{s�,n} λ�
0,b.

The lemmas above imply an algorithm to compute the leader’s optimal rev-
enue for stackelberg uniform matroid when there are multiple followers.
The running time of the algorithm is of order O(� · n3). Hence, the main result
of this section is as follows.

Theorem 3.1. stackelberg uniform matroid with multiple followers can
be solved in polynomial time.

Stackelberg Matroid Pricing Problems 91

4 Laminar Matroid

We continue with positive results showing that stackelberg matroid based on
laminar matroids can be solved in polynomial time if there is only one follower.

Let E be a ground set. Then, F ⊆ 2E is a laminar family if for all U, V ∈ F ,
either U ⊆ V , V ⊆ U or U ∩V = ∅. Each element of F has a capacity ϕ : F → N.
The laminar matroid S based on F and ϕ is defined as follows

S = {W ⊆ E : |W ∩ U | ≤ ϕ(U) for all U ∈ F}.

Without loss of generality, we assume that E ∈ F . In case E �∈ F , we add E to
F and set ϕ(E) = |E| without changing the matroid.

Let N,M ∈ F such that N ⊂ M . If there is no subset T ∈ F such that
N ⊂ T ⊂ M , N is a direct subset of M . Let D(M) be the set of M ’s direct
subsets. If D(M) = ∅, M is minimal. Observe that laminar families have a
hierarchical structure. We can associate a laminar family with a rooted tree
where we identify the nodes of the tree with the elements of the laminar family.
Set E is the root. The children of a node are its direct subsets and the minimal
subsets are leafs.

We say that F = {M1, . . . , Ms} is a topological order of F if for Mi ⊆ Mj it
follows that i > j. For i ∈ [s], let Fi = {Mj ∈ F : j ≥ i}. Observe that Fi is
again a laminar family on E. Moreover, we define Si to be the laminar matroid
based on Fi and ϕ|Fi

. It holds that S ⊆ Si.

Stackelberg Laminar Matroid with One Follower. We are given a ground
set E = Ef ∪ Ep. The follower is determined by a laminar matroid S based on
a laminar family F = {M1, . . . Ms} with a topological order.

To solve the pricing problem, we use a dynamic program whose structure is
based on the tree structure of F . First, we compute the optimal revenue for the
minimal elements for several configurations. For an inner node of the tree, the
optimal revenue is computed based on the configurations of its direct subsets.

Let P = {c(e) : e ∈ Ef} be the set of the fixed-costs and P∞ = P∪{−∞,∞}.
For a set M that contains priceable items, we define P[M] = {p : M ∩ Ep → P}
to be the set of all functions that map a priceable item of M to a value of P.
According to Lemma 2.1 only the values in P are relevant prices.

Definition 4.1. Let Mi ∈ F , x ≤ ϕ(Mi) and Q−, Q+ ∈ P∞. Then ΘMi

x,Q−,Q+

is the set of all pairs (p, S) ∈ P[Mi] × 2Mi such that

T1 S ⊆ Mi and |S| = x.
T2 maxe∈S w(e) = Q−.
T3 min{w(e) : e ∈ Mi \ S and S ∪ e ∈ Si} = Q+.
T4 � ∃ e ∈ S, e′ ∈ Mi \ S such that (S \ e) ∪ e′ ∈ Si and w(e) < w(e′).

For a pair (p, S) ∈ ΘMi

x,Q−,Q+ , S is a minimal weight subset of Mi under price
function p. Set S has size x and satisfies the capacity constraint of ϕ(Mi). Q−

92 T. Böhnlein and O. Schaudt

is the weight of maximum weight element of S. Adding an element of Mi \ S to
S such that the capacity constraints are still met increases the weight of S by
at least Q+. Based on ΘMi

x,Q−,Q+ we define λMi

x,Q−,Q+ as follows:

Definition 4.2. Let Mi ∈ F , x ≤ ϕ(Mi) and Q−, Q+ ∈ P∞. Then

λMi

x,Q−,Q+ = max
{∑

e∈S∩Ep
p(e) : (p, S) ∈ ΘMi

x,Q−,Q+

}
.

Note that if Q+ < Q−, ΘMi

x,Q−,Q+ = ∅, and for a sound definition max is replaced
by sup. For a practical algorithm, we set λMi

x,Q−,Q+ = −∞ for these cases.
First, we show that if we indeed know all the values of λMi

x,Q−,Q+ , we can
compute the optimal revenue. Note that each basis of a matroid has the same size
and that we can compute this size by computing a basis for any price function.

Lemma 4.1. Let b be the size of a basis of S. The maximum revenue rev∗ of
the leader can be computed as follows:

rev∗ = maxQ−,Q+∈P∞ λE
b,Q−,Q+ .

Our dynamic program computes all values λMi

x,Q−,Q+ in reverse order of the
topological order. First, we derive a direct formula for the minimal elements of
F . Second, we derive a recursive formula for the non-minimal elements of F .

Minimal elements. Let Mi ∈ F be minimal, x ≤ ϕ(Mi) and p ∈ P[Mi]. We
define the set SMi

x,p to contain the x items of Mi with the smallest weight under
price function p. The priceable items are preferred in this selection.

Definition 4.3. Let Mi ∈ F be minimal, x ≤ ϕ(Mi) and p ∈ P[Mi]. Moreover,
let Q−, Q+ ∈ P∞ such that Q− < Q+. Then, JMi

x,Q−,Q+ is the set of indices
j ∈ [min{x, |Mi ∩ Ep|}] such that there is a p ∈ P[Mi] where

J1 |SMi
x,p ∩ Ep| = j.

J2 max
e∈S

Mi
x,p

w(e) = Q−.
J3 min{w(e) : e ∈ Mi \ SMi

x,p and SMi
x,p ∪ e ∈ Si} = Q+.

The set JMi

x,Q−,Q+ contains the numbers of possible priceable items among the x

minimum weight items in Mi if their maximum weight item has weight Q− and
the item in Mi with the x + 1 largest weight has weight Q+. The set JMi

x,Q−,Q+

is essential in determining λMi

x,Q−,Q+ for the minimal sets Mi.

Lemma 4.2. Let Mi ∈ F be minimal, x ≤ ϕ(Mi) and p ∈ P[Mi]. Moreover, let
Q−, Q+ ∈ P∞ such that Q− < Q+. Then,

λMi

x,Q−,Q+ =

{
max JMi

x,Q−,Q+ · Q−, JMi

x,Q−,Q+ �= ∅,

−∞, otherwise.

We show how to compute JMi

x,Q−,Q+ only in the full version of the paper. Basically,
this can be done by simple routines that inspect the fixed-cost items in Mi.

Stackelberg Matroid Pricing Problems 93

Non-minimal elements. We show how to compute λMi

x,Q−,Q+ if Mi is not minimal.

Definition 4.4. Let Mi ∈ F such that D(M) = {N1, . . . , Ns}, x ≤ ϕ(Mi) and
Q−, Q+ ∈ P∞. Then, ΛMi

x,Q−,Q+ is the set of all tuples (x̄, Q̄−, Q̄+) ∈ [ϕ(Mi)]s ×
Ps

∞ × Ps
∞ such that

L1
∑s

j=1 x̄j = x

L2 Q− = maxj∈[s] Q̄
−
j

L3 Q+ =

{
minj∈[s] Q̄

+
j , x < ϕ(Mi),

∞, x = ϕ(Mi).
L4 maxj∈[s] Q̄

−
j ≤ minj∈[s] Q̄

+
j

Lemma 4.3. Let Mi ∈ F such that D(M) = {N1, . . . , Ns}, x ≤ ϕ(Mi) and
Q−, Q+ ∈ P∞ where Q− ≤ Q+. Then,

λMi

x,Q−,Q+ = max
{∑s

j=1 λNi

x̄j ,Q̄−
j ,Q̄+

j

: (x̄, Q̄−, Q̄+) ∈ ΛMi

x,Q−,Q+

}
.

With Lemma 4.3, we are able to compute all values of λMi

x,Q−,Q+ . First, we com-
pute the values λMi

x,Q−,Q+ for the minimal elements of F . The running time of
this step is in O(|F|(m + n)2n2). Applying the recursive formula of Lemma 4.3
involves checking all the configurations for the direct subsets. Observe that the
number of direct subsets in a laminar family can be bounded by 2: Assume
we have a laminar family F where an element M has more than 2 direct
subsets D(M) = {N1, N2, . . .}. In this case, we add N1 ∪ N2 to F and set
ϕ(N1 ∪ N2) = ϕ(N1) + ϕ(N2). Observe that F remains a laminar family. And
as such it holds that |F| ≤ 2|E| (cf. [19]). For a family where the direct subsets
of an element are at most 2, the running time of applying the recursion takes
times of order O((m + n)2 · n4). Finally, we can compute the maximum revenue
according to Lemma 4.1.

Theorem 4.1. stackelberg laminar matroid with one follower can be
solved in polynomial time.

It follows that stackelberg partition matroid with one follower can be
solved in polynomial time since laminar matroids generalize partition matroids.

5 Partition Matroid

For a ground set E, let A be a partition of E into blocks A1, . . . , As. Moreover,
there are capacities ϕ : A → N associated with each block of A. The partition
matroid S with respect to A and ϕ contains a subsets of E if its intersection
with each block is at most the block’s capacity. Formally,

S = {S ⊆ E : |Ai ∩ S| ≤ ϕ(Ai) for each i ∈ [s]}.

94 T. Böhnlein and O. Schaudt

In this section, we show that stackelberg partition matroid is compu-
tationally hard to solve if there are multiple followers. An instance on a ground
set E with � ≥ 2 followers is given by partition matroids S1, . . . S� (each with a
possibly different partition and capacities).

Theorem 5.1. stackelberg partition matroid with � followers is NP-hard,
for � ≥ 2.

It follows that stackelberg laminar matroid with multiple followers is also
NP-hard since partition matroids are a special case of laminar matroids.

Proof (incomplete). We consider the decision variant of stackelberg parti-

tion matroid where we need to decide if the leader can make more revenue
than a given threshold. Our reduction is from the hitting set problem which
is known to be NP-complete (cf. [14]). Here, we are given a set T , a value t ∈ N

and a family of subsets U = {U1, . . . Ur} of T . The question is if we can find a
hitting set H ⊂ T such that H ∩ U �= ∅ for all U ∈ U and |H| ≤ t.

Given an instance of hitting set, we construct an instance of stackelberg
partition matroid as follows:

– We have Ef = {g1, g2} with costs c(g1) = 1 and c(g2) = 2.
– The set of priceable items is Ep = T = {h1, . . . , hn}.

In total, there are 2 · r + n followers.

– For each i ∈ [r] there are two identical followers Fi,1 and Fi,2 with blocks
X = Ui ∪g1 and Y = E \X where the capacities are ϕ(X) = 1 and ϕ(Y) = 0.

– For each h ∈ T there is one follower F̄h with blocks X = {h, g2} and Y = E\X
where the capacities are ϕ(X) = 1 and ϕ(Y) = 0.

The idea of the construction is that the leader chooses a hitting set H by setting
p(h) = 1 if h ∈ H and p(h) = 2 if h �∈ H. We claim that H is indeed a hitting
set of size at most t if p yields revenue at least 2r − t+2n. The leader receives a
revenue of 1 from each of the two identical follower if for each Ui there exists an
priceable item h with p(h) = 1. To gain revenue 2 from a follower F̄h, the leader
has to set p(h) = 2.

To complete the proof, we show (in the full version of the paper) that our
stackelberg partition matroid instance admits revenue of at least 2r−t+2n
if and only if the hitting set instance has a hitting set of size at most t. �

The decision version of stackelberg partition matroid is NP-complete
since we can compute the leader’s revenue for a given price function and compare
it to a threshold. Moreover, our reduction covers several special cases. Note that
we used only two different fixed-cost values and that the partition of each follower
contains only 2 blocks.

Stackelberg Matroid Pricing Problems 95

6 Conclusion and Future Work

We make progress towards the more general question of determining the com-
plexity of a Stackelberg pricing problem depending on the complexity of the
underlying (follower) optimization problem. With the uniform matroid we iden-
tified a case that is solvable in polynomial time if there are more than one fol-
lowers. We are not aware of another Stackelberg pricing problems of this kind.

A direction for further research is to consider the multiple followers scenario
where the items are available in limited supply. Intuitively, pricing problems
become harder in this setting (cf. [2]). Several models on how the followers
coordinate themselves can be considered. For example, there might be a fixed
order in which followers buy a subset of the available item.

References

1. Bäıou, M., Barahona, F.: Stackelberg bipartite vertex cover and the preflow algo-
rithm. Algorithmica 74(3), 1174–1183 (2016)

2. Balcan, M.-F., Blum, A., Mansour, Y.: Item pricing for revenue maximization.
In: Proceedings of the 9th ACM Conference on Electronic Commerce, pp. 50–59
(2008)

3. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Specializations and generalizations of
the stackelberg minimum spanning tree game. Theoret. Comput. Sci. 562, 643–657
(2015)

4. Bilò, D., Gualà, L., Proietti, G., Widmayer, P.: Computational aspects of a 2-player
stackelberg shortest paths tree game. In: Papadimitriou, C., Zhang, S. (eds.) WINE
2008. LNCS, vol. 5385, pp. 251–262. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-92185-1 32

5. Toni Böhnlein, S.K., Schaudt, O.: Revenue maximization in stackelberg pricing
games: beyond the combinatorial setting. In: 44th International Colloquium on
Automata, Languages, and Programming (ICALP 2017) (2017)

6. Böhnlein, T., Schaudt, O., Schauer, J.: Stackelberg packing games. In: Friggstad,
Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 239–
253. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9 18

7. Briest, P., Chalermsook, P., Khanna, S., Laekhanukit, B., Nanongkai, D.: Improved
hardness of approximation for stackelberg shortest-path pricing. In: Saberi, A. (ed.)
WINE 2010. LNCS, vol. 6484, pp. 444–454. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17572-5 37

8. Briest, P., Gualà, L., Hoefer, M., Ventre, C.: On stackelberg pricing with compu-
tationally bounded customers. Networks 60(1), 31–44 (2012)

9. Briest, P., Hoefer, M., Krysta, P.: Stackelberg network pricing games. Algorithmica
62(3–4), 733–753 (2012)

10. Cabello, S.: Stackelberg shortest path tree game, revisited. arXiv preprint
arXiv:1207.2317 (2012)

11. Cardinal, J., et al.: The stackelberg minimum spanning tree game. Algorithmica
59(2), 129–144 (2011)

12. Cardinal, J., Demaine, E.D., Fiorini, S., Joret, G., Newman, I., Weimann, O.:
The stackelberg minimum spanning tree game on planar and bounded-treewidth
graphs. J. Comb. Optim. 25(1), 19–46 (2013)

https://doi.org/10.1007/978-3-540-92185-1_32
https://doi.org/10.1007/978-3-540-92185-1_32
https://doi.org/10.1007/978-3-030-24766-9_18
https://doi.org/10.1007/978-3-642-17572-5_37
https://doi.org/10.1007/978-3-642-17572-5_37
http://arxiv.org/abs/1207.2317

96 T. Böhnlein and O. Schaudt

13. Joret, G.: Stackelberg network pricing is hard to approximate. Networks 57(2),
117–120 (2011)

14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://
doi.org/10.1007/978-1-4684-2001-2 9

15. Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application
to optimal highway pricing. Manag. Sci. 44(12–part–1), 1608–1622 (1998)

16. Labbé, M., Violin, A.: Bilevel programming and price setting problems. Ann. Oper.
Res. 240(1), 141–169 (2016)

17. Oxley, J.G.: Matroid Theory, vol. 3. Oxford University Press, USA (2006)
18. Roch, S., Savard, G., Marcotte, P.: An approximation algorithm for stackelberg

network pricing. Netw. Int. J. 46(1), 57–67 (2005)
19. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24.

Springer Science & Business Media (2003)
20. Van Hoesel, S.: An overview of stackelberg pricing in networks. Eur. J. Oper. Res.

189(3), 1393–1402 (2008)

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Nonexistence Certificates for Ovals
in a Projective Plane of Order Ten

Curtis Bright1,2(B), Kevin K. H. Cheung2, Brett Stevens2, Ilias Kotsireas3,
and Vijay Ganesh1

1 Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, Canada

cbright@uwaterloo.ca
2 School of Mathematics and Statistics, Carleton University, Ottawa, Canada
3 Department of Physics and Computer Science, Wilfrid Laurier University,

Waterloo, Canada
https://cs.uwaterloo.ca/~cbright/

Abstract. In 1983, a computer search was performed for ovals in a
projective plane of order ten. The search was exhaustive and negative,
implying that such ovals do not exist. However, no nonexistence certifi-
cates were produced by this search, and to the best of our knowledge the
search has never been independently verified. In this paper, we rerun the
search for ovals in a projective plane of order ten and produce a collec-
tion of nonexistence certificates that, when taken together, imply that
such ovals do not exist. Our search program uses the cube-and-conquer
paradigm from the field of satisfiability (SAT) checking, coupled with a
programmatic SAT solver and the nauty symbolic computation library
for removing symmetries from the search.

Keywords: Combinatorial search · Satisfiability checking · Symbolic
computation

1 Introduction

Projective geometry—a generalization of the familiar Euclidean geometry where
parallel lines do not exist—has been extensively studied since the 1600s. A special
case of projective geometry occurs when only a finite number of points exist. A
two-dimensional projective geometry with a finite number of points is known as
a finite projective plane.

Despite a huge amount of study some basic questions about finite projective
planes are still open—for example, how many points can a finite projective plane
contain? It is well-known [14] that a finite projective plane must contain n2 + n +
1 points for some integer n (known as the plane’s order) and finite projective
planes can be explicitly constructed in all orders that are prime powers. The
order six case is excluded by a theoretical result of Bruck and Ryser [8] making
ten the first uncertain order.
c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 97–111, 2020.
https://doi.org/10.1007/978-3-030-48966-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_8

98 C. Bright et al.

In the 1970s and 1980s, a significant amount of mathematical ingenuity and
computer searches successfully eliminated the possibility of a projective plane
of order ten [27]. Today, this remains one of the most prominent achievements
of computational combinatorial classification [23]. The search was made feasible
due to results of MacWilliams, Sloane, and Thompson [32] concerning the error-
correcting code generated by a hypothetical projective plane of order ten. They
showed that the weight distribution of this code depends on just two unknown
parameters. One of these parameters is the number of ovals that exist in the
projective plane of order ten—here an oval being a set of twelve points, no three
of which are collinear.

In 1983, Lam, Thiel, Swiercz, and McKay [30] showed the nonexistence of
ovals in a projective plane of order ten via a computer search. The search space is
of a significant size and required about 4,400 h of computation time on the super-
mini computer VAX 11/780 (clock speed 5 MHz) to search exhaustively. Because
of the nature of the search, Lam et al. specifically encouraged an independent
verification:

Since the existence of ovals is an important question, we hope that someone
will do an independent search to verify the result.

Despite this hope, there has been little published work independently veri-
fying the search for ovals or their subsequent searches [28,29] that culminated
in the proof that projective planes of order ten do not exist. In his 2011 mas-
ter’s thesis, Roy [37] performed a verification of the nonexistence of a projective
plane of order ten using about 35,000 h on a cluster of desktop machines. How-
ever, he did not specifically run a search for the ovals as it was nonessential to
his ultimate goal. To the best of our knowledge, there has been no published
work specifically replicating the search for ovals.

In this paper, we report our results on verifying the nonexistence of ovals in a
projective plane of order ten. Our method relies on a satisfiability (SAT) solver
and produces certificates that a third party can use to verify that our search
completed successfully. In total, our search used about 1,850 core hours on the
supercomputer Graham at the University of Waterloo (clock speed 2.1 GHz) and
produced SAT proofs that when compressed use about 3 terabytes of storage.

In addition to a using a SAT solver our method also takes advantage of the
nauty symbolic computation library [34] to reduce the size of the search space
by eliminating redundant symmetries. We present the necessary background on
projective geometry, satisfiability checking, and symbolic computation in Sect. 2,
describe our SAT encoding in Sect. 3, give details on our implementation and
results in Sect. 4, and finally discuss future work in Sect. 5.

2 Preliminaries

The main background necessary to understand our results are some familiarity
with projective geometry (see Sect. 2.1), satisfiability checking (see Sect. 2.2),
and symbolic computation (see Sect. 2.3).

Nonexistence Certificates for Ovals in a Projective Plane of Order Ten 99

2.1 Projective Geometry

A finite projective plane of order n is a collection of n2 + n + 1 points and
n2 + n + 1 lines and an incidence relationship between points and lines where
any two points are incident with a unique line and any two lines are incident
with a unique point. Furthermore, every line is incident with n + 1 points and
every point is incident with n + 1 lines.

An oval of a projective plane of even order n is a set of n+2 points (or n+1
points when n is odd) with no three points collinear (incident with the same
line). It can be shown that it is not possible to find a larger set of points with no
three points collinear [15], but no characterization of ovals in general projective
planes is known. In particular, prior to the search of Lam et al. [30] it was not
known if a projective plane of order ten could contain ovals or not.

From a computational perspective, a convenient way of representing a finite
projective plane of order n is by a square {0, 1} incidence matrix whose (i, j)th
entry contains a 1 exactly when the ith line is incident to the jth point. We say
that two {0, 1}-vectors intersect when they share a 1 in the same location and
the weight of a {0, 1}-vector is the number of nonzero entries it contains. In this
framework, a projective plane of order n is a {0, 1}-matrix with n2 + n + 1 rows
that each have weight n+1 and pairwise intersect exactly once (and similarly for
the columns). In other words, a {0, 1}-matrix A with n2+n+1 rows represents a
projective plane exactly when it satisfies AAT = ATA = nI +J where I denotes
the identity matrix and J denotes the matrix consisting of all 1s. Two projective
planes that are identical up to row or column permutations are called isomorphic
and we call a submatrix of a projective plane a partial projective plane.

Suppose that A is a projective plane of order ten that contains an oval. With-
out loss of generality we assume that the first twelve points of the plane consist
of an oval. By definition, each pair of points in the oval must define a unique
line, and therefore there are

(
12
2

)
= 66 lines incident to the oval. Without loss

of generality, we assume these lines are ordered in lexicographically increasing
order. In other words, the first 66 rows of A have the form

B =

⎡

⎢
⎢
⎣

110000000000
101000000000

...
B′

000000000011

⎤

⎥
⎥
⎦ .

The first twelve columns contain two 1s on each row, so B′ must contain nine 1s in
each row. Furthermore, by definition of a projective plane each column in B′ must
intersect each of the first twelve columns. Each 1 in B′ induces an intersection
with two of the first twelve columns, so each column in B′ contains exactly six 1s.

Without loss of generality, we assume the columns of B′ are sorted in lexico-
graphic order. This implies the first nine columns of B′ will be incident with the
first line (the line through the first and second points). As noted by [26], this
also means the ith column of B′ (for 1 ≤ i ≤ 9) will be incident with the line
through the third and (3 + i)th points. We call the nine columns of B′ that are

100 C. Bright et al.

Fig. 1. The upper-left 30 × 66 submatrix of B under the assumption that the rows
are lexicographically ordered and the columns outside the oval are lexicographically
ordered. Black entries denote 1s, white entries denote 0s, and gray entries are unknown.

incident with the ith row the ith block. In general, all blocks’ columns may be
ordered similarly to those in the first block [26], and this fixes the first two 1s in
each column of B′. Figure 1 contains a visual depiction of the first 30 rows of B
up to the sixth block.

Some entries of B′ are still undetermined (shown as gray in Fig. 1). At this
stage, it is still uncertain if they can be completed in a consistent way to make
B′ a partial projective plane—since the above description assumes that an oval
exists in A. Thus, a proof that there is no way of completing the unknown
entries of B′ in a consistent way would also imply the nonexistence of ovals in a
projective plane of order ten.

The symmetry group of a matrix is the group of row and column permu-
tations that fix the entries of the matrix. For example, consider the symmetry
group S of the first twelve columns of B. Each row of this submatrix is com-
pletely specified by the two columns incident to it, so any column permutation
completely specifies a row permutation that undoes the permutation. It follows
that S is isomorphic to S12, the symmetric group on twelve elements.

The group S acts on the entries of B′ as follows: Given a permutation ϕ ∈ S
the row permutations from ϕ are applied to the entries of B′, then column
permutations are applied to reorder its columns in lexicographic order. The
result ϕ(B′) is a partial projective plane that is isomorphic to B′. To avoid
duplication of work, any search for B′ should ideally avoid exploring parts of
the search space that are isomorphic under S. Exploiting this leads to a huge
reduction in the size of the search space, since S contains about 479 million
permutations.

2.2 Satisfiability Checking

Given a formula of Boolean logic, satisfiability (SAT) checking is to determine
whether or not the formula is satisfiable—that is, is there a way of assigning true

Nonexistence Certificates for Ovals in a Projective Plane of Order Ten 101

and false to its variables that results in the whole formula becoming true? A SAT
solver is a program that performs SAT checking on a given formula. Modern SAT
solvers require their input to be given in conjunctive normal form or CNF: if
x is a Boolean variable then x and ¬x are known as literals, expressions of the
form l1 ∨ · · · ∨ ln for literals li are known as clauses, and expressions of the form
c1∧· · ·∧cm for clauses ci are in CNF. The literal x is satisfied when x is assigned
true, ¬x is satisfied when x is assigned false, li ∨· · ·∨ ln is satisfied when at least
one li is satisfied, and c1 ∧ · · · ∧ cm is satisfied when every ci is satisfied.

In order to reduce the search for ovals in a projective plane of order ten to
a SAT problem we use the incidence structure described in Sect. 2.1 that was
based on the assumption that ovals exist. The SAT instance will have a solution
when there is a completion of the unknown entries of the matrix B to a partial
projective plane—so showing the instance has no solution implies that no ovals
exist.

SAT solvers are effective as combinatorial search tools—for example, they
were used to resolve the first open case of the Erdős discrepancy conjecture [25].
The cube-and-conquer SAT solving paradigm has been particularly effective
at solving very large combinatorial search problems [21]. First developed by
Heule, Kullmann, Wieringa, and Biere for computing van der Waerden num-
bers [22], the cube-and-conquer method has since been used to resolve the
Boolean Pythagorean triples problem [20] and determine the value of the fifth
Schur number [16].

A cube is a formula of the form l1 ∧ · · · ∧ ln where li are literals. In the
cube-and-conquer paradigm a SAT instance is split into a number of distinct
subinstances specified by cubes. Each subinstance contains a single cube and
the cube is assumed to be true for the purposes of solving the subinstance. The
cubes are typically generated by running a “cubing solver” on the SAT instance
which attempts to find a set of cubes which split the instance into subinstances
of approximately equal difficulty. After the cubes have been generated a “con-
quering solver” solves the subinstances either in sequence or in parallel. Ideally,
the literals in each cube are added to the solver as incremental assumptions. In
this case, after each cube is solved the assumptions are removed and the literals
from the next cube are added without restarting the SAT solver.

2.3 Symbolic Computation and SAT+CAS

Symbolic computation is a branch computer science devoted to manipulating and
simplifying mathematical expressions. Many computer algebra systems (CASs)
are available today that contain extensive symbolic computation functionality
from a huge number of mathematical domains. However, although CASs con-
tain many sophisticated algorithms, they have not typically been optimized to
perform searches in the way that SAT solvers have [1,4].

For problems that need both mathematical sophistication and finely-tuned
search it can be useful to combine computer algebra and SAT solvers [10].
Recently SAT+CAS methods have been used in a number of various problems—
for example, they have been used to verify the correctness of Boolean arithmetic

102 C. Bright et al.

circuits [24], improve the best known result in the Hadwiger–Nelson plane-
colouring problem [17], find many new algorithms for multiplying 3 × 3 matri-
ces [19], and improve the best known result in the Ruskey–Savage hypercube
conjecture [40].

In addition to a SAT solver we use the nauty symbolic computation
library [34] in order to show the nonexistence of ovals in a projective plane of
order ten. We call nauty from within the callback function of a “programmatic”
SAT solver. A solver is called programmatic if it allows learning clauses on-the-fly
through a piece of code supplied to the SAT solver. A programmatic SAT solver
will run the supplied code from time to time as it is performing its search. The
code will examine the current assignment to the variables and test whether the
current assignment may be discarded (possibly using knowledge queried from a
CAS). If the assignment can be discarded a clause is added to the SAT instance
on-the-fly that blocks the current assignment (and ideally other similar assign-
ments). Programmatic SAT solvers were introduced by Ganesh et al. [11] in
order to solve an RNA folding problem. They have since been used to search for
various combinatorial objects such as Williamson matrices [5], best matrices [7],
and complex Golay sequences [6].

3 Satisfiability Encoding

We now describe the encoding that we use to search for ovals in a projective
plane of order ten. As described in Sect. 2.1, we may assume a number of entries
of this projective plane have been fixed in advance, including all entries in the
first twelve columns and all entries in the first 21 rows (see Fig. 1). Specifying
these entries removes a substantial amount of symmetry from the search space,
however, as described in Sect. 2.1, the remaining search space is still symmet-
ric under the action of the group S generated by permuting the twelve points
of the oval. In Sect. 3.1, we give our basic encoding without removing symme-
tries from S. In Sect. 3.2, we provide a programmatic SAT method of removing
symmetries from the group S.

3.1 Basic SAT Encoding

Following Sect. 2.1, let B be the first 66 rows of the incidence matrix of a partial
projective plane of order ten whose first twelve points form an oval. As previously
outlined, up to isomorphism some points of B can be assumed in advance, but
most points remain unspecified. For each unspecified point we define a Boolean
variable bi,j that will be true exactly when the ith line is incident to the jth
point, i.e., the (i, j)th entry of B is 1.

We now give properties that necessarily hold in B as Boolean constraints
in conjunctive normal form. In particular, we encode the two facts that (1)
columns of B intersect at most once and (2) each column of B intersects a
column in the oval at least once. A similar encoding has been previously used to
verify MacWilliams et al.’s result that vectors of weight 15 do not exist in the
rowspace of any projective plane of order ten [3].

Nonexistence Certificates for Ovals in a Projective Plane of Order Ten 103

Columns Intersect at Most Once. Let i and j be arbitrary column indices
of B, so i, j ∈ {1, . . . , 111}. By definition of a projective plane these columns
cannot intersect twice, so we know there do not exist rows k and l mutually
incident to columns i and j. In Boolean logic we write this constraint as

∧

1≤k<l≤66

(¬bk,i ∨ ¬bk,j ∨ ¬bl,i ∨ ¬bl,j).

Each Column Intersects a Column in the Oval. Let i be an arbitrary
column in the oval, i.e., i ∈ {1, . . . , 12} and let j be an arbitrary column not in the
oval, i.e., j ∈ {13, . . . , 111}. By definition of a projective plane columns i and j
must intersect somewhere in the plane. Since all rows incident with column i
occur in the first 66 rows, the intersection of columns i and j must occur in B.
In Boolean logic we write this constraint as

∨
k:B[k,i]=1 bk,j .

Abbreviated Constraints. For the first set of constraints there are
(
111
2

) ·(
66
2

) ≈ 13 million clauses of the first form and 12 · 99 = 1188 clauses of the
second form. After removing variables whose values are already fixed there are
2696 undetermined variables in these clauses.

SAT solvers often perform better if the number of constraints can be sig-
nificantly decreased. In our case, we found that it was only necessary to con-
sider a submatrix of B before reaching a contradiction. In particular, our pri-
mary searches only used the variables in the blocks 2 to 6 (columns 22 to 66).
The first block was skipped since its columns did not intersect the columns
of any other block in the known entries (see Fig. 1). This increases the effi-
ciency of the search because contradictions are generally easier to derive from
two already-intersecting columns. Using columns 22 to 66 meant there were(
57
2

) · (
66
2

) ≈ 3.4 million clauses of the first form, 12 · 45 = 540 clauses of the
second form, and 1199 unknown variables.

Known Row Intersections. We included one further set of constraints that,
while not strictly necessary, improved the performance of the SAT solver by
enforcing row intersections that must occur. In particular, note that rows 2–6
must intersect rows 22–66 in B and all 1s in row i ∈ {2, . . . , 6} outside the oval
occur in the columns Bi := {4 + 9i, . . . , 12 + 9i}. Thus, we also included clauses
of the form

∨
k∈Bi

bj,k for rows i ∈ {2, . . . , 6} and j ∈ {22, . . . , 66} that do not
intersect in the oval.

3.2 Symmetry Breaking

The encoding described in Sect. 3.1 could in theory be used to show there is no
way of completing the unknown entries of B subject to the given constraints.
However, as discussed in Sect. 2.1 the search space is symmetric under the action
of relabelling the twelve points of the oval (while appropriately reordering the

104 C. Bright et al.

rows and remaining columns to preserve our lexicographic presentation of the
search space). Since this is an enormous group of symmetries it is worthwhile
developing a method that will reduce or “break” these symmetries. Using an
“orderly generation” algorithm [36,38] is one way to avoid generating isomorphic
partial solutions at each stage of the search. Our approach is similar, though it
will only avoid isomorphic partial solutions violating a property that we can
show the entries of B satisfy (up to isomorphism).

Mathon [33] provided a characterization of an oval in a projective plane of
order ten in terms of K12, the complete graph on vertices {1, . . . , 12}. Note that
a 1-factor of a graph is a perfect matching of its edges and a 1-factorization
of a graph is a decomposition of its edges into 1-factors. If rows denote edges
and columns denote points then the first twelve columns of B are precisely the
incidence matrix of K12. Every column of B outside the oval contains six 1s on
rows that will not be adjacent (as edges of K12). Therefore, each column of B
outside the oval forms a 1-factor of K12.

Furthermore, consider the set of columns in the first block of B. These rows
are all incident to the row through points 1 and 2. The other five 1s in each
column must each occur on distinct rows and will cover the remaining

(
10
2

)
= 45

rows through the points {3, . . . , 12}. Therefore, the first block of B forms a
1-factorization of K12 \ {1, 2} ∼= K10 and in general the ith block forms a 1-
factorization of K12 \ {1, i + 1}. Gelling [12] determined that there are exactly
396 nonisomorphic 1-factorizations of K10 and we assume that each has been
given a distinct label in the set {1, . . . , 396}.

Note that the symmetry group S generated by permuting the columns of the
oval acts transitively on the set of blocks: there is a permutation in S that will
send any block to any other block. Suppose we tag each completed block of B
with the label (as described above) of the 1-factorization that it is isomorphic
with. We may assume that block 2 of B has the minimal label amongst the blocks
of B—if it didn’t, we could send the block with minimal label to block 2 by an
appropriate permutation of S. Our symmetry breaking method will enforce the
condition that block 2 has the minimal label amongst the other blocks of B for
which we are searching (blocks 2–6). However, it is not very easy to concisely
express this constraint as clauses in Boolean logic. Therefore, we make use of
the programmatic SAT paradigm in order to enforce this constraint on-the-fly.

Programmatic Symmetry Breaking. A programmatic SAT solver is com-
piled with a “callback” function that often examines the solver’s current assign-
ment (the mapping from variables to truth values). When the callback function
determines the current state should be discarded it will add clauses to the SAT
instance that block the current assignment.

If all the variables in the ith block have been assigned and p is one of these
variables then we let Bi |= p denote that variable p has been assigned true.
Suppose all the variables in block 2 and block i ∈ {3, . . . , 6} have been assigned.
If the label of block 2 is strictly larger than the label of block i we want to
block this configuration from the search space. In such a case we want to add
the Boolean constraint

Nonexistence Certificates for Ovals in a Projective Plane of Order Ten 105

∧

B2|=p

p →
(
¬

∧

Bi|=p

p
)

or equivalently
∨

B2|=p

¬p ∨
∨

Bi|=p

¬p

which says that the ith block cannot be assigned the way it currently is while
the second block is assigned the way it currently is.

4 Implementation and Results

Our SAT encoding is implemented as a part of the MathCheck project; our
scripts are open source and available online at uwaterloo.ca/mathcheck. The
search proceeds in three main parts: First, we verify the result of Gelling [12]
that there are exactly 396 nonisomorphic 1-factorizations of K10. Second, we
generate 396 separate SAT instances (one for each nonisomorphic way of filling
in block 2 of B). The cube-and-conquer method is used in parallel to solve each
SAT instance. A cubing solver generates a set of cubes from each SAT instance
and a programmatic conquering solver is used to show that (up to the symmetry
breaking method of Sect. 3.2) there are 58 ways of completing the blocks 2–6.
Finally, we generate a new SAT instance for each of the 58 solutions and verify
that there are no consistent ways of extending these completions to block 7.
Additionally, to increase the confidence that the SAT instances were success-
fully solved the SAT solvers produced DRUP (delete reverse unit propagation)
certificates [18] which were subsequently verified. A flowchart of these steps is
available in this paper’s appendix at uwaterloo.ca/mathcheck.

4.1 Generating the SAT Instances

The SAT instances are generated by a Python script that writes the clauses
described in Sect. 3.1 to a file in DIMACS (Discrete Mathematics and Theoretical
Computer Science) CNF format. The script accepts as a parameter the columns
to include in the SAT instance and by default uses the columns in blocks 2–6
(those used in our primary search).

4.2 Generating the Nonisomorphic 1-Factorizations

The 396 nonisomorphic 1-factorizations of K10 as reported by Gelling [12] can be
quickly generated using a straightforward search, but we used a SAT approach
as that was convenient for our purpose. The SAT instance only uses the variables
in block 2, the columns of this block corresponding with 1-factors of K12 \{1, 3}.
As noted by Gelling, up to isomorphism the entries of the first 1-factor can be
completely assumed. By the lexicographic ordering assumption the first 1-factor
includes the edge (2, 4) and by permuting the columns {5, . . . , 12} of the oval we
can assume the first 1-factor contains the edges (5, 6), (7, 8), (9, 10), and (11, 12).
Gelling also noted that after fixing the first 1-factor there are exactly two ways
(up to isomorphism) of fixing the second 1-factor and the union of the first two
1-factors either form a 4-cycle and a 6-cycle or a 10-cycle.

https://uwaterloo.ca/mathcheck
https://uwaterloo.ca/mathcheck

106 C. Bright et al.

The entries that can be fixed are given to the SAT solver as unit clauses and
a programmatic implementation finds all nonisomorphic 1-factorizations. When-
ever a completion of block 2 is found, the program Traces from the nauty graph
isomorphism library determines if the completion is new or isomorphic to a pre-
viously found completion. (The graph provided to Traces is the incidence graph
representation [13] of the first 12 columns of B and the columns of block 2.) A
new completion is recorded for later use and a clause that blocks the completion
(i.e.,

∨
B2|=p ¬p) is added to the SAT instance until all possible completions have

been examined. A programmatic implementation of MapleSAT [31] confirms the
result of Gelling that 396 nonisomorphic 1-factorizations of K10 exist in about
8 s.

4.3 Solving the SAT Instances: Cubing

We now generate 396 distinct SAT instances, one for each of the 396 nonisomor-
phic ways of filling in block 2. Variables from blocks 2–6 are used in each SAT
instance, with the variables in block 2 completely determined by the specific
nonisomorphic 1-factorization chosen in each case. We simplify these instances
with the preprocessor of the SAT solver Lingeling [2] which produces proofs of
simplification without renaming variables. After simplification, these instances
each contained 912 unknown variables and on average contained 22,883 clauses.
Simplifying all 396 SAT instances requires about 15 min in total.

Next, we apply the cubing solver March cu [22] on each of the 396 individual
SAT instances. The conquering solver (see Sect. 4.4) typically performs better
when the variables in the cubes are not split across blocks. Thus, we modified
March cu so that it only produces cubes using variables occurring in the same
block as the first variable in the cubes. We controlled the cubing cutoff using the
-n parameter of March cu which stops cubing once the number of free variables
falls below the given bound. Each block contains 228 unknown variables and we
stop cubing once the subproblems specified by each cube contain at least 228
fewer free variables than the original instance. On average, March cu produced
about 180,000 cubes per SAT instance and spent about 17.5 total hours in this
step.

4.4 Solving the SAT Instances: Conquering

The majority of the search work was done by the conquering solver. A program-
matic version of MapleSAT [31] was used to complete this step. Each of the
396 SAT instances along with the cubes previously computed for each instance
were given to separate instances of MapleSAT and solved in parallel. The literals
in each cube were specified as incremental assumptions [35], so that it was not
necessary to restart the SAT solver after solving each cube.

The programmatic encoding from Sect. 3.2 was used to ignore any comple-
tions of blocks 3–6 whose label was strictly smaller than the label of block 2
(which was fixed in each SAT instance). The label of each block completion can

Nonexistence Certificates for Ovals in a Projective Plane of Order Ten 107

be computed by calling nauty on the incidence graph representation of the block
(as described in Sect. 4.2). However, these incidence graphs contain 87 vertices
(from 66 rows and 21 columns) and we found there was significant overhead from
calling nauty in this way.

Our final implementation makes use of a simpler check based on Gelling’s
observation that up to isomorphism each pair of columns in a block are of two
types (either a 4-cycle and 6-cycle or a 10-cycle). Given a complete block, we
check all

(
9
2

)
= 36 pairs of columns and generate the cycle pattern for each block

up to isomorphism—for example, one cycle pattern consists of the case when all
pairs of columns form 10-cycles. In general, a cycle pattern graph on 9 vertices
is constructed where two vertices are adjacent exactly when their associated
two columns form a 10-cycle. Using nauty we determined that the 396 distinct
block types gave rise to 359 distinct cycle patterns and in our programmatic
implementation we used the cycle pattern as a proxy for determining the block
label. In most cases the cycle pattern could be used to uniquely identify the
block label, but otherwise the block label was assigned to the largest possible
label consistent with the given cycle pattern (i.e., the most pessimistic choice in
terms of symmetry breaking).

Following [29], block labels were chosen for the blocks by sorting the blocks
in ascending order by the size of their stabilizer groups. Additionally, blocks
with identical cycle patterns were given adjacent labels when possible in order
to minimize the impact of the above pessimistic choice.

In total, this step required about 1,832 core hours on a cluster of Intel E5-
2683 CPUs running at 2.1 GHz. The search produced 58 valid completions of the
blocks 2–6 (see uwaterloo.ca/mathcheck for one explicit completion). Whenever
a valid completion B was found, a clause

∨
B|=p ¬p was programmatically added

to the SAT instance. The added clause blocked the completion from occurring
again later in the search.

Finally, for each of the 58 completions of blocks 2–6 a SAT instance was
generated that included the constraints from blocks 2–7 and a cube specifying
the completion (i.e.,

∧
B|=p p). It was found that none of the completions of

blocks 2–6 could be extended to block 7 and this final step required less than a
second.

4.5 Certificate Verification

The runs from the solvers produced DRUP proofs totalling about 33 terabytes.
These were verified using the proof verification tool DRAT-trim [39] which was
also used to trim and compress the proofs. These optimized proofs were archived
using 7z data compression and produced archives totalling about 3 terabytes.
These archives are available from the authors by request.

In order for the proofs to be verified by DRAT-trim the clauses which were
programmatically generated during the solver’s run also need to be provided to
DRAT-trim. One way of doing this is to add the programmatic clauses directly
into the CNF file provided to DRAT-trim. However, this method was found to

https://uwaterloo.ca/mathcheck

108 C. Bright et al.

suffer from very poor performance because this significantly increased the size
of the initial active clause database tracked by DRAT-trim.

To get around this we modified DRAT-trim to support the addition of
“trusted” clauses midway through the proof. Normally, each step of a proof
consists of either an addition or deletion to the active clause database. In the
case of an addition, DRAT-trim verifies that the added clause is a logical conse-
quence1 of the current set of active clauses. In our proofs we have a third kind
of step, a trusted addition that adds the clause into the current set of active
clauses without checking its provability. The justification for these clauses relies
on our symmetry breaking method and not on a property easily checkable in
Boolean logic, so the symmetry breaking clauses were not verified by DRAT-
trim. However, if you believe in the correctness of our SAT encoding, generation
scripts, DRAT-trim, and the trusted additions (whose correctness relies on our
symmetry breaking method and a call to nauty) then you must believe in our
certificates.

These proofs were checked using a system configured to limit each core to
at most 4 GB of memory. In order to meet this limit it was necessary to ensure
that each proof did not grow too large. To do this, March cu was used generate a
second “toplevel” set of cubes that partitioned the ith SAT instance into 398− i
subinstances. (As the label increased fewer subinstances were used because the
instances became easier due to symmetry breaking.) Each of the subinstances
were solved and had their proofs verified separately (each using at most 4 GB
of memory and 10 min of computing time).

5 Conclusions and Future Work

In this paper we have completed an independent search showing the nonexistence
of ovals in a projective plane of order ten. This was accomplished using a reduc-
tion to the Boolean satisfiability problem along with a SAT solver to show the
resulting SAT instances are unsatisfiable. However, in order to make the amount
of computation feasible it was necessary to use a symmetry breaking method.
We used a “programmatic” SAT solver coupled with the symbolic computation
library nauty [34] in order to learn symmetry breaking clauses on-the-fly during
the search.

Our implementation uses the SAT+CAS interface as developed by the Math-
Check project [40]. We are currently working on using MathCheck to verify more
of the searches that were necessary in order to show the nonexistence of projec-
tive planes of order ten [3]. To date, we have verified the searches of MacWilliams
et al. [32], Carter [9], and Lam et al. [29] that show that the rowspace of a projec-
tive plane of order ten does not contain vectors of weight 15 or 16. A consequence
of these searches is that the weight enumerator of the error-correcting code gen-
erated by a projective plane of order ten can be specified exactly [32].

1 DRAT-trim also supports a more general kind of provability termed “resolution
asymmetric tautology” that we did not use in our proofs.

Nonexistence Certificates for Ovals in a Projective Plane of Order Ten 109

In particular, the rowspace of a projective plane of order ten must contain
exactly 24,675 vectors of weight 19. The search for such vectors is the only case
that remains in order to provide a complete SAT-based independent verification
of the nonexistence of projective planes of order ten. We are currently exploring
the feasibility of this and believe MathCheck will be useful in this case as well.
The same basic encoding can be used but it seems necessary to tailor the sym-
metry breaking method and the structure of the search. This will be the subject
of future research.

Acknowledgements. The authors would like to thank the reviewers and the coor-
dinators at Springer Nature whose work improved the quality and correctness of this
publication.

References

1. Ábrahám, E.: Building bridges between symbolic computation and satisfiability
checking. In: Proceedings of the 2015 ACM on International Symposium on Sym-
bolic and Algebraic Computation, pp. 1–6. ACM (2015). https://doi.org/10.1145/
2755996.2756636

2. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the
SAT competition. In: Proceedings of SAT Competition 2018: Solver and Bench-
mark Descriptions (2018). http://fmv.jku.at/lingeling

3. Bright, C., Cheung, K., Stevens, B., Roy, D., Kotsireas, I., Ganesh, V.: A nonexis-
tence certificate for projective planes of order ten with weight 15 codewords. Appli-
cable Algebra in Engineering, Communication and Computing (2020). https://doi.
org/10.1007/s00200-020-00426-y

4. Bright, C., Kotsireas, I., Ganesh, V.: SAT solvers and computer algebra systems: a
powerful combination for mathematics. In: Proceedings of the 29th Annual Inter-
national Conference on Computer Science and Software Engineering, pp. 323–328.
IBM Corporation (2019). https://dl.acm.org/doi/10.5555/3370272.3370309

5. Bright, C., Kotsireas, I., Ganesh, V.: Applying computer algebra systems with
SAT solvers to the Williamson conjecture. J. Symb. Comput. 100, 187–209 (2020).
https://doi.org/10.1016/j.jsc.2019.07.024

6. Bright, C., Kotsireas, I., Heinle, A., Ganesh, V.: Complex golay pairs up to length
28: a search via computer algebra and programmatic SAT. J. Symb. Comput.
(2019). https://doi.org/10.1016/j.jsc.2019.10.013

7. Bright, C., -Doković, D.Ž., Kotsireas, I., Ganesh, V.: The SAT+CAS method for
combinatorial search with applications to best matrices. Ann. Math. Artif. Intell.
87(4), 321–342 (2019). https://doi.org/10.1007/s10472-019-09681-3

8. Bruck, R.H., Ryser, H.J.: The nonexistence of certain finite projective planes. Can.
J. Math. 1(1), 88–93 (1949). https://doi.org/10.4153/CJM-1949-009-2

9. Carter, J.L.: On the existence of a projective plane of order ten. Ph.D. thesis, Uni-
versity of California, Berkeley (1974). https://hdl.handle.net/2027/uc1.c3475138

10. Davenport, J.H., England, M., Griggio, A., Sturm, T., Tinelli, C.: Symbolic com-
putation and satisfiability checking. J. Symb. Comput. 100, 1–10 (2020). https://
doi.org/10.1016/j.jsc.2019.07.017

11. Ganesh, V., O’Donnell, C.W., Soos, M., Devadas, S., Rinard, M.C., Solar-Lezama,
A.: Lynx: a programmatic SAT solver for the RNA-folding problem. In: Cimatti, A.,

https://doi.org/10.1145/2755996.2756636
https://doi.org/10.1145/2755996.2756636
http://fmv.jku.at/lingeling
https://doi.org/10.1007/s00200-020-00426-y
https://doi.org/10.1007/s00200-020-00426-y
https://dl.acm.org/doi/10.5555/3370272.3370309
https://doi.org/10.1016/j.jsc.2019.07.024
https://doi.org/10.1016/j.jsc.2019.10.013
https://doi.org/10.1007/s10472-019-09681-3
https://doi.org/10.4153/CJM-1949-009-2
https://hdl.handle.net/2027/uc1.c3475138
https://doi.org/10.1016/j.jsc.2019.07.017
https://doi.org/10.1016/j.jsc.2019.07.017

110 C. Bright et al.

Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 143–156. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 12

12. Gelling, E.N.: On 1-factorizations of the complete graph and the relationship to
round robin schedules. Master’s thesis, University of Victoria (1973). http://hdl.
handle.net/1828/7341

13. Godsil, C., Royle, G.F.: Algebraic Graph Theory, vol. 207. Springer, New York
(2013). https://doi.org/10.1007/978-1-4613-0163-9

14. Hall Jr., M.: Finite projective planes. Am. Math. Mon. 62(7P2), 18–24 (1955).
https://doi.org/10.2307/2308176

15. Hall Jr., M.: Configurations in a plane of order ten. In: Annals of Discrete
Mathematics, vol. 6, pp. 157–174. Elsevier (1980). https://doi.org/10.1016/S0167-
5060(08)70701-5

16. Heule, M.J.H.: Schur number five. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, pp. 6598–6606. AAAI Press (2018). https://
www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952

17. Heule, M.J.H.: Trimming graphs using clausal proof optimization. In: Schiex, T., de
Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 251–267. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-30048-7 15

18. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal
proofs. In: 2013 Formal Methods in Computer-Aided Design, pp. 181–188. IEEE
(2013). https://doi.org/10.1109/FMCAD.2013.6679408

19. Heule, M.J.H., Kauers, M., Seidl, M.: New ways to multiply 3 × 3-matrices. arXiv
preprint arXiv:1905.10192 (2019). https://arxiv.org/abs/1905.10192

20. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 15

21. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving very hard problems: cube-
and-conquer, a hybrid SAT solving method. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 4864–
4868 (2017). https://doi.org/10.24963/ijcai.2017/683

22. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding
CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.)
HVC 2011. LNCS, vol. 7261, pp. 50–65. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34188-5 8

23. Kaski, P., Österg̊ard, P.R.J.: Classification Algorithms for Codes and Designs.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28991-7

24. Kaufmann, D., Biere, A., Kauers, M.: Verifying large multipliers by combin-
ing SAT and computer algebra. In: 2019 Formal Methods in Computer Aided
Design (FMCAD), pp. 28–36. IEEE (2019). https://doi.org/10.23919/FMCAD.
2019.8894250

25. Konev, B., Lisitsa, A.: Computer-aided proof of Erdős discrepancy properties.
Artif. Intell. 224, 103–118 (2015). https://doi.org/10.1016/j.artint.2015.03.004

26. Lam, C., Thiel, L., Swiercz, S.: A feasibility study of a search for ovals in a projec-
tive plane of order 10. In: Billington, E.J., Oates-Williams, S., Street, A.P. (eds.)
Combinatorial Mathematics IX. LNM, vol. 952, pp. 349–352. Springer, Heidelberg
(1982). https://doi.org/10.1007/BFb0061988

27. Lam, C.W.H.: The search for a finite projective plane of order 10. Am. Math. Mon.
98(4), 305–318 (1991). https://doi.org/10.1080/00029890.1991.12000759

https://doi.org/10.1007/978-3-642-31612-8_12
http://hdl.handle.net/1828/7341
http://hdl.handle.net/1828/7341
https://doi.org/10.1007/978-1-4613-0163-9
https://doi.org/10.2307/2308176
https://doi.org/10.1016/S0167-5060(08)70701-5
https://doi.org/10.1016/S0167-5060(08)70701-5
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://doi.org/10.1007/978-3-030-30048-7_15
https://doi.org/10.1109/FMCAD.2013.6679408
http://arxiv.org/abs/1905.10192
https://arxiv.org/abs/1905.10192
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.24963/ijcai.2017/683
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/3-540-28991-7
https://doi.org/10.23919/FMCAD.2019.8894250
https://doi.org/10.23919/FMCAD.2019.8894250
https://doi.org/10.1016/j.artint.2015.03.004
https://doi.org/10.1007/BFb0061988
https://doi.org/10.1080/00029890.1991.12000759

Nonexistence Certificates for Ovals in a Projective Plane of Order Ten 111

28. Lam, C.W.H., Thiel, L., Swiercz, S.: The non-existence of finite projective planes of
order 10. Can. J. Math. 41(6), 1117–1123 (1989). https://doi.org/10.4153/CJM-
1989-049-4

29. Lam, C.W.H., Thiel, L., Swiercz, S.: The nonexistence of code words of weight 16
in a projective plane of order 10. J. Comb. Theory Ser. A 42(2), 207–214 (1986).
https://doi.org/10.1016/0097-3165(86)90091-9

30. Lam, C.W.H., Thiel, L., Swiercz, S., McKay, J.: The nonexistence of ovals in a
projective plane of order 10. Discret. Math. 45(2–3), 319–321 (1983). https://doi.
org/10.1016/0012-365X(83)90049-3

31. Liang, J.H., Govind V.K., H., Poupart, P., Czarnecki, K., Ganesh, V.: An empirical
study of branching heuristics through the lens of global learning rate. In: Gaspers,
S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 119–135. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66263-3 8

32. MacWilliams, F.J., Sloane, N.J.A., Thompson, J.G.: On the existence of a projec-
tive plane of order 10. J. Comb. Theory Ser. A 14(1), 66–78 (1973). https://doi.
org/10.1016/0097-3165(73)90064-2

33. Mathon, R.: The partial geometries pg(5, 7, 3). Congr. Numer. 31, 129–139 (1981)
34. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60,

94–112 (2014). https://doi.org/10.1016/j.jsc.2013.09.003
35. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A.,

Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 19

36. Read, R.C.: Every one a winner or how to avoid isomorphism search when cata-
loguing combinatorial configurations. In: Annals of Discrete Mathematics, vol. 2,
pp. 107–120. Elsevier (1978). https://doi.org/10.1016/S0167-5060(08)70325-X

37. Roy, D.J.: Confirmation of the non-existence of a projective plane of order 10.
Master’s thesis, Carleton University (2011). https://doi.org/10.22215/etd/2011-
09202

38. Royle, G.F.: An orderly algorithm and some applications in finite geome-
try. Discret. Math. 185(1–3), 105–115 (1998). https://doi.org/10.1016/S0012-
365X(97)00167-2

39. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: efficient checking and
trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014.
LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-09284-3 31

40. Zulkoski, E., Bright, C., Heinle, A., Kotsireas, I., Czarnecki, K., Ganesh, V.: Com-
bining SAT solvers with computer algebra systems to verify combinatorial conjec-
tures. J. Autom. Reason. 58(3), 313–339 (2016). https://doi.org/10.1007/s10817-
016-9396-y

https://doi.org/10.4153/CJM-1989-049-4
https://doi.org/10.4153/CJM-1989-049-4
https://doi.org/10.1016/0097-3165(86)90091-9
https://doi.org/10.1016/0012-365X(83)90049-3
https://doi.org/10.1016/0012-365X(83)90049-3
https://doi.org/10.1007/978-3-319-66263-3_8
https://doi.org/10.1016/0097-3165(73)90064-2
https://doi.org/10.1016/0097-3165(73)90064-2
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1016/S0167-5060(08)70325-X
https://doi.org/10.22215/etd/2011-09202
https://doi.org/10.22215/etd/2011-09202
https://doi.org/10.1016/S0012-365X(97)00167-2
https://doi.org/10.1016/S0012-365X(97)00167-2
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/s10817-016-9396-y
https://doi.org/10.1007/s10817-016-9396-y

Edge-Disjoint Branchings in Temporal
Graphs

Victor Campos3, Raul Lopes3, Andrea Marino1, and Ana Silva2(B)

1 Dipartimento di Sistemi, Informatica, Applicazioni,
Università degli Studi di Firenze, Florence, Italy

andrea.marino@unifi.it
2 Departamento de Matemática, Universidade Federal do Ceará,

Fortaleza, CE, Brazil
anasilva@mat.ufc.br

3 Departamento de Computação, Universidade Federal do Ceará,
Fortaleza, CE, Brazil

{campos,raul.lopes}@lia.ufc.br

Abstract. A temporal digraph G is a triple (G, γ, λ) where G is a
digraph, γ is a function on V (G) that tells us the time stamps when
a vertex is active, and λ is a function on E(G) that tells for each
uv ∈ E(G) when u and v are linked. Given a static digraph G, and a
subset R ⊆ V (G), a spanning branching with root R is a subdigraph of G
that has exactly one path from R to each v ∈ V (G). In this paper, we con-
sider the temporal version of Edmonds’ classical result about the prob-
lem of finding k edge-disjoint spanning branchings respectively rooted at
given R1, · · · , Rk. We introduce and investigate different definitions of
spanning branchings, and of edge-disjointness in the context of temporal
graphs. A branching B is vertex-spanning if the root is able to reach
each vertex v of G at some time where v is active, while it is temporal-
spanning if v can be reached from the root at every time where v is
active. On the other hand, two branchings B1 and B2 are edge-disjoint
if they do not use the same edge of G, and are temporal-edge-disjoint if
they can use the same edge of G but at different times. This lead us to
four definitions of disjoint spanning branchings and we prove that, unlike
the static case, only one of these can be computed in polynomial time,
namely the temporal-edge-disjoint temporal-spanning branchings prob-
lem, while the other versions are NP-complete, even under very strict
assumptions.

1 Introduction

In this paper, we refer to digraphs in the classical sense as static digraphs. A
temporal digraph is a digraph that exists and changes in a time interval T . That

Partially supported by FUNCAP/CNPq/Brazil, Project PRONEM PNE-0112-
00061.01.00/16, CNPq Universal 401519/2016-3/ Produtividade 304576/2017-4, MIUR
under PRIN Project n. 20174LF3T8 AHeAD (Efficient Algorithms for HArnessing Net-
worked Data).

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 112–125, 2020.
https://doi.org/10.1007/978-3-030-48966-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_9

Edge-Disjoint Branchings in Temporal Graphs 113

is, given a static digraph G, a temporal digraph G with base static digraph G and
lifetime T changes as follows: at each time stamp t ∈ T , only a subdigraph of G
is active, and edges might have a delay, leaving a vertex at some time stamp but
arriving only later. If a vertex v ∈ V (G) is active at every t ∈ T , we say that v
is permanent.

In this paper we deal with disjoint spanning branchings in temporal digraphs,
which are well-understood structures in digraphs. Given a digraph G, and a
subset R ⊆ V (G), we say that H ⊆ G is a spanning branching of G with root R
if V (H) = V (G), and H contains exactly one path between some r ∈ R and u, for
each u ∈ V (G). Given subsets R1, · · · , Rk, a classical result by Edmonds [9] gives
a necessary and sufficient condition for the existence of k edge-disjoint branchings
with roots R1, · · · , Rk, respectively. His result also gives a polynomial algorithm
that constructs these branchings.

When translating concepts to temporal graphs, it is often the case that theo-
rems coming from graph theory, in the classical sense, can hold or not depending
on the adopted definition. Indeed, in [14] the authors give an example where
Edmonds’ result on branchings does not hold on the temporal context. However,
as we will see later, their concept is just one of many possible definitions, and
in fact there is even one case where polynomiality holds.

Another example of such behavior is the validity of Menger’s Theorem. It
has been shown that the edge version of Menger’s Theorem holds [3], even if
one considers weights on the edges [2]. However, the vertex version of Menger’s
Theorem holds or not, depending on how one interprets what a cut should be.
If a cut is understood as a subset of V (G), then Menger’s Theorem does not
hold [3,14]; and if it is understood as a subset of the appearances of vertices
in time (alternatively, a cut can be seen as deactivating vertices at some time
stamps), then Menger’s Theorem holds [18].

Our Contribution. Given a temporal digraph G with base digraph G, and subsets
of vertices in time R1, · · · , Rk, i.e. sets of pairs (u, t) where u is a vertex of G
and t a time stamp, here we investigate the many variations of finding (pairwise)
disjoint spanning branchings with roots R1, · · · , Rk. Spanning can mean that
one wants to pass by at least one appearance of each u ∈ V (G) (called vertex
spanning), or by all appearances of each u ∈ V (G) (called temporal spanning).
Similarly, edge-disjoint can have different interpretations, as it can refer to edges
of G or to the appearances of these edges in G. We say that two branchings are
edge-disjoint if they do not share any edge of G, and that they are temporal-
edge-disjoint (or t-edge-disjoint for short) if they do not share any appearance
of an edge of G in G. We found that the only case in which this problem is
polynomial (as its static counterpart) is when we want t-edge-disjoint temporal-
spanning branchings. We also found that if vertices are permanent (this is the
more popular case where vertices are always active), the problem is polynomial
for temporal-spanning branchings and NP-complete otherwise. Our results are
summarized in Table 1 and detailed in the following main theorem. A digraph
G is a in-star if there exists u ∈ V (G) such that all the edges in G are incoming
edges to u.

114 V. Campos et al.

Table 1. Our results. Vertices are permanent if they are always active.

not permanent vertices permanent vertices

edge-disjoint t-edge-disjoint edge-disjoint t-edge-disjoint

temporal-

spanning

Poly NP-c Poly Poly

vertex-

spanning

NP-c NP-c NP-c NP-c

Theorem 1. Let G be a temporal digraph with base digraph G, and consider
subsets of vertices in time, R1, · · · , Rk. The problem of finding k branchings
rooted at R1, · · · , Rk is:

1. Polynomial for t-edge-disjoint temporal-spanning,
2. NP-complete for edge-disjoint temporal-spanning even if G is a in-star, and

each snapshot has constant size, or if G has lifetime 3. And if vertices are
permanent or G has lifetime 2, then edge-disjoint temporal-spanning becomes
polynomial.

3. NP-complete for edge-disjoint vertex-spanning even if G is a DAG, the lifetime
of G is 2, and vertices are permanent.

4. NP-complete for t-edge-disjoint vertex-spanning even if G is a DAG, the life-
time of G is 2, and vertices are permanent.

As said before, Edmonds’ condition is the characterization behind the poly-
nomial algorithm for finding k edge disjoint spanning branchings in digraphs.
Because of our NP-completeness results, it is worth remarking that, unless
P=NP, any such characterization for the NP-complete cases in temporal digraphs
should be checkable in superpolynomial time, unlike the one provided by
Edmonds.

Finally, our reductions further imply that, in the case of edge-disjoint
temporal-spanning, even if the base digraph G is a in-star, the problem cannot
be solved by an algorithm running in time O∗(2o(T)) unless ETH fails, where
T is the lifetime of G. Moreover, in the vertex-spanning variations, the problem
also cannot be solved in O∗(2o(n+m)) under the same assumption, where n and
m are respectively the number of nodes and edges of the base digraph of G.

Related Work: While it is easy to imagine a variety of graph problems that
can profit from considering changes in time, it is hard to pin-point when the
study of temporal graphs and similar structures began. Nevertheless, in the last
decade or so, it has attracted a lot of attention from the community, with a
considerable number of papers being published in the field (we refer the reader
to the surveys [15,19]). We mention that temporal graphs (or other very similar
structures) appear in the literature under a number of names, such as dynamic
networks [4], time-varying graphs [8], evolving networks [5], and link streams [15].
Also, many works consider a temporal graph G as having vertices that are always

Edge-Disjoint Branchings in Temporal Graphs 115

active, and edges have the same starting and ending time [2,6,14,18,20]. While
models where edges that have a delay are more common [8,25], models where
nodes can be inactive have already been considered in [8,15].

A path in temporal graphs is generally understood as a sequence of edges
respecting time, i.e. the arrival time in each vertex of the path must be lower than
the departing time of the next edge taken. In this context, a number of metrics
can be related to a path, such as earliest arrival time, latest departure time,
minimum number of temporal edges, and minimum traveling time [25]. When
vertices can be inactive, we have to further ensure that, when waiting for the
next edge on a certain vertex, it must remain active in the waiting period [8]. In
this scenario, the definitions of reachability and connectivity change accordingly,
and it is natural to ask how well-known structures and results from graph theory
in the classical sense change taking into account the temporal constraint.

Temporal definitions of trees [6,15] and (minimum) spanning trees [13], which
are related to our definition of branching, have been proposed and investigated,
and usually consist of ensuring that the root-to-node path in the tree is a valid
temporal path. Analogously, temporal cuts from a vertex s to t aim to break any
temporal path from s to t and can be related to extending the max-flow min-cut
Theorem to temporal graphs [2]. And as we have already mentioned, different
conclusions have been made about a temporal version of Menger’s Theorem
depending on the adopted translation in terms of temporal graphs [3,14,18].

Edmonds’ Theorem on disjoint branchings is a classical theorem in graph
theory, with many distinct existing proofs (e.g. Lovász [16], Tarjan [24], and
Fulkerson and Harding [12]), and has many interesting consequences on digraph
theory (e.g., one can derive Menger’s Theorem from it, characterize arc-
connectivity [22], characterize branching cover [11], ensure integer decomposi-
tion of the polytope of branchings of size k [17], etc). As far as we know, the
only other time that Edmonds’ Theorem has been investigated on the temporal
context has been in [14], where the authors give an example where the theorem
does not hold. The definition used by them falls into our category of edge-disjoint
vertex-spanning branchings, which we prove to be NP-complete even under very
strict constraints.

Structure of the Paper. The paper is organized as follows. In Sect. 2, we formal-
ize the definitions of spanning branchings and disjointness, also showing that
having multiple roots in each of the k branchings is computationally equivalent
to having a single root for all of the k branchings. In Sect. 3, we present the
results about temporal-spanning branchings. In Sect. 4 we present our results
concerning vertex-spanning branchings. Finally, in Sect. 5, we draw our conclu-
sions and make some final remarks. The proofs of the results marked with ‘(�)’
can be found online in [7].

2 The Temporal Disjoint Branchings Problems

This section is devoted to formally define the several concepts of temporal graphs
and disjoint branchings we introduce in this paper. A temporal digraph G is a

116 V. Campos et al.

triple (G, γ, λ) where G is a digraph and γ and λ are functions on V (G) and
E(G), respectively, that tell us when the vertices and the edges appear. More
formally, for each v ∈ V (G) we have γ(v) ⊆ N, and for each edge e ∈ E(G) we
have λ(e) ⊆ N × N. Also, if (t, t′) ∈ λ(uv), then t ≤ t′, t ∈ γ(u) and t′ ∈ γ(v).
Here, we consider only finite temporal digraphs, i.e., T = max

⋃
v∈V (G) γ(v) is

defined and is called the lifetime of G. We call G the base digraph of G. In what
follows, unless said otherwise, we work on general digraphs, i.e., directions, loops
and multiple edges are allowed.

In particular, if T is the lifetime of G = (G, γ, λ), γ(v) = [T] for each
v ∈ V (G), and t = t′ for every (t, t′) ∈ λ(E(G)), then the above definition
corresponds to the definition of temporal graph given in [14] and many other
works. The above definition also generalizes the definition of stream graph given
in [15], and of time-varying graphs given in [1].

The vertices and edges of G are the vertices and edges of G. We say that a
vertex v is active at time t if t ∈ γ(v), and that v is active from t1 to t2 if v
is active for every time t with t1 ≤ t ≤ t2. Also, if v is active throughout the
lifetime of G, then we say that v is permanent. The set VT of temporal vertices
is the set {(v, t) | v ∈ V (G) and t ∈ γ(v)}, and the set ET of temporal edges
is the set {(u, t)(v, t′) | e = uv ∈ E(G) and (t, t′) ∈ λ(e)}. Observe that a
temporal digraph G = (G, γ, λ) can be also seen as a pair of digraphs (G,GT)
where GT = (VT , ET). This is similar to what has been proposed in [1] and [2].
We call the digraph GT the (γ, λ)-digraph of G.

Since in our more general case, also vertices appear and disappear, the defi-
nition of walk must take into account that it is possible to wait only on vertices
which are active, as formally defined next. Given temporal vertices s1, sk ∈ VT ,
an s1, sk-temporal walk in (G,GT) is a sequence of temporal vertices and tem-
poral edges, (s1, . . . , sk), that either goes through a temporal edge, or stays on
different copies of the same vertex of G. More formally: if si is a temporal edge,
then si−1 and si+1 are temporal vertices and si goes from si−1 to si+1; and if
si and si+1 are temporal vertices, then si = (v, t) and si+1 = (v, t + 1) for some
vertex v and some time t. If such a walk exists, we say that s1 reaches sk.

A temporal digraph B = (G′, γ′, λ′) such that G′ ⊆ G, γ′ ⊆ γ and λ′ ⊆ λ is
called a temporal subdigraph of G.1 Let R ⊆ VT ; a temporal subdigraph B of G
is a temporal-spanning branching of G with root R if B has a unique temporal
walk from R to every vertex in VT , i.e. for any (u, i) ∈ VT there is exactly one
temporal walk in B starting at some vertex r ∈ R and arriving at (u, i). And B
is a vertex-spanning branching of G with root R if B has exactly one temporal
walk from R to some vertex in {(u, i) ∈ VT } for every u ∈ V (G).

Given two branchings B1 = (G1, γ1, λ1) and B2 = (G2, γ2, λ2) rooted at
R1, R2, respectively, either both temporal-spanning or both vertex-spanning, we
say that B1 and B2 are temporal-edge-disjoint (or t-edge-disjoint for short) if
they have no common temporal edges; more formally, if λ1(e) ∩ λ2(e) = ∅ for

1 Here, a function is seen as a set of ordered pairs, and the containment relation is the
usual one for sets.

Edge-Disjoint Branchings in Temporal Graphs 117

every e ∈ E(G). And we say that B1 and B2 are edge-disjoint if there is no edge
uv ∈ E(G) that has copies in both B1 and B2; more formally, E(G1)∩E(G2) = ∅.

Problem 1 (k X-disjoint Y -spanning Branching). Let X ∈ {edge, t-edge}, Y ∈
{temporal, vertex}, and k be a fixed positive integer. Given a temporal digraph G,
and subsets of temporal vertices R1, . . . , Rk ⊆ VT , find k X-disjoint Y -spanning
branchings B1, . . . ,Bk respectively with roots R1, . . . , Rk.

We introduce the following restriction of Problem 1, which corresponds to
finding branchings that have a single root (also called out-arborescence).

Problem 2 (k Single Source X-disjoint Y -spanning Branching). Let X ∈
{edge, t-edge}, Y ∈ {temporal, vertex}, and k be a fixed positive integer. Given a
temporal digraph G, and a temporal vertex r ∈ VT , find k X-disjoint Y -spanning
branchings B1, . . . ,Bk each one with root r.

Lemma 1. Problem 1 is computationally equivalent to Problem 2.

Proof. Problem 2 is clearly a restriction of Problem 1. In the following we provide
the reduction in the opposite direction, from the problem where each branching
has a subset of VT as roots to the problem where each branching has a single
same root. For this, for each i ∈ [k] add a new vertex ri to G adjacent to every
u ∈ V (G) such that (u, t) ∈ Ri, for some t ∈ [T]. Then, make γ(ri) = {0},
and for each (u, t) ∈ Ri, add (0, t) to λ(riu) (which is the same as adding the
temporal edge (ri, 0)(u, t) to G). Moreover, add a vertex r and make it adjacent
to {r1, · · · , rk}; also make γ(r) = {0} and λ(rri) = {(0, 0)} (which is the same
as adding temporal edges (r, 0)(ri, 0) for every i ∈ [k]).

One can see that k vertex-spanning (resp. temporal-spanning) branchings
rooted at r give k vertex-spanning (resp. temporal-spanning) branchings rooted
at R1, · · · , Rk, and vice-versa. The edge-disjointness, both for t-edge or edge-
disjoint versions, clearly are not altered by adding the new temporal edges. ��

The next easy proposition tells us that if finding k disjoint spanning branch-
ings is hard, for some fixed k, then so is finding k + 1 of them.

Proposition 1. Let X ∈ {edge, t-edge}, Y ∈ {temporal, vertex} and k be a fixed
positive integer. If Problem k X-disjoint Y -spanning Branching is NP-complete,
then the same holds for Problem k + 1 X-disjoint Y -spanning Branching.

Proof. To reduce from k to k + 1, it suffices to add Rk+1 = VT as entry. Surely
the (k+1)-th branching has no temporal edges, which means that the other ones
form a solution to the initial problem. ��

3 Temporal-Spanning Branchings

This section is devoted to study Problem 1 in the case where Y is tem-
poral, i.e. we aim to find k X-disjoint temporal-spanning branchings, with
X ∈ {edge, t-edge}. We will hence prove Item 1 and Item 2 of Theorem 1 respec-
tively in Sect. 3.1 and in Sect. 3.2.

118 V. Campos et al.

3.1 T-Edge-Disjoint Temporal-Spanning Branchings

Let G = (G, γ, λ), and let VT , ET be its set of temporal vertices and edges, respec-
tively. Also, let R1, · · · , Rk ⊆ VT , and H = (VT , ET ∪ E′), where E′ contains k
copies of the edge (u, t)(u, t+1) whenever {(u, t), (u, t+1)} ⊆ VT . We prove that
G has the desired branchings iff H has k edge-disjoint spanning branchings with
roots R1, · · · , Rk. Then, Item 1 of Theorem 1 follows by Edmonds’ result [9].

Lemma 2. Let G = (G, γ, λ) be a temporal digraph, R1, · · · , Rk ⊆ VT , and H be
constructed as above. Then, G has k t-edge-disjoint temporal-spanning branchings
rooted at R1, · · · , Rk iff H has k edge-disjoint spanning branchings rooted at
R1, · · · , Rk.

Proof. Let B1, · · · ,Bk be t-edge-disjoint temporal-spanning branchings rooted
at R1, · · · , Rk, respectively. For each Bi, let Bi be a spanning subgraph of H
initially containing the temporal edges of Bi; then for each (u, t) ∈ V (Bi), if the
only walk in Bi from Ri to (u, t) contains (u, t)(u, t + 1) as a subsequence, then
add an unused copy of (u, t)(u, t + 1) ∈ to Bi. Because this walk is unique and
cannot pass twice from time stamp t to time stamp t + 1, we get that at most
k copies are needed, and, hence, the produced branchings are edge-disjoint. The
converse can be easily proved by deleting the edges in E′ from the solution to
obtain the temporal subgraphs. ��

3.2 Edge-Disjoint Temporal-Spanning Branchings

In this section, we prove Item 2 of Theorem 1. For this, we first prove that the
problem is NP-complete, and then that it is polynomial when each vertex is
active for a consecutive set of time stamps. This includes the popular case where
vertices are assumed to be permanent, as well as the case where T = 2.

Theorem 2 and Theorem 3 below detail our NP-completeness results. In the
next proof, we make a reduction from the k-Weak Disjoint Paths problem
(k-WDP), where we are given a digraph G and a set I of k pairs of vertices
{(s1, t1), . . . , (sk, tk)} (called the requests) of V (G) and the goal is to find a
collection of pairwise edge-disjoint paths {P1, . . . , Pk} such that Pi is a path
from si to ti in G, for i ∈ {1, . . . , k}. The k-WDP problem is NP-complete for
k = 2 [10] and W[1]-hard with parameter k in DAGs [23].

Theorem 2. Let k ≥ 2 be a fixed integer, G = (G, γ, λ) be a temporal digraph,
and R1, . . . , Rk ⊆ VT . Deciding whether G has k edge-disjoint temporal-spanning
branchings rooted at R1, · · · , Rk is NP-complete even if G has lifetime 3.

Proof. Let (G, I) be an instance of 2-WDP with I = {(s1, t1), (s2, t2)}, and
define W = {s1, t1, s2, t2}. Assume that s1, s2 are sources, t1, t2 are sinks, and all
vertices in W are distinct. We construct the temporal graph G = (G, γ, λ) with
subsets R1, R2 such that G has 2 edge-disjoint temporal-spanning branchings
rooted at R1, R2 if and only if (G, I) is a “yes” instance of 2-WDP. The NP-
completeness for higher values of k follows from Proposition 1.

Edge-Disjoint Branchings in Temporal Graphs 119

In the constructed temporal graph, there are no temporal edges of the type
(u, t)(v, t′) with t �= t′. For this reason, it is easier to describe our temporal
graph by describing, for each timestamp, what are the vertices and edges that
are active. These are called snapshots and consist of subgraphs of G formed at
each timestamp.

We let the first snapshot of G initially consist of G − {s2, t2}, and the
third snapshot initially consist of G − {s1, t1}. Then, we add a new vertex x
to snapshot 1, and add the edges: {xv | v ∈ V (G) \ {s2, t2}} ∪ {t1v | v ∈
(V (G) ∪ {x})\{s1, s2, t2}}. Similarly, we add a new vertex y to snapshot 3, and
add the edges: {yv | v ∈ V (G)\{s1, t1}} ∪ {t2v | v ∈ (V (G) ∪ {y})\{s2, s1, t1}}.
Observe Fig. 1.

G1 G2 G3

G−W + s1

t1 x

G−W + s2

t2 y

Fig. 1. Temporal graph constructed from an instance (G, I) of 2-WDP, where I =
{(s1, t1), (s2, t2)} and W = {s1, t1, s2, t2}. Edges arriving in t1 and t2 originally from
G are omitted.

Define R1 = {(s1, 1), (y, 3)} and R2 = {(s2, 3), (x, 1)}. Now, we prove that
(G, I) is a “yes” instance of 2-WDP if and only if G contains two edge-disjoint
temporal-spanning branchings rooted at R1 and R2, respectively. Notice that
snapshot 2 of G is empty, thus each path in G can be represented by either a
temporal path on snapshot 1 or a temporal path on snapshot 2.

First, let P1 and P2 be two edge-disjoint paths from s1 to t1 and from s2
to t2 in G, respectively. Let T1 be initially the copy of P1 in snapshot 1, and
T2 be initially the copy of P2 in snapshot 3. Note that the vertices not spanned
by T1 are all the copies of v /∈ V (P1) in snapshot 1, together with all the
vertices in snapshot 3, and vertices {(x, 1), (y, 3)}. To span snapshot 3, add to
T1 all edges between (y, 3) and (v, 3), for every v ∈ V (G) \ {s1, t1}. To span
the remainder of snapshot 1, add all edges between (t1, 1) and (v, 1), for every
v ∈ V (G) \ (V (P1) ∪ {s2, t2}), and the edge from (t1, 1) to (x, 1). A similar
argument can be applied to span every temporal vertex also with T2. Because
P1 and P2 are edge-disjoint, we get that T1 and T2 could only intersect in the
added edges, which does not occur because all edges added to T1 are incident
to t1 and y, all edges added to T2 are incident to t2 and x, and there is no
intersection between these.

120 V. Campos et al.

Now, let T1 and T2 be edge-disjoint temporal-spanning branchings in G with
roots R1, R2. Denote snapshot 1 by G1. Since t1 appears only in G1, and the only
root of R1 in G1 is (s1, 1), we get that in T1 there exists a path of G1 going from
(s1, 1) to (t1, 1). Because the only incoming edge to (x, 1) is (t1, 1)(x, 1), we get
that (x, 1) cannot be an internal vertex in this path, and hence it corresponds
to a path in G, P1. Applying a similar argument, we get a path P2 from s2 to t2
in G taken from T2, and since T1 and T2 are edge-disjoint, so are P1 and P2. ��

The next result concludes the proof of Item 2 of Theorem 1.

Theorem 3 (�). Let k ≥ 2 be a fixed integer, G = (G, γ, λ) be a temporal
digraph, and R1, . . . , Rk ⊆ VT . Deciding whether G has k edge-disjoint temporal-
spanning branchings rooted at R1, · · · , Rk is NP-complete, even if G is a in-
star, and each snapshot has constant size. Furthermore, in this case, there is no
algorithm running in time O∗(2o(T)) to solve the problem, unless ETH fails.

The following theorem gives us a situation where the problem becomes easy.
Note that this case includes the temporal graphs used in [2,6,14,18,20], where
vertices are assumed to be permanent. It also implies that the problem is poly-
nomial when the lifetime of G is 2, which together with Theorem 2, gives a
complete dichotomy in terms of the lifetime of G.

Theorem 4. Let G = (G, γ, λ) be a temporal digraph with temporal vertices VT ,
and let R1, · · · , Rk ⊆ VT . If for every v ∈ V (G), γ(v) is exactly one interval of
consecutive integers, then finding k edge-disjoint temporal-spanning branchings
rooted at R1, · · · , Rk can be done in polynomial time.

Proof. Let T be the lifetime of G. We first construct digraphs G0, · · · , GT and
subsets Rj

1, · · · , Rj
k for each j ∈ {0, · · · , T }, then we prove that G has the desired

branchings if and only if Gj has k edge-disjoint branchings rooted at Rj
1, . . . , R

j
k

for each j ∈ {0, · · · , T }, which can be checked in polynomial time, applying
Edmonds’ result [9].

First, let G0 = (V0, E0) be the digraph in time stamp 0, i.e, V0 = {u ∈ V (G) |
0 ∈ γ(u)} and E0 = {e ∈ E(G) | (0, 0) ∈ γ(e)}. Also, for every i ∈ [k], let R0

i be
the roots at time stamp 0, i.e., the set {u ∈ V (G) | (u, 0) ∈ Ri}. Now, for each
j ∈ [T], let Gj = (Vj , Ej) be the digraph containing the edges arriving at time
stamp j together with their endpoints; more formally, Ej = {e ∈ E(G) | (t, j) ∈
λ(e), for some t} and Vj = {u ∈ V (G) | (u, j) ∈ VT or uv ∈ Ej , for some v}.
Also, for each i ∈ [k], let Rj

i be the set of roots at time stamp j together with
vertices still active from the previous time stamp, i.e., Rj

i = {u ∈ V (G) | (u, j) ∈
Ri} ∪ {u ∈ V (G) | {j − 1, j} ⊆ γ(u)}.

Now, let B1, · · · ,Bk be edge-disjoint temporal-spanning branchings rooted
at R1, · · · , Rk; denote by ET (Bi) the set of temporal edges of Bi. Con-
sider j ∈ {0, · · · , T }, and for each i ∈ [k], let Bj

i be the set of edges of
Bi that have a copy ending at time stamp j, i.e., Bj

i = {uv ∈ E(G) |

Edge-Disjoint Branchings in Temporal Graphs 121

(u, h)(v, j) ∈ ET (Bi) for some h}. Because B1, · · · ,Bk are edge-disjoint, we get
that Bj

1, · · · , Bj
k are also disjoint. It remains to prove that each Bj

i is the edge
set of a spanning branching of Gj rooted at Rj

i . So, consider any i ∈ [k]. Because
Bi is a temporal-spanning branching of G, we know that each u ∈ V (G) is either
the head of some edge in Bj

i , in which case u is spanned by Bj
i , or u is a root in

Bj
i . We prove that in the latter case we get that u ∈ Rj

i . Because u is not the
head of any edge in Bj

i , this means that either (u, j) ∈ Ri or (u, j) is spanned
by Bi just by waiting, i.e., {j − 1, j} ⊆ γ(u). In both cases, we get that u ∈ Rj

i ,
as we wanted to prove.

Now, for each j ∈ {0, · · · , T }, let Bj
1, . . . , B

j
k be the edge sets of k edge-

disjoint spanning branchings of Gj . First, we prove that if uv ∈ Bj
i , then v ∈ Rj′

i′

for every i′ ∈ [k] and every j′ ∈ {j + 1, · · · , T } ∩ γ(v); hence if Bi =
⋃T

j=0 Bj
i ,

then we get that B1, · · · , Bk are disjoint (these will be used later to construct
the desired temporal branchings). So let j′ ∈ {j + 1, · · · , k} ∩ γ(v) and observe
that if uv ∈ E(Gj) then j ∈ γ(v). Because γ(v) is an interval of consecutive
integers and j < j′ ∈ γ(v), we get that j′ − 1 ∈ γ(v), which implies that v ∈ Rj′

i′

for every i′ ∈ [k], as we wanted to show. Now, for each i ∈ [k], let Bi = (G, γ, λi)
be a spanning temporal subdigraph of G having as temporal edges the temporal
copies of each e ∈ Bi, i.e, λi(e) = λ(e) if e ∈ Bi, and λi(e) = ∅ otherwise.
Because B1, · · · , Bk are disjoint, it follows that B1, · · · ,Bk are edge-disjoint, so
it remains to prove that each Bi is a temporal-spanning branching rooted at
Ri. Let u ∈ V (G), and recall that γ(u) is an interval of consecutive integers;
denote by su the minimum value in γ(u). Note that we just need to prove that
if (u, su) /∈ Ri, then there exists a temporal edge in Bi arriving in (u, su); this is
because the other copies can be spanned simply by waiting in the interval γ(u).
Since (u, su) /∈ Ri and su − 1 /∈ γ(u), we get that u /∈ Rsu

i . So, let vu ∈ Bsu
i (it

exists since Bsu
i is the edge set of a spanning branching of Gsu

), and recall that
λi(vu) = λ(vu). We know that vu ∈ E(Gsu

) only if (v, j)(u, su) is a temporal
edge of G for some j ≤ su (i.e. (j, su) ∈ λ(vu)). This means that there is a
temporal edge arriving in (u, su) in Bi, completing the proof. ��

4 Vertex-Spanning Branchings

In this section, we provide an NP-completeness proof to prove both Item 3 and
Item 4 of Theorem 1. We make a reduction from NAE-SAT, which consists
of, given a CNF formula φ such that each clause contains exactly 3 literals,
deciding whether there is a truth assignment to φ such that each clause has at
least one true and one false literal. This is problem is NP-complete [21], and
in fact it is a well known standard procedure to make a reduction from 3-SAT
to it that produces a formula of size linear on the size of the original 3-SAT
formula. Therefore, applying ETH we get that NAE-SATalso cannot be solved
in time O(2o(n+m)) where n,m are the number of variables and clauses of an
input, respectively.

122 V. Campos et al.

Let φ be a CNF formula on variables {x1, . . . , xn} and clauses {c1, . . . , cm}.
A variable gadget related to xi is formed by the set of vertices

Vi = {xi, Fi, Ti, ai}

and the set of edges
Ei = {xiTi, xiFi, Tiai, Fiai}.

Now, consider a clause ci = {�i1 , �i2 , �i3}, and for each i ∈ [3] let xij
be the

variable related to literal �ij
. For each i ∈ [3], if xij

appears positively in ci, then
add edge Tij

ci to the clause gadget related to ci; otherwise, add edge Fij
ci. See

Fig. 2 for the digraph related to φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).
Denote by Ci the set of vertices in the clause gadget of ci, and by E′

i, the
set of edges. Now, let Gφ be the digraph formed by the union of all variable and
clause gadgets, i.e., V (G) =

⋃n
i=1 Vi ∪

⋃m
i=1 Ci and E(G) =

⋃n
i=1 Ei ∪

⋃m
i=1 E′

i.
Finally, add to Gφ two new vertices, g, r, and add edges {gxi, rxi} for every
i ∈ {1, · · · , n}.

g r

a1 a2 a3 a4

x1

T1 F1

x2

T2 F2

x3

T3 F3

x4

T4 F4

c1 c2

Fig. 2. Snapshot 1 related to formula φ = (x1∨x2∨x3)∧(x2∨x3∨x4), and branchings
related to the assignment (T, T, F, F) to (x1, x2, x3, x4).

Finally, let G′ be the graph having A ∪ {g, r} as vertex set, where A =
{Ti, Fi | i ∈ [n]}, and having every edge going from {g, r} to A. Let G be the
temporal digraph with lifetime 2, having Gφ as first snapshot and G′ as second
snapshot (therefore, the basic digraph of G is given by (V,E(Gφ)∪E(G′)), where
V = V (Gφ) ⊃ V (G′)).

Theorem 5. For each k ≥ 2, given a temporal digraph G = (G, γ, λ) with life-
time T , and set of temporal vertices VT , and subsets R1, · · · , Rk ⊆ VT , it is

Edge-Disjoint Branchings in Temporal Graphs 123

NP-complete to decide whether G has k (t-edge-disjoint or edge-disjoint) vertex-
spanning branchings rooted at R1, · · · , Rk, even if T = 2 and G is a DAG.
Furthermore, letting n = |V (G)| and m = |E(G)|, no algorithm running in time
O∗(2o(n+m)) can exist for the problem, unless ETH fails.

Proof. The second part follows easily since the reduction is linear. We prove
the theorem for k = 2, and NP-completeness for bigger values of k follows by
Lemma 1. Let φ be an instance of NAE-SAT, and let G be the temporal digraph
constructed as before; denote by G the base digraph. We prove that φ is a “yes”
instance if and only if G has k edge-disjoint vertex-spanning branchings rooted
at {(g, 1), (r, 1)} (we will see that the branchings are also t-edge disjoint).

First, suppose that φ is a “yes” instance of NAE-SAT. We construct a solid
and a dotted branching that satisfy our conditions. For each true variable xi,
add to the solid branching the following edges of snapshot 1: {gxi, xiTi, Tiai},
together with edge Ticj for each clause cj containing xi that is not reached by
the solid branching yet; also add to the dotted branching edges {rxi, xiFi, Fiai},
, together with edge Ficj for each clause cj containing xi that is not reached
by the dotted branching yet. Do something similar to the false variables, but
switching the branchings. Figure 2 gives the branchings related to the assignment
(T, T, F, F) to (x1, x2, x3, x4), respectively.

Observe that every u ∈ V (G) is spanned by both branchings, with the excep-
tion of vertices in B = {(Ti, 2), (Fi, 2) | i ∈ [n]}. However, these can easily be
spanned in the second snapshot since {(g, 2), (r, 2)} is complete to B.

Now, let B1,B2 be two edge-disjoint vertex-spanning branchings. Because
each ai can only be reached at the first snapshot, it is reached by exactly two
paths from {(g, 1), (r, 1)}, one of them going through (xi, 1)(Ti, 1) and the other
through (xi, 1)(Fi, 1). We then put xi as true if and only if (xi, 1)(Ti, 1) is in
branching B1. Now, consider clause ci = (�i1 ∨ �i2 ∨ �i3). One can verify that,
because ci is spanned by B1 and B2, we get that at least one of the edges in E′

i

is in B1, and at least one in B2, which implies that at least one of �i1 , �i2 , �i3 is
true, and at least one is false, as desired. ��

5 Conclusions and Open Problems

In this paper we have investigated the temporal version of Edmonds’ classi-
cal result about the problem of finding k edge-disjoint spanning branchings
rooted at given R1, · · · , Rk. We have introduced different definitions of span-
ning branchings, and of edge-disjointness in temporal digraphs. We have proved
that, unlike the static case, only one of the these can be computed in poly-
nomial time, namely the temporal-edge-disjoint temporal-spanning branchings
problem, while the other versions are NP-complete under very strict constraints.
Given a temporal digraph G = (G, γ, λ), in the particular case of edge-disjoint
temporal-spanning, we give separate NP-complete results for fixed lifetime, and
for when G is a in-star. A good question then might be whether there exists a
polynomial algorithm for fixed lifetime and treewidth (a in-star has treewidth 1).

124 V. Campos et al.

Another interesting question is whether the problem remains hard for fixed life-
time when the base digraph is a DAG. Also, as we have provided computational
lower bounds under ETH in Theorem 3 and in Theorem 5, we wonder whether
there exist algorithms matching these lower bounds.

References

1. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW
2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22450-8 27

2. Akrida, E.C., Czyzowicz, J., Gasieniec, L., Kuszner, L., Spirakis, P.G.: Temporal
flows in temporal networks. J. Comput. Syst. Sci. 103, 46–60 (2019)

3. Berman, K.A.: Vulnerability of scheduled networks and a generalization of
Menger’s theorem. Networks 28, 125–134 (1996)

4. Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs
and the computation of multicast trees in dynamic networks. In: Pierre, S., Bar-
beau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 259–270.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39611-6 23

5. Borgnat, P., Fleury, E., Guillaume, J.L., Magnien, C., Robardet, C., Scherrer, A.:
Evolving networks. In: Mining Massive Data Sets for Security, pp. 198–203 (2007)

6. Bui-Xuan, B.-M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

7. Campos, V., Lopes, R., Marino, A., Silva, A.: Edge-disjoint branchings in temporal
graphs. arXiv e-prints, page arXiv:2002.12694 (2020)

8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. IJPEDS 27(5), 387–408 (2012)

9. Edmonds, J.: Edge-disjoint branchings. Combinatorial algorithms (1973)
10. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-

lem. Theor. Comput. Sci. 10(2), 111–121 (1980)
11. Frank, A.: Covering branchings. Acta Scientiarium Mathematicarum (Szeged) 41,

77–81 (1979)
12. Fulkerson, D.R., Harding, G.: On edge-disjoint branchings. Networks 6(2), 97–104

(1976)
13. Huang, S., Fu, A.W.C., Liu, R.: Minimum spanning trees in temporal graphs. In:

Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (SIGMOD 2015), pp. 419–430. ACM, New York (2015)

14. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for
temporal networks. In STOC 2000: Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing (2000)

15. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the mod-
eling of interactions over time. Soc. Netw. Anal. Min. 8(1), 1–29 (2018). https://
doi.org/10.1007/s13278-018-0537-7

16. Lovász, L.: On two minimax theorems in graph. J. Comb. Theory, Ser. B 21(2),
96–103 (1976)

17. McDiarmid, C.: Integral decomposition in polyhedra. Math. Program. 25(2), 183–
198 (1983)

18. Mertzios, G.B., Michail, O., Spirakis, P.G.: Temporal network optimization subject
to connectivity constraints. Algorithmica 81, 1416–1449 (2019)

https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/978-3-642-22450-8_27
https://doi.org/10.1007/978-3-540-39611-6_23
http://arxiv.org/abs/2002.12694
https://doi.org/10.1007/s13278-018-0537-7
https://doi.org/10.1007/s13278-018-0537-7

Edge-Disjoint Branchings in Temporal Graphs 125

19. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Inter-
net Math. 12(4), 239–280 (2016)

20. Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., Amblard, F.: Time-
varying graphs and social network analysis: temporal indicators and metrics.
CoRR, abs/1102.0629 (2011)

21. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
10th Annual ACM Symposium on Theory of Computing, 1–3 May 1978, San Diego,
California, USA, pp. 216–226 (1978)

22. Shiloach, Y.: Edge-disjoint branching in directed multigraphs. Inf. Process. Lett.
8(1), 24–27 (1979)

23. Slivkins, A.: Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. SIAM J. Discrete Math. 24(1), 146–157 (2010)

24. Robert Endre Tarjan: A good algorithm for edge-disjoint branching. Inf. Process.
Lett. 3(2), 51–53 (1974)

25. Huanhuan, W., Cheng, J., Huang, S., Ke, Y., Yi, L., Yanyan, X.: Path problems
in temporal graphs. PVLDB 7(9), 721–732 (2014)

Optimal In-place Algorithms for Basic
Graph Problems

Sankardeep Chakraborty1, Kunihiko Sadakane2(B), and Srinivasa Rao Satti3

1 National Institute of Informatics, Tokyo, Japan
sankar@nii.ac.jp

2 The University of Tokyo, Tokyo, Japan
sada@mist.i.u-tokyo.ac.jp

3 Seoul National University, Seoul, South Korea
ssrao@cse.snu.ac.kr

Abstract. We present linear time in-place algorithms for several fun-
damental graph problems including the well-known graph search meth-
ods (like depth-first search, breadth-first search, maximum cardinality
search), connectivity problems (like biconnectivity, 2-edge connectivity),
decomposition problem (like chain decomposition) among various others,
improving the running time (by polynomial multiplicative factor) of the
recent results of Chakraborty et al. [ESA, 2018] who designed O(n3 lg n)
time in-place algorithms for some of the above mentioned problems. The
running times of all our algorithms are essentially optimal as they run in
linear time. One of the main ideas behind obtaining these algorithms is
the detection and careful exploitation of sortedness present in the input
representation for any graph without loss of generality. This observation
alone is powerful enough to design some basic linear time in-place algo-
rithms, but more non-trivial graph problems require extra techniques
which, we believe, may find other applications while designing in-place
algorithms for different graph problems in future.

1 Introduction

Inspired by the rapid growth of humongous data set (“big data phenomenon”),
space efficient algorithms are becoming increasingly more crucial than ever
before. The dire need of such algorithms is also propelled by the pervasive
usage of small specialized handheld devices and embedded systems which come
equipped with tiny memory. To design such algorithms, a vast array of compu-
tational models have already been proposed in the literature. In what follows,
we briefly mention a few of them in the order they are historically developed.

In the read-only memory model (henceforth ROM) where the input is
read-only, output is write only, and a limited sized random access read/write
work space is available, researchers have designed space efficient algorithms

The full version of this paper appears as [15]. The work of the first author is supported
by JSPS KAKENHI Grants Number 18H05291.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 126–139, 2020.
https://doi.org/10.1007/978-3-030-48966-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_10

Optimal In-place Algorithms for Basic Graph Problems 127

for selection and sorting [18,26,33,39,40], problems in computational geome-
try [2,4,6,17,22], and graphs [3,5,10,12–14,25] among various others. In the
in-place model, it is assumed that the input elements are given in an array, and
the algorithm may use the input array as working space, hence the algorithm is
allowed to modify the array during its execution. However, at any point during
the execution, all the input elements should be present in the array (maybe in
a permuted order), and the output maybe put in the same array or sent to an
output stream. The extra space usage during the entire execution of the algo-
rithm is limited to O(lg n) bits only. A prime example of an in-place algorithm
is the classic heap-sort. Other than in-place sorting [32], searching [30,37] and
selection [36], many in-place algorithms were designed in areas such as compu-
tational geometry [8] and string algorithms [31]. A very recent addition to this
long list is the in-place algorithms for the graph problems [11]. Other than these,
researchers have also designed space efficient algorithms in (semi)-streaming
models [1,29,39] and recently introduced restore [19] and catalytic-space [9]
models.

Previous Work on Space Efficient Graph Algorithms. Inspired by the
pervasive practical applications of the fundamental graph algorithms, recently
there has been a surge of interest in improving the space complexity of graph
algorithms without paying too much penalty in the running time. Thus the
goal is to design space-efficient yet reasonably time-efficient graph algorithms
on the ROM. Generally most of the standard implementations of classical
graph algorithms take linear or near-linear running time and use O(n lg n) (or
sometimes O(m lg n) for graphs with n vertices and m edges) bits. A recent
series of papers [3,5,13,16,25] with this point of view showed such results for
a vast array of basic graph problems, namely depth-first search (henceforth
DFS), breadth-first search (henceforth BFS), minimum spanning tree (henceforth
MST), (strong) connectivity, topological sorting, recognizing chordal graphs, bi-
connectivity, st-numbering, shortest path and many others.

Even though these results are still both time and space efficient, they still
require Θ(n) bits for most of important graph algorithms, and this is a major
concern in places with severe space constraints. In order to break this inher-
ent space bound barrier and still obtain reasonable time efficiency, Chakraborty
et al. [11] initiated a systematic study of designing efficient in-place (i.e., using
O(lg n) bits of extra space other than the input space) algorithms for graph prob-
lems by defining a new framework which is a slight relaxation of the ROM. Using
this framework they designed in-place DFS, BFS, MST, reachability algorithms
taking time O(n3 lg n). Despite being optimal in space usage, observe that these
results still leave a polynomial gap in the running time from the optimal value.
In this work, we essentially obtain the best of the both worlds by closing this
gap. More specifically, we show how one can design optimal in-place algorithms
i.e., O(m+n) time and using O(lg n) bits of extra space, for several of these (and
a lot more) basic graph algorithms in this work. Recently Kammer et al. [34]
also considered a similar model where they showed efficient in-place algorithms
for DFS, unordered-BFS (will be defined shortly) only.

128 S. Chakraborty et al.

In-place Model for Graph Algorithms and Input Representations.
Before explaining our in-place algorithms and stating main results, in this section
we first describe the input graph representation. Note that, as in the case of
the standard in-place model, we need to ensure that the graph (adjacency)
structure must remain intact throughout the entire execution of the algorithm.
Let G = (V,E) be the input graph with n = |V |, m = |E|, and as usual let
V = {1, 2, · · · , n} denote the vertex set of G. We assume that the input graph
is given in the standard adjacency array format, and throughout this paper, we
refer to this array as Z. More specifically, it is an array having size (n + m + 1)
((n+2m+1) resp.) words for directed (undirected resp.) graphs where Z[1] stores
the number of vertices in G, the next n entries (which we refer to as the offsets
part of Z) store n pointers (one per vertex) pointing to the location in Z of the
last neighbor for each vertex, and finally the last m (2m for undirected graphs)
entries are reserved for the edges of G. At this point, we should emphasize a
small, yet important, technical detail. The Z array can be thought of as a single
bit array as follows. For a directed graph G, the array Z is a concatenation of
Z[1] of length �lg n� bits, Z[2] . . . Z[n+1] of length �lg m� bits each1, and finally
Z[n+2] . . . Z[n+m+1] of length �lg n� bits each. For undirected graphs, only the
second part changes to size �lg m� + 1 bits (instead of �lg m�) each. Thus, if we
just remember the boundaries, we know exactly how many bits we need to read
in order to extract useful information from the relevant parts of Z. For the sake
of simplicity, we drop the ceiling notations from now on. Moreover, throughout
this paper, it should be clear from the context the word size depending on which
part of Z we are currently working on. See Fig. 1 for an example. Note that this
representation implicitly captures the degree information for every vertex in G.
Given this format, we say an algorithm A is an in-place algorithm if A (a) may
modify any part of Z during its execution, (b) retains all the initial elements
of Z (in any order) when it finishes execution; and (c) uses just O(lg n) bits of
extra space. Our goal is to design such algorithms in this paper for a vast array
of fundamental graph problems.

In this paper we assume the standard word RAM model of computation. We
count space in terms of number of extra bits used by the algorithm other than the
input, and this quantity is referred as “extra space” and “space” interchangeably
throughout the paper.

Graph Terminology and Notations. In general we will assume the knowledge
of basic graph theoretic terminology as given in [23] and basic graph algorithms
as given in [21]. Still here we collect all the necessary graph theoretic definitions
that will be used throughout the paper for quick reference and making the paper
self-contained. For BFS traversal that we study here, there are two versions
studied in the literature. In the ordered BFS (sometimes also known as queue
BFS [16]), vertices are extracted from the queue in the first in first out (FIFO)
order, whereas in the unordered BFS [5], vertices can be taken out from the

1 Note that it is enough to store the offset values starting from 0, since we can add
n + 1 to the offset value to find the corresponding location in Z; hence the offset
values can be stored using �lgm� bits.

Optimal In-place Algorithms for Basic Graph Problems 129

Fig. 1. (a) An undirected graph G with 5 vertices and 8 edges. (b) The standard
adjacency array representation of G. To avoid cluttering the diagram, we drop the
superscript v from the vertex labels while referring to them as neighbors.

queue in any order as long as no elements are extracted from a higher level of
the BFS tree before finishing all the vertices from a lower level of the tree. In this
paper, by a BFS/DFS traversal of the input graph G, as in [3,5,13,16] we refer to
reporting the vertices of G in the BFS/DFS ordering, i.e., in the order in which
the vertices are visited for the first time. Tarjan et al. [45] defined another method
called maximum cardinality search (MCS) and used this to give a recognition
algorithms for chordal graphs. MCS works as follows: assuming that every vertex
is unnumbered at the beginning, at each iteration of the execution of MCS, an
unnumbered vertex that is adjacent to the largest number of numbered vertices
is chosen (breaking the ties arbitrarily), and is numbered with the next available
label. Thus, the output of the MCS algorithm is a numbering of the vertices from
1 to n.

A cut vertex in an undirected graph G is a vertex v that when removed (along
with its incident edges) from a graph creates more components than previously
in the graph. A (connected) graph with at least three vertices is biconnected if
and only if it has no cut vertex. Similarly in an undirected graph G, a bridge
is an edge that when removed, creates more components than previously in the
graph. A connected graph with at least two vertices is 2-edge-connected if and
only if it has no bridge. Given a biconnected graph G, and two distinguished
vertices s and t in V such that s �= t, st-numbering is a numbering of the vertices
of the graph so that s gets the smallest number, t gets the largest and every other
vertex is adjacent both to a lower-numbered and to a higher-numbered vertex
i.e., a numbering s = v1, v2, · · · , vn = t of the vertices of G is called an st-
numbering, if for all vertices vj , 1 < j < n, there exist 1 ≤ i < j < k ≤ n

130 S. Chakraborty et al.

such that {vi, vj}, {vj , vk} ∈ E. It is well-known that G is biconnected if and
only if, for every edge {s, t} ∈ E, it has an st-numbering. A topological sort of
a directed acyclic graph (DAG) gives a linear ordering of its vertices such that
for every directed edge (u, v) ∈ E from vertex u to vertex v, u comes before
v in the ordering. A minimum spanning tree (MST) is a subset of the edges
of a connected, edge-weighted undirected graph that connects all the vertices
together, without any cycles and with the minimum possible total edge weight.
That is, it is a spanning tree whose sum of edge weights is as small as possible.

Our Main Results and Organization of the Paper. In Sect. 2.1 we start
by designing a linear time in-place procedure to obtain linear bits of additional
free space inside the offsets part of the adjacency array. Using this, we can
already show an improved set of algorithms for (a strict superset of) problems
that Chakraborty et al. [16] considered (for example, DFS, unordered BFS and
MST), but this algorithms are still not optimal as they are at least polylog
multiplicative factor away from linear running time. Towards obtaining optimal
linear time in-place algorithms, we first provide an improved linear time in-place
routine to obtain almost n lg n additional free bits of space inside the offsets
part, which is what we use crucially along with other additional ideas to show
the following main result of this paper in Sect. 2.2.

Theorem 1. Using linear time in the in-place model, one can

1. traverse the vertices of any graph in (un)ordered BFS and DFS manner,
2. recognize bipartite graphs, and compute connected components,
3. report the vertices of a DAG in topologically sorted order,
4. obtain a maximum cardinality search ordering of any graph,
5. output an st-numbering of given biconnected graph, given two vertices s and t,
6. perform a chain decomposition of any undirected graph, and
7. determine whether any given undirected graph G is biconnected (and/or 2-

edge connected resp.) and if not, we can also compute and report all the cut
vertices (bridges resp.) of G.

Also, given an undirected edge-weighted (where weights are bounded by some
polynomial in n) graph G, we can find a minimum spanning tree (MST) of G in
O(m lg n) time in-place.

Techniques. All the results of our paper stem from the following very simple yet
absolutely crucial observation: numbers in sorted order have less entropy than
in any arbitrary order. More specifically, assuming we have n numbers from a
universe of size m, when these numbers are in any arbitrary order their binary
entropy is n lg m but when they are in sorted order, binary entropy becomes
n lg m−Θ(n lg n). This clearly indicates that we can exploit the sorted structure
assumption to gain some additional space. Now, note that, without loss of any
generality, by construction, the offsets part of the adjacency array Z for any given
graph G is sorted. Thus, we can use the above mentioned idea in the offsets part
of Z to gain some free space which is what we use finally to design our optimal
in-place graph algorithms. Towards this, we also have to handle several other
key technical issues which we describe in respective sections in detail.

Optimal In-place Algorithms for Basic Graph Problems 131

2 Exploiting Input Redundancy to Create Working Space

In this section, we describe how one can exploit the redundancy in the input
representation to save almost n lg n bits, which can then be used as part of the
working space for a graph algorithm.

2.1 Saving Linear Bits and Its Applications

As a warm up, we start by showing how we can squeeze in linear sized free bits
inside the offsets part of Z while still being able to access any element inside
the offsets part in O(1) time, as well as returning to the original configuration
of the offsets part of Z before freeing linear bits. Towards this, we first reprove
the following lemma, which is essentially same as [34, Lemma 5]. See the full
version [15] for a proof.

Lemma 1. Given a sorted list of n integers from the universe [0,m − 1], it can
be represented either simply as an array A[1...n] with the integers in sorted order
or as an array of n integers, such that for some fixed constant c > 1, the last
cn bits of this array are all zero. Moreover, there exists an in-place O(n) time
algorithm for switching between both these formats.

The above lemma alone is powerful enough to help us design in-place algo-
rithms (albeit with sub-optimal time complexity as we will see shortly) for a
variety of fundamental graph algorithms. In the full version [15] of this paper,
we describe how to obtain efficient in-place algorithms for a variety of graph algo-
rithms, using the above lemma. The main idea is to simulate the corresponding
ROM algorithms in the in-place model. Next, we further improve the running
times to optimal, by providing an improved version of Lemma 1.

2.2 Saving n lgn − 2n Bits

In what follows, we show how one can improve Lemma 1 so that almost n lg n bits
become free to be used, and using this we will design optimal in-place algorithms
for the above mentioned graph problems. Our main result can be described as
follows:

Theorem 2. Given a sorted list of n integers from the universe [0,m − 1], it
can be represented either simply as an array A[1...n] with the integers in sorted
order or as an array of n integers, such that the last n lg n−2n bits of this array
are all zero. Moreover, there exists an in-place O(n) time algorithm for switching
between both these formats.

Proof. One can easily obtain the space bound mentioned in the second repre-
sentation by applying the Elias-Fano encoding [24,28] on the array A. But to
implement this encoding in-place, we apply this encoding in two steps.

We first split the array A into two subarrays of size n/2 each (assume, for
simplicity, that n is even) - call them A1 and A2. One can replace the most
significant lg n bits of each of the elements in A1 by a bit vector, say B, length

132 S. Chakraborty et al.

Fig. 2. (a) General adjacency array structure Z of a given input directed graph. (b)
Configuration of Z after freeing n lg n − 2n bits in the offsets part of Z.

n + n/2, using the Elias-Fano encoding. To store B (of length 3n/2), we first
replace the most significant 3 bits of each of the elements in A2 by storing 8
positions into the array A2 (using Lemma 1, with c = 3). We store the bit
vector B inside the most-significant 3 bits of every element of A2, and compact
the remaining (least-significant lg m − lg n) bits of every element in A1 into a
consecutive chunk of (n/2) lg(m/n) bits in A1, so that the first (n/2) lg n bits of
A1 is free (i.e., filled with all zeros). We now copy the bit vector B into this free
space, and restore the 3 most significant bits of all the elements of A2. We now
replace the most-significant lg n bits of each element in A2 by a bit vector C of
length 3n/2, and store it inside free space in A1 (here, we assume that 3n ≤
(n/2) lg n), and compact the remaining (least-significant lg m − lg n) bits into a
consecutive chunk of (n/2) lg(m/n) bits in A2. Finally, we copy all the lower order
bits (of total length n lg(m/n) bits) into a single chunk, and also merge the two
bit vectors of length 3n/2 each into a single bit vector of length 2n. Thus the array
A is replaced by a total of n lg(m/n) + 2n bits, giving a free space of n lg n − 2n
bits. These steps can be essentially performed in reverse order to restore the
original representation from the second representation. To support the operation
of accessing the i-th element of A in O(1) time, we can store an additional o(n)-
bit auxiliary structure that support the rank and select operations [20,38] on
the 2n bit sequence, which can then be used to access the most-significant lg n
bits of any element in O(1) time. The remaining lg m − lg n bits can be simply
read from the array of values stored in the second representation. See Fig. 2 for
a visual description of the final outcome of application of this theorem.

