
Michelangelo Ceci
Corrado Loglisci
Giuseppe Manco
Elio Masciari
Zbigniew Ras (Eds.)

 123

LN
AI

 1
19

48

8th International Workshop, NFMCP 2019
Held in Conjunction with ECML-PKDD 2019
Würzburg, Germany, September 16, 2019
Revised Selected Papers

New Frontiers
in Mining Complex Patterns

Lecture Notes in Artificial Intelligence 11948

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Michelangelo Ceci • Corrado Loglisci •

Giuseppe Manco • Elio Masciari •

Zbigniew Ras (Eds.)

New Frontiers
in Mining Complex Patterns
8th International Workshop, NFMCP 2019
Held in Conjunction with ECML-PKDD 2019
Würzburg, Germany, September 16, 2019
Revised Selected Papers

123

Editors
Michelangelo Ceci
University of Bari Aldo Moro
Bari, Italy

Corrado Loglisci
University of Bari Aldo Moro
Bari, Italy

Giuseppe Manco
CNR-ICAR
Rende, Italy

Elio Masciari
Federico II University
Naples, Italy

Zbigniew Ras
University of North Carolina
Charlotte, NC, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-48860-4 ISBN 978-3-030-48861-1 (eBook)
https://doi.org/10.1007/978-3-030-48861-1

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6690-7583
https://orcid.org/0000-0001-5790-8368
https://orcid.org/0000-0001-9672-3833
https://orcid.org/0000-0002-1778-5321
https://orcid.org/0000-0002-8619-914X
https://doi.org/10.1007/978-3-030-48861-1

Preface

Modern automatic systems are able to collect huge volumes of data, often with a
complex structure (e.g. multi-table data, network data, web data, time series and
sequences, trees and hierarchies). Massive and complex data pose new challenges for
current research in Data Mining. Specifically, they require new models and methods for
their storage, management, and analysis, in order to deal with the following complexity
factors:

– Data with a complex structure (e.g. multi-relational, time series and sequences,
networks, and trees) as input or output of the data mining process

– Data collections with many examples and/or many dimensions, where data may be
processed in (near) real time

– Partially labeled data
– Data which arrive continuously as a stream, at high rate, subject to concept drift

The 8th International Workshop on New Frontiers in Mining Complex Patterns
(NFMCP 2019) was held in Wüzburg, Germany in conjunction with the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD 2019) on September 16, 2019. The purpose of this
workshop was to bring together researchers and practitioners of Data Mining who are
interested in the latest developments in the analysis of complex and massive data
sources, such as blogs, event or log data, medical data, spatio-temporal data, social
networks, mobility data, sensor data, and streams. The workshop was aimed at dis-
cussing and introducing new algorithmic foundations and representation formalisms in
complex pattern discovery. Finally, it encouraged the integration of recent results from
existing fields, such as Statistics, Machine Learning, and Big Data Analytics. This book
features a collection of revised and significantly extended versions of papers accepted
for presentation at the workshop. These papers went through a rigorous review process
to ensure compliance with Springer’s high-quality publication standards. The indi-
vidual contributions of this book illustrate advanced Data Mining techniques that take
advantage of the informative richness of both complex data and massive data for
efficient and effective identification of complex information units present in such data.

The book is composed of nine chapters.
Chapter 1 proposes a framework, consisting of generic transformations, that allows

for the combination of state-of-the-art time series representation, pattern mining, and
pattern-based anomaly detection algorithms.

Chapter 2 deals with the problem of privacy preserving frequent pattern mining and
proposes a heuristic approach for sensitive pattern hiding based on the selective
deletion of items.

Chapter 3 proposes a novel survival analysis modeling approach based on gradient
boosting using bagged trees as base learners. The proposed approach is shown to have
higher predictive power while maintaining full interpretability.

Chapter 4 introduces a generalized neural network-based recommender framework
that allows for the inclusion of more elaborate information from various data sources.

Chapter 5 deals with the problem of guaranteeing the interpretability in Graph
Convolutional Neural Networks and proposes an approach for estimating the dis-
criminative power of graph nodes from the models learned by a deep graph convo-
lutional method.

Chapter 6 studies the problems that may arise in interleaved test-then-train evalu-
ations when detecting concept drifts in data streams. It proposes an approach com-
bining weighted soft voting and unsupervised drift detection to reduce the dependency
on labels during model construction.

Chapter 7 focuses on Target-based Sentiment Analysis, i.e., the problem of iden-
tifying target-specific aspect words and opinion words within textual data.

Chapter 8 presents a systematic literature review of recent research dealing with
customer purchase prediction in the E-commerce context. The authors propose a novel
analytical framework and a research agenda in the field.

Finally, chapter 9 addresses the extraction of line parameters from spectrograms for
audio data, recorded via cars passing by an audio recorder. The goal is to use these
parameters to detect the speed behavior of the vehicles.

We would like to thank all the authors who submitted papers for publication in this
book and all the workshop participants and speakers. We are also grateful to the
members of the Program Committee and external referees for their excellent work in
reviewing submitted and revised contributions with expertise and patience. We would
like to thank Giorgiana Ifrim for her invited talk on “Effective Linear Models for
Learning with Sequences and Time Series”. A special thanks is due to both the
ECML-PKDD workshop chairs and to the ECML-PKDD organizers who made this
event possible. Last but not least, we thank Alfred Hofmann and Aliaksandr Birukou
from Springer for his continuous support.

April 2020 Michelangelo Ceci
Corrado Loglisci
Giuseppe Manco

Elio Masciari
Zbigniew Ras

vi Preface

Organization

Program Chairs

Michelangelo Ceci University of Bari Aldo Moro, Italy
Corrado Loglisci University of Bari Aldo Moro, Italy
Giuseppe Manco ICAR-CNR, Italy
Elio Masciari Federico II University of Naples, Italy
Zbigniew Ras University of North Carolina at Charlotte, USA

Program Committee

Petr Berka University of Economics of Prague, Czech Republic
Jorge Bernardino ISEC, Polytechnic Institute of Coimbra, Portugal
Carmela Comito CNR-ICAR, Italy
Roberto Corizzo American University, USA
Hadi Fanaee Tork University of Oslo, Norway
Bettina Fazzinga CNR-ICAR, Italy
Filippo Furfaro Università della Calabria, Italy
Massimo Guarascio CNR-ICAR, Italy
Dragi Kocev Jozef Stefan Institute, Slovenia
Mirjana Mazuran Politecnico di Milano, Italy
Ruggero G. Pensa University of Torino, Italy
Gianvito Pio University of Bari, Italy
Domenico Potena Università Politecnica delle Marche, Italy
Jerzy Stefanowski Poznan University of Technology, Poland
Irina Trubitsyna University of Calabria, Italy
Herna Viktor University of Ottawa, Canada
Alicja Wieczorkowska Polish-Japanese Academy of Information Technology,

Poland

Effective Linear Models for Learning
with Sequences and Time Series

(Abstract of Invited Talk)

Giorgiana Ifrim

University College Dublin, Ireland

Abstract. In this talk I present some of the work done in my research group on
developing machine learning algorithms for classification and regression tasks
on sequences and time series data. The focus is on algorithms to train linear
models. We show that albeit these linear models are considered too simple to
achieve high accuracy in many learning tasks, when trained in rich feature
spaces they are strong competitors to very complex models such as ensembles
and deep learning models. Linear models with rich features are as accurate as
complex non-linear models, but are very efficient to train and are interpretable.
Interpretability in this context means that the model (a list of weighted features)
and the prediction (a sum of feature weights) is transparent to the user. I first
provide an overview of important and wide application areas where we
encounter sequences and time series, discuss common approaches to learn with
sequences, and present algorithms for sequence classification and regression
tasks. I also show how ideas from sequence learning can naturally carry over to
time series data and show that a linear model with features selected from
multiple symbolic representations, achieves state-of-the-art time series classifi-
cation accuracy. By combining multiple representations of the sequence data to
create rich features, we enable linear models to achieve high accuracy, have
efficient training and preserve interpretability, the latter being a crucial
requirement in many applications.

Contents

Complex Patterns

A Framework for Pattern Mining and Anomaly Detection
in Multi-dimensional Time Series and Event Logs. 3

Len Feremans, Vincent Vercruyssen, Wannes Meert, Boris Cule,
and Bart Goethals

A Heuristic Approach for Sensitive Pattern Hiding with Improved
Data Quality. 21

Shalini Jangra and Durga Toshniowal

Classification and Regression

Interpretable Survival Gradient Boosting Models with Bagged
Trees Base Learners . 39

Wojciech Jarmulski and Alicja Wieczorkowska

Neural Hybrid Recommender: Recommendation Needs Collaboration 52
Ezgi Yıldırım, Payam Azad, and Şule Gündüz Öğüdücü

Discovering Discriminative Nodes for Classification with Deep Graph
Convolutional Methods . 67

Liana-Daniela Palcu, Marius Supuran, Camelia Lemnaru,
Mihaela Dinsoreanu, Rodica Potolea, and Raul Cristian Muresan

Streams and Times Series

Soft Voting Windowing Ensembles for Learning from Partially
Labelled Streams. 85

Sean L. A. Floyd and Herna L. Viktor

Disentangling Aspect and Opinion Words in Sentiment Analysis Using
Lifelong PU Learning . 100

Shuai Wang, Mianwei Zhou, Sahisnu Mazumder, Bing Liu,
and Yi Chang

Applications

Customer Purchase Behavior Prediction in E-commerce:
A Conceptual Framework and Research Agenda . 119

Douglas Cirqueira, Markus Hofer, Dietmar Nedbal, Markus Helfert,
and Marija Bezbradica

Hough Transform as a Tool for the Classification of Vehicle Speed
Changes in On-Road Audio Recordings . 137

Elżbieta Kubera, Alicja Wieczorkowska, and Andrzej Kuranc

Author Index . 155

xii Contents

Complex Patterns

A Framework for Pattern Mining and
Anomaly Detection in Multi-dimensional

Time Series and Event Logs

Len Feremans1(B), Vincent Vercruyssen2, Wannes Meert2, Boris Cule1,
and Bart Goethals1,3

1 University of Antwerp, Antwerp, Belgium
{len.feremans,boris.cule,bart.goethals}@uantwerpen.be

2 KU Leuven, Leuven, Belgium
{vincent.vercruyssen,wannes.meert}@cs.kuleuven.be

3 Monash University, Melbourne, Australia

Abstract. In the present-day, sensor data and textual logs are gen-
erated by many devices. Analysing these time series data leads to the
discovery of interesting patterns and anomalies. In recent years, numer-
ous algorithms have been developed to discover interesting patterns in
time series data as well as detect periods of anomalous behaviour. How-
ever, these algorithms are challenging to apply in real-world settings. We
propose a framework, consisting of generic transformations, that allows
to combine state-of-the-art time series representation, pattern mining,
and pattern-based anomaly detection algorithms. Using an early- or late
integration our framework handles a mix of multi-dimensional continuous
series and event logs. In addition, we present an open-source, lightweight,
interactive tool that assists both pattern mining and domain experts to
select algorithms, specify parameters, and visually inspect the results,
while shielding them from the underlying technical complexity of imple-
menting our framework.

1 Introduction

Discovering interesting patterns and anomalous periods in heterogeneous time
series data is often the main interest of people generating and analyzing these
data. In the past decades, the field of pattern mining has developed a large
body of algorithms to automatically discover different types of interesting pat-
terns, such as frequent itemsets and sequential patterns [21]. However, these
algorithms are difficult to use for anyone who is not familiar with their inner
workings. Moreover, the algorithms require the data to be preprocessed to the
proper format and the type and quality of the patterns being found is largely
dependent on the choices made in the preprocessing steps. If a dataset consists of
multiple time series or dimensions this becomes even more problematic. Recent
algorithms for pattern-based anomaly detection in time series suffer from the
same drawbacks [7,11].
c© Springer Nature Switzerland AG 2020
M. Ceci et al. (Eds.): NFMCP 2019, LNAI 11948, pp. 3–20, 2020.
https://doi.org/10.1007/978-3-030-48861-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-48861-1_1

4 L. Feremans et al.

Fig. 1. Example of a pipeline for pattern-based anomaly detection. A window has a
high anomaly score if it matches few frequent patterns.

An example pattern-based anomaly detection pipeline is shown in Fig. 1.
Here we transform the single continuous signal to a transaction database of small
discrete sequences using discretisation and a sliding window. Next, we mine fre-
quent patterns in this transaction database and finally give a high anomaly score
to windows that match no (or few) frequent patterns. When a new sequential
pattern mining or a pattern-based anomaly detection algorithm is presented,
important time series representation choices are often only discussed in the
experimental design, and a review of alternative representations is often out of
scope. Moreover, a wealth of itemset and sequential pattern mining algorithms
has been developed in the past decades [8]. Most of these pattern mining algo-
rithms are optimised towards specific, built-in constraints, such as mining closed
itemsets or mining sequential patterns satisfying temporal constraints [16]. In
the literature, little attention is given to generic external constraints for reducing
the set of discovered patterns independently from any specific algorithm.

In addition, we find that in real-world applications anomalies are often con-
textual [1], that is, an outlier value is only anomalous given that it’s out of
context. For example, a high temperature during a cold winter night is anoma-
lous, while it’s normal during a summer day. Likewise, a shopping bill for more
than a thousand dollar is anomalous, except during the Christmas period. Note
that we do not require defining contextual attributes, but rather mine patterns of
normal behaviour in all input dimensions. In contrast, classic outlier detection

A Framework for Pattern Mining and Anomaly Detection 5

algorithms assume a single continuous time series that is stationary, meaning
that statistical properties, such as distribution or auto-correlation structure are
constant.

We contribute a framework for pattern mining and anomaly detection in
time series data. The framework allows its users flexibility regarding the three
major steps in the time series analysis workflow: preprocessing, pattern min-
ing, and anomaly detection. First, the framework supports several preprocessing
algorithms for representing continuous time series, as well as a generic transfor-
mation that creates a transaction or sequence database for both single, multi-
dimensional, and mixed continuous and discrete time series data. Second, the
framework supports the use of all state-of-the-art pattern mining algorithms for
mining itemsets and sequential patterns [8]. In addition, it adds a number of
external constraints for reducing the set of discovered patterns independently
from any specific algorithm, such as temporal constraints. Third, the framework
supports two anomaly detection algorithms [7,11] that are extended to make
them compatible with any pattern mining algorithm and multiple dimensions.
The framework allows its users to rapidly test various compositions of these
three time series analysis building blocks, even new compositions not considered
by the original authors of each separate block. For example, instead of frequent
sequential patterns, an end-user of our framework can mine a set of sequen-
tial patterns using an alternative interestingness measure [6,17], subsequently
apply temporal constraints, and then use these patterns as input to an anomaly
detection algorithm. Finally we have created an open-source tool for Time series
Pattern Mining and anomaly detection (Tipm). The tool enables an iterative,
exploratory workflow for preprocessing, finding patterns and discovering anoma-
lies, and visualising data and patterns using our framework.

2 Preliminaries

This section clarifies the important time series and pattern mining terminology
used throughout the paper. The concepts are largely adapted from [7].

Time Series Data. A continuous time series is as a sequence of numeri-
cal values pxx1, t1y, . . . , xxn, tnyq, where each real value xk is associated with
a distinct timestamp tk. A discrete event log is a sequence of discrete events
pxe1, t1y, . . . , xen, tnyq where ek P Σ, with Σ a finite domain of discrete event
types. Multiple events can co-occur at the same timestamp. Finally, a mixed-
type time series S is a collection of N continuous time series and M event logs
and has dimensionality M ` N . A single time series Si in S has only one dimen-
sion. It is possible for M or N to be 0. Thus, univariate and multivariate time
series are special cases of this definition.

A time series window Si
t,l is a contiguous subsequence of a time series Si

containing all measurements for which {xxi, tiy or xei, tiy| t ď ti ă t ` l}. A
segment of length l can be defined over all dimensions of S simultaneously.

Pattern Mining. The following definitions are adapted from [21]. An itemset
X consists of one or more items xj P Ω, where Ω is a finite domain of discrete

6 L. Feremans et al.

values, that is, X “ {x1, . . . , xm} Ď 2|Ω|. An itemset does not require a temporal
order between its items. An itemset X is covered by a window Si

t,l if all items
in X occur in that window in any order, denoted as X ă Si

t,l. Given the set of
all windows S of a time series, coverpX,Sq is the set of all windows in S that
cover X and supportpX,Sq is the length of this set.

A sequential pattern Xs consists of an ordered list of one or more items,
denoted as Xs “ px1, . . . , xmq, where xj P Ω. A sequential pattern can contain
repeating items, and, unlike n-grams, an occurrence of a sequential pattern allows
gaps between items. A sequential pattern Xs is covered by a window Si

t,l if all
items in X occur in that window in the order imposed by the sequential pattern,
denoted as Xs ă Si

t,l. The definitions of cover and support are equivalent to
those of itemsets. Finally, an itemset or a sequential pattern is frequent if its
support is higher than a user-defined threshold on minimal support.

3 Method

The problem we are trying to solve is defined as follows:

Given: A time series dataset S consisting of one or multiple time series.
Do: Find interesting patterns and/or periods of abnormal behaviour in the data.

The general workflow of our framework is shown in Fig. 2. Note that in our frame-
work two strategies are available for finding anomalies. In the first strategy, we
create a model of normal behaviour and predict anomalies based on deviations
from this model. This is the case for the frequent pattern-based anomaly detec-
tion technique, where try to find many patterns that occur frequently and are
used for positive detection of anomalies. A second strategy is to find anomalous
patterns directly or use negative detection [4]. Which strategy to use, depends
on the use case and can be freely chosen by the user.

3.1 Time Series Representation for Pattern Mining

Dealing with Outliers. If one uses positive detection, it makes sense to remove
outlier (extreme) values, that is, cap outlier values that deviate a user-specified
number of standard deviations from the mean. If one uses negative detection,
it makes sense to keep outlier values and discretise them along with the rest of
the data, possibly in a separate bin, as the occurrence of outlier values, is often
indicative of contextual anomalies.

Time Series Dimensionality Reduction. A straightforward transformation
to reduce time series is piecewise aggregate approximation (Paa) [12]. Given a
time series S, one sets a window duration lPaa and then replaces each consecutive
window in S with the mean of the continuous values in the window. This effec-
tively downsamples a time series S by a factor |S|{lPaa. In practice, it is often
beneficial to downsample each time series as we are more interested in patterns
that span a larger period. Note that Paa allows more flexibility than symbolic

A Framework for Pattern Mining and Anomaly Detection 7

Fig. 2. Workflow of our framework.

aggregate approximation [14]. The latter assumes that the time series values are
normally distributed, which is rarely the case in a non-stationary time series.

Discretisation. After reducing dimensionality, the continuous time series are
discretised using equal-width or equal-length bins. As a rule-of-thumb, equal-
width discretisation is applied if the observations are normally or uniformly dis-
tributed over the bins. If this is not the case, equal-length binning with a slightly
larger number of bins can be selected by the end-user. The goal of discretisation
is to have good coverage of items that occur in at least 5% of segments.

Segmentation. Before pattern mining, the time series need to be transformed
into a transaction database. This is done by sliding a fixed-size window over
the data and storing each time series window separately as a transaction. The
window duration lsegm and increment isegm are specified in time units or steps.
Setting segmentation parameters is largely domain-specific. For instance, if the
length of the datasets is two hours, but measurements (or events) are sampled
every second, then finding patterns within 1 min makes sense. The window dura-
tion and increment are important parameters towards pattern mining since they
directly determine which patterns will found as well as their length. In practice,
useful patterns are limited in length so one must ensure that windows are of
moderate size by either setting a relatively small value for the duration or by
reducing the time series dimensionality.

Filters and Aggregation. Finally, our framework supports basic filtering and
aggregation on the time series, as well as generic SQL queries. Filtering is useful
if the goal is to model only a part of the dataset. For instance, an end-user can
filter the time series on time, on periods where certain warning or error codes
occur, or periods where some continuous variable exceeds a certain threshold.
This has the advantage that end-users can mine and discover interesting patterns

8 L. Feremans et al.

Fig. 3. Detailed overview of our framework.

local to certain events or conditions. Finally, the framework provides options to
aggregate values within each window and compute summary statistics such as
min, mean, max, count and unique.

Automatically Selecting Parameters. What constitutes a good time series
representation depends strongly on the specific application. Good parameters
are either selected using domain knowledge or set interactively in a trial-and-
error way. However, for the anomaly detection algorithms, it is possible to select
parameters using a wrapped approach. Let lPaa, lsegm , isegm , and b be the Paa
window duration, segmentation length, window increment, and the number of
bins respectively. The optimal parameters are selected from the parameter space
Ω “ {lPaa, lsegm , isegm , b} through optimization of an evaluation metric on the
anomaly scores (e.g., AUROC).

3.2 Pattern Mining

After the time series data are discretised and segmented, we can mine patterns.
A more detailed overview of our framework is shown in Fig. 3.

Frequent Pattern Mining. An end-user can discover patterns for each dimen-
sion of time series S that is either discrete or has been transformed into a dis-
crete representation. Our current framework integrates with the Spmf library

A Framework for Pattern Mining and Anomaly Detection 9

containing more than 40 algorithms for itemset and sequential pattern mining,
covering efficient algorithms for mining frequent, closed, and maximal itemsets
and sequential patterns, top-k sequential patterns ranked on leverage and a set of
sequential patterns compressed using minimal description length [8,13,17]. For
the brevity of this paper, we will not discuss the details of these algorithms and
refer to existing work [8,21]. Itemset and sequential pattern mining algorithms
require a suitable representation for enumerating patterns and computing sup-
port. Itemset mining algorithms require a transaction database. This database
is created by generating a transaction, or unordered set of items, for each win-
dow. Likewise, sequential pattern mining algorithms require a sequence database
where for each window, we create a chronologically ordered list of items (if two
events happen at the same time, this is also encoded). Each item is encoded
using an integer identifier and either represents an event code or discretised con-
tinuous value. We decode item identifiers to report human-readable patterns. An
example of maximal itemset mining is shown in Fig. 4.

Fig. 4. Example of maximal itemset mining.

External Constraints. A recent benchmark study found that temporal con-
straints for pattern mining in time series are of high importance [22]. Our frame-
work computes occurrences of itemsets and sequential patterns, reported by any
algorithm, and computes the occurrences that have a minimum duration in each
window, by looking at the raw dataset. If the minimal occurrence does not sat-
isfy temporal constraints on maximal duration and maximal gap (time between
two pattern items in one occurrence), we remove the occurrence and re-compute
the support for each pattern. In addition, we provide basic external constraints
for filtering patterns on the minimum and maximal length, filtering the top-k
patterns on support, and removing redundant patterns using a threshold on Jac-
card similarity, i.e., if two patterns cover mostly the same transactions, filter out
the pattern with the lowest support.

Multi-dimensional Pattern Mining. Thus far, pattern mining algorithms
only work on a single-dimensional event log or continuous time series, after
preprocessing. Our framework makes it possible to uncover patterns with events

10 L. Feremans et al.

from multiple dimensions of a time series S. Under this early integration strategy,
a transaction (or sequence) database is created from the time series by adding
events from multiple dimensions of the time series to a transaction. Similarly,
sequence transactions (necessary for sequential pattern mining) are created by
adding events from multiple dimensions in a chronological fashion. We differen-
tiate between events from different dimensions by encoding the item identifier
to reflect the source dimension. An example pipeline is shown in Fig. 5.

Fig. 5. Example of mining pattern in multi-dimensional time series. Under the early
integration strategy, events from both dimensions are considered simultaneously. Under
the late integration strategy, patterns are mined in each dimension separately.

Pattern Explosion in Time Series. While the pattern mining community
has gone through great lengths in creating efficient algorithms for different tasks,
time series remain a difficult data source for efficient pattern mining. For exam-
ple, imagine a time series that contains a sequence of 20 values and occurs
frequently. Because this series is frequent, any subsequence will also be frequent,
thereby generating an exponential number of patterns. In general, time series
generate a lot of patterns due to naturally occurring autocorrelation. The prob-
lem becomes even worse when two or more dimensions are added, especially if
different time series dimensions are highly correlated. In practice, we prefer min-
ing maximal patterns with relatively high support in each dimension separately.
This strategy, dubbed the late integration strategy, is illustrated in Fig. 5. Alter-
natively, we can change the representation of the time series. In our experience,
we find that using pattern sets with more than a few thousand of patterns rarely
results in higher accuracy.

A Framework for Pattern Mining and Anomaly Detection 11

3.3 Pattern-Based Anomaly Detection

Our framework supports two algorithms for anomaly detection: a generalised
version of frequent pattern-based outlier factor (Fpof) and a generalised ver-
sion of pattern-based anomaly detection (Pbad) [7,11]. Both methods take a
set (or sets) of patterns as input and compute an anomaly score between 0.0
(normal) and 1.0 (abnormal) for each time series segment. By setting the win-
dow increment isegm equal to a single time step, it is possible to compute the
anomaly score at each timestamp. Figure 6 shows an example of both anomaly
detection approaches.

Fig. 6. Example of Fpof and Pbad for computing anomalies based on a previously
discovered pattern set. In Fpof the anomaly score is based on the number of exactly
matching patterns. In Pbad we compute the distance between each window and pattern
and compute scores using an isolation forest.

Generic Outlier Factor. Fpof [11] computes an anomaly score a for each
segment Si

t,l in time series S, given a pattern set P, based on the total number
of patterns matching each segment, denoted by Pk ă Si:

apSi
t,l,Pq “ 1.0 ´ |{Pk|Pk P P and Pk ă Si

t,l}|
|P| .

The authors only consider closed itemsets over a single dimension, but we can
extend Fpof to compute this score for any pattern set, such as sequential pat-
terns, and for multiple pattern sets mined over multiple dimensions of S. Given
two patterns sets, P1 and P2, the anomaly score is computed as:

apSi
t,l,P1 Y P2q “ 1.0 ´ |{Pk|Pk P P1 Y P2 and Pk ă Si

t,l}|
|P1 Y P2| .

12 L. Feremans et al.

It is trivial to extend this formula to d dimensions. The only requirement is
that for computing a match from dimension d, we need to check if the pattern
mined from dimension d matches the segment of the corresponding dimension.
Multiple pattern sets can also be mined over the same dimension using a different
algorithm or settings. For example, we can mine both itemsets and sequential
patterns in a single dimension Si.

Generic Isolation Forest of Distance-Weighted Occurrences. Pbad [7]
computes anomaly scores with the help of the isolation forest algorithm applied
to an embedding of both maximal itemsets and sequential patterns for each con-
tinuous and discrete dimension [7]. For continuous time series, the authors use
a distance-weighted match to match both itemsets and sequential patterns with
each original, non-discretised, segment. For example, the distance between item-
set Pk “ {’0.5’, ’0.6’} and segment S1 “ p0.50, 0.61, 0.11, 0.10q will be smaller
than the distance to segment S2 “ p0.31, 0.42, 0.12, 0.04q. We generalise Pbad
by decoupling the pattern mining from the anomaly detection phase. Concretely,
the distance-weighted embedding and isolation forest can be used on any pattern
set and any number of dimensions. Assume we have two pattern sets P1 and P2.
First, we compute the distance-weighted match between each pattern and each
window for continuous time series, and the exact match for discrete (or multi-
dimensional) time series. We now have two matrices of dimensions |S| ˆ |P1|
and |S| ˆ |P2|, and can represent each segment Si

t,l using a feature vector (or
embedding) of length |P1|` |P2|. Finally, we feed this embedding to an isolation
forest to compute anomaly scores.

Concept Drift. For pattern-based anomaly detection, we assume a stable dis-
tribution such that the mined patterns are good descriptors of the new data
that enters the system and deviations are anomalies. However, this might not
be true in practice, especially over a long period of time where the observed
system might change. In such a setting we can use the pattern-based anomaly
detection as part of an online adaptive learning procedure [9] and extend our
framework to detect concept drift. The anomaly score is, in this case, the target
variable that is being predicted from the new instances, and the loss function
is the deviation from an average anomaly score closer to 0, representing nor-
mal behaviour. When the aggregated loss grows too large or some other change
point detection algorithms crosses a threshold, the framework signals concept
drift. Depending on the application, various strategies can be used to relearn.
From maintaining a database of previous data to gradual forgetting old patterns
and introducing new mined patterns to the pattern set(s). We refer to Gama et
al. for an extensive overview.

3.4 Implementation of the Framework

We implemented our framework in Java as an open-source web-based application
called Tipm1.

1 Source and datasets available at https://bitbucket.org/len feremans/tipm pub.

https://bitbucket.org/len_feremans/tipm_pub

A Framework for Pattern Mining and Anomaly Detection 13

Fig. 7. Tipm: Time series representation options. In the first use case, we apply Paa
with lPaa =10, cap outlier values, discretise all time series using 16 equal width bins
and create overlapping segments with a lsegm =10 and isegm =5.

Fig. 8. Tipm: Using an early integration strategy, we mined maximal itemsets and
maximal sequential patterns with minimal support =20 and compute the generalised
Fpof anomaly score. An example of an anomalous pattern is highlighted.

14 L. Feremans et al.

Fig. 9. Tipm: Visualisation of anomaly scores and patterns. We show occurrences of
the interpretable anomalous pattern pc1 =15, pc2 =6.

Interactive Workflow. Tipm takes in any dataset that contains at least a
timestamp and one or more value columns. Tipm visualises the histogram and
summary statistics for each column and allows transforming continuous time
series using our framework, as shown in Fig. 7. Pattern mining is done using the
algorithms implemented in Spmf. Multi-dimensional mining transformations,
external constraints and anomaly detection algorithms are implemented in our
framework as shown in Fig. 8. Tipm can plot continuous time series values, trans-
formed values, discrete event logs, labels, and segmentation, on different levels
of granularity in time (raw, hourly, daily, yearly, etc.). For validation purposes,
the tool can render pattern occurrences and anomaly scores as shown in Fig. 9.
We remark that Tipm saves intermediate files after each operation allowing end-
users to undo any operation.

Representing Mixed-Type Real-World Datasets. Many real-world
datasets, such as supervisory control and data acquisition datasets for wind tur-
bines, contain missing values, non-continuous periods, and timestamped values
stored together with event log data in a single file. In our framework, we stay
close to this tabular format as this is most convenient for collaborating with
domain experts who prefer to look at the raw data for validation. In addition,
we provide two explicit temporal join operations: partition and merge. Partition
takes a subgroup of columns having non-zero values and saves them in a sep-
arate table. This is useful for extracting event log data from continuous time
series data. Merge is the opposite operation and takes the union of two tables
and sorts them on time. If two column names match in both tables, merge takes

A Framework for Pattern Mining and Anomaly Detection 15

the column value of the first table. For example, merge can be used to join time
series datasets from multiple devices.

Scaling to Large Datasets. In our implementation, we use streaming opera-
tions as much as possible. Each procedure implemented in this way, processes
one row at a time, instead of loading all data into main memory. Alternative,
we load data in a paginated way, that is, we only load data required in the
user interface, i.e. only the current period of the time series. By processing data
using streaming operations and loading data paginated, the interface and pre-
and postprocessing transformations can handle large time series with millions of
samples instantaneously. For pattern mining, we can manage resources by setting
support to a relatively high value, and reducing time series as discussed before.
A possible extension would be to include streaming pattern mining algorithms.

4 Use Cases

In this section, we will illustrate the usefulness of our framework, implemented
in Tipm, using two use cases.

Anomaly Detection on Multivariate Times Series. For the first use case,
we detect anomalies in a multivariate time series dataset that was obtained
by using a Kinect sensor to track the body movements during indoor physical
exercises [2]. The goal is to assist people in performing the exercises correctly. We
focus on detecting incorrectly executed exercises during a continuous workout
session consisting of 60 lunges and 10 squats. The ground-truth values are known.
The original dataset consists of 75 time series and we reduced this to 3 time series
using principal component analysis [7].

First, we upload the time series in tabular file format. Tipm shows statistics
and histograms for each time series (pc1, pc2 and pc3) as well as the label as
shown in Fig. 7. We can now select options to preprocess each time series. First,
we cap outlier values based on the 1% and 99% quantiles. Next, we compute
and store the average value every 10 time steps, that is lPaa “ 10, to reduce the
3 continuous dimensions using Paa. We then apply equal-width discretisation
with b “ 16 bins. For multi-dimensional mining, our input dataset thus consists
of 16ˆ3 discrete items. We create sliding windows with a duration of lsegm “ 10
(3 seconds in absolute time) and isegm “ 5, resulting in 223 windows of length
10 that overlap for 50%. With all continuous data time series represented as
discretised segments, we start mining patterns. We opt for early integration and
select all three dimensions as input. We select an algorithm for mining max-
imal itemsets (Charm Mfi) with a minimum support of 20%. For reducing
patterns, we remove itemsets that co-occur in at least 90% of windows, resulting
in 999 itemsets. We compare this set of patterns by mining maximal sequential
patterns (Vmsp) with the same settings, resulting in 360 patterns. Finally, we
run the generic outlier factor and compute an anomaly score for both types of
pattern sets individually. The screens in Tipm are shown in Fig. 8 for mining
and Fig. 9 for visualisation. We show occurrences of the (anomalous) pattern

16 L. Feremans et al.

Fig. 10. Visualisation in Tipm of the first minute of data. The blue line is pc1, the
light blue line pc2, and the orange line pc3. We show the top-5 most frequent maximal
itemsets, mined over all three dimensions. (Color figure online)

Fig. 11. Visualisation in Tipm of anomaly detection results. Segments with a red back-
ground are labelled anomalies, and the black line is the anomaly score predicted (unsu-
pervised) using generic outlier factor using maximal sequential patterns. The dotted
line is the results using maximal itemset patterns. (Color figure online)

pc1 “ 15, pc2 “ 6, found by sorting all maximal sequential patterns with mini-
mal support of 20 on decreasing confidence towards labelled anomalies. Figure 10
shows the first minute of the Kinect dataset. Tipm shows the transformed time
series and overlapping segments. We selected the top-5 most frequent maximal
itemsets for visualisation. The first itemset is {pc1 “ 1, 2, 4^pc2 “ 1^pc3 “ 4, 5}
which has a support of 56 (or relative support of 0.25). This means that 25% of
segments contain both (discretised) values of 1, 2 and 4 in time series pc1, 1 in
pc2, and 4 and 5 in pc3. Notice that the first frequent pattern, as well as the 2nd,
3th and 5th, but not 4th, almost never occur in any anomalous segment high-
lighted in red. Consequently, the patterns are examples of frequent interpretable
patterns that occur during normal behaviour. Deviations from these patterns
are marked as anomalies. As mentioned before, Tipm allows sorting patterns on
confidence towards normal or abnormal segments, thereby assuming labels. We
find that sequential patterns containing high values of pc1 are the most pre-
dictive towards abnormal behaviour. Figure 11 shows the anomaly scores over
the entire 6 min time series. Using the generic outlier factor anomaly detection
method we can report an AUROC of 0.839 and average precision of 0.767 for
maximal itemsets, and an AUROC of 0.884 and average precision of 0.833 for
maximal sequential patterns.

Exploratory Analysis of Real-World Heterogeneous Time Series. In the
second use case, we perform an exploratory analysis of a supervisory control and

A Framework for Pattern Mining and Anomaly Detection 17

Fig. 12. Tipm: Use case for exploratory analysis of heterogeneous wind turbine data.
We show two interesting patterns that are characteristic of operational behaviour,
mined from the event log.

data acquisition dataset collected from a wind turbine farm [5]. This dataset is
challenging because: (i) the data was collected over different years, (ii) there are
multiple continuous time series, (iii) there is an event log containing more than
hundreds of different types of events, (iv) behaviour of a wind turbine is strongly
dependent on current weather conditions. Figure 12 shows the preprocessed data
and two interesting patterns for a selected period of 1 month in Tipm. For the
wind turbine, we have selected two continuous variables representing the wind
speed and power output as well as an event log containing warning, error, and
operational codes. First, we normalised both continuous time series. We verify
that wind speed and power output are highly correlated. The main difference is
that power output is capped to a maximal value. The different occurring events
are shown as colour-coded dots. We mine maximal itemsets with a minimal
support of 1 and found about 140 patterns. Next, we filter patterns with a
minimum size of 2. Next, we remove redundant patterns by setting a Jaccard
similarity threshold of 0.9, thereby removing patterns that co-occur in 90% of
windows. From the remaining patterns, we show two maximal itemsets of size 5
and 6 that occur in the selected period. Both patterns correspond to a specific
series of operator actions for remotely stopping and restarting the turbine. If
these patterns occur, the power output drops to 0, regardless of the current
wind speed. From this second use case, we conclude that our framework can be
used to explore complex multi-dimensional datasets, using patterns extracted
from the event log, to capture meaningful operational behaviour.

18 L. Feremans et al.

5 Related Work

Most general data mining libraries, such as Weka or Knime, are incomplete
concerning pattern mining. Tipm is complementary to Spmf [8] by imple-
menting temporal constraints, multi-dimensional pattern mining, and pattern-
based anomaly detection algorithms. In contrast to Spmf, and other libraries
that implement time series transformations on consecutive numeric vectors, we
support timestamped tabular data with multiple dimensions, and mixed-type
attributes. Other tools for anomaly detection in time series uses either shapelets
or motifs (or discords) in single-dimensional continuous time series [18]. Inter-
active pattern mining tools, such as Mime [10] or Sniper [15], do not support
continuous time series.

There exist algorithms for directly mining patterns with temporal con-
straints [16]. However, by providing temporal constraints as an external post-
processing filter, we can apply them to any pattern mining algorithm. This is of
interest for many efficient algorithms for mining closed, maximal or interesting
patterns that do not support temporal constraints. Many more transformations
for reducing the length of the time series exist [3]. We prefer Paa for two reasons.
First, different authors have confirmed that more advanced techniques are not
necessarily more effective [3,14]. Second, many other representation techniques,
i.e., transformation to spectral space, single value decomposition, or clustering,
make interpretation much harder while patterns of binned values are easy to
interpret. Remark that other transformations, such as differencing or smoothing
the raw time series are not problematic regarding interpretation.

Two popular techniques for classification and anomaly detection in time series
are the matrix profile [20], that computes an outlier score relative to the euclidean
or dynamic time warping (Dtw) distance to its nearest neighbour, and time
series shapelets, which are subsequences from a continuous time series and are
used in combination with the Dtw distance to classify time series segments [19].
A key difference is that frequent patterns naturally handle both continuous time
series and event logs. If we compare sequential patterns to shapelets, we argue
that on the one hand, sequential patterns generalise shapelets, because we use
non-continuous subsequences with gaps. On the other hand, sequential patterns
are more specific, because they consist of discretised values instead of continuous
values. The latter argument against sequential patterns, however, can be relaxed
by using a weighted distance. Itemsets, however, are radically different from
shapelets and of value for predicting anomalies. In future work, an ensemble of
representations could have value. That is, we can compute itemset and sequential
pattern distances, exact pattern matches, shapelet distances, motif distances,
and combine those in one feature vector, as input for existing classification or
anomaly detection algorithms.

6 Conclusion

Existing pattern-based anomaly detection algorithms focus on a particular com-
bination of time series representation, pattern mining, and computation of the

A Framework for Pattern Mining and Anomaly Detection 19

anomaly score. In Pbad, the authors remarked that this method is a promising
general framework for time series anomaly detection, where certain variations
might be more effective in different applications [7]. In this paper, we imple-
ment such a framework and discuss a wealth of general building blocks, that
can be composed to create new variations. This allows data scientists to create
novel unsupervised anomaly detection models. We also present Tipm, an inter-
active, easy-to-use, and open-source tool that implements our framework. Tipm
is unique since we have a rich set of options for interactively preprocessing and
mining patterns from mixed-type time series, supported by visualisation of (raw
and transformed) time series, event logs, segments, patterns and anomaly scores.
With our framework, we show how to discover interesting interpretable patterns
and detect anomalies in multi-dimensional time series in two different use cases.

