
Discovering Discriminative Nodes
for Classification with Deep Graph

Convolutional Methods

Liana-Daniela Palcu1(B), Marius Supuran1(B), Camelia Lemnaru1(B),
Mihaela Dinsoreanu1(B), Rodica Potolea1(B), and Raul Cristian Muresan2(B)

1 Computer Science Department, Technical University of Cluj Napoca,
Cluj-Napoca, Romania

ldpalcu@gmail.com, marius.supuran@yahoo.com, camelia.lemnaru@cs.utcluj.ro,
mihaela.dinsoreanu@cs.utcluj.ro, rodica.potolea@cs.utcluj.ro

2 Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
raul.muresan@gmail.com

Abstract. The interpretability of Graph Convolutional Neural Net-
works is significantly more challenging than for image based convolu-
tional networks, because graphs do not exhibit clear spatial relations
between their nodes (like images do). In this paper we propose an app-
roach for estimating the discriminative power of graph nodes from the
model learned by a deep graph convolutional method. To do this, we
adapt the Grad-CAM algorithm by replacing the part which heavily
relies on the 2D spatial relation of pixels in an image, with an estimate
of the node importance by its appearance count in the result of the Grad-
CAM. Our strategy was initially defined for a real-world problem with
relevant domain-specific assumptions; thus, we additionally propose a
methodology for systematically generating artificial data, with similar
properties as the real-world data, to assess the generality of the learning
process and interpretation method. The results obtained on the artificial
data suggest that the proposed method is able to identify informative
nodes for classification from the deep convolutional models.

1 Context and Motivation

Model interpretability can be important for several reasons: first, it builds trust
and confidence in machine learning models when applied to sensible problems
(e.g. medical diagnosis and prognosis, terrorism prediction, credit assessment,
etc). In such domains, if the model can explain its decisions, it is easier to asses
its fairness (does not discriminate against protected groups), privacy-compliance,
robustness and the ability to identify causality [1]. Second, it is a potentially pow-
erful tool for generating new domain knowledge in “difficult” domains, such as
neuroscience. For example, interpretable models could provide new insights into
understanding the effect of alcohol on the brain. In the same line of argument,
if the performance of the model beats human performance (e.g. chess, Alpha-
GO), machine-driven instruction could be used to help humans improve their
c© Springer Nature Switzerland AG 2020
M. Ceci et al. (Eds.): NFMCP 2019, LNAI 11948, pp. 67–82, 2020.
https://doi.org/10.1007/978-3-030-48861-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-48861-1_5

68 L.-D. Palcu et al.

skills. Last, but not least, interpretability can be thought of as a useful tool for
understanding and correcting model errors.

In general, we are faced with a trade-off between performance and inter-
pretability. Graph classification is normally a domain which requires the appli-
cation of complex learning models, such as deep neural networks, which are not
interpretable by nature. Several relevant attempts have been made to interpret
complex models post-hoc (briefly reviewed in Sect. 2). However, most approaches
focus on tabular inputs, or inputs with a known, structured or hierarchical rela-
tion between the elements (e.g. the 2D spatial relation between pixels in an
image or the 1D temporal relation between words in a sentence). For graph
data, we do not have such spatial or temporal semantics to work with, which
makes interpreting any model built on such data even more difficult.

The starting point of our research is rooted in neuroscience: trying to identify
neurons in the brain which are most affected by alcohol consumption, and which
separate between non-alcohol and alcohol affected brain states. Graph/network
analysis methods that are applied to this problem need to produce interpretable
models, because their aim is to help understand brain behavior. The starting
hypothesis is that there is a small subset of neurons whose connection weights
are affected by alcohol, and those neurons are responsible for changing the over-
all behavior and response to alcohol. While initially driven exclusively by this
hypothesis, we assess that the methods investigated are applicable to any graph
classification problem. We propose a method for graph data classification and
model interpretation which generates class-specific relevance heatmaps for the
nodes in the graph by applying a modified version of Grad-CAM [2] – an inter-
pretability method initially designed for image CNNs.