3 Optimal In-place Graph Algorithms

In this section, we show how one can use Theorem 2 for solving the graph prob-
lems mentioned before. Before giving specific details, we would like to sketch the

Optimal In-place Algorithms for Basic Graph Problems 133

general pattern for designing optimal in-place algorithms for some of these graph
problems. Given the adjacency array representation (as in Z) of the input graph
G, we now first apply Theorem 2 on the offsets part of Z to make n lg n−2n bits
free. Now the classical linear time algorithms [21,27,42–45] for these problems
typically take cn lg n + dn bits where both the constants c and d are at most 2.
Hence, our idea is to run these algorithms as it is but in some constant number of
phases. More specifically, we store only, say n/3 vertices, explicitly at any point
of time during the execution of these algorithms, and when these vertices are
taken care of by the respective algorithms, we refresh the data structures by ini-
tiating it with a new set of n/3 vertices and proceed again till we exhaust all the
vertices, thus, the entire algorithm would finish in three phases ultimately. Now
the exact details of refreshing the data structure with a new set of vertices and
start the algorithm again where it left off depends on specific problems. This idea
would work for most of the algorithms that we discuss in this paper except a few
important ones. More specifically, a few of the algorithms for those graph prob-
lems are two (or more) pass algorithms, i.e., in the first pass it computes some
function which is what used in the second pass to solve the problem finally, for
example, chain decomposition, biconnectivity etc. For these kinds of algorithms,
it seems hard to make them work using the previously described constant phase
algorithmic idea. Thus, we handle them differently by first proving some related
lemmata which might be of independent interest, and then use these lemmata
to design in-place algorithms for these graph problems. We discuss these after
giving proofs for the algorithms which we can handle in constant phases only.
In what follows we provide the proofs of linear time in-place algorithms for DFS
and its applications, especially chain decomposition, biconnectivity, 2-edge con-
nectivity, and also develop/prove the necessary ideas for these algorithms. The
missing proofs of Theorem 1 cen be found in the full version [15].

The classical implementation of DFS (see for example, Cormen et al. [21])
uses three colors and a stack to traverse the whole graph. More specifically, every
vertex v is white initially while it has not been discovered yet, becomes grey when
DFS discovers v for the first time and pushes on the stack, and is colored black
when it is finished i.e., all its neighbors have been explored completely, and it
leaves the stack. The algorithm maintains a color array C of length O(n) bits
that stores the color of each vertex at any point in the algorithm, along with
a stack (which could grow to O(n lg n) bits) for storing all the grey vertices at
any point during the execution. Our idea is to run essentially the same DFS
algorithm but we limit the stack size so that it contains at most n/2 latest grey
vertices all the time. More specifically, whenever the stack grows to have more
than n/2 vertices, we delete the bottom most vertex from the stack so that
above invariant is always maintained along with storing the last such vertex to
be deleted in order to enforce the invariant. At some point during the execution
of the algorithm, when we arrive at a vertex v such that none of v’s neighbors are
white, then we color the vertex v as black, and we pop it from the stack. If the
stack is still non-empty, then the parent of v (in the DFS tree) would be at the
top of the stack, and we continue the DFS from this vertex. On the other hand,

134 S. Chakraborty et al.

if the stack becomes empty after removing v, we need to reconstruct it to the
state such that it holds the last n/2 grey vertices after all the pops done so far.
We refer to this phase of the algorithm as reconstruction step. For this, using
ideas from [3,25], we basically repeat the same algorithm but with one twist
which also enables us now to skip some of the vertices during this reconstruction
phase. In detail, we again start with an empty stack, insert the root s first and
scan its adjacency list from the first entry to skip all the black vertices and insert
into the stack the leftmost grey vertex. Then the repeat the same for this newly
inserted vertex into the stack until we reconstruct the last n/2 grey vertices.
As we have stored the last vertex to be deleted for maintaining the invariant
true, we know when to stop this reconstruction procedure. It is not hard to see
that this procedure correctly reconstructs the latest set of grey vertices in the
stack. We continue this process until all the vertices become black. Moreover,
this algorithm runs in O(m+n) time as it involves two phases each taking linear
time in the worst case, and uses at most (n lg n)/2 + n lg 3 bits which fits in our
budget of free space in the offsets part of the adjacency array. This completes
the description of the linear time in-place DFS algorithm.

Before providing the algorithms for other problems, we need a few additional
ideas which we will describe next. In the following theorem, we are interested
in dynamically maintaining the degree sequence of all vertices that belong to a
spanning subgraph of the original graph. More specifically, given a graph G =
(V,E), we want to run some algorithm on G for constructing a sparse spanning
subgraph G′ = (V,E′) (which is a spanning subgraph of G i.e., E′ ⊆ E and
|E′| = O(V)) of G, and we are interested in dynamically maintaining the degree
of all the vertices v in G′ i.e., degree of a vertex v in G′ is defined as the number
of neighbors u such that the edge (v, u) belongs to G′. Thus, degree of a vertex
v in G′ may not be same as degree of v in G. Also note that, by the notion of
dynamic, we mean that the algorithm starts with an empty graph and gradually
add edges to it before finally culminating with a sparse spanning subgraph, thus
during the execution of this algorithm degrees of the individual vertices are
changing, and it is this dynamically changing degrees that we want to efficiently
maintain. We refer to this as the dynamic maintenance of degree sequence phase.
Towards this goal, we prove the following general theorem.

Theorem 3. Given a graph G with n vertices and m edges, let G′ be a spanning
subgraph of G with m′ edges, and also let d′ = m′/n be the average degree of G′.
Then, we can construct the dynamically created degree sequence for the vertices
of G′ in O(m + n) time using O(n(lg d′ + lg lg n)) bits of construction space.
Moreover, the final degree sequence can be stored using O(n lg d′) bits such that
degree of any vertex can be returned in O(1) time.

Proof. We divide the vertices into n/ lg n groups of lg n vertices each. For each
group, we allocate a block of lg n(lg d′ + lg lg n) (≤ lg2 n) bits initially (uni-
formly for all the vertices in the block), to store their degrees. We also maintain
another parallel bit vector for each block that simply stores the delimiters for
each vertex’s degree (i.e., a 1 bit to indicate the last bit corresponding to each

Optimal In-place Algorithms for Basic Graph Problems 135

vertex’s degree, and 0 everywhere else). To access the degree of the i-th vertex
in a block, we first find the positions of the i − 1-th and the i-th 1 bits in the
corresponding delimiter sequence, and read the bits between these two positions
in the block. To perform this efficiently during the construction, we maintain an
auxiliary structure that supports select operation in O(1) time [20,38]. At any
point, the representation of each block and delimiter sequence consists of an inte-
gral number of words, and these representations are maintained as a collection
of “extendible arrays” using the structure of [41, Lemma 1].

At any time, a vertex has some number of bits allocated to store its degree. If
the degree of the vertex can be updated in-place, then we first access the position
where the degree of the vertex is stored, using the select data structure stored for
the corresponding delimiter sequence, and update the degree of the node stored
within the block. Otherwise, we first note that at least lg n increments have
been performed to some vertex within the block (since each vertex has a ‘slack’
of lg lg n bits at the beginning of the latest re-construction of the block). Now,
we spend O(lg n) time to re-construct the block (and also the corresponding
delimiter sequence with its select structure) so that the degree of each vertex v
in the block is stored �lg dv� + lg lg n bits, where dv is the current degree of v.
This lg n construction time can be amortized over the lg n increments performed
on the block before its re-construction, incurring an O(1) amortized cost per
increment. Once we construct the degree sequence for the entire subgraph G′,
we can scan all the blocks, and compact the degree sequence so that it occupies
O(n lg d′) bits. The space usage during the construction is bounded by O(n(lg d′+
lg lg n)) bits of space. Note that, the above task can be performed while executing
the linear time DFS algorithm described before, and this completes the proof.

Corollary 1. When G′ is the DFS tree of G, then we can store the dynamically
created degree sequence of G′, whose size is bounded by 2n bits, by running a lin-
ear time DFS procedure while using O(n lg lg n) bits of space during construction
such that the degree of any vertex in G′ can be accessed in O(1) time.

For the following discussion, assume that we are working with connected
undirected graphs only, and given this, now we are going to describe the setting
up parent phase. More specifically, while performing DFS, suppose we visit the
vertex u for the first time from the vertex v (hence v becomes the parent of u
in the DFS tree), at that point we perform one or more swaps in the portion of
the adjacency array Z where the neighbors of u are located so that the vertex
v becomes the first neighbor of u now. If the initial configuration of Z already
satisfies this property in u’s neighborhood, we don’t need to do anything else.
We repeat this procedure for every vertex v ∈ V so that when DFS ends, the
first neighbor of every vertex v (except the root vertex) is its parent in the DFS
tree. Note that we can perform this step of setting up parent in the first location
of every neighborhood list of every vertex alongside performing the linear time
DFS algorithm of Theorem 1. Thus, we obtain the following.

Lemma 2. There exists a linear time in-place algorithm for performing the set-
ting up parent procedure for every vertex of G.

136 S. Chakraborty et al.

Note that, by choosing appropriate parameters, we can actually perform
the dynamic maintenance of degree sequence and the setting up parent phase
together while running the linear time in-place DFS algorithm of Theorem 1 in
any graph G. More specifically, suppose we choose to run the linear time in-place
DFS algorithm of Theorem 1 coupled with the setting up parent procedure (to
implement Lemma 2) by storing n/2 vertices (thus taking n lg n/2 bits) in the
free space of the offsets part of Z, thus, leaving roughly (n lg n/2 − 2n) bits of
space still free, which can be used to construct and store the degree sequence
of all the vertices in the DFS tree (to implement Corollary 1) while running the
same linear time in-place DFS algorithm of Theorem 1. By degree of a vertex v
in the DFS tree T , we mean the number of children v has in T , and it is this
number that gets stored using the algorithm of Corollary 1. Hence, at the end of
this linear time in-place procedure, we have the following invariant: (a) the first
neighbor of every vertex (except the root) is its parent in the DFS tree, and (b)
the offsets part of Z contains the degree sequence of every vertex v in the DFS
tree, and this occupies at most 2n bits.

Armed with the above algorithm, we are going to explain next the implicit
representation of the search tree phase. The goal of this phase is to rearrange the
neighbors of any vertex v in such a way that the first neighbor of v becomes its
parent in the DFS tree (except for the root vertex), followed by all of v’s children
in the DFS tree (if any) one by one, finally all the non-child neighbors. Thanks
to the setting up parent phase, we can implement the implicit representation
the search tree phase in linear time overall by doing a reverse search. More
specifically, for every non-root vertex v, we start by scanning v’s list from the
second neighbor onward (as first neighbor is its parent), and for each one of them,
say u, we go to the first location of u’s neighbor list to check if v is u’s parent if
so, we move u in v’s list closer to v’s parent (i.e., towards the beginning of v’s
list) by swapping, and repeat this procedure for all the neighbors of v’s so that
at the end all the children of v are clustered together followed by v’s parent.
The root vertex can be handled similarly, but we need to start the scanning
procedure from the first neighbor itself as it doesn’t have any parent. Hence, we
spend time proportional to its degree at every vertex, and obtain the following.

Lemma 3. There exists a linear time in-place algorithm for implicitly repre-
senting the search tree of G.

Thus, from now on we can assume that the neighbor list of every vertex
is represented in the search tree format implicitly. We choose to call it so as,
note that, given in this format, it is very convenient to answer the following
queries for any given vertex v in the DFS tree T : (a) return the parent of v
in T in O(1) time, (b) return the number of children v has in T in O(1) time
(from the dynamically maintained degree sequence), and finally, (c) enumerate
all the children of v one by one optimally in time proportional to its number of
children. Not only this, observe that we can still perform the DFS traversal of
G optimally in linear-time using essentially the same algorithm of Theorem 1
given this representation. We can even slightly optimize this DFS algorithm by
stop scanning the neighbor list of any vertex v as soon as we encounter its last
child u in the DFS tree (can be derived from the dynamically maintained degree

Optimal In-place Algorithms for Basic Graph Problems 137

sequence) as neighbors after u will not be of significance in performing the DFS
traversal of G. Hence, we obtain the following.

Lemma 4. There exists a linear time in-place algorithm for performing the DFS
traversal of a given graph G using the implicit search tree representation of G.

Topological Sorting. One of the standard algorithms for computing topologi-
cal sort [21] works by simply reporting the vertices of a DFS traversal of a given
directed acyclic graph in reverse order. We can easily implement this in-place in
linear time by running our DFS algorithm in two phases. More specifically, in the
first phase, we run the DFS algorithm completely to generate/store the last n/2
vertices in the DFS traversal order, and then report them in reverse order. This
is followed by running the DFS algorithm one more time but stopping just when
we obtain the other n/2 vertices, then we reverse the order of this vertices and
report. This completes the description of generating the vertices in topologically
sorted order of an input directed acyclic graph in-place in linear time.

In the full version [15] of this paper, we describe linear-time in-place algo-
rithms for all the remaining graph algorithms mentioned in Theorem 1, namely,
ordered BFS, MCS, st-numbering, MST, chain decomposition, checking bicon-
nectivity and/or 2-edge connectivity, and finding cut vertices and bridges.

4 Conclusions

In this paper, we designed linear time in-place algorithms for a variety of graph
problems. As a consequence, many interesting and contrasting observations fol-
low. For example, for directed st-reachability, the most space efficient polynomial
time algorithm [7] in ROM uses n/2Θ(

√
lg n) bits. In sharp contrast, we obtain

optimal linear time using logarithmic extra space algorithms for this problem as a
simple corollary of both BFS and DFS. Thus, in terms of workspace this is expo-
nentially better than the best known polynomial time algorithm [7] in ROM.
This provided us with one of the main motivations for designing algorithms
in the in-place model. A somewhat incomparable result obtained by Buhrman
et al. [9,35] where they gave an algorithm for directed st-reachability on cat-
alytic Turing machines in space O(lg n) with catalytic space O(n2 lg n) and time
O(n9). Finally, we conclude by mentioning that we barely scratched the sur-
face of designing in-place graph algorithms with plenty of more to be studied
in this model in future. For example, can we design linear time in-place algo-
rithms for testing planarity of a graph? Can we compute the max-flow/min-cut
in-place? Can we compute shortest paths between any two vertices of a given
graph in-place? We leave these problems as our future directions of study.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

2. Asano, T., et al.: Reprint of: memory-constrained algorithms for simple polygons.
Comput. Geom. 47(3), 469–479 (2014)

138 S. Chakraborty et al.

3. Asano, T., et al.: Depth-first search using O(n) bits. In: Ahn, H.-K., Shin, C.-S.
(eds.) ISAAC 2014. LNCS, vol. 8889, pp. 553–564. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-13075-0 44

4. Asano, T., Mulzer, W., Rote, G., Wang, Y.: Constant-work-space algorithms for
geometric problems. JoCG 2(1), 46–68 (2011)

5. Banerjee, N., Chakraborty, S., Raman, V., Satti, S.R.: Space efficient linear time
algorithms for BFS, DFS and applications. Theory Comput. Syst. 62(8), 1736–
1762 (2018)

6. Barba, L., Korman, M., Langerman, S., Sadakane, K., Silveira, R.I.: Space-time
trade-offs for stack-based algorithms. Algorithmica 72(4), 1097–1129 (2015)

7. Barnes, G., Buss, J., Ruzzo, W., Schieber, B.: A sublinear space, polynomial time
algorithm for directed s-t connectivity. SIAM J. Comput. 27(5), 1273–1282 (1998)

8. Brönnimann, H., Chan, T.M., Chen, E.Y.: Towards in-place geometric algorithms
and data structures. In: SOCG, pp. 239–246 (2004)

9. Buhrman, H., Cleve, R., Koucký, M., Loff, B., Speelman, F.: Computing with a
full memory: catalytic space. In: STOC, pp. 857–866 (2014)

10. Chakraborty, S.: Space efficient graph algorithms. Ph.D. thesis, The Institute of
Mathematical Sciences, HBNI, India (2018)

11. Chakraborty, S., Mukherjee, A., Raman, V., Satti, S.R.: A framework for in-place
graph algorithms. In: ESA, pp. 13:1–13:16 (2018)

12. Chakraborty, S., Mukherjee, A., Satti, S.R.: Space efficient algorithms for breadth-
depth search. In: G ↪asieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT 2019.
LNCS, vol. 11651, pp. 201–212. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25027-0 14

13. Chakraborty, S., Raman, V., Satti, S.R.: Biconnectivity, st-numbering and other
applications of DFS using O(n) bits. J. Comput. Syst. Sci. 90, 63–79 (2017)

14. Chakraborty, S., Sadakane, K.: Indexing graph search trees and applications. In:
44th MFCS. LIPIcs, vol. 138, pp. 67:1–67:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2019)

15. Chakraborty, S., Sadakane, K., Satti, S.R.: Optimal in-place algorithms for basic
graph problems. CoRR, abs/1907.09280 (2019)

16. Chakraborty, S., Satti, S.R.: Space-efficient algorithms for maximum cardinality
search, its applications, and variants of BFS. J. Comb. Optim. 37(2), 465–481
(2018)

17. Chan, T.M., Chen, E.Y.: Multi-pass geometric algorithms. Discret. Comput. Geom.
37(1), 79–102 (2007)

18. Chan, T.M., Munro, J.I., Raman, V.: Faster, space-efficient selection algorithms
in read-only memory for integers. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.)
ISAAC 2013. LNCS, vol. 8283, pp. 405–412. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-45030-3 38

19. Chan, T.M., Munro, J.I., Raman, V.: Selection and sorting in the “restore” model.
ACM Trans. Algorithms 14(2), 11:1–11:18 (2018)

20. Clark, D.R.: Compact pat trees. Ph.D. thesis. University of Waterloo, Canada
(1996)

21. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

22. Darwish, O., Elmasry, A.: Optimal time-space tradeoff for the 2D convex-hull prob-
lem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 284–295.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44777-2 24

23. Diestel, R.: Graph Theory, 4th edn (2012)

https://doi.org/10.1007/978-3-319-13075-0_44
https://doi.org/10.1007/978-3-319-13075-0_44
https://doi.org/10.1007/978-3-030-25027-0_14
https://doi.org/10.1007/978-3-030-25027-0_14
https://doi.org/10.1007/978-3-642-45030-3_38
https://doi.org/10.1007/978-3-642-45030-3_38
https://doi.org/10.1007/978-3-662-44777-2_24

Optimal In-place Algorithms for Basic Graph Problems 139

24. Elias, P.: Efficient storage and retrieval by content and address of static files. J.
ACM 21(2), 246–260 (1974)

25. Elmasry, A., Hagerup, T., Kammer, F.: Space-efficient basic graph algorithms. In:
32nd STACS, pp. 288–301 (2015)

26. Elmasry, A., Juhl, D.D., Katajainen, J., Satti, S.R.: Selection from read-only mem-
ory with limited workspace. Theor. Comput. Sci. 554, 64–73 (2014)

27. Even, S., Tarjan, R.E.: Computing an st-numbering. Theor. Comput. Sci. 2(3),
339–344 (1976)

28. Fano, R.M.: On the number of bits required to implement an associative memory.
Memorandum 61, Computer Structures Group, MIT, Cambridge (1971)

29. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348(2–3), 207–216 (2005)

30. Franceschini, G., Munro, J.I.: Implicit dictionaries with O(1) modifications per
update and fast search. In: SODA, pp. 404–413 (2006)

31. Franceschini, G., Muthukrishnan, S.: In-place suffix sorting. In: Arge, L., Cachin,
C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 533–545.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8 47

32. Franceschini, G., Muthukrishnan, S., Pǎtraşcu, M.: Radix sorting with no extra
space. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp.
194–205. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-
3 19

33. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selection.
J. Comput. Syst. Sci. 34(1), 19–26 (1987)

34. Kammer, F., Sajenko, A.: Linear-time in-place DFS and BFS on the word RAM.
In: Heggernes, P. (ed.) CIAC 2019. LNCS, vol. 11485, pp. 286–298. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17402-6 24

35. Koucký, M.: Catalytic computation. Bull. EATCS 118 (2016). http://eatcs.org/
beatcs/index.php/beatcs/article/view/400

36. Lai, T.W., Wood, D.: Implicit selection. In: Karlsson, R., Lingas, A. (eds.) SWAT
1988. LNCS, vol. 318, pp. 14–23. Springer, Heidelberg (1988). https://doi.org/10.
1007/3-540-19487-8 2

37. Munro, J.I.: An implicit data structure supporting insertion, deletion, and search
in O(log2 n) time. J. Comput. Syst. Sci. 33(1), 66–74 (1986)

38. Munro, J.I.: Tables. In: FSTTCS, pp. 37–42 (1996)
39. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theor. Com-

put. Sci. 12, 315–323 (1980)
40. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: FOCS, pp.

264–268 (1998)
41. Raman, R., Rao, S.S.: Succinct dynamic dictionaries and trees. In: Baeten, J.C.M.,

Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,
pp. 357–368. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-
0 30

42. Schmidt, J.M.: A simple test on 2-vertex- and 2-edge-connectivity. Inf. Process.
Lett. 113(7), 241–244 (2013)

43. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

44. Tarjan, R.E.: A note on finding the bridges of a graph. Inf. Process. Lett. 2(6),
160–161 (1974)

45. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566–579 (1984)

https://doi.org/10.1007/978-3-540-73420-8_47
https://doi.org/10.1007/978-3-540-75520-3_19
https://doi.org/10.1007/978-3-540-75520-3_19
https://doi.org/10.1007/978-3-030-17402-6_24
http://eatcs.org/beatcs/index.php/beatcs/article/view/400
http://eatcs.org/beatcs/index.php/beatcs/article/view/400
https://doi.org/10.1007/3-540-19487-8_2
https://doi.org/10.1007/3-540-19487-8_2
https://doi.org/10.1007/3-540-45061-0_30
https://doi.org/10.1007/3-540-45061-0_30

Further Results on Online Node- and
Edge-Deletion Problems with Advice

Li-Hsuan Chen1, Ling-Ju Hung2, Henri Lotze3, and Peter Rossmanith3(B)

1 Kenkone Medical Co., Taipei, Taiwan
2 National Taipei University of Business, Taipei, Taiwan

3 RWTH Aachen University, Aachen, Germany

Abstract. In online edge- and node-deletion problems the input arrives
node by node and an algorithm has to delete nodes or edges in order
to keep the input graph in a given graph class at all times. We consider
graph classes that can be characterized by forbidden sets of induced sub-
graphs and analyze the advice complexity of getting an optimal solution.
We give almost tight lower and upper bounds for the Delayed H-Node

Deletion Problem, where there is one forbidden induced subgraph
that may or may not be disconnected and tight bounds on the Delayed

F-Node Deletion Problem, where we have an arbitrary number of for-
bidden connected graphs. For the latter result we present an algorithm
that computes the advice complexity directly from F . For the Delayed

H-Node Deletion Problem the advice complexity is basically an easy
function of the size of the biggest component in H.

Keywords: Online algorithm · Advice complexity · Node deletion ·
Edge deletion · Delayed decision model · Graph modification

1 Introduction

Many classical online problems can be formulated as follows: Given an instance
I = {x1, . . . , xn} as a series of elements ordered from x1 to xn, an algorithm
receives them iteratively in this order, having to decide whether to include xi

into its solution at the point it receives it. It can base this decision only on the
previously revealed x1, . . . , xi−1 and must neither remove xi from its solution
later nor include any of the previously revealed elements into its solution. A
way to measure the performance of such an online algorithm is the competitive
ratio, which compares how much worse it performs compared to an optimal
offline algorithm [4]. An algorithm is c-competitive if the competitive ratio of
the algorithm is bounded by a constant c.

In most classical online problems such as the k-Server Problem, the Pag-

ing Problem or the Knapsack Problem as well as most other online prob-
lems, receiving the next xi of an instance coincides with an algorithm having
to process this request. This makes a lot of sense in the previously mentioned

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 140–153, 2020.
https://doi.org/10.1007/978-3-030-48966-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_11

Further Results on Online Node- and Edge-Deletion Problems with Advice 141

problems, but arguably less sense when there is no “need to act” after an item
of the instance is presented, which may regularly happen in the instances of the
problem that we study in this paper: Informally, the requests are single nodes of
a graph that are iteratively revealed and our task is to keep the graph induced
by these nodes free of a set F of forbidden induced subgraphs by deleting nodes
or edges. Obviously, there are sets and instances in which an arbitrary number
of nodes can be revealed before any forbidden induced substructure is revealed.
The offline variant of this problem was shown to be NP-Hard by Yannakakis [17].

In this work, we use a modified version, which we call the delayed decision
model, which was already used in [16] and which is similar to the preemptive
model used by Komm et al. [13]. We consider an instance I = {x1, . . . , xn} of
an online minimization problem for which a solution S ⊆ I has to satisfy some
condition C. Again, an algorithm ALG has to decide whether to include any
element into its solution S. We denote the intermediate solution of an algorithm
on an instance I at the revelation of element xi – before the decision on whether
to include it in S – by SI

i (ALG). While in the classical definition, an algorithm
has to decide on whether to include an element into its solution at the point
of revelation, the algorithm may now wait until the condition C is violated by
SI

i (ALG). It may then include any of the previously revealed elements into its
solution, but is still unable to revert any of its previous selections.

A selection of online problems that do not admit any algorithm with a
constantly bounded competitive ratio, such as the Minimum Vertex Cover

Problem and in particular general node and edge deletion problems are con-
stantly competitive with delayed decision.

A simple example is the online Minimum Vertex Cover Problem. The
input I is a series of induced subgraphs G[{v1}], G[{v1, v2}], . . . , G[{v1, . . . , vn}]
for which C states that SI

i (ALG) is a vertex cover on G[{v1, . . . , vi}]. In this
setting, an algorithm has to include nodes into its current solution only once an
edge is revealed that is not covered yet. While the Minimum Vertex Cover

Problem is competitive in the maximum degree Δ of an input graph in the
classical online setting [5], a competitive ratio of 2 can be proven for the delayed
decision setting: The upper bound is given by always taking both nodes of an
uncovered edge into the solution (this is the classical 2-approximation algorithm).
The lower bound can be achieved by presenting an edge {vi, vj} and adding
another edge to either vi or vj , depending on which node is not taken into the
solution by a deterministic online algorithm. If both nodes are taken into the
solution then no additional edge is introduced. This gadget can be repeated and
forces a deterministic algorithm to take two nodes into the vertex cover where
one suffices.

We denote by H a finite graph and by F a finite set of finite graphs. For a
problem Π we denote the optimal solution size on an input I by optΠ(I).

The competitive ratio is a standard method to analyze online algorithms
and a relatively new alternative is the advice complexity introduced by Dobrev,
Královič, and Pardubská [7], revised by Hromkovič, Královič and Královič [11]
and refined by Böckenhauer et al. [2]. The advice complexity measures the

142 L.-H. Chen et al.

amount of information about the future that is necessary to solve an online
problem optimally or with a given competitive ratio. There is an oracle called
“advisor” that knows the whole input instance and gives the online algorithm
“advice” in the form of a binary string that can be read from a special advice
tape. Many problems have been successfully analyzed in this model including
the k-server problem [8], the Knapsack Problem [3], Job-Shop Schedul-

ing [1] and many more. One criticism on the advice model is that in the real
world such a powerful advisor usually cannot exist. However, the new research
area of learning-augmented algorithms uses an AI-algorithm to guide classical
algorithms to solve optimization problems and they are closely related to the
advice complexity [14,15]. A strong application of advice complexity are the
lower bounds it provides: For example, the online knapsack problem can be
solved with a competitive ratio of two by a randomized algorithm. It has been
shown that this competitive ratio cannot be improved with o(log n) advice bits.

We base our work on the definitions of advice complexity from [12] and [2],
with a variation due to the modified online model we are working on: The length
of the advice string is often measured as a function in the input length n, which
usually almost coincides with the number of decisions an online algorithm has
to make during its run. In the delayed decision model, the number of decisions
may be smaller than n by a significant amount and we can measure the advice
as f(optΠ(I)), i.e., a function of the size of the optimum solution. This usually
does not work in classical online algorithms.

Tight results for the advice complexity of the Delayed Connected

F-Node Deletion Problem and of the Delayed Connected H-Edge
Deletion Problem were shown in [16]. We show upper and lower bounds for
the general Delayed H-Node Deletion Problem and a tight bound for the
Delayed Connected F-Edge Deletion Problem. We leave open the exact
advice complexity for the general Delayed F-Node Deletion Problem and
Delayed F-Edge Deletion Problem, for which we can only provide lower
bounds. Some proofs can be found only in the full version of this paper.

2 The F-Node Deletion Problem and F-Edge Deletion
Problem Without Advice

For a graph G = (V,E) we write |G| to denote |V (G)| and ||G|| to denote |E(G)|.
We use the symbol � to denote an induced subgraph relation, i.e. A � B iff A
is an induced subgraph of B. We write G to denote the set of all graphs.

We write G − U for G[V (G) − U] and G − u for G − {u} and also use G − E
similarly for an edge set E. For graphs H and G we write H �ϕ G if there exists
an isomorphism ϕ such that ϕ(H) � G. We call a set of graphs unordered if
the members are pairwise maximal according to the induced subgraph relation
�. It is easy to see that every Delayed F-Node Deletion Problem can be
reduced to one with an unordered F . A graph G is called F-free if there is no
Hi �ϕ G for any Hi ∈ F .

Further Results on Online Node- and Edge-Deletion Problems with Advice 143

Definition 1. Let F be an unordered set of graphs. Let I be a sequence of
growing induced subgraphs G[{v1}], . . . , G[{v1, . . . , vn}]. The F-Node Dele-

tion Problem is to delete a minimum size set of nodes S from G such that
G − S is F-free. We call SI

i ⊆ {v1, . . . , vi} an (intermediate) solution for the F-

Node Deletion Problem on G[{v1, . . . , vi}] if G[{v1, . . . , vi}] − SI
i is F-free.

The Delayed F-Node Deletion Problem is defined accordingly, with the
condition C stating The Graph G[{v1, . . . , vi} − SI

i (ALG)] is F-free for all
i ∈ {1, . . . , n} and some algorithm ALG. F-Edge Deletion and Delayed

F-Edge Deletion are defined accordingly, with the solution being a set of
edges. The graph is always revealed as a sequence of nodes. We will denote
the Delayed F-Node Deletion Problem for F = {H} as the Delayed

H-Node Deletion Problem.

Lemma 1. There is at least one F for which the F-Node Deletion Problem

is not c-competitive for any constant c.

Lemma 1 is not surprising. It generalizes that Vertex Cover admits no
constantly bounded competitive ratio [5].

Lemma 2. There is at least one F for which the F-Edge Deletion Problem

is not c-competitive for any constant c.

Lemma 3. The Delayed F-Node Deletion Problem is k-competitive
for k = maxH∈F{|H|}. The Delayed F-Edge Deletion Problem is k-
competitive for k = maxH∈F{||H||}.
Proof. Whenever an algorithm finds an induced H, it deletes all of its nodes,
resp. edges. ��

3 The Delayed H-Node Deletion Problem with Advice

If F consists of connected subgraphs, tight results have already been proven
in [16]. The advice complexity is exactly optF (G) log(|H|) + O(1) for a biggest
graph H ∈ F . The problem becomes harder when the graphs in F are discon-
nected and was left as an open question. We answer it partially by determining
the advice complexity for the Delayed H-Node Deletion Problem, where
H can be disconnected.

Definition 2. Let CG = {C1, C2, . . . , Cj} denote the set of components of G.

If a forbidden graph H is disconnected, it may contain multiple copies of the
same component, e.g., three disjoint triangles among other components. If we
were only to delete triangles, we would thus have to delete all but two copies to
make the graph of an instance H-free. We introduce some notation to determine
the number and the actual copies of a type of component.

Definition 3. Given a graph G. For a connected graph C we define the packing
pC(G) of C in G as the set of sets of pairwise node-disjoint copies of C in G and
the packing number of C in G, νC(G), as maxH∈pC(G)(|H|).

144 L.-H. Chen et al.

In other words, νC(G) is the maximal number of C’s that can be packed node-
disjointly into G.

We use the multiplicity of components in H in a lower bound that forces any
algorithm to leave specific components such as the two specific triangles in our
small example. To punish a wrong selection, we use a redundancy construction
that maps a component C into a C ′ such that C � C ′ and even C � C ′ − {v}
for every v holds, while C ′ does not contain two disjoint copies of C.

Definition 4. We call the graph H ′ a redundancy construction of a connected
graph H with |H| > 1 if there exists an isomorphism ϕ1 : G → G such that for
every isomorphism ϕ2 : G → G the following holds:

– ϕ1(H) � H ′ − v for all v ∈ V (H ′)
– ϕ1(H) �� H ′ − V (ϕ2(H)) if V (ϕ2(H)) ⊆ V (H ′)

To show that such a redundancy construction actually exists, we use the
following transformation.

Definition 5. Given a connected graph H = (V,E) with V = {v1, . . . , vn},
n > 1, in some order and some k ∈ [2, n] s.t. (v1, vk) ∈ E(H). H ′ is then
constructed in the following way: V (H ′) = V (H) ∪ {v′

i | vi ∈ V (H), i ≥ 2} and
E(H ′) = E(H)∪{(v′

i, v
′
j) | (vi, vj) ∈ E(H), v′

i, v
′
j ∈ V (H ′)}∪{(v1, v′

i) | (v1, vi) ∈
E(H)} ∪ {(vk, v′

j) | (v1, vj) ∈ E(H)}
Intuitively, we create a copy of H except for a single node v1. The copied neigh-
bors of v1 are then connected with v1. Lastly, some copied node is chosen and
connected with the original neighbors of v1.

Example 1. A graph H and its redundancy construction H ′:

Lemma 4. The transformation in Definition 5 is a redundancy construction.

We denote an optimal solution of the Delayed H-Node Deletion Problem

on a graph G by solH(G).

3.1 Lower Bound

Theorem 1. Let H be a graph. Let Cmax be a component of H of maximum
size. Any online algorithm optimally solving the Delayed H-Node Deletion

Problem uses at least optH(G) · log |V (Cmax)| + (νCmax
(H) − 1) · log(optH(G))

many advice bits on input G.

Further Results on Online Node- and Edge-Deletion Problems with Advice 145

Proof. Let CH = {C1, . . . , Cj} and |V (C1)| ≤ . . . ≤ |V (Cj)|. The adversary first
presents k ≥ max{ νCi

(H) | Ci ∈ CH } disjoint copies of each Ci ∈ CH in an
iterative way such that in each iteration one copy of each Ci is revealed node by
node. If an algorithm deleted any nodes before an H is completed, the adversary
would simply stop and the algorithm would not be optimal.

As soon as G is no longer H-free, any algorithm has to delete some node(s).
For a Ci ∈ CH it can either delete all Ci except for νCi

(H) − 1 occurrences
and optionally some additional node(s). Obviously, deleting an additional node
is not optimal, as the adversary would simply stop presenting nodes.

The following strategy will force an optimal online algorithm always to delete
copies of Cmax . After all k copies of all Ci ∈ CH are presented, additionally
maxCi∈CH

{νCi
(H)}−νCmax

(H)+1 copies of each Ci ∈ CH \Cmax are presented.
Deleting all Cmax except for νCmax

(H) − 1 occurrences will thus only need k −
νCmax

(H) + 1 deletions, while deleting any other component will need at least
k−maxCi∈CH

{νCi
(H)}+1+maxCi∈CH

{νCi
(H)}−νCmax

(H)+1 = k−νCmax
(H)+2

deletions. Thus, it is always optimal for any algorithm to focus on Cmax for
deletion.

After all components have been revealed - and some deletion(s) had to be
made - a redundancy construction such as the one from Definition 5 is used in
order to repair an arbitrary set of νCmax

(H) − 1 copies of Cmax . Every optimal
algorithm will leave exactly νCmax

(H) − 1 copies of Cmax after G is completely
revealed. There are

(optH(G)+νCmax (H)−1
optH(G)

)
many different ways to distribute the

affected components onto all components and an algorithm without advice can-
not distinguish them. In particular, each of these instances is part of a different,
unique optimal solution, which deletes a node from all but the νCmax

(H) − 1
subgraphs. If an algorithm has chosen to delete a node from a component that
is affected by the redundancy construction, this component is now repaired and
demands an additional deletion. By definition, applying the redundancy con-
struction does not result in additional disjoint copies of Cmax . Thus, it is still
optimal to focus on Cmax for deletion.

Finally, for every component that is not affected by a redundancy construc-
tion, the adversary glues a copy of Cmax to one of its nodes as defined in [16].
It has |V (Cmax)| ways to do so for each copy of Cmax . Intuitively, the glueing
operation joins two graphs by identifying a single node from both and connecting
them by joining these two nodes into one.

We now measure how much advice an algorithm needs at least. First of all,
it should be easy to see that the adversary is able to present |V (Cmax)|optH(G)

many different instances regarding the deletion of nodes for the copies of Cmax

not selected for the redundancy construction.
Assuming νCmax

(H) > 1, any algorithm needs to determine the correct subset
of optH(G) components out of k − 1 presented ones to delete one node from. As
the adversary has

(optH(G)+νCmax (H)−1
optH(G)

)
different ways to distribute these redun-

dancies and since every single of these instances has a different unique optimal
solution, any correct algorithm has to get advice on the complete distribution

146 L.-H. Chen et al.

Algorithm 1. Upper Bound: Delayed H-Node Deletion Problem

1: Input: Online graph G with V (G) = {v1, . . . , vn}, H
2: Advisor computes Cminν ∈ argminC∈CH {νC(G) − νC(H)}
3: Advisor computes Cmin ∈ argminC∈Cminν {|V (C)|}
4: Advisor computes L, the list of labels marked for keeping
5: Read advice: Cmin � Which Cmin ∈ CH to delete
6: Read advice: List L of numbers in range [1, optH(G) + O(1)]
7: k ← 1
8: Define l : G → N, l(G) = 0
9: Define labeled : G → {0, 1}, labeled(G) = 1 iff l(G) �= 0, otherwise labeled(G) = 0

10: for all i ∈ {1, . . . , n} do
11: Gi ← G[v1, . . . , vi] � Reveal next node
12: if νCmin (Gi) ≥ νCmin (H) then
13: W ← argmaxP∈pCmin

(Gi)|P | � Biggest Packings

14: H ← argmaxP∈W

∑
g∈P labeled(g) � Most labels

15: Select P ∈ H � Arbitrary set
16: for all C ∈ P do � Label everything unlabeled
17: if l(C) = 0 then l(C) ← k; k ← k + 1

18: S ← { C ∈ P | l(C) �∈ L } � Select everything not marked for keeping
19: for all C ∈ S do
20: Read advice: Which v ∈ V (C) to delete
21: Delete v out of Gi

in the size of at least log
(optH(G)+νCmax (H)−1

optH(G)

) ≥ (νCmax
(H) − 1) · log(optH(G))

advice bits. ��

3.2 Upper Bound

For simplicity of writing down the algorithm, we will assume in this section that
we are only ever presented graphs which induce at least one forbidden subgraph
H. Our algorithm can be easily transformed into one that only starts to read any
advice once the first forbidden subgraph is completely revealed. For an instance
with an online graph G with V (G) = {v1, . . . , vn} and a forbidden subgraph H,
the advisor first computes the advice the algorithm is going to read during its
run. It first identifies the set of components Cminν which each require the fewest
node deletions in G to make the graph H-free. Of these possible components,
the advisor chooses the component with the fewest nodes which an optimal
offline algorithm would choose, named Cmin from here on. Finally, the advisor
computes a list L of labels which will coincide with labels given by the algorithm
to copies of Cmin which are not to be deleted in an optimal solution. As there
are at most νCmin

(H) · optH(G) node-disjoint copies of H in G and as Lemma
7 states that our algorithm uses at most optH(G) + O(1) labels, we can limit
the range of possible labels by [1, optH(G) + O(1)]. Finally, a number of advice
bits is written for every deletion that the algorithm will make which encode the
concrete node out of a copy of Cmin is optimal to delete.

Further Results on Online Node- and Edge-Deletion Problems with Advice 147

The algorithm starts by reading from the advice tape which component Cmin

to focus on for deletion and the list L, using self-delimiting encoding.
Whenever the next node xi of the instance is revealed which fulfills

νCmin
(Gi) ≥ νCmin

(H), i.e. that there are at least as many node-disjoint copies
of Cmin in the current graph as in H, the algorithm will delete nodes from the
graph as described in the following, otherwise the algorithm simply waits for the
next node to be revealed.

To identify which node(s) of Gi are to be deleted, the algorithm first identifies
all biggest sets of node-disjoint copies of Cmin . Of them it identifies a set P of
which the most components have already received a label. Then all previously
unlabeled copies of Cmin ∈ P receive a new unique label. The algorithm now
looks at the label list L given by the advisor. Every copy of Cmin ∈ P whose
label is not in L is now marked for deletion. The algorithm reads advice which
concrete node out of every copy of Cmin is optimal to delete.

Lemma 5. Algorithm 1 is correct.

Lemma 6. Algorithm 1 is optimal.

Definition 6. Given graphs G,H and a labeling function l : G → N. We call
a family C of induced subgraphs of G a configuration, if every element of C is
isomorphic to H, l(C) �= 0 for each C ∈ C and V (C1) ∩ V (C2) = ∅ for all
C1, C2 ∈ C, C1 �= C2. The size of a configuration is the number of induced
subgraphs it contains.

Informally speaking, a configuration is a set of disjoint induced subgraphs of G
that already have a label.

Lemma 7. Given an online graph G, a forbidden graph H, as well as a subgraph
C ∈ CH of which there may be at most k = νC(H) − 1 disjoint copies present in
G. Algorithm 1 assigns no more than optH(G) + O(1) labels to G if the advisor
assigns Cmin = C as specified in line 5.

Theorem 2. Let H be a graph. Let Cminν = argminC∈CH
{νC(G)−νC(H)} and

Cmin = argminC∈Cminν
{|V (C)|}. The Delayed H-Node Deletion Problem

can be solved optimally using at most optH(G) · log |V (Cmin)| + O(log optH(G))
many advice bits on input G.

Proof. We count the number of advice bits used by Algorithm 1. We know by
Lemma 5 and 6 that it is correct and optimal. The advice in line 5 is of constant
size. As L only contains the labels for components which are not to be deleted and
we limited the number of them by a constant in Lemma 7, only O(log optH(G))
advice, using self-delimiting encoding, is needed in line 6.

Finally, the algorithm reads advice on which node of each copy of Cmin

that is part of solH(G) to delete in line 21. This can be done using optH(G) ·
log |V (Cmin)| advice bits in total. ��

148 L.-H. Chen et al.

4 The Delayed Connected F-Edge Deletion Problem

Let (d1, . . . , dk) ∈ Nk. Let m(n) be the solution to the recurrence relation

m(n) =

{∑k
i=1 m(n − di) if n ≥ max{d1, . . . , dk}

cn otherwise

where cn ≥ 0 and some ci > 0 for 0 ≤ i < max{d1, . . . , dk}. Let β(d1, . . . , dk) =
infτ{ τ | m(n) = O(τn) }. Note that β does not depend on the ci’s.

If S = {D1, . . . , Dk} is a set of sets, then we define β(S) = β(|D1|, . . . , |Dk|).
A homogeneous linear recurrence relation with constant coefficients usually

has a solution of the form Θ(nk−1τn) if τ is the dominant singularity of the
characteristic polynomial with multiplicity k [9]. However, here the coefficients
of the characteristic polynomial are real numbers and there is exactly one sign
change. By Descartes’ rule of signs there is exactly one positive real root and
therefore its multiplicity has to be one [6,10]. Therefore m(n) = Θ(β(S)n).

Definition 7. Let F be a set of forbidden connected induced subgraphs and
H ∈ F . Let S ⊆ 2E(H).

1. A set D ⊆ E(H) is H-optimal for a graph G if H � G and G − D is F-free
and optF (G) = |D|.

2. A set D ⊆ E(H) is H-good for a graph G if H � G and D is a non-empty
subset of some D̄ ⊆ E(G) where optF (G) = |D̄| and G − D̄ is F-free.

3. S is H-sound if H − D is F-free for every D ∈ S.
4. S is H-sufficient if for every connected graph G with H � G there is a D ∈ S

such that D is H-good for G.
5. S is H-minimal if for every D ∈ S, there is a graph G such that D is H-good

for G, but every D′ ∈ S, D′ �= D is not.

Lemma 8. Let F = {H1, . . . , Hk} be a set of connected graphs, G a graph and
D ⊆ E(Hi) that is Hi-good for G. Then there is a subgraph G′ ⊆ G such that D
is Hi-optimal for G′.

4.1 Upper Bound

Theorem 3. Let F = {H1, . . . , Hk} be a set of connected graphs and let Si be
Hi-sound and Hi-sufficient for all i ∈ {1, . . . , k}. Then there is an m ∈ R and an
algorithm that solves the Delayed Connected F-Edge Deletion Problem

for every graph G with m · optF (G) + O(1) many advice bits where 2m ≤ β(Si)
for all i ∈ {1, . . . , k}.
Proof. The algorithm receives optF (G) · log(maxi{β(Si)}) + O(1) many advice
bits and then a graph G as a sequence of growing induced subgraphs. The
algorithm interprets the advice as a number that can be between 0 and
O((maxi{β(Si)})optF (G)).

Further Results on Online Node- and Edge-Deletion Problems with Advice 149

The algorithm will delete in total exactly optF (G) edges. We analyze the
total number of different advice strings the algorithm might use when deleting
optF (G) edges.

When the algorithm receives a new node and its incident edges to form the
next graph G it proceeds as follows: While G is not F-free, choose some Hi ∈ F
for which Hi �ϕ G. The advisor chooses one D ∈ Si for which ϕ(D) is ϕ(Hi)-
good for the graph at hand and puts it in the advice.

The advice strings are therefore partitioned into |Si| subsets, one for each
D ∈ Si. After deleting ϕ(D) the algorithm proceeds on the graph G − ϕ(D),
where optF (G) is now by |D| smaller. If m(optF (G)) is the total number of advice
strings we get the recurrence m(optF (G)) = maxi

(∑
D∈Si

m(optF (G) − |D|))
if optF (G) is at least as big as every D ∈ Si. Standard techniques show that
m(optF (G)) = O(max{β(S1), . . . , β(Sk)}optF (G)). ��

4.2 Lower Bound

Let F = {H1, . . . , Hk} be a set of connected graphs. We fix some correct algo-
rithm A for the Delayed Connected F-Edge Deletion Problem.

We define the sets Si = Si(A) for i = 1, . . . , k as follows: D ∈ Si if and only
if there is some input sequence G1, G2, . . . , Gt such that algorithm A deletes the
edge set D′ from Gt. Moreover, there is a set X and an isomorphism ϕ such that
G[X] ∼= Hi, ϕ : V (H) → X, and ϕ(D) = D′ ∩E(G[X]). Informally speaking, the
edge sets in Si are those that are deleted from some isomorphic copy of Hi by
algorithm A in some scenario.

We will need the following technical lemma. It states that we can find a
matching with special properties in every connected bipartite graph. The match-
ing should have the following properties. Let U ′ be the partners in the matching
on top and V ′ on the bottom.

The first property is N(U ′) = V , i.e., every node in V is connected to at least
one node in U ′. The second property states that we have an induced matching,
i.e., that the graph induced by U ′ ∪ V ′ is a matching. The third property
concerns the vertices in V ′: If v ∈ V ′ then N(v) contains several vertices from
U , but exactly one node in U ′, i.e., its partner in the matching. We require that
this partner is the smallest one in N(v).

Lemma 9. Let G = (U, V,E) be a bipartite graph where U = {u1, . . . , uk}. Let
≤ be a preorder on U such that u1 ≤ · · · ≤ uk. Moreover, assume that V ⊆ N(U),
i.e., every node in V is connected to some node in U . Then there is a U ′ ⊆ U
and V ′ ⊆ V such that

1. N(U ′) = V ,
2. G[U ′ ∪ V ′] is a matching,
3. min N(v) ∈ U ′ for every v ∈ V ′.

Lemma 10. Let F = {H1, . . . , Hk} be a set of connected graphs and Si be Hi-
sound and Hi-sufficient for all i ∈ {1, . . . , k}. Then there are S′

i ⊆ Si such that
S′

i is Hi-sound, Hi-sufficient and Hi-minimal and moreover:

150 L.-H. Chen et al.

For every D′ ∈ S′
i there is a graph G with Hi � G such that D′ is Hi-good for

G and for every D ∈ Si \ S′
i that is also Hi-good for G, it holds that |D| ≥ |D′|.

Theorem 4. Let F = {H1, . . . , Hk} be a set of connected graphs and assume
that there is an algorithm A that can solve the Delayed Connected F-Edge

Deletion Problem for all inputs G with at most m · optF (G) + O(1) advice
for some m ∈ R. Then there exist S′

i that are Hi-sound, Hi-sufficient, and
Hi-minimal and β(S′

i) ≤ 2m for every i ∈ {1, . . . , k}.
Proof. By Lemma 10 there is an S′

i = {D1, . . . , Dr} ⊆ Si that is Hi-sound,
Hi-sufficient, and Hi-minimal. It additionally has the property that for every
D′ ∈ S′

i there is a graph G with Hi � G such that D′ is Hi-good for G and for
every D ∈ Si \ S′

i that is also Hi-good for G, it holds that |D| ≥ |D′|.
Let l ∈ N. The adversary prepares Θ(β(S′)l) many instances by repeating

the following procedure until the size of the optimum solution for the presented
graph exceeds l − max{|D1|, . . . , |Dr|}.

1. The adversary presents a disjoint copy of Hi.
2. Then the adversary computes an induced supergraph Gj of Hi for which Dj

is Hi-good, but all Dj′ ∈ S′
i with j′ �= j are not Hi-good, for all 1 ≤ j ≤ r.

The existence of the graph Gj is guaranteed by the Hi-minimality of S′
i.

In particular there is a D̄j ⊇ Dj such that D̄j is Hi-optimal for Gj . Let
D′

j = D̄j − Dj . Let G′
j = Gj − D′

j . It is easy to see that Dj is Hi-optimal
for G′

j .

We show that no other Dj′ ∈ S′
i is Hi-good for G′

j . Assume otherwise. If Dj′ is
Hi-good for G′

j then there must be a D̄j′ ⊇ Dj′ that is Hi-optimal for G′
j . Then

Gj − Dj′ − ((D̄j′ − Dj′) ∪ D′
j) is F-free. This implies that Dj′ is Hi-good for Gj

contradicting the Hi-minimality of S′
i. Next the adversary transforms the Hi into

one of the r possible G′
js and presents the new vertices. Then optF (G′

j) = |Dj |.
Hence, the optimal solution size increases by |Dj |.

In each round the input graph grows and the optimal solution size grows
by |Dj |. As soon as that size exceeds l − max{|D1|, . . . , |Dr|} the adversary
keeps presenting disjoint copies of Hi without turning them into bigger connected
graphs until the size reaches exactly l. The number N(l) of different instances
is given by the following recurrence:

N(l) =

{∑r
j=1 N(l − |Dj |) if l ≥ max{|D1|, . . . , |Dr|}

1 otherwise

It is easy to see that N(l) = Θ(β(S′
i)

l). The algorithm has to react differently
on all of these instances: When the algorithm sees a new Hi to be turned into
one of G′

1, . . . , G
′
r, it deletes different edge sets for each of the r possibilities.

The adversary constructed an instance that consists of a sequence of disjoint
graphs G′

i1
, . . . , G′

it
from the set {G′

1, . . . , G
′
r} of which the total size is at least

∑t
j=1 optF (Gij

) − max{|D1|, . . . , |Dr|} and O(1) many copies of Hi. If G is the

Further Results on Online Node- and Edge-Deletion Problems with Advice 151

whole constructed instance we have optF (G) = l + O(1) because optF (Hi)F =
O(1). Together with N(l) = Θ(β(S′

i)
l) this means that Algorithm A uses at least

log N(l) = l · log β(S′
i) + O(1) = optF (G) log β(S′

i) + O(1) advice bits. Assume
Algorithm A uses at most m · optF (G) + O(1) advice bits on every graph G as
stated in the precondition above. Then m cannot be smaller than log β(S′

i) for
every i ∈ {1, . . . , k} because optF (G) can be become arbitrarily big. ��
Lemma 11. Let F be a set of connected forbidden graphs, H ∈ F , and S ⊆
2E(H). There is an algorithm that can decide whether S is H-sufficient.

Proof. It is sufficient to verify for all connected graphs G with H � G that some
D ∈ S is H-good for G, i.e., there is an optimal solution for G that contains D.
By Lemma 8 we can restrict our search to all such G’s that have an optimal
solution that is a subset of E(H). There are infinitely many graphs G to check.
To overcome this we define the unfolding of G, written Υ (G), as the set of the
following graphs: Remember that H � G. If there is some H ′ ∈ F with H ′ �ϕ G
then G[E(H) ∪ E(ϕ(H ′))] ∈ Υ (G) (for every possible ϕ). If, however, Υ (G)
contains two graphs G′ and G′′ that are isomorphic via an isomorphism that is
the identity on V (H), then only the lexicographically smaller one is retained.

This means that the unfolding of G contains all induced subgraphs that
consist of H and one other copy of some forbidden induced subgraph from F
that must overlap with H in some way (because we assumed that G has an
optimal solution that consists solely of edges from H). Here is a small example:

Let F = { , }, H = { }, G = . Then Υ (G) = { , , , }.

It is easy to see that deleting some D ⊆ E(H) from G makes it F-free iff
deleting the same D from all graphs G′ ∈ Υ (G) makes all these G′ F-free. Hence,
there is an optimal solution for G that is a subset of E(H) iff there is such a
subset that is “optimal” for Υ (G) (i.e., deletion of no smaller edge set can make
all graphs in Υ (G) F-free).

There are only finitely possibilities for Υ (G) and we can enumerate all of
them. Let us say this enumeration is Υ1, . . . , Υt. For each Υi we first find out,
whether there is a G with Υ (G) = Υi. We can do this by enumerating all graphs
G up to a size that does not exceed the sum of the sizes of all graphs in Υi

and computing Υ (G) for them. If indeed Υ (G) = Υi then we test whether S is
H-good for G. Iff these tests pass for all i then S is indeed H-sufficient. ��
Theorem 5. Let F = {H1, . . . , Hk} be connected graphs. The advice complexity
for Delayed Connected F-Edge Deletion is m · optF (G) + O(1) where
m = maxi∈{1,...,k} min{ log β(S) | S ⊆ 2E(H), S is Hi-sound and Hi-sufficient }.
There is an algorithm that can compute m from F . More specifically, there is
an algorithm that gets F and t ∈ N as the input and returns the tth bit of the
binary representation of m.

Proof. “≤” by Theorem 3. “≥” by Theorem 4. An algorithm can enumerate
all possible S ⊆ E(H) and then test if S is Hi-sound and Hi-sufficient (by
Lemma 11). Then β(S) is computed by finding the only real root of the charac-
teristic polynomial of the corresponding recurrence relations [9]. ��

152 L.-H. Chen et al.

Acknowledgement. We like to thank Ratislav Královič for helping significantly to
simplify the proof of Lemma 7.

References

1. Böckenhauer, H., Komm, D., Královic, R., Královic, R., Mömke, T.: On the advice
complexity of online problems. In: Algorithms and Computation, 20th Interna-
tional Symposium, ISAAC 2009, Honolulu, Hawaii, USA, 16–18 December 2009,
Proceedings, pp. 331–340 (2009). https://doi.org/10.1007/978-3-642-10631-6 35

2. Böckenhauer, H., Komm, D., Královic, R., Královic, R., Mömke, T.: Online algo-
rithms with advice: the tape model. Inf. Comput. 254, 59–83 (2017). https://doi.
org/10.1016/j.ic.2017.03.001

3. Böckenhauer, H., Komm, D., Královic, R., Rossmanith, P.: The online knapsack
problem: advice and randomization. Theoret. Comput. Sci. 527, 61–72 (2014).
https://doi.org/10.1016/j.tcs.2014.01.027

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

5. Demange, M., Paschos, V.T.: On-line vertex-covering. Theoret. Comput. Sci.
332(1–3), 83–108 (2005). https://doi.org/10.1016/j.tcs.2004.08.015

6. Descartes, R.: Discours de la methode pour bien conduire sa raison, et chercher la
verité dans les sciences. Plus la Dioptriqve. Les Meteores. Et la Geometrie. - Qui
sont des essais de cete Methode. De l’Imprimerie de Ian Maire (1637)

7. Dobrev, S., Královic, R., Pardubská, D.: Measuring the problem-relevant informa-
tion in input. ITA 43(3), 585–613 (2009). https://doi.org/10.1051/ita/2009012

8. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theoret. Comput. Sci. 412(24), 2642–2656 (2011). https://doi.org/10.1016/j.tcs.
2010.08.007

9. Greene, D.H., Knuth, D.E.: Mathematics for the Analysis of Algorithms, 3rd edn.
Birkhäuser, Boston (1990)

10. Henrici, P.: Applied and Computational Complex Analysis, vol. 1. Wiley, New York
(1988)

11. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2 3

12. Komm, D.: An Introduction to Online Computation - Determinism, Randomiza-
tion. Advice Texts in Theoretical Computer Science. An EATCS Series. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-42749-2

13. Komm, D., Královic, R., Královic, R., Kudahl, C.: Advice complexity of the online
induced subgraph problem. In: Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.)
41st International Symposium on Mathematical Foundations of Computer Science,
MFCS 2016, 22–26 August 2016 - Kraków, Poland, LIPIcs, vol. 58, pp. 59:1–
59:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/
10.4230/LIPIcs.MFCS.2016.59

14. Lykouris, T., Vassilvitskii, S.: Competitive caching with machine learned advice.
In: Proceedings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018, pp. 3302–3311
(2018)

15. Purohit, M., Svitkina, Z., Kumar, R.: Improving online algorithms via ML predic-
tions. In: Advances in Neural Information Processing Systems, vol. 31, pp. 9684–
9693 (2018)

https://doi.org/10.1007/978-3-642-10631-6_35
https://doi.org/10.1016/j.ic.2017.03.001
https://doi.org/10.1016/j.ic.2017.03.001
https://doi.org/10.1016/j.tcs.2014.01.027
https://doi.org/10.1016/j.tcs.2004.08.015
https://doi.org/10.1051/ita/2009012
https://doi.org/10.1016/j.tcs.2010.08.007
https://doi.org/10.1016/j.tcs.2010.08.007
https://doi.org/10.1007/978-3-642-15155-2_3
https://doi.org/10.1007/978-3-319-42749-2
https://doi.org/10.4230/LIPIcs.MFCS.2016.59
https://doi.org/10.4230/LIPIcs.MFCS.2016.59

Further Results on Online Node- and Edge-Deletion Problems with Advice 153

16. Rossmanith, P.: On the advice complexity of online edge- and node-deletion prob-
lems. In: Adventures Between Lower Bounds and Higher Altitudes - Essays Ded-
icated to Juraj Hromkovič on the Occasion of His 60th Birthday, pp. 449–462
(2018). https://doi.org/10.1007/978-3-319-98355-4 26

17. Yannakakis, M.: Node- and edge-deletion np-complete problems. In: Lipton, R.J.,
Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) Proceedings
of the 10th Annual ACM Symposium on Theory of Computing, 1–3 May 1978,
San Diego, California, USA, pp. 253–264. ACM (1978). https://doi.org/10.1145/
800133.804355

https://doi.org/10.1007/978-3-319-98355-4_26
https://doi.org/10.1145/800133.804355
https://doi.org/10.1145/800133.804355

Fair Packing of Independent Sets

Nina Chiarelli1, Matjaž Krnc2, Martin Milanič1, Ulrich Pferschy3,
Nevena Pivač1, and Joachim Schauer3,4(B)

1 FAMNIT and IAM, University of Primorska, Koper, Slovenia
nina.chiarelli@famnit.upr.si, martin.milanic@upr.si,

nevena.pivac@iam.upr.si
2 FAMNIT, University of Primorska, Koper, Slovenia

matjaz.krnc@upr.si
3 University of Graz, Graz, Austria

{ulrich.pferschy,joachim.schauer}@uni-graz.at
4 FH JOANNEUM, Kapfenberg, Austria

Abstract. In this work we add a graph theoretical perspective to a
classical problem of fairly allocating indivisible items to several agents.
Agents have different profit valuations of items and we allow an incom-
patibility relation between pairs of items described in terms of a conflict
graph. Hence, every feasible allocation of items to the agents corresponds
to a partial coloring, that is, a collection of pairwise disjoint independent
sets. The sum of profits of vertices/items assigned to one color/agent
should be optimized in a maxi-min sense. We derive complexity and
algorithmic results for this problem, which is a generalization of the
classical Partition and Independent Set problems. In particular, we
show that the problem is strongly NP-complete in the classes of bipartite
graphs and their line graphs, and solvable in pseudo-polynomial time in
the classes of cocomparability graphs and biconvex bipartite graphs.

Keywords: Fair division · Conflict graph · Partial coloring

1 Introduction

Allocating resources to several agents in a satisfactory way is a classical problem
in combinatorial optimization. In particular, interesting questions arise if agents
have different valuations of resources or if additional constraints are imposed for a
feasible allocation. In this work we study the fair allocation of n indivisible goods
or items to a set of k agents. Each agent has its own additive utility function over
the set of items. The goal is to assign every item to exactly one of the agents such
that the minimal utility over all agents is as large as possible. Related problems
of fair allocation are frequently studied in Computational Social Choice, see,
e.g., [9]. In the area of Combinatorial Optimization a similar problem is well-
known as the Santa Claus problem (see [5]), which can be also seen as weight
partitioning as well as a scheduling problem.

In this paper we look at the problem from a graph theoretical perspective and
add a major new aspect to the problem. We allow an incompatibility relation
c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 154–165, 2020.
https://doi.org/10.1007/978-3-030-48966-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_12

Fair Packing of Independent Sets 155

between pairs of items, meaning that incompatible items should not be allocated
to the same agent. This can reflect the fact that items rule out their joint usage
or simply the fact that certain items are identical (or from a similar type) and it
does not make sense for one agent to receive more than one of these items. We will
represent such a relation by a conflict graph where vertices correspond to items
and edges express incompatibilities. Now, every feasible allocation to one agent
must be an independent set in the conflict graph. This means that the overall
solution can also be expressed as a partial k-coloring of the conflict graph G, but
in addition every vertex/item has a profit value for every color/agent and the
sum of profits of vertices/items assigned to one color/agent should be optimized
in a maxi-min sense.

We believe that this problem combines aspects of independent sets, graph
coloring, and weight partitioning in an interesting way, offering new perspectives
to look at these classical combinatorial optimization problems.

Disjunctive constraints represented by conflict graphs were considered for
a wide variety of combinatorial optimization problems. We just mention the
knapsack problem [20,21], bin packing [18], scheduling (e.g., [8,13]) and problems
on graphs (e.g., [11]).

For a formal definition of our problem we consider a set V of items with
cardinality |V | = n and k profit functions p1, . . . , pk : V → Z+. The satisfaction
level of an ordered k-partition (X1, . . . , Xk) of V (with respect to p1, . . . , pk) is
defined as the minimum of the resulting profits pj(Xj) :=

∑
v∈Xj

pj(v), where
j ∈ {1, . . . , k}. The classical fair division problem can be stated as follows.

Fair k-Division of Indivisible Goods

Input: A set V of n items, k profit functions p1, . . . , pk : V → Z+.
Task: Compute an ordered k-partition of V with maximum satisfaction level.

For the special case, where all k profit functions are identical, i.e., p1 =
p2 = . . . = pk, the problem can also be represented in a scheduling setting.
There are k identical machines and n jobs, which have to be assigned to the
machines by a k-partitioning. The goal is to maximize the minimal completion
time (corresponding to the satisfaction level) over all k machines. It was pointed
out in [12] that this problem is weakly NP-hard even for k = 2 machines. Indeed,
it is easy to see that an algorithm deciding the above scheduling problem for two
machines would also decide the classical Partition problem: given n integers
a1, . . . , an, can they be partitioned into two subsets with equal sums? For k ≥ 3,
one can simply add jobs of length one half of the sum of weights in the instance of
Partition. If k is not fixed, but part of the input, the same scheduling problem
is strongly NP-hard as mentioned in [4]. In fact, an instance of the strongly NP-
complete 3-Partition problem with 3m elements and target bound B could be
decided by any algorithm for the scheduling problem with n = 3m jobs, k = m
machines and a desired minimal completion time equal to B. We conclude for
later reference.

Observation 1. Fair k-Division of Indivisible Goods, even with k iden-
tical profit functions, is weakly NP-hard for any constant k ≥ 2 and strongly
NP-hard for k being part of the input.

156 N. Chiarelli et al.

Note that the problem is still only weakly NP-hard for constant k even for
arbitrary profit functions, since we can construct a pseudo-polynomial algorithm
solving the problem with a k-dimensional dynamic programming array.

The first elaborate treatment of Fair k-Division of Indivisible Goods

was given in [7], where two approximation algorithms with bounded (but not
constant) approximation ratio were given. They also mention that the problem
cannot be approximated by a factor better than 1/2 (under P �= NP). In [14]
further approximation results were derived. In 2006 Bansal and Sviridenko [5]
coined the term Santa Claus problem, which corresponds to the variant of the
above problem when k is not fixed but part of the input. Since then a huge
number of approximation results have appeared on this problem of allocating
indivisible goods exploring different concepts of objective functions and various
approximation measures.

A different specialization is assumed in the widely studied Restricted Max-
Min Fair Allocation problem. This is a special case of Fair k-Division of

Indivisible Goods where every item vi ∈ V has a fixed valuation p(vi) and
every kid either likes or ignores item vi, i.e., the profit function pj(vi) ∈ {0, p(vi)}.
A fairly recent overview of approximation results both for this restricted setting
as well as for the general case of the Santa Claus problem can be found in [3].

In this paper we study a generalization of Fair k-Division of Indivisible

Goods, where a conflict graph G = (V,E) on the set V of items to be divided
is introduced. An edge {i, j} ∈ E means that items i and j should not be
assigned to the same subset of the partition. The conflict graph immediately
gives rise to (partial) colorings of the graph which were studied by Berge [6] and
de Werra [22].

Definition 1. A partial k-coloring of a graph G is a sequence (X1, . . . , Xk) of
pairwise disjoint independent sets in G.

Combining the profit structure with the notion of coloring we define for the
k profit functions p1, . . . , pk : V → Z+ and for each partial k-coloring c =
(X1, . . . , Xk) a k-tuple (p1(X1), . . . , pk(Xk)), called the profit profile of c. The
minimum profit of a profile, i.e., mink

j=1{pj(Xj)}, is the satisfaction level of c.
Now we can define the problem considered in this paper:

Fair k-Division Under Conflicts

Input: A graph G = (V,E), k profit functions p1, . . . , pk : V → Z+.
Task: Compute a partial k-coloring of G with maximum satisfaction level.

In the hardness reductions of this paper we will frequently use the decision
version of this problem: for a given q ∈ Z+, does there exists a partial k-coloring
of G with satisfaction level at least q?

Note that an optimal partial k-coloring (X1, . . . , Xk) does not necessarily
select all vertices from V . Furthermore, note also that for k = 1, the problem
coincides with the weighted independent set problem. In particular, since the
case of unit weights and k = 1 generalizes the independent set problem, we
obtain the following result.

Fair Packing of Independent Sets 157

Observation 2. Fair 1-Division Under Conflicts is strongly NP-hard.

Thus, the addition of the conflict structure gives rise to a much more com-
plicated problem, since Fair k-Division of Indivisible Goods (which arises
naturally as a special case for an edgeless conflict graph G) is trivial for k = 1
and only weakly NP-hard for k ≥ 2 (see Observation 1).

Bipartite permutation graphs
PP

Biconvex bipartite graphs
PP (Thm. 8)

Bipartite graphs
sNPc (Thm. 5)

Permutation graphs
PP

Interval graphs
PP

Cocomparability graphs
PP (Thm. 7)

Comparability graphs
sNPc

Perfect graphs
sNPc

Line graphs of bipartite graphs

sNPc (Thm. 6)

Cographs
PP

Fig. 1. Relationships between various graph classes and the complexity of the Fair k-
Division Under Conflicts problem. The arrow from a class G1 to a class G2 means
that every graph in G1 is also in G2. Label ‘PP’ means that the problem is solvable in
pseudo-polynomial time for each fixed k in the given class, label ‘sNPc’ means that the
problem is strongly NP-complete for all fixed k ≥ 2. For all graph classes in the figure,
the problem is solvable in strongly polynomial time for k = 1, as it coincides with the
weighted independent set problem.

In this contribution we first introduce a general concept of extendable graph
families and show that for every such graph class G in which Independent Set

is NP-complete, the decision version of our Fair k-Division Under Conflicts

is strongly NP-complete when the conflict graphs are in G (Sect. 2.1). By a simi-
lar reasoning we can also reach a strong inapproximability result for our problem.
For bipartite conflict graphs as well as their line graphs Fair k-Division Under

Conflicts can be shown to be strongly NP-hard (Sect. 2.2) although the corre-
sponding Independent Set problem is polynomial-time solvable. On the other
hand, for the relevant special case of biconvex bipartite graphs (cf. [16,17]), Fair
k-Division Under Conflicts can be solved by a pseudo-polynomial time algo-
rithm. This result is based on an insightful pseudo-polynomial algorithm for the
problem on a cocomparability conflict graph (Sect. 3). See Fig. 1 for a summary

158 N. Chiarelli et al.

of these results. Many proofs had to be omitted for lack of space. They can
be found in the extended version of this paper posted on http://arxiv.org/abs/
2003.11313.

2 Hardness Results

Observation 2 shows that Fair k-Division Under Conflicts is strongly NP-
hard even for k = 1 for general graphs, while Observation 1 shows the weak
NP-hardness of the problem for constant k ≥ 2 in the absence of conflicts. In
what follows, we show that Fair k-Division Under Conflicts is strongly
NP-hard also for all k ≥ 2, for various well-known graph classes.

2.1 General Hardness Results

We start with the following general property of graph classes. Let us call a class
of graphs G sustainable if every graph in the class can be enlarged to a graph in
the class by adding to it one vertex. More formally, G is sustainable if for every
graph G ∈ G there exists a graph G′ ∈ G and a vertex v ∈ V (G′) such that
G′ −v = G. Clearly, any class of graphs closed under adding isolated vertices, or
under adding universal vertices is sustainable. This property is shared by many
well known graph classes, including planar graphs, bipartite graphs, chordal
graphs, perfect graphs, etc. Furthermore, all graph classes defined by a single
nontrivial forbidden induced subgraph are sustainable.

Lemma 1. For every graph H with at least two vertices, the class of H-free
graphs is sustainable.

For an example of a non-sustainable graph class G closed under vertex dele-
tion, consider the family of all cycles and their induced subgraphs. Then every
cycle is in G but cannot be extended to a larger graph in G. The importance
of sustainable graph classes for Fair k-Division Under Conflicts is evident
from the following theorem.

Theorem 3. Let G be a sustainable class of graphs for which the decision ver-
sion of Fair k-Division Under Conflicts is (strongly) NP-complete. Then,
for every � ≥ k, the decision version of Fair �-Division Under Conflicts

with conflict graphs from G is (strongly) NP-complete.

Since the Independent Set problem is a special case of the Fair 1-Division

Under Conflicts, Theorem 3 immediately implies the following.

Corollary 1. Let G be a sustainable class of graphs for which Independent

Set is NP-complete. Then, for every k ≥ 1, the decision version of Fair

k-Division Under Conflicts with conflict graphs from G is strongly NP-
complete.

http://arxiv.org/abs/2003.11313
http://arxiv.org/abs/2003.11313

Fair Packing of Independent Sets 159

It is known (see, e.g., [2]) that for every graph H that has a component that is
not a path or a subdivision of the claw, Independent Set is NP-complete on H-
free graphs. Thus, for every such graph H, Lemma 1 and Corollary 1 imply that
for every k ≥ 1, Fair k-Division Under Conflicts (decision version) with
H-free conflict graphs is strongly NP-complete. By using a similar argument, we
even get a strong inapproximability result for general graphs.

Theorem 4. For every k ≥ 1 and every ε > 0, it is NP-hard to approximate
Fair k-Division Under Conflicts within a factor of |V (G)|1−ε, even for unit
profit functions.

2.2 Bipartite Graphs and Their Line Graphs

In this section we show that for all k ≥ 2, Fair k-Division Under Conflicts

is NP-hard in two classes of graphs where the Independent Set problem is
solvable in polynomial time: the class of bipartite graphs and the class of line
graphs of bipartite graphs. Recall that for a given graph G, its line graph has a
vertex for each edge of G, with two distinct vertices adjacent in the line graph
if and only if the corresponding edges share an endpoint in G.

The proof for bipartite graphs shows strong NP-hardness even for the case
when all the profit functions are equal.

Theorem 5. For each integer k ≥ 2, the decision version of Fair k-Division

Under Conflicts is strongly NP-complete in the class of bipartite graphs.

Proof. We use a reduction from the decision version of the Clique problem:
Given a graph G and an integer �, does G contain a clique of size �? Consider
an instance (G, �) of Clique such that 2 ≤ � < n := |V (G)|. We define an
instance of Fair k-Division Under Conflicts (decision version) consisting
of a bipartite conflict graph G′, profit functions p1, . . . , pk, and a lower bound
q on the required satisfaction level. The graph G′ = (A ∪ B,E′) has a vertex
for each vertex of the graph G as well as for each edge of G and k new vertices
x1, . . . , xk. It is defined as follows:

A = V (G) ∪ {x1} , B = E(G) ∪ {xi | 2 ≤ i ≤ k} ,

E′ = {ve | v ∈ V (G) is an endpoint of e ∈ E(G)} ∪ {vxi | v ∈ V (G), 2 ≤ i ≤ k} .

The lower bound q on the satisfaction level is defined by setting q = n4 +
(

�
2

)
n+

(n − �). For ease of notation we set N1 = n4 and we furthermore introduce a
second integer N2 such that q = N2+

(
m − (

�
2

))
n, where m = |E(G)|. (Note that

N2 ≥ n3.) With this, the profit functions pi : V (G′) → Z+, for all i ∈ {1, . . . , k},
are defined as

pi(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1; if v ∈ V (G);
n; if v ∈ E(G);
N1; if v = x1;
N2; if v = x2;
q; if v = xj for some j ∈ {3, . . . , k}.

160 N. Chiarelli et al.

Note that all the profits introduced as well as the number of vertices and edges
of G′ are polynomial in n. To complete the proof, we show that G has a clique
of size � if and only if G′ has a partial k-coloring with satisfaction level at least
q. First assume that G has a clique C of size �. We construct a partial k-coloring
c = (X1, . . . , Xk) of G′ by setting

X1 = {x1} ∪ {e ∈ E(G) | e ⊆ C} ∪ (V (G) \ C) ,

X2 = {x2} ∪ (E(G) \ X1) ,

Xj = {xj} for 3 ≤ j ≤ k.

Observe that the partial k-coloring c gives rise to the corresponding profit profile
with all entries equal to q, which establishes one of the two implications.

Suppose now that there exists a partial k-coloring c = (X1, . . . , Xk) of G′ for
which the profit profile has all entries ≥ q. Since for each i ∈ {1, . . . , k}, the total
profit of the set V (G) ∪ E(G) is only mn + n < n4, the partial coloring c must
use exactly one of the k vertices x1, . . . , xk in each color class. We may assume
without loss of generality that xi ∈ Xi for all i ∈ {1, . . . , k}. Let U be the set of
uncolored vertices in G′ w.r.t. the partial coloring c. Since for each of the profit
functions pi, the difference between the overall sum of the profits of vertices of
G′ and k · q is equal to �, we clearly have

∑
v∈U pi(v) ≤ � < n, which implies

that U ⊆ V (G). Next, observe that every vertex of E(G) belongs to either X1

or to X2, since otherwise we would have p1(X1) + p2(X2) < 2q, contrary to the
assumption that the satisfaction level of c is at least q.

Consider the sets W = X1 ∩ V (G) and F = X1 ∩ E(G). Then X1 = {x1} ∪
W ∪ F and, since

∑
v∈X1

p1(v) ≥ q = N1 +
(

�
2

)
n + (n − �), it follows that X1

contains exactly
(

�
2

)
vertices from E(G) (if |F | >

(
�
2

)
, then p2(X2) < q) and at

least n − � vertices from V (G). Let C denote the set of all vertices of G′ with
a neighbor in F . By the construction of G′ and since |F | =

(
�
2

)
, it follows that

C is of cardinality at least �. Furthermore, since X1 is independent, we have
C ∩ W = ∅. Consequently, n = |V (G)| ≥ |C| + |W | ≥ � + (n − �) = n, hence
equalities must hold throughout. In particular, C is a clique of size � in G. ��
Theorem 6. For each integer k ≥ 2, the decision version of Fair k-Division

Under Conflicts is strongly NP-complete in the class of line graphs of bipar-
tite graphs.

The proof is based on a reduction from the following problem, shown to be
NP-complete by Pálvölgi (see [19]): Given a bipartite graph G and an integer q,
does G contain a perfect matching and a disjoint matching of size q?

3 Pseudo-Polynomial Algorithms for Special Graph
Classes

As shown in Theorem 5, for each k ≥ 2, Fair k-Division Under Conflicts is
strongly NP-complete in the class of bipartite graphs. This rules out the existence

Fair Packing of Independent Sets 161

of a pseudo-polynomial time algorithm for the problem in the class of bipartite
graphs, unless P = NP. In this section we show that for every k there is a pseudo-
polynomial time algorithm for the Fair k-Division Under Conflicts in a
subclass of bipartite graphs, the class of biconvex bipartite graphs. The algorithm
reduces the problem to the class of bipartite permutation graphs. To solve the
problem in the class of bipartite permutation graphs, we develop a solution in
a more general class of graphs, the class of cocomparability graphs. A graph
G = (V,E) is a comparability graph if it has a transitive orientation, that is, if
each of the edges {u, v} of G can be replaced by exactly one of the ordered pairs
(u, v) and (v, u) so that the resulting set A of directed edges is transitive (that is,
for every three vertices x, y, z ∈ V , if (x, y) ∈ A and (y, z) ∈ A, then (x, z) ∈ A).
A graph G is a cocomparability graph if its complement is a comparability graph.
Comparability graphs and cocomparability graphs are well-known subclasses of
perfect graphs. The class of cocomparability graphs is a common generalization
of the classes of interval graphs, permutation graphs, and trapezoid graphs (see,
e.g., [10,15]).

Since every bipartite graph is a comparability graph, Theorem 5 implies that
for each k ≥ 2, Fair k-Division Under Conflicts is strongly NP-complete in
the class of comparability graphs. For cocomparability graphs, we prove that the
problem is solvable in pseudo-polynomial time. The key result in this direction
is the following lemma, which will also be used in our proof of Theorem 8.

Lemma 2. For every k ≥ 1, given a cocomparability graph G = (V,E) and
k profit functions p1, . . . , pk : V → Z+, the set of all profit profiles of par-
tial k-colorings of G can be computed in time O(nk+2(Q + 1)k), where Q =
max1≤j≤k pj(V).

The proof is based on a directed acyclic graph representing a transitive ori-
entation of the complement of G.

Lemma 2 implies the following.

Theorem 7. For every k ≥ 1, Fair k-Division Under Conflicts is solv-
able in time O(nk+2(Q + 1)k) for cocomparability conflict graphs G, where
Q = max1≤j≤k pj(V (G)).

Recall from Theorem 5 that Fair k-Division Under Conflicts is strongly
NP-hard for bipartite conflict graphs. Thus, we consider in the following the more
restricted case of biconvex bipartite conflict graphs. Recall that a bipartite graph
G = (A ∪ B,E) is biconvex if it has a biconvex ordering, that is, an ordering of
A and B such that for every vertex a ∈ A (resp. b ∈ B) the neighborhood N(a)
(resp. N(b)) is a consecutive interval in the ordering of B (resp. ordering of A).

It is known that a connected biconvex bipartite graph G can always be
ordered in such a way that the first and last vertices on one side have a
special structure. Fix a biconvex ordering of G, say A = (a1, . . . , as) and
B = (b1, . . . , bt). Define aL (resp. aR) as the vertex in N(b1) (resp. N(bt)) whose
neighborhood is not properly contained in any other neighborhood set (see [1,
Def. 8]). In case of ties, aL is the smallest such index (and aR the largest). We

162 N. Chiarelli et al.

always assume that aL ≤ aR, otherwise the ordering in A could be mirrored.
Under these assumptions, the neighborhoods of vertices appearing in the order-
ing before aL and after aR are nested.

Lemma 3 (Abbas and Stewart [1]). Let G = (A ∪ B,E) be a connected
biconvex graph. Then there exists a biconvex ordering of the vertices of G such
that:

i For all ai, aj with a1 ≤ ai < aj ≤ aL there is N(ai) ⊆ N(aj).
ii For all ai, aj with aR ≤ ai < aj ≤ as there is N(aj) ⊆ N(ai).
iii The subgraph G′ of G induced by vertex set {aL, . . . , aR} ∪ B is a bipartite

permutation graph.

Property (iii) can be put in context with Theorem 7. Indeed, it is known that
permutation graphs are a subclass of cocomparability graphs (see, e.g., [10]).
This gives rise to the following result that Fair k-Division Under Conflicts

on biconvex graphs is indeed easier (from the complexity point of view) than
on general bipartite graphs. It should be pointed out that the contribution of
Theorem 8 is the identification of the complexity status of the problem, but not
a practically relevant algorithm, since the pseudo-polynomial running time will
be prohibitive in practice. The high-level idea of the algorithm is illustrated in
Algorithm 1.

Algorithm 1. Algorithmic Idea for a Connected Biconvex Graph G

apply Lemma 3 for getting the cocomparability graph G′ and vertices aL, aR

let AL := {a1, . . . , aL−1} and AR := {aR+1, . . . , as}
for all j ∈ {1, . . . , k} do

guess aj ∈ AL with largest index (resp. smallest index aj ∈ AR) included in Xj

end for
each such guess can be represented by a 2k-tuple σ = (a1, . . . , ak, a1, . . . , ak)
for each guess σ do

for all j ∈ {1, . . . , k} do
exclude all vertices v of the neighborhood N(aj) ⊆ B (and N(aj) ⊆ B)
from insertion into Xj by setting their profit pj(v) := 0

end for
apply Lemma 2 to the cocomparability graph G′ and the modified profit functions
to obtain the set Πσ of all profit profiles (q1, . . . , qk) of partial k-colorings of G′

with respect to the modified profits

increase each profit profile by setting qj := qj + pj(aj) + pj(aj)

augment these profiles with vertices from AL and AR

end for
choose the best solution over all guesses σ

Theorem 8. For every k ≥ 1, Fair k-Division Under Conflicts is solvable
in time O(n3k+2(Q + 1)k) for connected biconvex bipartite conflict graphs G,
where Q = max1≤j≤k pj(V (G)).

Fair Packing of Independent Sets 163

Proof. Assuming at first that G is connected, Lemma 3 is applied for obtaining
from G the cocomparability graph G′. However, we have to consider also the
vertex sets AL := {a1, . . . , aL−1} and AR := {aR+1, . . . , as}. This is done by
considering assignments of vertices in AL ∪ AR to the k subsets of a partial
k-coloring of G in an efficient way as follows.

For every j ∈ {1, . . . , k}, we guess, by going through all possibilities, the
largest index vertex aj ∈ AL (resp. smallest index aj ∈ AR) inserted in Xj .
One can add an artificial vertex a0 (resp. as+1) to represent the case that no
vertex from AL (resp. AR) is inserted in Xj . Thus, every guess is represented by
a 2k-tuple σ = (a1, . . . , ak, a1, . . . , ak). The total number of such guesses (i.e.,
iterations) is bounded by (n+1)k for each of AL and AR, i.e., O(n2k) selections
to be considered in total.

For each such guess σ we perform the following computations. For every
j ∈ {1, . . . , k} the vertices in the neighborhood N(aj) ⊆ B (and N(aj) ⊆ B)
of the chosen index must be excluded from insertion into the corresponding set
Xj . This can be easily realized by setting to 0 the profits pj of all vertices in
N(aj) (resp. N(aj)). With these slight modifications of the profits we can apply
Lemma 2 for the cocomparability graph G′ and the modified profit functions pσ

j

to obtain the set Πσ of all (pseudo-polynomially many) profit profiles (q1, . . . , qk)
of partial k-colorings of G′ with respect to pσ. Every entry qj of a profit profile
in Πσ is increased by pj(aj) + pj(aj), to account for inclusion of the vertices
selected by the guess σ.

In every guess there are the two vertices aj and aj permanently assigned
to Xj for every j and their neighborhoods N(aj) and N(aj) are excluded from
Xj . Now it follows from properties (i) and (ii) of Lemma 3 that for each vertex
a′ ∈ AL with a′ < aj (resp. a′ ∈ AR with a′ > aj) the neighborhood N(a′) is a
subset of N(aj) (resp. N(aj)). Thus, these vertices a′ could also be inserted in
Xj without any violation of the conflict structure. Therefore, we can start from
the set Πσ of profit profiles computed for (G′, pσ) and consider iteratively (in
arbitrary order) the addition of a vertex a′ ∈ AL to one of the color classes Xj , as
is usually done in dynamic programming. Each a′ is considered as an addition to
every profit profile (q1, . . . , qk) ∈ Πσ and for every index j with a′ < aj yielding
new profit profiles (q1, . . . , qj−1, qj + pj(a′), qj+1, . . . , qk) to be added to Πσ. An
analogous procedure is performed for all vertices a′ ∈ AR where the addition is
restricted to indices j with a′ > aj .

For every guess σ, the running time is dominated by the effort of computing
the O((Q + 1)k) profit profiles of (G′, pσ) according to Lemma 2, since adding
any of the O(n) vertices a′ requires only k operations for each profit profile.

In this way, we construct the set Πσ of all profit profiles of partial k-colorings
of G for each guess σ. It remains to identify the optimal solution in the set
Π :=

⋃
σ Πσ similarly as in the proof of Theorem 7. Going over all O(n2k) guesses

σ, the total running time can be given from Lemma 2 as O(n3k+2(Q + 1)k). ��

164 N. Chiarelli et al.

4 Conclusions

In this paper we introduced the Fair k-Division Under Conflicts and stud-
ied it from a computational complexity point of view, with respect to various
restrictions on the conflict graph. In particular, we could show that the problem
is strongly NP-hard on general bipartite conflict graphs, but it can be solved in
pseudo-polynomial time on biconvex bipartite graphs. The latter also contains
the class of bipartite permutation graphs. There are other graph classes sand-
wiched between the two classes of our results, for which the complexity of Fair
k-Division Under Conflicts is still open. In particular, we can derive open
problems from the following sequence of inclusions: biconvex bipartite ⊆ convex
bipartite ⊆ interval bigraph ⊆ chordal bipartite ⊆ bipartite. We believe that a
result for convex bipartite graphs should be the next attempt. Outside this chain
of inclusions, we pose the complexity of the problem for planar bipartite conflict
graphs as another interesting open question.

Beside the results given in this work we can also derive pseudo-polynomial
algorithms for Fair k-Division Under Conflicts if the conflict graph is
chordal or if its treewidth or clique-width is bounded. These results will be
described in a future publication.

Acknowledgements. The work of this paper was done in the framework of a bilateral
project between University of Graz and University of Primorska, financed by the OeAD
(SI 22/2018) and the Slovenian Research Agency (BI-AT/18-19-005). The authors
acknowledge partial support of the Slovenian Research Agency (I0-0035, research
programs P1-0285, P1-0383, P1-0297, research projects J1-9110, N1-0102, J1-1692,
J1-9187, and a Young Researchers Grant) and the European Commission for fund-
ing the InnoRenew CoE project (Grant Agreement #739574) under the Horizon2020
Widespread-Teaming program and the Republic of Slovenia (Investment funding of the
Republic of Slovenia and the European Union of the European Regional Development
Fund) and by the Field of Excellence “COLIBRI” at the University of Graz and by the
Federal Ministry for Digital and Economic Affairs of the Republic of Austria through
the COIN project FIT4BA.

References

1. Abbas, N., Stewart, L.K.: Biconvex graphs: ordering and algorithms. Discret. Appl.
Math. 103(1–3), 1–19 (2000)

2. Alekseev, V.E.: The effect of local constraints on the complexity of determination of
the graph independence number. In: Combinatorial-Algebraic Methods in Applied
Mathematics, pp. 3–13. Gorky University Press (1982). (in Russian)

3. Annamalai, C., Kalaitzis, C., Svensson, O.: Combinatorial algorithm for restricted
max-min fair allocation. ACM Trans. Algorithms 13(3), 1–28 (2017)

4. Azar, Y., Epstein, L.: On-line machine covering. J. Sched. 1, 67–77 (1998)
5. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: STOC 2006: Proceedings

of the 38th Annual ACM Symposium on Theory of Computing, pp. 31–40 (2006)
6. Berge, C.: Minimax relations for the partial q-colorings of a graph. Discret. Math.

74(1–2), 3–14 (1989)

Fair Packing of Independent Sets 165

7. Bezakova, I., Dani, V.: Allocating indivisible goods. ACM SIGecom Exchanges
5(3), 11–18 (2005)

8. Bodlaender, H.L., Jansen, K.: On the complexity of scheduling incompatible jobs
with unit-times. In: Borzyszkowski, A.M., Soko�lowski, S. (eds.) MFCS 1993. LNCS,
vol. 711, pp. 291–300. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57182-5 21

9. Bouveret, S., Chevaleyre, Y., Maudet, N.: Fair allocation of indivisible goods. In:
Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook
of Computational Social Choice, pp. 284–310. Cambridge University Press, Cam-
bridge (2016)

10. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications. Society for Industrial and
Applied Mathematics (SIAM) (1999)

11. Darmann, A., Pferschy, U., Schauer, J., Woeginger, G.: Paths, trees and matchings
under disjunctive constraints. Discret. Appl. Math. 159, 1726–1735 (2011)

12. Deuermeyer, B.L., Friesen, D.K., Langston, M.A.: Scheduling to maximize the
minimum processor finish time in a multiprocessor system. SIAM J. Algebraic
Discret. Methods 3(2), 190–196 (1982)

13. Even, G., Halldórsson, M.M., Kaplan, L., Ron, D.: Scheduling with conflicts: online
and offline algorithms. J. Sched. 12(2), 199–224 (2009)

14. Golovin, D.: Max-min fair allocation of indivisible goods. Technical report, CMU-
CS-05-144, Carnegie Mellon University (2005)

15. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Mathematics, vol. 57. Elsevier, Amsterdam (2004)

16. Khodamoradi, K., Krishnamurti, R., Rafiey, A., Stamoulis, G.: PTAS for ordered
instances of resource allocation problems. In: Proceedings of the 33rd International
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2013. LIPICS, vol. 24, pp. 461–473 (2013)

17. Mastrolilli, M., Stamoulis, G.: Restricted max-min fair allocations with inclusion-
free intervals. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012.
LNCS, vol. 7434, pp. 98–108. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32241-9 9

18. Muritiba, A., Iori, M., Malaguti, E., Toth, P.: Algorithms for the bin packing
problem with conflicts. INFORMS J. Comput. 22(3), 401–415 (2010)

19. Pálvölgi, D.: Partitioning to three matchings of given size is NP-complete for bipar-
tite graphs. Acta Univ. Sapientiae Informatica 6(2), 206–209 (2014)

20. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph
Algorithms Appl. 13(2), 233–249 (2009)

21. Pferschy, U., Schauer, J.: Approximation of knapsack problems with conflict and
forcing graphs. J. Comb. Optim. 33(4), 1300–1323 (2017)

22. de Werra, D.: Packing independent sets and transversals. In: Combinatorics and
Graph Theory, Banach Center Publications, vol. 25, pp. 233–240. PWN, Warsaw
(1989)

https://doi.org/10.1007/3-540-57182-5_21
https://doi.org/10.1007/3-540-57182-5_21
https://doi.org/10.1007/978-3-642-32241-9_9
https://doi.org/10.1007/978-3-642-32241-9_9

Polynomial Time Algorithms for Tracking
Path Problems

Pratibha Choudhary(B)

Indian Institute of Technology Jodhpur, Jodhpur, India
pratibhac247@gmail.com

Abstract. Given a graph G, and terminal vertices s and t, the Track-
ing Paths problem asks to compute a minimum number of vertices to
be marked as trackers, such that the sequence of trackers encountered in
each s-t path is unique. Tracking Paths is NP-hard in both directed
and undirected graphs in general. In this paper we give a collection of
polynomial time algorithms for some restricted versions of Tracking
Paths. We prove that Tracking Paths is polynomial time solvable for
chordal graphs and tournament graphs. We prove that Tracking Paths
is NP-hard in graphs with bounded maximum degree δ ≥ 6, and give a
2(δ + 1)-approximate algorithm for the same. We also analyze the ver-
sion of tracking s-t paths where paths are tracked using edges instead of
vertices, and we give a polynomial time algorithm for the same. Finally
we give a polynomial algorithm which, given an undirected graph G, a
tracking set T ⊆ V (G), and a sequence of trackers π, returns the unique
s-t path in G that corresponds to π, if one exists.

Keywords: Graphs · Paths · Chordal graphs · Tournaments ·
Approximation · Bounded degree graphs · Tracking paths

1 Introduction

Tracking moving objects in networks has been studied extensively due to applica-
tions in surveillance and monitoring. Specific cases include secure system surveil-
lance, habitat monitoring, vehicle tracking, and other similar scenarios. Object
tracking in networks also finds applications in analyzing disease spreading pat-
terns, information dissemination patterns on social media, and data packet flow
in large networks like the world wide web. Tracking has been largely studied in
the fields of machine learning, artificial intelligence, networking systems among
other fields.

The problem of tracking paths in a network was first graphically modeled
by Banik et al. in [2]. Let G = (V,E) be an undirected graph without any self
loops or parallel edges and suppose that G has a unique entry vertex (source)
s and a unique exit vertex (destination) t. A simple path from s to t is called

This work was done while the author was visiting The Institute of Mathematical Sci-
ences, Chennai, India.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 166–179, 2020.
https://doi.org/10.1007/978-3-030-48966-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_13

Polynomial Time Algorithms for Tracking Path Problems 167

an s-t path. The problem requires finding a set of vertices T ⊆ V , such that
for any two distinct s-t paths, say P1 and P2, in G, the sequence of vertices
in T ∩ V (P1) as encountered in P1 is different from the sequence of vertices in
T ∩ V (P2) as encountered in P2. Here T is called a tracking set for the graph G,
and the vertices in T are referred to as trackers. Banik et al. [2] proved that the
problem of finding a minimum-cardinality tracking set to track shortest s-t paths
(Tracking Shortest Paths problem) is NP-hard and APX-hard. Later, the
problem of tracking all s-t paths (Tracking Paths) in an undirected graph
was studied in [4,7,10]. Tracking Paths is formally defined as follows.

Tracking Paths (G, s, t)
Input: An undirected graph G = (V,E) with terminal vertices s and t.
Question: Find a minimum cardinality tracking set T for G.

Tracking Paths was proven to be NP-complete in [4]. Here, the authors
studied the parameterized version of Tracking Paths, which asks if there exists
a tracking set of size at most k, and showed it to be fixed-parameter tractable
(FPT) by giving a polynomial kernel. Specifically, it was proven that an instance
of Tracking Paths can be reduced to an equivalent instance of size O(k7)
in polynomial time, where k is the desired size of the tracking set. In [7], the
authors improved this kernel to O(k2), and gave an O(k) kernel for planar graphs.
In [10], Eppstein et al. proved that Tracking Paths is NP-complete for planar
graphs and gave a 4-approximation algorithm for this setting. Here, the authors
also proved that Tracking Paths can be solved in linear time for graphs of
bounded clique width, when the clique decomposition is given in advance.

Tracking Shortest Paths was also studied in [3] and [5]. In [3], Banik
et al. studied Tracking Shortest Paths and proved the problem to be fixed-
parameter tractable. In [5], Bilò et al. prove that Tracking Shortest Paths
is NP-hard for cubic planar graphs in case of multiple source-destination pairs,
and give an FPT algorithm parameterized by the number of vertices equidistant
from the source s.

In this paper we study Tracking Paths for chordal graphs, tournament
graphs, and degree bounded graphs. A chordal graph is a graph in which each
cycle of length greater than three has a chord (an edge between non-adjacent
vertices of the cycle). A tournament is a directed graph in which there exists a
directed edge between each pair of vertices. So far all the work done on Track-
ing Paths has been focused on tracking s-t paths (or shortest s-t paths) using
vertices. In this paper, we also study tracking s-t paths using edges. We also give
a path reconstruction algorithm that finds the unique s-t path corresponding to
the given sequence of trackers, if one exists. Chordal graphs find applications
in computational biology, computer vision and artificial intelligence [9,13,16,18].
Tournament graphs are used in voting theory and social choice theory to graphi-
cally depict pairwise relationships between entities in a community [17,19]. Tour-
nament graphs are particularly used to study the Condorcet voting model, where
a preference is indicated between each pair of contestants [11].

168 P. Choudhary

Our Results and Methods. In this paper we give polynomial time results
for some variants of the Tracking Paths problem. We prove that Tracking
Paths is polynomial time solvable for chordal graphs and tournaments. The key
idea in proofs for chordal and tournament graphs is that if two s-t paths differ
in only one vertex, than that vertex necessarily needs to be marked as a tracker.
Next we prove that Tracking Paths is NP-hard for graphs with maximum
degree δ (δ ≥ 6). We also give a 2(δ + 1)-approximation algorithm for graphs
with maximum degree δ. Here the idea is to ensure that sufficient vertices are
marked as trackers in each cycle. This derives from the fact that each cycle
in a graph necessarily needs a tracker [4]. In order to give a complete solution
for tracking paths in a graph, we also give an algorithm that reconstructs the
required s-t path given a sequence of trackers and a constant size tracking set
for the input graph. This uses the fact that by the definition of a tracking set,
each maximal sequence of trackers in a tracking set should correspond to at
most one s-t path in a graph. The reconstruction algorithm uses the disjoint
path algorithms for undirected graphs [15] and tournaments [8] to construct the
required s-t path.

Towards the end of the paper we analyze the problem of tracking s-t paths in
an undirected graph using edges rather than vertices. We prove that even while
using edges, each cycle in the graph needs at least one edge to be marked as
a tracker. Further, a minimum feedback edge set (set of edges whose removal
makes a graph acyclic) is also a minimum tracking edge set.

2 Notations and Definitions

Throughout the paper, while analyzing tracking paths using vertices in a graph,
we assume graphs to be simple i.e. there are no self loops and multi-edges. When
considering tracking set for a graph G = (V,E), we assume that the given graph
is an s-t graph, i.e. the graph contains a unique source s ∈ V and a unique
destination t ∈ V (both s and t are known), and we aim to find a tracking
set that can distinguish between all simple paths between s and t. Here s and
t are also referred as the terminal vertices. If a, b ∈ V , then unless otherwise
stated, {a, b} represents the set of vertices a and b, and (a, b) represents an
edge between a and b. For a vertex v ∈ V , neighborhood of v is denoted by
N(v) = {x | (x, v) ∈ E}. We use deg(v) = |N(v)| to denote degree of vertex v.
For a subgraph G′, V (G′) represents the vertex set of G′ and E(G′) represents
those edges whose both endpoints belong to V (G′). For a vertex v ∈ V and a
subgraph G′, NG′(v) = N(v) ∩ V (G′). For a subset of vertices V ′ ⊆ V we use
N(V ′) to denote

⋃
v∈V ′ N(v). With slight abuse of notation we use N(G′) to

denote N(V (G′)). For a graph G and a set of vertices S ⊆ V (G), G − S denotes
the subgraph induced by the vertex set V (G) \V (S). If S is a singleton, we may
use G−x to denote G−S, where S = {x}. A chord in a cycle is an edge between
two vertices of the cycle, such that the edge itself not part of the cycle.

In an undirected graph, a feedback vertex set (FVS) is a set of vertices
whose removal makes the graph acyclic and feedback edge set (FES) is the set

Polynomial Time Algorithms for Tracking Path Problems 169

of edges whose removal makes the graph acyclic. An edge-weighted graph is a
graph with real valued weights assigned to each of its edges. Let P1 be a path
between vertices a and b, and P2 be a path between vertices b and c, such that
V (P1)∩V (P2) = {b}. By P1 ·P2, we denote the path between a and c, formed by
concatenating paths P1 and P2 at b. Two paths P1 and P2 are said to be vertex
disjoint if their vertex sets do not intersect except possibly at the end points,
i.e. V (P1) ∩ V (P2) ⊆ {a, b}, where a and b are the starting and end points of
the paths. By distance we mean length of the shortest path, i.e. the number of
edges in that path. For a sequence of vertices π, by V (π) we mean the set of
vertices in the sequence π. If there exists a path P such that (a, b) is an edge that
lies at one end point of P , then P − (a, b) denotes the subpath of P obtained
after removing the edge (a, b). Graphs which have maximum degree of vertices
as three are known as cubic graphs. By a bounded degree graph, we mean a graph
whose vertices have a maximum degree of d, where d is some constant.

3 Preliminary Analysis

In this section, we give some basic claims which are used for proving results in
subsequent sections. We start by first recalling a reduction rule from [4] that
ensures that each vertex and edge in the input graph participates in an s-t path.

Reduction Rule 1. [4] In a graph G, if there exists a vertex or an edge that
does not participate in any s-t path in G, then delete it.

It is known that Reduction Rule 1 is safe and can be applied in quadratic time
on undirected graphs [4]. In the rest of the paper, by reduced graph we mean
a graph that is preprocessed using Reduction Rule 1. Let G′ be a subgraph
of graph G, and u, v ∈ V (G′). If there exists a path in G from s to u, say
Psu, and another path from v to t, say Pvt, such that V (Psu) ∩ V (Pvt) = ∅,
V (Psu)∩V (G′) = {u} and V (Pvt)∩V (G′) = {v}, then u is a local source for G′

and v is a local destination for G′. Next we recall the following lemma from [4],
which is used to define some commonly used terms in this paper.

Lemma 1. In a reduced graph G, any subgraph G′ consisting of at least one
edge, contains a local source and local destination.

Now we state the tracking set condition, which is useful for validation of a
tracking set [4].

Tracking Set Condition:
For a graph G = (V,E), with terminal vertices s, t ∈ V , a set of vertices
T ⊆ V , is said to satisfy the tracking set condition if there does not exist a
pair of vertices u, v ∈ V , such that the following holds:

– there exist two distinct paths, say P1 and P2, between u and v in (G\(T ∪
{s, t})) ∪ {u, v}, and

– there exists a path from s to u, say Psu, and a path from v to t, say Pvt,
in (G \ (V (P1) ∪ V (P2))) ∪ {u, v}, and V (Psu) ∩ V (Pvt) = ∅, i.e. Psu and
Pvt are mutually vertex disjoint, and also vertex disjoint from P1 and P2.

170 P. Choudhary

It is known that for a reduced graph G, a set of vertices T ⊆ V (G) is a
tracking set if and only if T satisfies the tracking set condition. We use this fact,
to prove the following lemma.

Lemma 2. �1 In a graph G, if T ⊆ V (G) is not a tracking set for G, then
there exist two s-t paths with the same sequence of trackers, and they form a
cycle C in G, such that C has a local source a and a local destination b, and
T ∩ (V (C) \ {a, b}) = ∅.

4 Tracking Paths in Chordal Graphs and Tournaments

In this section, we consider polynomial time algorithms for solving Tracking
Paths for chordal graphs and tournaments.

We start by giving a polynomial time algorithm for finding a tracking set
for undirected chordal graphs. Recall that chordal graphs are those graphs in
which each cycle of length greater than three has a chord. Many problems that
are known to be NP-hard on general graphs are polynomial time solvable for
chordal graphs e.g. chromatic number, feedback vertex set, independent set [14].

In undirected graphs, a tracking set is also a feedback vertex set [4]. However,
a tracking set can be arbitrarily larger in size compared to a feedback vertex set.
This holds true for chordal graphs as well.

Algorithm 1: Finding Tracking Set for a Chordal Graph.
Input: Chordal graph G = (V, E) and vertices s, t ∈ V .
Output: Tracking Set T ⊆ V for G.

1 Initialize T = ∅; Apply Reduction Rule 1;

2 foreach e = (a, b) ∈ E do
3 foreach x ∈ (N(a) ∩ N(b)) \ T do
4 if ∃ an s-t path P in G − x such that e ∈ E(P) then
5 T = T ∪ {x};
6 end

7 end

8 end
9 Return T ;

Algorithm 1 gives a procedure to compute a minimum tracking set for a
chordal graph G. We prove its correctness in the following lemma.

Lemma 3. Algorithm 1 gives an optimum tracking set for a chordal graph.

1 Proofs of Lemmas marked with � can be found in the full version of the paper [6].

Polynomial Time Algorithms for Tracking Path Problems 171

Proof. Algorithm 1 first ensures that each vertex and edge in the input graph
G participates in an s-t path. Next for each edge e = (a, b) ∈ E, if there exists
a vertex x ∈ (N(a) ∩ N(b)) \ T , we check if there exists an s-t path in G − x
that contains the edge e. Let P such a path in G − x. Now consider the path
P ′ that can be obtained by replacing the edge e in P by the path (a, x) · (b, x)
along with the vertex x. Observe that the vertex sets of P and P ′ differ only in
vertex x. Hence, x necessarily belongs to a tracking set for G.

Now we prove that Algorithm 1 indeed returns an optimal tracking set T for
G. Suppose not. Then T is not a tracking set for G. Due to Lemma 2, there
exists two s-t paths, say P1, P2 and they form a cycle C in G, such that C has a
local source u and a local destination v, and V (C) \ {u, v} does not contain any
trackers. See Fig. 1.

s t

P1

P2

u v
C

Fig. 1. Indistinguishable s-t paths in a graph form a cycle (marked in dotted lines)

Path P1 is marked in solid lines, while path P2 is marked in dashed lines. Since
P1 and P2 contain the same sequence of trackers, no vertex in V (C) \ {u, v} can
be a tracker. Since we consider graphs without any parallel edges, there exists
at least one vertex in V (C) \ {u, v}.

First, consider the case where C is a triangle. Due to Algorithm 1, the vertex
in V (C) \ {u, v} would have been marked as a tracker. This contradicts the
assumption that no vertex in V (C) \ {u, v} is marked as a tracker.

Next, consider the case when C is not a triangle (C contains four or more
vertices). Since G is a chordal graph, C contains a chord. Consider the following
two cases based on whether a chord is incident on the vertex u or not. Let w
and x be two vertices such that w, x ∈ N(u) ∩ V (C) and (w, x) ∈ E. Without
loss of generality, let x ∈ V (P1). Observe that the edge (u, x) in path P1 can
be replaced by the concatenated path (u,w) · (w, x), to obtain a new path that
differs from P1 only at the vertex w. Hence w must have been marked as a tracker
by Algorithm 1. Next, consider the case when a chord in C is incident on u. Let
a ∈ N(u) ∩ V (C) and b ∈ N(a) ∩ V (C), such that a �= b �= u, and (b, u) ∈ E.
Note that there exists an s-t path containing the edge (b, u), where (b, u) can be
replaced with the path (b, a) · (a, u), to obtain a new path that differs only at
the vertex a. Hence a must have been marked as a tracker by Algorithm 1. Both
the above cases contradict the assumption that no vertex in V (C) \ {u, v} is a
tracker. Hence Algorithm 1 gives an optimum tracking set for a chordal graph.

	

172 P. Choudhary

Lemma 4. � Algorithm 1 runs in time O(m.n3).

From Lemma 3 and Lemma 4, we have the following theorem.

Theorem 1. Tracking Paths can be solved in polynomial time in chordal
graphs.

A similar technique can be used to prove that Tracking Paths is polyno-
mial time solvable for tournament graphs. However, the analysis of tournament
graphs is slightly more involved and due to space constraint it is deferred to the
full version of the paper [6].

5 Approximation Algorithm and NP-Hardness
of Tracking Paths in Bounded-Degree Graphs

In this section, we give an approximation algorithm for Tracking Paths. We
show that given an undirected graph G, there exists a polynomial time algorithm
that returns a tracking set of the size 2(δ + 1) · OPT for G, where OPT is
the size of an optimum tracking set for G and δ is the maximum degree of
graph G. Approximation algorithms have been studied for restricted versions
of Tracking Shortest Paths and Tracking Paths. Banik et al. gave a
2-approximate algorithm for Tracking Shortest Paths in planar graphs in [2].
Eppstein et al. gave a 4-approximate algorithm for Tracking Paths in planar
graphs in [10]. Bilò et al. gave an Õ(

√
n)-approximate algorithm for Tracking

Shortest Paths in case of multiple source-destination pairs in [5]. Next we
show that Tracking Paths for bounded degree graphs is polynomial time
reducible from Vertex Cover for bounded degree graphs.

Lemma 5. Given an undirected graph G with maximum degree d, there exists
an s-t graph G′ with maximum degree 2d, such that G has a vertex cover of size
k if and only if G′ has a tracking set for all s-t paths, of size k + |E|2 +3|E| − 2.

Proof. Let G be and undirected graph with maximum degree d. For reference,
let G be the graph in Fig. 2.

We create the graph G′ as follows. For each vertex a ∈ V (G), we introduce
a vertex va in V (G′), and we refer to this set of newly introduced vertices in
G′ as Vv. For each edge i ∈ E(G), we introduce two vertices vi, v

′
i in E(G′),

and we call the set of vertices vi as Ve, and the set of vertices v′
i as V ′

e . The
adjacencies between Vv and Ve, V

′
e are introduced as follows. If an edge i is

incident on vertices a, b in G, then we add edges between the corresponding
vertices vi, v

′
i ∈ Ve, V

′
e and the vertices va, vb ∈ Vv in G′. Next, we add the

source and destination vertices s and t in G′. We then create a triangular grid
Tg1 between s and the vertices in Ve, and another triangular grid between the
vertices in V ′

e and t. See Fig. 3. The vertices of Vv are marked with blank boxes,
while the ones from Ve ∪ V ′

e are marked with solid boxes. The circled vertices
form a tracking set. Observe that the maximum degree of vertices in Tg1 and

Polynomial Time Algorithms for Tracking Path Problems 173

a

b c

d

ef

1

2

3

4

5 6

7

8

Fig. 2. Depiction of an undi-
rected graph G with maximum
degree d

Fig. 3. Depiction of graph G′ mentioned in
Lemma 5

Tg2, including the vertices in Ve ∪ V ′
e , is 6. The maximum degree of vertices in

Vv is at most 2d.
Now we prove that there exists a vertex cover of size k in G if and only if

there exists a tracking set in G′ of size k+ |E|2+3|E|−2. First consider the case
when G has a vertex cover Vc of size k. We now prove that there exists a tracking
set of size k + |E|2 + 3|E| − 2 in G′. We mark the vertices in G′ corresponding
to Vc as trackers. In addition we mark all the vertices in Tg1 and Tg2 (except s
and t) as trackers. Now the size of tracking set T in G′ is k + |E|2 + 3|E| − 2.
We claim that T is a valid tracking set for G′. Suppose not. Then there exists
two distinct s-t paths, say P1, P2 in G′, such that the sequence of trackers in
P1 is same as that in P2. Observe that two distinct subpaths (subpaths of some
s-t paths) contained in Tg1 (Tg2) cannot have the same sequence of trackers
from Tg1 −{s} (Tg2 −{t}). Since all vertices in Tg1, T g2 are marked as trackers,
this implies that P1, P2 contain the same sequence of vertices from Tg1 and Tg2,
and they necessarily differ in vertices from Vv. Let x, y ∈ Vv be the vertices that
distinguish P1 and P2, and x ∈ V (P1) and y ∈ V (P2). Since P1 and P2 can not
differ in their vertex set from Tg1 and Tg2, the vertex preceding x, y has to be
common in both P1, P2. Without loss of generality, we assume that the z is the
vertex preceding x, y, and z ∈ V (Tg1). This implies that z ∈ Ve. Note that z

174 P. Choudhary

corresponds to an edge in G. Since we marked the vertices corresponding to Vc

as trackers in G′, at least one of the neighbors of z in Vv is necessarily a tracker.
Thus either x or y is necessarily a tracker. This contradicts the assumption that
P1 and P2 have the same sequence of trackers.