Our framework and corresponding tool are designed to support real-world
applications. For applications such as condition monitoring of devices, it is
important to support devices that log both sensor values and events. We focus
on contextual anomalies, i.e. we only consider outlier values as anomalous if
they are abnormal given the current operational conditions, by capturing nor-
mal behaviour using patterns and predicting anomalies as deviations from nor-
mal behaviour. We also discussed the integration of concept drift within our
framework as an important next step.

Acknowledgements. The authors would like to thank the VLAIO SBO HYMOP
project for funding this research.

References

1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. (CSUR) 41(3), 15 (2009)

2. Decroos, T., Schütte, K., De Beéck, T.O., Vanwanseele, B., Davis, J.: AMIE: auto-
matic monitoring of indoor exercises. In: Brefeld, U., et al. (eds.) ECML PKDD
2018. LNCS (LNAI), vol. 11053, pp. 424–439. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-10997-4 26

3. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)

4. Esponda, F., Forrest, S., Helman, P.: A formal framework for positive and negative
detection schemes. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(1), 357–
373 (2004)

5. Feremans, L., Cule, B., Devriendt, C., Goethals, B., Helsen, J.: Pattern mining for
learning typical turbine response during dynamic wind turbine events. In: ASME
2017 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, p. V001T02A018. American Society of
Mechanical Engineers (2017)

6. Feremans, L., Cule, B., Goethals, B.: Mining top-k quantile-based cohesive sequen-
tial patterns. In: Proceedings of the 2018 SIAM International Conference on Data
Mining, pp. 90–98. SIAM (2018)

https://doi.org/10.1007/978-3-030-10997-4_26
https://doi.org/10.1007/978-3-030-10997-4_26

20 L. Feremans et al.

7. Feremans, L., Vercruyssen, V., Cule, B., Meert, W., Goethals, B.: Pattern-based
anomaly detection in mixed-type time series. In: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (2019)

8. Fournier-Viger, P., et al.: The SPMF open-source data mining library version 2.
In: Berendt, B., et al. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9853, pp.
36–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1 8

9. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

10. Goethals, B., Moens, S., Vreeken, J.: Mime: a framework for interactive visual pat-
tern mining. In: Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 757–760. ACM (2011)

11. He, Z., Xu, X., Huang, Z.J., Deng, S.: FP-outlier: frequent pattern based outlier
detection. Comput. Sci. Inf. Syst. 2(1), 103–118 (2005)

12. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3),
263–286 (2001)

13. Lam, H.T., Mörchen, F., Fradkin, D., Calders, T.: Mining compressing sequential
patterns. Stat. Anal. Data Mining: ASA Data Sci. J. 7(1), 34–52 (2014)

14. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: Proceedings of the 8th ACM SIG-
MOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp.
2–11. ACM (2003)

15. Moens, S., Jeunen, O., Goethals, B.: Interactive evaluation of recommender sys-
tems with sniper - an episode mining approach. In: Proceedings of Thirteenth ACM
Conference on Recommender Systems. RecSys 2019, September 2019

16. Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the
pattern-growth methods. J. Intell. Inf. Syst. 28(2), 133–160 (2007)

17. Petitjean, F., Li, T., Tatti, N., Webb, G.I.: Skopus: mining top-k sequential patterns
under leverage. Data Mining Knowl. Discov. 30(5), 1086–1111 (2016)

18. Senin, P., et al.: GrammarViz 2.0: a tool for grammar-based pattern discovery in
time series. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML
PKDD 2014. LNCS (LNAI), vol. 8726, pp. 468–472. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44845-8 37

19. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 947–956. ACM (2009)

20. Yeh, C.C.M., et al.: Matrix profile i: all pairs similarity joins for time series: a
unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th
International Conference on Data Mining (ICDM), pp. 1317–1322. IEEE (2016)

21. Zaki, M.J., Meira, W.: Data Mining and Analysis: Fundamental Concepts and
Algorithms. Cambridge University Press, Cambridge (2014)

22. Zimmermann, A.: Understanding episode mining techniques: benchmarking on
diverse, realistic, artificial data. Intell. Data Anal. 18(5), 761–791 (2014)

https://doi.org/10.1007/978-3-319-46131-1_8
https://doi.org/10.1007/978-3-662-44845-8_37

A Heuristic Approach for Sensitive
Pattern Hiding with Improved

Data Quality

Shalini Jangra(B) and Durga Toshniowal

Indian Institute of Technology Roorkee, Roorkee 247667, India
shalinijangra312@gmail.com, durgatoshniwal@gmail.com

Abstract. Frequent itemset mining can be used to discover various
interesting patterns present in dataset. However, this imposes a great
privacy threat when data is shared with other organisations. There are
some business critical frequent patterns that are considered as sensitive
from organization’s or individual’s perspective because revealing such
patterns can disclose confidential information. Privacy preserving data
mining (PPDM) provides various techniques to hide sensitive patterns
to make sure that they cannot be revealed by applying data mining
models on shared datasets. Heuristic based sensitive pattern hiding tech-
niques are widely adopted PPDM techniques due to their fast execution
time but causes high side effects. In this paper, we propose a heuristic
approach for sensitive pattern hiding based on deletion of Victim items
which is named MinMax. In the proposed algorithm, Misses Cost Impact
(MCI) value of each tentative Victim item is calculated and item with
minimum MCI is selected as Victim item resulting in low Misses Cost.
Experimental results on benchmark datasets show that proposed algo-
rithm achieves better data quality with less execution time as compared
to existing heuristic based techniques.

Keywords: Privacy preserving data mining · Data privacy · Sensitive
patterns · Hiding Failure · Misses Cost

1 Introduction

Frequent itemset mining to discover unrevealed patterns present in data benefits
the businesses in their various decision making policies. Unveiling of these hidden
patterns brings a threat to the privacy of sensitive and confidential information
present in data [1]. For example, analysis of financial and medical records can
give remarkable business and research benefits but privacy breach might allow
business competitors and malicious users to misapply the information that can
incur great remunerative and social loss. The confidential knowledge present in
the data can be inferred by the frequent patterns called sensitive patterns which
can be generated by applying data mining models. These patterns are generally

c© Springer Nature Switzerland AG 2020
M. Ceci et al. (Eds.): NFMCP 2019, LNAI 11948, pp. 21–35, 2020.
https://doi.org/10.1007/978-3-030-48861-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-48861-1_2

22 S. Jangra and D. Toshniowal

given by the user or organisation. Privacy preserving data mining was intro-
duced to diminish privacy issues by concealing the sensitive information while
enabling data mining models to extract required information. A large number of
sensitive pattern hiding techniques are proposed by various researchers, which
are majorly divided into three categories i.e. heuristic based, border based and
exact techniques.

Heuristic based techniques have drawn more attention of researchers due to
their simplicity and fast execution time [16,17]. However, these techniques expe-
rience high side effects and provide suboptimal solution [22]. Maintaining the
adequate balance between data quality and data privacy is the prominent issue
for sensitive pattern hiding algorithms because if no required information can
be mined from the data, there is no use of hiding all the sensitive information.
The quality of any sensitive pattern hiding technique predominantly depends on
two performance metrics: Misses Cost (MC) and Hiding Failure (HF). Num-
ber of non-sensitive frequent patterns accidently concealed in order to conceal
sensitive patterns accounts for Misses Cost. Number of sensitive frequent pat-
terns that are not concealed by pattern hiding technique accounts for Hiding
Failure. These two factors clearly depend on two things: Victim Item Selection
and Transaction Selection. Many heuristic techniques [3,11] removes some of
sensitive transactions from dataset to decrease the support count of sensitive
itemsets below minimum support threshold that can result in great reduction of
dataset size. Support of an itemset is equal to the fraction of transactions having
that itemset with respect to total dataset size. Some of the techniques are based
on the deletion of the Victim items from sensitive transactions. Most of Vic-
tim item deletion techniques select the item on the basis of support count. For
instance, MaxFIA [16] selects the item having highest support count as Victim
item since it results in less probability of non-sensitive itemsets to be infrequent.
Also selection of optimal transaction to delete Victim item plays a crucial role
which can on the basis of transaction size [21], degree of conflict (DoC) [16],
relevance of transaction with non-sensitive information (RoT) [5], etc. Now-
a-days, metaheuristic based algorithms that used evolutionary approaches like
genetic algorithm [12,13], particle swarm optimization [14], ant colony system
[25], etc. are also gaining interest of researchers. However, these approaches take
high execution time due to hundreds of iterations performed in search of opti-
mal solution. Further, the results of these approaches are highly dependent on
the parameters specified by the user such as mutation rate, chromosome size,
population size, etc.

Border based techniques [15,23] are based on the border theory in which
search space for calculating the side effects on the non-sensitive patterns is
reduced to the elements present at the border of the lattice of frequent and infre-
quent itemsets. These techniques have less side effects as compared to heuris-
tic based approaches but have high computational complexity. Shivani et al.
[22] proposed a border based algorithm which uses the MapReduce framework
for parallel processing of transactions to sanitize the data. Exact techniques
[7,8] consider the problem of sensitive pattern hiding as constraint satisfaction

A Heuristic Approach for Sensitive Pattern 23

problem and find the optimal solution using linear programming. These tech-
niques are very slow compared to heuristic based techniques.

This paper proposes a new heuristic based algorithm, MinMax that differs
in the method of Victim Item Selection. The principle behind MinMax algorithm
is to select the Victim item which appears in less number of non-sensitive pat-
terns and first mask the sensitive itemset whose Victim item appears in more
number of non-sensitive itemsets as compared to Victim items of other sensi-
tive itemsets. The concept of RoT is chosen for selecting the transaction. Many
experiments are conducted on some benchmark datasets to compare the per-
formance of the proposed algorithm with some traditional heuristic techniques
which demonstrate that MaxMin preserves a better data quality with commen-
surate execution time.

The remainder of this paper is organised as follows. Section 2 presents a
briefing on some existing sensitive patterns hiding heuristic techniques. Section 3
provides a brief introduction of basic terminologies and the problem statement.
Section 4 describes proposed algorithm with demonstrating example. In Sect. 5,
the performance of the proposed algorithm is analyzed with experiments. Final
conclusion is given in Sect. 6.

2 Related Work: Heuristic Based Algorithms

Numerous heuristic based sensitive pattern hiding and association rule hiding
techniques exist in the literature that sanitize the data before applying data min-
ing models. The authors in paper [4] proposed a sensitive rule hiding approach
in which sensitive itemset with highest support is preferred to hide first. In this
paper, a graph of large itemsets is formed. This itemset graph is traversed bot-
tom up followed by top down to mask sensitive patterns. This approach works
fine on small datasets but not feasible on large datasets. Apart from hiding all
sensitive patterns, other performance factors of the algorithm are not evaluated.
In paper [16], three itemset hiding heuristics named MaxFIA, MinFIA and IGA
were proposed to maintain better data quality with data privacy. Transactions
are selected on the basis of their degree of conflict. An efficient, scalable and
one-scan heuristic named Sliding Window Algorithm (SWA) is proposed in the
paper [17]. Transactions are selected in increasing order of their length since
shorter transactions have less combinations of sensitive rules. Highest frequency
item of sensitive itemsets present in the selected transaction is chosen as victim
item. Transactions coming under a k-sized window are sanitized once in sequen-
tial manner that imposes a scalability issue for large datasets. The paper [3]
presents three heuristic approaches (Aggregate, Disaggregate and Hybrid) that
promise better data quality at the cost of computational speed. Aggregate app-
roach is based on transaction deletion while Disaggregate approach alter the
transaction by deleting the items to reduce support of sensitive itemsets. Hybrid
approach is a combination of the above two approaches that first identifies the
transaction using Aggregate approach and then deletes item from the selected
transaction using Disaggregate approach.

24 S. Jangra and D. Toshniowal

Some researchers proposed blocking based rule hiding approaches that
replace sensitive information by some unknown items [20,21,24]. In the blocking
approach, apart from the addition of unknown items, the rest of the dataset
remains the same. Therefore it becomes easy to restore the original dataset [19].
In paper [5], the item with maximum support count is selected as Victim Item like
MaxFIA but transactions are selected in descending order of their relevance with
non-sensitive itemsets. The paper [26] proposed an efficient distortion based rule
hiding method through deletion and reinsertion of items. To reduce the Misses
Cost, correlation between sensitive and non-sensitive rule is calculated and item
with minimum influence on non-sensitive itemsets is selected as Victim item.
The papers [6] and [9] proposes sanitization methods on incremental datasets.
Paper [6] maintains a tree like data structure to enhance the execution speed
and have less side effects. Although it is not efficient for dense datasets. In the
approach, proposed in [9], the sanitization process is applied only on the incre-
mented part of the dataset. A dynamic itemset hiding algorithm that considers
the multiple support threshold values ie proposed in the paper [18]. It uses item-
deletion based sanitization approach on the whole dataset hence reduces Misses
Cost.

Above discussion ensures that there is great scope for researchers to explore
different aspects of PPDM techniques like quality and scalability on different
types of datasets i.e. static datasets, incremental datasets, dense datasets and
sparse datasets etc.

3 Background

This section provides a brief introduction of basic terminologies and the problem
statement.

3.1 Basic Terminologies

1. Frequent Itemsets: Any itemset fi having support greater than minimum
support threshold value is frequent itemset i.e. sup(fi) ≥| D | × δ, where
sup(fi) is equal to the total number of transactions having itemset fi, | D | is
the size of dataset D and δ is minimum support threshold value. For example,
Table 3 shows the discovered frequent itemsets of an example database shown
in Table 1 under δ = 0.5.

2. Sensitive Itemsets: If the presence of any frequent itemset is able to discover
any sensitive pattern, sequence etc. that can reveal some personal and confi-
dential information regarding a company or an individual which they don’t
want to share, then it will be considered as a sensitive itemset. For example,
any attribute or combination of attributes that can reveal the identity of a
patient in medical records is considered as sensitive.

3. Degree of Conflict (DoF): It is defined as the number of sensitive itemsets
a transaction T contains. If S = {s1, s2,, sn} is set of sensitive itemsets, then

DoF (T) =
n∑

i=1

T (si) (1)

A Heuristic Approach for Sensitive Pattern 25

Table 1. An example database

TID Items

T1 B C D E F

T2 A C E F G

T3 C D F

T4 A C F G

T5 B C D F G

T6 C E G

Table 2. Projected database

TID Items

T1 B C D E F

T2 A C E F G

T3 C D F

T4 A C F G

T5 B C D F G

T6 C E G

where T(Si) = 1, when Si ⊆ T , otherwise T(Si) = 0.
4. Relevance of Transaction (RoT): The relevance of a transaction is cal-

culated as:
RoT (T) =

1
1 + NUMnon−sens(T)

(2)

where NUMnon−sens(T) is equal to the number of non-sensitive itemsets
transaction T supports.

5. Misses Cost Impact (MCI): Misses Cost Impact of an item ‘i’ equal to
the total number of non-sensitive itemsets in which item ‘i’ appears.

6. Victim Item: Victim item x of a sensitive itemset si is an 1-itemset, such
that x ⊆ si and x is chosen for deletion in order to mask si.

3.2 Problem Statement

The problem of sensitive pattern hiding is described as follows. Let D be the
original source dataset and F is set of associated frequent itemsets under some
minimum support threshold say δ. Let S is the subset of a set of frequent item-
sets having itemsets that can be helpful to derive confidential patterns hence
considered as set of sensitive itemsets. The problem of sensitive frequent itemset
hiding is to sanitize the data by decreasing the support count of sensitive fre-
quent itemsets less than minimum support count value i.e sup(si) < | D | × δ, so

Table 3. Discovered frequent itemsets

1-itemset Ccount 2-itemset Count 3-itemset Count

C 6 FG 3 CFG 3

D 3 CE 3 CDF 3

E 3 CD 3

F 5 CG 4

G 4 DF 3

CF 5

26 S. Jangra and D. Toshniowal

that sensitive itemsets do not appear as frequent itemsets in sanitized dataset.
The problem of sensitive patten hiding mainly revolves around two things: 1)
which item should be selected as Victim item for deletion to suppress a particular
pattern, 2) From which transaction that selected Victim item should be deleted.
Removal of Victim items results into hiding of non-sensitive frequent patterns
that accounts for increasing Misses Cost. Therefore, items having less impact on
non sensitive itemsets should be selected as Victim items. Transactions support-
ing at least one of sensitive itemsets should be considered for modification, since
alteration of other transactions does not exert any impact on support of sensi-
tive patterns. Therefore, the process of sensitive pattern hiding is transforming
of original dataset D into released dataset D′ such that most of non-sensitive
information and none of sensitive information can be derived from D′.

4 Proposed Solution: MinMax Algorithm

The rationale behind MinMax algorithm is to select the item which appears in
less number of non-sensitive patterns as Victim item. Misses Cost Impact (MCI)
of an item gives the count of the number of non-sensitive itemsets in which that
item appears. MCI of each 1-frequent itemsets is calculated using Algorithm 1.
A list called Affinity List (AL) is maintained to have tentative Victim items and
corresponding MCI values. After calculating MCI values, dataset is sanitized
using Algorithm 2. For each sensitive itemset, the item having the lowest MCI
value as Victim item (step 1–3) is selected, that contributes to Min part of
algorithm MinMax. The item having the lowest MCI value is selected because
it will reduce Misses Cost. If there is more than one item having the lowest
MCI value, go for the item which appears in more number of sensitive patterns.
Then, sensitive itemsets are sorted in decreasing order of their Victim item’s
MCI value (step 4) such that sensitive itemset whose Victim item’s MCI value
is largest as compared to MCI values of other sensitive itemset’s Victim items

Algorithm 1. MCI Calculation
Input: Set of 1-frequent itemsets, set of non-sensitive itemsets i.e NS
Output: Affinity list with items and corresponding MCI

1: Create an Affinity list AL having tentative victim item and corresponding MCI
value.

2: for each 1-frequent item x do
3: MCI (x)=0
4: for each nsi ∈NS do
5: if x ⊆ NSi then
6: Increment MCI (x) by 1.
7: end if
8: end for
9: AL.append(x, MCI (x))

10: end for
11: return AL

A Heuristic Approach for Sensitive Pattern 27

is prefered to sanitize first. It contributes to Max part of algorithm MinMax.
The item ‘i’selected as Victim item for a particular sensitive itemset X may
be present in other sensitive itemset Y but not selected as Victim item for Y
due to its higher MCI value than selected Victim item ‘i’. Sanitizing X first
will reduce the support count of Y also. This is the main idea behind sorting
sensitive itemsets. Sensitive transactions are extracted from the original dataset
and stored in dataset D′ (step 5). The dataset D′ transactions sorted according to
their relevance value (step 6). Victim items are deleted from selected transactions
to sanitize the dataset D′ and support count of other affected sensitive and
non-sensitive itemsets are updated (step 7–14). #IterToSanitize(si) is the total
number of transactions from which Victim item selected for masking of si needs
to be deleted and TransToModify are those selected transactions. Then sanitized
dataset is returned (step 15) after removing the Victim items from selected
transactions.

Algorithm 2. MinMax algorithm
Input: S={s1, s2,sn}, set of sensitive frequent itemsets, NS={ns1, ns2,nsm}, set
of non-sensitive frequent itemsets.
Output: A sanitized dataset.

1: for each sensitive itemset si ∈ S do
2: Victim(Si)← itemv such that itemv ∈ si and ∀ itemk ∈ Si MCI (itemv) ≤

MCI (itemk) {Min-Part}
3: end for
4: Sort the sensitive itemsets in decreasing order of MCI of their respective victim

item {Max-Part}
5: D′ ←D, where D′ made up of transactions containing atleast one of sensitive

itemsets.
6: Sort the transactions in D′ by their relevance value in descending order
7: for each si ∈ S do
8: #IterToSanitize(si)= |T[si]| - (| D | × δ)+1
9: TransToModify ← Select first #IterToSanitize(si) transactions from sorted D′

that contains si as subset.
10: for each T ∈ TransToModify do
11: T ← (T - Victim(Si))
12: Decrease the support of other affected sensitive and non sensitive itemsets
13: end for
14: end for
15: return sanitized dataset.

4.1 Time Complexity Analysis

Here, the running time of sanitization process is analysed without consider-
ing the running time of the algorithm used to produce frequent patterns i.e.
Apriori algorithm [2]. In Algorithm 1, occurence of every frequent 1-itemset in

28 S. Jangra and D. Toshniowal

non-sensitive patterns is calculated. Its worst case time complexity is equal to
the O(|I| × |NS|), where |I| is the number of distinct items present in dataset
D and |NS| is the number of non-sensitive patterns. In Algorithm2, process of
identification of Victim item for every sensitive itemset takes time O(|I| × |S|)
(step 1–3). Sorting the sensitive itemsets according to the MCI value execute in
O(|V | × |V |) time (step 4). The process of filtering out the sensitive transactions
and making the sensitive dataset D′ is done in less than O(|D| × |S|) time (step
5). For sorting the sensitive dataset D′ according to the decreasing order of rel-
evance of transactions, transactions are sorted according to increasing order of
number of non-sensitive itemsets they contain, which executes in O(|D’| × |NS|)
time (step 6). For each sensitive itemset, the number of iterations to modify the
transactions is calculated in O(1) time. To sanitize the dataset, victim items
are deleted from the transactions and support count of affected sensitive and
non-sensitive patterns are updated which takes O(|D’| × |S|) time for execution.

4.2 Example

Consider that S = {D, CG, CF} is a set of sensitive itemsets randomly selected
from frequent itemsets shown in Table 3. Table 2 shows the projected dataset
having transactions containing atleast one of these sensitive itemsets. Below are
the steps to sanitize the example dataset using proposed algorithm.

1. Misses Cost impact calculation:
AL= {MCI (C) = 5, MCI (D)= 3, MCI (F) = 5, MCI (G) = 3}.

2. Victim item selection:
Victim(D) = D, Victim(CG) = G since MCI (G) is less than MCI (C), Vic-
tim(CF) = C since MCI (C) =MCI (F), so any one of C and F can be selected.

3. Sorting of sensitive itemsets:
S = {CF, CG, D} is a set of sensitive itemsets sorted in decreasing order of
MCI value of their Victim item. Since MCI value of CF is maximum among
sensitive itemsets hence selected for masking first.

4. Sanitization:
#IterToSanitize(CF) = 5− 3 + 1 = 3 and TransToModify = {T2, T3, T4} are
selected transactions according to ROT values of transactions.

5. Support Reduction
Deleting item C from these transactions decreases the support count of CG
along with complete masking of CF.

Similarly, two other sensitive itemsets are masked. Misses Cost of proposed
algorithm MinMax turns out to be 5 with deletion of total 5 items while Greedy,
MaxFIA and MinFIA incur Misses Cost 6, 6 and 7 with deletion of 5, 5 and 6
items respectively. It indicates that MinMax preserves better data quality due
to less Misses Cost as compared to Greedy, MaxFIA and MinFIA.

A Heuristic Approach for Sensitive Pattern 29

Table 4. Characteristics of used datasets

Dataset Number of
transactions

Number of
distinct items

Average length of
transactions

Chess 3196 76 37.0

Mushroom 8124 120 23.0

BMS-1 59602 497 2.5

5 Experimental Results

Extensive experiments are conducted to evaluate the performance of the pro-
posed algorithm and compared with the existing algorithms namely MaxFIA
[16], MinFia [16] and Greedy [5]. All the algorithms are implemented in the JAVA
language on Eclipse platform and executed on the Intel R©Xeon(R) processor with
64 GB of RAM running Ubuntu 14.04LTS at 2.40 GHz. All of these algorithms
completely hide the sensitive itemsets, hence the value of Hiding Failure for all of
them is zero. Effect of data sanitization on the dataset’s quality is determined by
Misses Cost. Three performance parameters are taken into consideration: Misses
Cost, Data Loss (in terms of no. of item deleted throughout sanitization pro-
cess) and Execution Time. Three real-world benchmark datasets Chess, Mush-
room and BMS-1 are used in experiments. The Chess and Mushroom datasets
are available on Frequent Itemset Mining Dataset Repository present at link

Table 5. Misses Cost with varying percentage of sensitive itemsets

Dataset MST Sens Per MinMax Maxfia Minfia Greedy

Chess 0.9 1 155 203 179 210

2 271 364 281 335

3 284 335 292 313

4 223 279 243 265

5 245 318 252 282

Mushroom 0.4 5 217 363 227 252

6 221 310 233 292

7 262 312 269 289

8 220 253 229 237

9 281 305 298 310

Bms-1 0.001 1 532 686 623 576

2 839 989 919 885

3 1244 1410 1327 1326

4 1393 1762 1487 1471

5 1388 1560 1441 1490

30 S. Jangra and D. Toshniowal

http://fimi.uantwerpen.be/data/. The another dataset, BMS-1 is click-stream
data from a webstore used in KDD-Cup 2000 [10] and accessed from SPMF: An
Open-Source Data Mining Library through link http://www.philippe-fournier-
viger.com/spmf/index.php?link=datasets.php. The Table 4 shows the character-
istics of these datasets. All the experiments are conducted on randomly selected
sets of sensitive itemsets. The performance of the proposed algorithm is evalu-
ated by varying minimum support threshold (MST) and percentage of sensitive
itemsets (Sens Per). For each combination of Sens Per and MST, five samples of
sensitive itemsets are randomly drawn. Average value of each performance factor
on these five samples is considered for result comparison. In the experiments, the
value of MST and Sens Per parameters are different for each dataset, adjusted
based on each dataset’s characteristics.

5.1 Varying Percentage of Sensitive Itemsets

The performance of the proposed algorithm is evaluated on the datasets by
varying percentage of sensitive itemsets. It is shown in Table 5 that Misses Cost
incurred by proposed algorithm on used datasets is less than the other algo-
rithms, hence proposed algorithm, MinMax ensures better quality of data while
preserving its privacy. Table 6 shows the number of deleted items by different
algorithms to lower the support of sensitive itemsets which concludes that Data
Loss by MinMax is less than MinFIA and slightly greater than MaxFIA and
Greedy algorithm. Here, Data Loss is measured in terms of item deletion hence it
will not result in much higher dropping of data as compared to other algorithms.

Table 6. Number of items deleted with varying percentage of sensitive itemsets

Dataset MST Sens Per MinMax Maxfia Minfia Greedy

Chess 0.9 1 200 202 205 203

2 465 434 466 406

3 514 428 517 399

4 413 386 402 365

5 462 431 433 378

Mushroom 0.4 5 5553 4315 5525 4448

6 5771 6226 5588 5968

7 6795 5833 6803 5997

8 5267 5351 5076 5115

9 7655 6240 7494 6759

Bms-1 0.001 1 2587 2564 2585 2555

2 4930 4914 4924 4900

3 7692 7613 7707 7586

4 8553 7677 8573 8486

5 10406 10450 10418 10475

http://fimi.uantwerpen.be/data/
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

A Heuristic Approach for Sensitive Pattern 31

Chess (MST=0.9)

Mushroom (MST=0.4)

Bms-1 (MST=0.001)

(a) With varying percentage of sensitive
itemsets

Chess (Sens Per=1)

Mushroom (Sens Per=10)

Bms-1 (Sens Per=10)

(b) With varying minimum support
threshold value

Fig. 1. Execution time

32 S. Jangra and D. Toshniowal

The loss of non-sensitive patterns due to sanitization is less in the MinMax algo-
rithm as compared to the others. Hence, item loss can be ignored because it
does not increase the side effects. It also proves that it is the nature of item
deleted which matters for the increment of side effects not the number of items
deleted. The number of deleted matters if there is a huge difference between
them. Figure 1 (a) shows execution time taken by algorithms on all the three
datasets. Execution time of MinMax algorithm is less than MaxFIA and Min-
FIA algorithms and commensurate to Greedy algorithm. This is due to sorting
of dataset and selection of Victim items according to non-sensitive patterns.

5.2 Varying Minimum Support Threshold

To analyze the influence of different minimum support threshold values on
proposed algorithm’s performance, further experiments are carried out on the
selected datasets. It can be concluded from Table 7 that Misses Cost incurred
by MinMax algorithm is less than all other three algorithms that promises bet-
ter data quality. Table 7 also shows that on increasing the MST value, Misses
Cost of algorithms decreases. But this is due to the less number of the frequent
itemsets generated on increased MST. It is indicated from Table 8 that number
of items deleted by proposed algorithm is less than the MinFIA and greater
than MaxFIA and Greedy which concludes that Misses Cost is majorly affected
by selection of Victim item & not by total number items deleted during san-
itization as discussed earlier. Execution time taken by proposed algorithm is

Table 7. Misses Cost with varying minimum support threshold

Dataset MST Sens Per MinMax Maxfia Minfia Greedy

Chess 0.85 1 1545 1756 2367 1712

0.86 1081 1227 1102 1161

0.87 635 816 680 781

0.88 466 622 560 546

0.89 287 389 314 340

Mushroom 0.41 10 186 220 186 203

0.42 181 280 187 187

0.43 158 173 161 165

0.44 115 121 117 122

0.45 125 136 155 131

Bms-1 0.0012 10 933 977 962 951

0.0014 553 587 593 572

0.0016 348 395 356 378

0.0018 258 270 270 260

0.0020 192 195 198 206

A Heuristic Approach for Sensitive Pattern 33

Table 8. Number of items deleted with varying minimum support threshold

Dataset MST Sens Per MinMax Maxfia Minfia Greedy

Chess 0.85 1 1029 870 1017 846

0.86 915 762 931 704

0.87 564 513 571 515

0.88 484 436 498 419

0.89 364 329 370 297

Mushroom 0.41 10 5863 5939 5541 5843

0.42 6062 5571 6198 5665

0.43 5952 4927 5815 5014

0.44 4389 3941 4346 4123

0.45 5542 3504 5647 3294

Bms-1 0.0012 10 17388 17310 17525 17257

0.0014 17880 17631 18122 14360

0.0016 14083 14460 14007 14428

0.0018 14541 14902 14583 14892

0.0020 14585 14465 14431 14446

commensurate to Greedy and less than MaxFIA and MinFIA which is shown in
Fig. 1 (b) for used datasets. BMS-1 took more time for execution because of its
largest dataset size among three.

6 Conclusion

Various heuristic based techniques for sensitive pattern hiding have been pro-
posed by the researchers. In these techniques, maintaining the balance between
data quality and data privacy has been the biggest challenge. This paper has pro-
posed a new efficient heuristic technique which preserves better data quality as
compared to existing knowledge hiding heuristics. Proposed algorithm considers
the impact of Victim item deletion on non-sensitive knowledge while selecting
the Victim item and corresponding transaction. This heuristic can conceal all of
sensitive itemsets with less Misses Cost as compared to some of existing heuris-
tic based techniques. Experiments show that the proposed technique performs
well in terms of execution time on small datasets. It incurs high computational
cost for large datasets due to its sequential nature. Future research will intend
to improve the proposed algorithm so that data privacy along with good data
quality can be achieved on big datasets within real execution time.

34 S. Jangra and D. Toshniowal

References

1. Aggarwal, C.C., Philip, S.Y.: A general survey of privacy-preserving data mining
models and algorithms. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving
Data Mining. ADBS, vol. 34, pp. 11–52. Springer, Boston (2008). https://doi.org/
10.1007/978-0-387-70992-5 2

2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Proceedings of the 20th International Conference Very Large Databases VLDB,
vol. 1215, pp. 487–499 (1994)

3. Amiri, A.: Dare to share: protecting sensitive knowledge with data sanitization.
Decis. Support Syst. 43(1), 181–191 (2007)

4. Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., Verykios, V.: Disclosure
limitation of sensitive rules. In: Proceedings 1999 Workshop on Knowledge and
Data Engineering Exchange (KDEX 1999) (Cat. No. PR00453), pp. 45–52. IEEE
(1999)

5. Cheng, P., Roddick, J.F., Chu, S.-C., Lin, C.-W.: Privacy preservation through a
greedy, distortion-based rule-hiding method. Appl. Intell. 44(2), 295–306 (2015).
https://doi.org/10.1007/s10489-015-0671-0

6. Dai, B.R., Chiang, L.H.: Hiding frequent patterns in the updated database. In:
2010 International Conference on Information Science and Applications, pp. 1–8.
IEEE (2010)

7. Gkoulalas-Divanis, A., Verykios, V.S.: An integer programming approach for fre-
quent itemset hiding. In: Proceedings of the 15th ACM International Conference
on Information and Knowledge Management, pp. 748–757. ACM (2006)

8. Gkoulalas-Divanis, A., Verykios, V.S.: Exact knowledge hiding through database
extension. IEEE Trans. Knowl. Data Eng. 21(5), 699–713 (2008)

9. Jadav, K.B., Vania, J., Patel, D.: Efficient hiding of sensitive association rules for
incremental datasets. Int. J. Innov. Adv. Comput. Sci. (IJIACS) (2014)

10. Kohavi, R., Brodley, C.E., Frasca, B., Mason, L., Zheng, Z.: KDD-cup 2000 orga-
nizers’ report: peeling the onion. SIGKDD Explor. 2(2), 86–98 (2000)

11. Lin, C.W., Hong, T.P., Hsu, H.C.: Reducing side effects of hiding sensitive itemsets
in privacy preserving data mining. Sci. World J. 2014 (2014)

12. Lin, C.W., Hong, T.P., Yang, K.T., Wang, S.L.: The GA-based algorithms for opti-
mizing hiding sensitive itemsets through transaction deletion. Appl. Intell. 42(2),
210–230 (2015)

13. Lin, C.W., Zhang, B., Yang, K.T., Hong, T.P.: Efficiently hiding sensitive itemsets
with transaction deletion based on genetic algorithms. Sci. World J. 2014, 13
(2014)

14. Lin, J.C.W., Liu, Q., Fournier-Viger, P., Hong, T.P., Voznak, M., Zhan, J.: A saniti-
zation approach for hiding sensitive itemsets based on particle swarm optimization.
Eng. Appl. Artif. Intell. 53, 1–18 (2016)

15. Moustakides, G.V., Verykios, V.S.: A maxmin approach for hiding frequent item-
sets. Data Knowl. Eng. 65(1), 75–89 (2008)

16. Oliveira, S.R., Zaiane, O.R.: Privacy preserving frequent itemset mining. In: Pro-
ceedings of the IEEE International Conference on Privacy, Security and Data Min-
ing, vol. 14, pp. 43–54. Australian Computer Society, Inc. (2002)

17. Oliveira, S.R., Zäıane, O.R.: Protecting sensitive knowledge by data sanitization.
In: Third IEEE International Conference on Data Mining, pp. 613–616. IEEE
(2003)

https://doi.org/10.1007/978-0-387-70992-5_2
https://doi.org/10.1007/978-0-387-70992-5_2
https://doi.org/10.1007/s10489-015-0671-0

A Heuristic Approach for Sensitive Pattern 35

18. Öztürk, A.C., Ergenç, B.: Dynamic itemset hiding algorithm for multiple sensitive
support thresholds. Int. J. Data Warehous. Min. (IJDWM) 14(2), 37–59 (2018)

19. Pontikakis, E.D., Theodoridis, Y., Tsitsonis, A.A., Chang, L., Verykios, V.S.: A
quantitative and qualitative analysis of blocking in association rule hiding. In:
Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, pp.
29–30. ACM (2004)

20. Saygin, Y., Verykios, V.S., Clifton, C.: Using unknowns to prevent discovery of
association rules. ACM Sigmod Record 30(4), 45–54 (2001)

21. Saygin, Y., Verykios, V.S., Elmagarmid, A.K.: Privacy preserving association rule
mining. In: Proceedings Twelfth International Workshop on Research Issues in
Data Engineering: Engineering E-Commerce/E-Business Systems RIDE-2EC 2002,
pp. 151–158. IEEE (2002)

22. Sharma, S., Toshniwal, D.: MR-I MaxMin-scalable two-phase border based knowl-
edge hiding technique using MapReduce. Future Gener. Comput. Syst. (2018)

23. Sun, X., Yu, P.S.: Hiding sensitive frequent itemsets by a border-based approach.
J. Comput. Sci. Eng. 1(1), 74–94 (2007)

24. Wang, S.L., Jafari, A.: Using unknowns for hiding sensitive predictive association
rules. In: IRI-2005 IEEE International Conference on Information Reuse and Inte-
gration 2005, pp. 223–228. IEEE (2005)

25. Wu, J.M.T., Zhan, J., Lin, J.C.W.: Ant colony system sanitization approach to
hiding sensitive itemsets. IEEE Access 5, 10024–10039 (2017)

26. Zamani Boroujeni, F., Hossein Afshari, D.: An efficient rule-hiding method for
privacy preserving in transactional databases. J. Comput. Inf. Technol. 25(4), 279–
290 (2017)

Classification and Regression

Interpretable Survival Gradient Boosting
Models with Bagged Trees Base Learners

Wojciech Jarmulski(&) and Alicja Wieczorkowska

Polish-Japanese Academy of Information Technology, Koszykowa 86,
02-008 Warsaw, Poland

wojciech.jarmulski@pja.edu.pl, alicja@poljap.edu.pl

Abstract. In this paper we present a novel survival analysis modeling approach
based on gradient boosting using bagged trees as base learners. The resulting
models consist of additive components of single variable models and their
pairwise interactions, which makes them visually interpretable. We show that
our method produces competitive results often having the predictive power
higher than full-complexity models. This is achieved while maintaining full
interpretability of the model, which makes our method useful in medical
applications.

Keywords: Survival analysis � Gradient boosting � Additive models �
Interpretable models

1 Introduction

In survival data we do not know many of the outcome values (e.g. death, graft
rejections or disease recurrence in medical studies) because the event might not have
occurred within the fixed period of the study or because patients could have become
unavailable during the study, i.e. lost to follow-up. In such cases, the date of the last
visit (censoring time) provides a lower bound on the survival time. Such datasets are
considered censored.

There are many machine learning model adoptions to survival analysis – starting
from Cox regression [1], through random survival forests [2] and gradient boosting
machines [3], to deep learning models [4]. Cox regression is still one of the most
popular methods used in medical literature in survival analysis [5, 6]. Its main strength
are interpretability and usefulness in explanatory analysis. One the other hand, it has
low predictive power. Machine learning methods help to improve the predictive power
of generated models at the cost of losing interpretability. Our aim is to find a method
with the best possible predictive power while maintaining full interpretability of the
model, which is critical in medical applications.

In this article we present a novel survival analysis modeling approach, which
maintains models’ interpretability while providing high predictive power comparable to
full-complexity models. We achieve that by deriving additive models composed of
functions of single predictors and their pairwise interactions as an input. Our models

© Springer Nature Switzerland AG 2020
M. Ceci et al. (Eds.): NFMCP 2019, LNAI 11948, pp. 39–51, 2020.
https://doi.org/10.1007/978-3-030-48861-1_3

http://orcid.org/0000-0003-3508-4606
http://orcid.org/0000-0003-2033-6372
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-48861-1_3

are constructed via component-wise gradient boosting where base learners are repre-
sented by bagged trees.

The structure of the article is as follows: first we introduce the assumptions of
survival analysis and models adoption to this area, then we derive our modelling
method fulfilling our criteria. The next part presents the evaluation method of our
approach, which is then followed by the results, the presentation and discussion on the
properties of our models.