The rest of the paper is organized as follows: Sect. 2 overviews the relevant
interpretation strategies from literature. Section 3 presents the proposed method,
which is evaluated in Sect. 4. The last section contains concluding remarks.

2 Related Work

Some classification models (e.g. decision trees, logistic regression) are inherently
interpretable. For the others, which have a black box behavior, interpretability
methods can be divided into model-agnostic and model-specific [3]. The first
category encompasses methods which can be applied to any classification model,
and generally focus either on explaining a model by computing feature relevance
scores – globally [4–6], or at instance level [7,8] – or try to build a global or a
local interpretable surrogate model, such as LIME [9].

In the context of Convolutional Neural Network (CNN) models, agnostic
interpretability methods do not exploit that such models learn new features and
concepts in their hidden layers and are computationally inefficient, because they
do not use gradient values [3]. For interpreting CNN models, recent works in
literature focus either on perturbing the input (or hidden network layers) and
observing the corresponding changes – generally computationally intensive and
can show instability to surprise artifacts (a line of research closely related to

Discovering Discriminative Nodes for Classification 69

adversarial attacks on CNN architectures) – or leveraging gradient values to
infer feature importance – computationally efficient, but poses challenges when
propagating gradients back through non-linear and re-normalization layers.

[10] proposes the use of deconvolution to identify which part of an image most
strongly activates a specific unit in the network: typically, all neurons except one
are set to zero in the high level feature map corresponding to the layer of that
unit, and we perform a backward pass through the CNN down to the input
layer. The resulting reconstructed image shows which part of the input image
most strongly activates that unit. Class specific saliency maps [11] are generated
by computing the gradient of the class score with respect to the input image.
The intuition is to use the gradients to identify input regions that cause the most
change in the output. The main difference between the last two techniques is how
gradients are passed through non-linear layers such as the Rectified Linear Unit
(ReLU): in [11] the gradients of neurons with negative input are suppressed, while
in [10] the gradients of neurons with incoming negative gradients are suppressed.
Guided backpropagation [12] combines both strategies, by suppressing the flow
of gradients of both negative input and negative gradient neurons.

Class Activation Maps (CAMs) [13] identify the image regions used by a CNN
to discriminate between different categories. It can only be applied to a limited
set of CNNs and it alters the architecture by adding at the end a Global Average
Pooling layer (GAP) and then a fully-connected layer. This is done to preserve
the localization ability of any network, which is lost using fully connected layers.
However, this change could affect the performance of the model.

A significant shortcoming of the methods presented above is that they do
not address re-normalization layers, such as max-pooling. Propagating gradi-
ents back through such a layer can be problematic since the functions used are
not generally differentiable. Grad-CAM [2] tries to circumvent this problem by
relying on the activation maps of the final convolutional layer to build a down-
sampled relevance map (heatmap) of the input pixels, which is then upsampled
to obtain a coarse relevance heatmap of the input.

3 Interpreting Graph Convolutional Network Models
with Grad-CAM

In the up-sampling step, Grad-CAM performs a bi-linear interpolation between
neighboring pixels, which is computationally efficient and produces good results
for images, but cannot be directly applied to graphs. Consequently, we modify
Grad-CAM to address this and allow the generation of class-relevant heatmaps
containing estimates of the each node’s importance to a specific class. We inte-
grate our solution with the Deep Graph Convolutional Neural Network model
(DGCNN) [14]. As the ultimate goal of the strategy is the identification of the
relevant nodes in the classification decision, we propose a preprocessing step
which consists of removing potentially non-informative edges.