Now we consider the case when G′ has a tracking set T of size k+|E|2+3|E|−
2. We claim that there exists a vertex cover of size k in G. Suppose not. Consider
the triangular grid subgraphs Tg1 and Tg2. Observe that for each edge (a, b) in
Tg1, there exists a vertex c ∈ N(a) ∩ N(b), and there exists an s-t path, say P1,
that passed through (a, b) in G− c, such that we can replace edge (a, b) in P1 by
edges (a, c),(c, b) to form another s-t path, say P2. Observe that P1 and P2 differ
in only one vertex i.e. c. Hence c is necessarily a tracker. The same holds true
for each edge in Tg2. Thus all vertices in V (Tg1)∪V (Tg2)\{s, t} are necessarily
trackers and hence belong to T . Since |V (Tg1)∪V (Tg2)\{s, t}| = |E|2+3|E|−2,
the remaining k trackers in T are vertices from Vv. Let Vt be the set of vertices
in Vv that have been marked as trackers, i.e. Vt = Vv ∩ T . Note that |Vt| = k.
We denote the set of vertices in G that correspond to vertices in Vt as Vc. We
claim that Vc forms a vertex cover for G. Suppose not. Then there exists an edge,
say (a, b) in G, such none of its end points a, b belong to Vc. This implies that
the vertices in Vv that correspond to a and b, say va, vB , are not trackers in G′.
Due to the construction of G′, there exists a pair of vertices vi ∈ Ve and v′

i ∈ V ′
e

(vi, v′
i correspond to the edge (a, b) in G) such that va and vb are adjacent to

both vi and v′
i.

Observe that for each pair of vertices vi, v
′
i, where vi ∈ Ve and v′

i ∈ V ′
e , there

exists two vertices in Vv (the vertices in V (G) that correspond to the endpoints of
the edge i in G) that are adjacent to both vi and v′

i. Thus for each pair of vertices
vi, v

′
i, there exists two paths between them passing through two distinct vertices

in Vv. Further, there exists a path from s to vi that is completely contained
in Tg1, and there exists a path from v′

i to t that is completely contained in
Tg2. Thus at least one of the vertices from Vv that are adjacent to vi, v

′
i, must

necessarily be a tracker. This contradicts the fact that neither va nor vb is a
tracker in G′. This completes the proof. 	

Since Vertex Cover is known to be NP-hard for graphs with maximum
degree d (d ≥ 3) [12], due to Lemma 5 we have the following corollary.

Corollary 1. Tracking Paths is NP-hard for graphs with maximum degree
δ ≥ 6.

Algorithm 2 gives a procedure to find a 2(δ + 1)-approximate tracking set
for undirected graphs with maximum degree δ. We prove its correctness in the
following lemma.

Lemma 6. � Algorithm 2 gives a 2(δ + 1)-approximate tracking set for an
undirected graph.

Lemma 7. � Algorithm 2 runs in time O(n2).

From Lemma 6 and Lemma 7, we have the following theorem.

Polynomial Time Algorithms for Tracking Path Problems 175

Algorithm 2: Finding a 2(δ + 1)-approximate tracking set for undirected
graphs with maximum degree δ.
Input: Undirected graph G = (V, E) such that deg(x) ≤ δ, ∀x ∈ V , a pair of

vertices s, t ∈ V .
Output: Tracking Set T ⊆ V for G.

1 Apply Reduction Rule 1;
2 Find a 2-approximate feedback vertex set S for G;
3 Set T = S;
4 foreach v ∈ S do
5 foreach x ∈ N(v) do
6 T = T ∪ {x};
7 end

8 end
9 Return T ;

Theorem 2. For an undirected graph G on n vertices such that the maximum
degree of vertices in G is δ, there exists an O(n2) algorithm that finds a 2(δ+1)-
approximate tracking set for G.

The approximation ratio for our algorithm can be improved slightly by
using the improved approximation bounds known for FVS in bounded degree
graphs [1].

6 Reconstructing Paths Using Trackers

In real-world applications, it might be required to identify the s-t path which
corresponds to a given sequence of trackers. Banik et al. [2] gave a polynomial
time algorithm to reconstruct the shortest s-t path corresponding to a subset of
trackers, given a tracking set for shortest s-t paths. Here we give an algorithm
which, given a graph G, a constant size tracking set T , and a sequence of trackers
π, returns the unique s-t path in G that corresponds to π, if one exists. Our
algorithm works for both undirected graphs as well as tournaments.

Theorem 3. Given a graph G, a tracking set T of constant size k for G, and
a sequence of trackers π, the unique s-t path in G corresponding to π, if exists,
can be found in polynomial time.

Proof. Let V (π) denote the vertices in the sequence π. Without loss of gener-
ality, let |V (π)| = k and π = (v1, v2, . . . , vk). Let P be the unique s-t path
in G that corresponds to π. Let S be the set of pairs of vertices formed by
consecutive vertices in π, preceding and ending with s and t respectively, i.e.
S = {{s, v1}, {v1, v2}, . . . , {vk, t}}. Since π is the sequence of trackers in P , V (P)
does not contain any trackers from T , other than those in π. In order to find P ,
we need to find the vertex disjoint paths between each pair of vertices (vi, vi+1)
in S, where v0 = s and vk+1 = t. We create a copy v′

i for each vertex vi in π,

176 P. Choudhary

and introduce and edge between v′
i and each vertex in N(vi) in the graph G.

Let S′ = {{s, v1}, {v′
1, v2}, {v′

2, v3} . . . , {vk−1, vk}, {v′
k, t}} and V (S′) be the set

of all vertices in S′. Consider the graph G′ = G − (T \ V (S′)). If G is an undi-
rected graph, then using the algorithm for disjoint paths in undirected graphs
from [15], find the vertex disjoint paths between the pairs of vertices in S′, in
the graph G′. If G is a tournament graph, then using the algorithm for disjoint
paths in tournaments from [8], find the vertex disjoint paths between the pairs
of vertices in S′, in the graph G′. Since disjoint path problem can be solved in
polynomial time for undirected graphs and tournaments [8,15], we can perform
this step in polynomial time. Observe that the sequence of these vertex disjoint
paths will form an s-t path in G′, which will also be an s-t path in G. Note
that if the paths between pairs of vertices in S′ are not vertex disjoint, it is a
violation of the tracking set condition, as there are two vertex disjoint paths
between a pair of vertices that have disjoint paths to s and t themselves. Next
we prove that the path found will be a unique s-t path. If not, then there exists
two s-t paths in G, containing the sequence of trackers π. This contradicts the
assumption that T is a tracking set for G. Since T is assumed to be a tracking
set for G, if vertex disjoint paths are not found between all pair of vertices in
the S′, then P does not exist. In this case the algorithm returns NO. 	

7 Tracking Edge Set for Undirected Graphs

In this section we study the problem of identifying s-t paths in an undirected
edge-weighted graph using the edges of the graph. For a graph G, we define a
tracking edge set as the set of edges whose intersection with each s-t path results
in a unique sequence of edges. Here we allow parallel edges in the input graph.
We formally define the problem of tracking paths using edges as follows.

Tracking Paths using Edges (G, s, t)
Input: An undirected edge-weighted graph G = (V,E) with terminal vertices
s and t.
Question: Find a minimum weight tracking edge set T ⊆ E for G.

We start by first applying Reduction Rule 1, which ensures that each vertex
and edge in the graph participates in some s-t path. Next we prove that each
cycle in the reduced graph needs an edge as a tracker.

Lemma 8. � For a reduced graph G = (V,E), if T ⊆ E is a tracking edge set,
then each cycle in G contains an edge e such that e ∈ T .

Note that the tracking set condition mentioned in Sect. 3 holds for a tracking
edge set as well if we consider trackers as edges instead of vertices. Further,
by using the arguments similar to those in Lemma 2, the following lemma for
tracking using edges (instead of vertices) can be derived. Details are skipped to
avoid repetition.

Polynomial Time Algorithms for Tracking Path Problems 177

Lemma 9. In a graph G, if T ⊆ E(G) is not a tracking set for G, then there
exist two s-t paths with the same sequence of trackers, and they form a cycle C
in G, such that C has a local source a and a local destination b, and T ∩ (E(C)\
{a, b}) = ∅.

Next we prove that a feedback edge set (FES) is a tracking edge set for a
reduced graph. An FES is a set of edges whose removal makes the graph acyclic.

Lemma 10. For a reduced graph G, a feedback edge set F is also a tracking
edge set for G.

Proof. Consider graph G = (V,E) reduced by Reduction Rule 1, and an FES
F ⊆ E for G. We claim that T = F is a tracking edge set for G. Suppose not.
Then there exists two s-t paths, say P1 and P2, in G, such that the sequence
of tracking edges in both these paths is the same. Due to Lemma 9, the graph
induced by P1 and P2 contains at least one cycle, say C, such that C ∩ T = ∅.
However, since T is an FES for G, it must necessarily contain an edge, say e,
from the cycle C marked as a tracking edge. Observe that e can belong to either
P1 and P2, but not both of them. This contradicts the assumption that P1 and
P2 contain the same sequence of tracking edges. 	

Although finding a minimum FVS is an NP-hard problem, an FES can be
found in polynomial time. We now prove that Tracking Paths using Edges
can be solved in polynomial time.

Theorem 4. For an undirected edge-weighted graph G on n vertices, Tracking
Paths using Edges can be solved in O(n2) time.

Proof. Let G be an undirected edge-weighted graph on n vertices. From
Lemma 10 it is known that an FES is a tracking edge set for G. In order to
find a minimum weighted tracking edge set for G, we first find a maximum
weight spanning tree T for G using Prim’s algorithm or Kruskal’s algorithm in
O(n2) time. Now the edges in G − T comprise a minimum weight FES, which is
also a minimum weight tracking edge set for G. 	

A path reconstruction algorithm similar to the one mentioned in Sect. 6 can
be obtained by considering a sequence of tracking edges, and finding vertex
disjoint paths between their endpoints in the graph obtained after removal of
remaining tracking edges from the tracking edge set for that graph.

8 Conclusion

In this paper, we give polynomial time results for some variants of the Tracking
Paths problem. Specifically, we solve Tracking Paths for chordal graphs and
tournaments, along with giving an approximation algorithm for degree bounded
graphs. We also analyze the problem Tracking Paths using Edges, and
prove it to be polynomial time solvable. A constructive algorithm has also been

178 P. Choudhary

given that helps identify an s-t path, given the unique sequence of trackers it
contains. Future scope of this work lies in improving the running times of these
algorithms and identifying more graph classes where Tracking Paths may
be easily solvable. Open problems include finding approximation algorithms for
other NP-hard variants of the problem for both undirected and directed graphs.

Acknowledgement. We thank Prof. Venkatesh Raman for the insightful discussions
and suggestions.

References

1. Bafna, V., Berman, P., Fujito, T.: Constant ratio approximations of the weighted
feedback vertex set problem for undirected graphs. In: Staples, J., Eades, P., Katoh,
N., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 142–151. Springer, Heidel-
berg (1995). https://doi.org/10.1007/BFb0015417

2. Banik, A., Katz, M.J., Packer, E., Simakov, M.: Tracking paths. In: Fotakis, D.,
Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 67–79.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 7

3. Banik, A., Choudhary, P.: Fixed-parameter tractable algorithms for tracking set
problems. In: Panda, B.S., Goswami, P.P. (eds.) CALDAM 2018. LNCS, vol. 10743,
pp. 93–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74180-2 8

4. Banik, A., Choudhary, P., Lokshtanov, D., Raman, V., Saurabh, S.: A polynomial
sized kernel for tracking paths problem. Algorithmica 82(1), 41–63 (2020)

5. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Tracking routes in communication
networks. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS,
vol. 11639, pp. 81–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
24922-9 6

6. Choudhary, P.: Polynomial time algorithms for tracking path problems. CoRR
abs/2002.07799 (2020). https://arxiv.org/abs/2002.07799

7. Choudhary, P., Raman, V.: Improved kernels for tracking path problems. CoRR
abs/2001.03161 (2020). http://arxiv.org/abs/2001.03161

8. Chudnovsky, M., Scott, A., Seymour, P.: Disjoint paths in tournaments. Adv. Math.
270, 582–597 (2015)

9. Duraisamy, K., Dempsey, K., Ali, H., Bhowmick, S.: A noise reducing sampling
approach for uncovering critical properties in large scale biological networks. In:
2011 International Conference on High Performance Computing Simulation, pp.
721–728, July 2011. https://doi.org/10.1109/HPCSim.2011.5999898

10. Eppstein, D., Goodrich, M.T., Liu, J.A., Matias, P.: Tracking paths in pla-
nar graphs. In: 30th International Symposium on Algorithms and Computation,
ISAAC 2019, 8–11 December 2019, Shanghai University of Finance and Economics,
Shanghai, China, pp. 54:1–54:17 (2019)

11. Fisher, D.C., Ryan, J.: Tournament games and condorcet voting. Linear Algebra
Appl. 217, 87–100 (1995). Proceedings of a Conference on Graphs and Matrices in
Honor of John Maybee

12. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified np-complete graph prob-
lems. Theoret. Comput. Sci. 1(3), 237–267 (1976)

13. Geman, D.: Random fields and inverse problems in imaging. In: Hennequin, P.-L.
(ed.) École d’Été de Probabilités de Saint-Flour XVIII - 1988. LNM, vol. 1427, pp.
115–193. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0103042

https://doi.org/10.1007/BFb0015417
https://doi.org/10.1007/978-3-319-57586-5_7
https://doi.org/10.1007/978-3-319-74180-2_8
https://doi.org/10.1007/978-3-030-24922-9_6
https://doi.org/10.1007/978-3-030-24922-9_6
https://arxiv.org/abs/2002.07799
http://arxiv.org/abs/2001.03161
https://doi.org/10.1109/HPCSim.2011.5999898
https://doi.org/10.1007/BFb0103042

Polynomial Time Algorithms for Tracking Path Problems 179

14. Golumbic, M.C.: Perfect graphs (chapter 3). In: Golumbic, M.C. (ed.) Algorithmic
Graph Theory and Perfect Graphs, pp. 51–80. Academic Press (1980)

15. Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in
quadratic time. J. Comb. Theory Ser. B 102(2), 424–435 (2012)

16. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. J. Roy. Stat. Soc.:
Ser. B (Methodol.) 50(2), 157–224 (1988)

17. McGarvey, D.C.: A theorem on the construction of voting paradoxes. Econometrica
21(4), 608–610 (1953)

18. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE 77(2), 257–286 (1989). https://doi.org/10.1109/5.
18626

19. Stearns, R.: The voting problem. Am. Math. Mon. 66(9), 761–763 (1959)

https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626

New Bounds for Maximizing Revenue
in Online Dial-a-Ride

Ananya Christman1(B) , Christine Chung2 , Nicholas Jaczko1, Tianzhi Li1,
Scott Westvold1, Xinyue Xu1, and David Yuen3

1 Middlebury College, Middlebury, VT 05753, USA
achristman@middlebury.edu

2 Connecticut College, New London, CT 06320, USA
cchung@conncoll.edu

3 92-1507 Punawainui St., Kapolei, HI 96707, USA

Abstract. In the Online-Dial-a-Ride Problem (OLDARP) a server trav-
els to serve requests for rides. We consider a variant where each request
specifies a source, destination, release time, and revenue that is earned
for serving the request. The goal is to maximize the total revenue earned
within a given time limit. We prove that no non-preemptive deterministic
online algorithm for OLDARP can be guaranteed to earn more than half
the revenue earned by opt. We then investigate the segmented best
path (sbp) algorithm of [8] for the general case of weighted graphs. The
previously-established lower and upper bounds for the competitive ratio
of sbp are 4 and 6, respectively, under reasonable assumptions about
the input instance. We eliminate the gap by proving that the competi-
tive ratio is 5 (under the same assumptions). We also prove that when
revenues are uniform, sbp has competitive ratio 4. Finally, we provide a
competitive analysis of sbp on complete bipartite graphs.

1 Introduction

In the On-Line Dial-a-Ride Problem (OLDARP), a server travels through a
graph to serve requests for rides. Each request specifies a source, which is the
pick-up (or start) location of the ride, a destination, which is the delivery (or
end) location, and the release time of the request, which is the earliest time the
request may be served. Requests arrive over time; specifically, each arrives at
its release time and the server must decide whether to serve the request and
at what time, with the goal of meeting some optimality criterion. The server
has a capacity that specifies the maximum number of requests it can serve at
any time. Common optimality criteria include minimizing the total travel time
(i.e. makespan) to satisfy all requests, minimizing the average completion time
(i.e. latency), or maximizing the number of served requests within a specified
time limit. In many variants preemption is not allowed, so if the server begins to
serve a request, it must do so until completion. On-Line Dial-a-Ride Problems
have many practical applications in settings where a vehicle is dispatched to
satisfy requests involving pick-up and delivery of people or goods. Important
c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 180–194, 2020.
https://doi.org/10.1007/978-3-030-48966-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_14&domain=pdf
http://orcid.org/0000-0001-9445-1475
http://orcid.org/0000-0003-3580-9275
http://orcid.org/0000-0001-9827-0962
https://doi.org/10.1007/978-3-030-48966-3_14

New Bounds for Maximizing Revenue in Online Dial-a-Ride 181

examples include ambulance routing, transportation for the elderly and disabled,
taxi services including Ride-for-Hire systems (such as Uber and Lyft), and courier
services.

We study a variation of OLDARP where in addition to the source, destination
and release time, each request also has a priority and there is a time limit within
which requests must be served. The server has unit capacity and the goal for
the server is to serve requests within the time limit so as to maximize the total
priority. A request’s priority may simply represent the importance of serving the
request in settings such as courier services. In more time-sensitive settings such
as ambulance routing, the priority may represent the urgency of a request. In
profit-based settings, such as taxi and ride-sharing services, a request’s priority
may represent the revenue earned from serving the request. For the remainder
of this paper, we will refer to the priority as “revenue,” and to this variant of
the problem as ROLDARP. Note that if revenues are uniform the problem is
equivalent to maximizing the number of served requests.

1.1 Related Work

The Online Dial-a-Ride problem was introduced by Feuerstein and Stougie [10]
and several variations of the problem have been studied since. For a compre-
hensive survey on these and many other problems in the general area of vehicle
routing see [12] and [16]. Feuerstein and Stougie studied the problem for two dif-
ferent objectives: minimizing completion time and minimizing latency. For mini-
mizing completion time, they showed that any deterministic algorithm must have
competitive ratio of at least 2 regardless of the server capacity. They presented
algorithms for the cases of finite and infinite capacity with competitive ratios of
2.5 and 2, respectively. For minimizing latency, they proved that any algorithm
must have a competitive ratio of at least 3 and presented a 15-competitive algo-
rithm on the real line when the server has infinite capacity. Ascheuer et al. [2]
studied OLDARP with multiple servers with the goal of minimizing completion
time and presented a 2-competitive algorithm. More recently, Birx et al. [5] stud-
ied OLDARP on the real line and presented a new upper bound of 2.67 for the
smartstart algorithm [2], which improves the previous bounds of 3.41 [14] and
2.94 [4]. For OLDARP on the real line, Bjelde et al. [6] present a preemptive
algorithm with competitive ratio 2.41. The Online Traveling Salesperson Prob-
lem (OLTSP), introduced by Ausiello et al. [3] and also studied by Krumke [15],
is a special case of OLDARP where for each request the source and destina-
tion are the same location. There are many studies of variants of OLDARP and
OLTSP [3,11,13,15] that differ from the variant that we study which we omit
here due to space limitations.

In this paper, we study OLDARP where each request has a revenue that
is earned if the request is served and the goal is to maximize the total revenue
earned within a specified time limit; the offline version of the problem was shown
to be NP-hard in [8]. More recently, it was shown that even the special case of
the offline version with uniform revenues and uniform weights is NP-hard [1].
Christman and Forcier [9] presented a 2-competitive algorithm for OLDARP

182 A. Christman et al.

on graphs with uniform edge weights. Christman et al. [8] showed that if edge
weights may be arbitrarily large, then regardless of revenue values, no deter-
ministic algorithm can be competitive. They therefore considered graphs where
edge weights are bounded by a fixed fraction of the time limit, and gave a 6-
competitive algorithm for this problem. Note that this is a natural subclass of
inputs since in real-world dial-a-ride systems, drivers would be unlikely to spend
a large fraction of their day moving to or serving a single request.

1.2 Our Results

In this work we begin with improved lower and upper bounds for the competitive
ratio of the segmented best path (sbp) algorithm that was presented in [8].
We study sbp because it has the best known competitive ratio for ROLDARP
and is a relatively straightforward algorithm. In [8], it was shown that sbp’s
competitive ratio has lower bound 4 and upper bound 6, provided that the edge
weights are bounded by a fixed fraction of the time limit, i.e. T/f where T is
the time limit and 1 < f < T , and that the revenue earned by the optimal
offline solution (opt) in the last 2T/f time units is bounded by a constant. This
assumption is imposed because, as we show in Lemma 1, no non-preememptive
deterministic online algorithm can be guaranteed to earn this revenue. We note
that as T grows, the significance of the revenue earned by opt in the last two
time segments diminishes.

We then close the gap between the upper and lower bounds of sbp by pro-
viding an instance where the lower bound is 5 (Sect. 3.1) and a proof for an
upper bound of 5 (Sect. 3.2). We note that another interpretation of our result is
that under a weakened-adversary model where opt has two fewer time segments
available, while sbp has the full time limit T , sbp is 5-competitive. We then
investigate the problem for uniform revenues (so the objective is to maximize
the total number of requests served) and prove that sbp earns at least 1/4 the
revenue of opt, minus an additive term linear in f , the number of time segments
(Sect. 4). This variant is useful for settings where all requests have equal prior-
ities such as not-for-profit services that provide transportation to elderly and
disabled passengers and courier services where deliveries are not prioritized.

We then consider the problem for complete bipartite graphs; for these graphs
every source is from the left-hand side and every destination is from the right-
hand side (Sect. 5). These graphs model the scenario where only a subset of
locations may be source nodes and a disjoint subset may be destinations, e.g.
in the delivery of goods from commercial warehouses only the warehouses may
be sources and only customer locations may be destinations. We refer to this
problem as ROLDARP-B. We first show that if edge weights are not bounded
by a minimum value, then ROLDARP on general graphs reduces to ROLDARP-
B. We therefore impose a minimum edge weight of kT/f for some constant k such
that 0 < k ≤ 1. We show that if revenues are uniform, sbp has competitive ratio
�1/k�. Finally, we show that if revenues are nonuniform sbp has competitive ratio
�1/k�, provided that the revenue earned by opt in the last 2T/f time units is
bounded by a constant. (This assumption is justified by Lemma 1 which says no
non-preemptive deterministic algorithm can be guaranteed to earn any fraction

New Bounds for Maximizing Revenue in Online Dial-a-Ride 183

Table 1. Bounds on the algorithm sbp for ROLDARP variants. † This upper bound
assumes the optimal revenue of the last two time segments is bounded by a constant. ‡
This upper bound assumes the number of time segments is constant. § k is a constant
where 0 < k ≤ 1 such that the minimum edge weight is kT/f where T is the time limit
and 1 < f < T .

Competitive ratio ρ of SBP for ROLDARP

Uniform revenue Nonuniform revenue

Weighted graphs ρ = 4†‡ ([8], [this work]) ρ = 5† [this work]

Weighted bipartite graphs ρ ≤ �1/k�§ [this work] ρ ≤ �1/k�†§ [this work]

of what is earned by opt in the last 2T/f time units.) Table 1 summarizes our
results.

2 Preliminaries

The Revenue-Online-Dial-a-Ride Problem (ROLDARP) is formally defined as
follows. The input is an undirected complete graph G = (V,E) where V is the
set of vertices (or nodes) and E = {(u, v) : u, v ∈ V, u �= v} is the set of edges. For
every edge (u, v) ∈ E, there is a weight wu,v > 0, which represents the amount
of time it takes to traverse (u, v).1 One node in the graph, o, is designated as
the origin and is where the server is initially located (i.e. at time 0). The input
also includes a time limit T and a sequence of requests, σ, that are dynamically
issued to the server.

Each request is of the form (s, d, t, p) where s is the source node, d is the
destination, t is the time the request is released, and p is the revenue (or priority)
earned by the server for serving the request. The server does not know about a
request until its release time t. To serve a request, the server must move from its
current location x to s, then from s to d. The total time for serving the request
is equal to the length (i.e. travel time) of the path from x to s to d, and the
earliest time a request may be released is at t = 0. For each request, the server
must decide whether to serve the request and if so, at what time. A request
may not be served earlier than its release time and at most one request may be
served at any given time. Once the server decides to serve a request, it must do
so until completion. The goal for the server is to serve requests within the time
limit so as to maximize the total earned revenue. (The server need not return to
the origin and may move freely through the graph at any time, even if it is not
traveling to serve a request.)

The algorithm segmented best path (sbp) [8] starts by splitting the total
time T into f segments each of length T/f (recall that f is fixed and 1 < f < T).
1 We note that any simple, undirected, connected, weighted graph is allowed as input,
with the simple pre-processing step of adding an edge wherever one is not present
whose weight is the length of the shortest path between its two endpoints. We further
note that the input can be regarded as a metric space if the weights on the edges
are expected to satisfy the triangle-inequality.

184 A. Christman et al.

Algorithm 1: Algorithm Segmented Best Path (sbp). Input is com-
plete graph G with time limit T and maximum edge weight T/f .

1: Let t1, t2, . . . tf be the time segments ending at times T/f, 2T/f, . . . , T , resp.
2: Let i = 1.
3: if f is odd then
4: At t1, do nothing. Increment i = 2.
5: end if
6: while i < f do
7: At the start of ti, find the max-revenue-request-set, R.
8: if R is non-empty then
9: Move to the source location of the first request in R.
10: At the start of ti+1, serve request-set R.
11: else
12: Remain idle for ti and ti+1

13: end if
14: Let i = i + 2.
15: end while

At the start of a time segment, the server determines the max-revenue-request-
set, i.e. the maximum revenue set of unserved requests that can be served within
one time segment, and moves to the source of the first request in this set. During
the next time segment, it serves the requests in this set. It continues this way,
alternating between moving to the source of first request in the max-revenue-
request-set during one time segment, and serving this request-set in the next
time segment. To find the max-revenue-request-set, the algorithm maintains a
directed auxiliary graph, G′ to keep track of unserved requests (an edge between
two vertices u,v represents a request with source u and destination v). It finds all
paths of length at most T/f between every pair of nodes in G′ and returns the
path that yields the maximum total revenue (please refer to [8] for full details).

It was observed in [8] that no deterministic online algorithm can be guar-
anteed to serve the requests served by opt during the last time segment and
the authors proved that sbp is 6-competitive barring an additive factor equal to
the revenue earned by opt during the last two time segments. More formally, let
rev(sbp(tj)) and rev(opt(tj)) denote the revenue earned by sbp and opt respec-
tively during the j-th time segment. Then if rev(opt(tf)) + rev(opt(tf−1)) ≤ c

for some constant c, then
∑f

j=1 rev(opt(tj)) ≤ 6
∑f

j=1 rev(sbp(tj)) + c. It was
also shown in [8] that as T grows, the competitive ratio of sbp is at best 4 (again
with the additive term equal to rev(opt(tf)) + rev(opt(tf−1))), resulting in a
gap between the upper and lower bounds.

2.1 General Lower Bound

We first present a general lower bound for this problem and show that no
non-preemptive deterministic online algorithm (e.g. sbp) can be better than

New Bounds for Maximizing Revenue in Online Dial-a-Ride 185

2-competitive with respect to the revenue earned by the offline optimal schedule
(ignoring the last two time segments; see Lemma 1, below).

Theorem 1. No non-preemptive deterministic online algorithm for OLDARP
can be guaranteed to earn more than half the revenue earned by opt in the
first T − 2T/f time units. This is the case whether revenues are uniform or
nonuniform.

Proof (Sketch). The adversary repeatedly releases requests such that depending
on which request(s) the algorithm serves, other request(s) are released that the
algorithm cannot serve in time. This scheme requires carefully constructed edge
weights, release times, and revenues so that the optimal offline revenue is always
twice that of any online algorithm. Please see the full version of the paper for
details [7].

We now show that no non-preemptive deterministic online algorithm (e.g.
sbp) can be competitive with the revenue earned by opt in the last two segments
of time. We note that this claim applies to the version of non-preemption where,
as in real-world systems like Uber/Lyft, once the server decides to serve a request,
it must move there and serve it to completion.

Lemma 1. No non-preemptive deterministic online algorithm can be guaranteed
to earn any fraction of the revenue earned by opt in the last 2T/f time units.
This is the case whether revenues are uniform or nonuniform.

Proof (). The adversary releases a request in the last two time segments and if
the online algorithm chooses not to serve it, no other requests will be released.
If the algorithm chooses to serve it, another batch of requests will be released
elsewhere that the algorithm cannot serve in time. Please see the full version of
the paper for details [7].

3 Nonuniform Revenues

In this section we improve the lower and upper bounds for the competitive ratio
of the segmented best path algorithm [8]. In particular, we eliminate the
gap between the lower and upper bounds of 4 and 6, respectively, from [8], by
providing an instance where the lower bound is 5 and a proof for an upper bound
of 5. Note that throughout this section we assume the revenue earned by opt
in the last two time segments is bounded by some constant. We must impose
this restriction on the opt revenue of the last two time segments because, as we
showed in Lemma 1, no non-preemptive deterministic online algorithm can be
guaranteed to earn any constant fraction of this revenue.

3.1 Lower Bound on SBP

Theorem 2. If the revenue earned by opt in the last two time segments is
bounded by some constant, and sbp is γ-competitive, then γ ≥ 5.

186 A. Christman et al.

Fig. 1. An instance where opt (whose path is shown in dashed green below) earns
5 − 4/(f − 2) times the revenue of sbp (shown in solid yellow above). In this instance,
T = 2hf , and edges that represent requests are shown as solid edges. For each such
edge the release time followed by revenue of the corresponding request is shown in
parenthesis above the edge. The weight of an edge is shown below the edge. Dashed
edges represent empty moves. (Color figure online)

Proof (Sketch). For the formal details, please refer to the proof of Theorem 2 in
the full version [7]. Consider the instance depicted in Fig. 1. Since T = 2hf in
this instance, h represents “half” the length of one time segment, so only one
request of length h + 1 fits within a single time segment for sbp. The general
idea of the instance is that while sbp is serving every other request across the
top row of requests (since the other half across the top are not released until
after sbp has already passed them by), opt is serving the entire bottom row in
one long chain, then also has time to serve the top row as one long chain.

3.2 Upper Bound on SBP

We now show that sbp is 5-competitive by creating a modified, hypothetical
sbp schedule that has additional copies of requests. First, we note that sbp loses
a factor of 2 due to the fact that it serves requests during only every other
time segment. Then, we lose another factor of two to cover requests in opt that
overlap between time segments. Finally, by adding at most one more copy of the
requests served by sbp to make up for requests that sbp “incorrectly” serves
prior to when they are served by opt, we end up with 5 copies of sbp being
sufficient for bounding the total revenue of opt. Note that while this proof uses
some of the techniques of the proof of the 6-competitive upper bound in [8],
it reduces the competitive ratio from 6 to 5 by cleverly extracting the set of
requests that sbp serves prior to opt before making the additional copies.

Let rev(opt) and rev(sbp) denote the total revenue earned by opt and sbp
over all time segments tj from j = 1 . . . f .

Theorem 3. If the revenue earned by opt in the last two time segments is
bounded by some constant c, then sbp is 5-competitive, i.e., if rev(opt(tf)) +
rev(opt(tf−1)) ≤ c, then

∑f
j=1 rev(opt(tj)) ≤ 5

∑f
j=1 rev(sbp(tj)) + c. Note

New Bounds for Maximizing Revenue in Online Dial-a-Ride 187

that another interpretation of this result is that under a resource augmentation
model where sbp has two more time segments available than opt, sbp is 5-
competitive.

Proof. We analyze the revenue earned by sbp by considering the time segments
in pairs (recall that the length of a time segment is T/f for some 1 < f < T). We
refer to each pair of consecutive time segments as a time window, so if there are
f time segments, there are �f/2� time windows. Note that the last time window
may have only one time segment.

For notational convenience we consider a modified version of the sbp sched-
ule, that we refer to as sbp′, which serves exactly the same set of requests as
sbp, but does so one time window earlier. Specifically, if sbp serves a set of
requests during time window i ≥ 2, sbp′ serves this set during time window i−1
(so sbp′ ignores the set served by sbp in window 1). We note that the schedule
of requests served by sbp′ may be infeasible, and that it will earn at most the
amount of revenue earned by sbp.

Let Bi denote the set of requests served by opt in window i that sbp′ already
served before in some window j < i. And let B be the set of all requests that
have already been served by sbp′ in a previous window by the time they are
served in the opt schedule. Formally, B =

⋃�f/2�
i=2 Bi. Consider a schedule opt

that contains all of the requests in the opt schedule minus the requests in B.
So opt earns total revenue rev(opt) − rev(B), where rev(B) denotes the total
revenue of the set B.

Let opt(tj) denote the set of requests served by opt in time segment tj . Let
opti denote the set of requests served by opt in the time segment of window i
with greater revenue, i.e. opti = arg max{rev(opt(t2i−1)), rev(opt(t2i))}. Note
this set may include a request that was started in the prior time segment, as
long as it was completed in the time segment of opti. Let rev(opti) denote the
revenue earned in opti.

Let sbp′
i denote the set of requests served by sbp′ in window i and let

rev(sbp′
i) denote the revenue earned by sbp′

i. Let H denote the chronologically
ordered set of time windows w where rev(optw) > rev(sbp′

w), and let hj denote
the jth time window in H. We refer to each window of H as a window with a
“hole,” in reference to the fact that sbp′ does not earn as much revenue as opt
in these windows. In each window hj there is some amount of revenue that opt
earns that sbp′ does not. In particular, there must be a set of requests that opt
serves in window hj that sbp′ does not serve in hj . Note that this set must be
available for sbp′ in hj since opt does not include the set B.

Let opthj
= Aj ∪ C∗

j , where Aj is the subset of requests served by both
opt and sbp′ in hj and C∗

j is the subset of opt requests available for sbp′ to
serve in hj but sbp′ chooses not to serve. Let us refer to the set of requests
served by sbp′ in hj as sbp′

hj
= Aj ∪ Cj for some set of requests Cj . Note

that if opthj
= Aj ∪ C∗

j can be executed within a single time segment, then
rev(Cj) ≥ rev(C∗

j) by the greediness of sbp′. However, since hj is a hole we
know that the set opthj

cannot be served within one time segment.

188 A. Christman et al.

Our plan is to build an infeasible schedule sbp that will be similar to sbp′

but contain additional “copies” of some requests such that no windows of sbp
contain holes. We first initialize sbp to have the same schedule of requests as
sbp′. We then add additional requests to hj for each j = 1 . . . |H|, based on
opthj

.
Consider one such window with a hole hj , and let k be the index of the

time segment corresponding to opthj
. We know opt must have begun serving

a request of opthj
in time segment tk−1 and completed this request in time

segment tk. Let us use r∗ to denote this request that “straddles” the two time
segments.

After the initialization of sbp = sbp′, recall that the set of requests served
by sbp in hj is sbphj

= Aj ∪ Cj for some set of requests Cj . We add to sbp a
copy of a set of requests. There are two sub-cases depending on whether r∗ ∈ C∗

j

or not.
Case r∗ ∈ C∗

j . In this case, by the greediness of sbp, and the fact that both
r∗ alone and C∗

j \{r∗} can separately be completed within a single time segment,
we have: rev(Cj) ≥ max{rev(r∗), rev(C∗

j \ {r∗})} ≥ 1
2 rev(C∗

j). We then add a
copy of the set Cj to the sbp schedule, so there are two copies of Cj in hj . Note
that for sbp, hj will no longer be a hole since: rev(opthj

) = rev(Aj)+rev(C∗
j) ≤

rev(Aj) + 2 · rev(Cj) = rev(sbphj
).

Case r∗ /∈ C∗
j . In this case C∗

j can be served within one time segment but
sbp′ chooses to serve Aj ∪ Cj instead. So we have rev(Aj) + rev(Cj) ≥ rev(C∗

j),
therefore we know either rev(Aj) ≥ 1

2 rev(C∗
j) or rev(Cj) ≥ 1

2 rev(C∗
j). In the

latter case, we can do as we did in the first case above and add a copy of the
set Cj to the sbp schedule in window hj , to get rev(opthj

) ≤ rev(sbphj
), as

above. In the former case, we instead add a copy of Aj to the sbp schedule in
window hj . Then again, for sbp, hj will no longer be a hole, since this time:
rev(opthj

) = rev(Aj) + rev(C∗
j) ≤ 2 · rev(Aj) + rev(Cj) = rev(sbphj

).
Note that for all windows w /∈ H that are not holes, we already have

rev(sbpw) ≥ rev(optw). So we have

�f/2�−1∑

i=1

rev(opti) ≤
�f/2�−1∑

i=1

rev(sbpi) ≤ 2
�f/2�−1∑

i=1

rev(sbp′
i). (1)

where the second inequality is because sbp contains no more than two instances
of every request in sbp′. Combining (1) with the fact that sbp′ earns at most
what sbp does yields

�f/2�∑

i=1

rev(opti) ≤ 2
�f/2�∑

i=1

rev(sbpi) + rev(opt(tf−1)) + rev(opt(tf)). (2)

Since sbp serves in only one of two time segments per window, we have
∑�f/2�

i=1 rev(sbpi) =
∑f

j=1 rev(sbp(tj)). Hence, by the definition of opt, and
by (2) we can say

New Bounds for Maximizing Revenue in Online Dial-a-Ride 189

f∑

j=1

rev(opt(tj)) ≤ 2
�f/2�∑

i=1

rev(opti)

≤ 4
f∑

j=1

rev(sbp(tj)) + rev(opt(tf−1)) + rev(opt(tf)). (3)

Now we must add in any request in B, such that opt serves the request in a
time window after sbp′ serves that request. By definition of B (as the set of all
requests that have been served by sbp′ in a previous window) B may contain at
most the same set of requests served by sbp′. Therefore rev(B) ≤ rev(sbp′), so
rev(B) ≤ rev(sbp). By the definition of opt, opt = opt + B, so

f∑

j=1

rev(opt(tj)) = rev(B) +
f∑

j=1

rev(opt(tj)) (4)

And by combining (3)–(4) with the fact that rev(B) ≤ rev(sbp),
we have

∑f
j=1 rev(opt(tj)) ≤ ∑f

j=1 rev(sbp(tj)) + 4
∑f

j=1 rev(sbp(tj)) +

rev(opt(tf−1)) + rev(opt(tf)) ≤ 5
∑f

j=1 rev(sbp(tj)) + rev(opt(tf−1)) +
rev(opt(tf)).

4 Uniform Revenues

We now consider the setting where revenues are uniform among all requests,
so the goal is to maximize the total number of requests served. This variant is
useful for settings where all requests have equal priorities, for example for not-
for-profit services that provide transportation to elderly and disabled passengers.
The proof strategy is to carefully consider the requests served by sbp in each
window and track how they differ from that of opt. The final result is achieved
through a clever accounting of the differences between the two schedules, and
bounding the revenue of the requests that are “missing” from sbp.

We note that the lower bound instance of Theorem 2 can be modified to
become a uniform-revenue instance that has ratio 5 − 14/f. We further note
that the lower bound instance provided in [8] immediately establishes a lower
bound instance for sbp that has a ratio of 4. We now show that opt earns at
most 4 times the revenue of sbp in this setting if we assume the revenue earned
by opt in the last two time segments is bounded by a constant, and allow sbp
an additive bonus of f . Note that even when revenues are uniform, no non-
preemptive deterministic online algorithm can earn the revenue earned by opt
in the last two time segments (see Lemma 1). We begin with several definitions
and lemmas.

As in the proof of Theorem 3, we consider a modified version of the sbp
schedule, that we refer to as sbp′, which serves exactly the same set of requests
as sbp, but does so one time window earlier. For all windows i = 1, 2, ...,m, where
m = �f/2� − 1, we let S′

i denote the set of requests served by sbp′ in window

190 A. Christman et al.

i and S∗
i denote the set of requests served by opt during the time segment of

window i with greater revenue, i.e. S∗
i = arg max{rev(opt(t2i−1), rev(opt(t2i))}

where rev(opt(tj)) denotes the revenue earned by opt in time segment tj . We
define a new set J∗

i as the set of requests served by opt during the time segment
of window i with less revenue, i.e. J∗

i = arg min{rev(opt(t2i−1), rev(opt(t2i))}.
Let S∗

i = Ai ∪ X∗
i ∪ Y ∗

i , and S′
i = Ai ∪ Xi ∪ Yi, where: (1) Ai is the set

of requests that appear in both S∗
i and S′

i; (2) X∗
i is the set of requests that

appear in S′
w for some w = 1, 2, ..., i − 1. Note there is only one possible w for

each individual request r ∈ X∗
i , because each request can be served only once;

(3) Y ∗
i is the set of requests such that no request from Y ∗

i appears in S′
w for

any w = 1, 2, ..., i − 1, i; (4) Xi is the set of requests that appear in S∗
w for some

w = 1, 2, ..., i − 1. Note there is only one possible w for each individual request
r ∈ Xi, because each request can be served only once; (5) Yi is the set of requests
such that no request from Yi appears in S∗

w for any w = 1, 2, ..., i − 1, i.
Note that elements in Yi can appear in a previous J∗

w for any w = 1, 2, ..., i−
1, i or in a future S∗

v or J∗
v for any v = i + 1, i + 2, ...,m, or may not appear in

any other sets. Also note that since each request can be served at most once, we
have: A1 ∩ X∗

1 ∩ Y ∗
1 ∩ A2 ∩ X∗

2 ∩ Y ∗
2 ∩ ... ∩ Am ∩ X∗

m ∩ Y ∗
m = ∅ and A1 ∩ X1 ∩

Y1 ∩ A2 ∩ X2 ∩ Y2 ∩ ... ∩ Am ∩ Xm ∩ Ym = ∅.
Given the above definitions, we have the following lemma whose proof has

been deferred to the full version of the paper [7]. It states that at any given time
window, the cumulative requests of opt that were earlier served by sbp are no
more than the number that have been served by sbp but not yet by opt.

Lemma 2. For all i = 1, 2, ...,m we have
∑i

j=1 |X∗
j | ≤ ∑i

j=1 |Yi|.
We are now ready to prove our main theorem of this section.

Theorem 4. If the revenue earned by opt in the last two time segments is
bounded by some constant c, i.e., if rev(opt(tf))+rev(opt(tf−1)) ≤ c, then sbp
earns at least 1/4 the revenue of opt, minus an additive term linear in f , where
T/f is the length of one time segment. (So if f is also bounded by some constant,
then sbp is 4-competitive). I.e.,

∑f
j=1 rev(opt(tj)) ≤ 4

∑f
j=1 rev(sbp(tj)) +

2�f/2� + c.

Proof. Note that since revenues are uniform, the revenue of a request-set U is
equal to the size of the set U , i.e., rev(U) = |U |. Consider each window i where
rev(S∗

i) > rev(S′
i). Note that the set S∗

i may not fit within a single time segment.
We consider two cases based on S∗

i .

1. The set S∗
i can be served within one time segment. Note that within S∗

i =
Ai∪X∗

i ∪Y ∗
i , X∗

i is not available for sbp′ to serve because sbp′ has served the
requests in X∗

i prior to window i. Among requests that are available to sbp′,
sbp′ greedily chooses to serve the maximum revenue set that can be served
within one time segment. Therefore, we have rev(Xi) + rev(Yi) ≥ rev(Y ∗

i).
Since revenues are uniform, we also have |Xi| + |Yi| ≥ |Y ∗

i |.
If this is not the case, then sbp′ would have chosen to serve Y ∗

i instead of
Xi∪Yi since it is feasible for sbp′ to do so because the entire S∗

i can be served
within one time segment.

New Bounds for Maximizing Revenue in Online Dial-a-Ride 191

2. The set S∗
i cannot be served within one time segment. This means there must

be one request in S∗
i that opt started serving in the previous time segment.

We refer to this straddling request as r∗. There are three sub-cases based on
where r∗ appears.
(a) If r∗ ∈ Y ∗

i , then due to the greediness of sbp′, we know that

rev(Xi) + rev(Yi) ≥ rev(r∗) (5)

since otherwise sbp′ would have chosen to serve r∗. We also know

rev(Xi) + rev(Yi) ≥ rev(Y ∗
i \{r∗}) (6)

since otherwise sbp′ would have chosen to serve Y ∗
i \{r∗}.

From (5), we have |Xi| + |Yi| ≥ 1 and from (6), we have |Xi| + |Yi| ≥
|Y ∗

i | − 1.
(b) If r∗ ∈ X∗

i , then r∗ is not available to sbp′ and only Ai, Xi, Yi, and Y ∗
i

are available to sbp′. Therefore we know that rev(Xi)+rev(Yi) ≥ rev(Y ∗
i)

since otherwise, by its greediness, sbp′ would have chosen to serve Ai and
Y ∗
i instead of Ai, Xi and Yi, because Ai and Y ∗

i can be served within one
time segment. Therefore, we have |Xi| + |Yi| ≥ |Y ∗

i |.
(c) r∗ ∈ Ai. Then r∗ is served by both opt and sbp′. We know that

Ai ∪ Y ∗
i \{r∗} can be served within one time segment since r∗ is the only

request that causes S∗
i to straddle between two time segments. Again by

the greediness of sbp′, we have rev(Ai) + rev(Xi) + rev(Yi) ≥ rev(Ai) +
rev(Y ∗

i)−rev(r∗) which means rev(Xi)+rev(Yi) ≥ rev(Y ∗
i)−rev(r∗) and

|Xi| + |Yi| ≥ |Y ∗
i | − 1.

Therefore, for all cases, for window i, we have |Xi| + |Yi| ≥ |Y ∗
i | − 1, which

means |Y ∗
i | − |Xi| ≤ 1 + |Yi|, and with m = �f/2� − 1,

m∑

i=1

(|Y ∗
i | − |Xi|) ≤ m +

m∑

i=1

|Yi|. (7)

Now we will build an infeasible schedule sbp that will be similar to sbp′

but contain additional “copies” of some requests such that no windows of sbp
contain holes, i.e. such that rev(sbp) ≥ ∑m

i=1 rev(S∗
i).

We define a modified opt schedule which we refer to as opt′ such that
opt′ = ∪m

i=1S
∗
i and observe that rev(opt′) =

∑m
i=1 |Ai|+

∑m
i=1 |X∗

i |+∑m
i=1 |Y ∗

i |
, while rev(sbp′) =

∑m
i=1 |Ai| +

∑m
i=1 |Xi| +

∑m
i=1 |Yi|.

By Lemma 2 and Eq. (7), we can say rev(opt′) − rev(sbp′) =
∑m

i=1 |Y ∗
i | −∑m

i=1 |Xi| +
∑m

i=1 |X∗
i | − ∑m

i=1 |Yi| ≤ ∑m
i=1 |Y ∗

i | − ∑m
i=1 |Xi| ≤ m +

∑m
i=1 |Yi|.

This tells us that to form an sbp whose revenue is at least that of opt′, we must
“compensate” sbp′ by adding to it at most copies of all requests in the set Yi

for all i = 1, 2, ...,m, plus m “dummy requests.” In other words,

rev(sbp) = rev(sbp′) + m +
m∑

i=1

|Yi| ≥ rev(opt′). (8)

192 A. Christman et al.

We know the total revenue of all Yi can not exceed the total revenue of sbp′,
hence we have

rev(sbp) = rev(sbp′) + m +
m∑

i=1

|Yi| ≤ 2 rev(sbp′) + m. (9)

Combining (8) and (9), we get rev(opt′) ≤ 2 rev(sbp′) + m, which means

m∑

i=1

rev(S∗
i) ≤ 2

m∑

i=1

rev(S′
i) + m. (10)

Recall that S∗
i is the set of requests served by opt during the time seg-

ment of window i with greater revenue. In other words,
∑2m

j=1 rev(S∗(tj)) ≤
2
∑m

i=1 rev(S∗
i), which, combined with (10), gives us

2m∑

j=1

rev(S∗(tj)) ≤ 4
m∑

i=1

rev(S′
i) + 2m. (11)

We assumed that the total revenue of requests served in the last two time seg-
ments by opt is bounded by c. From (11), we get

f∑

j=1

rev(S∗(tj)) ≤
2m∑

j=1

rev(S∗(tj)) + rev(S∗(tf−1)) + rev(S∗(tf)) ≤ 4
m∑

i=1

rev(S′
i) + 2m + c.

(12)
We also know that the total revenue of requests served by sbp′ during the first
m windows is less than or equal to the total revenue of sbp. Therefore, from
(12), we have

∑f
j=1 rev(S∗(tj)) ≤ 4

∑f
j=1 rev(S(tj)) + 2m + c.

5 Bipartite Graphs

In this section, we consider ROLDARP for complete bipartite graphs G = (V =
V1 ∪ V2, E), where only nodes in V1 maybe be source nodes and only nodes in
V2 may be destination nodes. One node is designated as the origin and there is
an edge from this node to every node in V1 (so the origin is a node in V2). Due
strictly to space limitations, most proofs of theorems in this section are deferred
to the full version of the paper [7].

We refer to this problem as ROLDARP-B and the offline version as RDARP-
B. We first show that if edge weights of the bipartite graph are not bounded by a
minimum value, then the offline version of ROLDARP on general graphs, which
we refer to as RDARP, reduces to RDARP-B. Since RDARP has been show
in [1,8] to be NP-hard (even if revenues are uniform), this means RDARP-B is
NP-hard as well.

Theorem 5. The problem RDARP is poly-time reducible to RDARP-B. Also,
RDARP with uniform revenues is poly-time reducible to RDARP-B with uniform
revenues.

New Bounds for Maximizing Revenue in Online Dial-a-Ride 193

Proof (Sketch). The idea of the reduction is to split each node into two nodes
connected by an edge in the bipartite graph with a distance of ε. Then we turn
each edge in the original graph into two edges in the bipartite graph. Please see
the full version for details [7].

5.1 Uniform Revenue Bipartite

We show that for bipartite graph instances, if revenues are uniform, we can guar-
antee that sbp earns a fraction of opt equal to the ratio between the minimum
and maximum edge-length.

Theorem 6. For any instance of ROLDARP-B where the revenues are uniform
for all requests, if edge weights are upper and lower bounded by T/f and kT/f ,
respectively, for some constant 0 < k ≤ 1, then rev(opt) ≤ �1/k� · rev(sbp) +
�1/k�.
Proof (Sketch). The proof idea is akin to that of Theorem 7 below. Please see
the full version of the paper for details [7].

5.2 Nonuniform Revenue Bipartite

In this section we show that even if revenues are nonuniform, we can still guar-
antee that sbp earns a fraction of opt equal to the ratio between the minimum
and maximum edge-length, minus the revenue earned by opt in the last window.
Recall that we refer to each pair of consecutive time segments as a time window.
Note that no non-preemptive deterministic online algorithm can be competitive
with any fraction of the revenue earned by opt in the last 2T/f time units (i.e.
Lemma 1 also holds for ROLDARP-B with nonuniform revenues). Due space
limitations, please refer to the full version of this work [7] for the proof of the
following theorem.

Theorem 7. For any instance of ROLDARP-B where the revenues of requests
are nonuniform, if edge weights are upper and lower bounded by T/f and kT/f ,
respectively, for some constant 0 < k ≤ 1, and if the revenue earned by opt in
the last time window is bounded by some constant c, then rev(opt) ≤ �1/k� ·
rev(sbp) + c.

References

1. Anthony, B., et al.: Maximizing the number of rides served for dial-a-ride. In: 19th
Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems (ATMOS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2019)

2. Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: minimizing
the completion time. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770,
pp. 639–650. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-
3 53

https://doi.org/10.1007/3-540-46541-3_53
https://doi.org/10.1007/3-540-46541-3_53

194 A. Christman et al.

3. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for
the on-line travelling salesman 1. Algorithmica 29(4), 560–581 (2001)

4. Birx, A., Disser, Y.: Tight analysis of the smartstart algorithm for online dial-a-ride
on the line. In: 36th International Symposium on Theoretical Aspects of Computer
Science (2019)

5. Birx, A., Disser, Y., Schewior, K.: Improved bounds for open online dial-a-ride
on the line. In: Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2019)

6. Bjelde, A., et al.: Tight bounds for online TSP on the line. In: Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
994–1005. Society for Industrial and Applied Mathematics (2017)

7. Christman, A., et al.: New bounds for maximizing revenue in online dial-a-ride.
arXiv preprint arXiv:1912.06300 (2020)

8. Christman, A., Chung, C., Jaczko, N., Milan, M., Vasilchenko, A., Westvold, S.:
Revenue maximization in online dial-a-ride. In: 17th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

9. Christman, A., Forcier, W.: Maximizing revenues for on-line dial-a-ride. In: Zhang,
Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 522–534.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12691-3 38

10. Feuerstein, E., Stougie, L.: On-line single-server dial-a-ride problems. Theoret.
Comput. Sci. 268(1), 91–105 (2001)

11. Jaillet, P., Wagner, M.R.: Generalized online routing: new competitive ratios,
resource augmentation, and asymptotic analyses. Oper. Res. 56(3), 745–757 (2008)

12. Jaillet, P., Wagner, M.R.: Online vehicle routing problems: a survey. In: Golden, B.,
Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and
New Challenges. ORCS, vol. 43, pp. 221–237. Springer, Boston (2008). https://
doi.org/10.1007/978-0-387-77778-8 10

13. Jawgal, V.A., Muralidhara, V.N., Srinivasan, P.S.: Online travelling salesman prob-
lem on a circle. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436,
pp. 325–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-
6 20

14. Krumke, S.O.: Online optimization: competitive analysis and beyond (2002)
15. Krumke, S.O., de Paepe, W.E., Poensgen, D., Lipmann, M., Marchetti-Spaccamela,

A., Stougie, L.: On minimizing the maximum flow time in the online dial-a-ride
problem. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp.
258–269. Springer, Heidelberg (2006). https://doi.org/10.1007/11671411 20

16. Molenbruch, Y., Braekers, K., Caris, A.: Typology and literature review for dial-a-
ride problems. Ann. Oper. Res. 295–325 (2017). https://doi.org/10.1007/s10479-
017-2525-0

http://arxiv.org/abs/1912.06300
https://doi.org/10.1007/978-3-319-12691-3_38
https://doi.org/10.1007/978-0-387-77778-8_10
https://doi.org/10.1007/978-0-387-77778-8_10
https://doi.org/10.1007/978-3-030-14812-6_20
https://doi.org/10.1007/978-3-030-14812-6_20
https://doi.org/10.1007/11671411_20
https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1007/s10479-017-2525-0

Iterated Type Partitions

Gennaro Cordasco1(B), Luisa Gargano2, and Adele A. Rescigno2

1 University of Campania “L.Vanvitelli”, Caserta, Italy
gennaro.cordasco@unicampania.it

2 University of Salerno, Fisciano, Italy

Abstract. This paper introduces a novel parameter, called iterated
type partition, that can be computed in polynomial time and nicely
places between modular-width and neighborhood diversity. We prove
that the Equitable Coloring problem is W[1]-hard when parametrized
by the iterated type partition. This result extends to modular-width,
answering an open question on the complexity of Equitable Coloring
when parametrized by modular-width. On the contrary, we show that
the Equitable Coloring problem is FPT when parameterized by neigh-
borhood diversity. Furthermore, we present a scheme for devising FPT
algorithms parameterized by iterated type partition, which enables us to
find optimal solutions for several graph problems. While the considered
problems are already known to be FPT with respect to modular-width,
the novel algorithms are both simpler and more efficient. As an example,
in this paper, we give an algorithm for the Dominating Set problem that
outputs an optimal set in time O(2t + poly(n)), where n and t are the
size and the iterated type partition of the input graph, respectively.

Keywords: Parameterized complexity · Fixed-parameter tractable
algorithms · W[1]-hardness · Neighborhood diversity · Modular-width

1 Introduction

Some NP-hard problems can be solved by algorithms that are exponential only
in the size of a parameter while they are polynomial in the size of the input. Such
problems are called fixed-parameter tractable, because the problem can be solved
efficiently for small values of the parameter [10,33]. Formally, a parameterized
problem with input size n and parameter t is called fixed parameter tractable
(FPT) if it can be solved in time f(t) ·nc, where f is a computable function only
depending on t and c is a constant.

An important quality of a parameter is that it is easy to compute. Unfor-
tunately there are several parameters whose computation is an NP-hard prob-
lem. As an example computing treewidth, rankwidth, and vertex cover are all
NP-hard problems but they are computable in FPT time when their respective
parameters are bounded; moreover, the parameterized complexity of computing
the clique-width of a graph exactly is still an open problem [11].

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 195–210, 2020.
https://doi.org/10.1007/978-3-030-48966-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_15

196 G. Cordasco et al.

We start from two recently introduced parameters: modular-width [22]
and neighborhood diversity [31]. Both parameters received much attention
[1,2,5,7,12,17,18,21,24,25,29] also due to their property of being computable
in polynomial time [22,31].

As the main contribution of this paper we introduce a novel parameter called
Iterated Type Partition, which nicely places between the two above parameters
and allows to obtain new algorithms and hardness results.

1.1 Modular-Width

The notion of modular decomposition of graphs was introduced by Gallai in [23],
as a tool to define hierarchical decompositions of graphs. It has been recently
considered in [22] to define the modular-width parameter in the area of param-
eterized computation.

Consider graphs obtainable by an algebraic expression that uses the opera-
tions:

1) Creation of an isolated vertex.
2) Disjoint union of 2 graphs, i.e., the graph with vertex set V (G1) ∪ V (G2)

and edge set E(G1) ∪ E(G2).
3) Complete join of 2 graphs, i.e., the graph with vertex set V (G1)∪V (G2) and

edge set E(G1) ∪ E(G2) ∪ {(v, w) : v ∈ V (G1), w ∈ V (G2)}.
4) Substitution operation G(G1, . . . , Gm) of the vertices v1, . . . , vm of G by the

modules G1, . . . , Gm, i.e., the graph with vertex set
⋃

1≤�≤m V (G�) and edge
set

⋃

1≤�≤m

E(G�) ∪ {(u, v) : u ∈ V (Gi), v ∈ V (Gj), (vi, vj) ∈ E(G)}.

As defined in [22], the modular-width of a graph G, denoted mw(G), is the least
integer m such that G can be obtained by using only the operations 1)–4) (in
any number and order) and where each operation 4) has at most m modules.

1.2 Neighborhood Diversity

Given a graph G = (V,E), two nodes u, v ∈ V have the same type iff N(v)\{u} =
N(u) \ {v}. The neighborhood diversity of a graph G, introduced by Lampis in
[31] and denoted by nd(G), is the minimum number t of sets in a partition
V1, V2, . . . , Vt, of the node set V , such that all the nodes in Vi have the same
type, for i ∈ [t]1.
The family V = {V1, V2, . . . , Vt} is called the type partition of G.

Let G = (V,E) be a graph with type partition V = {V1, V2, . . . , Vt}. By
definition, each Vi induces either a clique or an independent set in G. We treat
singleton sets in the type partition as cliques. For each Vi, Vj ∈ V, we get that

1 For a positive integer n, we use [n] to denote the set of the first n integers, that is
[n] = {1, 2, . . . , n}.

Iterated Type Partitions 197

Fig. 1. A graph G with iterated type partition 5 and its corresponding type graph
sequence: G = H(0), H(1), H(2). Dashed circles group nodes having the same type.

either each node in Vi is a neighbor of each node in Vj or no node in Vi has a
neighbor in Vj . Hence, between each pair Vi, Vj ∈ V, there is either a complete
bipartite graph or no edges at all.

Starting from a graph G and its type partition V = {V1, . . . , Vt}, we can see
each element of V as a metavertex of a new graph H, called the type graph of G,
with

– V (H) = {1, 2, · · · , t}
– E(H) = {(x, y) | x �= y and for each u ∈ Vx, v ∈ Vy it holds that (u, v) ∈

E(G)}.

We say that G is a base graph if it matches its type graph, that is, the type
partition of G consists of singletons, each representing a node in V (G), and
nd(G) = |V (G)|.

We introduce a new graph parameter, which generalizes neighborhood diver-
sity. Given a graph G, the Iterated Type Partition of G is defined by iteratively
constructing type graphs until a base graph is obtained. It is worth mentioning
that our base graphs correspond to prime graphs for modular decomposition [1].

Definition 1. Given a graph G = (V,E), let H(0) = G and H(i) denote the
type graph of H(i−1), for i ≥ 1. Let d be the smallest integer such that H(d) is a
base graph. The iterated type partition of G, denoted by itp(G), is the number
of nodes of H(d). The sequence of graphs H(0) = G,H(1), · · · ,H(d) is called the
type graph sequence of G and H(d) is denoted as the base graph of G.

An example of a graph and its type graph sequence is given in Fig. 1. For each
type graph H(i) each vertex (henceforth metavertex) describes an element of the
type partition of H(i−1).

It is well-known that determining nd(G) and the corresponding type parti-
tion, can be done in polynomial time [31]. As an immediate consequence, we
have that

198 G. Cordasco et al.

Theorem 1. There exists a polynomial time algorithm which, for any input
graph G computes the type graphs sequence of G and, consequently, finds the
value itp(G).

1.3 Relation with Other Parameters

In this section we analyze the relations between the iterated type partition
parameter and some other well known parameters.

We notice that, as an iteration of neighborhood diversity, the new parameter
satisfies

itp(G) ≤ nd(G). (1)

Actually itp(G) can be much smaller than nd(G). Indeed consider the following:

– Choose a positive integer d and a connected base graph H(d) having k nodes;
– For i = d, d − 1, . . . , 1, a new graph H(i−1) is obtained as follows:

• replace each node of H(i), with an independent set of at least two nodes
(if d − i is even) or a clique of size at least two (if d − i is odd).

• for each edge of H(i), put a complete bipartite graph between the nodes
of the graphs that replace the endpoints of the edge.

The value nd(H(0)) is the number of nodes in H(1), that is at least k2d−1, while
itp(H(0)) is the size k of H(d).

We stress that iterated type partition is a “special case” of modular-width
in which the modules in operation 4) can only be independent sets or cliques.
Hence, it is not difficult to see that for every graph G

mw(G) ≤ itp(G). (2)

We know from [31] that nd(G) ≤ 2vc(G)+vc(G). Hence, by (1), we have itp(G) ≤
2vc(G) + vc(G). Moreover, using the same arguments as in [31] is it possible to
show that cw(G) ≤ itp(G)+1. Finally, as for the neighborhood diversity we can
easily show that the iterated type partition is incomparable to the treewidth by
comparing the values of such parameters on a complete graph Kn and a path on
n nodes. A summary of the relations holding between some popular parameters
is given in Fig. 2. We refer to [19] for the formal definitions of treewidth and
clique-width parameters.

1.4 Our Results and Related Work

We give both tractability and hardness results for the new parameter.

The Equitable Coloring (EQC) Problem. If the nodes of a graph G are
colored with k colors such that no adjacent nodes receive the same color (i.e.,
properly colored) and the sizes of any two color classes differ by at most one,
then G is called to be equitably k-colorable and the coloring is called an equitable
k-coloring. The goal is to minimize the number of used colors. The EQC problem

Iterated Type Partitions 199

Fig. 2. A summary of the relations holding among some popular parameters. In
addition to the previously defined parameters, we use tw(G), cw(G) and vc(G) to
denote treewidth, clique-width and minimum vertex cover of a graph G, respectively.
Solid arrows denote generalization, e.g., modular-width generalizes iterated type par-
tition. Dashed arrows denote that the generalization may exponentially increase the
parameter.

is a well-studied problem, which has been analyzed in terms of parameterized
positive or negative results with respect to many different parameters [26].

In particular, Fellows et al. [14] have shown that EQC problem parameterized
by treewidth and number of colors is W [1]-hard. A series of reductions proving
that Equitable Coloring is W [1]-hard for different subclasses of chordal graphs
are given in [26]: The problem is shown to be W[1]-hard if parameterized by
the number of colors for block graphs and for the disjoint union of split graphs;
moreover, it remains W[1]-hard for K1,4-free interval graphs even when param-
eterized by treewidth, number of colors and maximum degree. In [3] an XP
algorithm parameterized by treewidth is given. We notice that an XP algorithm
for Equitable Coloring parametrized by iterated type partition can be obtained
by using Theorem 17 in [28]. On the other side, Fiala et al. show that the Equi-
table Coloring problem is FPT when parameterized by the vertex cover number
[16]. However, it was an open problem to establish the parameterized complexity
of the Equitable Coloring problem parameterized by neighborhood diversity or
modular-width. In Sect. 2 we answer to these questions by proving the following
results.

Theorem 2. The Equitable Coloring problem is W [1]-hard parametrized by itp.

Recalling (2), Theorem 2 immediately gives that the Equitable Coloring
Problem is W [1]-hard w.r.t. modular-width.

Corollary 1. The EQC problem is W [1]-hard parametrized by modular-width.

We also show that the Equitable Coloring W [1]-hardness drops when param-
eterized by the neighborhood diversity.

Theorem 3. The EQC problem is FPT when parameterized by neighborhood
diversity.

FPT Algorithms w.r.t. itp. In the last section we deal with FPT algorithms
with respect to iterated type partition. Some of the considered problems are

200 G. Cordasco et al.

already known to be FPT w.r.t modular-width. Nonetheless, we think that the
new algorithms, parameterized by iterated type partition, are worthy to be con-
sidered, since they are much simpler, faster, and allow to easily determine not
only the value, but also the optimal solution. As an example, we consider here
the Dominating Set (DS).

Table 1 summarizes our contribution, in relation to known results. Due to
space constraints, some proofs are omitted or sketched; full proofs as well as
the algorithms for the Vertex Coloring (Coloring) and the Vertex Cover (VC)
problems appear in the extended version of this work [6].

Table 1. The table summarizes the results known in literature for several problems
parametrized by iterated type partition and related parameters. t denotes the value of
the considered parameter and [*] denotes the result obtained in this paper.

DS, VC Coloring EQC

cw FPT [9] W[1]-hard [19] W[1]-hard [20]

mw FPT [34] FPT [22] W[1]-hard [*]

itp FPT(O(2t + poly(n)))[*] FPT(O(t2.5t+o(t) logn+ poly(n)))[*] W[1]-hard [*]

nd FPT [31] FPT [31] FPT[*]

vc FPT [31] FPT [31] FPT [16]

2 Equitable Coloring (EQC)

In this section we prove Theorems 2 and 3.

Equitable Coloring
Instance: A graph G = (V,E) and an integer k.
Question: Is it possible to color the nodes of G with exactly k colors in
such a way that nodes connected by an edge receive different colors and
each color class has either size �|V |/k� or 	|V |/k
?

2.1 Hardness

In order to prove that Equitable Coloring problem is W [1]-hard if parameterized
by iterated type partition, we present a reduction from the following Bin packing
problem, which has been shown to be W[1]-hard when parameterized by the
number of bins [27].

Bin-Packing
Instance: A collection of � items having sizes a1, a2, · · · , a�, a number k of
bins, and a bin capacity B.
Question: ∃ a k-partition P1, · · · , Pk of A = {a1, a2, · · · , a�} such that∑

aj∈Pi
aj = B, ∀ i ∈ [k]?

Iterated Type Partitions 201

Fig. 3. (a) (4, 3)–flower; (b) (3, 5, 4)–chain.

In general the Bin-Packing problem asks for the sum of the items of each bin to
be at most B; however, the above version is equivalent to the general one (even
from the parameterized point of view) as it is sufficient to add kB − ∑�

j=1 aj

unitary items [26]. In order to describe our reduction, we introduce two useful
gadgets. The first one is the flower gadget also used in [26]. Let a and k be positive
integers. An (a, k)–flower Fa,k is a graph obtained by joining a+1 cliques of size
k to a central node y. Figure 3(a) shows the (4, 3)–flower. Formally, let Ki

k be a
copy of a cliques of size k, for each i ∈ [a + 1],

– V (Fa,k) = {y} ∪ ⋃
i∈[a+1] V (Ki

k), and
– E(Fa,k) = {(y, x) | x ∈ ⋃

i∈[a+1] V (Ki
k)} ∪ ⋃

i∈[a+1] E(Ki
k).

The second gadget is defined starting from three positive integers: k, � and B. It
is a sequence of independent sets S1, · · · , Sk, Sk+1 with |Si| = B, for i ∈ [k], and
|Sk+1| = � + 1 where between each pair of consecutive sets in the sequence Si,
Si+1 there is a complete bipartite graph. We call such a gadget a (k, �, B)–chain
Q. Figure 3(b) shows the (3, 5, 4)–chain. Formally,

– V (Q) =
⋃

i∈[k+1] Si, and
– E(Q) =

⋃
i∈[k]{(u, v) | u ∈ Si, v ∈ Si+1}.

We can now describe our reduction. Let 〈A = {a1, · · · , a�}, k, B〉 be an
instance of Bin-Packing. Define a graph G as follows: The set of nodes is com-
posed by the disjoint union of two (k, �, B)-chains, Q′ and Q′′ plus the flowers
Fa1,k, · · · , Fa�,k, FB,k. Then join each node in the flowers to each node in the
chains. In the following, whenever the number of bins k is clear by the context,
we use Fa instead of Fa,k. Formally,

– V (G) = V (Q′) ∪ V (Q′′) ∪ V (FB) ∪
(⋃

j∈[�] V (Faj
)
)
, and

– E(G) = E(Q′) ∪ E(Q′′) ∪ E(FB) ∪
(⋃

j∈[�] E(Faj
)
)

∪
{

(x, u)
∣
∣ x ∈ V (FB) ∪

(⋃
j∈[�] V (Faj

)
)

, u ∈ V (Q′) ∪ V (Q′′)
}

.

202 G. Cordasco et al.

Fig. 4. The type graph sequence of G when A = {2, 1, 2, 3}, B = 4, and k = 3. The
line connecting dashed circles indicates a complete bipartite graph between the nodes
in the circles.

Figure 4 shows the graph G when A = {2, 1, 2, 3}, B = 4 and k = 3. The number
of nodes in the resulting graph G is

|V (G)| = |V (Q′)|+ |V (Q′′)|+ |V (FB)|+
∑

j∈[�]

|V (Faj
)| = (k+3)(Bk+�+1). (3)

Lemma 1. 〈A = {a1, · · · , a�}, k, B〉 is a YES instance of Bin-Packing if and
only if G is equitably (k + 3)–colorable.

Proof. (Sketch.) We first show that, given a k-partition P1, · · · , Pk of A that
solves the given instance of Bin-Packing, i.e.,

∑
aj∈Pi

aj = B for each i ∈ [k], we
can construct an equitable (k+3)-coloring c of the nodes of G.

– Coloring of the nodes in Q′: For each i ∈ [k + 1] and u ∈ S′
i (where S′

i is the
i-th set of independent nodes in the (k, �, B)-chain Q′) assign

c(u) =

{
k + 3 if i is odd,
k + 2 if i is even.

(4)

– Coloring of the nodes in Q′′: For each i ∈ [k + 1] and u ∈ S′′
i , (where S′′

i is
the i-th set of independent nodes in the (k, �, B)-chain Q′′) assign

c(u) =

{
k + 3 if i is even,
k + 2 if i is odd.

(5)

Iterated Type Partitions 203

– Coloring of the nodes in FB : Let z be the central node in FB . Assign c(z) =
k + 1. Then, assign to each of the k nodes of the B + 1 cliques joined to z
the remaining k colors (e.g. 1, 2, · · · k), so that the nodes of the clique have
different colors.

– Coloring of the nodes in Faj
, for j ∈ [�]: Let yj be the central node in Faj

.
Assign c(yj) = i if aj ∈ Pi. Then, as before assign to each of the k nodes of the
aj +1 cliques joined to yj the remaining k colors, i.e., those in {1, 2, · · · k, k +
1} − {i}, so that the nodes of the clique have different colors.

The above coloring c can be proved to be proper and such that each class of
colors contains exactly Bk+�+1 nodes. By (3) this proves that c is an equitable
(k + 3)-coloring of G.

Now, let c be an equitable (k + 3)-coloring of G. We can prove that exactly
two colors among the k+3 are used by c to color only the nodes in the chains Q′

and Q′′. Furthermore, the color used by c to color the central node of the flower
FB is not used to color the central nodes of any other flowers Fa1 , · · · , Fa�

. By
using this result, we can prove that the k classes of colors involving the central
nodes of the Fa1 , · · · , Fa�

induce a k-partition of A that solves our instance of
Bin-Packing. ��
Lemma 2. The iterated type partition itp(G) of G is 2k + 3.

Proof. (Sketch.) The graph G has type graph sequence H(0) = G,H(1),H(2),
H(3),H(4). We derive the above graphs and show that the number of nodes of the
base H(4) is 2k+3. Figure 4 shows the type graph sequence when A = {2, 1, 2, 3},
B = 4 and k = 3. ��
Proof of Theorem 2. Given an instance 〈A = {a1, · · · , a�}, k, B〉 of Bin-Packing,
we use the above construction to create an instance 〈G = (V,E), itp(G)〉 of
Equitable Coloring parameterized by iterated type partition. Lemma 1 show the
correctness of our reduction and Lemma 2 provides the iterated type partition
of the constructed graph, showing that our new parameter itp(G) is linear in the
original parameter k. ��

2.2 Neighborhood Diversity: An FPT Algorithm

We prove here that the Equitable Coloring problem admits an FPT algorithm
with respect to neighborhood diversity. W.l.o.g. we assume that the number of
nodes in the input graph G = (V,E) is a multiple of the number of colors k (this
can be attained by adding an independent clique of k	|V |/k
−|V | nodes to G in
such a way the answer to the equitable k-coloring question remains unchanged).

Let then r = |V |/k. Any equitable k-coloring of G partitions V into k classes
of colors, say C1, . . . , Ck, s.t. C� is an independent set of G of size |C�| = r, for
� = 1, . . . , k.

If we consider now the type partition {V1, . . . , Vt} of G and the corresponding
type graph H = (V (H) = {1, . . . , t}, E(H)), we trivially have that: Two nodes
u, v ∈ V are independent in G iff v ∈ Vi and u ∈ Vj, with i, j ∈ V (H), such that

204 G. Cordasco et al.

either i and j are independent nodes of H or i = j and Vi induces an independent
set in G. This immediately implies that for each color class C� of the equitable
coloring of G there exists an independent set I� = {�1, . . . , �ρ} of H such that

∑ρ
s=1 |C� ∩ V�s

| = r and
|C� ∩ V�s

| = 1 for each s = 1, . . . , ρ such that V�s
induces a clique.

Let now I denote the family of all independent sets in H. From the above
reasoning, we have that, given any equitable k-coloring of G, we can associate
to each I ∈ I an independent set of zI ≥ 0 colors. We can then define, for each
I ∈ I and i ∈ I, an integer zI,i representing the number of nodes in Vi that (in
the coloring of G) are colored with one of the zI colors associated to I. Clearly,
the value of zI,i is at most zI if Vi induces a clique in G, but can be larger if Vi

induces an independent set. An equitable k-coloring of G satisfies the following
conditions:

1.
∑

I∈I zI = k.
2. For each i ∈ V (H) it holds that the sum of the values zI,i, over all I ∈ I such

that i ∈ I, is exactly |Vi|.
3. For each I ∈ I it holds that the sum over all i ∈ V (H) of the number of

nodes of Vi that are colored in G with one of the zI colors associated to I is
r · zI .

The above conditions can be expressed by the following linear program on
the variables zI for each I ∈ I and zI,i for each I ∈ I and for each i ∈ I.

1.
∑

I∈I zI = k;
2.

∑
I : i∈I zI,i = |Vi|, for each i ∈ V (H);

3.
∑

i∈I zI,i − r · zI = 0, for each I ∈ I;
4. zI − zI,i ≥ 0 for each I ∈ I and i ∈ I such that Vi is a clique;
5. zI,i ≥ 0 for each I ∈ I and i ∈ V (H).

From the above reasoning, it is clear that if the graph G admits an equitable
k-coloring, then there exists an assignation of values to the variables zI and zI,i,
for each I ∈ I and i ∈ I, that satisfies the above system.

We show now that from any assignation of values to the variables zI and zI,i

that satisfies the above system, we can obtain an equitable k-coloring of G.

• For each independent set I ∈ I, such that zI > 0, repeat the following
procedure:

– Select a set of zI new colors, say cI
1, . . . , c

I
zI

(to be used only for nodes
in I);
We notice that (by 3.) the total number of nodes to be colored is r · zI ;

– Consider the list of colors cI
1, c

I
2, . . . , c

I
zI

, cI
1, c

I
2, . . . , c

I
zI

, . . . , cI
1, c

I
2, . . . , c

I
zI

(obtained by repeating the sequence cI
1, . . . , c

I
zI

r times). Assign the colors
starting from the beginning of the list as follows: For each i ∈ V (H), select
zI,i uncolored nodes in Vi (it can be done by 2.) and assign to them the
next unassigned zI,i colors in the list.

Iterated Type Partitions 205

In this way each color is used exactly r times. Moreover, since each independent
set uses a separate set of colors, the total number of colors is

∑
I∈I zI = k (crf.

1.). Furthermore, in each Vi that induces a clique in G, we color zI,i ≤ zI nodes
(this holds by 4.). Such nodes get colors which are consecutive in the list, hence
they are different. Summarizing, the desired equitable k-coloring of G has been
obtained.

Finally, we evaluate the time to solve the above system. We use the well-
known result that Integer Linear Programming is FPT parameterized by the
number of variables.

�-Variable Integer Linear Programming Feasibility
Instance: A matrix A ∈ Zm×� and a vector b ∈ Zm.
Question: Is there a vector x ∈ Z� such that Ax ≥ b?

Proposition 1. [32] �-Variable Integer Linear Programming Feasibility can be
solved in time O(�2.5t+o(�) · L) where L is the number of bits in the input.

Since |V (H)| = nd(G), our system uses at most O(nd(G)2nd(G)) variables: zI

for I ∈ I and zI,i for I ∈ I and i ∈ I. We have O(nd(G)2nd(G)) constraints and
the coefficients are upper bounded by r = |V |/k. Therefore, Theorem 3 holds.

3 Algorithms

In this section, we deal with FPT algorithms with respect to iterated type parti-
tion. In order to solve a problem P on an input graph G, the general algorithm
scheme is:

1) Iterate by generating the whole type graph sequence of G.
2) On each graph G′ in the type graph sequence, a generalized version P ′ of

the original problem is defined (with P ′ in G′ being equivalent to P in G).
3) Optimally solve P ′ on the base graph and reconstruct the solution on the

reverse type graph sequence (hence solving P in G).

If the construction of the solution for P ′ (at step 2), can be done in polynomial
time and the time to solve P ′ on the base graph is f , then the whole algorithm
needs O(f + poly(n)) time.

Using the scheme above we are able to prove that the Dominating Set and
Vertex Cover problems can be solved in time O(2t + poly(n)), while the Vertex
Coloring problem is solvable in time O(t2.5t+o(t) log n + poly(n)), where n and t
are the size and the iterated type partition of the input graph, respectively. In
the following, we present the algorithm for the Dominating Set problem. Due to
space constraints the proofs for the remaining problems are given in the extended
version of this paper [6].

In the following, we assume that the input graph is connected and it is not a
clique. Indeed, the domination problem in disconnected graphs can be separately
solved on each connected component. Moreover, in the case of a complete graph,
the solution trivially consists of one vertex. Notice that the assumption of G

206 G. Cordasco et al.

being a non complete connected graph, implies that the base graph of G is
connected and itp(G) ≥ 2.

In order to present our FPT algorithm, we consider the following generalized
dominating set problem.

Definition 2. Given a graph G = (V,E) (connected and not complete) and a
set of nodes Q ⊆ V , a semi-total Dominating Set of G with respect to Q, called
Q-stds of G, is a set D ⊆ V such that every node in Q is adjacent to a node in
D, and every other node is either a node in D or is adjacent to a node in D.
The set D is called an optimal Q-stds of G, if its size is minimum among all
the Q-stds of G.

Clearly, when Q = V, the semi-total Dominating Set problem is the Total Dom-
ination problem [4]; if Q = ∅ it becomes the Dominating Set problem.

Lemma 3. Let G = (V,E) be a graph and let V = {V1, · · · , Vt} be the type
partition of G. Let Q ⊆ V . There exists an optimal Q-stds D of G such that

|Vx ∩ D| ≤ 1 for each x ∈ [t]. (6)

Proof. Let D be an optimal Q-stds of G. Assume there exists x ∈ [t] such that
|Vx ∩ D| ≥ 2. We distinguish two cases according to Vx being a clique or an
independent set.

Let Vx be a clique. Let u and v be two nodes in Vx ∩ D. Let u �∈ Q. Since u
is a neighbor of v and since u and v share the same neighborhood, we have that
the set D′ = D − {v} is a Q-stds of G. Furthermore, |D′| < |D| and this is not
possible since D is optimal. Assume now that u ∈ Q. If there exists a neighbor
w of u with w ∈ Vy ∩D, for some y �= x, then as above D′ = D −{v} is a Q-stds
of G and |D′| < |D|. If, otherwise, node u has no neighbor in D except for those
in Vx, then we can choose any neighbor w of u with w ∈ Vy ∩D, for some y �= x,
and D′ = D − {v} ∪ {w} is a Q-stds of G and |D′| = |D|.

Let Vx be an independent set. Let u be any node in Vx ∩ D. If there exists a
neighbor w of u with w ∈ Vy ∩D, for some y �= x, then the set D′ obtained from
D removing all the nodes in Vx except for u is again a Q-stds since the neighbors
of nodes in Vx are dominated by u and all the nodes in Vx are dominated by
w ∈ Vy. Furthermore, |D′| < |D|. Otherwise, we have that Vx ⊂ D and for each
neighbor w of u it holds w ∈ Vy, for y �= x, and w �∈ D. Hence, the set D′

obtained from D removing all the nodes in Vx except for u and adding to it a
node w ∈ Vy, where y is such that Vy ∩ D = ∅, is a Q-stds of G. Furthermore,
|D′| ≤ |D|.

Repeating the above argument for each x ∈ [t] such that |Vx ∩ D| ≥ 2, we
obtain an optimal solution satisfying (6). ��

The FPT algorithm Dom recursively constructs the graphs in the type graph
sequence of G, until the base graph is obtained. It is initially called with
Dom(G, ∅). At each recursive step, the algorithm Dom(H,Q), on a graph H
and a set Q ⊆ V (H) of nodes that need to have a neighbor in the solution set,
checks if H is a base graph or not. In case H is a base graph, then the algorithm
searches by brute force the Q-stds of H and returns it. If H is not a base graph

Iterated Type Partitions 207

Algorithm 1. Algorithm Dom(H,Q)
Input: A graph H = (V (H), E(H)), a set Q ⊆ V (H).

1 if H is a base graph then
2 D = V (H)
3 for each S ⊆ V (H) do if ((S is Q-stds of H) and (|S| < |D|)) then D = S

4 else
5 Let V1, · · · , Vt be the type partition of H and let H ′ be the type graph of H.
6 Q′ = {x ∈ V (H ′) | (Vx ∩ Q �= ∅ or Vx is an independent set)}
7 D′ = Dom(H ′, Q′)
8 D =

⋃
x∈D′{ux}, where ux is an arbitrarily chosen node in Vx

9 return D

Fig. 5. The recursive execution of the Algorithm 1 on the graph G depicted in Fig. 1:
((a) and (b)), since the input graph is not a base graph, their type partition as well as
the set Q′ are computed and passed to the next recursive level; (c), H is a base graph
and then an optimal solution is computed exploiting a brute force approach; ((d) and
(e)), an optimal solution D = {v1, v12} is reconstructed using the solution D′ obtained
on the reverse type graph sequence.

then the algorithm first constructs the type graph H ′ and selects nodes in V (H ′)
to assemble a set Q′ of nodes that need to have a neighbor in the solution set,
then it uses the set D′ of nodes in V (H ′) returned by Dom(H ′, Q′) to construct
the output set D ⊆ V (H). The nodes of the returned set D are chosen by select-
ing exactly one node from each metavertex Vx having x ∈ D′. Figure 5 gives an
example of the execution of Algorithm 1 on the graph G in Fig. 1.

Lemma 4. Let H be not a base graph and let Q ⊆ V (H). Let V1, · · · , Vt be the
type partition of H and let H ′ be its type graph. If Q′ = {x ∈ V (H ′) | Vx ∩ Q �=
∅ or Vx is an independent set} and D′ is an optimal Q′-stds of H ′ then the set
D returned by Dom(H,Q) is an optimal Q-stds of H.

Proof. We first prove that the set D returned by Dom(H,Q) is a Q-stds of H,
then we prove its optimality. We distinguish two cases according to that a node
v ∈ V (H) is a node in Q or not. W.l.o.g. assume that v ∈ Vx, for some x ∈ [t].

– If v ∈ Q then Vx ∩ Q �= ∅ and by the definition of Q′ we have x ∈ Q′. Hence,
since D′ is a Q′-stds of H ′, there exists y ∈ D′ that is a neighbor of x in H ′.
By Algorithm 1 (see line 8) there exists a node uy ∈ Vy ∩D. Considering that

208 G. Cordasco et al.

each node in Vy is a neighbor of each node in Vx (since (x, y) ∈ E(H ′)), we
have that v is dominated by u ∈ D.

– Let v ∈ V − Q. We know that D′ is a Q′-stds of H ′. Hence, if either x ∈ Q′

or x �∈ Q′ ∪ D′ we can prove, as in the previous case, that there exists u ∈ D
that dominates v. Assume now that x �∈ Q′ and x ∈ D′ (i.e., x can be not
dominated in H ′). By the definition of Q′ we have that Vx ∩ Q = ∅ and
Vx is a clique. Hence, since by Algorithm 1 (see line 8) there exists a node
ux ∈ Vx ∩ D, we have that v is a neighbor of ux ∈ D in the clique Vx.

Now, we prove that D is an optimal Q-stds of H whenever D′ is an optimal
Q′-stds of H ′. By contradiction, assume that D is not optimal and let D̃ be an
optimal Q-stds of H. By Lemma 3 we can assume that, for each x ∈ [t], at most
one node in Vx is a node in D̃. Let D̃′ = {x | Vx ∩ D̃ �= ∅}. We claim that D̃′ is
a Q′-stds of H ′. Finally, by Lemma 3 and the construction of D̃′, it is possible
to prove that |D̃′| < |D′| thus obtaining a contradiction since D′ is optimal. ��
Theorem 4. Dom(G, ∅) returns a minimum dominating set in time O(2itp(G)+
poly(n)).

Proof. Let H(0) = G,H(1), · · · ,H(d) be the type graph sequence of G. When
Dom(G, ∅) is called, Algorithm 1 proceeds recursively, and at the i-th recursive
step, for i = 0, · · · , d, the algorithm is called with input graph H(i) and input
node set Qi ⊆ V (H(i)), where Qi is constructed at line 3 of the previous step
i − 1, for i = 1, · · · , d, and it is the empty set when i = 0, i.e., Q0 = ∅. At step
d, the optimal Qd-stds of the base graph H(d) is established by brute force.

By Lemma 4, the set returned at the end of each recursive step i, for i =
d − 1, · · · , 0, is the optimal Qi-stds of H(i). Hence, at the end (when i = 0) the
returned set is the optimal ∅-stds of H(0), that by the definition is the minimum
dominating set of G.

Considering that |V (H(d))| = itp(G), the brute search of the solution set at
step d requires time O(2itp(G)). Furthermore, since the construction of the type
partition of H(i) and of its type graph can be done in polynomial time, and that
both the construction of Qi and the selection of the nodes in the solution set are
easily obtained in linear time, we have O(2itp(G) + poly(n)) time. ��

4 Conclusion

We introduced a novel parameter, named iterated type partition, and studied
some of its properties. We show that the Equitable Coloring problem is W[1]-
hard when parametrized by the iterated type partition. This result extends also
to the modular-width parameter. We also prove that the hardness drops for the
neighborhood diversity parameter, when the problem becomes FPT. Moreover,
we presented a general strategy that enables to find FPT algorithms for several
problems when parameterized by iterated type partition. The Algorithm for
the Dominating Set problems has been presented, while algorithms for Vertex
coloring and Vertex Cover problems appear in the extended version of the work.

It would be interesting to investigate whether the proposed strategy can be
applied on other problems and if some meta-algorithm an be devised. Moreover,

Iterated Type Partitions 209

it would be interesting to analyze the Edge Dominating Set problem, which has
been shown to be FPT with the neighborhood diversity parameter [31].

References

1. Abu-Khzam, F.N., Li, S., Markarian, C., Meyer auf der Heide, F., Podlipyan, P.:
Modular-width: an auxiliary parameter for parameterized parallel complexity. In:
Xiao, M., Rosamond, F. (eds.) FAW 2017. LNCS, vol. 10336, pp. 139–150. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59605-1 13

2. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension
of bounded width graphs. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.)
MFCS 2015. LNCS, vol. 9235, pp. 115–126. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48054-0 10

3. Bodlaender, H.L., Fomin, F.V.: Equitable colorings of bounded treewidth graphs.
Theoret. Comput. Sci. 349, 22–30 (2005). https://doi.org/10.1016/j.tcs.2005.09.
027

4. Cockayne, E.J., Dawes, R.M., Hedetniemi, S.T.: Total domination in graphs. Net-
works 10(3), 211–219 (1980)

5. Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Evangelism in social net-
works: algorithms and complexity. Networks 71(4), 346–357 (2018)

6. Cordasco, G., Gargano, L., Rescigno, A.A.: Iterated Type Partitions. arXiv
2001.08122, https://arxiv.org/abs/2001.08122 (2020)

7. Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some
classes of bounded clique-width graphs. In: Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pp. 2765–
2784 (2018)

8. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

9. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(2012)

11. Doucha, M., Kratochv́ıl, J.: Cluster vertex deletion: a parameterization between
vertex cover and clique-width. In: Rovan, B., Sassone, V., Widmayer, P. (eds.)
MFCS 2012. LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32589-2 32

12. Dvorák, P., Knop, D., Toufar, T.: Target set selection in dense graph classes. In:
Proceedings of 29th International Symposium on Algorithms and Computation
(ISAAC 2018) (2018). https://doi.org/10.4230/LIPIcs.ISAAC.2018.18

13. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0 28

14. Fellows, M.R., et al.: On the complexity of some colorful problems parameterized
by treewidth. Inf. Comput. 209(2), 143–153 (2011)

15. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP- com-
plete. SIAM J. Discr. Math. 23(2), 909–939 (2009)

https://doi.org/10.1007/978-3-319-59605-1_13
https://doi.org/10.1007/978-3-662-48054-0_10
https://doi.org/10.1007/978-3-662-48054-0_10
https://doi.org/10.1016/j.tcs.2005.09.027
https://doi.org/10.1016/j.tcs.2005.09.027
https://arxiv.org/abs/2001.08122
https://doi.org/10.1007/978-3-642-32589-2_32
https://doi.org/10.1007/978-3-642-32589-2_32
https://doi.org/10.4230/LIPIcs.ISAAC.2018.18
https://doi.org/10.1007/978-3-540-92182-0_28

210 G. Cordasco et al.

16. Fiala, J., Golovach, P.A., Kratochvil, J.: Parameterized complexity of coloring
problems: treewidth versus vertex cover. Theor. Comput. Sci. 412, 2513–2523
(2011)

17. Fiala, J., Gavenciak, T., Knop, D., Koutecky, M., Kratochv́ıl, J.: Fixed parame-
ter complexity of distance constrained labeling and uniform channel assignment
problems. http://arxiv.org/abs/1507.00640arXiv:1507.00640 (2015)

18. Gavenciak, T., Knop, D., Koutecký, M.: Integer programming in parameterized
complexity: three miniatures. In: Proceedings of 13th International Symposium
on Parameterized and Exact Computation, IPEC 2018 (2018). https://doi.org/10.
4230/LIPIcs.IPEC.2018.21

19. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: on the
price of generality. In: Proceedings of SODA (2009)

20. Fomin, F.V., Golovach, P., Lokshtanov, D., Saurabh, S.: Intractability of clique-
width parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

21. Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized
by vertex cover and modular width, through potential maximal cliques. In: Ravi,
R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 182–193. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08404-6 16

22. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8 15

23. Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hung. 18, 26–66
(1967)

24. Ganian, R.: Using neighborhood diversity to solve hard problems. arXiv:1201.3091
(2012)

25. Gargano, L., Rescigno, A.A.: Complexity of conflict-free colorings of graphs. The-
oret. Comput. Sci. 566, 39–49 (2015)

26. de C. M. Gomes, G., Lima, C.V.G.C., dos Santos, V.F.: Parameterized complexity
of equitable coloring. Discrete Math. Theoret. Comput. Sci. 21(1) (2019)

27. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of
bins revisited. J. Comput. Syst. Sci. 79(1), 39–49 (2013)

28. Knop, D.: Partitioning graphs into induced subgraphs. Discrete Appl. Math. 272,
31–42 (2019)

29. Knop, D., Koutecký, M., Masaŕık, T., Toufar, T.: Simplified algorithmic metathe-
orems beyond MSO: treewidth and neighborhood diversity. Logical Methods Com-
put. Sci. 15(4) (2019)

30. Koutecký, M.: Solving hard problems on neighborhood diversity. Master thesis,
Charles University in Prague (2013)

31. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64, 19–37 (2012). In: Proc. Eur. Sym. on Alg. (ESA), 549–560 (2010)

32. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

33. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

34. Románek, M.: Parameterized algorithms for modular-width. Bachelor thesis,
Masaryk University, Brno (2016). https://is.muni.cz/th/tobmd/Thesis.pdf

35. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decom-
position via recursive factorizing permutations. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70575-8 52

https://doi.org/10.4230/LIPIcs.IPEC.2018.21
https://doi.org/10.4230/LIPIcs.IPEC.2018.21
https://doi.org/10.1007/978-3-319-08404-6_16
https://doi.org/10.1007/978-3-319-03898-8_15
http://arxiv.org/abs/1201.3091
https://is.muni.cz/th/tobmd/Thesis.pdf
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52

Two Robots Patrolling on a Line:
Integer Version and Approximability

Peter Damaschke(B)

Department of Computer Science and Engineering,
Chalmers University, 41296 Göteborg, Sweden

ptr@chalmers.se

Abstract. Suppose that two robots can move at unit speed on a line
and must visit certain points called stations infinitely often. Every station
allows some maximal waiting time between two visits. The problem is to
construct an optimal schedule for the robots. While the one-robot prob-
lem is easy to solve in linear time, already for two robots the complexity
is open. Chuangpishit, Czyzowicz, Gasieniec, Georgiou, Jurdzinski, and
Kranakis (SOFSEM 2018) found a

√
3-approximation algorithm. Here we

provide a PTAS, accomplished by rounding and (perhaps more surpris-
ingly) by using the well-quasi ordering of vectors of positive integers. The
result is not very practical in the present form, but further investigation
of the integer version may make it more usable.

Keywords: Patrolling · Approximation scheme · Well-quasi ordering

1 Introduction

Patrolling problems where mobile robots must visit certain points at least with
prescribed frequencies are interesting for monitoring and maintenance. Various
cases and aspects have been studied: environments with different topologies,
unreliable robots, with equal and different speeds, etc. [3–6]. See also a recent
survey in [2]. Pinwheel scheduling [8,10,12] is also a special case of patrolling
where all points have equal pairwise distances. More recently, patrolling problems
received new attention by observing that different individual frequencies make
them difficult, even on the simplest topologies [1,9].

The problem called PUF (patrolling with unbalanced frequencies) in [1] is
the following (with somewhat changed notation): n stations are deployed at fixed
points si (i = 1, . . . , n) on the real line L. For every station i, a duration ti > 0 is
also specified. Two identical robots move on L, at some given maximum speed.
We say that station i is visited at some moment if at least one robot is at si.
The problem is to construct a schedule, i.e., a pair of trajectories of two robots
such that, during an unlimited period of time, every station i gets repeatedly
visited, and the time between two consecutive visits never exceeds ti. (But it
does not matter which robots visit the station.) Of course, the same problem

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 211–223, 2020.
https://doi.org/10.1007/978-3-030-48966-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_16

212 P. Damaschke

may be defined for any number of robots and for other topologies. Unless said
otherwise, in the present paper PUF refers to the case of two robots on a line.

For any number c ≥ 1, an instance of PUF is called c-feasible if it has a
c-feasible schedule, i.e., for every i, the time between two consecutive visits of
station i never exceeds cti. A 1-feasible instance or solution is simply called
feasible. One may also view PUF as an optimization problem with the goal
to find a schedule with minimum c. A c-approximation algorithm is one that
outputs a c-feasible schedule when a feasible schedule exists.

While PUF for one robot on a line is easy to solve in O(n) time, PUF becomes
surprisingly difficult already for two robots: Only a

√
3-approximation is achieved

in [1]. To our best knowledge, this is the state-of-the-art polynomial-time approx-
imation, and the complexity status of PUF is open (both for deciding existence
of feasible solutions and minimizing the times). It is far from obvious how one
should divide the visits of certain stations among the two robots.

Overview. In Sect. 2 we introduce the integer version called IntPUF, with m+1
stations at points 0, . . . ,m, and the notion of instance vectors that encode the
instances. Since fixed-length vectors of positive integers are well-quasi ordered
(WQO), only finitely many minimal feasible vectors exist for any fixed m. Using
this fact plus some elementary graph theory, we can solve IntPUF in a time
depending on m only, but not on the ti. (However, the time as a function of m
remains open.) In Sect. 3 we switch from m to the parameter k := mini ti. The
reason is that IntPUF can be approximated with a ratio arbitrarily close to 1,
in a time depending on k only: If k/m is small, this is simple, and otherwise the
result of Sect. 2 is applied. This insight is used to construct a PTAS in Sect. 4,
where k is a discretization parameter. As far as we know, this might be the first
example of using WQO in a PTAS. Next, rounding of the si and ti to integers
causes yet another approximation error. (The issue is that a station shifted to
the next integer point can escape a turning point of a robot’s trajectory.) Larger
k yield better approximations but also higher time complexity. We remark that
several ideas on the way, especially the WQO argument, can be generalized to
more robots and to other topologies, but we keep the focus on two robots on a
line.

2 The Integer Version of PUF

We introduce a variant of PUF that we name IntPUF. We define it precisely as
PUF (see Sect. 1) but with the following additional demands:

– All si and ti are integer (and ti > 0).
– Every robot is, at any time, in one of two possible modes: either it stays at

some point with integer coordinate or it moves at unit speed.
– Every robot can change its speed or its moving direction only at integer times

and at integer points.

We remark that PUF allows real values, and this might lead to subtle effects
for irrational numbers. Thus, algorithms for IntPUF may not completely solve

Two Robots Patrolling on a Line: Integer Version and Approximability 213

PUF. However, we have not further considered such questions. Note that, in
practice, input numbers are usually rational.

Lemma 1. Let r and s be real numbers and t an integer, with 0 ≤ s − r ≤ t.
Then 0 ≤ �s� − �r� ≤ t.

Proof. Non-negativity is obvious. To see �s� − �r� ≤ t, we write the numbers as
r = �r� + r′ and s = �s� + s′, Observe that �s� − �r� = (s − s′) − (r − r′) =
(s − r) + (r′ − s′). If r′ ≤ s′ then s − r ≤ t yields the assertion. If r′ > s′ then
(�s� + s′) − (�r� + r′) ≤ t implies that still (�s� + s′) − (�r� + s′) ≤ t, since t is
integer and r′ − s′ < 1. Again the assertion follows. ��
Theorem 1. Every feasible instance of PUF, where all si and ti are integers,
is also a feasible instance of IntPUF, and vice versa.

Proof. As the converse is trivial, we only need to consider a feasible solution
to an instance of PUF, and transform it into a feasible solution, for the same
numbers si and ti, that enjoys the additional properties of an IntPUF solution.

Whenever a robot leaves a station i and moves back to i without visiting
another station, it can just stay at station i. Whenever a robot moves from a
station i to a neighboring station j, it can just move first at unit speed and then
stay at station j for the remaining time.

Now we can partition the trajectory of each robot into 0-epochs and 1-epochs
where the robot has speed 0 and 1, respectively. During a 1-epoch, a robot may
change its moving direction at stations.

Let t be the start time of any 1-epoch. If t is not integer, we let the epoch
start already at time �t�. That is, we move the entire 1-epoch back in time by
t−�t� time units. Because of the unit speed, every arrival and departure time of
the robot at any station during the whole 1-epoch is rounded to the next smaller
integer, too. This modification is done for all 1-epochs independently.

Applying Lemma 1 to the arrival and departure times at any station i we
see that the solution remains valid (i.e., no robot departs before it arrives), and
some waiting times between consecutive visits may increase, but they does not
exceed the given integer bound ti. ��

For formal reasons we assume from now on that we have m + 1 stations,
at the integer points 0, 1, . . . ,m. That is, si simply becomes i. If there is no
station at point i, we formally set ti := ∞, however, t0 and tm are finite. Thus
an instance of IntPUF is characterized by an instance vector t = (t0, . . . , tm)
whose m + 1 entries are positive integers or ∞ symbols. We may use the terms
instance vector and instance interchangeably.

Two instance vectors x = (x0, . . . , xm) and y = (y0, . . . , ym) are in relation
x ≤ y if xi ≤ yi for all i. We then say that x is smaller than y, and y is
larger than x, in the non-strict sense. We call x strictly smaller than y, and
y strictly larger than x, if x ≤ y but x
= y. Trivially, if x ≤ y and x is
feasible, then y is feasible, too. We call a feasible instance vector with only finite
entries a minimal feasible vector if no strictly smaller vector is feasible. These

214 P. Damaschke

concepts can be defined in literally the same way for IntPUF with one robot.
The following theorem is merely the known solution to the one-robot case [1]
adapted to IntPUF. A zigzag route between two points i and j is a trajectory
that perpetually goes from i to j and back, at unit speed.

Theorem 2. [1] The only minimal feasible instance vector of IntPUF with one
robot is given by ti = max{2i, 2(m − i)} for all i. Moreover, if an instance is
feasible, then a zigzag route between 0 and m is a feasible (and optimal) solution.

Proof. The robot must sometimes visit point 0, say at time t. Then the last
visit of point i was at time t − i or earlier, and the next visit of point i will
be at time t + i time or later. Hence ti ≥ 2i is necessary for feasibility. By
symmetry we also get ti ≥ 2(m − i). Conversely, in the mentioned zigzag route,
the maximum waiting time between two consecutive visits of any point i equals
max{2i, 2(m − i)}. ��

We denote the vector in Theorem 2 by F (m). This means: F (1) = (2, 2),
F (2) = (4, 2, 4), F (3) = (6, 4, 4, 6), F (4) = (8, 6, 4, 6, 8), F (5) = (10, 8, 6, 6, 8, 10),
and so on. Characterizing the minimal feasible vectors for IntPUF with two
robots appears to be far more complicated. However, suppose for the moment
that, for some fixed size m, we know the list of all these minimal feasible vectors,
along with a feasible solution for each of them. In fact, this list is finite, as a
consequence of the famous Dickson’s lemma, as explained below.

Vectors x and y are incomparable if neither x ≤ y nor y ≤ x. Dickson’s lemma
(attributed to Dickson due to some result in [7]) states that every set of pairwise
incomparable vectors of some fixed length (an antichain), with positive integers
as entries, is finite. In other words, these vectors form a well-quasi ordering
(WQO). Dickson’s lemma has later been generalized, leading to a rich theory of
WQO; see [11] for a historical note.

We could now solve any instance of IntPUF of a fixed size m as follows. First
check whether there exists a solution where the two robots move in disjoint
intervals [0, v] and [u,m], where v < u. For every fixed u and v, these are just
two independent instances of the one-robot problem solved in Theorem 2. Even
a naive implementation takes only O(m3) time. In all other cases, the intervals
visited by the two robots intersect in some nonempty shared interval [u, v], u ≤ v.
Note that every solution with a shared interval visits all i ∈ [0,m]. Hence, every
instance vector t that admits a solution with a shared interval is larger than
some feasible instance vector t′ where all entries are finite, and trivially, t′ is
larger than some minimal feasible vector t′′. Thus it remains to check for the
given instance vector t and every minimal feasible vector t′′ whether t ≥ t′′, and
in the positive case, take a solution for t′′.

Not only the list of minimal partial solutions t = (t0, . . . , tm) is finite, but
each of them also has a solution with a finite description. The argument is as
follows. Let us describe the situation at any integer time by the state vector
p = (p0, . . . , pm), where pi < ti is the (integer) time that has passed since the
last visit of i. Note that there is some robot at i if and only if pi = 0. Since all
ti are finite, the number of state vectors is finite, too. Define the state graph of

Two Robots Patrolling on a Line: Integer Version and Approximability 215

t as the directed graph where the vertices are the state vectors, and a directed
edge from p to q indicates that q is reachable from p in one time unit. The
possible solutions to t are exactly the infinite directed paths in the state graph.
But since the graph is finite, every solution contains some simple directed cycle
(i.e., without repeated vertices). Conversely, every simple directed cycle is a
solution. Thus we can choose any simple directed cycle, and such a solution is
periodic. (A remark is that these matters are not so clear for PUF, as irrational
numbers might have bizarre effects.) We have arrived at the following result,
where we presume that arithmetic operations with integers, e.g., comparisons,
cost constant time:

Lemma 2. For any fixed m, once we know all minimal feasible instance vectors,
we can solve every instance of IntPUF on [0,m] in constant time. Moreover,
every feasible instance admits a periodic solution, with a period bounded by some
constant. (That is, time and period length are bounded by functions of m only.)

We may effectively solve any instance t = (t0, . . . , tm) also in the following
way: Construct the state graph from t and find a simple directed cycle, or recog-
nize that t is not feasible otherwise. However, the size of the state graph depends
on t. Therefore, Lemma 2 that moves some work to a preprocessing phase is a
step of progress. (As a side remark, also in a logarithmic cost model, comparing
t against a fixed finite list is much faster than using the state graph.) It remains
the question whether we can construct the list of all minimal feasible instances
effectively. The WQO argument yields only its finiteness, but in fact, we can
provide an effective algorithm. However, we will not care about its running time
as a function of m, which is a separate (and apparently difficult) matter.

Lemma 3. There exists an algorithm that effectively constructs all minimal fea-
sible instance vectors for any given m, along with some periodic solution for each
of them, in a time that depends on m only.

Proof. Trivially, some minimal feasible vector exists, and since there are only
finitely many of them, there is some finite upper bound on all entries in them.
Thus, if we try all vectors (t, . . . , t) for t = 0, 1, 2, . . ., we will eventually find
some feasible vector t. Recall that every fixed vector can be tested for feasibility
via its state graph. We test all vectors being smaller than our t, thus identifying
at least one minimal feasible vector. But we cannot stop here, as there may exist
further minimal feasible vectors being incomparable to t.

Next, assume that we have some nonempty set M of minimal feasible vectors,
and we want to decide whether we have already found them all. Assume that
u = (u0, . . . , um) /∈ M is some further, yet unknown minimal feasible vector.
Then, for every t = (t0, . . . , tm) ∈ M there must exist some i with ui < ti. This
observation suggests the following procedure: For every t ∈ M we select some i
and set vi := ti − 1. If the same i is selected several times, we take the minimum
of these vi. If i is never selected, we set vi := ∞. There exist only finitely many
such selections, generating finitely many different vectors v = (v0, . . . , vm). Now,

216 P. Damaschke

every minimal feasible vector u ∈ M has the following property: There exists
some v such that ui ≤ vi holds for all i.

It remains to test for every vector v whether it has a feasible solution such
that the waiting times of all stations i with finite vi are actually bounded by
these vi, and the waiting times of all stations i with infinite vi are bounded by
some finite (but unspecified) integers. (Note carefully that the latter condition
is also needed to obtain some minimal feasible vector smaller than v; it is not
enough to demand and test feasibility of v, because this entails no condition on
the points with vi = ∞.) More compactly, the property to be tested is that v is
larger than some feasible vector with only finite entries.

Therefore, we proceed similarly as earlier in the feasibility test for vectors
with only finite entries, but we must generalize our notion of state graph; see the
details below. If we find such a solution to some v, we also examine all smaller
vectors and obtain a new minimal feasible vector that we add to M . If no vector
v has such a solution, we know that M was already complete.

Now we give the details of testing a vector v. We define a state by the passed
times pi < vi for all i with finite vi, and by the positions of the two robots. (The
passed times for points i with vi = ∞ are not recorded, and the robots’ positions
are now given explicitly.) As earlier, a directed edge from one state to another
one indicates reachability in one time unit. As seen above, every instance that
admits a solution, with finite bounds on the waiting times of all stations i, also
has a solution with a finite period. In our generalized state graph, such periodic
solutions correspond exactly to directed cycles C (not necessarily simple!) such
that every i appears as a robot position on some vertex of C.

Let Vi denote the set of states where some robot is visiting i. Then, deciding
the existence of a periodic solution boils down to the following graph problem:
Given a directed graph and a family of subsets Vi of vertices, find some directed
cycle that intersects every Vi. However, this is an easy problem: Such a cycle
exists if and only if some strongly connected component of the graph intersects
all Vi. The “only if” direction holds because every directed cycle is entirely
in some strongly connected component, The “if” direction holds because we
can freely navigate in a strongly connected component, and thus connect some
vertices from every Vi to some directed cycle. In conclusion, we only need to
compute the strongly connected components of the generalized state graph and
check their intersections with all Vi. ��

From Lemma 2 and 3 it follows:

Theorem 3. There exists an algorithm solving IntPUF in a time that depends
on m only. Moreover, every feasible instance admits a periodic solution, with a
period bounded by some function of m.

3 Short Waiting Times

The presence of some station j with a small tj drastically restricts the robots’
possible movements, as we will discuss now. Fix some j and define h := �tj/2�,

Two Robots Patrolling on a Line: Integer Version and Approximability 217

that is, tj = 2h or tj = 2h + 1. Also define the interval J := [j − h, j + h]. At
any integer time, some robot must be present in J . (Otherwise, the last visit of
j was more than h time units ago, and the next visit will be more than h time
units from now, such that j would have to wait at least 2h + 2 > tj time units
between two visits.) In other words, at any integer time, at most one robot can
be outside J . We call it the outer robot, whereas the robot in J is called the
inner robot. When both robots are in J , the assignment of these two roles is
arbitrary, and we can swap the roles of the two robots if we want or need.