2 Survival Analysis

2.1 Notations

In survival analysis [5], a patient i is represented by a triplet (xi, di, Ti), where xi = (xi1,
…, xip) is the vector of the patient parameters (characteristics) or the vector of features;
Ti indicates time to event of the patient, it is assumed to be non-negative and contin-
uous. If the event of interest is observed, Ti corresponds to the time between the start of
the observation and the time of event happening, in this case di ¼ 1, and we have an
uncensored observation. If the instance event is not observed and its time to event is
greater than the observation time, Ti corresponds to the time between baseline time and
end of the observation, and the event indicator is di ¼ 0, and we have a censored
observation. Suppose a training set D consists of n triplets xi; di; Tið Þ, i ¼ 1; . . .; n:
The goal of survival analysis is to estimate the time to the event of interest T for a new
patient with feature vector denoted by x by using the training set D.

The survival function S(t) is the probability of a patient surviving longer than t, i.e.:

S tð Þ ¼ P T [tð Þ: ð1Þ

The hazard function denoted by k(t) is the instant probability that the event occurs
knowing that it did not occur before t. We can define k(t) as:

k tð Þ ¼ limdt!0
Pðt� T\tþ dt Tj [tÞ

dt
: ð2Þ

The survival function S(t) can be expressed as a function of the hazard at all
durations up to t:

S tð Þ ¼ exp � Zt

0

k xð Þdx
 !

: ð3Þ

40 W. Jarmulski and A. Wieczorkowska

2.2 Partial Likelihood

A traditional survival model is derived by maximizing the following empirical likeli-
hood Lðf ðxiÞÞ for right-censoring:

L f xið Þð Þ ¼
Y

8i;di¼0
PðT ¼ tijf xið ÞÞ

Y
8i;di¼1

PðT [tijf xið ÞÞ; ð4Þ

where P Tjxð Þ is characterized by a parametric distribution and f is derived from the
maximization of L. Due to the inclusion of observations whose outcome is unknown
(censored), L is referred to as partial likelihood. In this work we minimize negative log
partial likelihood to adapt a machine learning method to survival analysis, which is the
most common approach in literature [7].

2.3 Cox Proportional Hazards Model

Some common approaches attempt to model the hazard function using the proportional
hazards assumption. Different functional forms of k have been considered. Among the
most well-known, the semi-parametric Cox proportional hazards model [1] defines k at
time t for an individual with features xi as:

ki tjxið Þ ¼ k0 tð Þ expðh � xiÞ; ð5Þ

where h represents parameters.
Under the Cox proportional hazards assumptions, the partial likelihood takes the

form:

L hð Þ ¼
Yn

j¼1

exp hxj
� �P

i2Rj
exp hxið Þ

" #di
; ð6Þ

where Rj is the set of observations at risk at time tj, i.e. whose event of interest is
observed at time tj or later.

3 Proposed Method

There are numerous machine learning methods whose performance is competitive in
comparison to Cox regression [8]. These include random forests, support vector
machines, gradient boosting and neural networks, among others. While neural net-
works and their deep learning variants achieve state-of-the-art results in many appli-
cations [9], they are not practical in small data solutions and they are black-box models
with a very limited interpretability. Gradient boosting technique is considered one of
the most powerful machine learning solutions and its variations are used in many
winning solutions in data science competitions [10]. Gradient boosting is an ensemble
of weak learners and, as will be shown in the following subsections, imposing some
limitations in the construction procedure can lead to fully interpretable models. Nat-
urally, the derivation technique has to be adapted to survival analysis regime.

Interpretable Survival Gradient Boosting Models 41

3.1 Gradient Boosting

Gradient boosting models [11] are built through the search for the optimal prediction
function F* that is defined as:

F� :¼ argminF EY ;X q y;F xð Þð Þ½ �; ð7Þ

where q is the loss function differentiable with respect to F. In practice, we usually deal
with realizations yi; xið Þ; i ¼ 1; . . .; n; therefore the expectation in (7) is unknown. For

that reason gradient boosting algorithmsminimize the empirical riskR :¼Pn
i¼1

q yi;F xið Þð Þ
over F instead.

In gradient boosting it is assumed that F(x) follows an additive expansion which
takes the form

F xð Þ ¼
XM

m¼0
fm xð Þ ð8Þ

where f is called the weak or base learner. The following steps are used to minimize
R over F:

1. Set an initial estimator f0 xð Þ.
2. For each iteration m 2 1; 2; . . .;Mf g :

a. Calculate the negative gradient vector gm of the loss function q over F and
evaluate it at the estimate of the previous iteration Fm�1 xð Þ :

gm ¼ gm;i
� �

i¼1;...;n := � @q y;F xið Þð Þ
@F xið Þ

� �
F xið Þ¼Fm�1 xið Þ

: ð9Þ

b. Calculate estimator fm xð Þ by selecting the base learner that best fits the negative
gradient vector according to the least squares criterion:

fm xð Þ ¼ argminf
Xn

i¼1
gm;i xð Þ � f xð Þ� �2

: ð10Þ

c. Update current estimate by setting:

Fm xð Þ ¼ Fm�1 xð Þþ tfm xð Þ; ð11Þ

where 0\t� 1 is a shrinkage parameter used to control overfitting.
The gradient boosting framework presented above will be used as a base for further

adjustments and modifications to derive our target models.

3.2 Additive Representations

Gradient boosting models have the additive form presented in (8). In the standard form
each of the base learners f is a function of all input predictor variables x1,…, xp, which

42 W. Jarmulski and A. Wieczorkowska

do not provide sufficient interpretability and it is impossible to reliably represent the
impact of single predictors on the outcome.

Generalized additive models [12, 13] address this interpretability issue by imposing
a limitation that:

F x1; . . .; xp
� � ¼ f x1ð Þþ . . .þ f xp

� �
; ð12Þ

where fi becomes a function taking a single predictor as an input. In [14] the following
extension is proposed which improves models’ results while maintaining their
interpretability:

F x1; . . .; xp
� � ¼ f x1ð Þþ . . .þ f xp

� �þ f x1; x2ð Þþ . . .þ f xp�1; xp
� �

: ð13Þ

In this form F is represented by the sum of functions f which model single and
pairwise interactions between predictors. To build this form of prediction function F,
gradient boosting method presented in Sect. 3.1 needs to be modified: in step 2b we
calculate base learners fm for all single predictors and their pairwise interactions. Then
the best fitting base learner is chosen based on the residual sum of squares criterion.
This modification version is known as component-wise gradient boosting [15].

3.3 Base Learner Function

Base learners are simple regression estimators with a fixed set of input variables and a
univariate output. The most common and originally suggested by [11] form of base
learners are trees that take all input predictor variables x1,…, xp. On the other hand, base
learners can be as simple as linear models using just one predictor variable as an input.

To maintain interpretability provided by the prediction function in the form (12)
and (13), we limit base functions to a function taking only one or two predictors as an
input. Following the research in [16], we will use bagged trees which proved to give the
best results. Section 5.1 contains further discussion on the choice of bagged trees as
base learners.

3.4 Loss Function

Gradient boosting models were adapted for the Cox model by [3]. The loss function is
the negative log partial likelihood:

q y;Fð Þ ¼ �
Xn

i¼1
di F xið Þ � log

X
j:tj [ti

eF xjð Þ� �h i
: ð14Þ

In our research we use this form of adaptation of gradient boosting to survival
analysis because it is most grounded in the literature. There are, however, other
adaptation approaches [17].

Interpretable Survival Gradient Boosting Models 43

4 Evaluation

4.1 Datasets

To provide reliable performance results of various models, we evaluated our derived
methods on the following real-world datasets:

• STD (Sexually Transmitted Disease) morbidity data [5]. There are 877 patients out
of which 60% have a censored outcome.

• RETINOPATHY [18, 19] – a dataset with a trial of laser coagulation as a treatment
to delay diabetic retinopathy. Dataset consists of 394 observations with 61% cen-
sorship rate.

• METABRIC (Molecular Taxonomy of Breast Cancer International Consortium)
[20] is a study that aims to classify breast tumors using molecular signatures in
order to find the optimal treatment strategy for patients. The dataset contains clinical
information of 1,980 patients and gene expression data. 57.72% of the patients die
due to breast cancer over the duration of the study.

• RGBSG – to train our models we use information about 2,232 patients with node-
positive breast cancer from Rotterdam and German Breast Cancer Study Groups
[21, 22]. 56% of the data is censored.

4.2 Methods

Our evaluation compares our proposed approach against Cox regression and full-
complexity tree-based gradient boosting:

• Cox – we treat Cox regression described in Sect. 2.3 as the baseline model,
• GB-SP – our proposed additive model with single predictor functions in the

functional form (12), based on bagged trees derived via gradient boosting,
• GB-I – our proposed additive model with single and pairwise interactions between

predictors in the functional form (13), modeled with bagged trees and derived via
gradient boosting,

• GB-F – full complexity gradient boosting model without any modifications as
described in Sect. 3.1.

All gradient boosting methods have been implemented using mboost package [23]
in R statistical language version 3.6.1.

4.3 Parameters

We use the following choices for parameters’ values in models building:

• Number of boosting iterations M is considered to be the most important tuning
parameter of boosting algorithms [24]. We determine the optimal value of this
parameter by the validation procedure described in detail in Sect. 4.5.

• Shrinkage parameter t – unlike the choice of the optimal iteration, the choice of the
shrinkage parameter t has been shown to be of minor importance for the predictive
performance of a boosting algorithm [24]. The only requirement is that the value of

44 W. Jarmulski and A. Wieczorkowska

t is small (we set t = 0.01). Small values of t are necessary to guarantee that the
algorithm does not overshoot the minimum of the empirical risk R.

• Bagged trees – for each base learner function we build 100 trees with 3 terminal
nodes. We used values recommended by [16] who also show that the outcome
result is not sensitive to the variations in these settings.

4.4 Concordance Index

The concordance index or C-index [25] is the standard performance evaluation metric
for survival data. It can be regarded as a generalization of the Area Under the Receiver
Operating Characteristic Curve (AUROC) that can handle right-censored data and its
interpretation is identical to AUROC. C-index is an estimate of the probability that, in a
randomly selected pair of comparable patients, the patient whose event occurs first had
a worse predicted outcome.

4.5 Validation

For each dataset we set aside 20% of the data as test set to compare results between the
models. From the remaining 80% of the training data, 20% was used as a validation set
to determine the optimal values of models’ parameters described in Sect. 4.3.
Parameters which gave the highest value of C-index on validation set were chosen for
the final model.

To report the final results of our models’ predictions, we bootstrap the test data and
calculate the C-index for each of 100 bootstrap samples, which allows us to generate
confidence intervals of the results [26].

5 Results and Discussion

Table 1 contains the comparison of the four modeling methods listed in Sect. 4.1 on
four real datasets. In line with expectations, Cox regression has the lowest predictive
power measured by C-index. Our gradient boosting based model with single predictors
(GB-SP) delivered better results than Cox regression in all cases. In two cases (STD,
METABRIC) models with interactions (GB-I) had higher predictive power. In the
remaining two cases (RETINOPATHY, RGBSG) GB-SP and GB-I had similar pre-
dictive properties. We hypothesize that in these cases survival does not depend on any
interactions between predictors, and therefore GB-I models do not produce better
results. Interestingly, full-complexity gradient boosting models (GB-F) in most cases
have lower predictive power than GB-I, with a possible reason that pairwise interac-
tions are enough for these datasets, and also they more precisely capture the relations
between predictors. Finally, the results obtained for RGBSG dataset are not substan-
tially different between methods. This is probably due to the fact that linear combi-
nations of predictors are sufficient to model the outcome survival.

Interpretable Survival Gradient Boosting Models 45

Overall results confirm our hypothesis that using GB-I models could be the first
method of choice in survival analysis with the caveat that simpler methods like GB-SP
or Cox regression can give similar results if there are no complex relations between
predictors and the survival rate.

5.1 Base Learners

Single trees are the standard choice as base learners in gradient boosting and could also
provide interpretability if we restrict model’s functional form to (12) and (13). How-
ever, as shown by [14, 16], the usage of bagged trees as base learners leads to better
models’ performance. Figure 1 presents a qualitative comparison of base learners
generated for one sample predictor on METABRIC dataset. Apart from single and
bagged trees, it also demonstrates P-splines which are popular in generalized additive
models [13]. P-spline base learner has imposed smoothness and is visually most
appealing. However, for the extreme values the generated function is raising, which
results in improper score values and lowers overall performance. Tree base learners do
not have this issue as the generated polylines are flat at the extremes. Additionally, the
bagged tree function is visually smother and closer in shape to the spline, which might
explain better performance of these base learners as per [16].

Table 1. Predictive power of four modelling methods on four real-time datasets. Results are
represented by C-index with 95% bootstrap confidence intervals. Best results are highlighted in
bold.

Dataset Cox GB-SP GB-I GB-F

STD 0.5589
(0.4889,
0.6294)

0.5754
(0.5086,
0.6534)

0.5936
(0.5196,
0.6899)

0.5745
(0.5098,
0.6386)

RETINOPATHY 0.5704
(0.5020,
0.6415)

0.6169
(0.5304,
0.6974)

0.6133
(0.5058,
0.7111)

0.5837
(0.4792,
0.6806)

METABRIC 0.5896
(0.4832,
0.6778)

0.6415
(0.5980,
0.6747)

0.6966
(0.6602,
0.7377)

0.6551
(0.5996,
0.6972)

RGBSG 0.6421
(0.5316,
0.7344)

0.6481
(0.6223,
0.6783)

0.6497
(0.6225,
0.6801)

0.6548
(0.6252,
0.6826)

46 W. Jarmulski and A. Wieczorkowska

Fig. 1. Visual comparison of base learners – P-spline (top), trees (middle), bagged trees
(bottom). Plots present the impact of a sample predictor (x-axis) on the outcome risk score (y-
axis).

Interpretable Survival Gradient Boosting Models 47

5.2 Interpretability

In this work we treat a model as fully interpretable if the impact of each predictor on the
outcome can be clearly visualized. Our additive tree-based gradient boosting models
achieve that by producing plots which could be taken for further analysis and inter-
pretation. The additive form of the prediction function presented in (12) and (13)
allows for separate graphical interpretation of each single predictor and pairwise
interactions between them, and their impact on the outcome risk. Figure 2 shows
sample visualizations of the impact of single predictors on the outcome in the form of
line charts. Figure 3 visualizes impact of pair of predictors on the outcome risk in the
form of heat plots. The outcome risk in our models is directly related to the hazard ratio

Fig. 2. Impact of single predictors (x-axis) on the outcome risk score (y-axis).

48 W. Jarmulski and A. Wieczorkowska

(5), and the positive impact of input predictor(s) on it means that patients have higher
chance of event occurrence (e.g. death), while negative impact implicates lower
probability of the event.

5.3 Feature Selection

Our models creation method has another property – feature selection. In each boosting
iteration, the best base learner function is selected, so the outcome prediction function

Fig. 3. Heat map plots of pairwise interactions of predictors with their impact on the outcome
risk score.

Interpretable Survival Gradient Boosting Models 49

is the sum of only the base learners selected in each boosting iteration. Our base
learners are represented by functions taking as an input one or two predictors, therefore,
the outcome function uses only predictors which have an impact on the risk score and
predictors that do not contribute to the end result are left out from the final model.

The selection of variables is based on the impact on the outcome. However,
standard analysis measures, like removal of correlated variables, have to be taken.
Otherwise, the outcome model may contain correlated predictors, which might lead to
misleading conclusions.

6 Conclusions

In this work we have presented a novel survival analysis modeling approach which
allows to achieve high predictive power while maintaining full interpretability of the
model, which is critical in medical applications. We achieve that by modifying gradient
boosting method and adapting it to survival analysis, using bagged trees as base
learners and limiting the outcome functional form to the sum of additive functions of
single predictors and their pairwise interactions. We believe that the presented method
can be used also outside of medical applications where datasets with observations with
missing outcomes (e.g. machine failures) have to be analyzed. This is the area of our
future research.

References

1. Cox, D.R.: Regression models and life-tables. J. Roy. Stat. Soc. Ser. B 34, 187–202 (1972).
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

2. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random survival forests. Ann.
Appl. Stat. 2, 841–860 (2008). https://doi.org/10.1214/08-AOAS169

3. Ridgeway, G.: The state of boosting. Comput. Sci. Stat. 31, 172–181 (1999)
4. Katzman, J., Shaham, U., Bates, J., Cloninger, A., Jiang, T., Kluger, Y.: DeepSurv:

personalized treatment recommender system using a cox proportional hazards deep neural
network (2016). https://doi.org/10.1186/s12874-018-0482-1

5. Klein, J.P., Moeschberger, M.L.: Survival Analysis: Techniques for Censored and Truncated
Data. Springer, New York (1997). https://doi.org/10.1007/978-1-4757-2728-9

6. Rajkomar, A., Dean, J., Kohane, I.: Machine learning in medicine. N. Engl. J. Med. 380,
1347–1358 (2019). https://doi.org/10.1056/NEJMra1814259

7. Vock, D.M., Wolfson, J., Bandyopadhyay, S., Adomavicius, G., Johnson, P.E., Vazquez-
Benitez, G., et al.: Adapting machine learning techniques to censored time-to-event health
record data: a general-purpose approach using inverse probability of censoring weighting.
J. Biomed. Inform. 61, 119–131 (2016). https://doi.org/10.1016/j.jbi.2016.03.009

8. Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A., Van Der Laan, M.J.: Survival
ensembles. Biostatistics 7, 355–373 (2006). https://doi.org/10.1093/biostatistics/kxj011

9. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.
org/10.1038/nature14539

10. Chen, T., Guestrin, C.: XGBoost: A Scalable Tree Boosting System (2016). https://doi.org/
10.1145/2939672.2939785

50 W. Jarmulski and A. Wieczorkowska

https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1007/978-1-4757-2728-9
https://doi.org/10.1056/NEJMra1814259
https://doi.org/10.1016/j.jbi.2016.03.009
https://doi.org/10.1093/biostatistics/kxj011
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

11. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29,
1189–1232 (2001)

12. Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models, vol. 43. CRC Press, Boca Raton
(1990)

13. Wood, S.: Generalized Additive Models: An Introduction with R. CRC Press, Boca Raton
(2006)

14. Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise
interactions. In: Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining; Part F1288, pp. 623–631 (2013). https://doi.org/10.1145/
2487575.2487579

15. Buehlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model
fitting (with discussion). Stat. Sci. 22, 477–505 (2007)

16. Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regression. In:
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD 2012, p. 150. ACM Press, New York (2012). https://doi.org/10.
1145/2339530.2339556

17. Chen, Y., Jia, Z., Mercola, D., Xie, X.: A gradient boosting algorithm for survival analysis
via direct optimization of concordance index. Comput. Math. 2013, 8 (2013)

18. Huster, W.J., Brookmeyer, R., Self, S.G.: Modelling paired survival data with covariates.
Biometrics 45, 145–156 (1989)

19. Blair, A.L., Hadden, D.R., Weaver, J.A., Archer, D.B., Johnston, P.B., Maguire, C.J.: The 5-
year prognosis for vision in diabetes. Am. J. Ophthalmol. 81, 383–396 (1976)

20. Curtis, C., Shah, S.P., Chin, S.-F., Turashvili, G., Rueda, O.M., Dunning, M.J., et al.: The
genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.
Nature 486, 346–352 (2012). https://doi.org/10.1038/nature10983

21. Schumacher, M., Bastert, G., Bojar, H., Hübner, K., Olschewski, M., Sauerbrei, W., et al.:
Randomized 2 � 2 trial evaluating hormonal treatment and the duration of chemotherapy in
node-positive breast cancer patients. German Breast Cancer Study Group. J. Clin. Oncol. 12,
2086–2093 (1994). https://doi.org/10.1200/JCO.1994.12.10.2086

22. Foekens, J.A., Peters, H.A., Look, M.P., Portengen, H., Schmitt, M., Kramer, M.D., et al.:
The urokinase system of plasminogen activation and prognosis in 2780 breast cancer
patients. Cancer Res. 60, 636–643 (2000)

23. Hothorn, T., Buehlmann, P., Kneib, T., Schmid, M., Hofner, B.: {mboost}: Model-Based
Boosting (2018)

24. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-
0-387-84858-7

25. Harrell Jr., F.E., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A.: Evaluating the yield of
medical tests. J. Am. Med. Assoc. 247, 2543–2546 (1982). https://doi.org/10.1001/jama.
1982.03320430047030

26. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, Boca Raton (1994)

Interpretable Survival Gradient Boosting Models 51

https://doi.org/10.1145/2487575.2487579
https://doi.org/10.1145/2487575.2487579
https://doi.org/10.1145/2339530.2339556
https://doi.org/10.1145/2339530.2339556
https://doi.org/10.1038/nature10983
https://doi.org/10.1200/JCO.1994.12.10.2086
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1001/jama.1982.03320430047030

Neural Hybrid Recommender:
Recommendation Needs Collaboration

Ezgi Yıldırım(B) , Payam Azad, and Şule Gündüz Öğüdücü

Istanbul Technical University, 34467 Sarıyer/Istanbul, Turkey
{yildirimez,sgunduz}@itu.edu.tr, payam.v.azad@gmail.com

Abstract. In recent years, deep learning has gained an indisputable
success in computer vision, speech recognition, and natural language
processing. After its rising success on these challenging areas, it has
been studied on recommender systems as well, but mostly to include
content features into traditional methods. In this paper, we introduce a
generalized neural network-based recommender framework that is easily
extendable by additional networks. This framework named NHR, short
for Neural Hybrid Recommender allows us to include more elaborate
information from the same and different data sources. We have worked
on item prediction problems, but the framework can be used for rating
prediction problems as well with a single change on the loss function.
To evaluate the effect of such a framework, we have tested our approach
on benchmark and not yet experimented datasets. The results in these
real-world datasets show the superior performance of our approach in
comparison with the state-of-the-art methods.

Keywords: Neural networks · Learning latent representation ·
Recommender systems · Personalization · Hybrid recommenders ·
Incomplete data

1 Introduction

Online services such as social media and e-commerce have played the key role
to derive massive data sources for information systems. Since this information
explosion makes users’ lives more complicated and even difficult to use such sys-
tems, recommender systems aim to offer personalized recommendations to users
in order to minimize confusion and increase the chance to reach meaningful infor-
mation. Based on the available data and the nature of the application domain,
there are two main approaches in recommender systems to produce favorable
recommendations: collaborative filtering that learn only from past interactions
of users and content-based methods that learn the taste of users by using content
features. However, both approaches have flaws and favors. While collaborative fil-
tering does not require domain expertise to mine information from data sources
and works well for complex objects such as movies, books, music, etc. where
variations in taste are much sparse than variations in preferences; content-based

c© Springer Nature Switzerland AG 2020
M. Ceci et al. (Eds.): NFMCP 2019, LNAI 11948, pp. 52–66, 2020.
https://doi.org/10.1007/978-3-030-48861-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_4&domain=pdf
http://orcid.org/0000-0001-9684-5769
https://doi.org/10.1007/978-3-030-48861-1_4

Neural Hybrid Recommender: Recommendation Needs Collaboration 53

filtering works better if preference data is sparse and cold-start is an issue. In
practice, companies are following a middle way and using hybrid systems of these
two approaches. Nevertheless, there are seldom cases of hybrid recommender sys-
tems investigated in the literature. Therefore, we present a general framework
to use both aspects in a compact deep neural network architecture.

Among the various applied methods, matrix factorization is the most known
collaborative filtering approach. Matrix factorization projects user and item into
a shared latent space by decomposing the rating matrix into low-dimensional
latent factors. To find out an interaction between user and item, the inner prod-
uct of latent factors are used in recommender systems. In [14], a deep collabo-
rative filtering (DCF) method is proposed to combine probabilistic matrix fac-
torization (PMF) with marginalized denoising auto-encoders (mDA). The latent
factors are extracted from the hidden layer of deep networks and they are used
to feed matrix factorization components. A collaborative topic modeling app-
roach is proposed by Wang and Blei [18] for recommending scientific articles to
online communities. Here, Latent Dirichlet Allocation (LDA) is applied to the
user ratings as well as the article contents. Once users and articles are repre-
sented as latent factors, matrix factorization is applied to their latent representa-
tions to predict user preferences. [12] proposed a context-aware recommendation
model, convolutional matrix factorization (ConvMF) that integrates a convolu-
tional neural network (CNN) into PMF. Item representation is obtained from
the CNN network that they have trained directly in matrix factorization.

In most of the studies in recommender systems, Deep Neural Networks
(DNNs) are used to either get better latent factor representation or integrate
auxiliary information into matrix factorization to alleviate the cold-start prob-
lem. In contrast to the wide range of researches on the combination of matrix
factorization and DNNs, there is relatively little work on employing DNNs to
learn the interaction function directly from data. A very first attempt to build a
traditional collaborative filtering setup by neural networks [4] simulated matrix
factorization by replacing its inner product by a feed-forward neural network,
however, it could not be succeeded in benchmark datasets. [9] took this approach
one step further because the inner product cannot capture non-linear interac-
tions between users and items. Thus, they proposed a framework named NCF to
replace the inner product with non-linear interaction function by a feed-forward
neural network and they reported promising results. However, interaction data
by itself cannot be sufficient for a challenging recommender system in most cases,
auxiliary data is a key factor especially for the systems introducing new users or
items at any time. This paper explores the use of DNNs to extract meaningful
information from both auxiliary and historical interaction data, then combines
them to make better predictions than any single aspects and data sources. Our
proposed framework can be extended by not yet experimented auxiliary data
and/or by redefining the interaction function using the current data in a flexible
manner.

The main contributions of this work are summarized below.

54 E. Yıldırım et al.

– We devise a general framework for a hybrid recommender system based on
DNNs that model latent features of user and item from both auxiliary and
interaction data.

– We demonstrate the effectiveness of our NHR approach on the collaboration
of self-sufficient recommender models.

– We verify that auxiliary information can significantly improve recommenda-
tion quality, especially in large-scale domains. Utilizing auxiliary information
can improve not only the success in detecting true interactions but also the
ability to correctly rank predictions.

– We show that our NHR approach is essential in the domains that suffer from
the severity of cold-starts and rating sparsity due to its stronger contributions
to such disadvantaged domains.

Recommendation problems generally suffer from the lack of actual feedbacks
given by users a.k.a. explicit feedback. Explicit feedback (via ratings and reviews)
is a clear expression of user preferences on items, and it is expressed by direct
interactions between system and user. On the other hand, implicit feedback is
automatically tracked by the system itself, through inferences about the behavior
of the user, such as watching videos, purchasing products and clicking items.
Despite the plethora of research over explicit feedbacks; implicit feedbacks are
the more realistic case of recommender systems in uttermost situations such as
online advertising and online shopping. The reason for the less popularity of
using implicit feedbacks is its challenging nature due to the absence of negative
interactions. Since we have tested our framework on item prediction problems, we
employ negative sampling as discussed in Sect. 3.4 to come through this problem.

2 Neural Hybrid Recommender

In order to build a general framework for both collaborative filtering and aux-
iliary information, we adopt feed-forward neural networks. Neural networks can
model user-item interaction since it has been proven that they are able to learn
non-linear relations which is essential for the recommendation of complex objects
such as jobs and movies. As suggested in [3], we also utilize wide neural networks
for memorization of feature interactions through a wide set of cross-product
feature transformations and deep neural networks for better generalization of
unseen feature combinations through low-dimensional dense embeddings. Fol-
lowing NCF, we first build a Wide&Deep collaborative filtering approach by
combining different neural networks using the same interaction data, then we add
auxiliary information by supplementary networks into the system to address the
cold-start problem. The names of pure collaborative filtering methods remained
as in [9]: GMF (Generalized Matrix Factorization) performing non-linear matrix
factorization and MLP (Multi-Layer Perceptron) learning the high-order inter-
action function. The models trained on auxiliary information are simply named
NHR-type where type refers to the data type that is used for training. We first
train multiple self-sufficient neural recommenders independent from each other,
then build a framework as an ensemble of all . Even though there is no limitation

Neural Hybrid Recommender: Recommendation Needs Collaboration 55

Fig. 1. (left) Representation of neural network realization of matrix factorization;
(right) Representation of deep neural recommender networks

on the construction of the models, we can roughly divide what type of networks
we use in our experiments into two groups:

– neural network realization of matrix factorization (Fig. 1-left)
– deep neural recommender networks (Fig. 1-right)

Both of the mentioned networks have embedding layers to transform users
and items into vector representations. The obtained embedding vectors can be
interpreted as the latent vectors of users and items. If we term pu and qi as the
user latent vector and item latent vector respectively, one can easily define a
mapping function as

φmul (pu, qi) = pu � qi (1)

where φ denotes the element-wise product of latent vectors. Then, the next step
is to project this product vector to the output layer of the model:

φout (x) = αout

(
WTx + b

)
(2)

where x = φmul (pu, qi), the output of the multiplication layer in Fig. 1-left, and
W , b and αout is the weight vector, bias, and activation function of the layer,
respectively. Under the assumptions that the weight vector W is a uniform vector
of 1, there is zero bias b in the equation and the activation is an identity function
which allows firing the perceptron with the exact value of the input, this project
layer acts as a traditional matrix factorization. In order to implement neural
network realization of matrix factorization, the weight vector W and the bias
b are learned from interactions by the logarithmic loss function in Eq. 5, and

56 E. Yıldırım et al.

Fig. 2. Network Architecture for Neural Hybrid Recommender Framework. This frame-
work ensembles multiple individual recommender models to reach better quality on pre-
dictions. Instead of simply concatenating predictive factors to feed the output layer, we
applied a weighting process to define the trade-off between models. One could assign
equal importance or learned the importance to the models, but we fine-tuned these
weights by optimization on prediction quality on the validation set.

in this way, a non-linear MF approach a.k.a. GMF is obtained. The sigmoid
function σ(x) = 1/ (1 + e−x) is used as αout because it restricts each neuron to
be in (0, 1) range which meets the expectation for item prediction.

The outputs of the embedding layers on GMF and MLP models are already
1-dimensional vectors because they are fed on inputs of length 1 (ids only).
However, the embedding layers of deep neural recommender networks trained on
auxiliary data (NHR) produce sequences of embeddings w.r.t. sequence length.
Average-pooling is a well-known application to gather information exists in the
sequence members into a particular form, for example getting sentence embed-
dings from word embeddings [1,20], average-pooling is applied to the outputs of
embedding layers in these models. Since users and items are represented with
several features and every feature has its own embedding space, a concatenation
is applied to have one unique latent vector representation for each user-item pair
after the average-pooling of embeddings.

Once the latent vectors are obtained for user-item pairs, the following func-
tions are used to generate MLP and NHR models.

φ1 (φconcat) = α1

(
WT

1 φconcat + b1
)

φ2 (φ1) = α2

(
WT

2 φ1 + b2
)

...
φn (φn−1) = αn

(
WT

n φn−1 + bn
)

(3)

Neural Hybrid Recommender: Recommendation Needs Collaboration 57

where αxs are ReLU activation functions, except the final αn which is a sigmoid.
Wxs are the weight matrices and bxs are bias vectors as usual.

As reported in [6], the initialization of weights can contribute to convergence
and performance of deep learning models. Therefore, we first train all models
without prior information till the convergence, then use their parameters to
initialize relevant weights on the overall architecture. To combine the models,
we simply concatenate the last layers of networks just before the outputs. Since
this layer defines the predictive capability of a model, it is generally called as
predictive factors in literature. We use the original weights of last layers in a
weighting process:

w ← [
αw1 βw2 ... γwn

]
where (α + β + ... + γ) = 1 (4)

where wn denotes the weight vector of nth pre-trained model and (α, β, ..., γ)
is the set of hyper-parameters determining the trade-off between the pre-trained
models. The final framework which ensembles multiple self-sufficient neural rec-
ommender networks by this weighting process is shown in Fig. 2.

The parameters given in the layer definitions of all models are learned by
binary cross entropy loss function given below.

L = −
∑

(u,i)∈O∪O−
rui log r̂ui + (1 − rui) log (1 − r̂ui) (5)

where O denotes the set of observed interactions, and O− denotes the set of
negative instances. When the loss function is replaced to a weighted squared
loss, the proposed framework can be easily applied to explicit datasets as well.

3 Experiments

3.1 Datasets

To conduct our experiments, we worked on two real-world problems: movie rec-
ommendation and job recommendation. For the movie recommendation task, we
applied our approach to a benchmark movie rating dataset enriched by movie
subtitles. The statistics of the experimented datasets are listed in Table 1.

MovieLens and OPUS. MovieLens [8] includes 5-star ratings of movies and
some categorical properties of users and movies. It contains 1M ratings, 3.8K
movies and 6K users in total. Users have at least 20 ratings. 5-star explicit
ratings are converted to implicit feedback by treating a rating is the indicator
of user-item interaction, so all ratings in the dataset are considered to be 1.
OPUS subtitles dataset [15] describes a collection of translated movie subtitles
from http://www.opensubtitles.org/. It composes of bitexts from many language
pairs. English subtitles are used to supply more convenient contents for movies.
2581 movies out of 3706 (69.64%) in the rating dataset have subtitles. The movie
subtitles in the OPUS dataset are utilized for item representation while the
categorical properties of user profiles in the MovieLens for user representation.
For more information about the categorical features, we advise readers to visit
https://grouplens.org/datasets/movielens/1m/.

http://www.opensubtitles.org/
https://grouplens.org/datasets/movielens/1m/

58 E. Yıldırım et al.

Table 1. Statistics of the experimented datasets

Dataset Type Interaction Item User Sparsity

MovieLens Movie 1,000,209 3,706 6,040 95.53%

Kariyer Job 383,434 16,134 20,283 99.88%

Kariyer. This online recruiting dataset used in our study is obtained through a
collaboration with Kariyer.Net, the largest online recruiting website in Turkey.
Candidates use Kariyer.Net to find a suitable job, and recruiters use Kariyer.Net
to find the right candidate for a job on behalf of their companies. We evaluate our
proposed model on this dataset constructed of user profiles, job postings and user
behaviours on this website in a limited time frame, a one-week period. Each user
has at least 20 applications. It consists of 383K applications, 20K candidates
for 16K jobs in total. The application history of users is used as the interaction
data in job recommendation, and the properties of jobs and candidates as the
auxiliary data.

The dataset consists of numerical and categorical data types besides text data
(see Sect. 3.2 for further details). To make its numerical and categorical features
meaningful and applicable for the recommendation task, we first applied some
preprocessing steps such as normalization and noise cleaning, we then performed
feature transformations. Features exist in the dataset are listed in Table 2 along
with their types and representations as a reference for rest of the paper. For
normalization of numerical values that are measured on different scales, outliers
are removed by considering their statistics, then they are adjusted to the [0, 1]
scale.

Table 2. Features in the Kariyer.Net dataset

Feature (candidate) Feature (job) Feature type Representation

Military service Gender Categorical One-hot encoding

Work status Hidden posting

Gender Position type

Driving licence Language

Driving licence

Education Education Categorical Multi-hot encoding

Faculty Military service

University Industries

Province Provinces

Age Min experience numerical {x|0 ≤ x ≤ 1}
Max experience

Position level

Hiring capacity

Experiment position Name Text Sequence of indexes in a
fixed-size hashing spaceQualification

Explanation

Neural Hybrid Recommender: Recommendation Needs Collaboration 59

Neural networks, as well as many other machine learning algorithms, require
numeric input and output variables. To that end, the most primitive solution
to use categorical features is to transform them into integer labels, a.k.a. inte-
ger encoding, where each category is represented by unique numbers. However,
integer values have ordinal relationships between each other, whereas no such
relation exists in categorical variables, so the learning process may result in poor
performance. Therefore, we converted categorical features into one-hot or multi-
hot representations that work better with learning algorithms. The occurrence
statistics per multi-hot feature are given in Table 3.

Table 3. Occurrence statistics of features for each multi-hot feature in the Kariyer.Net
dataset

Object Feature Max Mean Std

Jobs Education 12 4.1100 2.2337

Provinces 82 2.5023 8.5675

Industries 6 1.4352 0.9516

Military service 4 1.4525 0.6708

Candidates Education 2 1.0381 0.1913

Faculty 7 1.3930 0.6402

University 6 1.3644 0.5945

Province 5 1.0390 0.2041

3.2 Handling Text Data

To make the text data suitable to feed neural networks, we need to convert raw
texts into numeric vectors. In the simplest approach, using a simple dictionary
for this purpose could lead to extremely sparse representations due to the huge
size of vocabulary. Thus, we exploited the advantage of a hash function which
converts a raw text to a sequence of indexes in a fixed-size hashing space. Note
that some words may be assigned to the same index according to the hash
function. The dimension of hashing space is in relation to the overlapping rate
of distinct words and the dimension of embedding layers. By considering the
pros and cons, we set the dimension of hashing space to 1K in the experiments
after evaluating its effect on overall performance and complexity.

Since the inputs to the neural networks have to be in the same size for all
iterations, we examined the mean (μ) and the standard deviation (σ) of sequence
lengths of text features. Then, the feature-specific input lengths are defined as
μ + σ for each text feature in the datasets.

3.3 Evaluation Process

In order to split the dataset into the train and test sets, we preferred leave-
one-out evaluation which has been widely applied in many works [2,9,10,16],

60 E. Yıldırım et al.

especially where sparse datasets are subjected. The latest interaction of each
user is held-out to compose a test set, while the remaining interactions are used
for training. The last interaction of each user in the train set is used for hyper-
parameters tuning.

Since ranking every user-item pair amongst the test pairs are very time-
consuming and not possible to run in real-time. Therefore, as in similar studies
[5,9,13] we randomly sampled 100 items per user and rank them by probability
of interaction. To measure the quality of ranking, we used well-known evaluation
metrics: Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG).
We applied both metrics on a truncated list including top-10 ranked test items
for each user. Due to the fact that the users have one interaction in the test set,
HR@k is simplified in our experiments as follows:

HR@k =
{

1/k, if rtest(u, i) ∈ Rk

0, otherwise (6)

where rtest(u, i) and Rk define the interaction with the item i and the list of
top-k recommended items for the user u. In addition to HR@k, NDCG@k is
reinterpreted as well in our experiments because ideal discounted cumulative
gain (IDCGk) in position k is equal to 1 in our evaluation setup. Therefore,
NDCG@k is redefined as:

NDCG@k =
DCG@k

IDCG@k
=

k∑

i=1

2r(u,i) − 1
log(i + 1)

(7)

where r(u, i) is 1 if the user u interacted with the ith item of the top-k list and
0 otherwise. The results are reported by the mean of user scores.

HR gives a shallow understanding of success by considering if the interacted
item is in the top-10 list or not whereas NDCG helps for a better understanding
by setting higher scores to hits at higher ranks.

3.4 Negative Sampling

In most of the cases, implicit feedback refers to positive inference of user inter-
action or user interest. To handle the absence of negative feedback, many stud-
ies have either assumed all unobserved cases as negative feedback or sampled
negative instances from them. In this work, we also apply the latter approach
to generate a set of negative feedback by sampling four negative instances per
positive instance. Unlike the evaluation process, we randomly sampled negative
training instances in real-time, just before each epoch starts. This allows our
system to learn as much as possible from different instances and increases the
utility of dataset without interfering with its feasibility.

3.5 Baselines

We compared our proposed approach NHR to the following methods:

Neural Hybrid Recommender: Recommendation Needs Collaboration 61

– PopRank is a non-personalized popularity based recommendation method.
Items are ranked by their popularity which is determined by the number of
interactions and recommended to all users with the same order.