70 L.-D. Palcu et al.

3.1 Graph Sparsification

Sparsification is motivated by the assumption that not all edges are informa-
tive, and that small weight edges represent noise. Consequently, sparsification
eliminates a certain amount of small weight edges, with the hope of improving
classification accuracy and model interpretability. Let G(V,E) be a complete
weighted graph, where V represents the set of nodes and E represents the set
of edges, each edge being given by ei(u, v, wi), with u, v ∈ V and wi ∈ R

+.
Let SumG be the sum of all the weights from the graph. We sort the edges in
descending order by weight, <e1, e2, ..., en>, where w1 > w2 > ... > wn, and
considering this order we keep only those edges <e1, e2, ..., em> that have the
sum of weights smaller than a certain threshold, computed as a percentage of
the total sum of weights:

SumG′ =
m∑

i=1

wi < p% ∗ SumG = p% ∗
n∑

i=1

wi, p ∈ [0, 100], m <= n = |E|, (1)

3.2 Deep Graph Convolutional Neural Networks

End-to-end deep learning architectures, such as the Deep Graph Convolutional
Neural Network (DGCNN) [14], take as input graphs of arbitrary structure,
(G, y), where y represents the label of the graph, and build a graph classification
model by applying end-to-end gradient based training. As opposed to methods
which use graph embeddings to transform graphs into tensor data that can be
then classified via traditional machine learning algorithms, end-to-end methods
solve a single joint optimization problem, which includes both feature learning
and classification. This gives them the potential to produce better classifica-
tion outcomes than the decoupled, embedding-based methods, but increases the
complexity of the problem and thus, the computational effort needed to solve it.
The DGCNN architecture is composed of three sequential parts. The first part
extracts useful features for every node by using Graph Convolutional Networks
(GCN). The extracted features characterize the graph topology and based on
them, in the middle part, due to the use of the SortPooling layer, an ordering of
graph nodes is defined. In the last part, the ordered sequence of nodes are intro-
duced into a 1D convolutional neural network and then into dense layers with
the purpose of learning a classification function. For a more in-depth description
of the specific principles used by DGCNN, we refer the reader to [14].

3.3 DGCNN Interpretability

The next step after classifying graphs is to find the nodes which best discriminate
between classes, in the attempt to interpret the model. We adapted Grad-CAM
to graph classification models by starting from the premise that the graph nodes
ordering resulting after the SortPooling layer in DGCNN encodes specific struc-
tural information (based on the relative structural relevance of the nodes within

Discovering Discriminative Nodes for Classification 71

the graph), similar – in a way – to how pixels in neighboring regions of an image
are correlated. In the following steps we detail our solution.

Let F1, F2, ..., Fn be the feature maps in the final convolutional layer and Sc

the score of the target class c. The corresponding gradients (w1, w2, ..., wn) are
computed by using the formula:

wi =
∂Sc

∂F
|Fi,∀i = 1, .., n (2)

These gradients are global-averaged pooled in order to obtain a weight of the
importance of a feature map Fi for a target class c. By multiplying the weights
wi with their corresponding feature maps we obtain the weighted activations:

Ai = wi ∗ Fi,∀i = 1, .., n. (3)

The next step is to sum all the activations of the feature maps and apply the
ReLU function, the result being a downsampled feature-importance array:

H = ReLU(
n∑

k=1

Ak) (4)

We don’t upsample H as it is done for images, we go back through the archi-
tecture to find an approximation of a group of nodes that are good predictors for
a target class. The part of the architecture were we apply our reverse process is
the CNN part, as depicted in Fig. 1. In this example, and even in the architecture
which we used, this part is composed of two 1D convolutional layers and a Max-
Pooling layer. The first 1D convolutional layer combines the resulted features of
every node from the SortPooling layer into one feature. The dimensions of the
ordered array does not change after this layer. Next, a MaxPooling operation is
applied and, depending on the values of the hyperparameters, kernel and step,
the dimensions of the previous array changes. A second convolutional layer is
applied, changing the dimensions of the array again. We apply Grad-CAM on
the result of the previous convolutional layer. Therefore, we can associate an
element from H with a group of nodes, FG, by going back trough the archi-
tecture. In the illustrated example, FG(1) (Final Group 1) is represented by
two previous groups of nodes, where G1 (Group 1) contains the nodes 3 and
6, and G2 (Group2) contains the nodes 2 and 1. In the end, FG(1) points to
the nodes 3, 6, 2, 1. H consists of values between 0 (meaning that the group of
nodes is not important in classifying the target class) and 1 (meaning that the
group of nodes is a very good predictor for the target class). For every node, vi,
we discretize its importance into several bins, by defining an importance array,
ci, where the indices give us decimal intervals from H. For instance, index 0
represents the values between 0 and 0.1, index 1 represents values between 0.1
and 0.2, and so on. C is defined as a frequency matrix where the row ci is the
importance frequency array for the node vi. This matrix is obtained by applying
the Importance frequency algorithm (shown below) to every computed H. Based
on the C matrix we then generate the interpretability heatmaps (Sect. 4.3) to
visualize the discriminative nodes.