Suppose furthermore that 0 /∈ J and m /∈ J . Since the outer robot must
repeatedly visit stations on both sides of J , it must repeatedly cross J in both
directions. In the best case, the outer robot needs one time unit to skip J . In
detail: At time t, the outer robot is at point j − h − 1, and at time t + 1, the
outer robot (actually now the other one) is at point j + h + 1, or vice versa.
It is equivalent to say that, even in this best case, the outer robot must solve
the one-robot instance (t0, . . . , tj−h−1, tj+h+1, . . . , tm) obtained by cutting out
J . Now Theorem 2 implies that this vector must be larger than F (m − 2h − 1).
If m ∈ J (or similarly, if 0 ∈ J), we have (t0, . . . , tj−h−1) ≥ F (j − h − 1) by a
simpler argument: only the outer robot can visit the stations to the left of J .

We are ready to solve another special case of IntPUF to optimality:

Theorem 4. For every m and j there exists exactly one minimal feasible vector
with tj = 1, which is F (m − 1) with a 1 inserted after the first j entries.

Proof. If t0 = 1 then the inner robot must stay at point 0 all the time, while
the outer robot must solve the one-robot instance (t1, . . . , tm), and the assertion
follows from Theorem 2. The argument for tm = 1 is similar. If tj = 1 for some j
with 0 < j < m, we have the lower bound (t0, . . . , tj−1, tj+1, . . . , tm) ≥ F (m−1)
for every feasible vector, as shown above. To show that the claimed vector is
feasible, note that the outer robot can zigzag between 0 and m and always skip
J = {j} in only one time unit. Now the maximal waiting time of every station
outside J is equal to the corresponding entry of F (m − 1). Hence, together with
tj = 1, these integers form a feasible vector matching the lower bound. ��

Similarly it should be possible to characterize the minimal feasible vectors
with some tj = k also for any fixed k > 1, but it turns out that we run into
many case distinctions regarding the times needed to skip J and the lengths of
the outer robot’s trajectories. However, the above observations still lead to the
approximation result below. (Note that we assume that the instance is already
given in “compact” form, as the list of all n finite values ti.)

Theorem 5. There exists an algorithm for IntPUF which, for every feasible
instance with n ≤ m + 1 stations (with finite ti) and with k = mini ti ≤ m/4,
outputs some (1 + O(k/m))-feasible solution in O(n) time.

Proof. Fix some j with tj = k, and define h := �k/2� and J := [j − h, j + h] as
before (even in the case when 0 ∈ J or m ∈ J). As we have seen, the instance
vector after cutting out J must be feasible for one robot. With Theorem 2 we
get ti ≥ m − k for all i /∈ J .

218 P. Damaschke

Let m′ denote the distance between J and the farthest station (either 0 or
m), that means, m′ := max{j − h,m − (j + h)}. Note that m′ ≥ (m − k)/2.
Since the outer robot must visit this farthest station sometimes, the outer robot
cannot be in J during some time interval I of duration at least 2m′.

Next, let J ′ be the set of all i ∈ J with ti ≤ 2m′ − 2k. Since 4k ≤ m, we
have 3k ≤ m − k ≤ 2m′, hence tj = k ≤ 2m′ − 2k, thus j ∈ J ′, that is, J ′
= ∅.
Let u and v be the leftmost and rightmost point, respectively, in J ′. Finally, we
define I ′ to be the time interval I truncated by k time units at both ends.

Since the length of I ′ is at least 2m′ − 2k, the inner robot must visit every
station in J ′ at least once during I ′. In particular, it must visit u during I ′.
Now assume for some i ∈ J ′ that ti < 2(i − u). For the inner robot it is then
impossible to visit i before u and again after u, within ti time units. Since
i − u ≤ 2h ≤ k, the two mentioned visits of i must still happen during I. But
since the outer robot is not in J during I, it cannot do any of these visits either.
This contradiction to feasibility shows ti ≥ 2(i − u) for all i ∈ J ′. Similarly we
can prove ti ≥ 2(v − i) for all i ∈ J ′. Hence, if we simply let the inner robot
zigzag in [u, v], it visits all stations in J ′ frequently enough.

Our solution is now: Let the inner and outer robot zigzag in [u, v] and [0,m],
respectively. It remains to analyze the waiting times of stations outside J ′.

Consider any station i /∈ J . Since the instance vector after cutting out J is
feasible for one robot, the outer robot would always return to i within ti time
units if it could skip J . But in reality it may need 2k additional time units
to traverse J twice. Since ti ≥ m − k, the waiting time is at most ti + 2k =
(1 + 2k/ti)ti ≤ (1 + 2k/(m − k))ti.

Consider any station i ∈ J \ J ′. By definition we have ti > 2m′ − 2k. Also
remember that 2m′ ≥ m − k. The outer robot returns to i in a time at most
2m′ + 2k = (2m′ − 2k) + 4k < ti + 4k = (1 + 4k/ti)ti < (1 + 4k/(2m′ − 2k))ti <
(1 + 4k/(m − 3k))ti.

Altogether, the solution is (1 + O(k/m))-feasible. The time O(n) is obvious:
We must only find the smallest ti and construct J ′ for determining u and v. ��

For notational convenience we have formulated Theorem 5 for IntPUF, but
the proof does not really use integrality, hence we also have immediately:

Theorem 6. There exists an algorithm for PUF which, for every feasible
instance with n stations, distance m between the outermost stations, and k =
mini ti ≤ m/4, outputs some (1 + O(k/m))-feasible solution in O(n) time.

4 Rounding the Coordinates

A natural idea for solving PUF approximately is now to round all si and ti to
integers and apply the results for IntPUF. Given an instance P of PUF and
an integer parameter k, we scale the time axis such that k = mini ti. In other
words, mini ti/k becomes the unit of time. The length unit on the line L is chosen
such that the given maximum speed of robots is the unit speed. This setting is
assumed throughout this section.

Two Robots Patrolling on a Line: Integer Version and Approximability 219

Before we discuss rounding, we study more generally what happens if the
stations are slightly shifted. Let Q be an instance of PUF, obtained from P by
moving every station by less than half the length unit. That is, n and the ti are
preserved, but the stations in Q are at points s′

i where |s′
i − si| ≤ 1/2 for all i.

Let S be any feasible solution to the instance P . In general, S is not feasible
for Q: Besides small delays we may even completely miss some visits, since a
robot’s trajectory may change its direction at some station, but the station may
have been moved away from the turning point. Therefore we would like to modify
S so as to construct a solution that is c-feasible for Q, with some “small” c > 1.
We will modify the two robot trajectories independently, that is, in the following
we only consider the trajectory of any single robot.

Lemma 4. Let I be any time interval of duration r, let J ⊂ L be any interval
of length at most r/2, and let a, b ∈ J be any points therein. Then a robot can
move during I such that its trajectory starts in a, ends in b, and visits all of J .

Proof. Assume that a ≤ b. (The other case is symmetric.) We simply travel from
a to the left end of J , then to the right end of J , and finally to b. Obviously, the
robot can manage this in at most 2(r/2) = r time units. ��

Some more special definitions will be needed; note that they refer to real (not
integer) intervals: For a given time interval I, let J(I) ⊂ L denote the interval of
points visited by the considered robot during I. For any interval J = [u, v] ⊂ L
we define J+ := [u − 1/2, v + 1/2]. In the following we temporarily allow robots
to be faster than the unit speed.

Lemma 5. Let I be a time interval of duration r, J ⊂ L an interval of length
at least (r − 2)/2, and a, b ∈ J . Assume that a robot can move such that its
trajectory during I starts in a, ends in b, and visits all of J . Then there also
exists a trajectory during I that starts in a, ends in b, visits all of J+, and has
a speed at most 1 + 4/(r − 4).

Proof. Let u and v be the ends of J , that is, J = [u, v], and let T be the assumed
trajectory. Since T visits all of J , it must contain a sub-trajectory T2 going from
u to v (or vice versa, but this case is symmetric). Hence we can partition T into
three sub-trajectories: T1 going from a to u, T2 going from u to v, and T3 going
from v to b. Note that T1 and T3 may be empty, if a = u and v = b, respectively.

We modify T as follows. Immediately after T1 we insert a piece going from u
to u − 1/2 in 1/2 time units, and immediately before T3 we insert a piece going
from v+1/2 to v in 1/2 time units. Finally we adjust T2 such that (i) it goes from
u − 1/2 to v + 1/2 (to connect to the extended T1 and T3) and (ii) it needs one
time unit less (to be used for the additional 1/2+1/2 time units). We achieve (i)
by stretching T2 parallel to L, and we achieve (ii) by shrinking T2 parallel to the
time axis. Since J has a length at least (r−2)/2, the robot following the original
T2 has to travel a distance at least (r − 2)/2, and it also needs at least (r − 2)/2
time units. Travelling one length unit more in one time unit less increases the
speed by a factor at most ((r − 2)/2 + 1)/((r − 2)/2 − 1) = 1 + 4/(r − 4). ��

220 P. Damaschke

Lemma 6. Let P be an instance of PUF specified by si and ti (i = 1, . . . , n),
and let Q be an instance of PUF with the same size n and the same durations ti
but with station positions s′

i such that |s′
i − si| ≤ 1/2 for all i. If P is c-feasible,

then Q is (1 + 4
√

2/
√

k + O(1/k))c-feasible.

Proof. We partition the time axis into intervals of some length r that we fix
later. Consider any time interval I in this partitioning, and the trajectory T of
either one of the robots, in some feasible solution to P .

If the length of J(I) is at most (r −2)/2, then the length of J(I)+ is at most
r/2. In this case we apply Lemma 4 with J := J(I)+. If J(I) is longer than
(r − 2)/2, then we apply Lemma 5 with J := J(I). Due to the Lemmas, in both
cases we can replace the sub-path of the given trajectory T during I with a path
that begins and ends in the same points as in T , but visits all of J(I)+. However,
in the second case we increase the speed by a factor up to 1 + 4/(r − 4).

We do the described change independently in all intervals I of our partition-
ing, and we observe: (i) Since the robot’s positions at the start and end moments
of these time intervals have not changed, the modified trajectories form together
a new trajectory T ′ overall. (ii) If T visits a station i during some time interval
I of the partitioning, then si ∈ J(I), hence s′

i ∈ J(I)+, hence also T ′ visits the
station i during I. Moreover, since I has duration r, this visit is by at most r
time units earlier or later than in T .

The described changes are done independently for both robots. From the
above property (ii) it follows that the waiting time between two consecutive
visits of any station i increases by 2r time units in the worst case. Remembering
that k = mini ti and c ≥ 1, this implies that the waiting time is always at most
(1+2r/k)cti. In other words, the modified solution would have been (1+2r/k)c-
feasible if it had respected the speed limit.

In order to get unit speed again, we finally stretch the trajectories along the
time axis by a factor 1+4/(r −4). This yields a valid (1+2r/k)(1+4/(r −4))c-
feasible solution. Choosing r :=

√
2k + 4 gives the assertion. ��

Now we can describe an algorithm to solve any feasible instance P of PUF
approximately. Note that it is not known in advance whether P is feasible; we
must discuss this point later, as well as the choice of parameter k:

We decide on an integer k and choose time and length unit such that k =
mini ti and the robots have unit speed, as already explained. Recall that m
denotes the distance of the outermost stations.

In the following we distinguish two cases regarding k and m. The exact cut-off
point is not that important, but we must decide on some suitable one.

If m > 4k
√

k, then we run the algorithm from Theorem 6 to solve P
approximately. (Note that its prerequisites are satisfied here.) It yields some
(1 + O(k/m))-feasible solution, hence some (1 + O(1/

√
k))-feasible solution to

P , in O(n) time.
If m ≤ 4k

√
k, then we proceed as follows. We round every si to the closest

integer. Ties are broken arbitrarily if si is an integer plus 1/2. If several stations
i end up on the same point, we only keep one of these stations with the smallest
ti and “mask” the others.

Two Robots Patrolling on a Line: Integer Version and Approximability 221

Due to Lemma 6, the obtained instance Q is c-feasible, for some c = 1 +
O(1/

√
k). Next we replace every ti with t′i := �cti�. The obtained instance R

is feasible, and by Theorem 1, R is also a feasible instance of IntPUF. Defining
k′ := mini t′i we also note that k′ = Θ(k).

We run the algorithm from Theorem 3 to solve R exactly, in a time that
depends on m only, and thus on k only. The computed feasible solution to R,
which we denote S, is (1 + O(1/

√
k))-feasible for Q.

Finally we move all stations i (also the masked ones) back to their original
positions si and apply Lemma 6 again in the opposite direction, to translate S
into a solution to P . Since (1 + O(1/

√
k))2 = 1 + O(1/

√
k), this solution to P is

(1 + O(1/
√

k))-feasible, too.
It is crucial that this last step can be done effectively. By Theorem 3, we can

always take a periodic solution S, with a period bounded by some function of
m. Furthermore, the proof of Lemma 6 does not only show the existence of a
(1+O(1/

√
k))-feasible solution but also describes a construction of this solution

from the given one (here: from S). The approximation ratio 1+O(k/m) remains
true if we choose r := �√2k + 4� (to have an integer value r). Then it suffices
to modify the trajectories on some time interval of finite duration (the least
common multiple of r and the period of S) and then to repeat this solution
infinitely on the time axis. That is, our approximate solution to P is periodic,
too. For any desired ε > 0 we may choose k = Θ(1/ε2) with some suitable
constant factor. Altogether this shows:

Theorem 7. There exists an algorithm that outputs, for any feasible instance of
PUF with n stations and for any prescribed ε > 0, some (1+ε)-feasible solution,
in time O(max{n, g(ε)}), where g is some function that depends on ε only.

One can trivially check afterwards whether a solution is (1+ε)-feasible. If the
algorithm failed to find such a solution, we know that the given instance P was
not feasible. In that case we consider instances Pc obtained from P by replacing
all ti with cti. We may choose any factor c > 1 and apply the same algorithm
to Pc. Either we get a (1 + ε)-feasible solution to Pc, or c was too small. Once
our c is within a factor 1 + ε of the minimal c∗ that makes Pc∗ feasible, we get
a (1 + O(ε))-approximate solution to P .

It remains to find such a near-optimal c efficiently. Trivially, Pc is feasible
when c = 2m/k. Hence, if k/m = Ω(ε), then O(log(1/ε)) steps of binary search
are enough. The case of smaller k/m is more peculiar, but the concepts of Sect. 3
enable us to first find some c within a constant factor of c∗ without binary
search, in O(n) time: Let Jc be the interval of length ck, having some station
with minimum ti in the center. As we have seen in Sect. 3, Pc is feasible only
if the instance Pc after cutting out Jc is feasible for one robot. A necessary
condition is that cti ≥ m − ck for all i /∈ Jc. Hence we can pick any i /∈ Jc with
cti < m − ck and raise c until either cti ≥ m − ck or i ∈ Jc. (Calculation details
are straightforward.) As c only grows in this process, we successively get rid of
all stations i /∈ Jc with a too small cti. For the final value c′ we have that no
instance Pc′−δ, δ > 0, is feasible, hence c∗ ≥ c′. Assume that still c′k/m = O(ε);

222 P. Damaschke

otherwise we have already reached the former case. Furthermore, ti ≥ k holds
for all i by definition. In particular, c′ti ≥ c′k holds for all i ∈ Jc′ . Hence, if we
generously set c := 3c′ and let the robots zigzag in [0,m] and Jc′ , respectively,
we obtain a feasible solution to our current Pc. It follows 1 ≤ c/c∗ ≤ 3. Now we
have also overcome the restriction that P must be feasible, and we arrive at:

Theorem 8. PUF admits a polynomial-time approximation scheme.

Concluding Remarks. Our PTAS is not yet practical. We have not bounded
the time as a function of 1/ε, and large k may be needed to beat the known√

3-approximation [1]. However, we believe that our approach paves the way.
To achieve practicality, we must efficiently solve IntPUF instances up to certain
values of k and m, using the structure of cycles in the state graph. That is, we
need an efficient version of the algorithm from Lemma 3.

References

1. Chuangpishit, H., Czyzowicz, J., G ↪asieniec, L., Georgiou, K., Jurdziński, T.,
Kranakis, E.: Patrolling a path connecting a set of points with unbalanced fre-
quencies of visits. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wie-
dermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 367–380. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73117-9 26

2. Czyzowicz, J., Georgiou, K., Kranakis, E.: Patrolling. In: Flocchini, P., Prencipe,
G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research
in Moving and Computing. LNCS, vol. 11340, pp. 371–400. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-11072-7 15

3. Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling
by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson,
M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23719-5 59

4. Czyzowicz, J., Godon, M., Kranakis, E., Labourel, A., Markou, E.: Exploring
graphs with time constraints by unreliable collections of mobile robots. In: Min
Tjoa, A., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOF-
SEM 2018. LNCS, vol. 10706, pp. 381–395. Springer, Cham (2018)

5. Czyzowicz, J., Kosowski, A., Kranakis, E., Taleb, N.: Patrolling trees with mobile
robots. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-
Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 331–344. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-51966-1 22

6. Das, S., Di Luna, G.A., Gasieniec, L.A.: Patrolling on dynamic ring networks.
In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019.
LNCS, vol. 11376, pp. 150–163. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-10801-4 13

7. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Am. J. Math. 35, 413–422 (1913)

8. Fishburn, P.C., Lagarias, J.C.: Pinwheel scheduling: achievable densities. Algorith-
mica 34, 14–38 (2002)

https://doi.org/10.1007/978-3-319-73117-9_26
https://doi.org/10.1007/978-3-030-11072-7_15
https://doi.org/10.1007/978-3-642-23719-5_59
https://doi.org/10.1007/978-3-319-51966-1_22
https://doi.org/10.1007/978-3-030-10801-4_13
https://doi.org/10.1007/978-3-030-10801-4_13

Two Robots Patrolling on a Line: Integer Version and Approximability 223

9. G ↪asieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bam-
boo garden trimming problem (perpetual maintenance of machines with different
attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J.,
Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0 18

10. Holte, R., Rosier, L.E., Tulchinsky, I., Varvel, D.A.: Pinwheel scheduling with two
distinct numbers. Theor. Comput. Sci. 100, 105–135 (1992)

11. Kruskal, J.B.: The theory of well-quasi-ordering: a frequently discovered concept.
J. Comb. Theory A 13, 297–305 (1972)

12. Lin, S.S., Lin, K.J.: A pinwheel scheduler for three distinct numbers with a tight
schedulability bound. Algorithmica 19, 411–426 (1997)

https://doi.org/10.1007/978-3-319-51963-0_18

Ordering a Sparse Graph to Minimize
the Sum of Right Ends of Edges

Peter Damaschke1,2(B)

1 Department of Computer Science and Engineering, Chalmers University,
41296 Göteborg, Sweden

ptr@chalmers.se
2 Fraunhofer-Chalmers Research Centre for Industrial Mathematics,

41288 Göteborg, Sweden

Abstract. Motivated by a warehouse logistics problem we study map-
pings of the vertices of a graph onto prescribed points on the real line
that minimize the sum (or equivalently, the average) of the coordinates
of the right ends of all edges. We focus on graphs whose edge numbers do
not exceed the vertex numbers too much, that is, graphs with few cycles.
Intuitively, dense subgraphs should be placed early in the ordering, in
order to finish many edges soon. However, our main “calculation trick”
is to compare the objective function with the case when (almost) every
vertex is the right end of exactly one edge. The deviations from this case
are described by “charges” that can form “dipoles”. This reformulation
enables us to derive polynomial algorithms and NP-completeness results
for relevant special cases, and FPT results.

Keywords: Minimum linear arrangement · Pick-by-order · Cycle ·
Tree · Dynamic programming on subsets · Elimination ordering ·
2-core · 3-core

1 Introduction

We study the following problem on undirected graphs G = (V,E). Our graphs
may contain parallel edges and loops (and any number of loops may be attached
to a vertex), but no isolated vertices. A loop at a vertex v may be formally seen
as an edge vv.

MinSumEnds

Given: (1) an undirected graph G = (V,E) with n vertices, and (2) n numbers
s1 < . . . < sn.

Find: A labeling, that is, a bijective mapping λ of V onto {s1, . . . , sn} that
minimizes

∑
e∈E μ(e), where μ(uv) := max{λ(u), λ(v)} for every edge e = uv.

We call such a labeling optimal, with respect to this objective function. Our
objective function can be rephrased as follows. Let L(k) be the number of edges
c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 224–236, 2020.
https://doi.org/10.1007/978-3-030-48966-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_17

Ordering a Sparse Graph to Minimize the Sum of Right Ends of Edges 225

uv such that v is the vertex with label sk, and the label of u is smaller than
or equal to k. (This includes possible loops vv.) Then the sum of edge labels is
obviously

∑n
k=1 sk · L(k). Informally, L(k) is the “left degree” of the vertex at

position k, if the vertices are placed on the number line according to their labels.
This way, a labeling can be viewed as a linear ordering of the vertices, placed on
points with the coordinates s1 < . . . < sn. We may use the words labeling and
ordering interchangeably.

If the labels are equidistant, we can without loss of generality assume that
sk = k for all k.

MinSumEnds is similar to the well-known linear arrangement problem where
we want to minimize the sum of edge lengths (i.e., differences of labels). Like the
linear arrangement problem it can be solved straightforwardly in O∗(2n) time1

by dynamic programming on subsets [4].
MinSumEnds can be generalized to hypergraphs. This work was directly

inspired by a real-world problem: Items are stored in a shelf in a warehouse, and
certain subsets of items are frequently requested. They must be fetched from the
shelf, thereby walking from the left end to the place of the rightmost requested
item and back. Given a set of data on the frequently requested subsets, the
problem is to store the items so as to minimize the average walking distance.

The minimum linear arrangement problem is a classic NP-complete problem
[12] and has been intensively studied. Approximation algorithms and inapprox-
imability results are known [1,2,8,14], as well as exact exponential and param-
eterized algorithms [3,9–11], and efficient algorithms for special graph classes
[5–7,13]. MinSumEnds is much less explored. In [4], the problem is called the
product location problem with a single rack and a front end depot. The problem
is proved to be strongly NP-complete for equidistant labels, by a reduction from
the linear arrangement problem. In fact, the reduction produces graphs with
possible loops, but no hypergraphs.

In the present paper we focus on graphs with barely more edges than vertices.
In the warehouse application this corresponds to the rather practical case that,
typically, only single items or pairs of items are requested, and the requests are
not very diverse, that is, only a small number of different pairs occurs. This
easily leads to graphs whose connected components are trees or have only a few
cycles. Still these graphs are rather special, but this study may serve as a first
step in understanding which graph properties make the problem easy or hard.
Also, the related linear arrangement problem is nontrivial even for trees [7], and
now we continue this line of research for MinSumEnds.

In Sect. 2 we solve MinSumEnds for some simple graphs that contain a chain
of densest subgraphs. These are induced subgraphs having the maximum num-
ber of edges, given a number of vertices. In Sect. 3 we rephrase MinSumEnds in
terms of so called charges and dipoles which measure the difference to an opti-
mal labeling of a tree. Using these concepts, we eliminate vertices of degree 1,
provided that the labels are equidistant; see Sects. 3 and 4. Similarly, in Sect. 5

1 We adopt the O∗ notation that focuses on the exponential terms and suppresses
polynomial factors.

226 P. Damaschke

we eliminate connected components that are merely cycles, and we show NP-
completeness of MinSumEnds for general labels, but for a graph class as “triv-
ial” as disjoint unions of cycles. In Sect. 6 we derive an FPT algorithm in the
parameter m − n, the number of edges minus the number of vertices (after the
previously described eliminations). Here the 2-cores and 3-cores of graphs play
a prominent role. We think that the structural properties shown can be useful
in their own right, not only as a preparation of the FPT result that is applicable
only to graphs “slightly exceeding” forests.

2 Nested Densest Subgraphs

Consider an optimal labeling λ of G and a positive integer k ≤ n. Let Gk be
the subgraph of G induced by the vertices with the k smallest labels. Then the
labeling induced by λ on Gk is also an optimal labeling of Gk. This is evident
by an exchange argument; note that a permutation of the first k vertices does
not affect the values L(j) for j > k. In other words: Once we have decided
on the vertices that receive the labels larger than sk, it remains to solve the
MinSumEnds problem on Gk. In such a situation we say that we have eliminated
the other vertices.

An induced subgraph H of G with k vertices is called a densest subgraph if
H has a maximum number of edges among all induced subgraphs of G with k
vertices. We say that a labeling produces nested densest subgraphs if, for every
k, Gk is a densest subgraph.

Not every graph allows nested densest subgraphs. The smallest counterex-
ample has three vertices u, v, w, where u and v are joined by two parallel edges,
and w has one loop. Then the only densest subgraphs with k = 1 and k = 2
are induced by {w} and by {u, v}, respectively. However, for graphs that do
have nested densest subgraphs, we can characterize optimal solutions of Min-
SumEnds:

Lemma 1. Any labeling that produces nested densest subgraphs is an optimal
labeling.

Proof. Consider a labeling λ produced by nested densest subgraphs, with objec-
tive value L =

∑n
k=1 sk · L(k), and assume that there is a better labeling

with similarly defined values L′ =
∑n

k=1 sk · L′(k), where L′ < L. Since∑n
j=1 L′(j) =

∑n
j=1 L(j), this would be possible only if there were some k

with L′(k) > L(k). Specifically, let k be the smallest such index. Then we have
∑k

j=1 L′(j) >
∑k

j=1 L(j). But this contradicts the assumption that Gk (in λ)
was already a densest subgraph. ��

The converse (every optimal labeling of such graphs produces nested densest
subgraphs) also holds true, but we will only use the direction given in Lemma1.
Perhaps the simplest application is the case of trees.

For clarity we remark that loops as well as pairs of parallel edges count as
cycles. A forest is a graph without cycles. Hence, in particular, a forest must not

Ordering a Sparse Graph to Minimize the Sum of Right Ends of Edges 227

contain loops and parallel edges. A tree is a connected forest. Every subgraph of
a tree is, of course, a forest.

Theorem 1. MinSumEnds is solvable in linear time on forests.

Proof. Every tree possesses nested densest subgraphs: We can start with an
arbitrary vertex and successively add a vertex that has a neighbor among the
previously selected vertices. In this way, for every k, Gk has exactly k − 1 edges,
which is indeed maximal for subgraphs of a tree.

More generally, every forest possesses nested densest subgraphs: We sort the
connected components (which are trees) by decreasing sizes, order the vertices
in every tree as described above, and concatenate these orderings of the trees.
Then every Gk has exactly k−c(k) edges, where c(k) is the number of connected
components of Gk. It is easy to see that sorting the trees by decreasing sizes
minimizes all c(k), and thus all Gk in this labeling are indeed densest subgraphs.
Clearly, the procedure can be implemented to run in linear time, where the
sorting is done by bucketsort. ��

A slightly larger graph class can still be managed in this way:

Theorem 2. MinSumEnds is solvable in linear time on graphs with at most
one cycle.

Proof. Forests are settled by Theorem 1, hence we can suppose that the input
graph G has exactly one cycle. Let k denote its length (where k = 1 if the cycle
is a loop, and k = 2 if the cycle consists of two parallel edges).

First consider the case when G is connected and has exactly one cycle. Then
the only densest subgraphs of G are the following: all subgraphs of j < k vertices
being trees, and all connected subgraphs of j ≥ k vertices including the cycle.
Hence G has nested densest subgraphs: Starting at any vertex of the cycle, assign
the k lowest labels to the vertices of the cycle in their natural ordering, and then
successively assign the next label to any vertex that has a neighbor among the
already labeled vertices.

The case when G is not connected is solved by combining the previous obser-
vations (also from Theorem 1). We skip the straightforward verification of the
following claims.

The only densest subgraphs of G are now the following: all subgraphs of
j < k vertices being trees, and all subgraphs of j ≥ k vertices that include the
cycle and intersect the smallest possible number of other connected components,
where every such intersection is a subtree of the respective component.

This yields some optimal labeling in linear time: Starting at any vertex of
the cycle, assign the k lowest labels to the vertices of the cycle in their natural
ordering, then successively assign the next label to any vertex that has a neigh-
bor among the already labeled vertices, until the entire connected component
containing the cycle is labeled, and finally append optimal orderings of the other
connected components (which are trees), sorted by decreasing sizes. ��

228 P. Damaschke

As the above example suggests, graphs with several cycles, in general, do
not have nested densest subgraphs, and we must combine the idea with other
methods, in order to solve instances of MinSumEnds.

3 Charges and Dipoles

For reasons that will become apparent soon, we work from now on with the
numbers M(k) := L(k) − 1. Obviously, minimizing

∑n
k=1 sk · L(k) is equivalent

to minimizing M :=
∑n

k=1 sk · M(k). When v is the vertex with label sk, we
may also write M(v) instead of M(k). Note that the prefix sum

∑k
j=1 M(j)

equals the number of edges in Gk minus k, and that M(k) ≥ −1 for every k, by
definition, and vertices with M(k) = 0 can be ignored.

If M(k) = −1, then we imagine a negative charge at point sk on the number
line. Similarly, if M(k) > 0, then we imagine M(k) positive charges at point sk.
Equivalently we may imagine that the vertices (rather than the points sk) are
charged.

Next we may pair up some of these charges to dipoles according to the fol-
lowing rules. Every dipole consists of a negative charge and a positive charge of
a vertex with a higher label, and every charge belongs to at most one dipole. Of
course, this pairing is by no means uniquely determined. The length of a dipole is
defined to be the absolute value of the difference of the labels at the two involved
vertices. Hence every dipole contributes exactly its length to the sum M . (It may
be fun to notice that the paired-up positive and negative charges “attract each
other”, in the sense that we want to minimize their distances.)

A labeling such that
∑n

j=k M(j) ≥ 0 holds for all k is said to have the dipole
property. This is equivalent to the property that we can form dipoles that contain
all negative charges. Some surplus positive charges remain outside these dipoles.

For brevity, a tree component is a connected component being a tree.

Lemma 2. Every labeling of any graph without a tree component has the dipole
property.

Proof. We show the contraposition: If some labeling of a graph G fails to have
the dipole property, then G has a tree component.

Hence, assume that
∑n

j=k M(j) < 0 for some k, and specifically, let k be the
largest such index. Then we have M(k) = −1, and all charges above k can be
paired up to dipoles. Let H denote the subgraph of G induced by the vertices
with labels sk, . . . , sn. Since the sum of all M(j) in H is negative, there also exists
some connected component T of H with more negative than positive charges.
But this is possible only if T is a tree, and furthermore, no edges exist between
vertices of T and vertices outside H. Hence the tree T is a connected component
of G as well. ��

We say that two connected components C and D are separated in a labeling
if all labels in C are smaller than all labels in D, or vice versa.

Ordering a Sparse Graph to Minimize the Sum of Right Ends of Edges 229

For any optimal labeling of G, trivially, the labeling restricted to any con-
nected component T of G must be optimal, too. In particular, if T is a tree
component, we can without loss of generality assume that T is labeled as in
Theorem 1. Hence T contains only one charge which is negative and sits at the
vertex with the lowest label in T .

Proposition 1. Let G be a graph with a total number t > 0 of vertices in its tree
components. For equidistant labels, there exists an optimal labeling of G where
the vertices of the tree components have the t highest labels, the tree components
are separated, and they are sorted by decreasing sizes.

Proof. Given a labeling, we divide the vertex set of G in two sets X and Y
consisting of the |X| vertices with the lowest labels and the |Y | vertices with the
highest labels, respectively, where Y is a union of tree components. (Y may be
empty.) Assume that not yet all tree components are in Y . Then, let r ∈ X be
the unique vertex that has a negative charge, belongs to some tree component
T , and has the highest label among all such vertices.

By Lemma 2 and the assumed labeling of tree components, it follows that all
charged vertices in X with higher labels than r are positively charged or belong
to dipoles. Now we relabel X such that the orderings in both T and X − T
are preserved, but the vertices of T receive the highest labels in X. This has the
following effects. The tree T is removed from X and included in Y , the negatively
charged vertex r gets a higher label, and the labels of positively charged vertices
as well as the lengths of the dipoles in X − T can only decrease. Altogether, the
objective M cannot get worse. By an inductive argument we achieve a labeling
where all tree components are at the end of the ordering and are separated.

Finally, in an optimal labeling, the tree components must also be sorted by
decreasing sizes as in Theorem 1. ��

For the proof it is crucial that the labels are equidistant. In the case of
general labels, a dipole moving to points with other coordinates can get longer,
although the number of vertices between the two charges does not increase.
(It is easy to produce such counterexamples.) Of course, this cannot happen
if the labels are equidistant. Moreover, since the dipoles in X can only move
to smaller labels, it would be sufficient to suppose labels with monotone non-
decreasing distances sj+1 − sj . However, we stick to equidistant labels, which is
a more natural assumption in the warehouse application.

We have shown that, in the case of equidistant labels, by Theorems 1 and 2
we can eliminate all tree components (see the beginning of Sect. 2). Therefore,
from now on we can focus on graphs where every connected component has at
least one cycle.

4 Eliminating the Leaves

A leaf is a vertex of degree 1. In the case of equidistant labels we can eliminate
leaves also from connected components with cycles:

230 P. Damaschke

Proposition 2. Let v be a leaf in a graph without tree components. For equidis-
tant labels, there exists an optimal labeling where v has the highest label.

Proof. Let u denote the unique neighbor of v, and let G− v denote the graph G
without v and the edge uv. Since G has no tree component, neither has G − v.
We consider any labeling where v has not the highest label.

If the label of v is larger than the label of u, then the charges of vertices in
G − v are identical to their charges in G. Hence, due to Lemma 2, the labeling
induced on G − v has the dipole property. The leaf v is not charged. Now we
simply assign the highest label to v and relabel the vertices of G − v preserving
their ordering. This can only decrease the lengths of dipoles (since the labels are
equidistant) and the labels of the positively charged vertices outside the dipoles,
thus M can only decrease.

The case when the label of v is smaller than the label of u is only slightly
more complicated. If M(u) > 0, then we put one positive charge at u aside and
form a dipole on the edge uv, together with the existing negative charge at v.
If M(v) = 0, then we create a pair of a negative and a positive charge at v,
and again, we form a dipole on the edge uv, whereas the new negative charge
is assigned to u. In all cases, the charges not involved in the dipole on uv are
identical to those in G−v, and these manipulations do not alter M . Precisely as
above, we assign the highest label to v and relabel the vertices of G−v preserving
their ordering. The dipole at uv disappears, and for the same reasons as above,
M can only decrease. ��

Using Proposition 2 we can eliminate any one leaf v, and the problem of
optimally labeling G− v remains. Of course, we can apply this step successively,
until the residual graph has no leaves anymore. Therefore, from now on we can
focus on graphs with minimum degree 2.

5 Eliminating and Separating the Cycle Components

A cycle component is a connected component which is merely a cycle. Our next
observation is quite similar to Proposition 1. First we can optimally label every
cycle component independently: An optimal labeling of a cycle was already
observed in the proof of Theorem 2. It has one negative and one positive charge,
at the vertex with the lowest and highest label, respectively. We declare them a
dipole.

Proposition 3. Let G be a graph with minimum vertex degree 2, and with a
total number c > 0 of vertices in its cycle components. For equidistant labels,
there exists an optimal labeling of G where the vertices of the cycle components
have the c highest labels, and the cycle components are separated.

Proof. Given a labeling, we divide the vertex set of G in two sets X and Y
consisting of the |X| vertices with the lowest labels and the |Y | vertices with the
highest labels, respectively, where Y is a union of cycle components. (Y may be

Ordering a Sparse Graph to Minimize the Sum of Right Ends of Edges 231

empty.) Assume that not yet all cycle components are in Y . Then, let C be any
cycle component that is not yet in Y .

Due to the minimum degree 2, the graph G has no tree components. By
Lemma 2 it follows that all charged vertices in X − C are positively charged or
belong to dipoles.

Now we relabel X such that the orderings in both C and X−C are preserved,
but the vertices of C receive the highest labels in X. This has the following effects.
The cycle C is removed from X and included in Y , and the labels of positively
charged vertices in X − C as well as the lengths of the dipoles in both X − C
and in C can only decrease. Altogether, the objective M cannot get worse. By
an inductive argument we achieve a labeling as described in the statement. ��

Due to Proposition 3, we can also eliminate cycle components, in the case
of equidistant labels. Moreover, the ordering of cycles is irrelevant, since every
cycle contributes exactly its length minus 1 to M , regardless of its position in
the ordering. Without further ado this settles MinSumEnds for a larger graph
class than in Theorem 2, however for equidistant labels only.

Theorem 3. MinSumEnds with equidistant labels is solvable in linear time on
graphs where every connected component has at most one cycle.

Proof. First eliminate the tree components due to Proposition 1 and the leaves
due to Proposition 2, then concatenate optimal labelings of the cycles, where the
permutation of the cycles is arbitrary. ��

As we already observed, this approach fails for general labels; we cannot
even eliminate the leaves. But let us still consider disjoint unions of cycles for a
moment. This is a too special case for applications, but the interesting point is
that, with the help of dipoles, we get a rather straightforward NP-completeness
proof for MinSumEnds in this very special case, by a reduction from the strongly
NP-complete 3-Partition problem. We stress that this reduction does not work
for equidistant labels, and the result complements NP-completeness for equidis-
tant labels but general graphs [4].

Theorem 4. MinSumEnds is NP-complete even for disjoint unions of cycles.

Proof. We first observe again that every cycle must be optimally labeled, and its
lowest and highest labeled vertex form a dipole. Furthermore, we can separate
any two cycles that are not yet separated, because this decreases the total length
of the dipoles. (We stress that this holds for arbitrary labels.) Hence, an optimal
labeling is given by some permutation of the cycles also here.

Let {x1, . . . , x3t} be an instance of 3-Partition, that is, a multiset of 3t
positive integers. The problem asks to partition this multiset into t triples, each
with the same sum that we denote q. We create 3t disjoint cycles of lengths q+xi

(i = 1, . . . , 3t). On the number line we place t disjoint segments, each of length
4q. In every segment we mark the 4q integer points. Let the gap between any
two segments be larger than 1 (but otherwise arbitrary). The coordinates of the

232 P. Damaschke

marked integer points are our 4qt labels. The constructed cycles have together
3tq + tq = 4tq vertices.

As stated above, there exists an optimal labeling where all cycles are sep-
arated and, moreover, every cycle has a dipole with a positive and negative
charge at the vertex with lowest and highest label, respectively. The total length
of the dipoles is (4q − 1)t if and only if we can embed every cycle entirely in
some segment. Since every cycle has a length larger than q, only 3 cycles fit in
every segment. Finally, in order to embed all 3t cycles in the 3 segments, we
must divide them into t triples, each with a total of 4q = 3q + q vertices. This
establishes the equivalence of the problem instances. ��

6 Paths of Degree-2 Vertices and Cores

In the following, let G be a graph with minimum vertex degree 2 (with the
understanding that every loop contributes 1 to the degree of its vertex) and
without cycle components. (Recall that a cycle component is a cycle without
further edges, both inside and to the rest of G.)

We call every vertex of degree larger than 2 a principal vertex. We call a path
a principal path if it ends in two principal vertices (which may be identical), it
has at least one inner vertex, and all its inner vertices are of degree 2. Hence the
edge set of graph G can be uniquely partitioned into the edge sets of its principal
paths and single edges that do not belong to principal paths as they end in two
principal vertices.

Lemma 3. Let G be a graph of minimum degree 2 and without cycle compo-
nents. For equidistant labels, there exists an optimal labeling of G where either
(1) some principal vertex gets the highest label, or (2) some inner vertex v of
some principal path P gets the highest label, followed by all other inner vertices
of P getting the next smaller labels. Furthermore, in case (2) and for any fixed
P , the choice of v from P is arbitrary.

Proof. The distinction of cases (1) and (2) is trivial, since other types of vertices
do not exist in G. In case (2), where we first eliminate a vertex v from a principal
path P , we can apply Proposition 2 repeatedly until the rest of P is eliminated,
too. Not only the leaves may be eliminated in any order, it is also immaterial
which inner vertex v from P we choose first: In any case, v gets one positive
charge, and the other inner vertices of P get no charge, hence the choice of v on
P does not affect the objective value M . ��

Lemma 3 enables dynamic programming on subsets of principal vertices and
paths (rather than just vertices):

Theorem 5. MinSumEnds with equidistant labels can be solved in O∗(2p) time,
where p is the total number of principal vertices and paths after the elimination
of tree components, leaves, and cycle components.

Ordering a Sparse Graph to Minimize the Sum of Right Ends of Edges 233

Proof. We eliminate principal vertices and paths as in Lemma 3, in all possible
ways, but: Among all partial solutions that assign the labels larger than sk to the
same n − k vertices (that is, retain the same graph Gk), it suffices to keep some
solution with minimum

∑n
i=k+1 sk · M(k). Furthermore, whenever we eliminate

some principal vertex being incident to some principal paths, we next eliminate
these paths, leaf by leaf, as in Proposition 2.

Let us call two vertices equivalent if they are inner vertices of the same prin-
cipal path. That is, every principal path becomes an equivalence class. Every
principal vertex is an equivalence class of its own. With this definition we observe
that, during the elimination process, equivalence classes are either removed com-
pletely or they get merged, but they are never torn apart. This implies that the
parameter value p never increases, and the time bound follows. ��

In the following we strengthen Theorem5 by making the parameter smaller.
The next lemmas presume the same type of graphs as before.

Lemma 4. Let P be some principal path that ends in some principal vertex v
(and in some other principal vertex different from v). Then, instead of eliminat-
ing v, one can always eliminate the inner vertices of P first, without making the
labeling worse.

Proof. Let u be an arbitrary inner vertex of P , and let d ≥ 3 denote the degree
of v. If we first eliminate v, followed by P , then v receives d−1 positive charges.
In fact, we can assume that P is completely eliminated next, as the ordering of
eliminating leaves is arbitrary.

If we instead eliminate u first, followed by the rest of P and by v, then we
eliminate the same set of vertices and edges as before, until that moment, but u
receives only one positive charge, whereas v receives only d − 2 positive charges
which are located at smaller labels. This makes M strictly smaller, hence it is
never advantageous to assign the highest label to v. ��
Lemma 5. Let P be some principal path with principal vertex v at both ends.
Then, instead of eliminating v, one can always eliminate P first, without making
the labeling worse.

Proof. The argument is similar. Let u be an arbitrary inner vertex of P , and
let d ≥ 3 denote the degree of v. If we first eliminate v, followed by P , then v
receives d − 1 positive charges. Now P becomes a tree component and receives
one negative charge at its lowest label.

If we instead eliminate u first, followed by the rest of P and by v, then u
receives one positive charge, and v receives d − 3 positive charges, making M
strictly smaller. Hence it is not advantageous to give the highest label to v. ��

Lemmas 4 and 5 together state that a principal vertex needs to be considered
for elimination only if all its neighbors are principal vertices, too. Some of our
results can now be nicely expressed using the notion of a core.

For any positive integer d, the d-core of the graph G is the graph obtained
from G by removing vertices of degree smaller than d, and their incident edges,

234 P. Damaschke

as long as possible. The result does not depend on the order of removals. Equiva-
lently, the d-core is the uniquely determined largest induced subgraph of G with
minimum vertex degree d. Remember that we adopt the convention that a loop
at a vertex v contributes only 1 to the degree of v.

Propositions 1 and 2 immediately imply:

Proposition 4. For every graph G and for equidistant labels, there exists an
optimal labeling of G where all vertices in the 2-core of G have smaller labels
than all other vertices. ��

A similar statement is not true for the 3-core. A small counterexample is
the graph consisting of one vertex with two loops and a clique of four vertices.
The clique is the 3-core, but the only optimal labeling gives the lowest label to
the two-loop vertex. However, we can somewhat strengthen Theorem 5 using the
3-core. The following parameter q is smaller than p from Theorem 5, because it
includes only principal vertices in the 3-core.

Theorem 6. MinSumEnds with equidistant labels can be solved in O∗(2q) time,
where q is the number of vertices in the 3-core plus the number of principal paths,
after the elimination of tree components, leaves, and cycle components.

Proof. We proceed as in Theorem 5, but according to Lemmas 4 and 5 we never
have to eliminate principal vertices outside the 3-core. ��

This also implies a bound in a more natural parameter:

Theorem 7. MinSumEnds with equidistant labels can be solved in O∗(6m−n)
time, where m and n denotes the number of edges and vertices, respectively.

Proof. Due to Theorem 6 it suffices to show q ≤ 3(m − n).
We can replace every principal path of arbitrary length with a principal path

with only one inner vertex, as this changes neither q nor m−n. Now every vertex
in the 3-core and every inner vertex of a principal path contributes a summand
exactly 1 to q, by the definition of q. We also divide edges with two different
ends between these two vertices and thus assign fractions of edges to vertices,
such that no fraction is erroneously counted twice.

Every principal vertex outside the 3-core contributes zero to q, by the def-
inition of q. We assign 1/3 of every incident edge to it, hence it contributes a
summand at least 3 · (1/3) − 1 ≥ 0 to m − n, that is, it does not contribute
negatively. Every vertex on a principal path contributes a summand at least
2 · (2/3) − 1 = 1/3 to m − n via its 2 incident edges. (In the worst case, both
ends may be principal vertices that do not belong to the 3-core.) Every vertex
in the 3-core contributes a summand at least 1/2 = 3/2 − 1 to m − n, via halves
of 3 of its incident edges within the 3-core.

In conclusion, the ratio (m − n)/q is at least 1/3. ��

Ordering a Sparse Graph to Minimize the Sum of Right Ends of Edges 235

7 Conclusions

We considered a product location problem in warehouses, with a collection point
at the end of a shelf, and with a small number of different requests of at most
two items, leading to a labeling problem on sparse graphs. We believe that the
FPT results can be further improved: The worst case in Theorem7 is 3-regular
graphs with subdivided edges. Then, eliminations of the principal paths cause
mergings of many other principal paths, hence by far not all subsets of principal
paths can appear. Also, more can be done for non-equidistant labels, weighted
(instead of multiple) edges, and hypergraphs.

Acknowledgments. This work has been done during the author’s engagement as sci-
entific advisor at the Fraunhofer-Chalmers Research Centre for Industrial Mathemat-
ics, Göteborg (FCC). The author appreciates support from FCC and many discussions
with Fredrik Ekstedt and Raad Salman who brought up this type of problems. He also
thanks the referees for very careful reading.

References

1. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for maximum
edge biclique, minimum linear arrangement, and sparsest cut. SIAM J. Comput.
40, 567–596 (2011)

2. Arora, S., Frieze, A., Kaplan, H.: A new rounding procedure for the assignment
problem with applications to dense graphs arrangements. Math. Program. 92, 1–36
(2002)

3. Bhasker, J., Sahni, S.: Optimal linear arrangement of circuit components. In:
HICSS 1987, vol. 2, pp. 99–111 (1987)

4. Boysen, N., Stephan, K.: The deterministic product location problem under a pick-
by-order policy. Discrete Appl. Math. 161, 2862–2875 (2013)

5. Cohen, J., Fomin, F., Heggernes, P., Kratsch, D., Kucherov, G.: Optimal linear
arrangement of interval graphs. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006.
LNCS, vol. 4162, pp. 267–279. Springer, Heidelberg (2006). https://doi.org/10.
1007/11821069 24

6. Eikel, M., Scheideler, C., Setzer, A.: Minimum linear arrangement of series-parallel
graphs. In: Bampis, E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952, pp. 168–
180. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18263-6 15

7. Esteban, J.L., Ferrer-i-Cancho, R.: A correction on shiloach’s algorithm for mini-
mum linear arrangement of trees. SIAM J. Comput. 46, 1146–1151 (2017)

8. Feige, U., Lee, J.R.: An improved approximation ratio for the minimum linear
arrangement problem. Inf. Process. Lett. 101, 26–29 (2007)

9. Fellows, M.R., Hermelin, D., Rosamond, F.A., Shachnai, H.: Tractable parame-
terizations for the minimum linear arrangement problem. ACM Trans. Comput.
Theory 8, 6:1–6:12 (2016)

10. Fernau, H.: Parameterized algorithmics for linear arrangement problems. Discrete
Appl. Math. 156, 3166–3177 (2008)

11. Fomin, F.V., Kratsch, D.: Split and list. In: Fomin, F.V., Kratsch, D. (eds.) Exact
Exponential Algorithms. TTCSAES, pp. 153–160. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16533-7 9

https://doi.org/10.1007/11821069_24
https://doi.org/10.1007/11821069_24
https://doi.org/10.1007/978-3-319-18263-6_15
https://doi.org/10.1007/978-3-642-16533-7_9

236 P. Damaschke

12. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NPcompleteness. Freeman, New York (1979)

13. Mirzaei, S., Kfoury, A.J.: Linear arrangement of Halin graphs. CoRR abs/1509.
08145 (2015)

14. Tamaki, S., Yoshida, Y.: Approximation guarantees for the minimum linear
arrangement problem by higher eigenvalues. In: Gupta, A., Jansen, K., Rolim,
J., Servedio, R. (eds.) APPROX/RANDOM-2012. LNCS, vol. 7408, pp. 313–324.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32512-0 27

https://doi.org/10.1007/978-3-642-32512-0_27

On the Complexity of Singly Connected
Vertex Deletion

Avinandan Das1, Lawqueen Kanesh1, Jayakrishnan Madathil1(B),
Komal Muluk1, Nidhi Purohit2, and Saket Saurabh1,2

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
adas33745@gmail.com, {lawqueen,jayakrishnanm,saket}@imsc.res.in,

komalmuluk15@gmail.com
2 Department of Informatics, University of Bergen, Bergen, Norway

nidhipurohit95@gmail.com

Abstract. A digraph D is singly connected if for all ordered pairs of
vertices u, v ∈ V (D), there is at most one path in D from u to v. In this
paper, we study the Singly Connected Vertex Deletion (SCVD)
problem: Given an n-vertex digraph D and a positive integer k, does
there exist a set S ⊆ V (D) such that |S| ≤ k and D − S is singly
connected? This problem may be seen as a directed counterpart of the
(Undirected) Feedback Vertex Set problem, as an undirected graph
is singly connected if and only if it is acyclic. SCVD is known to be NP-
hard on general digraphs. We study the complexity of SCVD on vari-
ous classes of digraphs such as tournaments, and various generalisations
of tournaments such as digraphs of bounded independence number, in-
and out-tournaments and local tournaments. We show that unlike the
Feedback Vertex Set on Tournaments (FVST) problem, SCVD
is polynomial time solvable on tournaments. In addition, we show that
SCVD is polynomial time solvable on digraphs of bounded independence
number, and on the class of acyclic local tournaments. We also study
the parameterized complexity of SCVD, with k as the parameter, on the
class of in-tournaments. And we show that on in-tournaments (and out-
tournaments), SCVD admits a fixed-parameter tractable algorithm and
a quadratic kernel. We also show that on the class of local tournaments,
which is a sub-class of in-tournaments, SCVD admits a linear kernel.

Keywords: Singly connected digraphs · FPT algorithm · Kernel ·
Bounded independence number · Tournaments · Local tournaments

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant no.
819416), and the Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 237–250, 2020.
https://doi.org/10.1007/978-3-030-48966-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_18

238 A. Das et al.

1 Introduction

A digraph D is said to be singly connected if for every (ordered) pair of vertices u
and v of D, there is at most one (directed) path in D from u to v. In this paper, we
study the Singly Connected Vertex Deletion (SCVD for short) problem,
where the goal is to test if a given digraph can be made singly connected by
deleting a few vertices. This problem may be seen as a directed counterpart of the
Feedback Vertex Set problem. To see this, let us first define undirected singly
connected graphs. An undirected graph G is said to be singly connected if for
every pair of vertices u and v of G, there is at most one path in G between u and
v. But note that an undirected graph is singly connected if and only if it is acyclic.
So, the problem of checking whether it is possible to delete at most k vertices from
a given graph to make it singly connected is the same as the problem of checking
whether it is possible to delete at most k vertices to make a graph acyclic. This
precisely is the Feedback Vertex Set (FVS) problem. (A feedback vertex set
of a graph is a set of vertices whose deletion will render the graph acyclic.) The
complexity of FVS has been studied extensively [3,10,12–14,17,21,26,27,31–
34,37]. FVS, in fact, was one of Karp’s 21 NP-hard problems [28]. As for its
algorithmic tractability, FVS is fixed-parameter tractable (when parameterized
by the solution size) [21] and it admits a quadratic kernel [40]. FVS also admits
constant factor approximation algorithms [3,8,16,24].

Coming back to digraphs, the Directed Feedback Vertex Set (DFVS)
problem asks if a given digraph can be made acyclic by deleting at most k ver-
tices. Naturally, this problem has been deemed the appropriate directed coun-
terpart of Feedback Vertex Set, and has been studied in the frameworks of
approximation algorithms [39] and parameterized algorithms [15]. Although the
parameterized complexity of DFVS had been raised as an open problem since
the emergence of parameterized algorithms in the early 90s [20,22], it was set-
tled only in 2008 by Chen et al. [15]. They showed that the problem admits a
4kk!nO(1) time algorithm, and hence is fixed-parameter tractable when param-
eterized by k. If fixed-parameter tractability of DFVS remained open for years,
the kernelization complexity of the problem proved even more elusive. While
the question whether DFVS (parameterized by k) admits a polynomial kernel
still remains unresolved, several attempts have been made to study the kernel-
ization complexity of “DFVS-adjacent” problems. These include studying the
problem with larger parameters [9,35], restricting the input digraph to smaller
classes [1,7] and imposing more conditions on the acyclic digraph that results
from the deletion of a feedback vertex set [2,36].

While FVS and DFVS generated a large volume of literature, the SCVD
problem, already known to be NP-hard [19], received little attention from the
parameterized complexity community. In this paper, as a first step, we start an
investigation into the complexity of SCVD on various classes of digraphs such
as tournaments, local tournaments, digraphs of bounded independence number
etc. We formally define the problem below.

On the Complexity of Singly Connected Vertex Deletion 239

Singly Connected Vertex Deletion (SCVD) Parameter: k
Input: A digraph D and a non-negative integer k.
Question: Does there exist a set S ⊆ V (D) such that |S| ≤ k and D − S is
singly connected?

x y

z

(a) Obstruction to
acyclic tournament.

x y

z

(b) Obstruction to
singly connected
tournament.

Fig. 1. Obstructions to acyclic and singly connected tournaments.

As observed earlier, an undirected graph is singly connected if and only if it
is acyclic. But notice that this property does not hold for digraphs. A directed
cycle, for instance, is singly connected. And consider a digraph on 3 vertices, say,
x, y and z, and with arcs (x, y), (y, z) and (x, z). This digraph, while acyclic, is not
singly connected. It is not surprising then that SCVD and DFVS show markedly
different behaviour. This is perhaps best illustrated by the fact that while DFVS
is NP-hard on tournaments, we show that SCVD is polynomial time solvable
on tournaments (Lemma 2). This difference in behaviour appears even starker
considering the fact that these two problems require that “obstructions” with a
“similar structure” be hit. Notice that obstructions to an acyclic tournament are
directed triangles, i.e., all triplets of vertices x, y and z with arcs (x, y), (y, z) and
(z, x), whereas obstructions to a singly connected tournament are all triplets of
vertices x, y and z with arcs (x, y), (y, z) and (x, z) (see Fig. 1).

A digraph D is not singly connected if and only if there exists a pair of
vertices u and v such that D contains two paths from u to v. It is not difficult to
see that a digraph D is not singly connected if and only if there exists a pair of
vertices u and v such that D contains two internally vertex disjoint paths from
u to v. (See Lemma 1.) Two internally vertex disjoint paths between a pair of
vertices of a digraph constitute a cycle in the underlying undirected graph. That
is, the obstructions to a singly connected digraph are cycles in the underlying
undirected graph. But notice that not every cycle in the underlying undirected
graph is necessarily an obstruction. Thus both DFVS and SCVD require us to
examine if a subset of the cycles in the underlying undirected graph can be hit
with a few vertices.

Our Contribution. We study the SCVD problem on several well-studied classes
of digraphs such as tournaments, α-bounded digraphs, local tournaments, etc.

A digraph D is said to be a tournament if for every pair of vertices u and v of
D, exactly one of the arcs (u, v) and (v, u) is present in D. The class of α-bounded

240 A. Das et al.

digraphs were introduced by Fradkin and Seymour [23] as a generalisation of
tournaments. For a fixed positive integer α, a digraph D is said to be α-bounded
if the size of a maximum independent set of the underlying undirected graph of D
is at most α. Note that tournaments are 1-bounded digraphs. Local tournaments
are yet another generalisation of tournaments. A digraph D is said to be an
in-tournament (resp. out-tournament) if for every vertex v of D, the set of
in-neighbours (resp. out-neighbours) of v induces a tournament. A digraph D
is said to be a local tournament if it is both an in-tournament and an out-
tournament. A digraph D is said to be a an acyclic local tournament if D is
both a directed acyclic graph and a local tournament. (See, for example, the
chapter on locally semi-complete digraphs [5] in the monograph edited by Bang-
Jensen and Gutin [6] for a survey of literature on these classes of digraphs.)

We show that Singly Connected Vertex Deletion

• is polynomial time solvable on tournaments and α-bounded digraphs,
• is polynomial time solvable on acyclic local tournaments,
• has a 2knO(1) algorithm and O(k2) vertex kernel on in- and out-tournaments,
• and has an O(k) vertex kernel on local tournaments.

The polynomial time solvability of SCVD on tournaments follows from a
simple observation that no tournament with at least four vertices can be singly
connected. A similar result holds for α-bounded digraphs as well: no α-bounded
digraph with at least 2α2 + 4α vertices can be singly connected. In order to prove
this observation, we use the Gallai-Milgram theorem [25], which says that the
vertices of a digraph D can be covered by a disjoint collection of paths, such that
the number of paths does not exceed the size of a maximum independent set of
the underlying undirected graph of D. On acyclic local tournaments, we design a
polynomial time algorithm that computes a minimum-sized vertex subset whose
deletion will make the digraph singly connected. Our algorithm uses the fact that
every connected local tournament has a Hamiltonian path [4], which in turn,
implies that every connected acyclic local tournament has a unique topological
ordering. We show that SCVD on in-tournaments (and out-tournaments) can
be reduced to the 3-Hitting Set problem, and thus admits a simple 3knO(1)

time branching algorithm and an O(k2) vertex kernel. But we use the technique
of iterative compression to design a 2knO(1) algorithm for SCVD on in and out-
tournaments. And our O(k) vertex kernel for SCVD on local tournaments relies
on the fact that for a local tournament D and a set of vertices S ⊆ V (D) such
that D − S is singly connected, no vertex in S can have more than a constant
number of neighbours in V (D) \ S.

Related Work on Singly-Connected Digraphs. As noted above, the SCVD
problem was shown to be NP-hard by Dietzfelbinger and Jaberi [19]. The reduc-
tion in [19], in fact, shows that the problem is NP-hard even on directed acyclic
graphs. Their work shows that the arc-deletion version of the problem is also
NP-hard, i.e., the problem of testing whether a given digraph can be made singly
connected by deleting at most a given number of arcs. As for recognising singly
connected digraphs, i.e., the problem of testing whether a given digraph is singly

On the Complexity of Singly Connected Vertex Deletion 241

connected, Buchsbaum and Carlisle [11] gave an algorithm that runs in O(n2)
time, where n is the number of vertices in the input digraph. Khuller [29,30]
gave another O(n2) algorithm for this problem. Dietzfelbinger and Jaberi [19]
presented a refined version of the algorithm of Buchsbaum and Carlisle [11] that
runs in time O(s·t + m), where m is the number of arcs, and s and t respectively
are the number of sources and sinks in the input digraph.

2 Preliminaries

For a positive integer n, we denote the set {1, 2, . . . , n} by [n]. Let S be a finite
set, and let σ be an ordering of the elements of S. For x, y ∈ S, we write x <σ y
to mean that x appears before y in the ordering σ. And we write x ≤σ y to mean
that either x = y or x <σ y.

Digraphs. For a digraph D, V (D) denotes the vertex set and A(D) denotes the
arc set of D. For a vertex v ∈ V (D), N+

D (v) denotes the set of all out-neighbours
of v, and N−

D (v) denotes the set of all in-neighbours of v, that is, N+
D (v) =

{u ∈ V (D) | (v, u) ∈ A(D)} and N−
D (v) = {u ∈ V (D) | (u, v) ∈ A(D)}. And

ND(v) denotes the set of all neighbours of v in the underlying undirected graph
of D, that is, ND(v) = N+

D (v) ∪ N−
D (v). Also, we define N+

D [v] = N+
D (v) ∪ {v},

N−
D [v] = N−

D (v)∪{v} and ND[v] = ND(v)∪{v}. For a set X ⊆ V (D), we define
ND(X) = ∪v∈XND(v).

For a set A′ ⊆ A(D), D − A′ denotes the digraph (V (D), A(D) \ A′). For a
set V ′ ⊆ V (D), D[V ′] denotes the subgraph of D induced by V ′. Similarly, for
S ⊆ V (D), D − S denotes the digraph D[V (D) \ S].

A digraph D is said to be connected if the underlying undirected graph of D
is connected. A digraph D on 3 vertices, say, x, y and z, is said to be an acyclic
triangle if A(D) = {(x, y), (y, z), (x, z)}.

A path cover P of a digraph D is a disjoint collection of paths in D such that
for every vertex v ∈ V (D), there is a path P ∈ P such that v ∈ V (P).

For the sake of convenience, we repeat below some of the definitions we
introduced in Sect. 1. Recall that a directed graph D is a tournament if for every
pair of distinct vertices u, v ∈ V (D), either (u, v) ∈ A(D) or (v, u) ∈ A(D), but
not both.

Definition 1 (Out-tournament and In-tournament). A directed graph D
is an out-tournament (resp. in-tournament) if for all v ∈ V (D), D[N+

D (v)] (resp.
D[N−

D (v)]) is a tournament.

Definition 2 (Local tournament). A directed graph D is a local tournament
if D is both an out-tournament and an in-tournament.

Note that, by the definition of singly connected digraphs, a digraph D is
not singly connected if there exist two paths from u to v for u, v ∈ V (D). Note
that these two paths need not be internally vertex disjoint. But the following
lemma says that we may as well assume that the two paths are internally vertex
disjoint.

242 A. Das et al.

Lemma 1 (�1). A directed graph D is not singly connected if and only if there
exist two vertices u, v ∈ V (D) such that there exist two internally vertex disjoint
paths from u to v.

3 Singly Connected Vertex Deletion on α-bounded
Digraphs and Acyclic Local Tournaments

In this section, we study the optimisation version of SCVD restricted to α-
bounded digraphs and acyclic local tournaments, and prove that the problem is
polynomial time solvable on both these classes of digraphs. That is, we consider
the following problem.

Minimum Singly Connected Vertex Deletion (Min-SCVD)
Input: A digraph D.
Output: A minimum-sized set S ⊆ V (D) such that D−S is singly connected.

3.1 Min-SCVD on α-bounded Digraphs

In this section, we prove that Min-SCVD is polynomial time solvable on α-
bounded digraphs. Specifically, we prove the following theorem.

Theorem 1. Min-SCVD can be solved in time O(nα(2α+3)) on α-bounded
digraphs, where n is the number of vertices of the input α-bounded digraph.

We first consider the problem on tournaments. Although Theorem 1 applies
to tournaments as well, as tournaments are 1-bounded digraphs, we consider
tournaments separately, and prove that the Min-SCVD problem can be solved
in O(n3) time on tournaments. This result follows from a simple observation
that no tournament with 4 or more vertices can be singly connected.

Lemma 2 (�). Any tournament on at least 4 vertices is not singly connected.

Using Lemma 2 and the fact that tournaments are hereditary, we get the
following corollary.

Corollary 1 (�). Min-SCVD on tournaments is solvable in O(n3) time.

We now move on to α-bounded digraphs, and prove Theorem 1. We prove
below that no α-bounded digraph with at least α(2α + 4) vertices is singly
connected. Note that this immediately gives an O(nα(2α+3)) time algorithm for
Min-SCVD on α-bounded digraphs, as solving Min-SCVD reduces to finding
a maximum sized induced subgraph that is singly connected, which can be done
in the claimed runtime.

We need the following theorem due to Gallai and Milgram [25] to prove our
observation that no α-bounded digraph with at least α(2α + 4) vertices can be
singly connected.
1 Due to paucity of space, the proofs of statements marked with a � have been omitted.

On the Complexity of Singly Connected Vertex Deletion 243

v1 v2 v3 v4 v5

(a) The arc (v2, v4) is a forward
arc w.r.t. the path v1 · · · v5.

v1 v2 v3 v4 v5

(b) The arc (v4, v2) is a back-
ward arc w.r.t. the path v1 · · · v5.

Fig. 2. Forward and backward arcs w.r.t. a path.

Theorem 2 (Gallai and Milgram [18,25]). Every directed graph D has a
path cover P and an independent set {vp | P ∈ P} of vertices such that vp ∈ P
for every P ∈ P.

We can assume that the set {vp | P ∈ P} in Theorem 2 is a maximal independent
set. If not, we can add more vertices to the set until it becomes maximal, and
“break” the paths in P at those newly added vertices to make new paths. The
new collection of paths is a path cover of D such that every path contains a
vertex of the maximal independent set. We record this fact below.

Observation 1. Every directed graph D has a path cover P and a maximal
independent set {vp | P ∈ P} of vertices such that vp ∈ P for every P ∈ P.

Let D be a digraph. For a path P = v1 . . . v� in D, we define forward arcs
and backward arcs with respect to P in D as follows. An (vi, vj) ∈ A(D) is a
forward arc w.r.t. P if vi, vj ∈ V (P), and j > i + 1. And (vi, vj) ∈ A(D) is a
backward arc w.r.t. P if vi, vj ∈ V (P) and i > j + 1 (see Fig. 2).

For a path P = v1 . . . v� in a digraph D, if (vi, vj) ∈ A(D) is a forward arc
w.r.t. P then note that there are two distinct paths from vi to vj in D: vi . . . vj

and vivj . Therefore, we have the following observation.

Observation 2. If a digraph D has a path P such that D contains a forward
arc w.r.t. P , then D is not singly connected.

We now prove the following lemma, which, in turn proves Theorem 1.

Lemma 3. For each fixed α ∈ N, every α-bounded digraph with at least α(2α+4)
vertices is not singly connected.

Proof. Let D be any α-bounded digraph such that |V (D)| ≥ α(2α+4). Assume
that D is singly connected. By Theorem 2 (and Observation 1), there is a max-
imal independent set I such that D can be decomposed into a collection P of
|I| vertex disjoint paths such that each path contains one vertex from I. Let
|I|(= |P|) = α′. Note that α′ ≤ α, as D is an α-bounded digraph. Then, since
|V (D)| ≥ α(2α + 4), by the pigeonhole principle, there exists a path P in P
with at least 2α + 4 vertices. Let P be v1 . . . v�, where � ≥ (2α + 4), be such a
path. Let vP be a vertex of P such that vP ∈ I. We now prove the following two
claims.

Claim 1 (�). With respect to the path P , the vertex vP can have at most two
backward arcs and no forward arcs incident on it.

244 A. Das et al.

Claim 2 (�). For a vertex v /∈ V (P), there can be at most two arcs between v
and V (P).

Now, let IP = N [vP] ∩ V (P), i.e., the set IP ⊆ V (P) contains vP and the
vertices in V (P) that are adjacent to vP . Since P is a path and because of
Claim 1, |IP | ≤ 5. Let S = V (P) \ IP . Then, |S| ≥ 2α − 1, as |V (P)| ≥ 2α + 4.
Also, observe that no vertex in S is adjacent to vP . Then, every vertex in S
is adjacent to some vertex in I \ {vP }. To see this, consider x ∈ S. Note first
that x /∈ I, as I ∩ V (P) = {vP }. And now, if x is not adjacent to any vertex in
I \ {vP }, then I ∪ {x} is an independent set, which contradicts the maximality
of I. Therefore, |ND(I \{vP })∩S| = |S| ≥ 2α−1. Now, since |I \ {vP }| ≤ α−1,
by the pigeonhole principle, there is a vertex in I \ {vP } which is adjacent to at
least three vertices in S, which, by Claim 2, is not possible. This completes the
proof of Lemma 3. �	

3.2 Polynomial Time Algorithm for Min-SCVD on Acyclic Local
Tournaments

In this section, we prove that Min-SCVD is polynomial time solvable on acyclic
local tournaments. Without loss of generality, let us assume that the input acyclic
local tournament is connected. Otherwise, we can find an optimal solution in each
connected component separately and return the union of the optimal solutions
for all the connected components. Specifically, this section is devoted to proving
the following theorem.

Theorem 3. Minimum Singly Connected Vertex Deletion can be solved
in time O(nO(1)) on acyclic local tournaments, where n is the total number of
vertices in the input acyclic local tournament.

The proof of Theorem 3 crucially uses the fact that every connected local
tournament has a Hamiltonian path [4], which, in turn, implies that every con-
nected acyclic local tournament has a unique topological ordering.

We first state the following lemma. It is so well-known that we omit its proof.

Lemma 4. Let D be a directed acyclic graph. Then, D has a topological order-
ing. That is, there exists an ordering σ = (v1, . . . , vn) of the vertices of D such
that for every arc (vi, vj) ∈ A(D), we have i < j, i.e., vi appears before vj in
the ordering σ. Moreover, there exists a polynomial time algorithm that, given a
directed acyclic graph D as input, finds a topological ordering of D.

It is a folklore result that every tournament contains a Hamiltonian path.
Bang-Jensen [4] showed that this applies to connected local tournaments as
well. For the sake of completeness, we prove this below.

Lemma 5 (�). Let D be a connected local tournament. Then D contains a
Hamiltonian path.

The following lemma follows from Lemmas 4 and 5.

On the Complexity of Singly Connected Vertex Deletion 245

Lemma 6 (�). Let D be a connected acyclic local tournament and P =
v1v2 . . . vn be a Hamiltonian path of D. Then, σ = (v1, . . . , vn) is the unique
topological ordering of D.

Notation. Let D be an acyclic local tournament and σ = (v1, . . . , vn) be the
unique topological ordering of D. For a vertex u ∈ V (D), by �(u), we denote
the last vertex v in the ordering σ such that (u, v) ∈ A(D). For each i ∈ [n], we
define an ordered set Si = {vi, vi+1, . . . , �(vi)}.

Lemma 7 (�). Let D be a connected acyclic local tournament and σ =
(v1, . . . , vn) be the topological ordering of D. Then, for all i ∈ [n], the graph
D[Si] is an acyclic tournament. Moreover, Si = N+

D (vi) ∪ {vi}.
The following lemma says that any optimal solution to Min-SCVD on D

can exclude at most two vertices from the set Si for each i ∈ [n].

Lemma 8 (�). Let D be an acyclic local tournament and S be an optimal solu-
tion to Min-SCVD on D. Let σ = (v1, v2, . . . , vn) be the topological ordering of
D. Then, for every i ∈ [n], we have |Si \ S| ≤ 2.

Lemma 9 (�). Let D be an acyclic local tournament and σ = (v1, v2, . . . , vn) be
the topological ordering of D. Let vi, vj ∈ V (D) such that i < j. Let �(vi) = vpi

and �(vj) = vpj
. Then, pi ≤ pj.

The following lemma forms the basis of our algorithm.

Lemma 10 (�). Let D be an acyclic local tournament and σ = (v1, . . . , vn) be
the topological ordering of D. Then, there exists an optimal solution to Min-

SCVD on D that does not contain the vertices v1, v2.

Proof (Proof Sketch). Let S be an optimal solution to Min-SCVD on D. If
v1, v2 /∈ S, then the lemma holds. So assume that either v1 ∈ S or v2 ∈ S.

By Lemma 7, the graphs D[S1] and D[S2] are acyclic tournaments, and S1 =
N+

D (v1) ∪ {v1} and S2 = N+
D (v2) ∪ {v2}. By Lemma 9, we have �(v1) ≤σ �(v2).

This implies that S1 \ {v1} ⊆ S2. By Lemma 8, we have |S1 \ S| ≤ 2 and
|S2 \S| ≤ 2. We now consider two cases depending on whether v1 ∈ S or v2 ∈ S.
We only prove the case when v1 ∈ S here.

Case 1: v1 ∈ S. If S1\S = ∅, then since N+
D (v1) ⊆ S1, the digraph D−(S\{v1})

is also singly connected, which contradicts the assumption that S is an optimal
solution. Therefore, |S1 \ S| ≥ 1. Let vp ∈ S1 be such that vp /∈ S. (Note that
p �= 1 as we are in the case when v1 ∈ S.) We shall show that (S \ {v1}) ∪ {vp}
is also an optimal solution to Min-SCVD on D.

Now, consider the digraph D − (S \ {v1}). Since S is an optimal solution,
D − (S \ {v1}) is not singly connected. That is, D − (S \ {v1}) contains a pair of
vertices u and v such that there are two internally vertex disjoint paths in D −
(S \ {v1}) from u to v. We refer to such a pair of paths as a forbidden structure.
But since D − S is singly connected, any forbidden structure in D − (S \ {v1})

246 A. Das et al.

must contain v1. Also, note that since v1 is the first vertex in the topological
ordering σ, any forbidden structure in D − (S \ {v1}) must be a pair of paths
that start from v1.

Now, since, |S1 \S| ≤ 2, the vertex v1 has at most two out-neighbours in the
digraph D − (S \ {v1}), and vp is one of them. Therefore, if there exists a vertex
vj in D − (S \ {v1}) such that there are two vertex disjoint paths from v1 to
vj in D − (S \ {v1}), then one of those paths must contain the vertex vp. This
implies that (S \ {v1}) ∪ {vp} is also an optimal solution to Min-SCVD on D.

�	

Algorithm 1: Algo(D)

1 Input: A connected acyclic local tournament D.
2 Output: A solution S to Min-SCVD for D.
3 Let (v1, . . . , vn) be the topological ordering of D.
4 if D is singly connected then
5 return S = ∅;
6 else
7 return S = (S1 \ {v1, v2})∪Algo(D − (S1 \ {v2}));
8 end

We are now ready to describe our algorithm, which works as follows. We
greedily construct a solution S as follows. First, we add the set S1 \ {v1, v2} to
S, and by doing this, we cover all the forbidden structures containing v1. (Note
that D − (S1 \ {v1, v2}) could still contain some forbidden structures containing
v2). Next, we recursively find a solution in the digraph D− (S1 \{v2}). A formal
description of our algorithm Algo is in Algorithm 1. It is easy to see that the
algorithm runs in polynomial time. The correctness of the algorithm follows from
Lemma 10. This completes the proof of Theorem 3.

4 Singly Connected Vertex Deletion on In-Tournaments

In this section, we design an algorithm for SCVD on in-tournaments that runs
in time 2knO(1). We use the technique of iterative compression, introduced by
Reed, Smith and Vetta [38] to design this algorithm. We also show that SCVD
on in-tournaments admits a kernel with O(k2) vertices.

Remark 1. We note that the classical complexity of SCVD on in-tournaments
(and local touranments) is still open. We do not know whether the problem is
NP-hard or not on in-tournaments and on local tournaments.

Recall that a directed graph D is said to be an in-tournament if for all vertices
v ∈ V (D), D[N−

D (v)] is a tournament. We first prove the following preparatory
results that will be used to design our algorithm and kernel.

Lemma 11 (�). Let D be an in-tournament. Then D is singly connected if and
only if |N−

D (v)| ≤ 1 for all v ∈ V (D).

On the Complexity of Singly Connected Vertex Deletion 247

As an immediate consequence of Lemma 11, we get the following result, which
says that singly connected in-tournaments are precisely those digraphs that are
acyclic triangle-free.

Lemma 12 (�). Let D be an in-tournament. Then D is singly connected if and
only if D does not contain an acyclic triangle as an induced subgraph.

In light of Lemma 12, it is not difficult to see that the SCVD problem on
in-tournaments reduces to the 3-Hitting Set problem. The 3-Hitting Set

problem takes as input a set U , a family F of subsets of U such that |F | ≤ 3
for every F ∈ F , and a non-negative integer k. And the question is to determine
if there exists X ⊆ U such that |X| ≤ k and X ∩ F �= ∅ for every F ∈ F .
Given an instance (D, k) of SCVD on in-tournaments, where D is an n-vertex in-
tournament, we can construct an equivalent instance (U,F , k′) of 3-Hitting Set

by taking U = V (D), F = {{x, y, z} | {x, y, z} induces an acyclic triangle}, and
k′ = k. The fastest algorithm for 3-Hitting Set, to the best of our knowledge,
is due to Wahlström [41, Corollary 69] and runs in time 2.0755knO(1). Thus,
we can conclude that SCVD problem on in-tournaments can be solved in time
2.0755knO(1) as well. In the remaining part of this section, we show that SCVD

on in-tournaments can in fact be solved in time 2knO(1). Before that we also
note that 3-Hitting Set has a O(k2)-sized kernel [1, Remark 1], which can be
adapted to SCVD on in-tournaments as well. We record this fact below.

Observation 3. SCVD on in-tournaments admits an O(k2) kernel.

We now prove the following theorem.

Theorem 4 (�). SCVD on in-tournaments admits an algorithm that runs in
time 2knO(1).

To prove Theorem 4, we apply the technique of iterative compression, and show
that solving SCVD on in-tournaments boils down to solving 2knO(1) many
instances of the Vertex Cover (VC) problem on pseudoforests. A pseudo-
forest is an undirected graph in which every connected component contains at
most one cycle; and VC is polynomial time solvable on pseudoforests. Thus we
obtain the runtime claimed in the theorem statement. Theorem 4 implies an
analogous result for out-tournaments as well.

Theorem 5 (�). SCVD on out-tournaments admits an algorithm that runs in
time 2knO(1).

5 A Linear Kernel for SCVD on Local Tournaments

In this section, we prove that SCVD admits a linear vertex kernel on local
tournaments. Specifically, we prove the following theorem.

Theorem 6. SCVD on local tournaments admits a kernel with O(k) vertices.

248 A. Das et al.

Let (D, k) be an instance of SCVD, where D is a local tournament. The basis
of our kernelization algorithm is Lemma 12. Recall Lemma 12, which says that
an in-tournament (and hence a local tournament) is singly connected if and only
if it does not contain an acyclic triangle as a subgraph. We give the following
reduction rule in order to simplify the input instance (D, k) of SCVD. We apply
this reduction rule exhaustively.

Reduction Rule 1. If a vertex v ∈ V (D) is not contained in any acyclic tri-
angle, then delete v from D. Return instance (D′, k), where D′ = D − {v}.
Lemma 13 (�). Reduction Rule 1 is safe.

After an exhaustive application of Reduction Rule 1, every vertex in D is
contained in some acyclic triangle.

Next, we prove the following lemma that will help us bound the kernel size.

Lemma 14 (�). Let D be a local tournament and S ⊆ V (D) such that D − S
is singly connected. Then, for every vertex v ∈ S, v has at most 3 in-neighbours
and at most 3 out-neighbours in V (D) \ S.

Next, using Lemma 14, we obtain the following lemma.

Lemma 15 (�). Let (D, k) be an instance of SCVD on local tournaments and
assume that Reduction Rule 1 is no longer applicable. If (D, k) is a yes-instance
of SCVD, then |V (D)| ≤ 7k.

Reduction Rule 2. If |V (D)| ≥ 7k+1, then return that (D, k) is a no-instance
of SCVD.

The safeness of the above reduction rule follows from Lemma 15. When
Reduction Rule 2 is no longer applicable, we obtain our required bound in Theo-
rem 6. Observe that both the reduction rules can be applied in polynomial time
and are applied only polynomially many times. The correctness of our kernel
follows from Lemmas 13 and 15. This completes the proof of Theorem 6.

6 Conclusion

We studied the SCVD problem on various classes of digraphs such as tourna-
ments, α-bounded digraphs, acyclic local tournaments, in-tournaments and local
tournaments. Our algorithm for SCVD on in-tournaments runs in time 2knO(1).
It remains to be seen if this runtime is optimal or can be improved. In particular,
as noted in Remark 1, it is open whether SCVD is NP-hard or polynomial time
solvable on in-tournaments. Another class of digraphs that one could consider is
the class of locally transitive tournaments. A digraph D is said to be a locally
transitive tournament if for every vertex v ∈ V (D), both N+

D (v) and N−
D (v)

induce transitive tournaments. Note that locally transitive tournaments are a
super-class of acyclic local tournaments, and a sub-class of local tournaments.
It would be interesting to see if one can extend the polynomial time algorithm

On the Complexity of Singly Connected Vertex Deletion 249

for SCVD on acyclic local tournaments to locally transitive tournaments. As for
the parameterized complexity of SCVD, the most interesting open problem is
to resolve the complexity of SCVD on general digraphs, i.e., whether SCVD,
parameterized by the solution size, admits a fixed-parameter tractable algorithm
on general digraphs?

References

1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst.
Sci. 76(7), 524–531 (2010)

2. Agrawal, A., Saurabh, S., Sharma, R., Zehavi, M.: Kernels for deletion to classes
of acyclic digraphs. J. Comput. Syst. Sci. 92, 9–21 (2018)

3. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

4. Bang-Jensen, J.: Locally semicomplete digraphs: a generalization of tournaments.
J. Graph Theory 14(3), 371–390 (1990)

5. Bang-Jensen, J.: Locally semicomplete digraphs and generalizations. In: Classes of
Directed Graphs, pp. 245–296 (2018)

6. Bang-Jensen, J., Gutin, G. (eds.): Classes of Directed Graphs. SMM. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-71840-8

7. Bang-Jensen, J., Maddaloni, A., Saurabh, S.: Algorithms and kernels for feed-
back set problems in generalizations of tournaments. Algorithmica 76(2), 320–343
(2016)

8. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for
the feedback vertex set problem with applications to constraint satisfaction and
bayesian inference. SIAM J. Comput. 27(4), 942–959 (1998)

9. Bergougnoux, B., Eiben, E., Ganian, R., Ordyniak, S., Ramanujan, M.S.: Towards
a polynomial kernel for directed feedback vertex set. In: MFCS, pp. 36:1–36:15
(2017)

10. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68 (1994)
11. Buchsbaum, A.L., Carlisle, M.C.: Determining uni-connectivity in directed graphs.

Inf. Process. Lett. 48(1), 9–12 (1993)
12. Cao, Y.: A naive algorithm for feedback vertex set. In: SOSA, pp. 1:1–1:9 (2018)
13. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: new measure and new structures.

Algorithmica 73(1), 63–86 (2015)
14. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for

feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)
15. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm

for the directed feedback vertex set problem. J. ACM 55(5), 21:1–21:19 (2008)
16. Chudak, F.A., Goemans, M.X., Hochbaum, D.S., Williamson, D.P.: A primal-dual

interpretation of two 2-approximation algorithms for the feedback vertex set prob-
lem in undirected graphs. Oper. Res. Lett. 22(4–5), 111–118 (1998)

17. Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An
o(2o(k)n3) FPT algorithm for the undirected feedback vertex set problem. Theory
Comput. Syst. 41(3), 479–492 (2007)

18. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

19. Dietzfelbinger, M., Jaberi, R.: On testing single connectedness in directed graphs
and some related problems. Inf. Process. Lett. 115(9), 684–688 (2015)

https://doi.org/10.1007/978-3-319-71840-8
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3

250 A. Das et al.

20. Downey, R.G., Fellows, M.R.: Fixed-parameter intractability. In: Proceedings of
the Seventh Annual Structure in Complexity Theory Conference, pp. 36–49 (1992)

21. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In:
Complexity Theory: Current Research, pp. 191–225 (1992)

22. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
basic results. SIAM J. Comput. 24(4), 873–921 (1995)

23. Fradkin, A., Seymour, P.: Edge-disjoint paths in digraphs with bounded indepen-
dence number. J. Comb. Theory Ser. B 110, 19–46 (2015)

24. Fujito, T.: A note on approximation of the vertex cover and feedback vertex set
problems - unified approach. Inf. Process. Lett. 59(2), 59–63 (1996)

25. Gallai, T., Milgram, A.N.: Verallgemeinerung eines graphentheoretischen satzes
von rédei: Ladislaus rédei zum 60. geburtstag. Acta scientiarum mathematicarum
21(3–4), 181–186 (1960)

26. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization.
J. Comput. Syst. Sci. 72(8), 1386–1396 (2006)

27. Kanj, I.A., Pelsmajer, M.J., Schaefer, M.: Parameterized algorithms for feedback
vertex set. In: IWPEC, pp. 235–247 (2004)

28. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp.
85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

29. Khuller, S.: An o(|v|2) algorithm for single connectedness. Inf. Process. Lett. 72(3–
4), 105–107 (1999)

30. Khuller, S.: Addendum to “an o(|v|2) algorithm for single connectedness”. Inf.
Process. Lett. 74(5–6), 263 (2000)

31. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Pro-
cess. Lett. 114(10), 556–560 (2014)

32. Li, D., Liu, Y.: A polynomial algorithm for finding the minimum feedback vertex
set of a 3-regular simple graph 1. Acta Mathematica Scientia 19(4), 375–381 (1999)

33. Liang, Y.D.: On the feedback vertex set problem in permutation graphs. Inf. Pro-
cess. Lett. 52(3), 123–129 (1994)

34. Liang, Y.D., Chang, M.: Minimum feedback vertex sets in cocomparability graphs
and convex bipartite graphs. Acta Informatica 34(5), 337–346 (1997)

35. Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Sharma, R., Zehavi, M.: Wannabe
bounded treewidth graphs admit a polynomial kernel for DFVS. In: WADS, pp.
523–537 (2019)

36. Mnich, M., van Leeuwen, E.J.: Polynomial kernels for deletion to classes of acyclic
digraphs. Discrete Optim. 25, 48–76 (2017)

37. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algo-
rithms for finding feedback vertex sets. ACM Trans. Algorithms 2(3), 403–415
(2006)

38. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett.
32(4), 299–301 (2004)

39. Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–
288 (1995)

40. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms 6(2),
32:1–32:8 (2010)

41. Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and
related problems. Ph.D. thesis, Department of Computer and Information Science,
Linköpings universitet (2007)

https://doi.org/10.1007/978-1-4684-2001-2_9

Equitable d-degenerate Choosability
of Graphs

Ewa Drgas-Burchardt1 , Hanna Furmańczyk2(B) ,
and Elżbieta Sidorowicz1

1 Faculty of Mathematics, Computer Science and Econometrics,
University of Zielona Góra, Prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland

{E.Drgas-Burchardt,E.Sidorowicz}@wmie.uz.zgora.pl
2 Institute of Informatics, Faculty of Mathematics, Physics and Informatics,

University of Gdańsk, 80-309 Gdańsk, Poland
hanna.furmanczyk@ug.edu.pl

Abstract. Let Dd be the class of d-degenerate graphs and let L be a
list assignment for a graph G. A colouring of G such that every ver-
tex receives a colour from its list and the subgraph induced by vertices
coloured with one color is a d-degenerate graph is called the (L, Dd)-
colouring of G. For a k-uniform list assignment L and d ∈ N0, a graph G
is equitably (L, Dd)-colorable if there is an (L, Dd)-colouring of G such
that the size of any colour class does not exceed �|V (G)|/k�. An equitable
(L, Dd)-colouring is a generalization of an equitable list coloring, intro-
duced by Kostochka et al., and an equitable list arboricity presented by
Zhang. Such a model can be useful in the network decomposition where
some structural properties on subnets are imposed. In this paper we give
a polynomial-time algorithm that for a given (k, d)-partition of G with
a t-uniform list assignment L and t ≥ k, returns its equitable (L, Dd−1)-
colouring. In addition, we show that 3-dimensional grids are equitably
(L, D1)-colorable for any t-uniform list assignment L where t ≥ 3.

Keywords: Equitable choosability · d-degenerate graph

1 Motivation and Preliminaries

In last decades, a social network graphs, describing relationship in real life,
started to be very popular and present everywhere. Understanding key structural
properties of large-scale data networks started to be crucial for analyzing and
optimizing their performance, as well as improving their security. This topic
has been attracting attention of many researches, recently (see [1,6,7,11]). We
consider one of problems connected with the decomposition of networks into
smaller pieces fulfilling some structural properties. For example, we may desire
that, for some security reason, the pieces are acyclic or even independent. This
is because of in such a piece we can easily and effectively identify a node failure
since the local structure around such a node in this piece is so clear that it
c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 251–263, 2020.
https://doi.org/10.1007/978-3-030-48966-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_19&domain=pdf
http://orcid.org/0000-0001-6229-177X
http://orcid.org/0000-0001-8057-4108
http://orcid.org/0000-0002-7774-0512
https://doi.org/10.1007/978-3-030-48966-3_19

252 E. Drgas-Burchardt et al.

can be easily tested using some classic algorithmic tools [11]. Sometimes, it is
also desirable that the sizes of pieces are balanced. It helps us to maintain the
whole communication network effectively. Such a problem can be modeled by
minimization problems in graph theory, called an equitable vertex arboricity or
an equitable vertex colourability of graphs. Sometimes we have some additional
requirements on vertices/nodes that can be modeled by a list of available colours.
So, we are interested in the list version, introduced by Kostochka, Pelsmajer and
West [5] (an independent case), and by Zhang [10] (an acyclic case).

In colourability and arboricity models the properties of a network can be
described in the language of the upper bound on the minimum degree, i.e. each
colour class induces a graph whose each induced subgraph has the minimum
degree bounded from above by zero or one, respectively. In the paper we consider
the generalization of these models in which each colour class induces a graph
whose each induced subgraph has the minimum degree bounded from above by
some natural constant. Let N0 = N∪{0}. For d ∈ N0, the graph G is d-degenerate
if δ(H) ≤ d for any subgraph H of G, where δ(H) denotes the minimum degree
of H. The class of all d-degenerate graphs is denoted by Dd. In particular, D0 is
the class of all edgeless graphs and D1 is the class of all forests. A Dd-coloring
is a mapping c : V (G) → N such that for each i ∈ N the set of vertices coloured
with i induces a d-degenerate graph. A list assignment L, for a graph G, is a
mapping that assigns a nonempty subset of N to each vertex v ∈ V (G). Given
k ∈ N, a list assignment L is k-uniform if |L(v)| = k for every v ∈ V (G). A
colouring c : V (G) → N such that c(v) ∈ L(v) for each v ∈ V (G) is called an
L-colouring. Given d ∈ N0, a graph G is (L,Dd)-colourable if there exists such
an L-colouring c : V (G) → N that is also Dd-coloring. Such a mapping c is
called an (L,Dd)-colouring of G. If f is any function defined on the set X, then
its restriction to Y , Y ⊆ X, is denoted by f |Y . For a partially coloured graph
G, let N col

G (d, v) = {w ∈ NG(v) : w has d neighbors coloured with c(v)}, where
NG(v) denotes the set of vertices of G adjacent to v. We refer the reader to [2]
for terminology not defined in this paper.

Given k ∈ N and d ∈ N0, a graph G is equitably (k,Dd)-choosable if for
any k-uniform list assignment L there is an (L,Dd)-colouring of G such that
the size of any colour class does not exceed �|V (G)|/k�. The notion of equitable
(k,D0)-choosability was introduced by Kostochka et al. [5] whereas the notation
of equitable (k,D1)-choosability was introduced by Zhang [10].

Let k, d ∈ N. A partition S1 ∪· · ·∪Sη+1 of V (G) is called a (k, d)-partition of
G if |S1| ≤ k, and |Sj | = k for j ∈ {2, . . . , η +1}, and for each j ∈ {2, . . . , η +1},
there is such an ordering {xj

1, . . . , x
j
k} of vertices of Sj that

|NG(xj
i) ∩ (S1 ∪ · · · ∪ Sj−1)| ≤ di − 1, (1)

for every i ∈ {1, . . . , k}. Observe that if S1 ∪ · · · ∪Sη+1 is a (k, d)-partition of G,
then η + 1 = �|V (G)|/k�. Moreover, immediately by the definition, each (k, d)-
partition of G is also its (k, d + 1)-partition. Surprisingly, the monotonicity of
the (k, d)-partition with respect to the parameter k is not so easy to analyze.
We illustrate this fact by Example 1. Note that for integers k, d the complexity

Equitable d-degenerate Choosability of Graphs 253

of deciding whether G has a (k, d)-partition is unknown. The main result of this
paper is as follows.

Theorem 1. Let k, d, t ∈ N and t ≥ k. If a graph G has a (k, d)-partition,
then it is equitably (t,Dd−1)-choosable. Moreover, there is a polynomial-time
algorithm that for any graph with a given (k, d)-partition and for any t-uniform
list assignment L returns an equitable (L,Dd−1)-colouring of G.

The first statement of Theorem 1 generalizes the result obtained in [3] for
d ∈ {1, 2}. In this paper we present an algorithm that confirms both, the first
and second statements of Theorem 1 for all possible d. The algorithm, given in
Sect. 2, for a given (k, d)-partition of G with t-uniform list assignment L returns
its equitable (L,Dd−1)-colouring. Moreover, in Sect. 3 we give a polynomial-time
algorithm that for a given 3-dimensional grid finds its (3, 2)-partition, what, in
consequence, implies (t,D1)-choosability of 3-dimensional grids for every t ≥ 3.

2 The Proof of Theorem 1

2.1 Background

For S ⊆ V (G) by G−S we denote a subgraph of G induced by V (G)\S. We start
with a generalization of some results given in [5,9,10] for classes D0 and D1.

Proposition 1. Let k, d ∈ N and let S be a set of distinct vertices x1, . . . , xk of
a graph G. If G − S is equitably (k,Dd−1)-choosable and

|NG(xi) \ S| ≤ di − 1

holds for every i ∈ {1, . . . , k}, then G is equitably (k,Dd−1)-choosable.

Proof. Let L be a k-uniform list assignment for G and let c be an equitable
(L|V (G)\S ,Dd−1)-colouring of G − S. Thus each colour class in c has the cardi-
nality at most �(|V (G)| − k)/k� and induces in G − S, and consequently in G, a
graph from Dd−1. We extend c to (V (G) \ S) ∪ {xk} by assigning to xk a colour
from L(xk) that is used on vertices in NG(xk) \ S at most d − 1 times. Such a
colour always exists because |NG(xk) \ S| ≤ dk − 1 and |L(xk)| = k. Next, we
colour vertices xk−1, . . . , x1, sequentially, assigning to xi a colour from its list
that is different from colours of all vertices xi+1, . . . , xk and that is used at most
d − 1 times in NG(xi) \ S. Observe that there are at least i colours in L(xi)
that are different from c(xi+1), . . . , c(xk), and, since |NG(xi) \ S| ≤ di − 1 for
1 ≤ i ≤ k − 1, then such a choice of c(xi) is always possible. Next, the colouring
procedure forces that the cardinality of every colour class in the extended colour-
ing c is at most �|V (G)|/k�. Let Gi = G[(V (G) \ S) ∪ {xi, . . . , xk}]. It is easy to
see that for each i each colour class in c|V (Gi) induces a graph belonging to Dd−1,
1 ≤ i ≤ k. In particular this condition is satisfied for G1, i.e. for G. Hence c is
an equitable (L,Dd−1)-colouring of G and G is equitably (k,Dd−1)-choosable. �

254 E. Drgas-Burchardt et al.

Note that if a graph G has a (k, d)-partition, then one can prove that G is
equitably (k,Dd−1)-choosable by applying Proposition 1 several times. In gen-
eral, the equitable (k,Dd−1)-choosability of G does not imply the equitable
(t,Dd−1)-choosability of G for t ≥ k. Unfortunately, if G has a (k, d)-partition,
then G may have neither a (k + 1, d)-partition nor a (k − 1, d)-partition. The
infinite family of graphs defined in Example 1 confirms the last fact.

Example 1. Let q ∈ N and let G1, . . . , G2q+1 be vertex-disjoint copies of K6 such
that V (Gi) = {vi

1, . . . , v
i
6} for i ∈ {1, . . . 2q+1}. Let G(q) (cf. Fig. 1) be the graph

resulted by adding to G1, . . . , G2q+1 edges that join vertices of Gi with vertices
of Gi−1, i ∈ {2, . . . , 2q + 1}, in the following way:

for i even: for i odd:
NGi−1(v

i
1) = ∅ NGi−1(v

i
1) = {vi−1

2 , vi−1
3 , vi−1

4 , vi−1
5 , vi−1

6 }
NGi−1(v

i
2) = {vi−1

1 } NGi−1(v
i
2) = {vi−1

1 , vi−1
4 , vi−1

5 , vi−1
6 }

NGi−1(v
i
3) = {vi−1

2 , vi−1
3 } NGi−1(v

i
3) = {vi−1

1 , vi−1
2 , vi−1

3 }
NGi−1(v

i
4) = {vi−1

1 , vi−1
2 , vi−1

3 } NGi−1(v
i
4) = {vi−1

2 , vi−1
3 }

NGi−1(v
i
5) = {vi−1

1 , vi−1
4 , vi−1

5 , vi−1
6 } NGi−1(v

i
5) = {vi−1

1 }
NGi−1(v

i
6) = {vi−1

2 , vi−1
3 , vi−1

4 , vi−1
5 , vi−1

6 } NGi−1(v
i
6) = ∅

v1
1

v1
2

v1
3

v1
4

v1
5

v1
6

v1
1 v2

1 v3
1 v4

1 v5
1

v2
6 v4

6 v5
6v3

6

K6 K6 K6 K6 K6

Fig. 1. A draft of the graph G(2) from Example 1.

The construction of G(q) immediately implies that for every q ∈ N the graph
G(q) has a (6, 1)-partition. Also, observe that degG(q)(v) ≥ 5 for each ver-
tex v of G(q). Suppose that G(q) has a (5, 1)-partition S1 ∪ · · · ∪ Sη+1 with
Sη+1 = {xη+1

1 , . . . , xη+1
5 } such that |NG(q)(x

η+1
i) ∩ (S1 ∪ · · · ∪ Sη)| ≤ i − 1. Thus

|NG(q)(x
η+1
1) ∩ (S1 ∪ · · · ∪ Sη)| = 0 and consequently degG(q)(x

η+1
1) ≤ 4, contra-

dicting our previous observation. Hence, G(q) has no (5, 1)-partition. In [4] we
show that G(q) has no (7, 1)-partition for q ≥ 2.

2.2 Algorithm

Now we are ready to present the algorithm that confirms both statements of
Theorem 1. Note that Proposition 1 and the induction procedure could be used
to prove the first statement of Theorem 1 for t = k but, this approach seems to

Equitable d-degenerate Choosability of Graphs 255

be useless for t > k, as we have observed in Example 1. Mudrock et al. [8] proved
the lack of monotonicity for the equitable (k,D0)-choosability with respect to
the parameter k. It motivates our approach for solving the problem. To simplify
understanding we give the main idea of the algorithm presented in the further
part. It can be expressed in a few steps (see also Fig. 2):

– on the base of the given (k, d)-partition S1 ∪ · · · ∪ Sη+1 of G, we create the
list S, consisting of the elements from V (G), whose order corresponds to the
order in which the colouring is expanded to successive vertices in each Sj (cf.
the proof of Proposition 1);

– let |V (G)| = βt + r2, 1 ≤ r2 ≤ t; we colour r2 vertices from the beginning
of S taking into account the lists of available colours; we delete the colour
assigned to v from the lists of available colours for vertices from N col

G (d, v);
– let |V (G)| = β(γk+r)+r2 = βγk+(ρk+x)+r2; observe that r ≡ t (mod k)

and ρk + x ≡ 0 (mod r); we colour ρk + x vertices taking into account the
lists of available colours in such a way that every sublist of length k is formed
by vertices coloured differently (consequently, every sublist of length r is
coloured differently); we divide the vertices colored here into β sets each one
of cardinality r; we delete c(v) from the lists of vertices from N col

G (d, v);
– we extend the list colouring into the uncoloured βγk vertices by colouring β

groups of γk vertices; first, we associate each group of γk vertices with a set
of r vertices coloured in the previous step (for different groups these sets are
disjoint); next, we color the vertices of each of the group using γk different
colors that are also different from the colors of r vertices of the set associated
with this group;

– our final equitable list colouring is the consequence of a partition of V (G)
into β + 1 coloured sets, each one of size at most t and each one formed by
vertices coloured differently.

r1

k k . . . k k . . . k

S1
. . . Sη−βγ+1 Sη−βγ+2 . . . Sη+1

(ρk + x) vertices βγ sets

r2
ve
rti
ces

Fig. 2. An exemplary illustration of the input of Equitable (L, Dd−1)-colouring.

Now we illustrate Equitable (L,Dd−1)-colouring using a graph from
Example 2.

256 E. Drgas-Burchardt et al.

Algorithm 1: Equitable (L,Dd−1)-colouring(G)
Input : Graph G on n vertices; L - t-uniform list assignment; a

(k, d)-partition S1 ∪ · · · ∪ Sη+1 of G, given by lists
S1 = (x1

1, . . . , x
1
r1) and Sj = (xj

1, . . . , x
j
k) for j ∈ {2, . . . , η + 1}.

Output : Equitable (L, Dd−1)-colouring of G.
1 initialization;
2 S := empty; LR := empty; LX := empty;
3 for j := 1 to η + 1 do
4 add reverse(Sj) to S; //reverse is the procedure for reversing lists
5 end
6 β := �n/t�-1;
7 if n ≡ 0 (mod t) then
8 r2 := t
9 else

10 r2 := n (mod t);
11 end
12 γ := t ÷ k; r := t (mod k); ρ := βr ÷ k; x := βr (mod k);
13 take and delete r2 elements from the beginning of S, and add them, vertex
14 by vertex, to list LR;
15 colour List(LR, r2);
16 take and delete x elements from the beginning of S, and add them, vertex
17 by vertex, to list LX ;
18 colour List(LX , x);
19 Scol := LX ;
20 for j = 1 to ρ do
21 S′ := empty; take and delete k elements from the beginning of S, and add

them, vertex by vertex, to list S′;
22 colour List(S′, k);
23 Scol := Scol + S′;
24 end
25 Reorder(Scol);

26 S := S; //an auxiliary list

27 Modify colourLists(Scol, S);
28 colour List(S, γk);

w1
1

w1
2

w1
3

w1
4

w1
5

w2
1

w2
2

w2
3

w2
4

w2
5

v1
1

v1
2

v1
3

v1
4

v1
5

v2
1

v2
2

v2
3

v2
4

v2
5

K5 K5

2

2

2

3

3

1

1

1

2

2

3

2

1

1

1

1

4

4

2

4

Fig. 3. An exemplary graph G depicted in Example 2 with an exemplary colouring
returned by Equitable (L, Dd−1)-colouring(G).

Equitable d-degenerate Choosability of Graphs 257

Procedure 2: colour List(S′, p)
Input : List S′ of vertices; integer p. //the length of S′ is multiple of p
Output : L-colouring of the vertices from S′.

//The procedure also modifies a global variable of the list assignment L.
1 initialization;
2 while S′ 	= empty do
3 let S′′ be the list of the p first elements of S′;
4 C := ∅; //set C is reserved for the colours being assigned to the vertices of

S′′

5 while S′′ 	= empty do
6 let v be the first element of S′′;
7 L(v) := L(v)\C;
8 c(v) :=colour Vertex(v);
9 delete the vertex v from S′ and S′′; C := C ∪ {c(v)};

10 end

11 end

Procedure 3: colour Vertex(v)
Input : Vertex v of the graph G.
Output : L-colouring of the vertex v.

//The procedure modifies also a global variable of the list assignment L.
1 initialization;
2 c(v) := any colour from L(v);

3 delete c(v) from L(w) for all w ∈ Ncol
G (d, v); //d is a global variable

4 return c(v);

Procedure 4: Reorder(S′)
Input : List S′ of coloured vertices of G.
Output : List S′ - reordered in such a way that every its sublist of length k is

formed by vertices being coloured with different colours.
1 initialization;
2 Saux := empty; //an auxiliary list
3 take and delete r1 elements from S′, and add them, vertex by vertex, to Saux;
4 for j = 1 to η − βγ do
5 P := ∅;
6 take and delete first k elements from S′, and add them to set P ;
7 for i = 1 to k do
8 let v be a vertex from P such that c(v) is different from the colours of

the last k − 1 vertices of Saux; add v to the end of Saux;
9 end

10 end
11 S′ := Saux;

258 E. Drgas-Burchardt et al.

Procedure 5: Modify colourLists(L1, L2)
Input : List L1 of βr coloured vertices and list L2 of βγk uncoloured

vertices.
Output : Modified colour list assignment L for vertices of L2.

//L is a global variable
1 initialization;
2 C := ∅; //C is a set of colours of vertices from the depicted part of L1

3 for i = 1 to β do
4 take and delete first r vertices from L1;
5 let C be the set of colours assigned to them;
6 for j = 1 to γk do
7 let v be the first vertex from L2;
8 L(v) := L(v)\C; delete v from L2;

9 end

10 end

Example 2. Let G1, G2 be two vertex-disjoint copies of K5 and V (Gi) = {vi
1, . . . ,

vi
5} for i ∈ {1, 2}. We join every vertex v2

j to v1
j , v1

j+1, . . . , v
1
5 for j ∈ {1, 2, 3, 4, 5}.

Next, we add a vertex wi
j and join it with vi

j for i ∈ {1, 2} j ∈ {1, 2, 3, 4, 5}. In
addition, we join wi

j to arbitrary two vertices in {vq
p : (q < i) ∨ (q = i ∧ p <

j)} ∪ {wq
p : (q < i) ∨ (q = i ∧ p < j)}, i ∈ {2, 3, 4, 5} j ∈ {1, 2}. Let G be a

resulted graph. Observe that |V (G)| = 20 and the partition S1 ∪ S2 ∪ . . . ∪ S10

of V (G) such that Sp+1= {vs+1
r+1, w

s+1
r+1} for p ∈ {0, . . . , 9}, where s =

⌊
p
5

⌋
, r ≡ p

(mod 5) is a (2, 3)-partition of G.
For the purpose of Example 2, we assume the following 3-uniform list assign-

ment for the graph from Fig. 3: L(vi
j) = {1, 2, 3}, for i ∈ {1, 2, 3, 4}, L(w1

j) =
{2, 3, 4}, and L(w2

j) = {1, 2, 4}, j ∈ {1, 2, 3, 4, 5}, while given (2, 3)-partition of
G is: Sp = {ws+1

r+1, v
s+1
r+1}, where s =

⌊
p
5

⌋
, r ≡ p (mod 5), p ∈ [10].

Thus Equitable (L,Dd−1)-colouring returns equitable (L,D2)-coloring of
G. Note, that 20 = |V (G)| = η · k + r1 = 9 · 2 + 2. While on the other hand, we
have 20 = |V (G)| = β · t + r2 = 6 · 3 + 2. Observe that x = 0. When we colour
a vertex, we always choose the first colour on its list. The list S determined in
lines 3–5 of Equitable (L,Dd−1)-colouring and the colours assigned to first
part of vertices of S (lines 18–24) are as follows:

S = (v1
1 , w

1
1, v1

2 , w
1
2, v

1
3 , w

1
3, v

1
4 , w

1
4, v1

5 , w
1
5, v

2
1 , w

2
1, . . . , v

2
5 , w

2
5)

r2 ρk βγk
colours: 1 2 1 2 1∗ 2 2 3

∗: after colouring v1
3 with 1, L(v2

1) = {2, 3} - the result of line 3 in
colour Vertex.
List Scol after Reorder(Scol): (v1

2 , w
1
2, v

1
3 , w

1
3, w

1
4, v

1
4) with corresponding

colours: (1, 2, 1, 2, 3, 2).

Equitable d-degenerate Choosability of Graphs 259

S = (v1
5 , w1

5, v2
1 , w2

1, v2
2 , w2

2, v2
3 , w2

3, v2
4 , w2

4, v2
5 , w2

5)
lists after 2 2 3 1 2 2 1 1 1 1 1 1
procedure 3 3 4 3 4 3 4 2 2 3 4

Modify colourList 4 4
final c(v) 2 3 3 1 2 4 1 4 1 2 1 4

To prove the correctness of the Equitable (L,Dd−1)-colouring algorithm, we
give some observations and lemmas.

Observation 2. The colour function c returned by the Equitable (L,Dd−1)-
colouring algorithm is constructed step by step. In each step, c(v) is a result
of colour Vertex(v) and this value is not changed further.

Observation 3. The list assignment L, as a part of the input of Equi-

table (L,Dd−1)-colouring, is modified for a vertex v by colour List or by
Modify colourLists.

Lemma 1. Every time when Equitable (L,Dd−1)-colouring(G) calls
colour Vertex(v), L(v) �= ∅ holds, i.e. colour Vertex(v) is always exe-
cutable.

Proof. Note that colour Vertex is called by colour List. Let
R = {v ∈ V (G) : colour Vertex(v) is called when colour List(LR, r2)
in line 15 of Equitable (L,Dd−1)-colouring is executed},

X = {v ∈ V (G) : colour Vertex(v) is called when colour List(LX , x)
in line 18 of Equitable (L,Dd−1)-colouring is executed}.

Let V1 := S1 ∪ · · · ∪ Sη+1−βγ , V2 := V (G) \ V1 = Sη+1−(βγ−1) ∪ · · · ∪ Sη+1. Note
that
V1 \ (R ∪ X) = {v ∈ V (G) : colour Vertex(v) is called when
colour List(S′, k) in line 22 of Equitable (L,Dd−1)-colouring is executed}
V2 = {v ∈ V (G) : colour Vertex(v) is called when colour List(S, γk)
in line 28 of Equitable (L,Dd−1)-colouring is executed}.

Observe that |R| = r2, |X| = x, |V1 \ (R ∪ X)| = ρk, |V2| = βγk.

Case 1. v ∈ R.
In this case, the vertex v is coloured by colour List(LR, r2) in line 15 of
Equitable (L,Dd−1)-colouring. Since |R| = r2, the while loop in line 2 of
colour List is executed only once. The while loop in line 5 of colour List

is executed r2 times. Suppose, v is a vertex such that colour Vertex(v) is
called in the i-th execution of the while loop in line 5 of colour List. By
Observation 3, the fact that Equitable (L,Dd−1)-colouring has not called
Modify colourLists so far, and because it is the first time when colour List

works, we have |C| = i − 1, and L(v) \ C is the current list of v. Since t ≥ r2,
the list of v is non-empty.

Case 2. v ∈ X.
This time, the vertex v is coloured by colour List(LX , x) called in line 18
of Equitable (L,Dd−1)-colouring. Similarly as in Case 1, the while loop
in line 2 of colour List is executed only once and the while loop in line

260 E. Drgas-Burchardt et al.

5 of colour List is executed x times. Suppose that v is a vertex such that
colour Vertex(v) is called in the i-th iteration of the while loop in line 5 of
colour List. Observe that properties of the (k, d)-partition S1 ∪ · · · ∪ Sη+1 of
G (given as the input of Equitable (L,Dd−1)-colouring) and the Reverse

procedure from line 4 of Equitable (L,Dd−1)-colouring imply that v has at
most (x − i + 1)d − 1 + (k − x) neighbors w for which colour Vertex(w) was
executed earlier than colour List(LX , x). More precisely, by the definition
of the (k, d)-partition, v has at most (x − i + 1)d − 1 neighbours in R \ Y ,
where Y consists of the last k − x vertices w for which colour Vertex(w, d)
is executed, being called by colour List(LR, r2). Thus, at most k − i colours
were deleted from L(v) before colour List(LX , x) began. If the while loop
in line 5 of colour List is called for the i-th time, then |C| = i − 1 and so,
from the current list L(v) at most i − 1 elements were deleted. Furthermore,
Equitable (L,Dd−1)-colouring has not called Modify colourLists so far.
Thus the current size of L(v) is at least t − k + 1, by Observation 3. Since t ≥ k,
the list of v is non-empty.

In a similar way we prove the remaining two cases, namely when v ∈ V1 \
(R ∪ X) or v ∈ V2. The full proof is given in [4]. �

Lemma 2. An output of Equitable (L,Dd−1)-colouring(G) is an (L,Dd−1)-
colouring of G.