– BPR [16] is a highly competitive pairwise ranking method which works well
for implicit feedbacks. It optimizes the matrix factorization model with a
pairwise ranking loss.

– ALS [11] is also a matrix factorization algorithm for item recommendation. It
works in parallel and effective for large-scale collaborative filtering problems
which suffer from the sparseness of the rating data.

– GMF [9] is a neural network realization of matrix factorization. Besides being
a part of NCF, it can be employed as a complete recommender system.

– MLP [9] is also a part of NCF that learns user-item interaction function by
neural networks, Like GMF, it is a standalone recommender system.

– NCF [9] is a state-of-the-art neural network based collaborative filtering
method which combines GMF and MLP methods. No matter that has very
promising results for item prediction, it is a pure collaborative filtering
method which benefits from only interaction data and does not regard cold-
starts that is a very common case for real-world recommendation tasks.

3.6 Parameter Setting

We implemented our proposed framework using PyTorch. All individual models
had been learned by optimizing the logarithmic loss of Eq. 5 because we tested
them on an item prediction setup. To determine the hyper-parameters of the
methods, we conducted intensive tests on validation data.

For individual models that are trained without any prior information, we set
model parameters with a Xavier initialization , then optimize them with Adam
optimizer which employs an adaptive learning rate for faster convergence. The
learning rate is set to 0.001 and the momentum for Adam optimizer to 0.9 which
is the default setting.

We tested a bunch of different batch size but found the 128 is the best per-
forming setup for all, except the model trained on text data. Because the embed-
ding size for the text data is quite large and hard to fit on even comparatively
large computer memories, we adopt the batch size of 32 for them.

We evaluated the predictive factors of {8, 16, 32, 64}. We employed three
hidden layers for interaction-specific networks, for example, if the number of
predictive factors is set to 8, then the size of hidden layers are selected in the
order of 32 → 16 → 8 from the top on down and the embedding size is 16 in
this setup, as a matter of course. For the networks trained on auxiliary data,
we used two hidden layers and intuitively set embedding size to be 128 for
movie subtitles, 4 for job titles and candidate past-positions, and 16 for job
qualifications, job explanations and candidate experiments. To treat equally, we
set the α parameter of NCF which defines the trade-off between GMF and MLP
by optimization as we did for our NHR methods.

62 E. Yıldırım et al.

Table 4. Performance of HR@10 and NDCG@10 w.r.t. the number of predictive factors
(pf) on different datasets. Here are the abbreviations used to shrink the result table
due to the limited space; ds: Dataset, ML: MovieLens, Ka: Kariyer, mt : Metric, PR:
PopRank, cat.: categorical, comb.: combined, and Im.: Improvements

ds pf mt Baselines NHR Im.%

PR BPR ALS GMF MLP NCF cat. text comb.

ML 8 HR 0.4512 0.5331 0.6076 0.6247 0.6522 0.6560 – – 0.6718 2.41%

NDCG 0.2546 0.3027 0.3488 0.3528 0.3789 0.3807 – – 0.3943 3.57%

16 HR 0.4512 0.5886 0.6545 0.6714 0.6626 0.6828 – – 0.6946 1.73%

NDCG 0.2546 0.3426 0.3886 0.3945 0.3890 0.4057 – – 0.4126 1.7%

32 HR 0.4512 0.6040 0.6826 0.6757 0.6728 0.6874 – – 0.6979 1.53%

NDCG 0.2546 0.3564 0.4150 0.3936 0.3986 0.4053 – – 0.4147 2.32%

64 HR 0.4512 0.6108 0.6912 0.6763 0.5190 0.6798 – – 0.6964 2.44%

NDCG 0.2546 0.3621 0.4290 0.4052 0.2857 0.4077 – – 0.4176 2.43%

Ka 8 HR 0.3231 0.7399 0.5137 0.8249 0.7448 0.8594 0.8821 0.8624 0.8834 2.79%

NDCG 0.1875 0.5067 0.3237 0.5719 0.5592 0.6204 0.6368 0.6188 0.6354 2.64%

16 HR 0.3231 0.7874 0.6166 0.8357 0.8021 0.8695 0.8890 0.8730 0.8917 2.55%

NDCG 0.1875 0.5560 0.4034 0.6041 0.5564 0.6402 0.6571 0.6426 0.6579 2.76%

32 HR 0.3231 0.7934 0.7013 0.8121 0.8100 0.8658 0.8851 0.8703 0.8875 2.51%

NDCG 0.1875 0.5629 0.4740 0.5870 0.5471 0.6369 0.6537 0.6411 0.6562 3.03%

64 HR 0.3231 0.7922 0.7627 0.7841 0.8205 0.8621 0.8800 0.8678 0.8841 2.55%

NDCG 0.1875 0.5608 0.5394 0.5624 0.5519 0.6334 0.6505 0.6378 0.6536 3.19%

3.7 Performance Results

In our NHR experiments, we group auxiliary information sources into three cat-
egories: categorical, text, and a combination of them. Kariyer dataset includes
many data types: free-text, numerical values, binary, single-label, and multi-label
categorical features. In order to handle all different types during the learning
process, we first apply general pre-processing steps such as outlier removal, tok-
enization, etc. We then normalize numerical values and transform binary and
categorical features into one-hot and multi-hot representations. All these fea-
tures are considered categorical for simplicity. We also convert raw text features
to hash vectors which refer to text data source as explained in Sect. 3.2; Both
networks trained on the categorical and text data sources are first incorporated
into NCF alone (NHR-categorical and NHR-text respectively), then together
to embody the most extensive NHR model (NHR-combined). As for Movie-
Lens dataset, users are represented with categorical features whereas movies
are represented with text features. This results in having one auxiliary network
(NHR-combined) which combine the categorical and the text data sources at
the same time. Thus, we could report one experiment on NHR for the movie
recommendation task.

Table 4 shows the recommendation performance of the compared methods
with respect to the number of predictive factors. The results are given in HR@10

Neural Hybrid Recommender: Recommendation Needs Collaboration 63

Fig. 3. The effect of number of predictive factors on recommendation performance

and NDCG@10. BPR and ALS methods have the same latent factor size as
the predictive factors in neural network models. By doing so, we use the same
predictive capability for all baselines except PopRank to make a fair compar-
ison between them. Figure 3 shows the HR and NDCG changes per evaluated
methods by changing the number of predictive factors (a.k.a. latent factors in
ALS and BPR). As expected increasing predictive capability of models gener-
ally increases the performance of methods until they have reached the limit of
falling into over-fitting. The size of predictive factors may drastically affect the
complexity of the MLP model since the size of all preceding layers is determined
by the predictive factors given in the initialization of models as explained in
Sect. 3.6. This is visible on the severe degradation of both HR and NDCG scores
on MovieLens dataset when predictive factors are set to 64 (24)). The methods
including MLP along with other models have the advantage of generalization
with the contribution of their other components, so such models as NCF and
NHR did not affected by this deterioration. Since the job recommendation prob-
lem is far more complex than movie recommendation, such complex models are
less prone to over-fitting on this domain as observed in Fig. 3. Regarding the
comparison of methods with the same predictive factor size, PopRank has the
weakest performance amongst the other methods. It is already expected because
it is incapable to make personalized suggestions. Since 0.001-level improvements
are already found to be significant for similar tasks such as click-through rate
(CTR) prediction [3,7,17,19], one can easily say that NHR is significantly out-
performing the state-of-the-art matrix factorization methods, ALS and BPR, by
a large margin in both metrics, and it is also consistently superior to the most

64 E. Yıldırım et al.

competitive baseline NCF. NHR on MovieLens and Kariyer achieved 2.03% HR-
2.51% NDCG and 2.60% HR-2.91% NDCG relative improvements on average
over their NCF counterparts, relatively. NHR gains more generalization capabil-
ity through merging interaction and auxiliary data. In addition to more accu-
rate hits on top-10 predictions, the results show that NHR systems could better
learn to rank items in the top-10 lists by uprising the test interaction amongst
the other predictions since NDCG scores are improved by larger steps. The
NHR-combined results on job recommendation clearly shows that adding new
auxiliary data even with the same learning function can enhance the overall
recommendation performance.

Even though NHR-text system improves the recommendation quality, it
underperforms NHR-categorical because of its model complexity. Besides the
inevitable large size of the embedding layer, the Kariyer dataset is extremely
sparse and interaction data is not enough to feed such a network in fact. With
more data, we expect to have more contribution from text data.

The last but not the least, the results are more promising for the job rec-
ommendation. Since Kariyer dataset suffers from a severe sparsity and a high
frequency of cold-starts, the auxiliary data and the cooperation of models can
fill in this information shortage about user preferences.

4 Conclusion

In this work, we explored DNNs for hybrid recommender systems. We devised
a general framework NHR that model user-item interactions by combining aux-
iliary and historical data. We showed that every variation of NHR outperforms
state-of-the-art collaborative filtering methods as expected, but NHR also gives
us the chance to alleviate deficiencies to be dependent on single aspects or data
sources. It does not require to train complete architecture from scratch. Instead,
it allows self-sufficient recommender models to speak for themselves by a weight-
ing process which learns the capabilities of its components.

In the next phase of the study, we would like to test our approach on explicit
datasets and use pre-trained vector space models such as document vectors for
text features since learning of embedding layers directly effects the model com-
plexity and training time. Since average pooling leads to the loss of sequential
property of natural language texts, we would like to improve our text models
by using more elaborated architectures such as LSTMs and CNNs to exploit
sequence information and interrelation of words.

Acknowledgements. This study is part of the research project supported by the
Scientific and Technological Research Council of Turkey (TÜBİTAK) (Project No:
5170032). This work was also supported by the Research Fund of the Istanbul Technical
University (Project Number: BAP-40737). We would like to thank Kariyer.Net for
providing us with the online recruiting dataset used in the paper.

Neural Hybrid Recommender: Recommendation Needs Collaboration 65

References

1. Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., Goldberg, Y.: Fine-grained anal-
ysis of sentence embeddings using auxiliary prediction tasks. arXiv preprint
arXiv:1608.04207 (2016)

2. Bayer, I., He, X., Kanagal, B., Rendle, S.: A generic coordinate descent frame-
work for learning from implicit feedback. In: Proceedings of the 26th International
Conference on World Wide Web, pp. 1341–1350. International World Wide Web
Conferences Steering Committee (2017)

3. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceed-
ings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10.
ACM (2016)

4. Dziugaite, G.K., Roy, D.M.: Neural network matrix factorization. arXiv preprint
arXiv:1511.06443 (2015)

5. Elkahky, A.M., Song, Y., He, X.: A multi-view deep learning approach for cross
domain user modeling in recommendation systems. In: Proceedings of the 24th
International Conference on World Wide Web, pp. 278–288. International World
Wide Web Conferences Steering Committee (2015)

6. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why
does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11(Feb),
625–660 (2010)

7. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017)

8. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM
Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2016)

9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 173–182. International World Wide Web Conferences Steering Committee
(2017)

10. He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online
recommendation with implicit feedback. In: Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 549–558. ACM (2016)

11. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: 2008 Eighth IEEE International Conference on Data Mining, ICDM
2008, pp. 263–272. IEEE (2008)

12. Kim, D., Park, C., Oh, J., Lee, S., Yu, H.: Convolutional matrix factorization
for document context-aware recommendation. In: Proceedings of the 10th ACM
Conference on Recommender Systems, pp. 233–240. ACM (2016)

13. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 426–434. ACM (2008)

14. Li, S., Kawale, J., Fu, Y.: Deep collaborative filtering via marginalized denoising
auto-encoder. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, pp. 811–820. ACM (2015)

15. Lison, P., Tiedemann, J.: Opensubtitles 2016: extracting large parallel corpora
from movie and TV subtitles. In: Proceedings of the 10th International Conference
on Language Resources and Evaluation (2016)

16. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth

http://arxiv.org/abs/1608.04207
http://arxiv.org/abs/1511.06443
http://arxiv.org/abs/1703.04247

66 E. Yıldırım et al.

Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press
(2009)

17. Song, W., et al.: Autoint: automatic feature interaction learning via self-attentive
neural networks. arXiv preprint arXiv:1810.11921 (2018)

18. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific
articles. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 448–456. ACM (2011)

19. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions.
In: Proceedings of the ADKDD 2017, p. 12. ACM (2017)

20. Wieting, J., Bansal, M., Gimpel, K., Livescu, K.: Towards universal paraphrastic
sentence embeddings. arXiv preprint arXiv:1511.08198 (2015)

http://arxiv.org/abs/1810.11921
http://arxiv.org/abs/1511.08198

Discovering Discriminative Nodes
for Classification with Deep Graph

Convolutional Methods

Liana-Daniela Palcu1(B), Marius Supuran1(B), Camelia Lemnaru1(B),
Mihaela Dinsoreanu1(B), Rodica Potolea1(B), and Raul Cristian Muresan2(B)

1 Computer Science Department, Technical University of Cluj Napoca,
Cluj-Napoca, Romania

ldpalcu@gmail.com, marius.supuran@yahoo.com, camelia.lemnaru@cs.utcluj.ro,
mihaela.dinsoreanu@cs.utcluj.ro, rodica.potolea@cs.utcluj.ro

2 Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
raul.muresan@gmail.com

Abstract. The interpretability of Graph Convolutional Neural Net-
works is significantly more challenging than for image based convolu-
tional networks, because graphs do not exhibit clear spatial relations
between their nodes (like images do). In this paper we propose an app-
roach for estimating the discriminative power of graph nodes from the
model learned by a deep graph convolutional method. To do this, we
adapt the Grad-CAM algorithm by replacing the part which heavily
relies on the 2D spatial relation of pixels in an image, with an estimate
of the node importance by its appearance count in the result of the Grad-
CAM. Our strategy was initially defined for a real-world problem with
relevant domain-specific assumptions; thus, we additionally propose a
methodology for systematically generating artificial data, with similar
properties as the real-world data, to assess the generality of the learning
process and interpretation method. The results obtained on the artificial
data suggest that the proposed method is able to identify informative
nodes for classification from the deep convolutional models.

1 Context and Motivation

Model interpretability can be important for several reasons: first, it builds trust
and confidence in machine learning models when applied to sensible problems
(e.g. medical diagnosis and prognosis, terrorism prediction, credit assessment,
etc). In such domains, if the model can explain its decisions, it is easier to asses
its fairness (does not discriminate against protected groups), privacy-compliance,
robustness and the ability to identify causality [1]. Second, it is a potentially pow-
erful tool for generating new domain knowledge in “difficult” domains, such as
neuroscience. For example, interpretable models could provide new insights into
understanding the effect of alcohol on the brain. In the same line of argument,
if the performance of the model beats human performance (e.g. chess, Alpha-
GO), machine-driven instruction could be used to help humans improve their
c© Springer Nature Switzerland AG 2020
M. Ceci et al. (Eds.): NFMCP 2019, LNAI 11948, pp. 67–82, 2020.
https://doi.org/10.1007/978-3-030-48861-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-48861-1_5

68 L.-D. Palcu et al.

skills. Last, but not least, interpretability can be thought of as a useful tool for
understanding and correcting model errors.

In general, we are faced with a trade-off between performance and inter-
pretability. Graph classification is normally a domain which requires the appli-
cation of complex learning models, such as deep neural networks, which are not
interpretable by nature. Several relevant attempts have been made to interpret
complex models post-hoc (briefly reviewed in Sect. 2). However, most approaches
focus on tabular inputs, or inputs with a known, structured or hierarchical rela-
tion between the elements (e.g. the 2D spatial relation between pixels in an
image or the 1D temporal relation between words in a sentence). For graph
data, we do not have such spatial or temporal semantics to work with, which
makes interpreting any model built on such data even more difficult.

The starting point of our research is rooted in neuroscience: trying to identify
neurons in the brain which are most affected by alcohol consumption, and which
separate between non-alcohol and alcohol affected brain states. Graph/network
analysis methods that are applied to this problem need to produce interpretable
models, because their aim is to help understand brain behavior. The starting
hypothesis is that there is a small subset of neurons whose connection weights
are affected by alcohol, and those neurons are responsible for changing the over-
all behavior and response to alcohol. While initially driven exclusively by this
hypothesis, we assess that the methods investigated are applicable to any graph
classification problem. We propose a method for graph data classification and
model interpretation which generates class-specific relevance heatmaps for the
nodes in the graph by applying a modified version of Grad-CAM [2] – an inter-
pretability method initially designed for image CNNs.

The rest of the paper is organized as follows: Sect. 2 overviews the relevant
interpretation strategies from literature. Section 3 presents the proposed method,
which is evaluated in Sect. 4. The last section contains concluding remarks.

2 Related Work

Some classification models (e.g. decision trees, logistic regression) are inherently
interpretable. For the others, which have a black box behavior, interpretability
methods can be divided into model-agnostic and model-specific [3]. The first
category encompasses methods which can be applied to any classification model,
and generally focus either on explaining a model by computing feature relevance
scores – globally [4–6], or at instance level [7,8] – or try to build a global or a
local interpretable surrogate model, such as LIME [9].

In the context of Convolutional Neural Network (CNN) models, agnostic
interpretability methods do not exploit that such models learn new features and
concepts in their hidden layers and are computationally inefficient, because they
do not use gradient values [3]. For interpreting CNN models, recent works in
literature focus either on perturbing the input (or hidden network layers) and
observing the corresponding changes – generally computationally intensive and
can show instability to surprise artifacts (a line of research closely related to

Discovering Discriminative Nodes for Classification 69

adversarial attacks on CNN architectures) – or leveraging gradient values to
infer feature importance – computationally efficient, but poses challenges when
propagating gradients back through non-linear and re-normalization layers.

[10] proposes the use of deconvolution to identify which part of an image most
strongly activates a specific unit in the network: typically, all neurons except one
are set to zero in the high level feature map corresponding to the layer of that
unit, and we perform a backward pass through the CNN down to the input
layer. The resulting reconstructed image shows which part of the input image
most strongly activates that unit. Class specific saliency maps [11] are generated
by computing the gradient of the class score with respect to the input image.
The intuition is to use the gradients to identify input regions that cause the most
change in the output. The main difference between the last two techniques is how
gradients are passed through non-linear layers such as the Rectified Linear Unit
(ReLU): in [11] the gradients of neurons with negative input are suppressed, while
in [10] the gradients of neurons with incoming negative gradients are suppressed.
Guided backpropagation [12] combines both strategies, by suppressing the flow
of gradients of both negative input and negative gradient neurons.

Class Activation Maps (CAMs) [13] identify the image regions used by a CNN
to discriminate between different categories. It can only be applied to a limited
set of CNNs and it alters the architecture by adding at the end a Global Average
Pooling layer (GAP) and then a fully-connected layer. This is done to preserve
the localization ability of any network, which is lost using fully connected layers.
However, this change could affect the performance of the model.

A significant shortcoming of the methods presented above is that they do
not address re-normalization layers, such as max-pooling. Propagating gradi-
ents back through such a layer can be problematic since the functions used are
not generally differentiable. Grad-CAM [2] tries to circumvent this problem by
relying on the activation maps of the final convolutional layer to build a down-
sampled relevance map (heatmap) of the input pixels, which is then upsampled
to obtain a coarse relevance heatmap of the input.

3 Interpreting Graph Convolutional Network Models
with Grad-CAM

In the up-sampling step, Grad-CAM performs a bi-linear interpolation between
neighboring pixels, which is computationally efficient and produces good results
for images, but cannot be directly applied to graphs. Consequently, we modify
Grad-CAM to address this and allow the generation of class-relevant heatmaps
containing estimates of the each node’s importance to a specific class. We inte-
grate our solution with the Deep Graph Convolutional Neural Network model
(DGCNN) [14]. As the ultimate goal of the strategy is the identification of the
relevant nodes in the classification decision, we propose a preprocessing step
which consists of removing potentially non-informative edges.

70 L.-D. Palcu et al.

3.1 Graph Sparsification

Sparsification is motivated by the assumption that not all edges are informa-
tive, and that small weight edges represent noise. Consequently, sparsification
eliminates a certain amount of small weight edges, with the hope of improving
classification accuracy and model interpretability. Let G(V,E) be a complete
weighted graph, where V represents the set of nodes and E represents the set
of edges, each edge being given by ei(u, v, wi), with u, v ∈ V and wi ∈ R

+.
Let SumG be the sum of all the weights from the graph. We sort the edges in
descending order by weight, <e1, e2, ..., en>, where w1 > w2 > ... > wn, and
considering this order we keep only those edges <e1, e2, ..., em> that have the
sum of weights smaller than a certain threshold, computed as a percentage of
the total sum of weights:

SumG′ =
m∑

i=1

wi < p% ∗ SumG = p% ∗
n∑

i=1

wi, p ∈ [0, 100], m <= n = |E|, (1)

3.2 Deep Graph Convolutional Neural Networks

End-to-end deep learning architectures, such as the Deep Graph Convolutional
Neural Network (DGCNN) [14], take as input graphs of arbitrary structure,
(G, y), where y represents the label of the graph, and build a graph classification
model by applying end-to-end gradient based training. As opposed to methods
which use graph embeddings to transform graphs into tensor data that can be
then classified via traditional machine learning algorithms, end-to-end methods
solve a single joint optimization problem, which includes both feature learning
and classification. This gives them the potential to produce better classifica-
tion outcomes than the decoupled, embedding-based methods, but increases the
complexity of the problem and thus, the computational effort needed to solve it.
The DGCNN architecture is composed of three sequential parts. The first part
extracts useful features for every node by using Graph Convolutional Networks
(GCN). The extracted features characterize the graph topology and based on
them, in the middle part, due to the use of the SortPooling layer, an ordering of
graph nodes is defined. In the last part, the ordered sequence of nodes are intro-
duced into a 1D convolutional neural network and then into dense layers with
the purpose of learning a classification function. For a more in-depth description
of the specific principles used by DGCNN, we refer the reader to [14].

3.3 DGCNN Interpretability

The next step after classifying graphs is to find the nodes which best discriminate
between classes, in the attempt to interpret the model. We adapted Grad-CAM
to graph classification models by starting from the premise that the graph nodes
ordering resulting after the SortPooling layer in DGCNN encodes specific struc-
tural information (based on the relative structural relevance of the nodes within

Discovering Discriminative Nodes for Classification 71

the graph), similar – in a way – to how pixels in neighboring regions of an image
are correlated. In the following steps we detail our solution.

Let F1, F2, ..., Fn be the feature maps in the final convolutional layer and Sc

the score of the target class c. The corresponding gradients (w1, w2, ..., wn) are
computed by using the formula:

wi =
∂Sc

∂F
|Fi,∀i = 1, .., n (2)

These gradients are global-averaged pooled in order to obtain a weight of the
importance of a feature map Fi for a target class c. By multiplying the weights
wi with their corresponding feature maps we obtain the weighted activations:

Ai = wi ∗ Fi,∀i = 1, .., n. (3)

The next step is to sum all the activations of the feature maps and apply the
ReLU function, the result being a downsampled feature-importance array:

H = ReLU(
n∑

k=1

Ak) (4)

We don’t upsample H as it is done for images, we go back through the archi-
tecture to find an approximation of a group of nodes that are good predictors for
a target class. The part of the architecture were we apply our reverse process is
the CNN part, as depicted in Fig. 1. In this example, and even in the architecture
which we used, this part is composed of two 1D convolutional layers and a Max-
Pooling layer. The first 1D convolutional layer combines the resulted features of
every node from the SortPooling layer into one feature. The dimensions of the
ordered array does not change after this layer. Next, a MaxPooling operation is
applied and, depending on the values of the hyperparameters, kernel and step,
the dimensions of the previous array changes. A second convolutional layer is
applied, changing the dimensions of the array again. We apply Grad-CAM on
the result of the previous convolutional layer. Therefore, we can associate an
element from H with a group of nodes, FG, by going back trough the archi-
tecture. In the illustrated example, FG(1) (Final Group 1) is represented by
two previous groups of nodes, where G1 (Group 1) contains the nodes 3 and
6, and G2 (Group2) contains the nodes 2 and 1. In the end, FG(1) points to
the nodes 3, 6, 2, 1. H consists of values between 0 (meaning that the group of
nodes is not important in classifying the target class) and 1 (meaning that the
group of nodes is a very good predictor for the target class). For every node, vi,
we discretize its importance into several bins, by defining an importance array,
ci, where the indices give us decimal intervals from H. For instance, index 0
represents the values between 0 and 0.1, index 1 represents values between 0.1
and 0.2, and so on. C is defined as a frequency matrix where the row ci is the
importance frequency array for the node vi. This matrix is obtained by applying
the Importance frequency algorithm (shown below) to every computed H. Based
on the C matrix we then generate the interpretability heatmaps (Sect. 4.3) to
visualize the discriminative nodes.

72 L.-D. Palcu et al.

Fig. 1. DGCNN + Grad-CAM

Algorithm 1: Importance frequency algorithm
Input : H - importance array, FG - a list of lists of nodes
Output : C - importance frequency matrix
Initialize: C(i) ← 0, ∀ i = 1, ..., n, where n = |V |

1 foreach element h ∈ H do
2 foreach node v ∈ FG(h) do
3 idx ← �h ∗ 10�;
4 C(v)(idx) ← C(v)(idx) + 1

5 end

6 end

4 Experimental Evaluation and Results

The domain specific problem we started off from consisted of graphs representing
brain functional networks in two different physiological states. Though the clas-
sification accuracy obtained on that data was good, and the heatmaps obtained
allowed for reaching a certain understanding of the generated models, we chose
to validate the interpretability method more reliably, by generating artificial
datasets in which the relation between the nodes in the graph is known in
advance.

4.1 Data Generation

Validating interpretability methods for graph classification models is not
straightforward, since if we employ real data it might not even be clear what
the model should be learning. Because the interpretability model we propose
tries to highlight class-relevant nodes, failing to do so may be caused by flaws
in the interpretability model itself, but also by the fact that the classification
model does not actually learn what it should. To remove the second factor from
the analysis (since it is not relevant for the validation of the interpretability
method), we turn to synthetic data to analyze the strengths and weaknesses of
the proposed interpretation strategy. In generating the data, we followed three
main objectives/hypotheses (further detailed in four data generation scenarios):

Discovering Discriminative Nodes for Classification 73

1. Classification performance on a random class distribution problem should be
close to the 50% baseline – addressed by scenario S1 below; analyze what the
interpretability heatmaps indicate in this situation.

2. Evaluate the robustness of the method to mild graph topologies and distri-
butions which try to mimic the original, real-world problem we started from.
This is addressed by generation scenarios S2 and S3 below.

3. Evaluate the robustness of the method to various complexities inherent in
data, which normally affect performance, such as: (i) imbalance, (ii) overlap,
(iii) noise and also combinations of these complexities (as most traditional
machine learning techniques fail to handle well this aspect). Scenario S4 below
considers two of these complexities.

The objectives above are materialized in the following 4 generation scenarios:

1. Random classification problem (S1-Random), in which the graphs for
both classes are very similar. We expect that the resulting model has very poor
performance in this case (close to 50%), and the interpretability heatmaps to
show no emerging pattern.

2. Well separable and interpretable classification problem (S2-Easy),
in which we select a subset of nodes to drive an almost perfect separation
between classes. For this scenario, we expect classification accuracy to be
close to 100% and the model to be able to learn which are the important
nodes - which should be visible in the resulting interpretability heatmaps.

3. Well separable, partially interpretable classification problem (S3-
Moderate), in which we try to give more importance in separation to a sub-
set of nodes, but this importance is not as straightforward as in the previous
scenario. In this case, we also expect a very good classification accuracy, and
the interpretability heatmaps should be able to indicate (at least partially)
the important nodes.

4. Partially separable, partially interpretable classification problem
(S4-Hard), in which we attempt to make the data more difficult to separate,
by introducing two challenges: imbalance and overlap.

The rest of this section describes the data generation processes for each of the
above scenarios. All datasets generated contain 500 synthetic complete weighted,
undirected graphs, each having 85 nodes. The graphs belong to 2 different classes
- State1 and State2 - the class labels being uniformly distributed (except for S4-
Hard, where we introduce imbalanced class distributions). Each node has the
same labelling in all the graphs. The weights of the edges are numbers in the
[0, 1] range.

For S1-Random, the edge weights are drawn randomly from the same dis-
tribution for both classes, N1(μ1, σ2

1). As mentioned above, this should yield
around 50% classification accuracy and the resulting heatmaps should not indi-
cate any relevant nodes. For scenario S2-Easy, the graphs belonging to the first
class are generated as for S1-Random; for the graphs belonging to the second
class, we select a subset of k nodes for which we use a different edge weight
distribution, N2(μ2, σ2

2). For the rest of the edge weights, we use the initial

74 L.-D. Palcu et al.

distribution, N1(μ1, σ2
1) - this should yield a (very) well separable classifica-

tion problem. For this scenario we experimented with two different settings: one
in which the weights of the k nodes in the separate community in State2 were
weaker than for the rest of the graph (S2.1), and one in which they were stronger
(S2.2). The reason for this is to observe whether sparsification can affect class
separability and model interpretability, since sparsification removes the smaller
weight edges (thus it might remove relevant edges in S2.1). With S3-Moderate
we tried to generate graphs that were separable by a well known network metric
- the betweeness centrality - and see whether the model is able to learn those
characteristics. More specifically, for the graphs belonging to the first class, we
again generate complete, weighted graphs, drawing the weights randomly from
N1(μ1, σ2

1). For the graphs belonging to the second class, we select a subset of k
nodes and generate the weights of the edges connecting these nodes by drawing
randomly from N1(μ1, σ2

1). Then, the rest of the nodes are “split” uniformly at
random among these hub nodes. We thus create separated communities, within
each community the edge weights being drawn randomly from N2(μ2, σ2

2). In a
last generation step, we connect the nodes belonging to different communities
(except for the hub nodes) by very weak connections, drawing their weights from
N3(μ3, σ2

3). In S4-Hard we generate three different datasets. We keep the gen-
eration strategy from S3-Moderate, and try to make the classification problems
harder by introducing first class imbalance, then class overlap. Dataset S4.1 was
generated with an imbalance ratio of approximately 10, the second class being
the minority class. For dataset S4.2, we employ a balanced class distribution but
change the means of the three distributions used to generate the edge weights
such as to make them overlap more. Finally, S4.3 was generated by applying
jointly the strategies from S4.1 and S4.2.

The specific parameters for the distributions used are presented in Table 1.
For k we experimented with three different values: 8, 42 and 77 for S2-Easy, and
k = 8 for S3-Moderate and S4-Hard.

Table 1. Distributions used for data generation

* N1 N2 N3

μ1 σ1 μ2 σ2 μ3 σ3

S1-Random 0.5 0.25 n.a. n.a. n.a. n.a.

S2.1-Easy (weaker) 0.7 0.1 0.5 0.1 n.a. n.a.

S2.2-Easy (stronger) 0.5 0.1 0.7 0.1 n.a. n.a.

S3-Moderate 0.7 0.1 0.5 0.1 0.2 0.1

S4.1-Hard (imbalance) 0.7 0.1 0.5 0.1 0.2 0.1

S4.2-Hard (overlap) 0.6 0.1 0.5 0.1 0.4 0.1

S4.3-Hard (imb.+ overlap) 0.6 0.1 0.5 0.1 0.4 0.1

Discovering Discriminative Nodes for Classification 75

4.2 Classification Performance Evaluation

The classification task was performed using the network structure for DGCNN
as presented in [14], applied to input graphs sparsified to maintain a certain
amount of edges, as specified by p%. We repeated each experiment 10 times,
using in each evaluation 80% of the data for training and the remaining 20% as
validation (test) set. For setting p%, we experimented with several options, from
maintaining all edges (i.e. p = 100%) down to keeping the strongest edges that
make up for 50% of the total weights.

As expected, for S1-Random, the trained models learn to predict one of the
classes, reaching an accuracy of around 50% (e.g. the average accuracy of the
final model over the 10 runs for p = 70% sparsification threshold was 50.1%).
For all the other scenarios, all models, in all runs, eventually converge to a 100%
accuracy on the validation set. What differs is the speed of convergence and the
variability of the accuracy on the validation set.

For example, if we compare the training behavior of the models in S2-Easy
and S3-Moderate - see Fig. 2) - we observe that the latter converge faster, and
with less variability, which might indicate that the models find these datasets
easier to learn, contrary to our initial assumptions. A potential motivation for
this can be found in the effect of sparsification. For S3-Moderate data, for the
graphs belonging to State2 we expect sparsification to remove the weak inter-
community edges (i.e. the ones generated with N3(μ3, σ2

3)). In contrast, for the
graphs belonging to State2 in S2-Easy, sparsification might remove edges from
both outside and inside the community formed of the k nodes (with higher
probability for the edges generated with the distribution having the lower mean);
what is important to note here is that by removing from both outside and inside
the community, the problem might become more difficult to learn. Within the
same scenario, we observed that keeping more edges in the initial graphs (by
increasing p%) makes the models converge more slowly (i.e. in later epochs),
which was expected.

(a) S2.1 (b) S2.2 (c) S3

Fig. 2. Comparison of learning curves for S2-Easy and S3-Moderate, k = 8, p = 70%
(Score = Average Accuracy)

In S4-Hard we find that the models have different learning patterns according
to the complexities added to the data (imbalance and/or overlap). As illustrated

76 L.-D. Palcu et al.

in Fig. 3a, the model only starts to learn something meaningful around epoch
25, when training accuracy starts to increase from 90% towards 100% (before
that epoch, the model always predicted class State1, also reflected in the value of
the validation set accuracy). We observe a similar behavior in Fig. 3c, only this
increase appears later in training, due to the overlap also being a data complexity
that the model has to overcome. Comparing with the behavior in S3-Moderate
(see Fig. 2c), we find that both imbalance and overlap make the models learn
more slowly, and overlap induces more variability in the learning process (which
can be seen in the validation/test set accuracy).

(a) S4.1 (imbalance) (b) S4.2 (overlap)
(c) S4.3 (imbalance + over-
lap)

Fig. 3. Comparison of learning curves for S4-Hard, k = 8, p = 70% (Score = Average
Accuracy)

4.3 Interpretability Heatmaps

In order to visualize the discriminative nodes we created a heatmap where the
horizontal axis (Oy) represents the nodes of the graph, G, and the vertical axis
(Ox) represents the interval [0, 1], the importance of a node in classification (the
values from H). The interval [0, 1] is split into 10 bins with a step of 0.1: the
values between 0 and 0.1 are removed for better visualization, while we allocate
an extra bin for values exactly equal to 1. The color represents the difference
between the importance frequency matrix of State1, C1, respectively State2,
C2 (C1 − C2), the difference being computed per decimal interval. C contains
values which indicate how many times a node takes a value from H within a
decimal interval. The top of the heatmap is associated with high values from
H (for example, 1), while the bottom of the heatmap with low values from H.
Therefore, for each node we can visualize its importance in the classification as
follows: if the red color appears on the top of the image, and the blue color on
the bottom of the image, it means that the node is a good predictor for State1; if
we have the blue color on the top of the image and the red color on the bottom,
it means that the node is very important in classifying State2; the green colour
shows that the node does not have discriminative power in the model; if red
or blue colors appear emphasized only in the middle of the heatmap, it might

Discovering Discriminative Nodes for Classification 77

indicate that our problem is difficult to learn, the difference between classes being
less noticeable. We created an average heatmap across the 10 folds in order to
capture the strongest common features of the models resulting from different
evaluation folds.

Fig. 4. The heatmap for S1-Random data generation strategy where p = 70%.

Figure 4 illustrates the average heatmap for the models learned for S1-
Random. The model predicts any graph in the test/validation set as belonging to
the State1 class; the heatmap indicates that all nodes in the graph are relevant
for predicting that class, which is to be expected.

For S2.1-Easy (weaker) data generation strategy we performed experiments
and computed heatmaps for the following sparsification percentages: p = 100%,
p = 70% and p = 50%. The purpose of this experiment was to highlight the k
nodes whose edge weights were generated using a different distribution in State2.
We always choose the k nodes to be the first in the graph (i.e. the leftmost 8
columns of the heatmap in Fig. 5). In Fig. 5a, we notice that if we keep all the
edges no clear patterns emerge, because the information is actually distributed
across the nodes. But if we sparsify the graphs using a percentage p = 70%,
Fig. 5b shows how our classifier distinguishes between classes by highlighting
the 8 nodes that are good predictors for State2 (and the model performance is
almost the same). If we sparsify more, p = 50%, Fig. 5c does not indicate clear
patterns because through sparsification the nodes are losing their importance
(for example, the discriminative edges are eliminated).

In a next experiment, we modified k, the number of nodes for which we
employed a different distribution for generating the edge weights (for the graphs
belonging to the second class). The results for p = 70% can be visualized in
Fig. 6. Figure 6a illustrates a clear difference between the discriminative nodes

78 L.-D. Palcu et al.

(a) The heatmap for p = 100% (b) The heatmap for p = 70%

(c) The heatmap for p = 50%

Fig. 5. The heatmaps for S2.1-Easy (weaker) data generation strategy for each spar-
sification percentage considered, where k = 8.

(a) The heatmap for k = 42 (b) The heatmap for k = 77

Fig. 6. The heatmaps for S2.1-Easy (weaker) data generation strategy, at p = 70%.

for State1 (left part), and the good predictors for State2 (right part). Theoret-
ically, by increasing k, we should have more discriminative nodes for one state.
Figure 6b shows the opposite: actually the nodes (left part) whose edges weights
have not been generated from another distribution are the most important ones
for State1. Also, we can notice that there are fewer good predictors (the nodes
from the middle of the heatmap) for State2 than in the previous case when
k = 42. In the case of S2.2-Easy (stronger), the first 8 modified nodes are more
important in classifying State1 rather than State2 as it is shown in Fig. 7a, while
in Fig. 7b all nodes are relevant in classifying State1.

Discovering Discriminative Nodes for Classification 79

In S3-Moderate the first 8 nodes were selected to be the hubs in State2. As
Fig. 8 shows, only a part of them are highlighted as being important in classifying
State2.

Even though S4.1-Hard represents a class imbalance problem, the same pat-
terns as in S3-Moderate emerge in Fig. 9a, only the colors are less intense, which
might indicate that the model is less certain in how the two classes separate. A
similar phenomenon can be observed when the two classes overlap more, in S4.2-
Hard (Fig. 9b), where the strong shades of blue and red appear more towards
the middle bins (as opposed to the top or bottom of the heatmap - as for models
which converged faster and are - intuitively - more confident in their separation).
An interesting phenomenon can be observed for S4.3-Hard (Fig. 9c), where, as
expected, the emphasized patterns appear in the middle of the heatmap, but
the heatmap is flipped (blue appears more on the top of the heatmap, while red
more on the bottom part).

(a) The heatmap for k = 8 (b) The heatmap for k = 77

Fig. 7. The heatmaps for S2.2-Easy (stronger) data generation strategy for k = 8,
respectively k = 77, where p = 70%

5 Discussion

The interpretability method proposed in this paper attempts to extract informa-
tion about the importance of graph nodes in achieving class separation for deep
graph convolutional models. The evaluation attempted to assess the validity of
the method on several classification tasks for which - intuitively - we know what
to expect from the models. A first important observation is that sparsification
affects the outcome of the interpretability method, and this is because it affects
how the underlying classification model learns to separate between the classes.
When the information is dense (i.e. we keep all graph edges), individual nodes
matter less in learning how to separate between the classes - which is to be
expected. Naturally, the “right” amount of sparsification is highly dependent on
the problem, and - even if not observed in the current evaluations - sparsifi-
cation affects not only interpretability, but also the classification performance.
Consequently, a future step is to study these interactions more systematically.