72 L.-D. Palcu et al.

Fig. 1. DGCNN + Grad-CAM

Algorithm 1: Importance frequency algorithm
Input : H - importance array, FG - a list of lists of nodes
Output : C - importance frequency matrix
Initialize: C(i) ← 0, ∀ i = 1, ..., n, where n = |V |

1 foreach element h ∈ H do
2 foreach node v ∈ FG(h) do
3 idx ← �h ∗ 10�;
4 C(v)(idx) ← C(v)(idx) + 1

5 end

6 end

4 Experimental Evaluation and Results

The domain specific problem we started off from consisted of graphs representing
brain functional networks in two different physiological states. Though the clas-
sification accuracy obtained on that data was good, and the heatmaps obtained
allowed for reaching a certain understanding of the generated models, we chose
to validate the interpretability method more reliably, by generating artificial
datasets in which the relation between the nodes in the graph is known in
advance.

4.1 Data Generation

Validating interpretability methods for graph classification models is not
straightforward, since if we employ real data it might not even be clear what
the model should be learning. Because the interpretability model we propose
tries to highlight class-relevant nodes, failing to do so may be caused by flaws
in the interpretability model itself, but also by the fact that the classification
model does not actually learn what it should. To remove the second factor from
the analysis (since it is not relevant for the validation of the interpretability
method), we turn to synthetic data to analyze the strengths and weaknesses of
the proposed interpretation strategy. In generating the data, we followed three
main objectives/hypotheses (further detailed in four data generation scenarios):

Discovering Discriminative Nodes for Classification 73

1. Classification performance on a random class distribution problem should be
close to the 50% baseline – addressed by scenario S1 below; analyze what the
interpretability heatmaps indicate in this situation.

2. Evaluate the robustness of the method to mild graph topologies and distri-
butions which try to mimic the original, real-world problem we started from.
This is addressed by generation scenarios S2 and S3 below.

3. Evaluate the robustness of the method to various complexities inherent in
data, which normally affect performance, such as: (i) imbalance, (ii) overlap,
(iii) noise and also combinations of these complexities (as most traditional
machine learning techniques fail to handle well this aspect). Scenario S4 below
considers two of these complexities.

The objectives above are materialized in the following 4 generation scenarios:

1. Random classification problem (S1-Random), in which the graphs for
both classes are very similar. We expect that the resulting model has very poor
performance in this case (close to 50%), and the interpretability heatmaps to
show no emerging pattern.

2. Well separable and interpretable classification problem (S2-Easy),
in which we select a subset of nodes to drive an almost perfect separation
between classes. For this scenario, we expect classification accuracy to be
close to 100% and the model to be able to learn which are the important
nodes - which should be visible in the resulting interpretability heatmaps.

3. Well separable, partially interpretable classification problem (S3-
Moderate), in which we try to give more importance in separation to a sub-
set of nodes, but this importance is not as straightforward as in the previous
scenario. In this case, we also expect a very good classification accuracy, and
the interpretability heatmaps should be able to indicate (at least partially)
the important nodes.

4. Partially separable, partially interpretable classification problem
(S4-Hard), in which we attempt to make the data more difficult to separate,
by introducing two challenges: imbalance and overlap.

The rest of this section describes the data generation processes for each of the
above scenarios. All datasets generated contain 500 synthetic complete weighted,
undirected graphs, each having 85 nodes. The graphs belong to 2 different classes
- State1 and State2 - the class labels being uniformly distributed (except for S4-
Hard, where we introduce imbalanced class distributions). Each node has the
same labelling in all the graphs. The weights of the edges are numbers in the
[0, 1] range.