Proof. We will show that if colour Vertex(v) is executed, then an output
c(v) has always the following property. For each subgraph H of G induced by
vertices x for which colour Vertex(x) was executed so far with the output
c(x) = c(v), the condition δ(H) ≤ d−1 holds. By Observation 2 and Lemma 1, it
will imply that an output c of Equitable (L,Dd−1)-colouring is an (L,Dd−1)-
colouring of G. Note that it is enough to show this fact for H satisfying v ∈
V (H). By a contradiction, let v be a vertex for which the output c(v) does not
satisfy the condition, i.e. v has at least d neighbors in the set of vertices for
which colour Vertex was already executed with the output c(v). But it is
not possible because c(v) was removed from L(v) when the last (in the sense
of the algorithm steps) of the neighbors of v, say x, obtained the colour c(v)
(colour Vertex(x) removed c(x) from L(v) since v ∈ N col

G (d, x)). �

Lemma 3. An output colour function c of Equitable (L,Dd−1)-colouring
(G) satisfies |Ci| ≤ �|V (G)|/t�, where t is the part of the input of Equi-

table (L,Dd−1)-colouring(G) and Ci = {v ∈ V (G) : c(v) = i}.
Proof. Recall that �|V (G)|/t� = β+1. We will show that there exists a partition
of V (G) into β+1 sets, say W1∪· · ·∪Wβ+1, such that for each i ∈ {1, . . . , β+1}
any two vertices x, y in Wi satisfy c(x) �= c(y). It will imply that the cardinality
of every colour class in c is at most β + 1, giving the assertion.

Note that after the last, ρ-th execution of the for lopp in line 20 of Equi-

table (L,Dd−1)-colouring the list Scol consists of the coloured vertices of the
set V1 \ R (observe that |V1 \ R| = βr). The elements of Scol are ordered in such
a way that the first x ones have different colours and for every i ∈ {1, . . . , ρ} the
i-th next k elements have different colours. Now the Reorder(Scol) procedure

Equitable d-degenerate Choosability of Graphs 261

in line 25 of Equitable (L,Dd−1)-colouring changes the ordering of elements
of Scol in such a way that every k consecutive elements have different colours.
Since r ∈ {0, . . . , k − 1}, it follows that also every r consecutive elements of this
list have different colours. The execution of Reorder(Scol) is always possible
because of the previous assumptions on Scol.

For i ∈ {1, . . . , β} let Hi = Sη+1−((β−i+1)γ−1) ∪ Sη+1−((β−i+1)γ−2) ∪ · · · ∪
Sη+1−(β−i)γ . Thus H1 ∪ · · · ∪ Hβ is a partition of V2 into β sets, each of the car-
dinality γk. Note that the vertices of Hi are coloured when colour List(S, γk)
in line 28 of Equitable (L,Dd−1)-colouring is executed. More precisely, it
is during the i-th execution of the while loop in line 2 of colour List. It
guarantees that the vertices of Hi obtain pairwise different colours. Moreover,
in line 27 of Equitable (L,Dd−1)-colouring the lists of vertices of Hi were
modified in such a way that the colours of i-th r elements from the current list
Scol are removed from the list of each element in Hi. Hence, after the execu-
tion of colour List(S, γk) in line 28 of Equitable (L,Dd−1)-colouring the
elements in Hi obtain colours that are pairwise different and also different from
all the colours of i-th r elements from the list Scol (recall that Scol consists of
the ordered vertices of V1 \ R). Hence, for every i ∈ {1, . . . , β} the elements of
Hi and the i-th r elements of Scol have pairwise different colours in c and can
constitute Wi. Moreover, the elements of R constitute Wβ+1. Thus |Wβ+1| = r2,
which finishes the proof. �

Theorem 4. For a given graph G on n vertices, a t-uniform list assignment
L, a (k, d))-partition of G the Equitable (L,Dd−1)-colouring(G) algorithm
returns (L,Dd−1)-colouring of G in polynomial time. �

The full analysis of the computational complexity of the algorithm is given in [4].

3 Grids

Given two graphs G1 and G2, the Cartesian product of G1 and G2, G1 �G2, is
defined to be a graph whose the vertex set is V (G1) × V (G2) and the edge set
consists of all edges joining vertices (x1, y1) and (x2, y2) when either x1 = x2 and
y1y2 ∈ E(G2) or y1 = y2 and x1x2 ∈ E(G1). Note that the Cartesian product is
commutative and associative. Hence the graph G1� · · · �Gd is unambiguously
defined for any d ∈ N. Let Pn denote a path on n vertices. If each factor Gi

is a path on at least two vertices then G1� · · · �Gd is a d-dimensional grid.
Note that the d-dimensional grid Pn1� · · · �Pnd

, d ≥ 3, may be considered as n1

layers and each layer is the (d − 1)-dimensional grid Pn2� · · · �Pnd
. We assume

n1 ≥ · · · ≥ nd. Let Pn1 � . . . � Pnd
denote an incomplete d-dimensional grid,

i.e. a connected graph being a subgraph of Pn1� . . . �Pnd
such that its some

initial layers may be empty, the first non-empty layer may be incomplete, while
any next layer is complete. Note that every grid is particular incomplete grid.

In this subsection we construct a polynomial-time algorithm that for each
3-dimensional grid finds its (3, 2)-partition (Partition3d(G)). Application of
Theorem 1 implies the main result of this subsection.

262 E. Drgas-Burchardt et al.

Theorem 5. Let t ≥ 3 be an integer. Every 3-dimensional grid is equitably
(t,D1)-choosable. Moreover, there is a polynomial-time algorithm that for every
t-uniform list assignment L of the 3-dimensional grid G returns an equitable
(L,D1)-colouring of G. �

Procedure 6: Corner(G)
Input : Incomplete non-empty d-dimensional grid G = Pn1 � . . . � Pnd ,

d ≥ 2.
Output : Vertex y = (a1, . . . , ad) ∈ V (G) such that degG(y) ≤ d.

1 initialization;
2 let a1 be the number of the incomplete layer of G;
3 for i = 2 to d − 1 do
4 ai = min{xi : ∃xi+1,...,xd(a1, . . . , ai−1, xi, . . . , xd) ∈ V (G)}.
5 end
6 ad := min{xd : (a1, . . . , ad−1, xd) ∈ V (G)}.
7 return (a1, . . . , ad);

Algorithm 7: Partition3d(G)
Input : 3-dimensional grid G = Pn1�Pn2�Pn3 .
Output : A (3, 2)-partition S1 ∪ · · · ∪ Sα+1 of G.

1 initialization;
2 α := �n1n2n3

3
� − 1;

3 if α ≥ 1 then
4 for j := α + 1 downto 2 do

5 yj
1 = (a1, a2, a3) :=Corner(G);

6 if deg(yj
1) = 1 then

7 yj
2 :=Corner(G − yj

1);

8 if yj
1 is the only vertex on a1 layer then

9 let yj
3 be any vertex on layer a1 + 1 such that yj

3 	= yj
2

10 else

11 let yj
3 be any vertex on layer a1 such that yj

3 	= yj
1 and yj

3 	= yj
2,

if exists, otherwise yj
3 is any vertex on layer a1 + 1

12 end

13 end

14 if deg(yj
1) = 2 then

15 let yj
2 be the neighbour of yj

1 lying on the same layer as yj
1;

16 let yj
3 be any vertex on layer a1, if exists, otherwise, yj

3 is any
vertex on layer a1 + 1

17 end

18 if deg(yj
1) = 3 then

19 yj
2 := (a1, a2, a3 + 1); yj

3 := (a1, a2 + 1, a3);

20 end

21 Sj := {yj
1, y

j
2, y

j
3}; G := G − Sj ;

22 end

23 end
24 S1 := V (G);

Equitable d-degenerate Choosability of Graphs 263

Theorem 6. For a given 3-dimensional grid G the Partition3d(G) algorithm
returns a (3, 2)-partition of G in polynomial-time.

The proof of Theorem6 is presented in [4]. As a consequence of the above theorem
and Theorem 1 we get the statement of Theorem 5.

4 Concluding Remarks

In Subsect. 2.2 we have proposed the polynomial-time algorithm that finds an
equitable (L,Dd−1)-colouring of a given graph G assuming that we know a (k, d)-
partition of G (L is a t-uniform list assignment for G, t ≥ k). In this context
the following open question seems to be interesting: What is the complexity of
recognition of graphs having a (k, d)-partition?

Acknowledgment. The authors thank their colleague Janusz Dybizbański for making
several useful suggestions improving the presentation.

References

1. Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-world networks: an
empirical study. Networks 67(1), 49–68 (2016)

2. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 2nd edn.
Springer, New York (2000)

3. Drgas-Burchardt, E., Dybizbański, J., Furmańczyk, H., Sidorowicz, E.: Equitable
list vertex colourability and arboricity of grids. Filomat 32(18), 6353–6374 (2018)

4. Drgas-Burchardt, E., Furmańczyk, H., Sidorowicz, E.: Equitable d-degenerate
choosability of graphs. arxiv:2003.09722 (2020)

5. Kostochka, A.V., Pelsmajer, M.J., West, D.B.: A list analogue of equitable colour-
ing. J. Graph Theory 44(3), 166–177 (2003)

6. Lei, H., Li, T., Ma, Y., Wang, H.: Analyzing lattice networks through substructures.
Appl. Math. Comput. 329, 297–314 (2018)

7. Miao, T., Chen, A., Xu, Y.: Optimal structure of damaged tree-like branching
networks for the equivalent thermal conductivity. Int. J. Therm. Sci. 102, 89–99
(2016)

8. Mudrock, J.A., Chase, M., Thornburgh, E., Kadera, I., Wagstrom, T.: A note on
the equitable choosability of complete bipartite graphs. DMGT (2019). https://
doi.org/10.7151/dmgt.2232

9. Pelsmajer, M.J.: Equitable list-colouring for graphs of maximum degree 3. J. Graph
Theory 47(1), 1–8 (2004)

10. Zhang, X.: Equitable list point arboricity of graphs. Filomat 30(2), 373–378 (2016)
11. Zhang, X., Niu, B., Li, Y., Li, B.: Equitable vertex arboricity of d-degenerate

graphs. arxiv: 1908.05066v1 (2019)

http://arxiv.org/abs/2003.09722
https://doi.org/10.7151/dmgt.2232
https://doi.org/10.7151/dmgt.2232
http://arxiv.org/abs/1908.05066v1

On the Complexity of Broadcast

Domination and Multipacking

in Digraphs

Florent Foucaud1,2, Benjamin Gras2,3, Anthony Perez2(B), and Florian Sikora4

1 Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, 33400 Talence, France
2 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, 45067 Orléans, France

anthony.perez@univ-orleans.fr
3 Universität Trier, Fachbereich IV, Informatikwissenschaften, 54296 Trier, Germany
4 Univ. Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016 Paris, France

Abstract. We study the complexity of the two dual covering and pack-
ing distance-based problems Broadcast Domination and Multipack-

ing in digraphs. A dominating broadcast of a digraph D is a function
f : V (D) → N such that for each vertex v of D, there exists a vertex t
with f(t) > 0 having a directed path to v of length at most f(t). The
cost of f is the sum of f(v) over all vertices v. A multipacking is a set
S of vertices of D such that for each vertex v of D and for every integer
d, there are at most d vertices from S within directed distance at most
d from v. The maximum size of a multipacking of D is a lower bound
to the minimum cost of a dominating broadcast of D. Let Broadcast

Domination denote the problem of deciding whether a given digraph
D has a dominating broadcast of cost at most k, and Multipacking

the problem of deciding whether D has a multipacking of size at least
k. It is known that Broadcast Domination is polynomial-time solv-
able for the class of all undirected graphs (that is, symmetric digraphs),
while polynomial-time algorithms for Multipacking are known only for
a few classes of undirected graphs. We prove that Broadcast Dom-

ination and Multipacking are both NP-complete for digraphs, even
for planar layered acyclic digraphs of small maximum degree. Moreover,
when parameterized by the solution cost/solution size, we show that
the problems are respectively W[2]-hard and W[1]-hard. We also show
that Broadcast Domination is FPT on acyclic digraphs, and that it
does not admit a polynomial kernel for such inputs, unless the polyno-
mial hierarchy collapses to its third level. In addition, we show that both
problems are FPT when parameterized by the solution cost/solution size
together with the maximum out-degree. Finally, we give for both prob-
lems polynomial-time algorithms for some subclasses of acyclic digraphs.

Keywords: Broadcast domination · Dominating set · Multipacking ·
Directed graphs · Parameterized complexity

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 264–276, 2020.
https://doi.org/10.1007/978-3-030-48966-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_20

On the Complexity of BD and MP in Digraphs 265

1 Introduction

We study the complexity of the two dual problems Broadcast Domination

and Multipacking in digraphs. These concepts were previously studied only
for undirected graphs (which can be seen as symmetric digraphs, where for each
arc (u, v), the symmetric arc (v, u) exists). Unlike most standard packing and
covering problems, which are of local nature, these two problems have more
global features since the covering and packing properties are based on arbitrary
distances. This difference makes them algorithmically very interesting.

Broadcast Domination. Broadcast domination is a concept modeling a natu-
ral covering problem in telecommunication networks: imagine we want to cover
a network with transmitters placed on some nodes, so that each node can be
reached by at least one transmitter. Already in his book in 1968 [20], Liu pre-
sented this concept, where transmitters could broadcast messages but only to
their neighboring nodes. It is however natural that a transmitter could broad-
cast information at distance greater than one, at the price of some additional
power (and cost). In this setting, for a given non-zero integer cost d, a trans-
mitter placed at node v covers all nodes within radius d from its location. If the
network is directed, it covers all nodes with a directed path of length at most
d from v. For a feasible solution, the function f : V (G) → N assigning its cost
to each node of the graph G (a cost of zero means the node has no transmitter
placed on it) is called a dominating broadcast of G, and the total cost cf of f is
the sum of the costs of all vertices of G. The broadcast domination number γb(G)
of G is the smallest cost of a dominating broadcast of G. When all costs are in
{0, 1}, this notion coincides with the well-studied Dominating Set problem.
The concept of broadcast domination was introduced in 2001 (for undirected
graphs) by Erwin in his doctoral dissertation [13] (see also [11,12] for some
early publications on the topic), in the context of advertisement of shopping
malls – which could nowadays be seen as targeted advertising via “influencers”
in social networks. Note that in these contexts, directed arcs make sense since
the advertisement or the influence is directed towards someone. The associated
computational problem is as follows.

Broadcast Domination

• Input: A digraph D = (V,A), an integer k ∈ N.
• Question: Does there exist a dominating broadcast of D of cost at most k?

Multipacking. The dual notion for Broadcast Domination, studied from
the linear programming viewpoint, was introduced in [5,24] and called multi-
packing. A set S of vertices of a (di)graph G is a multipacking if for every vertex
v of G and for every possible integer d, there are at most d vertices from S at
(directed) distance at most d from v. The multipacking number mp(G) of G is
the maximum size of a multipacking in G. Intuitively, if a graph G has a multi-
packing S, any dominating broadcast of G will require to have cost at least |S|
to cover the vertices of S. Hence the multipacking number of G is a lower bound

266 F. Foucaud et al.

to its broadcast domination number [5]. Equality holds for many graphs, such
as strongly chordal graphs [4]. Consider the following computational problem.

Multipacking

• Input: A digraph D = (V,A), an integer k ∈ N.
• Question: Does there exist a multipacking S ⊆ V of D of size at least k?

Known Results. In contrast with most graph covering problems, which are
usually NP-hard, Heggernes and Lokshtanov designed in [17] (see also [21]) a
sextic-time algorithm for Broadcast Domination in undirected graphs. This
intriguing fact has motivated research on further algorithmic aspects of the prob-
lem. For general undirected graphs, no faster algorithm than the original one is
known. A quintic-time algorithm exists for undirected series-parallel graphs [2].
An analysis of the algorithm for general undirected graphs gives quartic time
when it is restricted to chordal graphs [17,18], and a cubic-time algorithm exists
for undirected strongly chordal graphs [4]. The problem is solvable in linear
time on undirected interval graphs [7] and undirected trees [4,9] (the latter was
extended to undirected block graphs [18]).

Regarding Multipacking, to the best of our knowledge, its complexity
is currently unknown, even for undirected graphs (an open question posed
in [24,25]). However, there exists a polynomial-time (2 + o(1))-approximation
algorithm for all undirected graphs [1]. Multipacking can be solved with the
same complexity as Broadcast Domination for undirected strongly chordal
graphs, see [4]. Improving upon previous algorithms from [22,24], the authors
of [4] give a simple linear-time algorithm for undirected trees.

Our Results. We study Broadcast Domination and Multipacking for
directed graphs (digraphs), which form a natural setting for not necessarily sym-
metric telecommunication networks. In contrast with undirected graphs, we show
that Broadcast Domination is NP-complete, even for planar layered acyclic
digraphs (defined afterwards) of maximum degree 4. This holds for Multipack-

ing, even for planar layered acyclic digraphs of maximum degree 3, or acyclic
digraphs with a single source and maximum degree 5. Moreover, when parame-
terized by the solution cost/solution size, we prove that Broadcast Domina-

tion is W[2]-hard (even for bipartite digraphs without directed 2-cycles) and
Multipacking is W[1]-hard. On the positive side, we show that Broadcast

Domination is FPT on acyclic digraphs (DAGs for short) but does not admit
a polynomial kernel for layered DAGs, unless the polynomial hierarchy collapses
to its third level. Moreover, we show that both Broadcast Domination and
Multipacking are polynomial-time solvable for layered DAGs with a single
source. We also design FPT algorithms for both problems when parameterized
by the solution cost/solution size together with the maximum out-degree. The
resulting complexity landscape is represented in Fig. 1. We start with some defi-
nitions in Sect. 2. We prove our results for Broadcast Domination in Sect. 3.
The results for Multipacking are presented in Sect. 4. We conclude in Sect. 5.
Due to lack of space, we omit some proofs that can be found in the full version
of the paper [14].

On the Complexity of BD and MP in Digraphs 267

Fig. 1. Complexity landscape of Broadcast Domination and Multipacking for
some classes of digraphs. An arc from class A to class B indicates that A is a subset
of B. Parameterized complexity results are for parameter solution cost/solution size.

2 Preliminaries

Directed Graphs. We mainly consider digraphs, usually denoted D = (V,A)1,
where V is the set of vertices and A the set of arcs. For an arc uv ∈ A, we
say that v is an out-neighbor of u, and u an in-neighbor of v. Given a subset of
vertices V ′ ⊆ V , we define the digraph induced by V ′ as D′ = (V ′, A′) where
A′ = {uv ∈ A : u ∈ V ′ and v ∈ V ′}. We denote such an induced subdigraph
by D[V ′]. A directed path from a vertex p1 to pl is a sequence {p1, . . . , pl}
such that pi ∈ V and pipi+1 ∈ A for every 1 � i < l. When p1 = pl, it is a
directed cycle. A digraph is acyclic whenever it does not contain any directed
cycle as an induced subgraph. An acyclic digraph is called a DAG for short.
The (open) out-neighborhood of a vertex v ∈ V is the set N+(v) = {u ∈ V :
vu ∈ A}, and its closed out-neighborhood is N+[v] = N+(v) ∪ {v}. We define
similarly the open and closed in-neighborhoods of v and denote them by N−(v)
and N−[v], respectively. A source is a vertex v such that N−(v) = ∅. For the
sake of readability, we always mean out-neighborhood when speaking of the
neighborhood of a vertex. A DAG D = (V,A) is layered when its vertex set can
be partitioned into {V0, . . . , Vt} such that N−(V0) = ∅ and N+(Vt) = ∅ (vertices
of V0 and Vt are respectively called sources and sinks), and uv ∈ A implies that
u ∈ Vi and v ∈ Vi+1, 0 � i < t. A single-sourced layered DAG is a layered DAG
with only one source, that is, satisfying |V0| = 1. A digraph is bipartite or planar
if its underlying undirected graph has the corresponding property. Every layered

1 Our reductions will also use undirected graphs, denoted G = (V,E) with V =
{v1, . . . , vn} and E = {e1, . . . , em}.

268 F. Foucaud et al.

digraph is bipartite. Given two vertices u and v, we denote by d(u, v) the length
of a shortest directed path from u to v. For a vertex v ∈ V and an integer d, we
define the ball of radius d centered at v by B+

d (v) = {u ∈ V : d(v, u) � d}∪{v}.
Consider a dominating broadcast f : V (D) → N on D. The set of broadcast
dominators is defined as Vf = {v ∈ V : f(v) > 0}. For any set S ⊆ V of vertices
of D, we define f(S) as the value f(S) =

∑
u∈S f(u).

Parameterized Complexity. A parameterized problem is a decision problem
together with a parameter, that is, an integer k depending on the instance. A
problem is fixed-parameter tractable (FPT for short) if it can be solved in time
f(k) · |I|c for an instance I of size |I| with parameter k, where f is a computable
function and c is a constant. Given a parameterized problem P , a kernel is a
function which associates to each instance of P an equivalent instance of P whose
size is bounded by a function h of the parameter. When h is a polynomial, the
kernel is said to be polynomial. An FPT-reduction between two parameterized
problems P and Q is a function mapping an instance (I, k) of P to an instance
(f(I), g(k)) of Q, where f and g are computable in FPT time with respect to
parameter k, and where I is a YES-instance of P if and only if f(I) is a YES-
instance of Q. When moreover f can be computed in polynomial time and g is
polynomial in k, we say that the reduction is a polynomial time and parame-
ter transformation [3]. Both reductions can be used to derive conditional lower
bounds: if a parameterized problem P does not admit an FPT algorithm (resp. a
polynomial kernel) and there exists an FPT-reduction (resp. a polynomial time
and parameter transformation) from P to a parameterized problem Q, then Q
is unlikely to admit an FPT algorithm (resp. a polynomial kernel). Both impli-
cations rely on certain standard complexity hypotheses; we refer the reader to
the book [8] for details.

3 Complexity of Broadcast Domination

3.1 Hardness Results

Theorem 1. Broadcast Domination is NP-complete, even for planar lay-
ered DAGs of maximum degree 4.

Theorem 2. Broadcast Domination parameterized by solution cost k is
W[2]-hard, even on bipartite digraphs without directed 2-cycles.

Proof (sketch). We provide a reduction from the W[2]-hard Multicolored

Dominating Set problem [6].

Multicolored Dominating Set

• Input: A graph G = (V,E) with V partitioned into sets {V1, . . . , Vk}, k ∈ N.
• Question: Does there exist a dominating set S of G s.t. |S ∩ Vi| = 1 for
1 � i � k?

On the Complexity of BD and MP in Digraphs 269

Construction. We build an instance (D′ = (V ′, A′), k′) of Broadcast Domi-

nation as follows. To obtain the vertex set V ′, we multiplicate V into four sets
V 0, V 1, V 2 and V 3 and we will have a set M of subdivided vertices. The set
V 0 ∪ V 1 will induce an oriented complete bipartite graph, while V 2 ∪ V 3 will
induce a matching. For a vertex v ∈ V , 0 � i � 3, its copy in V i is denoted vi.
We assume that |Vi| � 2, since otherwise one must take the only vertex in Vi.
For each 1 � i � k we then add the following arcs:

– for every pair v, w of distinct vertices of Vi, we add an arc from v0 to w1;
– for every v ∈ Vi, we add an arc from v1 to v0;
– for every v ∈ Vi, we add an arc from v2 to v3.

Moreover, for every edge vw in G, we add an arc from v1 to w2, and we
subdivide it once. The set of all subdivision vertices is called M . Finally, we
set k′ = 3k. Digraph D′ has no directed 2-cycles, and is bipartite with sets
V 0 ∪ M ∪ V 3 and V 1 ∪ V 2. One can check that G has a multicolored dominating
set of size k if and only if D′ has a dominating broadcast of cost 3k. �	

3.2 Complexity and Algorithms for (Layered) DAGs

We now address the special cases of (layered) DAGs. Note that Dominating

Set remains W[2]-hard on DAGs by a reduction from [23, Theorem 6.11.2]. In
contrast, we now give an FPT algorithm for Broadcast Domination on DAGs
that counterbalances the W[2]-hardness result.

Theorem 3. Broadcast Domination parameterized by solution cost k is
FPT for DAGs.

Proof. The proof relies on the following proposition, which is reminiscent of
a stronger statement of Dunbar et al. [11] for undirected graphs (stating that
there always exists an optimal dominating broadcast where each vertex is covered
exactly once, which is false for digraphs).

Proposition 4. For any digraph D = (V,A), there exists an optimal dominat-
ing broadcast such that every broadcast dominator is covered by itself only.

Proof. Let f be an optimal dominating broadcast of D, and assume there exists
two vertices u, v ∈ V such that f(v) � 1 and f(u) � d(u, v). In this case, v
is covered by both u and itself. Notice that d(u, v) + f(v) > f(u), since oth-
erwise setting f(v) to 0 would result in a better dominating broadcast. We
claim that setting f(u) to d(u, v) + f(v) and f(v) to 0 yields an optimal dom-
inating broadcast fu. Notice that since d(u, v) + f(v) > f(u), any vertex cov-
ered by u in f is still covered in fu. Similarly, any vertex covered by v in f
is now covered by u in fu. Finally, we have f(u) + f(v) � fu(u) + fu(v) since
fu(u) = d(u, v) + f(v) � f(u) + f(v) and fu(v) = 0, implying that the cost of
fu is at most the cost of f . �	

270 F. Foucaud et al.

We can now prove Theorem 3. Let D = (V,A) be a DAG. We consider the set V0

of sources of D. Observe that for every s ∈ V0, f(s) � 1 must hold. In particular,
this means that |V0| � k (otherwise we return NO). We provide a branching
algorithm based on this simple observation and on Proposition 4. We start with
an initial broadcast f consisting of setting f(s) = 1 for every vertex s in V0. At
each step of the branching algorithm, we let Nf = ∪v∈Vf

B+
f(v)(v) be the set of

currently covered vertices, and we consider the digraph Df = D[V \ Nf]. Notice
that Df is acyclic and hence contains a source u. Since every vertex of Nf \ Vf

is covered, we may assume by Proposition 4 that in the sought optimal solution,
u is only covered by itself or by a vertex in Vf . This means that one needs to
branch on at most k +1 distinct cases: either setting f(u) = 1, or increasing the
cost of one of its at most k broadcasting ancestors in Vf . At every branching, the
parameter k decreases by 1, which ultimately gives an O∗(2k log k)-time algorithm
and completes the proof of Theorem 3. �	

We will now complement the previous result by a negative one, which can be
proved using a reduction from Hitting Set, defined as follows.

Hitting Set

• Input: A universe U of elements, a collection F of subsets of U , an integer
k ∈ N.
• Question: Does there exist a hitting set S of size k, that is, a set of k elements
from U such that each set of F contains an element of S?

Hitting Set has no polynomial kernel when parameterized by k+|U |, unless
the polynomial hierarchy collapses to its third level [10, Theorem 5.1].

Theorem 5. Broadcast Domination parameterized by solution cost k does
not admit a polynomial kernel even on layered DAGs, unless the polynomial
hierarchy collapses to its third level.

Theorem 6. Broadcast Domination is polynomial-time solvable on single-
sourced layered DAGs.

Proof (sketch). Let D = (V,A) be a single-sourced layered DAG with layers
{V0, . . . , Vt}. For the sake of readability, sets Vi such that |Vi| = 1 are denoted
si, for 0 � i � t. Due to lack of space, the following claim is given without proof.

Claim 1. There always exists an optimal dominating broadcast f of D such that:

(i) Vf ⊆ ⋃t
i=0 si

(ii) every si ∈ Vf , 0 � i � t, covers exactly B+
l (si), where l = j − i − 1 and j is

the smallest index such that j � i + 2 and |Vj | = 1.

We thus deduce a simple top-down procedure to compute an optimal domi-
nating broadcast f . We start with setting i = 0. While there remain uncovered
vertices, we let f(si) = j − i − 1 for the smallest value j such that sj exists and
j � i + 2. In other words, si will cover all vertices below it, until the closest ver-
tex of the set

⋃t
j=0 sj that is not a neighbour of si. We then carry on by setting

i = j. By Claim 1, this leads to f being an optimal dominating broadcast. �	

On the Complexity of BD and MP in Digraphs 271

We finally give an FPT algorithm for two parameters. By Theorems 1 and 2,
such a result probably does not hold for each of them individually.

Theorem 7. Broadcast Domination parameterized by solution cost k and
maximum out-degree is FPT.

4 Complexity of Multipacking

We will need the following results to prove our results for Multipacking. The
first one was proved for undirected graphs in [16].

Lemma 8. Let D = (V,A) be a digraph with a shortest directed path of length
3k − 3 vertices. Then, D has a multipacking of size k.

Proof. It suffices to select every third vertex on the path. �	
Lemma 9. Let D = (V,A) be a digraph. There always exists a multipacking of
maximum size containing every source of D.

The following lemma is the central result of both our polynomial-time algo-
rithm (Theorem 14) and NP-completeness reduction (Theorem 12).

Lemma 10. Let D = (V,A) be a single-sourced layered DAG. There always
exists a multipacking S ⊆ V of maximum size such that for every 1 � i � t,
|S ∩ Vi| � 1.

Proof. Let S ⊆ V be a multipacking of D of maximum size. By definition of a
multipacking, considering each ball centered at the source s, the following holds
for every 1 � i � t: ∣

∣S ∩ ∪i
j=0Vj

∣
∣ � i (1)

We will prove the result inductively, by locally modifying S in a top-down manner
until it has the desired property. Let j � 2 be the smallest index such that
|S ∩ Vj | � 2, and i < j be the largest index such that |S ∩ Vi| = 0. Notice that
i is well-defined due to (1). Moreover, let s1j and s2j be two vertices of S ∩ Vj .

Case 1. We assume first that i = j − 1. Let u1
i and u2

i be vertices of Vi such
that u1

i s
1
j and u2

i s
2
j belong to A (note that in a layered DAG every non-source

vertex has a predecessor in the previous layer). Since S is a multipacking, we
have u1

i
= u2
i and neither u1

i nor u2
i is adjacent to both s1j and s2j . Moreover, a

vertex si−1 in S ∩Vi−1 cannot be adjacent to both u1
i and u2

i , since otherwise we
would have

∣
∣B+

2 (si−1) ∩ S
∣
∣ > 2. Moreover by minimality of the index j, there is

at most one vertex of S in Vi−1. Assuming w.l.o.g. that u1
i has no predecessor

in S, the set (S \ {s1j}) ∪ {u1
i } is a multipacking having the same size than S.

Case 2. We now consider the case where i < j−1. First, we will prove that there
is a vertex vi in Vi with no in-neighbor in S. If S ∩Vi−1 = ∅, any vertex of Vi can
be chosen as vertex vi. Otherwise, by choice of j we have |S ∩ Vi−1| = 1. Assume
S ∩ Vi−1 = {si−1}. We claim that si−1 is not adjacent to every vertex of Vi.

272 F. Foucaud et al.

Assume for a contradiction that this is the case. This means that si−1 is within
distance j − (i−1) of every vertex contained in ∪j

l=iVl. By the choice of indices i

and j we know that ∪j
l=iVl contains at least j − (i− 1) vertices from S, which in

turn implies that
∣
∣
∣B+

j−(i−1)(si−1) ∩ S
∣
∣
∣ = j − (i− 1)+1, contradicting (1). Thus,

there is a vertex vi in Vi that has no in-neighbor in S. Now, we know by choices
of i and j that |S ∩ Vp| = 1 for i < p < j. Hence the set (S \ {si+1}) ∪ {vi},
where {si+1} = S ∩ Vi+1, is a multipacking of D having the same size than S.
By iterating the above argument, we end up with i = j − 1, in which case we
can apply the argument from Case 1. Overall, after each iteration of Case 1, j
strictly increases. The procedure terminates when the value of j reaches t. �	

4.1 Hardness Results

Theorem 11. Multipacking is NP-complete, even for planar layered DAGs
of maximum degree 3.

Theorem 12. Multipacking is NP-complete on single-sourced DAGs of max-
imum degree 5.

Proof (sketch). We provide a reduction from the NP-complete Independent

Set problem [15]. We define the function f : V (G) → E such that for v ∈
V (G), f(v) = ei if and only if ei is the first edge in which v appears (recall that
E = {e1, . . . , em}). We create the digraph D = (V ′, A) as follows (see Fig. 2):

V ′ ={ui, vi, wi, xi, yi, zi : 1 � i � m} ∪ V ∪ {s, p}
A ={uiwi, uixi : 1 � i � m} ∪ {vixi : 1 � i � m} ∪ {wiyi, wizi : 1 � i � m}

⋃

{ziui+1, zivi+1 : 1 � i � m − 1} ∪ {xiu, xiv : 1 � i � m and ei = uv}
⋃

{uiu : 1 � i � m and f(u) = ei} ∪ {sp, pu1, pv1}

To conclude, one can see that G has an independent set of size k if and only
if D has a multipacking of size k′ = k + 2m + 1. �	
Theorem 13. Multipacking parameterized by solution size k is W[1]-hard.

Proof (sketch). We provide an FPT-reduction from Multicolored Indepen-

dent Set, which is W[1]-hard when parameterized by k [8].

Multicolored Independent Set

• Input: A graph G = (V,E) with V partitioned into sets {V1, . . . , Vk}, k ∈ N.
• Question: Does there exist an independent set S of G s.t. |S ∩ Vi| = 1 for
1 � i � k?

Construction. We construct an instance (D = (V ′, A′), k′) of Multipacking

as follows. We consider the bipartite incidence graph of G, that is we add V ∪E to
V ′. To construct A′, we add an arc from a vertex e ∈ E to a vertex v ∈ V if and
only if e contains v. We next group vertices of E into

(
k
2

)
sets Ei,j , 1 � i < j � k

On the Complexity of BD and MP in Digraphs 273

Fig. 2. Sketch of the construction in the proof of Theorem 12 for edges e0 = ab and
e1 = bc with f(a) = f(b) = e0 and f(c) = e1.

according to the colors of their corresponding endpoints, and add every possible
arc within each set Ei,j . We next duplicate the vertices of each set Vi into a set
V ′
i such that there is an arc from each vertex vi ∈ Vi to its corresponding copy

v′
i in V ′

i . Finally, we add k vertices {s1, . . . , sk} such that there is an arc from
si to every vertex of Vi. Notice in particular that the maximum finite distance
is 3. To conclude, one can see that the graph G has a multicolored independent
set of size k if and only if the digraph D has a multipacking of size k′ = 2k+

(
k
2

)
.

�	

4.2 Algorithms

Theorem 14. Multipacking can be solved in linear time on single-sourced
layered DAGs.

Proof. Let D = (V, A) be a single-sourced layered DAG. By Lemma 10, in every
single-sourced layered DAG there is a multipacking of maximum size that is a
maximum-size set of vertices with at most one vertex per layer such that two
chosen vertices of consecutive layers are not adjacent. We give a polynomial-time
bottom-up procedure to find such a set. At each step of the procedure, a layer
Vi is partitioned into a set of active vertices and a set of universal ones, denoted
respectively Ai and Ui. Our goal is to select exactly one vertex in each set of
active vertices. We initiate the algorithm by setting At = Vt and Ut = ∅. Now, for
every i with 0 � i < t, we set Ui = {u ∈ Vi : Ai+1 ⊆ N+(u)} and Ai = Vi \ Ui.
In other words, Ui contains the vertices of layer Vi that are adjacent to all active
vertices of Vi+1. During the procedure, if some layer Vi satisfies Ai = ∅, we let
Ai−1 = Vi−1 and repeat this process until V0 is reached.

274 F. Foucaud et al.

To construct a maximum multipacking, we start from V0, and for each 0 �
i � t we pick a vertex si in each non-empty set Ai of active vertices. Every time a
vertex si is picked, we remove its closed neighborhood from D. By construction,
every time a vertex si is picked, there exists a vertex si+1 ∈ Ai+1 such that
sisi+1 does not belong to A (otherwise si would belong to Ui). To prove the
optimality of our algorithm, let 0 � i < t be such that Ai = ∅, and j > i be the
smallest integer greater than i such that Vj = Aj . Such a j exists since At = Vt.

Claim 2. Let S be a multipacking with at most one vertex per layer. Then:
∣
∣
∣S ∩ ∪j

k=iVk

∣
∣
∣ � j − i (2)

Proof. Let S be an optimal multipacking with at most one vertex per layer.
Assume by contradiction that

∣
∣
∣S ∩ ⋃j

k=i Vk

∣
∣
∣ > j − i + 1, and call sk the vertex

in Vk ∩ S for every i � k � j. We know that si ∈ Ui, and since every vertex in
Ai+1 is an out-neighbor of si, then si+1 ∈ Ui+1. By induction, for every i � k � j,
we have sk ∈ Uk, but Uj = ∅ by choice of j, leading to a contradiction.

Note that Claim 2 gives one less vertex than what Lemma 10 implies, and
that it is the value reached by our algorithm, since for i � k � j, the only layer
with Uk = Vk is Vi. The sets of active and universal vertices can be constructed
by standard graph searching, so the whole algorithm takes O(|V | + |A|) time. �	
Theorem 15. Multipacking parameterized by solution size k and maximum
out-degree d is FPT.

Proof. Let (D = (V, A), k) be an instance of Multipacking such that D has
maximum out-degree d. By Lemma 8, if D has a shortest directed path of length
3k − 3, we can accept the input (this can be checked in polynomial time). Thus,
we can assume that the length of any shortest path is at most 3k−2. If a vertex u
has a directed path to a vertex v, we say that u absorbs v, and a set S of vertices
is absorbing if every vertex in D is absorbed by some vertex of S. If D has a
set of k vertices, no two of which are absorbed by some common vertex (e.g. a
set of k sources), we can accept, since this set forms a valid solution. Note that
this property is satisfied by any minimum-size absorbing set S: indeed, if some
vertex w absorbs two vertices u, v of S, we may replace them by w and obtain
a smaller absorbing set, a contradiction. We claim that we can find a minimum-
size absorbing set in FPT time. Indeed, we can reduce this problem to Hitting

Set (defined for the proof of Theorem 5) as follows. We let U = V (D), and
F contains a set Fv for every vertex v, where Fv comprises every vertex which
absorbs v (including v itself). Because D has out-degree at most d and the length
of any shortest path is at most 3k − 2, every vertex of U is contained in at most
dU =

∑3k−2
i=0 (d − 1)i + 1 sets of F . Moreover, a set of vertices of U = V (D)

is a hitting set of (U,F) if and only if it is an absorbing set of D. We can solve
Hitting Set in FPT time when parameterized by dU and solution size k [19],
which proves the above claim. As mentioned before, if the obtained minimum-
size absorbing set of D has size at least k, since it forms a valid multipacking,

On the Complexity of BD and MP in Digraphs 275

we can accept. Otherwise, D can be covered by k − 1 balls of radius at most
3k − 2. Each ball has at most

∑3k−2
i=0 (d − 1)i + 1 = dO(k) vertices, so in total D

has at most dO(k) vertices and a brute-force algorithm is FPT. �	

5 Conclusion

We have studied Broadcast Domination and Multipacking on various sub-
classes of digraphs, with a focus on DAGs. It turns out that they behave very
differently than for undirected graphs. We feel that Multipacking is slightly
more challenging. Indeed, some problems that we solved for Broadcast Domi-

nation are open for Multipacking. For example, it would be interesting to see
whether Multipacking is FPT for DAGs, and whether it remains W[1]-hard
for digraphs without directed 2-cycles. It is also unknown whether Multipack-

ing is NP-hard on undirected graphs, as asked in [24,25]. On the other hand, we
showed that Multipacking is NP-complete for single-sourced DAGs, but we do
not know whether the same holds for Broadcast Domination. It is not diffi-
cult to show that both problems are FPT when parameterized by the vertex cover
number. What about smaller parameters such as tree-width or DAG-width?

Acknowledgements. FF is partially funded by the IFCAM project “Applications
of graph homomorphisms” (MA/IFCAM/18/39) and by the ANR project HOSIGRA
(ANR-17-CE40-0022). FS is partially supported by the project ESIGMA (ANR-17-
CE23-0010).

References

1. Beaudou, L., Brewster, R.C., Foucaud, F.: Broadcast domination and multipack-
ing: bounds and the integrality gap. Australas. J. Comb. 71(1), 86–97 (2019)

2. Blair, J.R.S., Heggernes, P., Horton, S., Manne, F.: Broadcast domination algo-
rithms for interval graphs, series-parallel graphs, and trees. In: Proceedings of the
35th South-eastern International Conference on Combinatorics, Graph Theory, and
Computing. Congressus Numerantium, vol. 169, pp. 55–77 (2004)

3. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

4. Brewster, R.C., MacGillivray, G., Yang, F.: Broadcast domination and multipack-
ing in strongly chordal graphs. Discrete Appl. Math. 261, 108–118 (2019)

5. Brewster, R.C., Mynhardt, C.M., Teshima, L.E.: New bounds for the broadcast
domination number of a graph. Cent. Eur. J. Math. 11, 1334–1343 (2013)

6. Casel, K.: Resolving Conflicts for lower-bounded clustering. In: 13th International
Symposium on Parameterized and Exact Computation, IPEC 2018, Helsinki, Fin-
land, 20–24 August 2018, pp. 23:1–23:14 (2018)

7. Chang, R.Y., Peng, S.L.: A linear-time algorithm for broadcast domination prob-
lem on interval graphs. In: Proceedings of the 27th Workshop on Combinato-
rial Mathematics and Computation Theory, pp. 184–188. Providence University
Taichung, Taiwan (2010)

8. Cygan, M., et al.: Parameterized Algorithms. Springer, Switzerland (2015).
https://doi.org/10.1007/978-3-319-21275-3

https://doi.org/10.1007/978-3-319-21275-3

276 F. Foucaud et al.

9. Dabney, J., Dean, B.C., Hedetniemi, S.T.: A linear-time algorithm for broadcast
domination in a tree. Networks 53(2), 160–169 (2009)

10. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors
and IDs. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014)

11. Dunbar, J.E., Erwin, D.J., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T.:
Broadcasts in graphs. Discrete Appl. Math. 154(1), 59–75 (2006)

12. Erwin, D.J.: Dominating broadcasts in graphs. Bull. ICA 42, 89–105 (2004)
13. Erwin, D.J.: Cost domination in graphs. Ph.D. thesis, Western Michigan University

(2001)
14. Foucaud, F., Gras, B., Perez, A., Sikora, F.: On the complexity of broadcast domi-

nation and multipacking in digraphs. CoRR abs/2003.10570 (2020). https://arxiv.
org/abs/2003.10570

15. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco
(1979)

16. Hartnell, B.L., Mynhardt, C.M.: On the difference between broadcast and multi-
packing numbers of graphs. Utilitas Mathematica 94, 19–29 (2014)

17. Heggernes, P., Lokshtanov, D.: Optimal broadcast domination in polynomial time.
Discrete Math. 306(24), 3267–3280 (2006)

18. Heggernes, P., Sæther, S.H.: Broadcast domination on block graphs in linear time.
In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS,
vol. 7353, pp. 172–183. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30642-6 17

19. Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial
lower bounds for kernelization. In: SODA 2012, Kyoto, Japan, 17–19 January 2012,
pp. 104–113 (2012)

20. Liu, C.L.: Introduction to Combinatorial Mathematics. McGraw-Hill, New York
(1968)

21. Lokshtanov, D.: Broadcast domination. Master’s thesis, University of Bergen
(2007)

22. Mynhardt, C.M., Teshima, L.E.: Broadcasts and multipackings in trees. Utilitas
Mathematica 104, 227–242 (2017)

23. Ordyniak, S., Kreutzer, S.: Width-measures for directed graphs and algorith-
mic applications. In: Quantitative Graph Theory, pp. 195–245. Chapman and
Hall/CRC (2014)

24. Teshima, L.: Broadcasts and multipackings in graphs. Master’s thesis, University
of Victoria (2012)

25. Yang, F.: New results on broadcast domination and multipacking. Master’s thesis,
University of Victoria (2015)

https://arxiv.org/abs/2003.10570
https://arxiv.org/abs/2003.10570
https://doi.org/10.1007/978-3-642-30642-6_17
https://doi.org/10.1007/978-3-642-30642-6_17

A Parameterized Perspective
on Attacking and Defending Elections

Kishen N. Gowda, Neeldhara Misra(B), and Vraj Patel

Indian Institute of Technology, Gandhinagar, Gandhinagar, India
{kishen.gowda,neeldhara.m,vraj.patel}@iitgn.ac.in

http://www.iitgn.ac.in

Abstract. We consider the problem of protecting and manipulating
elections by recounting and changing ballots, respectively. Our setting
involves a plurality-based election held across multiple districts, and
the problem formulations are based on the model proposed recently
by [Elkind et al., IJCAI 2019]. It turns out that both of the manipulation
and protection problems are NP-complete even in fairly simple settings.
We study these problems from a parameterized perspective with the goal
of establishing a more detailed complexity landscape. The parameters we
consider include the number voters, and the budgets of the attacker and
the defender. While we observe fixed-parameter tractability when param-
eterizing by number of voters, our main contribution is a demonstration
of parameterized hardness when working with the budgets of the attacker
and the defender.

Keywords: Elections · W-hardness · Parameterized complexity

1 Introduction

Electoral fraud and errors in consolidation of large-scale voting data are funda-
mental issues in democratic societies. To counteract issues with malicious manip-
ulations and accidental errors in the counting of votes, most electoral systems
allow for strategic recounting of ballots to verify the election outcome. Recount-
ing is generally an expensive and high-stakes process, and it would be desirable
to formalize the problem so as to capture the relevant trade-offs and possibly
pursue an algorithmic approach to finding an optimal recounting strategy. Such
a framework was recently proposed by Elkind et al. [5], where the authors con-
sidered the problems of protecting and manipulating elections by recounting
and changing ballots, respectively. These problems are modeled as a Stackelberg
game involving an attacker and a defender. Both players work with limited bud-
gets (say BA and BD), and the question is if the players can develop optimal
strategies for their desired outcomes.

In this model, the election is spread out across multiple districts, with the
voter preferences aggregated according to the plurality voting rule in one of two

Supported by Indian Institute of Technology, Gandhinagar and SERB.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 277–288, 2020.
https://doi.org/10.1007/978-3-030-48966-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_21

278 K. N. Gowda et al.

different ways, which we will explain explicitly in a moment. The manipulation
problem is the following. The attacker has to optimize, typically with the goal of
turning the election in favor of a particular candidate that he may have in mind,
an attack strategy that involves manipulating the votes in at most BA districts
while ensuring that the impact of the attack persists even if the defender restores
at most BD of these districts to their original state. In the recounting problem,
the defender is given complete information about the original and manipulated
voting profiles and she can restore the state of at most BD districts with the
goal of making the “true winner” win the repaired election.

Known Results. The results obtained in [5] already demonstrate the hardness
of the attacker’s and defender’s problems for two natural ways of aggregating
the votes: (1) Plurality over Voters (PV), where districts are only used for the
purpose of collecting the ballots and the winner is selected among the candidates
that receive the largest number of votes in total, and (2) Plurality over Districts
(PD), where each district selects a preferred candidate using the Plurality rule,
and the overall winner is chosen among the candidates supported by the largest
number of districts, or the set of districts with largest total weight if the dis-
tricts have weights associated with them. We briefly recall the main highlights
from [5], since this provides the context for our contributions. It turns out that
the recounting problem is NP-complete for both implementations of the plurality
rule, even when there are only three candidates (this result assumes a succinct
representation of the votes) or even when the votes are specified in unary. The
problem is tractable when PD is employed over unweighted districts. On the
other hand, the manipulation problem is NP-hard for PD even with unweighted
districts, and in fact, ΣP

2 -complete for PD with succinct input even when there
are only three candidates. Further, it is NP-hard for PV, again even when there
are only three candidates (in the setting of succinct input) or even when the
votes are specified in unary.

Our Contributions. Our main contribution is to establish the parameterized
intractability of both the recounting and manipulation problems under both
implementations of the plurality voting rule when parameterized by the budget
of the players. Our contributions directly address a direction suggested by [5].
In particular, we obtain the following results:

Theorem 1. The PV-Rec and PD-Rec problems are W[2]-hard and W[1]-
hard, respectively, when parameterized by the budget of the defender, and are
FPT when parameterized by the number of districts.

Theorem 2. The PV-Man and PD-Man problems are W[1]-hard when
parameterized by the budget of the attacker (even when the defender budget is
zero), and are FPT when parameterized by the number of voters.

Our results rely on reductions from traditional problems such as Multi-

Colored Clique and Dominating Set. Our hardness results work even when
the input is specified in unary. It is reasonably natural to imagine that these

A Parameterized Perspective on Attacking and Defending Elections 279

parameters would be small in practice, since they correspond to real-world bud-
get constraints. To that end, our results here bring mixed news: on the one hand,
the hardness of mounting an attack may be viewed as a positive outcome, but
on the other hand, it turns out that the problem of optimally reversing damages
is hard as well. This triggers the natural question of whether the recounting
problem admits good approximations when treated as an optimization problem,
either on the criteria of the budget or on the criteria of the quality of the winning
candidate that we are able to restore. The FPT algorithms that we present rely
mostly on straightforward enumeration, and it would be interesting to improve
the running times in question.

Related Work. While we build most closely on the work of Elkind et al. [5], and
much of the work on manipulation in the literature of social choice does not con-
sider the possibility of a counter-attack, we note that some recent investigations
have been carried out in a spirit that is similar to our present contribution. Dey
et al. [3] also consider a parameterized approach to protecting elections, where
the voting rule in question is the Condorcet rule. They build on the work of Yin
et al. [10], who study a pre-emptive approach to protecting elections. In these
models, the defender allocates resources to guard some of the electoral districts,
so that the votes there cannot be influenced, and the attacker responds after-
ward. This is in contrast to our setting, where the defender makes the second
move. The social choice literature is rich in studies of manipluation, control, and
bribery. For a detailed overview we direct the reader to the surveys [1,6].

2 Preliminaries

We recall the setting from [5]. We consider elections over a candidate set C,
where |C| = m. There are n voters who are partitioned into k pairwise disjoint
districts. The set of all districts is D. For each i ∈ D, let ni = |i|. We note that in
this context, i denotes a subset of voters. For each i ∈ D, district i has a weight
wi, which is a positive integer. We say that an election is unweighted if wi = 1
for all i ∈ D. Each voter votes for a single candidate in C. For each i ∈ D and
each c ∈ C let vic denote the number of votes that candidate c gets from voters
in i. We refer to the list v = (vic)i∈D,c∈C as the vote profile.

Let � be a linear order over C; a � b indicates that a is favored over b. We
consider the following two voting rules, which take the vote profile v as their
input.

– Plurality over Voters (PV): We say that a candidate a beats a candidate b

under PV if
∑

i∈D

via >
∑

i∈D

vib or
∑

i∈D

via =
∑

i∈D

vib and a � b; the winner is

the candidate that beats all other candidates. Note that district weights wi

are not relevant for this rule.
– Plurality over Districts (PD): For each i ∈ D the winner ci in i is chosen

from the set argmaxc∈Cvic, with ties broken according to �. Then, for each
i ∈ D, c ∈ C, we set wic = wi if c = ci, else wic = 0. We say that a candidate

280 K. N. Gowda et al.

a beats a candidate b under PD if
∑

i∈D

wia >
∑

i∈D

wib or
∑

i∈D

wia =
∑

i∈D

wib

and a � b. The winner is the candidate that beats all other candidates. Given
the voting profile v, we take the winner in district i to be Gv(i). We shall
omit the subscript if the voting profile to be used is clear from the context.

For PV and PD, we define the social welfare of a candidate c ∈ C as the total
number of votes that c gets and the total weight that c gets, respectively:

SWPV(c) =
∑

i∈D

vic, SWPD(c) =
∑

i∈D

wic

Hence, the winner under each voting rule is a candidate with the maximum
social welfare. We now define some additional terminology that we use later in
this paper:

– Score: Given a voting profile u, under the PD rule, the score of a candidate
p is defined as the sum of weights of districts in which the candidate p wins.
Formally, scu(p) =

∑

i∈D

wi · δG(i)p (Here δ is the Kronecker delta function).

– Rivals: Given a voting profile u, under the PD rule, we define the rivals of
a candidate p to be the set of candidates C ⊂ C such that for all candidates
c ∈ C, either scu(c) > scu(p) or scu(c) = scu(p) and c � p.

We now consider the scenario where an election may be manipulated by an
attacker, who wants to change the result of the election in favor of his preferred
candidate p. The attacker has a budget BA ∈ N which enables him to change
the voting profiles in at most BA districts. For each district i ∈ D, we define
γi, 0 � γi � ni to be the number of votes that the attacker can manipulate
in i. After the manipulation we have a voting profile v = (vic)i∈D,c∈C. We
formalize the notion of a manipulation as a set M ⊆ D and a voting profile v
such that |M| � BA where vic = vic for all i /∈ M and for all i ∈ M it holds
that

∑

c∈C

vic = ni and
∑

c∈C

|vic−vic|
2 � γi.

After the attacker, a socially minded defender with budget BD ∈ {0}∪N can
demand a recount in at most BD districts. Formally, a recounting strategy R is a
set such that R ⊆ M and |R| � BD. After the defender recounts, the vote counts
of the districts in R are restored to their original values. This results in a new
voting profile u = (uic)i∈D,c∈C where for all i ∈ D\M∪R,uic = vic and for all
i ∈ M \R,uic = vic. Then the voting rule V = {PV,PD} is applied to the profile
u that is obtained to obtain a winner (let it be w ′) with ties broken according
to �. The defender’s objective is to maximize SWV(w ′). It is a game of perfect
information i.e. both entities know all information about the game.

We say that the attacker wins if he has a manipulation strategy such that
after the defender moves optimally, the preferred candidate of attacker i.e. p

wins. We define the following two decision problems based on voting rule V ∈
{PV,PD} and the two entities:

– V-Man: Given the voting rule V, a voting profile v, the linear order �, a
preferred candidate p, attacker budget BA, defender budget BD and weights

A Parameterized Perspective on Attacking and Defending Elections 281

wi and parameter γi for each district i ∈ D, does the attacker have a winning
strategy?

– V-Rec: Given the voting rule V, a voting profile v, a manipulated voting
profile v, a preferred candidate w, the linear order �, defender budget BD

and weights wi for each district i ∈ D, can the defender make w win by
recounting at most BD districts?

Next we state the definitions and parameterized hardness results for decision
problems that are used throughout this paper, and refer the reader to [2,4]
for a detailed introduction to parameterized complexity and the framework of
parameterized reductions.

– Dominating Set: A set of vertices D is a dominating set in graph G if
V(G) = NG[D]. Dominating Set asks that given a graph G and a non-
negative integer k, does there exist a dominating set of size at most k? Dom-

inating Set is known to be W[2]-hard parameterized by k [4].
– Multi-Colored Clique: Given a graph G and a partition of the vertex set

V into k color classes V1,V2, . . . Vk, Multi-Colored Clique asks whether
there exists a clique of size k with one vertex each from V1,V2, . . . Vk. Multi-

Colored Clique is known to be W[1]-hard parameterized by k [7,9].

3 Plurality over Voters (PV)

In this section, we analyze the parameterized complexity of PV-Rec and PV-

Man with different parameters. It is easy to see that PV-Rec is FPT when
parameterized by the number of districts (k), since we may guess the districts
to be recounted. Since k � n, the problem is also FPT parameterized by the
number of voters.

Proposition 1. PV-Rec is FPT when parameterized by the no. of districts k

or the number of voters n.

We now show that PV-Rec is W[2]-hard when parameterized by budget of
the defender (BD). Before describing the construction formally, we briefly outline
the main idea. We reduce from the Dominating Set, which is well-known to
be W[2]-hard parameterized by the size of the solution, which we denote by k.
Let (G = (V,E),k) be an instance of Dominating Set. We create an instance
of PV-Rec where we have candidates and districts corresponding to vertices of
G, along with a special candidate w who is our desired winner. To begin with,
we have an “immutable” district—one where the original and manipulated votes
are identical—that sets the baseline score of the special candidate at n. The
number votes for any other candidate c from this district is fixed to ensure that
the total number of votes for c is also n. In a district corresponding to a vertex v,
every candidate corresponding to a vertex u ∈ N[v] gets one vote. In the original
scenario, all voters in these districts vote only for some dummy candidates. The
key is that a “switch” in a district corresponding to a vertex v reduces the vote

282 K. N. Gowda et al.

count for all vertices in N[v]. Since w receives no votes from any of the other
districts, observe that the only way for w to emerge as a unique winner is if
all of the other candidates lose votes from the switches. It is not hard to infer
from here that the defender has a valid switching strategy if and only if G has
a dominating set of size at most k.

Lemma 1. PV-Rec is W[2]-hard parameterized by BD, the defender’s budget.

Proof. We present an FPT reduction from the Dominating Set problem. Let
(G = (V,E),k) be an instance of Dominating Set. Let N = |V | and M = |E|.
We begin by describing the construction of the reduced instance.

Districts: We introduce a baseline district D0. Further, for each vertex v ∈ V,
we introduce a corresponding primary district Dv.

Candidates: For each vertex v ∈ V we introduce a main candidate cv and a
dummy candidate dv. We also have a special candidate w.

Voting Outcomes: The voting outcomes are as follows. For ease of presenta-
tion, let v ∈ V be arbitrary but fixed.

1. The special candidate does not receive any votes from the primary districts
in either the original or the manipulated settings. In particular, vDv,w =
vDv,w = 0.

2. In the original election, the main candidates have no votes in the primary
districts, that is, vDv,cu

= 0 for all u ∈ V.
3. In the manipulated election, a main candidate cu has a single vote in its favor

in the primary district Dv if and only if u ∈ NG[v]. Formally,

vDv,cu
=

{
1 if u ∈ NG[v]

0 otherwise

4. In the original election, a dummy candidate du has a score of d(u) + 1 in
the primary district corresponding to u, and a score of zero everywhere else.
Formally,

vDv,du
=

{
d(v) + 1 if u = v

0 otherwise

5. The dummy candidates receive no votes in the primary districts in the manip-
ulated elections.

6. In the baseline district, the score of the main candidates is defined to ensure
that their total score in the manipulated election is N. In particular, vD0,cv

=
vD0,cv

= N − (d(v) + 1).
7. The dummy candidates receive no votes in the baseline district in both the

original and manipulated elections.
8. The score of w is N in the baseline district in both the original and manipu-

lated elections. In particular, vD0,w = vD0,w = N.

A Parameterized Perspective on Attacking and Defending Elections 283

To summarize, the primary districts corresponding to a vertex v have d(v) + 1
voters, and all main candidates corresponding to vertices in NG[v] get one vote
each in the manipulated world; while the dummy candidate dv gets all the
votes in the original world. Observe that in the manipulated election, all the
candidates except the dummy candidates have a total score of N, while the
dummy candidates have a score of zero.

We set BD= k. The preferred candidate is w. We also work with the following
tie-breaking order: . . . cv . . . � w � . . . dvu . . . , where the main candidates are
preferred over the special candidate, but the special candidate dominates the
dummy candidates. This completes the description of the constructed instance.
Due to lack of space, we defer the proof of equivalence to a full version [8] of this
paper. ��

We now turn our attention to PV-Man. First, we prove that PV-Man is
FPT parameterized by the number of voters. This follows by first observing
that m � 2n without loss of generality, since at most 2n candidates can have
a non-trivial score across the original and manipulated instances combined, and
the remaining candidates are irrelevant to the instance. The algorithm can then
proceed by guessing a manipulation strategy—note that the space of all possi-
ble strategies is bounded once the candidates are bounded—and then invoking
the PD-Rec algorithm from the previous section as a subroutine to verify the
validity of the guessed strategy. Thus, we have the following.

Proposition 2. PV-Man is FPT parameterized by n, the number of voters.

We now show that PV-Man is W[1]-hard parameterized by budget of the
attacker (BA). Before describing the construction formally, we briefly outline
the main idea. We reduce from the Multi-Colored Clique problem, which
is well-known to be W[1]-hard parameterized by the number of color classes,
which we denote by k. Let (G = (V = V1 	 · · · 	 Vk,E),k) be an instance
of Multicolored-Clique. In the reduced instance, we introduce a special
candidate w who is the preferred candidate of the defender. The rival candidates
are candidates corresponding to color classes Ri, ordered pairs of color classes
Rij and vertices cv. We also introduce some dummy candidates. We introduce
districts corresponding to each v ∈ V and each e ∈ E. Also, there exists a special
district which is “immutable”, which sets up the initial scores of all candidates
such that they are equal to a large number (say F). Initially, w has 0 votes. The
scores are set up in such a way that the attacker has to transfer votes of k2

districts to w to make her win. The scores are engineered to ensure that the
attacker has a successful manipulation strategy if and only if these k2 districts
correspond to k vertices and

(
k
2

)
edges that form a multicolored clique in G.

Lemma 2. PV-Man is W[1]-hard parameterized by BA, the attacker’s budget.

Proof. We demonstrate a parameterized reduction from the Multi-Colored

Clique problem. Let (G = (V = V1 	 · · · 	 Vk,E),k) be an instance of Multi-

Colored Clique. We begin by describing the construction.

284 K. N. Gowda et al.

Districts: There are two types of districts. We have a primary district Dv for
each vertex v ∈ V and two secondary districts Duv and Dvu for each edge
e = (u, v) ∈ E. Apart from these, there is a baseline district D0.

Candidates: For each vertex v ∈ V we will have a main candidate cv. Also, we
have challenger candidates corresponding to color classes Ri’s and ordered pairs
of color classes Rij’s. We introduce some dummy candidates of an unspecified
number, whose role is equalize the number of votes across primary and secondary
districts. Finally, we have a special candidate w.

Voting Profiles: We introduce the following voting outcomes for the candi-
dates.

1. The score of the special candidate w is zero in all districts.
2. A main candidate cv for v ∈ V has a score of k − 1 in the primary district

corresponding to v, and a score of zero in all other primary districts.
3. A main candidate cv for v ∈ V has a score of one in every secondary district

corresponding to an edge e = {u,w} that it is not incident to, provided u

and v share the same color class. In particular, if v ∈ Vi and there are t

edges incident on Vi \ {v}, then cv has a score of one in t secondary districts.
Formally, assuming v ∈ Vi, we have:

vDuw,cv
=

{
1 if u
= v and u ∈ Vi

0 otherwise

4. A challenger candidate corresponding to color class i has one vote from any
primary district corresponding to a vertex v ∈ Vi and a score of zero from all
other primary districts. In other words:

vDv,Ri
=

{
1 if v ∈ Vi

0 otherwise

5. A challenger candidate corresponding to an ordered pair of color classes
(Vi,Vj) has one vote from any secondary district Duv corresponding to an
edge e ∈ E whose endpoints u and v are in color classes Vi and Vj respec-
tively, and a score of zero from all other secondary districts. Note that the
candidates Rij and Rji receive scores of one from distinct secondary districts.
Specifically, we have: vDuv,Rij

= 1 if u ∈ Vi and v ∈ Vj.

Now, let � be the size of the largest—in terms of the number of voters—among
the primary and secondary districts constructed so far. For every primary or
secondary district D with ν(D) voters, we add � − ν(D) dummy voters and
dummy candidates, and we let each dummy voter vote for a distinct dummy
candidate. We let F = �k2.

We are now ready to specify the voting outcomes from the baseline district.
these are simply designed to ensure that all primary candidates cv get F+ k− 2
votes and the challenger candidates get F votes, which is easy to verify from the
proposed outcomes below:

A Parameterized Perspective on Attacking and Defending Elections 285

1. vD0,cv
= F − 1 −

∑

e={u,v}∈E

(vDuv,cv
+ vDvu,cv

)

2. vD0,Ri
= F −

∑

u∈V

vDu,Ri
−

∑

e={u,v}∈E

(vDuv,Ri
+ vDvu,Ri

)

3. vD0,Rij
= F −

∑

u∈V

vDu,Rij
−

∑

e={u,v}∈E

(vDuv,Rij
+ vDvu,Rij

)

Note that apart from the above, the dummy candidates get 1 vote each, and the
special candidate w has 0 votes. Also, the attacker has no room to manipulate
in the baseline district, that is, γD0 = 0. On the other hand, the attacker can
modify up to � votes in the primary and secondary districts. Further, we set
BA = k2 and BD = 0. The preferred candidate is w. Finally, we impose the
following tie-breaking order:

. . .Ri . . . � . . .Rij . . . � . . . cv . . . � w � . . . dummies
This completes the description of the constructed instance. We now turn to

the proof of equivalence.

Forward Direction. Let a multi-colored clique S of size k be given. The attacker
chooses the k primary and 2

(
k
2

)
secondary districts corresponding to the vertices

and edges of S, and transfers all the � votes in these k2 districts to the desired
candidate w. The score of w is now F. Further, note that the scores of all chal-
lenger candidates has decreased by one to F − 1, and the scores of all main
candidates have decreased by k − 1 as well, but for different reasons: for main
candidates corresponding to vertices of the clique, the drop is directly from the
recounting in the primary districts, while for any other main candidate, the drop
is cumulative across (k − 1) relevant secondary districts. In particular, suppose
S ∩ Vi := {vi}. Consider any u ∈ Vi such that u
= vi, and observe that cu had
a score of one in the following (k − 1) districts:

Dviv1 , . . . ,Dvivi−1 ,Dvivi+1 , . . . ,Dvivk
,

which have indeed been attacked, and therefore the score of cu reduces by k−1.
This leaves all candidates ranked ahead of the special candidate w in the tie-
breaking order with a score less than the final score of w, and the scores of
the dummy candidates is either zero or one, thus they pose no threat to w.
Therefore, w wins the election under this attack, concluding the argument in
the forward direction.

Reverse Direction. In the reverse direction, we essentially argue that any valid
solution must resemble the structure of the solution that we obtained while
demonstrating the forward direction. This follows from the construction, and
due to lack of space, the details are deferred to a full version [8] of this paper. ��

4 Plurality over Districts (PD)

In this section, we analyze the parameterized complexity of PD-Rec and PD-

Man. As with PV-Rec, it is easy to see that PD-Rec is also FPT when param-
eterized by the number of districts (k), since we may guess the districts to be
recounted. Since n � k, it is also FPT parameterized by the number of voters.

286 K. N. Gowda et al.

Proposition 3. PD-Rec is FPT when parameterized by the number of districts
k or the number of voters n.

We now show that PD-Rec is W[1]-hard parameterized by budget of the
defender BD. Before describing the construction formally, we briefly outline the
main idea. We reduce from the Multicolored-Clique Problem, which is
well-known to be W[1]-hard parameterized by the no. of color classes, which
we denote by k. Let (G = (V = V1 	 · · · 	 Vk,E),k) be an instance of
Multicolored-Clique. In the reduced instance, we introduce a special candi-
date w who is the preferred candidate of the defender. The rival candidates are
candidates corresponding to color classes Ri and ordered pairs of color classes
Rij. Further, we introduce candidates encoding the vertices cv and edges he &
ae. We also introduce some dummy candidates. We introduce two districts cor-
responding to each v ∈ V and five districts corresponding to each e ∈ E. Also,
there exists a baseline district for each candidate which is “immutable”, which
sets up the initial scores of all candidates such that they are equal to a large
number (say λ). The scores are set up in such a way that there is no way to
increase the score of w, thus we require to reduce the score of all the rivals by
at least one while not increasing the scores of other candidates. But the districts
and voting profiles are engineered so as to enforce that any recounting solution
must have a certain structure, from which we can draw a correspondence to a
subset of vertices which must in fact form a multi-colored clique of size k in G.

Lemma 3. PD-Rec is W[1]-hard parameterized by BD, the defender’s budget.

Proof. This hardness result follows from the following reduction from the Multi-

Colored Clique. The given instance is the graph G = (V,E) and the number
of unique color classes, k, where Vi denotes the ith color class. We begin by
describing the construction of the reduced instance.

Candidates: For every color class 1 � i � k there is a candidate Ri correspond-
ing to Vi. Further, for every pair of color classes (i, j) such that 1 � i < j � k,
we introduce two candidates Rij and Rji. These will be the rival candidates of
the reduced instance. Now we introduce candidates that encode the vertices and
edges of the graph G. To begin with, for each vertex v ∈ V we introduce two
candidates cv and dv, which we will refer to as the main and dummy candidates,
respectively. Also, for every edge e ∈ E, we introduce two candidates he and ae,
which we refer to as the helper and auxiliary candidates, respectively. Finally,
we have a special candidate w. To summarize, the overall set of candidates is:

C = {Ri | i ∈ [k]} ∪
{

Rij,Rji | (i, j) ∈
(
[k]

2

)}

∪ {cv,dv | v ∈ V} ∪ {ae,he | e ∈ E}

Districts: We introduce the following districts.

1. For each v ∈ V we introduce a primary district Dv with weight one and a
critical district D�

v with weight k.
2. For each e = (u, v) ∈ E, we introduce two edge districts Duv and Dvu, one

support district Se, and two transfer districts Te,u and Te,v. The support
districts have weight two, while the remaining districts have weight one.

A Parameterized Perspective on Attacking and Defending Elections 287

3. For each candidate c ∈ C \ {dv | v ∈ V}, we introduce a baseline district Bc

with a weight of λc, which will be specified in due course.

Voting Outcomes: The voting outcomes in the original and manipulated dis-
tricts are depicted in the Table 1 below.

Table 1. For the winners depicted above assume that v ∈ Vj and that e = (u, v), and
further that u ∈ Vi and v ∈ Vj. The subscript c in the last column corresponding to
the baseline districts denotes an arbitrary non-dummy candidate.

District type Dv D�
v Duv Dvu Se Te,u Te,v Bc

Original winner cv dv he he ae cu cv c

Manipulated winner Rj cv Rij Rji he ae ae c

Weight 1 k 1 1 2 1 1 λc

Note that the voting outcome in the baseline districts is the same in the orig-
inal and manipulated settings. It only remains to specify explicitly the weights
of the baseline districts. We let λw := (n + 1)k + 6m. Recall that this is the
weight of the baseline district corresponding to the special candidate. For any
non-dummy candidate c, let s(c) be its score from the manipulated districts. We
then set λc := λw− s(c). With these weights, we ensure that all the non-dummy
candidates tie for the same score (i.e, λw) in the manipulated election, and all
dummy candidates have a score of zero. We note that all the weights intro-
duced here are polynomially bounded. We set BD = 2k+ 5 × (

k
2

)
. The preferred

candidate is w.
We enforce the following tie-breaking order: . . .Ri . . . � . . .Rij . . . � w �

. . . cv . . . � . . . ae . . . � . . . he . . . � . . . dv
This completes the description of the constructed instance. We defer the

proof of equivalence to a full version [8] of this paper due to lack of space. ��
We now turn our attention to PD-Man. We observe that PD-Man can be shown
to be W[1]-hard by a reduction from PD-Rec. We briefly sketch the main idea:
to begin with, we switch the roles of the manipulated profiles and the original
ones, set the defender budget to zero and the attacker budget to the defender
budget. We would also set up the votes in the districts to be such that the only
meaningful manipulation by the attacker is to move the manipulated profile to
the original one. The equivalence is based on repurposing a recounting strategy
to an attacking one and vice-versa. We defer the details of this argument to a
full version [8] of the paper.

5 Concluding Remarks

Our main contribution was to settle the parameterized complexity for the prob-
lems of recounting and manipulation when parameterized by the player budgets,

288 K. N. Gowda et al.

for both the PD and PV implementations of the plurality voting rules. We also
observed that these problems are FPT when parameterized by the number of
voters, and that the recounting problem is FPT when parameterized by the
number of districts as well.

We make some remarks about directions for future work. In the setting of
succinct input, the problems of recounting and manipulation are already para-
NP-hard because of the NP-completeness for three candidates. When the votes
are specified in unary is an interesting direction for future work. The dynamic
programming algorithm proposed by [5] already shows that the problem is in
XP, parameterized by the number of candidates, and we leave open the issue
of whether the problem is FPT. The problem of manipulation parameterized
by the number of districts is another unresolved case. More broadly, it would
be interesting to challenge the theoretical hardness results obtained here against
heuristics employed on real world data sets. The issue of identifying and working
with structural parameters is also an interesting direction for further thought.

References

1. Conitzer, V., Walsh, T.: Barriers to manipulation in voting. In: Brandt, F.,
Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Com-
putational Social Choice, pp. 127–145. Cambridge University Press, Cambridge
(2016)

2. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

3. Dey, P., Misra, N., Nath, S., Shakya, G.: A parameterized perspective on protecting
elections. In: Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, pp. 238–244 (2019)

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999). https://doi.org/10.1007/978-1-4612-0515-9

5. Elkind, E., Gan, J., Obraztsova, S., Rabinovich, Z., Voudouris, A.A.: Protecting
elections by recounting ballots. In: Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence (IJCAI), pp. 259–265 (2019)

6. Faliszewski, P., Rothe, J.: Control and bribery in voting. In: Brandt, F., Conitzer,
V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational Social
Choice, pp. 146–168. Cambridge University Press, Cambridge (2016)

7. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized
complexity of multiple-interval graph problems. Theor. Comput. Sci 410(1), 53–61
(2009)

8. Gowda, K.N., Misra, N., Patel, V.: A parameterized perspective on attacking and
defending elections, CoRR abs/2005.03176 (2020). https://arxiv.org/abs/2005.
03176

9. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. J. Comput. Syst.
Sci 67(4), 757–771 (2003)

10. Yin, Y., Vorobeychik, Y., An, B., Hazon, N.: Optimally protecting elections. In:
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intel-
ligence, IJCAI, pp. 538–545. IJCAI/AAAI Press (2016)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9
https://arxiv.org/abs/2005.03176
https://arxiv.org/abs/2005.03176

Skyline Computation with Noisy
Comparisons

Benôıt Groz1(B), Frederik Mallmann-Trenn2, Claire Mathieu3,
and Victor Verdugo4,5

1 Université Paris-Saclay, CNRS, LRI, Gif-sur-Yvette, France
benoit.groz@lri.fr

2 King’s College London, London, UK
frederik.mallmann-trenn@kcl.ac.uk

3 CNRS & IRIF, Paris, France
claire.m.mathieu@gmail.com

4 London School of Economics and Political Science, London, UK
v.verdugo@lse.ac.uk

5 Universidad de O’Higgins, O’Higgins, Chile
victor.verdugo@uoh.cl

Abstract. Given a set of n points in a d-dimensional space, we seek to
compute the skyline, i.e., those points that are not strictly dominated by
any other point, using few comparisons between elements. We adopt the
noisy comparison model [15] where comparisons fail with constant prob-
ability and confidence can be increased through independent repetitions
of a comparison. In this model motivated by Crowdsourcing applica-
tions, Groz and Milo [18] show three bounds on the query complexity
for the skyline problem. We improve significantly on that state of the
art and provide two output-sensitive algorithms computing the skyline
with respective query complexity O(ndlog(dk/δ)) and O(ndklog(k/δ)),
where k is the size of the skyline and δ the expected probability that our
algorithm fails to return the correct answer. These results are tight for
low dimensions.

Keywords: Skyline · Noisy comparisons · Fault-tolerance

1 Introduction

Skylines have been studied extensively, since the 1960s in statistics [6], then
in algorithms and computational geometry [22] and in databases [7,12,16,21].
Depending on the field of research, the skyline is also known as the set of maxi-
mum vectors, the dominance frontier, admissible points, or Pareto frontier. The
skyline of a set of points consists of those points which are not strictly dominated
by any other point. A point p is dominated by another point q if pi ≤ qi for every
coordinate (attribute or dimension) i. It is strictly dominated if in addition the
inequality is strict for at least one coordinate; see Fig. 1.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 289–303, 2020.
https://doi.org/10.1007/978-3-030-48966-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_22

290 B. Groz et al.

sa
la
ry

education quality

skyline point
dominated point

Fig. 1. Given a set of points X, the goal is to find the set of skyline points, i.e.,points
are not dominated by any other points.

Noisy Comparison Model, and Parameters. In many contexts, comparing
attributes is not straightforward. Consider the example of finding optimal cities
from [18].

To compute the skyline with the help of the crowd we can ask people ques-
tions of the form “is the education system superior in city x or city y?”
or “can I expect a better salary in city x or city y”. Of course, people are
likely to make mistakes, and so each question is typically posed to multiple
people. Our objective is to minimize the number of questions that need to
be issued to the crowd, while returning the correct skyline with high prob-
ability.

Thus, much attention has recently been given to computing the skyline when
information about the underlying data is uncertain [25], and comparisons may
give erroneous answers. In this paper we investigate the complexity of computing
skylines in the noisy comparison model, which was considered in [18] as a sim-
plified model for crowd behaviour: we assume queries are of the type is the i-th
coordinate of point p (strictly) smaller than that of point q?, and the outcome
of each such query is independently correct with probability greater than some
constant better than 1/2 (for definiteness we assume probability 2/3). As a con-
sequence, our confidence on the relative order between p and q can be increased
by repeatedly querying the pair on the same coordinate. Our complexity measure
is the number of comparison queries performed.

This noisy comparison model was introduced in the seminal paper [15] and
has been studied in [8,18]. There are at least 2 straightforward approaches to
reduce noisy comparison problems to the noiseless comparison setting. One app-
roach is to take any “noiseless” algorithm and repeat each of its comparisons
log(f(n)) times, where n is the input size and f(n) is the complexity of the algo-
rithm. The other approach is to sort the n items in all d dimensions at a cost
of ndlog(nd), then run some noiseless algorithm based on the computed orders.
The algorithms in [15,18] and this paper thus strive to avoid the logarithmic
overhead of these straightforward approaches.

Three algorithms were proposed in [18] to compute skylines with noisy com-
parisons. Figure 2 summarizes their complexity and the parameters we consider.

Skyline Computation with Noisy Comparisons 291

The first algorithm is the reduction through sorting discussed above. But sky-
lines often contain only a small fraction of the input items (points), especially
when there are few attributes to compare (low dimension). This leads to more
efficient algorithms because smaller skylines are easier to compute. Therefore,
[18] and the present paper expresses the complexity of computing skylines as a
function of four parameters that appear on Fig. 2: δ, the probability that the
algorithm could fail to return the correct output, and three parameters wholly
determined by the input set X: the number of input points n = |X|, the dimen-
sion d of those points, and the size k = |skyline(X)| of the skyline (output).
There is a substantial gap between the lower bounds and the upper bounds
achieved by the skyline algorithms in [18]. In particular, the authors raised the
question whether the skyline could be computed in o(nk) for any constant d. In
this paper, we tighten the gap between the lower and upper bounds and settle
this open question.

Contributions. We propose 2 new algorithms that compute skylines with prob-
ability at least 1 − δ and establish a lower bound:

– Algorithm SkyLowDim(X, δ) computes the skyline in O(ndlog(dk/δ)) query
complexity and O(ndlog(dkδ) + ndk) overall running time.

– Algorithm SkyHighDim(X, δ) computes the skyline in O(ndklog(k/δ))
– Ω(ndlogk) queries are necessary to compute the skyline when d ≤ k.
– Additionally, we show that Algorithm SkyLowDim can be adapted to com-

pute the skyline with O(ndlog(dk)) comparisons in the noiseless setting.

Our first algorithm answers positively the above question from [18]. Together
with the lower bound, we thus settle the case of low dimensions, i.e., when there
is a constant c such that d ≤ kc. Our 2 skyline algorithms both shave off a factor
k from the corresponding bounds in the state of the art [18], as illustrated in
Fig. 2 with respect to query complexity. SkyLowDim is a randomized algorithm
that samples the input, which means it may fail to compute the skyline within
the bounds even when comparisons are guaranteed correct. However, we show
that our algorithm can be adapted to achieve deterministic O(ndlog(dk)) for
this specific noiseless case.

As a subroutine for our algorithms, we developed a new algorithm to evaluate
disjunctions of boolean variables with noise. Algorithm NoisyFirstTrue is, we
believe, interesting in its own right: it returns the index of the first positive
variable in input order, with a running time that scales linearly with the index.
Technical Core of Our Algorithms. The algorithm underlying the two bounds for
k � n in [18] recovers the skyline points one by one. It iteratively adds to the
skyline the maximum point, in lexicographic order, among those not dominated
by the skyline points already found.1 However, the algorithm in [18] essentially
considers the whole input for each iteration. Our two algorithms, on the opposite,
can identify and discard some dominated points early. The idea behind our

1 The difference between those two bounds is due to different subroutines to check
dominance.

292 B. Groz et al.

Fig. 2. Query complexity of skyline algorithms depending on the values of k. For
†-labeled bounds, the running time is larger than the number of queries.

algorithm SkyHighD − param is that it is more efficient to separate the two
tasks: (i) finding a point p not dominated by the skyline points already found,
on the one hand, and (ii) computing a maximum point (in lexicographic order)
among those dominating p, on the other hand. Whenever a point is considered
for step (i) but fails to satisfy that requirement, the point can be discarded
definitively. The O(ndk) skyline algorithm from [13] for the noiseless setting
also decomposes the two tasks, although the point they choose to add to the
skyline in each of the k iteration is not the same as ours.

Our algorithm SkyLowD − param can be viewed as a 2-steps algorithm
where the first step prunes a huge fraction of dominated points from the input
through discretization, and the second step applies a cruder algorithm on the
surviving points. We partition the input into buckets for discretization, iden-
tify “skyline buckets” and discard all points in dominated buckets. The bucket
boundaries are defined by sampling the input points and sorting all sample points
in each dimension. In the noisy comparison model, the approach of sampling the
input for some kind of discretization was pioneered in [8] for selection problems,
but with rather different techniques and objectives. One interesting aspect of
our discretization is that a fraction of the input will be, due to the low query
complexity, incorrectly discretized yet we are able to recover the correct skyline.

Our lower bound constructs a technical reduction from the problem of iden-
tifying null vectors among a collection of vectors, each having at most one non-
zero coordinate. That problem can be studied using a two-phase process inspired
from [15].

Related Work. The noisy comparison model was considered for sorting and
searching objects [15]. While any algorithm for that model can be reduced to
the noiseless comparison model at the cost of a logarithmic factor (boosting
each comparison so that by union bound all are correct), [15] shows that this
additional logarithmic factor can be spared for sorting and for maxima queries,
though it cannot be spared for median selection. [17,26] and [8] investigate the
trade-off between the total number of queries and the number of rounds for (vari-
ants of) top-k queries in the noisy comparison model and some other models.
The noisy comparison model has been refined in [14] for top-k queries, where
the probability of incorrect answers to a comparison increase with the distance
between the two items.

Other models for uncertain data have also been considered in the literature,
where the location of points is determined by a probability distribution, or when

Skyline Computation with Noisy Comparisons 293

data is incomplete. Some previous work [3,27] model uncertainty about the out-
put by computing a ρ-skyline: points having probability at least ρ to be in the
skyline. We refer to [5] for skyline computation using the crowd and [23] for a
survey in crowdsourced data management.

Our paper aims to establish the worst-case number of comparisons required
to compute skylines with output-sensitive algorithms, i.e., when the cost is
parametrized by the size of the result set. While one of our algorithm is random-
ized, we do not make any further assumption on the input (we do not assume
input points are uniformly distributed, for instance). In the classic noiseless com-
parison model, the problem of computing skylines has received a large amount of
attention [7,20,22]. For any constant d, [20] show that skylines can be computed
in O(nlogd−2k). In the RAM model, the fastest algorithms we are aware of run in
O(nlogd−3n) expected time [10], and O(nloglogn/kn(logn/kn)d−3 deterministic
time [2]. When d ∈ {2, 3}, the problem even admits “instance-optimal” algo-
rithms [4]. [11] investigates the constant factor for the number of comparisons
required to compute skyline, when d ∈ {2, 3}. The technique does not seem to
generalize to arbitrary dimensions, and the authors ask among open problems
whether arbitrary skylines can be computed with fewer than dnlogn compar-
isons. To the best of our knowledge, our O(ndlog(dk)) is the first non-trivial
output-sensitive upper bound that improves on the folklore O(dnk) for comput-
ing skylines in arbitrary dimensions. Many other algorithms have been proposed
that fit particular settings (big data environment, particular distributions, etc),
as evidenced in the survey [19], but those works are further from ours as they
generally do not investigate the asymptotic number of comparisons. Other sky-
line algorithms in the literature for the noiseless setting have used bucketing.
In particular, [1] computes the skyline in a massively parallel setting by par-
titioning the input based on quantiles along each dimension. This means they
define similar buckets to ours, and they already observed that the buckets that
contain skyline points are located in hyperplanes around the “bucket skyline”,
and therefore those buckets only contain a small fraction of the whole input.
Organization. In Sect. 2, we recall standard results about the noisy comparison
model and introduce some procedure at the core of our algorithms. Section 3
introduces our algorithm for high dimensions (Theorem 4) and Sect. 4 introduces
the counterpart for low dimensions (Theorem 6). Section 5 establishes our lower
bound (Theorem 7).

2 Preliminaries

The complexity measured is the number of comparisons in the worst case. When-
ever the running time and the number of comparisons differ, we will say so. With
respect to the probability of error, our algorithms are supposed to fail with prob-
ability at most δ. Following standard practice we only care to prove that our
algorithms have error in O(δ): 5δ, for instance, because the asymptotic com-
plexity of our algorithms would remain the same with an adjusted value for the
parameter: δ′ = δ/5.

294 B. Groz et al.

Given two points, p = (p1, p2 . . . , pd) and q = (q1, q2 . . . , qd) point p is lexico-
graphically smaller than q, denoted by p ≤lex q , if pi < qi for the first i where
pi and qi differ. If there is no such i, meaning that the points are identical, we
use the id of the points in the input as a tie-breaker, ensuring that we obtain a
total order. We next describe and name algorithms that we use as subroutines
to compute skylines.

Algorithm NoisySearch takes as input an element y, an ordered list
(y1, y2, . . . , ym), accessible by comparisons that each have error probability at
most p, and a parameter δ. The goal is to output the interval I = (yi−1, yi] such
that y ∈ I.

Algorithm NoisySort relies on NoisySearch to solve the noisy sort prob-
lem. It takes as input an unordered set Y = {y1, y2, . . . , ym}, and a parameter δ.
The goal is to output an ordering of Y that is the correct non-decreasing sorted
order. In the definition above, the order is kept implicit. In our algorithms,
the input items are d-dimensional points, so NoisySort will take an additional
argument i indicating on which coordinate we are sorting those points.

Algorithm NoisyMax returns the maximum item in the unordered set Y
whose elements can be compared, but we will rather use another variant: algo-
rithm MaxLex takes as input an unordered set Y = {y1, y2, . . . , ym}, a point x
and a parameter δ. The goal is to output the maximum point in lexicographic
order among those that dominate x. Algorithm SetDominates is the boolean
version whose goal is to output whether there exists a point in Y that domi-
nates x.

Algorithm NoisyFirstTrue takes as input a list (y1, y2, . . . , ym) of boolean
elements that can be compared to true with error probability at most p (typically
the result of some comparison or subroutines such as SetDominates). The goal
is to output the index of the first element with value true (and m+1, which we
assimilate to false, if there are none).2

Theorem 1 ([15,18]). When the input comparisons have error probability at
most p = 1/3, the table below lists the number of comparisons performed by the
algorithms to return the correct answer with success probability 1 − δ:

Algorithm NoisyMax NoisySort NoisySearch SetDominates MaxLex

Comparisons O(mlog 1
δ
) O(mlogm

δ
) O(logm

δ
) O(mdlog 1

δ
) O(mdlog 1

δ
)

We denote by CheckVar(x, δ) the procedure that checks if x = true with
error probability δ by majority vote, and returns the corresponding boolean.

Theorem 2. Algorithm NoisyFirstTrue solves the first positive variable prob-
lem with success probability 1−δ in O(j · log(1/δ)) where j is the index returned.

2 As in [18] (but with stronger bounds), this improves upon an O(mlog(1/δ)) algorithm
from [15] that only answers whether at least one of the elements is true.

Skyline Computation with Noisy Comparisons 295

Proof. The proof, left for the long version [24], shows that the error (resp. the
cost) of the whole algorithm is dominated by the error (resp. the cost) of the
last iteration.

Algorithm NoisyFirstTrue(x1, . . . , xn, δ) (see Theorem 2)
input: {x1, . . . , xn} set of boolean random variables, δ error probability
output: the index j of the first positive variable, or n + 1 (=false).
1: i ← 1
2: δ′ ← δ/2
3: while i ≤ n do
4: j ← NoisyOr(x1, . . . , xi, δ

′)
5: if CheckVar(xj , δ

′/2i) then
6: return j
7: else
8: i ← 2 · i
9: return false

3 Skyline Computation in High Dimension

We first introduce Algorithm SkyHighD − param which assumes that an esti-
mate k̂ of k is known in advance. We will show afterwards how we can lift that
assumption.

Theorem 3. Given δ ∈ (0, 1/2) and a set X of data items, SkyHighD−
param(X, δ) outputs min(|X|, k̂) skyline points, with probability at least 1 − δ.
The running time and number of queries is O(ndk̂log(k̂/δ)).

Proof. Each iteration through the loop adds a point to the skyline S with proba-
bility of error at most δ/k̂. The final result is therefore correct with success prob-
ability 1 − δ. The complexity is O((i′ − i) ∗ dk̂log(k̂/δ)) to find a non-dominated
point pi′ at line 3, and O(ndlog(k̂/δ)) to compute the maximal point above pi′

at line 4. Summing over all iterations, the running time and number of queries
is O(ndk̂log(k̂/δ)).

Algorithm SkyHighD − param(X, δ) needs a good estimate of the skyline
cardinality k̂ ∈ O(k) to return the skyline in O(ndklog(k/δ)). To guarantee that
complexity, algorithm SkyHighDim exploits the classical trick from Chan [9] of
trying a sequence of successive values for k̂ – a trick that we also exploit in algo-
rithms NoisyFirstTrue and SkyLowDim. The sequence grows exponentially
to prevent failed attempts from penalizing the complexity.

Theorem 4. Given δ ∈ (0, 1/2) and a set X of data items, SkyHighDim(X, δ)
outputs a subset of X which, with probability at least 1 − δ, is the skyline. The
running time and number of queries is O(ndklog(k/δ)).

Proof. The proof is relatively straightforward and left for the long version.

296 B. Groz et al.

Algorithm SkyHighD − param(k,X, δ) (see Theorem 3)
input: X = {p1, . . . , pn} set of points, k̂ upper bound on skyline size, δ error
probability
output: min{k̂, skyline(X)} skyline points w.p. 1 − δ

1: Initialize S ← ∅, i ← 1
2: while i �= −1 and |S| < k̂ do
3: i′ ← index of the first point pi′ not dominated by current skyline points.a

{Find a skyline point dominating pi}
4: Compute p∗ ← MaxLex(pi′ , {pi, . . . , pn}, δ/(2k̂))
5: S ← S ∪ {p∗}
6: i ← i′

7: Output S

aThis point can be computed using algorithm NoisyFirstTrue on the
boolean variables: ¬SetDominates(S, pi, δ/(2k̂)),. . . , ¬SetDominates(S, pn,
δ/(2k̂)), where we denote by ¬ the negation. This means that ¬SetDominates
(S, pn, δ/(2k̂)) returns true when the procedure SetDominates(S, pn, δ/(2k̂)) indi-
cates that pn is not dominated.

Algorithm SkyHighDim(X, δ) (see Theorem 4)
input: X set of points, δ error probability
output: skyline(X) w.p. 1 − δ

1: Initialize j ← 0, k̂ ← 1
2: repeat
3: j ← j + 1 ; k̂ ← 2k̂ ; S ← SkyHighD − param(k̂, X, δ/2j)
4: until |S| < k̂
5: Output S

4 Skyline Computation in Low Dimension

Let us first sketch our algorithm SkyLowD − param(k,X, δ). The algorithm
works in 3 phases. The first phase partitions input points in buckets. We sort the
i-th coordinate of a random sample to define s + 1 intervals in each dimension
i ∈ [d], hence (s + 1)d buckets, where each bucket is a product of intervals of
the form

∏
i Ii; then we assign each point p of X to a bucket by searching in

each dimension for the interval Ii containing pi. Of course we do not materialize
buckets that are not assigned any points.

The second phase eliminates irrelevant buckets: those that are dominated by
some non-empty bucket and therefore have no chance of containing a skyline
point. In short, the idea is to identify the “skyline of the buckets”, and use it
to discard the dominated buckets, as defined in Sect. 4.2. With high probability
the bucketization obtained from the first phase will be “accurate enough” for
our purpose: it will allow to identify efficiently the irrelevant buckets, and will
also guarantee that the points in the remaining buckets form a small fraction of
the input (provided k and d are small).

Skyline Computation with Noisy Comparisons 297

In phase 3, we thus solve the skyline problem on a much smaller dataset,
calling Algorithm SkyHighD − param to find the skyline of the remaining
points.3 The whole purpose of the bucketization is to discard most input points
while preserving the actual skyline points, so that we can then run a more
expensive algorithm on the reduced dataset.

Figure 3 illustrates our algorithm: the grey buckets (c, f, g) are dominated
by some (non-empty) orange buckets (a, b, d, e) so they cannot contain skyline
points: in phase 3, the algorithm solves the reduced problem on the points con-
tained in the orange buckets.

4.1 Identifying “Truly Non-empty” Buckets

Our bucketization does not guarantee that all points are assigned to the proper
bucket, because it would be too costly with noisy comparisons. In particular,
empty buckets may erroneously be assumed to contain some points (e.g., the
buckets above a, b on Fig. 3). Those empty buckets also are irrelevant, even if
they are not dominated by the “skyline” buckets. To drop the irrelevant buckets,
we thus design a subroutine First-Nonempty-Bucket that processes a list of
buckets, and returns the first bucket that really contains at least one point.
Incidentally, we will not double-check the emptiness of every bucket using this
procedure, but will only check those that may possibly belong to the skyline:
those that we will define more formally as buckets of type (i), (ii) and (iv) in
the proof of Theorem 5. We could not afford to “fix” the whole assignment as it
may contain too many buckets.

In the First-Nonempty-Bucket problem, the input is a sequence of pairs
[(B1,X1), . . . , (Bn,Xn)] where Bi is a bucket and Xi is a set of points. The goal is
to return the first i such that Bi∩Xi �= ∅ with success probability 1−δ. The test
Bi ∩Xi �= ∅ can be formulated as a DNF with |Xi| conjunctions of O(d) boolean
variables each. To solve First-Nonempty-Bucket, we can flatten the formulas
of all buckets into a large DNF with conjunctions of O(d) boolean variables (one
conjunction per bucket point). We call FirstBucket([(B1,X1), . . . , (Bn,Xn)], δ)
the algorithm that executes NoisyFirstTrue to compute the first true conjunc-
tion, while keeping tracks of which point belongs to which bucket with pointers:

Lemma 1. Algorithm FirstBucket([(B1,X1), . . . , (Bn,Xn)], δ) solves problem
First-Nonempty-Bucket in O(

∑
i≤j d · |Xi|log(1/δ)) with success probability

1 − δ, where j is the index returned by the algorithm.

4.2 Domination Relationships Between Buckets

In the second phase, Algorithm SkyLowD − param(k,X, δ) eliminates irrele-
vant buckets. To manage ties, we need to distinguish two kinds of intervals: the

3 Alternatively, one could use an algorithm provided by Groz and Milo [18], it is only
important that the size of the input set is reduced to n/k to cope with the larger
runtime of the mentioned algorithms.

298 B. Groz et al.

Fig. 3. An illustration of the bucket dominance and its role in SkyLowD − param.
Here bucket b dominates c and f but not a, d, e or g. Buckets c, f, g are dominated by
some non-empty bucket and therefore cannot contain a skyline point. Bucket a does
not contain a skyline point, but this cannot be deduced from the bucket assignments,
therefore points in bucket a are passed on to the reduced problem. In this figure we may
assume to simplify that a bucket contains its upper boundary. But in our algorithm
bucket a would actually contain only the 4 leftmost points, and the fifth point would
belong to a distinct bucket with a trivial interval on x. (Color figure online)

trivial intervals that match a sample coordinate: I = [x, x], and the non-trivial
intervals I =]a, b[(a < b) contained between samples (or above the largest
sample, or below the smallest sample). To compare easily those intervals, we
adopt the convention that for a non-trivial interval I =]a, b[, min I = a + ε and
max I = b − ε for some infinitesimal ε > 0: ε = (b − a)/3 would do. We say
that a bucket B =

∏
i Ii is dominated by a different bucket B′ =

∏
i I

′
i if in

every dimension max Ii ≤ min I ′
i. Equivalently: we say that B′ dominates B

if every point (whether in the dataset or hypothetical) in B′ dominates every
point in B. The idea is that no skyline point belongs to a bucket dominated by a
non-empty bucket. We observe that the relative position of buckets is known by
construction, so deciding whether a bucket dominates another one may require
time O(d) but does not require any comparison query.

Figure 3 illustrates the relevant and discarded buckets. On that figure, we
depicted a few empty buckets above the skyline that are erroneously assumed
to contain some points as a result of noise during the assignment. Of course,
there are also incorrect assignments of points into empty or non-empty buckets
below the skyline, as well as incorrect assignments into the “skyline buckets”.
These incorrect assignments are not an issue as long as there are not too many of
them: dominated buckets will be discarded as such, whether empty or not, and
the few irrelevant points maintained into the reduced dataset will be discarded
in phase 3, when the skyline of this dataset is computed.

Skyline Computation with Noisy Comparisons 299

4.3 Algorithm and Bounds for Skyline Computation in Low
Dimension

Theorem 5. Given δ ∈ (0, 1/2), k̂ > 0, and a set X of data items, algorithm
SkyLowD − param(k̂, X, δ) outputs min(|X|, k̂) skyline points, with probability
at least 1 − δ. The number of queries is O(ndlog(dk̂/δ)). The running time is
O(ndlog(dk̂/δ) + nd · min(k̂, |skyline(X)|))
Proof. The proof, left for the long version, first shows by Chernoff bounds that
the assignment satisfies with high probability some key properties: (1) few points
are erroneously assigned to incorrect buckets (2) the skyline points are assigned
to the correct bucket, and (3) there are at most O(n/(dk̂2)) points on any hyper-
plane (i.e., in buckets that are ties on some dimension). The proof then shows
that:

– there are at most O(n/k̂) points in the reduced problem. This is because those
points belong to skyline buckets or buckets that are tied with a skyline bucket
on at least one dimension (every other non-empty bucket is dominated), and
property (3) of the assignment guarantees that the union of all such buckets
has at most O(n/k̂) points.

– the buckets above the skyline buckets which are erroneously assumed to con-
tain points can quickly be identified and eliminated since they contain few
points.

Algorithm SkyLowD − param(k̂, X, δ) needs a good estimate of the sky-
line cardinality to return the skyline in O(ndlog(dk/δ)): we must have k̂ ≥ k

and log(k̂) ∈ O(log(k)). Algorithm SkyLowDim(X, δ) (left for the long version)
guarantees the complexity by trying a sequence of successive values for k̂. The
successive values in the sequence grow super exponentially (similarly to [9,18])
to prevent failed attempts from penalizing the complexity.

Theorem 6. Given δ ∈ (0, 1/2) and a set X of data items, SkyLowDim(k̂,
X, δ) outputs a subset of X which, with probability at least 1 − δ, is the sky-
line. The number of queries is O(ndlog(dk/δ)). The running time is O(ndlog
(dk/δ) + ndk).

Proof. For iteration j, the algorithm bounds the probability of error by δ/2j ,
and the corresponding cost is given by Theorem 5, hence the complexity we
claim by summing those terms over all iterations.

Remark 1. In the noiseless setting, we could adopt the same sampling approach
to assign points to buckets and reduce the input size. On line 18 we could use
any noiseless skyline algorithm such as the O(ndk) algorithm from [13], or our
own similar SkyHighDim which can clearly run in O(dnk) in the noiseless
case. The cost of the bucketing phase remains O(ndlog(dk̂/δ)). The elimination
phase becomes rather trivial since all points get assigned to their proper bucket,
and therefore there is no need to check buckets for emptiness as in Line 13. By

300 B. Groz et al.

Algorithm SkyLowD − param(k̂, X, δ) (see Theorem 5)
input: k̂ integer, X set of points, δ error probability
output: min{k̂, |skyline(X)|} points of skyline(X)
error probability: δ

1: if k̂5 ≥ n or d5 ≥ n or (log(1/δ))5 ≥ n then
2: Compute the skyline by sorting every dimension, as in [18]. Return that skyline.
3: δ′ ← δ/(2dk̂)5 and s ← dk̂2log(d2k̂2/δ′)

{Phase (i): bucketing}
4: for each dimension i ∈ {1, 2, . . . , d} do
5: Si ← NoisySort(sample of X of size s, i, δ′/d)
6: Remove duplicates so that, with prob. 1− δ′/d, the values in Si are all distinct.a

7: for each point p ∈ X do
8: Place p in set XB associated to B =

∏d
i=1 Ii, with Ii = NoisySearch(pi, Si,

δ′/(dk̂)).
9: Drop all empty buckets (those that were assigned no point).

10: Sort buckets into a sequence B1, . . . , Bh so that each bucket comes before buckets
it dominates.

{Phase (ii): eliminating irrelevant buckets}
11: Initialize X ′ ← ∅, i ← 1
12: while i �= −1 do
13: i ← FirstBucket([(B1, XB1), . . . , (Bh, XBh)], δ′/k̂))
14: X ′ ← X ′ ∪ XBi

15: if |X ′| > 8n/k̂ then
16: Raise an error.
17: Drop from B1, . . . , Bh all buckets dominated by Bi, and also buckets B1 to Bi.

{Phase (iii): solve reduced problem}
18: Output SkyHighDim(X ′, δ′).

aNote that X can contain points sharing the same coordinate meaning that the Si

are not necessarily distinct.

setting δ = 1/k failures are scarce enough so that the higher cost of O(ndk) in
case of failure is covered by the cost of an execution corresponding to a satisfying
sample. Consequently, the expected query complexity is O(ndlog(dk)), and the
running time O(ndlog(dk) + ndk).

Better yet: we can replace random sampling with quantile selection to obtain
a deterministic algorithm with the same bounds. Algorithms for the multiple
selection problem are surveyed in [11]. Actually, our algorithm can be viewed
as some kind of generalization to higher dimensions of an algorithm from [11]
which assigns points to buckets before recursing, the buckets being the quantiles
along one coordinate.

5 Skyline Lower Bound

To achieve meaningful lower bounds (that do not reduce to the noiseless setting),
we assume here that the input comparisons have a probability of error at least
1/3. Of course, we just need the probability to be bounded away from 0.

Skyline Computation with Noisy Comparisons 301

Theorem 7. For any n ≥ k ≥ d > 0, any algorithm that recovers with error
probability at most 1/10 the skyline for any input having exactly k skyline points,
requires Ω(ndlog(k/δ)) queries in expectation on a worst-case input.

Proof. The proof is left for the long version.

6 Conclusion and Related Work

We introduced 2 algorithms to compute skylines with noisy comparisons. The
most involved shows that we can compute skylines in O(ndlogdk/δ) comparisons.
We also show that this bound is optimal when the dimensions is low (d ≤ kc

for some constant c), since computing noisy skylines requires Ω(dnlogk) com-
parisons. All our algorithms but SkyLowDim in O(ndlogdk/δ) are what we
call trust-preserving([18]), meaning that when the probability of errors in input
comparisons is already at most δ < 1/3, we can discard from the complexity the
dependency in δ (replacing δ by some constant).

We leave open the question of the optimal number of comparisons required
to compute skylines for arbitrarily large dimensions. Even in the noiseless case,
it is not lear whether the skyline could be computed in O(dnlogk) comparisons.
Our algorithm is output sensitive (the running time is optimized with respect
to the output size) but we did not investigate its instance optimality. However,
knowing the input set up to a permutation of the points does not seem to help
identifying the skyline points in the noisy comparison model, so we believe that
for every k and on any input of skyline cardinality k, even with this knowledge
any skyline algorithm would still require Ω(dnlogk) comparisons. We leave open
the question of establishing such a stronger lower bound.

References

1. Afrati, F.N., Koutris, P., Suciu, D., Ullman, J.D.: Parallel skyline queries. In: 15th
International Conference on Database Theory, ICDT 2012, Berlin, Germany, 26–29
March 2012, pp. 274–284 (2012). https://doi.org/10.1145/2274576.2274605

2. Afshani, P.: Fast computation of output-sensitive maxima in a word RAM. In:
Chekuri, C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, 5–7 January 2014,
pp. 1414–1423. SIAM (2014). https://doi.org/10.1137/1.9781611973402.104

3. Afshani, P., Agarwal, P.K., Arge, L., Larsen, K.G., Phillips, J.M.: (approxi-
mate) uncertain skylines. In: Proceedings of the 14th International Conference
on Database Theory, ICDT 2011, pp. 186–196. ACM (2011). https://doi.org/10.
1145/1938551.1938576

4. Afshani, P., Barbay, J., Chan, T.M.: Instance-optimal geometric algorithms. J.
ACM 64(1), 3:1–3:38 (2017)

5. Asudeh, A., Zhang, G., Hassan, N., Li, C., Zaruba, G.V.: Crowdsourcing pareto-
optimal object finding by pairwise comparisons. In: Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management, pp. 753–
762. ACM (2015)

https://doi.org/10.1145/2274576.2274605
https://doi.org/10.1137/1.9781611973402.104
https://doi.org/10.1145/1938551.1938576
https://doi.org/10.1145/1938551.1938576

302 B. Groz et al.

6. Barndorff-Nielsen, O., Sobel, M.: On the distribution of the number of admissible
points in a vector random sample. Theory Prob. Appl. 11(2), 249–269 (1966).
http://search.proquest.com/docview/915869827?accountid=15867

7. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
of the 17th International Conference on Data Engineering, pp. 421–430. IEEE
Computer Society (2001). http://dl.acm.org/citation.cfm?id=645484.656550

8. Braverman, M., Mao, J., Weinberg, S.M.: Parallel algorithms for select and par-
tition with noisy comparisons. In: Proceedings of the Forty-eighth Annual ACM
Symposium on Theory of Computing, STOC 2016, pp. 851–862 (2016)

9. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete Comput. Geom. 16(4), 361–368 (1996). https://doi.org/10.
1007/BF02712873

10. Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching on the ram,
revisited. In: Hurtado, F., van Kreveld, M.J. (eds.) Proceedings of the 27th ACM
Symposium on Computational Geometry, Paris, France, 13–15 June 2011, pp. 1–10.
ACM (2011). https://doi.org/10.1145/1998196.1998198

11. Chan, T.M., Lee, P.: On constant factors in comparison-based geometric algorithms
and data structures. Discrete Comput. Geom. 53(3), 489–513 (2015). https://doi.
org/10.1007/s00454-015-9677-y

12. Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. SIGMOD
Rec. 42(3), 6–18 (2013). https://doi.org/10.1145/2536669.2536671

13. Clarkson, K.L.: More output-sensitive geometric algorithms (extended abstract).
In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New
Mexico, USA, 20–22 November 1994, pp. 695–702 (1994). https://doi.org/10.1109/
SFCS.1994.365723

14. Davidson, S.B., Khanna, S., Milo, T., Roy, S.: Top-k and clustering with noisy
comparisons. ACM Trans. Database Syst. 39(4), 35:1–35:39 (2014). https://doi.
org/10.1145/2684066

15. Feige, U., Raghavan, P., Peleg, D., Upfal, E.: Computing with noisy infor-
mation. SIAM J. Comput. 23(5), 1001–1018 (1994). https://doi.org/10.1137/
S0097539791195877

16. Godfrey, P., Shipley, R., Gryz, J.: Algorithms and analyses for maximal vector
computation. VLDB J. 16(1), 5–28 (2007). https://doi.org/10.1007/s00778-006-
0029-7

17. Goyal, N., Saks, M.: Rounds vs. queries tradeoff in noisy computation. Theory of
Computing 6(1), 113–134 (2010)

18. Groz, B., Milo, T.: Skyline queries with noisy comparisons. In: Proceedings of
the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 15, pp. 185–198. ACM (2015). https://doi.org/10.1145/2745754.
2745775

19. Kalyvas, C., Tzouramanis, T.: A survey of skyline query processing (2017). CoRR
abs/1704.01788, http://arxiv.org/abs/1704.01788

20. Kirkpatrick, D.G., Seidel, R.: Output-size sensitive algorithms for finding maxi-
mal vectors. In: Proceedings of the First Annual Symposium on Computational
Geometry, SCG 1985, pp. 89–96. ACM (1985). https://doi.org/10.1145/323233.
323246

21. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm
for skyline queries. In: Proceedings of the 28th International Conference on Very
Large Data Bases, VLDB 2002, VLDB Endowment, pp. 275–286 (2002). http://
dl.acm.org/citation.cfm?id=1287369.1287394

http://search.proquest.com/docview/915869827?accountid=15867
http://dl.acm.org/citation.cfm?id=645484.656550
https://doi.org/10.1007/BF02712873
https://doi.org/10.1007/BF02712873
https://doi.org/10.1145/1998196.1998198
https://doi.org/10.1007/s00454-015-9677-y
https://doi.org/10.1007/s00454-015-9677-y
https://doi.org/10.1145/2536669.2536671
https://doi.org/10.1109/SFCS.1994.365723
https://doi.org/10.1109/SFCS.1994.365723
https://doi.org/10.1145/2684066
https://doi.org/10.1145/2684066
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1007/s00778-006-0029-7
https://doi.org/10.1007/s00778-006-0029-7
https://doi.org/10.1145/2745754.2745775
https://doi.org/10.1145/2745754.2745775
http://arxiv.org/abs/1704.01788
https://doi.org/10.1145/323233.323246
https://doi.org/10.1145/323233.323246
http://dl.acm.org/citation.cfm?id=1287369.1287394
http://dl.acm.org/citation.cfm?id=1287369.1287394

Skyline Computation with Noisy Comparisons 303

22. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4), 469–476 (1975). https://doi.org/10.1145/321906.321910

23. Li, G., Wang, J., Zheng, Y., Franklin, M.J.: Crowdsourced data management: a
survey. In: 33rd IEEE International Conference on Data Engineering, ICDE 2017,
San Diego, CA, USA, 19–22 April 2017, pp. 39–40. IEEE Computer Society (2017).
https://doi.org/10.1109/ICDE.2017.26

24. Mallmann-Trenn, F., Mathieu, C., Verdugo, V.: Skyline computation with noisy
comparisons (2017). CoRR abs/1710.02058, http://arxiv.org/abs/1710.02058

25. Marcus, A., Wu, E., Karger, D., Madden, S., Miller, R.: Human-powered sorts and
joins. Proc. VLDB Endow. 5(1), 13–24 (2011). https://doi.org/10.14778/2047485.
2047487

26. Newman, I.: Computing in fault tolerant broadcast networks and noisy decision
trees. Rand. Struct. Algorithms 34(4), 478–501 (2009)

27. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data.
In: Proceedings of the 33rd International Conference on Very Large Data Bases,
VLDB 2007, VLDB Endowment, pp. 15–26 (2007). http://dl.acm.org/citation.
cfm?id=1325851.1325858

https://doi.org/10.1145/321906.321910
https://doi.org/10.1109/ICDE.2017.26
http://arxiv.org/abs/1710.02058
https://doi.org/10.14778/2047485.2047487
https://doi.org/10.14778/2047485.2047487
http://dl.acm.org/citation.cfm?id=1325851.1325858
http://dl.acm.org/citation.cfm?id=1325851.1325858

Strongly Stable and Maximum Weakly
Stable Noncrossing Matchings

Koki Hamada1,2 , Shuichi Miyazaki3(B) , and Kazuya Okamoto4

1 NTT Corporation, 3-9-11, Midori-cho, Musashino-shi, Tokyo 180-8585, Japan
koki.hamada.rb@hco.ntt.co.jp

2 Graduate School of Informatics, Kyoto University, Yoshida-Honmachi,
Sakyo-ku, Kyoto 606-8501, Japan

3 Academic Center for Computing and Media Studies, Kyoto University,
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

shuichi@media.kyoto-u.ac.jp
4 Division of Medical Information Technology and Administration Planning,

Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku,
Kyoto 606-8507, Japan

kazuya@kuhp.kyoto-u.ac.jp

Abstract. In IWOCA 2019, Ruangwises and Itoh introduced stable
noncrossing matchings, where participants of each side are aligned on
each of two parallel lines, and no two matching edges are allowed to cross
each other. They defined two stability notions, strongly stable noncross-
ing matching (SSNM) and weakly stable noncrossing matching (WSNM),
depending on the strength of blocking pairs. They proved that a WSNM
always exists and presented an O(n2)-time algorithm to find one for
an instance with n men and n women. They also posed open questions
of the complexities of determining existence of an SSNM and finding a
largest WSNM. In this paper, we show that both problems are solvable
in polynomial time. Our algorithms are applicable to extensions where
preference lists may include ties, except for one case which we show to
be NP-complete.