80 L.-D. Palcu et al.

Fig. 8. The heatmap for S3-Moderate data generation strategy where p = 70%.

(a) The heatmap for S4.1-Hard (imbalance) (b) The heatmap for S4.2-Hard (overlap)

(c) The heatmap for S4.3-Hard (imb +
overlap)

Fig. 9. The heatmaps for S.4-Hard data generation strategy where p = 70%.

By comparing the heatmaps for S3-Moderate and S4-Hard, and consider-
ing also how the corresponding models converge, we believe that the heatmaps
may capture also the confidence of the model’s predictions. However, this phe-
nomenon needs to be studied further, especially for classification problems which
are not perfectly separable.

Discovering Discriminative Nodes for Classification 81

The proposed modification to Grad-CAM performs a very rough approxima-
tion to compute graph node relevance. We are currently exploring more accurate
alternatives for doing this (such as adapting the deconvolution method initially
proposed for the interpretation of image convolutional models).

6 Conclusion

Interpretability is – in many application domains – crucial towards gaining accep-
tance for machine learning models. Graph convolutional models add an extra
layer of difficulty for interpretability methods, because graphs do not exhibit
clear spatial relations between their nodes (like images do).

In this paper we propose a method for graph classification and model inter-
pretation, which combines DGCNN with a modified Grad-CAM algorithm, to
obtain heatmaps representing each node’s relevance to the classification of a spe-
cific graph. We alter the Grad-CAM algorithm to apply only operations which
do not assume a specific locality for nodes. We evaluate our method on synthetic
datasets which were generated to emulate a real dataset representing brain func-
tional networks in different physiological states. These functional networks are
represented by complete, weighted graphs that need to be sparsified. The result-
ing heatmaps are generally able to identify the nodes which we intended to be
relevant for the identification of a specific class. Interrestingly, we believe they
manage to also capture some degree of “uncertainty” associated to the predic-
tions of the model, but this aspect needs further investigation, together with the
effect of sparsification on the resulting models and heatmaps.

Acknowledgments. This work was supported by a grant from the Romanian
National Authority for Scientific Research and Innovation, CNCS-UEFISCDI (project
number COFUND-NEURON-NMDAR-PSY), a grant by the European Union’s Hori-
zon 2020 research and innovation program – grant agreement no. 668863-SyBil-AA, and
a National Science Foundation grant NSF-IOS-1656830 funded by the US Government.

References

1. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv e-prints, February 2017

2. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-
CAM: why did you say that? Visual explanations from deep networks via gradient-
based localization. CoRR abs/1610.02391 (2016)

3. Molnar, C.: Interpretable machine learning (2019). https://christophm.github.io/
interpretable-ml-book/

4. Greenwell, B.M., Boehmke, B.C., McCarthy, A.J.: A simple and effective model-
based variable importance measure (2018)

5. Zhao, Q., Hastie, T.: Causal interpretations of black-box models (2019)
6. Fisher, A., Rudin, C., Dominici, F.: All models are wrong but many are useful:

variable importance for black-box, proprietary, or misspecified prediction models,
using model class reliance. arXiv e-prints, January 2018. arXiv:1801.01489

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
http://arxiv.org/abs/1801.01489

82 L.-D. Palcu et al.

7. Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E.: Peeking inside the black box:
visualizing statistical learning with plots of individual conditional expectation. J.
Comput. Graph. Stat. 24(1), 44–65 (2015)

8. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predic-
tions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2014)

9. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. CoRR abs/1602.04938 (2016)

10. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
CoRR abs/1311.2901 (2013)

11. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
visualising image classification models and saliency maps. CoRR abs/1312.6034
(2013)

12. Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity:
the all convolutional net. In: ICLR (Workshop Track) (2015)

13. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: CVPR (2016)

14. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: AAAI, pp. 4438–4445 (2018)

Streams and Times Series

Soft Voting Windowing Ensembles for
Learning from Partially Labelled Streams

Sean L. A. Floyd and Herna L. Viktor(B)

School of Electrical Engineering and Computer Science, University of Ottawa,
Ottawa, ON, Canada

{sfloy029,hviktor}@uottawa.ca

Abstract. Mining data streams has become an important topic due to
the increased availability of vast amounts of online data. In such incre-
mental learning scenarios, observations arrive in a sequence over time
and are subject to changes in data distributions, also known as con-
cept drifts. Interleaved test-then-train evaluations are often used during
supervised learning from streaming data. The idea is intuitive: we first
use each instance to test a model, then it is used for training. However,
true class labels may be missing or arrive well after the prediction, which
implies that they cannot be used for training and/or drift detection.
Based on these considerations, we introduce our LESS-TWE ensemble-
based method for online learning in domains where full reliance on labels
would be unfeasible. Our approach combines weighted soft voting and
unsupervised drift detection to reduce the dependency on labels during
model construction. In cases where the label is unavailable, the most
confident label, as predicted through weighted soft voting, is selected.
Similarly, our unlabelled drift detector flags for drifts based on the vot-
ing confidence, rather than relying on the true label. Our experimental
evaluation indicates that our algorithm is very fast, achieves comparable
predictive accuracy when compared to the state-of-the-art and outper-
forms baseline methods.

Keywords: Stream mining · Prequential evaluation · Unlabelled
data · Ensembles · Self-training · Unsupervised drift detection

1 Introduction

A major challenge in learning from data streams is late-arriving or missing class
labels. Assuming that data will arrive correctly labelled and in a timely manner
often does not reflect reality, and, as such, limits the applicability of supervised
methods [11]. Many real-world problems, in areas such as cybersecurity and
fraud detection, require the use of semi-supervised techniques to handle partial,
and potentially sporadic, lack of labels. Furthermore, the unavailability of labels
means that the interleaved test-then-train paradigm, which is common practice
in online learning evaluation [17], cannot be followed. Online learning algorithms

c© Springer Nature Switzerland AG 2020
M. Ceci et al. (Eds.): NFMCP 2019, LNAI 11948, pp. 85–99, 2020.
https://doi.org/10.1007/978-3-030-48861-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-48861-1_6

86 S. L. A. Floyd and H. L. Viktor

need to adapt their models to potential changes in the underlying concepts.
To this end, techniques have been developed to explicitly detect these changes
allowing algorithms to adapt models more quickly. Drift detection methods rely
mainly on the use of labelled data by detecting changes in the accuracy of a
classifier over time [1,7] or use some form of statistical tests [14].

Ensembles have shown to obtain superior performance by increasing the accu-
racy and diversity of single classifiers, both in the offline and online settings
[3,10]. Online ensemble learning from partially labelled streams has, to date,
received very limited attention. Current techniques generally rely on first clus-
tering unlabelled data, which is computationally expensive and may have limited
applicability in domains where just-in-time models are required [8,11]. The goal
of this paper is to narrow the gap in research as it pertains to ensemble learning
of evolving streams where the labels are limited, or their on-time arrival cannot
be guaranteed. Our aim is to follow an interleaved test-then-train paradigm, as is
standard practice in the domain, while reducing the dependence on true labels.
In addition, our work eliminates the need for initial unsupervised learning.

Our Learning from Evolving Streams via Self-Training Windowing Ensembles
(LESS-TWE) framework employs a novel windowing technique with a weighted
soft voting strategy. In our self-training stage, the ensemble’s confidence is used
to predict the label when unavailable. In addition, we introduce an unsuper-
vised drift detection algorithm that extends the Fast Hoeffding Drift Detection
Method for evolving Streams (FHDDMS) algorithm [13], to further reduce the
reliance on class labels. By utilising a hybrid sliding-tumbling windows tech-
nique for instance selection, where the instances seen by individual classifiers
are interleaved, we aim to achieve savings relating to the execution time, while
maintaining training diversity and high predictive accuracy.

This paper is organised as follows. Section 2 introduces background concepts.
We present our LESS-TWE framework in Sect. 3. In Sect. 4, we describe our
experimental evaluation. Finally, in Sect. 5 we conclude the paper and discuss
our future research.

2 Background

Online learning from data streams differ from batch learning in several important
ways. Firstly, since we have continuous flow of data, models need to be built and
updated as the instances arrive, using limited memory and time. Secondly, due
to changes in data distributions, also known as concept drifts, the models must
be swiftly able to detect and to adapt, to maintain high accuracy [17].

Traditional metrics based on error rate can be misleading if used as a proxy
for evaluating algorithms for evolving streams. Interleaved test-then-train meth-
ods ensure that the model has not previously seen new test instances, implying
that no holdout test set is necessary [17]. This procedure assures that a clas-
sification model is being tested on unseen instances as the stream evolves. In
contrast to the holdout procedure, it makes the maximum and immediate use
of data, meaning all instances are used for both testing and training. It also

Soft Voting Windowing Ensembles for Partially Labelled Streams 87

ensures a smooth plot of accuracy over time, as the impact of each example
becomes increasingly less significant to the overall average. In this procedure,
the accuracy of a learning algorithm is punished for early mistakes. This effect,
however, diminishes after training thousands of instances over time. As more
data is tested in the test-then-train approach than in the holdout method, each
instance used to assess the accuracy and performance of the model weighs less
than it would have in a smaller holdout test set [3]. As such, interleaved test-
then-train evaluation has become standard practice in online learning research,
including when assessing online ensembles.

Online ensembles for supervised learning from evolving stream, i.e. streams
that are non-stationary and are susceptible to concept drift, has resulted in suc-
cess in many domains. In an ensemble, the notion of diversity ensures that the
combined vote exceeds that of the individual committee members. Typically,
each component classifier either focuses differently on (often weighted) subsets
of the instances, or uses diverse feature subsets when constructing its model.
[10] provides a detailed review of online ensembles for evolving streams, includ-
ing both chunk-based and instance-based methods, such as Adaptive Classifier
Ensembles (ACE) [12], Leveraged Bagging (LB) [2] and Streaming Ensemble
Algorithm (SEA) [15]. While successful, these supervised algorithms rely on
instantly available labels, to maintain high accuracy and to flag for drift, mak-
ing them unsuitable for direct use in a setting where the full reliance on labels
cannot be ensured. In the next section, we introduce our LESS-TWE approach
for learning from such partially labelled streams.

3 LESS-TWE Online Learning

This section presents the details of our LESS-TWE online learning algorithm.
Figure 1 illustrates how our contributions fit together and operate in one iteration
of an interleaved test-then-train loop. Note that instances may arrive in chunks
or one at a time.

Fig. 1. High-level overview of the LESS-TWE methodology

88 S. L. A. Floyd and H. L. Viktor

Algorithm 1: LESS-TWE algorithm
1 while stream.has more instances() do
2 X, y = stream.get next tuples(number of instances to fetch);
3 predictions, probabilities = voting ensemble.predict(X);
4 drift detected = voting ensemble.detect drift(predictions, probabilities);
5 if true label percentage �= 100 then
6 if drift not detected then
7 y = label with predictions(y, predictions, true label percentage);

8 voting ensemble.train(X, y);

// This algorithm shows the steps required to modify learning when

there are unlabelled data

9 function label with predictions(y, predictions, true label percentage)
10 for index = 0 ; index < length(y) ; index+ = 1 do
11 if random number between(0, 100) ¿ true label percentage then
12 y[index] = predictions[index];

13 return y ;

3.1 Hybrid Sliding-Tumbling Windows

Our ensemble is designed so that the training sets of the N individual classifiers
proceed out of step, using tumbling windows for instance selection. At every
iteration of the interleaved test-then-train loop, we append the new tuples to the
ensemble’s window and train a single classifier in the ensemble on that window.
For the next N − 1 iterations, we train the remaining N − 1 classifiers, and so
on. We do this so that from the point of view of the ensemble, we are using
sliding windows to train. However, from the point of view of each classifier in
the ensemble, we are employing tumbling windows to train, where the classifiers
proceed out of step. Figure 2 illustrates this method for three (3) classifiers in
an ensemble where the difference in starting points of classifiers is equal to 1
instance. Each classifier will learn only from the same coloured batch; (as seen
in Fig. 2) classifier c1 will train on the purple window, while classifiers c2 and
c3 will utilise the blue and green windows [5]. Intuitively, this method ensures
diversity, in terms of the instances used by the individual classifiers when casting
their votes, and has the potential to lead to savings, in time and memory, as will
be indicated in our experimental evaluation.

3.2 Weighted Soft Voting

When an ensemble determines a class label for a new instance, each component
classifier first returns its individual prediction [10]. The ensemble then maps
these multiple, potentially different, predictions to a single value. To accomplish
this, several functions have been proposed that apply weights to any permutation
of the classifiers and/or of their predictions, and then apply a combination rule
to these values to finally vote on the final output of the ensemble.

Soft Voting Windowing Ensembles for Partially Labelled Streams 89

Fig. 2. Sliding tumbling windows [15]. (Color figure online)

Soft voting requires each of the classifiers in the ensemble to output a confi-
dence value (usually in [0, 1]) for their prediction for each class value or to output
the probabilities that an instance belongs to a given class label. In the case of
simple soft voting, the average probability for each class label is computed over
the predictions of all classifiers. The probability of the final class label is given
by Eq. 1. Here, hj

i (x) ∈ [0, 1] takes value 1 if classifier hi predicts class label cj .
L is the set of class labels, where l is any label in L.

H(x) = max(
1
n

n∑

i=1

hl
i(x) ∀l ∈ L) (1)

Our LESS-TWE ensemble extends the simple soft voting method by employ-
ing two weighted soft voting schemes, each of which outputs a probability or
confidence in the predicted label. We employ weighting schemes to determine
whether distinguishing between small variations in votes may potentially create
more diversity in our online learning setting and correct misclassifications [2]. In
our voting schemes, the label with the highest average value is selected and the
labelled instance is added to the training data.

In our first variant, we use the logistic sigmoid activation function defined
by:

f(x) =
L

1 + e−k(x−x0)
(2)

where e is the natural logarithm base, x0 is the x-value of the sigmoid’s midpoint,
L is the curve’s maximum value, and k is the steepness of the curve. This voting

90 S. L. A. Floyd and H. L. Viktor

strategy computes the mean of this logistic function using the prediction of each
classifier for each label:

1
n

n∑

i=1

1
1 + e−k(pi(X)−γ)

(3)

where n is the number of classifiers in the voting ensemble, and pi(X) is the
probability of classifier i predicting that the instance in question belongs to
class X and γ is a threshold value.

The second variant use the hyperbolic tangent weighting function defined as:

f(x) =
1 − tanh(α − βx)

δ
(4)

and the sum is calculated by

1
n

n∑

i=1

1 − tanh(α − β × pi(X))
δ

(5)

It follows that the values of α, β and δ are set by inspection. The average
is used to compute a base learner’s true label prediction, similar to the logistic
sigmoid voting scheme.

3.3 Online Labelling

Our online labelling method is based on the self-training semi-supervised learn-
ing paradigm. In offline self-training, an initial hypothesis is learned from labelled
data, which is then used to classify unlabelled data. The most confident unla-
belled data, along with the labelled data, are added into the training set, which
is used repeatedly to refine the hypothesis. Thus, selective self-training employs
the most confident of a classifier’s predictions to label the unlabelled data [16]
and is a promising way to deal with unlabelled data in an offline semi-supervised
learning setting. However, self-training can reinforce classification errors and may
lead to reduced accuracy [16]. Also, in an online setting where we employ the
interleaved test-then-train paradigm, the availability of all true labels cannot be
guaranteed. We therefore need to modify the algorithm for online learning. To
this end, our online labelling algorithm1 uses predictions for data arriving with-
out. This algorithm combines the most confident predictions from the individual
classifiers to increase the overall confidence in the proposed label. Intuitively, the
windows of instances seen by the N different classifiers in our ensemble differ at
any point in time, and such diversity should lead to more robust results.

Specifically, as an instance X arrives, it is first tested and next used for
training. If X’s true class label y is known upon arrival, then y is used for
training. Alternatively, if X arrives without a label, the ensemble votes to assign
the predicted class label ŷ with the highest confidence, which is subsequently
used for training. This process continues indefinitely, until the end of the stream,
unless concept drift is detected. In cases where concept drift is detected, the
ensemble is reset, and a new interleaved test-then-train cycle begins.

Soft Voting Windowing Ensembles for Partially Labelled Streams 91

3.4 Unlabelled Drift Detection

Our drift detection approach relies on storing, in sliding windows, whether a
classifier correctly predicts a label (0 or 1). If the number of incorrect predictions
is higher than a threshold t, then the algorithm flags for a drift. In our work, we
modified the FHDDM method [13] so that the dependence on labels is removed
and we now determine the label of unlabelled instances using a probability. Thus,
when predicting the class, each classifier in the ensemble outputs a probability
for a label being correct. For example, a classifier could output the following
class probabilities for a three-class task {A : 0.24, B : 0.11, C : 0.65} and these
values are used in our calculation.

Algorithm 2: Modified Fast Hoeffding Drift Detection Method
(MFHDDM)
1 function init(window size, delta, use probability)
2 (n, δ, p) = (window size, delta, use probability);

3 εd =
√

1
2n

ln 1
δ
;

4 reset();

5 function reset()
6 w=[];
7 μm = 0;

8 function detect(p)
9 if w.size = n then

10 w.tail.drop();
11 w.push(p);
12 if w.size < n then
13 return False;
14 else
15 μt = w.average();
16 if μm < μt then
17 μm = μt;
18 Δμ = μm − μt;
19 if Δμ ≥ εd then
20 reset();
21 return True;

22 else
23 return False;

Algorithm 2 shows our drift detection approach which calculates the average
probability for the winning class as obtained from the members of the ensemble.
We maintain two sliding windows, a short window to detect abrupt drift, and
a long window for detecting gradual drift. Following [13], Hoeffding’s bound is
used to detect if the average probability drifts too far from the maximum seen
average probability using the following test.

92 S. L. A. Floyd and H. L. Viktor

FHDDM Test [13]: In a stream setting, assume μt is the mean of a sequence of
n random entries, where the prediction status of each instance is represented by
a value in the set {0, 1}, at time t. Let μm be the maximum mean observed so
far. Let Δμ = μm − μt ≥ 0 be the difference between the two means. Given the
desired δ, Hoeffding’s inequality implies that a drift has occurred if Δμ ≥ εd,
where:

εd =

√
1
2n

ln
1
δ

(6)

If a drift is detected, the ensemble is reset and the interleaved test-then-train
loop recommences.

4 Experimental Evaluation

All experiments were conducted on a MacBook Pro base model 11,4, running
macOS 10.14.4. The framework’s implementation and the code for the experi-
ments are available at GitHub1. This repository also shows the results of exten-
sive experiments in terms of parameter combinations including window types and
sizes, batch sizes, base learners (Hoeffding trees (HT), Multinomial and Gaussian
Naive Bayes (NB) and Stochastic Gradient Descent (SGD)) and drift detection
methods. Our initial experimental evaluation confirms that the hyberbolic tan-
gent weighting function is computationally much more efficient (in general, at
least 4 times faster) than the logistic sigmoid scheme is; we thus use this voting
method throughout our evaluations.

The no-change classifier as well as a majority-class classifier were used as
our baselines. The no-change classifier assumes that the class label of instance
k would be the same as instance k − 1, while the majority class learner assigns
the class seen most often, so far, to instance k. We further compare our LESS-
TWE ensemble to the previously mentioned, state-of-the-art leveraged bagging
(LB) algorithm, using parameter combinations selected by inspection after hav-
ing been ranked with averaging Eq. 7. The LB classifier is implemented with a
built-in ADWIN drift detector that replaces the worst performing classifier in
the ensemble with a new classifier when a drift is detected [3]. Bifet et. al. [2]
postulated that adding more random weights to all instances seems to improve
accuracy more than if only adding to the misclassified instances, as is common
in traditional bagging methods. For this reason, [2] proposed the online LB algo-
rithm with randomisation improvements, namely increasing the weights of the
input samples and adding randomisation to the output of the ensemble via out-
put codes. We have chosen the LB technique in our comparison, since it is a
robust framework for classifying evolving streams that has shown to yield highly
accurate results through increasing the input-space diversity. Also, the randomi-
sation approach followed by the LB method is related to the weighted soft voting
scheme we use in the LESS-TWE approach.

1 https://github.com/SeanLF/scikit-multiflow.

https://everymac.com/systems/apple/macbook_pro/specs/macbook-pro-core-i7-2.2-15-iris-only-mid-2015-retina-display-specs.html
https://github.com/SeanLF/scikit-multiflow

Soft Voting Windowing Ensembles for Partially Labelled Streams 93

Recall that we use the interleaved test-then-train evaluation method in all
our experiments. The performance measures are the execution time (measured
in seconds), as well as the κt statistic to evaluate a classifier’s predictive per-
formance. This κ statistic compares our classifier to a no-change classifier and
takes temporal dependence in the data into account [17].

4.1 Benchmark Data Sets

The benchmark data sets used for our analysis are SEA [15], CIRCLES, SINE1
and MIXED, which all contain noise, and either abrupt or gradual concept drifts.
We have generated data for SEA, while the data generated for the last three data
sets were obtained from [13]. Each experiment is run on five different examples
each sourced from three synthetic data sets (5 examples of SINE1, another 5 of
CIRCLES, etc.) and three streams generated by the SEA generator with levels
of noise in increments of ten percent (from 0% to 20%), for a total of eighteen
(18) streams of one hundred thousand (100,000) instances.

The CIRCLES data stream is composed of two relevant numerical
attributes: x and y, which are uniformly distributed in [0, 1]. There are four
concepts in this data set, each representing whether a point is within a circle
given x and y coordinates for its centre and its radius rc. This data set con-
tains gradual concept drifts that occur at every twenty-five thousand (25,000)
instances.

SINE1 contains abrupt concept drifts. It has only two relevant numerical
attributes, for which the values are uniformly distributed in [0, 1]. Before the
concept drift, all instances for values below the curve y = sin(x) are classified as
positive. Then, after the concept drift, the rule is reversed; therefore, the values
below the curve become negative. The drifts were generated at every twenty
thousand (20,000) instances.

MIXED also contains abrupt concept drifts and uses four relevant
attributes, two of which are Boolean, let them be v and w; and the other two
attributes are numerical, in [0, 1]. Instances belong to the positive class if two of
three conditions are being met: v is true, w is true, y < 0.5+0.3× sin(3πx). For
each concept drift, the conditions are reversed, meaning that if the conditions
are met, it will be a positive instance, then after the drift, it will be a negative
instance. The abrupt concept drifts occur at every twenty thousand (20,000)
instances.

SEA generates streams with abrupt concept drift, composed of three numer-
ical attributes of values in [0, 10], where only the first two attributes are relevant.
For each instance, the class is determined by checking if the sum of the two rel-
evant attributes passes a threshold value. Let f1 and f2 be the two numerical
relevant attributes, and θ the threshold. An instance belongs to class one if
f1 + f2 ≤ θ. As in [15], our stream has four concepts, with the threshold values
for each being 8, 9, 7 and 9.5. We generate streams of one hundred thousand
(100,000) instances, from zero to twenty percent noise, in ten percent increments
({0; 10; 20%}). Drifts, therefore, occur at every twenty-five (25,000) thousand
instances.

94 S. L. A. Floyd and H. L. Viktor

4.2 Effects of Training with a Lower Percentage of Labelled Data

In this section, we aim to determine the percentage of labelled data used at which
our LESS-TWE ensemble’s κt metric declines. The parameter combinations were
selected by inspection after having been ranked with an averaging equation (7)
that assigns more weight to the rank for the κt metric than the execution time.
The ranking algorithm from the Nemenyi test was extracted to rank the possible
parameter combinations, with δ = 3 and χ = 4.

δ × rankκt
+ rankexecution time

χ
(7)

Table 1 lists the global predictive accuracy and the κt values for each of the
benchmarking data set. The table indicates that the global predictive accuracy
of our ensemble is not significantly reduced by training with less ground truth.
However, the predictive performance of the ensemble, as measured by κt, differs
between 20% and 54% when examining κt when using 60% and 100% of ground
truth.

Table 1. Accuracy (%) and κt when training with varying percentages of labelled data.

GT CIRCLES MIXED SINE1 SEA 0% SEA 10% SEA 20%

Acc κt Acc κt Acc κt Acc κt Acc κt Acc κt

100 78 0.56 80 0.60 84 0.69 97 0.94 82 0.62 70 0.38

90 76 0.52 79 0.59 84 0.68 97 0.94 82 0.62 70 0.38

80 73 0.46 79 0.58 82 0.65 96 0.93 82 0.62 70 0.39

70 68 0.36 77 0.55 80 0.60 96 0.92 82 0.62 71 0.40

60 63 0.26 72 0.44 77 0.55 95 0.90 83 0.64 70 0.39

From Table 1, we find that our ensemble does not suffer a drastic reduction
in its global predictive accuracy when training with only 60% ground truth (in
other words, training with 40% less labelled data). However, the κt statistic
indicates mixed results. For the experiments using the SEA data sets, using
less labels do significantly reduce the accuracy. Additionally, one notes that the
CIRCLES data set is hard to model with access to a lower percentage of labelled
data, which is perfectly logical given what the class label represents. Indeed,
very specific data instances are required to model the class well, given that it
represents whether a data instance resides within the radius of a predefined
circle. Results show clearly that the reduction in κt is highly dependent on the
data set being modelled, as should be expected.

4.3 Comparison in Terms of Accuracy and Runtime

Figure 3 shows the results when we compare our LESS-TWE framework with
the LB technique, a single HT learner and the SGD classifier, as well as the

Soft Voting Windowing Ensembles for Partially Labelled Streams 95

no change and majority class classifiers. In this set of experiments, we include
various configurations of LESS-TWE ensembles where we vary the percentages
of ground truths, the window types and sizes, the base learner as well as the
weighted soft voting scheme. The results show that the LB algorithm consistently
performed well, in terms of κt values, with LESS-TWE ensembles consistently
in second place. Our results also indicate that the no change and majority class
learners produced low κt values, while the HT method appears to be sensitive
to noise. That is, these algorithms were unable to learn the concepts well and to
adapt to drifts or noise.

Fig. 3. Comparative κt and execution times across multiple algorithms.

To determine which pairs of algorithms actually differ, we converted the
results into a ranking task [6,9] and used the post-hoc Nemenyi test as shown
in Fig. 4, where a lower rank means a better predictive accuracy (a better κt).
The graph shows that there is no significant statistical difference among the LB
method, our LESS-TWE ensemble using our best overall parameter combination,
an SGD classifier, and our LESS-TWE ensemble using our hybrid windowing
approach. This supports the rejection of the null hypothesis for κt. Note that
there is a significant statistical difference between both the majority voting and
no change classifiers with all algorithms, aside from our LESS-TWE ensemble
training with 70% of ground truth or less. Therefore, this test showed that our
LESS-TWE ensemble, using our preferred parameter combinations, performed
comparably to the LB approach, when the number of labels is adequate for the
problem domain.

Considering execution time, we again used the post-hoc Nemenyi test to
determine which pairs of algorithms differ as shown in Fig. 5. The graph indicates
that the LB ensemble ranks last, and the HT decision tree ranks second to

96 S. L. A. Floyd and H. L. Viktor

Fig. 4. Nemenyi graph ranking κt for various algorithms

last, as shown in Fig. 3. The graph also illustrates that there is a significant
statistical difference between the LB and LESS-TWE ensembles. Given that the
LB algorithm runs in over two orders of magnitude longer than the LESS-TWE
approach, this result is as expected.

Fig. 5. Nemenyi graph ranking execution times for various algorithms

LESS-TWE ensembles clearly outperforms the baseline algorithms against all
streams. Our results further show that the LESS-TWE approach is much faster
than the LB algorithm and that it performs on par with the LB approach in
terms of the κt metric. Our results also indicate that the predictive performance
of our ensemble when trained with 80% and 90% ground truths do not present
significant differences to that of the LB algorithm. Our LESS-TWE algorithm
brings outstanding time savings in algorithm execution-time, running approxi-
mately 160 times faster than the LB method does. Practically, this means that
our ensemble should be considered when execution time is an important metric,
given that the predictive performance is comparable to that of the LB ensemble.
While these results are promising, it follows that a high reliance on labelled data
is prohibitive in a traditional semi-supervised setting and that further analysis
is needed. Next, we discuss our results against a real-world intrusion detection
database.

4.4 Intrusion Detection Databases

The ADFA-LD host-based network intrusion detection database is a publicly
available database that contains contemporary attack methodologies and oper-
ating systems. ADFA-LD was designed to represent a complete system compro-
mise, from initial penetration through to privilege escalation, thus presenting
a realistic scenario for actual hacking as it is conducted in the modern cyber-
environment [4]. It follows that the labels of hack attacks are often lacking, or

Soft Voting Windowing Ensembles for Partially Labelled Streams 97

that attacks need to be labelled on the fly. In this experiment, our aim was to
determine how well our LESS-TWE algorithm would perform in such settings.

We consider five different add new superuser attacks, which are forms of
client-side poisoned executable. Such attacks may lead to exploitation payload,
remote operation, staging, system manipulation, data exfiltration, and back-door
insertions. The streams are subject to abrupt intrusion attempts, where attacks
begin sporadically and dominate the data stream for 250 to 500 instances, before
returning to their original frequency.

Next, we study the impact of reducing the number of labels. Table 2 depicts
the run times and mean κ values against the ADFA Intrusion data streams. Our
results show that there is no significant difference in terms of the κ statistic
when comparing LESS-TWE with 90%, 75% and 10% of data having labels on
arrival. The algorithm runs very fast, even when faced with a large amount of
unlabelled data. We conclude that the LESS-TWE algorithm produces accurate
and timely results, even in the presence of 90% data missing labels on arrival.
This result is promising in a scenario where the absence of labels should not
affect the detection of hack attacks, a concept we plan to study further.

Table 2. Run time (seconds) and κm values against ADFA-LD database.

Algorithm ADFA-SU0 ADFA-SU1 ADFA-SU2 ADFA-SU3 ADFA-SU4

Time κm Time κm Time κm Time κm Time κm

LESS-TWE-90 8.96 0.83 9.05 0.84 8.80 0.83 8.96 0.85 8.64 0.84

LESS-TWE-75 7.82 0.83 8.24 0.84 8.26 0.84 8.26 0.83 0.24 0.84

LESS-TWE-10 13.90 0.84 13.97 0.84 17.90 0.84 15.10 0.84 20.08 0.84

5 Conclusion

This paper focused on learning from evolving streams where the labels may be
missing or arriving after a delay. The goal of this study was twofold: firstly, to
design fast algorithms to work within the interleaved test-then-train paradigm
when there is a potential lack of labels, and secondly, to design algorithms that
can detect drifts without relying on the ground truth. Experiments were con-
ducted to evaluate the performance of our LESS-TWE algorithm, while consid-
ering the percentage of labelled instances used at each stage of learning. Our
results show that our algorithm is very fast and able to produce accurate models
with limited labels.

Future work will include exploring the ensemble classifier diversity guaran-
tees by potentially substituting cyclical for stochastic training from novel win-
dows. In this paper, we compared our work to baselines algorithms, as well as
the state-of-the-art LB algorithm. Further work will include a comparison with
other (ensemble, drift detector) pairs. The reader should note that, in many prior

98 S. L. A. Floyd and H. L. Viktor

offline semi-supervised learning studies, the amounts of labelled data are typi-
cally less than 10%. We plan to extend our research by further investigating these
scenarios, focusing on a streaming setting where labels may arrive in bursts. In
addition, we plan to further explore additional attack styles as prevalent in the
ADFA-LD benchmark database.

References

1. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing.
In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp.
443–448. SIAM (2007)

2. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams.
In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010.
LNCS (LNAI), vol. 6321, pp. 135–150. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15880-3 15

3. Bifet, A., et al.: New ensemble methods for evolving data streams. In: Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 139–148. ACM (2009)

4. Creech, G., Hu, J.: A semantic approach to host-based intrusion detection systems
using contiguous and discontinuous system call patterns. IEEE Trans. Comput.
63, 807–819 (2014)

5. D’Ettorre, S., Viktor, H.L., Paquet, E.: Context-based abrupt change detection
and adaptation for categorical data streams. In: Yamamoto, A., Kida, T., Uno,
T., Kuboyama, T. (eds.) DS 2017. LNCS (LNAI), vol. 10558, pp. 3–17. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67786-6 1

6. Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense
of Data. Cambridge University Press, Cambridge (2012)

7. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In:
Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5 29

8. Haque, A., Khan, L., Baron, M.: Semi supervised adaptive framework for classifying
evolving data stream. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D.,
Motoda, H. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9078, pp. 383–394. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-18032-8 30

9. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Per-
spective. Cambridge University Press, Cambridge (2011)

10. Krawczyk, B., et al.: Ensemble learning for data stream analysis: a survey. Inf.
Fusion 37, 132–156 (2017). ISSN 1566-2535

11. Krempl, G., et al.: Open challenges for data stream mining research. ACM
SIGKDD Explor. Newsl. 16(1), 1–10 (2014)

12. Nishida, K., Yamauchi, K.: Adaptive classifiers-ensemble system for tracking con-
cept drift. In: 2007 International Conference on Machine Learning and Cybernetics,
vol. 6, pp. 3607–3612. IEEE (2007)

13. Pesaranghader, A., Viktor, H., Paquet, E.: Reservoir of diverse adaptive learners
and stacking fast Hoeffding drift detection methods for evolving data streams.
Mach. Learn. 107(11), 1711–1743 (2018). https://doi.org/10.1007/s10994-018-
5719-z

14. Sobolewski, P., Wozniak, M.: Concept drift detection and model selection with
simulated recurrence and ensembles of statistical detectors. J. Univ. Comput. Sci.
19(4), 462–483 (2013)

https://doi.org/10.1007/978-3-642-15880-3_15
https://doi.org/10.1007/978-3-642-15880-3_15
https://doi.org/10.1007/978-3-319-67786-6_1
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/978-3-319-18032-8_30
https://doi.org/10.1007/s10994-018-5719-z
https://doi.org/10.1007/s10994-018-5719-z

Soft Voting Windowing Ensembles for Partially Labelled Streams 99

15. Street, W.N., Kim, Y.S.: A streaming ensemble algorithm (SEA) for large-scale
classification. In: Proceedings of the Seventh ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 377–382. ACM (2001)

16. Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synth. Lect.
Artif. Intell. Mach. Learn. 3(1), 1–130 (2009)

17. Žliobaitė, I., Bifet, A., Read, J., Pfahringer, B., Holmes, G.: Evaluation methods
and decision theory for classification of streaming data with temporal dependence.
Mach. Learn. 98(3), 455–482 (2014). https://doi.org/10.1007/s10994-014-5441-4

https://doi.org/10.1007/s10994-014-5441-4

Disentangling Aspect and Opinion Words
in Sentiment Analysis Using Lifelong

PU Learning

Shuai Wang1(B), Mianwei Zhou2, Sahisnu Mazumder1, Bing Liu1,
and Yi Chang3

1 Department of Computer Science, University of Illinois at Chicago, Chicago, USA
shuaiwanghk@gmail.com, sahisnumazumder@gmail.com, liub@cs.uic.edu

2 Yahoo! Research, Sunnyvale, USA
mianwei@yahoo-inc.com

3 Artificial Intelligence School, Jilin University, Changchun, China
yichang@acm.org

Abstract. While sentiment analysis can mine valuable information from
online reviews, performing a fine-grained sentiment analysis task is very
challenging due to the complex patterns in text. In this work, we focus
on a Fine-grained Target-based Sentiment Analysis (FTSA) task, which
is to identify target-specific aspect words and opinion words. This task
is very useful in practice. However, existing solutions cannot generate
satisfactory results, especially when we have limited or no labeled data.
To provide a holistic solution, we design a novel two-stage approach.
Stage one groups the target-related words (call t-words) for a given tar-
get, which is relatively easy. Stage two separates the aspect and opin-
ion words from the grouped t-words, which is more challenging due to
the lack of sufficient word-level aspect and opinion labels. To address
it, we formulate the task in a Positive-Unlabeled (PU) learning setting
and incorporate the idea of lifelong learning, which achieves promising
results.

1 Introduction

Carrying valuable opinionated information, online reviews have become an
important type of big (text) data. The sentiment analysis on them thus plays
a crucial role for both customers and manufacturers. Although various senti-
ment analysis tasks have been studied [13], performing a fine-grained sentiment
analysis task remains to be very difficult because of the complex patterns in
text, such as sentiment composition, semantic understanding, and word-sense
disambiguation. That is probably also why sentiment analysis is still an active
research field. In this work, we focus on an important Fine-grained Target-based
Sentiment Analysis (FTSA) task.

The FTSA task is defined as: given a target name, to identify its aspect words
and opinion words in a given domain corpus. Here a target name (or simply
c© Springer Nature Switzerland AG 2020
M. Ceci et al. (Eds.): NFMCP 2019, LNAI 11948, pp. 100–115, 2020.
https://doi.org/10.1007/978-3-030-48861-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-48861-1_7

Disentangling Aspect and Opinion Words in Sentiment Analysis 101

T-Words

screen

display

scratched

LCD

bubbly

muddy

Target: screen

Semantic
Space

(a) Grouping

T-Words

screen

display

scratched

LCD

bubbly

muddy

T-Aspect
Words

T-Opinion
Words

screen scratched

display bubbly

LCD muddy

(b) Disentangling

Fig. 1. Two-stage approach to Fine-grained Target-based SA (FTSA)

called target) can be understood as an aspect category1, such as screen, voice, or
weight. For example, a customer or manufacturer could be interested in opinions
about the target “screen” of a camera (camera is a product or called a domain),
and wants to find out all related aspect words and opinion words mentioned in
the customer reviews. Ideally, one may find aspect words like “LCD,” “display”,
and “resolution,” and opinion words like “scratched,” “blurry”, and “bubbly.”

Notice the FTSA problem is very challenging in practice, especially when
there is limited or no labeled data. It is also somewhat unrealistic to manually
annotate all possible aspect and opinion words for all possible targets in every
domain, not to mention that there are always new domains/products coming
to the real world. Designing a weakly-supervised or semi-supervised method for
this task is thus more practical and useful. To this end, we developed a (semi-
supervised) two-stage approach which does not require manual labeling, but only
some prior and general knowledge.

Stage one is defined as the process of grouping target-related words. That is,
given a target name, we first identify all target-related words (called t-words).
Note that a t-word can be either an aspect word or opinion word. For instance,
when the target is screen, the t-words “display”, “LCD”, “scratched”, and “bub-
bly” could be extracted (shown in Fig. 1a). We can achieve this goal by learn-
ing the semantic representation of words [2,11]. Specifically, given a target, we
extract its semantically similar words from its leaned representation as t-words.

One key issue is that, most semantics learning techniques will inevitably
couple the target-related aspect words (called t-aspect words) and opinion words
(called t-opinion words). Here we interpret its cause from a linguistic perspective.
Most semantics learning models are developed based on the idea of distributional
hypothesis: linguistic items occurring with similar contexts have similar mean-
ings [7], so they in fact group two different types of semantic similarity together,
namely, conceptual and associative similarity. Conceptual similarity means two
words are conceptually similar (likely replaceable), like “dog” and “canine”.
Associative similarity means two words tend to appear in similar contexts, like
“dog” and “bark.” The distinction between them is well-known in cognitive
science [22] and recently discussed in NLP [11]. In regard to sentiment analy-

1 The terms target, target name, and aspect category will be used interchangeably.

102 S. Wang et al.

sis, we can see that t-aspect words “display” and “LCD” and t-opinion words
“scratched” and “bubbly” are all mixed based on our given example (Fig. 1a).