For S1-Random, the edge weights are drawn randomly from the same dis-
tribution for both classes, N1(μ1, σ2

1). As mentioned above, this should yield
around 50% classification accuracy and the resulting heatmaps should not indi-
cate any relevant nodes. For scenario S2-Easy, the graphs belonging to the first
class are generated as for S1-Random; for the graphs belonging to the second
class, we select a subset of k nodes for which we use a different edge weight
distribution, N2(μ2, σ2

2). For the rest of the edge weights, we use the initial

74 L.-D. Palcu et al.

distribution, N1(μ1, σ2
1) - this should yield a (very) well separable classifica-

tion problem. For this scenario we experimented with two different settings: one
in which the weights of the k nodes in the separate community in State2 were
weaker than for the rest of the graph (S2.1), and one in which they were stronger
(S2.2). The reason for this is to observe whether sparsification can affect class
separability and model interpretability, since sparsification removes the smaller
weight edges (thus it might remove relevant edges in S2.1). With S3-Moderate
we tried to generate graphs that were separable by a well known network metric
- the betweeness centrality - and see whether the model is able to learn those
characteristics. More specifically, for the graphs belonging to the first class, we
again generate complete, weighted graphs, drawing the weights randomly from
N1(μ1, σ2

1). For the graphs belonging to the second class, we select a subset of k
nodes and generate the weights of the edges connecting these nodes by drawing
randomly from N1(μ1, σ2

1). Then, the rest of the nodes are “split” uniformly at
random among these hub nodes. We thus create separated communities, within
each community the edge weights being drawn randomly from N2(μ2, σ2

2). In a
last generation step, we connect the nodes belonging to different communities
(except for the hub nodes) by very weak connections, drawing their weights from
N3(μ3, σ2

3). In S4-Hard we generate three different datasets. We keep the gen-
eration strategy from S3-Moderate, and try to make the classification problems
harder by introducing first class imbalance, then class overlap. Dataset S4.1 was
generated with an imbalance ratio of approximately 10, the second class being
the minority class. For dataset S4.2, we employ a balanced class distribution but
change the means of the three distributions used to generate the edge weights
such as to make them overlap more. Finally, S4.3 was generated by applying
jointly the strategies from S4.1 and S4.2.

The specific parameters for the distributions used are presented in Table 1.
For k we experimented with three different values: 8, 42 and 77 for S2-Easy, and
k = 8 for S3-Moderate and S4-Hard.

Table 1. Distributions used for data generation

* N1 N2 N3

μ1 σ1 μ2 σ2 μ3 σ3

S1-Random 0.5 0.25 n.a. n.a. n.a. n.a.

S2.1-Easy (weaker) 0.7 0.1 0.5 0.1 n.a. n.a.

S2.2-Easy (stronger) 0.5 0.1 0.7 0.1 n.a. n.a.

S3-Moderate 0.7 0.1 0.5 0.1 0.2 0.1

S4.1-Hard (imbalance) 0.7 0.1 0.5 0.1 0.2 0.1

S4.2-Hard (overlap) 0.6 0.1 0.5 0.1 0.4 0.1

S4.3-Hard (imb.+ overlap) 0.6 0.1 0.5 0.1 0.4 0.1

Discovering Discriminative Nodes for Classification 75

4.2 Classification Performance Evaluation

The classification task was performed using the network structure for DGCNN
as presented in [14], applied to input graphs sparsified to maintain a certain
amount of edges, as specified by p%. We repeated each experiment 10 times,
using in each evaluation 80% of the data for training and the remaining 20% as
validation (test) set. For setting p%, we experimented with several options, from
maintaining all edges (i.e. p = 100%) down to keeping the strongest edges that
make up for 50% of the total weights.

As expected, for S1-Random, the trained models learn to predict one of the
classes, reaching an accuracy of around 50% (e.g. the average accuracy of the
final model over the 10 runs for p = 70% sparsification threshold was 50.1%).
For all the other scenarios, all models, in all runs, eventually converge to a 100%
accuracy on the validation set. What differs is the speed of convergence and the
variability of the accuracy on the validation set.