Keywords: Stable marriage · Noncrossing matching ·
Polynomial-time algorithms · NP-completeness

1 Introduction

In the classical stable marriage problem [4], there are two sets of participants,
traditionally illustrated as men and women, where each person has a preference
list that orders a subset of the members of the opposite gender. A matching
is a set of (man, woman)-pairs where no person appears more than once. A
blocking pair for a matching M is (informally) a pair of a man and a woman
who are not matched together in M but both of them become better off if they

Supported by JSPS KAKENHI Grant Numbers JP16K00017 and JP19K12820.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 304–315, 2020.
https://doi.org/10.1007/978-3-030-48966-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_23&domain=pdf
http://orcid.org/0000-0002-8863-6809
http://orcid.org/0000-0003-0369-1970
http://orcid.org/0000-0002-9079-2253
https://doi.org/10.1007/978-3-030-48966-3_23

Strongly Stable and Maximum Weakly Stable Noncrossing Matchings 305

are matched. A matching that admits no blocking pair is a stable matching. The
stable marriage problem is one of the recently best-studied topics, with a lot
of applications to matching and assignment systems, such as high-school match
[1,2] and medical resident assignment [13]. See some textbooks [6,11,12,15] for
more information.

Recently, Ruangwises and Itoh [16] incorporated the notion of noncrossing
matchings to the stable marriage problem. In their model, there are two paral-
lel lines where n men are aligned on one line and n women are aligned on the
other line. A matching is noncrossing if no two edges of it cross each other. A
stable noncrossing matching is a matching which is simultaneously stable and
noncrossing. They defined two notions of stability: In a strongly stable noncross-
ing matching (SSNM), the definition of a blocking pair is the same as that of
the standard stable marriage problem. Thus the set of SSNMs is exactly the
intersection of the set of stable matchings and that of noncrossing matchings.
In a weakly stable noncrossing matching (WSNM), a blocking pair has an addi-
tional condition that it must be noncrossing with matching edges. Ruangwises
and Itoh [16] proved that a WSNM exists for any instance, and presented an
O(n2)-time algorithm to find one. They also demonstrated that an SSNM does
not always exist, and that there can be WSNMs of different sizes. Concerning
these observations, they posed open questions on the complexities of the prob-
lems of determining the existence of an SSNM and finding a WSNM of maximum
cardinality.

Our Contributions. In this paper, we show that both problems are solvable in
polynomial time. The former is solved by exploiting the well-known Rural Hos-
pitals theorem (Proposition 1). For the latter, we design an algorithm based on
dynamic programming (Theorem 2). We then consider extended problems where
preference lists may include ties. We show that our algorithms are applicable to
them without any modification (Corollaries 1, 2, and 3), except for one which we
show to be NP-complete (Theorem 1).

Table 1 summarizes previous and our results, where our results are described
in bold. In the table, SSNM and WSNM stand for the problems of determining
the existence of SSNM and WSNM, respectively. MAX-WSNM is the optimiza-
tion problem of finding a largest WSNM. SMI and SMTI stand for the stable
marriage problems without and with ties, respectively. When ties are allowed
in preference lists, there are three stability notions, super, strong, and weak
stabilities [7]. Formal definitions of these notions are introduced in Sect. 2.

2 Preliminaries

In this section, we give necessary definitions and notations, some of which
are taken from Ruangwises and Itoh [16]. An instance consists of n men
m1,m2, . . . , mn and n women w1, w2, . . . , wn. We assume that the men are lying
on a vertical line in an increasing order of indices from top to bottom, and sim-
ilarly the women are lying in the same manner on another vertical line parallel

306 K. Hamada et al.

Table 1. Previous and our results.

SSNM WSNM MAX-WSNM

SMI O(n2) [Proposition 1] O(n2) [16] O(n4) [Theorem 2]

SMTI Super O(n2) [Corollary 1] O(n4) [Corollary 3]

Strong O(n3) [Corollary 2] O(n4) [Corollary 3]

Weak NPC [Theorem 1] O(n4) [Corollary 3]

to the first one. Each person has a preference list over a subset of the members
of the opposite gender. For now, assume that preference lists are strict, i.e., do
not contain ties. We call such an instance an SMI-instance. If a person q appears
in a person p’s preference list, we say that q is acceptable to p. If p and q are
acceptable to each other, we say that (p, q) is an acceptable pair. We assume
without loss of generality that acceptability is mutual, i.e., p is acceptable to q
if and only if q is acceptable to p. If p prefers q1 to q2, then we write q1 �p q2.

A matching is a set of acceptable pairs of a man and a woman in which
each person appears at most once. If (m,w) ∈ M , we write M(m) = w and
M(w) = m. If a person p is not included in a matching M , we say that p is
single in M and write M(p) = ∅. Every person prefers to be matched with an
acceptable person rather than to be single, i.e., q �p ∅ holds for any p and any
q acceptable to p.

A pair in a matching can be seen as an edge on the plane, so we may use
“pair” and “edge” interchangeably. Two edges (mi, wj) and (mx, wy) are said to
cross each other if they share an interior point, or formally, if (x − i)(y − j) < 0
holds. A matching is noncrossing if it contains no pair of crossing edges.

For a matching M , an acceptable pair (m,w) �∈ M is called a blocking pair for
M if both w �m M(m) and m �w M(w) hold. A noncrossing blocking pair for
M is a blocking pair for M that does not cross with any edge of M . A matching
M is a weakly stable noncrossing matching (WSNM) if M is noncrossing and
does not admit any noncrossing blocking pair. A matching M is a strongly sta-
ble noncrossing matching (SSNM) if M is noncrossing and does not admit any
blocking pair.

We then extend the above definitions to the case where preference lists may
contain ties. A tie of a person p’s preference list is a set of one or more persons
who are equally preferred by p, and p’s preference list is a strict order of ties. We
call such an instance an SMTI-instance. In a person p’s preference list, suppose
that a person q1 is in tie T1, q2 is in tie T2, and p prefers T1 to T2. Then we say
that p strictly prefers q1 to q2 and write q1 �p q2. If q1 and q2 are in the same
tie (including the case that q1 and q2 are the same person), we write q1 =p q2.
If q1 �p q2 or q1 =p q2 holds, we write q1 �p q2 and say that p weakly prefers q1
to q2.

When ties are present, there are three possible definitions of blocking pairs,
and accordingly, there are three stability notions, super-stability, strong stability,
and weak stability [7]:

Strongly Stable and Maximum Weakly Stable Noncrossing Matchings 307

– In the super-stability, a blocking pair for a matching M is an acceptable pair
(m,w) �∈ M such that w �m M(m) and m �w M(w).

– In the strong stability, a blocking pair for a matching M is an acceptable pair
(p, q) �∈ M such that q �p M(p) and p �q M(q). Note that the person q, who
strictly prefers the counterpart p of the blocking pair, may be either a man
or a woman.

– In the weak stability, a blocking pair for a matching M is an acceptable pair
(m,w) �∈ M such that w �m M(m) and m �w M(w).

With these definitions of blocking pairs, the terms “noncrossing blocking
pair”, “WSNM”, and “SSNM” for each stability notion can be defined analo-
gously. In the SMTI case, we extend the names of stable noncrossing matchings
using the type of stability as a prefix. For example, a WSNM in super-stability
is denoted super-WSNM.

Note that, in this paper, the terms “weak” and “strong” are used in two
different meanings. This might be confusing but we decided not to change these
terms, respecting previous literature.

3 Strongly Stable Noncrossing Matchings

3.1 SMI

In SMI, an easy observation shows that existence of an SSNM can be determined
in O(n2) time:

Proposition 1. There exists an O(n2)-time algorithm to find an SSNM or to
report that none exists, given an SMI-instance.

Proof. Note that an SSNM is a stable matching in the original sense. In SMI,
there always exists at least one stable matching [6], and due to the Rural Hos-
pitals theorem [5,13,14], the set of matched agents is the same in any stable
matching. These agents can be determined in O(n2) time by using the Gale-
Shapley algorithm [4]. There is only one way of matching them in a noncrossing
manner. Hence the matching constructed in this way is stable if and only if a
given instance admits an SSNM. This condition can be checked in O(n2) time.

��

3.2 SMTI

In the presence of ties, super-stable and strongly stable matchings do not always
exist. However, there is an O(n2)-time (O(n3)-time, respectively) algorithm that
finds a super-stable (strongly stable, respectively) matching or reports that none
exists [7,10]. Also, the Rural Hospitals theorem takes over to the super-stability
[8] and strong stability [9]. Therefore, the same algorithm as in Sect. 3.1 applies
for these cases, implying the following corollaries:

308 K. Hamada et al.

Corollary 1. There exists an O(n2)-time algorithm to find a super-SSNM or
to report that none exists, given an SMTI-instance.

Corollary 2. There exists an O(n3)-time algorithm to find a strong-SSNM or
to report that none exists, given an SMTI-instance.

In contrast, the problem becomes NP-complete for weak stability:

Theorem 1. The problem of determining if a weak-SSNM exists, given an
SMTI-instance, is NP-complete, even if each tie is of length at most two.

Proof. Membership in NP is obvious. We show NP-hardness by a reduction from
3SAT, which is well-known to be NP-complete [3]. Its instance consists of a set
of variables and a set of clauses. Each variable takes either true (1) or false (0).
A literal is a variable or its negation. A clause is a disjunction of at most three
literals. A clause is satisfied if at least one of its literals takes the value 1, and is
unsatisfied otherwise. A 0/1 assignment to variables that satisfies all the clauses
is called a satisfying assignment. An instance f of 3SAT is satisfiable if it has at
least one satisfying assignment; otherwise f is unsatisfiable. 3SAT asks if there
exists a satisfying assignment. We may assume without loss of generality that
each clause contains exactly three literals, as if not, we may simply duplicate a
literal without affecting the satisfiability of the instance.

Now we show the reduction. Let f be an instance of 3SAT having n variables
xi(1 ≤ i ≤ n) and m clauses Cj(1 ≤ j ≤ m). For each variable xi, we create two
men pi,1, pi,2 and one woman qi. These three persons are said to constitute an
xi-gadget (or generally a variable gadget). For each clause Cj , we create two men
yj,1, yj,2 and three women zj,1, zj,2, zj,3, who are said to constitute a Cj-gadget
(or generally a clause gadget). Additionally, we create a man s and a woman
t, who constitute a gadget called the separator. Thus, there are 2n + 2m + 1
men and n + 3m + 1 women in the created SMTI instance I(f). We finally add
dummy persons who have empty preference lists to make the numbers of men
and women equal. They do not play any role in the following arguments, so we
omit them.

Suppose that xi appears ai times positively in f , and for each k (1 ≤ k ≤ ai),
xi’s kth positive occurrence is in the di,kth clause Cdi,k

as the ei,kth literal
(1 ≤ ei,k ≤ 3). Similarly, suppose xi appears bi times negatively, and for each
k (1 ≤ k ≤ bi), xi’s kth negative occurrence is in the gi,kth clause Cgi,k

as the
hi,kth literal (1 ≤ hi,k ≤ 3). Then preference lists of three persons in the xi-
gadget are constructed as shown in Fig. 1. Here, each preference list is denoted as
a sequence from left to right according to preference, i.e., the leftmost person(s)
is the most preferred and the rightmost person(s) is the least preferred. Tied
persons (i.e., persons with the equal preference) are included in parentheses.

Preference lists of five persons in the Cj-gadget are given in Fig. 2. For k =
1, 2, 3, suppose that the kth literal of Cj is xjk

, and let �j,k = 1 (respectively,
�j,k = 2) if xjk

appears negatively (respectively, positively) in Cj .
Finally, each of the man and the woman in the separator includes only the

other in the list (Fig. 3). They are guaranteed to be matched together in any
stable matching.

Strongly Stable and Maximum Weakly Stable Noncrossing Matchings 309

pi,1: qi zgi,1,hi,1 zgi,2,hi,2 . . . zgi,bi
,hi,bi

qi: (pi,1 pi,2)

pi,2: qi zdi,1,ei,1 zdi,2,ei,2 . . . zdi,ai
,ei,ai

Fig. 1. Preference lists of persons in xi-gadget.

yj,1: (zj,1 zj,2) zj,1: yj,1 pj1,�j,1

yj,2: (zj,2 zj,3) zj,2: (yj,1 yj,2) pj2,�j,2

zj,3: yj,2 pj3,�j,3

Fig. 2. Preference lists of persons in Cj-gadget.

Alignment of agents is depicted in Fig. 4. Variable gadgets are placed top,
then followed by the separator, clause gadgets come bottom. Within each gadget,
people are aligned according to indices. The separator plays a role of prohibiting
a person of a variable gadget and a person of a clause gadget to match together;
if they are matched, then the corresponding edge crosses with the separator.

Now the reduction is completed. It is not hard to see that the reduction can
be performed in polynomial time.

We then show the correctness. First, suppose that f is satisfiable and let A be
a satisfying assignment. We construct a weak-SSNM M of I(f) from A. For an xi-
gadget, define two matchings Mi,0 = {(pi,1, qi)} and Mi,1 = {(pi,2, qi)}. If xi = 0
under A, then add Mi,0 to M ; otherwise, add Mi,1 to M . For a Cj-gadget, define
three matchings Nj,1 = {(yj,1, zj,2), (yj,2, zj,3)}, Nj,2 = {(yj,1, zj,1), (yj,2, zj,3)},
and Nj,3 = {(yj,1, zj,1), (yj,2, zj,2)}. If Cj is satisfied by the kth literal (k =
1, 2, 3), then add Nj,k to M . (If Cj is satisfied by more than one literal, then
choose one arbitrarily.) Finally add the pair (s, t) to M .

It is not hard to see that M is noncrossing. We show that it is weakly stable.
Note that all the women in the variable gadgets, all the men in the clause gadgets,
and s and t in the separator are matched with the first choice person. Therefore,
if there exists a blocking pair, it must be the form of (pi,�, zj,k) for some i, �, j, and
k. Furthermore, any person matched in M is matched with the first choice, so
both pi,� and zj,k are single in M . Suppose that � = 1. The reason for (pi,1, zj,k)
being an acceptable pair is that Cj ’s kth literal is ¬xi, the negative occurrence
of xi. Since pi,1 is single, Mi,1 ⊂ M and hence xi = 1 under A. Since zj,k is
single, Nj,k ⊂ M and hence Cj is satisfied by its kth literal ¬xi, but this is a
contradiction. The other case � = 2 can be argued in the same manner.

Conversely, suppose that I(f) admits a weak-SSNM M . We construct a sat-
isfying assignment A of f . Before giving construction, we observe structural
properties of M in two lemmas:

Lemma 1. For each i (1 ≤ i ≤ n), either Mi,0 ⊂ M or Mi,1 ⊂ M .

Proof. Note that preference lists of the three persons of the xi-gadget include
persons of the same xi-gadget or some persons from clause gadgets. Hence, due
to the separator, persons of the xi-gadget can only be matched within this gadget

310 K. Hamada et al.

s: t t: s

Fig. 3. Preference lists of the man and the woman in the separator.

Fig. 4. Alignment of agents.

to avoid edge crossings. Since a stable matching is a maximal matching, either
Mi,0 or Mi,1 must be a part of M . ��

Lemma 2. For each j (1 ≤ j ≤ m), either Nj,1 ⊂ M , Nj,2 ⊂ M , or Nj,3 ⊂ M .

Proof. The proof is similar to that of Lemma 1. Note that preference lists of
the five persons of the Cj-gadget include persons of the same Cj-gadget or some
persons from variable gadgets. The maximal matchings within the Cj-gadget are
Nj,1, Nj,2, and Nj,3, so one of them must be in M . ��

For each i, we know that either Mi,0 ⊂ M or Mi,1 ⊂ M by Lemma 1. If
Mi,0 ⊂ M then we set xi = 0 in A, and if Mi,1 ⊂ M then we set xi = 1 in A. We
show that A satisfies f . Suppose not, and let Cj be an unsatisfied clause. Fix an
integer k ∈ {1, 2, 3}. Suppose that the kth literal of Cj is a positive occurrence
of xi. Then, by construction of preference lists, (pi,2, zj,k) is an acceptable pair.
Since Cj is unsatisfied, xi = 0 under A. Then, by construction of A, Mi,0 ⊂ M
and hence pi,2 is single in M . If Nj,k ⊂ M , then zj,k is single in M , which
contradicts stability of M . For the other case, suppose that the kth literal of
Cj is a negative occurrence of xi. Then, by construction of preference lists,
(pi,1, zj,k) is an acceptable pair. Since Cj is unsatisfied, xi = 1 under A. Then,
by construction of A, Mi,1 ⊂ M and hence pi,1 is single in M . If Nj,k ⊂ M , then
zj,k is single in M , which contradicts stability of M .

The above argument holds for any k ∈ {1, 2, 3}, so none of Nj,1, Nj,2, and
Nj,3 can be a part of M . But this contradicts Lemma 2. Hence A satisfies f . ��

Strongly Stable and Maximum Weakly Stable Noncrossing Matchings 311

4 Maximum Cardinality Weakly Stable Noncrossing
Matchings

In this section, we present an algorithm to find a maximum cardinality WSNM.
For an instance I, let opt(I) denote the size of the maximum cardinality WSNM.

4.1 SMI

Let I ′ be a given instance with men m1, . . . , mn and women w1, . . . , wn. To
simplify the description of the algorithm, we translate I ′ to an instance I by
adding a man m0 and a woman w0, each of whom includes only the other in the
preference list, and similarly a man mn+1 and a woman wn+1, each of whom
includes only the other in the preference list. It is easy to see that, for a WSNM
M ′ of I ′, M = M ′ ∪ {(m0, w0), (mn+1, wn+1)} is a WSNM of I. Conversely,
any WSNM M of I includes the pairs (m0, w0) and (mn+1, wn+1), and M ′ =
M \ {(m0, w0), (mn+1, wn+1)} is a WSNM of I ′. Thus we have that opt(I) =
opt(I ′) + 2. Hence, without loss of generality, we assume that a given instance
I has n + 2 men and n + 2 women, with m0, w0, mn+1, and wn+1 having the
above mentioned preference lists.

Let M = {(mi1 , wj1), (mi2 , wj2), . . . , (mik
, wjk

)} be a noncrossing matching
of I such that i1 < i2 · · · < ik and j1 < j2 · · · < jk. We call (mik

, wjk
) the max-

imum pair of M . Suppose that (mx, wy) is the maximum pair of a noncrossing
matching M . We call M a semi-WSNM if each of its noncrossing blocking pair
(mi, wj) (if any) satisfies x ≤ i ≤ n + 1 and y ≤ j ≤ n + 1. Intuitively, a semi-
WSNM is a WSNM up to its maximum pair. Note that any semi-WSNM must
contain (m0, w0), as otherwise it is a noncrossing blocking pair. For 0 ≤ i ≤ n+1
and 0 ≤ j ≤ n + 1, we define X(i, j) as the maximum size of a semi-WSNM of
I whose maximum pair is (mi, wj); if I does not admit a semi-WSNM with the
maximum pair (mi, wj), X(i, j) is defined to be −∞.

Lemma 3. opt(I) = X(n + 1, n + 1).

Proof. Note that any WSNM of I includes (mn+1, wn+1), as otherwise it
is a noncrossing blocking pair. Hence it is a semi-WSNM with the maxi-
mum pair (mn+1, wn+1). Conversely, any semi-WSNM with the maximum pair
(mn+1, wn+1) does not include a noncrossing blocking pair and hence is also a
WSNM. Therefore, the set of WSNMs is exactly the set of semi-WSNMs with
the maximum pair (mn+1, wn+1). This completes the proof. ��

To compute X(n + 1, n + 1), we shortly define quantity Y (i, j) (0 ≤ i ≤
n + 1, 0 ≤ j ≤ n + 1) using recursive formulas, and show that Y (i, j) = X(i, j)
for all i and j. We then show that these recursive formulas allow us to compute
Y (i, j) in polynomial time using dynamic programming.

We say that two noncrossing edges (mi, wj) and (mx, wy) (i < x, j < y)
are conflicting if they contain a noncrossing blocking pair between them; pre-
cisely, if the matching {(mi, wj), (mx, wy)} contains a blocking pair (ms, wt)

312 K. Hamada et al.

such that i ≤ s ≤ x and j ≤ t ≤ y. Otherwise, (mi, wj) and (mx, wy) are non-
conflicting. Intuitively, two conflicting edges cannot be consecutive elements of
a semi-WSNM.

Now we give the definition of Y (i, j). For convenience, we assume that −∞+
1 = −∞.

Y (0, 0) = 1 (1)

Y (0, j) = −∞ (1 ≤ j ≤ n + 1) (2)

Y (i, 0) = −∞ (1 ≤ i ≤ n + 1) (3)

Y (i, j)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + max
0≤i′≤i−1
0≤j′≤j−1

{Y (i′, j′) | (mi, wj) and (mi′ , wj′) are nonconflicting}

(if (mi, wj) is an acceptable pair)

−∞ (otherwise)

(1 ≤ i ≤ n + 1, 1 ≤ j ≤ n + 1) (4)

Lemma 4. Y (i, j) = X(i, j) for 0 ≤ i ≤ n + 1 and 0 ≤ j ≤ n + 1.

Proof. We prove the claim by induction. We first show that Y (0, 0) = X(0, 0).
The matching {(m0, w0)} is the unique semi-WSNM with the maximum pair
(m0, w0), so X(0, 0) = 1 by definition. Also, Y (0, 0) = 1 by Eq. (1). Hence we
are done. We then show that Y (0, j) = X(0, j) for 1 ≤ j ≤ n+1. Since (m0, wj) is
an unacceptable pair, there is no semi-WSNM with the maximum pair (m0, wj),
so X(0, j) = −∞ by definition. Also, Y (0, j) = −∞ by Eq. (2). We can show
that Y (i, 0) = X(i, 0) for 1 ≤ i ≤ n + 1 by a similar argument.

Next we show that Y (i, j) = X(i, j) holds for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤
n + 1. As an induction hypothesis, we assume that Y (a, b) = X(a, b) holds for
0 ≤ a ≤ i − 1 and 0 ≤ b ≤ j − 1. First, observe that if X(i, j) �= −∞, then
X(i, j) ≥ 2. This is because two pairs (m0, w0) and (mi, wj) must present in any
semi-WSNM having the maximum pair (mi, wj).

We first consider the case that X(i, j) ≥ 2. Let X(i, j) = k. Then, there is a
semi-WSNM M with the maximum pair (mi, wj) such that |M | = k. Let M ′ =
M \ {(mi, wj)} and (mx, wy) be the maximum pair of M ′. It is not hard to see
that M ′ is a semi-WSNM with the maximum pair (mx, wy) and that |M ′| = k−1.
Therefore, X(x, y) ≥ k−1 by the definition of X, and Y (x, y) = X(x, y) ≥ k−1
by the induction hypothesis. Since M is a semi-WSNM, (mi, wj) and (mx, wy)
are nonconflicting, so (x, y) satisfies the condition for (i′, j′) in Eq. (4). Hence
Y (i, j) ≥ 1 + Y (x, y) ≥ k. Suppose that Y (i, j) ≥ k + 1. By the definition of Y ,
this means that there is (i′, j′) such that 0 ≤ i′ ≤ i−1, 0 ≤ j′ ≤ j −1, (mi′ , wj′)
and (mi, wj) are nonconflicting, and Y (i′, j′) ≥ k. By the induction hypothesis,
X(i′, j′) = Y (i′, j′) ≥ k. Then there is a semi-WSNM M ′ with the maximum
pair (mi′ , wj′) such that |M ′| ≥ k. Since M ′ is a semi-WSNM, and (mi′ , wj′)
and (mi, wj) are nonconflicting, M = M ′ ∪ {(mi, wj)} is a semi-WSNM with

Strongly Stable and Maximum Weakly Stable Noncrossing Matchings 313

the maximum pair (mi, wj) such that |M | = |M ′| + 1 ≥ k + 1. This contradicts
the assumption that X(i, j) = k. Hence Y (i, j) ≤ k and therefore Y (i, j) = k as
desired.

Finally, consider the case that X(i, j) = −∞. If (mi, wj) is unacceptable,
then the latter case of Eq. (4) is applied and Y (i, j) = −∞. So assume that
(mi, wj) is acceptable. Then the former case of Eq. (4) is applied. It suffices to
show that for any (i′, j′) such that 0 ≤ i′ ≤ i − 1, 0 ≤ j′ ≤ j − 1, and (mi′ , wj′)
and (mi, wj) are nonconflicting, Y (i′, j′) = −∞ holds. Assume on the contrary
that there is such (i′, j′) with Y (i′, j′) = k. Then X(i′, j′) = k by the induction
hypothesis, and there is a semi-WSNM M ′ such that |M ′| = k, (mi′ , wj′) is
the maximum pair of M ′, and (mi′ , wj′) and (mi, wj) are nonconflicting. Then
M = M ′ ∪ {(mi, wj)} is a semi-WSNM such that (mi, wj) is the maximum pair
and |M | = |M ′| + 1 = k + 1, implying that X(i, j) = k + 1. This contradicts the
assumption that X(i, j) = −∞ and the proof is completed. ��

Now we analyze time-complexity of the algorithm. We assume that, given
persons p, q1, and q2, whether or not p prefers q1 to q2 can be determined in
constant time using ranking arrays described in Sec. 1.2.3 of [6]. Computing
each Y (0, 0), Y (0, j), and Y (i, 0) can be done in constant time. For computing
one Y (i, j) according to Eq. (4), there are O(n2) candidates for (i′, j′). For each
(i′, j′), checking if (mi′ , wj′) and (mi, wj) are conflicting can be done in constant
time with O(n4)-time preprocessing described in the subsequent paragraphs.
Therefore one Y (i, j) can be computed in time O(n2). Since there are O(n2)
Y (i, j)s, the time-complexity for computing all Y (i, j)s is O(n4). Adding the
O(n4)-time for preprocessing mentioned above, the total time-complexity of the
algorithm is O(n4).

In the preprocessing, we construct three tables S, A, and B.

– S is a Θ(n4)-sized four-dimensional table that takes logical values 0 and 1. For
0 ≤ i′ ≤ i ≤ n+1 and 0 ≤ j′ ≤ j ≤ n+1, S(i′, i, j′, j) = 1 if and only if there
exists at least one acceptable pair (m,w) such that m ∈ {mi′ ,mi′+1, . . . , mi}
and w ∈ {wj′ , wj′+1, . . . , wj}. Since S(i, i, j, j) = 1 if and only if (mi, wj) is an
acceptable pair, it can be computed in constant time. In general, S(i′, i, j′, j)
can be computed in constant time as follows.

S(i′, i, j′, j) =

{
1 (if (mi, wj) is an acceptable pair)
S(i′, i − 1, j′, j) ∨ S(i′, i, j′, j − 1) (otherwise)

Hence S can be constructed in O(n4) time by a simple dynamic programming.
– A is a Θ(n3)-sized table where, for 0 ≤ i ≤ n + 1 and 0 ≤ j′ ≤ j ≤ n + 1,

A(i, j′, j) stores the woman whom mi most prefers among {wj′ , . . . , wj}. Since
A(i, j, j) = wj and A(i, j′, j) is the better of A(i, j′, j − 1) and wj in mi’s
list, each element can be computed in constant time and hence A can be
constructed in O(n3) time.

– B plays a symmetric role to A; for 0 ≤ i′ ≤ i ≤ n + 1 and 0 ≤ j ≤ n + 1,
B(i′, i, j) stores the man whom wj most prefers among {mi′ , . . . , mi}. B can
also be constructed in O(n3) time.

314 K. Hamada et al.

It is easy to see that (mi′ , wj′) and (mi, wj) are conflicting if and only if
one of the following conditions hold. Condition 1 can be clearly checked in con-
stant time. Thanks to the preprocessing, Conditions 2–4 can also be checked in
constant time.

1. (mi′ , wj) or (mi, wj′) is a blocking pair for the matching {(mi′ , wj′), (mi, wj)}.
2. S(i′ + 1, i − 1, j′ + 1, j − 1) = 1. (If this holds, there is a blocking pair (m,w)

such that m ∈ {mi′+1,mi′+2, . . . , mi−1} and w ∈ {wj′+1, wj′+2, . . . , wj−1}).
3. mi prefers A(i, j′ + 1, j − 1) to wj or mi′ prefers A(i′, j′ + 1, j − 1) to wj′ . (If

this holds, there exists a blocking pair (m,w) such that m ∈ {mi′ ,mi} and
w ∈ {wj′+1, . . . , wj−1}).

4. wj prefers B(i′+1, i−1, j) to mi or wj′ prefers B(i′+1, i−1, j′) to mi′ . (If this
holds, there exists a blocking pair (m,w) such that m ∈ {mi′+1, . . . , mi−1}
and w ∈ {wj′ , wj}).

Theorem 2. There exists an O(n4)-time algorithm to find a maximum cardi-
nality WSNM, given an SMI-instance.

4.2 SMTI

The algorithm in Sect. 4.1 can be applied to SMTI straightforwardly. The only
difference is the definition of two edges (mi, wj) and (mx, wy) being nonconflict-
ing, which we need to extend depending on one of the three stability notions.
According to the introduction of ties, we also need to extend the definition of
the tables A and B. A(i, j′, j) holds one of the women whom mi most prefers
among {wj′ , . . . , wj}, and similarly, B(i′, i, j) holds one of the men whom wj

most prefers among {mi′ , . . . , mi}. With these modifications, checking whether
two edges are conflicting or not can be done in constant time in the same manner
as mentioned above. Therefore, we have the following corollary:

Corollary 3. There exists an O(n4)-time algorithm to find a maximum cardi-
nality super-WSNM (strong-WSNM, weak-WSNM), given an SMTI-instance.

5 Conclusion

In this paper, we have shown algorithms and complexity results for the problems
of determining existence of an SSNM and finding a maximum cardinality WSNM,
in the settings both with and without ties.

One of interesting future directions is to consider optimization problems. For
example, in SMI we have shown that it is easy to determine if there exists an
SSNM with zero-crossing. What is the complexity of the problem of finding an
SSNM with the minimum number of crossings, and if it is NP-hard, is there a
good approximation algorithm for it? Another direction is to modify the align-
ment of agents to, e.g., on a circle or on general position in 2-dimensional plane.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their comments on an earlier version of the paper.

Strongly Stable and Maximum Weakly Stable Noncrossing Matchings 315

References

1. Abdulkadiroǧlu, A., Pathak, P.A., Roth, A.E.: The New York City high school
match. Am. Econ. Rev. 95(2), 364–367 (2005)

2. Abdulkadiroǧlu, A., Pathak, P.A., Roth, A.E., Sönmez, T.: The Boston public
school match. Am. Econ. Rev. 95(2), 368–371 (2005)

3. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings STOC
1971, pp. 151–158 (1971)

4. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

5. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete
Appl. Math. 11(3), 223–232 (1985)

6. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, Boston (1989)

7. Irving, R.W.: Stable marriage and indifference. Discrete Appl. Math. 48, 261–272
(1994)

8. Irving, R.W., Manlove, D.F., Scott, S.: The hospitals/residents problem with ties.
In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 259–271. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44985-X 24

9. Irving, R.W., Manlove, D.F., Scott, S.: Strong stability in the hospitals/residents
problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 439–450.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 39

10. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Strongly stable matchings
in time O(nm) and extension to the hospitals-residents problem. ACM Trans.
Algorithms 3(2) (2007). Article No. 15

11. Knuth, D.E.: Mariages Stables, Les Presses de l’Université Montréal (1976). (Trans-
lated and corrected edition, Stable Marriage and Its Relation to Other Combina-
torial Problems, CRM Proceedings and Lecture Notes, Vol. 10, American mathe-
matical Society, 1997)

12. Manlove, D.F.: Algorithmics of Matching Under Preferences. World Scientific, Sin-
gapore (2013)

13. Roth, A.E.: The evolution of the labor market for medical interns and residents: a
case study in game theory. J. Polit. Econ. 92(6), 991–1016 (1984)

14. Roth, A.E.: On the allocation of residents to rural hospitals: a general property of
two-sided matching markets. Econometrica 54(2), 425–427 (1986)

15. Roth, A.E., Sotomayor, M.: Two-Sided Matching: A Study in Game-theoretic Mod-
eling and Analysis. Cambridge University Press, Cambridge (1990)

16. Ruangwises, S., Itoh, T.: Stable noncrossing matchings. In: Colbourn, C.J., Grossi,
R., Pisanti, N. (eds.) IWOCA 2019. LNCS, vol. 11638, pp. 405–416. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25005-8 33

https://doi.org/10.1007/3-540-44985-X_24
https://doi.org/10.1007/3-540-36494-3_39
https://doi.org/10.1007/978-3-030-25005-8_33

Connectivity Keeping Trees
in 2-Connected Graphs
with Girth Conditions

Toru Hasunuma(B)

Department of Mathematical Science, Tokushima University,
2–1 Minamijosanjima, Tokushima 770-8506, Japan

hasunuma@tokushima-u.ac.jp

Abstract. Mader conjectured in 2010 that for any tree T of order m,
every k-connected graph G with minimum degree at least � 3k

2
� + m − 1

contains a subtree T ′ ∼= T such that G − V (T ′) is k-connected. This
conjecture has been proved for k = 1; however, it remains open for gen-
eral k ≥ 2; for k = 2, partially affirmative answers have been shown,
all of which restrict the class of trees to special subclasses such as trees
of order at most 8, trees with diameter at most 4, trees with at most
5 internal vertices, and caterpillars. Instead of restricting the class of
trees, we consider 2-connected graphs with girth conditions. We then
show that Mader’s conjecture is true for every 2-connected graph G with
g(G) ≥ δ(G) − 6, where g(G) and δ(G) denote the girth of G and the
minimum degree of a vertex in G, respectively. Besides, we show that
for every 2-connected graph G with g(G) ≥ δ(G) − 3, the lower bound
of m + 2 on δ(G) in Mader’s conjecture can be improved to m + 1 if
m ≥ 6. Moreover, the lower bound of δ(G)−6 (respectively, δ(G)−3) on
g(G) in these results can be improved to δ(G)− 7 (respectively, δ(G)− 4
with m ≥ 7) if no six (respectively, four) cycles of length g(G) have a

common path of length
⌈

g(G)
2

⌉
−1 in G. Mader’s conjecture is interesting

not only from a theoretical point of view but also from a practical point
of view, since it may be applied to fault-tolerant problems in commu-
nication networks. Our proofs lead to O(|V (G)|4) time algorithms for
finding a desired subtree in a given 2-connected graph G satisfying the
assumptions.

Keywords: 2-connected graphs · Connectivity · Girth · Trees

1 Introduction

Throughout this paper, a graph G = (V,E) means a simple undirected graph
unless stated otherwise. The minimum degree of a vertex in G is denoted by
δ(G). For a proper subset S � V (G), we denote by G − S the graph obtained
from G by deleting every vertex in S, where G − {v} is abbreviated to G − v.
For two sets A and B, we denote by A \ B the set difference {x | x ∈ A, x �∈ B}.
c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 316–329, 2020.
https://doi.org/10.1007/978-3-030-48966-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_24&domain=pdf
http://orcid.org/0000-0002-4887-9179
https://doi.org/10.1007/978-3-030-48966-3_24

Connectivity Keeping Trees in 2-Connected Graphs with Girth Conditions 317

For a nonempty subset S ⊆ V (G), the subgraph of G induced by S is denoted
by 〈S〉G, i.e., 〈S〉G = G − (V (G) \ S).

In 1972, Chartrand, Kaigars, and Lick proved the following result on the
existence of a vertex whose removal does not influence k-connectedness of a
graph.

Theorem 1 (Chartrand, Kaigars, and Lick [1]). Every k-connected graph G
with δ(G) ≥ � 3k

2 	 contains a vertex v such that G − v is k-connected.

After more than 30 years, Fujita and Kawarabayashi considered a similar
problem for an edge of a graph and showed the following.

Theorem 2 (Fujita and Kawarabayashi [3]). Every k-connected graph G with
δ(G) ≥ � 3k

2 	 + 2 contains an edge uv such that G − {u, v} is k-connected.

In the same paper, they conjectured the next statement.

Conjecture 1. There is a function f(m) such that every k-connected graph G
with δ(G) ≥ � 3k

2 	 + f(m) contains a connected subgraph W of order m such
that G − V (W) is k-connected.

Note that the condition that W is connected is essential, since by iteratively
applying Theorem1, we can see that every k-connected graph G with δ(G) ≥
� 3k

2 	+m−1 contains a subgraph X of order m such that G−V (X) is k-connected.
In 2010, Mader [8] settled Conjecture 1 by showing the following result. Mader’s
result in fact improves the lower bound on δ(G) in Theorem 2 and generalizes
Theorem 1.

Theorem 3 (Mader [8]). Every k-connected graph G with δ(G) ≥ � 3k
2 	+m−1

contains a path P of order m such that G − V (P) is k-connected.

Based on this result, Mader conjectured the following, i.e., a path in Theo-
rem 3 can be generalized to any tree of the same order.

Conjecture 2 (Mader [8]). For any tree T of order m, every k-connected graph
G with δ(G) ≥ � 3k

2 	 + m − 1 contains a subtree T ′ ∼= T such that G − V (T ′) is
k-connected.

Mader’s conjecture is a generalization not only from Theorem1 but also from
the next well-known result on the existence of a subtree isomorphic to any given
tree.

Proposition 1. For any tree T of order m, every graph G with δ(G) ≥ m − 1
contains a subtree T ′ ∼= T .

Apart from Mader’s conjecture, Locke’s conjecture concerning nonseparating
trees in connected graphs is known. A k-cohesive graph is a non-trivial connected
graph in which for any two distinct vertices u and v, the sum of the degrees of
u and v and the distance between u and v is at least k.

318 T. Hasunuma

Conjecture 3 (Locke [5]). For any tree T of order m ≥ 3, every 2m-cohesive
graph G has a subtree T ′ ∼= T such that G − V (T ′) is connected.

Motivated by Locke’s conjecture, Diwan and Tholiya proved a theorem which
is weaker than the conjecture, but it is the same as Mader’s conjecture for
k = 1 (Mader in fact mentioned their result in the paper [8]). Note that if G is
connected and δ(G) ≥ m, then G is 2m-cohesive.

Theorem 4 (Diwan and Tholiya [2]). For any tree T of order m, every con-
nected graph G with δ(G) ≥ m contains a subtree T ′ ∼= T such that G − V (T ′)
is connected.

For general k ≥ 2, Mader’s conjecture remains open; however for k = 2,
partially affirmative answers have been shown. Tian et al. [10] first proved that
Mader’s conjecture for k = 2 is true when T is a star or a double-star, and
they [11] further extended their results to a path-star or a path-double-star.
Hasunuma and Ono [4] showed that for any tree T of order m, every 2-connected
graph G with δ(G) ≥ max{m+n(T)− 3,m+2} contains a subtree T ′ ∼= T such
that G − V (T ′) is 2-connected, where n(T) is the number of internal vertices
of T . As a corollary, it follows that Mader’s conjecture for k = 2 holds for any
tree T with n(T) ≤ 5 and for any tree of order m ≤ 8. Lu and Zhang [6] also
proved that Mader’s conjecture for k = 2 is true for any tree with diameter at
most 4. Very recently, it was reported that Lu and Ye [7] proved that Mader’s
conjecture for k = 2 holds for any caterpillars. Note that every known result
which is a partially affirmative answer to Mader’s conjecture for k = 2 restricts
the class of trees to special subclasses. In this paper, we employ another approach
to Mader’s conjecture for k = 2. Namely, we add girth conditions to 2-connected
graphs. The girth of a 2-connected graph G denoted by g(G) is the length of a
smallest cycle in G. We then show that Mader’s conjecture is true for every 2-
connected graph G with girth at least δ(G)− 6. Note that for any given integers
r ≥ 2 and g ≥ 3, there exists an r-regular graph with girth g, which has been
shown in [12].

Theorem 5. For any tree T of order m, every 2-connected graph G with δ(G) ≥
m + 2 and g(G) ≥ δ(G) − 6 contains a subtree T ′ ∼= T such that G − V (T ′) is
2-connected.

By increasing the lower bound of δ(G)−6 on g(G), we can improve the lower
bound of m + 2 on δ(G) to m + 1 if m ≥ 6. Namely, a stronger statement holds
in such a case.

Theorem 6. For any tree T of order m ≥ 6, every 2-connected graph G with
δ(G) ≥ m+1 and g(G) ≥ δ(G)−3 contains a subtree T ′ ∼= T such that G−V (T ′)
is 2-connected.

Moreover, by adding structural conditions, we can improve the girth condi-
tions in Theorems 5 and 6.

Connectivity Keeping Trees in 2-Connected Graphs with Girth Conditions 319

Theorem 7. For any tree T of order m, every 2-connected graph G with δ(G) ≥
m+2 and g(G) ≥ δ(G)−7 in which no six cycles of length g(G) have a common
path of length

⌈
g(G)
2

⌉
− 1 contains a subtree T ′ ∼= T such that G − V (T ′) is

2-connected.

Theorem 8. For any tree T of order m ≥ 7, every 2-connected graph G with
δ(G) ≥ m+1 and g(G) ≥ δ(G)−4 in which no four cycles of length g(G) have a
common path of length

⌈
g(G)
2

⌉
−1 contains a subtree T ′ ∼= T such that G−V (T ′)

is 2-connected.

Mader’s conjecture is interesting not only from a theoretical point of view
but also from a practical point of view, since it may be applied to fault-tolerant
problems in communication networks. That is, it is considered that Mader’s
conjecture guarantees the reliability of a communication network for a faulty
subtree structure rather than a set of faulty vertices. Our proofs are constructive
and lead to O(|V (G)|4) time algorithms for finding a desired subtree in a given
2-connected graph G in Theorems 5 and 6 (respectively, Theorems 7 and 8) if
g(G) ≥ δ(G) − 3 (respectively, g(G) ≥ δ(G) − 4).

This paper is organized as follows. Section 2 presents notations, terminology,
and known results used in this paper. Section 3 gives an outline of our proofs.
Detailed proofs of Theorems 5 and 6 (respectively, Theorems 7 and 8) are given in
Sect. 4 (respectively, Sect. 5). Section 6 concludes the paper with several remarks.

2 Preliminaries

For a nonempty subset E′ ⊆ E(G), we denote by G − E′ and 〈E′〉 the graph
obtained from G by deleting every edge in E′ and the edge-induced subgraph of
G by E′, respectively. For v ∈ V (G), we denote by NG(v) the set of neighbors of
v in G, i.e., vertices adjacent to v in G. The cardinality of NG(v) may be written
by degG(v). Let Δ(G) = maxv∈V (G) degG(v). For S ⊆ V (G), NG(S) is defined
as (∪v∈SNG(v)) \ S. For G′ ⊆ G, let NG(G′) = NG(V (G′)).

A component of G is a maximal connected subgraph of G, while a block of
G is a maximal connected subgraph of G without a cut vertex. A cyclic block
is a block with order at least 3. For a tree T , the set of internal vertices, i.e.,
vertices with degree at least two, is denoted by VI(T), while the set of leaves,
i.e., vertices with degree one, is denoted by VL(T). For a vertex v of a tree T , if
v is adjacent to at least degT (v) − 1 leaves, then v is called a pseudo-leaf of T .
A caterpillar is a tree T such that 〈VI(T)〉T is a path if VI(T) �= ∅.

We denote by dG(u, v) the distance between two vertices u and v in
a connected graph G. The eccentricity eccG(v) of v in G is defined as
maxw∈V (G) dG(v, w). A central vertex of G is a vertex u with eccG(u) =
minv∈V (G) eccG(v), while a peripheral vertex is a vertex u with eccG(u) =
maxv∈V (G) eccG(v). The diameter of a connected graph G denoted by diam(G)
is the maximum distance for every pair of vertices in G, i.e., diam(G) =
maxu,v∈V (G) dG(u, v). Let diam(G) = 0 if |V (G)| = 1.

Proposition 1 can be stated in a more general form as follows.

320 T. Hasunuma

Lemma 1 [4]. Let T be a tree of order m and S a subtree obtained from T
by deleting leaves adjacent to a vertex in VS ⊆ VI(T). If a graph G contains a
subtree S′ ∼= S such that degG(u) ≥ m − 1 for any u ∈ {φ(v) | v ∈ VS} where φ
is an isomorphism from V (S) to V (S′), then G contains a subtree T ′ ∼= T such
that S′ ⊆ T ′.

Since any tree T of order m with diam(T) ≥ m − 2 is a caterpillar and
Mader’s conjecture holds for any caterpillars [7], the following result is obtained.

Lemma 2. For any tree T of order m with diam(T) ≥ m−2, Mader’s conjecture
for k = 2 is true.

An orientation D of a graph G is a directed graph obtained from G by
replacing each edge by an arc (directed edge) with the same end-vertices. The
outdegree deg+D(v) (respectively, indegree deg−

D(v)) of a vertex v in D is the
number of arcs from (respectively, to) v in D. If for any v ∈ V (G), degG(v) is
even, then G is eulerian and has an orientation D in which for any v ∈ V (D),
deg+D(v) = deg−

D(v). If G has a vertex with odd degree, we can find a directed
walk W connecting two vertices with odd degree, and by inductively applying a
similar discussion for G−E(W), we can see the following lemma holds. We here
remark that Lemma 3 holds for multigraphs.

Lemma 3. Every graph G has an orientation D such that |deg+D(v)−deg−
D(v)| ≤

1 for any v ∈ V (D).

3 Outline of Proofs

In this section, we explain the outline of our constructive proofs and the time
complexity for the algorithms based on the proofs.

Let T be a tree of order m. Let G be a 2-connected graph with δ(G) ≥ m+2.
From Proposition 1, G contains a subtree T ′ ∼= T . Let B be a maximum block
in G − V (T ′), i.e., a block with the maximum order among all the blocks in
G−V (T ′). Note that B is a cyclic block since δ(G−V (T ′)) ≥ 2. If B = G−V (T ′),
then T ′ is a desired subtree. Suppose that B �= G−V (T ′). Then there is a vertex
in G−V (T ′)∪V (B). For any vertex w ∈ V (G)\(V (T ′)∪V (B)), |NG(w)∩V (B)| ≤
1. Now let P = (v1, v2, . . . , vt), where v1, vt ∈ V (B) and vi �∈ V (B) for 1 < i < t,
be a shortest path among all the paths of G connecting two vertices in B such
that every internal vertex is not in B. Since G is 2-connected, there are internally
disjoint paths from a vertex in G − V (B) to two vertices in B. Thus, P is well-
defined. Suppose that t ≥ 4. Then, we have that NG(v2) ∩ V (B) = {v1} and
NG(v2) ∩ V (P) = {v1, v3}. Therefore, |NG(v2) \ (V (P) ∪ V (B))| ≥ m + 2 − 2 ≥
m, which implies that V (G) \ (V (P) ∪ V (B)) �= ∅. Let w be any vertex in
G − V (P) ∪ V (B). By the definition of P , w can be adjacent to at most three
vertices in V (B) ∪ V (P). Thus, δ(G − V (P) ∪ V (B)) ≥ m + 2 − 3 = m − 1.
Hence, by Proposition 1, G − V (P) ∪ V (B) contains a subtree T ′′ ∼= T such that
G − V (T ′′) has a block B′ ⊇ 〈V (B) ∪ V (P)〉G. Thus, we can find a block with
order at least |V (B)| + 2.

Connectivity Keeping Trees in 2-Connected Graphs with Girth Conditions 321

Suppose that t = 3. Then v2 ∈ V (T ′). If there exists a subtree T ′′ in G −
V (B)∪{v2} such that T ′′ ∼= T , then G−V (T ′′) has a block B′ ⊇ 〈V (B)∪{v2}〉G,
i.e., we can find a block with order at least |V (B)|+1. If we have a manipulation
to find such a subtree T ′′, then by applying the manipulations for t ≥ 4 or
t = 3 iteratively, we finally obtain a desired subtree T ′′, i.e., T ′′ ∼= T such that
G − V (T ′′) is 2-connected. Therefore, if we can show the following statement,
then it is concluded that Mader’s conjecture for k = 2 is true.

Statement 1. Let T be a tree of order m and G a 2-connected graph with δ(G) ≥
m + 2. For any subtree T ′ ∼= T in G and a maximum block B in G − V (T ′), if
B �= G−V (T ′) and VB(T ′) = {u ∈ V (T ′) | |NG(u)∩V (B)| ≥ 2} �= ∅, then there
exist a vertex v ∈ VB(T ′) and a subtree T ′′ ∼= T in G − V (B) ∪ {v}.

The above manipulations can be algorithmically described as follows.

1. Compute a subtree T ′ ∼= T in G.
2. Compute a maximum block B in G − V (T ′).
3. If B = G − V (T ′) then output T ′ as a desired subtree of G and stop.
4. If B �= G − V (T ′) then compute a shortest path P connecting vertices in B

such that every internal vertex is not in B.
5. Compute a subtree T ′′ in G−V (B)∪V (P), let T ′ = T ′′, and return to Step 2.

We here check the complexity of the above algorithm under the assumption
that there exists a constructive proof of Statement 1. A subtree T ′ ∼= T in G
can be computed in O(|E(G)|) time in Step 1, and a maximum block B can
also be found in O(|E(G)|) time in Step 2. In Step 4, a shortest path P can
be found by computing all shortest paths for vertices of V (B) in G − E(B).
Thus, it takes O(|V (G)|3) time. Since the number of iterations is O(|V (G)|),
if Statement 1 can be shown by a constructive proof from which a procedure
within O(|V (G)|3) time is obtained, we have an O(|V (G)|4) time algorithm.
These observations are summarized as follows.

Lemma 4. If Statement 1 holds, then G contains a subtree T ′ ∼= T such that
G−V (T ′) is 2-connected. Besides, if there is a procedure for Statement 1 within
O(|V (G)|3) time, we have an O(|V (G)|4) time algorithm for finding a desired
subtree.

Next, we consider the case that a 2-connected graph G has no triangle, i.e.,
g(G) ≥ 4. In such a case, we can show a similar lemma using the following
statement. Note that the minimum degree condition δ(G) ≥ m + 2 is replaced
with δ(G) ≥ m + 1 ≥ 3.

Statement 2. Let T be a tree of order m ≥ 2 and G a 2-connected graph with
δ(G) ≥ m+1 and g(G) ≥ 4. For any subtree T ′ ∼= T in G and a maximum block B
in G−V (T ′), if B �= G−V (T ′) and VB(T ′) = {u ∈ V (T ′) | |NG(u)∩V (B)| ≥ 2} �=
∅, then there exist a vertex v ∈ VB(T ′) and a subtree T ′′ ∼= T in G−V (B)∪{v}.

322 T. Hasunuma

Lemma 5. If Statement 2 holds, then G contains a subtree T ′ ∼= T such that
G−V (T ′) is 2-connected. Besides, if there is a procedure for Statement 2 within
O(|V (G)|3) time, we have an O(|V (G)|4) time algorithm for finding a desired
subtree.

Proof. We show that the algorithm for Lemma4 also works well under the
assumption that Statement 2 holds.

Let T ′ ⊂ G such that T ′ ∼= T . Let B be a maximum block in G − V (T ′).
Since δ(G − V (T ′)) ≥ 1, it may happen that B is not a cyclic block, i.e., B is
a block with two vertices. Note that if B is not a cyclic block, then B is not
2-connected. Suppose that B is not a cyclic block. Assume that B = G−V (T ′).
Then, |V (G)| = m + 2. Since δ(G) ≥ m + 1, G must be a complete graph
with at least four vertices, which contradicts the girth condition that g(G) ≥ 4.
Therefore, if B is not a cyclic block, then B �= G − V (T ′). Hence, in the case
that G − V (T ′) has no cyclic block, the algorithm does not incorrectly output a
subtree in Step 3.

Let P = (v1, v2, . . . , vt) be a shortest path between two vertices in B such that
every internal vertex is not in B. Suppose that t ≥ 4. By the definition of P and
the girth condition g(G) ≥ 4, any vertex w in G−V (P)∪V (B) can be adjacent
to at most two vertices in V (B) ∪ V (P). Thus, δ(G − V (P) ∪ V (B)) ≥ m − 1.
Therefore, G − V (P) ∪ V (B) contains a subtree T ′′ ∼= T . Hence, if t ≥ 4, then
we can find a subtree T ′′ in G − V (P) ∪ V (B) in Step 5. We here remark that
the condition m ≥ 2 is necessary to guarantee that V (G) \ (V (P) ∪ V (B)) �= ∅.

For the time complexity, similarly to Lemma 4, we have an O(|V (G)|4) time
algorithm, if Statement 2 can be shown by a constructive proof which induces a
procedure within O(|V (G)|3) time. ��

Note that in Statement 2, if B is not a cyclic block, then by the girth condition
g(G) ≥ 4, we have that VB(T ′) = {u ∈ V (T ′) | |NG(u) ∩ V (B)| ≥ 2} = ∅. Thus,
in Statement 2, we may assume that a maximum block B is a cyclic block.

4 Proofs of Theorems 5 and 6

In order to show our main results, we prove the following lemma.

Lemma 6. Let T be a tree of order m and G a 2-connected graph with δ(G) ≥
m + 1 and g(G) ≥ diam(T) − 1. For any subtree T ′ ∼= T in G and a maximum
block B in G − V (T ′), if B �= G − V (T ′) and VB(T ′) = {u ∈ V (T ′) | |NG(u) ∩
V (B)| ≥ 2} �= ∅, then there exist a vertex v ∈ VB(T ′) and a subtree T ′′ ∼= T in
G − V (B) ∪ {v} such that v and T ′′ can be found in O(|E(G)|) time.

Proof. Let T ′ ⊂ G such that T ′ ∼= T . Let B be a maximum block in G − V (T ′)
such that B �= G−V (T ′). Also, let v ∈ VB(T ′) and H = G−V (T ′)∪V (B). When
m ≤ 2, the lemma can be easily checked. Let m ≥ 3. Suppose that v is a leaf of T ′

and for the neighbor v′ of v in T ′, v′ �∈ VB(T ′), i.e., |NG(v′) ∩ V (B)| ≤ 1. Then,
|NG(v′)∩V (H)| ≥ 1. For any v′′ ∈ NG(v′)∩V (H), T ′′ = 〈(E(T ′−v)∪{v′v′′}〉 ∼= T

Connectivity Keeping Trees in 2-Connected Graphs with Girth Conditions 323

such that T ′′ ⊂ G − V (B) ∪ {v}. Thus, w.l.o.g., we may assume that v is not a
leaf of T ′. Let S′ = 〈VI(T ′)〉T ′ . Then v ∈ V (S′). Since diam(S′) = diam(T ′)− 2,
g(G) ≥ diam(S′) + 1. We regard S′ as a rooted tree at v and denote by C(u)
the set of children of a vertex u in S′. Besides, we denote by h(S′) the height of
S′, i.e., h(S′) = eccS′(v).

Since δ(G) ≥ m + 1, it holds that for any vertex w ∈ V (H),
degG−V (B)∪{v}(w) ≥ m − 1. If there exists a subtree W ⊂ 〈V (H) ∪ V (T ′ − v)〉G
such that W is isomorphic to a subtree U obtained from T ′ by deleting leaves
adjacent to a vertex in V ′ ⊆ V (S′) and φ(V ′) = {φ(u) | u ∈ V ′} ⊆ V (H)
where φ is an isomorphism from V (U) to V (W), then by Lemma 1, there exists
a subtree T ′′ in G − V (B) ∪ {v} such that T ′′ ∼= T . In particular, if there exists
a vertex w in H such that C(v) ⊆ NG(w), then we can employ the subtree
〈E(T ′ − v) ∪ {wu | u ∈ C(v)}〉 as a desired subtree W where V ′ = {v} and
φ(V ′) = {w}. Note that C(v) = ∅ when diam(S′) = 0, i.e., |V (S′)| = 1. Suppose
that v is a leaf of S′. Let C(v) = {v′}. If there is no vertex in H adjacent to
v′, i.e., C(v) �⊆ NG(w) for any w ∈ V (H), then δ(H) ≥ 1 and v′ ∈ VB(T ′). In
such a case, we can employ 〈{xy}〉 as a desired subtree W for xy ∈ E(H) where
V ′ = {v, v′} and φ(V ′) = {x, y} when diam(S′) = 1. From these observations,
we may assume that there is no vertex w in H with NG(w) ⊇ C(v), v is not a
leaf of S′ (since we can employ v′ instead of v if v′ ∈ VB(T ′)) and diam(S′) ≥ 2.

Let x ∈ V (H) and C(v)\NG(x) = {v1, v2, . . . , vp}. Since |NG(x)∩V (B)| ≤ 1
and |NG(x) ∩ V (T ′)| ≤ m − p, |NH(x)| ≥ p, i.e., there are at least p neighbors
of x in H. Let {x1, x2, . . . , xp} ⊆ NH(x). If h(S′) = 1, then we can employ
〈E(T ′ − v) ∪ {xu | u ∈ C(v) ∩ NG(x)} ∪ {xxi | 1 ≤ i ≤ p}〉 as a desired subtree
W where V ′ = {v, v1, v2, . . . , vp} and φ(V ′) = {x, x1, x2, . . . , xp}. Suppose that
h(S′) ≥ 2. Let |C(vi) \ NG(xi)| = qi for each i. Since |C(v) \ NG(xi)| ≥ 1,
there are at least qi + 1 neighbors of xi in H, which means that we can select
qi vertices yi,1, yi,2, . . . , yi,qi

as children of xi in the subtree 〈{xxi | 1 ≤ i ≤ p}〉
rooted at x. By letting these children correspond to the qi children of vi in
C(vi) \ NG(xi) for each i with qi > 0, we can obtain a desired subtree W if
h(S′) = 2. Note that when diam(S′) = 3, there is exactly one i such that
C(vi) �= ∅, and if qi > 0, then {x1, x2, . . . , xp} ∩ {yi,1, yi,2, . . . , yi,qi

} = ∅, since
g(G) ≥ diam(S′) + 1 = 4. When diam(S′) = 4, by the girth condition, we can
see that {x1, x2, . . . , xp} ∩ {yi,1, yi,2, . . . , yi,qi

} = ∅ for each i with qi > 0 and
{yi,1, yi,2, . . . , yi,qi

}∩{yi′,1, yi′,2, . . . , yi′,qi′ } = ∅ for any pair of i and i′ with qi > 0
and qi′ > 0. Thus, the subtree defined by 〈E(T ′ − {v, v1, v2, . . . , vp}) ∪ {xu | u ∈
C(v) ∩ NG(x)} ∪ {xxi | 1 ≤ i ≤ p} ∪ (∪1≤i≤p({xiu | u ∈ C(vi) ∩ NG(xi)} ∪
{xiyi,j | 1 ≤ j ≤ qi}))〉 can be employed as a desired subtree W . If h(S′) ≥ 3, by
inductively applying similar manipulations to descendants of x, we can finally
obtain a desired subtree W . Note that in each extension step, disjointness of the
sets of new children for descendants of x is guaranteed by the girth condition
g(G) ≥ diam(S′) + 1.

The assumption that v is neither a leaf of T ′ nor a leaf of S′ can be realized by
preferentially selecting a vertex in VB(T ′)\(VL(T ′)∪VL(S′)) if VB(T ′)\(VL(T ′)∪
VL(S′)) �= ∅. For v ∈ VB(T ′) \ (VL(T ′) ∪ VL(S′)), we apply the manipulations

324 T. Hasunuma

for constructing W in a depth-first search order for S′. The selection process
for new children of a descendant of x and the extension process from W to T ′′

can be done greedily. If VB(T ′) \ (VL(T ′) ∪ VL(S′)) = ∅, then we can directly
obtain either W or T ′′. Therefore, a desired subtree T ′′ can finally be found in
O(|E(G)|) time. ��

Lemma 6 is stronger than Statement 1 under the assumption that g(G) ≥
diam(T) − 1. Therefore, by Lemmas 4 and 6, we have the following.

Theorem 9. For any tree T of order m, every 2-connected graph G with δ(G) ≥
m + 2 and g(G) ≥ diam(T) − 1 contains a subtree T ′ ∼= T such that G − V (T ′)
is 2-connected.

For any 2-connected graph G, it holds that g(G) ≥ 3. Thus, the following
result by Lu and Zhang [6] is obtained from Theorem 9.

Corollary 1 [6]. For any tree T of order m with diam(T) ≤ 4, every 2-connected
graph G with δ(G) ≥ m + 2 contains a subtree T ′ ∼= T such that G − V (T ′) is
2-connected.

Besides, by combining Lemmas 5 and 6, we have the following.

Theorem 10. For any tree T of order m ≥ 2, every 2-connected graph G with
δ(G) ≥ m + 1 and g(G) ≥ max{diam(T) − 1, 4} contains a subtree T ′ ∼= T such
that G − V (T ′) is 2-connected.

From Theorem 10, the following result for 2-connected graphs without a tri-
angle is obtained.

Corollary 2. For any tree T of order m ≥ 2 with diam(T) ≤ 5, every 2-
connected graph G with δ(G) ≥ m + 1 and g(G) ≥ 4 contains a subtree T ′ ∼= T
such that G − V (T ′) is 2-connected.

Now, we are ready to show our main two results stated in the introduction.
Let T be a tree of order m. Suppose that G is a 2-connected graph with δ(G) ≥
m + 2 and g(G) ≥ δ(G) − 6. Then, g(G) ≥ m − 4. From Lemma 2, it is sufficient
to consider a tree T with diam(T) ≤ m−3. That is, we have g(G) ≥ diam(T)−1.
Therefore, Theorem 5 follows from Theorem 9. Next, suppose that m ≥ 6 and
G is a 2-connected graph with δ(G) ≥ m + 1 and g(G) ≥ δ(G) − 3. Then,
g(G) ≥ m − 2 ≥ 4, i.e., g(G) ≥ max{diam(T) − 1, 4}. Hence, Theorem 6 follows
from Theorem 10.

From Lemmas 4, 5 and 6, we can see that a desired subtree T ′ in Theorem 5
(respectively, Theorem 6) can be found in O(|V (G)|4) time if g(G) ≥ δ(G) −
4 (respectively, g(G) ≥ δ(G) − 3). Note that such a restriction on g(G) for
Theorem 5 follows from the fact that we use Lemma 2.

Connectivity Keeping Trees in 2-Connected Graphs with Girth Conditions 325

5 Proofs of Theorems 7 and 8

In this section, we try to improve the lower bounds on g(G) in Theorems 5 and 6,
and show that such improvements are possible if a 2-connected graph G satisfies
a structural property on the smallest cycles. Note that for any two cycles C1 and
C2 of length g(G), it holds that |E(C1) ∩ E(C2)| ≤

⌊
g(G)
2

⌋
.

Lemma 7. Let T be a tree of order m. Let G be a 2-connected graph with δ(G) ≥
m + 2 and g(G) ≥ diam(T) − 2 in which no six cycles of length g(G) have a
common path of length

⌈
g(G)
2

⌉
− 1 in G. For any subtree T ′ ∼= T in G and

a maximum block B in G − V (T ′), if B �= G − V (T ′) and VB(T ′) = {u ∈
V (T ′) | |NG(u) ∩ V (B)| ≥ 2} �= ∅, then there exist a vertex v ∈ VB(T ′) and a
subtree T ′′ ∼= T in G − V (B) ∪ {v}.
Proof. We use the notations such as T ′, B, v,H, S′, C(u),W , and x with the same
meaning in the proof of Lemma6. If diam(S′) ≤ 2, then we can easily construct
a desired subtree W without an additional structural property. Suppose that
diam(S′) ≥ 3. By the discussion in the proof of Lemma 6, we suppose that v is
not a leaf of S′ and there is no vertex w in H such that C(v) ⊆ NG(w). For
u ∈ C(v), we denote by S′

u the subtree rooted at u in S′. Let F be a component
of H containing x. Note that |NG(F) ∩ V (B)| ≤ 1. In the following discussion,
w.l.o.g., we may assume that NG(F)∩V (B) �= ∅. Then, let NG(F)∩V (B) = {vB}
and F ′ = 〈V (F) ∪ {vB}〉G.

Suppose that v is a pseudo-leaf of S′ and v′ is the non-leaf vertex adjacent
to v in S′. If there exists a vertex y in H such that v′ ∈ NG(y), then by letting
the vertex y correspond to v, we can obtain a desired subtree W . If there is no
vertex in H which is adjacent to v′, then v′ ∈ VB(T ′). Thus, we may assume that
if diam(S′) ≥ 4, v is not a pseudo-leaf of S′, and if diam(S′) = 3, the central
vertices v, v′ are in VB(T ′) such that {v, v′} ∩ NG(w) = ∅ for any w ∈ V (H).
Suppose that diam(S′) = 3. Let xy ∈ E(F). Then, |NF ′(x)| ≥ |C(v)\NG(x)|+3
and |NF ′(y) \ {x}| ≥ |C(v′) \ NG(y)| + 3. The assumption on the smallest cycles
implies that |NF ′(x) ∩ NF ′(y)| ≤ 5. Therefore, we can find y ∈ C(x) ⊂ NF (x)
and C(y) ⊂ NF (y) \ {x} so that C(x) ∩ C(y) = ∅, |C(x)| = |C(v) \ NG(x)| and
|C(y)| = |C(v′)\NG(y)|. Thus, a desired subtree W can be constructed. In what
follows, we suppose that diam(S′) ≥ 4.

It is sufficient to consider the case that g(G) = diam(T) − 2 = diam(S′). Let
P (S′) and Q(S′) be the set of peripheral vertices in S′ and the set of parents of a
peripheral vertex in S′, respectively. Let S′′ = S′ −P (S′). Note that diam(S′′) =
diam(S′) − 2, and v �∈ P (S′) ∪ Q(S′) since any vertex in P (S′) is a leaf of S′

and any vertex in Q(S′) is a pseudo-leaf of S′. For the subtree S′′, we apply the
manipulations in the proof of Lemma6. Let W ′ be the subtree obtained after such
manipulations and let W ′

F = 〈V (W ′) ∩ V (F)〉W ′ . Suppose that {z1, z2, . . . , zq}
is the set of vertices in W ′

F which are corresponding to vertices in Q(S′). Note
that q may be less than |Q(S′)|. Let {u1, u2, . . . , uq} ⊆ Q(S′) such that ui is
corresponding to zi for 1 ≤ i ≤ q. For each 1 ≤ i ≤ q, let D(zi) = NF (zi)\{p(zi)}

326 T. Hasunuma

where p(zi) is the parent of zi in W ′
F rooted at x. Also let ri = |C(ui) \ NG(zi)|

for each 1 ≤ i ≤ q, where C(ui) is the set of children of ui in S′. Since g(G) =
diam(S′), it may happen that D(zi) ∩ D(zj) �= ∅ for 1 ≤ i < j ≤ q. It follows
from δ(G) ≥ m + 2 and |C(v) \ NG(zi)| ≥ 1 that |D(zi)| ≥ ri + 1 for each i.

Suppose that |D(zk)| = rk + 1 for some k ∈ {1, 2, . . . , q}. Then |C(v) \
NG(zk)| = 1 and zk is adjacent to every vertex in T ′ except for ones in
(C(v) ∪ C(uk)) \ NG(zk). Thus, we may assume that VB(T ′) ⊆ NT ′(C(v) \
NG(zk)) ∪ NT ′(C(uk) \ NG(zk)), since otherwise, there exists v′ ∈ VB(T ′) such
that NT ′(v′) ⊆ NG(zk). Let C(v) \ NG(zk) = {wk}. Instead of x, we let zk
correspond to v and apply the manipulations in the proof of Lemma6. Let
W ′′

F be the resultant subtree in F . If wk is a pseudo-leaf of S′, then we can
immediately obtain a desired subtree W in this setting. Otherwise, there is
no pseudo-leaf adjacent to v in S′ which corresponds to a vertex in the sub-
tree W ′′

F . Thus, w.l.o.g., we may assume that uk �∈ C(v). Consider the case
that uk ∈ VB(T ′). Since uk is a pseudo-leaf of S′, by the previous discus-
sion, we may assume that p(uk) ∈ VB(T ′) where p(uk) is the parent of uk in
S′. Since p(uk) �∈ NT ′(C(uk) \ NG(zk)), p(uk) ∈ NT ′(wk). This means that
wk = p(p(uk)). Next consider the case that uk �∈ VB(T ′). In this case, we
may assume that no descendant of uk in T ′ is in VB(T ′). Hence, it is con-
cluded that VB(T ′) ∩ (∪u∈C(v)\{wk}V (S′

u)) = ∅. Note that wk �∈ VB(T ′). Let
H ′ = 〈V (H)∪(∪u∈C(v)\{wk}V (S′

u))〉G. For every vertex u′ ∈ ∪u∈C(v)\{wk}V (S′
u),

|NG(u′)∩V (B)| ≤ 1. Thus, it holds that δ(H ′) ≥ 1+
∑

u∈C(v)\{wk} |V (S′
u)|. Let

w′
k ∈ NG(wk) ∩ V (H). Then, there exists a subtree U ′

H′ in H ′ which is isomor-
phic to S′ − V (S′

wk
) such that w′

k corresponds to v in an isomorphism from
V (S′)\V (S′

wk
) to V (U ′

H′). Then, 〈E(S′
wk

)∪{wkw
′
k}∪E(U ′

H′)〉 can be employed
as a desired subtree W . Consequently, we may assume that any vertex zi in
{z1, z2, . . . , zq} satisfies that |D(zi)| ≥ ri + 2.

Let D′(zi) = NF ′(zi) \ {p(zi)} for 1 ≤ i ≤ q. Then, |D′(zi)| ≥ ri + 3 for
each i. Note that either D′(zi) = D(zi) or D′(zi) = D(zi) ∪ {vB}. Define IG as
the (multi)graph with vertex set {z1, z2, . . . , zq} in which zi and zj are joined by
|D′(zi) ∩ D′(zj)| edges. Note that IG may be a multigraph only if diam(S′) = 4.
The assumption that no six cycles of length g(G) have a common path of length⌈
g(G)
2

⌉
− 1 =

⌈
diam(S′′)

2

⌉
in G implies that Δ(IG) ≤ 5, i.e., each vertex in

IG is incident to at most five edges. Besides, the intersection of at least seven
(respectively, three) sets in {D′(z1),D′(z2), . . . , D′(zq)} is empty if diam(S′′)
is even (respectively, odd). Modify the graph IG as follows, and let JG be the
resultant (multi)graph.

1. Delete every edge generated by a vertex in the intersection of at least three
sets D′(zi1),D

′(zi2), and D′(zi3).
2. Delete the edge generated by vB if vB is contained in exactly two sets D′(zi1)

and D′(zi2).

Note that if vB is contained in exactly one set D′(zi), then |D(zi)| ≥ ri + 2 and
|D(zj)| ≥ rj +3 for any j �= i. By Lemma 3, JG has an orientation DG such that
|deg+DG

(z) − deg−
DG

(z)| ≤ 1 for any z ∈ V (DG) and if vB is contained in exactly

Connectivity Keeping Trees in 2-Connected Graphs with Girth Conditions 327

one set D′(zi) then deg−
DG

(zi) ≤ 2. Note that if an orientation of JG satisfying
the first condition does not satisfy the second condition, the reverse orientation
satisfies both the conditions since Δ(IG) ≤ 5. Based on DG, we can disjointly
select ri vertices in D(zi) for 1 ≤ i ≤ q as follows. For each arc from zi1 to zi2
in DG, we select the vertex in D(zi1) ∩ D(zi2) corresponding to the edge zi1zi2
as a child of zi1 . Note that we do not select the vertex vB and any vertex in
the intersection of at least three sets D′(zi1),D

′(zi2), and D′(zi3). In this way,
we can appropriately extend W ′

F for a desired subtree W and finally obtain a
subtree T ′′ ∼= T in G − V (B) ∪ {v}. ��

Next, we consider the case that δ(G) ≥ m + 1. In this case, we need to
strengthen the structural condition on the smallest cycles in Lemma 7.

Lemma 8. Let T be a tree of order m. Let G be a 2-connected graph with δ(G) ≥
m + 1 and g(G) ≥ diam(T) − 2 in which no four cycles of length g(G) have a
common path of length

⌈
g(G)
2

⌉
− 1 in G. For any subtree T ′ ∼= T in G and

a maximum block B in G − V (T ′), if B �= G − V (T ′) and VB(T ′) = {u ∈
V (T ′) | |NG(u) ∩ V (B)| ≥ 2} �= ∅, then there exist a vertex v ∈ VB(T ′) and a
subtree T ′′ ∼= T in G − V (B) ∪ {v}.
Proof. We use the notations in the proof of Lemma7 with the same meaning. A
desired subtree W can be constructed without an additional structural property
if diam(S′) ≤ 2. Suppose that diam(S′) = 3. Applying a similar discussion in the
proof of Lemma 7, we have that |NF ′(x)| ≥ |C(v)\NG(x)|+2 and |NF ′(y)\{x}| ≥
|C(v′)\NG(y)|+2. Since the condition on smallest cycles implies that |NF ′(x)∩
NF ′(y)| ≤ 3, we can find y ∈ C(x) ⊂ NF (x) and C(y) ⊂ NF (y) \ {x} so that
C(x)∩C(y) = ∅, |C(x)| = |C(v)\NG(x)| and |C(y)| = |C(v′)\NG(y)|. Suppose
that diam(S′) ≥ 4. From a similar discussion in the proof of Lemma7, we may
assume that every vertex zi in {z1, z2, . . . , zq} satisfies that |D(zi)| ≥ ri + 1 and
|D′(zi)| ≥ ri + 2. Note that the degree condition δ(H ′) ≥ ∑

u∈C(v)\{w} |V (S′
u)|

is sufficient to construct a subtree U ′
H′ in H ′. The assumption that no four

cycles of length g(G) have a common path of length
⌈
g(G)
2

⌉
− 1 in G implies

that Δ(IG) ≤ 3. By Lemma 3, JG has an orientation DG such that |deg+DG
(z) −

deg−
DG

(z)| ≤ 1 for any z ∈ V (DG) and if vB is contained in exactly one set
D′(zi) then deg−

DG
(zi) ≤ 1. Based on DG, we can disjointly select ri vertices in

D(zi) for 1 ≤ i ≤ q. Hence, we can appropriately extend W ′
F in order to obtain

a desired subtree T ′′. ��
From Lemmas 4, 5, 7, and 8, we have the following results.

Theorem 11. For any tree T of order m, every 2-connected graph G with
δ(G) ≥ m + 2 and g(G) ≥ diam(T) − 2 in which no six cycles of length g(G)
have a common path of length

⌈
g(G)
2

⌉
− 1 contains a subtree T ′ ∼= T such that

G − V (T ′) is 2-connected.

328 T. Hasunuma

Theorem 12. For any tree T of order m ≥ 2, every 2-connected graph G with
δ(G) ≥ m+1 and g(G) ≥ max{diam(T)−2, 4} in which no four cycles of length
g(G) have a common path of length

⌈
g(G)
2

⌉
− 1 contains a subtree T ′ ∼= T such

that G − V (T ′) is 2-connected.

Theorems 7 and 8 follow from Theorem 11 with Lemma 2 and Theorem 12,
respectively. Manipulations in the proofs of Lemmas 7 and 8 can be done in
O(|E(G)|) time, although they are more complicated than those in the proof of
Lemma 6. Therefore, we can find a desired subtree T ′ in Theorem 7 (respectively,
Theorem 8) in O(|V (G)|4) time if g(G) ≥ δ(G)−5 (respectively, g(G) ≥ δ(G)−4).

6 Concluding Remarks

In this paper, we have shown that Mader’s conjecture for k = 2 (with a weak
degree condition δ(G) ≥ m + 1) holds for graphs with large girth. Mader’s con-
jecture was posed in a purely mathematical interest; however, it has a potential
application to fault-tolerant problems in communication networks. We then have
shown that our constructive proofs lead to O(|V (G)|4) time algorithms.

Our lower bounds on the girth in Theorems 5 and 7 can be improved if the
upper bound on the diameter of a tree for which Mader’s conjecture for k = 2
holds is improved. Namely, the following result follows from Theorem9.

Theorem 13. If Mader’s conjecture for k = 2 holds for any tree T with
diam(T) ≥ |V (T)| − �, then Mader’s conjecture for k = 2 holds for any 2-
connected graph G with g(G) ≥ δ(G) − � − 4.

In particular, by checking the proof in [7], we can see that Statement 2 holds
for any caterpillars; thus, the lower bounds on g(G) in Theorems 6 and 8 can be
improved to δ(G) − 5 and δ(G) − 6, respectively. Besides, the restriction that
g(G) ≥ δ(G)−4 (respectively, g(G) ≥ δ(G)−5) for an O(|V (G)|4) time algorithm
can be removed for Theorem 5 (respectively, Theorem 7). On the other hand, in
order to improve the lower bounds on the girth in Theorems 9, 10, 11, and 12
directly, we may need some other techniques.

Even though Mader’s conjecture for k = 2 still remains open, from Lemma 5
and Corollary 2, we may conjecture the following.

Conjecture 4. For any tree T of order m ≥ 2, every 2-connected graph G with
δ(G) ≥ m + 1 and g(G) ≥ 4 contains a subtree T ′ ∼= T such that G − V (T ′) is
2-connected.

Although we consider Mader’s conjecture only for k = 2, it would be inter-
esting to approach Mader’s conjecture for general k ≥ 2 by considering girth
conditions.

Acknowledgments. The author is grateful to the reviewers for their helpful com-
ments. This work was supported by JSPS KAKENHI Grant Number JP19K11829.

Connectivity Keeping Trees in 2-Connected Graphs with Girth Conditions 329

References

1. Chartrand, G., Kaigars, A., Lick, D.R.: Critically n-connected graphs. Proc. Am.
Math. Soc. 32, 63–68 (1972)

2. Diwan, A.A., Tholiya, N.P.: Non-separating trees in connected graphs. Discrete
Math. 309, 5235–5237 (2009)

3. Fujita, S., Kawarabayashi, K.: Connectivity keeping edges in graphs with large
minimum degree. J. Comb. Theory Ser. B 98, 805–811 (2008)

4. Hasunuma, T., Ono, K.: Connectivity keeping trees in 2-connected graphs. J.
Graph Theory 94, 20–29 (2020)

5. Locke, S.C.: Problem 10647. MAA Mon. 105, 176 (1998)
6. Lu, C., Zhang, P.: Connectivity keeping trees in 2-connected graphs. Discrete Math.

343, 111677 (2020)
7. Lu, C., Ye, Q.: Connectivity keeping caterpillars in 2-connected graphs. Manuscript

(2019)
8. Mader, W.: Connectivity keeping paths in k-connected graphs. J. Graph Theory

65, 61–69 (2010)
9. Mader, W.: Connectivity keeping trees in k-connected graphs. J. Graph Theory

69, 324–329 (2012)
10. Tian, Y., Meng, J., Lai, H.-J., Xu, L.: Connectivity keeping stars or double stars

in 2-connected graphs. Discrete Math. 341, 1120–1124 (2018)
11. Tian, Y., Xu, L., Meng, J., Lai, H.-J.: Nonseparating trees in 2-connected graphs

and oriented trees in strongly connected digraphs. Discrete Math. 342, 344–351
(2019)

12. Tutte, W.T.: Connectivity in Graphs. Univ. of Toronto Press, Toronto (1966)

The Steiner Problem for Count Matroids

Tibor Jordán1(B), Yusuke Kobayashi2, Ryoga Mahara2,
and Kazuhisa Makino2

1 Department of Operations Research, Eötvös University,
and the MTA-ELTE Egerváry Research Group on Combinatorial Optimization,

Pázmány Péter sétány 1/C, Budapest 1117, Hungary
jordan@cs.elte.hu

2 Research Institute for Mathematical Sciences, Kyoto University,
Kyoto 606-8502, Japan

{yusuke,ryoga,makino}@kurims.kyoto-u.ac.jp

Abstract. We introduce and study a generalization of the well-known
Steiner tree problem to count matroids. In the count matroid Mk,l(G),
defined on the edge set of a graph G = (V,E), a set F ⊆ E is independent
if every vertex set X ⊆ V spans at most k|X| − l edges of F . The
graph is called (k, l)-tight if its edge set is independent in Mk,l(G) and
|E| = k|V | − l holds.

Given a graph G = (V,E), a non-negative length function w : E → R,
a set T ⊆ V of terminals and parameters k, l, our goal is to find a
shortest (k, l)-tight subgraph of G that contains the terminals. Since
M1,1(G) is isomorphic to the graphic matroid of G, the special case
k = l = 1 corresponds to the Steiner tree problem. We obtain other
interesting problems by choosing different parameters: for example, in
the case k = 2, l = 3 the target is a shortest rigid subgraph containing
all terminals.

First we show that this problem is NP-hard even if k = 2, l = 3, and
w is metric, or w ≡ 1 and |T | = 2. As a by-product of this result we
obtain that finding a shortest circuit in M2,3(G) is NP-hard.

Then we design a (k + 1)-approximation algorithm for the metric
version of the problem with parameters (k, k + 1), for all k ≥ 2. In
particular, we obtain a 3-approximation algorithm for the Steiner version
of the shortest rigid subgraph problem. We also show that the metric
version can be solved in polynomial time for k = 2, l = 3, provided |T |
is fixed.

Keywords: Count matroid · Steiner problem · Rigid graph

This work was supported by the Research Institute for Mathematical Sciences, an Inter-
national Joint Usage/Research Center located in Kyoto University, the JSPS KAK-
ENHI grant no. JP18H05291, and the Hungarian Scientific Research Fund grant no. K
109240. The first author was also supported by Project ED-18-1-2019-030 (Application-
specific highly reliable IT solutions), which has been implemented with the support
provided from the National Research, Development and Innovation Fund of Hungary,
financed under the Thematic Excellence Programme funding scheme.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 330–342, 2020.
https://doi.org/10.1007/978-3-030-48966-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_25

The Steiner Problem for Count Matroids 331

1 Introduction

Let k be a positive integer and let l be an integer satisfying 2k − l ≥ 1. We say
that a graph G = (V,E) is (k, l)-sparse if

iG(X) ≤ k|X| − l, for all X ⊆ V with |X| ≥ 2,

where iG(X) denotes the number of edges induced by X in G. The graph is called
(k, l)-tight if it is (k, l)-sparse and |E| = k|V |− l holds. It is well-known that the
edge sets of the (k, l)-sparse subgraphs of a graph G form the independent sets
of a matroid, defined on the edge set of G. This matroid, denoted by Mk,l(G),
is called the count matroid of G, with parameters k, l, see e.g. [5,17].

For a graph G = (V,E) and set T ⊆ V of terminal vertices, we say that
a subgraph H = (V ′, E′) of G is T -(k, l)-tight if H is (k, l)-tight and T ⊆ V ′.
Given a graph G = (V,E), a terminal set T ⊆ V , a length function w : E → R+,
and parameters k, l, the shortest T -(k, l)-tight subgraph problem is to find a T -
(k, l)-tight subgraph H of G with minimum total edge-length. If G is a complete
graph and w is metric (that is, w satisfies the triangle inequality), this problem
is called the metric shortest T -(k, l)-tight subgraph problem. Note that we use
R+ to denote the set of non-negative real numbers.

Since M1,1(G) is isomorphic to the graphic matroid of G, the special case
k = l = 1 corresponds to the Steiner tree problem. Although we may obtain
other interesting optimization problems by choosing different parameters (see
below), this is the only special case of our general problem - that we call the
Steiner problem for count matroids - that has been studied before.

1.1 Previous Work

The Steiner tree problem is one of the fundamental problems in combinatorial
optimization: given a graph G = (V,E), a terminal set T ⊆ V , a length function
w : E → R+, find a shortest tree in G which contains all terminal vertices. It is
NP-hard. It is known that there is an approximation factor preserving reduction
to its metric version. The best known approximation factor, due to Byrka et al.
[2], is 1.39. It is also well-known that it can be solved in polynomial time if
|T | = 2 (which is a shortest path problem) and more generally, if |T | is fixed.
This problem has numerous other versions and extensions, see e.g. [3,4].

A related notion, which is also relevant in the context of count matroids,
is the Steiner ratio. Consider a metric instance of a Steiner problem, in which
we have a complete graph G = (V,E), a terminal set T ⊆ V , and a length
function w : E → R+, and we wish to find a shortest subgraph H of G that
contains all terminals and satisfies a given property. For example, we may want
to find a connected subgraph, but we can also think of other properties (e.g.
k-edge-connected or (k, l)-tight) satisfied by G[T] (i.e. the complete subgraph of
G induced by T).

Then the total length of an optimal solution divided by the length of a
shortest spanning subgraph of G[T] that satisfies the given property is called

332 T. Jordán et al.

the Steiner ratio of the instance. The Steiner ratio of the (metric) problem is
the best possible lower bound on the Steiner ratio that is valid for all instances.

Note that, just like in the Steiner tree problem, the shortest (k, l)-tight span-
ning subgraph of G[T], if it exists, can be found in polynomial time by a greedy
algorithm. It holds for all parameters k, l, due to the matroidal nature of the
problem, see e.g. [5].

1.2 Motivation and New Results

Our motivation to introduce and study this problem comes from rigidity theory
and its applications. In this area count matroids play an important role. For
example, a graph (realized as a generic two-dimensional bar-and-joint structure)
is rigid if and only if it contains a (2, 3)-tight spanning subgraph (see Sect. 2).
Thus, by choosing k = 2 and l = 3 in our problem, we look for the shortest rigid
subgraph of a graph that contains a designated set of vertices. Other well-studied
parameters that show up in e.g. parallel drawing and in rigidity problems of
body-bar and body-hinge frameworks include the cases when l = k and l = k+1,
for all k ≥ 2. See [17] for more on these connections. Approximation algorithms
for these counts may also be useful in variants of the sensor network localization
problem, where rigidity theory plays a key role, see [7].

Another reason for investigating the complexity of the Steiner problem for
count matroids is to have a better understanding of the problem of finding the
girth of a (count) matroid, see [14,15]. We shall see that the problem of finding
a shortest circuit containing a given element in a matroid M2,3(G) is equivalent
to the corresponding Steiner problem with two terminals.

We first show that the Steiner problem for count matroids is NP-hard, even
if k = 2, l = 3, and w is metric, or w ≡ 1 and |T | = 2. The latter result settles
the complexity status of the girth problem for count matroids with parameters
k = 2, l = 3. It also illustrates that - apart from the graphic matroid (the Steiner
tree problem) and the bicircular matroid (see Sect. 6) - the Steiner problem for
count matroids is hard even for two terminals.

Then we give a (k+1)-approximation algorithm for the metric version for the
counts (k, k + 1), for all k ≥ 2. This specializes to a 3-approximation algorithm
for the shortest rigid subgraph problem. As a corollary we obtain that the Steiner
ratio of the metric shortest T -(k, k+1)-tight subgraph problem is between 1

2 and
1

k+1 .
We also show that the (metric) shortest T -(2, 3)-tight subgraph problem can

be solved in polynomial time for fixed |T |. The algorithm is based on a structural
result: we prove that there always exists an optimal solution H with |V (H)| ≤
15|T | − 1. It shows that, unlike in the case of the Steiner tree problem, the
behaviour of the metric version is quite different from that of the case of general
length functions. It is another new phenomenon for general counts.

We have similar results for the shortest T -(k, k)-tight subgraph problem for
all k ≥ 2. By a result of Nash-Williams (see Theorem 3 below) a graph is (k, k)-
tight if and only if its edge set can be decomposed into k disjoint spanning trees.
Although these graphs are well-studied and occur in important applications,

The Steiner Problem for Count Matroids 333

we omit the results on (k, k)-tight subgraphs from this extended abstract: the
(k, k + 1)-tight case appears to be more involved and the methods used are
similar.

2 Preliminary Results

In this section we make some preliminary observations and introduce some
notions and earlier results we shall use in this paper.

2.1 The Extension Operation

We shall use the following operation on graphs several times. Let G = (V,E)
be a simple graph. The (k, i)-extension operation, for some integers k ≥ 1 and
0 ≤ i ≤ k, removes i edges u1v1, u2v2, . . . uivi ∈ E from G, and adds a new ver-
tex r and new edges ru1, . . . , rui, rv1, . . . , rvi, rw1, . . . , rwk−i, for some vertices
w1, . . . , wk−i of G, in such a way that the resulting graph G′ remains simple.
Notice that the new vertex r has degree k + i in G′.

The following lemma (which is implicit in [6]) is easy to verify. We remark
that the lemma – with minor changes – holds for multigraphs, too. In this paper
we restrict ourselves to simple graphs.

Lemma 1. Let G = (V,E) be a (k, k + 1)-tight simple graph and suppose that
G′ is obtained from G by a (k, i)-extension operation for some 0 ≤ i ≤ k. Then
G′ is also (k, k + 1)-tight.

As the first application of Lemma 1 we show that for every t ≥ 2k + 1 there
exist (k, k + 1)-tight graphs on t vertices.

Lemma 2. Let k and t be integers with k ≥ 2 and t ≥ 2k + 1. Define Ct,k as
the graph whose vertex set and edge set are {x1, . . . , xt} and {xixi+1, xixi+2, . . . ,
xixi+k | i ∈ {1, . . . , t}}, respectively, where we denote xt+j = xj for j = 1, . . . , t.
Let C ′

t,k := Ct,k −{x1xt, x1xt−1, . . . , x1xt−k+1, xkxt}. Then, C ′
t,k is a (k, k+1)-

tight graph.

Proof. We show that C ′
t,k is a (k, k + 1)-tight graph by induction on t. We

first consider the case of t = 2k + 1. Let K2k be the complete graph with 2k
vertices x2, x3, . . . , x2k, x2k+1. Then, K2k −{xkx2k+1} is a (k, k+1)-tight graph
by a simple counting argument. Since C ′

2k+1,k is obtained from K2k −{xkx2k+1}
by a (k, 0)-extension operation (which adds a new vertex x1 and k new edges
x1x2, x1x3, . . . , x1xk, x1xk+1), we have that C ′

2k+1,k is a (k, k + 1)-tight graph
by Lemma 1. This shows the base case of the induction.

To show the induction step, assume that C ′
t,k is a (k, k + 1)-tight graph. We

observe that xixt−k+i ∈ E(C ′
t,k) for i = 2, 3, . . . , k − 1. Since C ′

t+1,k is obtained
from C ′

t,k by a (k, k − 2)-extension operation (which adds a new vertex xt+1

together with 2k−2 new edges xt+1xi for i = 2, 3, . . . , k−1, t−k, t−k+1, . . . , t−1
and removes xixt−k+i for i = 2, 3, . . . , k− 1), we have that C ′

t+1,k is a (k, k+1)-
tight graph by Lemma 1. This completes the proof. �	

334 T. Jordán et al.

2.2 Rigid Graphs

We say, somewhat informally, that a graph G = (V,E) is generically rigid in
the plane if every bar-and-joint framework in the plane with underlying graph
G and with generic vertex coordinates is rigid: that is, every continuous motion
of the vertices in the plane that preserves the edge lengths preserves all pairwise
distances. Laman [12] proved that G is generally rigid if and only if it has a
(2, 3)-tight spanning subgraph (or equivalently, its rigidity matroid M2,3(G)
has rank 2|V |−3). See [17] for an introduction to rigidity theory and for further
count parameters that show up in this field, and [9] for more details on the
combinatorial and matroidal aspects of two-dimensional rigidity.

Thus the Steiner problem for count matroids contains the problem of finding
a shortest rigid subgraph containing a given a set of terminals. Since we shall
mostly focus on this special case, for simplicity we shall also use T -rigid instead
of saying that a subgraph which has a T -(2, 3)-tight spanning subgraph. In this
context minimally T -rigid corresponds to T -(2, 3)-tight.

The extension operations with parameters (2, 0) and (2, 1) introduced above
play an important role in rigidity theory. If the parameter k = 2 is clear from the
context we use 0-extension and 1-extension to mean a (2, 0)- or (2, 1)-extension
operation, respectively.

Lemma 3 [9]. Let G = (V,E) be a minimally rigid graph and suppose that
G′ is obtained from G by a 0-extension or a 1-extension operation. Then G′ is
minimally rigid.

2.3 Feasibility, Components, and Sparse Input Graphs

In this subsection we consider (2, 3)-sparsity (and rigidity), but the results easily
extend to all counts studied in this paper.

A basic question concerning an instance of the Steiner problem for count
matroids is whether there exists a feasible solution. The answer is based on the
concept of rigid components: a rigid component of a graph G is a maximal rigid
subgraph. It is known that two rigid components have at most one vertex in
common and that the family of rigid components can be found in polynomial
time [9]. Since |T | ≥ 2, it follows that all feasible solutions, if they exist, are
subgraphs of the same rigid component of G. Furthermore, there is a feasible
solution if and only if G has a rigid component which contains all the terminals.
In this case we can simply delete the complement of this rigid component and
assume that the input graph is rigid.

Next suppose that the input graph G = (V,E) is minimally rigid, that is,
rigid and sparse at the same time. A useful observation is that the shortest T -
rigid subgraph problem has a simple and efficient solution in this case. It follows
from the next lemma, see e.g. [9].

Lemma 4. Let G = (V,E) be a minimally rigid graph and let G1, G2 be mini-
mally rigid subgraphs of G with |V (G1)∩V (G2)| ≥ 2. Then G1∩G2 is minimally
rigid.

The Steiner Problem for Count Matroids 335

Thus there is a unique smallest rigid subgraph of G that contains T . Since
w is non-negative, it is an optimal solution.

The following result shows that we can find this smallest rigid subgraph
efficiently. For a given S ⊆ V with |S| ≥ 2 let CS(G) be the unique smallest
rigid subgraph of G with S ⊆ V (CS(G)). If S = {a, b} then we also use the
notation Ca,b(G).

Lemma 5 [10]. Let G = (V,E) be a minimally rigid graph and S ⊆ V with
|S| ≥ 2. Then

CS(G) =
⋃

a,b∈S

Ca,b(G).

Lemma 5 shows that we can compute CS(G) by computing Ca,b(G) for all
pairs in S. It is not hard to see that for a given pair a, b ∈ S the (edge set of)
Ca,b(G) is either ab (if a and b are adjacent) or it is equal to the fundamental
circuit of ab with respect to E (which is a base in the count matroid M2,3(G)).
Since we have polynomial time independence oracles (using network flows, bipar-
tite matchings, or graph orientations [1,13]), we can find all Ca,b(G)’s and CS(G)
in polynomial time.

Finally, consider the case when p := |E| − (2|V | − 3) is a fixed constant for
the input graph G = (V,E). Let m = |E|. Then G has at most

(
m
p

)
minimally

rigid spanning subgraphs.
Since every (minimally rigid) feasible solution can be extended to a min-

imally rigid spanning subgraph of G, and there is a unique smallest optimal
solution whenever the input is minimally rigid, we can find an optimal solution
by enumerating all minimally rigid spanning subgraphs of G and computing the
unique smallest rigid subgraph containing T in each of them.

Proposition 1. The shortest T -rigid subgraph problem is polynomial time solv-
able if p := |E| − (2|V | − 3) is a fixed constant for the input graph G = (V,E).

3 Hardness Results

The proof of the next lemma is given in the full version of the paper [11].

Lemma 6. The shortest T -rigid subgraph problem is NP-hard even if w(e) = 1
for every e ∈ E.

We can strengthen Lemma 6 as follows.

Theorem 1. The shortest T -rigid subgraph problem is NP-hard even if w(e) = 1
for every e ∈ E and |T | = 2.

Proof. Lemma 6 shows that the shortest T -rigid subgraph problem is NP-hard
even if w(e) = 1 for every e ∈ E. We reduce this problem to the case of |T | = 2.

Let G = (V,E) and T ⊆ V be an instance of the shortest T -rigid subgraph
problem such that |T | ≥ 3 and w(e) = 1 for every e ∈ E. Pick up two distinct

336 T. Jordán et al.

terminals t1, t2 ∈ T arbitrarily. Construct a new graph G′ = (V ′, E′) from
G by adding a new vertex v together with two edges vt1 and vt2. Let T ′ =
(T \ {t1, t2}) ∪ {v}. Then, the obtained instance (G′, T ′) is equivalent to the
original instance (G,T) in the following sense. If G contains a T -rigid subgraph
H = (VH , EH) with k edges, then H ′ = (VH ∪ {v}, EH ∪ {vt1, vt2}) is a T ′-rigid
subgraph of G′ with k + 2 edges. Conversely, if G′ contains a T ′-rigid subgraph
H ′ = (VH′ , EH′) with k + 2 edges, then H = (VH′ \ {v}, EH′ \ {vt1, vt2}) is a
T -rigid subgraph of G with k edges by Lemma 3.

By repeating this procedure |T | − 2 times, we obtain a graph G∗ = (V ∗, E∗)
and T ∗ ⊆ V ∗ with |T ∗| = 2 such that G contains a T -rigid subgraph with k
edges if and only if G∗ contains a T ∗-rigid subgraph with k + 2(|T | − 2) edges.
This shows that the original shortest T -rigid subgraph problem can be reduced
to the case of |T | = 2, and hence this problem is NP-hard even when |T | = 2. �	

A corollary of Theorem 1, which appears to be new (see [15]) that finding a
shortest circuit in a matroid M2,3(G) is NP-hard. To see this consider a graph
G = (V,E) and a designated edge f = uv ∈ E. It is known (see e.g. [9]) that if
C ⊆ E is a circuit of M2,3(G) then (V (C), C) is rigid. Furthermore, if H is a
rigid subgraph of E − f then H + f contains a circuit. Thus a shortest T -rigid
subgraph of E − f with respect to T = {u, v} and w ≡ 1 corresponds to a
shortest circuit containing f in M2,3(G).

The metric version is also hard - see [11] for the details.

Theorem 2. The metric shortest T -rigid subgraph problem is NP-hard.

In the rest of the paper we shall consider the metric version and design
approximation algorithms as well as an exact algorithm (for fixed |T |).

4 An Approximation Algorithm for the Metric Case

Let G = (V,E), T ⊆ V , w : E → R+ be an instance of the metric shortest
T -(k, k + 1)-tight subgraph problem, for some k ≥ 2. We shall prove that the
total length of a shortest T -(k, k+1)-tight spanning subgraph of G[T] is at most
(k + 1)OPT , where OPT denotes the total length of an optimal solution to the
shortest T -(k, k + 1)-tight subgraph problem. Since a shortest T -(k, k + 1)-tight
spanning subgraph of G[T] can be found in polynomial time, this leads to a
(k + 1)-approximation algorithm. In particular, we obtain a 3-approximation
algorithm for the shortest T -rigid subgraph problem.

In our analysis we shall use the following theorem of Nash-Williams.

Theorem 3 [16]. The edge set of a graph G = (V,E) can be partitioned into
the edge sets of k forests if and only if iG(X) ≤ k|X| − k for all ∅ = X ⊆ V .

A simple counting argument shows that G[T] does not contain a (k, k + 1)-
tight spanning subgraph if |T | ≤ 2k − 1 (except for k = 2). Otherwise we do
have a feasible solution on vertex set T , c.f. Lemma 2.

The Steiner Problem for Count Matroids 337

Theorem 4. Let k be an integer with k ≥ 2. Suppose that we are given a com-
plete graph G = (V,E), a terminal set T ⊆ V , and a metric length function
w : E → R+. If |T | ≥ 2k, then a shortest T -(k, k+1)-tight spanning subgraph of
G[T] is a (k + 1)-approximate solution for the metric shortest T -(k, k + 1)-tight
subgraph problem in G.

Proof. Let H = (VH , EH) be a shortest T -(k, k + 1)-tight subgraph of G. Our
goal is to show that G[T] contains a T -(k, k + 1)-tight subgraph whose total
length is at most (k + 1)w(H). For simplicity we shall use w(J) to denote the
total length of the edges of some graph J .

Let e ∈ (
VH

2

)
be a shortest edge with both endvertices in VH . Consider the

graph H + e that might have parallel edges. By Theorem 3, the edge set of
H + e can be partitioned into k edge-disjoint spanning trees F1, . . . , Fk on VH .
By changing the indices if necessary, we may assume that w(F1) ≤ w(H)+w(e)

k .
Consider the graph obtained from F1 by duplicating every edge, which is a
connected Eulerian graph. Then, it contains an Eulerian walk through all vertices
in VH . Since w is metric and T ⊆ VH , by shortcutting1 this Eulerian walk, we
obtain a cycle C such that V (C) = T and

w(C) ≤ 2w(F1) ≤ 2
k

(w(H) + w(e)). (1)

Let x1, . . . , xt be the vertices of C that appear in this order along C, where
t = |T |. For notational convenience, we denote xt+j = xj for j = 1, . . . , t. We
consider the following two cases separately.
Case 1. We first consider the case when t = 2k. Let K2k be the complete
graph with vertex set {x1, . . . , x2k} and pick an edge f in K2k arbitrarily. Since
the metric property implies that w(xixi+h) ≤ w(xixi+1) + w(xi+1xi+2) + · · · +
w(xi+h−1xi+h) for i ∈ {1, . . . , 2k} and for h ∈ {1, . . . , k}, we have

w(K2k − f) =
2k∑

i=1

(w(xixi+1) + · · · + w(xixi+k−1)) +
k∑

i=1

w(xixi+k) − w(f)

≤ k(k − 1)
2

w(C) + k(w(C) − w(e)) − w(e)

=
k(k + 1)

2

(
w(C) − 2

k
w(e)

)

≤ (k + 1)w(H),

where we use (1) in the last inequality. Furthermore, we see that K2k − f is
a (k, k + 1)-tight spanning subgraph of G[T] by a simple counting argument.
Therefore, G[T] contains a T -(k, k + 1)-tight subgraph whose total length is at
most (k + 1)w(H).

1 We follow the walk W and we shortcut every maximal subwalk that contains only
non-terminal vertices and vertices already visited by W .

338 T. Jordán et al.

Case 2. We next consider the case when t > 2k. Let C ′
t,k be the (k, k + 1)-tight

subgraph of G[T] defined in Lemma 2. Then, by a similar calculation to Case 1,
we obtain

w(C′
t,k) =

2k∑

i=1

(w(xixi+1) + · · · + w(xixi+k)) − w({x1xt, x1xt−1, . . . , x1xt−k+1, xkxt})

≤ k(k + 1)

2
w(C) − (k + 1)w(e)

=
k(k + 1)

2

(
w(C) − 2

k
w(e)

)

≤ (k + 1)w(H).

Therefore, G[T] contains a T -(k, k + 1)-tight subgraph whose total length is at
most (k + 1)w(H). �	

Since a shortest (k, k+1)-tight spanning subgraph of G[T] can be computed
by a greedy algorithm, this theorem yields a (k + 1)-approximation algorithm
for the metric shortest T -(k, k + 1)-tight subgraph problem with |T | ≥ 2k.

By specializing the above result to the case when k = 2, we obtain:

Corollary 1. There is a polynomial time 3-approximation algorithm for the
metric shortest T-rigid subgraph problem.

The following example shows that the approximation factor of the above
algorithm is not better than 2. Suppose that every edge in G[T] has length 2,
and every other edge has length 1. Then the shortest rigid spanning subgraph
of G[T] has total length 4|T | − 6. On the other hand the optimum is at most
2|T | + 1: pick two vertices a, b ∈ V − T and consider the complete bipartite
subgraph KX,T with color classes X = {a, b} and T . By adding the edge ab to
this graph we obtain a feasible solution (a rigid subgraph of G containing T) of
total length 2|T | + 1.

Note that if w(e) ∈ {1, 2} for all e ∈ E then the approximation ratio of the
above algorithm is not worse than 2. Hence, by the same example, it is equal
to 2.

Corollary 2. Let r be the Steiner ratio of the metric shortest T -rigid subgraph
problem. Then 1

3 ≤ r ≤ 1
2 .

5 Optimal Solutions for Fixed |T | in the Metric Case

Consider an optimal solution H to some instance of the metric shortest T -rigid
subgraph problem. One strategy to show that the number of non-terminal ver-
tices in H is small (compared to |T |), or can be made small, is to apply specific
shortcutting operations that remove vertices (or sets of vertices) of V (H) − T
maintaining rigidity and without increasing the total length.

This strategy works easily in the metric Steiner tree problem since degree-
one vertices can be removed, degree-two vertices can be shortcut, and hence an

The Steiner Problem for Count Matroids 339

upper bound on |V (H)−T |, in terms of |T |, follows immediately. This approach,
with much more complicated arguments, works in the k-edge-connected Steiner
network problem, too, see [8].

In our case H is a minimally rigid graph that contains T . It is easy to elimi-
nate vertices of degree-two and degree-three from H (see Lemma 7 below. The
number of vertices of degree at least five can be bounded by using the fact that
|E(H)| = 2|V | − 3 and hence the average degree of H is (a bit less than) four.

Thus the main question is whether the number of degree-four vertices in H
can be bounded by a function of |T |. We deal with this question in the next
subsection.

5.1 Reductions in Minimally Rigid Graphs

Let G = (V,E) be a minimally rigid graph and let v ∈ V be a designated vertex
with d(v) = r, where d(v) denotes the degree of vertex v. The reduction operation
at v removes v from the graph and adds r − 2 disjoint edges connecting vertices
in NG(v) (where NG(v) denotes the set of neighbours of v in G). We shall be
interested in the cases when 2 ≤ r ≤ 4. A reduction operation is admissible if
the resulting graph is also minimally rigid. We call v admissible if there exists
an admissible reduction at v. Otherwise v is non-admissible.

The following lemma is well-known, see e.g. [9]. It shows that vertices of
degree two and three are all admissible.

Lemma 7. Let G = (V,E) be a minimally rigid graph and v ∈ V . Then

(i) if d(v) = 2 then G − v is minimally rigid,
(ii) if d(v) = 3 then there is an admissible reduction at v.

Vertices of degree four may be non-admissible. In such a case there is a simple
certificate of non-admissibility, as we shall prove below.

We say that X ⊆ V with |X| ≥ 2 is critical if iG(X) = 2|X| − 3 holds.
The next lemma is also well-known [9]. Its proof uses the fact that the function
iG : 2V → Z is supermodular. For two disjoint sets X,Y we use d(X,Y) to
denote the number of edges between X and Y .

Lemma 8. Let G = (V,E) be a minimally rigid graph and let X,Y,Z be critical
sets in G. Then

(i) if |X ∩ Y | ≥ 2 then X ∩ Y and X ∪ Y are also critical,
(ii) if |X ∩ Y | = 1 and d(X − Y, Y − X) ≥ 1 then X ∪ Y is critical,
(iii) if X ∩ Y ∩ Z = ∅ and |X ∩ Y | = |X ∩ Z| = |Y ∩ Z| = 1 then X ∪ Y ∪ Z is

critical.

Let v be a designated vertex with d(v) = 4. We say that three critical sets
X,Y,Z ⊆ V − {v} and a vertex p ∈ V − {v} form a flower {X,Y,Z} associated
with v, with core p, if

(i) X ∩ Y = X ∩ Z = Y ∩ Z = {p},

340 T. Jordán et al.

(ii) vp ∈ E, and
(iii) d(v,X − {p}) = d(v, Y − {p}) = d(v, Z − {p}) = 1.

Observe that if there is a flower associated with v then v is non-admissible:
adding a new edge connecting the core p to any other neighbour of v violates
the sparsity condition in V − {v}.

The proofs of the next two key lemmas can be found in [11]. The first one
shows that every non-admissible vertex of degree four has an associated flower.

Lemma 9. Let G = (V,E) be a minimally rigid graph and let v ∈ V be a non-
admissible vertex with d(v) = 4. Then there exists a flower associated with v
in G.

Lemma 10. Let G = (V,E) be a minimally rigid graph and let v be a non-
admissible vertex of degree four. Suppose that {X,Y,Z} form a flower associated
with v with core p. If d(p) = 4 then v and p have three common neighbours.

Note that if the conditions of Lemma 10 hold then v, p and their (common)
neighbours induce a minimally rigid subgraph isomorphic to K2,3 (plus the edge
pv).

Theorem 5. Let G = (V,E), T ⊆ V , w : E → Z+ be an instance of the metric
shortest T -rigid subgraph problem. Then there exists an optimal solution H with
|V (H)| ≤ 15|T | − 1.

Proof. Let H = (V ′, E′) be an optimal solution for which |V ′| is as small as
possible. We may assume that H is minimally rigid. Let S = V ′ − T and X =
{v ∈ S : dH(v) = 4}. Since w is metric, we can use Lemma 7 to deduce that

(i) each vertex in S has degree at least four, and
(ii) each vertex in X is non-admissible.

Claim. Every vertex in X has at least one neighbour in V ′ − X.

Proof. Consider a vertex v ∈ X. Since it is non-admissible, there is a flower
{X,Y,Z} with core p in H associated with v. We have pv ∈ E′. For a con-
tradiction suppose that p ∈ X. By Lemma 10 this implies that v and p have
three common neighbours x, y, z and the set NH(v) ∪ {v} induces a minimally
rigid subgraph in H isomorphic to K2,3 (plus the edge pv). It is not hard
to see that H ′ := H − {v, p} + {xy, xz, yz} is minimally rigid. Furthermore,
w(H ′) ≤ w(H), since w(xy) ≤ w(xv) + w(vy), w(xz) ≤ w(xp) + w(pz), and
w(yz) ≤ w(yp) + w(pv) + w(vz). Thus H ′ is a smaller optimal solution, which
contradicts the choice of H. �	

By the Claim we have
dH(X) ≥ |X|. (2)

The Steiner Problem for Count Matroids 341

Let Y = S −X, and let Ti be the set, and ti be the number of vertices of degree
i in T , for 2 ≤ i ≤ 4. Similarly, let T+ be the set, and t+ be the number, of
vertices of degree at least five in T . Then we have

4|V ′| − 6 = 2|E′| =
∑

v∈V ′
dH(v) ≥ 2t2 + 3t3 + 4t4 + 5t+ + 4|X| + 5|Y |, (3)

from which
4(t2 + t3 + t+ + |Y |) ≥ 2t2 + 3t3 + 5t+ + 5|Y | (4)

follows. Thus
4t2 + 4t3 ≥ 2t2 + 3t3 + t+ + |Y |, (5)

and hence
2|T | ≥ 2(t2 + t3) ≥ 2t2 + t3 ≥ t+ + |Y |. (6)

So we have |Y | ≤ 2|T |. Now suppose, for a contradiction, that |V ′| ≥ 15|T |.
Since |T ∪ Y | ≤ 3|T |, we have |X| ≥ 12|T |, and hence (2) gives

dH(X,T ∪ Y) = dH(X) ≥ 12|T |. (7)

Therefore the average degree of the vertices in T ∪ Y is at least four in H. This
implies

4|V ′| − 6 = 2|E′| =
∑

v∈X

dH(v) +
∑

v∈T∪Y

dH(v) ≥ 4|X| + 4|V ′ − X| = 4|V ′|, (8)

a contradiction. Hence |V ′| ≤ 15|T | − 1, completing the proof of the theorem. �	
We can use this result to argue that if we compute a shortest rigid subgraph

with vertex set V ′ for every V ′ ⊆ V with T ⊆ V ′ and |V ′| ≤ 15|T |−1, the shortest
one will correspond to an optimal solution to the shortest T -rigid subgraph
problem. Since we can find a shortest rigid subgraph on V ′ in polynomial time
for each V ′, we obtain:

Theorem 6. The metric shortest T -rigid subgraph problem can be solved in
polynomial time for fixed |T |.