In spite of the discussed drawbacks, we argue that the semantics-based mod-
els are still quite suitable and helpful for the FTSA task, with the reason being
three-fold. First, the mixture benefits the t-words grouping, where both two
types of semantic correlation can be jointly extracted. To be concrete, aspect
words like “display” could be found because of the conceptual similarity (sim-
ilar to “screen”) and opinion words like “scratched” could also be discovered
due to associative similarity (associated with “screen”). Second, many existing
or new target extraction techniques can be utilized [13], which paves the way
for more accurate results for FTSA (detailed in Sect. 3). Third, those semantics-
based models are usually learned in an unsupervised or semi-supervised manner,
which meets our learning requirements. However, when we take advantage of
those semantics-based models for stage one, we have to overcome their afore-
mentioned drawbacks, which leads to the proposed stage two.

Stage two is defined as: Given a list of target-related words (t-words), sepa-
rating them into target-related aspect words (t-target words) and target-specific
opinion words (t-opinion words). Figure 1b shows an example. Notice that the
list of t-words is assumed to be given, which is grouped by an existing semantics-
based learning technique, so we refer to this problem as disentangling aspect
and opinion words from extracted/grouped target-related words.

An intuitive solution to this problem is to model it as a word-level binary
classification task. That is, to build a classifier to learn and predict t-aspect
and t-opinion words. However, this is difficult in practice, because this means
that we need both aspect and opinion word-level labels for every domain, which
requires intensive human efforts for annotation. Noticing this, we formulate the
classification problem in a Positive-Unlabeled (PU) learning setting. The idea
is to use general/common opinion words (treating them as positive examples)
to distill other opinion words from unlabeled words. However, a notable issue in
this PU setting is that the errors from false positive (FP) examples (wrongly pre-
dicted opinion words) can be propagated during the PU iterative learning (will
be detailed in Sect. 4.3), resulting in more errors and degenerating its perfor-
mance. To address this issue, we exploit the idea of lifelong machine learning [3]
and incorporate it into the PU learning process. We name it as Lifelong PU
learning (LPU). It works by accumulating the knowledge learned from multiple
domains, and uses it to restrict the propagation of FP examples and to ensure
the reliability of the newly learned opinion words.

The main contributions of this paper are summarized as: (1) It proposes to
perform the FTSA task in a two-stage manner, which does not require manual
labeling. (2) It proposes a Lifelong PU (LPU) learning approach to solving the
problem of disentangling target-specific aspect and opinion words. To the best
of our knowledge, none of the existing studies has employed the LPU technique.
(3) Experimental results conducted on multiple real-world review datasets with
two target extraction techniques show its effectiveness and extensibility.

Disentangling Aspect and Opinion Words in Sentiment Analysis 103

2 Related Work

Fine-Grained and Target-Based Sentiment Analysis. Various types of
sentiment analysis (SA) research exist in the literature [13,30]. Unlike the coarse-
grained SA such as classifying a review document as overall positive or nega-
tive [29], fine-grained SA consists of various components such as aspect identifica-
tion, opinion identification, and polarity classification [25]. In terms of targeted-
based SA, most of the existing studies [23,26,27] focused on the target-based
polarity classification. However, our work does not lie in this direction. As dis-
cussed in Sect. 1, we aim to provide a generic solution for disentangling target-
specific aspect and opinion words. In fact, our work can be integrated into other
related target-based analysis models and we will show it in our experiments.

Semantic Space and Representation. Semantics-based learning models
project words to a semantic space and represent each word as a dense vec-
tor. Such semantics-bearing vectors can be created by matrix factorization (e.g.
LSI) [5] and topic modeling (e.g., LDA) [2]. Recently, neural word embed-
dings [17] emerge to learn better semantic representation for words.

Lifelong Machine Learning. Our work is related to lifelong learning (LL) [3].
Regarding sentiment analysis, several LL models have been proposed for improv-
ing topic quality [25] and polarity classification [26], but they are not for the
FTSA task and not applicable to the word disentangling problem. We also incor-
porate LL into the PU learning process, which is the first attempt. Although
related, our work distinguishes itself from the research field of transfer learn-
ing (TL) [16,19], because the LL settings are essentially different from the ones
from TL. For example, TL has no knowledge retention. We do not aim to trans-
fer features or use labeled data from a specific source domain to a target domain.
Instead, we aim at mining knowledge from previous/seen domains cumulatively,
and applying the mined knowledge to a new domain (with imposed constraints).
More distinction between LL and TL can be found in a survey book [3].

3 Stage One: Grouping

As discussed in Sect. 1, we group the target-related words (t-words) for a specified
target in this stage. The basic idea is to extract its semantically correlated words
towards the target in a learned semantic space. Specifically, we use the neural
word embedding model [17] to learn word vectors for a given domain corpus,
resulting in an embedding matrix E ∈ R

v×d where v and d are the size of
vocabulary and embedding dimension. Then a semantic similarity matrix M ∈
R

v×v is calculated based on the dot product of E and ET . After that, when a
user-specified target is provided, the nearest neighboring words of the target will
be returned as t-words, based on their similarity values in M . Notice that other
semantics learning models can be used in a similar way [5]. Probabilistic topic
models [2] can be used as well, by searching the corresponding topic for the given
target and returning the topical words. Notice that this stage is highly similar to

104 S. Wang et al.

the unsupervised target extraction in sentiment analysis [13] and many existing
models can be utilized at this stage. The key difference is that, the target name
is specified in our setting, so we do not have to perform a full extraction of all
possible targets covered by a given corpus, but only focus on the given target
(name) by returning its nearest neighbors.

4 Stage Two: Disentangling

4.1 PU Learning Using Word Vectors

This stage separates the given t-words into t-aspect words and t-opinion words.
As discussed in Sect. 1, in order to provide a general approach without manual
labeling for any possible domain, we formulate this problem as a binary classifica-
tion task in a PU learning setting [12]. Clearly, in addition to aspect and opinion
words, a domain vocabulary also contains other words like background words.
However, as indicated in [18,25], those words do not have a seriously bad effect
as they are unlikely to be semantically similar to a given target. Therefore, we
assume/treat most of the non-opinion words in the t-words are/as aspect words.
This assumption holds well as shown in studies [18,25] and our experiments.

In regard to PU learning, it can be understood as a particular type of semi-
supervised learning methods, which learns a binary classifier using only positive
and unlabeled examples (with no negative examples). Here P represents a set
of data examples with positive labels. In our task, the opinion words from an
opinion lexicon will be the words in P , such as “good”, “bad” and “angry”. In
terms of U , it denotes the set of data examples with unknown labels. In our
case, other words that are not in the lexicon are in U , where U consists of both
(true) opinion words and non-opinion words. With word vectors as features and
a set of general opinion words as positive labels, we can build a PU classifier.
In our work, we use logistic regression2 as the PU classifier, which can generate
the probabilistic score of a word being in the positive class (i.e., opinion word).
In this way, words from U with high prediction scores can be detected as newly
identified opinion words, and we can identify more words iteratively with new
opinion words being found. However, a notable issue in this PU setting is that
the errors from false positive (FP) examples (wrongly predicted opinion words)
can be propagated, thus degenerating its performance. To address it, we exploit
the idea of lifelong machine learning [3] and incorporate it into PU learning.
The idea is to exploit the classification knowledge learned from past domains to
increase the correctness and reliability of the newly detected opinion words.

2 Other models that provide probabilistic scores can be used as well, e.g., neural
networks using Softmax to produce final model outputs, as their prediction of classes
would be presented in a distribution normalized to [0,1), i.e., class probability. Here
we choose logistic regression (LR) because it can show the improvement achieved by
other proposed components more directly (with its simplicity). In our experiments,
we use LR as the PU classifier consistently and fairly for each candidate model.

Disentangling Aspect and Opinion Words in Sentiment Analysis 105

4.2 Lifelong Machine Learning

Lifelong machine learning [3] or lifelong learning/LL, works by retaining the
knowledge learned from the past tasks and uses it to help future learning, i.e.,
to help the current or incoming task. It mimics how we humans learn. With
regard to sentiment analysis, we (human beings) can learn many opinion expres-
sions in our lives across different domains/products, which enables us to better
understand and identify opinion words in a new domain. More details about
the LL paradigm can be found in [3]. Following the LL fashion, our system
retains the newly learned opinion words every time it has finished processing one
domain (one task), treating them as knowledge and accumulating them. The sys-
tem accumulates such knowledge continuously from continuous domain/product
learning. So in any time it has processed N domains and starts to process the
(N + 1)th domain, the accumulated knowledge will be used to help generate
more reliable opinion words that are suitable for the (N + 1)th domain. Based
on this general idea, we develop a novel lifelong PU (LPU) learning algorithm.

4.3 Lifelong PU (LPU) Learning

Our proposed LPU algorithm consists of four main steps, namely, knowledge
accumulation, current domain setup, knowledge mining and preparation, and
restricted PU iterations, which will be detailedly illustrated as follows. The over-
all algorithm is given in Algorithm 1.

Step 1: Knowledge Accumulation (lines 1–8). This step follows the tradi-
tional classification process but with knowledge retention for building a knowl-
edge base from past domains. Specifically, for each domain (task j), we first
obtain its vocabulary Wj and semantic representation of words Vj (line 3). With
a general opinion lexicon, we then have the lexicon-based opinion words WP

j ,
i.e., positive examples, and unlabeled examples WU

j (line 4). A PU classifier is
trained (line 5) and used to predict the probabilistic class scores of words in
WU

j and to find new opinion words W+
j (line 6). After that, we retain W+

j as
knowledge for constructing a knowledge base SKB (line 7).

Step 2: Current Domain Setup (lines 9–13). This step is for the current
domain processing setup. The vocabulary words Wi and their semantic repre-
sentation Vi, lexicon-based opinion words (positive examples) W p

i and unlabeled
words WU

i of the current domain are first created (lines 10–11). Then we build
a hash table H to store the nearest neighbors3 for all words, which can be easily
constructed from the similarity matrix M (see Sect. 3). With the table H estab-
lished (line 12, and it is a one-time effort), the similarity query becomes a lookup
operation. This H not only helps in the current step 2, but also plays a crucial
role in the following step 4, as we will see shortly. Based on H, we can find the
nearest neighbors for the lexicon-based opinion words and we call them reliable
neighbors (line 13). This is an initial constraint, which is also intuitive, as those

3 Simply using top 10 neighbors works consistently well for different domains.

106 S. Wang et al.

Algorithm 1. Lifelong PU (LPU) Learning

Input: Current domain corpus Di=n+1,
Past domain corpora D={D1, ..,Dj ..,Dn}
Opinion words in lexicon WP , Maximum learning iteration m
Number of learned words in one iteration l

Output: All newly-extracted opinion words W+
i in Di

1: // Step 1. Knowledge Accumulation
2: for each domain corpus Dj ∈ D do
3: Wj , Vj ← GetWordsAndEmbeddings(Dj)
4: WP

j ← Wj ∩ WP , WU
j ← Wj − WP

j

5: cj ← PUClassifier(Vj ,W
P
j)

6: W+
j ← OpinionWordPrediction(cj ,WU

j)
7: SKB ← SKB ∪ W+

j // sentiment knowledge base
8: end for
9: // Step 2. Current Domain Setup

10: Wi, Vi ← GetWordsAndEmbeddings(Di)
11: WP

i ← Wi ∩ WP , WU
i ← Wi − WP

i
12: Create a hash-table H to store top neighbors of all words
13: WRN

i ← GetReliableNeighbors(H,WP
i)

14: // Step 3. Knowledge Mining and Preparation
15: WSK ← FIM(SKB)
16: WSK

i ← Wi ∩ WSK // sentiment-knowledge for domain i
17: WRS

i = ∅ // reliable learned opinion words
18: WPP

i = ∅ // current positive prediction (opinion words)
19: WNS

i = WRN
i ∩ WSK

i // newly learned sentiment
20: // Step 4. Restricted PU Iterations
21: t = 0
22: while t < m or WNS

i is not empty do
23: WRS

i ← WRS
i ∪ WNS

i // updating reliable sentiment
24: ci ← PUClassifier(Vi,W

RS
i ∪ WP

i)
25: WNEW1

i ← MineReliableOpinion(WSK
i ,WPP

i ,H, l)
26: WNEW2

i ← ReliableOpinion(WPP
i ,WPP

i ,H, l)
27: WNS

i ← WNEW1
i ∪ WNEW2

i

28: WPP
i ← OpinionWordPrediction(ci, Vi)

29: t = t + 1
30: end while
31: W+

i ← OpinionWordPrediction(ci,WU
i)

Algorithm 2. MineReliableOpinion(A,B,H, l)
1: S = ∅ // counts positive neighbors for every word in A
2: for each a word w ∈ A do
3: S ← countPositiveNeighbors(B,H(w))
4: end for
5: return sortAndReturnTopLWords(A,S, l)

Disentangling Aspect and Opinion Words in Sentiment Analysis 107

unlabeled/candidate words which are highly similar to the opinion words known
from a lexicon should be more reliable (as opinion words).

Step 3: Knowledge Mining and Preparation (lines 14–19). This step is
for mining knowledge and making preparation for later use. With the knowl-
edge accumulated from many past domains and stored in SKB, we can extract
the reliable knowledge WSK (line 15). Here we adopt frequent itemset mining
(FIM) [1]. The rationale behind it is that: the candidate words frequently pre-
dicted as opinion words in many different domains are more trustworthy and
confident to be the real opinion words. The intersection of the reliable neighbors
WRN

i and reliable knowledge WSK
i initializes WNS

i , the newly learned senti-
ment (line 19). Lines 16–18 define other variables that are used in step 4, where
WSK

i denotes the sentiment knowledge for current domain i, WRS
i the reliable

learned sentiment (opinion words) during the PU learning iteration, and WPP
i

the newly-predicted opinion words in an ongoing iteration.

Step 4: Restricted PU Iterations (lines 21–31). This step performs iter-
ative PU learning with imposed constraints. As discussed in Sect. 1, in the PU
learning setting, the errors from false positive (FP) examples (wrongly predicted
opinion words) can be propagated in its iterative learning process (or called
self-bootstrapping). For example, if the word “display” is wrongly predicted as
opinion word in the first iteration, and when it is added to the positive examples
(treated as a newly found positive example) in the second PU learning iteration,
it could lead to the mis-classification of more such wrong words, like “screen”
and “monitor” which are semantically similar to “display”.

The above issue is considered and addressed in this step. Unlike using direct
self-bootstrapping methods, here the expansion of the newly-predicted opinion
words (as positive examples) in LPU is controlled more strictly. That is, only
the reliable ones could be further used. The initialized new opinion words WNS

i

have already been restricted (see step 2) and used as initial reliable sentiment
WRS

i . During the iterative learning process, it keeps being updated (line 23) by
adding only reliable opinion words (line 27).

More specifically, two ways are developed for expanding new reliable opinion
words. One way is to learn from the reliable knowledge (line 25) and another
way is to learn from its self-predicted results (line 26). Both ways are restricted
by the defined reliability score shown in Algorithm 2. This score is calculated
based on the number of identified positive neighbors of a candidate word, which
is also used for ranking. In Algorithm 2, A denotes the candidate word set
and B denotes positive examples. The identified positive neighbors are from
the intersection of positive examples (provided by B) and the neighbors of a
candidate word (provide by H(w)). In each iteration, only the top l ranked
words will be trusted and added as new positive examples. When the maximum
iteration is met or there are no more new opinion words that the system can
learn, the iterative learning process stops and all newly-detected opinion words
are returned (line 31).

108 S. Wang et al.

5 Experiments

5.1 Candidate Methods for Comparison

Adjective Extraction (ADJ): This baseline regards all adjective words as
opinion words and others as aspect words. This is a simple but widely used
solution. We used POS tagging to extract adjectives. No classifier is trained
here.

Part-Of-Speech (POS): The POS features have been reported effective for
aspect and opinion extractions. This is also a representative syntax-based app-
roach used in many related works [18,25]. Here every word is represented by
the POS features of its context, i.e., wi will be represented as [POSi−1, POSi,
POSi+1]. This is used as the word representation for building a classifier.

Latent Semantic Indexing (LSI): LSI is a standard matrix factorization
technique to construct latent semantic vectors. Its factorized word-feature corre-
lation matrix can be used as word vector representation [21] to build a classifier.

Latent Dirichlet Allocation (LDA): LDA [2] is a classic topic model which
discovers hidden topics from documents and groups words into topics. Similar
to LSI, the term-topic matrix is used as the word vector representation [14].

Non-Lifelong Learning (NLL): This method is based on our introduced solu-
tion but without lifelong learning. It uses the word vectors learned by neural word
embeddings to build a classifier.

Lifelong PU (LPU): This is our proposed lifelong PU learning algorithm intro-
duced in Algorithm 1.

Lifelong PU minor (LPU-): This is an LPU variant that does not make
self-prediction explorations and relies more on the past mined knowledge. In
other words, it considers the first type of reliable sentiment only (lines 25 in
Algorithm 1). This can be viewed as a conservative version of LPU.

5.2 Experimental Setup

Data. We use a large corpus of Amazon reviews from 20 different domains pro-
vided by [15] and the full list is shown in Table 1. For training all PU classifiers,
a general opinion lexicon [9] is used so the words appear in it are automat-
ically labeled as P. For testing/evaluation, we manually label the aspect and
opinion words. Note that here we only manually label those words for the evalu-
ation purpose, and we never and will not use those label words for any training.
Specifically, three domains from different products are selected, namely, cell-
phone, beauty and office. These three domains are also quite different, which
help to test the extensibility of the candidate methods. For each domain, three
different targets are specified for evaluation. More details are given in Table 1.

Disentangling Aspect and Opinion Words in Sentiment Analysis 109

Table 1. Detailed information about the domains for evaluation and the full list.

Dataset #Reviews #Words Words in lexicon Target for evaluation

CellPhone 194,439 28,942 2,764 display, volumes, weight

Beauty 198,502 29,695 2,778 cleansers, fragrance, groomers

Office 53, 258 20,858 2,332 papers, clips, chairs

Full apps for android, amazon instance video, automotive, baby,

domains grocery, health, kindle, tools/home improvement, home and kitchen

Parameters and Settings. For every candidate method except ADJ, their
word vectors/features are learned and used for classification. Specifically, for LSI
and LDA, we obtained the term-feature matrix and term-topic matrix. For NLL,
LPU- and LPU, we used the skip-gram model [17]. The vector dimension is set to
200 as default and we maintain the same size for LDA and LSI. Logistic regression
is used as the classifier for all methods. For LPU, we treat other 19 domains
besides the current domain as the past domains to mine knowledge. Notice that
for a current domain, only its domain data and the automatically accumulated
knowledge will be used, and no other extra domain data will be available, which
follows the lifelong learning experimental setting from existing works [3,25]. We
empirically set the minimum support to 5 for frequent opinion word mining. We
set the maximum iterations m to 10 and the number of words l to learn in each
iteration to 50. They work consistently well on different domains/datasets.

5.3 Quantitative Evaluation

Accuracy is used as the metric for evaluation because our task is formulated
as a binary classification problem. We also observed that the opinion words

Fig. 2. Acc@150 for all models and targets

110 S. Wang et al.

Fig. 3. Acc@100 for all models and targets

Fig. 4. Acc@50 for all models and targets

(treated as positive example in evaluation/testing) and non-opinion/aspect
words (treated as negative example in evaluation/testing) are nearly balanced, so
accuracy can reflect the overall identification of both aspect and opinion words.

However, since it is hard to know the exact number of all related words
(t-words) to a given target, we use the accuracy@n (acc@n) as our evaluation
measure, where n is set to 50, 100, and 150. Specifically, given a target, we first
collect its top t-words, and manually label them as opinion or aspect words (as
ground truth for evaluation).

Disentangling Aspect and Opinion Words in Sentiment Analysis 111

We then apply every trained candidate model to classify those top n words
to calculate its corresponding acc@n. The results are reported in Fig. 2, 3 and 4.
Based on them, we have the following observations:

(1) LPU and LPU- outperform other baselines markedly. LPU improves the
best baseline results by 8.29%, 7.11% and 4.00% in acc@150, acc@100, and
acc@50. Likewise, LPU- improves the best baseline results by 7.55%, 6.44% and
5.77% in acc@150, acc@100, and acc@50. They demonstrate the effectiveness of
lifelong learning.

(2) LPU achieves better performance than LPU- in acc@150, acc@100 but
is inferior to LPU- in acc@50. This indicates that LPU is more accurate by
considering a big n (more t-words), but LPU- could be more suitable if we only
focus on the top-ranked words.

(3) Among other baselines, we observe that NLL and POS perform the best.
While POS explicitly reflects the contextual syntax, it is worth noting that
the word embeddings used in NLL is also implicitly learned from word-context
matrix [11], which implies the syntactic information is very useful in this task.

Table 2. Results for target volumes in domain cellphone. Incorrect sentiment words
are italicized and marked in red.

Target: Volumes (Domain: CellPhone)

Model Aspect Opinion

LPU volumes, bass, undistorted, volume, muddiness, shrill, trebles, distortion,

Gaga, pitches, sound, harshness, hissy, loud, sibilance, thumping,

cymbals, treble, eq, conf, thump, highs, soundstage, midrange,

Mids, reproduces, LiveAudio, reproducing, loudest, equalization, overpowered, tinny,

bitrate, Highs, Destroid, attenuated, audiofile, distorted, muddled, piercing,

LPU- bass, volume, Gaga, pitches, volumes, muddiness, undistorted, shrill,

sound, cymbals, treble, conf, trebles, distortion, hissy, loud,

Mids, reproduces, bitrate, Highs, sibilance, harshness, thumping, eq,

Destroid, sounds, lows, levels, thump, LiveAudio, highs, soundstage,

vocals, Treble, mids, Fidelity, midrange, reproducing, loudest, attenuated,

NLL volumes, muddiness, bass, undistorted, shrill, distortion, hissy, loud,

trebles, volume, Gaga, pitches, sibilance, midrange, equalization, tinny,

sound, harshness, cymbals, treble, distorted, piercing, muddy, louder,

thumping, eq, conf, Mids, booming, tinnier, quiet, richness,

reproduces, thump, LiveAudio, highs, quieter, hissing, boomy, hiss

POS volumes, muddiness, trebles, Gaga, bass, undistorted, shrill, distortion,

pitches, sibilance, cymbals, Mids, hissy, volume, loud, sound,

LiveAudio, highs, reproducing, Highs, harshness, treble, thumping, eq,

Destroid, lows, levels, vocals, conf, reproduces, thump, soundstage,

audiofile, mids, Fidelity, listeners midrange, loudest, bitrate, attenuated

ADJ volumes, muddiness, bass, trebles, undistorted, shrill, distortion, hissy,

volume, Gaga, pitches, sound, loud, treble, loudest, tinny,

sibilance, harshness, cymbals, thumping, distorted, Treble, resonant, muddy,

eq, conf, Mids, reproduces, listenable, louder, booming, tinnier,

thump, LiveAudio, highs, soundstage quiet, richness, quieter, hissing

112 S. Wang et al.

5.4 Qualitative Evaluation

This subsection shows some example results in Table 2, about the target volumes
in the cellphone domain. Since LSI and LDA have much poorer performances
than others, we do not include their results here. The represented words are the
top predicted aspect words and top predicted opinion words from the t-words
of a given target. Incorrect opinion words are italicized and marked in red. As
we can see, LPU and LPU- better distinguish aspect and opinion words. For
example, the opinion word “muddiness” is extracted by them but not by other
models. POS identifies many wrong opinion words like “sound” and “volume”.
Although ADJ is good at extracting adjective opinion words, it misses other
opinion words like “muddiness”, “sibilance” and “thumping”. NLL also misses
many opinion words like ADJ.

Similarly, Table 3 shows the results of the target chairs in office. For this
target, the opinion words are somewhat harder to detect. For example, NLL can
correctly identify opinion words, but it can only identify few of them and many

Table 3. Results for target chairs in domain office. Incorrect sentiment words are
italicized and marked in red.

Target: Chairs (Domain: Office)

Model Aspect Opinion

LPU chairs, chair, headrest, armrests, upholstered, plush, adjustability, rigidness,

Miller, Herman, Aeron, Hon, creak, draftsman, slouching, fart,

seat, Basyx, Ignition, reclining, confortable, thickly, tush, strut,

Vue, Chair, VL105, HON, exclude, cushy, divine, ornate,

basyx, seats, VL403, backrest, slumping, knee, cradles, leans,

LPU- chairs, chair, headrest, armrests, upholstered, plush, legged, adjustability,

Miller, Herman, Aeron, Hon, rigidness, creak, castors, draftsman,

seat, Basyx, Ignition, reclining, slouching, confortable, thickly, hips,

Vue, Chair, VL105, HON, tush, wheelchair, strut, exclude,

basyx, seats, VL403, backrest, cushy, divine, ornate, slumping,

NNL chairs, chair, headrest, armrests, upholstered, plush, rigidness, creak,

Miller, Herman, Aeron, Hon, tush, strut, cushy, divine,

seat, Basyx, Ignition, reclining, slumping, overweight, cozy, supportive,

Vue, Chair, VL105, HON, fanciest, numb, adjustable, creaking,

basyx, seats, VL403, backrest (not found), (not found), (not found), (not found)

POS chairs, headrest, armrests, Miller, chair, basyx, backrest, reclines,

Herman, Aeron, Hon, seat, plush, hydraulic, adjustability, rigidness,

Basyx, Ignition, reclining, Vue, creak, furniture, draftsman, slouching,

Chair, VL105, HON, seats, lumber, breathable, cushion, fart,

VL403, upholstered, HVL531, lumbar, torso, confortable, outfitted, barefoot

ADJ chairs, chair, headrest, armrests, upholstered, backrest, plush, hydraulic,

Miller, Herman, Aeron, Hon, rigidness, creak, breathable, fart,

seat, Basyx, Ignition, reclining, confortable, strut, cushy, carpeted,

Vue, Chair, VL105, HON, divine, ornate, slumping, footrest,

basyx, seats, VL403, reclines unassembled, armrest, overweight, pneumatic

Disentangling Aspect and Opinion Words in Sentiment Analysis 113

others are missed. POS makes some obvious mistakes like treating “chair” as an
opinion word. For ADJ, words like “hydraulic” and “pneumatic” are adjective
but just for describing the structure of a chair, which are not opinionated. In
contrast, LPU and LPU- are quite stable and can give more correct predictions.

5.5 Further Analysis

In order to further evaluate the generality of our proposed approach, we applied
it to another popular target extraction technique: topic modeling [2,24]. Specif-
ically, we run LDA [2] for topic generation and then use our algorithm to sep-
arate aspect words and opinion words. It also produces reasonably good results
as shown in Table 4. Notations in “-(a, b, c, d)” will be explained below.

We also investigated the effect of alleviating FP error propagation in LPU.
We denote three types of iterative-learning models as (a), (b), and (c), and they
learned with 10 iterations by considering their newly-identified opinion words
as positive examples: (a) LPU, using Algorithm 1; (b) A PU model selecting
its predicted positive examples (prob > 0.5) in the current iteration as P for
the next iteration; (c) A PU model that always combines the newly-predicted
positive examples with the initial lexicon-based positive examples, without using
the constraints in LPU. We also denote NLL as the model (d), which does not
learn iteratively.

Table 4. “-” symbol indicates the models behind it do not identify the word.

Topic: Skin (Domain: Beauty)

Aspect Newly-identified opinion

face, skin, use, acne (-b), using, dry (-c,d), rid (-c,d), oily (-c,d),

just (-b), wash, feel (-b), make, drying (-a,c,d), mild (-c,d), notice (-c,d),

day, product (-b), lotion huge (-d), new (-c,d), ok (-c,d), younger (-c)

Topic: Headset (Domain: CellPhone)

Aspect Newly-identified opinion

headset, sound, quality (-b), really (-c,d), long (-a), low (-d),

bluetooth, adapter, hear (-b), ear, away (-c,d), high (-d), short, quite (-c,d),

volume, headsets, way (-b) ok, idea (-c,d), close (-c,d)

We now take a further look at Table 4. The “-” symbol indicates that the
models following it do not identify the word. Note that here the opinion words
from lexicon P are excluded so we can see how those models perform in classi-
fying the unlabeled words U . We observe: 1). Model (c) misses many interesting
opinion words like model (d), which indicates that its positive examples remain
very similar during all iterations, i.e., it does not learn many new positive exam-
ples; 2). Model (b) mis-classifies many aspect words as opinion words as its FP
errors propagate iteratively, i.e., the model is confused by the newly-added false
positive examples; 3). Model (a), which is LPU, works robustly well.

114 S. Wang et al.

6 Conclusion and Future Work

This paper discussed the problem of disentangling t-opinion words and t-aspect
words from the grouped t-words for fine-grained target-based sentiment analysis
(FTSA). We formulated this problem in a PU learning setting and incorporated
the lifelong learning idea to overcome the drawback of error propagation in
PU learning during the iterative learning process, so as to find more accurate
words. To achieve this, a novel lifelong PU learning (LPU) model was proposed.
Our experimental results using real-world data demonstrated its effectiveness
qualitatively and quantitatively.

Our approach also provides an easily extensible framework for future work, as
many components can be further developed. We already discussed some possible
directions in the main context of the paper. Here we summarize them and indi-
cate more others. First, one can integrate new semantic representations of words
into LPU, such as the contextual word representations ELMo [20] and BERT [6].
Second, as also indicated in Sect. 4, other more advanced or sophisticated mod-
els that generate probabilistic output can be used to replace the current PU
classifier (logistic regression), such as convolutional neural networks (CNN) [10]
and Long Short Term Memory Networks (LSTM) [8]. Third, one may also try
exploring other semi-supervised learning methods like Cross-View Training [4],
improving the knowledge mining and utilization [25], and leveraging more useful
information from the document or sentence level [28].

Acknowledgments. This work was partially supported by a grant from the National
Science Foundation (NSF IIS 1838770) and a research gift from Northrop Grumman
Mission Systems.

References

1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. VLDB
1215, 487–499 (1994)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3(Jan), 993–1022 (2003)

3. Chen, Z., Liu, B.: Lifelong machine learning. Synth. Lect. Artif. Intell. Mach. Learn.
10(3), 1–145 (2016)

4. Clark, K., Luong, M.T., Manning, C.D., Le, Q.V.: Semi-supervised sequence mod-
eling with cross-view training. arXiv preprint arXiv:1809.08370 (2018)

5. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391 (1990)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: NAACL (2019)

7. Harris, Z.S.: Distributional structure. Word 10(2–3), 146–162 (1954)
8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)
9. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: KDD, pp. 168–177.

ACM (2004)

http://arxiv.org/abs/1809.08370

Disentangling Aspect and Opinion Words in Sentiment Analysis 115

10. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP
(2014)

11. Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons
learned from word embeddings. TACL 3, 211–225 (2015)

12. Li, X.-L., Liu, B.: Learning from positive and unlabeled examples with different
data distributions. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo,
L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 218–229. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564096 24

13. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol.
5(1), 1–167 (2012)

14. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: ACL, pp. 142–150 (2011)

15. McAuley, J., Pandey, R., Leskovec, J.: Inferring networks of substitutable and
complementary products. In: KDD, pp. 785–794. ACM (2015)

16. Mignone, P., Pio, G.: Positive unlabeled link prediction via transfer learning for
gene network reconstruction. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos,
G.A., Raś, Z.W. (eds.) ISMIS 2018. LNCS (LNAI), vol. 11177, pp. 13–23. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01851-1 2

17. Mikolov, T., Dean, J.: Distributed representations of words and phrases and their
compositionality. In: NIPS (2013)

18. Mukherjee, A., Liu, B.: Aspect extraction through semi-supervised modeling. In:
ACL, pp. 339–348. ACM (2012)

19. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2009)

20. Peters, M.E., et al.: Deep contextualized word representations. In: NAACL (2018)
21. Pu, X., Jin, R., Wu, G., Han, D., Xue, G.R.: Topic modeling in semantic space

with keywords. In: CIKM, pp. 1141–1150. ACM (2015)
22. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327 (1977)
23. Vo, D.T., Zhang, Y.: Target-dependent twitter sentiment classification with rich

automatic features. In: IJCAI, pp. 1347–1353 (2015)
24. Wang, S., Chen, Z., Fei, G., Liu, B., Emery, S.: Targeted topic modeling for focused

analysis. In: KDD, pp. 1235–1244 (2016)
25. Wang, S., Chen, Z., Liu, B.: Mining aspect-specific opinion using a holistic lifelong

topic model. In: WWW, pp. 167–176. WWW (2016)
26. Wang, S., Lv, G., Mazumder, S., Fei, G., Liu, B.: Lifelong learning memory net-

works for aspect sentiment classification. Big Data 2018, 861–870 (2018)
27. Wang, S., Mazumder, S., Liu, B., Zhou, M., Chang, Y.: Target-sensitive memory

networks for aspect sentiment classification. In: ACL, pp. 957–967 (2018)
28. Wang, S., Zhou, M., Fei, G., Chang, Y., Liu, B.: Contextual and position-aware

factorization machines for sentiment classification. arXiv preprint arXiv:1801.06172
(2018)

29. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: NAACL, pp. 1480–1489 (2016)

30. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley
Interdisc. Rev.: Data Min. Knowl. Discov. 8(4), e1253 (2018)

https://doi.org/10.1007/11564096_24
https://doi.org/10.1007/978-3-030-01851-1_2
http://arxiv.org/abs/1801.06172

Applications

Customer Purchase Behavior Prediction
in E-commerce: A Conceptual Framework

and Research Agenda

Douglas Cirqueira1(&) , Markus Hofer2, Dietmar Nedbal3 ,
Markus Helfert4 , and Marija Bezbradica1

1 Dublin City University, Dublin, Ireland
douglas.darochacirqueira2@mail.dcu.ie
2 Raiffeisenlandesbank Oberösterreich, Linz, Austria

3 University of Applied Sciences Upper Austria, Steyr, Austria
4 Maynooth University, Maynooth, Ireland

Abstract. Digital retailers are experiencing an increasing number of transactions
coming from their consumers online, a consequence of the convenience in buying
goods via E-commerce platforms. Such interactions compose complex behavioral
patterns which can be analyzed through predictive analytics to enable businesses to
understandconsumer needs. In this abundanceofbigdata andpossible tools to analyze
them, a systematic review of the literature is missing. Therefore, this paper presents a
systematic literature review of recent research dealing with customer purchase pre-
diction in the E-commerce context. The main contributions are a novel analytical
framework and a research agenda in thefield. The framework reveals threemain tasks
in this review, namely, the prediction of customer intents, buying sessions, and pur-
chase decisions. Those are followed by their employed predictive methodologies and
are analyzed from three perspectives. Finally, the research agenda provides major
existing issues for further research in the field of purchase behavior prediction online.

Keywords: Consumer behavior � Purchase prediction � Behavior analytics �
Machine learning � Data mining � E-commerce � Digital retail

1 Introduction

Daily online activities generate plenty of opportunities for businesses to understand
their consumer behavior in E-commerce platforms [1]. Indeed, consumers around the
globe purchased $2.86 trillion on the web in 2018, which represented an 18% growth1

This research was supported by the European Union Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No. 765395; the industry partner
Raiffeisenlandesbank Oberösterreich AG; and supported, in part, by Science Foundation Ireland
grant 13/RC/2094.

1 Digital Commerce 360, Global E-commerce Sales 2019. https://www.digitalcommerce360.com/
article/global-ecommerce-sales/.

© Springer Nature Switzerland AG 2020
M. Ceci et al. (Eds.): NFMCP 2019, LNAI 11948, pp. 119–136, 2020.
https://doi.org/10.1007/978-3-030-48861-1_8

http://orcid.org/0000-0002-1283-0453
http://orcid.org/0000-0002-7596-0917
http://orcid.org/0000-0001-6546-6408
http://orcid.org/0000-0001-9366-5113
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_8&domain=pdf
https://www.digitalcommerce360.com/article/global-ecommerce-sales/
https://www.digitalcommerce360.com/article/global-ecommerce-sales/
https://doi.org/10.1007/978-3-030-48861-1_8

in online sales compared to the $2.43 trillion sold in 2017. According to predictions of
the purchasing behavior of customers, companies aim to anticipate their needs and
provide personalized services [2, 3].

However, consumer behavior itself is well known as a complex pattern among the
data mining community [4]. Aiming to predict the likelihood of such patterns,
researchers were applying multiple probabilistic and machine learning (ML) statistical
models to historical online customer’s data, resulting in somewhat reliable probabilities
to predict the next customer’s steps [5, 6]. That has also increased the complexity of
analyzing this literature, given the multiple approaches and datasets available. Previous
reviews and surveys related to this topic have usually focused on the specific literature
of recommendation systems [7–10]. On the other hand, our focus is on reducing
complexity for understanding the step before recommendations, which is the prediction
of customer’s next purchases, and in visualizing research opportunities in the field.

Therefore, these paper contributions are a novel conceptual framework for analysis
and a research agenda. The framework systematically maps this literature regarding
datasets adopted, predictive methods, and tasks with their applications. Specifically, the
framework reveals three main tasks, namely, prediction of buying sessions, purchase
decisions, and customer intents. Next, it provides eight applications enabled by each
task. Finally, it illustrates three perspectives on predictive methodologies, and a
research agenda with future work opportunities in the field.

The rest of this paper is organized as follows: Sect. 2 describes the research
methodology of the literature review; Sect. 3 presents results and the main contribu-
tions, followed by final remarks in Sect. 4.

2 Research Methodology

To provide the framework and research agenda proposed, we performed a literature
review following systematic guidelines from Watson (2002) [11] and Kitchenham et al.
(2009) [12]. Inspired by [13], two research questions and a search query were devel-
oped to collect comprehensive literature within the research scope of purchase pre-
diction in E-commerce. Then, the search query was applied in the following scientific
databases, well known for containing literature in the field of behavior analytics:
Scopus, Web of Science, Science Direct, EBSCO Host (Business Source Complete and
Academic Search Complete), Emerald, IEEE Xplore, Association of Information
Systems (AIS) library and ACM Digital Library.

– Search Query: “(consumer or customer) AND (purchas* OR buy* OR sale* OR
shop* OR behavi*) AND (predict* OR forecast*)”

The searches were performed in the abstract field, except for the Web of Knowl-
edge (abstract title and keywords were used) and AIS libraries (full text was used), due
to the characteristics of their search engines. The search period has covered papers from

120 D. Cirqueira et al.

2014 to 2019, only in the English language, which has provided a total of 9824
exported proposals. The next step removed duplicates and had an inclusion filter only
to retrieve papers focused on the problem of consumer purchase behavior prediction.
That has provided a total of 429 papers.

Next, the exclusion criteria were applied to remove papers not focused on the E-
commerce context. At this stage, the total of papers kept was 35. Based on those
proposals, backward and forward searches were conducted via Google Scholar, adding
18 and 10 studies, respectively. The final number of papers for extraction and mapping
steps was 63. All those results are available at a Github repository (https://github.com/
dougcirqueira/literature-review-purchase-prediction).

3 Results

Tables 1 and 2 provide non-exhaustive lists of the proposals selected for this literature
review. Table 1 brings single task proposals (prediction of one outcome), while
Table 2 provides multi-task proposals (prediction of multiple outcomes).

A Conceptual Framework of Analysis for Customer Purchase Prediction in E-
commerce A conceptual framework of analysis aims to optimize the understanding of
a complex topic by breaking it down into smaller and comprehensive components [48].
We adopted a systematic literature review approach to developing the conceptual
framework of analysis proposed and illustrated in Fig. 1.