For example, if we compare the training behavior of the models in S2-Easy
and S3-Moderate - see Fig. 2) - we observe that the latter converge faster, and
with less variability, which might indicate that the models find these datasets
easier to learn, contrary to our initial assumptions. A potential motivation for
this can be found in the effect of sparsification. For S3-Moderate data, for the
graphs belonging to State2 we expect sparsification to remove the weak inter-
community edges (i.e. the ones generated with N3(μ3, σ2

3)). In contrast, for the
graphs belonging to State2 in S2-Easy, sparsification might remove edges from
both outside and inside the community formed of the k nodes (with higher
probability for the edges generated with the distribution having the lower mean);
what is important to note here is that by removing from both outside and inside
the community, the problem might become more difficult to learn. Within the
same scenario, we observed that keeping more edges in the initial graphs (by
increasing p%) makes the models converge more slowly (i.e. in later epochs),
which was expected.

(a) S2.1 (b) S2.2 (c) S3

Fig. 2. Comparison of learning curves for S2-Easy and S3-Moderate, k = 8, p = 70%
(Score = Average Accuracy)

In S4-Hard we find that the models have different learning patterns according
to the complexities added to the data (imbalance and/or overlap). As illustrated

76 L.-D. Palcu et al.

in Fig. 3a, the model only starts to learn something meaningful around epoch
25, when training accuracy starts to increase from 90% towards 100% (before
that epoch, the model always predicted class State1, also reflected in the value of
the validation set accuracy). We observe a similar behavior in Fig. 3c, only this
increase appears later in training, due to the overlap also being a data complexity
that the model has to overcome. Comparing with the behavior in S3-Moderate
(see Fig. 2c), we find that both imbalance and overlap make the models learn
more slowly, and overlap induces more variability in the learning process (which
can be seen in the validation/test set accuracy).

(a) S4.1 (imbalance) (b) S4.2 (overlap)
(c) S4.3 (imbalance + over-
lap)

Fig. 3. Comparison of learning curves for S4-Hard, k = 8, p = 70% (Score = Average
Accuracy)

4.3 Interpretability Heatmaps

In order to visualize the discriminative nodes we created a heatmap where the
horizontal axis (Oy) represents the nodes of the graph, G, and the vertical axis
(Ox) represents the interval [0, 1], the importance of a node in classification (the
values from H). The interval [0, 1] is split into 10 bins with a step of 0.1: the
values between 0 and 0.1 are removed for better visualization, while we allocate
an extra bin for values exactly equal to 1. The color represents the difference
between the importance frequency matrix of State1, C1, respectively State2,
C2 (C1 − C2), the difference being computed per decimal interval. C contains
values which indicate how many times a node takes a value from H within a
decimal interval. The top of the heatmap is associated with high values from
H (for example, 1), while the bottom of the heatmap with low values from H.
Therefore, for each node we can visualize its importance in the classification as
follows: if the red color appears on the top of the image, and the blue color on
the bottom of the image, it means that the node is a good predictor for State1; if
we have the blue color on the top of the image and the red color on the bottom,
it means that the node is very important in classifying State2; the green colour
shows that the node does not have discriminative power in the model; if red
or blue colors appear emphasized only in the middle of the heatmap, it might

Discovering Discriminative Nodes for Classification 77

indicate that our problem is difficult to learn, the difference between classes being
less noticeable. We created an average heatmap across the 10 folds in order to
capture the strongest common features of the models resulting from different
evaluation folds.

Fig. 4. The heatmap for S1-Random data generation strategy where p = 70%.

Figure 4 illustrates the average heatmap for the models learned for S1-
Random. The model predicts any graph in the test/validation set as belonging to
the State1 class; the heatmap indicates that all nodes in the graph are relevant
for predicting that class, which is to be expected.