6 Concluding Remarks

The Steiner problem for count matroids, introduced in this paper, gives rise to
numerous open problems. The most obvious ones are about potential improve-
ments of the new results: better approximation factors, better bounds for the
Steiner ratio, and extensions to further parameters (k, l).

Two Terminals. For the complexity status of the two-terminal case (with
general length functions) there seems to be a clean answer. We conjecture that
the proof of Theorem 1 can be extended to all count parameters (k, l) with
k ≥ 2. The remaining cases (assuming l ≥ 0) are (1, 1) and (1, 0). The former
case corresponds to the familiar shortest path problem, which is polynomial time

342 T. Jordán et al.

solvable by using Dijkstra’s algorithm. The latter case is also tractable. Recall
that the count matroid M1,0 is the so-called bicircular matroid, in which a graph
H is tight if and only if each connected component of H is unicyclic, that is, it
has exactly one cycle.

Theorem 7. The shortest (1, 0)-tight subgraph problem with |T | = 2 is polyno-
mial time solvable.

The proof of this results as well as further comments and potential research
directions are given in [11].

References

1. Berg, A.R., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Di
Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 78–89. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39658-1 10

2. Byrka, J., Grandoni, F., Rothvoss, T., Sanita, L.: An improved LP-based approx-
imation ratio for Steiner tree. In: Proceedings of 42nd STOC, pp. 583–592 (2010)

3. Chung, F.R.K., Graham, R.L.: A new bound for Euclidean Steiner minimal trees.
Ann. New York Acad. Sci. 440, 328–346 (1985)

4. Du, D., Hu, X.: Steiner Tree Problems in Computer Communication Networks.
World Scientific Publishing, River Edge (2008)

5. Frank, A.: Connections in Combinatorial Optimization. Oxford University Press,
Oxford (2011)

6. Frank, A., Szegő, L.: Constructive characterizations for packing and covering with
trees. Discrete Appl. Math. 131, 347–371 (2003)

7. Jackson, B., Jordán, T.: Graph theoretic techniques in the analysis of uniquely
localizable sensor networks. In: Mao, G., Fidan, B. (eds.) Localization Algorithms
and Strategies for Wireless Sensor Networks, pp. 146–173. IGI Global, Hershey
(2009)

8. Jordán, T.: On minimally k-edge-connected graphs and shortest k-edge-connected
Steiner networks. Discrete Appl. Math. 131, 421–432 (2003)

9. Jordán, T.: Combinatorial rigidity: graphs and matroids in the theory of rigid
frameworks. Discrete Geom. Anal. MSJ Memoirs 34, 33–112 (2016)

10. Jordán, T., Domokos, G., Tóth, K.: Geometric sensitivity of rigid graphs. SIAM
J. Discrete Math 27(4), 1710–1726 (2013)

11. Jordán, T., Kobayashi, Y., Mahara, R., Makino, K.: The Steiner problem for count
matroids, TR-2020-03, Egerváry Research Group, Budapest

12. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4,
331–340 (1970)

13. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Disc. Math 308,
1425–1437 (2008)

14. Lomonosov, A.: Graph and combinatorial algorithms for geometric constraint solv-
ing, Ph.D. thesis, U. Florida (2004)

15. Matroids - girth and co-girth. In: Egres Open, an open problem collection of the
Egerváry Research Group, Budapest. lemon.cs.elte.hu/egres/open

16. Nash-Williams, C.St.J.A.: Decomposition of finite graphs into forests. J. Lond.
Math. Soc. 39, 12 (1964)

17. Whiteley, W.: Some matroids from discrete applied geometry. Contemp. Math.
197, 171–311 (1996). In: Matroid theory (Seattle, WA, 1995), Amer. Math. Soc.,
Providence, RI

https://doi.org/10.1007/978-3-540-39658-1_10

Bounded Degree Group Steiner Tree
Problems

Guy Kortsarz1 and Zeev Nutov2(B)

1 Rutgers University, Camden, Camden, USA
guyk@rutgers.edu

2 The Open University of Israel, Ra’anana, Israel
nutov@openu.ac.il

Abstract. Motivated by some open problems posed in [13], we study
three problems that seek a low degree subtree T of a graph G = (V, E).
In the Min-Degree Group Steiner Tree problem we are given a col-
lection of node subsets (groups), and T should contain a node from every
group. In the Min-Degree Steiner k-Tree problem we are given a set
R of terminals and an integer k, and T should contain k terminals. In
both problems the goal is to minimize the maximum degree of T .

In the more general Degrees Bounded Min-Cost Group Steiner

Tree problem, we are also given edge costs and individual degree bounds
{bv : v ∈ V }. The output tree T should obey the degree constraints
degT (v) ≤ bv for all v ∈ V , and among all such trees we seek one
of minimum cost. When the input is a tree, an O(log2 n) approxima-
tion for the cost is given in [10]. Our first result generalizes [10] –
we give a bicriteria (O(log2 n), O(log2 n))-approximation algorithm for
Degrees Bounded Min-Cost Group Steiner Tree problem on tree
inputs. This matches the cost ratio of [10] but also approximates the
degrees within O(log2 n). Our second result shows that if Min-Degree

Group Steiner Tree admits ratio ρ then Min-Degree Steiner k-
Tree admits ratio ρ · O(log k). Combined with [12], this implies an
O(log3 n)-approximation for Min-Degree Steiner k-Tree on general
graphs, in quasi-polynomial time. Our third result is a polynomial time
O(log3 n)-approximation algorithm for Min-Degree Group Steiner

Tree on bounded treewidth graphs.

1 Introduction

We study the following three problems:

Min-Degree Group Steiner Tree

Input: A graph G = (V,E) and a collection of groups (subsets of V).
Output: A subtree T of G that contains a node from every group and has
minimal maximum degree.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 343–354, 2020.
https://doi.org/10.1007/978-3-030-48966-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_26

344 G. Kortsarz and Z. Nutov

Min-Degree Steiner k-Tree

Input: A graph G = (V,E), a set R ⊆ V of terminals, and an integer k ≤ |R|.
Output: A subtree T of G that contains at least k terminals and has minimal
maximum degree.

Bounded Degrees Min-Cost Group Steiner Tree

Input: A graph G = (V,E) with edge costs {ce : e ∈ E}, a collection of
groups, and degree bounds {bv : v ∈ V }.
Output: A subtree T that contains a node from every group and obeys the
degree constraints degT (v) ≤ bv for all v ∈ V , and has minimum costs among
such subtrees.

Note that in the first two problems the edges have no costs, since the objective
is to minimize the maximum degree. The third problem is more general and has
both costs and degree bounds.

In the The Eighth Workshop on Flexible Network Design, Amsterdam, 2016,
Hajiaghayi posed the following open problem:
Can we obtain a polylogarithmic approximation ratio (in polynomial time) for
the Bounded Degrees Min-Cost Group Steiner Tree problem?

In [12] is given a quasi-polynomial time bi-criteria (O(log4 n), O(log2 n))-
approximation algorithm for the Bounded Degrees Min-Cost Directed

Steiner Tree problem.1 Hence the same holds for the group Steiner prob-
lems studied here. Our paper is motivated by the need to provide approximation
algorithms that run in polynomial time, which is a standard definition of approx-
imation. Our results are summarized in the following three theorems.

Theorem 1. Bounded Degrees Min-Cost Group Steiner Tree on tree
inputs admits a bicriteria randomized (O(log2 n), O(log2 n))-approximation algo-
rithm. Namely, the algorithm computes a tree T that contains at least one node
from every group, has expected cost O(log2 n) times the optimum cost, and with
probability at least 1 − 1/n we have degT (v) = O(log2 n) · bv for all v ∈ V .

This result generalizes the one of Garg, Konjevod, and Ravi [10] that gave the
same expected ratio O(log2 n) for the cost, but did not consider degree bounds.
We note that a bicriteria (O(log2 n), O(log3 n)) approximation is known to some
researchers, but getting ratio O(log2 n) for the degrees requires some care.

Theorem 2. If Min-Degree Group Steiner Tree admits approximation
ratio ρ then Min-Degree Steiner k-Tree admits ratio ρ · O(log k). Thus
(by [12]) Min-Degree Steiner k-Tree admits an O(log3 n)-approximation
algorithm that runs in quasi polynomial time.

Theorem 3. Min-Degree Group Steiner Tree on bounded treewidth input
graphs admits approximation ratio O(log3 n).

1 In private communication, B. Laekhanukit reported that this bi-criteria approxima-
tion was recently improved to (O(log2 n), O(log2 n)).

Bounded Degree Group Steiner Tree Problems 345

Remark: Min-Degree Steiner k-Tree on bounded treewidth graphs admits
an exact polynomial time algorithm using dynamic programming (folklore), but
is NP-hard even on planar graphs (by a reduction from Hamiltonian Path).
However, Min-Degree Group Steiner Tree (without costs) is Set-Cover

hard even on stars, and thus is Ω(ln n) hard to approximate.

We mention some work on min-costs versions. The best ratio known for Min-

Cost Group Steiner Tree on tree inputs is O(log2 n) [10]; for a combinatorial
algorithm with ratio O(log2+ε n) see [4]. This ratio for tree inputs is essentially
tight due to the approximation threshold Ω(log2−ε n) of [14]. In the case of
general graph inputs, the graph is embedded into a tree distribution with stretch
O(log n) [8,10], which gives ratio O(log3 n). The k-MST problem admits ratio 2
[9], and this immediately implies ratio 4 for Min-Cost k-Steiner Tree.

Why the degree bounded versions of these problem are hard to approximate?
For many classic problems (without degree bounds), good ratios are achieved
using the Iterative Rounding Method, see [16,18]. This often allows to achieve
good bicriteria ratios for the degree bounded versions. However, for many other
problems, including the problems we consider, the existing approximation algo-
rithms rely on different methods; e.g., in [18] it is mentioned that the Iterative
Rounding Method seems to fail for problems when we need to connect only
a specific number of terminals, as in the k-Steiner Tree problem. Another
example is the Min-Cost Directed Steiner Tree problem – the first step
in all known approximation algorithms for this problem [3,11,17] is the height
reduction of Zelikovsky [25], see also [15]. This gives unbounded degrees, as it
works on the transitive closure of the graph. There is also a difficulty in deal-
ing with the Min-Degree Group Steiner Tree problem, because the known
algorithms [4,10] for the min-cost case first reduce the graph to a random tree
[1,8]. However, this increases the degrees, which means that this technique can
not be used.

A logical step is to consider the easiest problems that are open. Bounded

Degrees Min-Cost Group Steiner Tree on bounded treewidth graphs is
one of such problems. However even for this relatively simple problem no polylog-
arithmic ratio is known, see [12]. The Min-Cost Group Steiner Tree prob-
lem (without degree bounds) on bounded treewidth graph admits ratio O(log2 n)
[2]. The min-degree case, which is the Min-Degree Group Steiner Tree

problem on bounded treewidth graphs (namely, bounding the degrees with no
costs), remained open until our paper.

In the rest of the introduction we discuss some additional motivations for
studying min-degree problem without edge costs.

VLSI Network Design: The Min-Cost Group Steiner Tree problem was
motivated by VLSI design. The goal is to connect a set of terminals to a des-
ignated root r by a min-cost tree, where each terminal has a set of multiple
ports it can be placed at (ports of two different terminals may intersect). The
set of different ports in which a terminal may be placed at, defines a group.
The different possible location may be due to rotating, or mirroring, or both.
While low cost is highly desirable, the cost is payed once, and later the VLSI

346 G. Kortsarz and Z. Nutov

circuit is applied constantly. In many cases low degrees allow faster computa-
tions. In [24], a natural VLSI problem is reduced to iteratively solving instances
of the Min-Degree Steiner k-Tree problem. This makes the latency of the
VLSI computation low. Low degrees are also important for efficient layout of
the VLSI circuit [22]. In the Multicommodity Facility Location Under

Group Steiner Access problem [20], each facility belongs to a group Steiner
tree. Short service times requires that such trees have low degrees.

The k-Multicast Problem in the Telephone Model: One of our main moti-
vations for studying the Min-Degree Steiner k-Tree problem is the Tele-

phone k-Multicast problem [23]. In this problem we are given an undirected
graph, a node r, and a target k of terminals. We want to send a message from
the root r, to at least k terminals, under the telephone model. In this model,
the nodes that know the message can call at most one neighbor in a round,
and send the message to this neighbor. This means that a round is a matching
between nodes which know the message to nodes which do not. Note that every
broadcasting scheme results in a directed tree in which the parent of a node u,
is the node v, which sent u the message. The maximum degree in this multicast
tree is a lower bound on the optimum, because at every round we can send the
message to at most one child. Hence we need trees with k terminals and low
maximum degree. Also note that the Min-Degree Steiner k-Tree problem
is the minimum degree (without cost) variant of two important and well stud-
ied problems: the k-MST and the k-Steiner Tree problems. Since these two
problems are considered important, so are their minimum degree versions.

On-Line Degree Bounded Problems: Recently, Min-Cost/Degree

Group Steiner Tree problems has been studied in the online setting [5–7].
Dehghani et al. [6] showed that it is not possible to approximate both cost and
degrees in the on-line model, even when the input graph is a star. Namely, there
exists an input demand sequence that forces any algorithm to pay a factor of
Ω(n) for the cost or the degree violation. However the above papers are able to
give polylogarithmic competitive ratios if there are only degree bounds but no
costs, similarly to the problems we consider.

2 Degrees Bounded Min-Cost Group Steiner Tree
Problem on Tree Inputs (Theorem 1)

We will assume that we know a node r that belongs to some optimal solution.
We root the input tree T at r. For a group S let AS = {A ⊆ V : r /∈ A,S ⊆ A}
be the family of cuts that separate the group S from r. Let A = ∪S∈SAS be the
family of all cuts that separate r from some group. The edges with exactly one
endpoint in a set A are denoted by δ(A). Also recall that ce is the cost of an
edge e, and let xe be an indicator variable whether e is included in the solution.
The algorithm of Garg, Konjevod, and Ravi [10] uses the following natural LP
for the Min-Cost Group Steiner Tree problem

Bounded Degree Group Steiner Tree Problems 347

min c · x
s.t. x(δ(A)) ≥ 1 ∀A ∈ A

xe ≥ 0 ∀e ∈ E

The authors of [10] give a special rounding method. For e ∈ E let p(e) be
the parent edge of e, p2(e) = p(p(e)) the parent edge of p(e), and so on; namely,
pi(e) is the ith edge on the path from e to the root. Add a dummy parent edge f
of the root r and set xf = 1. The algorithm of [10] connects a fraction of groups
to the root by choosing every edge e ∈ E with probability xe/xp(e). Then the
probability that an edge e of depth i is connected to the root is

xe

xp(e)
·

xp(e)

xp(p(e))
· · ·

xpi−1(e)

xpi(e)
·
xpi(e)

xf
=

xe

xf
= xe.

Thus the expected cost of the edges that are connected to r is bounded by the
value c · x of the LP solution. The key statement in [10] is:

Theorem 4 ([10]). The probability that a specific group is connected the root by
the above random process is Ω(1/ log N), where N is the maximum group size.

Thus the expected number of iterations required to connect all groups to
the root is O(log N · log k) = O(log2 n), where k is the number of groups, and
therefore, this is the expected approximation ratio.

We use the same rounding as [10]. Since we need to bound the degrees of n
nodes, we will require Θ(log2 n) iterations of the basic procedure. Let δ(v) be
all the edges that lead from v to one of its children. Let ev be the edge entering
v from his parent. To deal with the degree bounds, we add the following valid
constrains to the [10] LP:

x(δ(v)) ≤ xev
· bv ∀v ∈ V. (1)

To see that these are valid inequalities, consider the characteristic vector x of an
inclusion minimal feasible solution T . If xev

= 0 then x(δ(v)) = 0, since v /∈ T .
If xev

= 1 then x(δ(v)) ≤ bv = xev
· bv.

Corollary 1. For every node v in the tree, x(v)/x(ev) ≤ bv.

The rounding process of [10] gives expected degree x(v)/x(ev) ≤ bv in every
iteration. Adding degree constraints do not change the expected cost. We analyze
the degrees approximation separately using the Chernoff bound (c.f. [19]). If X
is a sum of n independent Bernoulli variables with mean μ, then for any ρ > 0

Pr [X > (1 + ρ)μ] ≤
(

eρ

(1 + ρ)1+ρ

)μ

. (2)

The degree of v results by O(log2 n) iterations. In each round we have a
Bernoulli sum of all the children of v that did not reach the root yet. The
difficulty here is that the random Bernoulli variables are dependent. For sim-
plicity of the analysis, we bound the degree by O(log2 n) independent Bernoulli

348 G. Kortsarz and Z. Nutov

sums, that contains all neighbors of v in every round. This random variable
may be strictly larger than the “real” degree. A child u can contribute more
than 1 to the degree. However our random process gives a sum of independent
Bernoulli variable which makes the analysis simpler. For a node v, we have a
sum of δ(v) · O(log2 n) independent Bernoulli variables. The expected degree is
τv = O(log2 n) · x(δ(v))/xev

(see Corollary 1) and note that x(δ(v))/xev
≤ bv is

implied by the valid inequalities described above. Thus the expected degree is
at most O(log2 n) · bv. We now bound the expectation of τv by three claims.

Claim. If τv ≥ C · log n for some constant C then with probability 1 − 1/n2,
deg(v) = O(log2 n) · bv.

Proof. We have

Pr [deg(v) > 2τv] ≤
(e

4

)C log n

≤ 1
n2

.

The last inequality holds for large enough C. Note that this implies that with
probability 1−1/n2, deg(v) = O(log2 n)·bv (see Corollary 1). The ratio O(log2 n)
follows. �	

We now deal with nodes for which 1 ≤ τv ≤ C · log n for some constant C.

Claim. If 1 ≤ τv ≤ C ·log n, then deg(v) = O(log2 n) with probability ≥ 1−1/n2.

Proof. We know that τv ≤ C log n. Set (1 + ρ) = log n.
First we note that if we prove that Pr[deg(v) ≥ (1 + ρ)τv] ≤ 1/n2, then

since ρ = O(log n) and τv = O(log n) we get that with probability 1 − 1/n2 that
deg(v) = O(log2 n). Since bv ≥ 1 this gives ratio O(log2 n). We now prove the
required inequality.

Since τv ≥ 1 we get from the Chernoff bound that:

Pr[deg(v) ≥ (1 + ρ)τv] ≤ elog n

(log n)log n
.

For large enough n this probability is at most 1/n2. �	

The last case is τv < 1.

Claim. If τv < 1 then with probability 1 − 1/n2, deg(v) = O(log n) · bv.

Proof. We set (1+ρ) = log n/τv. Note that if deg(v) ≤ (1+ρ) ·τv then deg(v) =
O(log n). As bv ≥ 1 the ratio is O(log n). We now bound

Pr[deg(v) > (1 + ρ) · τv]

Consider the term:

eρ

(1 + ρ)(1+ρ)
≤ elog n/τv

(log n/τv)log n/τv
.

Bounded Degree Group Steiner Tree Problems 349

To get the Chernoff bound we should raise to above to the power τv. Raising
this term to τv, the τv factor cancels in both exponents. Thus:

Pr [deg(v) ≤ (1 + ρ)τv] ≤ elog n

(log n/τv)log n
.

Since τv < 1 the above is bounded by

elog n

(log n)log n
.

and the above term is bounded by 1/n2 for large enough n. �	

We got that with probability 1 − 1/n2, for a given v, deg(v) = O(log2 n) · bv.
By the union bound with probability 1−1/n for every v, deg(v) = O(log2 n) ·bv.

3 A Relation Between Min-Degree Steiner k-Tree and
Min-Degree Group Steiner Tree (Theorem 2)

Assume that Min-Degree Group Steiner Tree admits ratio ρ. We will
show that then Min-Degree Steiner k-Tree admits ratio ρ · O(log k). We
first give a simple randomized algorithm with expected ratio ρ ·O(log2 k). Given
a Min-Degree Steiner k-Tree instance G,R, k, create k/(5 log k) bins; the
Min-Degree Group Steiner Tree instance groups collection is formed by
putting uniformly at random, each terminal to a random bin.

Definition 1. Fix some optimum solution F for the Min-Degree Steiner k-
Tree instance with maximum degree d∗ and terminal set R∗. Terminals in R∗

are called true terminals, and a bin is full if it contains a true terminal.

Lemma 1. With probability at least 1 − 1/k each bin is full.

Proof. Consider (only) the k true terminals in R∗. For each group S, |S ∩ R∗|
is a binomial variable with probability 5 log k/k and k trials. Thus the expected
size of |S ∩ R∗| is μ = 5 log k. By the Chernoff bound:

Pr [|S ∩ R∗| ≤ (1 − ρ)μ] ≤ exp(−ρ2μ/2).

We plug the right ρ so that (1 − ρ)μ ≤ 1. This gives ρ very close to 1. By the
Chernoff bound Pr[S ∩ R∗ = ∅] ≤ 1/k2. By the union bound we get that with
probability at least 1 − 1/k each bin is full. �	

If we think of a bin as a group, since each group contains a true terminal, the
optimum solution F (restricted to the true terminals) is a solution for the Group
Steiner instance, with maximum degree d∗. Note that we need to cover only
k/(5 log k) groups which is not the Min-Degree Group Steiner Tree prob-
lem. However, here is a trivial reduction to the Min-Degree Group Steiner

350 G. Kortsarz and Z. Nutov

Tree problem. Attach a complete binary tree to the root, with k−k/5 log k new
leaves (we may need to trim the tree to get exactly k −k/(5 log k) leaves). Every
new leaf belongs to all groups. Thus k − k/(5 log k) groups are covered for free
with maximum degree 3. This still requires covering k/(5 log k) new terminals
completing the reduction. The assumed algorithm will find a tree containing
at least k/(5 log k) terminals, with maximum degree bounded by ρ · d∗. Taking
O(log2 k) iterations gives expected ratio O(log2 k · ρ).

We now describe a more complicated deterministic reduction with factor loss
O(log k) in the ratio. Let the terminals be 0, 1, . . . , q − 1, q > k, and assume
that the above order of the terminals is random. We build k bins to serve as
groups using two point based sampling (see [19]). Let p be a prime such that
4k ≤ p ≤ 8k.

1. Choose a number a, at random, from 1, 2, . . . , p − 1.
2. Choose a number b, at random, from 0, 1, . . . , p − 1.
3. Terminal 0 ≤ i ≤ q − 1 is assigned bin ((ai + b) mod p) mod k.

The above construction defines the k groups. Group j contains all terminals that
reached bin j.

Any true terminal i is first matched to a random number in 0, 1, . . . , p. The
values that will cause item i to reach bin j are j, j + k, . . . , j + α · k for the
maximum integer α such that α · k ≤ p − 1. In the worst case j = k − 1.
Thus the question is how large is α in the inequality (k − 1) + α · k ≤ p − 1.
Choosing α = (p−k)/k achieves the desired bound. Since α is an integer, clearly,
p/k − 2 ≤ α < p/k. Dividing by p, implies that the probability that the true
terminal i reaches bin j is at least 1/k − 2/p and less than 1/k.

Let Xij be the event that a true terminal i reaches bin j. By the above,
Pr(Xij) ≥ 1/k − 2/p. The events “i arrived to bin j” and “i′ arrived to bin j”
for i �= i′ are pairwise independent and so Pr(i and i′ arrive to bin j) ≤ 1/k2.
We lower bound the probability that j is full, namely contains a true terminal,
using the first two terms of the inclusion exclusion formula

Pr

[
k−1⋃
i=0

Xij

]
≥ k ·

(
1
k

− 2
p

)
−

(
k
2

)
k2

≥ 1
2

− 2
p
.

Thus for every bin, the probability that it’s full is at least 1/3. The expected num-
ber of full bins is at least k/3. This gives a solution to the Min-Degree Group

Steiner Tree problem as follow. Select from every appropriate group (full bin)
the true terminal, and connect them using the optimum tree F (restricted to
the k/3 true terminals). Hence there exists a pair a, b in the sample space for
which at least k/3 bins are full and this can be found via the assumed ρ ratio
approximation for the Min-Degree Group Steiner Tree. Our sample space
of all a, b pairs has size bounded by O(p2) = O(k2). Thus we try all a, b pairs
with the goal of covering at least k/3 groups. For every pair a, b, we apply the
assumed ρ ratio algorithm. For at least one of the a, b we get (with probability
1) a tree with maximum degree at most ρ ·d∗ that contains at least k/3 true ter-
minals. Thus outputting the minimum maximal degree tree over all a, b choices

Bounded Degree Group Steiner Tree Problems 351

guaranties (with probability 1) that the maximum degree in the tree is at most
ρ ·d∗, and at least k/3 groups are covered. The penalty is an additional O(log k)
factor (on top of the ρ factor).

In [12] the Bounded Degrees Group Steiner Tree problem is given
a polylogarithmic approximation that runs in quasi polynomial time. The best
approximation ratio known is O(log2 n) (this is slightly better than what appears
in [12]. The better bound was reported to us by Bundit Laekhanukit, in a private
communication. Thus we get:

Corollary 2. The Min-Degree Steiner k-Tree problem (on general graphs)
admits an O(log3 n) approximation in quasi-polynomial time.

4 An O(log3 n) Approximation for Min-Degrees
Group Steiner Tree on Bounded Treewidth Graphs
(Theorem 3)

The high level idea of the algorithm is as follows. We show a new method to
reduce the graph into a tree with a loss of an O(log n) factor in the degrees.
This process is similar to the one often applied on min-cost problems, that pay
O(log n) penalty for transforming a general graph into a tree, c.f. [10]. Degree
problems are often harder, and in our case we also need to pay an additional
additive term of O(log n) (on the degrees) to get back to a graph solution.

We do not use the formal definition of a treewidth of a graph, but we use
the fact that a bounded treewidth graph has a small balanced separator. A
subset S of nodes in a graph G with n nodes is an α-balanced separator (or
just a balanced separator, if α is clear from the context) if every connected
component in H \ S, if any, has at most αn nodes. It is known that any graph
G has a 2/3-balanced separator S of size ≤ k, where k equals the treewidth of
G plus 1. We can use a linear time algorithm of [21] that finds a 4/5-balanced
separator.

We may assume that the input graph G is connected and has at least k nodes.
We construct an auxiliary rooted tree T̂ by repeatedly removing a balanced
separator S with |S| ≤ k from a large enough connected component H.

Algorithm 1: Separator-Tree(G = (V,E))

1 H ← {G}, S ← ∅, Ê ← ∅
2 while there is unmarked graph H ∈ H with at least k + 1 nodes do
3 find a balanced separator S of H with |S| ≤ k and add S to S
4 mark H and add to Ê an edge from H to S
5 for every connected component Hi of H \ S do
6 add Hi to H and add to Ê an edge from S to Hi

7 return T̂ = (H ∪ S, Ê)

Let L be the set of unmarked components in H at the end of the algorithm.
Every marked component H ∈ H\L has a unique child, and thus can be shortcut

352 G. Kortsarz and Z. Nutov

(or removed, if H = G); we denote the resulting tree by T = (S ∪ L, E). Note
that S ∪ L is a partition V into sets of size at most k each. Also note that T
has height O(log n) (since we used balanced separators) and that every edge of
G either connects nodes in the same part or in parts such that in T one is a
descendant of the other. Now we define certain trees and paths in G that are
used later.

(a) For S ∈ S ∪ L the tree TS is defined as follows. If S ∈ S then TS is an
inclusion minimal subtree of H that contains S, where H and S are in line 3
of the algorithm; and if S ∈ L then H = G[S] and then TS is a spanning
tree in H. Note that TS has max-degree ≤ k.

(b) For an auxiliary edge SS′ ∈ E where S′ = Si is a child of S in T , let PSS′

be the shortest path from S to S′ in the graph induced by H ′ ∪ S, where
H ′ = Hi is the connected component of H \ S that contains S′ = Si (see
lines 5, 6 in the algorithm). Clearly, the path PSS′

has max-degree 2 and all
its nodes lie in S and descendant of S′ in T .

Define a new Min-Degree Group Steiner Tree instance with input
graph being the tree T , where each node S ∈ S ∪ L of T belongs to all groups
of the original instance that intersect S. The next two lemmas will enable us to
finish the proof of Theorem 3. In what follows, for a node v ∈ V let Sv denote
the node of T that contains v.

Lemma 2. If the original instance on G has a solution T of max-degree d then
the new instance on T has a feasible solution T ′ of max-degree d · O(k log n).

Proof. For an edge uv ∈ T let Tuv denote the unique SuSv-path in T (possibly
Su = Sv). We let T ′ =

⋃
uv∈T

Tuv. Since T is connected, T ′ is a tree; otherwise,

T ′ has a partition into two part C and C′ each containing a node from T ′, such
that no edge of T connects these parts. It is also not hard to verify that T ′ is a
feasible solution for the new instance, since each node S ∈ S ∪ L of T belongs
to all groups of the original instance that intersect S.

We bound the max-degree of T ′. Let S be a node in T ′. Note that degT ′(S)
is at most the number β of branches hanging on S in T that have an edge of
T going from the branch to an ancestor of S (including S) in T . The number
of ancestors of S is O(log n) and the number of nodes in these ancestors is
O(k log n). The T -degree of each node that lies in an ancestor of S is d, hence
β = d · O(k log n), concluding the proof. �	

Lemma 3. There exists a polynomial time algorithm that given a feasible solu-
tion T ′ = (S ′ ∪ L′, E ′) for the new instance on T of max-degree d′ constructs a
feasible solution T ′ for the original instance of max-degree d′ + O(k log n).

Proof. Let G′ be the graph formed by the trees {TS : S ∈ S ′ ∪L′} and the paths
{PSS′

: SS′ ∈ E ′}. Clearly, G′ is connected, and any spanning tree T ′ in G′ is
a feasible solution for the original instance on G. We bound the max-degree of
G′. We view T ′ as a rooted tree, where the root is the node of T ′ that is closest

Bounded Degree Group Steiner Tree Problems 353

to the root of T . Consider a node v of G and the node Sv of T ′ that contains v.
Let Pv be the path from Sv to the root of T ′. The height of T is O(log n), thus
|Pv| = O(log n). We count the contribution of the trees TS and the paths PSS′

to the degree degG′(v) of v in G′.

– Any tree TS has max-degree k, and v may appear in TS only if S ∈ Pv; thus
the contribution of the trees TS to degG′(v) is O(k|Pv|) = O(k log n).

– Paths that correspond to edges in Pv may contain v and each of them may
contribute +2 to degG′(v). An edge of T ′ that goes from Sv to its child
may contribute +1 to degG′(v). Other paths PSS′

have no contribution to
degG′(v), by the construction. Thus the contribution of the paths to degG′(v)
is at most 2|Pv| + degT ′(Sv) − 1 = degT ′(Sv) + O(log n).

Overall, we have degG′(v) = degT ′(Sv) + O(k log n), and the lemma follows. �	

The Theorem 3 algorithm will find an O(log2 n)-approximate solution T ′ for
the new instance T using the algorithm from Theorem 1, and then will convert
it into a solution T ′ for the original instance using the algorithm from Lemma 3.
The overall ratio will be the product of O(k log n) (Lemma 2) and O(log2 n)
(Theorem 1), plus an additive term O(k log n) (Lemma 3). Thus the overall
ratio is O(k log3 n) = O(log3 n), as claimed in Theorem 3.

Acknowledgment. We thank an anonymous referee for many useful comments.

References

1. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic appli-
cations. In: FOCS, pp. 184–193 (1996)

2. Chalermsook, P., Das, S., Laekhanukit, B., Vaz, D.: Beyond metric embedding:
approximating group Steiner trees on bounded treewidth graphs. In: SODA, pp.
737–751 (2017)

3. Charikar, M., et al.: Approximation algorithms for directed Steiner problems. J.
Algorithms 33(1), 73–91 (1999)

4. Chekuri, C., Even, G., Kortsarz, G.: A greedy approximation algorithm for the
group Steiner problem. Discrete Appl. Math. 154(1), 15–34 (2006)

5. Dehghani, S., Ehsani, S., Hajiaghayi, M.T., Liaghat, L.: Online degree-bounded
Steiner network design. In: SODA, pp. 164–175 (2016)

6. Dehghani, S., Ehsani, S., Hajiaghayi, M.T., Liaghat, V., Räcke, H., Seddighin, S.:
Online weighted degree-bounded Steiner networks via novel online mixed pack-
ing/covering. In: ICALP, pp. 42:1–42:14 (2016)

7. Dehghani, S., Ehsani, S., Hajiaghayi, M.T., Liaghat, V., Seddighin, S.: Greedy algo-
rithms for online survivable network design. In: ICALP, pp. 152:1–152:14 (2018)

8. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

9. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs.
In: STOC, pp. 396–402 (2005)

10. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group Steiner tree problem. J. Algorithms 37(1), 66–84 (2000)

354 G. Kortsarz and Z. Nutov

11. Grandoni, F., Laekhanukit, B., Li, S.: o(log2 k/ log log k)-approximation algorithm
for directed Steiner tree: a tight quasi-polynomial-time algorithm. In: STOC, pp.
253–264 (2019)

12. Guo, X., Laekhanukit, B., Li, S., Xian, J.: Tight approximation for variants of
directed Steiner tree via state-tree decomposition and linear programming round-
ing. CoRR, abs/1907.11404 (2019)

13. Hajiaghayi, M.T.: Open problems on bounded-degree network design. In: The
Eighth Workshop on Flexible Network Design, Amsterdam (2016)

14. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: STOC, pp.
585–594 (2003)

15. Helvig, C.S., Robins, G., Zelikovsky, A.: An improved approximation scheme for
the group Steiner problem. Networks 37(1), 8–20 (2001)

16. Jain, K.: A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica 21(1), 39–60 (2001)

17. Kortsarz, G., Peleg, D.: Approximating the weight of shallow Steiner trees. Discrete
Appl. Math. 93, 265–285 (1999)

18. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization.
Cambridge University Press, New York (2011)

19. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

20. Poplawski, L.J., Rajaraman, R.: Multicommodity facility location under group
Steiner access cost. In: SODA, pp. 996–1013 (2011)

21. Reed, B.: Finding approximate separators and computing tree width quickly. In:
STOC, pp. 221–228 (1992)

22. Sharma, N., Kaur, M.: Survey of VLSI techniques for power optimization and
estimation of optimization. Int. J. Emerg. Technol. Adv. Eng. 4, 351–355 (2014)

23. Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees.
SIAM J. Comput. 10(4), 692–701 (1981)

24. Wang, Y., Hong, X., Jing, T., Yang, Y., Hu, X., Yan, G.: An efficient low-degree
RMST algorithm for VLSI/ULSI physical design. In: PATMOS, pp. 442–452 (2004)

25. Zelikovsky, A.: A series of approximation algorithms for the acyclic directed Steiner
tree problem. Algorithmica 18(1), 99–110 (1997)

Between Proper and Strong
Edge-Colorings of Subcubic Graphs

Hervé Hocquard1, Dimitri Lajou1(B), and Borut Lužar2

1 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800,
33400 Talence, France

{herve.hocquard,dimitri.lajou}@u-bordeaux.fr
2 Faculty of Information Studies in Novo Mesto, Novo mesto, Slovenia

borut.luzar@gmail.com

Abstract. In a proper edge-coloring the edges of every color form a
matching. A matching is induced if the end-vertices of its edges induce a
matching. A strong edge-coloring is an edge-coloring in which the edges
of every color form an induced matching. We consider intermediate types
of edge-colorings, where some of the colors are allowed to form match-
ings, and the remaining form induced matchings. Our research is moti-
vated by the conjecture proposed in a recent paper on S-packing edge-
colorings (N. Gastineau and O. Togni, On S-packing edge-colorings of
cubic graphs, Discrete Appl. Math. 259 (2019)). We prove that every
graph with maximum degree 3 can be decomposed into one matching
and at most 8 induced matchings, and two matchings and at most 5
induced matchings. We also show that if a graph is in class I, the num-
ber of induced matchings can be decreased by one, hence confirming the
conjecture for this class of graphs.

Keywords: Strong edge-coloring · S-packing edge-coloring · Induced
matching

1 Introduction

A proper edge-coloring of a graph G = (V,E) is an assignment of colors to the
edges of G such that adjacent edges are colored with distinct colors. Due to a
remarkable result of Vizing [22], we know that the minimum number of colors
needed to color the edges of a graph G, the chromatic index of G (denoted by
χ′(G)), is either Δ(G) or Δ(G) + 1, Δ(G) being the maximum degree of G. The
graphs with the former value of the chromatic index are commonly said to be in
class I, and the latter in class II.

In this paper, we are interested in graphs with maximum degree 3, to which
we will refer as subcubic graphs. We need at most 4 colors to color such graphs;
the complete graph on four vertices with one edge subdivided being the small-
est representative of a class II subcubic graph, and the Petersen graph being
the smallest 2-connected class II cubic graph. For subcubic graphs of class II,
c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 355–367, 2020.
https://doi.org/10.1007/978-3-030-48966-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_27

356 H. Hocquard et al.

it has been shown that they can be colored in such a way that one of the col-
ors (usually denoted δ) is used relatively rarely (cf. [1,6]). This motivates the
question if the edges of color δ can be pairwise distant. Note that we consider
the distance between edges as the distance between the corresponding vertices
in the line graph, i.e. adjacent edges are said to be at distance 1. Payan [17] and
independently Fouquet and Vanherpe [6] proved that every subcubic graph with
chromatic index 4 admits a proper edge-coloring such that the edges of one color
are at distance at least 3, i.e. the end-vertices of those edges induce a matching
in the graph.

Gastineau and Togni [7] investigated a generalization of edge-colorings with
the property described above. For a given non-decreasing sequence of integers
S = (s1, . . . , sk), an S-packing edge-coloring of a graph is a decomposition of
edges into disjoint sets X1, . . . , Xk, where the edges in the set Xi are pairwise
at distance at least si +1. A set Xi is called an si-packing ; a 1-packing is simply
a matching, and a 2-packing is an induced matching. To simplify the notation,
we denote repetitions of same elements in S using exponents, e.g. (1, 2, 2, 2) can
be written as (1, 23).

The notion of S-packing edge-colorings is motivated by its vertex counterpart,
introduced by Goddard and Xu [9] as a natural generalization of the packing
chromatic number [8]. In [7], the authors consider S-packing edge-colorings of
subcubic graphs with prescribed number of 1’s in the sequence. Vizing’s result
translated to S-packing edge-coloring gives that every subcubic graph admits
a (1, 1, 1, 1)-packing edge-coloring, while class I subcubic graphs are (1, 1, 1)-
packing edge-colorable. Moreover, by Payan’s, Fouquet’s and Vanherpe’s result,
we have that there is a (1, 1, 1, 2)-packing edge-coloring for any subcubic graph.

Theorem 1 (Payan [17], and Fouquet & Vanherpe [6]). Every subcubic
graph admits a (1, 1, 1, 2)-packing edge-coloring.

Here 2 cannot be changed to 3, due to the Petersen and the Tietze graphs
(depicted in Fig. 1): they both have chromatic index 4, and we need at least two
edges of each color. Since every pair of edges is at distance at most 3, we have
the tightness. However, Gastineau and Togni do believe the following conjecture
is true.

Conjecture 1 (Gastineau and Togni [7]). Every cubic graph different from the
Petersen and the Tietze graph is (1, 1, 1, 3)-packing edge-colorable.

Clearly, reducing the number of 1’s in sequences increases the total number of
needed colors, i.e. the length of the sequence. In fact, if there is no 1 in a sequence,
i.e. the edges of every color class induce a matching, the coloring is called a strong
edge-coloring. It has been proved by Andersen [3] and independently by Horák,
Qing, and Trotter [11] that every subcubic graph admits a strong edge-coloring
with at most 10 colors, i.e. a (210)-packing edge-coloring. The number of colors is
tight, e.g. the Wagner graph in Fig. 2 needs 10 colors for a strong edge-coloring.
Let us remark here that the Wagner graph is in class I, meaning that smallest
chromatic index does not necessarily mean less number of colors for a strong
edge-coloring of a graph.

Between Proper and Strong Edge-Colorings of Subcubic Graphs 357

Fig. 1. The Petersen (left) and the Tietze graph (right) admit a (1, 1, 1, 2)-packing
edge-coloring, and 2 cannot be increased to 3.

Fig. 2. The Wagner graph is the smallest cubic graph which needs 10 colors for a strong
edge-coloring.

Proper and strong edge-coloring of subcubic graphs have been studied exten-
sively already in the previous century. In [7], Gastineau and Togni started filling
the gap by considering (1k, 2�)-packing edge-colorings for k ∈ {1, 2}. They proved
that every cubic graph with a 2-factor admits a (1, 1, 25)-packing edge-coloring,
and the number of required 2-packings reduces by one if the graph is class I. For
the case with one 1-packing, they remark that using the bound for the strong
edge-coloring one obtains that every subcubic graph admits a (1, 29)-packing
edge-coloring. These bounds are clearly not tight, and they propose a conjecture
(the items (a) and (c) in Conjecture 2), which motivated the research presented
in this paper. The case (b) has been formulated as a question, and we added the
case (d), due to affirmative results of computer tests on subcubic graphs of small
orders.

Conjecture 2. Every subcubic graph G admits:

(a) a (1, 1, 24)-packing edge-coloring [7];
(b) a (1, 27)-packing edge-coloring [7];
(c) a (1, 1, 23)-packing edge-coloring if G is in class I [7];
(d) a (1, 26)-packing edge-coloring if G is in class I.

The conjectured bounds, if true, are tight. For the cases (a) and (b) a subcubic
graph that achieves the upper bound is the complete bipartite graph K3,3 with
one subdivided edge (the left graph in Fig. 3). Recall that this graph is also

358 H. Hocquard et al.

class II and needs 10 colors for a strong edge-coloring, hence achieving the upper
bound for all four types of colorings considered in this paper. For each 1-packing,
we have at most three edges, and there remain 4 and 7, respectively, to be in a
separate 2-packing each. An analogous argument holds for the cases (c) and (d)
on the complete bipartite graph K3,3.

Fig. 3. The smallest subcubic graph which does not admit a (1, 1, 23)-packing edge-
coloring nor a (1, 26)-packing edge-coloring (left), and the smallest class I subcubic
graph which does not admit a (1, 1, 22)-packing edge-coloring nor a (1, 25)-packing
edge-coloring (right).

Conjecture 2 bridges two of the most important edge-colorings, proper and
strong, basicly claiming that each 1-packing can be replaced by three 2-packings.
Note that this does not apply to subclasses of graphs, e.g. the Wagner graph
needs 10 colors for a strong edge-coloring and it is in class I.

This paper contributes to answering the conjecture by providing upper
bounds with one additional color for all four cases of Conjecture 2.

Theorem 2. Every subcubic graph G admits:

(a) a (1, 1, 25)-packing edge-coloring;
(b) a (1, 28)-packing edge-coloring;
(c) a (1, 1, 24)-packing edge-coloring if G is in class I;
(d) a (1, 27)-packing edge-coloring if G is in class I.

The structure of the paper is the following. We begin by presenting notation,
definitions and auxiliary results in Sect. 2. In Sect. 3, we give proofs of the cases
(a) and (c) of Theorem 2. In Sects. 4 and 5, we proof the cases (b) and (d)
of Theorem 2 by proving stronger statements of both. We conclude with an
overview of open problems on this topic.

2 Preliminaries

We call a vertex of degree k, at most k, and at least k a k-vertex, a k−-vertex,
and a k+-vertex, respectively. We denote the graph obtained from a graph G by
removing a set of vertices X as G \ X. When X = {v} is a singleton, we simply
write G − v. An analogous notation is used for sets of edges.

Between Proper and Strong Edge-Colorings of Subcubic Graphs 359

As usual, the set of vertices adjacent to a vertex v is denoted N(v), and called
the neighborhood of v. For a vertex v, we denote the set of edges incident to v by
N ′(v), and the edges incident to the neighbors of v (including the edges in N ′(v))
by N ′′(v). We refer to the former as the edge-neighborhood of v and to the latter
as the 2-edge-neighborhood of v. Analogously, we define the edge-neighborhood
and the 2-edge-neighborhood of an edge e.

When coloring the edges, we deal with two types of colors. The ones allowing
the edges of those colors to be at distance at least 2 we call the 1-colors, and the
one requiring the edges to be at distance at least 3 are called the 2-colors. An
edge colored with a 1-color (resp. a 2-color) is a 1-edge (resp. a 2-edge). For an
edge uv, we denote by A2(uv) the number of available 2-colors, i.e., the 2-colors
with which the edge can be colored without violating the coloring assumptions.

In our proofs, we will often put lists of colors on some uncoloured edges and
try to find a valid assignment that satisfy the color lists. For example, if e has a
list L of size k such that all colors of L are available for e and has at most k − 1
uncolored neighbors then we can ignore e when coloring as there will always be
one free color for e in L after coloring all other edges.

Sometimes, we will need a more careful analysis of choosing colors from the
lists of available colors. For that purpose, we will use the classical result due to
Hall [10].

Theorem 3 (Hall’s Theorem). Let A = (Ai, i ∈ I) be a finite family of (not
necessarily distinct) subsets of a finite set A. A system of representatives (SDR)
for the family A is a set {ai, i ∈ I} of distinct elements of A such that ai ∈ Ai

for all i ∈ I. A has a system of representatives if and only if |⋃i∈J Ai| ≥ |J | for
all subsets J of I.

Perhaps the strongest tool for determining if one can always choose colors
from the lists of available colors such that given conditions are satisfied is the
following result, due to Alon [2].

Theorem 4 (Combinatorial Nullstellensatz). Let F be an arbitrary field,
and let P = P (X1, . . . , Xn) be a polynomial in F[X1, . . . , Xn]. Suppose the
coefficient of a monomial Xk1

1 . . . Xkn
n , where each ki is a non-negative inte-

ger, is non-zero in P and the degree deg(P) of P equals
∑n

i=1 ki. If moreover
S1, . . . , Sn are any subsets of F with |Si| > ki for i = 1, . . . , n, then there are
s1 ∈ S1, . . . , sn ∈ Sn so that P (s1, . . . , sn) �= 0.

In short, P being the chromatic polynomial of a graph G, if there is a monomial
(of proper degree) of P with non-zero coefficient, then there exists a coloring of
G.

When considering lists of available colors for an edge, we are in fact dealing
with the list version of a coloring. We say that L is an edge-list-assignment for
a graph G if it assigns a list L(e) of possible colors to each edge e of G. If G
admits a strong edge-coloring σ such that σ(e) ∈ L(e) for all edges in E(G),
then we say that G is strong L-edge-colorable or σ is a strong L-edge-coloring
of G. The graph G is strong k-edge-choosable if it is strong L-edge-colorable

360 H. Hocquard et al.

for every edge-list-assignment L, where |L(e)| ≥ k for every e ∈ E(G). The list
strong chromatic index χ′

ls(G) of G is the minimum k such that G is strong
k-edge-choosable.

We will use the following result, due to Zhang, Liu, and Wang [24] which
established a result on an adjacent vertex-distinguishing list edge-coloring of
cycles, i.e. proper list edge-coloring where the sets of colors for every pair of
adjacent vertices are distinct. It is easy to see that such a coloring is also a
strong edge-coloring of a cycle, and we write the statement in this language.

Theorem 5 (Zhang, Liu & Wang, 2002). Let n be an integer with n ≥ 3.
Then,

(i) χ′
ls(Cn) = 5 if n = 5;

(ii) χ′
ls(Cn) = 4 if n �≡ 0 mod 3;

(iii) χ′
ls(Cn) = 3 if n ≡ 0 mod 3.

3 Proof of the Cases (a) and (c) of Theorem 2

We begin with the cases of Theorem 2 using two 1-colors. These two cases
simply provide a straightforward extensions of the results due to Gastineau and
Togni [7], who established them for bridgeless cubic graphs.

The extension comes from the following easy proposition for which we omit
the proof (c.f. full version of the paper).

Proposition 1. Let G be a subcubic graph and let X be a set of edges in G such
that every two edges in X are at distance exactly 2. Then, X contains at most
5 edges. Moreover, if |X| = 5, then G is cubic with 10 vertices.

Proof (Theorem 2(a) and (c)). We begin with the case (a). Let G be a connected
subcubic graph and let π be a (1, 1, 1, 2)-packing edge-coloring of G which exists
by Theorem 1. To establish the statement, we only need to replace one 1-color in
π with four 2-colors. Let X be a set of all the edges in G colored by one 1-color
in π, and H be the subgraph of G induced by X. Let G∗ be the graph obtained
from H by contracting all the edges in X. Clearly, G∗ has maximum degree at
most 4, and is 4-vertex-colorable by the Brooks’ Theorem, unless it is isomorphic
to K5. Observe that vertex coloring of G∗ induces a strong edge-coloring of the
edges in X. Furthermore, by Proposition 1, the only graphs in which it may
happen that five colors are needed to color G∗, are cubic with 10 vertices. For
these small graphs we have even determined that they admit a (1, 1, 24)-packing
edge-coloring computationally, and thus establish the case (a).

The case (b) follows immediately from the argument above, since we do not
have an extra 2-color in the coloring π. ��

4 Proof of the Case (b) of Theorem 2

In order to prove Theorem 2(b), we prove a bit stronger result. We say
that a (1, 28)-packing edge-coloring of a subcubic graph G with the color set

Between Proper and Strong Edge-Colorings of Subcubic Graphs 361

{0, 1, . . . , 8}, where 0 is a 1-color and the others are 2-colors, is a good (1, 28)-
packing edge-coloring if no 2−-vertex of G is incident with a 0-edge.

Theorem 6. Every subcubic graph admits a good (1, 28)-packing edge-coloring.

Proof. We prove Theorem 6 by contradiction. Let G be a minimal counterex-
ample to the theorem in terms of |V (G)| + |E(G)|. Clearly, G is connected and
has maximum degree 3. In the following lemma, we establish some structural
properties of G which will eventually yield a contradiction on the existence of
G. In most of the cases, we consider a graph G′ smaller than G, which, by the
minimality of G, admits a good (1, 28)-packing edge-coloring π, and we show
that π can be extended to G by recoloring some edges of G′ and coloring the
edges of G not being colored by π.

Lemma 1. The graph G verifies the following properties:

1. G is simple,
2. G is cubic,
3. G is 2-connected,
4. G does not contain 3-cycles,
5. G does not contain 4-cycles and
6. G contains no cycle of length at least 5.

Due to size constraint we do not give the proof of Lemma 1 (c.f. full version
of the paper) except for Lemma 1.6. The main techniques used in the proof of
Lemma 1 consist in removing part of the graph and coloring it by minimality.
In some cases, we need to use Hall’s Theorem.

We nonetheless present the proof of Lemma 1.6 to show why we need the
stronger statement of Theorem 6.

Proof (Lemma 1.6). Suppose the contrary, and let C = u1u2 . . . un be a minimal
induced n-cycle in G, with n ≥ 5. For every i, 1 ≤ i ≤ n, let u′

i be the neighbor
of the vertex ui not in C, and let G′ = G \ V (C). Note that the u′

i are pairwise
distinct by the minimality of C, 1.4 and 1.5. Then, by the minimality of G, there
is a good (1, 28)-packing edge-coloring π of G′. Since π is good, no u′

i is incident
with the color 0. So, in the coloring ϕ of G induced by π, we can color every
edge uiu

′
i with 0. In this way, only the edges of C are left non-colored. Observe

that each of those edges has at least 4 available 2-colors. If n ≥ 6, then we can
complete the coloring by Theorem 5, a contradiction.

If n = 5 then we can color C, except if all five edges have the same four
2-colors available by Hall’s Theorem 3. If we are in this case, then suppose that
1 and 2 are the two colors on the edges incident to u′

1, and 3 and 4 are the two
colors on the edges incident to u′

2. Then {1, 2} must also be on the edges incident
to u′

3, {3, 4} on the edges incident to u′
4, and again {1, 2} on the edges incident

to u′
5. Thus the edge u1u5 has five available 2-colors, a contradiction. �

By Lemma 1, we have that G is a cubic bridgeless graph with no cycles.
Hence G is a tree, a contradiction with the fact that G is cubic. This concludes
the proof of Theorem 6. ��

362 H. Hocquard et al.

5 Proof of the Case (d) of Theorem 2

Recall that in the case (d), we assume the graph is in class I. In our proof, this is
an important feature which enables us to confirm Conjecture 2(b) for this class
of graphs. We again prove a stronger version of the theorem.

Theorem 7. Let G be a graph of class I. Then for every proper 3-edge-coloring
π with colors a, b, and c, and for every color α ∈ {a, b, c} there exists a (1, 27)-
packing edge-coloring σ such that the edges of color α in π are colored with 0
in σ.

The proof of this theorem is quite involved. Due to size constraints, we only
provide the main ideas of the proof of this theorem.

Proof (Ideas only). Let G be a minimal counterexample to the theorem minimiz-
ing the sum |V (G)|+ |E(G)|. Let π be a proper 3-edge-coloring (using colors a, b,
and c) and let the color a be the color class for which there is no (1, 27)-packing
edge-coloring σ (using colors {0, 1, . . . , 7}, 0 being the 1-color) of G such that all
edges colored a in π are colored 0 in σ.

We begin by establishing some structural properties of G. First we prove
that G is a simple cubic graph. This is done using a case analysis. Recall that
G being cubic implies that in π every color appears at every vertex. Then we
remove short cycles and prove that G has girth at least 5. The proof here is more
complex than for their equivalent in the previous section. We use an additional
technique for removing cycles of length 4, that is we apply the Combinatorial
Nullstellensatz to color some cases.

Finally, we want to remove long cycles. We do not show this exact fact but
a similar one. We call a bc-cycle, a cycle colored only with the two colors b and
c in π. These bc-cycles need to be colored with only 2-colors. If u is a vertex of
such bc-cycle and u′ is one of its neighbour and is not on the cycle then we know
that uu′ is color with color a. Simply uncoloring the bc-cycle would yield only
three available 2-colors for each edge of the cycle which is not enough.

We separate two cases, chordless bc-cycles and bc-cycles with chords. In both
cases, we reduce the graph to a smaller one by removing some vertices of the
cycle and connecting some neighbours to provide useful properties on the coloring
obtained by minimality. These properties will allow us to precolor some edges of
the cycle in G. We color the rest of the cycle with the help of the Combinatorial
Nullstellensatz. As bc-cycles must be colored with 2-colors it is possible to express
the coloring problem as a polynomial to apply the Combinatorial Nullstellensatz.
Note that we use the Combinatorial Nullstellensatz in a different way than for
small cycles as we have an infinity of cycle lengths. Therefore, we must find
a generic non null coefficient in a family of polynomials which depend on the
length of the cycle.

Combining the previous facts yields a contradiction. ��

Between Proper and Strong Edge-Colorings of Subcubic Graphs 363

6 Further Work

Conjecture 2 remains open, however, our upper bounds are only by one 2-color
off. Unfortunately, we were not able to apply the proving techniques, used to
prove tight bounds for proper edge-coloring and strong edge-coloring of subcu-
bic graphs, to the problems considered in this paper. Therefore, since solving
Conjecture 2 in the general setting seems to be challenging, we suggest in this
section additional problems which arise naturally when dealing with the consid-
ered colorings. All of them are supported with computational results on graphs
of small orders.

We begin with a general conjecture for strong edge-coloring.

Conjecture 3. Every bridgeless subcubic graph G, not isomorphic to the Wagner
graph or the complete bipartite graph K3,3 with one edge subdivided, admits a
(29)-packing edge-coloring.

We proceed with an overview of results in specific graph classes and list open
problems for each of them. For that, we follow the conjecture on strong edge-
coloring of subcubic graphs proposed by Faudree, Gyárfás, Schelp, and Tuza [5]
in 1990.

Conjecture 4 (Faudree, Gyárfás, Schelp & Tuza [5]). For every subcubic graph
G it holds:

(1) G admits a (210)-packing edge-coloring;
(2) If G is bipartite, then it admits a (29)-packing edge-coloring;
(3) If G is planar, then it admits a (29)-packing edge-coloring;
(4) If G is bipartite and each edge is incident with a 2-vertex, then it admits a

(26)-packing edge-coloring;
(5) If G is bipartite of girth at least 6, then it admits a (27)-packing edge-

coloring;
(6) If G is bipartite and has girth large enough, then it admits a (25)-packing

edge-coloring.

All the cases of the conjecture, except (5), are already resolved, and we present
the results in what follows.

6.1 Planar Graphs

It was the well-known connection between edge-coloring of bridgeless cubic pla-
nar graphs and the Four Color Problem, established by Tait [21], which initiated
the research in this area. By the Four Color Theorem, we thus have that every
bridgeless cubic planar graph admits a (1, 1, 1)-edge-coloring. The condition of
being bridgeless is necessary, since already K4 with one subdivided edge is in
class II. However, not all questions are resolved. The following conjecture of
Albertson and Haas [1], which is a special case of Seymour’s conjecture [18], is
still widely open.

364 H. Hocquard et al.

Conjecture 5 (Albertson & Haas [1]). Every bridgeless subcubic planar graph
with at least two vertices of degree 2 admits a (1, 1, 1)-packing edge-coloring.

The number of required colors for strong edge-coloring of planar graphs is
also determined. Just recently, Kostochka et al. [14] proved the following (and
resolved the Case (3) of Conjecture 4).

Theorem 8 (Kostochka et al. [14]). Every subcubic planar graph admits a
(29)-packing edge-coloring.

The upper bound is tight and there are infinitely many bridgeless cubic graphs
that need nine 2-colors for strong edge-coloring. An example is e.g. the 3-prism,
depicted in Fig. 4.

Fig. 4. A bridgeless cubic planar graph which needs nine colors for a strong edge-
coloring.

On the other hand, there are no results for planar graphs on the colorings
with one or two matchings. We propose the following conjecture.

Conjecture 6. Every subcubic planar graph admits a (1, 26)-packing edge-
coloring and a (1, 1, 23)-packing edge-coloring.

The conjectured upper bound, if true, is tight and attained by an infinitely many
bridgeless subcubic planar graphs for both values. It also appears to be much
more demanding as the result of Theorem 8. Thus, also some partial results,
with additional restrictions on the structure of planar graphs, might also be
interesting, in order to understand the general problem better.

6.2 Bipartite Graphs

In the class of bipartite graphs, the proper and the strong case of the colorings
are long solved. In 1916, König [13] proved that every bipartite graph is in class
I, and in 1993, Steger and Yu [20] established the following (and resolved the
Case (2) of Conjecture 4).

Theorem 9 (Steger & Yu [20]). Every subcubic bipartite graph admits a
(29)-packing edge-coloring.

Between Proper and Strong Edge-Colorings of Subcubic Graphs 365

Again, these bounds are tight and attained by infinitely many graphs.
Since all bipartite graphs are in class I, the results and conjectures for them

apply also in the bipartite case. It is known that as soon as we leave the ‘proper’
setting, i.e., require some 2-colors instead just 1-colors, the problems become
much harder. E.g., a tight upper bound for a strong edge-coloring of bipartite
graphs is still not known (c.f. [5,20]). Therefore, the Cases (c) and (d) of Con-
jecture 2 may be considered just in the bipartite setting. Moreover, we have an
infinite number of graphs attaining the conjectured upper bounds also among
bipartite graphs.

If we consider subcubic graphs with only edges of weight at most 5, i.e.,
edges where at least one of the end-vertices is of degree at most 2, the number of
required colors decreases substantially. In particular, the Case (4) of Conjecture 4
was resolved by Maydanskiy [16] and independently by Wu and Lin [23].

Theorem 10 (Maydanskiy [16], and Wu & Lin [23]). Every subcubic bipar-
tite graph, in which each edge has weight at most 5, admits a (26)-packing edge-
coloring.

Clearly, an analogous question for coloring such graphs with two 1-colors is
if they admit a (1, 1, 22)-packing edge-coloring. It is answered in affirmative [19].
The bound is tight already in the class of trees. On the other hand, we do not
have the answer for the following.

Question 1. Is it true that every subcubic bipartite graph, in which each edge
has weight at most 5, admits a (1, 24)-packing edge-coloring?

This bound is again attained in the class of trees.

6.3 Graphs with Big Girth

Similarly as the bipartiteness, having big girth does not really simplify edge-
colorings in which some colors must be 2-colors. Even more, due to Kochol [12]
we know, there are graphs with arbitrarily large girth which are in class II!
Anyway, if the girth is infinite, i.e., we consider the trees, the following simple
observation is immediate.

Observation 1. Every subcubic tree admits:

(1) a (1, 1, 1)-packing edge-coloring;
(2) a (1, 1, 2, 2)-packing edge-coloring;
(3) a (1, 24)-packing edge-coloring;
(4) a (25)-packing edge-coloring.

The bounds are tight already if we just consider a neighborhood of one edge
with both end-vertices of degree 3.

In the case of strong edge-coloring, the Case (6) of Conjecture 4 was also
rejected just recently by Lužar, Mačajová, Škoviera, and Soták [15], who proved
that a cubic graph is a cover of the Petersen graph if and only if it admits a
(25)-packing edge-coloring.

Before we consider the intermediate colorings, we first recall the result of
Gastineau and Togni [7].

366 H. Hocquard et al.

Proposition 2 (Gastineau & Togni [7]). Every cubic graph admitting a
(1, 1, 2, 2)-packing edge-coloring is class I and has order divisible by four.

Hence, the analogue of the Case (6) of Conjecture 4 when having two 1-colors
does not hold. However, the following remains open.

Question 2. Is it true that every subcubic bipartite graph with big enough girth
admits a (1, 24)-packing edge-coloring?

To conclude, we believe that studying properties of the considered edge-
colorings will have impact to the initial problem of strong edge-coloring, which
is in general case still widely open. Namely, the conjectured upper bound for
graphs with maximum degree Δ is 1.25Δ2, while currently the best upper bound
is due to Bonamy, Perrett, and Postle [4], set at 1.835Δ2.

Acknowledgement. This research has been done in the scope of the bilateral
project between France and Slovenia, BI-FR/19-20-PROTEUS-001. The third author
was partly supported by the Slovenian Research Agency Program P1–0383 and the
Project N1–0057(B).

References

1. Albertson, M.O., Haas, R.: Parsimonious edge coloring. Discret. Math. 148, 1–7
(1996)

2. Alon, N.: Combinatorial Nullstellensatz. Comb. Probab. Comput. 8(1–2), 7–29
(1999)

3. Andersen, L.D.: The strong chromatic index of a cubic graph is at most 10. Discret.
Math. 108, 231–252 (1992)

4. Bonamy, M., Perrett, T., Postle, L.: Colouring graphs with sparse neighbourhoods:
bounds and applications. ArXiv Preprint, https://arxiv.org/abs/1810.06704 (2018)

5. Faudree, R.J., Gyárfás, A., Schelp, R.H., Tuza, Z.: The strong chromatic index of
graphs. Ars Comb. 29B, 205–211 (1990)

6. Fouquet, J.-L., Vanherpe, J.-M.: On parsimonious edge-colouring of graphs with
maximum degree three. Graphs Comb. 29(3), 475–487 (2013). https://doi.org/10.
1007/s00373-012-1145-3

7. Gastineau, N., Togni, O.: On S-packing edge-colorings of cubic graphs. Discret.
Appl. Math. 259, 63–75 (2019)

8. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Harris, J.M., Rall, D.F.: Broad-
cast chromatic numbers of graphs. Ars Comb. 86, 33–49 (2008)

9. Goddard, W., Xu, H.: The S-packing chromatic number of a graph. Discuss. Math.
Graph Theory 32, 795–806 (2012)

10. Hall, P.: On representatives of subsets. J. London Math. Soc. 10(1), 26–30 (1935)
11. Horák, P., Qing, H., Trotter, W.T.: Induced matchings in cubic graphs. J. Graph

Theory 17(2), 151–160 (1993)
12. Kochol, M.: Snarks without small cycles. J. Comb. Theory Ser. B 67(1), 34–47

(1996)
13. König, D.: Über graphen und ihre anwendung auf determinantentheorie und men-

genlehre. Math. Ann. 77, 453–465 (1916). https://doi.org/10.1007/BF01456961
14. Kostochka, A.V., Li, X., Ruksasakchai, W., Santana, M., Wang, T., Yu, G.: Strong

chromatic index of subcubic planar multigraphs. Eur. J. Comb. 51, 380–397 (2016)

https://arxiv.org/abs/1810.06704
https://doi.org/10.1007/s00373-012-1145-3
https://doi.org/10.1007/s00373-012-1145-3
https://doi.org/10.1007/BF01456961

Between Proper and Strong Edge-Colorings of Subcubic Graphs 367

15. Lužar, B., Mačajová, E., Škoviera, M., Soták, R.: On the conjecture about strong
edge-coloring of subcubic graphs (2020, Manuscript)

16. Maydanskiy, M.: The incidence coloring conjecture for graphs of maximum degree
3. Discret. Math. 292(1–3), 131–141 (2005)

17. Payan, C.: Sur quelques problèmes de couverture et de couplage en combina-
toire. PhD thesis, Institut National Polytechnique de Grenoble - INPG, Université
Joseph-Fourier - Grenoble I (1977). (in French)

18. Seymour, P.D.: On Tutte’s extension of the four-color problem. J. Comb. Theory
Ser. B 31, 82–94 (1981)

19. Soták, R.: Private communication
20. Steger, A., Yu, M.-L.: On induced matchings. Discret. Math. 120, 291–295 (1993)
21. Tait, P.G.: On the colouring of maps. In: Proceedings of the Royal Society of

Edinburgh Section A, vol. 10, no. 729, pp. 501–503 (1880)
22. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Metody Diskret.

Analiz 3, 25–30 (1964)
23. Wu, J., Lin, W.: The strong chromatic index of a class of graphs. Discret. Math.

308, 6254–6261 (2008)
24. Zhang, Z., Liu, L., Wang, J.: Adjacent strong edge coloring of graphs. App. Math.

Lett. 15, 623–626 (2002)

Improved Budgeted Connected
Domination and Budgeted Edge-Vertex

Domination

Ioannis Lamprou, Ioannis Sigalas, and Vassilis Zissimopoulos(B)

Department of Informatics and Telecommunications, National and Kapodistrian
University of Athens, Zografou, Greece

{ilamprou,sigalasi,vassilis}@di.uoa.gr

Abstract. We consider the Budgeted version of the classical Connected
Dominating Set problem (BCDS). Given a graph G and a budget k, we
seek a connected subset of at most k vertices maximizing the number of
dominated vertices in G. We improve over the previous (1 − 1/e)/13
approximation in [Khuller, Purohit, and Sarpatwar, SODA 2014] by
introducing a new method for performing tree decompositions in the
analysis of the last part of the algorithm. This new approach provides
a (1 − 1/e)/12 approximation guarantee. By generalizing the analysis of
the first part of the algorithm, we are able to modify it appropriately
and obtain a further improvement to (1− e−7/8)/11. On the other hand,
we prove a (1 − 1/e + ε) inapproximability bound, for any ε > 0.

We also examine the edge-vertex domination variant, where an edge
dominates its endpoints and all vertices neighboring them. In Budgeted
Edge-Vertex Domination (BEVD), we are given a graph G, and a bud-
get k, and we seek a, not necessarily connected, subset of k edges such
that the number of dominated vertices in G is maximized. We prove
there exists a (1 − 1/e)-approximation algorithm. Also, for any ε > 0,
we present a (1 − 1/e + ε)-inapproximability result by a gap-preserving
reduction from the maximum coverage problem. Finally, we examine the
“dual” Partial Edge-Vertex Domination (PEVD) problem, where a graph
G and a quota n′ are given. The goal is to select a minimum-size set of
edges to dominate at least n′ vertices in G. In this case, we present a
H(n′)-approximation algorithm by a reduction to the partial cover prob-
lem.

Keywords: Approximation · Budget · Partial · Connected
domination · Edge-vertex domination

1 Introduction

The problem of vertices dominating vertices in a graph is very common and
has been extensively studied in graph theory and combinatorial optimization

This work was partially supported by the Special Account for Research Grants (ELKE)
of the National and Kapodistrian University of Athens (NKUA). A full version of the
paper can be found at https://arxiv.org/abs/1907.06576.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 368–381, 2020.
https://doi.org/10.1007/978-3-030-48966-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_28&domain=pdf
https://arxiv.org/abs/1907.06576
https://doi.org/10.1007/978-3-030-48966-3_28

Improved Budgeted Connected Domination 369

literature. In the classical definition, a dominating set is a subset of vertices
such that each vertex is either a member of the subset or adjacent to a member
of the subset. Intuitively, a dominating set provides a skeleton for the placement
of resources, such that any network node is within immediate reach to them.

However, as it is often the case, there are constraints on the amount of
resources available for placement, e.g., due to financial or other management
reasons. That is, we are limited to a budget of k resources to be placed on network
nodes. The optimization goal is to place the available resources suitably, such
that the number of network nodes they dominate is maximized. This problem is
known in literature as the Budgeted Dominating Set problem.

Budgeted domination has applications especially in ad-hoc wireless (sensor)
networks. In this setting, a set of network nodes needs to be identified as the
virtual backbone of the network, that is, the structure responsible for routing
and packet forwarding. To achieve these tasks, nodes in the backbone must be
able to communicate with each other, i.e., form a connected set of vertices in
the graph capturing the topology of their communication ranges. The resulting
optimization problem is the Budgeted Connected Dominating Set (BCDS) prob-
lem. In this paper, we study BCDS and present an improved guarantee over the
previous state of the art [12].

Besides BCDS, we examine other problems where graph edges are selected
as dominators. The concept of edges dominating adjacent edges has been well-
considered in literature; e.g., see [8,27] for some preliminary results. An example
application is in network tomography where probes need to be placed to monitor
the health of network links [14].

In this paper, we consider cases where resources must be positioned on the
links of a network to dominate network nodes. For instance, consider a power
system where a limited number of static var compensators need to be placed on
transmission lines’ midpoints to locate faults affecting a big proportion of buses
[10]. Another example is to identify a limited-size set of friendships, modeled as
graph edges, having a big impact in terms of neighborhood in a social network.

More formally, the notion in consideration is edge-vertex domination, where
an edge dominates its endpoints and any vertices adjacent to its endpoints. We
examine the (in)approximability of Budgeted Edge-Vertex Domination (BEVD),
where we seek a, not necessarily connected, set of k (budget) edges dominating
as many vertices as possible. If the edge set is required to be connected, we show
that the problem essentially matches BCDS. Finally, we consider the related
Partial Edge-Vertex Domination (PEVD) problem: a quota of vertices needs to
be dominated by utilizing the minimum number of edges possible.

1.1 Related Work

Finding a minimum-size connected set of vertices dominating the whole graph
is a classical NP-hard problem. In [7], Guha and Khuller proposed a lnΔ + 3
approximation algorithm, which is (up to constant factors) the best possible,
since the problem is hard to approximate within a factor of (1 − ε) log n [5]. For

370 I. Lamprou et al.

a bigger picture of the research landscape, in [4], many connected domination
results for special graph classes and other applications are surveyed.

In [21], vertex-vertex and edge-edge budgeted domination are considered. For
vertex-vertex, matching upper and lower bounds of (1−1/e) are given, whereas,
for edge-edge, a (1−1/e) approximation and a 1303/1304+ε hardness are proved.

In the connected case, budgeted and partial versions of domination have
their origins in wireless sensor networking [19,26], where a network backbone
with good qualities needs to be determined, which must either be limited in
resources and/or cover a big-enough proportion of the network. The first, and
thus far state of the art, results for the budgeted and partial cases in gen-
eral graphs appear in [12], where a (1 − 1/e)/13-approximation, respectively
an O(ln Δ)-approximation, is proved for the budgeted, respectively partial, case.
Other works have followed in particular settings. For example, in [20], a constant
factor approximation algorithm for partial connected domination on a superset
of unit disk graphs, namely growth-bounded graphs, is proposed. Their result
translates to a 27-approximation guarantee on unit disk graphs.

Regarding edge-vertex domination, the graph-theoretic notion was intro-
duced in [22], together with the complementary case of vertex-edge domination,
where a vertex dominates all edges incident to it or to a neighbor of it. Some
complexity and algorithmic results about the minimal size of an edge-vertex,
respectively vertex-edge, dominating set appear in [18]. More recently, some
vertex-edge domination open questions posed in [18] were answered in [2]. In [25],
an improved bound on the edge-vertex domination number of trees was proved.
Except for the vertex-edge and edge-vertex variants, a mixed domination vari-
ant has been introduced [23], where a minimal subset of both vertices and edges
need to be selected so that each vertex/edge of the graph is incident/adjacent
to a vertex/edge in the subset. Recent example works in this topic study the
problem in special graph classes like trees, cacti, and split graphs [17,28].

1.2 Our Results

In Sect. 2, we present preliminary notions and formally define the problems.
In Sect. 3, we examine the Budgeted Connected Dominating Set (BCDS)

problem, see Definition 1, where a connected subset of budget vertices needs to
dominate as many vertices as possible. By introducing a new tree decomposition
technique in Subsect. 3.2, we prove a (1 − 1/e)/12 � 0.05267 approximation, in
Theorem 2, which improves over the previous best known (1−1/e)/13 guarantee
[12]. (We note the same guarantee has recently been achieved independently in
[13].) We further improve the ratio to (1 − e−7/8)/11 � 0.05301 (Theorem 3) by
generalizing the first part of the analysis in [12] and then modifying the proposed
algorithm accordingly in Subsect. 3.3. On the negative side, for any ε > 0, we
show a first (1 − 1/e + ε) inapproximability bound; see Theorem 5.

In Sect. 4, we consider edge-vertex domination, where a, not necessarily con-
nected, subset of edges dominates adjacent vertices. If the set of edges is also
required to be connected, then the problems essentially reduce to the standard
vertex-vertex budgeted/partial dominating set problems; see Proposition 2. In

Improved Budgeted Connected Domination 371

Subsect. 4.1, we prove there is a (1−1/e)-approximation algorithm (Theorem 7).
This is the best possible since we prove an (1 − 1/e + ε) inapproximability lower
bound, for any ε > 0, see Theorem 8. In Subsect. 4.2, we consider the problem of
Partial Edge-Vertex Domination. In Theorem 10, we prove that, in the general
case, there exists an H(n′)-approximation, where H(·) is the Harmonic number
and n′ is the number of vertices requested to be dominated. To do so, we employ
a reduction to a partial version of the classical Set Cover problem.

Finally, in Sect. 5, we give some concluding remarks.

2 Preliminaries

A graph G is denoted as a pair (V (G), E(G)) (or simply (V,E)) of the vertices
and edges of G. The graphs considered are simple (neither loops nor multi-
edges are allowed), connected and undirected. Besides the aforementioned, no
assumptions are made on the topology of the input graphs.

Two vertices u, v ∈ V connected by an edge, denoted (u, v) or equivalently
(v, u), are called adjacent or neighboring. The open neighborhood of a vertex
v ∈ V is defined as N(v) = {u ∈ V : (v, u) ∈ E}, while the closed neighborhood
is defined as N [v] = {v} ∪ N(v). For a subset of vertices S ⊆ V (G), we expand
the above definitions to N(S) =

⋃
v∈S N(v) \ S and N [S] = N(S) ∪ S.

The degree of a vertex v ∈ V is defined as d(v) = |N(v)|. The minimum, resp.
maximum, degree of G is denoted by δ = minv∈V d(v), resp. Δ = maxv∈V d(v).

Let us now consider the neighborhood of edges in terms of vertices. Given an
edge e = (v, u) ∈ E, let I(e) = {v, u} stand for the set containing its two incident
vertices. We define the neighborhood of an edge e as N [e] =

⋃
v∈I(e) N [v]. For a

set of edges E′ ⊆ E, we define V (E′) = {v ∈ V | ∃e ∈ E′ such that v ∈ I(e)}.
Then, we define the edge-set neighborhood as N [E′] = N [V (E′)]. Here, we focus
on a closed neighborhood definition, since it captures the number of vertices
incident or adjacent to a set of edges in the standard edge-vertex domination
paradigm (Definition 8 in [18]; originally introduced in [22]). That is, we say that
a set of edges E′ dominates N [E′].

Let us now proceed to formally define the problems studied in this paper.

Definition 1 (BUDGETED CONNECTED DOMINATING SET).
Given a graph G = (V,E) and an integer k, select a subset S ⊆ V , where |S| ≤ k,
such that the subgraph induced by S is connected and |N [S]| is maximized.

Definition 2 (BUDGETED EDGE-VERTEX DOMINATION). Given
a graph G = (V,E) and an integer k, select a subset E′ ⊆ E, where |E′| ≤ k,
such that |N [E′]| is maximized.

Definition 3 (PARTIAL EDGE-VERTEX DOMINATION). Given a
graph G = (V,E) and an integer n′, select a subset E′ ⊆ E of minimum size
such that it holds |N [E′]| ≥ n′.

372 I. Lamprou et al.

3 Budgeted Connected Dominating Set

In this section, we consider the Budgeted Connected Dominating Set (BCDS)
problem given in Definition 1. We initially present a summary of key aspects of
the state of the art algorithm [12], which achieves a (1 − 1/e)/13 approximation
factor. We then show how the analysis can be improved to achieve a (1−1/e)/12
guarantee via an alternative tree decomposition scheme; see Theorem 2. Then,
we generalize the analysis of the greedy procedure in order to modify a call
within the state of the art algorithm. This modification allows us to increase
the approximation factor even further to (1 − e−7/8)/11; see Corollary 1. On
the other hand, we conclude this section with a (1 − 1/e + ε), for any ε > 0,
inapproximability result; see Theorem 5.

3.1 Previous Approach

Khuller et al., see Algorithm 2 (Algorithm 5.1 in [12]), design the first constant
factor approximation algorithm for BCDS with an approximation guarantee of
(1 − 1/e)/13. Their approach comprises three method calls: (i) a call to an
algorithm returning a greedy dominating set D and its corresponding profit
function p; see Algorithm 1 (GDS), (ii) a call to a 2-approximation algorithm,
which follows from [6,9], for the Quota Steiner Tree (QST) problem defined
below, and (iii) a call to a dynamic programming scheme Bestk(·) to determine
the maximum-profit subtree of size at most k within a bigger-size tree.

Algorithm 1: Greedy Dominating Set (GDS) [12]
Input : A graph G = (V (G), E(G))
Output: A dominating set D ⊆ V (G) and a profit function

p : V (G) → N ∪ {0}
1 D ← ∅
2 U ← V (G)
3 foreach υ ∈ V (G) do
4 p(υ) ← 0
5 end
6 while U �= ∅ do
7 w ← arg maxυ∈V (G)\D |NU (υ)| /* NU (υ) = N [υ] ∩ U */

8 p(w) ← |NU (w)|
9 U ← U \ NU (w)

10 D ← D ∪ {w}
11 end
12 return (D, p)

Definition 4 (QUOTA STEINER TREE). Given a graph G, a vertex profit
function p : V (G) → N ∪ {0}, an edge cost function c : E(G) → N ∪ {0} and
a quota q ∈ N, find a subtree T that minimizes

∑
e∈E(T) c(e) subject to the

condition
∑

v∈V (T) p(v) ≥ q.

Improved Budgeted Connected Domination 373

Algorithm 2: Greedy Profit Labeling Algorithm for BCDS [12]
Input : A graph G = (V (G), E(G)) and k ∈ N

Output: A tree T̃ on at most k vertices
1 (D, p) ← GDS(G)
2 T ← QST (G, (1 − 1/e)OPT, p)

3 T̃ ← Bestk(T, p)

4 return T̃

Theorem 1 (Follows from results in [6,9]). There is a 2-approximation algo-
rithm for QUOTA STEINER TREE.

In their analysis, Khuller et al. [12] demonstrate that there exists a set D′ ⊆ D
of size k which dominates at least (1 − 1/e)OPT vertices, where OPT is the
optimal number of dominated vertices achieved with a budget of k. Furthermore,
D′ can be connected by adding at most another 2k Steiner vertices, so giving a
total of 3k vertices. Then, it suffices to call the 2-approximation algorithm for
QST, see line 2 in Algorithm 2, with profit function p (returned by algorithm
GDS at line 1), all edge costs equal to 1 and quota equal to (1 − 1/e)OPT. The
value OPT can be guessed via a binary search between k and n. Overall, the
returned tree has size at most 6k vertices and dominates at least (1 − 1/e)OPT
vertices: a (6, 1 − 1/e) bicriteria approximation is attained (Lemma 5.2 [12]).

As a final step (Bestk(·) at line 3), a dynamic programming approach is used
to identify the best-profit subtree with at most k vertices, such that the budget
requirement is satisfied; see paragraph 5.2.2 in [12] for the relevant recurrences.
To obtain a true approximation guarantee for the final solution, the following
tree decomposition lemma is used recursively to prove that, for a sufficiently
large value of k, a tree of size 6k can be decomposed into 13 trees; each of size
at most k (Lemma 5.4 [12]).

Lemma 1 (Folklore). Given any tree on n vertices, we can decompose it into
two trees (by replicating a single vertex) such that the smaller tree has at most

n
2 � vertices and the larger tree has at most
 2n

3 � vertices.

3.2 Improvement to Previous Approach: Eligible Trees

An improvement to the analysis in [12] can be achieved by utilising a more
refined tree decomposition (than the recursive application of Lemma 1) to pro-
vide the approximation guarantee at the final step. To do so, we consider a tree
decomposition scheme based on the notion of eligible trees as introduced in [3].

Definition 5 ([3]). Given a directed tree T = (VT , ET), an eligible subtree T ′

is a subtree of T rooted at some vertex i ∈ VT such that the forest obtained by
deleting the edges with both endpoints in T ′, and then all the remaining vertices
of degree 0, consists of a single tree.

374 I. Lamprou et al.

Assuming T ′ is an eligible subtree not identical to T , after deleting all edges
with both endpoints in T ′, the only vertex of T ′ with degree strictly greater than
0 is the root vertex of T ′. That is, like in Lemma 1, a single vertex is replicated
when removing T ′ from T ; see Fig. 1. The following lemma suggests that, for
any tree, there exists an eligible subtree within some specific size range.

Lemma 2 (Lemma 5 [3]). For each directed tree T = (VT , ET), and for each
p ∈ [1, |VT |]∩N, there exists an eligible subtree T ′ of T such that p/2 ≤ |VT ′ | ≤ p.

Fig. 1. An example eligible subtree of size 6 (enclosed within the dashed shape). After
removing its edges and then all remaining vertices of degree 0 (vertices with lines), a
single tree remains (enclosed within the solid shape). A single vertex is replicated in
both trees, the black vertex.

We can now proceed to employ the above lemma iteratively toward a decompo-
sition scheme for the tree of size at most 6k returned by the Quota Steiner Tree
call in Algorithm 2.

Lemma 3. Let k be an integer. Given any tree T on ak vertices, where a ∈ N

is a constant, and k ≥ 4a − 2, we can decompose it into 2a subtrees each on at
most k vertices.

Proof. To make T directed, we orient its edges away from some arbitrary vertex
picked as the root. Now, we iteratively apply Lemma 2 with p = k, until we are
left with a tree on at most k vertices.

First, let us show that after i iterations, the remaining tree has at most
ak − i · (k/2 − 1) vertices. At the first iteration, there exists an eligible subtree
T ′
1 such that k/2 ≤ |VT ′

1
| ≤ k. After removing it from T1 := T we are left with

T2 of size |VT1 | − (|VT ′
1
| − 1), since the root of T ′

1 remains in T1. Hence, |VT1 | ≤

Improved Budgeted Connected Domination 375

ak − (k/2 − 1), since k/2 ≤ |VT ′
1
|. Assume that after i iterations of the above

procedure, it holds for the remaining tree Ti+1 that k < |VTi+1 | ≤ ak−i·(k/2−1).
We inductively apply Lemma 2 with p = k and get an eligible subtree T ′

i+1.
Removing T ′

i+1 from Ti+1, we get Ti+2, where |VTi+2 | = |VTi+1 | − (|VT ′
i+1

| − 1) ≤
ak − i · (k/2 − 1) − (k/2 − 1) = ak − (i + 1) · (k/2 − 1).

We proved that, after i removals of eligible subtrees from the original tree,
for the remaining tree Ti+1 it holds |VTi+1 | ≤ ak − i · (k/2 − 1). For i = 2a − 1,
we get |VT2a

| ≤ ak − (2a− 1) · (k/2− 1) = ak −ak +2a+k/2− 1 = k/2+2a− 1,
which is at most k for a sufficiently large value of k, i.e., k ≥ 4a−2. Overall, the
original tree T1 has been decomposed into 2a trees: T ′

1, T
′
2, . . . , T

′
2a−1 and T2a,

each of which has at most k vertices. �
Theorem 2. Algorithm 2 is a (1 − 1/e)/12 approximation for BCDS.

3.3 An Improved Modified Algorithm

In the following proof, we generalize the analysis given in Lemma 5.1 [12] regard-
ing the existence of a greedily selected set (of at most k vertices) with a good
intersection to the (neighborhood of the) optimal solution. Below, let D and
p refer to the dominating set and profit function returned by GDS (line 1 in
Algorithm 2).

Lemma 4. There exists a set D′ ⊆ D, |D′| ≤
ck�, for some constant 0 < c ≤ 1,
such that p(D′) ≥ (1−e−c)OPT. Furthermore, D′ can be connected using at most
another k +
ck� Steiner vertices.

Proof. We define the layers L1, L2, L3 as follows. L1 contains the (at most k)
vertices of an optimal BCDS solution. Let L2 = N(L1), meaning that the optimal
number of dominated vertices is OPT = |L1 ∪ L2|. Also, let L3 = N(L2) \ L1

and R = V \ (L1 ∪ L2 ∪ L3), where R denotes the remaining vertices, i.e., those
outside the three layers L1, L2, L3. Let us now consider the intersection of these
layers with the greedy dominating set D returned by GDS (Algorithm 1). Let
L′

i = D ∩ Li for i = 1, 2, 3 and D′ = {v1, v2, . . . , vλ} denote the first λ =
ck�
vertices from L′

1∪L′
2∪L′

3 in the order selected by the greedy algorithm. In order
to bound the total profit in D′, we define gi =

∑i
μ=1 p(vμ) as the profit we gain

from the first i vertices of D′. For the initial value, let g0 = 0.

Proposition 1 (Claim 1 [12]). For i = 0, 1, . . . , k − 1, it holds gi+1 − gi ≥
1
k (OPT − gi).

By solving the recurrence in Claim 1, we get gi ≥ (1−(1− 1
k)i)OPT. Then, for D′,

we get
∑

v∈D′ p(v) = g�ck� ≥
(
1 − (

1 − 1
k

)�ck�) OPT ≥
(
1 − (

1 − 1
k

)ck
)

OPT ≥
(
1 −

((
1 − 1

k

)k
)c)

OPT ≥ (1 − e−c)OPT. Moreover, let us show that an extra
k +
ck� vertices are enough to ensure that D′ is connected. We select a subset
D′′ ⊆ L2 of size at most |L3∩D′| ≤
ck� to dominate all vertices of D′∩L3. Then,
we ensure that all vertices are connected by simply adding all the k vertices of

376 I. Lamprou et al.

L1. Thus, D̂ = D′ ∪D′′ ∪L1 induces a connected subgraph that contains at most
k + 2
ck� vertices. �

We can now make use of this generalized analysis and suggest a modified
algorithm, parameterized by the parameter c, where the Quota Steiner Tree
routine is called with a quota of (1 − e−c)OPT; see Algorithm 3 below.

Algorithm 3: Modified Greedy Profit Labeling Algorithm for BCDS(c)
Input : A graph G = (V (G), E(G)), k ∈ N

Output: A tree T̃ on at most k vertices
1 (D, p) ← GDS(G)
2 T ← QST (G, (1 − e−c)OPT, p)

3 T̃ ← Bestk(T, p)

4 return T̃

Theorem 3. For some constant 0 < c ≤ 1, there is a (1 − e−c)/(
8c� + 4)
approximation for BCDS.

Proof. By Lemma 4 and Theorem 1, it follows that Algorithm 3 (line 2) returns
a tree of size at most 2k + 4
ck� ≤ 2k + 4(ck + 1) = (4c + 2)k + 4 with profit
at least (1 − e−c)OPT. For a final solution, it suffices to return a subtree of T ,
namely T ′, of size at most k which dominates the maximum number of vertices
(call Bestk(·) in line 3 of Algorithm 3). This can be done in polynomial time via
dynamic programming: see section 5.2.2 in [12].

To prove a lower bound on the number of vertices T ′ dominates, we decom-
pose T into a set of subtrees via iteratively removing an eligible tree from T .
To do so, we apply Lemma 2 with p = k. Like in the proof of Lemma 3, we can
prove by induction that after i such removals of eligible subtrees of size at most
k, the remaining tree has at most |T |− i · (k/2−1) vertices. For i =
8c+3�, the
remaining tree’s size is upper bounded by (4c + 2)k + 4 −
8c + 3� · (k/2 − 1) ≤
(4c + 2)k + 4 − (8c + 3) · (k/2 − 1) = k/2 + 8c + 7, which is at most k
for a sufficiently large choice of k, i.e., k ≥ 16c + 14. Therefore, we can
decompose T into
8c + 3� + 1 =
8c� + 4 subtrees of size at most k, say
T1, T2, . . . , T�8c�+4. Then, from pigeonhole principle and our decomposition, it
follows p(T ′) ≥ 1

�8c�+4

∑�8c�+4
i=1 p(Ti) ≥ 1

�8c�+4p(T) ≥ 1
�8c�+4 (1 − e−c)OPT. �

For c = 1, Theorem 3 matches the approximation ratio already given in
Theorem 2. Since the above ratio is a function of the parameter c, we numerically
compute its maximum value to 1/11(1 − e−7/8) attained for c = 7/8.

Corollary 1. There is a 1/11(1 − e−7/8)-approximation for BCDS.

Improved Budgeted Connected Domination 377

3.4 Inapproximability

In this Subsection, we demonstrate a first inapproximability result for BCDS by
identifying a reduction from the well known Maximum Coverage problem.

Definition 6 (MAX-k-COVER). Given a positive integer k and a collection
of sets S = {S1, S2, . . . , Sm}, find a set S′ ⊆ S, where |S′| ≤ k, which maximizes
the number of covered elements |⋃Si∈S′ Si|.
Theorem 4 ([5,11]). For any ε > 0, there is no polynomial time approximation
algorithm for MAX-k-COVER within a ratio of (1 − 1/e + ε) unless P = NP.

Let us now demonstrate a gap-preserving reduction (Definition 10.2 [1])
which transforms an instance of MAX-k-COVER, namely MC(S, k), where
S = {S1, S2, . . . , Sm} to an instance of BCDS, namely BCDS(G, k), where
G = (V,E). For an example illustration, see Fig. 2. For each set Si ∈ S, we
include a vertex si in V . Let the union of elements in the set system

⋃
Si∈S Si

be represented as {x1, x2, . . . , xn}. For each element xj , we include q vertices in
V , namely xj,1, xj,2, . . . , xj,q, where q is a polynomial in m (q ≥ m2 suffices).
Overall, |V | = m + qn. In the edge set E, we include edges (si, sj), for each
i, j = 1, 2, . . . ,m, i �= j, and (si, xj,z), for each i, j such that xj ∈ Si and for
each z = 1, 2, . . . , q. Notice the size is polynomial in the input of MC(S, k), since
we get |E| ≤ (

m
2

)
+ mqn. In Lemma 5, let MC(S, k), respectively BCDS(G, k),

also refer to the optimal solution for the corresponding MAX-k-COVER, resp.
BCDS, instance.

s1 s2 si sm· · · · · · · · · · · ·
.

.
.

.
.

x1,1 x1,q

· · ·
x2,1 x2,q

· · ·
xj,1 xj,q

· · ·.

xn,1 xn,q

· · ·

Fig. 2. The graph G constructed for the gap-preserving reduction employed in
Lemma 5. Vertices si within the dashed ellipse form a clique. Vertex si is connected to
vertices xj,1, xj,2, . . . , xj,q in G if Si
 xj in MC(S, k).

Lemma 5. There is a gap-preserving reduction from MAX-k-COVER to BCDS
so that,

(i) if MC(S, k) ≥ λ, then BCDS(G, k) ≥ Λ, where Λ := m + qλ, and
(ii) if MC(S, k) < (1− 1

e +ε)·λ, then BCDS(G, k) < (1− 1
e + m

e(m+qλ)+ε· qλ
m+qλ)·Λ.

Theorem 5. For any ε > 0, there is no polynomial time approximation algo-
rithm for BCDS within a ratio of (1 − 1/e + ε) unless P = NP.

378 I. Lamprou et al.

4 Edge-Vertex Domination

We now turn our attention to edge-vertex domination problems, where the goal
is to identify a set of edges which dominate vertices of the graph. We consider
both budgeted and partial cover cases.

4.1 Budgeted Edge-Vertex Domination

Let us consider the general case of BEVD (Definition 2), where the selected sub-
set of edges does not need to be connected. We identify a strong connection to
the classical MAX-k-COVER problem; see Definition 6 and Theorems 4, 6. On
the positive side, in Theorem 7, we prove a (1−1/e)-approximation by reducing
BEVD to an instance of MAX-k-COVER. On the negative side, we demonstrate
a gap-preserving reduction from MAX-k-COVER to BEVD and therefore con-
clude that the above approximation is the best possible (Theorem 8).

Theorem 6 (Proposition 5.1 [5]). There exists a (1 − 1/e)-approximation
algorithm in polynomial time for MAX-k-COVER.

Theorem 7. There exists a (1 − 1/e)-approximation algorithm for BEVD.

We now proceed and demonstrate a gap-preserving reduction (Definition
10.2 [1]) which transforms an instance of MAX-k-COVER, namely MC(S, k),
where S = {S1, S2, . . . , Sm} to an instance of BEVD, namely BEVD(G, k), where
G = (V,E). For an illustration, see Fig. 3. The vertex set V contains a “root”
vertex v0. For each set Si ∈ S, we include a vertex si in V . Let the union of
elements in the set system

⋃
Si∈S Si be represented as {x1, x2, . . . , xn}. For each

element xj , we include q vertices in V , namely xj,1, xj,2, . . . , xj,q, where q is a
polynomial in m (q ≥ m2 suffices) Overall, we have |V | = m+1+qn. In the edge
set E, we include the edges (v0, si), for each i = 1, 2, . . . , m, and (si, xj,z), for
each i, j such that xj ∈ Si and for each z = 1, 2, . . . , q. The size is polynomial in
the input of MC(S, k), since we get |E| ≤ m + mqn. In Lemma 6, let MC(S, k),
respectively BEVD(G, k), refer to the optimal solution for the corresponding
max cover, resp. BEVD, instance.

Lemma 6. There is a gap-preserving reduction from MAX-k-COVER to BEVD
so that,

(i) if MC(S, k) ≥ λ, then BEVD(G, k) ≥ Λ, where Λ := m + 1 + qλ, and
(ii) if MC(S, k) < (1 − 1

e + ε) · λ, then BEVD(G, k) < (1 − 1
e + m+1

e(m+1+qλ) +

ε qλ
m+1+qλ) · Λ.

Theorem 8. For any ε > 0, there is no polynomial time approximation algo-
rithm for BEVD within a ratio of (1 − 1/e + ε) unless P = NP.

As a side note, consider the case where the selected edge set is required to
be connected. That is, let BEVDC refer to the budgeted edge-vertex connected
domination problem. Below, we prove that this problem is equivalent to the
budgeted connected dominating set (BCDS) problem researched in Sect. 3.

Improved Budgeted Connected Domination 379

v0

s1 s2 si sm· · · · · · · · · · · ·
.

.
.

.
.

x1,1 x1,q

· · ·
x2,1 x2,q

· · ·
xj,1 xj,q

· · ·.

xn,1 xn,q

· · ·

Fig. 3. Graph G constructed for the gap-preserving reduction employed in Lemma 6.
Vertex si is connected to vertices xj,1, xj,2, . . . , xj,q in G if Si
 xj in MC(S, k).

Proposition 2. For any G = (V,E) where |V | ≥ 2, and integer k ≥ 2, a feasible
solution S to BCDS(G, k) can be transformed to a solution SE to BEVDC(G, k−
1), where N [S] = N [SE], and vice versa.

4.2 Partial Edge-Vertex Domination

Herein, we prove an O(log n)-approximation for Partial Edge-Vertex Domination
(PEVD); refer to Definition 3. Given a graph G = (V,E) and an integer n′, we
need to select a subset E′ ⊆ E of minimum size such that it holds |N [E′]| ≥ n′.
To approximate the problem, we identify a reduction to Partial Cover (PC).

Definition 7 (PARTIAL COVER). Given a universe (set) of elements X =
{x1, x2, ..., xn}, a collection of subsets of X, S = {S1, S2, ..., Sm}, and a real
0 < p ≤ 1, find a minimum-size sub-collection of S, say S′, that covers at least
a p-part of X, i.e., |⋃Si∈S′ Si| ≥ pn.

Theorem 9 (Theorems 3, 4 in [24]). PARTIAL COVER is approximable
within a factor min{H(
pn�),H(D)}, where H is the Harmonic number H(x) =∑x

i=1 1/x and D is the maximum size of a set in S.

Theorem 10. There exists a min{H(n′),H(2Δ)}-approximation for PEVD.

5 Conclusion

We propose a new technique to obtain tree decompositions, and a generalized
analysis, thus improving the approximation guarantee from (1− e−1)/13 to (1−
e−7/8)/11 for BCDS. Furthermore, we prove a (1 − 1/e + ε) upper bound. Also,
we introduce BEVD and PEVD, and provide (tight) approximation bounds.

Regarding future work on BCDS, the goal is to design an algorithm with an
improved guarantee. Moreover, it would be interesting to capture the difficulty
of the problem with a stronger inapproximability result. We believe that a tight
bound lies somewhere between our currently established state of the art.

380 I. Lamprou et al.

Related to the edge-vertex case, it would be interesting to consider budgeted
and partial versions for other dominating set variants, such as mixed domina-
tion [28], where both vertices and edges are selected in order to dominate as
many vertices and edges as possible, expansion ratio variants such as in [16], or
even eternal domination [15], where a set of guards need to dominate the graph
perpetually while moving to protect it against attacks on its vertices.

References

1. Arora, S., Lund, C.: Hardness of approximations. In: Approximation Algorithms
for NP-Hard Problems, chap. 10, pp. 399–446. PWS Publishing Co., Boston (1997)

2. Boutrig, R., Chellali, M., Haynes, T.W., Hedetniemi, S.T.: Vertex-edge domination
in graphs. Aequat. Math. 90, 355–366 (2016). https://doi.org/10.1007/s00010-015-
0354-2

3. Bermond, J.-C., et al.: Bin packing with colocations. In: Jansen, K., Mastrolilli, M.
(eds.) WAOA 2016. LNCS, vol. 10138, pp. 40–51. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-51741-4 4

4. Du, D.Z., Wan, P.J.: Connected Dominating Set: Theory and Applications.
Springer Optimization and its Applications. Springer, New York (2013). https://
doi.org/10.1007/978-1-4614-5242-3

5. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

6. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs.
In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of
Computing (STOC), pp. 396–402 (2005)

7. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets.
Algorithmica 20(4), 374–387 (1998)

8. Horton, J.D., Kilakos, K.: Minimum edge dominating sets. SIAM J. Discrete Math.
6(3), 375–387 (1993)

9. Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting Steiner tree problem:
theory and practice. In: Proceedings of the Eleventh Annual ACM-SIAM Sympo-
sium on Discrete algorithms (SODA), pp. 760–769 (2000)

10. Khoa, N.M., Tung, D.D.: Locating fault on transmission line with static var com-
pensator based on phasor measurement unit. Energies 11, 2380 (2018)

11. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inf.
Process. Lett. 70(1), 39–45 (1999)

12. Khuller, S., Purohit, M., Sarpatwar, K.K.: Analyzing the optimal neighborhood:
algorithms for budgeted and partial connected dominating set problems. In: Pro-
ceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 1702–1713 (2014)

13. Khuller, S., Purohit, M., Sarpatwar, K.K.: Analyzing the optimal neighborhood:
algorithms for budgeted and partial connected dominating set problems. SIAM J.
Discrete Math. 34(1), 251–270 (2020)

14. Kumar, R., Kaur, J.: Efficient beacon placement for network tomography. In: Pro-
ceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, pp.
181–186 (2004)

15. Lamprou, I., Martin, R., Schewe, S.: Eternally dominating large grids. Theoret.
Comput. Sci. 794, 27–46 (2018)

https://doi.org/10.1007/s00010-015-0354-2
https://doi.org/10.1007/s00010-015-0354-2
https://doi.org/10.1007/978-3-319-51741-4_4
https://doi.org/10.1007/978-3-319-51741-4_4
https://doi.org/10.1007/978-1-4614-5242-3
https://doi.org/10.1007/978-1-4614-5242-3

Improved Budgeted Connected Domination 381

16. Lamprou, I., Martin, R., Schewe, S., Sigalas, I., Zissimopoulos, V.: Maximum
rooted connected expansion. In: 43rd International Symposium on Mathematical
Foundations of Computer Science (MFCS), LIPIcs, vol. 117, pp. 25:1–25:14 (2018)

17. Lan, J.K., Chang, G.J.: On the mixed domination problem in graphs. Theoret.
Comput. Sci. 476, 84–93 (2013)

18. Lewis, J.: Vertex-edge and edge-vertex parameters in graphs. All Dissertations, 103
(2007)

19. Liu, Y., Liang, W.: Approximate coverage in wireless sensor networks. In: The
IEEE Conference on Local Computer Networks 30th Anniversary (LCN 2005), pp.
68–75 (2005)

20. Liu, X., Wang, W., Kim, D., Yang, Z., Tokuta, A., Jiang, Y.: The first constant
factor approximation for minimum partial connected dominating set problem in
growth-bounded graphs. Wirel. Netw. 22(2), 553–562 (2015). https://doi.org/10.
1007/s11276-015-0981-5

21. Miyano, E., Ono, H.: Maximum domination problem. In: Proceedings of the Sev-
enteenth Computing: the Australasian Theory Symposium (CATS), vol. 119, pp.
55–62 (2011)

22. Peters, K.W.: Theoretical and algorithmic results on domination and connectivity.
Ph.D. thesis, Clemson University, Clemson (1986)

23. Sampathkumar, E., Kamath, S.S.: Mixed domination in graphs. Sankhya Indian
J. Stat. 54, 399–402 (1992)

24. Slav́ık, P.: Improved performance of the greedy algorithm for partial cover. Inf.
Process. Lett. 64, 251–254 (1997)

25. Venkatakrishnan, Y.B., Krishnakumari, B.: An improved upper bound of edge-
vertex domination number of a tree. Inf. Process. Lett. 134, 14–17 (2018)

26. Wang, B.: Coverage problems in sensor networks. ACM Comput. Surv. 43(4), 32
(2011)

27. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math.
38(3), 364–372 (1980)

28. Zhao, Y., Kang, L., Sohn, M.Y.: The algorithmic complexity of mixed domination
in graphs. Theoret. Comput. Sci. 412, 2387–2392 (2011)

https://doi.org/10.1007/s11276-015-0981-5
https://doi.org/10.1007/s11276-015-0981-5

Algorithms for Constructing
Anonymizing Arrays

Erin Lanus1(B) and Charles J. Colbourn2

1 Virginia Tech, Arlington, VA 22203, USA
lanus@vt.edu

2 Arizona State University, Tempe, AZ 85281, USA
charles.colbourn@asu.edu

Abstract. Attribute-based methods are inherently identity-less as
authorization decisions are made in terms of attributes possessed by the
subject rather than identity. However, anonymity against the system is
not guaranteed when attribute distribution allows for the composition
of a policy that few subjects can satisfy. An anonymizing array ensures
that any assignment of values to t attributes that appears in the array
appears at least r times. When an anonymizing array is used for sub-
jects registered to a system and policies contain conjunctions of at most
t attributes, the system cannot identify the subject using the policy to to
gain authorization with greater than 1

r
probability. Anonymizing arrays

are similar to covering arrays with higher coverage and constraints, but
have an additional desired property, homogeneity, due to their applica-
tion domain. In this paper, we develop constructions for anonymizing
arrays and propose a post-optimization mechanism to reduce homogene-
ity.

Keywords: Combinatorial array · Construction algorithms ·
Anonymous authorization · Attribute-based methods

1 Introduction

In attribute-based systems used for access control, such as Attribute-Based
Access Control and Ciphertext-Policy Attribute-Based Encryption (CP-ABE),
decisions are made on the basis of attributes, or characteristics of a subject
expressed as name-value pairs [1,5]. A feature of these systems is that they
can achieve anonymous access control, granting access to authorized subjects
and denying access to unauthorized subjects without knowledge of the subject’s
identity. This is not a guarantee that the identity cannot be deduced. CP-ABE
encrypts a ciphertext in a policy, and decryption is performed by a private

Research of EL was supported by a National Physical Science Consortium Fellowship.
Research of CJC was supported in part by the National Science Foundation under
Grant No. 1421058 and Grant No. 1813729.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 382–394, 2020.
https://doi.org/10.1007/978-3-030-48966-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_29&domain=pdf
http://orcid.org/0000-0001-8263-0521
http://orcid.org/0000-0002-3104-9515
https://doi.org/10.1007/978-3-030-48966-3_29

Algorithms for Constructing Anonymizing Arrays 383

key containing attributes satisfying the policy. CP-ABE is proposed to medi-
ate authenticated key exchange with an anonymous mode [9]. Suppose a service
broadcasts a session key encrypted by a policy. A subject whose private key con-
tains attributes satisfying the policy decrypts the message, obtains the key, and
begins communicating with the service via the session key. The service knows
that the subject communicating with it is authorized based on possession of the
required attributes to obtain the key. The authors claim that the service can-
not uniquely identify the subject. All subjects must register with the service to
receive a private key, and thus the service knows all attributes of the subjects
in the system. If a policy can be composed so that only one subject’s attributes
satisfy the policy and this policy is used to encrypt the session key, the service
knows the identity of the subject using this session key. “Anonymous ABE” uses
hidden credentials which can be used to retrieve a session key anonymously,
but the receiver anonymity is based on “plausible deniability” due to the fact
that anyone can request the message, not just the intended recipient [6]. Plau-
sible deniability fails if the message is decrypted to gain a session key to obtain
authorization, proving that a subject with the correct credentials decrypted the
message.

The contribution of this work is to achieve a guaranteed degree of anonymity
by requiring that certain properties of attribute distribution hold given a max-
imum credential size. Policies can be considered disjunctions of conjunctions of
attribute values with the most restrictive policy being a single conjunction of
many attribute values. Let t be the largest number of attributes in a single
conjunction. An anonymizing array ensures that any assignment of values to
t attributes that appears in the array appears at least r times [7]. When an
anonymizing array is used for subjects registered to a system and policies con-
tain conjunctions of at most t attributes, the system cannot identify the subject
using the policy for authorization with greater than 1

r probability.
An access profile is an assignment of values to attributes. When attributes

are assigned to access profiles for the purpose of anonymous authorization, as
in key distribution, rather than existing as real-world attributes of subjects, an
anonymizing array is built from scratch. When the set of subject attributes regis-
tered to a system is fixed, an anonymizing array determines the largest conjunc-
tion that can be used while achieving the anonymity guarantee r or, equivalently,
the guarantee achievable for the largest conjunction. When subject attributes are
immutable but the set of access profiles can be appended, anonymizing arrays
provide a mechanism to provide higher anonymity guarantees. Constructions for
anonymizing arrays must account for constraints on attributes and, due to the
security application, must not rely randomness in order to achieve the guarantee
with a high probability. The rest of the paper is organized as follows. Definitions
and relationship to covering arrays are in Sect. 2. Construction algorithms are
in Sect. 3. Results are in Sect. 4, and conclusions are in Sect. 5.

384 E. Lanus and C. J. Colbourn

2 Anonymizing Arrays

2.1 Definitions

Consider an array with N rows and k columns and each column i for 1 ≤ i ≤ k
has entries from a set of vi symbols. The rows of the array are access profiles,
columns are attributes, and symbols in a column are the values for the attribute.
To express the parameters of the array, write AA(N ; r, t, k, (v1, . . . , vk)) or use
exponential notation vj

i when j columns share the same number of symbols vi.
Write AA(N ; r, t, k, v) when the number is the same for all columns. Such an
array is (r, t)-anonymous if, when choosing an N × t subarray, 1 ≤ t ≤ k, each
row that appears is repeated at least r times. A credential is a tuple of attribute-
value pairs presented for an authorization decision. The maximum credential size
is t and r is the anonymity guarantee. Given an N×k array A, an N ′×k array A′

is (r, t)-anonymizing with respect to A if A ⊆ A′ and A′ is (r, t)-anonymous.
Interesting cases require r > 1 and vi > 1 for all vi. An access profile may
represent a subject or it may be padding, a row added to reach an anonymity
guarantee. Access profiles need not be unique. The rows or columns of the array
can be shuffled to obtain an equivalent array on the same parameters.

Hard constraints are credentials that cannot appear, while soft constraints
are credentials that need not appear, but are not illegal. That is, hard constraints
and non-appearing soft constraints must appear 0 times, while soft constraints
that appear and all unconstrained credentials must appear at least r times. Hard
constraints may give rise to implicit hard constraints that cause there to be no
feasible solution. Constraints must be considered when appending padding rows
to an anonymizing array to reach the anonymity guarantee r.

Anonymizing arrays containing groups of highly similar access profiles may
lead to affiliating subjects with and tracking subjects by their groups; [7] develops
the following metrics to detect this similarity. Local homogeneity describes how
often an access profile appears in small groups of similar access profiles, and global
homogeneity is the average local homogeneity. The neighborhood of a credential
is the set of access profiles possessing the credential. The closeness of a pair of
access profiles is a sum of their weight over all credentials, and the weight of a
pair of access profiles on a credential is inversely proportionate to the size of the
neighborhood of the credential if the access profiles are in the neighborhood. Let
U be a set of N access profiles and let C be the set of credentials. Define the
neighborhood of a credential c ∈ C as ρ(c) = {ui : ui possesses c, ui ∈ U} and

weight(ui, uj , c) =

{
1

|ρ(c)| ⇐⇒ {ui, uj} ⊆ ρ(c)

0 otherwise

closeness(ui, uj) =
∑
c∈C

weight(ui, uj , c)

neighbors(ui) = {
⋃
c∈C

ρ(c) : ui ∈ ρ(c)}

Algorithms for Constructing Anonymizing Arrays 385

homogeneity(ui) =
1

|neighbors(ui)|
∑

uj∈U,uj �=ui

closeness(ui, uj)

2.2 Relationship to Covering Arrays

A covering array denoted CA(N ; t, k, v) is an N ×k array on v symbols such that
in every N × t subarray each of the vt combinations of symbols, called inter-
actions, appears as a row. When different columns can have different numbers
of symbols, it is a mixed-level covering array MCA(N ; t, k, (v1, . . . , vk)). In rare
cases when higher coverage is needed, interactions may be required to appear at
least λ > 1 times. When not specified, λ = 1 is implied. Anonymizing arrays are
similar to covering arrays with constraints and higher coverage. The primary
difference due to application is in the desired homogeneity property, but also
in how constraints are treated. For covering arrays, the norm is to define the
interactions that must not appear (hard constraints), then to define the inter-
actions that might appear (soft constraints, possibly further divided into “don’t
care” and “avoid”), and then to derive the interactions that must appear [3]. For
anonymizing arrays, the access profiles provided define the unconstrained cre-
dentials. The system specification defines the hard constraints, and the soft con-
straints are defined to be the remaining credentials that are in neither set. Given
an anonymizing array without a defined set of constraints, it may be impossible
to distinguish the soft and hard constraints from the set of non-appearing cre-
dentials. The same difficulty arises distinguishing the soft constraints from the
unconstrained credentials. Care must be taken when converting between covering
arrays and anonymizing arrays that constraints are categorized correctly. Many
construction algorithms exist for building covering arrays, though few explicitly
include constraint handling or higher coverage requirements. The following non-
exhaustive list of relationships elucidate how to use covering array constructions
to build anonymizing arrays.