The framework has six components. Component 1 defines the dataset types adopted
in this literature. Component 2 classifies in dimensions the input data present in those
datasets. Component 3 shows the methodologies adopted for constructing features out
of the input data, illustrating how consumer behavior is modeled to predictive analytics.
Component 4 introduces the predictive methods summarized into four categories.
Component 5 shows which tasks enable what applications from component 6, as
identified in Subsect. 3.1. Details on each component will be given under the research
questions developed in the literature review.

The two research questions developed to conduct the systematic literature review
were the guidance for scoping our findings. The results will be presented, reflecting
those questions in Subsects. 3.1 and 3.2.

3.1 RQ 1. What Tasks and Applications Have Been Addressed
in the Problem of Consumer Purchase Behavior Prediction in E-
Commerce?

This research question addresses components 5 and 6 of the proposed framework. It
reveals the literature targeting three main tasks within the online purchase prediction
problem. Every task has a different prediction outcome, described as follows:

– Predict Customer Intent (PCI): Predict the intention of customer visits online.
Examples of intention types reported in the literature are purchase oriented or

Customer Purchase Behavior Prediction in E-commerce 121

https://github.com/dougcirqueira/literature-review-purchase-prediction
https://github.com/dougcirqueira/literature-review-purchase-prediction

Table 1. Selected proposals in single task settings (A: Aggregation; R: Rule; P: Personalized
Function; L: Learning; CDM: Classical Data Mining; PC: Probabilistic Classifier; DLC: Deep
Learning Classifier; CF: Collaborative Filtering)

Ref Task Focused
applications

Feature
construction

Predictive
method

Contribution and
targeted research
gapA R P L

[14] Buying
session
(PBS)

B, C, D, F x CDM Real-time
predictions in
single visits

[15] x Feature
engineering for
clickstream

[16] x x Association rules
for fast
predictions

[17] x x Feature
engineering for
popular products

[18] x x x Feature
engineering from
customer search

[19] x Benchmark over
multiple online
shops

[20] x x Feature
engineering for
multiple products

[21] x x Feature
engineering with
graph metrics

[22] x x K-Nearest
Neighbor for fast
predictions

[23] x x Feature
engineering with
motifs in single
sessions

[24] x x PC Prediction over
multiple online
visits

[25] x x DLC Feature learning
for automatic
feature
construction

[26] x x x Real-time
predictions in
single visits

(continued)

122 D. Cirqueira et al.

Table 1. (continued)

Ref Task Focused
applications

Feature
construction

Predictive
method

Contribution and
targeted research
gapA R P L

[27] Product
(PPD)

A, B, C, E,
F, G

x x CDM Handle of data
unbalancing

[28] x Feature
engineering with
recency and
frequency of page
views

[29] x x CF Combination of
features from
clickstream and
transactions for
collaborative
filtering

[30] x Feature
engineering for
clickstream

[31] x Combination of
features from
clickstream and
transactions for
collaborative
filtering

[32] x Feature
engineering with
product
heterogeneity for
collaborative
filtering

[33] x x x DLC Real-time
predictions with
ensemble and
deep learning

[34] x Recommendation
of bundles of
products
considering
quality and
diversity criteria

(continued)

Customer Purchase Behavior Prediction in E-commerce 123

general [35], browsing, searching, purchasing, and bouncing [37]. This task is
essential for identifying similar groups of customers, and for applications in which
customer segmentation is needed.

– Predict Buying Session (PBS): Predict if a current user online session will end up
with a purchase or not. This task is interesting for applications that need to capture
the general likelihood of the user conversion during his visit online, without details
regarding preferences for specific products.

– Predict Purchase Decisions (PPD): Predict customers purchase behavior con-
cerning their buying decisions. For instance, to foresee what product or category a
customer will buy; to predict the time or period likely to witness a purchase; to
predict the next amount customers are likely to spend in their purchases. PPD is the
most complex task, as the aim is to predict fine-grained decisions. That is the ideal
task for recommending specific products or services to customers.

Those three identified tasks enable a variety of business intelligence applications
for online retailers, such as: A) Product Recommendations [29]; B) Targeted Marketing
[16, 42]; C) Layout Personalization of E-commerce Landing Pages [17]; D) Load
balance Optimization to Prioritize Quality of Service for Likely Buyers [14]; E) Stock
Management Optimization of Products [28, 32]; F) Real-time Customer Service [49];
G) Purchase Trends Discovery [15]; H) Offers Awareness Based on the Detected
Intention of Consumers [35].

Table 1. (continued)

Ref Task Focused
applications

Feature
construction

Predictive
method

Contribution and
targeted research
gapA R P L

[35] Purchase
intent
(PCI)

B, D, H x x CDM Feature
engineering for
clicks diversity

[36] x Predict the
intensity of user
intent

[37] x x Predict intent
before an online
visit

[38] x x x Predict intent
before/during the
online visit

124 D. Cirqueira et al.

3.2 RQ 2. What Methodologies Have Been Adopted to Predict Consumer
Purchase Behavior Online?

This research question addresses the components from 1 to 4 of the framework pro-
posed. It provides three perspectives in the predictive methodologies adopted in this
literature.

Table 2. Selected proposals in multi-task settings (A: Aggregation; R: Rule; P: Personalized
Function; L: Learning; CDM: Classical Data Mining; PC: Probabilistic Classifier; DLC: Deep
Learning Classifier; CF: Collaborative Filtering)

Ref Task Focused
applications

Feature
construction

Predictive
method

Contribution and
targeted research gap

A R P L

[39] (PBS
&
PPD)

A, B x CDM Ensemble learning for
buying session and
product prediction

[40] x x DLC Feature learning for
buying session and
product prediction

[41] x x x Feature learning for
buying session and
product prediction

[42] (PPD) A, E x CDM Feature engineering
for product and
customer
interdependency

[43] x x Feature engineering
and ensemble
learning for product
and time prediction

[44] (PPD) E x x CDM Prediction of repeated
buying patterns over
multiple sessions

[45] E x DLC Prediction of repeated
buying patterns over
multiple sessions

[46] (PPD) B, E x PC Feature engineering
from purchase emails
to predict next time
and amount

[47] (PBS
&
PPD)

A, B, E x PC Feature engineering
for predicting buying
session and next
amount

Customer Purchase Behavior Prediction in E-commerce 125

Online Customer Behavior Datasets and their Features. Customer behavior in E-
commerce is captured through datasets of past online sessions and shopping logs,
which are described in Table 3:

The input data is further classified in the data layer, inspired by [2], in dimensions,
which have specific input data features. Every dimension and its features support in
explaining and predicting customer behavior from different perspectives, which bring
some benefits for predictive tasks on that data, as illustrated in Table 4.

Fig. 1. A conceptual framework of analysis for the literature in behavior and predictive analytics
for customer purchase prediction online. (Legends for applications enabled by tasks:
A = Product Recommendations; B = Targeted Marketing; C = Layout Personalization; D =
Server Load Balance Optimization; E = Stock Management; F = Real-time Customer Service;
G = Purchase Trends Discovery; H = Offers Awareness)

Table 3. Dataset types identified in the literature

Dataset Description Data layer dimensions
involved

Clickstream Sequences of clicks performed by consumers
during their online visits

Customer

Transactions Purchases executed by customers within the
E-commerce

Customer, Product, Time,
Channel, Location

Reviews Text and rating reviews given by customers
to specific products

Products

126 D. Cirqueira et al.

Feature Construction for Purchase Prediction. In this Subsection, we use a formal
notation to explain the feature construction process. The input data features featin
described previously serve as the basis for feature construction, from which is derived
new descriptive features feateng out to capture historical patterns, which can indicate the
probability of purchase. Two methodologies are adopted to create descriptive features.
The first is Feature Engineering, where domain expertise is used to think of a function
or rule feng to apply on input data features featin present in a dataset, which are related to
a current customer transaction Ti. This process can be shaped by conditions condn to
capture relationships between multiple input data features. The Feature Engineering
process can be described in Eq. 1.

feateng out ¼ feng D; Ti; featin; cond1; condnð Þ ð1Þ

The second methodology for feature construction is Feature Learning, in which a
function flearn to create new features is an unsupervised ML model, which automatically

Table 4. Classification of E-commerce data in dimensions and its benefits

E-commerce data dimensions Input data features featin Description

Customer • Demographics
• Clicks
• Session Variables

Reveals the profile of every
consumer, and enables their
segmentation. Benefit: tackling
the cold start problem

Product • Value
• Description
• Status of availability

Relates to the raw
characteristics of products
online. Benefit: supports the
detection of preferences
according to product
characteristics

Time • Timestamp
• Season

Timestamps of consumer
transactions. Benefit: supports
the prediction of when events
can happen based on previous
timestamps and seasonal
patterns

Channel • Customer device
• Visit Source

Characteristics of touchpoints
between consumers and an E-
commerce platform. Benefit:
assessment of influences on
customer purchase likelihood in
different channels

Location • Neighborhood
• City

Information on location of
consumers. Benefits: helps in
identifying patterns according
to the spatial placement of
consumers [43, 46]

Customer Purchase Behavior Prediction in E-commerce 127

derives new explanatory features. For instance, researchers extract Latent Represen-
tations, or hidden layer weights featlearn out learned during training time of a Recurrent
Neural Network or Autoencoder model, carrying hidden correlations and relationships
between variables. This learning process is conditioned by the target outcome targout
and a cost function costf , which represent the desired outcome of the learned repre-
sentation, and how the weights of the hidden layer will be learned. The desired out-
come is, for instance, a binary label for predicting buying sessions, or a multi-category
label for predicting purchase decisions regarding products. The Feature Learning
process is described in Eq. 2.

featlearn out ¼ flearn D; Ti; featin; targout; costf
� � ð2Þ

Table 5 illustrates examples of those methodologies in action.

Predictive Methods. Researchers have been working with ML and probabilistic
methods to predict the complex customer purchase behavior online [5]. Based on the
conceptual framework, we summarize the predictive models adopted into four cate-
gories, with their advantages and disadvantages. It is provided examples of particular
methods within each category, specifically for purchase prediction in E-commerce. We
illustrate in Table 6 how those models compare concerning their characteristics and
suitability for tasks identified in Subsect. 3.1.

The characteristics analyzed are a) Suitability for Real-Time: concerning usual time
required for training, if any, and for providing predictions in production settings; b)
Interpretability: concerning the capacity of providing explanations for why a predicted
outcome is given by the model; c) Sequential Modeling: it illustrates if a predictive

Table 5. Methodologies for Customer behavior Feature Construction

Methodology Function Description Examples of New
Features feateng out

�
featlearn out

Feature
engineering

Aggregation Examples of Functions: Count, Sum, Timing, Average,
Variance, Ratio

feng ¼ Average
Pn

i¼1
Amounti
n

featin ¼ clicks
cond1 ¼ product category

Example of Feature: Average.
Number.Clicks.On.Category
[27]

Rules Example of Rule: Is Purchase in a Shopping Holiday?
feng ¼ binaryrule
featin ¼ time
cond1 ¼ is time:weekday a holiday?

Examples of Feature: 1 or 0
indicating if the rule condition is
satisfied or not [26]

Personalized
Functions

Example of Personalized Function: Entropy to detect how
diverse are customer purchases
feng ¼ Entropy �P

i2C
pi log2 pi

featin ¼ page views
cond1 ¼ product category

Examples of Feature:
Diversity.Browsed.Categories
[18]

Feature
learning

Non-linear
machine
learning
models

Examples of Functions: Autoencoders, Recurrent Neural
Networks,
feng ¼ Autoencoder
featin ¼ featin 1; . . .; featin mð Þtargout ¼ featin 1; . . .; featin mð Þ
costf ¼ Mean Squared Error

Examples of Features:
Compressed representation of
input data by the weights of a
hidden Autoencoder layer
ðweight1; . . .;weightm=x)

128 D. Cirqueira et al.

method is able to model the customer activities sequentially. That is important when
researchers want to explicitly analyze the influence of past purchases in current cus-
tomer actions; d) Feature Construction Function: reveals what methodology and
function are usually adopted for feature construction when applying the predictive
method analyzed.

Table 6. Predictive methodologies

Predictive
method

Example Characteristics of predictive method Suitability for
purchase
prediction tasks

Suitability
for Real-
Time

Interpretability Sequential
Modeling

Feature
Construction
Function

PCI PBS PPD

Probabilistic
classifier

Bayesian
Classifier,
Hidden
Markov
Model

High High High Aggregation
& Rules

X X

Classical Data
Mining
Classifiers

Unsupervised
clustering:
K-means

Low High Low Aggregation
& Rules &
Personalized

X

Association
rules: apriori
algorithm

High High Low X

Instance-
based:
K-nearest
neighbor

High High Low X

Linear ML:
logistic
regression,
decision Tree

High High Low X X

Ensemble
Learning:\
XGBoost,
Adaboost,
Majority
Voting

Low Low Low X X

Deep learning
classifier

Non-linear
ML: RNNs,
LSTMs,
GRUs

Low Low High Aggregation
& Non-
Linear
Feature
Learning

X X

Collaborative
filtering

Matrix
factorization
and
factorization
Machines

High Low Low Aggregation
& Rules

X

Customer Purchase Behavior Prediction in E-commerce 129

Details regarding each predictive methodology are provided as follows.

– Probabilistic Classifier: A model that uses probability theory to model the
uncertainty in the data. Advantage: Usually, it requires a few numbers of engi-
neered features, which makes them a feasible choice for real-time settings, as well
as the natural capacity of sequentially modeling short-term patterns in events.
Disadvantage: It is difficult to capture the effects of long-term patterns in customer
behavior. However, this capacity can be achieved in the cost of increasing model
complexity and processing time.
• Bayesian Classifier: Estimates conditional probability distributions based on the

influence of given features to output a specific prediction. In [42], authors predict
purchase decisions by analyzing the influence of sequential purchases, number,
and duration of visits to compute probabilities for the customer choice of a
specific product or time of purchase.

• Hidden Markov Model: A generalization of a probabilistic mixture model, where
the probability of an event, such as a purchase, depends on the occurrence of
hidden variables through a sequential Markov process modeling a previous
customer action [24].

– Classical Data Mining Classifiers: Those models work by learning similarities
between feature vectors of buying sessions, intents, and purchase decisions. Advan-
tage: Most of the approaches in this category performwell even with small or medium
dataset sizes, which makes some of them suitable for real-time settings. Disadvan-
tage: Authors adopting this methodology usually need to perform extensive Feature
Engineering to achieve good prediction results, also for detecting sequential patterns.
• Unsupervised Clustering: Unlabeled sessions and purchase transactions are input

to a model which will discover patterns in similar instances and group them for
providing predictions. For example, [37, 38] adopt the K-means algorithm to
segment customers based on variables regarding their clickstream behavior.

• Association Rules: Enables the discovery of associations between features,
which can reveal rules with high confidence to indicate probabilities of sessions
ending up with a purchase [16].

• Instance-Based: Model which classify new data instances based on similar cases
and their features. In [22], authors employ K-Nearest Neighbor to predict buying
sessions according to previous examples of sessions, with similar features,
which ended up with a purchase.

• Linear ML: Machine learning models which assume a linear decision boundary
between buying and non-buying sessions, or feature vectors representing pur-
chase decisions of customers. However, the kernel trick can be adopted to detect
non-linear relationships between features [50], or Feature Engineering to create
combinations between multiple features [27].

• Ensemble Learning: stacking of various weak predictive models together to
build up a robust model for providing predictions [20].

130 D. Cirqueira et al.

– Deep Learning Classifiers: ML models which can naturally learn complex and
non-linear decision boundaries and relationships in the dataset. Advantage: These
models can be powerful in modeling long-term influences of past customer events
on current decisions [25], and do not require extensive Feature Engineering, as they
have Feature Learning built-in. Disadvantage: This method usually requires mas-
sive amounts of data, which makes it hard for usage with new customers and a few
purchases [40, 41]. The interpretability of predictions is also an issue.

– Collaborative Filtering: Classical model applied in recommendation systems. This
approach models customers and products in a utility matrix based on their clicks,
views, reviews, or purchases, which is then factorized to provide latent factors
representing the likelihood of customers choosing similar products [29, 30, 44].
That is the favorite model adopted by researchers focusing on predicting purchase
decisions, but it is also utilized in predicting buying sessions [14]. Advantage: One
of the most flexible approaches for multiple types of features in different E-
commerce platforms. It also scales well with more customers and products being
added in a dataset. Disadvantage: The utility matrix is usually sparse, as most of
the customers have not viewed many of the products available in an E-commerce
platform. Therefore, it is challenging to predict purchases for new customers, and it
is important to think of Feature Engineering for creating features that can overcome
such issues.

3.3 State-of-the-Art Performance

To have a fair comparison between the identified predictive methodologies, for every
specific task, we grouped the existing proposals by the predictive methodology
adopted. We evaluated only the F1 score and Area Under Receiver Operating Char-
acteristic Curve (AUC) reported by those. Our choice for those metrics considers the
fact that datasets in this literature are usually unbalanced, with few occurrences of
purchases, and it is well known that F1 and AUC scores are the ideal metrics in
unbalanced scenarios [51]. Table 7 illustrates the average results obtained from pre-
dictive methodologies for suitable tasks where they can be applied. It is not reported
performance for predicting customer intent as the authors did not adopt the mentioned
metrics.

Classical Data Mining Classifiers are the current state-of-the-art for Predicting
Buying Sessions, specifically Ensemble learners [20] and Support Vector Machines
[19]. Those are followed by Deep Learning classifiers. It is interesting to observe the
drop in performance when going to the task of Predicting Purchase Decision, which
proves it is the most complex task due to the fine-grained predictions aimed at it.
Concerning performance, the classical Collaborative Filtering approach is the most
robust, comprised of a Latent Factor Model [30] and Matrix Factorization [31]. Those
are followed by Classical Data Mining and Deep Learning classifiers.

Customer Purchase Behavior Prediction in E-commerce 131

3.4 Research Agenda

We derive a research agenda based on the targeted research gaps and findings of this
review, containing the following directions:

– Sequential Learning: Few proposals have explored sequential ML models in this
literature. Examples are recurrent neural networks, which are only adopted in three
studies [25, 33, 40]. Such models are indicated to learn the evolving consumer
behavior over time, and sequential patterns such as “She is buying a phone case
after purchasing a smartphone”.

– Interpretability: It is noticed the majority of authors reporting higher performance
as those applying Classical Data Mining and Deep Learning classifiers, which also
have a black-box nature. Indeed, interpretability seems not to be the focus of this
recent literature.

– Customer Data and General Data Protection Regulation (GDPR): Given the
rise of privacy policies with GDPR in Europe, it is needed more research on the
trade-off between the amount of data required and protection of customers’ privacy,
regarding the performance of purchase prediction tasks.

– Dataset for benchmarking: There is no clear consensus on datasets for state-of-
the-art comparison in this literature, as many studies have used private data.
However, we observed a significant adoption of the Recsys 2015 challenge data
[17, 25, 31, 39, 40, 42], which suggests this dataset as a candidate in this regard.

– Evaluation in Multiple E-commerce Platforms: Most researchers evaluate their
proposed predictive methods in a single dataset, or focus on specific E-commerce
settings. Therefore it is hard to argue their methodologies are general for multiple E-
commerce platforms, such as general-purpose and specialized marketplaces.

– Feature Engineering and Feature Learning: It was noticed that the well-
performing proposals adopting Classical ML models had been heavily investing in

Table 7. State of the Art Results for Predicting Buying Sessions and Purchase Decisions

Predict buying session

F1 AUC
Classical data mining classifier
[20]

97.20% Classical data mining classifier
[19]

84%

Deep learning classifier [26] 87.94% Deep learning classifier [25] 83.90%
Classical data mining classifier
[15]

82.91% Classical data mining classifier
[14]

75%

Predict Purchase Decision
F1 AUC

Collaborative Filtering [30] 53% Collaborative Filtering [31] 87.94%
Classical Data Mining Classifier
[28]

43.62% Deep Learning Classifier [41] 86%

Collaborative Filtering [32] 42% Classical Data Mining Classifier
[39]

85%

132 D. Cirqueira et al.

Feature Engineering. However, more investigation in the field of Feature Learning
is recommended in this area, or the combination of those two methodologies in
purchase prediction online.

– Creation Process of Personalized Feature Engineering Functions: Some
researchers explore the creation of personalized functions in Feature Engineering,
such as the popularity of a product [17], the diversity of customer behavior [18, 35]
and graph metrics [21]. It could be relevant to map this creation process, and help
other researchers in establishing such novel features for customer behavior online.

– A Framework for Purchase Prediction Tasks in E-commerce: Existing pro-
posals focus on one of the three tasks identified, but there is a lack of a view into
how those tasks can work together. Therefore, further research could be taken to
provide a framework which aligns the identified tasks in this review.

4 Final Remarks

This study presents a systematic literature review of recent proposals in consumer
purchase prediction in E-commerce. A novel conceptual framework provides lenses in
the state-of-the-art of this field. It is noticed that, despite the broad literature, there is
still a need for an in-depth investigation of specific directions. Therefore, a research
agenda is provided, illustrating potential future work demands.

A next step would be to adopt a benchmark dataset, and evaluate predictive
methodologies in multi-task settings, such as to forecast the next product, purchase
time, or amount a customer will likely buy. Therefore, it is relevant to investigate the
construction of a framework for purchase prediction, which considers the combination
of three tasks identified in this review.

References

1. Agnihotri, R., Dingus, R., Hu, M.Y., Krush, M.T.: Social media: influencing customer
satisfaction in B2B sales. Ind. Mark. Manage. 53, 172–180 (2016)

2. Bradlow, E.T., Gangwar, M., Kopalle, P., Voleti, S.: The role of big data and predictive
analytics in retailing. J. Retail. 93(1), 79–95 (2017)

3. Le, D.-T., Fang, Y., Lauw, H.W.: Modeling sequential preferences with dynamic user and
context factors. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD
2016. LNCS (LNAI), vol. 9852, pp. 145–161. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46227-1_10

4. Erevelles, S., Fukawa, N., Swayne, L.: Big data consumer analytics and the transformation
of marketing. J. Bus. Res. 69(2), 897–904 (2016)

5. Shmueli, G., et al.: To explain or to predict? Stat. Sci. 25(3), 289–310 (2010)
6. Martens, D., Provost, F., Clark, J., de Fortuny, E.J.: Mining massive fine-grained behavior

data to improve predictive analytics. MIS Q. 40(4), 869–888 (2016)
7. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In:

Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) recommender systems handbook, pp. 1–
35. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_1

8. Bobadilla, J., et al.: Recommender systems survey. Knowl.-Based Syst. 46 109–132 (2013)

Customer Purchase Behavior Prediction in E-commerce 133

https://doi.org/10.1007/978-3-319-46227-1_10
https://doi.org/10.1007/978-3-319-46227-1_10
https://doi.org/10.1007/978-0-387-85820-3_1

9. Lu, J., et al.: Recommender system application developments: a survey. Decis. Support Syst.
74, 12–32 (2015)

10. Isinkaye, F.O., Folajimi, Y.O., Ojokoh, B.A.: Recommendation systems: principles,
methods and evaluation. Egypt. Inf. J. 16(3), 261–273 (2015)

11. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature
review. MIS Q. 26, xiii–xxiii (2002)

12. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Systematic
literature reviews in software engineering–a systematic literature review. Inf. Softw.
Technol. 51(1), 7–15 (2009)

13. Akter, S., Wamba, S.F.: Big data analytics in e-commerce: a systematic review and agenda
for future research. Electron. Mark. 26(2), 173–194 (2016)

14. Zeng, M., Cao, H., Chen, M., Li, Y.: User behaviour modeling, recommendations, and
purchase prediction during shopping festivals. Electron. Mark. 29(2), 1–12 (2018)

15. Jia, R., Li, R., Yu, M., Wang, S.: E-commerce purchase prediction approach by user
behavior data. In: 2017 International Conference on Computer, Information and Telecom-
munication Systems (CITS), pp. 1–5. IEEE (2017)

16. Suchacka, G., Chodak, G.: Using association rules to assess purchase probability in online
stores. Inf. Syst. e-Bus. Manag. 15(3), 751–780 (2017)

17. Chen, C., Xiao, J., Hou, C., Yuan, X.: Improving purchase behavior prediction with most
popular items. IEICE Trans. Inf. Syst. 100(2), 367–370 (2017)

18. Niu, X., Li, C., Yu, X.: Predictive analytics of e-commerce search behavior for conversion.
In: Twenty-Third Americas Conference on Information Systems (2017)

19. Lee, M., Ha, T., Han, J., Rha, J.Y., Kwon, T.T.: Online footsteps to purchase: exploring
consumer behaviors on online shopping sites. In: 2015 Proceedings of the ACM Web
Science Conference. ACM (2015)

20. Boroujerdi, E.G., et al.: A study on prediction of user’s tendency toward purchases in
websites based on behavior models. In: 2014 6th Conference on Information and Knowledge
Technology (IKT), pp. 61–66. IEEE (2014)

21. Baumann, A., Haupt, J., Gebert, F., Lessmann, S.: Changing perspectives: using graph
metrics to predict purchase probabilities. Expert Syst. Appl. 94, 137–148 (2018)

22. Suchacka, G., Skolimowska-Kulig, M., Potempa, A.: A k-nearest neighbors method for
classifying user sessions in e-commerce scenario. J. Telecommun. Inf. Technol. 3, 64–69
(2015)

23. Lin, W., Milic-Frayling, N., Zhou, K., Ch’ng, E.: Predicting outcomes of active sessions
using multi-action motifs. In: IEEE/WIC/ACM International Conference on Web Intelli-
gence, pp. 9–17, October 2019

24. Park, C.H., Park, Y.H.: Investigating purchase conversion by uncovering online visit
patterns. Mark. Sci. 35(6), 894–914 (2016)

25. Sheil, H., Rana, O., Reilly, R.: Predicting purchasing intent: automatic feature learning using
recurrent neural networks (2018). arXiv preprint arXiv:1807.08207

26. Sakar, C.O., Polat, S.O., Katircioglu, M., Kastro, Y.: Real-time prediction of online
shoppers’ purchasing intention using multilayer perceptron and LSTM recurrent neural
networks. Neural Comput. Appl. 31(10), 6893–6908 (2019)

27. Li, Q., Gu, M., Zhou, K., Sun, X.: Multi-classes feature engineering with sliding window for
purchase prediction in mobile commerce. In: 2015 IEEE International Conference on Data
Mining Workshop (ICDMW), pp. 1048–1054. IEEE (2015)

28. Iwanaga, J., Nishimura, N., Sukegawa, N., Takano, Y.: Estimating product-choice
probabilities from recency and frequency of page views. Knowl.-Based Syst. 99, 157–167
(2016)

134 D. Cirqueira et al.

http://arxiv.org/abs/1807.08207

29. He, T., Yin, H., Chen, Z., Zhou, X., Luo, B.: Predicting users’ purchasing behaviors using
their browsing history. In: Sharaf, Mohamed A., Cheema, M.A., Qi, J. (eds.) ADC 2015.
LNCS, vol. 9093, pp. 129–141. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19548-3_11

30. Jia, R., Li, R.: Modeling user purchase preference based on implicit feedback. In: CSCWD,
pp. 832–836. IEEE (2018)

31. Park, C., Kim, D., Yang, M.C., Lee, J.T., Yu, H.: Your click knows it: predicting user
purchase through improved user-item pairwise relationship (2017). arXiv preprint arXiv:
1706.06716

32. Nishimura, N., Sukegawa, N., Takano, Y., Iwanaga, J.: A latent-class model for estimating
product-choice probabilities from clickstream data. Inf. Sci. 429, 406–420 (2018)

33. Singhal, R., et al.: Fast online ‘next best offers’ using deep learning. In: Proceedings of the
ACM India Joint International Conference on Data Science and Management of Data.
CoDS-COMAD 2019, pp. 217–223. ACM, New York (2019)

34. Bai, J., et al.: Personalized bundle list recommendation. In: The World Wide Web
Conference. ACM (2019)

35. Zheng, B., Liu, B.: A scalable purchase intention prediction system using extreme gradient
boosting machines with browsing content entropy. In: 2018 IEEE International Conference
on Consumer Electronics (ICCE), pp. 1–4. IEEE (2018)

36. Minjing, P., Xinglin, L., Ximing, L., Mingliang, Z., Xianyong, Z., Xiangming, D., Mingfen,
W.: Recognizing intentions of e-commerce consumers based on ant colony optimization
simulation. J. Intell. Fuzzy Syst. 33(5), 2687–2697 (2017)

37. Schellong, D., Kemper, J., Brettel, M.: Generating consumer insights from big data click-
stream information and the link with transaction-related shopping behavior. In: Proceedings
of the 25th European Conference on Information Systems (ECIS) (2017)

38. Schellong, D., Kemper, J., Brettel, M.: Clickstream data as a source to uncover consumer
shopping types in a large-scale online setting. In: ECIS. Research Paper 1 (2016)

39. Romov, P., Sokolov, E.: Recsys challenge 2015: ensemble learning with categorical
features. In: Proceedings of the 2015 International ACM Recommender Systems Challenge,
vol. 1. ACM (2015)

40. Wu, Z., Tan, B.H., Duan, R., Liu, Y., Mong Goh, R.S.: Neural modeling of buying
behaviour for e-commerce from clicking patterns. In: Proceedings of the 2015 Interna-
tional ACM Recommender Systems Challenge, vol. 12. ACM (2015

41. Vieira, A.: Predicting online user behaviour using deep learning algorithms. arXiv preprint
arXiv:1511.06247 (2015)

42. Yeo, J., Kim, S., Koh, E., Hwang, S.w., Lipka, N.: Predicting online purchase conversion for
retargeting. In: Proceedings of the Tenth ACM International Conference on Web Search and
Data Mining, pp. 591–600. ACM (2017)

43. Li, D., Zhao, G., Wang, Z., Ma, W., Liu, Y.: A method of purchase prediction based on user
behavior log. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW),
pp. 1031–1039. IEEE (2015)

44. Liu, G., et al.: Repeat buyer prediction for e-commerce. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 155–164. ACM (2016)

45. Guo, L., Hua, L., Jia, R., Zhao, B., Wang, X., Cui, B.: Buying or browsing?: predicting real-
time purchasing intent using attention-based deep network with multiple behavior. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 1984–1992, July 2019

46. Kooti, F., Lerman, K., Aiello, L.M., Grbovic, M., Djuric, N., Radosavljevic, V.: Portrait of
an online shopper: understanding and predicting consumer behavior. In: Proceedings of the

Customer Purchase Behavior Prediction in E-commerce 135

https://doi.org/10.1007/978-3-319-19548-3_11
https://doi.org/10.1007/978-3-319-19548-3_11
http://arxiv.org/abs/1706.06716
http://arxiv.org/abs/1706.06716
http://arxiv.org/abs/1511.06247

Ninth ACM International Conference on Web Search and Data Mining, pp. 205–214. ACM
(2016)

47. Panagiotelis, A., Smith, M.S., Danaher, P.J.: From amazon to apple: modeling online retail
sales, purchase incidence, and visit behavior. J. Bus. Econ. Stat. 32(1), 14–29 (2014)

48. Green, H.E.: Use of theoretical and conceptual frameworks in qualitative research. Nurse
Res. 21, 6 (2014)

49. Tang, L., Wang, A., Xu, Z., Li, J.: Online-purchasing behavior forecasting with a firefly
algorithm-based SVM model considering shopping cart use. Eurasia J. Math. Sci. Technol.
Educ. 13(12), 7967–7983 (2017)

50. Schölkopf, B.: The kernel trick for distances. In Advances in Neural Information Processing
Systems, pp. 301–307 (2001)

51. Jeni, L.A., Cohn, J.F., De La Torre, F.: Facing imbalanced data–recommendations for the
use of performance metrics. In 2013 Humaine Association Conference on Affective
Computing and Intelligent Interaction, pp. 245–251. IEEE, September 2013

136 D. Cirqueira et al.

Hough Transform as a Tool
for the Classification of Vehicle Speed
Changes in On-Road Audio Recordings

Elżbieta Kubera1(B) , Alicja Wieczorkowska2 , and Andrzej Kuranc1

1 University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
{elzbieta.kubera,andrzej.kuranc}@up.lublin.pl

2 Polish-Japanese Academy of Information Technology,
Koszykowa 86, 02-008 Warsaw, Poland

alicja@poljap.edu.pl

Abstract. Spectrogram is a very useful sound representation, showing
frequency contents as a function of time. However, the spectrogram data
are very complex, as they may contain both lines or curves correspond-
ing to partials (harmonic or not), whose frequency changes in time, as
well as noises of various origin. In this paper, we address the extraction
of line parameters from spectrograms for audio data, recorded for cars
passing by an audio recorder. These lines represent pitched sounds, and
the frequency along these lines is usually related to the vehicle speed.
Our goal is to detect whether the vehicle is slowing down, speeding, or
maintaining approximately constant speed. However, the lines may be
broken, they bent when the car is passing the microphone because of the
Doppler effect, which is strongest when very close to the microphone, and
they are on the noisy background. Our goal was to elaborate a method-
ology, which extracts a simple representation of parameters of these lines
(possibly broken, curvy and in noise), and allows detecting the behav-
ior of drivers when passing the measurements point, e.g. near the radar.
Audio data can be very useful here, as they can be recorded at low visi-
bility. The proposed methodology, together with the results for on-road
recorded audio data, are presented in this paper. This methodology can
be then applied in works on road safety issues.

Keywords: Speed changes detection · Hough transform · Audio signal
analysis

1 Introduction

Road accidents in majority of cases are caused by a failure to yield the right-
of-way, or by excessive speed, inadequate to the given road conditions. This
information is confirmed by numerous, detailed studies on road incidents and
their consequences [1–3]. It is also important that the values of vehicle speed,
as circumstances of accident, vary in a wide range, from relatively low speeds in
urban areas to high speeds on expressways and motorways.
c© Springer Nature Switzerland AG 2020
M. Ceci et al. (Eds.): NFMCP 2019, LNAI 11948, pp. 137–154, 2020.
https://doi.org/10.1007/978-3-030-48861-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48861-1_9&domain=pdf
http://orcid.org/0000-0003-3447-9569
http://orcid.org/0000-0003-2033-6372
http://orcid.org/0000-0001-6033-6380
https://doi.org/10.1007/978-3-030-48861-1_9

138 E. Kubera et al.

Personal features of a driver and his or her habits affect the reactions in dan-
gerous driving situations [4,5]. Usually, drivers are classified according to the
level of their “aggressiveness” in driving [5–8]. An aggressive driver is character-
ized by high speeds of driving and numerous and sudden changes of instantaneous
speed, which are associated with periods of acceleration and braking.

The higher speed variations, the greater the interactions between the vehicles
on the road and the higher the associated danger [9]. Besides aggressive drivers,
careful drivers can also be identified. They try to maintain a constant moderate
speed and avoid rapid acceleration and braking, which together are indicators
of safe behavior. Many drivers are aware of the impact of speed on the road
accidents occurrence. However, they believe that road accidents are caused not
only by driving too fast but also by driving too slow, which implicates dangerous
behavior of other drivers [4,10].

Economic development is associated with an increase in the number of road
transport means. This is followed by the development of infrastructure, and it
also requires the introduction of traffic monitoring and control systems. The
systems dedicated for speed measurements and vehicle classification contribute
to the road safety and traffic fluency. Many transport agencies often use the
results of speed tests as the basis of decisions on setting speed limits, traffic
signs, synchronizing traffic lights, and assessing their effectiveness [11].

Numerous study works clearly indicate the possibilities of improving traffic
safety through comprehensive implementation of traffic management and vehicle
speed management systems [12–14]. They can be based on magnetic induction,
piezoelectric effect, Doppler effect and computer video analysis techniques.

Traffic measurement technologies can be classified into intrusive and non-
intrusive methods [15]. The technologies of the first group basically consist in
placing a recorder and a sensor on or in the road:

– Pneumatic road tubes, placed across the road lanes to detect vehicles by
means of pressure changes that are generated by a vehicle tyre passing over.

– Piezoelectric sensors: the sensors are placed in a groove along the roadway
surface of the lane(s) monitored.

– Inductive loops: the loops are embedded into roadways; they generate a mag-
netic field [16].

Non-intrusive consist in remote observations:

– Manual counts: trained observers gather traffic data, e.g. vehicle occupancy
rate, pedestrians and vehicle classifications.

– Passive and active infra-red sensors: the presence, speed and type of vehicles
are detected based on the infrared energy radiating from the detection area.

– Passive magnetic sensors, fixed under or on top of the roadbed.
– Microwave radar: this technology can detect moving vehicles and their speed

(Doppler radar) [17].
– Ultrasonic and passive acoustic methods: the devices emit sound waves to

detect vehicles by measuring the time needed for the signal to return to the
device. The passive acoustic sensors are placed alongside the road and can
collect vehicle counts, speed and classification data [18].

Hough Transform for the Classification of Vehicle Speed Changes 139

– Video image detection, gaining popularity recently: video cameras record reg-
istration plates, vehicle type and speed [19–21].

These technologies differ in their installation costs; they have advantages and
disadvantages [15,22–24]. Almost all of them allow measuring vehicle speed, but
acceleration measurements are not taken into account. Therefore, the develop-
ment of such systems is needed.

There are studies on the determination of the speeds of vehicles using acous-
tic waves generated by passing vehicles [25,26], or using an on-board microphone
[27]. In particular, an acoustic vector sensor and sound intensity measurement
techniques are applied in these methods [28]. They utilize sophisticated algo-
rithms for the sound intensity processing in the domain of time and frequency.
The obtained results indicate the potential of these methods, and a possibility
of using them as a supplementation of currently employed techniques in mea-
surements of vehicles speed and acceleration.

Since it is possible to assess speed changes from audio data, we also follow
this approach in the work presented in this paper. Additionally, audio data can
be acquired in low visibility conditions, and such non-intrusive measurements
allow observations of true habits of the drivers.

1.1 Proposed Approach

Although audio data are sometimes used in observations of vehicular traffic,
still, to the best of our knowledge, no other researchers investigated extracting
information on speed changes from audio data [25,26,29]. Most often, single
speed measurements are performed, and they do not provide information about
the dynamics of driving.

Audio data can be represented as spectrograms, showing frequency contents
as a function of time, and then analyzed. Spectrograms may contain lines or
curves corresponding to frequency components changing in time, as well as noises
of various origin. In this paper, we work on extracting line parameters from
spectrograms for audio data, recorded for cars passing by an audio recorder.
These lines represent frequencies usually related to the car speed. Our goal is to
detect whether the car is decelerating, accelerating, or maintaining stable speed.

Obtaining the information on speed changes from the spectrogram corre-
sponding to audio data has numerous pitfalls. The lines in the spectrogram
may be broken, they bent when the car is passing the microphone because of
the Doppler effect, which is strongest when very close to the microphone, and
they are on the noisy background. Our goal was to elaborate a methodology of
extracting a simple representation of parameters of these lines (possibly broken,
curvy and in noise). Image processing techniques were applied first to the spec-
trogram data. Next, we managed to use this very simple representation (i.e. the
parameters of lines) of a complex spectrogram and bring classification rules that
estimate the dynamic behavior of drivers.