For S2.1-Easy (weaker) data generation strategy we performed experiments
and computed heatmaps for the following sparsification percentages: p = 100%,
p = 70% and p = 50%. The purpose of this experiment was to highlight the k
nodes whose edge weights were generated using a different distribution in State2.
We always choose the k nodes to be the first in the graph (i.e. the leftmost 8
columns of the heatmap in Fig. 5). In Fig. 5a, we notice that if we keep all the
edges no clear patterns emerge, because the information is actually distributed
across the nodes. But if we sparsify the graphs using a percentage p = 70%,
Fig. 5b shows how our classifier distinguishes between classes by highlighting
the 8 nodes that are good predictors for State2 (and the model performance is
almost the same). If we sparsify more, p = 50%, Fig. 5c does not indicate clear
patterns because through sparsification the nodes are losing their importance
(for example, the discriminative edges are eliminated).

In a next experiment, we modified k, the number of nodes for which we
employed a different distribution for generating the edge weights (for the graphs
belonging to the second class). The results for p = 70% can be visualized in
Fig. 6. Figure 6a illustrates a clear difference between the discriminative nodes

78 L.-D. Palcu et al.

(a) The heatmap for p = 100% (b) The heatmap for p = 70%

(c) The heatmap for p = 50%

Fig. 5. The heatmaps for S2.1-Easy (weaker) data generation strategy for each spar-
sification percentage considered, where k = 8.

(a) The heatmap for k = 42 (b) The heatmap for k = 77

Fig. 6. The heatmaps for S2.1-Easy (weaker) data generation strategy, at p = 70%.

for State1 (left part), and the good predictors for State2 (right part). Theoret-
ically, by increasing k, we should have more discriminative nodes for one state.
Figure 6b shows the opposite: actually the nodes (left part) whose edges weights
have not been generated from another distribution are the most important ones
for State1. Also, we can notice that there are fewer good predictors (the nodes
from the middle of the heatmap) for State2 than in the previous case when
k = 42. In the case of S2.2-Easy (stronger), the first 8 modified nodes are more
important in classifying State1 rather than State2 as it is shown in Fig. 7a, while
in Fig. 7b all nodes are relevant in classifying State1.

Discovering Discriminative Nodes for Classification 79

In S3-Moderate the first 8 nodes were selected to be the hubs in State2. As
Fig. 8 shows, only a part of them are highlighted as being important in classifying
State2.

Even though S4.1-Hard represents a class imbalance problem, the same pat-
terns as in S3-Moderate emerge in Fig. 9a, only the colors are less intense, which
might indicate that the model is less certain in how the two classes separate. A
similar phenomenon can be observed when the two classes overlap more, in S4.2-
Hard (Fig. 9b), where the strong shades of blue and red appear more towards
the middle bins (as opposed to the top or bottom of the heatmap - as for models
which converged faster and are - intuitively - more confident in their separation).
An interesting phenomenon can be observed for S4.3-Hard (Fig. 9c), where, as
expected, the emphasized patterns appear in the middle of the heatmap, but
the heatmap is flipped (blue appears more on the top of the heatmap, while red
more on the bottom part).

(a) The heatmap for k = 8 (b) The heatmap for k = 77

Fig. 7. The heatmaps for S2.2-Easy (stronger) data generation strategy for k = 8,
respectively k = 77, where p = 70%

5 Discussion

The interpretability method proposed in this paper attempts to extract informa-
tion about the importance of graph nodes in achieving class separation for deep
graph convolutional models. The evaluation attempted to assess the validity of
the method on several classification tasks for which - intuitively - we know what
to expect from the models. A first important observation is that sparsification
affects the outcome of the interpretability method, and this is because it affects
how the underlying classification model learns to separate between the classes.
When the information is dense (i.e. we keep all graph edges), individual nodes
matter less in learning how to separate between the classes - which is to be
expected. Naturally, the “right” amount of sparsification is highly dependent on
the problem, and - even if not observed in the current evaluations - sparsifi-
cation affects not only interpretability, but also the classification performance.
Consequently, a future step is to study these interactions more systematically.

80 L.-D. Palcu et al.

Fig. 8. The heatmap for S3-Moderate data generation strategy where p = 70%.

(a) The heatmap for S4.1-Hard (imbalance) (b) The heatmap for S4.2-Hard (overlap)

(c) The heatmap for S4.3-Hard (imb +
overlap)

Fig. 9. The heatmaps for S.4-Hard data generation strategy where p = 70%.