Any MCAλ(t, k, (v1, . . . , vk)) with hard constraint set H is also an
AA(λ, t, k, (v1, . . . , vk)) with hard constraint set H and all other credentials
appearing. Every t-way interaction that appears in the covering array λ times is
a credential that appears λ times in the corresponding anonymizing array. The
interactions in H never appear in the covering array so they never appear in the
anonymizing array. In the context of covering arrays, higher λ does not force a
“don’t care” or an “avoid” interaction to appear λ times if it appears once. Then
soft constraints must not be present in a covering array used as an anonymizing
array. There must also exist a mapping of soft constraints in the anonymizing
array onto either hard constraints in the covering array if they do not appear or
onto unconstrained interactions if they do.

If an MCA(t, k, (v1, . . . , vk)) with hard constraint set H and soft constraint set
S exists, then an AA(r, t, k, (v1, . . . , vk)) with H and S exists. Copy the covering
array vertically r times. No interaction of H appears in the covering array, so
none of these credentials appear in the anonymizing array. Any interaction of S
that appears in the covering array at least once appears in the anonymizing array

386 E. Lanus and C. J. Colbourn

at least r times, and the rest never appear. Unconstrained credentials appear at
least once in the covering array and at least r times in the anonymizing array.

An MCA(t, k, (v1, . . . , vk)), v = mink
i=1(vi) with no constrained interactions

is an AA(v, t − 1, k, (v1, . . . , vk)) with no constrained credentials. In the mixed-
level covering array without constraints, a (t − 1)-way interaction appears at
least vi times, once with each of the vi symbols in the t-th column of the t-way
interaction including those t − 1 columns. Every (t − 1)-way interaction appears
at least v times, v the minimum vi. This is an anonymizing array for r = v.

If there exists a covering array CA(t, k, v) with a set of hard constraints
{(c1, σ1), . . . , (ct−1, σt−1), (cx, σy)} for each column symbol pair (cx, σy) with
column cx ∈ K \ {c1, . . . , ct−1} and σy ∈ Σx, the symbol set of cx, then there is
an anonymizing array AA(v, t−1, k, v) with {(c1, σ1), . . . , (ct−1, σt−1)} as a hard
constraint. To guarantee that the constrained credential with t − 1 attributes
never appears in the anonymizing array, it must be the case that no t-way inter-
actions of which it is a subset appeared in the covering array. The coverage for
all unconstrained credentials has already been shown. To extend this to soft con-
straints, there must be a mapping of soft constraints in the anonymizing array
to either unconstrained interactions or hard constraints in the covering array.

Given an array A that is (r, t)-anonymous and not (r + 1, t)-anonymous, for
every t ≤ t′ ≤ k for which A is (r′, t′)-anonymous, it must be the case that
r′ ≤ r. Pick the credential c that appears the fewest number of times in A and
let r be the number of times c appears. A is (r, t)-anonymous by definition and
is not (r + 1, t)-anonymous. Choose any credential c′ that contains c. The rows
in which c′ appears must be a subset of the rows in which c appeared. Then for
t′ ≥ t, if A is (r′, t′)-anonymous, then r′ ≤ r. Similarly, an array that is (r, t)-
anonymous is (r, t′)-anonymous for t′ < t. Any credential, c, of size t appears in
at least r rows. Any t′-subset of c appears in at least these rows.

3 Construction Algorithms

3.1 Moser-Tardos-Style Column Resampling Algorithm

Algorithm 1 is a Moser-Tardos-style column resampling algorithm (MTCR) [8].
A bad event is either a violation of a hard constraint or lack of necessary coverage
on unconstrained or soft constraints. A candidate is checked systematically until
either no bad events are found or an iteration limit is reached. If any bad event
is found, all involved columns are resampled. If T is the set of

(
k
t

)
t-subsets

of columns and there are
∑

T∈T
∏

i∈T vi possible credentials, the position of T
in colexicographic ordering of the sets is the rank. Estimating the number of
rows is not obvious, so rows are added until coverage is met or an iteration
limit is reached. When provided a set of rows, MTCR adds padding to meet the
guarantee and forbids resampling of initial rows. When building from scratch,
the candidate starts with no rows or an initial number of randomly populated
rows is computed as r times the maximum number of non-constrained credentials
of any rank. Adding rows too often may produce more rows than needed, while
the iteration limit may be reached when adding conservatively. Too few rows

Algorithms for Constructing Anonymizing Arrays 387

Algorithm 1: Moser-Tardos-style Column Resampling (MTCR)
input : A, r, t, k, (v1, ..., vk), and a set of constraints
output: A or ∅
begin

while iterations < limit do
foreach rank while no bad event do

Check all credentials in rank
if coverage bad event then

Increment number of resamplings
if resamplings > rank ∗ threshold then

Add a row to A and reset resamplings

if no bad event then
return A

else
Resample all columns of rank in A

return ∅

can contribute to lack of r coverage, but not to presence of a constraint, as
more rows increase the likelihood of a constraint appearing. The candidate is
checked by a fixed ordering, so it is expected, though not guaranteed, that fewer
bad events exist in a candidate when checking a higher rank. The number of
resamplings due to a lack of coverage bad event since adding the last row is
used to estimate progress. To add rows readily when bad events occur early, the
number of resamplings to add a row is proportional to the amount remaining to
check.

3.2 Conditional Expectation Heuristic Search Algorithm

Algorithm 2, Conditional Expectation Heuristic Search (CEHS), is a greedy,
one-row-at-a-time algorithm that combines ideas from conditional expectation
with a heuristic to avoid constraints [2,4]. Call a credential not-yet-r-covered if
it is unconstrained appearing fewer than r times or a soft constraint appearing
between 0 and r times. The expectation for a row is the number of not-yet-r-
covered credentials that are covered if symbols are assigned to columns randomly.
Given a row with i−1 columns fixed to symbols and the rest free, choose a column
i randomly and consider the vi symbols to place in column i. For the symbols
of that column, there is a choice of symbol that does not reduce the expectation
for the row. Let Ti be the set of

(
k−1
t−1

)
sets of t columns involving i, and CT the

set of possible credentials for a t-set of columns, T . Suppose column i is fixed to
symbol σ. If P (c) is the probability of credential c appearing and Λ(c) is related
to the coverage status of c,

Λ(c) =

{
1 if c covered fewer than r times,
0 if c covered at least r times or c is a soft constraint,

388 E. Lanus and C. J. Colbourn

define
value(i, σ) =

∑
T∈Ti

∑
c∈CT

Λ(c)P (c).

The expected number of not-yet-r-covered credentials newly covered by placing
σ in i is value(i, σ). The best symbol is one that maximizes value(i, σ) without
violating a hard constraint. Ties can be broken randomly.

The heuristic lies in redefining Λ. Prioritizing credentials that have been cov-
ered fewer times over those that have been covered more may be more useful
than the all-or-nothing approach that works well when λ = r = 1. To avoid fix-
ing the last symbol σ in column i of a credential that violates a hard constraint
when other not-yet-r-covered credentials require σ in i, define Λ(c) = −

(
k−1
t−1

)
for this case. There are

(
k−1
t−1

)
− 1 other t sets involving column i. At most, a

t-set contributes 1 to value(i, σ), so the most positive value a symbol receives
from the other credentials is

(
k−1
t−1

)
−1. A lookahead attempts to drive the search

away from fixing symbols leading to one or more eventual hard constraints with-
out preventing covering unconstrained credentials. The lowest benefit of placing
symbol σ in column j occurs when there is one credential to be covered one
remaining time with the highest number of symbols, v = maxk

i=1(vi). The prob-
ability of being placed is lowest when all other columns in the t-set are still free,
assuming j is fixed to σ. Then P (c) = 1

vt−1 and Λ(c) = 1
r , so the benefit is 1

rvt−1 .
The highest cost occurs when the other t-sets involving j have

(
k−1
t−1

)
− 1 poten-

tial hard constraints and one free column. For each t-set, let w be the number
of symbols for the free column. There are w credentials with symbols matching
the t − 1 fixed columns, and each is chosen with probability P (c) = 1

w . Each
t-set contributes at most w 1

wΛ, so the total cost is (
(
k−1
t−1

)
− 1)Λ. The value of Λ

must ensure that |(
(
k−1
t−1

)
− 1)Λ| < 1

rvt−1 . Set Λ = −1

((k−1
t−1)−1)ryt

, y = maxk
i=1(vi).

When y ≥ v, ∣∣∣∣∣
((

k − 1
t − 1

)
− 1

)
−1

(
(
k−1
t−1

)
− 1)ryt

∣∣∣∣∣ =
∣∣∣∣−1
ryt

∣∣∣∣ <

∣∣∣∣ 1
rvt−1

∣∣∣∣ .

The full definition is then

Λ(c) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r−times c covered
r if c is unconstrained or an appearing soft constraint,

0 if c is a non-appearing soft constraint,
−1

((k−1
t−1)−1)ryt

: y = maxk
i=1 vi, c a hard constraint with ≥ 1 free column,

−
(
k−1
t−1

)
, c a hard constraint with 0 free columns.

As with MTCR, a feasibility check should be conducted beforehand or an
iteration limit used, as some scenarios can still result in infinite looping. CEHS
lacks complete lookahead, so a series of local decisions based on the ordering of
columns in an execution can lead to the placement of some hard constraint even
if an anonymizing array exists. In this case, CEHS aborts and can be run again.

Algorithms for Constructing Anonymizing Arrays 389

Algorithm 2: Conditional Expectation Heuristic Search (CEHS)
input : r, t, k, (v1, ..., vk), and a set of constraints
output: A or ∅
begin

Create an empty array, A, and set count of all credentials = 0
while some not-yet-r-covered credential remains do

Add a row to A with all columns free
while some column is free do

Randomly select a column i
for each symbol σ ∈ [vi] do

Compute value(i, σ) =
∑

T∈Ti

∑
c∈CT

Λ(c)P (c)

P (c) = ways to cover c
ways to fix free columns of T

Λ(c) =⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r−count of c
r

, c unconstrained or appearing soft constraint,

0, c non-appearing soft constraint,
−1

(
(

k−1
t−1

)
−1)ryt

: y = maxki=1 vi, c hard constraint and ≥ 1 free column,

−(k−1
t−1

)
, c hard constraint with 0 free columns.

Place symbol σ in column i that maximizes value(i, σ)

for each of the credentials appearing in the row do
Update the count of the credential
if a hard constraint appears then

Return ∅

Return A

3.3 Homogeneity Post-Optimization

We develop a post-optimization strategy in Algorithm3 to reduce the homogene-
ity of an array by crossover, or swapping credentials between two access profiles.
A first idea is to distance similar access profiles by identifying a high homogene-
ity access profile, u, and the access profile v with the largest closeness(u, v).
Then if credential c has the largest weight(u, v, c), we might swap the symbols
of u and access profile w in the columns of credential c for which weight(u,w, c)
is smallest. Computationally, this approach requires storage of the weight array
whereas closeness can be computed as sums without the intermediary weights.
Additionally, the view at the granularity level of weight does not inform how close
u and w are on other credentials. They may be identical in all columns except
some of c, and so crossover simply swaps u and w but the overall homogeneity of
the array has not changed. Instead, select u and w such that homogeneity(u) is
highest and closeness(u,w) is lowest. The key is to “decouple” u from u’s group
and create a link between u’s group and w, an access profile outside the group,
doing the same with w and w’s group by swapping some credentials of u and w.

The weights give information about shared credentials so we could choose
to swap any credentials c where weight(u,w, c) = 0. However, too many swaps
results in swapping the entire row, and as u and w are chosen to have the small-
est closeness score, they may have no credentials in common. Swapping a single
credential changes up to

(
k
t

)
−

(
k−t

t

)
other credentials, so how to make the best

390 E. Lanus and C. J. Colbourn

Algorithm 3: Homogeneity Post-optimization (HP)
input : A, r, t, k, (v1, ..., vk), and a set of constraints
output: A
begin

while generations remain do
mostF it = A
Compute homogeneity(i) for all rows in A
u = maxN

i (homogeneity(i))
for each child in the generation do

Create a copy of A as child
Mutate based on implementation choices
Compute S, a set of s rows with smallest closeness(u,w), w ∈ S
for each block of attributes based on implementation do

Randomly select w with 1
s
probability

Swap w and u’s attributes in the block

if child is (r, t)-anonymous with lowest global homogeneity then
Set mostF it = child

Set A = mostFit

Return A

decision without considering all possibilities is unclear. A middle path between
random row resampling and computationally intensive search is to generate a
set of child arrays by conducting crossover to probabilistically swap blocks of
attributes between u and the S access profiles with the lowest closeness scores
with u. The child with the lowest global homogeneity without violating hard con-
straints and meeting the anonymity guarantee becomes the parent of the next
generation. As mentioned, swapping one credential changes up to

(
k
t

)
−

(
k−t

t

)
other credentials in the same access profile. An affected credential that appears
few times may fall below r coverage in all of the children allowed in a generation.
In this case, the parent is retained and random resampling by mutation is con-
ducted to allow additional appearances of the credential that is eliminated by
resampling to occur elsewhere in the array to regain (r, t)-anonymity. It is not
obvious how to set the mutation rate or how many and which rows to mutate.
Additional tunable parameters include the set size of access profiles with which
to swap, the blocksize of attributes to swap, the probability of swapping, and the
number and size of generations. Stopping conditions include a generation limit,
number of generations without reduced homogeneity, or meeting the expected
global homogeneity.

4 Results

Comparison of MTCR and CEHS. In tests to construct AA(r, t, 10, (51423324)),
MTCR produces arrays with the same number of rows as CEHS when t = 1
without constraints if restricted to use the same number of rows produced by
CEHS. When allowed to add additional rows, it typically adds more than needed.

Algorithms for Constructing Anonymizing Arrays 391

1 2 3 4 5
Anonymity Guarantee r

0

200

400

600

800

1000

1200

1400

1600

1800

N
 ro

w
s

t=4 CEHS(1) r
t=4 CEHS(r)
t=3 CEHS(1) r
t=3 CEHS(r)
t=2 CEHS(1) r
t=2 CEHS(r)
t=1 CEHS(1) r
t=1 CEHS(r)

Fig. 1. CEHS versus CAcopy to build AAs with constraints

When t = 2 and MTCR is allowed 106 iterations, in general it requires more rows
than CEHS to find a solution. For t = 2 with a hard constraint, MTCR requires
about twice as many rows. For two hard constraints, MTCR does not complete
in 106 iterations for any fixed number of rows or allowed unlimited rows. For two
soft constraints, MTCR performs in fewer iterations and rows than for one hard
constraint. These results suggest that randomized constructions perform poorly
in the presence of hard constraints.

Comparison to Replicated Mixed-Level Covering Arrays with Constraints. A
“from scratch” construction is used when attributes are assigned arbitrarily to
subjects, as in key distribution. We compare the performance of CEHS against
a covering array copy construction (CAcopy). CEHS is executed for 1 ≤ r ≤ 5
for each 1 ≤ t ≤ 4 with and 0, 6, 4, and 3 hard constraints for the values of
t, respectively, to construct an AA(r, t, 10, (51423324)). The number of rows for
this construction are plotted in Fig. 1 with closed markers and labels indicating
t and “CEHS(r).” To obtain an arbitrary covering array with the same con-
straints, CEHS is used to construct an AA with r = 1. Next, AAs are made
for 2 ≤ r ≤ 5 by stacking r copies of each covering array. The number of rows
for this construction is plotted in Fig. 1 with open markers and labeled by t
and “CEHS(1)× r.” When t = 1, the number of rows needed is always r times
the maximum number of levels, and both constructions produce the same num-
ber of rows. For t > 1, the redundancy of CAcopy clearly produces more rows
than CEHS. A challenge in comparing these constructions by homogeneity is
that additional rows increase the likelihood that access profiles have larger cre-
dential neighborhoods. In general, an anonymizing array with more rows is less

392 E. Lanus and C. J. Colbourn

1 2 3 4 5 6 7 8 9 10
Anonymity Guarantee r

0

500

1000

1500

2000

2500

N
 ro

w
s

CAcopy
CEHS

Fig. 2. CEHS versus CAcopy to build unconstrained AAs

homogeneous than one with fewer. When t = 1, the anonymizing arrays pro-
duced by both methods have the same number of rows for all values of r and so
provide a good opportunity for comparison. In tests, the anonymizing arrays cre-
ated by CEHS always have lower homogeneity scores than the copy constructed
arrays. To attempt an ad-hoc comparison of the constructions in the absence of
a standardized homogeneity metric that adequately compares arrays with differ-
ing numbers of rows, five rows are randomly selected from an (r, 2)-anonymizing
array constructed by CEHS and appended to an AA(43; 2, 2, 10, (51423324)). The
rows are not constructed randomly to ensure that no hard constraints are intro-
duced. This method is not without bias due to the pool of rows from which they
are selected and is not intended for practical use. The resulting array has lower
global homogeneity than the AA(48; 2, 2, 10, (51423324)) created by CAcopy.

Comparison to Replicated Covering Arrays without Constraints. We construct
a set of arrays, AA(245r; r, 3, 10, 5) by making 1 ≤ r ≤ 10 vertical copies of
a CA(245; 3, 10, 5) made by a conditional expectation algorithm shown to con-
struct covering arrays with few rows efficiently [4]. As indicated in Fig. 2, when
r = 1, the covering array has 62 fewer rows, but the CEHS algorithm produces
anonymizing arrays with fewer rows for r ≥ 2. Now, consider a row ρ in the
covering array. After r copies, ρ appears (at least) r times, and this forms a clus-
ter of rows sharing the same credentials and therefore neighborhoods. Instead,
for each copy i > 1 and for each column j in the copy, choose a random per-
mutation over the levels of a column, pci,j

: v �→ v. Each permuted copy is
still a covering array, so the composed array is (r, t)-anonymous (CAperm). In
this array, k independent permutations are applied to the columns of the ρth
row in a copy, so the likelihood that this row closely matches ρ is reduced. In

Algorithms for Constructing Anonymizing Arrays 393

0 100 200 300 400 500 600 700 800 900 1000
Generation

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

H
om

og
en

ei
ty

 S
co

re

maximum local homogeneity,
global homogeneity
minimum local homogeneity

Fig. 3. HP on AA(62; 3, 2, 19, (51423324)) with 20 children and 1000 generations

all tests, the permuted arrays have lower average and maximum homogeneity
scores than by CAcopy, and in all but one data point, they have lower minimum
homogeneity scores. To compare homogeneity of CAperm to CEHS, randomly
generated rows are appended to the CEHS array to equalize the number of rows.
For 2 ≤ r ≤ 10, CEHS produces lower minimum, global, and maximum homo-
geneity scores than CAperm. The one exception is that CAperm produced lower
maximum homogeneity for r = 10. This suggests that CEHS typically produces
arrays with fewer rows and lower homogeneity than by copying covering arrays,
even when utilizing permutations.

Evaluation of Homogeneity Post-optimization (HP). HP contains a number of
tunable parameters, and details for the implementation tested here are in [7]. An
example of the reduction of global homogeneity on an AA(62; 3, 2, 10, (51423322))
generated by CEHS with six hard constraints is in Fig. 3.

5 Conclusion

Although anonymizing arrays differ from covering arrays in essential ways, con-
structive algorithms for covering arrays underlie useful algorithms for construct-
ing anonymizing arrays. Indeed, this connection leads to copy constructions to
produce arrays “from scratch” as well as two methods to add rows to a partial
array (CEHS and MTCR). CEHS outperforms both MTCR and the copy con-
structions, both in terms of the number of rows generated and the homogeneity.
Nevertheless, none of the construction methods examined ensures low homogene-
ity. To address this, we propose a “post-optimization” method (called HP) to
reduce homogeneity, and provide preliminary evidence that HP is a reasonable
first approach.

394 E. Lanus and C. J. Colbourn

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), Los Alamitos,
pp. 321–334. IEEE (2007)

2. Bryce, R.C., Colbourn, C.J.: A density-based greedy algorithm for higher strength
covering arrays. Softw. Test. Verif. Reliab. 19(1), 37–53 (2009)

3. Bryce, R.C., Colbourn, C.J.: Prioritized interaction testing for pair-wise coverage
with seeding and constraints. Inf. Softw. Technol. 48(10), 960–970 (2006). https://
doi.org/10.1016/j.infsof.2006.03.004

4. Colbourn, C.J., Lanus, E., Sarkar, K.: Asymptotic and constructive methods for
covering perfect hash families and covering arrays. Des. Codes Crypt. 86(4), 907–
937 (2017). https://doi.org/10.1007/s10623-017-0369-x

5. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations (draft). NIST Spec. Publ. 800(162), 1–52 (2013)

6. Kapadia, A., Tsang, P.P., Smith, S.W.: Attribute-based publishing with hidden
credentials and hidden policies. In: NDSS, vol. 7, pp. 179–192. Citeseer (2007)

7. Lanus, E.: Interaction testing, fault location, and anonymous attribute-based autho-
rization. Ph.D. thesis, Arizona State University (2019)

8. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma.
J. ACM 57(2), 11:1–11:15 (2010). https://doi.org/10.1145/1667053.1667060

9. Portnoi, M., Shen, C.C.: Location-enhanced authenticated key exchange. In: 2016
International Conference on Computing, Networking and Communications (ICNC),
pp. 1–5. IEEE (2016)

https://doi.org/10.1016/j.infsof.2006.03.004
https://doi.org/10.1016/j.infsof.2006.03.004
https://doi.org/10.1007/s10623-017-0369-x
https://doi.org/10.1145/1667053.1667060

Parameterized Algorithms for Partial
Vertex Covers in Bipartite Graphs

Vahan Mkrtchyan1, Garik Petrosyan2, K. Subramani3(B),
and Piotr Wojciechowski3

1 School of Advanced Studies, Gran Sasso Science Institute, L’Aquila, Italy
vahan.mkrtchyan@gssi.it

2 Department of Informatics and Applied Mathematics, Yerevan State University,
Yerevan, Armenia

garik.petrosyan.1@gmail.com
3 West Virginia University, Morgantown, WV, USA

ksmani@csee.wvu.edu, pwojciec@mix.wvu.edu

Abstract. In this paper, we discuss parameterized algorithms for vari-
ants of the partial vertex cover problem. Recall that in the classical vertex
cover problem (VC), we are given a graph G = (V, E) and a number K
and asked if we can cover all of the edges in E, using at most K vertices
from V . In the partial vertex cover problem (PVC), in addition to the
parameter K, we are given a second parameter K′ and the question is
whether we can cover at least K′ of the edges in E using at most K ver-
tices from V . The weighted generalizations of the VC and PVC problems
are called the weighted vertex cover (WVC) and the partial weighted ver-
tex cover problem (WPVC) respectively. In the WPVC problem, we are
given two parameters R and L, associated respectively with the vertex
set V and edge set E of the graph G. Additionally, we are given non-
negative integral weight functions for the vertices and the edges. The
goal then is to cover edges of total weight at least L, using vertices of
total weight at most R. (In the WVC problem, the goal is to cover all the
edges with vertices whose total weight is at most R). This paper studies
several variants of the PVC problem and establishes new results from
the perspective of fixed-parameter tractability and W[1]-hardness. We
also introduce a new problem called the partial vertex cover with match-
ing constraint and show that it is fixed-parameter tractable for a certain
class of graphs.

1 Introduction

In this paper, we study several variants of the vertex cover problem (VC), from
the perspectives of parameterized algorithm design and complexity. In particular,

The work of the first author has been partially supported by the Italian MIUR PRIN
2017 Project ALGADIMAR “Algorithms, Games, and Digital Markets.” The research
of the third author has been supported in part by the Air-Force Office of Scientific
Research through Grant FA9550-19-1-017 and in part by the Air-Force Research Lab-
oratory, Rome through Contract FA8750-17-S-7007.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 395–408, 2020.
https://doi.org/10.1007/978-3-030-48966-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_30&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_30

396 V. Mkrtchyan et al.

we consider the partial vertex cover problem (PVC), wherein the goal is to cover
a certain threshold of edges (as opposed to all of the edges) using the fewest
number of vertices. We also look into weighted variants of this problem. Our
primary focus is on bipartite graphs. In this case, the problem is called the
partial vertex cover problem on bipartite graphs (PVCB). The PVCB problem
is an important problem with a number of applications in computer security [9]
and risk assessment [6]. In the weighted partial vertex cover problem (WPVC),
we are given a graph G = (V,E), cost function c : V → N, profit function
p : E → N, and positive integers R and L. The goal is to check whether there is
a subset V ′ ⊆ V of cost at most R, such that the total profit of edges covered by
V ′ is at least L. In this paper we study the fixed-parameter tractability of WPVC
in bipartite graphs (WPVCB). By extending the methods of Amini et al. [1],
we show that WPVCB is Fixed-Parameter Tractable (FPT) with respect to R
if c ≡ 1. On the negative side, it is W[1]-hard for arbitrary c, even when p ≡ 1.
In particular, WPVCB is W[1]-hard parameterized by R. We complement this
negative result by proving that for bounded-degree graphs WPVC is FPT with
respect to R. Additionally, we show that WPVC is FPT with respect to L.
Finally, we discuss a variant of PVCB in which the edges covered are constrained
to include a large matching and derive a parameterized algorithm for this version
of the problem.

The rest of this paper is organized as follows: The problems studied in this
paper are formally described in Sect. 2. In Sect. 3, we discuss the motivation for
our work and mention related approaches in the literature. Our main results are
described in Sect. 4. A variant of the partial vertex cover problem with applica-
tions to computational social choice is detailed in Sect. 5. In Sect. 6, we examine
the parameterized complexity of the WPVCB problem when there is a separate
budget for each partition of the vertices. We conclude in Sect. 7, by summarizing
our results and outlining avenues for future research.

2 Statement of Problems

We focus on finite, undirected graphs that have no loops or parallel edges. As
usual, the degree of a vertex is the number of edges of the graph that are incident
with it. The maximum degree of the graph G is just the maximum of all degrees of
vertices of G. A graph G = (V,E) is bipartite, if its vertex set can be partitioned
into two sets V1 and V2, such that each edge of G connects a vertex from V1 to
one from V2. Given a graph G = (V,E), and a set S ⊂ V of vertices, an edge
(i, j) ∈ E is covered by S if i ∈ S or j ∈ S. Let E(S) be the set of edges of
G that are covered by S. The classical vertex cover problem (VC) is defined as
finding the smallest set S of vertices of the input graph G, so that E(S) = E.
The vertex cover problem is a well-known NP-complete problem [16]. In this
paper, we study the following variants of VC:

1. The partial vertex cover problem (PVC) -

Parameterized Algorithms for Partial Vertex Covers in Bipartite Graphs 397

Definition 1. Given an undirected graph G = (V,E), vertex-cardinality param-
eter k1, and edge-cardinality parameter k2, is there a subset V ′ of V , such that
|V ′| ≤ k1 and V ′ covers at least k2 edges?

2. The weighted partial vertex cover problem (WPVC) -

Definition 2. Given an undirected graph G = (V,E), weight-functions c : V →
N and p : E → N , vertex-weight parameter R, and edge-weight parameter L, is
there a subset S of V , such that

∑
v∈S c(v) ≤ R and

∑
e∈E(S) p(e) ≥ L?

3. The partial vertex cover problem on bipartite graphs (PVCB) - This is the
restriction of the partial vertex cover problem (PVC) to bipartite graphs.

4. The weighted partial vertex cover problem on bipartite graphs (WPVCB) -
This is the restriction of the weighted partial vertex cover problem (WPVC)
to bipartite graphs.

5. The 2-budget partial vertex cover problem on bipartite graphs (2-PVCB) -

Definition 3. Given an undirected bipartite graph G = (V,U,E), vertex-
cardinality parameters RV and RU , and an edge-cardinality parameter L, is there
a subset SV of V and a subset SU of U , such that |SV | ≤ RV , |SU | ≤ RU , and
the number of edges covered by SV ∪ SU is at least L?

6. The partial vertex cover problem with matching constraint (PVCBM) - This
is a variant of the PVCB problem, in which we are given a third parameter
k3 and the goal is to find a vertex subset of size at most k1, covering at least
k2 edges, such that the edges covered include a matching of size at least k3.

The principal contributions of this paper are as follows:

1. Fixed-parameter tractability of the WPVCB problem with respect to R when
vertex weights are identically 1.

2. W[1]-hardness of the WPVCB problem with respect to R.
3. Fixed-parameter tractability of the weighted partial vertex cover problem in

bounded degree graphs (not necessarily bipartite) with respect to R.
4. W[1]-hardness of the 2-PVCB problem with respect to RU and RV .
5. Fixed-parameter tractability of the WPVC problem with respect to L.
6. A parameterized algorithm for the matching variant of the PVCB problem

with respect to k1.

3 Motivation and Related Work

When the weight functions c and p are identically one (i.e. c ≡ p ≡ 1), we get
the well-known partial vertex cover problem (PVC). PVC represents a natural
theoretical generalization of VC and is motivated by practical applications. Flow-
based risk-assessment models in computational systems, for example, can be
viewed as instances of PVC [6]. In particular PVC has applications to computer
security even when restricted to bipartite graphs [9].

398 V. Mkrtchyan et al.

VC is polynomial-time solvable in bipartite graphs. However, the computa-
tional complexity of PVC in bipartite graphs has remained open until it was
recently shown to be NP-hard [3,9,10,14].

VC has also been extensively studied from the perspective of approximation
algorithms. Many 2-approximation algorithms for VC are known [31]. There is
an approximation algorithm for the VC problem which has an approximation
factor of (2−θ(1√

log n
)) [15]. This is the best known algorithm. The VC problem

is also known to be APX-complete [27]. Moreover, it cannot be approximated
within a factor of 1.3606 unless P = NP [12]. This lower bound was recently
improved to (

√
2 − ε) for any ε > 0 in [18]. If the unique games conjecture is

true, then VC cannot be approximated within any constant factor smaller than
2 [17]. In [28], a (43 + ε)-approximation algorithm is designed for WPVC for each
ε > 0 when the input graph is bipartite.

All hardness results for the VC problem directly apply to the PVC problem
because the PVC problem is an extension of the VC problem. Since the 1990’s the
PVC problem and the partial-cover variants of similar graph problems have been
extensively studied [7,8,20,21,24,29]. In particular, there is an O(n · log n +m)-
time 2-approximation algorithm for PVC based on the primal-dual method [21],
as well as a combinatorial 2-approximation algorithm [22]. Both of these algo-
rithms are for a more general soft-capacitated version of PVC. There are several
older 2-approximations resulting from different approaches [5,8,13,19]. Let us
also note that the WPVC problem for trees is studied in [23], which provides
an FPTAS for the problem. Additionally, the paper provides a polynomial time
algorithm in the case when the vertices are unweighted.

Another problem with a close relationship to WPVC is the budgeted max-
imum coverage problem (BMC). In this problem one tries to find a min-cost
subset of vertices, such that the profit of covered edges is maximized. It can
be shown that both problems are equivalent from the perspective of exact solv-
ability. The BMC problem for sets (not necessarily graphs) admits a (1 − 1

e)-
approximation algorithm [25]. However, special cases that beat this bound are
rare. The pipage rounding technique gives a 3

4 -approximation algorithm for the
BMC problem on graphs [2]. This is improved to 4

5 for bipartite graphs [4].
Finally, in [9,10], an 8

9 -approximation algorithm for the problem is presented
when the input graph is bipartite and the vertices are unweighted. The result
is based on the linear-programming formulation of the problem, and the con-
stant 8

9 matches the integrality gap of the linear program used in the formula-
tion. More recently, Vangelis Paschos has described a polynomial time approx-
imation scheme for the edge-weighted maximum coverage problem on bipartite
graphs [30].

In this paper, we address these problems from the perspective of fixed-
parameter tractability. Recall that a combinatorial problem Π is said to be
fixed-parameter tractable with respect to a parameter k, if there is an algorithm
for solving Π, whose running time is bounded by f(k) · sizeO(1). Here f is a
computable function of k, and size is the length of the input. From the perspec-
tive of FPT, PVC is in some sense more difficult than VC. For instance, PVC

Parameterized Algorithms for Partial Vertex Covers in Bipartite Graphs 399

is W[1]-complete with respect to R, the number of vertices in the cover [11],
while VC is FPT [11,26].

In [1], the decision version of WPVCB is considered. The authors show that
this problem is FPT with respect to the vertex budget R, when the vertices and
edges of the bipartite graph are unweighted [1]. In this paper, by extending the
result of Amini et al. [1], we show that the decision version of WPVCB is FPT
with respect to R, if the vertices have cost one, while the edges remain arbitrarily
weighted. On the negative side, the problem is W[1]-hard for arbitrary vertex
weights, even when edges have profit one. We complement this negative result
by proving that for bounded-degree graphs WPVC is FPT with respect to R.
The same result holds for WPVC with respect to L. We finish the paper by
obtaining an FPT result for an extension of PVCB. Terms and concepts that we
do not define can be found in [11].

4 Main Results

In this section, we present our results. Our goal is to investigate the fixed-
parameter tractability of the WPVCB problem.

When c and p are identically one (i.e. c ≡ p ≡ 1), we get the PVCB problem.
When c is identically one, we get EPVCB. Finally, when p is identically one, we
get the VPVCB problem. We will also use the same scheme of notations when
the input graph need not be bipartite. In [1], PVCB is considered and it is shown
that the problem is FPT with respect to R. We strengthen this result.

Theorem 1. EPVCB is FPT with respect to R.

Proof. Roughly speaking, we obtain the result with the approach of [1] by con-
sidering the weighted degree instead of the usual degree. Below we present the
technical details.

Assume that we have an instance I of EPVCB. For a vertex v of B, let δ(v)
be the set of edges of B incident with v. Define the set S of vertices of B as
follows:

S =
{

v ∈ V (B) : p(δ(v)) ≥ L

R

}

.

Case 1: |S| ≥ 2 · R. Consider the subgraph H of B induced by S. Since B
is bipartite, H is bipartite, too. Let (X,Y) be the bipartition of H, and assume
that |X| ≥ |Y |. Since |X| + |Y | = |S| ≥ 2 · R, we have |X| ≥ R. Take any R
vertices of X. Observe that X is an independent set in B, hence these R vertices
will cover at least L edges. Thus, the total profit is at least L. This means that
I is a yes-instance.

Case 2: |S| < 2 · R. Observe that any feasible solution to I must intersect S.
Hence, we do recursive guessing, that is, we try each vertex of S one by one as
a possible vertex of the feasible solution.

In the Case 1, the algorithm will run in polynomial time, so the most expen-
sive case is Case 2. Since the number of vertices in a feasible solution is at most
R, we have that the depth of the recursion is at most R. Hence the total running
time of our algorithm is O((2 · R)R · sizeO(1)). ��

400 V. Mkrtchyan et al.

Our next result shows that WPVCB and VPVCB are W[1]-hard. Our reduc-
tion is from the multi-colored clique problem [11]. It is formulated as follows:

Multi-colored Clique: Given a graph G, positive integer k, and a partition
(V1, ..., Vk) of the vertices of G, the goal is to check whether G contains a k-clique
Q, such that Q contains exactly one vertex from each Vj for j = 1, ..., k.

Multi-colored clique is a well-studied problem which is known to be W[1]-
hard with respect to the number of partitions k. Observe that an edge e connect-
ing two vertices from Vi 1 ≤ i ≤ k does not lie in a feasible clique. Thus, without
loss of generality, we can assume that for i = 1, ..., k, Vi is an independent set of
vertices.

Theorem 2. WPVCB is W[1]-hard parameterized by R.1

Proof. We construct an FPT-reduction from multi-colored clique. Let G =
(V,E) be an instance of this problem with vertices partitioned as V = V1∪. . .∪Vk.
We create a bipartite graph B = (U ′ ∪ V ′ ∪ Z,E′) as follows. Let U ′ and V ′ be
two copies of V , and let V = V ′ = {v1, . . . , vn}, U ′ = {u1, . . . , un}, where for
each i ∈ [n], ui is a copy of vi. Here as usual [n] = {1, . . . , n}. For a vertex v ∈ V
let χ(v) be its color, i.e., χ(v) = i if v ∈ Vi, and extend this to U ′ ∪ V ′ so that
χ(ui) = χ(vi) + k (V ′ inherits the original χ values on v1, ..., vn). For a vertex
x ∈ U ′ ∪ V ′, let the cost of x be c(x) = 2χ(x). Add an edge uivj to B if either
χ(ui) = χ(vj)+k and i = j, or χ(ui) = χ(vj)+k and vivj /∈ E(G). Give all these
edges profit 1. Observe that a selection of one vertex from every color class of
U ′ ∪V ′ forms an independent set in B, if and only if it corresponds to two copies
of a k-clique in G. Add two additional vertices z1 and z2, let Z = {z1, z2} and
give both the cost 22·k+1. Finally, join every vertex x ∈ U ′ to z2, every vertex
x ∈ V ′ to z1 and give these edges a profit value so that the total profit of all
edges incident with x equals (2χ(x) · (n + 1) + 5χ(x)). (This is clearly possible,
since the total profit of all previously created edges incident with x is bounded
by n.)

Set the budgets of the instance as vertex budget R =
∑2·k

i=1 2i = 22·k+1 − 2
and profit threshold L =

∑2·k
i=1(2

i · (n + 1) + 5i) = (n + 1) · R + (54) · (52·k − 1).
This finishes the instance description. It is clear that the construction can be
performed in polynomial time, and the budget R is a function of k.

In Fig. 1, a graph G and the bipartite graph B obtained after the reduction
are given. In this example, k = 2, V1 = {v1, v3}, V2 = {v2, v4} and χ(v1) =
χ(v3) = 1, χ(v2) = χ(v4) = 2, χ(uj) = χ(vj)+2 for j = 1, 2, 3, 4. We have R = 30
and L = 930. The costs of vertices and profits of edges in B are defined as follows:
c(v1) = c(v3) = 2, c(v2) = c(v4) = 4, c(u1) = c(u3) = 8 and c(u2) = c(u4) = 16,
and the profits of edges not incident with z1 or z2 are 1, finally, the edges
incident with z1 or z2 are chosen so that the total profit of edges incident with
any x ∈ V (B)\{z1, z2} is (5 · 2χ(x) +5χ(x)). For example, consider the edge z1v1.
Recall that χ(v1) = 1, thus the total profit of all edges incident with v1 should
be 5 · 21 + 51 = 15. Since the profit of v1u3 is 1, the profit of the edge z1v1 is 14.

1 We are grateful to Magnus Wahlström for providing us with a proof of this theorem.

Parameterized Algorithms for Partial Vertex Covers in Bipartite Graphs 401

G

Bv1 v2

v3v4

z2z1

v4

v2

v3

v1

u4

u2

u3

u1

Fig. 1. A graph G and the bipartite graph B obtained from it in the reduction.

It remains to show that (B,R,L) is a positive instance of WPVCB if and
only if G has a multi-colored clique.

From the multi-colored clique problem to the partial vertex cover problem. Let
X ⊆ V (G) be a multi-colored k-clique, and let S = {ui | ui ∈ X} ∪ {vi | ui ∈ X}.
Since S contains one vertex for every color class of B its total cost equals R,
and since it induces an independent set in B the total profit of the edges covered
equals L.

From the Partial Vertex Cover Problem to the Multi-colored Clique Problem.
Now for the more challenging part of the argument. We need to argue that the
costs and profits balance out so that the only way to select vertices to a total
profit of L is to select one vertex from every color class of B. For this, first
observe that for a vertex of class i ∈ [2 · k], the ratio of the total profit of its
incident edges to its cost is

2i · (n + 1) + 5i

2i
= (n + 1) +

(
5
2

)i

. (1)

Let S be a partial vertex cover of profit at least L and cost at most R, and
for each i ∈ [2 ·k] let ni be the number of vertices of S with color class i. For each
vertex, we can divide the contributions to the total profit into two parts. The
first part corresponds to the (n + 1) term in (1), while the second corresponds
to the (52)i term. From the first part, each vertex v contributes a profit of at
least (n + 1) · c(v). It is clear that every selection of cost at most R contributes
a profit of at least (n + 1) · R, regardless of the distribution ni. Therefore we
focus on the contribution of the second part of the formula, with target profit
L − (n + 1) · R.

Considering this second part, define Rt =
∑t

i=1 2i and Lt =
∑t

i=1 5i. We
show by induction that for every t ∈ [2 · k], the largest possible contribution of
a selection of cost at most Rt is Lt (which of course is achieved by making one
selection per color class). For t = 1 this is trivial. Therefore, by induction, let
t > 1 and assume that the claim holds for every value t′ < t. Let n′

i, i ∈ [t],

402 V. Mkrtchyan et al.

denote the number of vertices selected in color class i, for a selection of total
cost at most Rt. Then if n′

t = 0, the maximum possible profit is Rt · (52)t−1 <
2t+1 · (52)t−1 = 4 · 5t−1 < 5t. Therefore, the total profit from the selection n′

i is
less than that from a single vertex of class t. Therefore n′

t ≥ 1. But then the
remaining budget is Rt − 2t = Rt−1, and by induction the optimal selection has
n′

i = 1 for every i ∈ [t], completing the induction step. Therefore we may assume
ni = 1 for every i ∈ [2 · k] for our selection S.

But then, finally, we observe that a total profit of L is possible only if S is an
independent set, since otherwise the profit of some edge will have been double-
counted in the above calculations. Therefore, S contains precisely one vertex of
each color class of B forming an independent set. In particular, if vi ∈ S is a
selection in color class j ∈ [k] for some i ∈ [n], then the selection in color class
j + k must be ui. Also, for every pair of color classes i, i′ ∈ [k] the selections in
classes i and i′ + k are independent in B and therefore the selections in classes
i and i′ are neighbors in G. Thus X = S ∩ V ′ is a multi-colored clique in G, as
required. ��
Corollary 1. The problem is W[1]-hard also in the variant where all edge
profits are 1, i.e., the VPVCB problem is W[1]-hard with respect to R.

Proof. The only edges of weight more than 1 in the above reduction are the
edges connecting to the special vertices zi, and the largest edge weight used is
bounded by a function f(k) · (n+1). Therefore, instead of using edge weights we
can in FPT time simply create the corresponding number of pendant vertices
for each vertex. These pendants can be given the same weight as the vertices zi.

��
A class of graphs is said to be bounded-degree, if there is a constant C, such

that all graphs from the class have maximum degrees at most C. It turns out
that when the input graphs have bounded-degree and need not be bipartite, we
have the following result:

Theorem 3. WPVC is fixed-parameter tractable with respect to R for bounded-
degree graphs.

Proof. Let I be an instance of the WPVC problem, where G = (V,E) is a
bounded-degree graph, c : V → N, p : E → N are cost and profit functions,
and L, R are constants. Assume that for every v ∈ V , we have d(v) ≤ d. For
i = 1, 2, . . . , R, let Mi(G) = {v : c(v) = i} (we disregard the vertices of cost
greater than R). Choose a vertex vi ∈ Mi(G) which has the largest coverage,
and let M be the set comprised of chosen vertices vi. The set of vertices of G
which have a neighbor from M , we denote by N . Consider the set M ∪ N . It is
obvious that |M ∪ N | ≤ (d + 1) · R, where d is the bound for the degree.

Let us show that if I is a yes-instance, then we can construct a feasible set,
which intersects M ∪ N . Indeed, let S be a feasible set, which does not have a
vertex from M ∪ N . Then we can replace any vertex v ∈ S with vc(v) to get a
new set S′. Since there is no vertex of S, which is a neighbor of vc(v), we have

Parameterized Algorithms for Partial Vertex Covers in Bipartite Graphs 403

that the profit of S′ does not decrease. Moreover, as c(v) = c(vc(v)), S′ is also
feasible. Observe that S′ intersects M ∪ N .

Now we complete the proof by recursively guessing on M ∪ N . Since the
number of vertices in a feasible set is at most R, we have that the depth of
the recursion is at most R, hence the total running time of the algorithm is
((d + 1) · R)R · sizeO(1). ��

Exercise 5.11 from [11] implies that PVC is fixed-parameter tractable with
respect to L. Below, we strengthen the statement of this exercise by showing
that the WPVC problem can be parameterized with respect to L.

Theorem 4. WPVC is fixed-parameter tractable with respect to L.

Proof. Let I be an instance of the WPVC problem, where G = (V,E) is a
graph, c : V → N, p : E → N are cost and profit functions, and L and R are
constants. We can assume that no vertex of G is isolated. Moreover, without loss
of generality, we can assume that for any vertex v, we have c(v) ≤ R.

For every vertex v we denote p(v) = p(δ(v)) =
∑

e:v∈e p(e) the total profit
of edges incident with v. We can assume that p(v) ≤ L − 1 for all vertices,
as otherwise we will have a feasible solution comprised of one vertex and, as a
result, I is a yes-instance. This, in particular, means that d(v) ≤ L − 1. For
i = 1, . . . , L − 1 let vi be a vertex which has profit i and for any other vertex u,
which has profit i, we have c(vi) ≤ c(u). Let M be the set of those vertices vi.
The set of vertices of G which have a neighbor from M is denoted by N . It is
obvious that |M ∪ N | ≤ (L − 1) + (L − 1)2 < L2.

Let us show that if I is a yes-instance and S is a feasible set in I, then we
can construct a feasible set that intersects M ∪ N . Indeed, assume that S does
not contain any vertex from M ∪ N . Then we can replace any vertex v ∈ S
by the vertex vp(v) ∈ M . Since there is no vertex in S which is a neighbor
of vp(v), it follows that the total vertex cost has not increased, and, as p(v) =
p(vp(v)), S′ is also feasible. Now we complete the proof by recursively guessing on
M∪N . We remove any isolated vertex that may arise in each branch of recursion.
Let us show that the depth of the recursion is less than 2 · L. For the sake
of contradiction, assume that during the recursive guessing, the algorithm has
considered the vertices z1, . . . , z2·L. Let Z = {z1, . . . , z2·L}. Since the algorithm
has considered these vertices, we have that c(Z) ≤ R. Then for the profit of
edges covered by Z, we will have the following bound:

p(E(Z)) ≥ |E(Z)| ≥ d(z1) + . . . + d(z2·L)
2

≥ 2 · L

2
= L.

Thus, Z is a feasible set, hence I is a yes-instance. This means that there is no
need to consider 2 · L or more vertices during the recursive guessing. Hence the
depth of the recursion is less than 2 · L. Since |M ∪ N | ≤ L2, we have that the
running time of our algorithm is bounded by (L2)2·L · sizeO(1) = L4·L · sizeO(1).

��

404 V. Mkrtchyan et al.

5 The Matching Problem

We now consider a variant of PVCB. In this variant, we are given a bipartite
graph G and three integers k1, k2 and k3. The goal is to check whether there is a
subset of at most k1 vertices, that covers at least k2 edges, such that the covered
edges contain a matching of size at least k3. This variant is called PVCBM.
Clearly, this problem is NP-hard, since when k3 = 0 it results in PVCB. Since
PVCB is FPT with respect to k1, it would be interesting to parameterize this
new version of the problem with respect to k1. Observe that we can assume that
k3 ≤ k1 otherwise the problem is a trivial no-instance.

Theorem 5. PVCBM is fixed-parameter tractable with respect to the parameter
k1.

Proof. Let PV CB(A,B) be an FPT algorithm for PVCB that checks whether
there is a subset of A vertices that covers at least B edges of the input bipartite
graph. Now, assume that the graph G and the parameters k1, k2 and k3 are
given in the matching problem. First, we run PV CB(k1, k2). If there is no such
subgraph, then the answer to the matching problem is also negative. So we
can assume that PV CB(k1, k2) returns such a subgraph. Next, by trying R =
0, 1, ..., k1 we can find the smallest R for which PV CB(R, k2) is a yes-instance.

Let H be the edge-induced subgraph on these ≥ k2 edges. As usual, let ν(G)
be the size of the largest matching in G, and let τ(G) be the size of the smallest
vertex cover in G. By the classical König theorem we have ν(G) = τ(G) for any
bipartite graph G.

Observe that we can assume that R < k3 ≤ k1. To see this, observe that R
represents the number of vertices required to cover all the edges in H. In other
words, it is a vertex cover of H. Thus, R = ν(H) and since H is a bipartite
subgraph of G, R is also the size of a maximum matching in H. Thus, if R ≥ k3,
then the edges in H, which number at least k2 can be covered by R ≤ k1 vertices
and a matching of size R ≥ k3 is contained in H. Also, observe that if τ(G) < k3,
then we have trivial no-instance, as G contains no matching of size k3. Thus,
we can assume that ν(G) = τ(G) ≥ k3. Since τ(H) = R < k3 ≤ τ(G), we have
that E(H) = E(G). Thus, there is as an edge e lying outside H. Add e to H. If
τ(H) has increased by adding e, define R := R+1, otherwise let R be the same.
Repeat this process of adding edges outside H. Since τ(H) = R < k3 ≤ τ(G), at
some point we will arrive into H such that R = τ(H) = k3 ≤ k1. Observe that
H can be covered with at most R ≤ k1 vertices, it has at least k2 edges and it
contains a matching of size k3. Thus, the problem is a yes-instance.

Finally, let us observe that the running-time of this algorithm is FPT in k1.
We need at most k1 calls of PV CB(k1, k2). Since the latter is FPT with respect
to k1, we have the result. ��

6 The 2-PVCB Problem

In this section, we consider the problem of finding a partial vertex cover on a
bipartite graph when we have a separate budget for each partition. In Theorem6

Parameterized Algorithms for Partial Vertex Covers in Bipartite Graphs 405

we show that this problem is W[1]-hard with respect to both vertex budgets
even when both the vertices and edges are unweighted.

Theorem 6. 2-PVCB is W[1]-hard with respect to RV and RU .

Proof. We will show this by a reduction from clique on regular graphs. This
problem is known to be W[1]-complete (Theorem 13.25 of [11]).

Let G = (V,E) be an undirected graph where each vertex has degree r. From
G we construct the bipartite graph G′ = (V ′, U ′, E′) as follows:

1. For each vertex vi ∈ V , add the vertex v′
i to V ′.

2. For each edge el = (vi, vj) ∈ E add the vertex u′
l to U ′. Additionally add the

edge (v′, u′
l) to E′ for each v′ ∈ V ′ \ {v′

i, v
′
j}. This connects the vertex u′

l to
every vertex v′

i that does not correspond to an endpoint of el.

Figure 2 shows the original regular graph G and the corresponding bipartite
graph G′ constructed as in the reduction.

G G′

v1 v2

v3v4

e1

e2

e3

e4

v′
1

v′
2

v′
3

v′
4

u′
1

u′
2

u′
3

u′
4

Fig. 2. A graph G and the bipartite graph G′ obtained from it in the reduction.

Note that G has a clique of size k = 2 using vertices v1 and v2. This corre-
sponds to the vertex cover using vertices v′

1 and v′
2 from V ′ and vertex u′

1 from
U ′ which covers (4 − 2) · (

2
2

)
+ (4 − 2) · 2 = 6 edges of G′.

We now show that G has a clique of size k if and only if we can cover at least
L = (n − k) · (

k
2

)
+ k · (m − r) edges of G′ using at most RV ′ = k vertices from

V ′ and at most RU ′ =
(
k
2

)
vertices from U ′. Since checking if G has a clique of

size n can be done in polynomial time, we assume without loss of generality that
k < n.

First assume that G has a clique of size k. Let S ⊆ V denote the vertices in
the clique. We construct the desired partial vertex cover of G′ as follows:

1. For each vi ∈ S, add v′
i to SV ′ .

2. For each edge el = (vi, vj) such that vi, vj ∈ S, add the vertex u′
l to SU ′ . Note

that there are exactly
(
k
2

)
such edges.

406 V. Mkrtchyan et al.

Observe the following:

1. Each vertex vi ∈ S is the endpoint of exactly r edges in E. Thus, there are
(m− r) edges in E which do not have vi as an endpoint. This means that, by
construction, v′

i ∈ SV ′ covers (m − r) edges. Thus, the vertices in SV ′ cover
a total of k · (m − r) edges.

2. Each vertex u′
l in SU ′ corresponds to an edge of G with both endpoints in S.

Thus, there is an edge between u′
l and every vertex in V ′ \ SV ′ . This means

that u′
l covers an additional (n − k) edges. Thus, the vertices in SU ′ cover a

total of (n − k) · (
k
2

)
additional edges.

Thus, the sets SV ′ and SU ′ cover a total of L = (n − k) · (
k
2

)
+ k · (m − r)

edges.
Now suppose that there exist sets SV ′ ⊆ V ′ and SU ′ ⊆ U ′ such that |SV ′ | ≤ k,

|SU ′ | ≤ (
k
2

)
, and the sets SV ′ and SU ′ cover at least L = (n−k) ·(k

2

)
+k · (m−r)

edges of G′.
We can assume without loss of generality that |SV ′ | = k and |SU ′ | =

(
k
2

)

since adding additional vertices will not reduce the number of edges covered.
Let S = {vi : v′

i ∈ SV ′}.
Observe the following:

1. As before, each vertex in SV ′ has degree (m − r). Thus, the vertices in SV ′

cover a total of k · (m − r) edges. Thus, the vertices in SU ′ must cover an
additional (n − k) · (

k
2

)
edges.

2. There are (n − k) > 0 vertices in V ′ \ SV ′ . Thus, there must be an edge
between each of the

(
k
2

)
vertices in SU ′ and each of the (n − k) vertices in

V ′ \ SV ′ . Otherwise, fewer than (n − k) · (k
2

)
additional edges will be covered

by the vertices in SU ′ .
3. Let u′

l be a vertex in SU ′ and let el = (vi, vj) be the corresponding edge in G.
Note there is no edge in E′ between u′

l and v′
i nor is there an edge between

u′
l and v′

j . Thus, both v′
i and v′

j are in SV ′ . This means that every vertex
u′

l ∈ SU ′ corresponds to an edge el ∈ E with both endpoints in S.

Thus, G has
(
k
2

)
edges with both endpoints in S. Since |S| = k, S must be a

clique of size k. ��

7 Conclusion

In this paper, we studied the partial vertex cover problem from the perspective
of parameterized tractability and W[1]-hardness. Although our primary focus
was on bipartite graphs, we obtained new results for the general case as well.
Our main contributions include showing that a restricted version of the WPVCB
problem is fixed-parameter tractable and that this problem is W[1]-hard, with
respect to the vertex-weight parameter. We also showed that the WPVC problem
is fixed-parameter tractable in bounded degree graphs. Finally, we introduced a
new variant of the partial vertex cover problem called PVCBM and showed that
it is fixed-parameter tractable.

Parameterized Algorithms for Partial Vertex Covers in Bipartite Graphs 407

References

1. Amini, O., Fomin, F.V., Saurabh, S.: Implicit branching and parameterized partial
cover problems. J. Comput. Syst. Sci. 77, 1159–1171 (2011)

2. Ageev, A.A., Sviridenko, M.I.: Approximation algorithms for maximum coverage
and max cut with given sizes of parts. In: Cornuéjols, G., Burkard, R.E., Woeginger,
G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 17–30. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48777-8 2

3. Apollonio, N., Simeone, B.: The maximum vertex coverage problem on bipartite
graphs. Discrete Appl. Math. 165, 37–48 (2014)

4. Apollonio, N., Simeone, B.: Improved approximation of maximum vertex coverage
problem on bipartite graphs. SIAM J. Discrete Math. 28(3), 1137–1151 (2014)

5. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover
problem. J. Algorithms 39(2), 137–144 (2001)

6. Bilgin, C.C., Caskurlu, B., Gehani, A., Subramani, K.: Analytical models for risk-
based intrusion response. Comput. Netw. (Special issue on Security/Identity Archi-
tecture) 57(10), 2181–2192 (2013)

7. Bläser, M.: Computing small partial coverings. Inf. Process. Lett. 85(6), 327–331
(2003)

8. Bshouty, N.H., Burroughs, L.: Massaging a linear programming solution to give a
2-approximation for a generalization of the vertex cover problem. In: Morvan, M.,
Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 298–308. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0028569

9. Caskurlu, B., Mkrtchyan, V., Parekh, O., Subramani, K.: Partial vertex cover and
budgeted maximum coverage in bipartite graphs. SIAM J. Discrete Math. 31(3),
2172–2184 (2017)

10. Caskurlu, B., Mkrtchyan, V., Parekh, O., Subramani, K.: On partial vertex cover
and budgeted maximum coverage problems in bipartite graphs. In: Diaz, J., Lanese,
I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 13–26. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44602-7 2

11. Cygan, M., et al.: Parameterized Algorithms, pp. 3–555. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3. ISBN 978-3-319-21274-6

12. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann.
Math. 162(1), 439–485 (2005)

13. Hochbaum, D.S.: The t-vertex cover problem: extending the half integrality frame-
work with budget constraints. In: Jansen, K., Rolim, J. (eds.) APPROX 1998.
LNCS, vol. 1444, pp. 111–122. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0053968

14. Joret, G., Vetta, A.: Reducing the rank of a matroid. Discrete Math. Theor. Com-
put. Sci. 17(2), 143–156 (2015)

15. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM
Trans. Algorithms 5(4), 1–8 (2009)

16. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New
York (1972)

17. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
J. Comput. Syst. Sci. 74, 335–349 (2008)

18. Khot, S., Minzer, D., Safra, M.: Pseudorandom sets in Grassmann graph have near-
perfect expansion. Electronic Colloquium on Computational Complexity, Report
No. 6 (2018)

https://doi.org/10.1007/3-540-48777-8_2
https://doi.org/10.1007/BFb0028569
https://doi.org/10.1007/978-3-662-44602-7_2
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/BFb0053968
https://doi.org/10.1007/BFb0053968

408 V. Mkrtchyan et al.

19. Khuller, S., Gandhi, R., Srinivasan, A.: Approximation algorithms for partial cov-
ering problems. J. Algorithms 53(1), 55–84 (2004)

20. Kneis, J., Langer, A., Rossmanith, P.: Improved upper bounds for partial vertex
cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-92248-3 22

21. Mestre, J.: A primal-dual approximation algorithm for partial vertex cover: making
educated guesses. Algorithmica 55(1), 227–239 (2009)

22. Bar-Yehuda, R., Flysher, G., Mestre, J., Rawitz, D.: Approximation of partial
capacitated vertex cover. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 335–346. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75520-3 31

23. Mkrtchyan, V., Parekh, O., Segev, D., Subramani, K.: The approximability of
partial vertex covers in trees. In: Steffen, B., Baier, C., van den Brand, M., Eder,
J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 350–360.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0 27

24. Kneis, J., Mölle, D., Rossmanith, P.: Partial vs. complete domination: t-dominating
set. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H.,
Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 367–376. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-69507-3 31

25. Moss, A., Khuler, S., (Seffi) Naor, J.: The budgeted maximum coverage problem.
Inf. Process. Lett. 70(1), 39–45 (1999)

26. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of generalized
vertex cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005). https://doi.org/10.
1007/11534273 5

27. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

28. Parekh, O., Könemann, J., Segev, D.: A unified approach to approximating partial
covering problems. Algorithmica 59(4), 489–509 (2011)

29. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Intuitive algorithms and t-vertex
cover. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 598–607. Springer,
Heidelberg (2006). https://doi.org/10.1007/11940128 60

30. Paschos, V.Th.: A polynomial time approximation schema for max k–vertex cover
in bipartite graphs (2019). https://arxiv.org/abs/1909.08435v1

31. Vazirani, V.V.: Approximation Algorithms. Springer, New York (2001)

https://doi.org/10.1007/978-3-540-92248-3_22
https://doi.org/10.1007/978-3-540-92248-3_22
https://doi.org/10.1007/978-3-540-75520-3_31
https://doi.org/10.1007/978-3-540-75520-3_31
https://doi.org/10.1007/978-3-319-51963-0_27
https://doi.org/10.1007/978-3-540-69507-3_31
https://doi.org/10.1007/11534273_5
https://doi.org/10.1007/11534273_5
https://doi.org/10.1007/11940128_60
https://arxiv.org/abs/1909.08435v1

Acyclic Matching in Some Subclasses
of Graphs

B. S. Panda(B) and Juhi Chaudhary

Computer Science and Application Group, Department of Mathematics,
Indian Institute of Technology Delhi, Hauz Khas 110016, New Delhi, India

bspanda@maths.iitd.ac.in, chaudhary.juhi5@gmail.com

Abstract. A subset M ⊆ E of edges of a graph G = (V, E) is called
a matching if no two edges of M share a common vertex. A matching
M in a graph G is called an acyclic matching if G[V (M)], the subgraph
of G induced by the M -saturated vertices of G is acyclic. The Acyclic

Matching Problem is the problem of finding an acyclic matching of
maximum size. The decision version of the Acyclic Matching Prob-

lem is known to be NP-complete for general graphs as well as for bipar-
tite graphs. In this paper, we strengthen this result by showing that
the decision version of the Acyclic Matching Problem remains NP-
complete for comb-convex bipartite graphs and dually-chordal graphs.
On the positive side, we present linear time algorithms to compute an
acyclic matching of maximum size in split graphs and proper interval
graphs. Finally, we show that the Acyclic Matching Problem is hard
to approximate within a factor of n1−ε for any ε > 0, unless P = NP and
the Acyclic Matching Problem is APX-complete for 2k + 1-regular
graphs for k ≥ 3, where k is a constant.

Keywords: Matching · Bipartite graphs · Chordal graphs · Graph
algorithm · NP-completeness · Approximation algorithm

1 Introduction

A subset M ⊆ E of edges of a graph G = (V,E) is called a matching if no two
edges of M share a common vertex. Vertices that are incident on the edges of
a matching M are called M -saturated vertices and are denoted by V (M). In
this paper, we study an important variant of matching called acyclic matching
(see [3,5,9]). A matching M in G is called an acyclic matching if G[V (M)],
the subgraph of G induced by the M -saturated vertices of G is acyclic. The
Acyclic Matching Problem asks to find an acyclic matching of maximum

B. S. Panda—The author thanks the SERB, Department of Science and Technology
for their support vide Diary No. SERB/F/12949/2018-2019.
J. Chaudhary—The author has been supported by the Department of Science and
Technology through INSPIRE Fellowship for this research.

c© Springer Nature Switzerland AG 2020
L. G ↪asieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 409–421, 2020.
https://doi.org/10.1007/978-3-030-48966-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_31&domain=pdf
https://doi.org/10.1007/978-3-030-48966-3_31

410 B. S. Panda and J. Chaudhary

size in a given graph G. The acyclic matching number of G, denoted by μac(G)
is the maximum size of an acyclic matching in G.

More formally, the Acyclic Matching Problem and its decision version
are defined as follows:

Acyclic Matching Problem

Instance: A graph G = (V,E).
Solution: An acyclic matching M in G.
Measure: Cardinality of the set M .

Acyclic Matching Decide Problem

Instance: A graph G = (V,E) and a positive integer k.
Question: Does there exist an acyclic matching M in G of size at least k?

Goddard et al. [5] introduced the concept of acyclic matching along with
some other variants of the matching and proved that the Acyclic Match-

ing Decide Problem is NP-complete for general graphs. Later, Panda and
Pradhan [9] strengthened this result by showing that the Acyclic Match-

ing Decide Problem remains NP-complete for bipartite graphs and even for
perfect-elimination bipartite graphs, which is a subclass of bipartite graphs. They
also gave a dynamic programming based algorithm to find an acyclic matching
of maximum size in bipartite permutation graphs. Baste et al. [2] showed that
finding a maximum size 1-degenerate matching in a graph G is equivalent to find-
ing a maximum acyclic matching in G. They further proved that a maximum
1-degenerate matching could be found in polynomial time in chordal graphs, but
the time complexity is very high. Recently, Fürst and Rautenbach showed that
it is hard to decide whether a given bipartite graph of maximum degree at most
four has a maximum matching that is acyclic [4]. They further characterized
the graphs for which every maximum matching is acyclic and give linear time
algorithms to compute a maximum acyclic matching in graph classes like P4-free
graphs and 2P3-free graphs [4]. There are no approximation results known for
the Acyclic Matching Problem till now.

In this paper, we study the complexity status of the Acyclic Matching

Problem and the Acyclic Matching Decide Problem in some subclasses
of graphs. The main contributions of this paper are summarized below.

1. We prove that the Acyclic Matching Decide Problem is NP-complete
for tree-convex bipartite graphs by showing that it is NP-complete for comb-
convex bipartite graphs which is a subclass of tree-convex bipartite graphs.

2. We prove that the Acyclic Matching Decide Problem is NP-complete
for dually chordal graphs.

3. We prove that a maximum size acyclic matching can be computed in linear
time in split graphs and proper interval graphs.

4. We prove that it is hard to approximate the Acyclic Matching Problem

within a factor of n1−ε for any ε > 0, unless P = NP .
5. We prove that the Acyclic Matching Problem is APX-complete for 2k+

1-regular graphs for k ≥ 3, where k is a constant.

Acyclic Matching in Some Subclasses of Graphs 411

2 Preliminaries

We consider only simple and connected graphs. For a graph G = (V,E), let n
denotes the number of vertices and m denotes the number of edges in G. The
open and closed neighborhood of a vertex u ∈ V are denoted by N(u) and N [u]
respectively, where N(u) = {w | wu ∈ E} and N [u] = N(u) ∪ {u}. The degree
of a vertex u is |N(u)| and is denoted by d(u). For a graph G = (V,E), the
subgraph of G induced by U ⊆ V is denoted by G[U], where G[U] = (U,EU)
and EU = {xy ∈ E | x, y ∈ U}.

A graph G = (V,E) is called a k-regular graph if d(v) = k for every vertex
v of G. A graph G = (V,E) is called a bipartite graph if its vertex set V can
be partitioned into two independent sets X and Y , such that every edge of G
joins a vertex in X to a vertex in Y . A comb is a graph obtained by attaching a
pendant vertex (tooth) to every vertex of a path (backbone). A bipartite graph
G = (X,Y,E) is said to be a tree-convex bipartite graph, if a tree T = (X,EX)
can be defined on X such that for every vertex y ∈ Y , the vertices in NG(y)
induces a subtree of T . It can be noted that tree-convex bipartite graphs are
recognizable in linear time and the associated tree T can also be constructed in
linear time [11]. If the tree T in a tree-convex bipartite graph is a comb, then G
is called a comb-convex bipartite graph.

A graph G = (V,E) is called a chordal graph if every cycle in G of length at
least four has a chord, that is, an edge joining two non-consecutive vertices of
the cycle. A graph G = (V,E) is called a split graph if its vertex set V can be
partitioned into two sets I and C such that I is an independent set and C is a
clique. Let F be a family of sets. The intersection graph of F is obtained by
taking each set in F as a vertex and joining two sets in F if and only if they
have a nonempty intersection. A graph G is called a proper interval graph if it
is the intersection graph of a family F of intervals on the real line such that
no intervals in F contains another. A vertex u ∈ NG[v] in a graph G is called
a maximum neighbor of v if for all w ∈ NG[v], NG[w] ⊆ NG[u]. An ordering
α = (v1, v2, . . . , vn) of V (G) is called a maximum neighborhood ordering, if vi

has a maximum neighbor in Gi = G[{vi, . . . , vn}] for all i, 1 ≤ i ≤ n. A graph G
is called a dually chordal graph if it has a maximum neighborhood ordering.

3 NP-Completeness Results

3.1 Comb-Convex Bipartite Graphs

It has been shown in [9] that the Acyclic Matching Decide Problem is NP-
complete for bipartite graphs. In this subsection, we strengthen this result by
showing that the Acyclic Matching Decide Problem remains NP-complete
for tree-convex bipartite graphs, which is a subclass of bipartite graphs by show-
ing that it is NP-complete for comb-convex bipartite graphs.

Theorem 1. The Acyclic Matching Decide Problem is NP-complete for
comb-convex bipartite graphs.

412 B. S. Panda and J. Chaudhary

Proof. Clearly, the Acyclic Matching Decide Problem belongs to the class
NP for comb-convex bipartite graphs. To show the NP-completeness, we give
a polynomial reduction from the Acyclic Matching Decide Problem for
bipartite graphs, which is already known to be NP-complete [9].

Given a bipartite graph G = (X,Y,E), we construct a comb-convex bipartite
graph H = (XH , YH , EH) as follows:

Let XH = X ∪ X ′, where X ′ = {x′
i | xi ∈ X}, YH = Y , and EH = E ∪ E′,

where E′ = {x′
iy | x′

i ∈ X ′ and y ∈ Y }. The constructed graph H is a comb-
convex bipartite graph if X ′ is taken as the backbone and X is taken as the
teeth of a comb C. Further, note that given a bipartite graph G, the graph H
can be constructed in polynomial time.

Now, the following claim is sufficient to complete the proof of the theorem.

Claim. G has an acyclic matching of size at least k if and only if H has an
acyclic matching of size at least k.

Proof. Necessity: Let M be an acyclic matching in G of size at least k. Since G
is a vertex induced subgraph of graph H, M is acyclic in H. Hence, H has an
acyclic matching of size at least k.

Sufficiency: Let M ′ be an acyclic matching in H of size at least k. If M ′ does
not have an edge from the edge set E′ then M ′ is a required acyclic matching in
G. Otherwise, note that M ′ can include at most one edge from the edge set E′.
To the contrary, if {x′

iyi, x
′
jyj} ⊆ M ′ for some x′

i, x
′
j ∈ X ′ then G[{x′

i, yi, x
′
j , yj}]

forms a cycle, which is a contradiction. Thus, M ′ can include at most one edge
from E′.

Next, let x′
iyi ∈ M ′ for some x′

i ∈ X ′. Since G is connected, yi will have
a neighbor (say xk) in X. Note that xk must be unsaturated by M ′ because
otherwise if xkyk ∈ M ′ for some yk ∈ Y , then G[{xk, yk, x′

i, yi}] will form a cycle,
which is a contradiction to the fact that M ′ is acyclic. Let M = (M ′ \ {x′

iyi}) ∪
{xkyi}. If G[V (M)] is acyclic, then M is a required acyclic matching in G.
Otherwise, let us assume that G[V (M)] contains a cycle C ′. If C ′ does not contain
the vertex xk, then C ′ is also a cycle in G[V (M ′)]. This contradicts the fact that
M ′ is an acyclic matching. So, C ′ contains the vertex xk. Let xkya, xkyb ∈ E(C ′).
Since vertices of set X ′ are adjacent to every y ∈ Y , x′

iya, x′
iyb ∈ EH . Now,

C = (C ′ \ {xkya, xkyb}) ∪ {x′
iya, x′

iyb} is also a cycle in G[V (M ′)], which is a
contradiction. Hence, M is acyclic and it is a required acyclic matching in G of
size at least k. ♦

Hence, the Acyclic Matching Decide Problem is NP-complete for
comb-convex bipartite graphs. ��
Corollary 1. The Acyclic Matching Decide Problem is NP-complete for
tree-convex bipartite graphs.

3.2 Dually Chordal Graphs

The Acyclic Matching Problem is polynomial time solvable for chordal
graphs [2] and hence for strongly chordal graphs. In this subsection, we show

Acyclic Matching in Some Subclasses of Graphs 413

that the Acyclic Matching Decide Problem is NP-complete for dually
chordal graphs which is a superclass of strongly chordal graphs.

Theorem 2. The Acyclic Matching Decide Problem is NP-complete for
dually chordal graphs.

Proof. Clearly, the Acyclic Matching Decide Problem belongs to the class
NP for dually chordal graphs. To show the NP-completeness, we give a polyno-
mial reduction from the Acyclic Matching Decide Problem for general
graphs, which is already known to be NP-complete [5].

Given a graph G = (V,E), we construct a dually chordal graph H =
(VH , EH) as follows: VH = V ∪ {v0}, EH = E ∪ {v0v | v ∈ V }.

Consider the ordering α = (v1, v2, . . . , vn, v0). Since N [vj] ⊆ N [v0] for all
vj ∈ V , v0 is a maximum neighbor for all vj in Gj = G[{vj , . . . , vn}]. Therefore,
it is easy to see that the constructed graph H = (VH , EH) is a dually chordal
graph. Also, note that given a graph G, the graph H can be constructed in
polynomial time.

Now, the following claim is sufficient to complete the proof of the theorem.

Claim. G has an acyclic matching of size at least k if and only if H has an
acyclic matching of size at least k, where k > 1.

Proof. Necessity: Let M be an acyclic matching in G of size at least k. Since G
is a vertex induced subgraph of H, so M is an acyclic matching in graph H of
size at least k.

Sufficiency: Let M ′ be an acyclic matching in graph H of size at least k,
k > 1. Observe that if the vertex v0 is saturated by M ′, that is v0vi ∈ M ′

for some vi ∈ V , then |M ′| = 1. To the contrary, if there exists another edge
vjvk ∈ M ′, then the graph H[{v0, vj , vk}] forms a cycle, which is a contradiction.

As |M ′| ≥ k > 1, vertex v0 is not saturated by M ′, that is, M ′ does not
have any edge of the form v0vi for any vi ∈ V . Thus, M ′ is a required acyclic
matching in graph G of size at least k. ♦

Hence, the Acyclic Matching Decide Problem is NP-complete for
dually chordal graphs. ��

4 Polynomial Time Algorithms

4.1 Split Graphs

In this subsection, we show that an acyclic matching of maximum size can be
computed in linear time for split graphs which is a subclass of chordal graphs,
where the complexity of computing a maximum size acyclic matching is O(n7).

Let G = (V,E) be a split graph. Throughout this section, I ∪ C represents
a given partition of the vertex set V , where I is an independent set and C is a
clique in G. Now, the following lemma shows that the cardinality of an acyclic
matching in a split graph G = (V,E) can be either 1 or 2 only.

414 B. S. Panda and J. Chaudhary

Lemma 1. Let G = (V,E) be a split graph. If M is an acyclic matching in G,
then 1 ≤ |M | ≤ 2.

Proof. Let M be an acyclic matching in G and let |M | ≥ 3. Let {a1b1, a2b2,
a3b3} ⊆ M for some ai, bi ∈ V , 1 ≤ i ≤ 3. Since I is an independent set, we can
assume without loss of generality that b1, b2, b3 ∈ C. This leads to a contradiction
as G[{b1, b2, b3}] forms a cycle. Thus, |M | ≤ 2. ♦

Next, we will characterize the split graphs depending on the size of an acyclic
matching in G. For this purpose, let us recall the definition of threshold graphs,
which is a proper subclass of split graphs.

A split graph G = (V,E) is called a threshold graph if the vertices in I can be
linearly ordered, say (v1, v2, . . . v|I|), such that N(v1) ⊆ N(v2) ⊆ . . . ⊆ N(v|I|).
This linear ordering of a threshold graph can be computed in linear time [6].

Lemma 2. Let G = (V,E) be a split graph and let M be a maximum acyclic
matching in G. Then, |M | = 2 if and only if there exist a pair of vertices vi, vj ∈ I
such that N(vi) \ N(vj) 	= ∅ and N(vj) \ N(vi) 	= ∅.
Proof. Necessity: Let M be an acyclic matching in G and let M = {aibi, ajbj}.
Since C is a clique and I is an independent set, exactly two vertices from the
set {ai, aj , bi, bj} belong to C and the other two belongs to I. Without loss of
generality, let us assume that ai, aj ∈ C and bi, bj ∈ I. Since G[{ai, aj , bi, bj}] is
acyclic and aibi, ajbj , aiaj ∈ E, so ai /∈ N(bj) and aj /∈ N(bi). Hence, bi, bj ∈ I
is the required pair of vertices.

Sufficiency: Let us assume that there exist two vertices v1, v2 ∈ I such that
N(v1) \ N(v2) 	= ∅ and N(v2) \ N(v1) 	= ∅. Let c1 ∈ N(v1) \ N(v2) and c2 ∈
N(v2) \ N(v1). Now, define a matching M = {v1c1, v2c2}. It is easy to see that
G[{v1, c1, v2, c2}] contains no cycle, and hence M is acyclic. ♦
Theorem 3. Let G = (V,E) be a split graph and let M be a maximum acyclic
matching in G. Then, |M | = 1 if and only if G is a threshold graph.

Proof. Necessity: Let G = (V,E) be a split graph and let M be a maximum
acyclic matching in G such that |M | = 1. For the sake of contradiction, let us
suppose that G is not a threshold graph. Then, there will exist a pair of vertices
vi, vj ∈ I such that N(vi) � N(vj) and N(vj) � N(vi). Define a matching
M ′ = {civi, cjvj}, where ci ∈ N(vi) \N(vj) and cj ∈ N(vj) \N(vi). It is easy to
see that M ′ is acyclic as G[{vi, vj , ci, cj}] is a path graph. Since |M ′| = 2, this
leads to a contradiction to the fact that M is a maximum acyclic matching in
G. Hence, G is a threshold graph.

Sufficiency: Let G = (V,E) be a threshold graph and let (v1, v2, . . . v|I|)
be an ordering of I, such that N(v1) ⊆ N(v2) ⊆ . . . ⊆ N(v|I|). Clearly, there
does not exist any pair of vertices vi, vj ∈ I such that N(vi) \ N(vj) 	= ∅ and
N(vj) \ N(vi) 	= ∅. Hence, by Lemma 1 and Lemma 2, it is easy to see that
|M | = 1. ��

Based on the above discussions we have the following theorem.

Theorem 4. A maximum size acyclic matching in a split graph G = (V,E) can
be computed in O(|V | + |E|) time.

Acyclic Matching in Some Subclasses of Graphs 415

Proof. Due to space restriction, the proof has been deferred to the longer version
of the paper. ��

4.2 Proper Interval Graphs

In this subsection, we show that an acyclic matching of maximum size can be
computed in linear time for proper interval graphs which is a subclass of chordal
graphs, where the complexity of computing a maximum size acyclic matching is
O(n7).

Let G = (V,E) be a given graph. A vertex v ∈ V is called a simplicial vertex,
if N [v] induces a clique in G. An ordering α = (v1, v2, . . . , vn) of vertices is called
a perfect elimination ordering (PEO) of G if vi is a simplicial vertex in Gi =
G[{vi, vi+1, . . . , vn}] for all 1 ≤ i ≤ n. A PEO α = (v1, v2, . . . , vn) of a graph G
is called a bi-compatible elimination ordering (BCO) if α−1 = (vn, vn−1, . . . , v1)
i.e., the reverse of α, is also a PEO of G. It has been characterized in [7] that a
graph is proper interval if and only if it has a BCO.

Observation 5. [8] Let σ = (v1, v2, . . . , vn) be a BCO of a proper interval
graph G. If vivj ∈ E, then vkvj ∈ E for all k, i ≤ k ≤ j − 1.

Observation 6. Let σ = (v1, v2, . . . , vn) be a BCO of a proper interval graph
G and let L[vi] denotes the last neighbor of a vertex vi in σ. If vi < vj in σ, then
L[vi] ≤ L[vj].

Proof. Let us suppose that there exists vi and vj such that vi < vj in σ and
L[vi] > L[vj]. Then by Observation 5, vjL[vi] ∈ E but since L[vj] < L[vi], we
reach at a contradiction. ♦

Observation 7. Let σ = (v1, v2, . . . , vn) be a BCO of a proper interval graph
G and let L[vi] denotes the last neighbor of a vertex vi in σ. If M is an acyclic
matching in G, then at most two vertices from the set {vi, vi+1, . . . , L[vi]} can
be saturated by M .

Proof. The result easily follows from Observation 5. ♦

Lemma 3. Let G be a proper interval graph with a BCO σ = (v1, v2, . . . , vn)
and let M be an acyclic matching in G. If the edges u1w1, u2w2 ∈ M such that
u1 < w1 and u2 < w2 in σ, then either w1 < u2 or w2 < u1.

Proof. Let us assume without loss of generality that there exist two edges e1 =
u1w1 and e2 = u2w2 such that u1 < w2 < w1 in σ. Now, the G[{u1, w2, w1}]
forms a cycle, which is a contradiction. Thus, either w1 < u2 or w2 < u1. ♦

Lemma 4. Let G be a proper interval graph with a BCO σ = (v1, v2, . . . , vn)
and let M be a maximum acyclic matching in G. Then, there exists an acyclic
matching M ′ in G such that v1v2 ∈ M ′ and |M ′| = |M |.
Proof. Let G be a proper interval graph with a BCO σ = (v1, v2, . . . , vn) and
let M be a maximum acyclic matching in G. Let vavb be the first edge with
respect to σ that belongs to M . Let us assume without loss of generality that

416 B. S. Panda and J. Chaudhary

va < vb. It is easy to see that va ≤ L[v2] in σ. To the contrary, if va > L[v2] in
σ, then G[{v1, v2, va, vb}] is acyclic and hence the edge v1v2 can be added to M .
This leads to a contradiction to the fact that M is a maximum acyclic matching
in G. Hence, va ≤ L[v2] in σ. Now, if va = v2, then replace v2vb by v2v1 in
M . If va 	= v2, then replace vavb by vav2 in M . If va = v1, then we are done.
Otherwise, again replace the edge vav2 by v1v2 in M .

By Observation 6 and Lemma 3, it is easy to see that we can replace the
edge vavb with the desired edges in the cases mentioned above. ♦

Let σ = (v1, v2, . . . , vn) be a BCO of a proper interval graph G and let
σ′ = (va, vb, . . . , vk) be an ordering obtained from σ by removing some vertices
from σ. Then, σ′ is also a BCO of some proper interval graph G′, where G′ is a
subgraph of G. Hence, we have the following corollary to Lemma 4.

Corollary 2. If σ′ = (va, vb, . . . , vk) is a BCO of a subgraph G′ of a proper
interval graph G, then the edge vavb is contained in some maximum acyclic
matching of G′.

Based on the above lemmas, we now present a linear time algorithm AM-

PIG(G), which computes an acyclic matching of maximum size in a given proper
interval graph G. The pseudocode of the algorithm is given below:

Algorithm 1. AM-PIG(G)

Input: A proper interval graph G1 with BCO σ(G1) = (v1, v2, . . . , vn);
Output: A Maximum Acyclic Matching M ;
M = ∅, i = 1, v + 1=vertex next to vertex v in σ(Gi) for i ≥ 1;
F [Gi]= first vertex in the BCO σ(Gi) of graph Gi for i ≥ 1;
L[v] = last neighbor of vertex v in σ(Gi) for i ≥ 1;
while (|Gi| ≥ 2) do

M = M ∪ {F [Gi](F [Gi] + 1)};
if (L[F [Gi]] = L[F [Gi] + 1]) or (L[F [Gi]] + 1 = L[F [Gi] + 1]) then

i = i + 1;
Gi = Gi−1 \ {F [Gi−1], . . . , L[F [Gi−1]]};

else if ((L[F [Gi]] + 1 = vk) < L[F [Gi] + 1] < L[vk]) then
i = i + 1;
Gi = Gi−1 \ ({F [Gi−1], . . . , L[F [Gi−1]]} ∪ {vk+1, . . . , L[F [Gi−1] + 1]});

else if (L[F [Gi]] + 1 = vk) < L[F [Gi] + 1]) and L[vk] = L[F [Gi] + 1] then
i = i + 1;
Gi = Gi−1 \ {F [Gi−1], . . . , L[F [Gi−1]]};
while (L[vk] = L[F [Gi] + 1]) do

temp = vk;
vk = vk + 1;
Gi = Gi \ temp;

Gi = Gi \ {vk+1, . . . , L[F [Gi] + 1]};
return M ;

Theorem 8. Given a proper interval graph G1 with BCO σ(G1), AM-

PIG(G1) correctly computes a maximum size acyclic matching in G1.

Acyclic Matching in Some Subclasses of Graphs 417

Proof. Due to space restriction, the proof has been deferred to the longer version
of the paper. ��

5 Inapproximation Results

Let G = (V,E) be a graph with n vertices. It is easy to note that the maximum
size of an acyclic matching in G can be at most n

2 . So, the Acyclic Matching

Problem can be approximated within a factor of n in polynomial time. In this
section, we show that for any ε > 0, it is hard to approximate the Acyclic

Matching Problem within a factor of n1−ε, unless P = NP .
To prove the result, we will need the following theorem for the Maximum

Independent Set Problem.

Theorem 9. [12] The Maximum Independent Set Problem for a graph G can-
not be approximated within a factor of n1−ε for any ε > 0, unless P = NP .

Now, consider the following construction:

Construction 1. Let G = (V,E), where V = {v1, v2, . . . , vn}, be an instance
of the Maximum Independent Set Problem. We construct a graph H =
(VH , EH), an instance of the Acyclic Matching Problem, in the following
way:

– VH = V ∪ V ′, where V ′ = {v′
i | vi ∈ V }.

– EH = E ∪ {viv
′
i | 1 ≤ i ≤ n} ∪ {viv

′
j | vivj ∈ E} ∪ {v′

iv
′
j | vivj ∈ E}.

Clearly, H can be constructed in polynomial time as |VH | = 2|V | and |EH | =
4|E| + |V |.

Also, note that the edges in H can be one of the following four types:

1. Type-I = {viv
′
i | vi ∈ V and v′

i ∈ V ′}.
2. Type-II = {vivj | vi, vj ∈ V }.
3. Type-III = {v′

ivj | v′
i ∈ V ′ and vj ∈ V }.

4. Type-IV = {v′
iv

′
j | v′

i, v
′
j ∈ V ′}.

Now, we will discuss some lemmas that will be used in the proof of the main
theorem of this section. Let us recall that VH(M) denotes the set of M -saturated
vertices of graph H.

Lemma 5. Let H be the graph obtained from a given graph G by Construction 1.
If M is an acyclic matching in H, then there exists an acyclic matching M ′ in
H such that |M ′| = |M | and M ′ contains edges of Type-I and Type-II only.

Proof. First, let us suppose that M is an acyclic matching in H and let M con-
tains an edge (say v′

iv
′
j) of Type-IV . Since M is acyclic and v′

iv
′
j ∈ M , both vi

and vj are unsaturated by M . Let M ′ = (M \ {v′
iv

′
j}) ∪ {v′

ivj}. If G[VH(M ′)]
is acyclic, then we are done. So, assume that G[VH(M ′)] contains a cycle C.
If C does not contain the vertex vj , then C is also a cycle in G[VH(M)]. This

418 B. S. Panda and J. Chaudhary

contradicts the fact that M is an acyclic matching. So, C contains the ver-
tex vj . Let vjua, vjub ∈ E(C). Since N [vj] = N [v′

j], v′
jua, v′

jub ∈ EH . Now,
C ′ = (C \{vjua, vjub})∪{v′

jua, v′
jub} is a cycle in G[VH(M)], which is a contra-

diction. Hence, M ′ is acyclic. In this way, an acyclic matching of same size can
be obtained by replacing an edge of Type-IV with a corresponding Type-III
edge.

Using the similar arguments, we can show that an acyclic matching of same
size can be obtained by replacing an edge of Type-III with a corresponding
Type-II edge. ♦

Lemma 6. Let H be the graph obtained from a given graph G by Construction 1.
If M ′ is an acyclic matching in H containing edges of Type-I and Type-II only,
then there exists an acyclic matching M ′′ in H such that |M ′′| = |M ′| and M ′′

contains edges of Type-I only.

Proof. Due to space restriction, the proof has been deferred to the longer version
of the paper. ♦

The following lemma shows that the described reduction is exactly what we
need.

Lemma 7. Let H be the graph obtained from a given graph G by Construction 1.
Then, G has an independent set of size at least k if and only if H has an acyclic
matching of size at least k.

Proof. Necessity: Let I = {v1, v2, . . . , vl} be an independent set in G of size at
least k. Define a matching M = {v1v

′
1, v2v

′
2, . . . , vlv

′
l} in H. It is easy to see that

M is an acyclic matching as G[V (M)] is a disjoint union of K ′
2s.

Sufficiency: Let M = {e1, e2, . . . , el} be an acyclic matching in H of size at
least k. By Lemma 6, there exists an acyclic matching M ′ in H such that |M ′| =
|M | and M ′ contains edges of Type-I only. Define a set I = {vi | viv

′
i ∈ M ′}. It

is easy to see that I is an independent set of graph G. ♦

Corollary 3. G has a maximum independent set of size k if and only if H has
a maximum acyclic matching of size k.

Theorem 10. The Acyclic Matching Problem for a graph G cannot be
approximated within a factor of n1−ε for any ε > 0, unless P = NP .

Proof. Let G = (V,E) be a graph with n vertices. Construct a graph H =
(VH , EH) with |VH | = n̄ from G using Construction 1. Let I∗ denotes a maximum
independent set in G and M∗ denotes a maximum acyclic matching in H.

Now, let us suppose that the Acyclic Matching Problem can be approx-
imated within a ratio α ≥ 1 by using an algorithm ALG, where α = n1−ε′

for
some fixed ε′ > 0.

If MALG(H) is an acyclic matching in H obtained by applying algorithm
ALG, then |M∗(H)| ≤ α|MALG(H)|.

Acyclic Matching in Some Subclasses of Graphs 419

By Corollary 3, |I∗(G)| = |M∗(H)|. By Lemma 7, we can construct an inde-
pendent set IALG of G corresponding to MALG of H such that |MALG(H)| =
|IALG(G)|.

Hence, we obtain, |I∗(G)| ≤ α|IALG(G)| = n1−ε′ |IALG(G)| = (2n)1−ε′ |IALG

(G)| = (2)1−ε′
(n)1−ε′ |IALG(G)|.

If we choose ε, such that 21−ε′
< nε′−ε, then |I∗(G)| < (n)ε′−ε(n)1−ε′ |IALG

(G)| = (n)1−ε|IALG(G)|.
Hence, |I∗(G)| < (n)1−ε|IALG(G)|, which leads to a contradiction to Theo-

rem 9. Therefore, the Acyclic Matching Problem cannot be approximated
within a factor of n1−ε for any ε > 0, unless P = NP . ��

6 APX-Completeness

In this section, we show that the Acyclic Matching Problem is APX-
complete for 2k + 1-regular graphs for k ≥ 3, where k is a constant.

To prove the result, we first show that the Acyclic Matching Problem

is approximable within a constant factor when restricted to k-regular graphs for
k ≥ 3, where k is a constant. For the purpose, consider the following algorithm:

Algorithm 2. Approx-AM(G)

Input: A graph G = (V, E);
Output: An acyclic matching Mac in G;
Mac = ∅;
while (E �= ∅) do

Choose an edge e = uv from E;
Mac = Mac ∪ {uv};
V = V \ (NG(u) ∪ NG(v));

return Mac.

Lemma 8. The algorithm Approx-AM(G) produces an acyclic matching of G
in polynomial time.

Proof. For any pair of edges in Mac, say ei = aibi and ej = ajbj , G[{ai, bi, aj , bj}]
is a disjoint union of K ′

2s. ♦

Lemma 9. The Acyclic Matching Problem for a k-regular graph G can be
approximated with an approximation ratio of 2k(k−1)+1

k , where k is a constant.

Proof. Given a k-regular graph G, construct an acyclic matching Mac of G
by using algorithm Approx-AM(G). In each step, after adding an edge in the
matching Mac, we are removing at most k2 edges, hence kn

2[2k(k−1)+1] ≤ |Mac|.
Moreover, it is easy to see that the size of any matching can be at most n

2 .
Hence, the Acyclic Matching Problem is approximable within a factor

of 2k(k−1)+1
k in k-regular graphs, where k is a constant. ♦

420 B. S. Panda and J. Chaudhary

To prove the result, we will need the following theorem for the Maximum

Independent Set Problem.

Theorem 11. [1,10] The Maximum Independent Set Problem is APX-
complete for k-regular graphs for k ≥ 3.

Observation 12. If G is a k-regular graph in Construction 1, then the con-
structed graph H is a 2k + 1-regular graph for k ≥ 3.

Now, we are ready to prove the APX-completeness of the Acyclic Match-

ing Problem for 2k + 1-regular graphs for k ≥ 3, where k is a constant. For
this purpose, we recall the concept of L-reduction. Given two NP optimization
problems π1 and π2 and a polynomial time transformation f from instances of π1

to instances of π2, we say that f is an L-reduction if there are positive constants
α and β such that for every instance x of π1:

1. optπ2(f(x)) ≤ α.optπ1(x);
2. for every feasible solution y of f(x) with objective value mπ2(f(x), y) = c2,

we can find a solution y′ of x in polynomial time with mπ1(x, y′) = c1 such
that |optπ1(x) − c1| ≤ β.|optπ2(f(x)) − c2|.

Theorem 13. The Acyclic Matching Problem is APX-complete for 2k+1-
regular graphs for k ≥ 3, where k is a constant.

Proof. By Lemma 9, it is clear that the Acyclic Matching Problem for 2k+
1-regular graphs for k ≥ 3 belongs to the class APX. By Theorem 11, it is enough
to construct an L-reduction from the instances of the Maximum Independent

Set Problem for k-regular graphs to the instances of the Acyclic Matching

Problem for 2k + 1-regular graphs. Given a k-regular graph G = (V,E), where
V = {v1, v2, . . . , vn}. We construct a graph H = (VH , EH), an instance of the
Acyclic Matching Problem by Construction 1. It is easy to see by Lemma 7
and Corollary 3 that the reduction described in Construction 1 is an L-reduction
with α = 1 and β = 1.

Therefore, the Acyclic Matching Problem is APX-complete for 2k + 1-
regular graphs for k ≥ 3, where k is a constant. ��

7 Conclusion

In this paper, we have shown that the Acyclic Matching Decide Problem

is NP-complete for comb-convex bipartite graphs and dually chordal graphs.
On the positive side, we have shown that the Acyclic Matching Problem

can be solved in linear time in split graphs and proper interval graphs. Apart
from these, we have shown that the Acyclic Matching Problem cannot be
approximated within a factor of n1−ε for any ε > 0, unless P = NP . We have
also shown that the Acyclic Matching Problem is APX-complete for 2k+1-
regular graphs for k ≥ 3, where k is a constant. Further, it will be interesting
to study better approximation algorithms for this problem for bipartite graphs
and other important graph classes.

Acyclic Matching in Some Subclasses of Graphs 421

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret.
Comput. Sci. 237(1–2), 123–134 (2000)

2. Baste, J., Rautenbach, D.: Degenerate matchings and edge colorings. Discrete
Appl. Math. 239, 38–44 (2018)

3. Fürst, M., Rautenbach, D.: A lower bound on the acyclic matching number of
subcubic graphs. Discrete Math. 341(8), 2353–2358 (2018)

4. Fürst, M., Rautenbach, D.: On some hard and some tractable cases of the maximum
acyclic matching problem. Ann. Oper. Res. 279(1), 291–300 (2019). https://doi.
org/10.1007/s10479-019-03311-1

5. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Laskar, R.: Generalized
subgraph-restricted matchings in graphs. Discrete Math. 293(1), 129–138 (2005)

6. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and for-
bidden induced subgraphs. Nord. J. Comput. 14(1–2), 87–108 (2007)

7. Jamison, R.E., Laskar, R.: Elimination orderings of chordal graphs. In: Combina-
torics and Applications, pp. 192–200 (1982)

8. Panda, B.S., Das, S.K.: A linear time recognition algorithm for proper interval
graphs. Inf. Process. Lett. 87(3), 153–161 (2003)

9. Panda, B.S., Pradhan, D.: Acyclic matchings in subclasses of bipartite graphs.
Discrete Math. Algorithms Appl. 4(04), 1250050 (2012)

10. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

11. Bao, F.S., Zhang, Y.: A review of tree convex sets test. Comput. Intell. 28(3),
358–372 (2012)

12. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Sym-
posium on Theory of Computing, pp. 681–690 (2006)

https://doi.org/10.1007/s10479-019-03311-1
https://doi.org/10.1007/s10479-019-03311-1

Author Index

Acuña, Vicente 17
Alecu, Bogdan 30

Belmonte, Rémy 43
Bensmail, Julien 56
Blanché, Alexandre 69
Böhnlein, Toni 83
Bright, Curtis 97

Campos, Victor 112
Chakraborty, Sankardeep 126
Chaudhary, Juhi 409
Chen, Li-Hsuan 140
Cheung, Kevin K. H. 97
Chiarelli, Nina 154
Choudhary, Pratibha 166
Christman, Ananya 180
Chung, Christine 180
Colbourn, Charles J. 382
Cordasco, Gennaro 195

Damaschke, Peter 211, 224
Das, Avinandan 237
de Werra, Dominique 30
Drgas-Burchardt, Ewa 251

Fekete, Sándor P. 3
Fioravantes, Foivos 56
Foucaud, Florent 264
Furmańczyk, Hanna 251

Ganesh, Vijay 97
Gargano, Luisa 195
Gowda, Kishen N. 277
Gras, Benjamin 264
Groz, Benoît 289

Hamada, Koki 304
Hanaka, Tesshu 43
Hasunuma, Toru 316
Hocquard, Hervé 355
Hung, Ling-Ju 140

Italiano, Giuseppe F. 17

Jaczko, Nicholas 180
Jordán, Tibor 330

Kanesh, Lawqueen 237
Kanzaki, Masaaki 43
Kiyomi, Masashi 43
Kobayashi, Yasuaki 43
Kobayashi, Yusuke 43, 330
Kortsarz, Guy 343
Kotsireas, Ilias 97
Krnc, Matjaž 154

Lajou, Dimitri 355
Lampis, Michael 43
Lamprou, Ioannis 368
Lanus, Erin 382
Li, Tianzhi 180
Lima, Leandro 17
Lopes, Raul 112
Lotze, Henri 140
Lozin, Vadim 30
Lužar, Borut 355

Madathil, Jayakrishnan 237
Mahara, Ryoga 330
Makino, Kazuhisa 330
Mallmann-Trenn, Frederik 289
Marino, Andrea 112
Mathieu, Claire 289
Milanič, Martin 154
Misra, Neeldhara 277
Miyazaki, Shuichi 304
Mizuta, Haruka 69
Mkrtchyan, Vahan 395
Muluk, Komal 237

Nisse, Nicolas 56
Nutov, Zeev 343

Okamoto, Kazuya 304
Ono, Hirotaka 43
Otachi, Yota 43
Ouvrard, Paul 69

Panda, B. S. 409
Patel, Vraj 277
Pepè Sciarria, Luca 17
Perez, Anthony 264
Petrosyan, Garik 395
Pferschy, Ulrich 154
Pivač, Nevena 154
Purohit, Nidhi 237

Rescigno, Adele A. 195
Rossmanith, Peter 140

Sadakane, Kunihiko 126
Sagot, Marie-France 17
Satti, Srinivasa Rao 126
Saurabh, Saket 237
Schaudt, Oliver 83
Schauer, Joachim 154
Sidorowicz, Elżbieta 251

Sigalas, Ioannis 368
Sikora, Florian 264
Silva, Ana 112
Sinaimeri, Blerina 17
Stevens, Brett 97
Subramani, K. 395
Suzuki, Akira 69

Verdugo, Victor 289

Westvold, Scott 180
Wojciechowski, Piotr 395

Xu, Xinyue 180

Yuen, David 180

Zissimopoulos, Vassilis 368

424 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Optimization by Population: Large-Scale Distributed Optimization Via Population Protocols
	Coordinating Swarms of Objects at Extreme Dimensions
	Algorithms for String Processing in Restricted-Access Models of Computation
	Contents
	Invited Paper
	Coordinating Swarms of Objects at Extreme Dimensions
	1 Introduction
	2 Traffic
	3 Uniform Global Control for Particle Swarms
	4 Online Triangulation and Structured Exploration
	5 Cohesive Control
	6 Coordinated Motion Planning
	7 Constructing and Reconfiguring Large-Scale Structures
	8 Conclusion
	References

	Contributed Papers
	A Family of Tree-Based Generators for Bubbles in Directed Graphs
	1 Introduction
	2 Preliminaries
	3 Defining a Bubble Generator from a Spanning Tree
	4 Experimental Results
	4.1 An Empirical Analysis of the Characteristics of the Bubble Generator Based on the Choice of the Spanning Tree
	4.2 Application of the Bubble Generator to the Identification of AS Events in RNA-seq Data

	5 Conclusions and Open Problems
	References

	The Micro-world of Cographs
	1 Introduction
	2 Preliminaries
	3 Graph Parameters
	3.1 Co-chromatic Number
	3.2 Lettericity
	3.3 Boxicity
	3.4 H-Index
	3.5 Achromatic Number

	4 The Hierarchy
	5 Conclusion and Open Problems
	References

	Parameterized Complexity of (A,)-Path Packing
	1 Introduction
	2 Preliminaries
	3 Standard Parameterizations of ALPP
	3.1 Intractable Cases
	3.2 Tractable Cases

	4 Structural Parameterizations
	5 Hardness on Grid Graphs
	6 Concluding Remarks
	References

	On Proper Labellings of Graphs with Minimum Label Sum
	1 Introduction
	2 First Insights into the Problem
	2.1 Warm-Up Results
	2.2 Using Larger Labels can be Arbitrarily Better

	3 Complexity Aspects
	3.1 NP-hardness for Planar Bipartite Graphs
	3.2 Polynomiality for Bounded-Treewidth Graphs

	4 General Bounds
	4.1 Upper Bounds
	4.2 General Conjecture and Refined Bounds for Bipartite Graphs

	5 Conclusion
	References

	Decremental Optimization of Dominating Sets Under the Reconfiguration Framework
	1 Introduction
	1.1 Our Problem
	1.2 Related Results
	1.3 Our Results

	2 Preliminaries
	2.1 Optimization Variant of Dominating Set Reconfiguration
	2.2 Useful Observations

	3 Polynomial-Time (In)tractability
	3.1 PSPACE-Completeness for Several Graph Classes
	3.2 Linear-Time Algorithms

	4 Fixed-Parameter (In)tractability
	4.1 FPT Algorithm for Degeneracy and Solution Size
	4.2 FPT Algorithm for Vertex Cover Number

	References

	On the Complexity of Stackelberg Matroid Pricing Problems
	1 Introduction
	2 Preliminaries
	3 Uniform Matroid
	4 Laminar Matroid
	5 Partition Matroid
	6 Conclusion and Future Work
	References

	Nonexistence Certificates for Ovals in a Projective Plane of Order Ten
	1 Introduction
	2 Preliminaries
	2.1 Projective Geometry
	2.2 Satisfiability Checking
	2.3 Symbolic Computation and SAT+CAS

	3 Satisfiability Encoding
	3.1 Basic SAT Encoding
	3.2 Symmetry Breaking

	4 Implementation and Results
	4.1 Generating the SAT Instances
	4.2 Generating the Nonisomorphic 1-Factorizations
	4.3 Solving the SAT Instances: Cubing
	4.4 Solving the SAT Instances: Conquering
	4.5 Certificate Verification

	5 Conclusions and Future Work
	References

	Edge-Disjoint Branchings in Temporal Graphs
	1 Introduction
	2 The Temporal Disjoint Branchings Problems
	3 Temporal-Spanning Branchings
	3.1 T-Edge-Disjoint Temporal-Spanning Branchings
	3.2 Edge-Disjoint Temporal-Spanning Branchings

	4 Vertex-Spanning Branchings
	5 Conclusions and Open Problems
	References

	Optimal In-place Algorithms for Basic Graph Problems
	1 Introduction
	2 Exploiting Input Redundancy to Create Working Space
	2.1 Saving Linear Bits and Its Applications
	2.2 Saving n lgn -2n Bits

	3 Optimal In-place Graph Algorithms
	4 Conclusions
	References

	Further Results on Online Node- and Edge-Deletion Problems with Advice
	1 Introduction
	2 The F-Node Deletion Problem and F-Edge Deletion Problem Without Advice
	3 The Delayed H-Node Deletion Problem with Advice
	3.1 Lower Bound
	3.2 Upper Bound

	4 The Delayed Connected F-Edge Deletion Problem
	4.1 Upper Bound
	4.2 Lower Bound

	References

	Fair Packing of Independent Sets
	1 Introduction
	2 Hardness Results
	2.1 General Hardness Results
	2.2 Bipartite Graphs and Their Line Graphs

	3 Pseudo-Polynomial Algorithms for Special Graph Classes
	4 Conclusions
	References

	Polynomial Time Algorithms for Tracking Path Problems
	1 Introduction
	2 Notations and Definitions
	3 Preliminary Analysis
	4 Tracking Paths in Chordal Graphs and Tournaments
	5 Approximation Algorithm and NP-Hardness of Tracking Paths in Bounded-Degree Graphs
	6 Reconstructing Paths Using Trackers
	7 Tracking Edge Set for Undirected Graphs
	8 Conclusion
	References

	New Bounds for Maximizing Revenue in Online Dial-a-Ride
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Preliminaries
	2.1 General Lower Bound

	3 Nonuniform Revenues
	3.1 Lower Bound on SBP
	3.2 Upper Bound on SBP

	4 Uniform Revenues
	5 Bipartite Graphs
	5.1 Uniform Revenue Bipartite
	5.2 Nonuniform Revenue Bipartite

	References

	Iterated Type Partitions
	1 Introduction
	1.1 Modular-Width
	1.2 Neighborhood Diversity
	1.3 Relation with Other Parameters
	1.4 Our Results and Related Work

	2 Equitable Coloring (EQC)
	2.1 Hardness
	2.2 Neighborhood Diversity: An FPT Algorithm

	3 Algorithms
	4 Conclusion
	References

	Two Robots Patrolling on a Line: Integer Version and Approximability
	1 Introduction
	2 The Integer Version of PUF
	3 Short Waiting Times
	4 Rounding the Coordinates
	References

	Ordering a Sparse Graph to Minimize the Sum of Right Ends of Edges
	1 Introduction
	2 Nested Densest Subgraphs
	3 Charges and Dipoles
	4 Eliminating the Leaves
	5 Eliminating and Separating the Cycle Components
	6 Paths of Degree-2 Vertices and Cores
	7 Conclusions
	References

	On the Complexity of Singly Connected Vertex Deletion
	1 Introduction
	2 Preliminaries
	3 Singly Connected Vertex Deletion on -bounded Digraphs and Acyclic Local Tournaments
	3.1 Min-SCVD on -bounded Digraphs
	3.2 Polynomial Time Algorithm for Min-SCVD on Acyclic Local Tournaments

	4 Singly Connected Vertex Deletion on In-Tournaments
	5 A Linear Kernel for SCVD on Local Tournaments
	6 Conclusion
	References

	Equitable d-degenerate Choosability of Graphs
	1 Motivation and Preliminaries
	2 The Proof of Theorem 1
	2.1 Background
	2.2 Algorithm

	3 Grids
	4 Concluding Remarks
	References

	On the Complexity of Broadcast Domination and Metapost in Digraphs
	1 Introduction
	2 Preliminaries
	3 Complexity of Broadcast Domination
	3.1 Hardness Results
	3.2 Complexity and Algorithms for (Layered) DAGs

	4 Complexity of Metapost
	4.1 Hardness Results
	4.2 Algorithms

	5 Conclusion
	References

	A Parameterized Perspective on Attacking and Defending Elections
	1 Introduction
	2 Preliminaries
	3 Plurality over Voters (PV)
	4 Plurality over Districts (PD)
	5 Concluding Remarks
	References

	Skyline Computation with Noisy Comparisons
	1 Introduction
	2 Preliminaries
	3 Skyline Computation in High Dimension
	4 Skyline Computation in Low Dimension
	4.1 Identifying ``Truly Non-empty'' Buckets
	4.2 Domination Relationships Between Buckets
	4.3 Algorithm and Bounds for Skyline Computation in Low Dimension

	5 Skyline Lower Bound
	6 Conclusion and Related Work
	References

	Strongly Stable and Maximum Weakly Stable Noncrossing Matchings
	1 Introduction
	2 Preliminaries
	3 Strongly Stable Noncrossing Matchings
	3.1 SMI
	3.2 SMTI

	4 Maximum Cardinality Weakly Stable Noncrossing Matchings
	4.1 SMI
	4.2 SMTI

	5 Conclusion
	References

	Connectivity Keeping Trees in 2-Connected Graphs with Girth Conditions
	1 Introduction
	2 Preliminaries
	3 Outline of Proofs
	4 Proofs of Theorems5 and 6
	5 Proofs of Theorems7 and 8
	6 Concluding Remarks
	References

	The Steiner Problem for Count Matroids
	1 Introduction
	1.1 Previous Work
	1.2 Motivation and New Results

	2 Preliminary Results
	2.1 The Extension Operation
	2.2 Rigid Graphs
	2.3 Feasibility, Components, and Sparse Input Graphs

	3 Hardness Results
	4 An Approximation Algorithm for the Metric Case
	5 Optimal Solutions for Fixed |T| in the Metric Case
	5.1 Reductions in Minimally Rigid Graphs

	6 Concluding Remarks
	References

	Bounded Degree Group Steiner Tree Problems
	1 Introduction
	2 Degrees Bounded Min-Cost Group Steiner Tree Problem on Tree Inputs (Theorem 1)
	3 A Relation Between Min-Degree Steiner k-Tree and Min-Degree Group Steiner Tree (Theorem 2)
	4 An O(log3 n) Approximation for Min-Degrees Group Steiner Tree on Bounded Treewidth Graphs (Theorem 3)
	References

	Between Proper and Strong Edge-Colorings of Subcubic Graphs
	1 Introduction
	2 Preliminaries
	3 Proof of the Cases (a) and (c) of Theorem 2
	4 Proof of the Case (b) of Theorem 2
	5 Proof of the Case (d) of Theorem 2
	6 Further Work
	6.1 Planar Graphs
	6.2 Bipartite Graphs
	6.3 Graphs with Big Girth

	References

	Improved Budgeted Connected Domination and Budgeted Edge-Vertex Domination
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Preliminaries
	3 Budgeted Connected Dominating Set
	3.1 Previous Approach
	3.2 Improvement to Previous Approach: Eligible Trees
	3.3 An Improved Modified Algorithm
	3.4 Inapproximability

	4 Edge-Vertex Domination
	4.1 Budgeted Edge-Vertex Domination
	4.2 Partial Edge-Vertex Domination

	5 Conclusion
	References

	Algorithms for Constructing Anonymizing Arrays
	1 Introduction
	2 Anonymizing Arrays
	2.1 Definitions
	2.2 Relationship to Covering Arrays

	3 Construction Algorithms
	3.1 Moser-Tardos-Style Column Resampling Algorithm
	3.2 Conditional Expectation Heuristic Search Algorithm
	3.3 Homogeneity Post-Optimization

	4 Results
	5 Conclusion
	References

	Parameterized Algorithms for Partial Vertex Covers in Bipartite Graphs
	1 Introduction
	2 Statement of Problems
	3 Motivation and Related Work
	4 Main Results
	5 The Matching Problem
	6 The 2-PVCB Problem
	7 Conclusion
	References

	Acyclic Matching in Some Subclasses of Graphs
	1 Introduction
	2 Preliminaries
	3 NP-Completeness Results
	3.1 Comb-Convex Bipartite Graphs
	3.2 Dually Chordal Graphs

	4 Polynomial Time Algorithms
	4.1 Split Graphs
	4.2 Proper Interval Graphs

	5 Inapproximation Results
	6 APX-Completeness
	7 Conclusion
	References

	Author Index