140 E. Kubera et al.

1.2 Audio Data

The audio data we used were recorded on-road in controlled conditions, i.e.
on an unfrequented road, to assure that the sound of the recorded car is not
accompanied by sounds of other cars. This is because in this research we wanted
to focus on the data representing a single vehicle. Mc Crypt DR3 Linear PCM
Recorder, with 2 built-in microphones, was used to record stereo audio data,
48 kHz/24 bit. The audio data were recorded in the summer (August 2nd, 2016),
winter (January 16th, 2017), and spring (March 31st and April 5th, 2017). Each
data item represents a single drive, 10 s long, with the moment of passing the
microphone in the center of the recording. Each drive represents one of 3 classes:

– acceleration, 111 drives,
– deceleration, 113 drives, and
– stable speed (with possible small, unintended variations), 94 drives.

A 300 m road segment was used for each drive. Speed changes were performed
from about 60 m before to 60 m after passing the audio recorder. The description
of the recordings is given below. Further details, including illustrations and the
information on how to get the data, can be found in [29].

Summer Recordings. Summer recordings were made in Ciecierzyn, Lublin
voivodship, in Poland, on a sunny day (weekday; maximum temperature this
day was 24 ◦C), from 10 a.m. to noon. The road was in a broad mild basin,
so the cars were not driving uphill nor downhill. The audio recorder was placed
1.5 m above the surface and as close to the road as possible. The recorder position
was about 51◦18’34”N, 22◦36’13”E (GPS coordinates). The segment of the road
used started at 51◦18’39”N, 22◦35’58”E, and ended at 51◦18’30”N, 22◦36’25”E.
Three cars were recorded: 2 with Diesel engine (Toyota Corolla Verso and Skoda
Octavia), and 1 with gasoline engine (Renault Espace). For each car, two drives
per class were recorded, with additional 2 drives of Skoda. The audio data rep-
resent acceleration 50–70 km/h, deceleration 70–50 km/h, and stable speed of
50 km/h, plus 2 drives at 70 km/h for Skoda (20 drives altogether).

Winter Recordings. Winter recordings were made in the outskirts of a small
town, Lubartów, Lublin voivodship, in Poland, from 6 p.m. to 8.30 p.m. [26].
The GPS coordinates of the recorder were 51◦26’29”N, 22◦35’59”E. The segment
of the road used started at 51◦26’35”N, 22◦36’31”E, and ended at 51◦26’26”N,
22◦35’33”E. There was snow on the road, but not on the area below the tires.
The temperature outside was −3 ◦C. One car was recorded: Renault Espace IV
(2007), with manual transmission. The data represent 84 drives: 28 for accel-
eration 50–70 km/h, 28 for stable speed, 50 km/h, and 28 for deceleration 70–
50 km/h, all without changing gear and without applying brakes (engine braking
only).

Hough Transform for the Classification of Vehicle Speed Changes 141

We assured that the drivers did not change gear when passing by the micro-
phone, as changing gear changes the lines in the spectrogram.

Spring Recordings. Spring recordings were also made at the same road near
Lubartów, in 2 days in early spring, from 8.30 a.m. to 11.30 a.m. The GPS
coordinates of the recorder and the road were the same as in the winter. The
weather was windy on March 31st, and good on April 5th, with maximum day-
time temperature 16 ◦C on March 31st and 19 ◦C on April 5th. The wind gusts
did not affect the audio data, but to avoid strong wind gusts, a windscreen
was applied later. The recorded cars included Renault Espace III and Espace
IV, both with a gasoline engine, Skoda Octavia with a Diesel engine, and Smart
ForFour with a gasoline engine, all with a manual transmission. The data include
214 drives, namely 77 for acceleration (50–70 km/h, and 50–80 km/h for Skoda),
58 for stable speed, at 60 km/h, 70 km/h, and 80 km/h, and 79 for deceleration
(80–40 km/h, 80–50 km/h, and 70–40 km/h); brakes were applied here.

2 Methodology

Audio signal can be useful as a source of information about traffic, as it can be
recorded at low visibility conditions, but it requires processing to extract this
information. In our approach, we use spectrogram, i.e. the graph representing
the frequency contents of sound as a function of time, as a basis of a graphic-
based approach. Spectrograms are based on FFT (Fast Fourier Transform) spec-
trum, calculated for 170 ms frame, with 57 ms hop size (i.e. with 2/3 overlap),
Hamming-windowed. In the preprocessing step the signal was low-pass filtered,
and spectra for frequencies up to 300 Hz were used for preparing spectrograms.
To facilitate further work, the audio data for each drive were represented as 4
spectrograms: 5 s before passing the microphone for the left channel, 5 s for the
right channel, 5 s after passing the microphone for the left channel, and 5 s for
the right channel. The choice of the length of the analyzed segments was arbi-
trary; we decided to analyze 5-s parts of the spectrogram, to ensure that the
audio segments are long enough to capture speed changes. The linear frequency
scale was used in spectrogram.

Spectrograms for automotive data, representing cars passing the road near
the microphone, contain lines at low frequencies. These lines are mostly hori-
zontal if the driver maintains approximately stable speed, rising up if the driver
is accelerating, and descending if the driver is decelerating. Exemplary spectro-
gram is shown in Fig. 1; more spectrograms are shown in the left set of images
in Fig. 2. We selected 5 s long one-channel segments with clearly visible lines.
Our motivation was to have segments long enough to observe lines corresponding
to changing speed (or maintaining constant speed), as for longer lines we can
achieve better precision of calculating the parameters of the investigated lines.

When acquiring the audio data we did our best to assure that every time
a single vehicle drive was recorded, representing a single target class, and it
was not accompanied by sounds representing other vehicles. If the investigated

142 E. Kubera et al.

Fig. 1. Exemplary spectrogram (in grayscale), for a car recorded while accelerating.
The upper and lower graphs represent the left and right channel. The center part
represents the moment of passing the recorder

sounds were accompanied by other sounds, especially by the sounds of other
vehicles passing by, then these accompanying sounds would be also represented
as lines in the spectrogram. Therefore, if the other vehicle’s sound was louder
than the target sound, it could be indicated as an outcome of our algorithm.

In this research we focus on the strongest line in the spectrogram in the
investigated spectrograms, but it can be extended to a multiple-vehicle case, via
finding another strong lines in the spectrogram. The observed lines correspond
to partials (harmonic or not) of pitched sounds, whose frequencies are usually
related to the car speed. These frequencies change in time, and this is illustrated
in the spectrogram. However, the spectrogram data are much more complex, as
they also contain noises. Additionally, the lines are actually curves, especially at
the moment of passing by the microphone. This is caused by the Doppler effect,
most pronounced near the microphone (see Fig. 1).

In the presented approach, we aim to extract line parameters from these
spectrograms. Our goal is to detect whether the vehicle is accelerating, decel-
erating, or maintaining approximately stable speed. Although the lines in the
spectrogram may be broken, they bend when the car is passing the microphone,
and there is a lot of noise in the spectrogram, we still believe that it is possible
to extract parameters of these lines, and then this small set of parameters can
represent a very complex spectrogram as indicator of speed changes.

The extraction of lines from the spectrogram can be based on edge detection
algorithms, as the image analysis based on edge detection is insensitive to change
in overall illumination level [30]. Edge detection in the image can be performed
using e.g. Sobel operator. The lines of interest in our spectrograms are either
horizontal, or slightly ascending or descending. However, as we can see in the
last column of Fig. 2, the edges extracted by the Sobel operator do not represent
our lines. Therefore, more sophisticated approaches must be elaborated.

Hough Transform for the Classification of Vehicle Speed Changes 143

Im
ag

e
pr

ep
ro

ce
ss

in
g

None (original spectrogram) Gaussian blur Gaussian blur and column
normaliza�on

Gaussian blur and Sobel
operator (5x5, horizontal
mask, absolute values)

Th
re

sh
ol

di
ng

 m
et

ho
d

ad
ap

�v
e

(m
ea

n)
 ,

fr
om

 O
pe

nC
V

ad
ap

�v
e

(G
au

ss
ia

n)

fr
om

 O
pe

nC
V

th
re

sh
ol

d
=

m
od

e
of

 im
ag

e
lu

m
in

an
ce

th
re

sh
ol

d
=

m
ea

n
lu

m
in

an
ce

th
re

sh
ol

d
=

m
ed

ia
n

lu
m

in
an

ce
Th

re
sh

ol
d:

 O
ts

u
m

et
ho

d
(O

pe
nC

V)
Th

re
sh

ol
d:

80
%

(2
04

)o
fl

um
in

an
ce

Fig. 2. Hough transform for spectrograms in grayscale, for various image processing
methods and thresholds. The images in the cells of this table represent spectrograms for
deceleration (left), stable speed (center), and acceleration (right). Gray lines on black-
and-white images represent the results obtained from the Hough transform, i.e. θ and
r corresponding to the strongest line, as indicated by the maximum of the accumulator
array

144 E. Kubera et al.

2.1 Using Hough Transform for Line Detection

We decided to apply Hough transform for line detection [31]. In its main form, the
Hough transform takes black-and-white (binary) images as an input. The spec-
trogram data are in grayscale, and the luminance values represent the energy in
the corresponding time-frequency points. Color scales can also be used. There-
fore, the use of Hough transform is not so straightforward in our case.

Hough Transform for Line Detection. In the Hough technique, each point (x,y)
in the image indicates its contribution to the physical line. Line segments are
expressed using normals: x cos(θ) + y sin(θ) = r, where r is the length of a
normal, measured from the origin to this line, and θ is the orientation of the
normal wrt. the x axis. For any point belonging to a given line segment, r and
θ are constant. The plot of the possible r, θ values, defined by each point of line
segments, represents mapping to curves (sinusoids) in the polar Hough parameter
space. The transform is implemented by quantizing the Hough parameter space
into accumulator cells, incremented for each point which lies along the curve
represented by this r, θ. Resulting peaks in the accumulator array correspond to
lines in the image. For θ = 0 the normal is horizontal, so the corresponding line
is vertical; θ = 90 corresponds to horizontal line; and r is expressed in pixels.
Figure 3 illustrates Hough accumulator matrix (right image), calculated for a
grayscale spectrogram (left image), converted to a binary image (center image).

r [
px

]

r = 114
θ = 77

Time [s] Theta [degrees]
0 2.5 5

Time [s]
0 2.5 5

Fr
eq

ue
nc

y
[H

z]

Fr
eq

ue
nc

y
[H

z]

45 90 135

Fig. 3. The spectrogram in grayscale (left), in black-and-white (center), and the accu-
mulator (right) for this spectrogram. The line marked in the left image corresponds to
the maximum of the accumulator array

The Hough transform is applied on binary images. There are implementations
that take grayscale images as an input, but then the image is transformed to

Hough Transform for the Classification of Vehicle Speed Changes 145

binary. We applied various image processing techniques to obtain binary repre-
sentations of the spectrograms, as shown in Fig. 2 and 4. We wanted to determine
2 approaches for detecting lines in the spectrogram using Hough transform:

1. threshold-based grayscale-to-binary conversion as input of the Hough trans-
form - 1st approach, and

2. Canny edge detection [32] used as grayscale-to-binary conversion before
applying the Hough transform - 2nd approach.

OpenCV implementation of the Canny algorithm was used [33]. In the pre-
processing step, we tested Gaussian blur, column normalization, and Sobel oper-
ator in the 1st approach. Sobel operator was not used in the 2nd approach, as
it is used as the edge detector operator in Canny algorithm. Gaussian blur was
applied to get rid on noise, and column normalization was performed to obtain
the same energy levels for each time point, as the energy at the moment of
passing the microphone was much higher than in the remaining parts of the
spectrogram. Column normalization consisted in rescaling each column of the
spectrogram to the range {0, 255}, corresponding to 8-bit grayscale.

In our image processing (applied to the spectrograms), we tested several
thresholding options, commonly used in similar works. Namely, 7 thresholding
versions were used next for the 1st approach, i.e. in grayscale-to-binary conver-
sion, and 3 for the 2nd approach, i.e. Canny edge detection, both as prepro-
cessing before applying the Hough transform. These methods represent various
approaches, commonly used in image processing [30].

The thresholds tested in the 1st approach included: 80% of the maximum
luminance, Otsu method [34], median luminance of the spectrogram, mean lumi-
nance, mode of the luminance histogram, adaptive (Gaussian) threshold from
OpenCV, and adaptive (mean) threshold from OpenCV. Thresholds tested in
the Canny algorithm included the following threshold pairs:

– 20% and 80% of luminance; this threshold pair was based on [35],
– 0.66 of the mean luminance and 1.33 of the mean luminance,
– 0.66 of the median luminance value and 1.33 of the median luminance value.

Our goal was to find the preprocessing and thresholding that work best.
Two out of 7 thresholding versions in the 1st approach were based on options

available in OpenCV, i.e. adaptive Gaussian threshold (based on Gaussian win-
dow), and adaptive mean threshold. The adaptive thresholds change locally,
depending on the local luminance level. We also decided to choose other thresh-
olding versions, adjusted to the mode of the image histogram, mean luminance,
or median luminance; these thresholds are adjusted to the luminance of the
whole image. These thresholds represent uniform thresholding, with one thresh-
old applied to the converted image. The Otsu method, an optimal method
described in [34], is also commonly used, so we decided to test it. However,
the best result was obtained for a fixed threshold. We tested several version,
namely from 10% to 90% of the luminance level, with 10% point step, and the
80% produced the best results. Testing was performed on several spectrograms;

146 E. Kubera et al.

Im
ag

e
pr

ep
ro

ce
ss

in
g

None (original spectrogram) Gaussian blur Gaussian blur and column
normaliza�on

Th
re

sh
ol

di
ng

 m
et

ho
d

lo
w

er
=

0.
2*

lu
m

a
up

pe
r=

0.
8*

lu
m

a
lo

w
er

=
0.

66
*m

ea
n

up

pe
r=

1.
33

*m
ea

n
lo

w
er

=
0.

66
*m

ed
ia

n

up
pe

r=
1.

33
*m

ed
ia

n

Fig. 4. Hough transform for various spectrograms versions, with Canny edge detector
applied for grayscale-to-binary conversion, with various thresholds.

we choose the most difficult ones (i.e. with hardly visible lines). We first visually
assessed the quality of the obtained black-and-white results, and next we also
applied the Hough transform to the resulting images, in order to check (visu-
ally) if the indicated lines actually represent the target lines. After comparing
all these results, we concluded that the fixed threshold of 80% of the luminance
level works best.

In the 2nd approach, based on Canny edge detection, two thresholds are
needed. The pixel is accepted as an edge, if its gradient is higher than the upper
threshold, and the pixel is rejected if its gradient is below the lower threshold.
The pixels between these thresholds undergo edge tracking by hysteresis thresh-
olding. In the hysteresis thresholding step, pixels are added to edges if and only
if at least one of the pixels around the one being processed represents an edge.

We tested 3 options of selecting the threshold pairs, again using OpenCV
and options available in this implementation.

The analysis of the results of this processing, shown in Fig. 2 and 4, indicated
which methods can be applied in the classification of these data into 3 classes,
i.e. acceleration, deceleration, and stable speed. Next, we extracted parameters

Hough Transform for the Classification of Vehicle Speed Changes 147

to represent lines in classification. As a result, we propose the following details
of the 2 approaches of extracting spectrogram representations:

– Approach 1: Gaussian blur of the spectrogram, column normalization, and
next threshold 80% of luminance in grayscale-to-binary image conversion are
applied. Afterwards, the Hough transform is applied to find white lines in
the processed image, for θ between 45 and 135◦. A 2D array (accumulator)
is calculated, and its maximum indicates θ corresponding to the strongest
line in the spectrogram. For each of 4 spectrogram parts calculated for a
single drive, the maximum of the accumulator and its corresponding θ and r
constitute our set of parameters, i.e. 12 parameters represent one drive.

– Approach 2: Canny edge detection algorithm is used (on Gaussian blurred
and column normalized spectrogram) as grayscale-to-binary image conver-
sion method, instead of simple thresholding. To avoid tracking very low fre-
quencies, for which lines are almost horizontal, we decided to limit the ana-
lyzed spectrogram to frequencies above 10 Hz. After a visual inspection of the
obtained results of the Hough transform for the 3 tested Canny threshold sets,
0.66 and 1.33 of the median luminance were selected. Again, the maximum
of the accumulator and its corresponding θ and r for each of 4 spectrogram
parts constitute our 12-element feature set.

This way, a very simple representation of complex spectrograms can be used,
namely the maximum of the accumulator and its corresponding θ and r for each
5 s segment of the spectrogram, for each channel of audio data (so, we have 12
features altogether for each drive). Next, we applied decision trees and random
forests as classifiers for these data.

2.2 Heuristic Methodologies

Since we have a simple representation, we actually do not need complicated clas-
sification algorithms. Even more, we propose and then test 3 simple heuristic
methodologies of classifying the underlying audio data into acceleration, decel-
eration, and stable speed classes, based on the 12-element feature vector:

1. We take θ corresponding to maximum accumulator of the 4 spectrogram
parts for this sound. If θ > AccSlope, the data are classified as accelera-
tion, if θ < DecSlope, then the data are classified as deceleration, and other
values indicate stable speed. The thresholds AccSlope and DecSlope were
experimentally chosen. Namely, we selected the thresholds based on testing
θ values within [45◦, 135◦], with 1◦ step, on the entire dataset. For Approach
1, DecSlope, and AccSlope were equal to 80◦ and 90◦, and for Approach 2
these slopes were equal to 87◦ and 95◦ respectively.

2. We take θ corresponding to the greatest r in the feature vector, and apply
the same classification rule as in methodology 1. Again the boundary slopes
were experimentally selected. For Approach 1, 81◦ as DecSlope and 88◦ as
AccSlope were selected, whilst for Approach 2 these slopes were equal to

148 E. Kubera et al.

85◦ and 94◦. Remark: It may look surprising that the θ below 90◦ indicates
acceleration, but this can be caused by the Doppler effect (see Fig. 1), which
decreases the frequency, and the lines are bent down. Note that the slope
boundary values for methodology 1 may differ from the values for methodol-
ogy 2, because in the latter the lines found for higher frequencies are preferred
(r is greater in this case), and these lines are sloping more.

3. We also used θ and r values corresponding to the maximum of the accumu-
lator to calculate a decision tree, in order to obtain an illustrative and well
grounded classification rule. The conditions in the nodes of the tree indicate
the boundary values at each step of this tree-based classification.

3 Experiments and Results

In our previous work [29] on the same audio data, we obtained up to 90.9% accu-
racy in ten-fold cross-validation (CV-10) using 85-element feature vector based
on audio data, up to 90.3% when using 24-element feature vector describing lines
in the spectrogram, and up to 92.6% when combining both feature vectors. No
image processing was applied to the spectrogram data. Random forests, support
vector machines, and multi-layer perceptrons were applied for data classification.
Additionally, forest of shapelets were used, but the obtained accuracy was lower.

In this work, we propose using a very simple representation of a complex
spectrogram, namely the parameters of the strongest line in each analyzed seg-
ment of the spectrogram (two parameters per segment, plus the maximum of the
accumulator). Image processing techniques were applied to these spectrograms.

Figure 2 visually shows that the most effective procedure for using the Hough
transform in Approach 1 is based on Gaussian blur and normalization for the
threshold equal to 80% of the maximum luminance, so this method was chosen
in further experiments with Approach 1. Figure 4 illustrates how using Canny
edge detection method influences the results of Hough transform, when using
the results of Canny method as the input of the Hough transform. As we can
see, all tested threshold pairs gave the same results on exemplary blurred and
normalized images, see Fig. 4. Thresholds based on the mean values may be
better suited to the image content, and they seem to be more accurate than
fixed threshold values. Mean is more affected by every single observation [36],
including outliers. Therefore, the threshold pair based on median was applied in
further experiments with Approach 2.

Decision tree, namely J4.8 tree from WEKA [37] was used as classification
tool for the proposed spectrogram representation, i.e. using 12-element feature
sets. Almost 80% accuracy was achieved for CV-10 cross-validation classifica-
tion for Approach 1, and more than 73% for Approach 2. Confusion matrices
for these cases are presented in Table 1. For the comparison with our previous
work, random forest classifiers were also used. R package was applied for this
purpose [38], yielding 85% accuracy in CV-10 for Approach 1 and almost 79%
for Approach 2. As we can see, random forests yield better results than a sin-
gle classification tree, especially for Approach 1. The results are 5–7% points

Hough Transform for the Classification of Vehicle Speed Changes 149

lower than in our previous research, but here we have only 12 features, instead
of up to 575 features. Table 2 shows the results obtained for both approaches
through CV-10.

Table 1. Confusion matrices for the J48 decision tree classifiers and a) Hough line
parameters from binary image obtained through 80% thresholding (Approach 1), b)
Hough line parameters detected via Canny edge detection (Approach 2)

a) Classified as: Dec St Acc b) Classified as: Dec St Acc
Dec 92 18 3 Dec 86 16 11
St 16 65 13 St 21 58 15
Acc 8 7 96 Acc 10 12 89

Table 2. Confusion matrices for the random forest classifiers and a) Hough line param-
eters from binary image obtained through 80% thresholding (Approach 1), b) Hough
line parameters detected via Canny edge detection (Approach 2)

a) Classified as: Dec St Acc b) Classified as: Dec St Acc
Dec 101 8 4 Dec 95 14 4
St 12 73 9 St 22 62 10
Acc 0 14 97 Acc 5 12 94

The decision tree constructed for the entire data set using Approach 1 clas-
sifies correctly 298 out of 318 objects (with 93.7% accuracy). When visually
inspecting misclassified objects, we can observe that the lines are actually hardly
visible in the spectrograms for these data.

Canny edge detection method used as preprocessing yielded worse results.
We think that is because the Canny line detector is designed to detect lines
on the background, whereas in the spectrogram there might be no background
clearly separated from the target line. Additionally, the selection of thresholds
may affect the quality of the representation.

After testing our approaches using decision trees and random forests, we
also evaluated the proposed 3 simple heuristic methodologies of classifying the
spectrograms based on the detected lines. The heuristic rules (1 and 2) take
only one parameter (θ) into account. Cross-validation was not performed in this
case. We are aware that the rules were extracted for the analyzed examples, but
we believe that the rules are related to range of speed changes considered to
represent stable or changing speed rather than to particular recordings.

The results of the heuristic methodologies no. 1 and 2, proposed in Sect. 2.2,
are shown in Table 3, together with the results for Methodology 3 (CV-10 was
applied in this case). The results for Methodology 1 are quite good, as just 80%
was achieved using decision trees for 12-element feature vector using Approach 1.

150 E. Kubera et al.

Only 83% was achieved using the tree built for the entire data set, using Method-
ology 3 and Approach 1. The confusion matrices for Approach 1 are shown in
Table 4 for Methodology 1 and Methodology 2, and in Table 5 for Methodology
3. As we can see, acceleration and deceleration are rarely confused, especially
when using Methodology 1. The classification rules obtained via Methodology 3
in the form of the decision tree (built using the whole training set using App-
roach 1) are shown in Fig. 5. Note that the decision conditions in the top node
and in the left subtree correspond to the formulas used in Methodology 1 for
this approach.

Table 3. Obtained results. The highest accuracy is shown in bold

Approach 1 Approach 2

Methodology 1 79% 79%

Methodology 2 71% 66%

Methodology 3 75% 76%

Table 4. Confusion matrices for the heuristic methodologies (a) 1 and (b) 2. Hough
transform was performed on binary image obtained through uniform thresholding

a) Classified as: Dec St Acc b) Classified as: Dec St Acc
Dec 92 14 7 Dec 97 10 6
St 15 59 20 St 21 58 15
Acc 3 8 100 Acc 24 16 71

Table 5. Confusion matrix for Methodology 3, obtained via CV-10 [37]

Classified as: Dec St Acc

Dec 86 18 9

St 17 65 12

Acc 4 20 87

We can conclude that our proposed simple heuristic methodologies, based
on just one parameter, offer results comparable with such classifiers as decision
trees or random forests.

Hough Transform for the Classification of Vehicle Speed Changes 151

theta

theta

r

theta

r

dec (106/16) st (85/24)

acc (13/3)

st (9/2)

st (5/0)

acc (95/7)

<=90 >90

<=79 >79 <=53 >53

<=108 >108

<=41 >41

theta

dec (5/2)

<=101 >101

Fig. 5. The decision tree for the 3rd methodology

4 Summary

In this paper we aimed at elaborating a methodology of extracting a simple
representation of automotive spectrograms. Our goal was to extract parame-
ters of lines representing accelerating (in 40–80 km/h range, to discover speed
changes around radars), decelerating, or maintaining stable speed. These lines
are curvy, often broken, and accompanied by noise. Still, we managed to extract
line parameters, and obtain a very simple representation, which allows detect-
ing the behavior of drivers when passing the microphone or other measurements
point, e.g. the radar. We proposed and tested several methodologies of extracting
and representing lines in classification of speed changes.

In the presented work, we tested the Hough transform as a line detection tool,
with spectrogram images as input data. Compared to our previous work, where
we applied various hand-crafted techniques to detect lines in spectrograms, we
achieved simpler representation of lines in spectrograms, albeit with decreased
accuracy. Still, we believe that adjusting the settings of the pre-processing steps
before applying the Hough transform may improve the obtained results; a mul-
titude of these settings to tune can be considered a drawback of this work. The
virtue of the presented approach is a very simple representation of lines in the
spectrogram, with almost 80% accuracy obtained when using a single feature,
i.e. θ (although we have to calculate other features to get the appropriate θ
value). The drawback of the presented approach is that the methods presented
in this paper may yield incorrect results if the lines are not clearly present in
the spectrogram, which happens in some cases in our data.

152 E. Kubera et al.

The recognition accuracy still needs improvement. We plan to inspect thor-
oughly the misclassified examples, as the misclassification may be caused by
distant sounds, interfering with the target sound. Additionally, we are planning
to analyze thoroughly the impact of threshold values in the Canny edge detector
on the classification quality in our future works.

Also, to avoid parameterizing curves caused by the Doppler effect and min-
imize the influence of other sounds, we consider limiting the analyzed sound
segments, namely discard the moment of passing the microphone (with strong
Doppler effect) and keep the remaining part in which the target sound is loud
enough to mask accompanying sound. It is possible that a shorter segment (e.g.
4 s, 2 s before and 2 s after passing, excluding the moment of passing) will work
better. However, the exact duration which will work best is to be found in further
work. This work focused on single drives (for single vehicles), but line detection
algorithms can also be applied when multiple cars are passing at the same time.
Therefore, the same methodology can be adopted to the recordings of multiple
vehicles and thus multiple lines in future work.

Acknowledgments. This work was partially supported by research funds sponsored
by the Ministry of Science and Higher Education in Poland.

References

1. Elvik, R., Vaa, T.: The Handbook of Road Safety Measures. Elsevier, Oxford (2004)
2. Król, M.: Road accidents in Poland in the years 2006–2015. World Sci. News 48,

222–232 (2016)
3. Huvarinen, Y., Svatkova, E., Oleshchenko, E., Pushchina, S.: Road safety audit.

Transp. Res. Proc. 20, 236–241 (2017)
4. Talebpour, A., Mahmassani, H.S., Hamdar, S.H.: Modeling lane-changing behavior

in a connected environment: a game theory approach. Transp. Res. Proc. 7, 420–
440 (2015)

5. Banovic, N., Buzali, T., Chevalier, F., Mankoff, J., Dey, A.K.: Modeling and under-
standing human routine behavior. In: 2016 CHI Conference on Human Factors in
Computing Systems, pp. 248–260. ACM, Santa Clara (2016)

6. Bonsall, P., Liu, R., Young, W.: Modelling safety-related driving behaviour-impact
of parameter values. Transp. Res. A Policy Pract. 39(5), 425–444 (2005)

7. Meiring, G., Myburgh, H.: A review of intelligent driving style analysis systems
and related artificial intelligence algorithms. Sensors 15(12), 30653–30682 (2015)

8. Wang, W., Xi, J., Chong, A., Li, L.: Driving style classification using a semisu-
pervised support vector machine. IEEE Trans. Hum.-Mach. Syst. 47(5), 650–660
(2017)

9. Mehar, A., Chandra, S., Velmurugan, S.: Speed and acceleration characteristics of
different types of vehicles on multi-lane highways. Eur. Transp. 55(1), 1–12 (2013)

10. Brooks, R.M.: Acceleration characteristics of vehicles in rural Pennsylvania. Int.
J. Res. Rev. Appl. Sci. 12(3), 449–453 (2012)

11. Schroeder, B.J., Cunningham, C.M., Findley, D.J., Hummer, J.E., Foyle, R.S.: ITE
Manual of transportation engineering studies. Institute of Transportation Engi-
neers, Washington, D.C., US (2010)

Hough Transform for the Classification of Vehicle Speed Changes 153

12. Gupta, P.K., Sharma, I.: Study of traffic flow in an entire day at a congested
intersection of Chandigarh. J. Civ. Eng. Environ. Technol. 2(12), 70–73 (2015)

13. Gaca, S., Kiec, M.: Speed management for local and regional rural roads. Transp.
Res. Proc. 14, 4170–4179 (2016)

14. Lingani, G.M., Rawat, D.B., Garuba, M.: Smart traffic management system using
deep learning for smart city applications. In: IEEE 9th CCWC Proceedings, pp.
0101–0106. IEEE, Las Vegas (2019)

15. Leduc, G.: Road traffic data: collection methods and applications. Working Papers
on Energy, Transport and Climate Change, vol. 1, no. 55 (2008)

16. Gajda, J., Sroka, R., Stencel, M., Wajda, A., Zeglen, T.: A vehicle classification
based on inductive loop detectors. In: IMTC 2001, pp. 460–464. IEEE (2001)

17. Capobianco, S., Facheris, L., Cuccoli, F., Marinai, S.: Vehicle classification based
on convolutional networks applied to FMCW radar signals. In: Leuzzi, F., Ferilli, S.
(eds.) TRAP 2017. AISC, vol. 728, pp. 115–128. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75608-0 9

18. Ishida, S., Liu, S., Mimura, K., Tagashira, S., Fukuda, A.: Design of acoustic vehicle
count system using DTW. In: Proceedings of the ITS World Congress, Melbourne,
Australia, pp. 1–10 (2016)

19. Luvizon, D.C., Nassu, B.T., Minetto, R.: A video-based system for vehicle speed
measurement in urban roadways. IEEE Trans. Intell. Transp. Syst. 18(6), 1393–
1404 (2016)

20. Nemade, B.: Automatic traffic surveillance using video tracking. Proc. Comput.
Sci. 79, 402–409 (2016)

21. Balid, W., Tafish, H., Refai, H.H.: Intelligent vehicle counting and classification
sensor for real-time traffic surveillance. IEEE Trans. Intell. Transp. Syst. 19, 1784–
1794 (2018)

22. Smadi, A., Baker, J., Birst, S.: Advantages of using innovative traffic data col-
lection techniques. In: 9th International Conference on Applications of Advanced
Technology in Transportation, Chicago, IL, US (2006)

23. Adnan, M.A., Sulaiman, N., Zainuddin, N.I., Besar, T.B.H.T.: Vehicle speed mea-
surement technique using various speed detection instrumentation. In: IEEE Busi-
ness Engineering and Industrial Applications Colloquium, pp. 668–672. IEEE,
Malaysia (2013)

24. Middleton, D., Gopalakrishna, D., Raman, M.: Advances in traffic data collec-
tion and management. Texas Transportation Institute Cambridge Systematics Inc.,
Washington, DC, USA (2002)

25. Kubera, E., Wieczorkowska, A., S�lowik, T., Kuranc, A., Skrzypiec, K.: Audio-
based speed change classification for vehicles. In: Appice, A., Ceci, M., Loglisci,
C., Masciari, E., Raś, Z.W. (eds.) NFMCP 2016. LNCS (LNAI), vol. 10312, pp.
54–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61461-8 4

26. Wieczorkowska, A., Kubera, E., Koržinek, D., S�lowik, T., Kuranc, A.: Time-
frequency representations for speed change classification: a pilot study. In:
Kryszkiewicz, M., Appice, A., Śl ↪ezak, D., Rybinski, H., Skowron, A., Raś, Z.W.
(eds.) ISMIS 2017. LNCS (LNAI), vol. 10352, pp. 404–413. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-60438-1 40

27. Göksu, H.: Vehicle speed measurement by on-board acoustic signal processing.
Meas. Control 51(5–6), 138–149 (2018)

28. Kotus, J.: Determination of the vehicles speed using acoustic vector sensor. In:
2018 Signal Processing SPA, pp. 64–69. IEEE, Poznan (2018)

29. Kubera, E., Wieczorkowska, A., Kuranc, A., S�lowik, T.: Discovering speed changes
of vehicles from audio data. Sensors 19(14), 3067 (2019)

https://doi.org/10.1007/978-3-319-75608-0_9
https://doi.org/10.1007/978-3-319-75608-0_9
https://doi.org/10.1007/978-3-319-61461-8_4
https://doi.org/10.1007/978-3-319-60438-1_40

154 E. Kubera et al.

30. Nixon, M.S., Aguado, A.S.: Feature Extraction & Image Processing for Computer
Vision, 3rd edn. Academic Press Inc., Orlando (2012)

31. Fisher, R., Perkins, S., Walker, A., Wolfart, E.: Hypermedia Image Processing
Reference. Wiley, West Sussex (2000)

32. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. 8(6), 679–98 (1986)

33. OpenCV. https://opencv.org/. Accessed 14 June 2019
34. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans.

Syst. Man Cybern. 9(1), 62–66 (1979)
35. RoboRealm. http://www.roborealm.com/help/RGB%20Filter.php. Accessed 26

Nov 2019
36. Chiang, C.L.: Statistical Methods of Analysis. World Scientific Publishing Co. Pte

Ltd., Singapore (2003)
37. WEKA. https://www.cs.waikato.ac.nz/ml/weka/. Accessed 15 June 2019
38. The R Foundation. https://www.r-project.org/. Accessed 28 Nov 2019

https://opencv.org/
http://www.roborealm.com/help/RGB%20Filter.php
https://www.cs.waikato.ac.nz/ml/weka/
https://www.r-project.org/

Author Index

Azad, Payam 52

Bezbradica, Marija 119

Chang, Yi 100
Cirqueira, Douglas 119
Cule, Boris 3

Dinsoreanu, Mihaela 67

Feremans, Len 3
Floyd, Sean L. A. 85

Goethals, Bart 3

Helfert, Markus 119
Hofer, Markus 119

Jangra, Shalini 21
Jarmulski, Wojciech 39

Kubera, Elżbieta 137
Kuranc, Andrzej 137

Lemnaru, Camelia 67
Liu, Bing 100

Mazumder, Sahisnu 100
Meert, Wannes 3
Muresan, Raul Cristian 67

Nedbal, Dietmar 119

Öğüdücü, Şule Gündüz 52

Palcu, Liana-Daniela 67
Potolea, Rodica 67

Supuran, Marius 67

Toshniowal, Durga 21

Vercruyssen, Vincent 3
Viktor, Herna L. 85

Wang, Shuai 100
Wieczorkowska, Alicja 39, 137

Yıldırım, Ezgi 52

Zhou, Mianwei 100

	Preface
	Organization
	Effective Linear Models for Learning with Sequences and Time Series (Abstract of Invited Talk)
	Contents
	Complex Patterns
	A Framework for Pattern Mining and Anomaly Detection in Multi-dimensional Time Series and Event Logs
	1 Introduction
	2 Preliminaries
	3 Method
	3.1 Time Series Representation for Pattern Mining
	3.2 Pattern Mining
	3.3 Pattern-Based Anomaly Detection
	3.4 Implementation of the Framework

	4 Use Cases
	5 Related Work
	6 Conclusion
	References

	A Heuristic Approach for Sensitive Pattern Hiding with Improved Data Quality
	1 Introduction
	2 Related Work: Heuristic Based Algorithms
	3 Background
	3.1 Basic Terminologies
	3.2 Problem Statement

	4 Proposed Solution: MinMax Algorithm
	4.1 Time Complexity Analysis
	4.2 Example

	5 Experimental Results
	5.1 Varying Percentage of Sensitive Itemsets
	5.2 Varying Minimum Support Threshold

	6 Conclusion
	References

	Classification and Regression
	Interpretable Survival Gradient Boosting Models with Bagged Trees Base Learners
	Abstract
	1 Introduction
	2 Survival Analysis
	2.1 Notations
	2.2 Partial Likelihood
	2.3 Cox Proportional Hazards Model

	3 Proposed Method
	3.1 Gradient Boosting
	3.2 Additive Representations
	3.3 Base Learner Function
	3.4 Loss Function

	4 Evaluation
	4.1 Datasets
	4.2 Methods
	4.3 Parameters
	4.4 Concordance Index
	4.5 Validation

	5 Results and Discussion
	5.1 Base Learners
	5.2 Interpretability
	5.3 Feature Selection

	6 Conclusions
	References

	Neural Hybrid Recommender: Recommendation Needs Collaboration
	1 Introduction
	2 Neural Hybrid Recommender
	3 Experiments
	3.1 Datasets
	3.2 Handling Text Data
	3.3 Evaluation Process
	3.4 Negative Sampling
	3.5 Baselines
	3.6 Parameter Setting
	3.7 Performance Results

	4 Conclusion
	References

	Discovering Discriminative Nodes for Classification with Deep Graph Convolutional Methods
	1 Context and Motivation
	2 Related Work
	3 Interpreting Graph Convolutional Network Models with Grad-CAM
	3.1 Graph Sparsification
	3.2 Deep Graph Convolutional Neural Networks
	3.3 DGCNN Interpretability

	4 Experimental Evaluation and Results
	4.1 Data Generation
	4.2 Classification Performance Evaluation
	4.3 Interpretability Heatmaps

	5 Discussion
	6 Conclusion
	References

	Streams and Times Series
	Soft Voting Windowing Ensembles for Learning from Partially Labelled Streams
	1 Introduction
	2 Background
	3 LESS-TWE Online Learning
	3.1 Hybrid Sliding-Tumbling Windows
	3.2 Weighted Soft Voting
	3.3 Online Labelling
	3.4 Unlabelled Drift Detection

	4 Experimental Evaluation
	4.1 Benchmark Data Sets
	4.2 Effects of Training with a Lower Percentage of Labelled Data
	4.3 Comparison in Terms of Accuracy and Runtime
	4.4 Intrusion Detection Databases

	5 Conclusion
	References

	Disentangling Aspect and Opinion Words in Sentiment Analysis Using Lifelong PU Learning
	1 Introduction
	2 Related Work
	3 Stage One: Grouping
	4 Stage Two: Disentangling
	4.1 PU Learning Using Word Vectors
	4.2 Lifelong Machine Learning
	4.3 Lifelong PU (LPU) Learning

	5 Experiments
	5.1 Candidate Methods for Comparison
	5.2 Experimental Setup
	5.3 Quantitative Evaluation
	5.4 Qualitative Evaluation
	5.5 Further Analysis

	6 Conclusion and Future Work
	References

	Applications
	Customer Purchase Behavior Prediction in E-commerce: A Conceptual Framework and Research Agenda
	Abstract
	1 Introduction
	2 Research Methodology
	3 Results
	3.1 RQ 1. What Tasks and Applications Have Been Addressed in the Problem of Consumer Purchase Behavior Prediction in E-Commerce?
	3.2 RQ 2. What Methodologies Have Been Adopted to Predict Consumer Purchase Behavior Online?
	3.3 State-of-the-Art Performance
	3.4 Research Agenda

	4 Final Remarks
	References

	Hough Transform as a Tool for the Classification of Vehicle Speed Changes in On-Road Audio Recordings
	1 Introduction
	1.1 Proposed Approach
	1.2 Audio Data

	2 Methodology
	2.1 Using Hough Transform for Line Detection
	2.2 Heuristic Methodologies

	3 Experiments and Results
	4 Summary
	References

	Author Index