By comparing the heatmaps for S3-Moderate and S4-Hard, and consider-
ing also how the corresponding models converge, we believe that the heatmaps
may capture also the confidence of the model’s predictions. However, this phe-
nomenon needs to be studied further, especially for classification problems which
are not perfectly separable.

Discovering Discriminative Nodes for Classification 81

The proposed modification to Grad-CAM performs a very rough approxima-
tion to compute graph node relevance. We are currently exploring more accurate
alternatives for doing this (such as adapting the deconvolution method initially
proposed for the interpretation of image convolutional models).

6 Conclusion

Interpretability is – in many application domains – crucial towards gaining accep-
tance for machine learning models. Graph convolutional models add an extra
layer of difficulty for interpretability methods, because graphs do not exhibit
clear spatial relations between their nodes (like images do).

In this paper we propose a method for graph classification and model inter-
pretation, which combines DGCNN with a modified Grad-CAM algorithm, to
obtain heatmaps representing each node’s relevance to the classification of a spe-
cific graph. We alter the Grad-CAM algorithm to apply only operations which
do not assume a specific locality for nodes. We evaluate our method on synthetic
datasets which were generated to emulate a real dataset representing brain func-
tional networks in different physiological states. These functional networks are
represented by complete, weighted graphs that need to be sparsified. The result-
ing heatmaps are generally able to identify the nodes which we intended to be
relevant for the identification of a specific class. Interrestingly, we believe they
manage to also capture some degree of “uncertainty” associated to the predic-
tions of the model, but this aspect needs further investigation, together with the
effect of sparsification on the resulting models and heatmaps.

Acknowledgments. This work was supported by a grant from the Romanian
National Authority for Scientific Research and Innovation, CNCS-UEFISCDI (project
number COFUND-NEURON-NMDAR-PSY), a grant by the European Union’s Hori-
zon 2020 research and innovation program – grant agreement no. 668863-SyBil-AA, and
a National Science Foundation grant NSF-IOS-1656830 funded by the US Government.

References

1. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv e-prints, February 2017

2. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-
CAM: why did you say that? Visual explanations from deep networks via gradient-
based localization. CoRR abs/1610.02391 (2016)

3. Molnar, C.: Interpretable machine learning (2019). https://christophm.github.io/
interpretable-ml-book/

4. Greenwell, B.M., Boehmke, B.C., McCarthy, A.J.: A simple and effective model-
based variable importance measure (2018)

5. Zhao, Q., Hastie, T.: Causal interpretations of black-box models (2019)
6. Fisher, A., Rudin, C., Dominici, F.: All models are wrong but many are useful:

variable importance for black-box, proprietary, or misspecified prediction models,
using model class reliance. arXiv e-prints, January 2018. arXiv:1801.01489

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
http://arxiv.org/abs/1801.01489

82 L.-D. Palcu et al.

7. Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E.: Peeking inside the black box:
visualizing statistical learning with plots of individual conditional expectation. J.
Comput. Graph. Stat. 24(1), 44–65 (2015)

8. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predic-
tions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2014)

9. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. CoRR abs/1602.04938 (2016)

10. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
CoRR abs/1311.2901 (2013)

11. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
visualising image classification models and saliency maps. CoRR abs/1312.6034
(2013)

12. Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity:
the all convolutional net. In: ICLR (Workshop Track) (2015)

13. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: CVPR (2016)

14. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: AAAI, pp. 4438–4445 (2018)

	Discovering Discriminative Nodes for Classification with Deep Graph Convolutional Methods
	1 Context and Motivation
	2 Related Work
	3 Interpreting Graph Convolutional Network Models with Grad-CAM
	3.1 Graph Sparsification
	3.2 Deep Graph Convolutional Neural Networks
	3.3 DGCNN Interpretability

	4 Experimental Evaluation and Results
	4.1 Data Generation
	4.2 Classification Performance Evaluation
	4.3 Interpretability Heatmaps

	5 Discussion
	6 Conclusion
	References

